a

o

e
o

L
e

.
.
G

e

.
G

o

e

G

S
S

o
s

-
-

.

L
e

e
e

o

o
e
e

i
-
-

.

L
e

o

e
R
L

G
L

-
o

L
o

i
o

L
L

i
e
e

S

e

.
-

i

-

e

-
-

c
S
o

S

e
v
©)
i
g
)
'

o

e
e
e
e
e
e

L

o
o
-

Lo

10

E

1|

M

15

« Y/ DAV

CL AN

L

-

TER €0

com

DARD

PU

TAN

il

L

e

e CA

&t ST

0. 187
i JOSE, «

o
SAN

777

SN il

} 2ga7

08

e

-

e

o

G

e

e

ey

e
i

Inner Computer - Model 9
Principles of Operations

This manual provides information on the content

and operation of the STANDARD Computer Corpocration
Inner Computer - Model 9 (IC-M9) Data Processing
System. It contains detailed descriptions of com-
puter instructions and input/output channel control.
IC-M9 MINIFLOW programming techniques and emulation
examples are also included. In addition, IC-M9
system architecture and philosophy are provided.

The first section is a general description of the
emulation technique used by STANDARD Computer
Corporation. The second section is a working
description of the system. It includes illustra-
tions to aid the reader in learning the emulation
technique and successfully write basic MINIFLOW
programs. The third section is a comprehensive
description of the system components from the
programmer's standpoint. It describes the complete
set of MINIFLOW instructions and control conditions
and assumes general familiarity with the IC-M9.

This manual, together with the IC-6000 System
Operating Guide for 7090/7094 Emulation, Form

No. S-6001, and the IC-6000 System Operating Guide
for 7040/7044 Emulation, No. S-6002 are to be used
as reference material for the STANDARD Computer
Corporation IC-M9 System.

Form 6003-3

Section

II

III

CONTENTS

Title

Definition of Special Terms and Concept . .
IC-M9 System Architecture and Philosophy
The Inner Computer Concept « o o o« o .

System Components and Architecture .
The MINIFLOW Emulation Process ..

IC-M9 MINIFLOW Programming Examples. .

General System Description
The Wired-in-Sequence. «. .o .o
Special Mode Control Flip-Flops.,

Object Instruction Examples

¢ o o o 00

o s 0 0 o 0

LI A)

* o e e o

Comparison of Emulation and Other Instructions

IC-M9 System Description and Instruction Repertoire .

Scheduler and Program Levels......

Wired-in-Sequence.o vvvuun..
Translators (with comprehensive table) .

Miscellaneous Data

Sign and MSB Control
Q Bit and Overflow Control

Input/Output Control. . . v v v v v w. ...

Remote Execution and Trapping
Console Contrels v vv vt v e e e e,
Computer Instructions. .« . . v . v.....

Shift OperationS. ¢ v vveeveeunon.

Combination Operations
Register Stack Operations
Memory Access Operations
Mini-Engine Operations.
Special Data Paths

Immediate Data Operations

Control Instructions
Arithmetic Test Instructions

General Conditional Test Instructions

I/0 Channel Control Instructions

Bootstrap Loader Example

e e v o o o o

Page

11
13
17
56

59

59
61
66

73
76

77
83
86
91

92

95
103
108
111
116
120
125
126
132
141

148

CONTENTS (Continued)

Appendix Title Page
A Number Systems and Conversion. . . . « « « « « « ¢ « « + & 151
B Octal Decimal Integer Conversion Table 157
C Octal Decimal Fraction Conversion Table. 161
D Powers Of TWO. + « = « o o o o o o o o & o o o o o & o o 165
E Hardware Oreinted Control Memory . . . « « « « « ¢« o « « . 167
F Wired-In-Sequence Execution Time « « « « « « « « 169
G MINIFLOW Instruction Pair Execution Time 171
H Listing of Instructions. . . « « « « « o o o o o o o o v 175
I POP Reference Chart. . .« « « « « o o o s o o o o o o o & 179
J SOP Reference Sheet. . « « v v o o o o o o o o o o o v o 181
K Zone Reference Sheet . . « + « ¢« « « « & o o o o o o s e 183

