USER'S GUIDE

MAN-MACHINE INFORMATION SYSTEM

Stanford Research Institute

Menlo Park, California

MPEMO ON NEW USER GUIDES
neec 7/8/69
Pistribution -- All AHI

The User's Guide notebooks are heing put through a major revision (which
will be followed by a series of minor revisions as individual sections
are changed).

Some of the mmbered sections are now subdivided by plain (un-numbered)
dividers. These have been put in with their tabs at the top edge,

Also, at the end of each mmbered section you will find a plain divider
with the tab at the bottom edge.

1f you have material of your own which is relevant to a particular
mmbered section, place it behind this plain divider -- it will then
be safe from the revision process.

As hefore, Section 0 is reserved for your own use.

The section on NLS commands anticipates the next version of NLS in three
respects:

"Jump to Identity" is called "Jump to Item',
"Execute File Check" is described, although it is not yet available.

"Ixecute File Cleanup" is called ""Execute File Grope''.

9 XDOC

USER GUIDE

CONTENTS

0 User's Notes
] TSS - System Startup
2 KDF
3 NLS - Description
- Introductory Notes
4 NLS - Keyset & VIEWSPECS
5 NLS - Commands
6 NLS - Content Analyzer
- Keyword System
- Links & Returns
- Viewchange System
- Vector Package
7 NLS - Odds & Ends
- Definitions
8 PASS4

7/69

INTRODUCTORY NOTES

Note on this User's Guide

This edition of the User's Guide uses a new, tentative kind of
organization -- it is planned as a group of independent but
cross-referenced documents,

Wherever a reference is made to another "document', the reference
is to another section of the User's Guide.

Please report inaccuracies and confusions to Dave Casseres.

Note on On-Line NLS Documentation

NLS is also Documented in an on-line file with some on-line aids
built into it. The on-line version may be found in KDF as
(Casseres)NLIST,

NLIST contains links to (Casseres)CONAN, (Casseres)LINKS, and
(Casseres) INFOR, which describe the content analyzer, the link
system, and the information-retrieval system respectively,
These files are also given as hard copy in the User's Guide,

The origin statement of NLIST contains some useful names to
jump to.

NLIST is designed to be viewed with statement numbers off., The
branch-only feature may also be useful,

A number of trails are built into NLIST; they may be entered
from Statement (trailset)., .

Mouse Buttons

Right-Hand Button

When pushed and released without any intervening input, this
button gives a CA (command accept).

When it is held down while a LIT is entered from keyboard or
keyset, this button causes the LIT to be interpreted as a
reference to a pointer,

Center Button

When pushed and released without any intervening input, this
button gives a CD (command delete).

When it is held down while a LIT is entered from keyset, this
button causes the LIT to be interpreted as Case 1 input (i.e.,
letters come out upper-case).

NLSUG -- INTRODUCTORY NOTES 6/13/69

Left-Hand Button

When pushed and released without any intervening input, this
button gives a backspace, causing the last input character (in
a literal type-in) to be thrown away,

A backspace made during the process of a bug selection
causes the last selection made to be cancelled, This only
works in certain commands; please see entry on '"bug
selection" in document ODDS AND ENDS,

When it is held down while a LIT is entered from keyset, this
button causes the LIT to be interpreted as Case 2 input,

Left-Hand and Center Buttons Together

When pushed and released without any intervening input, this
combination gives a backspace-word, causing the last input word
(in a literal type-in) to be thrown away,

When it is held down while a LIT is entered from keyset, this
combination causes the LIT to be interpreted as Case 3 input.

Notes on Syntax Equations

The syntax equations in this User's Guide are not rigorous. They
are not completely consisent as to notation, nor are they
guaranteed to be accurate,

The letters at the beginning of each equation are the control
letters entered from keyboard or keyset to specify the command,

CA means "command accept;" this is done by pressing either of the
two CA keys on the keyboard, or the right-hand button on the
mouse,

Square brackets are used to indicate selections made with the bug.
Thus [c] means that a character is selected, [v] means that a

visible string is selected, and so forth., If two characters are
to be selected, they are shown as [c]1 and [c]2.
Please see 'bug selection" entry in document ODDS AND ENDS,

"LIT" means any string of characters input from the keyboard or
keyset.

"NUMBER" means any mumber entered from the kevboard or keyset,

The slash (/) means "or.,"

NLSUG -- INTRODUCTORY NOTES 6/13/69

The dollar sign ($) by itself means "any number of" (from 0 to
1000). The construct m$ means "any number equal to or greater
than m;" the construct $n means '"any number equal to or less than
n;'" the construct m$n means "any number from m to n."

Examples: $3(NUMBER) means "up to three mmbers'; 38$5(char)
woulg mean ''three to five characters',

The term VIEWSPEC in a syntax equation means that VIEWSPECs may be
set,

For example, the syntax equation for the Replace Text command (see
rt) is r t [c]1 [c12 LIT CA, This means "type r; type t; select
a character; select a second character; type a string of
characters; do a command accept,"

SYSTEM STARTUP 10/3/68

!

This cocument gives details on how to restart the system afier a

crash.

2

Firsts see uho else 1is asround.

2A 1 f there is scmeone :who knouws more than you dos enlist his atd.
2B Ditrerwisesy proceed with the follouwing procedures. tach of the
procediures should be :tried in order until one of them proauces
satisfiactory results. . The procedures are:
284 Breakpoint &
2E1A Leaves user entered and RAD files OK.
282 BRU 74 with Breakpoint 4
ZB2A Leaves user entered and RAD files 0OK.
283 Fill frcom Paper Tape
Z2B3A Leaves RAD files 0OK. but user must reenter.
2B4 Recovery from Mag Tape
2ZB4A Leaves RAD files OKe but user must reenter.
2B84B NOTE: Justi rouw there are irregularities which make this
‘procedure highly: insdvisable tmiess you are really sure uhat
.you are doing. The steps given in this docume nt for this
iprocecdure will rot give you a working MNLS.

285 Initialization from Mag Tape

2B5A Destroys RAD filess and user musi reenter.

2E5B NOTE: Just now there are irregulerities which make this
yprocecure :highly inadvisable wunless . you &re really sure uhat
iyou are dcing. The steps given in this document for this

procedure witl not give you a uworking NLS.

2C 1f enyone else is using the systems make sure they know you are
going :te attemplt a restart. :

2D Before starting the procedure, record the crash in the notebook
marked “AHI Informaticns”™ which will pe found on or near the console.
To wobtein register ccocntentse turn the dial marked REGISTER to tLhe
desired register designalion. then read . off the iights.

SYSTEM STARTUP 10/3/768

3 Breakpwoint &

3A . Morentarily depress Breakpoint Switch 4 on the console anc then
returm it to the up (RESET) position.

3B Af this succeeds Teletype | should respond SYSTE#M RESTAR
PROCEED WITH CAUTION, iard then the logging Telelype should type &
CLEANUP STARTED followed by F.D. COMPLEVYED.

TED
D

-

3C 4f it failss try a BRU 74 with Breakpcoint 4.

SYSTEM STARTUP 10/3/68

4 BRU @4 awith Breakpoint 4
4A Siop the computer by moving the RUN/IDLE/STEP suiteh to IDLE. .
4B Press START.

4C FJurn the register dial to €+ then use the pushbuttons belocw the
register display to enter BRU 74 (00100074 octal).

44 The binary code for this (corresponding to lights showing in
t#e register) is 000,000,001,000,0060,000,111,100.

4D Push Breakpoint Suitch 4 dowun.

4FE ¥olve the RUNJIDLE/STEP switch to RUN.

4F Return Breakpoint Switch 4 to the up (RESET) position.

4G Af, this succ eeds., Teletype i1 should respond SYSTEM RESTARKTED
PRUCEED WITH CAUTION . and then the logging Teletype shouid type F.D.
CLEAMNUP STARTED foliowec by F.D. COMPLETED.

4H d4 it failse try a Fill from Paper Tape.

SYSTEM STARTUP 10/3/768

Fill from Paper Tape:
SA load the System Recovery Tape into the paper tape T eader.

LY:E Ihis tape 1is a loop and should be found on top of the
realder/punch unit . It is labeled CRASH RELOVERY.

Sas After sliding the tape 1into the reader unite move Lhe
RUNSFLDAD switch on :the reader to RUN.

583 Sbor the computer :by moving ‘the RUN/IDLE/STEP sxitch to IDLE. .
S{ Puist the START bub.lcen.

50 Helve the RUN/ZIDLE/ZSTIEP switch to RUN.

SE iplve the FIil swit:ch to PAPER TAPE and release.

5Ff Mait for the tape tc fill and the HALT light to appear.

F4 Move the RUN/LOAD switch on the reader to LCAD and remove the
t epe.

56 fLiveck the blackboarc for @ nokte as to whether Breakpoint Suitch |
is to lbe used.

5G4 If it iss depress Breakpoint Suitch { and leave il doun.

5H Molve the RUN/IDLE/STEP switch to IDLE and then back to RUN: toO
clear 1tte HALT licht.

51 If Breakpoint SQuitch | has been depressed. move it to the up
(RESET) position.

5 ¥ou must nouw bring the system up: as follows

54fi Type a RUBDUT :or Teletype i.

‘5 1A If the response is HWAIT. go back to Uhe beginning of the
' fill procedure.

5§JIB If. you have succeededes the response wWill be TSS 1.93 IS
WUF SET DATE AND .TIME. Set the date and time in the corsect
fermat.

542 ‘The system will type INITIALIZE OR RECLDVER. Respond by typing
R- ‘ .

543 F.D. cleanup will be started and complet ed.

534 Enter STSIEN as a user atb Teletype I.
' 4

SYSTEM STARTUP 10/3/¢£8

5K
it

5L

5#

535 Set executivity to —1.

546 The tapes on:the drives must be remountec. <Theck the UNIT
SELELT suwitches onitre drives and use the MOUNT command fo mount
L he tapes. (See Ncte on Tape Hounting at the end of 4his
docurent.)

¥olve Breakpoint Switch | to the up (RESET) positions if you set
eamlier.

Re enter yourself as @ user from your oun console.

If ¢this process failss fry a Recovery fron Mag. Tape.

SYSTEM STDARTUP 1073768

6 Recowery from Mag Tape

6A Liheck the blackibcard to find the reel number of the recavery
tape- - The tape is on a2 MAC reel labeled RELOVERY and stored on the
secongd shelf of :'the tape cabinet.

68 iJse the MDUNT command on tape unit 0. When tLhe system Ltypes
MOUNT NEW TAPE., remove the tape that is on the drives set up the
recovery tape in its place (using 556 BPI). and hit the period on the
Teletylpe to execute MOUNT NEW TAPE. (See Note on Tape Mounting at the
end pf this docunment.)

681 Set Lthe other tape drives to MANUAL.

6C s e the same procedure as Fill from Paper T apes excepl thai the
FILL switeh is set to MAG TAPE.

6D #f:fter bringing up the systems restore the original tape to 4Lape
unit Be and put auway Lthe recovery tape-

6 If this procedure failse tey initializing froem mag tLape.

KDF USER'S GUIDE 7/3/69

KDF Commands

(See end of document for definitions of terms.)

Abandon Fiie

Syntax: a <KDF filename> ,

Semantics: This command is used when repeated KDF read or write
errors indicate that the file is written on a bad disc spot
somewhere, The file is deleted and the space is not used again
for other files. It will be listed under the "status" cormand as
a bad spot,

Syntax: b (. / sp usernanme ,)

Semantics: A list of file names in KDF is presented, in a format
that allows many files to be listed without filling the screen.

I£ the '"d'" is followed immediately by a period, the current
user's files are listed.

If a space is typed instead, KDF responds with "FOR USER" and

expects a user name, Then when the period is typed, the
specified user's files are listed.

Chaggg File Name

Syntax: c¢ <old KDF filename> . <new KDF filename) .
Semantics: The old name is changed to the new.
Delete File
Syntax: d <KDF filename) .,
Semantics: The named file is deleted and its name thrown away.

Fxarnine File

Syntax: e <KDF filename) ,

Semantics: A line of information about the named file is
displayed. This includes the accessibility, length, type, etc.
See note on "accessibility", below.

KDF USER'S GUIDE 7/3/69

Vhere a file belonging to the current user has a password
associated with it, the password is displayed in parentheses.

Where a file belonging to another user has a password
associated with it, a pair of parentheses is displayed but the
password itself does not appear.

Finishad

Syntax: £,
Senantics: KDF is terminated and control returns to the Exec,

Seneral Access

Syntax: g <KDF filenamed . r/w/n .
Semantics: This sets the accessibility of the named file with
respect to a "general" user -- i.e, one who is not the file owner
and does not use a password (if applicable).
Only the file owner may execute this command,
"1’ sets accessibility to read-only,
"' sets accessibility to read-write,
"n'' sets accessibility to no access.
See note on '"accessibility", below,
Initialize
Syntax: initialize,

Semantics: The user's file space is reinitialized, and all
existing files are deleted.

Syntax: 1 (. / sp usernane .)

Senantics: A list of files in KDF is presented, along with
information on each file (accessibility, length, type, etc.). See
note on "accessibility", below,

if the "1'" is followed immediately by a period, the current
user's files are listed.

3%

YDF YSER'S GUIDE 7/3/69

Where a file has a password associated with it, the password
is displayed in parentheses,

If a space is typed instead, KDF responds with "FOR USER" and
expects a user nane. Then when the period is typed, the
specified user's files are listed.

llhere a file has a password associated with it, a pair of
parentheses is displayed but the password itself does not

appear.

Owner Access

Syntax: o {KDF filename> ., »/w/n .

Semantics: This sets the accessibility of the named file with
respect to the file owner.

Onlv the file owner may execute this command,
"rf' sets accessibility to read-only.

"Ww'" sets accessibility to read-write,

"n'" sets accessibility to no access.

See note on "accessibility", below,

Password Access

Syntax: p <KDF filename> . <{new password> <{rparen> r/w/n .
(After tha first period is typed, the system responds with "IS
(". The password is typed and the parenthesis closed, then an
r, ¥, or n is typed, and finally another period,)
Semantics: This sets the accessibility of the named file with
respect to a general user (i.e. not the file owner) who uses the
given password in association with the naned file,
Only the file owner may execute this command.,
"r'' sets accessibility to read-only,
"w" sets accessibility to read-write,

"!n'" sets accessibility to no access.

See note on '"accessibility", below.

N

IDF USER'S GUIDE 7/3/69

Read Disc File

Syntax: r <KDF filename> , <RAD filename> .,

Semantics: The named KDF file is copied to the named RAD file.
Status

Syntax: s (. / SP username .)

Semantics: Lists a user's file space by 2K blocks, 8 blocks to the

line, Each entry is either *NG* (bad spot), -NU- (not used), or a

£ile name followed by a file block number or by (E) if it is the

last block of the file.

If the "'s" is followed immediately by-a period, the current
user's files are listed,

If a space is typed irstead, KDF responds with '"FOR USER" and

expects a user name. Then when the period is typed, the
specified user's files are listed.

Verifx Data
Syntax: v (. / SP username .)

Senantics: Reads all the data in a user's KDF files. A message is
displayed if hardware indicates that any data are unreadable.

If the '"v" is followed immediately by a peried, the current
user's file data are read,

If a space is typed instead, KDF responds with "FOR USER" and
expects a user name. Then when the period is typed, the
specified user's file data are read,

Write Disc File

Syntax: w <KDF filenane> ., <{RAD £ilename> .

Semantics: The named RAD file is copied to the named KDF file.

XDF USER'S GUIDE 7/3/69

Explanation of Terms Used in this Document

RAD file: As used here, this means either a drum file or a non-KDF

disc file.

YDF filename: As used here, this includes a username and a password,
1f needed,

userrame: The username is given in parentheses, just as it is for
a RAD Zile. If the file being named is the current user's own
file, the username and its parentheses are omitted.

password: The password is only used where a username is also used

zbecause the owner of a file never needs to give the password),
The username is followed immediately by a comma, then the
password, and finally the closing parenthesis. The corma and the
password are not echoed to the display or TTY,

MOTE: Names of KDF files are not recognized until the entire rame
has been typed. llowever, user names and names of non-KDF files
are recognized as soon as enough characters have been typed.

Accordingly, it is not necessary to use apostrcphes in defining
a new KDF file name. If apostrophes are typed, they are
considered to be characters in the file name, However, in
defining a new RAD-file name from KDF, it is still necessary to
use apostrophes,

XDF recognizes the BACKSPACE key (oxr CONTROL A), but does not
delete the character from the display, Instead, it displays an
Up=-arrov,

accessibility: Three completely separate categories of file
accessivility are defined: owner, general, and password,

The "owner" is the user in whose KDF space the file is stored.
"Owner access refers to access by the owner, unless he gives a
passvord; in this case it is '"password access',

Owvner access is initialized as read-write.

"Sencral access' refers to access by anyone who is not the owner
and does not give a password,

General access is initialized as read-only.

"Dassword access" refers to access by anyone who gives a password,

w

KDF USER'S GUIDE 7/3/68

Password access is not initialized; it is set by the owner when
he defines the password,

Each category may be set independently to any one of three modes:
W means read-write
R neans read-only

N means no access.,

Motice that illogical situations can result: if, for example, the
user defines a password for a file and sets password access to
read-only, but forgets to change the general access, then the
password access will be the same as the general access. To keep
general users from reading the file, general access must be set to
"o access,"

It is also possible for a user to set his own access to one of

his files to '"no access.'" Fortunately he can change it back to
read-write with the '"Owner Access'' command.

6

SYSTEH STARTUP 1073768 -

Initialization from Masg Tape
TA Tiheck the blackboard to find the reel number of the initiatize
tape. . The tape is on a MAC reel labeled INITIALIZE 2nd stered en Lhe
second shelf of the tape cabinet.
7B Us e the MOUNT comnmnand on tape wunit 0. ‘Hhen the system iypes
MOUNS i NEW TAPE. remoive the tape Lhat is on the drivee set wup the
initdialize tape . in its place f{using 556 BPI), and hii the period on
the Felletype to execute MOUNT NEUW TAPE. (See Note on Tape Mountinu at
the end of this decument.)

T84 Set the other tape drives to MANUAL.
7C Use the same procedure as Fill from Paper Tapes except thai the
FILL =witch is set t o MBEG TAPE and the response to INITIALIZE OR
RECOVER is I instead of R.

10 Aftt e bringing up :Lthe system, restore the original tape Lo fape
unit O, and put auay Lhe recovery ltape.

7E Afiter the fiil procedure is finishede SYSTEM is entered aas a
useire : tapes are resounteds etc.. it is necessary to copy several
files from the disc to the RAD. This should be done from Teletypz 1.,
as foi lous:

dKDF.

SREAL DISK FILE CCP.

TO . */CCP* (NEW FILED.

SREAL DISK FILE CCPLID.

T4 "7/ (NEW FILE).

&F IINISHED.

SLLP.

TELETYPE 8 2. (or any number not in use)

ARGUMENTS O

INPUT FILE /XS (CCP will rune then return to exec.)?

aDELETE NAME 4X/.

iF if this init ialization from wmag Lape failse Qo fipme.

SYSTEM STARTUP 1043768

8 Note an Tape Mounting

8A

IThe tern MOURT refers strictly to a softuware processs not to :the

physiral placement of a tape on a drive. The latter will be cailled
"setiing up” a2 tage.

88

fhe MDUNT conmrand ' is used to reuwind a tape that is on & dcrives

deoeing it¥fe necessary things to the file directorys etc.e either to .get

it

recognized after a restart or in preparation for setling up & neuw

tape. .

8C

831 After this has been done. the system willt type PNOUNT NEWU
TAPE. If a new tape is not to be sel upy type @ period and Lhe
tape on Lhe drive will be made ready for use. If 2a neu tape is to
be lset ups remove the old tape 2t this points sel up the new one
{as cescribed belox) and then type the period. This uwill cause
the neuw tape to be mede ready for use.

Setting Up a Tape

8L1 {not wuritten .yet -—- see notes in the "AHI Information”
noafiebook at the censclel)

JSTARTNLS, 08/28/68 0O28:27 DIA

i How to start up NLS
fA Enter as NLS.
IB Put disk file #&5#C-NLS on the rad and give it duribility P.
IC Get fiiles (HAng-NLS and (HAY)G2NLS from the disk also.
{D PLace)ngLS and do a SYS-Dump 0 to 7 band 4 page I.
[E RESet and PLace /G2NLS and do a SYS-DUmp 0 to 3 band I6.
I¥ REScet and do a SAve 0 to 37777 on '/CRASH'.
IG Make the file /CRASH public access RW, and duribility P.
IH Since NLS 1is read only and shared, if the monitor thinks an NLS
page is already in core, it will not read it from the rad when
someone calls NLS, but will use the copy in core. So in order to
make sure that .ie code for NLS has really been changed, everyone
must get out of NLS. Note that the monitor does not know the

difference between real code and junk, so if someone calls NLS and
blows up, the monitor may still think that part of NLS is in core.

SDOCUMNTATN-FILE UTILIT Y, 03/724/69 H3E2:3F7 CHI < .DSN=1; .L5P=0;
Description
Functions
SaVE disc files on KDF
LOAD disc files from KDF
PRINTY files
COHPILE files
Control File
A GWED fileused for input datea
Contents

Use semi-colons as delimitorse. With a8 period as a §final
delimitorlany thing af ter the first period will be ignored)

The - first line must be: user—name;passworas: inivtialssuser—-name
abrewiation.

One liine for each file to be procesed
fFile-names(kdf user—nase);compilation data if needed.

