outline for Detailed System Documentation of NLS
1 system Maintence Guide for NLS (maintence,)
la Files and their contents
1b Steps in assembly
lc Steps in assenbly of other features
2 Description of Srecial problems with NLS (special,)
2a Overlay structure and relabeling
2al Overlay structure
2a2 Conventions
2a3 Implementation
2b Output overlay (MOL, META, etc.)
2¢ Formated output (passi)
2d Keeping the binary code for NLS subwsystems: the C=NLS file
2dl The code problen
2d2 Storage on the file and conventions
2d3 The NLSDMP progranm
2e Input from keyboard
2f Input from QED files (passl)
2¢ Display creation
2h SDB epRbage collection
21 Errors and Aborts
23 Sequence generation
2k File link jumps
3 Other features (features,)
3a File clean up
3b Content analyzer compiler

3c Vectors

Outline for Detailed System Documentation of NLS
3d specisl Characters
3e Display of structure as tree
L NLS Random file structure and handling (nlsfiles,)
La General description
Lb File Block structure
Lbl RSV blocks
hb2 SDB blocks
b3 VBED blocks
Lbik File header block
kb5 Others
ke Handling
hcl Core tables, IO
Lc2 File copy
5 Description of data areas (dataforms,)
5a Data forms and terms
b Data arrays of importance
Sbl ADATA
5b2 DISBUF
6 Documentation of code by overlay
éa UTILTY overlay procedures (utilty,)
6b INPFBK overlay procedures (inpfbk,)
6c SDBMNP overlay procedures (sdbmnp,)
64 RECINT overlay procedures (reecint,)
6e IOCTL overlay (FIOCTL, FIOLIB) (ioectl,)
6f FMTOUT overlay procedures (sdbmnp,)

ég CDSPLY overlay procedures

outline for Detailed

6h PRMSPC
61 STRMNP
63 TXTEDT

6k MNCTRL

overlay
overlay
overlay

overlay

System Decumentation of NLS
(PRMSPC, SPCLIB)
(STRMNP, MNPLIB)
(TXTEDT, TXTLIB)

tSYSGD, 10/21/69 2159:34 WHP ; (paxasis,lixh) (index:gebt)

1 program structure (drawineg deletgd for printout)

for documentation on file structure see (fileatructure,l)

for documentation on special problems see (nlsdocumentation,l)

for documentation on data forms see (dataforms,l)

i F w N

(file structure) file structure
Ba for NLS file structure, see (andrews, nlsfiles, 1 :xnbh)
5p definition of terms, see (andrews, dataforms,l :xny)
6 (0vlInd) overlay index & debug information
6a (auxcod) forks and fork starting
6al 1link to file (nls,AUXCOD, :gwJ) (kdf ERICKSON)
6a2 starting location: orgauxs24000 page 5
6a3 cells used: 26234
6al location for temporaries: axt
6a5 prefix for generated labels: axl
6aé procedures in the AUXCOD overlay

6a6a (qkf) freeze statement
(AUXCOD, qkf :1gwJ)

6a6éb (qka) release frozen statement
(AUXCOD, QKA :gwJ) '

6aéc (qplsl) pointer show
(AUXCOD, qplsl :gwJ)

éaé6d (qpml) pointer delete
(AUXCOD, qpml 1gwJ)

6aée (delptin) delete pointers
(AUXCOD, delptn :gwJ)

6aéf (seeptr) show pointers
(AUXCOD, seeptr :gwJ)

6aég (frzst) freeze statement
(AUXCOD, frzst 1gwJ)

6aéh
6261
6363
626k
6a6l
6a6m
6aén
6260
6a6p
6aéq
6abr
6abs
6adt
6aéu
6a6Vv
636w

636X

6b (recint)

(relall)
(AUXCOD,

release frozen statements
relall :gwJ)

(sttus) status

(AUXCOD,

(used)
(AUXCOD,

(bl)
(AUXCOD,

(p2)
(AUXCOD,

(p3)
(AUXCOD,

{typdat)
(AUXCOD,

(inptfs)
{AUXCOQD,

(inptl)
(AUXCOD,

byvte 1

byte 2

byte 3

sttus :gwd)

number blocks used

used tgwJ)

message

of a=reg
bl :gwJd)

of a=reg
b2 sgwd)

of a~reg
b3 :1gwd)
type data
typdat 1g2wJ)

input fork = insert
inptfs :gwJ)

input a character

inptl :gwJd)

{inptf) input fork

(AUXCOD,

(opnffk)
{AUXCOD,

inptf :gwJd)

open file fork
opnffk gwJ)

(tadfk) time and data fork

(AUXGCOD,

(wtfork)
(AUXCOD,

(chkrub
{AUXCOD,

(xerror)
{AUXCOD,

(resetl)
(AUXCOD,

(resnes)
(AUXCOD,

tadfk :gwJ)

alarm wait fork
wtfork :egwJ)

tgwd)
chkrub

check for rubout during
tgwd)

and aborts
1gwd)

errors
xerror

reset
resetl gwJ)
reset

resnes :gwJ)

recovery and initializing

for status

character intoinput buffer

insert QED -

6bl
ép2
b3
ébl
6b5
6b6

link to file (nls,recint, :gwJ) (kdf MOL)
startine location: orgrin=10000 page 2
13573

location for temporaries:

cells usged:
rit

nrefix for genersted labels: ril

nrocedures in

the RECINT overlay

6b6a (getpag) get a new page from system
(RECINT, getpag :gwJ)

6b6b (setint) initialize NLS
(RECINT, setint :egwd)

éhéc (makro) make page read only
({RECINT, makro :gwJ)

épéd (setnls) more initialization for NLS
(RECINT, setnles :gwJ)

é6bée (settod) todas initislization
(RECINT, settod :gwJ)

6n6f (getans) reads yes or no from kevboard
(RECINT, getans :gwJ)

6pnég (gtembk) regtore pages that were dropped from
(RECINT, gfenbk :ewJ)

ébénh (rlssom) release some pages from PMT
(RECINT, rlssom :gwJ)

6béi (rstart) restart for continue NLS
(RECINT, rstart :gwJ)

6p6j (setfil) set up random file
(RECINT, setfil :gwJd)

6bék (setws) set up work station
(RECINT, setws :gwJ)

6bél (setdis) set up display
(RECINT, setdis :gwd)

énén (settos) set todas view specs
({RECINT, settos :gwJ)

éhén (setddb) initialize dispaly buffer
(RECINT, setdd :gwJ)

PMT

[-3.1-5)

éhép

é6bbq

ébhéy

énés

6bbt

6béu

Y13

6w

6héX

6bby

6b62

Abba@

ébbaa

é6béab

énéac

ébbad

éhbae

(setdpg)
(RECINT,

(savpop)
(RECINT,

(setrsv)
(RECINT,

(setsdb)
(RECINT,

initialize data page
setdpg 1gwJ)

save pop transfer vector
savpop igwJ)

zero RSVST
setrsv :gwJ)

zero SDBST
setsdbh :gwJd)

(junkf) after reading bad file

(RECINT,

{1dsbsy)
(RECINT,

Junkf sgwJ)

lcad subsystem with BRS 100
ldshsy :gwd)

(lodrl) load relabhelling for output

(RECINT,

(tedpro)
(RECINT,

{setpsh)
(RECINT,

(setpre)
(RECINT,

{runpre)
(RECINT,

(setmol)
({RECINT,

lodrl :gwJ)

todas processors
todpro :gwJ)

for pass L
sgwJ)

set up
gsetpsh

set up
setpro

for processors
tgwd)

run processor
runpre :gwJd)

set up for MOL
setnol :gwJ)

(setout) transfer to compiler

(RECINT,

{psrtn)
({RECINT,

setout :gwJd)

return from process
bsrin tgwd)

(waitbs) wait for left arrow

(RECINT, waitbs

sgwd)

(setalm) set up alarm closk

(RECINT,

(timms)
(RECINT,

setalm :gwJ)

times for alarm clock
timms :gwJ)

(setpsl) set up pass 1

(RECINT,

setpsl gwJ)

éc

64

éb6af (ttyek) input from TTY buffer
(RECINT, ttyck :gwJd)

énbag (OCERGPS) return from process
(RECINT, OERGPS :gwJ)

ébbah (stotfk) statr output fork
(RECINT, stotfk :gwJ)

6hbéai (rlsall) release pages for process
(RECINT, rlsall :egwJ)

6béaj (rlblrf) relabel in random file blocks
(KRECINT, rlblrf :ewJ)

6béak (actpro) activate process
(RECINT, actpro :egwJ)

6héal (stfprv) start process fork
(RECINT, stfprv :gwd)

énéam (dmlink) link 10 (dismes tEwd) for
(RECINT, dmlink :gwJ)

(data) data page

6cl 1ink to file (nls,data,:xbhjnz) (k4df ERICKSON)
6c2 starting location: orguty=14000 page 3

6c3 cells used: 17715

(utilty) utility package

641 1link to file (NLS,utilty,l:gebjJ) (kdf PARSLEY)
6d2 starting location: orguty=14000 page 3

643 cells used: 17715

6dhk location for tenmporaries: utt

645 prefix for generated labels: utl

646 procedures in the UTILTY overlay

6d6a (utgd) UTILTY general declarations
(UTILTY, utgd :gwJd)

6d6p (push) push b=-reg onto general stack
(UTILTY,push :ewJd)

édéc (popr) popgeneral stack onto bw=reg

portal

6déd

édée

6déf

édég

6déh

6461

6463

646Kk

6d61

6dém

64én

6déo

6d46p

646q

646r

6dés

646t

(UTILTY,

(rellit)
(UTILTY,

(getlit)
(UTILTY,

(regadr)
(UTILTY,

{apehr)
(UTILTY,

pop :EWJ)

release literal register
rellit :gwJ)

get literal register
getlit :egwd)

get register address
regardr 1gwJ)

aprend character to a=string

apchr :gwJ)

(apsr) append a=string to another

(UTILTY,

apsr sgwJ)

{ldchr) load character from a=string

(UTILTY,

ldehr :gwJ)

(cpysr) copy one a=string into another

(UTILTY,

{(asrouf)
(UTILTY,

(mvbfbf)
(UTILTY,

(mvdown)
{(UTILTY,

(dismes)
(UTILTY,

(outmes)
(UTILTY,

cpysr gwJd)

move a=string to buffer
asrbuf :egwd)

move buffer (up in core)
mvbEfbf tgwd)

move buffer (down in core)
nvdown :gwJ)

display message
dismes :gwJ)

TODAS = output message to TTY
outmes :gwJ)

(crlf) TODAS = output message to CRLF

(UTILTY,

erlf sewJ)

(err) error recovery = pop

(UTILTY,

(rerror)
(UTILTY,

err :gwJ)

serious error
rerror :gwJ)

(abort) user error = pop

(UTILTY,

(fechel)
(UTILTY,

abort :1gwJ)

read characters from statement
fechel :gwJ)

646u

6d6v

36w

646x%

636y

Xe1-3 1

£46a@

édbaa

édbad

6d6ac

6d46ad

6déae

&46af

édbayg

6d4éah

6déai

6d6aj

édéak

(getsuc)
(UTILTY,

(getsub)
(UTILTY,

(getftl)
(UTILTY,

(getfhd)
(UTILTY,

(getadp)
(UTILTY,

(getssf)
(UTILTY,

(fchsdb)

(UTILTY,

get successor of PSID
getsuc :gwJd)

get sub of PSID
getsub 1g2wJ)

get tail flag of PSID
getftl gwd)

get head f£lag of PSID
getfhd :gwJ)

get PSDB
getsdh gwJ)

get word #1 of ring element
getssf sewd)

feteh sdp given PSID
fchsdb s1gwd)

(lodrsv) load ring element given PSID

(UTILTY,

(storsv)

(UTILTY,

lodrsy :gwJ)

load ring get check sum to

storsv :gwJ)

elenent,

{lodsdb) load sdb given PSDB

(UTILTY,

(getvdbd)

(UTILTY,

lodsdb :gwJd)

get PVDRB given PSID
getvdb :gwJ)

(stovdb) store PUDB given PSID

(UTILTY,

(lodvéb)

stovdb :gwd)

load VDB given PVDB

(UTILTY, lodvdb :gwd)

{lodab)
(UTILTY,

load keyword block
lodgb :gwJd)

(frzrfb) freegze random file block

(UTILTY,

frzrfo :gwJ)

(getwka) get working random file

(UTILTY,

getwka :gWJ)

{brs6é6x) delete contents of file

(UTILTY,

{epnrff

(UTILTY,

brsééx :gwdJ)

tewd) open working random file

opnrff :egwd)

zeroe

6d6al (newrfb) get new random file block
(UTILTY, newrfd :gwJ)

6dé6am (lodrfb) load random file block
(UTILTY, lodrfb :gwJ)

édéan (rfoerr) randem file block error
(UTILTY, rfberr :gwJ)

6déao (cksum) compute check sum
(UTILTY, cksum :gwJd)

6da6ap (ovl) overlay pop
(UTILTY, ove :gwJ)

6d6ag (las) load arg on stack pop
(UTILTY, las :gwWJ)

é6déar (map) store arg rointer pop
(UTILTY, sap tgwJ)

6d46as (laa) load arg, a only pop
(UTILTY, laa :2gWJ)

éd46at (saa) store arg, a only pop
(UTILTY, saa gwWJ)

6d46au (lap) load arg pointer pop
(UTILTY, lap :ewJ)

éd6av (1lsa) load subroutine arg pop
(UTILTY, 1sa :gwJ)

édéaw (sov) select overlay pop
(UTILTY, sov :gwJ)

6déax (sbc) subroutine call pop
(UTILTY, sbc :gwJ)

6d6ay (ove) overlay call = no return pop
(UTILTY, ove :EWJ)

6d6az (brv) branch to overlaypop
(UTILTY, brv :gwJ)

6débe (lass) Joad arg string on stack pop
(UTILTY, lass tgwJ)

6déba (ovld) overlay
(UTILTY, ovld :gwJ)

6débb (ovldpa) overlay = change relabelling
(UTILTY, ovldpa :gwJ)

6dénc

646bd

é6dépe

6débf

6débg

édébh

6d6Dbi

646bj

6460k

6d46bl

646bm

6débn

&d6ho

é6débp

édébq

6d6é6br

646bs

646bt

(ovldn) overlay
(UTILTY, ovldn :gwJ)

(ovlgo) to return to an overlay
(UTILTY, ovlgo tgwJ)

(ovladr) generate overlay address
(UTILTY, ovladr :gwJ)

{ursnls) reset NLS
(UTILTY, ursnls sgwJ)

(rubout) todas = handles rubout
(UTILTY, rubout :gwJ)

(intrk) interrupt L
(UTILTY, intrhk :gwJ)

(intrs) interrupt 5 = terminate NILS
(UTILTY, intrs5 :gwJ)

(intr7 :gwJd) interrupt 7 = input forkwcharacter
(UTILTY, intr7 :gwJ)

(intr8) interrupt 8 = alarm clock fork
(UTILTY, intr8 :gwJ)

intrs) interrupt 9 = pass 1 completion
(UTILTY, intr9 :gwJ)

(intrl0) interrupt 10 - input fork - rubout
(UTILTY, intrl0 :gwJ)

(hash) return hash for a=string
(UTILTY, hash fegwJ)

(getnam) return name hash given PSID
(UTILTY, getnam :gwJ)

(1knamh) look for name hash given in a
(UTILTY, lknamh s:gwJ)

(setpb t1gwJ) reset pointer table
(UTILTY, setpb :gwJ)

{et) branch true pop
(UTILTY, bt :gwJd)

(bf) branch false pop
(UTILTY, bf :gwJd)

(lai) load a immediate pop
(UTILTY, lai :gwJd)

éd6bu

6dé6bv

646bw

646bx

6d6by

64607

éaéece

fdéca

é46ch

édbcc

6décd

édéce

édéct

6déce

6d6ch

6déci

8d6ée

6déck

1pi) load b immediate pop
(UTILTY, 1bi :ewJd)

(elr) clear a state machine register pop
(UTILTY, clr :gwJd)

{sbr) subrouting return pop
(UTILTY, sbr :gwd)

(atg) set abort target pop
({UTILTY, atg :gwJd)

(txt) create a2 nev display pop
(UTILTY, txt :ewJ)

(cec) copy entity character pop
(UTILTY, cec :gwJ)