ii

LIST OF ILLUSTRATIONS

Figure Title Page
1 Typical IC-M9 System Configuration................. . 3
2 Components of the Inner Computer........, tesserasass 5
3 IC-M9 Data Flow Diagram.............ueuveernnunnnnn. 10
4 Control and Transfer Vector Half Word............... 12
5 General Sign and Q Bit Control................ ceieen 15
6 Flow Diagram of IC-M9 Scheduler..................... 62
7 Possible Paths of the YA W-I-S..........couuv.... e 63
8 Flowchart of the YAS Operation...................... 65
9 Read or Write Tape Flowchart............... .u.o.... . 82

10 Flowchart of Transfer Trapping in YAS.............. . 85
1] PB, PC, PD, PE Flowchart................... e rr s 99
12 PBD and PCD Flowchart........v.veernvnnnennnnnnnn. 101
13 AC, MQ, SI, R4, IC and XR Flowchart................. 106
14 MEM. MKEY, and CMI Flowchart.ovuvu.u.. .. 110
15 MINT Flowchart.............c..ouuuuunn.. Ch et 113
16 RC, RD Flowchartot e, 115
17 AKEYS, KEYS Flowchart..........o'ivvnrnnunnnnnnnon. 121
18 LIB, LIC, LID, MOPB, MOPC Flowchart................. 124
19 SMCT Flowchart.ot i, 127
20 TA, TAE, TAW Flowchart..uuuuunmnnnnnnnn.. 131
21 TG, TGE, TGF, TGR, TGS Flowchart...........vuuur.on.. 137
22 TC, TCE, TCF, TCS, TCR Flowchart.........ueuueuuu.un.. 146
23 Flowchart of a Bootstrap Loader..................... 147

iii

LIST OF TABLES

Table Title Page
1 Index Specification........ e Ceeranaa 13
2 Load SOPs....... e e e eeetsaeas e e eanes 17
3 Main Engine SOPS........ ... vnnnen et caaes 18
4 The DOL Operations............ Ceerasesasecerses 18
5 ZONE TOPS . . evievoaesoconsensaasssnancssnssssas 19
6 TA SOP Test ConditionS......ccieeevrosonssnones 30
7 The Shift SOPs...... ceaaas cereraees cerssneenes 35
8 The DOS Operation............ v casesannees 36
9 TG SOP Test Flip-Flops........ Ceiesessnanesnsens 38

10 General Indicator Conditions and Results...... . 40
11 Mini-Engine SOPs................ fesrerianaca . L7
12 Comprehensive Translator........... Ceesereasenn 68
13 Translator Exceptions.........cocvievvroncrinens 72
14 Translator TSAT Control............ Peerer e 73
15 Octal Code vs. Typewriter Character............ 80
16 The Shift SOPs........... Caeraaae chsasiesssans g3
17 The DOS Operations.............. e saesanaacans 93
18 The Main Engine SOPs...... et eeae e v 95
19 The Load SOPs...... Ceeeniaae saeaes e e 96
20 The DOL Operations............. Ceerisaar et 96
2] Main Engine Operatlons Assoclated w1th

Load SOPs............ Ceesaea Ceeaan Ceessanenen 37
22 Main Engine Zones......... e reeres e cres 97
23 Function of Bits 13-17..... e bcere e e .. 103
24 Function of the TOP Field..... ..ccv.vvviinnenen 108
75 Arithmetic Test SOPs..... Che e Ceeereeneene 128
26 General Indicator Test SOPs....... cceevvnennnn 132
27 The Miscellaneous Control SOPs....... Ceeean cess 138
28 Channel Indicator Test SOPs........ e .o 142

iv

DEFINITION OF SPECIAL TERMS AND CONCEPTS

This manual was written to be used by programmers, logicians, field and test
engineers, system and design engineers, marketing and management personnel.
The following is a brief definition of common words used in this manual which
may be ambiguous because of the mixture of technical disciplines,

On:
Off:
Set:
Reset:

Channel B
Control:

Control and
Transfer Vector
(C&TV):

Control Memory:

Entry Table:

Exit:

Group:

Hard Register:

True, one, minus.