Compilatiion data consists of an ordered set of ordered
Pairs of commands and source statment nusbers '

the cosmands are MOL. SPL. ARPAS. and ARPDMP
For example.. SPL;];HOL;_Z.
YThe last line must be: END.
For an exaaple of a control file., see (NLSIINLSFILES
Usage
Use teletype or als stat»ion

A logged—-oul: nls station must be dvailable if you #isn to print or
conmpile

from execud ive dlevel 90 to SNOBOL(push SN.)

READ FROM (NLS)SFILE UTILITY(QED type commands are used in SNOBOL?

Gl. —UK.(push G. .}

Respond to “CONTROL FILE:" by typing the name of your controi
filey Follosed by # return

If the desired control file is *NLSFILES., just type a return

The program will then type that the file was opened and the number
of files to be prwocessed

{QUERY) :The following will then e asked: “LOADs SAVE, PRINT,
COMPILE . DR DONE? "

Type t he first letter of the function you uwish to utilize

You widll tLhen be asked if you want all of Lhe files in the
control file proccessed

Yess type “Y". and proccessing uwill beginr
Noe. type "N~

Do you wish the files listed so that you <an sellect
tdose to be proccessed?

Yes . type °“Y". Fach file—-name will then be typed.
after which you should respond “Y* or “N°

Noe type “N-. You #ill then be requested to type the
file-names of those files you wish proccesseds €ach
followed by 4 return, «ith an agditional return to
terai nate the list

Ine file-names so entered must correspond to an
entry .ino the control file

iIf sce a colon will be tyged f¢or the fnext
fil e-name

if inct, @an error message will te typed, and you
Will be alloswed to re—enter a file-nameltnose
previously entered are not losi)

If the process you sellected was PRINT or COMPILE. wou will be
ask ed to specify the numper of an available logg ed-outl nls
stations followed Dy a return

When processing is comglete, the program will return (o ils query:
“44AD, SAVE. PRINT, COMPILE, OR DONE?". see (QUERY)

Special Notes
This SNOBDL1 program logs in on another teletype. If none are

avallobiee an error message will be typeds, @and the progran wilti be
terminat ed{currentdy SNOBOL tries to log in on tty i5 or 8)

If the contvrol file cannot be openeds the program will terminate with
an ervor comdilion

If a synlax oror is detected in the compilatior of any part of a
filee comp ilation will step for that file and will beygin for the
nextdan error message is outpul)

[f printing filese be sure teleiype t is not being used(leave @ note
on idi so that no one will use it while you are 10 PRINT proccessing)

THE ON-LINE SYSTEM (NLS)

Introduction

NLS, as currently implemented, is essentially a highly
sophisticated text-manipulation system oriented primarily toward
on-line use; i.e., it is not primarily oriented toward production
of hard copy, although fairly sophisticated hard-copy formatting
and output are included in the system.

NLS is intended to be used on a regular, more or less full-time
basis in a time-sharing environment, by users who are not
necessarily computer professionals, The users are, however,
assumed to be 'trained" as opposed to '"naive.!" Thus the system is
not designed for extreme simplicity, nor for self-explanatory
features, nor for compatibility with '"mormal" working procedures.

Rather, it is assumed that the user has spent considerable time
in learning the operation of the system; that he uses it for a
major portion of his work; and that he is consequently willing
to adapt his working procedures to exploit the possibilities of
full-time, interactive computer assistance,

Thus the practices and techniques developed by users for
exploiting NLS are as much a subject of research interest as
the development of NLS itself,

Work-Station Console

The user sits at a console whose main elements are a display
screen, a typewriter kevboard, a cursor device called the ''mouse,'
and a set of five keys operated by the left hand, called the
"kKeyset.".

The screen is used for displaying text, in various formats.
The top portion of the screen (approximately 1/5 of the total
area) is reserved for feedback information of various kinds:
the name of the user command mode currently in effect, a
"register" area used for various kinds of feedback, an "echo

register'" which displays the last six characters typed by the
user, and other items which are explained bhelow,

The keyboard closely resemhles a conventional typewriter
keyboard, with a few extra keys for special characters and
control functions., It is used for typing text as content for a
file and for specifying commands, which are given as two- or
three-character mnemonics.

The mouse is a roughly box-shaped object, about four inches on
its longest side, which is moved by the right hand. It is
mounted on wheels, and rolls on any flat surface. The wheels
drive potentiometers which are read by an A/D converter, and

NLSUG--DESCRIPTION OF NLS 4/8/69

the system causes a tracking spot ('"bug') to move on the screen
in correspondence to the motion of the mouse.

The user specifies locations in the displayed text by
pointing with the mouse/bug combination. This eliminates
the need for specifying a location by entering a code of
some kind. Use of the mouse is very easily learned and soon
becomes unconscious,

On top of the mouse are three special control buttons, whose
uses are descrb ed below,

The keyset has one key for each finger of the left hand. The
keys are struck in combinations called '"chords," and each chord
corresponds to a character or combination of characters from
the keyboard. There are 31 possible chords; beyond this, two
of the buttons on the mouse may be used to control the '"case"
of the keyset, giving alternate meanings to each chord. There
are four possible cases, for a total of 124 possible
combinations.

A simple binary code is used, and has proved remarkably easy
to learn. Two or three hours' practice are usually
sufficient to learn the most commonly used chords and
develop reasonable speed.

The keyset was developed to increase the user's speed and
smoothness in operating NLS. It was found that users
normally keep the right hand on the mouse, because the great
majority of command operations involve a pointing action;
efficient use of the keyboard, however, requires the use of
both hands, and shifting the right hand (and the user's
attention) to the keyboard is distracting and annoying if it
must be done for each two- or three-letter command mnemonic.

Use of the keyset permits the user to keen his right hand

on the mouse and his left on the keyset, reverting to the
keyboard only for entry of long strings of text

(typically five or more characters).

Originally, the keyset exactly duplicated the keyboard in
function; in the development of NLS, however, certain
control functions have been made two-stroke operations from
the keyset where they would be three- or four-stroke
operations from the keyboard., Nevertheless, it is still
possible to operate all of the features of NLS without using
the keyset; thus the beginner may defer learning the keyset
code until he has gained some degree of mastery over the
rest of the system,

NLSUG--DESCRIPTION OF NLS 4/8/69

Structured Text

"Text" is used here as a very general term, A '"file" of text
(corresponding roughly to a "document" in hard copy) may consist
of English or some other natural language, numerical data,
computer-program statements, or anything else that can be
expressed as a structure of character strings. Simple line
drawings can also be included in a file.

All text handled by NLS is in '"'structured-statement" form. This
special format is simply a hierarchical arrangement of
"statements,'" resembling a conventional "outline'" form,

Each statement in a file may be considered to possess a
""'statement number,' which shows its position and level in the
structure. Thus the first statement in a file is Statement 1;
its first substatement is 1A, and its next substatement is 1B;
the next statement at the same level as the first is Statement
2; and so forth, Statement numbers have been suppressed in
printing out most of this document, but are printed out for the
remainder of this section as an example,

lc2b A statement is simply a string of text, of any length;
this serves as the bhasic unit in the construction of the
hierarchy. In English text, statements are normally equivalent
to paragraphs, section and subsection headings, or items in a
list. In other types of text, statements may be data items,
program statements, etc.

1c2bl Each paragraph and heading in this document is an NLS
statement, FEach statement is indented according to its
"level" in the hierarchy; this paragraph is a substatement
of the one above, which is in turn a substatement of another
statement. A statement may have any mumber of
substatements, and the overall structure may have any number
of levels.

1c¢3 Note that when a user creates a file, he may let all of his
statements be first-level ones, i.e. 1, 2, 3, etc. In this case
he will not have to consider a hierarchical structure but simply a
linear list, as is found in conventional text,

1c3a However, many of the features of NLS are oriented to make
use of hierarchy, and the benefits of these features are lost
if hierarchy is not exploited,

1c3b This is an example of an NLS feature to which the user
must accomodate his methods; however, the experience of users
has been that hierarchical structure very rapidly becomes a

NLSUG--DESCRIPTION OF NLS 4/8/69

completely ''natural' way of organizing text. Many automatic
features of NLS make the structure easy to use: for example,
statement numbers are created automatically at all times and
the user need not even be aware of them, It is sufficient,
when the user creates a statement, to specify its level
relative to the preceding statement.

Use of the System

Text manipulation is considered to involve three basic types of
activity by the user: composition, study, and modification. In
practice, the three activities are so intermingled as to be
indistinguishable,

Comzosition

Composition is simply the creation of new text material as
content for a file,

In the simplest case, the user gives the command "Insert
Statement" by typing "is'", He then points (with the mouse) to
an existing statement; the system displays a new statement
number which is the logical successor, at the same level, as
the statement pointed to. The user may change the level of
this number upward by typing a "u" or downward by typing a "d".

NOTE: Even if no previous statement has benn created, the
system displays a "dummy" statement at the top of the
text-display area, and the user points to this dummy,

The user then types the text of the new statement from the
keyboard. On the screen, the top part of the text-display area
is cleared and characters are displayed here as they are typed.
When the statement is finished, the user hits a CA (command
accept) button on the keyboard or mouse, and the system
recreates the display with the new statement following the one
that was pointed to,

New material may also he added to existing statements by means
of commands such as Insert Word, Insert Text, and others.
Properly speaking, these operations are modification rather
than composition, and are discussed below,

Simple line drawings may be composed and added to the file by

means of the 'vector package.'" This is discussed in another
section of this report.

Studz

NLSUG--DESCRIPTION OF NLS 4/8/69

The study capabilities of NLS constitute its most powerful and
unusual features, The following is only a brief, condensed
description of the operations that are possible.

Ju

in

NLS files may, of course, contain a great deal more text
than can be displayed on the screen, just as a document may
contain more than one page of text. An NLS file is thought
of as a long '"scroll." The process of moving from one point
in the scroll to another, which corresponds to turning pages
in hard copy, is called "jumping." There is a very large
family of Jump commands.

The basic Jump command is Jump to Item. The user
specifies it by entering "ji'", and then points to some
statement with the mouse. The selected statement is
moved to the top of the screen, as if the scroll had been
rolled forward,

Most of the Jump commands reference the hierarchical
structure of the text. Thus Jump to Successor brings to
the top of the display the next statement at the same
level as the selected statement; Jump to Predecessor does
the reverse; Jump to lUp starts the display with the
statement of which the selected statement is a
substatement, and so forth.

The Jump to Name command uses a different way of
addressing statements., If the first word of any
statement is enclosed in parentheses, the system will
recognize it as the '"name' of the statement., Then, if
this word appears somewhere else in the text, the user
may jump to the named statement by pointing to the
occurrence of the name, or by typing the name,

This provides a cross-referencing capability which is
very smooth and flexible; the command Jump to Return

will always restore the previous display, so that the
user may follow name references without losing his
place,

It is also possible to jump to a statement by typing its
statement number,

View Control

If a file is long, it may be impossible for the user to
orient himself to its content and structure or to find

NLSUG--DESCRIPTION OF NLS 4/8/69

specific sections by jumping through it., The principal
solution to this problem is provided by level control and
line truncation,

Level control permits the user to specify some number of
levels; the system will then display only statements of the
specified level or higher. Thus if three levels are
specified, only first-, second-, and third-level statements
are displayed.

Line truncation permits specification of how many lines of
each statement are to be displayed. Thus if one line is
specified, only the first line of each statement will be
displayed.

Common usage is to use the first two or three levels in a
file as headings describing the material contained under
each heading in the form of substatements. Thus the user
may start by looking at a display showing only the
first-level statements in the file, one line of each. This
amounts to a table of contents,

He may then select one of these statements and jump to
it, specifying one more level. He will then see more
details of the content of that part of the file. This
process of "expanding the view'" may be repeated until the
user has found what he is looking for, at which point he
may specify a full display of the text.

Users soon develop a habit of structuring files in such a
way that this process will work well, As it happens,
such a structure is usually a good, logical arrangement
of the material, reflecting the relationships inherent in
the content,

The level and truncation controls are designed so that the
necessary specifications may be made with only one or two
strokes of the keyboard or keyset. These controls are only
the most important of a large set of view-control parameters
called "VIEWSPECs.'" Other VIEWSPECs control a number of
special NLS features affecting the display format,

Content Analysis

The NLS content analyzer permits automatic searching of a
file for statements satisfying some content pattern

specified made by the user, The pattern is written in a
special language as part of the file text.

NLSUG--DESCRIPTION OF NLS 4/8/69

Content patterns may be simple, specifying the occurrence of
some word, for example. They may also be highly complex,
specifying the order of occurrence of two or more strings,
the absence of some text construct, conditional
specifications, etc., Simple patterns are extremely easy to
write; complex ones are correspondingly more difficult.

Link Jumping

A "1link" is a string of text, occurring in an ordinary file
statement, which indicates a cross-reference of some kind.
It may refer to another statement in the file, or to a
statement in some other file, possibly belonging to another
NLS user. The text of the link is both human-readable and
machine-readable, and the command Jump to Link permits the
user to point to the link with the mouse and immediately see
the material referred to,

An example of a link is (Smith, Plans, Longrange:ebtng).

The first item in the link indicates that the referenced
file belongs to a user named Smith; the second is the
name of the file; the third is the name of a statement in
the file (a statement mumber may also be used); and the
string of characters following the colon controls the
VIEWSPECs to set up a particular view of the material,

The use of interfile links permits the construction of
large linked structures made up of many files, and study
of these files as if they were all sections of a single
document,

Modification

A large repertoire of editing commands is provided for
modification of files. The basic functions are Insert, Delete,
Move, and Copy.

These functions operate upon various kinds of text entities.
Within statements, they may operate upon single characters,
words, and arbitrary strings of text defined by pointing to the
first and last characters,

This set of commands is not restricted to operation within
one statement at a time; for example, a word may be moved or
copied from one statement to another.,

The editing functions also operate at the structural level,
taking statements or sets of statements as operands. A number

NLSUG--DESCRIPTION OF NLS 4/8/69

of special entities have been defined for this purpose: for
example, a '"branch" consists of some specified statement, plus
all of its substatements, plus all of their substatements, etc.
A branch can be deleted, moved to a new position in the
structure, etc,

As noted above, the modification activity tends to merge, in
practice, with study and composition.

Summazz

It must be noted that NLS is not a system designed for general
usage, but a specialized tool designed for a group of people
working on the development of computer aids to human intellectual
processes, It is for this reason, for example, that NLS is not
really a text-editing system oriented toward hard-copy production,
but rather something simultaneously more general and more
specialized,

It is in the process of manipulating a file -- studying it, making
modifications, adding new material as an integrated process
lasting for minutes or hours at a time and having a continuity
extending for days, weeks, or even years -- that the real benefit
of NLS appears.

An NLS file tends to become an evolving entity, subject to
constant modification, updating, and reevaluation, Its
development may have no clearly defined endpoint. It may cease
to exist as a file by being incorporated in another file, or it
may eventually be abandoned; however, it will probably never be
"finished" in the usual sense of the word.

Continuous use of NLS to store ideas, study them, relate them
structurally, and cross-reference them results in a superior
organization of ideas and a greater ability to manipulate them
further for special purposes, as the need arises -- whether the
"jdeas' are expressed as natural language, as data, as
programming, or as graphic information.

CODES FOR KEYSET AND VIEW-CONTROL PARAMETERS

The keyset has four cases called 0, 1, 2, and 3, The center and
left-hand buttons on the mouse are used for specifving case as
follows: Case 0, neither button; Case 1, center button; Case 2, left
button; Case 3, both buttons. The buttons are held down while
striking chords on the keyset,

Case 0 contains lower-case letters, corma, period, semicolon,
question-mark, and space,

Case 1 contains upper-case letters, less-than, greater-than,
colon, backslash, and tab.

Case 2 contains various punctuation characters for chords 1-15,
digits from 0 to 9 for chords 16-25, more punctuation for chords
26-29, and ALTMODE and carriage-return for chords 30 and 31,

Case 3 contains VIEWSPECs and centerdot.

Codes for Keyset and VIEWSPECs

Keyset Codes

CODE Case Case Case Case

0 1 2 3
00001 a A ! L=1-1
00010 b B " L=L+1
00011 c C # L=ALL
00100 d D $ L=1
00101 e E % I. relative
00110 £ F & recreate display
00111 g G ' branch-only on
01000 h H (branch-only off
01001 i 1) content-analyzer on
01010 j J @ content-analyvzer off
01011 k K + trail on
01100 1 L - trail off
01101 mn M * statement numbers on
01110 n N / statement numbers off
01111 o 0 + frozen statements on

NLSUG

-- KEYSET AND VIEWSPECS 6/13/69

CODE Case Case Case Case
0 1 2 3
10000 P P 0 frozen statements off
10001 q Q 1 T=T-1
10010 r R 2 T=T+1
10011 s S 3 T=ALL
10100 t T 4 T=1
10101 u U 5 pointers on
10110 v \ 6 pointers off
10111 W W 7 L=T=ALL
11000 X X 8 L=T=1
11001 y Y 9 blank lines on
11010 z Z = blank lines off
11011 , < [(nothing)
11100 . >] (nothing)
11101 H : - (nothing)
11110 ? \ ALT centerdot
11111 sp TAB CR (nothing)

Capital-Letter VIEWSPECs

A -- indenting on

B -- indenting off

C -- names on

D -- names off

E -- clip picture and show (see vectors)

F -- show picture only if it fits (see vectors)
G -- display file as tree structure (see tree)
H -- display file as normal text (see tree)

1 --keyword reordering on (see document on information-retrieval
system)

J --keyword reordering off (see document on information-retrieval
system)

K -- display of statement signatures on

L -- display of statement signatures off

NLSUG -- KEYSET AND VIEWSPECS 6/13/69

Control of VIEWSPECs

The VIEWSPECs are used as parameters to control the way in which
statements are displayed,

VIEWSPECs may be controlled in three ways: during certain commands
such as Jump or Load, with the View Set command, or from the
keyset in Case 3., (The viewspecs may also be set from the
keyboard with the right-hand and center buttons on the mouse down,
i.e. in Case 3 position.)

During the Jump and Load commands (and a few others), there is
a point where the VIEWSPECs in the upper left-hand corner of
the display hecome large and are accessible to change. They
may then be changed by typing them in from the keyboard or
keyset as upper- or lower-case letters,

The View Set command (q) may be used to achieve exactly the
same effect.

Case 3 may be used to set all of the VIEWSPECs that are not
capital letters, as shown in the table of keyset codes.

This may be done at any time,
After VIEWSPECs have been given in this fashion, it is
necessary to hit Chord 00110, Case 3, for '"new View,'" before

the new VIEWSPECs will become effective.,

Relative Level Control

The code '"e" causes the subsequent setting of I to be
interpreted relative to the level of the first statement in the
new display.

For example, suppose that a Jump is being made to a
third-level statement, If "e" is given with no subsequent
codes for control of L, the result is L=3, If "eb" is
given, the result is L=4; if '"e3ba'" is given, the result is
L=5,

Thus it is possible to get an appropriate setting of L
without knowing the appropriate absolute value, simply by
specifying a relative value,

Six VIEWSPECs that are not self-evident are displaved as two lines
in the upper left-hand corner of the screen,

NLSUG -- KEYSET AND VIEWSPECS 6/13/69

The top line shows "L" and "T," which appear either as numbers
or as the word "all," "L" determines how many levels of
statements will be displayed and "T'" determines how many lines
of each statement will be displayed,

The second line shows four VIEWSPECs: g or h for the
branch-only parameter on or off; i or j for content-analyzer on
or off; k or 1 for trail feature on or off; and u or v for
pointers displayed or not displayed.

NLS COMMANDS

View-Control Commands

Commands Affecting Display Start

Jump Commands

(jo) Jump to Origin

Syntax: j o VIEWSPEC CA

Semantics: The display start is positioned to the first
Statement,

(ji) Jump to Item

Syntax: j (i/null) [s] VIEWSPEC CA
Semantics: The display start is positioned to the selected

statement, Note that the i in the command specification may
be onitted.

(ju) Jump to Up

Syntax: j u [s] VIEWSPEC CA

Semantics: The display start is positioned to the source
statement of the selected statement,

(jd) Jump to Down

Syntax: j d [s] VIEWSPEC CA

Semantics: The display start is positioned to the first
substatement of the selected statement,

(js) Jump to Successor

Syntax: j s [s] VIEWSPEC CA

Semantics: The display start is positioned to the successor
of the selected statement,

(jp) Jump to P redecessor

Syntax: j p [s] VIEWSPEC CA

Semantics: The display start is positioned to the
predecessor of the selected statement.

(jh) Jump to Head

NLSUG -~ VIEW CONTROL COMMANDS 6/12/69

Syntax: j h [s] VIEWSPEC CA

Semantics: The display start is positioned to the first
statement in the plex where the selected statement is found.

(jt) Jump to Tail

Syntax: j t [s] VIEWSPEC CA

Semantics: The display start is positioned to the last
statement in the plex where the selected statement is found,

(je) Jump to E nd

This command expects a third letter. In each case, the

command is similar to one of the other Jump commands, except
that it considers a branch instead of a statement, The last
statement of the branch is placed at the top of the display.

(jei) Jump to FEnd of Item

Syntax: j e i [s] VIEWSPEC CA

Semantics: The selected statement determines a branch,
and the last statement in that branch is placed at the
top of the display.

(jen) Jump to End of Name

Syntax: j e n ([w]/SPACE LIT CA) VIEWSPEC CA

Semantics: The selected name determines a statement; the
statement determines a branch, and the last statement in
that branch is placed at the top of the display.