(cic) copy input character pop
(UTILTY, cic sewJd)

(gzc) get character pointed to by ab pop
(UTILTY, gc $egwd)

(eps) go to previous state pop
(UTILTY, gps :gwd)

(kset) set general flag to true pop
(UTILTY, kset sgwJ)

(mks) mark stack for subroutine call
(UTILTY, mKks :gwJ)

(clrdpy) clear display
(UTILTY, clrdpy :egwd)

(elriin) clear line
(UTILTY, clrliin :gwd)

(resdpy) reset display
(UTILTY, resdpy :gwJ)

(elrall) clear entire display
(UTILTY, clrall :gwJd)

(newabs) £i4d new absolute position for Vvectore
(UTILTY, newabs :gwJ)

(cdsep) find lower left position of statement for Upack
(UTILTY, cdsep :gwJ)

(compr) logical comparisons
(UTILTY, compr :gwJ)

10

ée (inpfbok)

el
ée2
ée3
6el
éeb

éeb

1ink to file (nls, inpfbk, :xXbjhnz)

starting location:

input feedback

cells used:

(kdf ERICKSON)

orguty=20000 page L

23403

location for temporaries: ift

prefix for generated labels: ifl

procedures in the INPFBK overlay

éeba

beéh

febe

éeéd

bebe

6ebf

beby

feéh

el

YY)

éebk

6ebl

6e6m'

(ifed)
(INPFBX,

(readon)
{INPFBK,

general declarations for

ifgd :gwJ)

input

read bug mark
readbn :gwJ)

(inptec) single character input

(INPFBK,

inptec tgwJd)

(inptm) main programs input routine

(INPFBK,

inptm :gwJ)

(1kptr) look up pointer

(INPFBK,

(gettab)
(INPFBK,

{inpcuc)
{INPFBK,

{inpute)
{INPFBK,

lkptr :gwJd)

todas =~ number spaces t0 next tab
gettab sgwJ)

todas -
inpcue :egwJ)

input character, upper

todas = read character
inpute :ewJd)

{looke) todas = look at next character

(INPFBK,

(outpte)
(INPFBK,

(putchr)
{INPFBK,

(ralit)
(INPFBK,

(resbu)
(INPFBK,

1loke :1gwJ)
todas = output character to TTY
putptec :egwJ)

todas = put a
putchr :gwJ)
literal from

todas - read a

rdlit :gwJ)
to

todas = restore character

respu gwJ)

11

feedback

case

character onto TTY or a=string

keyboard

input buffer

6eén

6ebo

éebp

bebq

éeflr

bebs

tebt

éebu

bebv

éebyw

6eéx

beby

beby

6eba@

éebaa

éebad

éefac

éebad

(tinpte) todas - main character input
(INPFBK, tinpte :gwJ)

routine

(txtlit) todas = read 1literal into literal buffer

(INPFBK, txtlit :gwJ)

(gt21it) todas = get second literal buffer
(INPFBK, gt2lit :gwJ)

{echo) todas = echo string back to TTY
(INPFRK, echo $gwJd)

(echo0) todas = echo character
({INPFBK, echoQ :gwJd)

(echo3) todas = echo routine
(INPFBK, echo3 :gwJ)

{pushp) push ab on spec stack
(INPFBK, pushp :gwJ)

(gmon) turn guestion mark on
(INPFBK, gmon :gwJ)

(gmoff) turn question mark off
(INPFBK, gmoff :gwd)

{cflarw) position command feedback line
(INPFBK, cflarw :gwJ)

(san) set arrow on
(INPFBK, san $egwJ)

(saf) set arrow off
(INPFBK, saf :egwJ)

(ulopp) bug marks off
(INPFBK, ulopp :gwJ)

(sbmfbec) set bug mark feedback character
(INPFBRK, sbmfbe :gwJ)

{cflatce) put a=gtring in command feedback
(INPFBK, cflate :egwd)

(1tlg) viewspecs large
(INPFBK, 1ltlg :gwJt)

(l1tsm) viewspecs small
(INPFBK, stsm :gwJ)

(cosne) convert a=string to integer
(INPFBK, cosno :gwJ)

12

arrow

line

éebae

febaf

éebag

éefdah

éebai

éeébaj

bebak

deébal

éefan

éeban

éeéao

6ebap

éebaq

éeabar

6ebas

éebat

éebau

éebav

(asrnam) a=string to name area

(INPFBK,

asrnam tgwJ)

(bkachr) baek up a character in an a=string

(INPFBK,

bkachr :gwdJ)

(numdpy) number display

(INPFBK,

numdpy :gwJ)

(xintrg) dinterrupt 9 - insert ged termination

(INPFBK,

xintra :gwJ)

(eptstr) copy t=string to a=string

(INPFBK,

cpLsSty :gwJd)

(chkfrz) check frozen pages

(INPFBK,

chkfrz)

(lec) leoad entity character pop

(INPFBK,

lec :1gwJ)

(les) load entity string pop

(INPFBK,

(zset)
{INPFBK,

(mlf1)
(INPFBK,

(mlf)
(INPFBK,

(mlfr)
(INPFBK,

les :gwJd)

set group and entity pop
gset 1gwJ)

move 1literal to feedback first position =« pop
nlfl 2g8wJ)

move literal to feedback, next position
nlf sgwd)

move literal to feedback, replace last
nlfr sewd)

(rep) repeat in case statement pnop

(INPFBK,

rep :gwJ)

(dfs) define state pop

(INPFBK,

afs sewJd)

(ecta) copy t-string to a=-string pop

(INPFBK,

(creg)
(INPFBK,

(breg)
(INPFBK,

(sreg)
(INPFBK,

cta :1gwJ)

append char in ¢ to reg no. in a = anypop
creg gwJ)

append character in b to reg no, ina = anypop
breg :gwJ)

append sar in b to reg no, in a =« anypop
sreg igwd)

13

éebaw

bebax

éebay

behay

6ebbe

éeéba

6eébb

éeépe

éeébbd

debbe

éebbf

6ebbg

ée6bh

éeébi

éebbd

fdeébk

febbl

babbnm

(sba) set bug L0 arrow = anypop
(INPFBK, sba :gwJ)

(stp) set but to plus = anypop
(INPFBK, sbp :gwJ)

(ta) display in text area = anypop
(INPFBK, ta :gwd)

(mrf) move register to feedback line, next
(INPFBK, mrf sewJd)

(mrfr) move register to feedback line, replace
(INPFBK, mrfr tgwJ)

(mrkl) mark feedback line, first position
(INPFBK, mrkl tgwd)

(mrk) mark feedback line, ‘current position
(INPFBK, mrk :egwd)

(kin) input a character = anygpop
(INPFBK, kin :gwd)

{kct) character test anypop
(INPFBK, ket :gwJ)

(pbm) process bug mark anypop
(INPFBK, pbm :gwJ)

(cse) begin case statement anypop
(INPFBK, cse 3:gwJ)

(spcb) spec bug mark anypop
(INPFBK, spcb sgwJd)

(spcr) spec a register anypop
(INPFBK, spcr $gwJ)

(mrs) move register to string anypop
(INPFBK, mrs :gwd)

(pkc) backspace character inan a=string
(INPFBK, bkc :gwJ)

(dpn) display in name area
(INPFBK, dpn :gwJ)

(spcn) spec hask of a=string
(INPFBK, spcn $gwd)

(cct) char. class test
(INPFBK, cct :€WJ)

1k

éeébn (zero) zero the spee stack pointer
(INPFBK, zero $egwJ)

éeébo (zap) general reset
(INPFBK, zap :2wJ)

6eébp (sapsp) general reset
(INPFBK, sapsp :gwJ)

6eébgq (feedlt) feed view sgpecs to (setlt :2wJ)
(INPFBK, feedlt :#wJ)

6eébr (tch) test character pop
(INPFBK, tch :gwJd)

6f (mnctrl) main control overlay
6f1 link to file (nls, mnectrl, :xbbjhnz) (kdf ERICKSON)
6£2 starting location: orguty=2u4000 page 5
6£3 cells used: 27450
6fl procedures in the MNCTRL overlay

6fha (walit) weit for MNCOTRL
(MNCTRL, wait :gwJ)

6fkb (cagm) command accept, question mark
(MNCTRL, caqm $gwJ)

éfic (dmani) display, then go teo main
(MNCTRL, dmain :gwJ)

6fhd setdum) set up dummy statement
(MNCTRL, setdum :1gwJ)

6fhie (cmdrst) command reset
(MNCTRL, cmdrst :gwJ)

6fLhf (mdispvec) kludge for "set*
(MNCTRL, mdispec :gwJ)

6fig (main) read a character
(MNCTRL, main 2gwJ)

6fin (we) what character
(MNCTRL, we $gwJ)

ég (prmspc) parameter specification overlay

6gl link to file (nls, prmspec, :xbjhnz) (kdf MOL)

15

6g2 starting location: orguty=30000 page 6

6g3 cells used: 33767

égl vrocedures in the PRMSPC overlay

bela

6gLb

éeglic

6ehad

bglhe

6gLf

éelg

6glh

6eli

el

6elk

6ehl

éghn

éehn

églio

églp

(recre) recreate display
(PRMSPC, recre :gwd)

(nuview) recreate display Sstarting at new
(PRMSPC, nuview igwd)

(setvsp) set view specs
(PRMSPC, setvsp :gwJd)

(spechug) sSpec a bug mark
(PRMSPC, specbug s$gwJ)

(waitp) walt in prwsnc
(PRMSPC, waitp :gwJ)

(molrt) output mo2
(PRMSPC, molrt :gwJ)

{cuglepec) spec a bug mark
(PRMSPC, buglspec :gwJ)

{bug2spec) spec two bug marks
{PRMSPC, buglspec :gwJ)

(pug3spec) sSpec three bug marks
(PRMSPC, bug3spec :gwJ)

(pugltspec) spec a bug and read literal
(PRMSPC, butltspec igwJ)

(bug2tspec) spec two bugs and read literal
(PRMSPC, bug2tspec :gwJ)

{atext) read literal
(PRMSPC, atext :gwJ)

(integer) read an integer from kKeyboard
(PRMSPC, atext :gwJd)

(1t spec) read view specs from Keyboard
{PRMSPC, ltspec :gwJ)

{statno) read statement number from
(PRMSPC, statno :gwJd)

(statnan) read statement name from
(PRMSPC, statnam :gwJ)

16

position

keyhoard

keyvbhoard

6zhq (specn) spec nanme
(PRMSPC, specn :gwJ)

éghir (Jjpspen igwJ) jump spec nanme
(PRMSPC, Jpspcn sgwd)

éghs (jrsplt) Jump 1t
(PRMSPC, Jpsplt :egwd)

6zt (kgtwd) get word for keyword
(PRMSPC, kgtwd :gwJ)

éghu (specit) spec a bug or string
(PRMSPC, specit :gwJ)

6ehv (gfs) Jjump to item
(PRMSPC, afs :gwJ)

éghw (qjo) Jump to origin
(PRMSPC, qjo :gwJ)

6ehx (ghs) jump to name
(PRMSPC, qhs :egwJ)

éelly (qjb) Jump back
(PRMSPC, aJjb :gwd)

6gkz (qjv) Jump vector label
(PRMSPC, qiv :ewJ)

égha@ (aqijp) Jjump predecessor
(PRMSPC, alp tgwJ)

6glhaa (gjs) Jjump succesgsor
(PRMSPC, alis :ewJ)

éghabd (qju) Jump up
(PRMSPC, qdju :gwJ)

éghac (qjd) Jjump down
(PRMSPC, qJjd :gwJ)

6gzhad (qjh) Jjump to head
(PRMSPC, qih 22wJ)

6ehae (git) jumpt o tail
(PRMSPC, gJjt :ewdJd)

6ghaf (gib) insert branch
(PRMSPC, aib :gwJ)

éelhag (aqis) insert statement
(PRMSPC, qls :1gwd)

17

églhah

6elhal

éelhal

églhak

éolal

églham

éghan

éghao

églap

éehaq

éghar

éehas

éghat

éghau

éghav

éeliaw

éghax

églay

(arb) replace branch
(PRMSPC, arb :gwJ)

(arg) replace group
(PRMSPC, qrg :gwJd)

{arp) replace plex
(PRMSPC, arp :2wJ)

(atexti) literal for insert
(PRMSPC, atexti :gwJ)

(atextr) literal for replace
(PRMSPC, atextr :gwJ)

(adj) adjust level
(PRMSPC, ad] sewJ)

(setlt) set viewspecs
(PRMSPC, setlt :gwJ)

(enwdpy) number display for view specs
(PRMSPC, enwdpy :gwdJ)

(aplit) append literal
(PRMSPC, aplit :gwJ)

(aplita) literal input routine
(PRMSPC, aplita :gwJ)

(terlin) terminate line
(PRMSPC, terlin :gwJ)

(nterch) enter character inliteral
(PRMSPC, nterch :gwJ)

(frzsav) save view sgpecs for frozen
(PRMSPC, frzsav :egwJ)

(dpyeh) display character subroutine file
(PRMSPC, dpych gwJ)

(jspush) push on Jjump stack
{PRMSPC, jspush :egwJ)

(jpsh) push word on Jjump Stack
(PRMSPC, Jjpsh :gwJ)

(savlt) create word to save view specs
(PRMSPC, savlt :gwJ)

(fechux)
(PRMSPC, fechux :gwdJ)

18

éh (vc
é6nl
é6h2
éh3
éhi

6zhaz (gtlit2) get second literal register
(PRMSPC, gtlit2 :egwd)

é6zhb@ (softld) soft command delete
(PRMSPC, softld :gwJ)

égliva (pbug) process bug mark
{PRMSPC, pbug tewJ)

6gzhbb (fndechr) £ind character given 1line,
(PRMSPC, fndchr 1gwd)

tedt) special characters and vector libe
1ink to file (nls, vcted, :xbjhnz) (kdf MOL)
starting location: orguty=24L000 page 5
cells used: 26107
procedures in the VCTEDT overlay

éhlha (Jjpspco) Jjump vector label
(VCTEDT, Jpspco :gwd)

énhkb (qecd) copy drawing
(VCTEDT, qcd :gwJd)

6hlic (qdd) delete drawineg
(VCTEDT, qdd :gwJ)

6hLd (qmd) move drawing
(VOTEDT, gmd :gwJ)

éhlie (vwait) wait for VCTEDT
(VCTEDT, vwait :egwd)

6hiif (new vdb) get new vector data block
(VCTEDT, newvdb :1gwJ)

éhhg (nwvdb :egwJ) get new vector data block
(VCTEDT, nwvdb :gwJ)

éhlih (fndlin) find line given bug mark
(VCTEDT, fndlin :gwd)

éhlii (=qrt) square root routine
(VCTEDT, sqrt :ewd)

é6nkj (dsq) distance squared between twWo points
(VCTEDT, dsq :gwJ)

éhlik (namend) mark end proints of line

19

column

numbers

6hil

énhm

énhn

énlo

éhlhp

éhhq

308 4

énis

énlt

éhliu

éhiv

éhiw

éhix

shly

6nhhz

é6nla@

éhhaa

(VCTEDT,

(endset)
(VCTEDT,

{endput,)
(VCTEDT,

{switech)
(VCTEDT,

(Labasr)
(VCTEDT,

(putchr)

namend :gwJ)

set for endpoints of

endset

up names

1gwd)

which end of line selected
sgwd)

record
endput
t.0 end of

change selection nther

switeh :gwJ)

move label to a=sgstring
labasr :gwd)

read character from buffer

(VCTEDT, butchr :gwJ)

{fnd lab) find label given bug mark

(VCTEDT,

{distsqg)
(VCTEDT,

(buglab)
(VCTEDT,

(spclad)
(VCTEDT,

(to bug)
(VCTEDT,

(Labres)
(VCTEDT,

(movlab)
(VCTEDT,

(dellab)
(VCTEDT,

(newlab)
(VCTEDT,

(putlab)
(VCTEDT,

fndlab :gwd)

distance squared to label
distsg sewd)

attach cld label %o bug
buglab :gwJ)

spec label number
speclab :gwd)

set up bug for label
tobug 1gwJ)

restore moved label
labres :gwJ)

move label
movlab :gwJd)

deete label
dellab :gwd)

new label to bug
newlab :egwdJ)

fix new label
putlab sgwJ)

(mcheck) used by copy and move drawing

(VCTEDT,

mcheck :gwd)