False, zero, plus.

To turn on (or off if specified),

To turn off (or set to an initial state if specified).

Automatic control for channel oriented operations to
allow the same MINIFLOW to service both Channels A
and B keeping their status information and control
separate.

A half word in the entry table used to specify the
wired-in-sequence control and MINIFLOW starting
address for a particular group of object instruc-
tions decoded by the translators.

The smaller, faster memory used to store the MINIFLOW
emulation routines and to provide buffering for 1/0
operations,

The block of 64 half words (C§TV's) in control mem-
ory at mini-location 200. This table defines the
MINIFLOW entry points for each group of object instuc-
tions, and the type of wired-in-sequence used for the
group.

A provision to leave a MINIFLOW program sequence
to either return to scheduler control or to return
from a subroutine to the calling routine.

All the object instructions which, when translated,
cause the wired-in-sequence to select the same control
and transfer vector. There is a different group for
each C&TV and they are numbered from 0 to 77 (octal).

A set of flip-flop registers available for accumu-
lating, counting, addressing and indexing. They are
generally made available to the object programmer.
They are faster to work with than memory locations
and may directly participate in arithmetic operations.

1C:

Inner Computer

Special
Instruction:

Main Engine:

Main Memory:

Mini Engine:

MINIFLOW:

Mini-Instruction:

Mini-Location:

Mini-Pair:

Multitag Mode
Control:

Object Machine:

Object
Instruction:

POP Code:

The hard register used by the IC-M9 to address the
object instruction. It is directly affected by
wired-in-sequence and serves as the object machine
Instruction Counter,

The part of the IC-M9 used to simulate the control
logic of the object machine.

A specially designed MINIFLOW emulation routine
used to perform a function normally performed by
several object instructions.

The part of the IC-M9 used to perform the primary
arithmetic, logical and shifting operations.

The larger memory (32,768 thirty-six bit words) used
to hold the object program.

The part of the IC-M9 used for program sequence
control, and shift counting.

The IC-M9 program language used to emulate object
machine instructions.

An 18 bit instruction executed by the IC-M9 and
stored in a half word of control memory. It has a
6 bit primary operation code (POP code) and other
fields to further define the operation.

The octal half word address assigned to a mini-
instruction. RB holds the mini-location of the next
mini-instruction.

A set of two mini-instructions, the left and right
half of a 36 bit word in either control core or the
MOP register.

Automatic control to switch between selecting one out
of seven index registers or selecting from one up to
three index registers out of three index registers.

The machine to be emulated by the IC-M9, There will
be a distinct MINIFLOW program for each object
machine.

An instruction to be emulated., It is held in main
core and pointed to by the IC.

Primary operation code with the field specifying a
particular machine operation. It may be modified by
the SOP and TOP codes. It is always defined by bits
0 to 5, the first six bits of the instruction.

vi

Precondition
Controls:

Program Levels:

Program Sequence
Counter (PSC):

Scheduler:

SOP Code:

Subroutine Mode

Control:

Target Machine:

TOP Code:

Transfer Trap

Mode Control:

Translators:

Wired-In-
Sequence, WIS:

Zonable:

Zone Code:

Zoned:

A set of special control flip-flops initialized by
the translators.

The four different levels of MINIFLOW program
execution. They are activated by the scheduler to
service the I/0, console and object program
requirements.

The RB register in the mini-engine used by MINIFLOW
as an instruction counter.

A scanning device used to activate program levels on
a priority basis to allow servicing of the 1/0,
console, and object program requirements.

The Secondary operation code is the second parameter
modifying a machine operation.

The control mode entered by a subroutine transfer.

An Exit turns off the mode and returns control to the
main program. This allows quick resumption of a main
program after a subroutine is completed.

