? AHI DATA STRUCTURE

'/ A.M. 276 CLASS NOTES

17 3 o

Z 1. _DATA_STRUCTURE

The AHI data structure has as its basic unit the "statement."
The statement is the smallest textual unit defined, and is simply
a textual string. The file (i.e., collection of statements) is
hierarchically oriented in a tree structure, each statement being
a node in the tree. The reasons for this hierarchical structure
will Dbe discussed 1later. The file, however, can be viewed in
other ways different from the sequential tree structure. For

instance, associational trails can be drawn throughout the file//fu,~«f

and followed. Thus the AHI file is capable of modeling Bush's?
network of associational trails as well as a sequential hierarch-
ical text.

1.1_THREE TYPES OF_BASIC ENTITIES

A. Statemeants
B. £ Vectors ,: };Vﬂﬁf ; L8
C. Keywords

These three types of entities are stored in statement data
blocks {SDB*s), vector blocks, and keyword blocks, respectively.
In addition, the hierarchical structure of the text is stored in
ring blocks. We will only discuss the statement data blocks and
ring blocks and their relation to the main file; the access and
storage of vectors and keywords is very similar and so do not
need to be discussed separately. (In:the present version of the
system, the only types of vectors that can be stored are straight
lines, and no sketching facility exists other than defining the
straight 1line by its endpoints. There is no rubberbanding. A.
sketching facility is planned for a future version.)

o > 2o

1. V., Bush, "As We May Think", Atlantic Monthly, July 45.

INTERNAL DISTRIBUTION ONLY 3

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

/J(k 0)

//»

TSk Associated with each set of blocks {there are four sets of
blocks: the ring blocks, the statement data blocks, the vector
blocks, and the keyword blocks) there is a small status table
vhich has an entry for each block of its kind. Thus there is a
ring status table, a statement status table, a vector status
table, and a keyword status table. The entry for each block .in
the status table simply points to a "global" random file status
table block, which gives the location of each block, whether in

core or on drum. (See Fig. 1)

r‘/" 1/\ ’

Random File Status Block

DR
o

7 Pts. to actual location
of block.

Ring Status

Table Statement S.T. Vector S,T. Keyword S.T.

Each entry in
R.S.T. corresponds
to a ring block
(each block contains
many ring elements,
1 element/statement),

INTERNAL DISTRIBUTION ONLY 4

¢

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

1.3_RANDOM FILE STA

US_TABLE_BLOCK

e v

The random file status table block is a block that contains an
entry for every block of every type in the system (actually,
there 1is an RFSTB for each {(active) file). Each entry tells
whether the block is in core or not, or whether it is unallocated
{(i.e., not being used at the present time and can be allocated
when a file is expanded through editing). The entry also gives
the information on where the block is located, on the drum or in
core. It is through the RFSTB that each desired block is located
by the systen:

As we savw in 1.2, each ring block is mapped into an entry in
the ring status table, each statement data block is mapped into
an entry in the statement status table, etc. Then each entry in
each status table points to an entry in the bigger RFSTB (at
present there are a maximum of 64 blocks in the BFSTB), one
containing pointers to the actual 1location of each different
block in the file. This double-table method of location of each
block is to facilitate control of the allocated and aupallocated
area on- drum, and for garbage collection; furthermore, this
central location mechanism allows blocks to be moved in the
system, without internal pointers having to be modified.

R R AT

The RFSTB contains information othet than. justoa;poindker to
the block, whether in core or on drum. One area of the RFSTB, if
it is less than zero, indicates the block is on the drum. If the
number in this area is negatlve, it is the number of free words

in that block. This is to prevent needless retrieval of the .

block for additions if there is not enough room on it for ‘the
desired update. If this area is greater than zero, the block is
in core and the number is the core address of the block. There

is another area in which an indicator (at present a- 2) says free

space is too small to comsider going thete.“ iThls is computed
from the average lengths of the statements. §§ §

The ring status table at present has eatrles, one for
each of four ring blocks. This number is expandable, and is an

assembly ime variable. There are probably twice or three times
as many * and therefore the statement status table is
correspondingly bigger.