(med) copy drawing

(VCTEDT,

med 1gwJd)

20

line

line

éhkab

énlac

énhad

éhlae

éhlhaf

éhlag

énlah

éhhai

6i (vetrl)

(mmd) move drawing
(VCTEDT, mmd :gwJ)

(mdd) delete drawing
(VCTEDT, mdd :gwJ)

(mrkpos 1gwWd) mark position of
(VCTEDT, mrkpos :ewJ)

(mrkoff) turn mark off
(VCTEDT, mrkoff :egwJ)

(£f1wdx) convert X=pesition to full worg
(VCTEDT, flwdx :gwJ)

(£1wdy) convert Ye-position to full word
(VCTEDT, flwdy :gwJ)

(vreset) resgset for vector package
(VCTEDT, vreset :gwJ)

(grdfix) force bug mark onto grid
(VCTEDT, grdfix :gwJ)

vector package

611 1ink to file (nls, vetrl, :xbjhnz) (kK4f MOL)

612 atartineg location: orguty=s30000 page 6

6i3 cells used: 33167

6ihk procedures in the VOTRL overlay

éilha

éilb

éilc

éiha

éile

6iLf

éilkg

_(vmain) main control for vectors

(VCTRL, vmain iewd)

(bdot) turn bug into a dot
(VCTRL, bpdot :2wJ)

(offon) switch ofr spacing
(VCTRL, offon tgwJ)

(onoff) switch for spacing
(VCTRL, onoff :gwJ)

(lab) read a2 ladel
(VCTRL, lab :gwJ)

(endput) select an endpoint
(VCTRL, endput :gwJ)

(vougl) get a bug select for vector

21

selection

6ikn

6iki

éibLj

6iLk

61hl

éiugm

éikn

éilio

éilkp

éilg

é1ihr

éilks

61kt

éilku

&iuv

6ilhw

6ihx

(VCTRL, vbugl $gwJ)

(vbug?2) get 2 bugs select for vector
(VCTRL, vhug2 :1gwJ)

(vougl) get a bug select for label
(VCTRL, vbugl :gwJ)

(vewait) wait for vpact
(VCTRL, vewait :ewJ)

(Labget) select a label
(VCTRL, labget :gwJ)

(veted) initialization for vpack
(VCTRL, vected $gwJ)

{vetfin) termination for vpack
(VCTRL, vetfin :gwJ)

({chkold) check old VDB
(VCTRL, chkold :gwJ)

(vabort) abort from vpack
(VCTRL, vabort gwJ)

(delet) delete a vector
(VCTRL, delet :gwJ)

(trans) translate a vector
(VCTRL, trans :gwJ)

{vertin) make vector vertical
(VCTRL, vertln :gwJd)

(horzln) make vector horizontal
(VCTRL, horzln :gwJ)

(newlin) create new line from endpoints
(VCTRL, newlin :gwJ)

(putlin) put new line in drawineg
(VCTRL, putlin :gwJ)

(putlln) put first new line of sequence
(VCTRL, putlin :gwJ)

(putl2n) put later lines in sequence
(VGTRL, putl2n :gwJ)

{movend) move endpeint of line
(VCTRL, movend :gwJ)

22

63

iy

6ikz

Ailhag

6ilkaa

éilab

6ilac

(didd1)
631 1ink

sgWJ) novdrw) move drawing
(VCTRL, movdrw :gwJ)

(delpic) delete picture
(VCTRL, delpic :gwJd)

(grdset) turn grid on%off
(VCTRL, grdset :gwJ)

{grdsiz) change size of grid
(VCTRL, grdsiz)

(grdmak) make a grid
(VCTRL, grdmak :gwJ)

(spcnum) specify a number
(VCTRL, spcnum :gwJ) '

*diddle" (viewcontrol)

to file (NLS, d4iddl, :xbjhnz) (kdf ERICKSON)

6j2 startine location: orgutys24000 page 5§

633 cells used: 27045

ik procedures in the DIDDL overlay

6ika

6k

6ihe

63kd

6jhe

é6iLt

éjLe

é3ikh

6jhi

(diiddx) main control for view change

(DIDDL, diiddx :gwJ)

(pwait) wait in DIDDL
(DIDDL, pwait sgwJ)

(on=0ff) switeh in DIDDL
(DIDDL, on=off :gwJ)

(intg) read integer in DIDDL
(DIDDL, intg :1g2wJ)

(prmset) parameter set in DIDDL
(DIDDL, prmset :gwJ)

(char) read a character in DIDDL
(DIDDL, char :gwJ)

(numasr) convert number to a=string
(DIDDL, numasr :gwJ)

(tabset) initialize to set tabs
(DIDDL, tabset :gwJd)

(tabput) put waqy tab value

23

633

63kk

63jhl

éihm

é61ihn

é13ho

éijlp

CRET

63Lr

é1khs

63kt

é6iku

é3hv

6ihw

é3Lx

63y

63z

(DIDDL, tabput :gwJ)

(acget) get current parameter word for arned
(DIDDL, acget i1gwJ)

(acput) store parameter word for armed
(DIDDL, acput :egwJt)

(csave) save character
(DIDDL, csave :1gwJ)

(nmdlt) set first name delimiter
(DIDDL, nmdlt 1gwJ)

{nmdl2) set second name delimiter
(DIDDL, nmdl2 :gwJ)

(mrkget) get bug mark parameters
(DIDDL, mrkget gwJ)

{mrkput) put bug mark parameters
(DIDDL, mrkput :gwJ)

(mrceput) set bug mark character
(DIDDL, mrcput :g2wJ)

(cflget) get cfl parameters
(DIDDL, cflget :gwJ)

(cflput) put cfl varameters
(DIDDL, cflput :gwJ)

(cflavt) put cfl arrow parameters
(DIDDL, cflapt sgwJ)

(dtput) put date and time parameters
(DIDDL, dtput :gwJ)

(ecoput) put echo reg paranmeters
(DIDDL, ecoput :gwJ)

(namput) put name reg parameters
(DIDDL, namput :gwJ)

(tstput) put test area parameters
(DIDDL, tstput :gwd)

(veaput) put view spec area parameters
(DIDDL, vsaput :gwJ)

(colput) put number of columns
(DIDDL, colput sgwJ)

2k

cursor

cursor

6jkae

é3kaa

é63jkab

éihac

63ikad

6illae

6jhaf

6jhag

é6jhah

6ihai

6ihaj

éikhak

é63jhal

é3iham

6jban

é63jlkao

6ihap

éijhag

(shoecol) show number of columns
(DIDDL, shocol :gwJ)

(indput) put indenting
(DIDDL, indput :gwJ)

{shoind) show indenting
(DIDDL, shoind :gwJ)

(vrtput) put vertical increment
(DIDDL, vrtput gwJ)

(vrtptl) update vertical increment

(DIDDL, vrtptl :gwJ)

{shovrt) show vertical increment
(DIDDL, shovrt :gwJ)

(1input) put number of linew
(DIDDL, linput :gwJ)

(sholin) show number of lines
(DIDDL, sholin :gwJ)

(mrkpos :gwJ) mark position of
{DIDDL, mrkpos :gwJ)

(mhps) mark typed position
(DIDDL, mhps :gwJ)

(isave) save paranmeters
(DIDDL, isave 1gwJ)

(ivestr) restore parameters
(DIDDL, ivestr :gwJ)

(etrstr) entry for setlt
(DIDDL, etrstr :gwJ)

(mobck) move buffer
(DIDDL, mobeck :gwJ)

(setsize) set size of characters
(DIDDL, setsiz)

{(sethic) set horizontal increment
(DIDDL, sethic s:gwJ)

(setbld) set bold face
(DIDDL, setbld :gwJ)

(setflc) set flicker
(DIDDL, setflc :gwJ)

25

in display

bug selection

6jhar (setitl) set italics
(DIDDL, setitl :gwJ)

6ikas (setdsp) set display on?off
(DIDDL, setdsp :gwJ)

6k (keywd) Kkeyword overlay
6kl 1link to file (NLS, keywd, :xbjhnz) (kdf ?7)
6k2 starting locaticn: orguty=24000 page 5
6k3 cells used: 25335
6kl procedures in the KEYWD overlay

6kha (kmain) main control for keyword
(KEYWD, kmain tgwJ)

6khb (kwait) wait = in KEYWD
(KEYWD, kwait :gwJ)

6khe (kvex) keyword execute
(KEYWD, kyex :gwJ)

ékhd (Kyfndh) find place in table for
(KEYWD, kyfndh :gwJ)

6klhe (kyputw) put weight for keyword
(KEYWD, kyputw :gwJ)

6kif (kyfgt) forget a keyword
(KEYWD, kyfgt :egwJ)

6klhig (kyfgth) forget a keyword
(KEYWD, kyfgth $gwJ)

6khh (kyfgta) forget all keywords
(KEYWD, kyfgta :gwJ)

6kl (kylist) keyworad list
(KEYWD, kylist :gwJ)

6kkj (kychr) buffer control for KEYWD
(KEYWD, kychr 1gwJ)

6khk (kyxtrn) XTRNAM for keyword
(KEYWD, kyxtrn :gwJ)

6kl (numasr) number to a=string
(KEYWD, numasr :gwJ)

61 (lnksub) 1links and substitute

26

keyword

select

611 1ink to file (NLS, 1lnksub, :xbjhnz) (kKdf ERICKSON)
612 starting location: orguty=20000 page L

613 cells used: 21125

614 vprocedures in the LNKSUB overlay

61lhka (hlnkdm) link delimiter
{LNKSUB, hlnkdm sgwJ)

61kp (jlpon) Jump link possible statement name
(LNKSUB, Jjlpon :gwJ)

61lhc Jjlvfn) Jjump link possible file name
(LNKSUB, jlpfn :1gwJ)

61hd (jlpun) Jjump link possible user name
(LNKSUB, Jjlpun :gwJ)

61lhe (subst :gwJd) substitute
({LNKSUB, subst :gwJ)

61Lf (subfch) get character for substitute
(LNKSUB, subfech :gwd)

61hg (getch) get character for substitute
(LNKSUB, getch :gwJ)

A41lhn (subsx) initialize substitution
(LNKSUB, subsx :gwJ)

61hi (subint) initialize substitution
{LNKSUB, subint :gwJ)

ém (strmnp) siructure manipulation overlay
6ml 1link to file (nls, strmnp, :xbjhnz) (kdf MOL)
6m2 starting location: orguty=20000 page L
ém3 cells used: 23210
émly procedures in the STRMNP overlay

émha (qds) delete statement
(STRMNP, qds :EgwWJ)

émhid (adb) delete branch
(STRMNP, qdb :gwJ)

émic (qdg) delete group
(STRMNP, qdg :gwJ)

27

émkd (qdp) delete plex
(STRMNP, qdp :ewJ)

émlie (ges) copy statement
(STRMNP, qcs :2wJ)

é6muLf (qeb) copy branch
(STRMNP, qcCb :gwJ)

émlig (qeg) copy group
(STRMNP, qcq :gWJ)

énih (qecp) copy plex
(STRMNP, qcp :g€wWJ)

émki (gms) move statement
(STRMNP, qms :gwJ)

émhiy (gqmb) move branch
(STRMNP, qnmb 2gwWJ)

émhk (gmp) move plex
(STRMNP, qmp :gwJ)

émhl (gmg) move group
(STRMNP, qnmg :gwWJ)

émim (rpllit) replace with literal
(STRMNP, rpllit :egwd)

émin (qrs) replace statement
(STRMNP, qrs :gwJ)

émho (inslit) insert literal
(STRMNP, inslit :gwJ)

émhp (qbs) break statement
(STRMNP, gbs :gwJ)

émhiag (abj) Join statement
(STRMNP, qbJd :gwJ)

énlir (qkr) release frozen
(STRMNP, qgkr :gwJ)

émis (qxb) substitute branch
(STRMNP, gXb :gwJ)

émit (gxs) substitute statement
(STRMNP, gqxs :gwJ)

émhu (gxp) substitute plex
{STRMNP, gXp &wJ)

28

émhv {(gxg) substitute group
(STRMNP, axg :1¢wJ)

émhw (grptst) group test
(STRMNP, grptst :egwJ)

émix (remgrp) remove group
(STRMNP, remgrp :gwJ)

émliy (setgrp) setgroup
(STRMNFP, setgrp sgwJ)

émhz (plxset) set plex
(STRMNP, plxset :gwJ)

émha@ (insgrp) insert group
(STRMNP, insgrp :gwJ)

6mhaa (inss) insert statement as successor
(STRMNP, inss :1gwJ)

émhab (insd) insert statement down
{STRMNP, insd :gwJ)

émhiac (delgrp) delete group
(STRMNP, delgrp $gwJ)

émkad (movtst) structure move test
(STRMNP, movtst :gwJ)

émiae (subgrp) substitute in group
(STRMNP, subgrp :gwJ)

émhaf (copgrp) copy group
(STRMNP, copgrp :gwJ)

émhag (tailx) find tail of plex
(STRMNP, tailx :gwJ)

émihah (sourcx) find source of plex
(STRMNP, sourcx :gwd)

émikai (headx) find head of plex
(STRMNP, headx :1gwJ)

émhaj (pred) find predecessor of ring element
(STRMNP, pred :gwJ)

&émhak (subtst) test for substructure
(STRMNP, subtst :gwJ)

émhal (sstftl) set tail flag
(STRMNP, sstftl :gwJ)

29

émham

émhan

émlao

émhap

émhaq

émhar

émhas

énmlat

émhau

émhav

émiaw

émiax

émhay

émlaz

émibe@

émiba

énkob

émhibe

(sstfhd) set head flag
(STRMNP, sstfhd sgwd)

(regftl) reset fail flag
(STRMHP, resftl :gwJ)

(resfhd) reset tail flag
(STRMNP, resfhd :gwJ)

(setsuc) set successor
(STRMNP, setsuc :1gwJd)

(set sub) set sub
(STRMNP, setsub :gwd)

{pusha) push a~reg on general stack
(STRMNP, pusha :gwJ)

(atc) compare pop
{STRMNP, atec :1gwJ)

(stosuc) store successor
(STRMNP, stosuc gwJ)

(stosub) store subd
(STRMNP, stosub :1gwJ)

(stofhd) store head flag
(STRMNP, stofhd :ewd)

(stoftl) store tail flag
(STRMNP, stoftl :gwJ)

(stossf) store word 1 of ring element
(STRMNP, stossf :gwJ)

(intrsr) create initial ring element
(STRMNP, intrsr :gwd)

(newrsr) new ring element
{STRMNP, newrsr :gwJ)

(nwrsub) new ring element
(STRMNP, nwrsub :gwJ)

(frersr) put ring element on free list
(STRMNP, frersr :gwJ)

(frevdb) free vector data block
{STRMNP, frevdp :gwJ)

(relst) release statement forn frozen
(STRMNP, relsf :gwJ)

30

list

én (clnup)

file clean up

é6nl link to file (nls,

6n2 starting location:

6n3 cells used: 27725

elnup, :xbjhnz) (kdf ERICKSON)

orguty=24000 page 5

énk procedures in the CLNUP overlay

énha

énlkb

énhe

énid

énhe

énhf

énlhg

énhh

énhi

énhj

énhk

énhl

énhnm

énhn

énko

(clmain) entry
(CLNUP, c¢lmain

(fekfin) succe
(CLNUP, fckfin

(fekbad) failu
(CLNUP, fckbad

{crsu) check r
(CLNUP, crsu

(csdb) check 8
(CLNUP, csdb :

(cvdb) check V
(CLNUP, cvdb

(cgb) check ke
(CLNUP, cqb :g

(ckstre) check
(CLNUP, ckstrc

(patch) patch
(CLNUP, patch

{fr) free a lo
(CLNUP, £fr :gwvw

(fstftl) store
(CLNUP, fstftl

(£stfhd) store
(CLNUP, f£stfhad

(fstnam) store
(CLNUP, fstnam

(legali) check
(CLNUP, legali

(legald) check

for file cleanup
tgwd)

sgs exit from file check
1gwJd)

re exit file check
tgwWJ)

ing blocks
gwdJ)

DB'S
gwJ)

DB'S
gwd)

vword block
wd)

structure of file
sgwJ)

break in ring
tEWJ)

st element
J)

tail flag
tgwd)

head flag
1EWd)

name
tgwd)

for legal PSID
tegwWd)

for legal PSDB

31

énkp
énlaq
énkr
énls
énkt
énlu
énuv
énhw
énkx
énhy
énlz
énha@
énlkaa
énkab
énhac
énlad