The machine to be emulated by the IC-M9, It may be
a previously defined computer or one defined by the
emulation MINIFLOW. This term is synomonous with
object machine.

The Tertiary operation code is the third parameter
modifying a machine operation.

Automatic control in the wired-in-sequence to prevent
a transfer from being made and to enter MINIFLOW with
the TSAT flip-flop indicating if a transfer would have
been taken.

The logic used to decode the object instruction's
"'op-code", select an emulation group and set the
pre-condition controls.

A wired sequence of steps used to fetch object instruc-
tions, perform effective address computation, control
the IC and fetch the memory operand. This sequence

is program controlled.

Capable of having the field limits specified by a
zone code as opposed to having them implicitly defined
in the primary operation (POP code).

A TOP code used expressly for defining the field
limits of a machine operation.

Loaded or moved with field limits specified by a zone
code.

vii/viii

SECTION 1

IC-M9 SYSTEM ARCHITECTURE
AND PHILOSOPHY

THE INNER COMPUTER CONCEPT

The most important quality of a Computer's language is its ability-to control
communications between the various functional stations (memory, registers,
arithmetic units and input/output devices). In most present day computer
systems the relationships among the functional stations are frozen by the
design and wiring of the system. Such fixed relationships mean that a parti-
cular computer can execute only one machine language effectively and cannot
utilize the full potential of each functional station.

A NEW CONCEPT IN COMPUTER DESIGN

The IC-M9 is a computer within a computer. This structure eliminates the
fixed link between the various functional stations heretofore experienced in
conventional computers. In the IC-M9 all functional stations communicate with
each other through the inner computer. This inner computer is programmed to
control communication between the various functional stations. By programming
the inner computer the IC-M9 is set up to emulate both new and previous com-
puters. This multilingual capability, implemented by a unique process called
the MINIFLOW emulation system, allows the IC-M9 to use existing program
libraries without reprogramming.

The IC-M9 should be viewed as divided into two parts - the external functional
stations, and the inner computer. The external functional stations consist of
the main memory, arithmetic units and registers, input/output channels, input/
output devices and the console. They perform the function of similar devices
on the computers being emulated. The inner computer consists of a scheduler,
a wired-in-sequence unit, a control memory, translators, mini-instruction
registers and decoders, indicators and display registers, and a mini engine.
The inner computer takes the place of much of the wiring and control logic in
a conventional computer.

Programs written in the language of the object machine (i.e., the machine
being emulated) are stored in the main memory. When the program is run, the
inner computer fetches an instruction from the main memory, and performs the
necessary indexing and indirect addressing operations by means of a MINIFLOW
controlled wired-in-sequence (hardware).

The object code of the instruction is translated and a MINIFLOW emulation
routine in the control memory is entered which directs the inner computer
through all the steps necessary to execute hs particular instruction. The
next instruction is then fetched from main memory and the entire process is
repeated until the program is terminated. Thus, the inner computer acts as an
interpreter directing the IC-M9 system to respond with the same results as the
computer it is intended to model.

SYSTEM COMPONENTS AND ARCHITECTURE

In this subsection, one configuration of the IC-M9 system is described to
acquaint the reader with the various functional stations. Descriptions of each
functional unit follow in the next two subsections. The MINIFLOW emulation
process is described, showing how the functional stations work together to
execute a program written for some other computer.

A configuration of the IC-M9 as it is used to emulate a well known second
generation data processing machine consists of:

1. The inner computer, with associated registers and control memory.

2. External functional stations, such as, main memory, high speed
registers, an arithmetic and logical unit, operator's console and
two input/output channels.

One channel controls a card reader, console typewriter and up to 12 magnetic
tape units. The other channel handles up to 12 tape units.

Figure 1 shows an IC-M9 configuration as outlined above and its external
functional stations.

EXTERNAL FUNCTIONAL STATIONS (Refer to Figure 1)

THE MAIN MEMORY functions as the core storage of the ""target machine'". It
stores data and object instructions in the form of a program in the machine
language of the 'target machine". The main memory contains 32,768 words,
each consisting of 36 bits plus one parity bit. The full cycle time is

2 micro-seconds.