(ies) Jump to End of S uccessor

Syntax: j e s [s] VIEWSPEC CA

Semantics: The successor of the selected statement
determines a branch, and the last statement in that
branch is placed at the top of the display.

(jep) Jump to End of Predecessor

Syntax: j e p [s] VIEWSPEC CA

NLSUG -- VIEW CONTROL COMMANDS 6/12/69

Semantics: The predecessor of the selected statement
determines a branch, and the last statement in that
branch is placed at the top of the display.

(jeu) Jump to End of lp

Syntax: j e u [s] VIEWSPEC CA

Semantics: The source of the selected statement
determines a branch, and the last statement in that
branch is placed at the top of the display.

(jed) Jump to End of Down

Syntax: j e d [s] VIEWSPEC CA

Semantics: The first substatement of the selected
statement determines a branch, and the last statement in
that branch is placed at the top of the display.

(jeh) Jump to End of Head

Syntax: j e h [s] VIEWSPEC CA

Semantics: The head of the plex containing the selected
statement determines a branch, and the last statement in
that branch is placed at the top of the display.

(jet) Jump to End of Tail

Syntax: j e t [s] VIEWSPEC CA

Semantics: The tail of the pléx containing the selected
statement determines a branch, and the last statement in
that branch is placed at the top of the display.

(jeo) Jump to End of Origin

Syntax: j e o VIEWSPEC CA

Semantics: The last statement in the file is placed at
the top of the display.

(jev) Jump to End of Vector lLabel

Syntax: j e v ([v]/SPACE LIT CA) VIEWSPEC CA

NLSUG -- VIEW CONTROL COMMANDS 6/12/69

Semantics: This is identical to jen (Jump to End of Name)
except that a vector label is selected instead of a word
in text. The selected label or the LIT is used as a name
and the end of the branch determined by the named
statement is placed at the top of the display.

(jb) Jump to Back

Syntax: j b CA VIEWSPEC CA

Semantics: The display start is positioned to the statement
immediately preceding the current display start.

(jn) Jump to Name

Syntax: j n ([w]/SPACE LIT CA) VIEWSPEC CA

Semantics: A statement name is specified by either a
word-selection or a literal entry from the keyboard or
keyset, When the command is executed, the statement with
the specified name is placed at the top of the display.

If the specified name does not exist, the command is aborted
with the message '"no such name." If more than one statement
with the specified name exists, the command is aborted with

the message "duplicate name."

(jv) Jump to Vector Label

Syntax: j v ([v]/SPACE LIT CA) VIEWSPEC CA

Semantics: A statement name is specified by either a
vector-label selection or a literal entry from the keyboard
or keyset, When the command is executed, the statement with
the specified name is placed at the top of the display,

If the specified name does not exist, the command is aborted
with the message "no such name," If more than one statement
with the specified name exists, the command is aborted with
the message "duplicate name,"

(j1) Jump to Link

NOTE: For important background information, see document
LINKS AND RETURNS.

There are two cases of this command, depending on whether
the link refers to a location in the current file or in
another file (which must be a scratch file).

NLSUG -- VIEW CONTROL COMMANDS 6/12/69

Syntax (within file): j 1 [1] VIEWSPEC CA

Semantics: The statement defined by the link is placed at
the top of the display, and the VIEWSPECs given in the link
are placed in effect, unless they are changed by manual
input during the command., The new view is entered in the
next location in the intrafile ring.

Syntax (out of file): i 1 [1] CA CA

Semantics: The statement defined by the link (in the file
defined by the 1ink) is placed at the top of the display,
and the VIEWSPECs given in the link are placed in effect;
they cannot be changed by manual input during the command,
The new view is entered in the next location in the
interfile stack.

(jr) Jump to Return

NOTE: For important background information, see document
LINKS AND RETURNS.

Syntax: j r CA

Semantics: This command causes a return to the previous
view; no change is made in the intrafile ring.

(ja) Jump to Ahead

NOTE: For important background information, see document
LINKS AND RETURNS,

Syntax: j a CA

Semantics: This command (which can only be used meaningfully
after jr has been used at least once) causes a move
"forward" along the ring; no change is made in the ring
itself,

(if) Jump to File

Expects a third letter to specify jfl, jfr, jfa, jfw, or
jfe.

NOTE: For important background information, see document
LINKS AND RETURNS.

(jf1) Jump to File Link

NLSUG -- VIEW CONTROL COMMANDS 6/12/69

Syntax: (intrafile 1link) j £ 1 [1] VIEWSPEC CA
Syntax: (interfile link) j £ 1 [1] CA CA

Semantics: The operation of this command is the same as
Jump to Link.

(jfr) Jump to File Return

Syntax: j £ r (CA/character) CA

Semantics: This command causes a move backward along the
interfile stack, to the file previously viewed., No new
entry is made in the stack, ‘

When the characters j f r have been typed, the system
will display the name of the file to be jumped to, If
any character is typed instead of the CA, the system will
go back one more step on the stack and display another
filename,

(jfa) Jump to File Ahead

Syntax: j £ a (CA/character) CA

Semantics: This command (which cannot be used
meaningfully unless jfr has been used at least once)
causes a move forward along the stack. No new entry is
made in the stack.

When the characters j f a have been typed, the system
will display the name of the file to be jumped to, If
any character is typed instead of the CA, the system will
go forward one more step on the stack and display another
filename,

(ifw) Jump to File Working Copy

Syntax: j f w CA

Semantics: The WORKING COPY file is opened and
displayed. The view will be the same as the last view of
the WORKING COPY file. No new entry is made in the
interfile stack.

(jfc) Jump to File Current

Syntax: j f ¢ CA

NLSUG -- VIEW CONTROL COMMANDS 6/12/69

Semantics: The "current" file is the one currently
indicated by the pointer in the interfile stack. Usually
the pointer indicates the file being displayed and this
command is meaningless, However, when the working copy
file is being displayed, this command is the means to

return to the file previously displayed. No new entry is
made in the stack,

Commands A ffecting Display List

(ec) Execute Content Analyzer

For a discussion of the content analyzer, see the document on
the analyzer. This command is also used for the trail feature:
see "trails'" entry in document ODDS AND ENDS,

Syntax: e ¢ [p] CA

Semantics: P is a pattern which specifies a content requirement
for statements to be displayed. The pattern is compiled to
produce a content-analyzer program which will cause only the
statements meeting the requirement to appear on the display.

NOTE: This command does not put the content analyzer into
action; it merely causes a pattern to be compiled., If the
pattern has been incorrectly specified, the message '"'syntax
error' will appear; otherwise, the message '"successful
compilation" will appear.

To put the content analyzer into effect, use the VIEWSPEC '"i'';
to turn it off use the VIEWSPEC "j'". See document on Keyset
and VIEWSPECs.

Freeze Commands

(fs) Freeze Statement

Syntax: f s [s] VIEWSPEC CA

Semantics: The selected statement is frozen, with the
specified view. It will appear at the top of the screen
whenever frozen statements are being shown.

(fr) Release Statement

Syntax: f r [s] CA

NLSUG -- VIEW CONTROL COMMANDS 6/12/69

Semantics: The selected statement is unfrozen. The
selection may he in the frozen area of the display or in the
normal viewing area.

(fa) Release All

Syntax: f a CA
Semantics: All frozen statements are unfrozen,

Other View Control Commands

(ev) Execute Viewchange

NOTE: The syntax and semantics are given in a separate section,
because of their complexity.

(q) View Set Commands

Syntax: q (a/ eee /2/A/ <oo /L) CA

Semantics: The command makes the VIEWSPECs accessible for change,
just as they are during a Jump command, for example.

Set Commands

Editing Commands YD
Lt e

‘1‘“
(; NN Iy ‘5 -

(sc) Set Character

Syntax:

s ¢ (¢/1/i/x/v/n/f/s/u/w) CA [c] CA

Semantics: The selected character becomes upper-case,
lower-case, etc, according to the following codes:

C ==

L --

U --

W --

capital

lower-case

italic

roman

boldface

no boldface
flickering

solid (nonflickering)
underline

no underline

(sw) Set Word

Syntax:

Semantics: The selected word becomes upper-case, lower-case,

s w (¢/1/i/x/b/n/£/s/u/w) CA [w] CA

etc. according to the codes given in sc,

(sv) Set Visible

Syntax:

Semantics: The selected visible becomes upper-case, lower-case,

s v (¢/1/i/x/b/n/£/s/u/w) CA [v] CA

etc, according to the codes given in sc,

(si) Set Invisible

Syntax:

s i (e¢/1/i/x/b/n/f/s/u/w) CA [i] CA

Semantics: The selected invisible becomes upper-case,
lower-case, etc., according to the codes given in sc,

NLSUG -~ EDITING COMMANDS 6/12/69

(ss) Set Statement

Syntax: s s (c¢/1/i/x/b/n/f/s/u/w) CA [s] CA

Semantics: The selected statement becomes upper-case,
lower-case, etc. according to the codes given in sc.

(st) Set Text

Syntax: s t (¢/1/i/x/b/n/f/s/u/w) CA [t]1l [t]l2 CA

Semantics: The selected text becomes upper-case, lower-case,
etc, according to the codes given in sc,

Delete Commands

(de) Delete Character

Syntax: d ¢ [c] CA

Semantics: The selected character is deleted,

(dw) Delete Word

Syntax: d w [w] CA

Semantics: The selected word is deleted.

(dv) Delete Visible

Syntax: d v [v] CA

Semantics: The selected visible string is deleted.

(di) Delete Invisible

Syntax: d i [i] CA

Semantics: The selected invisible string is deleted,

(dt) Delete Text

Syntax: d t [c]l [c]2 CA

Semantics: The selected text string is deleted from cl to c2.
(ds) Delete Statement

Syntax: d s [s] CA

10

NLSUG -- EDITING COMMANDS 6/12/69

Semantics: The selected statement is deleted. If it has any
substatements, the deletion is illegal; however, the statement
and its substructure may be deleted with Delete Branch.

(db) Delete Branch

Syntax: d b [s] CA

Semantics: The selected branch (defined by Statement s) is
deleted,

(dp) Delete Plex

Syntax: d p [s] CA

Semantics: The selected plex (defined by Statement s) is
deleted.

(dg) Delete Group

Syntax: d g [s]1 [s]2 CA

Semantics: The selected group (defined by Statements sl and s2)
is deleted.

(dd) Delete Drawing

Syntax: d d [s]1 CA

Semantics: The drawing associated with the selected statement
is deleted,

Insert Commands

{ic) I nsert Character

Syntax: i ¢ [c] LIT CA

Semantics: LIT is inserted immediately after the selected
character,

(iw) Insert Word

Syntax: i w [w] LIT CA

Semantics: LIT is inserted after the selected word, with a
SPACE between,

(iv) Insert Visible

11

NLSUG -~ EDITING COMMANDS 6/12/69

Syntax: i v [v] LIT CA

Semantics: LIT is inserted after the selected visible, with a
SPACE between,

(it) Insert Text

Syntax: i t [c] LIT CA

Semantics: LIT is inserted after the selected character. The
action is identical to (ic).

(ii) Insert I nvisible

Syntax: i i [I] LIT CA

Semantics: LIT is inserted immediately after the selected
invisible string.

(is) Insert Statement

Syntax: i s [s] LEVADJ SPACE LIT CA

Semantics: LIT becomes the text of a new statement (or set of
statements ---see ''centerdot' entry in document ODDS AND ENDS),
following the selected statement at a level determined by the
LEVADJ,

NOTE: The new statement does not necessarily follow the
selected statement directly. See "LEVADJ" entry in document
ODDS AND ENDS,

(ib) Insert Branch

Syntax: i b [s] LEVADJ SPACE LIT CA

Semantics: The action of this command is identical to that of
Insert Statement,

(ip) Insert Plex

Syntax: i p [s] LEVADJ SPACE LIT CA

Semantics: The action of this command is identical to that of
Insert Statement,

(ig) Insert Group

Syntax: i g [s] LEVADJ SPACE LIT CA

12

NLSUG -- EDITING COMMANDS 6/12/69

Semantics: The action of this command is identical to that of
Insert Statement,

(iq) Insert QED Branch

Syntax: i q [s] (Y/(not Y)/CA) FILENAME CA
Semantics: Note that no LEVADJ is possible.

In response to the feedback message CONVERT CASE, a Y or CA
means YES; any other character means NO,

If YES, all characters will be read as lower-case except
those immediately preceded by a backslash: these will be
upper-case and the backslashes will disappear.

If NO, all letters will be read by NLS as upper-case
letters; backslashes will be taken literally,

The text of the OED file becomes a branch following the
selected branch, at the same level. Normally, if the OED
file was not created from NLS with the odq command, there
will be some garbage in the new branch,

Replace Commands

(rc) Replace Character

Syntax: r ¢ [c] LIT CA
Semantics: The selected character is replaced by LIT,

(rw) Replace VWord

Syntax: r w [w] LIT CA

Semantics: The selected word is replaced by LIT.

(rv) Replace Visible

Syntax: r v [v] LIT CA
Semantics: The selected visible string is replaced by LIT,

(rt) Replace Text

Syntax: r t [c]1 [c]2 LIT CA

Semantics: The selected text is replaced by LIT,

13

NLSUG -- EDITING COMMANDS 6/12/69

(ri) Replace Invisible

Syntax: r i [i] LIT CA
Semantics: The selected invisible string is replaced by LIT,

(rs) Replace Statement

Syntax: r s [s] LIT CA

Semantics: The text of the selected statement is replaced by
LIT (see '"centerdot" entry in document CDDS AND ENDS).

(rb) Replace Branch

Syntax: r b [s] LIT CA

Semantics: The branch defined by the selected statement is
replaced by LIT (see '"centerdot' entry in document ODDS AND
ENDS) .

(rp) Replace Plex

Syntax: r p [s] LIT CA

Semantics: The plex defined by the selected statement is
replaced by LIT (see '"centerdot" entry in document ODDS AND
ENDS).

(rg) Replace Group

Syntax: r g [s]l [s]2 LIT CA

Semantics: The group defined by the selected statements is
;§B§§ced by LIT (see '"centerdot" entry in document ODDS AND

Move Commands

(mc) Move Character

Syntax: m ¢ [c]1 [c]2 CA

Semantics: Character c2 is moved so that it appears immediately
after Character cl,

(mw) Move Word

Syntax: m w [w]l [w]2 CA

14

NLSUG -~ EDITING COMMANDS 6/12/69

Semantics: Word w2 is moved so that it appears immediately
after Word wl, with spaces and punctuation as they should be.

(mv) Move Visible

Syntax: m v [v]l [v]2 CA

Semantics: Visible v2 is moved so that it appears immediately
after Visible v1, with spaces as they should be,

(mt) Move Text

Syntax: m t [c]l [c]2 [c]3 CA

Semantics: Characters c¢2 and ¢3 are the first and last
characters of a text string; the string is moved so that it
immediately follows cl.

(mi) Move Invisible

Syntax: m i [i]1 [i]2 CA
Semantics: The string i2 is moved to follow il.

(ms) Move Statement

Syntax: m s [s]1 [s]2 LEVADJ CA

Semantics: Statement s2 is moved so as to follow Statement sl,
at a level determined by the LEVADJ., If Statement s2 has any
substatements, the move is illegal; however, s2 and all of its
substructure can be moved together with Move Branch.

NOTE: Statement s2 does not necessarily follow Statement sl
directly. See "LEVADJ" entry in document ODDS AND ENDS.

(mb) Move Branch

Syntax: mb [s]1 [s]2 LEVADJ CA

Semantics: The branch headed by Statement s2 is moved so as to -
follow the branch headed by Statement sl, at a level determined
by the LEVADJ,

See note under Move Statement,

(mp) Move Plex

Syntax: m p [s]l [s]2 LEVADJ CA

15

NLSUG -~ EDITING COMMANDS 6/12/69

Semantics: The plex defined by Statement s2 is moved so as to
follow Statement sl, at a level determined by the LEVADJ,

See note under Move Statement.

(mg) Move Group

Syntax: m g [s]1 [s]2 ([s]3 LEVADJ CA
Semantics: The group of branches defined by Statements s2 and
s3 is moved so as to follow Statement sl, at a level determined
by the LEVADJ,

See note under Move Statement,

(md) Move Drawing

Syntax: m d [s]1 [s]2 CA
Semantics: The drawing associated with s2 is moved to sl.

Copy Commands

(cc) Copy Character

Syntax: c ¢ [¢]l [¢]2 CA

Semantics: Character c2 is copied immediately after Character
cl,

(cw) Copy Word

Syntax: ¢ w [w]l [w]2 CA

Semantics: Word w2 is copied immediately after Word wl.

(cv) Copy Visible

Syntax: c¢ v [v]1l [v]2 CA
Semantics: Visible v2 is copied immediately after Visible vl.

(ci) Copy Invisible

Syntax: c¢ i [i]1l [i]2 CA

Semantics: Invisible v2 is copied immediately after Invisible
vl,

16

NLSUG -~ EDITING COMMANDS 6/12/69

(ct) Copy Text

Syntax: ¢ t [c]1 [c]2 [c]3 CA

Semantics: Text from Character c2 to Character c¢3 is copied
immediately after Character cl,

(cs) Copy S tatement

Syntax: ¢ s [s]1 [s]2 LEVADJ CA

Semantics: Statement s2 is copied after Statement sl, at a
level determined by the LEVADJ,

NOTE: Statement s2 does not necessarily follow Statement sl
directly, See "LEVADJ" entry in document ODDS AND ENDS,

(cb) Copy Branch

Syntax: ¢ b [s]1 [s]2 LEVADJ CA

Semantics: The branch determined by Statement s2 is copied
after Statement sl, at a level determined by the LEVADJ,

See note under Copy Statement,

(cp) Copy Plex

Syntax: ¢ p [s]1 [s]2 LEVADJ CA

Semantics: The plex determined by Statement s2 is copied after
Statement sl, at a level determined by the LEVADJ,

See note under Copy Statement,

(cg) Copy Group

Syntax: ¢ g [s]1 [s]2 [s]3 LEVADJ CA

Semantics: The group determined by Statements s2 and s3 is
copied after Statement sl, at a level determined by the LEVADJ,

See note under Copy Statement,

(cd) Copy Drawing

Syntax: ¢ d [s]1 [s]2 CA

Semantics: The drawing associated with s2 is copied to sl,

17

NLSUG -~ EDITING COMMANDS 6/12/69

Break and Join Commands

(bs) Break Statement

Syntax: b s [v] LEVADJ CA

Semantics: The statement is broken after the selected visible,
The LEVADJ adjusts the level of the new statement made up of
the last part of the original statement. This new statement
follows the original statement,

NOTE: The second statement does not necessarily follow the
first statement directly. See "LEVADJ" entry in document ODDS

AND ENDS. T
(bj) Join Statement ﬂ e \ R

W
AN

Syntax: b j [s]1 [s]2 cA

Semantics: The text of s2 is appended to sl, and s2 is deleted.
If s2 has a sublist, the sublist is moved to follow sl,

18

1/0 Commands

Output Cormmands

(o) Output Checkpoint

Syntax: o CA

Semantics: The current file is written out on the "CHECKPOINT"
file, which is automatically created if necessary.

(of) Output File

Syntax: o f ([filename]/null) CA CA

Semantics: The filename must be must be that of a scratch file;
if it is an existing file, it must be sequentials; The current
file is written out on the specified file.

The system will offer the name of the last file the current
file has been written on from NLS. If this is the desired

filename, the user does not need to type anything except o f
CA CA.

(od) Output Device

Expects a third letter to specify the "device."
The Output Device commands do not necessarily output the entire
current file. Output begins with the display start and is

subject to any VIEWSPECs that work at the statement-structure
level,

The options are as follows:

(odq) Output OED File

Syntax: o d q (LIT/[filename]) CA

Semantics: The LIT or filename specifies a file., Material
from the current file is output through Pass 4 in QED

format. Note that lower-case letters will come through as
garbage, and that directives will be executed.

Pass 4 is automatically initialized with the following
directives: PSW=0, IND=0, RTJ=0, AND HSW=o,

The origin should not be on the display when OD0 is
executed.

(odp) Output Printer File

NLSUG -- I/0 COMMANDS 6/12/69

Syntax: o d p (LIT/[filename]) CA

Semantics: The LIT or filename specifies a file, Material
from the current file is output through Pass 4 in printer
format,

This printer file may then be output to the printer itself
by using the program PASS4 KLUDGE PRINT from a Teletype.

(odd) Output Dura File

Syntax: o d d (LIT/[filename])

Semantics: The filename ''8-level" causes material from the
current file to be output on punched paper tape.

(odf) Output Film File

Syntax: o d £ (LIT/[filename])

Semantics: The LIT or filename specifies a file, Material
from the current file is output through Pass 4 in correct
format for CRT-to-film processing.

(om) Output MOL

Syntax: o m 2$2(Y/CA OR NOT Y/CA) LIT/[filename] CA

Semantics: MOL source code from the displayed file is output to
the MOL compiler, which in turn writes object (assembly) code
on a designated file,

Output begins with the display start and is subject to any
VIEWSPECs that work at the statement-structure level,

Two optional choices are offered with this command,

When the M is typed, the word ''reentrant' appears in the
command Feedback Line, If reentrant code is desired, the
word is accepted with a CA or a Y (for "yes"). Any other
character causes the word "reentrant" to be rejected and
disappear.

Next the word "temps" appears, referring to generation of
temporary storage., If temporary storage is to be generated,
the word is accepted with Y or CA; otherwise it is rejected
with any other character.