énhae

(CLNUP, legald :gwJ)

(legalv) check for legal PVDB
(CLNUP, legalv :guJ)

(blksav) +try to gsave 2 bad randonm
(CLNUP, blksav :gwJ)

(gfrfp) get a rfo for CLNUP
(CLNUP, gfrfb 2ewd)

(£fldstbh 1gwJ) lod sdb
(CLNUP, fldstb :gwJ)

(£1dvdab) load VDB
(CLNUP, fldvdd tgwJ)

(gdsdb) check SDB
(CLNUP, gdsdb :gwJ)

{chkdb) check data blocks for statement
(CLNUP, chkdb :gwJ)

{getchr) read character from ADB
(CLNUP, getchr :gwJ)

(badchr) replace bad character in SDB
(CLNUP, bpadchr :gwJ)

(upit) update pointer for CLNUP
(CLNUP, upit :ewJ)

(updasp) update pointer for CLNUP
(CLNUP, updasp :gwJ)

(fchlst) feteh lost elements
(CLNUP, fchlst :gwJ)

(dump) free lost elements
(CLNUP, dump :gEwJ)

(chkpnt) check pointers
(CLNUP, chkpnt :gwJ)

(ernch) crunch pointer table
(CLNUP, crnch :gwJ)

(f£xnam) copy of extra name for CLNUP
(CLNUP, fxnam :gwJ)

(nuhash) generate new hash's for all
(CLNUP, nuhash :gwJ)

32

file

block

statements

60

ép

énkaf

(passl)

(outres) output results of CLNUP

(CLNUP, outres :gwJ)

ged inout

60l 1link to file (nls, passl, :xbjhnz) {kdf MOL)

602 starting location: orgutys page

603 cells used:

(ioctl)

6pl 1ink to file (nls, ioctl, :xbjhnz) (kdf ERICKSON)

i/0 control

6p2 starting location: orguty=24000 page 5

6p3 cells used: 27762

6plh procedures in the IOCTL overlay

6p5 % free core and save blocks %

énla

ép5b

énSc

6p85d

épte

3134

(fixun) fix user name at start of
(IOCTL, fixun :gwJ)

(frecor) write core blocks on random file
(IOCTL, frecor :gwJ)

(frerff) close current, open working file
(I0CTL, frerff :gwJd)

(copfil) copy file
(I0CTL, copfil :gwJ)

(wrtblk) write file block
(IOCTL, wrtblk :gwJ)

{copblk) copy file Dblock from input
(IOCTL, copblk :gwJ)

6pé6 % open files %

6pha

énéb

DAL

(rdndr) read header block of file
{IOCTL, rdhdr :gwJ)

(opnckp) open checkpeoint file
(IOCTL, opnckp :gwd)

(opnfil) open file
(IOCTL, opnfil :gwJd)

6p7 %jump file stack %

33

file

to

name

output

épTa

6nTh

ép7c

épT4d

épnTe

énT7f

6n7e

(pushno) push current view on file stack
(I0CTL, pushno :gwJd)

(pophs) pop an element from file stack
(I0OCTL, pophs 3ewJ)

(pumpho) read nest file stack element
(IOCTL, bumpho tgwJ)

(rtnns) read file stack entry
(IOCTL, rtnhs :gwJ)

(stkehk) remove word from file stack
(I0CTL, stkchk :gwJ)

(pshhs) push word on file stack
(I0CTL, pshhs 1gwJ)

(pphs) pep word from file stack
(I0OCTL, pphs :gwJ)

6p8 % save and restore viewspecs %

é6n8a

éndb

(isavlt) create word to save viewspecs
(IOCTL, isavlt :gwJ)

(ireslt) restore view specs
(IOCTL, ireslt :gwJ)

6p9 % Jjump stuff %

én9a

6p9b

ép%c

6p9d

énSe

6P9f

ép9g

6v%h

(cilrjs) clear jump stack
(IOCTL, clrjs :gwd)

(fusern) set file user nanme
(IOCTL, fusern :gwJ)

(savrff) save working copy datsa
(IOCTL, savrfi tgwJd)

(ofdate) open file date
(IOCTL, ofdate :gwJ)

(fnroot) get file name from root
(IOCTL, fnroot :gwJ)

{lnktyp) determine link type
(IOCTL, 1lnktyp tgwJ)

(lnknul) determine if null link
(I0CTL, lnknul :gwJ)

(pushijs) push on intrafile jump stack

3L

(IOCTL, pushJs :gwd)

é6p9i (popds) pop intrafile jump stack
(IOCTL, vopdis tewd)

6p93 (bumpjs) read next jump stack element
(IOCTL, dbumpjs :gwJ)

6p9k (pshjs) push word on intrafile jump stack
(IOCTL, pshis sgwJ)

6p91 (ppis) pop word from intrafile jump stack
(IOCTL, ppis :ewd)

6pl0 % spl for IOCTL %

épl0a (fwait) wait for IOCTL
(IOCTL, fwait :egwJ)

6plOb (fjwait) Jjump wait
(IOCTL, fiwait :1gwJ)

6pl0c (alg) load file or checkpoint
(I0CTL, qla :1gwJ)

6pl0d (qlf) leoad file
(IOCTL, qlf :gwJ)

éplOe (alc) load checkpoint
(IOCTL, qlc :egwJ)

épl0f (opns3i) open type 3 symbolic file or input
(I0CTL, opns3i :gwJd)

éplog (rstfil) open current file and recreate display
(IOCTL, rstfil :gwJ)

6pl0h (ofstn2) open file, name given in STN 2%
(IOCTL, ofstn2 :gwJ)

é6pl0i (aqoq) main output control
(ICCTL, qoq $gwd)

épl03i (opns3) open symbolic type 3 file for output
(I0CTL, opns3 3gwJ)

é6plOk (opnfo) open random file for output
(I0CTL, opnfo tgvwd)

6pl0l (qo0f) output file
(IOCTL, gof :gwd)

é6plOm (goec) output checkpoint

35

(I0CTL, qoc :gwJ)

6plon (spcdpy) spec display for link routines
(I0CTL, spcdpy :gWwJ)

6pl00 (sethfn) set Jjump file nane
(I0CTL, sethfn :gwJ)

6p10p (gbl) Jump 1link
(IOCTL, abl :gwJ)

6p10g (ajj) Jump return
(I0CTL, qij tgwd)

é6plOr (gja) Jjump ahead
(IOCTL, qja :gwd)

6p10s (aqbg) Jump file
(IOCTL, qba :gwJ)

6p1l0t (gaq) alarm clock
(IOCTL, qaqg :gwWJ)

6pll % insert QED and pass L %
6plla %insert QED and pass L4 %

6pllal (stpash) start pass L
(IOCTL, stpash :gwJ)

6plla2 (pslcse) convert case for pass 1
(IOCTL, pslcse :gwJ)

6plla3 (agiq) insert QED branch
(IOCTL, qiq :gwJ)

évllp % portal %

6pllbl (cap) activate portal procesgsor
(I0OCTL, cap $gwd)

6q (seqgen) seqgence generator overlay
6ql 1ink to file (NLS, seggen, :xbjhnz) (kdf MOL)
6g2 starting location: orgutys30000 page 6
6g3 cells used: 32263
6qlk procedures in the SEQGEN overlay

éala (fcp) fix character position = CA pop
(SEQGEN fcp :gwlJ)

36

éakdb

éalic

éakd

6qle

éaqlf

6akg

6akh

éalhi

éalj

6qkk

6all

éakm

éalkn

éalo

éalp

6akq

éakr

éals

(lc) logical complement = CA pop
(SEQGEN, lc :gwJd)

(pep) push character position = CA pop
(SEQGEN, pcCcp :2WJ)

(ieq) initials equal - CA pop
(SEQGEN, leq :gwJd)

(ine) initials not egual = CA pop
(SEQGEN,1lne :gwJ)

(snc) date since =~ CA pop
(SEQGEN, snc :gwJ)

(pfr) date before = CA pop
(SEQGEN, bfr :1ewJ)

(rest gwJ) reset flag = CA pop
(SEQGEN, rst :gwJ)

(sep) set character position = CA pop
(SEQGEN, scp sgwJd)

(atst) string test, addressin A = CA pop
(SEQGEN, stst tgwJ)

(atstf) string test, address in A, floating CA
(SEQGEN, atstf :tgwd)

(tst) string test, string in code, - CA
(SEQGEN, t8t :1gwJ)

(tstf) string test, string in code, floating = CA
(SEQGEN, tstf tewJ)

(tstr) test strine = CA
(SEQGEN, tstr sgwJ)

(tstfr) test string, floating = CA
(SEQGEN, tstfr :gwJ)

(geft) get character for test = CA
(SEQGEN, gcft :egwJd)

(arb) arbitrary number = CA pop
(SEQGEN, arb :2wJ)

(bfs) branch false and scan = CA pop
(SEQGEN, bfs :1g2WJ)

(brc) branch on repeat count = CA pop
(SEQGEN, brc :gwJ)

37

pop

pop

pop

éalt

6ghu

éakv

éahw

éalx

6aky

éakz

éghat

éaliaa

éqlab

éalac

éakad

éalae

éalaf

éaliag

6alkah

éabal

éahaj

(ccp) compare character positions = CA pop
(SEQGEN, ccp :gwJd)

(ccv) character class value = CA pop
(SEQGEN, ccv :ewJ)

(pps) pop push down stack = CA pop
(SEQGEN, pps :gwJ)

{sd) set direction = CA por
(SEQGEN, sd :gwJ)

(epf) character position function = CA pop
(SEQGEN, cpf :gwJ)

(pdc) pointer decrement = CA pop
(SEQGEN, pdc :gwJ)

(fechsl) initialization for sequence generator
(SEQGEN, fechsl :gwJ)

{fechsn) feteh next statement = sequence generator
(SEQGEN, fechsnh :gwJ)

(seqset) set up for sequence generator
(SEQGEN, seqgset :1gwJ)

(segnxt) get next PSID in sequence
(SEQGEN, seqnxt :gwJ)

(seqrat) check statement for pattern match
(SEQGEN, seqpat :gwJ)

(getint) get initials from SDB
{SEQGEN, getint :gwJ)

(gettinm) get time from SDB
(SEQGEN, gettim :gwd)

(getdat) get date from SDB
(SEQGEN, getdat :gwJ)

(stoflg) store flag for pattern match
(SEQGEN, stoflg :gwJ)

(schtxt) fetch 6th word of SDB leader
({SEQGEN, schtxt :gwJ)

(kyfeh) keyword sequence generator
(SEQGEN, kyfch :gwJ)

(stvect) generate statement number vector
(SEQGEN, stvect :gwJ)

38

ér (sd
érl
ér2
ér3
éri

éaliak

éqlhal

6akan

éalian

6alao

é6qlap

pmnp)

(stvetp) statement vector for successor
(SEQGEN, stvctp :gwd)

(stpos) pesition of ring element in its plex
(SEQGEN, stpos :gwJd)

(fechno) fetch statement number of given PSID
(SEQGEN, fechno :gwd)

(fechnp) fetech statement nunber of successor
(SEQGEN, fechnp :gwJ)

(fechnm) statement number given statement vector
(SEQGEN, fechnm :gwJ)

{setseq) initialize seguence generator - ares
(SEQGEN, setseq :gwJ)

sdbh manipulator

1ink to file (nls, sdbmnp, :xbjhnz) (kdf MOL)

starting location: orguty=24000 page &

cells used: 2602}

procedures in the SDBMNF overlay

érhia

éribp

érhic

érhd

érhe

érif

érhg

érin

érii

(newsdb) make a new SDB
(SDBMNP, newsdb :gwd)

(endsdp) termination of creating SDB
(SDBMNP, endsdb :gwJd)

(xtrnam) extraect name from SDB
(SDBMNP, Xtrnanm :gwdJ)

(comsr) compare strings
(SDBMNP, comsr :gwJ)

(neis) number characters in string
(SDBMNP, ncis igwJ)

(stonam) store name hash in ring element
(SDBMNP, stonam :gwJ)

(stosdp) store PSDE in ring element
(SDBMNP, stosdp :gwl)

(delst) delete statement
(SDBMNP, delst :gwJ)

(fresdbh) put SDB on free 1list

39

6s (txtedt)

6sl
682
653
sk

éri i

érhk

Arhl

érhm

érin

(SDBMNP,

(fndrom)
(SDBMNP,

(isroom)
(SDBMNP,

fresdb :gwd)

find room for new SDB
fndrom :gwJ)

looks for adeguate rocm for SDB

isroom :gwd)

(gcolx) garbage collection of SDB'S

(SDBMNP,

gColx fgwJ)

(gcol) garbage collection of SDB'S

(SDBMNP,

{cmpfr)
(SDBMNP,

gcol sgwd)

file compactor
empfr $gwJd)

text edit

link to file (nls, txtedt, :xbjhnz)

(kdf MOL)

starting location: orgutys34000 page 7

cells used:

37u6L

procedures in the TXTEDT overlay

ésha

62Lb

éslc

éshd

é6she

ésif

éshg

éslh

éslhi

(recred)
(TXTEDT,

recreate display
recred :gwJ)

{subs) substitute

(TXTEDT,

subs :1gwJ)

(subi) initialization for substitute

(TXTEDT,

(gdmys)
(TXTEDT,

(setrot)
(TXTEDT,

(sttxt)
(TXTEDT,

{(orkst)
(TXTEDT,

(staptx)
(TXTEDT,

subi fgwJ)

set, dummy statement
gdmys :gwJ)

set root statement
setrot :gwJ)

set text
StLXt gwJd)

break statement
prKst :gwyJd)

Join statement
staptx sewJ)

(stlit) create statement from literal

(TXTEDT,

stlit :gwJ)

Lo

6sihj ({(cdlim) character delimiter
(TXTEDT, cdlim :gwJ)

6shk (idr) invisibpledelimiter routine
(TXTEDT, idr :gwJd)

skl (tdr) text delimiter routine
(TXTEDT, tdr :gwJ)

ésim (ndr) number delimiter routine
(TXTEDT, ndr :gwJ)

éshn (wdr) word delimiter routine
(TXTEDT, wdr :gwJ)

6slio (wdr2) another word delimiter routine
(TXTEDT, wdr2 :gwJ)

6shp (vdr) visivple delimiter routine
(TXTEDT, vdr :gwJ)

6slkq (deltx) delete pointers in statement
(TXTEDT, deltx :gwJ)

6sir (cpehtix) copy character
(TXTEDT, cpchtx :gwJ)

6shs (cshft) case shift
(TXTEDT, cshft :gwJ)

63kt (del) delete text
(TXTEDT, del :gwJ)

éshu (mrchtx) move character
(TXTEDT, mrchix :gwd)

éshv (mvwdvs) move word, visible
(TXTEDT, mvwdvs :egwJ)

6shw (rpl) replace text
(TXTEDT, rpl :gwJ)

63Lx (cpwdvs) copy word, visible
(TXTEDT, wpwdvs :gwJ)

6aly (qec) copy character
(TXTEDT, qCC 1EWJ)

6sLkz (gew) copy word
(TXTEDT, qcw :gwJ)

ésha® (qen) copy number
(TXTEDT, qcn :egwd)

L1

éshaa

éshab

éalac

éshad

églae

éshaf

éshag

éshah

6shai

éshaj

éshak

6slal

ésham

éshan

éslhao

éshap

éshaq

6slkar

(aci) copy invisible
(TXTEDT, qci :gwJd)

(aev) copy visivple
(TXTEDT, qcv $gwJd)

(qct) copy text
(TXTEDT, qct :gwJ)

(agdc) delete character
(TXTEDT, aqdc :8wJ)

(gdw) delete worg
(TXTEDT, qdw :gwWJ)

(adn) delete number
(TXTEDT, qdn :gwJ)

(qdi) delete invisibnle
(TXTEDT, qdi :gwJ)

{gdv) delete visible
(TXTEDT, qdv :ewd)

{qdt) delete text
(TXTEDT, qdt :gwJ)

(gic) insert character
(TXTEDT, qlic :gwJ)

{oiw) insert word
(TXTEDT, qiw :gwJ)

{ain) insert number
(TXTEDT, qin :ewd)

(0¢ii) insert invisirle
{TXTEDT, qii :ewJ)