THE REGISTERS are high speed storage elements available to the operator and
programmer on the same basis as those in the target machine. The inner com-
puter assigns certain functions to the registers as required to duplicate

those available on the target machine. Typical assignments are: Accumulator
(AC) 38 bits, Multiplier-Quotient (MQ) 36 bits, Sense-Indicators (S1) 36 bits,
Index Registers (XR1 through XR7) 15 bits each, Instruction Counter (IC) 15 bits.

THE ARITHMETIC UNIT or main engine performs arithmetic and logical functions,
such as fixed and floating point addition, multiplication, logical AND, OR and
masking operations. It is also used by the inner computer for internal
operations.

THE OPERATOR'S CONSOLE AND DISPLAY UNIT simulates all the console functions of
the target machine. The console contains the keys, switches, and lamps neces-
sary for manual and semi-automatic control and the visual checking of informa-
tion in the system. Power to the system may be controlled from the console.
All memory and register locations can be displayed. An execute entry function
permits execution of console-keyed instructions. Address stop control provides
several optional stop modes.

ARITHMETIC
UNIT

MAIN MEMORY

PPPPPOQV

I/0
CHANNEL
1

INNER

COMPUTER

TYPEWRITER PRINTER

REGISTERS

I/0

CHANNEL
2

|

OPERATOR'S
CONSOLE
AND

DISPLAY

FARD READER

Figure 1.

Typical IC-M9 System Configuration

0000000

TAPES

THE INPUT/OUTPUT CHANNELS control the quantity and destination of all data
transmitted between the inner computer and the peripheral units. The channels
are small, specialized data processors which perform their functions inde-
pendently of the inner computer and independently of each other.

THE PERIPHERAL UNITS consist of magnetic tape units, card readers, a printer
and a typewriter. These are fully compatible with comparable devices on the
target machine. The formats, where they differ from those of the target
machine, may be converted within the inner computer to a compatible format by
means of MINIFLOW.

INNER COMPUTER (Refer to Figure 2)

THE CONTROL MEMORY contains 1,024 words, each consisting of 36 data bits and
one parity bit. The control memory is used to store MINIFLOW routines, data
and constants used by the MINIFLOW system or the hardware, and as a buffer
area for data transmitted between main memory and the input/output channels.
Control memory and the main memory are independent and fully overlapped. The
control memory full cycle time is 1 micro-second.

THE SCHEDULER responds to the service requests of the 1/0 devices, the
operator's console, and the object program. It does so on a fixed priority
basis to achieve the least interference between the simultaneous operations of
these devices. The scheduler passes control to certain entry points in the
wired-in-sequence depending on the type of the request honored.

THE WIRED-IN-SEQUENCE contains certain hard wired subroutines or complex
sequences. For example, one of the sequences is used to fetch the instruction
to be emulated, decode it, perform indexing and indirect address operations,
update the instruction counter, fetch the operands required by the instructions,
and fetch the first mini-pair instruction. Another sequence saves certain
registers by storing them in predetermined control memory locations, then
restores them at a later point of intervention. The scheduler will pass control
to one of the sequences depending upon the type of request which is being
honored. From there, the sequence is stepped from one state to another,
although some steps may be skipped within a sequence.

THE TRANSLATORS decode the object instruction and point to a half word in the
entry table called the CONTROL AND TRANSFER VECTOR which controls the wired-in
sequence and gives the starting address of the routine necessary to complete
the emulation. The translators also pre-condition certain control flip-flops
in order to pass on specific information about instruction characteristics to
the MINIFLOW routine.

THE MINI-OPERATION REGISTER receives the 18 bit mini-instructions two at a
time as they are read from control memory. The bit configuration is sent to
the instruction decoder which sends the appropriate control signals throughout
the system to perform the operations.

THE MINT-ENGINE REGISTERS AND ADDERS perform the MINIFLOW program sequence
control and shift counting. Certain instructions make the mini-engine
registers available to the programmer.