20

NLSUG -- I/0 COMMANDS 6/12/69

Finally a file name is requested and entered either as a
literal or by a bug selection,

(os) Output SPL

Syntax: o s LIT/[filename] CA

Semantics: SPL source code from the displayed file is output to
the SPL compiler, which in turn writes object (assembly) code
on the designated file,

Output begins with the display start and is subject to any
VIEWSPECs that work at the statement-structure level.

(ot) Output Meta

Syntax: o t LIT/[filename] CA

Semantics: Tree Meta source code from the displayed file is
output to the Tree Meta compiler, which in turn writes object
(assembly) code on the designated file.

Output begins with the display start and is subject to any
VIEWSPECs that work at the statement-structure level.

Load Commands

(1) Load Che ckpoint

Syntax: 1 CA VIEWSPEC CA

Semantics: The CHECKPOINT file is copied to the WORKING COPY
file and displayed, beginning at the first statement.

No change is made to the interfile stack.

Please see document LINKS AND RETURNS.
L_lf) Load File

Syntax: 1 f [filename] CA VIEWSPEC CA

Semantics: The file specified by the filename is opened and
displayed, beginning at the first statement.

A new entry is made in the interfile stack, which is used by

the Jump to File Return, Jump to File Ahead, and Jump to File
Current commands. For details, see document LINKS AND RETURNS.

21

Vector Commands

(v) Vector P ackage

Syntax: v [s] CA

Semantics: The specified statement is placed at the top of the
screen and the rest of the screen is cleared. The commands in the
vector package may then be used to create or modify a picture
attached to the statement, See document on Vector Package.

22

Keyword Commands

The keyword commands are described in the document on the Keyword
Information--Retrieval System,

23

Miscellaneous Commands

Alarm Commands

g_pc) Alarm Clock Set

Syntax: a ¢ NUM1 CA NUM2 CA NUM3 CA

Semantics: NUM1, NUM2, and NUM3 are the hour, minute, and
second to which the alarm clock is set,

(at) Alarm Timer Set

Same as (ac) but relative to present time,

Pointer Commands

(pf) Pointer Fix

Syntax: p f [c¢] 1$3(CHAR) CA

Semantics: The pointer name (up to 3 characters) is attached to
the specified character,

Please see entry on pointers in document ONDDS AND ENDS,

(pl) Pointer List Show

Syntax: p 1

Semantics: As soon as the command is specified, the display is
replaced by a list of all the pointers that have been defined.

To return to the display, enter a CA,

(pr) Pointer Release

Expects a third letter to specify an entity. The options are as
follows:

L_pra) Pointer Release All

Syntax: p r a CA

Semantics: All pointers are deleted throughout the file.

&_prs) Pointer Release S tatement

Syntax: p r s [s] CA

Semantics: All pointers in the selected statement are
deleted,

24

NLSUG -- MISCELLANEOUS COMMANDS 6/12/69

(prw) Pointer Release Word

Syntax: p r w [w] CA
Semantics: All pointers in the selected word are deleted.

(prt) Pointer Release Text

Syntax: p r t [c]l [c]2 CA
Semantics: All pointers in the selected text are deleted.

(eo) Execute O0P S

Syntax: e o CA

Semantics: This command is for experimental use., It is a way of
deliberately making NLS blow up on you,

Whenever an OOPS occurs (naturally or on command), a system file
is automatically written which contains useful information for
system programmers.

(ef) Execute File Check

Syntax: e f CA

This causes rapid checking of the file (by checksumming) to see if
there are any data or structure errors. An appropriate message is
displayed.

(eg) Execute File Grope

Syntax: e g CA

Semantics: This will clean out certain invisible problems in a

file and produce a display of messages showing what kinds of
errors have been found, File Grope takes much longer to run than

File Check.

IMPORTANT NOTE: File Grope does not always correct all the errors
it finds. Occasionally, it will lose file material in the process
of attempting to correct a structural error. This command should
not be used on a routine basis,

(es) Execute S tatus

Syntax: e s CA

25

NLSUG -- MISCELLANEOUS COMMANDS 6/12/69

Semantics: As soon as the s is typed, the display shows various
items of information about the file. When the CA is hit, the
normal display is restored,

(ed) Execute Declare File Ownership

Syntax: e d CA
Semantics: As soon as the CA is typed, the information in the

file that gives the file owner's name is changed; the new name
will be that under which the user entered NLS,

26

THE NLS CONTENT ANALYZER

1. Introduction

The content analyzer feature of NLS permits the user to specify
(in a special language) a pattern of content. The analyzer is
compiled in real time from the user's specification, and when it
is turned on (by a VIEWSPEC parameter) only statements which meet
the content specification will appear on the display.

The pattern specified may be a simple one -- e.g., it may
specify a string of characters that must appear somewhere in
each statement to be displayed; or it may be complex -- e.g.,
it may specify a string, to be followed within a given number
of words by another specified string, in statements which were
created after a certain date hy a certain author, and not
containing some third specified string.

The language for specifying content patterns is simple and easy
to use for simple cases, but more exacting for complex cases.

2. DPattern-Specification Language

a.

The Process of Searching a Statement

When the content analvzer is turned on, each statement in the
file is searched, character by character, for the content
specified in the pattern. Normally, the search begins with the
first character, but it is possible to cause the search to
proceed backwards.,

The analyzer uses a pointer to keep track of the search. The
pointer always indicates which character is to be examined
next, unless something in the pattern causes the pointer to be
moved first.

At any given moment in the search process, the analyzer is
searching for one of four types of content entity:

A literal string of characters, such as '"abcd" or "13-x" or
"ed Mat'" or "memory."

A string of character-class variables; these are explained
in detail further on., A string of character-class variables
might specify '"three digits, one after another,'" or '"two
letters, followed by any number of spaces, followed by three
to five letters or digits,"

The date associated with the statement. (This is not
normally displayed, but every statement bears the date on
which it was created or most recently modified.)

NLSUG=-~CONTENT ANALYZER 4/8/69

The initials associated with the statement, (This is not
normally displayed, but every statement bears the initials
of the user by whom it was created or most recently
modified,)

All of the more complex analysis is achieved by moving the
pointer according to the logic of the pattern specification,

For example, if the analyzer is to start at a given point
and find either String A or String B, it first looks for
string A; if String A is not found, the pointer is returned
to the starting point, and a search is made for String B,

Basic E lements

Every pattern ends with a semicolon,

Every pattern is made up of one or more of the basic entities
listed above, combined by operators.

I1f the pattern (or some part of it) is to be found anywhere
after the point in the statement where the search begins, it is
enclosed in square brackets; otherwise it must be the first
thing found.

A string of characters specified as content is enclosed in
quotation marks. For convenience, if the string consists of
only one character, it may be preceded by an apostrophe and the
quotation marks omitted.

Ex les

["memory'']}; This pattern will cause display of only
those statements containing the word '"memory' at any
point,

"inside'; This pattern will cause only statements
beginning with the word '"inside'" to be displayed.

['3]); This pattern will cause display of only those
statements containing the character "3" at any point.

Patterns like those shown in the examples above may be strung

together; the significance of this is that one item is to be
found after the one specified ahead of it.

Examples
[""abc''def"]; This pattern specifies that the string abc

NLSUG--CONTENT ANALYZER 4/8/69

immediately followed by the string def must appear
somewhere in each statement to be displayed. The pattern
[""abedef"]; is exactly equivalent,

["*abc"] ["def"]; This pattern specifies that the string

abc is to be found anywhere in the statement, and
anywhere after the 'c'" the string def is to be found.

c. Character-=Cl ass Variables

The character-class variables are as follows:
L means any letter
D means any digit
LD means any letter or digit

PT means any printing character (any character except space,
tab, and carriage return)

SP means a space
TAB means a tab

CR means a carriage return

NP means any nonprinting character (space, tab, or carriage
return)

CH means any character at all,

Exaﬂnles

['.LLL'=D';]; This pattern will cause display of only those
statements containing (anywhere) the following content: a
period immediately followed by three letters, immediately
followed by an equals sign, immediately followed by a digit,
immediately followed by a semicolon,

"abed"SPL D; This will cause display of only those
statements beginning with the following content: the string
abcd immediately followed by a space, immediately followed
by any letter, immediately followed by any digit.

Note that a space is necessary between the L. and the D
because of a possible ambiguity: The pattern '"abcd"SPLD;
would mean '"the string abcd immediately followed by a
space, immediately followed by any letter or digit,"

NLSUG--CONTENT ANALYZER 4/8/69

d.

e.

because LD means any letter or digit.

The Dollar Sign (Arbitrary-Number Construct)

The arbitrary-number construct, in its most general form, is
m$n. The meaning is "any number from m to n of occurrences of
the following entity."

When the analyzer has found n occurrences of the specified
entity, it also looks ahead to see if there is another
occurrence, If there is, the test is considered to have
failed., In other words, the limits m and n are absolute.

Example

The pattern 5$11LD; specifies that each staement to be
displayed must begin with five to eleven letters and/or
digits.

A statement beginning with twelve or more letters
and/or digits would be rejected by this pattern.

The m or the n, or both, may be omitted; their assumed values
in this case are m=0, n=1000, For all practical purposes,
then, the default value of n is "any arbitrary number," since
it is very unlikely that any entity will occur 1000 times
consecutively.

E_famnles

The pattern [7$D1$12L$5NP]; specifies that each statement
to be displayed must contain the following: seven or
more digits immediately followed by one to twelve
letters, immediately followed by zero to five nonprinting
characters,

The pattern 2$"abc"; specifies that each statement to be
displayed must begin with two or more occurrences of the
string abc, one after another.

Grouping by Parentheses

Parentheses may be used as they are 'in algebra to group
elements. The specifications found within the parentheses are
then treated as a single entity for logical purposes.

Example
[3$4(DSPL)1$2NP]; This pattern specifies that each

NLSUG--CONTENT ANALYZER 4/8/69

statement to be displayed must contain the following:
three or four occurrences of the string (digit space
letter), immediately followed by one or two nonprinting
characters,

If the parentheses were not used, the 3$4 construct
would apply only to the D.

The square brackets have the same grouping effect as
parentheses; however, they are not interchangeahle with
parentheses because they also mean that the enclosed pattern
may be found anywhere after the starting point,

f. gnerators

The operators used for combining entities are as follows, in
order of decreasing precedence (see note on precedence, below):

- (minus sign): This indicates negation, Thus -LD means a
character which is not a letter or a digit,

Example: ["abc'-SP]; This pattern specifies that each
statement to be displayed must contain the string abc
immediately followed by some character which is not a
space.

(space): This indicates concatenation. Thus '"abc" "'xyz";
specifies that the string abc must occur and must be
immediately followed by the string xyz,

The space may be omitted unless it is necessary to
prevent ambiguity., Thus '"abc'" 'xyz"; could also be
written "abc'""xyz";

/ (slash): This indicates alternation. Thus SP/TAB means a
character that may be either a space or a tab,

E xample: 1$SP/2§3PT; This pattern specifies that each
statement to be displaved must begin with either one or
more spaces, or two or three printing characters.

NOT: This indicates negation, and is the same as the minus
sign except for lower precedence.

AND: This is logical intersection.

The action of the AND is to return the pointer to the
beginning of the search that has just been completed,

NLSUG-~CONTENT ANALYZER 4/8/69

Example: The pattern ["abc"]AND['"xyz"]; causes each
statement to be searched first (from the beginning)
for the string abc; then, if it is found, the
statement is searched again from the beginning for the
string xyz, Fach statement displayed will contain
both strings, but the order in which they occur will
be irrelevant,

Note that this is different from the pattern
[""abc"]["xy2"]; because if the AND is not used, the
second search is not made from the beginning but
from the point just after the end of the first
search. Each statement displayed will then contain
both strings, but the string xyz must be somewhere
after the string abc. When the AND is used, this
restriction will not apply.

Note also that the pattern ['abc"AND'"xyz"]; is
meaningless: it specifies a string that is both
"abc" and l'xyz'|. R

OR: This is the same as the slash sign except for the lower
precedence,

Note on Precedence of Operators: As used here, 'high
precedence"” means that when the pattern is parsed, the
higher-precedence operators are used first in grouping the
elements of the pattern. Thus a high-precedence operator has
low "binding power,"

Example: Consider the pattern a AND b OR ¢/-d AND NOT e f;
where a, b, c, d, e, and f are pattern elements such as
quoted strings or character-class variables,

This is grouped as follows:

The minus sign has the highest precedence, so that we
have a AND b OR ¢/(=d) AND NOT e f;

Next is concatenation, so we have a AND b OR c/(-d) AND
NOT (e f);

Next is the slash, so we have a AND b OR (c/(-d)) AND NOT
(e £); '

Next the NOT, giving a AND b OR (c¢/(-d)) AND (NOT (e f));

Finally, the AND gives (a AND b) OR ((c/(-d)) AND (NOT (e
;.

NLSUG--CONTENT ANALYZER 4/8/69

e

i.

Dates and Initials

The dates and initials associated with each statement may be
tested with the constructs .SINCE, .BEFORE, INITIALS=, and
JINITIALS#., (The symbol # is used to mean 'mot equal,")

The .INITIALS construct requires the following format:

«INITIALS=ARC where the string ABC is a user's initials
(three initials must be given).

The .SINCE and .BEFORE constructs require the following format:

.SINCE (68/10/12 13:14) where 68 is the year, 10 is the
month, 12 is the day, 13 is the hour, and 14 is the minute,
The time may be eliminated by using 0:0,

Ex les

.BEFORE (67/3/22 15:15) AND ,SINCE (67/1/12 12:00); This
pattern will cause display of only those statements
bearing dates between noon of 12 January 1967 and 3:15 PM
of 22 March 1967,

.SINCE (68/10/10 0:0) AND .INITIALS#DGC; This pattern

will cause display of only those statements bearing dates
later than 10 October 1968 and not bearing the initials
DGC.

Special Control of Search

The position of the search pointer can be stored and set, and
the direction of search can be controlled, in order to achieve
complex effects. These effects also involve the use of the IF
construct (described further on), and the possibilities have
been explored only superficially at present, It should be

possible to create pattern expressions of great complexity
which would resemble sophisticated data-processing or

information-retrieval programs, but at present the techniques
have not been worked out,

The position of the pointer may be stored in any one of nine
buffers, Pl ... P9, This is done by writing 1Pn, where n is
some digit from 1 to 9,

The stored value in the buffer can then be decremented by
writing «Pn, The reason for doing this is that when the
analyzer has found some entity, the pointer is moved to
the next character position; in oxder to store the value

NLSUG-=-CONTENT ANALYZFR 4/8/69

e

of the last character actually searched, then, it is
necessary to write 1Pn<Pn,

The search pointer can then be set to the value in a buffer
by writing Pn,

The search pointer can also be set to the beginning or end
of a statement by writing SF(Pn) for the beginning and
SE(Pn) for the end,

Note that SF and SE are functions which require a buffer
value as argument; buffer values are not reinitialized
after a statement has been scanned but continue to
indicate the same character in the statement they were
originally set to, Thus it is possible for a search to
cover more than one staterment,

The normal direction of scanning may be reversed by writing
a less-than sign ({) and returned to the forward direction
by writing a greater-than sign ().

The left-arrow («) used for decrementing a buffer value
will increment it instead if the current scan direction
is backward, Thus the effect will always be the same --
the buffer value will indicate the character just
scanned,

Examnle

tP1 SE(P1) < $NP -',; This pattern causes
statements to be searched backwards from the end,
Only statements whose last printing character is
not a period will be displayed.

The construct "4P1'" at the beginning of the
pattern causes the current pointer position
(which indicates the beginning of the statement)
to be stored. This is simply for the purpose of
having an argument for the "SE(P1)" construct,
which causes the pointer to be positioned to the
end of the statement., The less-than sign then
causes the scan to proceed backwards; any number
of nonprinting characters will be perm1tted, and
then a character which is not a period is
specified,

The IF Construct

The IF construct has the following format:

NLSUG--CONTENT ANALYZER 4/8/69

(IF relat THEN expl ELSE exp2)

where '"relat' is a relationship between two buffer values and
expl and exp2 are pattern expressions,

The possible relationships are as follows:
.EQ (equals)
.NE (not equal to)
.LT (less than)
.LE (less than or equal to)
.GT (greater than)
.GE (greater than or equallto).

If the specified relationship is true, expl is used for a test;
if it is not true, exp2 is used,

E_}gmgle

tP1 SE(P1) < (['e] tP2«P2 AND ['t] tP3«P3) (IF P2 ,LT P3
THEN SF(P1) > $SP '"The" ELSE SF(P1) > [" if "]1); This
pattern imposes the following condition on statements to
be displayed: If the last "e'' precedes the last ''t",
then the first word in the statement must be '"The',
Otherwise, the statement must contain the word "if",
enclosed by spaces. The proof is left to the reader,

k. The .FMPTY Construct

Whenever the analyzer makes a test, a flag is set true or
false., After a statement has been tested by the complete

pattern, it is displayed if the flag is true and omitted if the
flag is false,

The construct ,EMPTY simply sets the flag true, Conversely,
the construct NOT .EMPTY (or -.,EMPTY) sets the flag false,

This is useful in the IF construct, where one may simply wish
to test the relationship without imposing further tests.

Examnle

Pl SE(P1) < (['e] 1™P2«P2 AND ['t] 1P3«P3) (IF P2 LT P3
THEN NOT .EMPTY ELSE .EMPTY); This pattern is similar to

NLSUG--CONTENT ANALYZER 4/8/69

3.

the previous example, but slightly simpler. The
condition is that if the last "e" in the statement does
not precede the last '"t", the statement will be
displayed; otherwise it will not,

The "4P1" stores the pointer value, which inicates the
beginning of the statement, The "SE(P1)" sets the
pointer to the end of the statement, and the "{"
causes a backward scan. An "e" is found and its
position stored in P2; then a '"'t" is found and its
position stored in P3, The IF construct compares the
values of P2 and P3: if P2 is less than P3 (i.e, if
the '"e'" precedes the '"'t" in the statement), the "NOT
EMPTY" takes effect and the flag is set false, so the
statement will not be displayed; if P2 is not less
than P3, the ".EMPTY" takes effect, the flag is set
true, and the statement is displayed.

Procedure for lUsing Content Analyzer

A pattern may be written as text anywhere in a file. A file may
thus contain any number of patterns; however, only one pattern may
be compiled at a time -- i.,e., when a new pattern is compiled the
code created by the previous one is lost,

To compile a pattern, the command FExecute Content Analyzer is
used, The syntax is

ec [cl1] CA

where [cl] means that a character is selected either with the
mouse or by means of a pointer call, and CA means that a Command
Accept key is struck,

The character selected must be either the first character of
the pattern or a nonprinting character preceding the pattern,
with no printing characters intervening.

Note that the last part of a pattern may thus be used as a
separate pattern, if it is meaningful,

The screen will go momentarily blank with a message. If the
pattern has been compiled, the message is "'successful
compilation"; if the pattern has an error in it which prevents it
from compiling, the message is "svntax error."

Syntax errors are frequently caused by inadvertent omission of

some character such as a quotation mark. Another common cause
for a syntax error or a compiled pattern that does not work as

10

NLSUG~--CONTENT ANALYZER 4/8/69

expected is an error in the way that parts of the pattern are
grouped. In the latter case, the problem may often be solved
by insertion of parentheses.

When the pattern has been compiled, it will not go into effect
until the view-control parameter "i" is placed in effect. When
this has been done, the system will display only statements which
fit the pattern.

Testing of statements begins with the statement currently
designated as the display start; other statements are then tested
in the order in which they would appear 'normally," i.e. with the
analyzer off. Any other view specifications which are in effect
continue to work; thus if only first- and second-level statements
are being displayed, only first- and second-level statements will
be tested by the analyzer,

Statements are tested until the display screen has been filled,
If no statements are found that fit the pattern, the screen goes
blank with the message "empty" and remains so until the analyzer
is turned off or until changed view-control parameters make it
possible to find a statement that fits the pattern.

Whenever the display is re-created, the testing process is
repeated, Thus if a statement is edited, and the editing changes

it so that it no longer fits the pattern, it will disappear from
the screen, :

11

THE INFORMATION-RETRIEVAL SYSTEM

1.

Introduction

The information-retrieval system permits a user to construct a
specially formatted ''catalog'" file, containing references to other
files and capable of being reordered automatically according to
some chosen set of weighted keywords. When reordered, the file
lists references in order of relevance according to the choice and
weighting of keywords.

Any set of statements in a file may be reordered with this systenm,
assuming that each statement has a '"name" (parenthesized first
word). The specifics given in this appendix refer to the most
basic way of using the system,

The Catalog File

The catalog file has two functioning sections: a list of file
references pointing to other files, and a list of relevant
keywords to be used in retrieving file references.

Other material may also be included in the file without any
effect on the functioning of the retrieval system. For
example, since the keyword section is to be studied directly by
the user, it may be desirable to group the keyword entries into
categories and separate them with headings and subheadings.

a., File-Reference Section

Each file reference is a separate statement beginning with a
serial number in parentheses, followed by a link pointing to
the referenced file. This is followed by a list of keywords
relating to the file, followed by comments on the file.

Only the first item is actually essential to the working of
the system, and it need not actually be a serial number; any
string of letters and/or digits enclosed in parentheses
(i.e., a "statement name" as recognized by NLS) will
suffice, as long as it is unique to the particular
reference,

The use of serial numbers as '"names' in file-reference
statements, and the inclusion of the other items, are
matters of convenience to the user,

b. Kevword Section

Each keyword must be a single word -- i.e,, it must contain no
nonprinting characters. Apart from this, it may be any
arbitrary string of characters. It is convenient to use short
strings of three or four letters standing for longer words or
phrases.