., 55 g \(

1.4 _STRUCTURE OF THE RING BLOCK

Y S £ 3 B

Each statement 1is represented in the data structure both by
its associated text (see SDB's) and by a ring element, that is,

INTERNAL DISTRIBUTION ONLY 5

. _;,_,_-k NN

L : ‘ | 4+ L D
Wili: poilic G- rivg luneuls ax collal PO (permansll chui TO)
¥ nauL,ginﬁ?g Do Yo epislannee of a AHI DATA STRUCTURE
§ 7
A.M. 276 CLASS NOTES

by an element of a ring that contains the hierarchical tree
structure of the file and points to the text associated with each
node {statement) in the tree. The ring is broken into ring
blocks, each of which is 1024 words long. Each ring block has a
/ header and then is composed of ring elements, each four words
TS Al long, one ring element per statement (See Fig. 2):
v v ' RING .

] - 1)

/BEADER/// [/ T e

»

RING ELENMENT
4 words)

4

i 1
RING BLOCK (1 K words) RING ELEMENT

elivC o
s ' FLAGS PTR ———> To text of
, PTR TO - ¥ PTR TO° } statement
| NAME HASH o EeaE
UNUSED///] ®WTR — |——> To vectors

Gl

FIG, 2 Ring Block Elements

{
t

¥ (PO |
g Pointer (PTR): the intermal pointer to the statement text in {
3 a statement data block (SDB). {The structure of an internal I
© pointer (symbolized by *P?) will be discussed imn Section 1.6.) |
J o _ , ‘
~ ¥ | |
ITL D {in hierarchy), etc., and thus he]
RN as to imize drup-I/0, i.e., we want _only |
&g ab the thifd level of hierarchy and this
& W e is in the fourth level, there is n need to retrieve
V’*Q;\» of this sfatement. (i wﬂ"»{/ﬂ(e U/da g onfive Vlm_7 ‘,}}fm
g \7\\;\ Qurts Strue X uve duarn).
X .~ 7p4piC Successor: a pointer to the ring element: (anywhere in the
'tig §" ring) of the next succeeding statement on the same level.
s V.
Q §f§ ~p4t77 Subs a pointer to the ring element of the first statement in
> ~ the level directly below the current statement.
N

s oo o The sub and successor pointers define-the hierarchical tree
structure.

SUB foe‘l/&@f CC; | 'ﬂ""s H*lf ,bé»/méwf »“7£ "M\M i\g wo guiai{'?u.o{‘({%

f%%7§

INTERNAL DISTRIBUTION ONLY 6

wy v B WY 10

4 ow ng Waie chotowatd e a \ieed AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

COUVCL. (c‘-’P 1 Wl)
T: the last successor on each level points to the _head of

that level, thus providing a back pointer., The T bit is set when

it is the last successor.

- Name hash: this is a 24-bit hash of the (optional) statement
cp name. Thus when jumping by name, we need only scan each ring
’ element segquentialy to get correct statement. This may be done

sequentially since each file generally consists of only about 300
statements.

e ot onvetd Ve miends smedete Lo oo gl u\m7 blacic wre [t C)?f&ﬂ‘%
L oa j"u L"f — Po,hﬂ/,t— Ly ~ ,001,0\2'74, /H*{/LJ éL;ck Aﬂab&/t,

g 1.5 _STATEMENT DATA_BLOCK_{SDB)

The statement data blocks (SDB's) are simply areas in which to
store the statement text. ©No structure or hierarchy is part of
the SDB's since that is taken care of by the ring blocks. The
system tries to put all sequential statements in the same block
to save on drum I/O. The process of initial generation and
placement of statements in the SDB's will be discussed in section
2. (See Fig. 3)

i5B - STATEMENT DATA: BLOCK S
‘v T CKSUM ' - 3 ‘ : N L/Q r ‘;’Lt/‘w A
. Header for 2 Back ptr. to Ring~/%R279 . i
| || 1K block Flags| _ Length S~ & word
- Text /// : Header for
Block L)/ o , Individual
of 1K | 4 TEXT Statement
Words ‘ ’ T e
| v/

Broken into Individual :

tatemer o5 : : B

sta \‘ement‘s o peiwlie T Mt cha i n wavag T
| - FIG, 3 Statement Data Block Elements

e CKSUM: . this is a checksum to <check against hardware I/0
e errors 1in reading the statement data block from drum. Before
Wwriting out on drum, the system adds up all words in the SDB and
stores the sum in CKSOUM. On read-in, it re-adds the vwords aad
checks to see if the sum is the same.