MAIN MEMORY

ARITHMETIC UNIT
(MAIN ENGINE)

REGISTERS

170
CHAN-
NEL

CONTROL MEMORY

MINI ENGINE

MINI OPERATION
REGISTER AND
CONTROL DECODE

SCHEDULER

WIRED-IN-SEQUENCE

TRANSLATORS

1/0
CHAN-
NEL

INDICATORS AND
MAINTENANCE
DISPLAY

Tiqure 2, Components of the Inner Computer

CONSOLE

THE INDICATORS AND DISPLAY REGISTERS are sets of flip-flops which hold hard-
ware and MINIFLOW emulation program status. The status is determined by the
occurrence of certain events within the system. The registers in this cate-
gory include the display register, general indicators, and channel 1/0
indicators. Most of the bits in the indicators may be individually set and
reset by mini-instructions. Many are connected to lamps on the operator's
console; some are controlled by hardware; some directly control hardware
functions.

THE MINIFLOW EMULATION PROCESS

For each instruction in the program of the target machine, the inner computer
executes a particular routine made up of mini-instructions. For each input
or output operation and each console function to be performed, the inner com-
puter executes a similar set of routines. These routines are stored in the
control memory of the inner computer. They are entered from the wired-in-
sequence which is also controlled by a control and transfer vector in the
MINIFLOW control memory. The entire collection of routines present in the
Control Memory at any one time is called a MINIFLOW emulation system. It is
the MINIFLOW emulation system which tells the inner computer how to interpret
the machine language instructions of the emulated computer. It follows that
in order to emulate a different computer, one has only to change the MINIFLOW
system, i.e., a program resident in control memory.

THE GENERAL CONTROL SEQUENCE

Very briefly, when a "request' is set, the scheduler passes control the the
wired-in-sequence which in turn passes control to MINIFLOW execution. When
the MINIFLOW is completed, control is returned to the scheduler.

Specifically, when a program request is honored by the scheduler, control
passes to the wired-in-sequence. At this time, an instruction from main mem-
ory is brought to the main engine. The operation code portion of the instruc-
tion is sent to the translators which generate an address pointing to a control
and transfer vector (C&TV) in the control memory entry table. This C&TV
provides a MINIFLOW starting address, and controls the following wired-in-
sequence options:

1. Indexing and indirect addressing of the instruction address.
2. Fetching an operand from memory.
3. Treating the instruction as a transfer.

The starting address of the MINIFLOW routine is sent to the program sequence
counter in the mini-engine. The address portion of the object instruction may
be modified by the Index Registers and indirect addressing. An operand may be
brought from main memory and the AC is put into the main engine. The MINIFLOW
emulation program is then executed. When the MINIFLOW program is finished, it
returns control to the scheduler. The process is repeated as the scheduler
honors the program request again. The above explanation is described in more
detail in sections II and III.

It should be noted that not all instructions require the same wired-in-
sequence operations, and a few instructions require only the control and
transfer vector for complete emulation. Moreoever, operations such as input-
output and console functions which are not directly connected with the emula-
tion of a specific instruction use a different set of MINIFLOW emulation
routines, but the process is somewhat the same as that described above.

7/8

SECTION II

IC-M9 MINIFLOW PROGRAMMING EXAMPLES

GENERAL SYSTEM DESCRIPTION

The IC-M9 functions as a stored program computer when in the MINIFLOW execution
mode. The data transfer paths are illustrated in Figure 3.

THE MAIN DATA BUS is used for general data transfer in a time shared manner.
The memories, operator keys, 1/0 and other functions are accessed via the bus
by special mini-instructions.

THE MAIN ENGINE performs the arithmetic and logical manipulations on the data.
It contains two shift matrices capable of being coupled for long shifts.

These are fed from the main bus or from the adder; they in turn feed three

36 bit holding registers. These registers also have sign and Q bit control
logic associated with them. The adder is a full 36 bit binary ADDER/SUBTRACTOR
with general logic capability. The adder is fed from the holding registers

and from the register stack; it also feeds the main bus, the register stack and
the holding registers (via the shift matrices).