NLSUG--INFORMATION-RETRIEVAL SYSTEM 4/8/69

3.

Each entry in the keyword section is a separate statement with
the following format: first the keyword itself, in parentheses,
serving as the name of the statement; then the word or phrase
for which it stands, plus any comments or other information
that may be desired; and finally a special code string (such as
an asterisk or a dollar sign followed by a space) followed by a
list of serial numbers which are the names of statements in the
file-reference section, Each of these serial numbers must be
enclosed in parentheses,

Examples of a short catalog file and of how it might be reordered
are given at the end of this appendix,

Keyword Commands

This section explains the effects of the keyword commands. Full
details on the syntax and control-dialog procedures may be found
in the NLS User's Guide,

The keyword commands operate upon the keywords themselves, i.e.,
the names of statements in the keyword section of the catalog.
The commands permit the user to select keywords as relevant;
assign integer weights to them; change weights; display a list of
keywords that have been selected, with their weights; and produce
an ordered display of the relevant file references.

Qe

K eyword S elect Command

b.

This command is used to select a given keyword as relevant, It
is automatically assigned a weight of 1.

Keyword Weight Command

Co

When a keyword is selected under this command, its current
weight is displayed (if it has not been previously selected,
its weight is zero). The user may then type in an integer
which becomes the new weight.

Keyword List Command

This command causes display of a list of keywords with nonzero
weights.

NLSUG--INFORMATION-RETRIEVAL SYSTEM 4/8/69

Keyword List Weight Command

Co

This is the same as the "List" command except that the weights
are shown,

K eyword Forget Command 7

When a keyword is selected under this command, its weight is
reset to zero, just as if it had never been selected,

Keyword Forget All Command

This command causes all keyword weights to be reset to zero.

Keyword Execute Cormand

This command executes a program which is the heart of the
system: it produces an ordered display of statements from the
file-reference section of the catalog.

Each entry for a selected keyword is scanned, and the serial
numbers which it contains are noted.

Fach of these serial numbers is the name of a statement in
the file-reference section: each of these statements is
assigned a "score" equal to the weight of the keyword, and
this score is accumulated with further references from other
keywords,

Mhen all of the selected keywords have heen used to score
the file references, the file-reference statements with
nonzero scores are displayed in order of decreasing score.

NLSUG--INFORMATION-RETRIEVAL SYSTEM 4/8/69

4.

Example of Catalog File

S.

a. Keyword S ection

(nls) on-line system * (ul) (u2) (u3) (ud)
(ug) user guides * (ul) (u2) (ud)
(kse) keyset * (ul)

(cdp) control-dialog proc. * (ul)

(anz) content analyzer * (u2)
(fij) file jumping * (u3)
(inf) info. retrieval * (ud)
(vs) view control * (ul) (u3)

b. File-Reference Section

(ul) (nlist,l:xnhj) nls,ug,vs,kse,cdp; nls user guide

(u2) (conan,l:x2bhj) anz,ug,nls; content analyzer user guide
(u3) (rlink,1:x2bhj) fij,vs,nls; link jumping and returns
(u4) (infor,1l:x2bhj) inf,ug,nls; information retrieval system

Example of Reordering

Suppose that the system is used on the catalog shown above, The
user has considerable interest in file jumps, so he gives the
keyword ""fij'" a weight of 5, He is also interested in
control-dialog procedures, so he gives the keyword '"cdp" a weight

of 3. Finally, he is also interested in user guides, so he gives
"ug" a weight of 1,

When the command Keyword Execute is given, the following scoring
is done:

The keyword "fij', with a weight of 5, applies to serial number
u3; therefore the statement whose name is "u3" is given a score
of 5.

NLSUG--INFORMATION-RETRIEVAL SYSTEM 4/8/69

The keyword '"cdp", with a weight of 3, applies to serial number
ul; therefore the statement whose name is "ul" is given a score
of 3,

The keyword "ug'", with a weight of 1, applies to serial numbers
ul, u2, and u4; therefore the statements whose names are 'ul",
"u2", and "u4" are given scores of 1 each, In the case of
"ul", this is added to the previous score of 3.

The final scores are 4 for "ul", 1 for "u2", 5 for '"u3", and 1 for
"u4", They are then displayed as follows:

(u3) (rlink,l:x2bhj) fij,vs,nls; link jumping and returns
(ul) (nlist,l:xnhj) nls,ug,vs,kse,cdp; nls user guide

(u2) (conan,1:x2bhj) anz,ug,nls; content analyzer user guide
(ud4) (infor,1:x2bhj) inf,ug,nls; information retrieval system

The user may then access the referenced files by using the Jump
to Link command with the links given in the references.

LINKS AND RETURNS, 4/4/69

The material in this document may appear at first glance to be
unrelated, but in fact it is a body of information necessary for
proper understanding of the "Jump to Link" command and related
commands,

LINK SYNTAX

A link is a special string of text, embedded anywhere in a file,
which contains information on some sort of cross-reference
clsewhere in the file or reference to another file. This special
string is designed to be intelligible to a human reader and also
machine-readable and machine-executable.

In the case of a reference to another file, the file must exist
as a disc scratch file ("colon file"),

The basic syntax of a link is

(username, filename, statementspec :VIEWSPECs)

Capitalization in the link text is irrelevant, and blanks are
ignored. The components of the 1link have the following meanings.

The "username' is the name under which the disc scratch copy is
held in storage. This element may be omitted; in this case,
the system will assume that the file referenced is stored under
the same name as that given by the current file's author when
he entered NLS (i.e. the "file owner" name stored as part of
the file by NLS).

The "filename" is the name of the file referred to, Although
this name must refer to a "colon file" on the disc, the colon
is not included here as part of the filename, If the filename
is omitted, the system assumes that the link refers to a
cross-reference somewhere in the current file.

Note that the filename must always be irmediately followed
by a comma.

The "statementspec" is either a statement name or a statement
nurmber, indicating the exact location within the file. If this
is omitted, the system will assume that the origin statement
(first statement) of the file is intended.

The "VIEWSPECs" are a string of characters controlling the
display parameters to be used in displaying the referenced
material. The codes are exactly the same as would be used for

NLSUG --Links and Returns, 4/4/69

entering VIEWSPECs manually, If the VIEWSPECs are omitted, the
current display parameters are used,

Note that the VIEWSPECs must always be preceded by a colon,

Examples: Suppose that in a file belonging to user Smith and
named PLAN, we find the following links.

(Jones, specifications,performance :ebg)

This refers to a file named "Specifications' and stored
under the username Jones. Specifically, it refers to a
statement named "performance" in that file, The

VIEWSPECs "ebg" are to be applied in viewing this
reference.

(specifications,performance:ebg)

This differs from the previous link only in the omission
of a username, Therefore it refers to a different file,
also named "Specifications' but stored under Smith's
name. The reference is again to a statement named
"performance" and the same VIEWSPECs apply.

(costs,2b)

This refers to Statement 2b of Smith's file named

"Costs". No VIEWSPECs are given, so whatever parameters

are in effect when the link is executed will remain in
effect.

(staffing:ebg)
Here no filename is given, so the link refers to a

statement named ''staffing" in the current file (Smith's
"Plan'"), Again the VIEWSPECs "ebg' are to be applied.

RETURN .JUMPS

General
L e

The commands "Jump to Return'" and "Jump to File Return' permit
the user to return automatically from any jump to a previous

view. Thus links may be freely used without the danger of
losing one's place.

Proper understanding of the interfile returns requires an

NLSUG --Links and Returns, 4/4/69

understanding of the WORKING COPY file; this is discussed in
the last section of this document.

The Intrafile Return Ring

All jumps made within a file (except jumps made with "Jump to
Return'" and "Jump to Ahead') are recorded in an ordered list
called the Intrafile Return Ring. The ring may have up to five
entries, each of which records a display start position and a
set of display parameters -- i.e. the information needed for
complete reconstruction of a view, assuming that no editing
takes place.

The list is a ring in the sense that its ends are joined; i.e.
the first entry is also the list successor of the last entry.

A pointer indicates the 'current' entry, i.e. the entry
containing information for the current view. Each new jump
(except '"Return" and '"Ahead") causes a new entrvy to be made
ahead of the current entry, and the pointer is moved to the new
entry,

The cormand "Jump to Return" causes the pointer to be moved
back one entry, and the display is recreated from the new
"current'" entry. No changes are made in the entries
themselves.,

The command '"Jump to Ahead'" causes the pointer to be moved
forward one entry, and the display is recreated from the new
"current'" entry. No changes are made in the entries
themselves,

It will be seen that because of the ring structure of the list,
repeated use of "Jump to Return" or "Jump to Ahead" will
eventually bring the user back to the starting point.

It should also be remebered that each new entry in the ring
always goes just ahead of the '"current'" entry, and that an old
entry may be overwritten in the process.

ELPe Interfile Return Stack

Each change to a new file that is made with "Jump to Link,"
"Jump to File Link," or "Load File" is recorded on an ordered
list called the "interfile return stack." This list is similar
to the intrafile return ring, but differs in two important
respects:

The length of the list is not fixed, nor is it known to the
user. The number of entries is a function of the total

NLSUG --Links and Returns, 4/4/69

amount of information in the entries. Typically, the stack
will have room for three or four entries, and this is
sufficient for many purposes.

The list is not a ring; the first entry has no list
predecessor and the last has no list successor,

The list is handled as a pushdown stack, with some added
complexity because of the pointer. As in the ring, each new
entry always goes ahead of the current pointer position and the
pointer is moved, If the current position is not the last
entry, then a new entry will overwrite an old one; if the
current position is the last entry and there is room for
another entry, then the creation of a new entry does not
destroy any old entries; but if the current position is the
last entry and the list is full, then the stack is pushed down
to make room for the new entry and the first entry on the stack
is lost.

It will be seen that this is essentially equivalent to what
happens on the ring when it is filled, with the important
difference that the user cannot know when the stack is full
because its length is not fixed,

The "Jump to File Return' and " Jump to File Ahead" Commands

These commands are exactly analogous to the corresponding
intrafile jump commands., "Jump to File Return' moves the
pointer back one entry and creates a new display from the
information in the new "current" entry, and "Jump to File
Ahead" does the reverse., If '"Return'" is attempted from the
first entry in the list or '"Ahead" from the last entry, the
message "ILLEGAL ENTITY" is displayed and the command is
aborted.

These commands make no changes in the stack entries,

The "Jump to File Working Copy'" and "Jump to File Current"
Commands

NOTE: The WORKING COPY file is discussed in the next
section,

Creation of a WORKING COPY file does not create an entry in
the stack; therefore the WORKING COPY file cannot be
accessed by the '"Return" or '"Ahead" commands. Instead, the
command "Jump to File Working Copy" is provided. This
command causes the WORKING COPY file to be displayed but
does not change the stack or move the pointer,

NLSUG --Links and Returns, 4/4/69

Thus there is a situation where the pointer does not
indicate the file currently displayed,

When the WORKING COPY file is being displayed, the "Jump to
File Return'" and "Jump to File Ahead" commands retain their
normal meanings in the strict sense: they cause the pointer
to be moved one entry backward or forward, and the file
indicated by the new pointer position to be displayed.

However, it makes a difference whether the WORKING COPY has
just been created by the system or whether it has been
previously created, jumped away from, and then jumped back
to.

In the first case, the two commands will do what is
"intuitively" expected., "Jump to File Return" returns to
the file previously displayed, and "Jump to File Ahead"
does the reverse.

In the second case, however, "Jump to File Return" will
not cause a return to the file previously viewed hut to
the one before that,

Thus these commands lose their normal "intuitive"
meanings,

The confusion arises for two reasons:

(1) The user forgets that he is looking at the WORKING
COPY

(2) The pointer in the stack does not point to what is
currently being displayed., This is
"counterintuitive',

The first of these is overcome by familiarity with the

system; the second is overcome by use of the command
"Jump to File Current', This command simply causes

display of the file indicated by the pointer, i.e. the
file from which the WORKING COPY was jumped to,

TIE WORKING COPY FILE
An important distinction is made between "ordinary'" and "'special"

files.

Ordinary files have names assigned by the user when he creates

NLSUG --Links and Returns, 4/4/69

them, and are accessed by these names,

Special files (namely the CHECKPOINT and WORKING COPY files)
have names assigned to them by the system when they are
created, and are normally accessed by the user via special
commands ('Load Checkpoint" and "Jump to File Working Copy).
They may also be accessed hy their names, which are codes
depending on the console number; in this case they behave like
normal files,

The WORKING COPY file is used by the system to avoid modifying a
file that is being worked on by the user until the user gives the
"Output File" command. The procedure followed by the system is as
follows.

When the user enters NLS, the WORKING COPY file is
automatically created, opened, and displayed. At this point,
the WORKING COPY file consists only of an origin statement
containing the word "DUMMY",

If the user proceeds to create new material with the "Insert
Statement'" command or other Insert commands, the new material
is added to the WORKING COPY file.

If the user at any time gives a '"Load File" command, the
WORKING COPY file is closed and the specified ordinary file is
opened and displayed,

If the user now begins to modify the displayed material, the
system keeps a record of the modifications in its own
scratch space and alters the display without making any
change in the file itself, FEventually, however, it runs out
of scratch space (almost immediately in the case of a large
file).

When this happens, the system copies the displayed file,
as modified, to the WORKING COPY file. It then closes
the original file, opens the WORKING COPY file, and
displays it.

This process appears to the user as follows: the
display is momentarily blanked, the message "WORKING
COPY CREATED" appears, and then the display is
restored. (As we have seen, the WORKING COPY file
already exists, so this message is slightly
misleading, What has happened is a file-transfer
process rather than a file-creation process.)

If this process does not occur, the original contents of the

NLSUG --links and Returns, 4/4/69

WORKING COPY file are preserved,

In the case just described, the contents would be just
the "dummy'" origin statement, However, in other cases
the working copy might contain a complete modified copy
of some file,

In either case, the user might now load or jump to another
ordinary file. The file that has been displayed (special or
ordinary) is closed, and the newly specified file is opened
and displayed. The procedure repeats.

It is important to remember that whenever the message
'""WORKING COPY CREATED'" appears, any previous contents of
the WORKING COPY file are lost., Therefore, if the user
desires to be sure that the material will be saved he
must output it to an ordinary file -- either the original
file that the WORKING COPY file was created from, or a
new one,

The above describes the situation when an ordinary file is
modified and copied, in modified form, to the WORKING COPY
file. Different rules govern the use of the CHECKPOINT file.

The CHECKPOINT file is normally accessed only with the
command 'Load Checkpoint.'" When this command is executed,
the CHECKPOINT file is immediately copied to the WORKING
COPY file, which is then opened and displayed. No message
is displayed, but any previous contents of the WORKING COPY
file are lost,

This does not apply if the CHECKPOINT file is accessed with
a "Load File" command using the file's system-generated
name,

Finally, there are three brief rules on the "creation" of the
WORKING COPY file:

(1) Any "Output'" command will always force '"creation" of the
WORKING COPY file., This takes place before the final CA of the
"Output File" command, so the user can always force 'creation"
by typing o £ CD. This has no other effect.

(2) The exclusive use of "Jump" commands will never force
creation of the WORKING COPY file.

Note that to use this rule one nust use no other commands
from the point where the file is first loaded or jumped to.
Use of any other command may cause the WORKING COPY to be

NLSUG --Links and Returns, 4/4/69

"created" on a subsequent "Jump' command,

(3) Use of an "Output" command to write out the displayed
WORKING COPY file does not cause the WORKING COPY to be closed
and the output file to be displayed; this is only accomplished
by a "Load" or "Jump to File'" command.

THE VIEWCHANGE SYSTEM

Discussion: This cormmand has an extensive package of subcormands for
chaneing various paraneters applying to the display of various
entities on the screen. (The syntax description is given further
on.)

These entities are the bug (its ammed cursor, its active cursor,
and the mark it leaves), the command feedback line, the date/time
register, the echo register, the nane repgister, the VIEWSPEC
feedback area, the working text area, and the tab stops.

The €irst level of subcommands includes specification of these
entities nlus the subcormands ''save" and "restore."

ngave" is used to store all of the current parameters in a buffer
with a number from 1 to 8, and "restore" takes one of these
buffers and puts the parameters stored in it into effect.

The second level of subcommands includes the following:

nCharacter," which applies only to the bug entities and is used to
specifv the character to be used for plotting each of them.

mAbbreviated," which applies only to the conmand feedback line and
causes it to show only the first letter of each word that it would
normally contain.
A special set applying only to the text area:

"Columns' (mumber of characters in a full line of text)

"Indenting" (number of spaces to indent for each level)

"Lines" (number of lines in text area -- currentlyv limited to
20)

"Rows" (same as '"lines')
"Wertical increment" (spacing hetween lines)

"parameter set," which applies to all entities except tab stops.
This subsubcommand has a number of subsubsubcommands.

Svntax: The syntax is given below in hierarchical form, with the
input letters at the beginning of each statement. ''Parameter Set' is
given in a separate branch following the hierarchy.

Execute Viewchange: e v (b/c/d/e/n/r/s/t/V)

Bug: b (d/a/m)

NLSUG -- VIEWCHANGE 4/8/69

Disarmed Cursor: d (c/p)

Character: c (any character) CA

Parameter Set: p (see below)

Armed Cursor: a (c/p)

Character: c (anyv character) CA

Parameter Set: n (see below)

Mark: m (c/p)
Character: ¢ (anv character) CA

Parameter Set: p (see helow)

Cormmand Feedback Line: ¢ (p/a)

Parameter Set: p (see helow)

Abbreviated: a CA

Semantics: Onlv the first letter of each word in the command

Feedhack is displayed.

Date/Time Register: d (p)

Parameter Set: p (see bhelow)

Fcho Register: e (p)

Parameter Set: p (see bhelow)

MName Register: n (D)

Parameter Set: p (see below)

Restore: r (digit, 1-8) CA

Semantics: Viewchange conditions previously saved under the
digit typed are placed in effect,

Save: s (digit, 1-8) CA
Semantics: The current Viewchange conditions are saved under

the digit tvped and may be placed in effect later with
"Restore."

[X8]

NLSUG -~ VIEWCHANGE 4/8/69

Tabs: (tab character) 1$(number CA) CA
Semantics: Fach number typed (followed by a CA) sets the
position of the next tab stop on the display, relative to the

previous one (the first one is relative to the margin). An
additional CA terminates the command,

Text Area: t (c/i/1/p/x/V)
Columns: ¢ (mumber) CA

Semantics: In effect, this sets the number of character
A AtA . .

positions from the left-hand margin to the right-hand
margin. The left-hand margin is fixed.

Indenting: i (number) CA

Semantics: The number typed sets the number of spaces to
indent for each level in the statement structure.

Lines: 1 (number) CA

Semantics: This sets the number of lines available for the
text area, Jt is limited to 20,

Paraneter Set: p (see bhelow)

Rows: r (number) CA

Semantics: This sets the number of lines available for the
text area. It is limited to 20,

Vertical Increment: v (mumber) CA

Semantics: This sets the distance between lines in the text
area,

VIEWSPEC Area: v (D)

Parameter Set: p (see below)

Svntax Under '"Parameter Set"

Paramcter Set: p (h/d/f/h/i/p/s)

Boldface On/Off: b S(NOT CA) CA

Semantics: Any character except CA changes "on" to "off" or
vice versa.

NLSUG -- VIEWCHANGE 4/8/69

Display On/0ff: d $(NOT CA) CA

Semantics: Any character except CA changes 'on" to "off" or
BAZALLLA) ! :
vice versa,

Flicker On/0ff: £ S(NOT CA) CA

Semantics: Any character except CA changes "on" to "off" or
et e —————————— s
vice versa,

Horizontal I ncrement: h (number) CA

Semantics: This sets the horizontal distance between

character .

Italics On/0ff: i $(NOT CA) CA

Semantics: Any character except CA changes '"on" to "off" or
—_——
vice versa.

Position: p (bug selection of point on screen) CA

Semantics: This sets the position of the first character of
the entity, unless the entity is ''text area." In this case,
the horizontal component is ignored and the vertical
prosition of the first line is set.

Size: s (digit 0-3) CA

Semantics: This sets the character size for the entity: 0 is
smallest, 1 is normal, and 3 is largest,

THE NLS VECTOR PACKAGE

The vector package allows the user to create simple line drawings,
with labels, as a part of his file. See the command descriptions for
how to enter the vector package in association with a particular
statement.

Drawings may be output via the printer or via film; on output to
other devices they disappear.

The following cormands are valid within the vector package:

Insert Commands

(iv) Insert Vector

Syntax: i v 2§ (bug selection of point) b/Ch

Semantics: The bug selections determine the endpoints of
vectors.

Each selection after the first produces a new vector.
Thus four selections produce three vectors, with vector 1

meeting vector 2 at the position of the second selection,
and vector 2 meeting vector 3 at the third selection.

To "1ift vour pencil" and break the continuity of the lines
type a '"d" or a CD.

(i1) Insert Label

Syntax: i 1 SPACE LIT CA (bug selection of point)

Semantics: After typing the label, hit a CA to attach the
label to the bug. The bug selection fixes the label in its
current position on the screen (rounded off to the nearest
position that can be output on the printer).

Move Commands

(mv) Move Vector

Syntax: m v (bug selection of vector) $(left mouse button)
(bug selection of point)

Semantics: When the vector is selected, its ends are marked
0 and X. The end marked X will move to the point selected
and the end marked O will remain fixed.