A“ {Lk }#;L(L‘iod‘ﬁ one (/Luokfa)bfzt\/w/e/é n ‘dw(ﬁ wﬂ

INTERNAL DISTRIBUTION ONLY 7

L5

®
o

d
/

/j{ k«.o?‘; P
> ol clpbend ¢
¢

£)

Jusrt va

(74,5
Love

w1 A1
2k

Y

S

- AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

Header: this contains the initials, date, and time of last
user . and change, fields which can be used as a later means of
retrieval.

éﬂ Back pointer to ring: this is an internal pointer (of type
'P') to the ring element representing this statement in the text
hierarchy, i.e., the ring element which points to this statement.

Flags: . the first bit indicates whether this SDB element is
garbage, and is used wvhen compacting the SDB. Other bits
indicate whether it is difficult to format the statement on the
display, that is, if the statement contains things like underlin-
ing or flicker. If it is difficult to format, the low speed
scanning/forrmatting routine is used. Otherwvise the high-speed
routine is used. This saves up to 50% on time. {Other bits for
other things.)

Text: the text is stored in the statement data block. as
follows: there are two kinds of characters, {1) 8 bit character,
with the high order bit off, and {(2) 16 bit characters. If the
high order bit is on, this signals that the character is a 16 bit
character. The seven next high bits signify font, etc., of the
character representeld in the second eight bits. The different
qualities of each character are wunderline, blinking, italics,-
boldface, etc. The user can make up his own special characters
and the system will insert it. This is done by giving the
special <character a number. Tt takes less than 10 msec. to

reformat a display. (1/ m5¥fwﬂma&ﬁ>

6_LOCATING STATEMENTS IN_THE DATA_STRUCTURE

-
e et . s e s — B P e A2

1.6.1 Mapping_ Statements to Ring Block Elements Through the

o e s o . e e i

When statements are created, they are assigned by the freelist
allocator to open positions in a ring block (to a ring element)
and assigned to statement data blocks according to the "garbage
bits®; they are also assigned an internal (position related) nanme
in the ring block denoted by 'P*. All ring block vacancies are
kept on the freelist. The internal name P in the ring block is
thus assigned by getting it off the freelist (creating a map from
sStatement name position to internal name, and from internal nanme
‘to block position) as described below:

INTERNAL DISTRIBUTION ONLY 8

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

Say that we want to retrieve statement P, an internal name.
(pointer) of the type found in the successor and sub. fields of
the ring element. It is listed in the file header where it gives
the point in the ring where the file starts, i.e., it poiats to
the ring element representing the first statement in the file.

To get statement P 4{L.bits) ve look at P*4, which is 12 bits
long {See Pig. 4). The upgerf@ bits are an:index on the J-entry
ring status table (RST). The entry in the RST points to an entry
in the random file status table block (RFSTB). This entry in - the
RFSTB tells us whether the ring block containg the desired ring
element is in core or not, or whether it is unallocated {in which
case an error condition exists). The ring block is brought into
core if necessary. The lowver 1(bits of P*4 then form an index
relative to the start of the ring block that bring us to the
appropriate ring element. Thus from the internal name of the
statement we retrieve the desired ring element.

L il

! RELATIN?]Wy;g'-
'to START

p .t “, of RUNNING/

\BLOCK)

INDEX = BLOCK ID ,<% entries/

qnaw%v 1 block
RING STATUS T
controls bl

Ring Element

¢

[

- RING BLOCK
RANDOM FILE

STATUS TABLE BLOCK

locates block

-
v

2 10
One of 4 blocks
addressing 1K block .
whose address 1s in RFSTB

FIG, 4 Structure and Mapping of Internal
Pointer 'P!'