(giv) insert visible
(TXTEDT, qiv :gwJ)

(git) insert text
(TXTEDT, qit :gwJ)

(ame) move character
(TXTEDT, qmec :EWJ)

(amw)} move word
{TXTEDT, qmw :gWJ)

(ann) move number
(TXTEDT, qnmn :ewd)

b2

é6siias (gmi) move invisible
(TXTEDT, ami :gwJ)

églat (amv) move visible
(TXTEDT, Qmv :gwJ)

éshau (amt) move text
(TXTEDT, anmt :gwJ)

éshav (arc) replact text
(TXTEDT, qrc :gwJ)

éshaw (arw) replace word
(TXTEDT, arw :gwJ)

éshax (qrn) replace number
(TXTEDT, grn :gwJd)

éshay (ari) replace invisible
(TXTEDT, ari :gwJ)

6skaz (arv) replace vigible
(TXTEDT, qrv :ewJ)

6sib@ (qrt) replace text
(TXTEDT, qrt :gwJ)

éshba (gsc) set character
(TXTEDT, qsc :gwJ)

6skbb (gsw) set word
(TXTEDT, qsw :1gwJ)

é6shbc (gsn) set number
(TXTEDT, asn :gwJ)

ésibd (asi) set invisinle
(TXTEDT, asi :8wJ)

éshbe (asv) set visible
(TXTEDT, qsv $gwJ)

6shbf (gst) set text
(TXTEDT, qSt :gwJ)

6shbg (qss) set statement
(TXTEDT, qss :1gwJ)

ésibh (qpf) pointer fix
(TXTEDT, qpf sgwJ)

6slhbi (gqprs) pointer delete statement
(TXTEDT, aprs igwJ)

L3

6t

6slbj (aprt) pointer delete text
(TXTEDT, aprt :gwd)

éshibk (qprw) pointer delete word
(TXTEDT, qprw :egwJ)

éshkbl (fixptr) pointer fixup
(TXTEDT, fixptr :egwJ)

6shibm (delptr) delete pointer
(TXTEDT, delptr :gwJ)

6shbn (insptr) insert pointer
(TXTEDT, insptr :gwJ)

éshpo (apachr) append a character
(TXTEDT, apachr :gwJ)

éshbp (apastr) append a=string
(TXTEDT, apastr :gwJ)

6slibg (aptstr) append te=string
(TXTEDT, aptstr :gwd)

6shbr (bsc) begin statement construction = pop
(TXTEDT, bsc :gwJ)

6shbs (esc) end statement construction = pop
(TXTEDT, esc :gwJ)

6shbt (cpp) fixup pointers and append t=string

(TXTEDT, cpp :2wJ)

éshbu (kps) append a=string = pop
(TXTEDT, Kps :gwJ)

6shbv (kpr) append a register = pop
(TXTEDT, Kpr :gwJ)

éshbw (dlp) delete pointers = pop
(TXTEDT, dlp :gwJ)

éshbx (cpw) append t=string = pop
(TXTEDT, cpw :2wJ)

6shby (pfx) pointer fix = pop
(TXTEDT, pfx :1gwJ)

(cacmpl) content=analyzer compiler

6tl link to file (nls, cacmpl, :xbjhnz) (Kdf ERICKSON)

612 starting location: orguty=34000 page 7

Wi

pop

6t3 cells used: 37311
éu (outovl) output overlay
éul link to file (nls, gﬁgggzjhnzw) led$ P&OL;S 1//
6u2 starting location: orguty=34000 page 7
6u3 cells used:
6v (mol) mol compiler v////
é6vl link to file (paxton, nmolr:jhnzw)
6v2 starting location: orguty=0 page O
6v3 cells used:
6w (spl) spl compiler
6wl link to file (andrews,ézyzjhnzw) /i><
6w2 starting location: orguty=0 page O
6w3 cells used:
6x (meta) tree meta compiler
6x1 link to file (andrews,‘ﬁizzfijnnzw)
éx2 startine location: orguty=0 page O
6x3 cells used:
6y (passk) formatted hard copy
6yl 1ink to file {;)k 3hnzw) @
6y2 starting location:
6y3 cells used:
éz (disbuf) display buffer
isbu&
6z1 link to file (andrews,(%izjhnzw) (VlO(g EZ‘&i \\
6z2 startine location: orguty=34000 page 7 J
623 cells ugsed: 37715
éa@ (cdsply) create daisplay

6a@l link teo file (nls, cdsply, :xbjhnz) (kdf ERICKSON)

L5

6a@2 starting location: orguty=24000 page O
6a@3 cells used: 27630
6a@h procedures in the CDSPLY overlay

éaehka (credis) main for create display
(CDSPLY, credis :gwJ)

6a@Lbd (cdvect) create vector display
(CDSPLY, cdvect :1gwJ)

7 (Index) categories for NLS procedure
Ta file‘nandling

73l (fileio) RANDOM FILE 1/0
(lodrfb) (rdhndr)

7a2 (filcopy) FILE COPYING
* (copfil) (getwka)

7a3 (filref) FILE BLOCK REFERENCING
(lodrsv) (lodrfb) (lodsdb)

7al (filcontrol) FILE CONTROL
(opnffk) (lodrfb) (brsééx) (rdhdr)

735 (statusblocks) FILE STATUS BLOCK MAINTENCE
*# (lodrsv) (lodsddb) (lodrfb) (lodvdb)

Taé (workingcopy) WORKING COPY OF FILE
* (getwka) (lodrfb) (copfil) (opnrff)

7o display

Tel (messages) MESSAGES TO USER
(err) (dismes) (rerror) (abort)

72 (aborts) JUST THAT
(err) (dismes) (abort) (rerror)

703 (text=~display) ROUTINES TO PUT UP FILE TEXT
* (credis) (cdvect)

7ok (changedis) CHANGING DISPLAY PARAMETERS
* (aiddl)

7c input/output
7cl (literalinput) reading keyboard input % (getlit)

7c2 (input) work station input * (inptc) (inptfs) (inptf)

Lé

8

7d initialization

7e structure manipulation
7f text manipulation

7¢ graphics

(Bugs) 1ist of bugs

8a unanchored scans do not do an SCP at the start, and thus fail on
certain multiple concats.

8b to restore a non-existent view crashes nls

8¢ the content analyzer does not reset the flags in a fie you are
jumping to, this results in the wrong statementes beign shown.

84 the frozen machinery does not clear its 1list on a jump link,
resulting in ugly psids beign used 10 create the display.

8e Jump to end does not call pushjs (save the display position for
jump return, ahead)

8f fix ES so that cd doesn't blank the screen

8g rubout sometimes does not work right: only one gets you back to
the exec after 0C, INPTRF not always getting reset??

8h Also, a JUMP LINK bug creates an illegal entity abort occationally
if one end of the link is the first or 1last character of the
statement,

81 Doing a JUMP FILE with a name or number in the link which doces not
exist in the file results in an abort ==« with the screen unchanged
even though the jump to the file did take place, Do a JUMP TO ORIGIN
if this happens.

83 There is a bug in the statement inserting 1level adjustment, 1If
lots of U's are typed, the statement nunmber offered is 1ncorrect -
then if the statement is inserted and a center dot is typed to finish
the insert, a fatal error occurs, (This is because the SUC of O is
smashed) ,

83j1 This often happens automatically on INsert ged branch if the
origin statement (which is without a statement number) is left on
the from of the file being inserted,

8k On literal type=in echoing, there is still a wraparcund bug., The
last character of a line sometimes is displayed on top of the first,

81 There are some problems with the display not being cleared
proverly if the user aborts out of a literal type~in which is longer

W7

than the text on the screen.

8m The 1literal type=in is erased is an abort occurs during type=in.
For example, if the alarm clock goes off.

8n The first line looses its indenting after an abort out of a
literal type=in.

80 File clean~up results in a fatal error when the file has certain
kKinds ©f errors in it.

8p When typing in a file name, the user name part is not command
recognized, But then everyone has grown used to this. RIGHT?

éq Character selecting in a statement with special characters
(italies, underline, ©blinking, etc) is often wrong and can cause a
fatal error,
8r Avorting out of a Jjump command after making a view change changes
the view parameters but does not change the screen (0 match == it
Jjust aborts. On the next display re=creation, the new view
parameters are used,
8s Aporting out of a LOAD FILE at view specifying time leaves the
user looking at his o0ld file, but with hnis new file loaded. Do a
JUMP TO ORIGIN,
8t The display of a literal type=in shifts to the right one character
when a backspace character or word is typed, if the entity is word or
visable. This is because there is a space automatically inserted on
the front which is not diplayed to begin with, but is displayed after
a backspace of some kind,
9 (map) of symbols and binaries
9a Symbels: all bands have utilty, data, and recint
9al 176
%ala inpfbk, vctedt, vcted2, disbuf
932 177
9a2a inpfbk, clnup, d4iddl, keywd, disbhuf
9a3 178
9a3a auxXcod, inpfbk, mnctrl, prmspc, disbuf
9al 179

Salka strmnp

L8

%a5 180
9aka seqgen, sdbmnp, txtedt, txtedt2
9aé 181
Saéa seqeen, cdsply, dispuf
$b Binaries
9bl1l :nls

9bla prmspec, sdbmnp, recint, utilty, inpfbk, mnctrl, seqgen,
txtedt

9b2 :1INLS

9p2a icctl, diddl, keywd, auxcod, strmnp, c¢dsply, clnup,
2txtedt,

9b3 :2NLS
gn3a vctedt, 2vctedt, cacmpl
10 thoughts for improvements
10a trails
10al Trail returns can be done through a push down 8stack. Every
time the seq-gen makes a trail branch it pushes the psid on a
stack, The user may define a trail return syntax. If he has one,
and it is found in a statement, the stack is poped and the poped
psid used to start the segwgen out again.
10b content analyzer
10bl Coroutines also seem to be the answer to the content analyzer
case prroblem. A set of standard coroutines could bpe selectively
invoked to modify the text on the way to the TST and CV tests,
They would convert cases, sKkip punction, etc, They could be
invoked and dis-invoked independent of the paren structure of the
pattern, a la directions.
10p2 Don't have the sequence gen., set the content f£lags in the
ring unless there is a working copy. If the user is looking at a
real file, do it the hard way,
10b2a WATCHIT:

10p2b Don't reset the bits when the pattern is compiled unless
a working copy is being used

10p2c Don't even look at the bits in the seq, ¢gen. unless a

L9

working copy is beine used

10b2d4 when a woking copy is created, if pattern is on, reset
all of the ring bits for pattern,

10¢c editineg
10cl Coroutines should be used for APTSTR, APCHR, and APASR,
There will be 3 set of them, they check for directives, do case
shifteg, do text substitues, check for names, etc,
104 entity selecting (specing)
10dl Make JUMP TO NAME work (FIRST & NEXT).
10dla This involves a new way to spec names, etc,
10d2 Just put character pointer on spec stack
10d2a or name hash
10d2b or integer
10d2c or screen position
10d3 There is a problem with file Jjumps, when name or number does
not exist = need t0 recreate the display #0 that it corresponds to
the file, I think this is a specing problen,

1044 A similar problem exists when & continue is done and the file
cannot be opened = screen is not correct.

10e create display
10el Create display should have 1lots of smarts, All kinds of flags
will be set for it to £ind out what happened, Consider the
following:

10ela ¥When first called the whole display may have to be
recreated, so check:

10elal A new file loaded.
10ela2 text not up there (e.g. the tree is beineg displayed)
l0elh The sequence of statements
1l0elbl needs to be recreated if
10elbla A new display start

10elblb sequencing view parameter change

50

10elblbl these are ca and trail
10elpr2 needs to be checked if
10elb2a A new statement has been put in (insert or copy)
10elb2b Statement moved
10elb2c Statement deleteq
10elb2d sequencing vievw parameter change such as
10elb2dl level and branch only
10elc The formatting of statements
10elcl needs to be changed if
l0elcla formatting view specs have changed
10elclal these are st, nos, nanes
10elc?2 needs to be checked if
10elc2a These view specs have changed

10elc2al blank line, pointers, indenting, clip, blank
line

10elc2b a truncation change
10eld a2 statement by statement check needs to be made, for:
10eldl Text changed
10eld2 Pointers changed
10eld3 Vector part changed
10e2 implementation schenme
10e2a create display is called with parameters~= and puts up
text of one file in a given screen area == somebody above hinm
knows what is going on over the whole screen,
10e2b character bugging may be done with this schene:
10e2bl the mode within a given area text is unifornm
10e2p2 each given area is implicitly divided into characer

position and each position numbered in a well defined
manner.

51

10e2b3 A table gives the PSID and character count thusly:

10e2b3a A table entry contains a T=pointer, and two
character counts,

10e2b3b The character counts are character positions
within the display area.

l0e2b3¢c The table is sorted on starting character counts,

10e2b3d A table element means that the text between the
two character counts starts at the given T=pointer.

10e2b3e At bug select time, a pointer to this table and
the character count is put on the spec stack.

l0e2c¢c for putting text up in a hurry

10ez2cl move the text from the SDB a word at a time - perhaps
doing a shift. = or put in nulls so a fast loop can be used,

10e2c2 To make this work:
l10e2¢2a tab and c¢r should be special characters,

10e2c2b also, a bit should be set in the ring to indicate
that special characters are in the text,

l0e2c2¢ statement=insert in a statement has that hit set

10e2c2d 0f course, we need upper and lower case display
hardware,. _

l0e2¢c2e If the special character bit is on, do it the
hard way.,

10e2c3 Better have some kind of check to know when the line
is full == then back up to & word gap.

10e2d Pptasic routine heirachry:

10e2dl an overloard takes care of screen orgainzation and
selects area for frozen statements, perhaps.

10e2dla cdsply £f1ills up a text area,
10e2dlal the sequence gen plays its usual role
10e2dla2 A statement routine calls the seq. gen, and
puts up the blank line or initials, number, sets the
indenting, etc,

10e2dla2s A low level routine f£ills a buffer for

52

one line,

l0e2dla2h Maybe a fast guy and a smart guy,

speclal characters,

10e2dla3 somewhere in here a routine takes
tabular data branches.

10e2dlal And graphic pictures
10e3 classification of display areas
l0e3a zero dimensional areas:

10e3al are:
10e3ala the armed cursor
10e3alb the disarmed cursor
10e3alc the bug mark

10e3a2 are subject to:
10e3a2a size
1l0e3a2b mode (intensity, filcker, italics)

10e3b one dimensional areas:

10e3bl are:
10e3bla echo reg.
10e3blb message area
10e3ble name area
10e3bld date~time
l0e3ble command feedback line
10e3blf viewspec(s) (one for each file area)

10e3b2 are subject to all of the abeve and:
10e3b2a position (this may be relative =27%)
10e3b2b horizontal increment
10e3b2c colunmns

10e3c two dimensional areas

53

care

for

of

10e3cl are:
l0e3cla
10e3c2 are
10e3c2a
10e3c2b

lOe3c2¢

the literal area

subject to (in addition to the above)
vertical increnent

rows

we may want to specify a boundary

rather

than

giving rows, columns, vert, and horiz. increments.

10e3d file areas

10e3dl are:

10e3dla

there are several file areas.

frozen area unnecessary.

10e3d2 are
10e3d2a
10e3d2b
10e3d2c
10e3d24
10e3d2e
10e3q2¢
l0e3d2g
10e3d2h
10e3a2i
10e3d2]
l0e3d2k
10e3d421

10e3d2m
good??

10e3d3 are
l0e3d3a

subject to (in addition to above):
names

numbers ({(ugh)

indenting

truncation

blank line

pointers

tree

initials

picture clip

statement=insert

relative indenting (with plex only)
vowels

characters if the

? Special vectors

modified (filtered) by:

content analyzer

5L

They will make the

are ever

10e343b branch only
10e3d3¢ plex only
10e3d3d sub=file
10e3d3e level

1l0e3dlk the content (seaquence) is determined by:
l0e3dha 1list (normal)
10e3dib trail
l10e3dlic keyword

l0e3e things we forgot:

10e3el pointers

10e3e?2 vector spacing

l0e3e3 vector scaling

10el other thoughts

lCelha need control over parameter for 1literal area, frozen
area, message area,

10elb want to have up to four views on screen === Uup to *two
files opened for a user, Maybe two file views for each of two
users collobrating, or one for four uUsSers...

l0ekec want to take a way of describing view in text == both
view set and viewchanege text strings.