Hitting the left-hand button on the mouse will cause the
0 and X to be interchanged.

NLSUG -- VECTOR PACKAGE 6/20/69

The bug is then moved to the desired point and a CA hit to
select the point. The "X" end of the vector will move to
this point,

(m1) Move Label

Syntax: n 1 [1] CA (bug selection of point)

Semantics: When the first CA is hit, the label [1] is
attached to the bug and moves with it, The bug selection
fixes the label in the new position,

{md) Move Drawing

Syntax: m d 2$2(bug selection of point)

Semantics: The two selected points define a translation
vector, and the entire drawing is moved by this vector
quantity,

Delete Commands

(dv) Delete Vector

Syntax: d v (bug selection of vector) CA

Semantics: The selected vector is marked with an O and an X;
when the CA is hit, it is deleted.

(d1) Delete label

Syntax: d 1 [1] CA
Semantics: The selected label is deleted.

(dd) Delete Drawing

o

Syntax: d d CA
Semantics: The entire drawing is deleted. The cormand is
used for starting over from scratch without leaving the

Vecor Package,

(t) Translate Vector

Svyntax: t (bug selection of vector) $(left mouse hutton) (bug
selection of point)

Senmantics: The syntax of this command is identical to Move

NLSUG -~ VECTOR PACKAGE 6/20/69

Vector in terms of actions by the user to specify which vector
and which end,

The end marked X moves to the specified new position and the
end marked O moves in such a way as to preserve the length and
direction of the vector,

{vv) Vertical

Syntax: v (bug selection of vector) $(left mouse button) CA

Semantics: When the CA is hit, the end marked X is moved
horizontally so that the vector is vertical.

(h) Horizontal

Syntax: h (bug selection of vector) $(left mouse button) CA

Semantics: When the CA is hit, the end marked X is moved
vertically so that the vector is horizontal.

(g) Grid
Syntax: g CA
Semantics: The grid is either on or off; after typing "g" to
get "grid" in the command feedback line, a CA causes the prid
to change state,

The grid provides the user a means to draw ''pretty nictures."

A rectangular array of dots is displayed in the drawing area
for use as a visual guide.

All positions are rounded off to points that can be output
on the printer,

Snacing

(sf) §_pacing 0f¢

Syntax: s f CA

Semantics: This will set a flag that goes along with the
picture telling the display creation routines not to space
the statements to leave room for this picture, A picture
with spacing off will be displayed, but it will appear
superimposed on any following text.

NLSUG -- VECTOR PACKAGE 6/20/69

(sn) Spacing On

Syntax: s n CA

Semantics: This is the complementary command to spacing off.
Since the flag is set for spacing on as the default option,
this command is necessary only to change the flag back.

(a) Abort
Syntax: a CA

Semantics: Everything that has been done in the current
instance of the vector package is thrown away, the comnand
"Vector Package" is aborted, and it is as if the command had
not been given,

(f) Finished

Syntax: f CA

Semantics: This command returns control from the vector package
to NLS proper, storing the picture as part of the file,

ODDS AND ENDS

The Centerdot -

The centerdot character mav be used in any input of a statement,
branch, plex, or group to end a statement and start a new
statement. LEVADJ is permitted for the new statement. The
sequence is as follows:

LIT CENTERDOT LEVADJ LIT ...
In other words, hitting a centerdot during input of a statement is
exactly the same as hitting CA and then making a bug selection of

the resulting new statement.

Use of Pointers

Pointers make it possible to select entities that are not on the
display. The entity must have a pointer fixed on it with the
"Pointer Fix" command for this to be done. To select the entity,
hold down the right-hand button on the mouse while entering the
name of the pointer from the keyboard or keyset, and then release
the button. This is exactly equivalent to making a direct bug
selection of the character that has the pointer on it,

The Branch-Only Feature

When the branch-only feature is turned on with the VIEWSPEC g,
only one branch at a time is displaved. In some cases, this gives
a less confusing view of the text, It also affects the amount of
material output under the Output Device command; if branch-only is
on, output ceases as soon as the branch defined by the statement
at the top of the screen has been output.

The Tree-Display Feature

By using the VIEWSPEC capital G, it is possible to see the file as
a tree structure instead of text., The tree structure shows the
relationships of statements in the file.

All structural commands may be used with the tree display by
pointing to nodes in the tree as one would point to a character in
a statement to select it.

To return to the text displayv, use the VIEWSPEC capital H.

The Trail Feature

The trail feature is used to set up statements in such a way that
onlv a particular set of statements will be displayed, and in a
particular order.

NLSUG -~ ODDS AND ENDS 6/13/69

To understand this feature, it is necessary to know roughly what
the content analvzer is about; see the document on the content
analvzer.

The trail feature works as follows: some string of characters is
chosen as a '"trail marker" for a particular set of statements. A
content-analyzer pattern is then set up to recognize occurrences
of this string.

The trail marker is used to mark '"'turning points'" from the
normal sequence of statements. Each time the marker appears in
a statement, it is followed by a statement name in parentheses.
This combination of marker and name is used by the
display-creation routines as a signpost to the next statement
to be displayed. Between signposts, statements are displayed
in normal sequence -- subject to any other VIEWSPECs that may
be in effect.

Note that normally the content analyzer is not used in its
normal mode when using the trail feature, If this were done,
only the "turning points' in the trail would be displayed.

LEVADJ (level Adjust)

LEVADJ means that the user is given an opportunity to control the
structural level assigned to a statement, branch, plex, or group
when it is is inserted, moved, copied, or created bv the Break
Statement command.

In the case of the entities branch, plex, and group, the LEVADJ
apnlies explicitly to the first statement in the entity; other

statements in the entity retain their structural relationships

to the first statement.

The LEVADJ process works as follows:

Any command which involves LEVADJ begins with a bug selection
of some existing statement which the new, moved, or copied
material will follow. Let us call this the ''where' selection
or "where' statement.

Some commands involve more than one bug selection. In these
cases, as long as more selections are needed, the system
displavs the statement number of the "where' statement,

NLSUGR -~ ODDS AND ENDS 6/13/69

As soon as all necessary bug selections have been made, the
svstem displavs a proposed new statement number. This mumber
is always the logical successor to that of the 'where"
statement, at the same level., Thus if the '"'where' statement is
5a3hb2, the proposed new numer will be 5a3h3,

The user may accept this number by hitting CA (in the case
of Move and Copy commands) or a space followed bv literal
type-in (in the case of Insert commands).

If the user wants a higher-level number, he hits a '"u" (for
"up'); if he wants a lower-level number he hits a '"d" (for
ndo‘mn) .

The displayved number is changed accordingly. This process
may be repeated as often as desired; however, only numbers
that make sense will be produced.

Thus if the displaved number is a first-level number, a
"u" will have no effect; if the displayed number is
already one level lower that that of the ''where"
statement, a "d'" will have no effect,

Whenever the displaved number is the one that the user
wants, he accepts it by hitting CA or a space (depending on
the command).

It must be understood that the "operand'" (the new, moved, or
copied material) will not always go immediately after the "where"
statement,

The operand material will end up at the next ''logical location
implied by the statement number that the user accepts.

If the new number is one level lower than that of the
"'where'" statement, then the first statement of the operand

material becomes the first substatement of the ''where"
statement, Anv substatements that alreadyv exist are

renunbered accordingly,

This is the only case where the operand always goes
immediately after the 'where'" statement,

If the new number is at the same level as that of the
"where'" statement, then the operand goes after the last
statenment of the branch defined by the '"where'" statement.

wi

NLSUG -~ 0ODDS AND ENDS 6/13/69

In this case, the operand immediately follows the "where'
statement only if the 'where' statement has no
substatenents,

If the new number is a level higher than that of the "where"
statement, the operand immediately follows the last
statement in the branch defined by the source statement of
the '"where" statement, and so forth for higher and higher
levels,

These rules can be summed up rigorously as follows, for what it
is worth:

The operand always follows the 'where" statement, but not
always immediately,

Tt always follows immediately if it is a level lower than
the "where" statement,

If the operand is at the same level as the "where"
statement or higher, it will immediately follow the last
statement in the branch defined by the last previous
statement at the same level as the new number,

Bug Selection

There are three kinds of bug selection, all basically the same as
far as the user is concerned. All selections are made by rointing
with the mouse/bug and hitting CA once.

(1) Selection of a text entity within a statement: here the
user points to any character within the text entity (character,
word, visible, etc.,) that he wishes to select.

When the CA is hit, an "o" is superimposed on the character
that was hit,

Selection of the entity "Text" requires two character
selections,

(2) Selection of a structural entity (statement, branch, plex,
or group): here the user points to any character within a
statement that defines the entity.

When the CA is hit, an "o'" is superimposed on the character
that was hit,

Selection of a group requires two statement selections.

NLSUG -- ODDS AND ENDS 6/13/69

(3) Selection in the Vector Package: This breaks down into
three subtypes:

(3a) Selection of a label: this is the same as selection of
an entity within a statement -- the user points to any
character within the label,

When the CA is hit, an "o" is superimposed on the
character that was hit,

(3b) Selection of a point on the screen: here the user
simply points to a geometric location in the plane
represented by the display.,

When the CA is hit, the system immediately takes action;
"o'" is not plotted,

(3c) Selection of a vector: here the user points to a
geometric location near the vector.

When the CA is hit, the system responds by displayving a
"o" at one end of the vector and an "x" at the other.

When bug selections are being made in the course of using a
command, and the command has not vet been executed, a CD will
cause all bug selections to be cancelled.

In certain commands it is undesirable to do this for one of two
reasons -- either because the command involves more than one
selection and the user only wants to cancel the last one, or
because a CD will cancel the whole command,

In some of these commands it is possible to use 'backspace" key
(or the left-hand mouse hutton) as a "soft CD", The effect is

simply to cancel the last bug selection that has been made,
The superimposed "o'" remains on the display but is meaningless.

The "soft CD" works in the following commands:
All Jump cormands
All Move commands
All Set commands
All commands operating on the entity '"text',

Execute Content Analyzer

(2}

DEFINITIONS

branch A specified statement, plus all of its substructure -- i.e.
all of its substatements, plus all of their substatements, etc.

bug The mark on the screen which is moved by the mouse and which is
used for selecting (pointing to) entities on the display,

When the bug is "active," i.e. when a selection can be made, it
appears as an up-arrow; when it is inactive it appears as a plus
sign.

character Any letter, digit, punctuation mark, space, tab, or
Redbicded A S » 26T ¢
carriage return; an indivisible entity

chord A combination of kevs on the kevset (see keyset).

For a table showing the meanings of the chords, see document on
kevset and VIEWSPECs,

end The last statement in any hranch; specified by specifying the
branch.

file A complete tree structure of statements with a single root (the
origin statement),

filename The name of a file, It appears as the first word in the
origin statement of an existing file, and must be supplied by the
user in creating a new file,

gap character Any space, tab, or carriage return

GCHAR Abbreviation for gap character,

group A subset of a plex, consisting of all branches from one
specified branch to another, inclusive.

head The first statement in a sublist,

The head is specified by pointing to any statement in the sublist.

invisible Any consecutive string of gap characters, bounded by (but
not including) printing characters or the end of a statement: see
printing character, gap character, statement

Specified by pointing to any character in the string, If a single
printing character lying between two invisibles is pointed to,
both invisibles (and the printing character) are selected,

keyset The device at the left-hand side of the console. When a
combination of keys (a chord) is depressed on the keyvset, the effect
is the same as striking a kev on the kevboard.

NLSUG -~ DEFINITIONS 6/17/69

For an explanation of the keyset, see document on keyset and
VIEWSPECs,

keyword A content indicator for reference retrieval (see document on
keyword information-retrieval system).

label A string of text placed in a picture by means of a command in
the vector package. See document on vector package.

LEVADJ The specification of level when a statement, branch, plex, or
group is newly created or moved. See document ODDS AND ENDS,

level The "rank" of a statement (see statement) in the hierarchy of
the file (see file).

The level is equal to the number of fields of letters or digits in
the statement number; thus Statement 3 is a first-level statement,
Statement 4al0g3 is a fifth-level statement, etc. Level is of

great importance in understanding the hierarchical structure of an
NLS file.

mouse The device at the right-hand side of the keyboard. When it is
rolled around on the tabletop, it causes the bug to move
correspondingly, For an explanation of the three buttons on top of
the mouse, see "Introductory Notes' document,

name If the first word of a statement is enclosed in parentheses, it
is the name of the statement.

The command Jump to Name can then be used to place the statement
at the top of the display, This is done bv entering the name from
the keyboard or keyset, or by finding an occurrence of the name as
text on the display and pointing to it with the bug.

origin The first statement in a file; it contains information about
the file, plus any other text the user inserts. It has a level of 0,
and hence no statement number,

pattern A string of special-language text in a statement which nay be
compiled via the command Execute Content Analyzer. VWhen compiled, it
nroduces a program that is used by the content-analyzer feature (see
document on content analvzer) or by the trail feature (see "trails"
entry in document ODDS AND ENDS),

PCHAR Abbreviation for printing character.

plex Another name for a substructure, used in command specifications.

NLSUG ~- DEFINITIONS 6/17/69

A plex is specified by pointing to any one of its highest-level
statements.,

pointer A string of up to three characters which is attached to some
character in the text with the Pointer Fix command.

predecessor The statement preceding a specified statement in a
sublist,

printing character Any letter, digit, or punctuation mark,

source The statement of which a specified statement is a

substatement.

statement The basic structural unit of a file of text in NLS,
Formally, it is a string of text and/or pictures which is bounded at
the beginning by the end of the previous statement or the beginning
of the file, and bounded at the end by the beginning of another
statement or the end of the file.

Statements are arranged in a tree structure or hierarchy and are
assigned "statement numbers" which indicate their positions in the
structure. FEach statement has a number, made up of alternating
fields of digits and letters; the number of fields indicates the
"level'" of the statement (see level).

A statement is specified by pointing to any character in the
string,

sublist The set of all substatements of a specified statement (not
including the substaterents of the substatements),

substatenent A statement "X" is called a substatenent of another
statenent "Y' if it is deeper in the structure than "y, if it
follows "Y," and if there is no intervening higher-order statement,
"Y' is called the source of "X.," The statement mumber of "X" will be

the same as that of "Y" except that it will have one more field at
the end. The value of this field gives its ordinal position in a

"sublist" of the substatements of "Y,"

A substatenent is specified by pointing to the source statenent,

substructure The set of all substatements of a specified statement,
plus all their substatements, etc. until no more are found. The set
of all branches defined by statements in the sublist of a given
statement,

successor The statement following a specified statement in a sublist.
———

(O

NLSUG -~ DEFINITIONS 6/17/69

tail The last statement in a sublist,
The tail is specified by pointing to any statement in the sublist.

text Any string of characters within a statement, bounded by (and
1nc1ud1ng) two specified characters: see character, statement

trail A set of statements in a file, which can be displayed
sequentially by using the trail feature, For a discussion of this,
see '"'trails" entry in document ODDS AND ENDS,

vector A line in a picture. See document on vector package.
visible Any consecutive string of printing characters, bounded by

(but not including) gap characters or the end of a statement: see
printing character, gap character, statement

Specified by pointing to any character in the string. If a sinple
aap character between two visibles is pointed to, then both
visibles (and the gap character) are specified.

word Any consecutive string of letters and/or digits, bounded by (but
not 1nc1ud1ng) any other types of characters or the end of a
statement: see statement

Specified by pointing to any character in the string. If a single
character is pointed to which is not a letter or digit and lies
between two words, then hoth words (and the single character) are
specified,

I1

, HOW TO USE THE PRINTER FACILITY
Preliminary Docunent

11/28/69
INTRODUCTION TO PRINT

PRINT is a subsystem which operates from any work station. It is
used for outputting files through the liine printer,

PRINT uses a queue vo Keep track of the flles tnhat users want
printed., Each tine a user designates 3 file, PRINT places it at
the end of the queue; each time it finishes printing a file, it
removes that file from the queue and takes tne next file, wnicn as
now at the beginning of the queue,

Thus the user simply tells PRINT the name of the file, and then
leaves PRINT and continues with otner work ratner than waitineg for
the file to be printed. He may even log out, as long as ne sets
the printer file permanent, various commands allow the user to
interrogate PRINT to see where nis file 1is in the queue,

ESSENTIAL PROCEDURE FOR ROUTINE PRINTING

Use the NLS/TODAS command Output Device Printer File to create a
preformatted printer file,

Return to the Exec and call the PRINT subsystenm (type PRI then a
periocd). The PRINT subsystem tiypes a plus sign in the margin,
showing that it is ready for a commiand.

The following shows what should appear oOn your w«o gtation as
you operate PRINT. The succeeding statements explain the
various commanase.

@PRINT.

+PREFORMATTLD FILE sFILENAME. 3 25
+FINISHED,

8

Type a P to get the command PREFOkMATTED FILE, This command
expects a filename, 8o give the nanme of thne printer file you
nave just created, then terminate with a period,
The system responds oy giving two numbers.

The f£irst is your file's position in the Qqueue.

The second 1S a rough measure of the lengtih of the queue

== the number of hundreds of conputer words in all the

files in the gueue up to and including yours.

After typing these numbers, PKINT aZain types a plus sien.

To return to the executive, type an F to get the command
FINISHED. Terminate with a periocad,

You may now CONTINUE NLS.

If you log out of the system before your file is printed, be sure
to set the printer file permanent.,

III SUMMARY OF COMMANDS IN THE PRINT SUBSYSTEMm
Delete File
Syntax: 4 <filenanme) ,

Semantics: The named file 1! removed from the queue, Note tnat
the file itself is not actually deleted,

Finished
Syntaxs £ .

Semantics: PRINT is terminated and user control returns to the
Executive,

lLength of Queue
Syntax: 1
Semantics: PRINT responds with two numeers,

The first is tne number of files on the gqueue, and the
second is the number of hundreds of computer words in all
the files in the queue,

Preformatted File
syntax: p $(<filename> ,) <filename) ,

Semantics: Note that this command allows the user to terminate
filenames with a comma or a period. 1If a comma is used,
another filename may be added, The effect of the command is to
place the names on the queue o pe printed.

This command is used to print files created from NLS or TODAS
with the Output Device Printer command. PRINT places the nameg
files in the queue, behind tne current last item,

PRINT alsc responds with two numbers for each file, Tne
first is the numvoer of files on the queue, and the second 1is
the number of hundreds of computer wWords in all the files in
the queue, up to and including the named file,

QED File .
syntax: q $(<filename> ,) <filenanmed> .

semantics: Note that this command allovs the user to terminate
24lenames with a conma Or & period. If s comms is used,
another filename may be added, The effect of the command is 1o
place the names on the queue L0 be printed.

This command is used to print f£iles created from NLS or TODAS
with the Output Device Printer command. PRINT places the named
¢iles in the queue, behind the current last iten,

PRINT also responds with two numbers for each file. The
girst is the number of files on the queue, ana tne second 1is
the number of hundreds of computer words in all the files 1in
the queue, up to and ineluding the named file.

Status for File
syntaxs: 8 <filenaned
semantics: PRINT responds with two numbers. The first is tne
number of files on the queue, and the second is tne nunmber of

nundreds of computer words in all the files in the queue, up o
and including the named file.

/PS4UG, 01/ 13769 1559:46 FKT

(pséaug) Irtroduction

‘JA PASS 4 User Guide

1B R.E. Hay: F.K. Tonmlin

{Genecral) Gereral

2A “USER GUIDE., SECTION I: INTRODUCTION®

247}, (Abstract) PASS4 is the name of the progran wuhich takes text
in NLS structure and produces formatted output for a varijiety of
ext ernal “cevices "3

2A12 ilrput cis penformed “statement™ at a it ime.

2A1B .Text is formatted “line" at a time for output according
tol estiablished conventionss however, much :0f :this process is
unider wcontrol of “idirectives”™ which enaole the User . to change
vairious parame ters that govern the output process.

2A1C Text is trmarslated and sent to & User—designated oulput
fiile in the char acter codes and with allowances for the
id josy ncrasies of :an external device {such &s Flexowriter, Dura
Maick 10, line printer, Teletype, film, etc.).

2A1D iThre resulting output file may then be transferred to the
deisired outputl me duim (such as paperiape, bardcopys magnetic
taipes filmy etc.).

28 (i abels) The following are file label links {except for

.direcst ive labels/namess See (DirectiveLabelsipd3bg)) (General:pxb)

(Abstxractipug) (Purpose:px3brg) (FormatAlgorithm:px2brg)
‘(Charact erFormatting:px3b4rg) (LineFormattingz px3tg)

{PageFormattiingtipx3bg) (Directives:px2pg) (Syntax:pebg)
{Current-Directives 2px3bg) {Directivelabels:pd3ng) {Noteszptldrg)

(Sample: pug) (Operationiplirg)

2C H#istory
24 - 1€0A
22 3100 CFF Line System (3 pass)
2C3 3100 OFF Line System (4 pass)
2L4 PASS4
2{% 940 Output Prcgranm

20 1Pur pose) Pur pose

2pd Tre output prcgram is designed to take itext. in the on line
file .fcrmat and produce formatted hard copy.

2D2.

Input

2D2A lrput - is from text files iIn the on .line system format,
AH'] character set. Input is done on a statement basisi that
ijs « a statement is locateds and then all of that statement is
sent to the output. The order in which statements are chosen

‘i wusually in the sequential form in which they occur in the

fiile, but can be chosen by other criteria (see the on line

““c haining”).