INTERNAL DISTRIBUTION ONLY 9

AHI -DATA STRUCTURE

A.M. 276 CLASS NOTES

Notes on: - the file header: this contains pointers to all
status tables and their lengths, and information on the virtual
memory map. It also contains bibliographic information which may
be used as a means of retrieval: last time written into,
username, initials of last user, jump delimiters (these are the
marks that delineate a Jjump, and in the present version are
general parentheses), average length of statement (determined by
how much activity over periods of time). This information is all
contained in the first 1K words. An interesting feature is that
the TS system will accept any amount extendable to 1K without
using excess drum space. 26l vl chontes , T bed et

The first ring element at the start is 'dummy’'; and is the .
start of the file. When the system rewrites the file on drum.

after use, it searches to the first semicolon and puts in place
of what is there the file description: username, initials, date
and time, etc. of last use. el

1.6.2 Mapping From_the Ring Element to the Text of the Statement

b m_the Rin
{See Fig._ _5)
2fL B
PTR to STATEMENT
r ? ey g header
inde¢x velative —
to start) : —
b individual
of SDB . . :
: A 3 g ‘/lstatement
RING ELEMENT STATEMENT o »
STATUS TABLE STATEMENT
RFSTB DATA BLOCK

e

FIG. 5 . Mapping from Ring Element
L to Text

Now that we have the appropriate ring element relating to

statement P (see Fig. .2) for the structure of ring element, we

can retrieve the statement-text for filter/format/display. The

INTERNAL DISTRIBUTION ONLY 10

ru

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

system takes the "pointer to text"™ in the first word of the ring
element. This pointer is of the same structure with respect to
the statement in the statement data block as P*4 is to the ring
element of the ring block. Thus the high bits are an index on
the statement status table. The entry in the SST points to an
entry in the RFSTB, which in turn points to the location of the
appropriate SDB in which the desired statement is located. Once
we have the appropriate SDB, the 10 1low order bits of the
original pointer point to the desired statement, relative to the
start of the SDB. (See Fig. 3)

1.56.3 Generating a Segquence of Statement

e ————

Given the appropriate individual statement P {see Fig. 3 for .
structure of the statement entity), the sequence generator now
takes the statement text for filtering/formating/display, as
described in Section 3.

Which statement is taken next depends on the sequence being
folloved by the sequence generator. If the sequence generator is
following the basic hierarchical tree structure, it will look at
the ptr-to-sub field in the ring element (Fig. 2), and use that
pointer as it used P above. (However, if a filter is set for a
specific level and statement P was on that level, the segquence
generator vlll 1gnore the sub fleld and take the ptr-to-successor

\,\,\rS‘G . ’@\LLW VYL

The sequence generator, however, may be folloalng an associa-
tional trail. If this is the case, the content analyzer will
scan the statement—text P for the appropriate trail marker. If
it finds the appropriate trail marker in the statement-text, it
will hash the name in the trail marker, and scan the name hashes
of the ring elements until it finds the correct ring element, and
continue generating statements from there. If the appropriate
trail marker is not found, it will follow the tree structure as

abler Q.., "‘0\] \/\LQQV‘(W*O/\\{ vt & (7\4;;\\\ ol | &\,uv\&,\

INTERNAL DISTRIBUTION ONLY 11

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

The data structure is modified through the basic editing
conmands {delete, insert, replace, move, copy, break/join) which
are described briefly below in Section 4. System features and
facilities are described more completely in the ¥NLS User's
Guide" (a SRI publication).

We will describe how the data structure is modified for an
insert; the other types of edit-modifications are all similar.
If the edit 1is an insert, it is an insert in the middle of a
statement. By system definition, all editing 1is based on the
statement. The wuser types in the appropriate insert command,
hits the point of insert with the mouse, and types in the insert.
The insert typed appears on the screen in the literal type-in
area. If the user decides the insert is complete, he hits the
command-accept button. The system then makes the modification of
the data structure as followus:

The system computes the new length of the statement by taking
the o01ld 1length of the statement in the statement data block and
adding the length of the insert. The system then finds a free
area on one of the statement data blocks of sufficient length to
put the new statement. It tries to put the updated statement on
the same SDB. If the edited statement does not fit im that SDB,
the system tries to compact the block. If that would not give
enough space, the system goes to the previous ring element and
sees what SDB that statement is stored on and tries to fit the
newly updated statement on that block. If it doesn't fit there,
the system looks through the SDBST to find any free area and fits
it in anyplace.

Now that the appropriate space 1is allocated, the updated
statement 1is constructed. This is done by copying the header of
the original statement and the text wup to the insert point,
adding to this the literal type-in, and copying the rest of the
text of the statement. Then the "ptr-to-text"” in the associated
ring element is <changed to point to the new statement, and the
garbage bit is set in the original statement.