10eld incorperate view setting and diddle stuff in same command
= allow diddle commands in view spec part of links??

l10ele Want to define a sequence of views from a3 text string =
then jump from one to the next on a Ca.

10f external core usage & display

10£1 Can all of the display buffer information fit in ADATA, with
the buffers in external core?

10£2 Between now and external core time, gsimulate it with POPs or
something, = have UTILTY code to relabel the frozen page in and
move a2 buffer into it,

10£3 0f course, rewrite create display and firgure out the network
business

55

10£3a MNCTRL part of it is rather clear.
10£3b But how will PRMSPC part of it work?
10g £file IO

10g1 Aviod creating statment numbers at all costs. Perhaps
produce relative position numbers instead., Indenting by credis
creates a problem (but not when branch only is on), Need to keep
the level or vecteor for the statement at top of screen,
10g2 We can cut down on the amount of file IQ by

10g2a Having copfil write out the blocks from core rather than
reading all blocks and copying then,

10g2p Have frecor avoid calling getwka unless it has to write s
bleck, We would also need a word in the file header o
indicate that it was changed to make this work. 277

1l0g2c Have a usage table for core blocks = have LODRFB write
out the block used least since the last write, = This table
maintained by the LOD routines (LODSDB, LODRSV, LODVDB, etc).

10g3 The readability of opnfil can be improved if it is rewritten
to get rid of all its labels and GOTOs.

10h efficient use of the data page
10hl A longer input buffer should be used when PASS1l is running

10h2 Perhaps 1t will be necessary o have another R¥W page t0
contain seldom referrenced informatio. Such as file link stack.

10h3 How to make all Kinds of room in ADATA:
10h3a Perhaps use cells 20b to 77b?

10h3b Rewriting the overlay stuff will make the RW table quite
small (one word for each overlay).

10h3c Putting out better SPL code may cut down the string area
needed, '

10nh3cl The case save block may be eliminated.
10h3d All non=writable cells should be nmoved to UTILTY,.

10h3e All lowest level subroutines can share temps since they
call no one, This is true even in UTILTY.

10h3f The KHAR block for PASS1 could be eliminated by having
PASS1 obtain a RF core block., Or Passl could fit in a RW page

56

from C=NLS, and have it's own very large buffer,

10h3g How about having the routines that 4o overlay calls and
need to save their return location do it on their own == then
the data page can he squeezed rather simply.

10h3h ICORTB can be in UTITLTY or better vet, in RECINT,

10h3i Can the CA code be put in a RF block?? Just how would it
work if the pattern went with the file?

10h3j Some file parameters are unnecessary.
10hk Give content analyzer a 1K core block for RW storage.
101 more effecient spl code
10ilvovernau1 the input-~feedback code produced by the compller,
10ila Put out more dense code that simplifies the pops.
10ilb Use string addresses, not register numbers,

10i2 Make the syntax for overlay calls the same as the 1link
syntax.

103 new features

1031 Have OPNFIL accecpt a ? after file name, to type a different
name,

10j2 A smart RDHDR procedure will he needed when the file header
format changes considerably. Have it update an old kind of header,

1033 Try to code the universal status block loading procedure;
10jLk Have code to initialize the data page and disbuf in RECINT

1035 Write the merge file stuff, == figure out the multiple file
buisness.

10jé6 Put in JUMP TO CONTEXT VISIBLE, TEXT and WORD,
10j7 Fix up some miscellaneous stuff, namely:
10j7a put view spec wait in JL, JF=-, JR,JA
10370 Fix alarm clock overflow problenm

103j7c Don't create a statement number unless it is ahsolutely
necessary

10374 EXECUTE LINK SHOW (file links, ahead and return)

57

1037e change IDENTITY to ITEM

1038 LOAD PROGRAM and QUTPUT PROGRAM commands,
1039 EXECUTE FINISHED and LOGOUT commands.
10jJ10 Put in the file branch select (The real branch only).
10311 Have Jr and Ja return to previous jump commang
10312 Collect statistics on number of file I0's per DFS, This
varies a great deal with kind of operations, Need a way 190
control it to get meaningful nunmbers.

10k Wild ideas:
10Kl have the apility to get another page for RF blocks (Jjimmy up
rfifcox and crpgad) for things like file cleanup, gcol and maybe
ereate displaye.
10k2 have a "continue" copy of a compiler around, W¥ould need to
load it, use it, and dump it to a file for later use, The idea is
te save the symbol tabple.

10Kk3 Give PASSL a page to scratch in 8o that it won't uyse fechel
to run up and down the statement,

10KkLh Could we have PASSL go directly to the printer = using the

display buffer page, or external core, This would spread out the
compute load considerably.

s8

1 NLS Random file structure and handling /NLSFILES
la General deseription

lal The major design considerations for NLS files determined the
present format and structure,

1ala It is desirable to have virtually no limit on the size of
a file, This means that it is not praectical to have an entire
file in core when viewing or working on it,

1a21lb A goal in the design was to have the time involved to
carry out operations on a file not be linear with the length of
a file, but remain constant as a function of the 1length of a
file, That is, small operations on & large file should take
the same time as on a small file, In this way the user and the
system do not pay a renalty for large files.

lalc The system had to include graphic statements, and perhaps
other forms of data, as well as text,

1la2 AS a result of these considerations, a random file scheme was
chosen. The file is logically divided into 1X blocks. There are
several different types of blocks, and each type has 1its own
structure, since it contains a different type of data,

l1a3 The structure of a file is entirly separate from the data that
makes up the contents of the statement., Different types of blocks
(i.e. not structure blocks) contain the contents. Some blocks
contain information that is part of the file, but does not belong
to the structure,

lah The following size 1limitations were placed on files 1in
general:

lala The maximum number of statements is 2032, (This is 2048
minus 2 RSV elements for each of eight structure blocks).

lalb The textual part of a statement is limited to about 3000
characters. Special characters (boldface, underline, italics,
etec,) count as two characters,

lakec Any other data asociated with a statement is limited to a
maximum of 1K file block (for example a picture),

1a5 Several limitations are parameters to the system at systen
assembly time, These are currently set as follows.

la5a The structure of a file is limited to 13 levels in depth,
la8b A statement name is limited to 30 characters,

la5¢c The total number of text blocks allowed is B5,

1la5d The maximum number of pointers is 10,
la5e The total number of random file blocks cannot exceed él.,
la5f The maximum number of vector data blocks is 1,
lb File Block structure
1bl The header block

1bla In each file, there is a header ©block that contains
information about the particular file,

1blb The header block remains in memory while an NLS user is
working with the file.

1blc The contents of the header block:
1blcl (FCREDT) The file creation date,

1blec2 (FUNO) The file owner's user number, This is the NILS
user that created the file,

1blc3 (NLSVWD) A secret word +that indicates the header
format. At present there is only one header format in use,

1blclh (HEDSZ) THe number of words in the file header block,

1blcs (FINIT) The initials of the user that last wrote the
file.

1blcé (LWDAT) THe date at the last writing.

1ble7 (LWTIM) The time at the last writing (in systen
format~ see brs 39),

1blc8 (NAMDLL) THe left name delimiter character, in the
rightmost byte,

1blc$ (NAMDL2) And the right name delinmiter,

1blcl0 (RALS) THe running average length of statement in
characters,

1blcll (TNSG) THe total number of statements generated in
the life of this file,

1blcl? (RFBS) The random file block status.
1blcl2a (rfbstl) The number of words in the RFBS table,

1plcl2b Each word of the RFBS table corresponds to &
random file block, and indicates the status of that

block,. The file header is file block Zzero, The number
in the RFBS entry means:

1blel2pbl (zero) +the block is not allocated, and does
not exist,

1blecl2b2 (positive) The block is allocated, and is in
memory rather than on the I0 device, and the positive
number is the actual starting memory 1location for the
block,

1blcl2b3 (minus one) The block is allocated, but has
not been initialized,

1blcl2bl (negative) The Dblock is not in core., The
number is the negative of the used word count. In the
case of text blocks, =2 indicates that the block
contains no garbage SDB's, and need not be garbage
collected.,
1blcl3 (SDBST) The SDB status block table indicates the
status of each SDB type block. The value of an SDBST entry
meanss:
1blcl3a (zero) The block is not allocated,

1plcl3b (non=zero) The value gives the block number, that
is, the entry into RFBS for that block.

1blell (SDBSTL) the number of entries in SDBsST.
lblels (RSVST) The RSV status block table indicates the
status of each RSV type DblocCk. The values have the sanme
meaning as for SDBST.
1blelé (RSVSTL) The number of entries in RSVST,

1b2 File block format

1p2a Each random file block has a eight word header, This
header centains:

1b2al (0) The checksum of the block.

1b2a2 (1) The used word count (always ereater than the
header size).

1b2a3 (2) The block type, to indicate
1p2a3a (0) The header block
1p2a3b (1) an SDB block

1v2a3c (2) The guery block
1p2a3d (3) an RSV block
1b2a3e (L) A vector block
1b2al (3) In the case of
lb2alha R8sV blocks, the free list pointer

1b2alb SDB blocks, the grabage collection flag (=~1 if
collected).

1p2a5 (4) The status table entry number (not RFBS entry, but
SDBST or RSVST entry, or etc,)

lp2aé (5=7) not used
1b3 RSV blocks

1p3a RSV blocks contain the structure of the file, Each bhlock
contains the structure of a maximum of 254 statements. There
can be up to eight RSV blocks in a file, but not all need be
allocated.,

1b3b The block is broken into 254 four word RSV elements, each
potentially describes the structural location of a statement,

1b3c Each four word RSV element in an allocated block is either
in the structure of the file, or it is on the free 1list for the
plock it is in, Free lists consists of a chain of pointers,
starting with the third word of the RSV block header, and
ending with a zero pointer, A pointer here, 1is a relative
address based on zero for the first word of the block. The
pointers are in the f£irst word of the four word element, and
the other three words are zero, See (inpfbk, newrsv),

1b3d A RSV element is ponted to by a PSID, The 3 high order
pits give the RSV block number (entry into the RSVST table),
and the 8 low order bits of a PSID indicate the location within
the block, approximately.

1b3dl This is approximate because PSID's start at zero, and
the first eight words of each block contain the header,
Thus, before breaking the PSID, a displacement is added
(RSVHDR), which is two. Then the high order 3 bits are the
RSV block number, and the low order & bits, when multiplied
by 4, give the relative address of the element within the
block.

1b3e Every file has at least one RSV element 1in the structure,
That is the origin statement and is always PSID zero. THat 1is,
it's RSV element is the first element in RSV block zero,

1b3f The contents of a RSV element are described in (dataforms,
ring element),

1bk SDB bloecks

lbha A type one random file block is made up of SDB (statement
data blocks). A SDB contains the text for a statement,

1bkb An SDB is a variabhle sized block of words with a six word
header,

1blLbl The header contains:

1bkbla (O) 00600000b plus the number of words in the SDB,
The sign bit is on if this SDB is garbage,

1bkblb (1) The PSID of this statement,

1bhble (2) The date this copy of this statement was
created,

lolkbld (3) and the time
lblible (4) and initialse.

1bkblf (5) The number of character in this statement,
This includes the ENDCHR's ?

1bhkblg (6) An integer which indicates the first character
that is not part of the name of this statement.

1bkec The words following the header contains the text of the
statement, three characters per word. The text inecludes an end
character (ENDCHR, code 377p) on each end of the statement,
The last word is filled to a word boundry with ENDCHR'Ss, An
SDB is always an even number of words long, hence the last word
may not be used,

1phd The characters in a statement are explicitly numbered,
with the first ENDCHR being number zero, A two word entity
consisting of & PSID and a character count i8 a T=pointer, and
indicates a particular character within the file, See
{dataforms, te=pointer).

1p5 VBD blocks

1b6 Others
lpéa (query)
lpnéb (spchr)

lc Handling

lcl Core tables, IO

lcla The random files are read into core by blocks., Two pages
in NLS (RFBP1l and RFBP2 overlay pages) are logically divideq
into four 1K core blocks to contain the file blocks, Thus, up
to four file blocks may be in core at a time, When a file
plock is requested, if all four are in use, one block will be
written out. Core blocks may be "frozen" in, however, so that
they will not be changed,

lelo The file block I0 is handled by (utilty, lodrfbig).

lclc (RFIFCB) The random file index for core blocks indicates
which file bloek is in each core block, A zZero indicates that
no file block is there, a positive number gives the random file
block number (index to RFBS).

leld (FRZCPT) The frozen core block table indicates which of
the core blocks have been frozen. "frozen" indicates to the
file block loading procedure (LODRFB) that that core block nust
not be changed,

lele (CRPGAD) the core block address table gives the actual
core aress for each core block,

lelf (RFICBX) The core blocks are numbered from Zero to RFICBX,
currently three,

l1c2 File copy see (ioctl, copfil:g).

tAHIDS, 07/03/69%9 1105:29% MGC ;

1

AHI DATA STRUCTURE
la A.M, 276 CLASS NOTES
lb Compliments of the HYPERTEXT EDITING SYSTEME>
1bl CENTER FOR COMPUTER & INFORMATION SCIENCES 7
lv2 BROWN UNIVERSITY
lp3 PROVIDENCE, RHODE ISLAND
lpk 30 March, 1969
1. %DATA %STRUCTURE

2a The AHI data structure has as its basic unit the "statement." The
statement is the smallest textual unit defined, and is simply &
textual string. The file (i,e,, collection of statements) is
hierarchically oriented in a tree structure, each statement being a
node in the tree, The reasons for this hierarchical structure will
pe discussed later. The file, however, can be viewed in other ways
different from the sequential tree structure, For iIinstance,
associational trails can be drawn throughout the file and followed,
Thus the AHI file is capable of modeling Bush's LFTNel; 1. Ve
1bush, "As We May Think", Atlantiec Monthly, July ‘L5. «FTN=z0}
network of associational trails as well as a sequential hierarchical
text.

2al l.1 %THREE %TYPES %0F %BASIC %ENTITIES
2ala A. Statements
2alb B. Vectors
2alc C. Keywords

2alcl These three types of entities are stored in statement
data blocks (SDB's), vector blocks, and Kkeyword bhlocks,
respectively, In addition, the hierarchical structure of the
text 1s stored in ring blocks. We will only discuss the
statement data blocks and rine blocks and their relation to
the main file; the access and storage of vectors and
keywords is very gimilar and so do not need to be discussed
separately. (In the present version of the system, the only
types of vectors that can be stored are straight lines, and
no sketching facility exists other than defining the
straight line by its endpoints. There is no rubberbanding,
A sketching facility is planned for a future version,)

2a2 1.2 %STATUS %TABLES

2a2a Associated ,FTN=1l: handwritten note: All status tables
are in the %file %header (block Q) LFTN=O; with each set of
blocks (there are four sets of blocks: the ring blocks, the
statement data blocks, the vector Dblocks, and the keyword
plocks9 there 1is a small status table which has an entry for
each block of its kind. Thus there is a ring status table, a
statement status table, 3 vector status table, and a keywvord
status table, The entry for each block in the status table
simply points to a '"global" random file status table block,
whieh gives the location of each block, whether in core or on
drum. (See Figo 1)

2a2al LILL=l; FIG., 1 Status Tables
2a3 1.3 %RANDOM %FILE %STATUS %TABLE %BILOCK

2a3a The ragndom file status table block is a block that
contains an entry for every block of every type in the systenm
(actually, there is an RFSTB for each (active file), Each
entry tells whether the block is in ceore or not, or whether it
is unallocated (i.e., not being used at the present time and
can be allocated when a file is exa, expanded through editing),
The entry also gives the dinformation on where the block is
located, on the drum or in core, It is through the RFSTB that
each desired block is located by the system:

2a23b As we saw in 1.2, each ring block is mapped into an entry
in the ring status table, each statement data bleck is mapped
into an entry in the statement status table, etc, Then each
entry in each status table points to an entry in the bigger
RFSTB (at present there are a maximum of 6L Dblocks in the
RFSTB), one containing pointers to the actual location of each
different bleck in the file, This double~table methed of
location of each Dblock 1is to facilitate control of the
allocated and unallocated area on drum, and for egarbage
collection; furthermore, this central location mechanisnm
allows blocks to be moved in the system, without internal
pointers having to be modified.