2D3

- JFormatt ing

2D:34 Text is format ted for outp ut gaccording to the

2B%

convent ionss procedures, etc., that have peen establisheds but
muick of the output process is under the conirol of text
“direatives” which enable the user to change various parameters
and: flags which govern the output process, and thus obtain
di:f ferient kinds of formatting.

“Output

2D 4A -As text ‘is gathered from the input, fornatted and sent to

some output files, it is being translated into the character
coldes and device idiosyncrasies of some external device (such
as @ flexowriters, - dura mach 10« line printer. teletype, film,
etc.)

2E fLxtensions

2F

26

2E1

2&2

2E3B

254

L=

2F4:

282

2F3

2F4

2F5

Page formatt.ing
Pictures and é?aphics
-Teble of contents
:Foct noles

mitatiors
WLine formatt ing
Right justification
Hypheration
Type setting

Two :to one map

2F6 10ne to two (or none) map.

Need fory tard copy

2&4

2852

\Or lires, all files are accessable

:Network

263 Secur ity
244 Cost
2H Paiogram :logic
2HY Input statement
242 | Dutput state ment
2H2A Dutput statement, character at a time

2H2 Al Determine likely number of lines to statement and
. posisibley paginate

2H2 A2 Delete statement numbers fill with spaces

<H2A3 Scan f or t abs and carr iage returnss setting
) indentation and right justification

2H2 A4 Send out proper number of carr iage returns
2H.2B Look for directives and execute then

2H2B! Scan outptt stream for directives see {directives),
i executing, and possibly printing, any directives

2H2C Fomet output

2H2C! Format characters
2H2CIA Tabs
:2H2C1B Underbars
;2H2CIC Overbars
12H2CID Case shifts

2H2C2 Format 1lines
:2H2C2A Indentation
.2H2C2B Dele te leading spaces
iéHZCZ{Z Back scan
12H2C2D Delete trailing spac es
‘2H2C2E Right justif if
2H2C2F Center

2H2C3 Format page

2H2C3A Header

12H2C3B° Page number :
22H2C3C-‘Number of lines per page, etc.
2H2D Output character to output file.
(FormatA lcor ithm) Format Algori thm
3A ‘ﬂSéR'GUIDE. SECTION II: FORMATING ALGORITHMS”

3B Jo take a file of .text as input (with little format structure)
and produce a new : formatted file as output involves a nuaber of
consi der.ations, algorithms, 'conventions., processess and. procedures.
Much ©f ithis has evolved cver the course of times and others are a
conseque nce of data structure, conventions, et c.

‘3C TYhe . curirent implementation uses a sequential input to output
prociess. One stat ement at a time is brought ins then that statement
‘outpwl e 1line st a time. No backup is ever dore on & scale larger
than @ lLiire. Thus all pagination is done in-liney that is., 3 page is
not formatteds then checked, scaned, made to see if all 'is well,
etc.s but is done on the basis of overflowing the current page and
being forcea onto the next page.

3% Tte basic cycle ifor outputting a documerlt in this manner is
tos

3C-1A Input " a statement from t he input file (when no more
‘st.atements remain, the process ends).

3C.1B Output @ statement to the output file. This involves:

3C1Bl Making statement level decisionss sucn as deleting
statement numbiers, number of lines between statemenis,

- looking for tabs and setting right justification parameler,
etc. ’

» 3CIB2 3Sending :all characters through the cirective analysis
. program so : that any directives that occur in the document
y can be recognized and performed.

3C1B3 Sending characters to the formatting program which
coes the character, lines, and page formatting. :

' 31B4 And finally sending ‘the <converted. formattited
. characters to the output file.

30 3The i reart of the output formatting is the program FNIT (ForMat
Text progran). Almost ‘all parameters used by this program are under
‘the rontirol :0f the directives, and thus the actual outpult processing
becomes iavai lable to the user. This part of the ottpul program does
not know &bout staltements. It only knous about p&ges: lines, and
‘characters. The routines which call FMT know that there are
statementse and send the extra carriage returns and statement numbers
to FMT as text.

3f Bhe formatting <considerations, processes. etc. can be grossly
‘broken doun into the problems of formatting characters, lines:, pages,
and siat ements.

3£3 .(Characterformatting) Character Format‘ting

3£ A Tabs: The problem of tabs is two~fold: the manner in
which ithe device tabsy and the tab stops itrhat the user would
lilkke to have. The flex will go to the next tabstop. even if
you ar e one.character in front of a tab position. The on—-line
pr inter does not have such a thing as tabs. Then., : regardless
of: the tab stops on a devices a user sometimes would iike Lo be
abile to specify where he would like to have tabs. and lebt the
procram produce a .sequence of tabs and spaces tLo obtain that
tabbed position.

3£1A1 When tabing causes a line to over flows the line will
. be broken and continued on the next line.

3E1A2 The concept of “right justified ttabs™. where the tab
. causes the word preceeding the tab to go to the tab stop:
. provides a means of aligning columns of numnbers.

3E 1B Urderbars: The underbar is a little tricky. Depending
on the device, an underbar on input can cause a case shift,
uniderbar, back space, and another case shift to be sent to the
dew ice. In addition, this sequence does not count as a
pr-inting character.

3810 Cases In .generals, there are four sitvations (provided
that swe even have itc consider the problem: of upper and liower
case): there are characters whicnh can only be printed 1in upper
calse those which can only be printed in lower case, those
which are in both case {(as a space). anc Lthe alphabetic
characters. T he overbar can be wused to indicate tnat if the
fo 11ow ing char acter is an alphabetic character, then it should
be capitalized. .

3£2 {lLinefFormatting) Line Formatting
3£.2%2 Leading and trailing spaces
3E 2B .Indentation
3E2C Back scan
3E 20 Right justification
3€E 2E Centering

363 :(Pageformattirg) Page Formatting
3E.3A Page number

3538 End of page

3f.3C .Header

(Dicectiives) Directives
4A “4SER GUIDE, SECTIDN I1I: DIRECTIVES®

4B “Dir ective™ is a term applied to text embeded : in a document which
*directs " ithe output processing and formatting bein¢ performed on Lthe
documeant:.

4841 Directives provide a means of changing various paramneters.,
coede conversion tables, etc. that are being wused in the actual
ouiputl formatting process. Since these directives are embeded as
text . in a document, they can be edited and maripulated as Ltext.
and y et be recognized on output as having special meaning.

432 :When cirectives are recognized in the octtput processs ‘the
parameters are charged, or the action is performed at the point in
the output process at which the direct ive occurs. Thus
direcitives need to . be placed at the point. in the text that the
particular parameter :change (or action) is desired. ©On outpult it
is possible to supress the printing of directives so that the
output will be af fecteds but the output will nct include (as text)
the actual directive(s).

483 .There are six different types of directives. These different
types as well as ‘the directives themselves are recogfiized By a
syntax scaan of the output done by a META 11 recognition type of
pProce SSe. The syntax equations used to describe directives ares

&B:32 (Syntax) Syntax:
: 4B3A) directive = S$(*." direct/.empty) 3
4B3A2 direct = .dir (.t0 *=° bl <arbitarty string> "

J.tl =[" .num “1" "=" exp /.t2 "=" exp /.t3 /.th "=7 -
<arbitrary string> '~

/.t5) sp Scond sp Ta H
-~ . 4B343 cond = “IF ° sp exp 3
i 4B3A4 exp = union ;

. 4B3A5 union = iinter sp S("AND * sp union) s

4B3A6 inter = neg sp $(*“0OR " sp inter) 3

i 4B3A1 neg = “NOT “ sp relat / relat s

, 4B3A8 relat = sum sp S(°.LT" ssum /" JLE” ssum /T.EQ” ssum
J".NE" ssum /“.GE" ssum /".GI" ssum) 3

483 A9 ssumn

H

sSp sum 3
i 4B3IA!10 sum = prod $("+" prod /"-" prod) i

. 4B3All prod = prim $("*" prin J“/" prim /"¢ prim) i

S 4B3AIZ2 prim = var / .num /7"(" exp)" 3
s 4B3AI3 wvar = *." Jdir (.t? "I num *1% /.t2) 3
; #B3AlE sp = 5% "

483B 1ln the syntax equations, there are a few constructs that
ar e specific to this META 11 description of 'the directives.

; 4B3B1 ".dir" is used to indicate the attempt to recognize a
- ¢girective: name :in the output. A directive name 1is three
- letiters long, + and must occur in the table of given
: girectives.) :

~d

£433B2 The consitruct @ “.tn* (where n=0:,1+2¢344¢5) represents
8 test that is made to see if the last directive recognized
: by @8 ".dir™ is of “"type n". The six possible types are:

4B3B2A Type 02 This represents a neu cirective which is
ibeing defined by the user. It is possible to give & name
ithat is not already defined, and assign a3 siring to that
name which will be inserted in the outfult each time that
ithis name is later used as a directive. see Lype 3 below.

4B3B2B Type |3 Some directives represent the names of
-various arrays that are used in ‘the oultput process. and
provide the user with a means of setting the values in
ithe arraye : or using an entry in an array 1in an

‘expression. This type of directive :always requires a
subscript.

4B3B2L Type 2: This type represents those directives
mhich stand for some parameter or value in the output
program.: Most directives are of this type.

4B3B2D Type 3 This type of directive is one whicn has
-already been defined by the user in type 0. idhenever the
name of a directive which the user has defined is given.
the string which was assigned to that name is dinserted in
ithe output.

4B3B2E Type 42 This is the directive which is used to
specify -~ the running header (“hed™). :Tkis is a special
case and the only one of this type.

4B3B2F Type St This describes those directives which
require special consideration or action to be taken {such
as restoring the page).

4B 3C It should be noted that the evaluation ¢f the expressions
and boolean operat ors are done on a left to right analysiss. and
that .the only precedence occurs betueen boclean expression,
relat itons, and expression.

4B 30 Normally. most of this analysis and capabilities uwill not
be necded when giving a directive, and it is instructive to

no:te that the following things need to be present £ o constitue
a directives

ﬁ 483D] a period
. 4B3D2 a directive name
. 4B3D3 an equal sign (if setting a balue’
3 4B3D4 an optional conditional part
- 4B3D5 and a terminating ";"
GB3EF iThe "cond” construct provides a means of tesiing various

diirect ives etc. and depending on the .outcomne of this test, to
perform the :indicated directive or not. Note that it is

po ssible to .string a series of conditional tests
to.gether, and the : directive is performed gnly if they all are
triue.

4B 3F ‘Exaemple:z .NSW=2 If .PGN .GE 2 AND NOT ROM=D; is a valid
directiive. 1t. has actually been recognized and executed for
th is cdocument, however as “rom” is zero there has bDeen no
efifect.ive action. If "rom” were non—-zero ther page numbering
would be done as if "nsw™ were two (2).

(CurrentDirect ives) Current Directives
48 (DirectivelInformation) Directive Information

LC1A There are many direc tives that are current ly implemented.
not all of which are of interest to ‘the normcal user.

. 4CI'Al For each directive the initial (or de fault) values

app ecar immediately following the three crtaracter identifier,
y in order:z ~duras TTY, NLS-QED, flex. printers film —— NOTE:
- G=nol/offs l=yes/on.

-

4C1A2 An aster isk has been placed as the 1last character of

the statements describing directives c¢f general User
, interest. If the User is viewing this document on-line then
. the following pattern can bDe executed by the content

analyzer - in order to display oniy these staiements: tPl

: SEGPIY < SNP 'x

4L2 .{Directivelategories) Follouing ar e directive category

lapels: CharacterSet ‘SpecialCharacters Lineformattiing

PageF ormatting StatementFormatting GlobalDirecltives

pirectiveDirect ives ActionDirectives

4{3 {(Directivelabels) Following are directive 1labels/names:
fer fsp ftb fub fov fds fbs fsu fsd fsc :fig cod tsu tal tsp tst
usy dub upr usp osw dov pov sov csw cmd Cas mch nch ind nin min
ins :dls - dts fln rtj rsu msp cen icr psw pln plo mln nin nbl ntp
nsa pigr pgp fnc rom ndh ssw hsu hin hed dsn lsp scr wln pst ter
dpvy i9s skp typ dev dpr igd tma tmb tmc tmd dnm dty dvl dmx hlt

res. rel crl nul

44 (CharacterSet) Directives associaied Wwith the character set:

£C4A Input character codess:

4C4 Al (fcr) = -all 155b -- input code for a carriage return
{i.e.» the searich code used by the statement input algorithm
when looking for a carriage return)

. 4C4 A2 (fsp) = :all Ob —- input code for a space (i.e.s the
. gearch code used by -~ the statement input algorithm when

looking for a space)

. 4C4 A3 {(ftb) = :all 1515 — input code for a tab (i.e.» the
- search code wused by "~ the statement input algorithm when

1oo0.king for a tab)

. 4C4 A4 (fub) = :all 134b —-— input code for an underbar (i.e..

the search code used by the statement inptt algorithm when

- looking f or an .underbar)

4C4A5 (fov) = all 133b —— input code for an overbar (i-e..s
the search code used by the statement: input algeorithm shen
looking for an :overbar)

. 4C4& A6 (fds) = all 15b —— input code for 8 dash (i.e.. the

- search code used by the st at ement . input algorithm when

looking for a dash)

. LC4 A7 (fbs) 2 ¢ 1410¢0D+0be141bs0byel4ib —— input code for a
. back space {i.c.s the search code used by the statement

jnput algorithm when looking for a back spacel. This is
sonetines used in the wunderbar analysis to insert a

. backsocace into the output.

4C:48 ODOutput character codes:

Y

. 4C4B1 (fFsu) 3 10Dy Ob+Obe 1 72b:377be53b —-— output code for
- shi ft to upper case
L4482 (fsd) 3 20D+ 0be Obe 1 74be377bs54b —— output code f or
- shift to lower case
4C4B3 (fsc) ¢ Ob+Ob,0bs+1i3bs0bs0b — ‘output code for stop
coce
D 4C4B4 {(fig) = 201b,0be0Obs20ib,0bs0Ob -— output code for
ignore {used Lto delete next characters see ‘directive

(igs:pug)s only has meaning for dura and f lex)

4C4BS5 (cod) = all "CODE™ —- name of code conversion array.

. By imeans of this type { directive and bthe directive giving
. the <character case {see directive (cas2pug) }e it is
. possible to change the output code for any character in the

input. For example: to change the code for the letter "a”

to an asterisks "“¥", one would -‘produce the following

dir ect ive.z .cod[651=10ie¢ where the "3 is in the &5t h

{binary iI01st) element of the array and the c£ode for an
- a3sterisk is 1D :{binary 12). All <code conversion arrays are
- located in the ARRAY file of the PASS4 program (source
+ codel.

4% (SpecialCharacters) Directives associated with special
character considerations:

¢€L;584 Tab character

. 4CS Al {(tsw) 3 all 1 - indication that taps are to be
searched for in order to execute appropriate directives: see
directives (tal:pug) and (tsp:ipug)

. 4CSA2 (tal) = 2+42+2+1:2.2 =— tab algorithm to be used for
the output of tabular information (iI=flex types 2=dura types
3=one space)

. 4CS5A3 {tsp) 2 1,1,0,04141 —— space fill tabs i.e.» insert

, necessary. space characters in the output :in order to produce
. prope tab spaciing

T 4CSA4 (Lst) = all “TABSTP" —- is an array directive which
y is used to determine where the tab stop settings are. A non
zero entry ‘indicates a tab stop. so setting a “tst® position
to ! will denote a tab stop, and setting a wposition to 0
- will effectively clear a tab stor. This array 1is
, initialized for tab stops every eighth column. There are
- ¢ix wmords to this array (starting with word zerol. The bDit
positions which are on (from left to right within the uword)
derote the tab stops. Therefores, to change one tab stop one
 must determine the decimal . equivalent <¢f an octal nuaber
. recessa~y: to change all. tab stops withiniore word of ihis
array. :

4C 5B Underbars
i 4CS5B1 (usw) = -all | -— indication that underbars are to be

- searched for in order to execute appropriate directives; see
dir ectives (dub:zpwg)., {uprspug), {uspipwgl. and uspipug)

- 4CSB2 (dub) = O¢l+140e1¢0 —- delete underbars (if searching
- for thenm)
i 4CL5B3 (upr) = 1,0,0,120s1 —— treat underpar as printing and

spacing character

. 4C5B4 (usp) = 140,0y1.0,1 —- indication that underbar
s causes output device to space

4C.5C Overbars

; 4C5C1 {osw) = all zero -- indication that overbars are to
be searched for, in order to execute appropriate directivess

10

- gsee directives (dovipugls (pPOoYEpPWI)e and (sovipug)

- 4C5C2 f{dov) = -all zero — delete overbars from . outpul (if

searching for them)

L5033 (pov) ¢t all :zero —- treat overbar as'printiﬂg and

- spacing character

-

4C5C4 f(sov) * all zero -- indication that overbar causes
output device Lo space

450 Lase shifts

’

—

¢ e

. 4L5D1 {csuwd = 140,00 1sl21 =— indication that case shift

analysis is to be performed for cutput

4C5D2 f{(cmd) = all 2 —- case mode for _.alphabet ic characters
(1=forced upper case, 2=normal. 3=fprced lower : case) For
examples cmd=3 will force all alphabetic ictaracters to louer
case unti‘l "cmd” is rTesels

4C5D3 (cas) : -all "KASE" —- directive which gives the case
for: each character {an arrays i.e. type 1, directivel. 1If a
code is changed for a character (via "cod”® directivel,y -its

. case should also be set to the proper case in an analogous
 marner {see (codipug) }

4C5D3A 1=up per cases 2=either cases 3=louer case.
‘4=alpha upper cases 5=alpha louwer case. 6=film lowuwer
cases 7-film upper case, ~8=film greek cases 9=film :null
case

4€h (lineformatt ing) Directives associated :uwith line formatting:

4C 6A WL ine parameters

»
s
b

; 4C6A1 (mch) = all 72 —-- gives maximum number of synbolic

characters to an output line (line length). For output - to
film the default value |is automatically adjusted to raster
uni ts¥

. 4C6A2 {nch) = -all | —— gives current nugber of characters

on itre output liirew

4LL6A3 {ind) = 1,41,0.1ed,1 —— indentation option. If ind=1!
then indentation will be performed#

. 4C6A4 {(nin) = all zero -- number to indent for each

statement level (set at the start of each statement to be

. output to: level—-of-the—statement., minus 'ores times "ins®)¥

4C6A5 (min)

all 48 —- maximum number of spaces to indent.

- Fori examp les if min=10 then statements sotld be indented as

civier by the indentation algorithm up to a maximum of iD=

4C6A€E (ins)

"

all - 3 -- amount to indent for each statement

jevel f{used in calculation of "nin“J)«

4C 6B ;Lin_e formatting

v
Ll

*

4C681 (dls) = -all | -— delete leading spaces - on a line.
The oniy time leading spaces would occur would be when there
are spaces following a -carriage return in the statement
which is being input. 1f one is using leading spaces to

. produce tabulam cutpute then set dls=0%

. 4C6B2 {(dts) = 0+05090:0:1 —— delete trailing spaces {any

. extra spaces that are left in a line are usually put at the

end - beyond the right justification)}

. 4C6B3 (fIln) = all | -— format output lines according to the

algorithm with :directive values as given {either output line
as soonas it is full, or take the pains :to backscan to last

- mord, right justify, etc.)

-

-

4684 (rtj) = 1+ ls0+1lels] — right justification option.
If rtj=1 then text will be right justifed if possiblex

4L6B5 (rsu) = all | -—- right justification indicatos for
current line 1wor input. This 1is the parameter that |is
actually used during the formatting process. it is set by

. the program during the outputting of a statement {according

-

to itte “rtj” directive) depending upon such things as tabs
in a lines the last line of the statement. etc.

{CE6EBE {msp) & all 15 —— maximum number c¢f spaces to put
into line to obtain the right justification. 1If more than
"msp"” spaces are requireds, no attempt will be made to right
justify, and the line xill be left as iss

iCeB871 (cen) = all zero —- center "line®{(s} on the page
(only if right justification off, rtj=0) starting Wwith the
line containing cen=l to, Dbut not including, the 1line
containing cen=0. The User must be careful exactly where

: this directive is placed. “cen” affects the line which 1is
- presently being formatted for output. and noramally the User

does not know a priori which string :of text comprises a
linex .