When any statement is edited, the system checks to see if
there is a statement name, or label. If there is, it is rehashed
and replaced in the ring element. Thus 1labels are always
updated.

INTEBNAL DISTRIBUTION ONLY 12

g LR

Ariige

v
Lol

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

| 3.__REDUCING THE DATA_STRUCTURE TO_A_SCREEN DISPLAY

e

The process of scanning the data structure to retrieve and
display the desired text has four basic parts: (1) the sequence
generator {as discussed briefly in Section 1.6.3), {2) filtering,
(3) formatting, and (4) display.

3.1_SEQUENCE GENERATOR

g

The sequence generator is the routine that actually scans the
data structure and generates the seguential text. Basically it
generates a 1list of statements. There are three types of
sequences that can be generated:

3.1.1 _Tree. .

This 1is the default hierarchical structure that is generated
and is simply the sequential text of the main associational trail
of the text, ordered in a hierarchy of statements.

3.1.2 Trail

————

The trail feature is used to set up statements in such a way
that only a particular set of statements will be displayed and in
a particular order. The set of statements is called a trail, aad
is an associational trail that criss-crosses the default (main)
trail; it provides a manner other than the normal sequence in
which to read the text. A trail marker 1is set up for .a
particular trail of statements; the pattern for this marker can
be a complex syntactical form and is followed by the content
analyzer {described in an SBI publication).

Trail markers are thus used to mark turning points from the
normal sequence of statements, as a signpost to the next
statement in the trail. Each time a marker appears in. a
statements it is followed by a statement name in parentheses that
is the name of the next statement. Between trail markers

INTERNAL DISTRIBUTION ONLY 13

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

statements are displayed in normal sequence. The trails can be
followed only in the forward direction; there is no capability
for inverting the trail when moving backwards through the text.
(SRI claims that with the complex content-analyzer, this is
unnecessary.) ’

=1.3 Keywords

=

The keyvword system permits a user to coastruct a specially
formatted catalog file containing references to other files aad
capable of being reordered automatically according to some chosen
set of weighted keywords. %#hen reordered, the file 1lists
references in order of relevance, according to the choice and
weighting of keywords.

The keywords are attached to a statement, The system keeps a
list of the keywords containing for each keyword a short
description of the keyword, and the labels of statements tagged
with this keyword. This list is visible to the user and can be
changed by him. The system also keeps a list of the file-
reference entries, that is, a file of any statement name tagged
with a keyword, and a list of the keywords it is tagged with
following 1it. Thus one keyword can be attached to any number of
statements, and one statement may have any number. of keywords
attached to it.

The keyword system is used mainly as a retrieval-by-keyword
system. The user selects desired keywords and weights then
according to importance. A negative weight can also be used to
blackball any keywords. According to SRI,the weights on the
keywords allow more flexibility than straight Boolean retrieval
functions on keywords; after the user has selected keywords and
weights, the system goes to the list of keywords and picks out
all statements tagged with the selected keywords. For each
statement selected the system computes the weights of keywords
attached to it, and displays the names of the statements in order
of highest total weight. Statements with a negative total weight
are not displayed. The user may then access the referenced files
by using the jump command on the statement names.

Facilities included are: level specification, branch only,
subfile, content analyzer, trail flags, 1literals, search for
trail flags and literal text, etc.

INTERNAL DISTRIBUTION ONLY 14

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

After the main structure is generated and filtered, it is
formatted.

i e S 2 S S . >

The formatting sets the following, and other, variables of
display:

Statements numbers: the number of lines of each statement to
be displayed is variable; headers, time/initials/labels can be
on/off.

View change: character size, page size and dimensions, etc. .

. —oy " o " -

After the statements have been filtered out, they are dis-
played. The wmain display of the generated/filtered/formatted
structure is in the file area of the screen. There are a number
of one-dimeansional registers used for man/machine interaction:

1« . Echo register. This displays the last six characters
typed by the user, for feedback.