2a3c The RFSTB contains information other than just a pointer
to the block, whether in core or on drum. One area of the
RFSTB i1f it is less than zero, indicates the block 18 on the
drum. If the number in this area is negative, it is the number
of free words 1in that Dblock, This is to prevent needless
retrieval of the block for additions 1f there 1is not enough
room on it for the desired update, If this area is greater
than zero, the block is 1in core and the number is the core
address of the Dhlock. There is another area in which an
indicator (at present a=2) says free space is too s8small to
consider going there. This 1is c¢omputed from the average
lengths of the statements,

2a3d The ring status table at present has eight entries, one

for each of eight ring blocks., This number is expandable,
is an assembly time variable, There are probably twice

and
or

three times as many SDB'S LFTN=l; handwritten note: about 55
presently .FTN=0; and therefore the statement statusstable is

correspondingly bigeger.
2ali l.4 %STRUCTURE %OF %THE %RING %BLOCX

2ala Each statement is represented in the data structure
py its associated text (see SDB's) and by a ring elenment,
i3, by an element of a ring that contains the hierarchical
structure of the file and points o0 the text associated
each node (statement9 in the tree, The ring is Dbroken

poth
that
tree
with
into

ring blocks, each of which is 1024 words long. Each ring block

nas a header and then is composed of ring elements, each
words loneg, one ring element per statement (See Fig. 2)3

four

2ahal note: pointers to ring elements are called PSTD'S

(permanent statement ID) and never changes during
existence of a statement,

2alha2 .ILL=l; FIG. 2 Ring Block Elements .ILL=0;

2alka2a Pointer (PSDB): the internal pointer to
statement text in a statement data block (SDB).

structure of an internal pointer (symbolized by P)
be discussed in Section 1.6)

the

the
(The
will

2ala2b Flags: (this would require updating the entire

ring after every structure change),
2aha2bl 1) on if the statement hag a nanme
2aha2b2 2) pattern filter tested?

2alka2b3 3) pattern filter result?

2alka2c Successor: a pointer to the ring element
(anywhere in the ring) of the next succeeding statement

on the same level,

2aka2d Sub: a pointer to the ring element of the first
statement 1in the level directly below the current

statenent.

2ala?2dl The sub and successor pointers define

hierarcnical tree structure,

the

2alla2d2 SUB points to this ring element if there is

no substructure

2ala?e H: on if this statement is a head

2ala2f T: the last successor on each level points +to
the source (up 1 1level) of that level, thus preovidine a
pack pointer, The T bit is set when it is the last
successor.

2ala2g Name hash: this 1s a 2hk=bit hash of the
(optional) statement name., Thus when jumping by name, we
need only scan each ring element sequentially to get
correct statement. This may be done sequentially since
each file generally consists of only about 300
statements,

2ala2gl note: unused ring elements in a given ring
block are linked together on a free list =- pointed to
by a pointer in the block header,

2a5 1.5 %STATEMENT %DATA %BLOCK (%SDB)

2a25a The statement data blocks (SDB's) are simply areas in
which to store the statement text, No structure or hierarchy
is part of the ;sdb's since that is taken care of by the ring
blocks, The system tries to put all sequential statements in
the same block to save on drum I/O0. The process of initial
generation and placement of statements in the SDB'S will be
discussed in section 2, (See Fig. 3)

2a5p LILL=1l; FIG. 3 sStatement Data Block Elements WIELﬁfzzca'

2a5b1l CKS8UM: this is a checksum to check agalinst hardware
I/0 errors in reading the statement data block from drunm,
Before writing out on drum, the system adds up all words in
the SDB and stores the sum in CKSUM, On read=in, it re=-adds
the words and checks to see if the sum is the same, JFTN=l};
Handvwritten note:? All 1k file blocks are checksummed in
this way .FTN=O3

2a5b2 Header: this contains the initials, date, and time
of last umser and change, fields which can be used as a later
meagns of retrieval.

2a5b3 PSID: Back pointer to ring: this 1is an internal
pointer (of type p) to the ring element repregenting this
statement in the text hierarchy, 1i.,e., the ring element
which points to this statenment.

2abbl Flags: the first bit indicates whether this SDB
element 18 garbage, and is used when compacting the SDB
Other bits indicate whether it 1s difficult to format the
statement on the display, that 1is, 1if the statement
contains things 1like underlining or flicker., If it 1is
difficult to format, the 1low speed scanning/ formatting
routine is used. Otherwise the hirhe-speed routine is used,
This saves up to 50% on time, .FTN=l; handwritten note:

(this is not actually done on current system, but just wait)
.ftn=0; (Other bits for other things,)

2a5b5 Text: the text is stored in the statement data block
as follows: there are two kinds of characters, (1) 8 bit
character, with the high order bit off, and (2) 16 bit
characters, If the high order bit is on, this signals that
the character 48 a 16 bit character, The seven next high
pits signify font, etc., of the character represented in the
second eight bits. The different qualities of each
character are underline, blinking, italiecs, ©boldface, etc.
The user can make up his own special characters and the
system will insert it. This is done by giving the special
character a number, It takes less than 10 msec, to reformat
a display. (I/0 not included)

226 1.6 %LOCATING %STATEMENT %IN %THE %DATA %STRUCTURE

2a6a 1l.6.1 %Mapping %Statements %to %Ring %Block %Elements
%Through %the %Internal %Name (%Pointer) %P

2a6al When statements are created, they are assigned by the
freelist allocator to open positions in a ring block (to a
ring element) and assigned to statement data blocks
according to the "garbage Dbits"; they are also assigned an
internal (position related) name in the ring block denoted
by p. All ring block vacancies are kept on the freelist,
The internal name P in the ring block is thus assiegned by
getting it off the freelist (creating a map fron statement
name position to internal name, and from internal name 10
block position) as described below:

2a26a2 Say that we want to retrieve statement P, an internal
name (pointer) of the type found in the successor and subp
fields of the ring element, It is listed in the file header
where it gives the point in the ring where the file starts,
j.e., it points to the ring element representing the first
statement in the file.

2a6a3 To get statement P (11 bits) we look at Pxk, which is
13 bits long (See Fig,., L), The upeer 3 bits are an index on
the 8=entry ring status table (RST)., The entry in the RST
points to an entry in the random file status tabple block
(RFSTB). This entry in the RFSTB tells us whether the ring
block contains the containing the desired ring element is
in core or not, or whether it is unallocated (in which case
an error condition exists). The ring block is brought into
core if necessary. The lower 11 bits of P#} then form an
index relative to the start of the ring block that bring us
to the appropriate ring element., Thus from the internal
name of the statement we retrieve the desired ring element,

2aéa3a LILL=l; FIG. b structure and Mapping of

Internal Pointer P

2aéaly Notes on the file header: this containg pointers te
all status tables and their lengths, and information on the
virtual nemory map. It also contains bibliographic
information which may be used as a means of retrieval: 1last
time written into, username, initials of 1last user, Jump
delimiters (these are the marks that delineate a jump, and
in the present veesion are general parentheses), average
length of statement (determined by how much activity over
periods of time), This information is all contained in the
first 1k words. An interesting feature 1is that the ;ts
system will accept any amount extendable to 1K without using
excess drum space, oFTN=1l; handwritten notes 256 word
chunks, I believe FTN=0O;

2a6a5 The first ring element at the start is dummy; and is
the start of the file, When the system rewrites the file on
drum after use, it searches to the first semicolon and puts
in place of what is ttere the file degcription usernane,
initials, date

+FTN=13; handwritten note: filename +FTN=0; dinitials,
date and time, etc. 0of last use,

236b l.6.2 %Mapping %From %the %Ring %Element %to %the %Text
%of %the %Statement %(See %Fig. %5)

236bl .ILlL=1; FIG, 5 Mapping from Ring Element to Text
+ILL=0}

2a6b2 Now that we have the appropriate ring element
relating to statement P (see Fig, 2) for the structure of
ring element, we can retrieve the statement-text for
filter/format/display. The system takes the "pointer to
text" in the first word of the ring element. This pointer
is of the same Structure with respect to the statement in
the statement data block as Pxh 1s to the ring element of
the ring ©block. Thus the high bits are an index on the
statement status ‘table, The entry in the S8ST points to an
entry in the RFSTB, which d4in turn points to the location of
the appropriate SDB in which the desired statement 1is
located, Once we have the appropriate SDB, the 10 low order
bits of the original pointer point to the desired statement,
relative to the start of the SDB (See Fig. 3)

23é6c l.6.3 %Generatineg %a %Sequence %of %Statements

2a6cl Given the appropriate individual statement P (see
Fig. 3 for structure of the statement entity), the sequence
generator now takes the statement text for
filterine/formatineg/display, as descrived in Section 3.

2a6c2 Which statement is taken next depends on the sequence
peing followed by the sequence generator. If the sequence
generator is following the bpasic hierarchical tree
structure, it will look at the ptr=to=-sub field in the ring
element (Fig., 2), and use that pointer as it used P above,
(However, if a filter is set for a specific 1level and
statement P was on that level, the sequence generator will
jgnore the sub field and take the ptr-to-successor field.
LFTN=1; handwritten note: has to find the level of the
first statement and keep track of it LFTN=0;

2aé6c3 The sequence generator, however, may be following an
associational trail. If this is the case, the content
analyzer will scan the statement=text P for the appropriate
trail marker. If it finds the appropriate trail marker in
the statement=text, it will hash the name in the trail
marker, and scan the name hashes of the ring elements until
it finds the correct ring element, and continue generating
statements from there. If the appropriate trail marker is
not found, it will follow the tree structure as able.
.FTN=1; handwritten note: (py hierarchy until a trail
marker is found) FTN=0O;

3 2. %DATA %STRUCTURE %MODIFICATION

3a The data structure is modified through the basic editing commands
(delete, insert, replace, move, copy, break/join) which are described
priefly below in Section L. System features and facilities are
described more completely in the "NLS User's Guide" (an SRI
publication).

3p we will describe how the data structure is modified for an
insert; the other types of editwmodifications are all similar. 1If
the edit is an insert, it is an insert in the miadle of a statement,
By system definition, all editing is based on the statement, The user
types in the appropriate insert command, hits the point of insert
with the mouse, and types in the insert, The insert typed appears on
the screen in the literal type=in area, If the user decides the
insert is complete, he hits the command=accept button. The system
then makes the modification of the data structure as follows:

3¢ The system computes the new length of the statement by takineg the
old leneth of the statement 4in the statement data block and adding
the length of the insert, The system then finds a free area on one
of the statement data blocks of sufficient length to put the new
statement, It tries to put the updated statement on the same SDB,
If the edited statement does not fit in that SDB the systenm tries to
compact the block, If that would give enough space, the system goes
to the previous ring element and sees what SDB that statement 1is
stored on and tries to fit the newly updated statement on that
plock., If it doesn't fit there, the system looks through the ;sdbst
to find any free area and fits it in anyplace.

34 Now that the appropriate space is allocated, the updated
statement is constructed. This is done by copying the header of the
original statement and the text up to the insert point, adding te
this the literal type=in, and copying the rest of the text of the
statement. Then the "ptre=to=text" in the associated ring element is
changed to point to the new statement, and the garbage bit is set in
the orieginal statement.

3e When any statenent is edited, the system checks to see if there
is a statement name, or label, If there 1is, it is renhashed and
replaced in the ring element, Thus labels are always updated,

3. ®#REDUCING %THE %DATA %STRUCTURE %TO %A %SCREEN %DISPLAY

ha The process of scanning the data structure to retrieve and
display the desired text has four basic parts: (1) the sequence
generator (as discussed briefly in Section 1.6.3), (2) filtering,
(3) formatting, and (4) display.

hal 3.1 %SEQUENCE %GENERATOR

4ala The sequence generator is the routine that actually scans
the data structure and generates the sequential text,
Bagically it generates a list of statements, There are three
tyres of sequences that can be generated:

balal 3,1.1 %Tree

kalala This is +the default hierarchical structure that
is generated and is simply the sequential text of the
main associational trail of the text, ordered in a
hierarchy of statements,

hala2 3.1.,2 %Trails

hala2a The trail feature is used to set up statements in
such a way that only a particular set of statements will
be displayed and in a particular order, The set of
statements 1is called a trail, and is an sssociational
trail that criss=-crosses the default (main) +trail; it
provides a manner other than the normal sequence in which
to read the text, A trail marker 1is set up for a
particular +trail of statements; the pattern for this
marker can be a complex syntactical form and is followed
by the content, analyzer (described in an SRI
publication).

kala2b The trail feature is used to set up statements in
suech a way that only a particular set of statements will
be displayed and in a particular order, The set of
statements 1is called a trail, and is an associational
trail that criss-crosses the default (main) trail; it
provides 3 manner other than the normal sequence in which

%0 read the text, A trail marker is set up for a
particular +trail of statements; the pattern for this
marker can be 3 complex syntactical form and is followed
by the content analyzer (described in an SRI
publication),

hala2e Trail markers are thus used to mark turning
points from the normal sequence of statements, as a sign
post to the next statement in the trail. Each time 3
marker appears in a statement it is followed by 3
statement name in parentheses that is the name of the
next statement. Between trail markers statements are
displayed in normal sequence, The trails can be fellowed
only in the forward direction; there 1is no capabllity
for inverting the trail when moving backwards through the
text. (SRI claims that with the complex contente-analyzer,
this is unnecessary.)

hala3 3,1.3 %Keywords

kala3a The Keyword system permits a user to construct a
specially formatted catalog file containing references to
other files and capable of beineg reordered automatically
according to some chosen set of weighted keywords, When
reordered, the file lists references in order of
relevance, according to the choice and veighting of
keywords,

kala3bh The Keywords are attached to a statement, The
system keeps a list of the keywords containing for each
Keyword a short description of +the Keyword, and the
labels of statements tagged with this keyword, This 1ist
is visible to the user and can be changed by hinm, The
system alse Keeps a list of the fileereference entries,
that is, a file of any statement name tagged with a
keyweord, and a 1list of the keywords it is tagged with
following it. Thus one Keyword can be attached to any
number o¢of statements, and one statement may have any
number of Keywords attached to it.

hala3c The keyword systen is ugzed mainly as a
retrieval=by=keyword systen, The user selects desired
keywords and weights them accordine to inmportance, A
negative weight c¢an also be used to blackball any
keywords, According to SRI the weights on the keyvwords
allow mnmore flexipility than straight Boolean retrieval
functions on KkKeywords; after the user has selected
keywords and weights, the system goes to the list of
keywords and picks out all statements tagged with the
selected keywords, For each statement selected the
system computes the weights of keywords attached to it,
and displays the names of the statements 1in order of
highest total weight, Statements with a negative total

O

weight are not displayed, The user may then access the
referenced files by using the jJump command on the
statement names.

ha2 3.2 %FILTERING

1a2a Faecilities included are: level specification, branch
only only, subfile, content analyzer, trail flags, Iterals,
search for trail flaegs and literal text, etc,

ka2b After the main structure is generated and filtered, it is
formatted,

ha3 3.3 %FORMATTING

ka3a The formatting sets the followine, and other, variables
of display:

La3b Statements numbersh

ha3bl Statements numbers: the number of lines of each
statement to be displayed is variable; headers,
time/initials/labels can be on/off,

ha3e View change: character size, page size and dimensions,
etc,

hal 3.4 %DISPLAY

balka After the statements have been filtered out, they are
displayed. The main display of the generated/filtered/fornmatted
structure is in the file area of the screen, There are a
number of one=dimensional registers used for man/machine
interaction:

hahal 1, Echo register, This displays the 1last six
characters typed by the user, iorf.eedback.

haka2 2, Command display line., This is a line which says
what command is in the proc of beineg executed,

haka3 3, Name registerKEE§;§splayg user's name (this is on
a nulti-terminal systenm),

Lalalh L. View specification areas, There are three view
spe¢ areas, and these are set according to the formatting
variables described in Sec. L4.28,

Lajas 5. Message area, An area for system messages t0
the user, such as error messages.

balkaé 6., Literal type=in area, wWhen the user is typineg in
an insert or delineating a command, the characters typred are

10

5 L.
5a

5b

displayed in this area,

halkb There is, in addition 10 ‘the file area, another
two=dimensional area, the freeze area, This freeze area is
uged to "freeze" statements degignated by +the user so that
they remain unchanged above the file area, with the file beineg
then displayed in the file area, The freezed statements remain
unchanged despite any text manipulations or file searching that
goes on in the flle area. (In a future version, the freeze
area will be done away with, and instead the user will be able
to multi=window any number of windows, Each window will be a
full file area, with all one=-dimensional registers in each
window, They can be any shape or size any place on the screen,
Wwith multistations, a window can be assigned to a station,
giving the users at two different terminals the ability +to
decide who holds the chalk and who holds the eraser in each
window.