4C6B8 (icr) = all zero —— put ignore codes in front of
generated carriage returns on output {neaningful only for
cura and flex) :

&L3F (Pageformatt ing) Directives associated with page formaltting:

¢C72 Page paraneters

E LCTAl (psu) = 1.1:0,1elel -—— pagination cption. If psu=1|

then page numberings etc. will be per formed on outputb«

LCTAZ2 (pln) 663 669 66:66¢63:40 —— npumber of lines to a

. page (inc luding header and page number)s

12

4C7A3 {(plo) : ‘all zero —— skip to top of page whenever Lhe

- statement: level is level one {(exceplt for statement number

-

-

f)»

4C7A4 (mIn) 2 56:56+56:56:56+38 —— number of printing lines
to a page (does not include page nunobers but does include
reader ~— must be less than value of pln-pgp-ntp)s

SCTA5S (nln) 3 65,65165+65,62¢39 —— currernt line number on

tthe page being outputs

. 4HCTAH (nbl) ¢ all i —— n-spacing (i.e. nbl=2 for double
- spacingls

P 4CTA7 (ntp) 2 343:4343+0+0 -—— number of :lines doun from top
- of page to begin printings

4C78 Page numbering

+ 4C1Bl {nsw) 3 all | -— page numbering option {nsu=1 will
- provide for: page numbering at the bottom center Df the page,

nsw=2 will provide for odd numbers Lo appear right-justified
8nd even numbers left—-justified at the bottom of the page —-

: for boith roman and arabic numerals)=

-

40782 {(pgn) s all zero -- current number of the page being
cutput®

4CIB3 (PGP) 2 55354545+ 5.1 -- number of linres up from bottiton

: of ithe page for. the page numbers

- 4C1TB4 (fnc) 2 -3,0,043:3+43 ~-—- indicates the case for the
: roman page nunmber (l-upper case, 2=no change, 3=douer case,
. 4=ypfper cases 5= louwer case)s

- 4CTBS {(rom) 2 all zero -— Roman numeral page number option

{roman numerals good only up to S0)«

&C7C End of: page

4C7Cl1 {ndh) = 0s5+050+40:,0 —— number of dashes (code given
by :“fds") at end of page -(usually "used only with teletype
cutput)

4L7C2 {(ssu) = all zero —— indicates a stop code to be
inserted {see directive {(fscipug) } at the end of each page
{for mats - normally only for flex)»

4C 7D Header

-

£CID1 (hsw) = 14140415141 == header option. If hsu=0 Lhen
no header will be output at the top of each page=

4CTD2 (hln) ¢ all | -— number of blank 1lines to follow the
teaiders

i3

. 4C7D3 (hed) = -all zero —— directive used to set :the header.
: For example® .hed="HEADING": will set the progran to output

“HEADING”: at the top of each page (if "hsu”™ is set on)¥

4C8 .(StatementFormatting) Directives associated with 'statement
formatting: '

40’84 Statement numbering

>
»

4C8Al (dsn) = ‘all zero -— indication that statement numbers
are Lo be deleted if setlt ons

4C8A2 (lsp) = all 5 —— number of leading spaces to replace

. the statement number (if dsn=1)~¥

"4C:8B . Statement formatting

4LC8B! {(scr) 2 -all 2 —— number of -carriage returns to
sep erate statements upon output {(scr=0 will close statement

© gaps and merge ‘statements together)=

. 4C8B2 (wln) = -all 2 -- number of lines of a statement

cuaranteed to be output on the next page if = the statement
gverflous the current page (widow lines)

4C8B3 (pst) = all zero —- paginate whenever statement will

- not: fit on currient pager¥

: 48B4 {tcr) 3 all zero —— replace all carriage returns in

the statement by spaces during output (normaldly for input
from QED using ;the PASS4 Subsystenm)

. 4C8B5 I[dpv) 2 ‘1+l+ls1+40,0 —— don’t produce vector or vector

label output (at present only useful for printer and film.
i1f idevice is dura and dpv=o then space will be left for the
vector and vector label information; no verctor will be
printedl!d* -

4L% -(ClobalDirectives) Global directivesz

4C9A General

LC9AL (skp) : all =zero —— skip over text from skp=l! to
skp=0, doing directive recognition, but no outpuiting and no
for matting¥

4CSA2 f(typ) 2 -all | —— do not output itext lines from the

- 1ine which contains typ=0 to the line :which contains typ=1,

tut continue 1doing directive recognition and formatting.
This directive has inadequacies similar to “cen”; it only

. recognizes the directive after a "line” has been formatted

ana is ready for output, and it is difficult for the Usesr to

- determine, - a .prioris, exactly what portion of his output
. comprises a linex

. 4C9A3 (igs) = 1,0,0¢1,0,0 =—- insert ignore codes (see

14

directive - (figipug)) in document before -each 'character

- @dded to jthe output which was not in ‘the irput {page number,

-

teaders right justifications etc.)

LC9A4 (dev) 2 Tele3¢29625 —— gives :idhe device rnumber for

- whilch the current document ‘is being formatted. (dura=7,
. tel etype=1, NLS-QED=3, flexouriter=2«. printer=6, £ilm=5,

480

contrelling teletype (QED format)=4)

{DilrectiveDirectives) Directives about directives:

4 CICA - General:

. 4C10Al {dpr) 2 all | —- directive print (dpr=0 will supress
., output of directives)rs

4C10A2 (igd) ¢ all zero -— ignore direotives fsonm igd=il to
§9d=0s, - but continue to recognize directives for possible
supression of output (see directive {(dprspug) ¥

4£CYO0A3 {dnm) = all “DNAME®" -- array directive {type 1) that
gives the name of the array in the PASSY program which

; contains the directive names

4C10A4 {dbty) = all "DTYPE" —-- array directive {type 1) fihat
cives Lhe : name . of the array in the PASS% program which
contains fthe directive types

4L10A5 d{dvl) = all “DVALUE® -—- array wdirective (type 1)

- that gives the name of the array im the PASS4 program which

contains the directive values

. 4C10A6 {dmx) 2 all "DMAX" -- array directive {type 1) d&dhat

cives the name of the array 'in the PASS4 program which
contains the directive maximum values

4C {0B Temporary directives

+
s

4C10B¥ {(tma) = all zero —-- temporary a (not used by program
-~ for use by user)

4C10B2 (itmb) = all zero —- temporary b {same as for "IMA"

abo.vel

4C10R3 {tmc) = all zero -- temporary c {same as for “TMA "

above)

4C10B4 {tmd) 2 all zero —— temporary d {same as for “TMA®
- aboive)l

LLill

" {AotionDirectives) Directives causing some immediate action

to be taken {note: ithese directives do not have a parameter for
chang:ing a directive value; e.g. NUL3) =

&Cl11A ° General

i5

. 4CH1Al (hlt) = all zero —— {currently does nothing)

4LC14A2 {res) = all zZero -— <causes a3 -"page restore at the
. point the directive occurs¥

-

- 4C11A3 -{rel) = all | —— causes a page restore ai the end of
. the current line of oubtputls

" 4C11A4 fcrl) = all zero —— inserts @ canriage return in the
'y output at:i the point the directive occurse

, 4C11A5 {tab) 2 all zero — inserts a tab character in the
. output at’ the point the directive occurss

: 4C1186 {nul) = all zero —- null directives d.e.s it does
y nothing

4D dNotres) . Helsful notes
4D Input from QED file format wusing ‘the PASS4 Subsysten.

‘%D 1A Uppe~f:louer ccase problenms the character cedes used by
QFED are the codes :for the AHI upper case alpha characters. To
get lower case <characters for a device like the dura., it is
possibile to force ithe alpha characters to wcome oul lower tase
wiitd “cnmd=35" .

‘4D:1B Now to get those characers that you want wupper caseds it
is. mecessary: to insert an ‘overbar in front of each letter to be
‘cawpital ized.. To do this a character, such as the dack slash,
ne.ecs : to be chosen, and the directives “fov=d4b; osw=13"
included in the document before any back 'slash is ‘used for
‘capitalizing (the .code for a back slash is 74b).

4D.1C :There is a convention that any carriage return in the
document will be honored, ‘i.e., for each carriage return in the
do.cuments 8 carriage return will occur on output. This swerks
well for on-line files, but for QED the carriage returns which
are in a dogument ‘usually -~ are not there for formatting because
off QED's line Length. Hith the directive “tcr=1" LUhese
carriage returns in the body of a stat ement will be converted
‘to spaicess thus giving the impression of one long line of free
Field itext. . If explicit carriage returns are still wanted, the
directiive “crl” can be used.

'%D4LC Underbars. To obtain underbarss much :the same process is
nelcessary as withi overbars. First. a character to represent
‘th e underbar. needs to be chosens such as the exc lamation mark
{1b), and the appropriate directives set. These are: “"uswz=1"
{lock : for underbars), - “fub=l" (code : for underbar is db),
“cocl 11=100b* : {dura underbar code is {00b)» and “casfiid=1"
funcer bar is upper case character on dwural.

4D2 Changes from standard seltings:

4D 24 1"hln=3" puts three blank lines beneath header instead of

16

on:e.
4D.2B "pgn=pgn-1" iworks uwell on the first page {header 'p.,age.
parge 0) and keeps the count straight if many files are output
in segquence.
5 {Sample) Saaple
S5A Directives:
- Sal ‘..HLNJ=3_; <MLN=543

547 ..HED="Sample Page”i .RES;

17

- Sample Page

5B ifihis page is an attempt to illustrate some of the parameters that
“can be used -to control the output formatting process in NiLS.

- 5Bt i ines are indented by : the amount "nin” which is sell to
{sitat’ement level iminus oned*™ins™.

5B2 .HSW=0: RESH

18

6

{Dp erat iton) Dperations

6A

6B

~USER GUIDE. SECTION IV: OPERATING SYSTEMs PASSL-SUBSYSTEM®.

The '‘Usen intexrface

681 To provide a means of communicating with:the outpul program,
tihp EPASS4 procedure wmas uritten.. This prodcedure responds to
characters in the “"command recognition” mode -used by the execufiive

time sharing system, and makes checks Lo see that ald is set up

- correctly before initiating the output process.

682 Tre icharacters recognized are:s

6R2A (1) Inputs ~ The letter ~"I". is typed to designate the
input : file.: A legal input file name should be ®mivens - ihen
acknowledged with a3 period. ‘

6B28B (L) Dutputs The output file is specified by typing the
letter “0"s° ‘then giving the output - file names which is
tercinated with a iperiod.

pB2L (D) Devices Besides an input and an output file. a
dewice has : to be indicated, by typing the letter “D*. The
program inputs from the input file and outputs to the output
files translat.ing and formatting for some device. The devices
busilt 1into the program are:s

. £B2C1 Dura Mach 10 (type "D"). wmith the <characters <>1]«t
. but withou! the characters exclamation, degrees and <cent.
. These are: available on an IBM selectric balls, and a few
- simple directives will change the tables accordingly. Also
. there is an lverson ball available.

. 6B2L2 Teletype (type "T"), which is used to punch teletype
: tapes. i

. 6B2L3 Controlling Teletype (type “C")s which is the same
- as ithe teletype devices except that leader is not generated.
. This device: can be used for QED output.

, €B2C4 Flexowriter (type “X“)e which has had keys modified
. and now . has :the characters <>[1+«t but bas forfeited the

. characters pounds cents onls, and on2. ‘Also note that some
. of ithe char acters have been moved tor make this character
; change possible.

© §B2CS5 Priinter -(type “P“), which prepares an output file to
. be used as input to the system "PASS4 KLULGE PRINT” routine
+ for outpul on the line: printer {uppers/ louer w«ase
» capability).

. €B2L6 Film,(type “F")s which prepares an output file to be
- cunped on & magnetic tape file. The magnetic t@&pe may fhen

19

. taken to: ‘the (€DC-3200 computer and used as input- ts &
: rowt ine mhich will have as output 35mm film ands if desired,
i1 Yerox hard copy-.

6B 2D .{B) Begin execution: Typing the 1letter "B” is wused to
signal’ the desire on the part of the User to begin the output
Process. A «<check 1is :made to sSee if -all the necessary
in formation has been supplied, the input :and output files are
opiened., and @ check is made to see if the output and input file
arie ithe same: {(could be fatal). Then the PASS% progranm is cailled
an d :the output- process begins.

6B2E (F) Finished: When the outpul process 1is complete
{except fori «closiing the output filel, control returns to :the
PA SS4 ‘Execut-ive pr ocedure. Yo ‘terminate :the oubtput programs
and return control to the 7SS executives ithe letder UF*" - is
‘tyiped. This causes the output :file to> be <«loseds and the
output program to .be terminated.

6B2F -{(.) It. ‘is possible to enter directives from the EPASS4
procedure. These - will be parsed and executed by the directive
routiness but will. not be printed in tihe output. Thus any dast
mi-nute directives can be entered before: beginning the output
process. Houever. it is important. to note that the device
should be indicated before directives are typeds. as the gdevice
co mmand sets t he directive tabless which will cancel the effect
‘of: any previous directives that have been typed. ‘Alsos il is
meaningless - {and perhaps even fatal) Lo type a directive of
~type 5" ies @ directive which causes soae action. This is a
pr-oblem since any :action taken is meaningless ‘as the output
process has. not : been - started. Used uwiith common Sensea the
ability to enter directives before starting the out put protess
can be very useful.

6B2GC Ary other character than those given above ‘is illesal,
and will evoke a response of <space> <guestion mark> .

682K All commands must be ended with anm acknowledging pesriod.
if. any: other character is typeds the command %ill be aborted.

20

{s
Me 3 . wrts
e - M7
-4 X
&
[RUNNING HEADER (.HED:"RUNNING HEADER ‘y)
2
ke gSUM
4
4 Ff‘otcmcnt 1'
//
\'d
it ?L/\!
Sy
ol e
-
o ('.
. Y.
NI Rl . ¢
L5
. moo it .
) i i . . ‘"
oy - ’ : ’

/PS4NS, ©1/.15/69 0855:11 FKT 3

i belowus

2

PASS%4 has : been updated and changés of user significance are noted

1A

IB

Be

Newu idirectives in PASS4:

iat 1(IGD)Y “igd" is a new directive which is designed to IGnore
Direcit ives between igd=1 and igd=0.

142 (DPV) “dpv" 1is & neuw directive which is designed to not
produlce vectors when outputing a file through PASS4 (Don’t Froduce
Vectors).

1A28 This directive only has meaning for three output devices:
filrm, printer, and cdura.

1A 2B Using “dpv"” .for device “dura" will only result in not
procuc ing space -for veciors as graphics are not nouw produced
for :ithis device.

{A.2C :This directive only has meaning when outputing via NLS
and not when using the PASS4 Subsysten.

1A3 (JAB) “"tab" is &a new immediate action directive which places
a tab (or the equivalent) in the output stream at the pcint it is
inserted.

fhe PASS4 Subsystem has had certain commands changeds

181 “X-f lex” has been substi tuted for "Flex”

I82 "Film" has been substituted for "3200-film”

tB3 “Begin executicn® has been substituted for "6Go do it”

184 _“Finished” has been substituted for "Zap~

sure to review changes described in the last isste of PASS4.

V/PASSGNEWS T, V17272768 (0529218 FKT 5
| Changes .ir FAS:4 output capaoility:
1A fiew ouvtpul capaovility ror vectors end their laseist
1Al By incicating “"F" (for film) »nne may evertiatly produc: 35mn
fiim ortput iic lucing oboth text and vectors (3rd vecror iabe si.
This rrocess i s descrioved in (TOMLIN.GUDUG,GOLUCipxng) - GUbAS

User's Guice.

14z Output to “Printer” will now produce 3 reascaabie facimite o
voectors énd associateac lawnels. Exauple:

tet t ot -
- - 1 -
- 1 T -
1 t -
-.“ - t . .
Vo0t
- v “ .
.L.J~.-

! > ‘ “ura” i o ank i1 < re Lor L =
iﬁgelgﬁttgﬁistgccury'a Wwill lease slank i1ine<s where veciors an
s fcr any ot her outpult device t han thosz2 described &o2ove
vectors ang thelr ‘lapais are ignored.

IB The default value ior tn2 directive “min” has opeen cnanged from
{5 to 48. "min® is tre m@maximum numder of spaces for which indeniing
will De done.

iC JTrereistould no lcnger De any spices added vetweenn Lhe statesen
numnber anc the first character 2f the statement when i'igh
justification is done.

.
1

JUSER! , 69/18/68 1630:27 DGC 5

I’(XDDC) Documentat ion for XDOC system

A Davic Evans, Sept ember 3, 1968

IB .(g)lossary: synopsis files intro receipt checkout procedure
updai e checkout :arnotation example directives C(asseres

2 (Synopisis) =z The XDOC colilection is the AHI library of "external”
documents sy such as reportss articles, wWorking pafgerse books, 2LC. s
generated ty sources outside AHIRC. = Descriptions of material in the
XDOC coillection are now stored as NLS files on the disk. The stangard
NLS commancs should be used to review and study these descriptions. The
opportunity now exists - for wusers to- add ‘their ‘comments and notzs as
substatements under each XDOC description. This will be useful
<informatiton for wusers of documents previously resd and reviewed by
others.

2A A dietailed description of érocedures (etc.) follows.

3 (intﬁn) A simple éfstem for searching and studying descriptions of
documents s<tored in Lthe “AHI XDOC collections &nc ghysicaliy gainring
access 1o the documents in this collection, is now available.

3A Each source document is described in terms . of its XDOC number.
author title of- article '~ (etc.)sy publications and- - date of
publiciation.

3A1, The XDOC number is simply the order in whicr the document was
entiered in the collection.

3B Tdhel ¥DOC Collection is stored in-: order of XDCC numbers in filing
‘cabinets located in rcom J2028.

3814 The .keys for these cabinets are available from Roberta
Carillon.

3C (chreckout) Once t he required XDOC source documents have been found
or studied using KLS (see PROCEDURE)s the documents may be physical ly
‘checked out of tihe XDOC .Library.

3D (relceipt) The library receipt takes the form of &n "0UT" card with
the user's name entered on it, deposited in place of the document
removed from the collection.

4 This : first XDDC system is wvery simples users should adopt the
following grocedures

-5 (procedwe) The user should read a KDF file from those stored under
the name)} FOLLACK (isce username)s display it as an NLS file (see FIL£S),
and use the Content Analyzer, VIEWSPECs, freezing, and other standard
NLS featulres to view and review descriptions of the documents in the
XDOC collection. '

SA In the initial XDOC system there are no neuw comrands specifically

for XD OC.

5B Tthe user simply makes the best use he can:wof the existing NLS

commands. THese should be adequate for elementary retrieval and study
operat igns.

6 (files) Each XDOC file contains descriptions for only 100 XDOC
documentis. ‘

6A XDDCs have been broken into 100-statement files to make it easier
to access them without an excessive drum block allocation.

" 6AY:- ppproximately 50 drum blocks are reguired for each XDOC file.

6B The rames of PCLLACK's KDF files are made up cof &an X followed by a
nunber (the two - leftmost digits of the first XDOC number in the
file)s followed by UP.

6Bl tence the file X32UP contains all XDOC references frox X3200
to :X3299.

6C AT : presents only XDDC numbers greater than X29%900 have been
entered. See (UFDATE) . for procedure for acdinc¢ additional XDOC
references.

1 {UPDATE) From time to time Roberta will . prepare the source
descriptiors of new cocuments received in the XDOC collections producing
a8 teletype paper tape. Usually each tape Wwill .contain between 15 and 30
new XDOL entries.

TA These tapes contain 'simple QED and TODAS - directives 4see
directiives); they may be input to the SDS 940 using the GO 10 Program
G-TODAS, which is stored by Evans or Levine as a KDF file named
G-10D.
743 (directives) -At this stage the directives (apart from the
standard QED control characters) are simply < .for word delete and
$ (‘as the last character in a statement{ for .statemeni delete.

742 The wuse of this program is self-explanatory (but expained
bedi ouwl.

iTR2A Enter the new XDOC paper tape in the reacer.

=7A28 Copffthe file G-TOD from Evans® or Levine®’s disc to the
'RAD. '

17A2C Type the command GO TO /G-TODAS. ' where /G-TODAS is the
name of the RAD equivalent of the disk G-TOD.

iTA2D Response to INPUT is 8 (for 8-LEVEL).

)T£2E Response to OUTPUT is the user—designatec name for the new
‘QED RAD file.

1782F The paper tape will then be read, as a (ED files to -the

ldesignated file.

7B For this simple system. the new XDOC files should contain no more
“than 10C statements. _
781 Hence if the :additional XDOC entries span & 100" values the
ent:ries less than ..99 'should be appended to the latest exisiing
XDOC files and the remainder used as the start of a3 new XDOC file.

"7C (casseres) The responsipbility for -maintaining the NLS XDOC files
will v eside with Dave Casseres.

" 8 (annotiation) ‘All ststements in these original XDOC - files are
: highest—lieve]l statements. The opportunity thus exists for a user of the
XDOC system to record his notes and comments as substatements of the
XDOC descwiptions. iThe following procedure is proposeds
8A Anyiore wishing to make notes or comments asscciated with a Given
XDOC d-escription should insert- a branch immediately following the
descriplion.
841 The first statement in this branch should carry as its mname
the name of :the commentator followed by the number of the coumment
- {le.-g. Evans5)s and should contain the daste the comments are
ent.ered, and a very brief {say one— or two—line) outliine of the
thelme of his icomments.

18AYA (EXAMPLE) :

8AIAl (Evans3) . 9/4/68 Critical review: article not stace of
the art.

1821B This would be the header statement for the third coament
by Evans on this XDOC description.

882 The comments themselves should then follouw -as lower—level
staltements of this branch.

88 +For each cosmentary. the commentator shouvld insert a 1link
cont.ai:ning his name and the comments number { ‘e.g. (Evans3)}) at the
end of:. the XDOC ‘description.

881 (EXAMPLE):=

BBIA (X3345) xxxx «XXXX XXX X Xx X e ecmencsecse XXXX ames-e
ixxxxxXx. (Evarsi!) (Engelpartl) (Evans2) (Rulifscnl) (Fvans3)

9 (usermaime) In the near future the user name POLLACK will be changed to
XDOC. ’

	0-001
	0-002
	0-003
	0-01
	0-02
	0-03
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2a-01
	2a-02
	2a-03
	3-01
	3-02
	3-03
	3a-04
	3a-05
	3a-06
	3a-07
	3a-08
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6a-01
	6a-02
	6a-03
	6a-04
	6a-05
	6b-01
	6b-02
	6b-03
	6b-04
	6b-05
	6b-06
	6b-07
	6b-08
	6c-01
	6c-02
	6c-03
	6c-04
	6d-01
	6d-02
	6d-03
	6d-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7a-01
	7a-02
	7a-03
	7a-04
	7b-01
	7b-02
	7b-03
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	9-01
	9-02
	9-03