2. Command display line. This is a 1line which says what
command is in the process of being executed.

3. Name register. Displays user's name (this is on a
multi-terminal systenm). '

4. View specification areas. There are three view . spec
areas, and these are set according to the formatting variables
described in Sec. #4.28. . ‘

5. Message area. An area for system messages to the user,
such as error messages.

6. Literal type-in area. When the user is typing in-an
insert or delineating a command, the characters typed are
displayed in this area.

There is, in addition to the file area, another two-

dimensional area, the freeze area. This freeze area is used to
n"freeze" statements designated by the user so that they remain.

INTERNAL DISTRIBUTION ONLY 15

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

unchanged above the file area, with the file being then displayed
in the file area. The freezed statements remain unchanged
despite any text manipulations or file searching that goes on in
the file area. (In a future version, the freeze area will be
done away with, and instead the user will be able to multi-window
any number of windows. Each window will be a full file area,
with all one-dimensional registers in each window. They cam be
any shape or size any place on the screen. With multistations, a
window can be assigned to a station, giving the users at two
different terminals the ability to decide who holds the chalk and
who holds the eraser in each window.) :

INTERNAL DISTRIBUTION ONLY 186

AHI ‘DATA STRUCTURE

A.M. 276 CLASS NOTES

4. SYSTEM FEATURES AND_ FACILITIES

4.1 _EDITING

The basic editing commands are delete, insert, replace, nove,
copy, set, and break/join. All are self explanatory, except set
and break/join., The set commands allow the user to change the
font on any text string. The fonts are: capital, lower case,
italic, roman, boldface, no boldface, flickering, non-flickering,
underline, no underline. The break and join commands allow the
user to break a statement into tvwo statements; the join command
adds a text string onto another statement. The break and Jjoin
commands are the only commands that operate across statement
boundaries. All the other editing commands are specialized: for
example, the insert commands are insert character, insert word,
insert text, insert invisible, insert statement, insert branch.
The specialized commands make it easier for the system to mnmake
the edits; the rationale for specialization is that since you
have to type the command in you may as well specialize, and
economies in data structure manipulation may be achieved (e.g.,
moving an entire branch of the tree).

——— . ———.—— — o~ <~ ————— S~

4.2.1 Invisibles

When editing, invisibles such as spaces and tabs can be
displayed by marks, and thus can be deleted.

4.2.2 Labels

Labels are statement names and are used for retrieval purposes
by Jjumps, links, and keywords. They are inserted as part of the
text, that is, with an insert conmmand. A label is simply a
variable-length character string that appears at_the beginning_ of
a__statement in parentheses. These labels can be changed or

deleted as if they were regular text.

INTERNAL DISTRIBUTION ONLY 17

S 8Lh

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

Duplicate labels can be created. A jump to a label results in
a jump to the first occurrence of that label, since the systenm
sequentially scans the name-hash field of the ring elements. A
feature contemplated for incorporation in the system is a "look
for next occurrence of this 1label" jump to resolve duplicate
labels.,

B.2.3 Links

A link is an association to another statement, i.e., it is a
jump to another statement that can be taken at the option of the
user. The link can be in the current file or in another file.
There are four parameters to a 1link: three (the user name,
filename, and label) define the point linked to. The fourth is
the view specifications on the text 1linked to. This is an
interesting feature: that view specifications can be changed on
all links.

The 1link structure is a regular text string inserted in the
text as if part of it, and is in parentheses in a syntactic form.
Like labels, the link is just regular text until it is used. It
can be edited at any time. When the user decides to take a link,
he hits a character with the bug. The system scans forward with
the content-analyzer until it picks up the nearest link structure
in that statement, and jumps to the label. The link is taken by
use of a jump command.

4.2.4 Intrafile Return Ring

Whenever any jump is made within the file, a new entry is made
in a list called the intrafile ring. Each of these entries gives
a display start and a set of viewspecs. A pointer indicates the
current view on the list. ©Each time a jump is executed, the new
information is written ahead of the pointer and the pointer is
moved forward. On a jump return or jump ahead, the pointer 1is
simply moved backward or forward and no new entries are made or
any deleted. The list holds a maximum of six entries, and 1is
circular.