%SYSTEM %FEATURES %AND %FACILITIES
k.1 %EDITING

53l The basic editing commands are delete, insert, replace, move,
copy, set, and break/join, All are self explanatory, except set
and break/Jjoin, The set comnands allow the user to change the
font on any text string. The fonts aret capital, Ilower case,
italie, roman, poldface, no boldface, flickering, non=flickering,
underline, no underline. The break and join commands allow the
user to break a statement inte two statements. statements; the
join command adds a text string onto another statement., The break
and join commands are the only conmmands that operate across
statement boundaries, All the other editing commands are
specialized: for example, the insert commands are insert
character, insert word, insert text, insert invisible, insert
statement, insert branch., The specialized commands make it easier
for the system to make the edits; the rationale for
specialization is that since you have to type the command in you
may as well specialize, and econormies in data structure
manipulation may be achieved (e.g., movineg an entire branch of the
tree).,

Le2 %OTHER %FEATURES
Bbl Le2.1 %Invisiples

5hla When editing, invisibles such as spaces and tabs can be
displayed by marks, and thus can be deleted,

ED2 L.2.2 %Labels
5p2a Labels are statement names and are used for retrieval

purposes by jumps, 1links, and Keywords. They are ingserted as
part of the text, that is, with an insert command. A label is

11l

simply a variable=length character strineg that appears %at %the
%4neginning %of %a %statement %in %parentheses, These labels
can be changed or deleted as if they were regular text,

Eh2b Duplicate 1labels can be created, A Jump to a label
results in a jump to the first occurrence of that label, since
the system sequentially scans the nameehash field of the ring
elements. A feature contemplated for incorporation in the
system is a "look for next occurrence of this label" jump to
regolve duplicate lahels,

en3 Le2s3 %Links

5h3a A link is an association %o another statement, i.e., it
is a jump to another statement that can be taken at the option
of the user,., The link can be in the current file or in another
file. There are four parameters to a link: three (the user
name, filename, and 1label) define the point linked teo, The
fourth is the view specifications on the text linked to, This
is an interesting feature: that view specifications can bpe
changed on all links,

5b3b The 1link structure is a regular text string inserted in
the text as if part of it, and is in parentheses in a syntactic
form. Like labels, the 1link is just regular text until it is
used. It can be edited at any time, When the user decides to
take a link, he hits a character with the bug, The systen
scans forward with the contenteanalyzer until it picks up the
nearest link structure in that statement, and Jjumps to the
label, The link is taken by use of a jump command,

Bbli L.2.4 %Intrafile %Return %Ring

Ehlia Whenever any Jjump is made within the file, a new entry is
made in a 1list called the dintrafile rine. Each of these
entries gives a display start and a set of viewspecs, la
pointer indicates the current view on the 1list. Each tinme a
jump is executed, the new information is written ahead of the
pointer and the pointer is moved forward. On a jump return or
jump ahead, the pointer is simply moved backward or forward
and no new entries are nmade or any deleted. The 1list holds a
maximum of six entries, and is circular,

EbE lhe2.85 Interfile Return Stack

Eh5a This works much like the intrafile stack except that it
is concerned with jumps betiween files, The differenceg with
"the intrafile stack are: (1) the length of the list is
variable, and depends on the amount of information in the links
used, (2) the 1list is not c¢circular, a new entry is made on
the stack whenever any interfile Jump is taken or whenever 2
new file is loaded with a load file command, (See section on
myltifiles for more details.)

12

5Eb5b There are no backpointers from & link, the same as with
trail markers. Thus if 2 label that is linked to is deleted,
there 1is no user notification that a 1link has been made
inoperable. Also, since link structures are entered as simple
text, the label in a link structure does not necessarily exist,
A link or Jjump to a noneexistent 1label results in an error
condition.

Ebé6 L.2.6 %Jump

5Ebéa The jump command brings the desired statement o the top
of the display.

5béb There are four basic types of Jjumps: (1) Jjumps to a
specified label name, (2) Jumps to links, (3) Jumps through
the tree structure, and (L) Jumps among different files,

5p6bl In case 1, the 1label or statement name to ke jumped
0 can be specified by either a wordesgselection via the mouse
or a literal entry from the keyboard.

5p6b2 In case 2, the statement defined by the svecified
link is placed at the top of the display. More detail is
given in section L.2.3.

5béb3 The casge 3 commands allow Jjumps to the next
substatement, the next successor, the statement of which
the selected statement i1is a substatement, the previous
statement, the head of the file, the end of the file, the
end of branches, and many other links on the basis of tree
and file structure. For more detaills see the "NLS User's
Guide,"

Sbébl The case) commands allow the user to load a number
of files into the system and to Jump freely among them,
These will be discussed in Section L.2.9,.

5béb5 There is one other type of jump, the
Jump=ahead/return, Whenever any type of Jjump within the
current file is executed, the system keeps track of it, and
a ring is maintained keeping a sequential track of all views
that have been used, These commands allow the user o
return to a previocus view or to move forward after a ijump
return to the latest view, (See Section L.2.3 on links for
a description of this intrafile rine.)

5b6bé A speclial feature of jumps is that almost all jumps
allow the user to change the view specifications of the area
Jumped to from those of the current text., In addition, each
jump saves the viewspecs of the area jumped from in the
intrafile ring, so that on a jump return the text is viewed
as before,

13

57 UL.2.7 %Pointers

EbT7a Pointers make it possible to select entities that are not
on the disvlay. The entity has a pointer fixed on it while it
is on the screen of not meore than three characters, To select
the entity at any time, a mouse button is depressed and the
name of the pointer is entered from the keyboard, This 1is
exactly equivalent to making a direct bug selection of the
character that has the pointer on it.

5b7b The 1list of pointers can be displayed and one may use it
to jump to the individual pointers.

5p8 he2.8 %View %Specifications

Ep8a The view specifications (viewspecs) are parameters that
control the way in whieh statements are digplayed, The
paraneters are: indenting on/off; names on/off; display file
28 tree/normal text; keyword reordering on/off; display of
statement signatures on/off; branch=only on/off; content
analyzer on/off; trail feature on/off; pointer display
on/off; number of 1lines displayed; number of Jlevels of
statements displayed and a few others., These canbe set in
three wWays: with the view set command, from the sSpecial
keyset, or during certain commands such as jump.

Eb8b These paranmeters are always displayed in the upper left
corner of the screen with a single letter denoting each, When
they are eapable of being changed by the user, they are
displayed with larger letters.

Eb8c There is 3 relative level control, which allows changes
t0o the 1level parameter set by the user to be interpreted
relative to the level of the first statement in the display,
The user can also change other viewing parameters. These
include the +type of mark the cursor leaves, the number of
characters in a line of text, the number of spaces indented for
each level, the number of 1lines in the text area, the spacing
between lineg, size of characters, etc,

Sb9 L.2.,9 %Multi-%files

5bv9a When a file is loaded or Jjumped to, it is "opened" and
displayed; no copy 1is created, rather the file 1is viewed
directly from the disk. For reasons of file protection, if any
changes are made, it becomes impossible to continue direct
viewing, 8o the system creates a working copy when an edit is
made, In fact, this working copy is not created until all core
is filled and not necessarily on the first edit. In this way
the system does not make a working copy until it definitely has
to. When the system creates the working copy it copies the
displayed file to it, closes the displayed file, and from then
on all work is done in the working copy. No working copy is

14

6

5.

created when the user is just browing. Olthis ©browsing, This
is done since nost users just look at files and do no editineg,

5bh9b Files are loaded by the load command or by an interfile
jump command, Entries are made in the interfile stack as files
are loaded (see 1lsection L.2.5). The working copy and the
checkpoint file are never entered in the stack.

5h%c One feature of the multi-files is that the user can
create a checkpoint file at any time, This writes the present
working copy out on the drum under the name checkpeint,

5EnSd The interfile stack can be used like the intrafile stack
to go back and forth among views on different files, Only one
working copy at a time can be created, and can be looked at any
time, even if a file other than the one of which a working copy
was made has been currently loaded,

Sbl0 1.2.10 %¥Freeze

5hl0a The freeze feature freezes a Single statement with the
preesent view, The frozen statement will appear at the too of
the screen whenever frozen statements are being shown, with the
main text display on the under part of the screen, A fixeq
number of statements can be frozen, and are displayed in the
freeze area in the chronolegical order frozen.

Sbll J.2.11 %Tree-%Display %Feature

5blla This allows the user to see the file as a tree
structure, or in the hierarchy form, instead of normal text,
The tree structure shows the relationships of statements in the
file to each other, This is done by indenting the differine
levels of the tree to different depths, much like an ocutline
form. This can be turned on or off by the view specifications,

Sbl2 L.2.12 %Statement %Numbering

5hl2a The system numbers each statement Dewey Decimal fashion
according to the tree structure. This numbering is computed at
display time, The numbering can be turned off by the view
snecifications.

5bl3 L.2.13 %Vectors

Epl3a The vector package allows the user to create simple line
drawings, with labels for Jjumps. The vector is drawn by
specifying the endpoints with the mouse. Either endpeoint of a
line can Dbe translated, and the entire drawing and any labtel
can be translated, These vector labels can be used as Jjumps to
that statement name,

%FUTURE %FEATURES

15

6a

6b

6c

S5¢1 %MULTIWINDOWS

6al This may have bpeen inspired by our multiwindows. Theirs,
however, is fancier in conception. This would allow any size and
shape windows to be defined, and each window to be 2a self=
contained viewing area with all the parameters as described for
the single screen display. Their multiwindow facility could also
assien different windows to ifferent users, This assignment is
done by the time sharing systenm, though; the only programming
probhlem is the protocol: who holds the eraser in each window.

5.2 %VARIABLE %SYMBOLS

6bl This would allow the user to define a variable symbol for
text, links, etc, The symbol would be filled in with text at
display time, 1like an assembly time variable, Alternately, the
variable symbol could Simply be permanently defined at a later
time,

5.3 %WEIERSTRASS %ALGORITHM

6cl Currently the system uses 3 display map technique for
detecting bug hits, A future plan is to use the Weierstrass
Algorithm of continually subdividing the screen to find the line
closest to the bug mark, which would be the line hit,

6c2 The hierarchical structure allows the text to be set out in s
tree form very easily. The question of advantage of this over
traditional text was discussed with lengelbart, He said that the
hierarchical ststement-oriented structure was selected Jjust as a
starting point and empirically has proven to be more helpful ¢to
users in terms of visualizing the text, lhe insisted there is no
premeditated reason toward this structure, nor need it be imposed
on the user,

6c3 The statement oriented quality 1limits the flexipility of
editing somewhat. From our point of view, there is no editing
across statement boundaries, for instance, Jeff said that this
limitation is of no real dimportance since as users gain
familiarity with the statement oriented system, they learn to make
statements complete thoughts, and so editing across statement
boundaries 1s not really necessary; the limitation is only on
traditional thinking with traditional text. This 4is the same
reason Engelbart stated for using hierarchy: the user quickly
adapts to the structure provided hinm,

6cl One advantage of the statement oriented structure is that to
move 3 branch or a statement requires no actual movement of text,
but Just the changing of a few pointer,

6c5 There is great effort not to let the user hurt himself when

he cannot see the entire +tree structure due to filters. For
example, a user cannot delete an entire statement., There might be

16

substatements below that are filtered out that he might
inadvertently delete: he must give a delete=branch command and
delete the entire branch.

17

Descrintion of Data Areas of NLS
1l Data forms and terms

la (A=string) An A=-string is an array of words which contains an
ASCII character string in the following format: The first word
contains an integer that is the maxinmum number of characters that the
string can contain., The second word 1is an integer that is the
current length of the string. The string starts in the next word and
is packed three characters per word. A null string is indicated by a
current length of =1, a one character string by zero, etec. A=~strings
are usually handled via routines APCHR, APSR, LDCHR and others in the
UTILTY overlay,

1b (General Stack) The general stack (array STACKD) is used by the
SPL routines fer return locations and arguments, and by the Content
Analyzer pops in SDBMNP, The stack pointer is STACK, which points to
the current top word (being used) in the stack.

lc (PSIND) PS8ID stands for Permament Statement IDentifier, It is a
11 bit integer between zero and 2047 which NLS uses as identification
for a statement. It remains unchanged as long a8 that statement 1is
in the file. That is, the PSID for a statement is not changed, even
though the text may be completely replaced or the statement moved in
the file structure, When the statement is deleted, that same PSID
may later be used to identify 3 different statement,

14 (RING element) A PSID refers to a statement., Every statement
has a RING element, and the PSID can be used to find the ring
element, The RING element contains various fields, and thege are
usually read via the GET routines in the UTILTY overlay. A RING
element 1s a four word block that contains the following:

141 First word: The last five octal digits (15 bits) contain a
PSDB, The first three octal digits contain flags which mean:

141a Bit O: Statement Name is present or not

14lp Bit 1: This statement has been tested against current
pattern

1dlc Bit 2: On if this statement passed the pattern test
1dld Others: unused at present

ld2 Second word: bits O to 10 contain the PSID of the SUB
statenent., If there are no SUB statements, the PSID of this
statement is in this field, Bits 13 to 23 contain the PSID of the
SUC (successor) for this statement. Bit 11 is on if this statement
is a HEAD (first in a plex). Bit 12 is on if this statement is a
TAIL (last in plex). If it is a TAIL, the SUC is the PSID of the
SQURCE statement, and there is no successor,

Description of Data Areas of NLS

1d3 Third word: The hash code for the name is here, It is zero if
there is no nane,

1dk Fourth word: This contains the PVDB if there 1is a vector
picture with this statement, otherwise it is zero.

le (work area) Several routines reguire work areas as calling
arguments. A work aresa is simply an array of cells in a read=-vwrite
page. The address of the work area is usually provided in the X, and
occationrally the work area needs %o bve initialized in a certain way.

1f (SDB) An SDB is a STatement data block, a variable length block
of words in a& random file text Dblock (type 1l). SDB's have 3 seven
word header that indicates:

1f1 (1) length of stp (2) psid (3) date (L) time (5) initials
(6) number of characters (7) characters in nanme

l1g (VDB) A VDB is a vector data block, a variable 1length block of
words in a random file vector block (type 2), VDB's have an eight
word header that indicates:?

1gl (1) length (2) psid (3) date (L4) time (5) initials (6) #
of lines (7) height (8) spacing

1g2 Height is given in raster units

1g3 The last word contains the spacing flag which is set if space
is to be left for the drawing when the display 1s created

1h (PSDB) A PSDB is a 15 bit pointer to a statement data block (SDB).
The PSDB in a ring element indicates where +the text for that
statement is.

1i (pleoek type) Every randem file block has a type number in it. The
type number indicates that the block is:

1il (0) Not legal
1i2 (1) A text block (a block containing SDB's)
1i3 (2) A vector block of VDB's
1ik (3) A ring block
1i5 (4) The query block
1j (plock number) The random file blocks are numbered sequencially.

Block Zero is the header block, The block number is an index into
the random file block status tabhle,.

Description of Data Areas of NLS
1k (block status table) Their are two levels of status Dblocks for
providing information about the random file bloeks. The random file
block status table (RFBS) indicates whether each block is in core or
not, and if not, how many words are free in that bloeck. For each
type of block, there is a block status table with one entry for each
block of that type. An entry indicates which random file block status
entry corresponds to that block,.
11 (overlay) An NLS overlay is a one page (2X) block of code, usualy
reentrant., OVerlays are usually not read from an I0 device when
needed, but are "around" and ready to run when NLS is started,
Excatly whether the overlay i1s in core or not is up to the tinme
sharing systen,
In (relabeling)
In (overlay number)
lo (address)
lp (overlay address)
lg (interrupt)
lr (hash code)
ls (buffer)
1t {(freezing)
l1u (thawing)
l1v (literal)
1w (statement vector)
1x (statement number)
ly (T=pointer)
lz (T=string)
lad (state)
laa (subroutine)
lab (arsgument)
lac (pointer)

lad (register)

	1-02_Outline
	1-03
	1-04
	2-01_SYSGD
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	3-01_NLSFILES
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01_AHIDS
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	5-02_Data_Areas
	5-03
	5-04