THE MINI-ENGINE performs the MINI-INSTRUCTION fetching and decoding; it has

six registers associated with it. The RB register (11 bits) acts as a MINIFLOW
program sequence counter (PSC); instructions addressed by RB are fetched "two
at a time" from the control memory and placed in the MOP-L/R register. From
there they are passed one at a time to the RM and RBR drivers; the RM drivers
feed the instruction decode logic and the RBR drivers gate immediate data back
onto the bus. The RD register (11 bits) acts as a program link register to
save the PSC for return from a subroutine. The RC register (8 bits) is used

as a shift counter, or to hold a skip distance for decision type instructions.

NOTE

The programming examples shown in this manual
are generated using the Inner Computer Assembly
Language (ICAP) as described in Form 4010.

SHIFT MATRIX

SHIFT MATRIX

[zONE CONTROL| |zONE

CONTROLJ

| ZONE CONTROL|

!
[s JL

!
c J

| D

1

j—Q
-

[MAIN ADDER

l

MAIN ENGINE

RB RC RD
ADD
RE l
OFFSET

L |

3

MOP-L | MOP-R
|

RM
]

MINI ENGINE
AND
MINI OPERATION
REGISTER

1

PRINTER

CARD
READER

TYPEWRITER

Figure 3.

TO CHANNEL A
I/0 UNITS

M
A
[1
E F N
D
N A
T
A
AC(R1) GENERAL [ENTRY KEYS |
MQ(R2) INDIC ATORS 8
S1(R3) ADDRESS | | S
R4 ‘ KEYS
IC [pispray reGisTER | {
XR1
XR2 r T
REGISTER | XR3 -
STACK [appress] [para BUFFER |
XR4
XR5 L—"
XR6
XR7 32K MAIN
MEMORY

[D:;\T‘\ BUFFER | r‘A_D'ggj—‘
L

1K CONTROL

MEMORY

Py

i

'

[a2z | [Al CHANNEL REG |
k!

!

'

o]

lEl CHANNEL Rfﬁ]
'

3

pu—

CHANNEL
A
CONTROL

TANNE
CHARNEL | _ TO CHANNEL B
CONTROL 1/0 UNITS

| CHANNEL ADDRESS CONTROLy

CHANNEL DATA BUS

CHANNEL A BUFFERJ rCHANNEL B BUFFER

QOO D ..

10

OO0O0O0O0

QQ

QQQ
ofefe]

IC-M9 Data Flow Diagram

ofe}

THE WIRED-IN-SEQUENCE

Normally in the first step of the wired-in-sequence, the 36 bit object instruc-
tion addressed by the IC is fetched from main memory and is loaded into both
the C and D registers of the main engine. The first 12 bits of the D register
are sent to the OP-code translators where special control flip-flops are set
and an address is generated pointing to the entry table. In the next step

this generated address is used to fetch a half word from the entry table in
control core; this is the control and transfer vector which then controls how
the wired-in-sequence proceeds. The format of the control and transfer vector
is described in Figure 4.

INDEXING is accomplished by using the tag field (Bits 18-20 of the D register)
to select which index register(s) to use; if these bits are all zero, zero is
used as the index register value. Indexing is done by subtracting the Index
register value from the C address field (bits 21-35) and putting the result
in C or D or both. Binary arithmetic is used in this operation.

INDIRECT ADDRESSING is accomplished only if Bits 12 and 13 are both true in
the D register. The address field (bits 21-35) of the D register (after
indexing) is used to fetch a new word from main core. The right half of this
word (bits 18-35) replace the previous right half of both the C and D registers.
A second index cycle takes place if the tag field of the D register (after
indirection) is non-zero with the result going to C and D (bits 21-35).

MEMORY OPERAND FETCH is accomplished by addressing main core from the address
field of the D register and placing the 36 bit word into the C register.