INTERNAL DISTRIBUTION OKLY 18

SR

g,

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

This works mnmuch 1like the intrafile stack except that it is
concerned with jumps between files. The differences with the
intrafile stack are: (1) the length of the list is variable, and
depends on the amount of information in the links used, (2) the
list is not circular, a new entry is made on the stack whenever
any interfile jump is taken or whenever a new file is loaded with
a load file conmmand. (See section on nmultifiles for nmore
details.)

There are no backpointers from a link, the same as with traiil

" markers. Thus if a label that is linked to is deleted, there is

no user notification that a link has been made inoperable. Also,
since link structures are entered as simple text, the label in a
link structure does not necessarily exist. A liak or jump to a
non-existent label results in an error condition.

The jump command brings the desired statement to the top of
the display.

There are four basic types of jumps: (1) jumps to a specified
label name, {2) Jjumps to 1links, (3) Jjumps through the tree
structure, and (4) jumps among different files.

In case 1, the label or statement name to be jumped to can be
specified by either a word-selection via the mouse or a literal
entry from the keyboard.

In case 2, the statement defined by the specified 1link 1is
placed at the top of the display.. More detail is given in
section 4.2.3.

The case 3 commands allowvw jumps to the next substatement, the

" next successor, the statement of which the selected statement is

a substatement, the previous statement, the head of the file, the
end of the file, the end of branches, and many other links on the
basis of tree and file structure. For more details see the "NLS
User's Guide.®

The case U commands allow the user to load a number of files

into the system and to jump freely among them. These will be
discussed in Section 4.2.9.

INTERNAL DISTRIBUTION ONLY 19

CELE L

Sy s

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

There is one other type of jump, the jump-ahead/retura.
Whenever any type of jump within the current file 1is executed,
the sytem keeps track of it, and a ring is maintained keeping a
sequential track of all views that have been used. These
commands allowv the user to return to a previous view or to move
forvard after a jump return to the latest view. (See Section
4.2.3 on links for a description of this intrafile ring.)

A special feature of jumps is that almost all jumps allow the
user to change the view specifications of the area jumped to from
those of the curreat text. In addition, each Jjump saves the
viewspecs of the area jumped from in the intrafile ring, so that
on a jump return the text is viewed as before.

2.7 _Pointers

Pointers make it possible to select entities that are not on
the display. The entity has a pointer fixed on it while it is on
the screen of not more than three characters. To select the
entity at any time, a mouse button is depressed and the name of
the pointer is entered from the keyboard. This is exactly
equivalent to making a direct bug selection of the character that
has the pointer on it.

The list of pointers can be displayed and ome may use it to
jump to the individual pointers.

4.2.8 View Specifications

The view specifications (viewspecs) are parameters that con-
trol the way in which statements are displayed. The parameters
are: indenting on/off; names on/off; display file as tree/normal
text; keyword reordering on/off; display of statement signatures
on/off; branch—-only on/off; content amalyzer on/off; trail fea-
ture on/off; pointer display on/off; number of lines displayed;
number of levels of statements displayed and a few others. These
can be set in three ways: with the view set command, from the
special keyset, or during certain commands such .as jump.

These parameters are always displayed in the upper left corner
of the screen with a single letter denoting each. When they are
capable of being changed by the user, they are displayed with
larger letters.

INTERNAL DISTRIBUTION ONLY 20

[

NPYE
14T

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

There is a relative level control, which allows changes to the
level parameter set by the user to be interpreted relative to the
level of the first statement in the display. The user can also
change other viewing parameters. These include the type of mark
the cursor 1leaves, the number of characters in a line of text,
the number of spaces indented for each level, the number of lines
in the text area, the spacing between lines, size of characters,
etc.

4.2.9 Multi-files

When a file 1is loaded or jumped to, it is "opened" and
displayed; no copy is created, rather the file is viewed directly
from the disk. For reasons of file protection, if any changes
are made, it becomes impossible to continue direct viewing, so
the system creates a working copy when an edit is made. 1In fact,
this working copy is not created until all core is filled and not
necessarily on the first edit. In this way the system does not
make a working copy until it definitely has to. When the systen
creates the working copy it copies the displayed file to it,
closes the displayed file, and from then on all work is done in
the working copy. No working copy is created when the user is
just browsing. This is done since most users just look at files
and do no editing.

Files are loaded by the load command or by an interfile Jjump
comrand. Entries are made in the interfile stack as files are
loaded {see Section 4.2.5). The working copy and the checkpoint
file are never entered in the stack.

One feature of the multi-files is that the user can create a
checkpoint file at any time. This writes the present working
copy out on the drum under the name checkpoint.

The interfile stack canm be used like the intrafile stack to go
back and forth among views on different files. Only one working
copy at a time can be created, and can be 1looked at any. time,
even if a file other than the one of which a working copy was
made has been currently loaded.

=2.10_Freeze

The freeze feature freezes a single statement with the preseant
view. The frozen statement will appear at the top of the screen

INTERNAL DISTRIBUTION ONLY 21

txm,

-

e

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

whenever frozen statements are being shown, with the main text
display on the under part of the screen. A fixed number of
statements can be frozen, and are displayed in the freeze area in
the chronological order frozen.

4.2.11_Tree-display Feature

This allows the user to see the file as a tree structure, or
in the hierarchy form, instead of normal text. The . tree
structure shows the relationships of statements in the file to
each other. This is done by indenting the differing 1levels of
the tree to different depths, much like an outline form. This
can be turned on or off by the view specifications.

4.2.12 Statement Numbering

The system numbers each statement Dewey Decimal fashion
according to the tree structure. This numbering is computed at
display time. The numbering can be turned off by the view
specifications.

4.2.13 Vectors

The vector package allows the user to create simple linme
drawings, with 1labels for jumps. The vector 1is drawn by
specifying the endpoints with the mouse. Either endpoint of a
line can be translated, and the entire drawing and any label can
be translated. These vector labels can be used as jumps to that
statement name.

INTERNAL DISTRIBUTION ONLY 22

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

5. _FUTURE_FEATURES

5.1 _MULTIWINDONWS

This may have been inspired by our multiwindows. Theirs,
however, is fancier in conception. This would allow any size and
shape windows to be defined, and each window to be a self-
contained viewing area with all the parameters as described for
the single screen display. Their multiwindow facility could also
assign different windows to different users. This assignment is
done by the time sharing system, though; the only programming
problem is the protocol: who holds the eraser in each window.

222 VARIABLE SYMBOLS

This would allow the user to define a variable symbol for
text, links, etc. The symbol would be filled in with text at
display time, 1like an assembly time variable. Alternately, the
variable symbol could simply be permanently defined at a later.
time.

5.3 _WEIERSTRASS ALGORITHM

Currently the system uses a display map technigue for detect-
ing bug hits. A future plan is to use the Weierstrass Algorithn
of continually subdividing the screen to find the line closest to
the bug mark, which would be the line hit.

INTERNAL DISTRIBUTION ONLY 23

AHI -DATA STRUCTURE

A.M. 276 CLASS NOTES

The hierarchical structure allows the text to be set out in a
tree form very easily. The question of advantage of this over
traditional text was discussed with Engelbart. He said that the
hierarchical statement-oriented structure vas selected just as a
starting point and empirically has proven to be more helpful to
users in terms of visualizing the text. He insisted there is no
premeditated reason toward this structure, nor need it be imposed
on the user. .

The statement oriented guality 1limits the flexibility of
editing somewhat. From our point of view, there 1is =no editing
across statement boundaries, for instance. Jeff said that this
limitation is of no real importance since as users gain fami-
liarity with the statement oriented system, they learn to make
statements complete thoughts, and so editing across statenment
boundaries 1is not really necessary; the limitation is only on
traditional thinking with traditional text. This 1is the sanme
reason Engelbart stated for using hierarchy: the user quickily
adapts to the structure provided him.

One advantage of the statement oriented structure is that to
move a branch or a statement requires no actual movement of text,
but just the changing of a few pointers.

There is great effort not to let the user hurt himself when he
cannot see the entire tree structure due to filters. For
example, a user cannot delete an entire statement. There might
be substatements below that are filtered out that he might
inadvertently delete: he must give a delete-branch command and
delete the entire branch.

INTERNAL DISTRIBUTION ONLY 24

AHI DATA STRUCTURE

A.M. 276 CLASS NOTES

Compliments of the

HYPERTEXT EDITING SYSTEHNM

CENTER FOR
COMPUTER & INFORMATION SCIENCES
BROWN UNIVERSITY

PROVIDENCE, RHODE ISLAND

30 March, 1969