AC OPERAND FETCH is always accomplished by bringing the contents of the AC (R1)
into the B register of the main engine.

TRANSFER CONTROL allows bypassing MINIFLOW completely for a ''fast' transfer;
or allows MINIFLOW to set up the transfer and other conditions, and then
re-enter wired-in-sequence to complete the '"slow' transfer.

Details of the LK4 and LK7 relationship to the wired-in-sequence for automatic
transfer controls are contained in Section III.

MINIFLOW TRANSFER ADDRESS is placed in the mini-engine sequence counter (RB)
and points to the first MINIFLOW instruction of the emulation routine.

11

Bits 0,1
00

01

10

11

Bit 2

Bits 3,6
00

o1
10

11

0 1 2 3 4 5 17
LIL}|LJ]L
KI{KI K] K| * * TRANSFER VECTOR
112 3] 4
) I |
LK1 and LK2
Don't allow
indexing

Allow indexing
the D register

Allow indexing
the C register

Allow indexing
both the C&D
registers and
allow indirect
addressing.

LK3
Don't fetch the
memory operand

Fetch the
memory operand.

LK4 and LK7

Don't treat as a transfer

Treat as a fast

Treat as a slow

An illegal combination

*Bits 4,5 Not used

Bits 7-17 The MINIFLOW entry address (i.e., transfer vector)}

Figure 4.

}__

transfer

transfer

Control and Transfer Vector Half Word

12

SPECIAL MODE CONTROL FLIP FLOPS

MULTI-TAG MODE controls the manner in which indexing is done; it is set to

the seven index mode (off) by the console reset key and is also turned on or
off by a MINIFLOW instruction. Whenever an indexing operation takes place,
either through wired-in-sequence or by a mini-instruction, the specific index(s)
to be used in the operation are determined by the tag field (bits 18 to 20) of
the main engine D register. When in multi-tag mode the logical OR of two or
three registers may be used for the index value; or if changing index values,
then two or three indexes may be altered simultaneously. The index used are
specified by Table 1.

Table 1. Index Specification

D REGISTER IN SEVEN IN MULTI-TAG
TAG BITS INDEX MODE INDEX MODE
000 NO INDEX NO INDEX
001 INDEX 1 INDEX 1
010 INDEX 2 INDEX 2
011 INDEX 3 INDEX 1 "or'" 2
100 INDEX 4 INDEX 4
101 INDEX 5 INDEX 1 "or" 4
110 INDEX 6 INDEX 2 "or'" 4
111 INDEX 7 INDEX 1 "or" 2, 'or" 4

EXIT AND SUBROUTINE MODES are used to quickly leave a MINIFLOW sequence and

to easily link to subroutines. Most mini-instructions provide a means to

EXIT at the end of the instruction. This usually may be accomplished by having
bit 12 of the instruction on; there are also 3 test instructions which allow

a conditional EXIT. When an EXIT is taken while not in the subroutine mode
control is passed back to the scheduler and the wired-in-sequence.

The subroutine mode is entered by a special transfer mini-instruction. This
turns the subroutine mode control on and sets up registers in the mini-engine
to provide subroutine return linkage. Specifically, RB+1 goes to RD and RBR
goes to RB to effect the transfer. If an EXIT is taken while in the sub-
routine mode, then the subroutine mode control is turned off and MINIFLOW
transfers to continue where the subroutine transfer was taken, i.e., RD is
placed in RB.

PRECONDITION CONTROLS are set by the translators during the wired-in-sequence.
Their purpose is to allow the wired-in-sequence or MINIFLOW instructions to be
modified in their actions so that the same routines may be used by similar
object instructions. Two preconditions affect only wired-in-sequence during
the operand fetch step. These are:

SUB (subtraction) causes the sign bit of the memory operand to be
inverted when fetched.

13

MAG (maghitude) causes the sign bit of the C register to be set to zero
(plus). If MAG and SUB are both set, then the sign of C is set to one
(minus) .

Two more preconditions may affect either wired-in-sequence or MINIFLOW:

ARI (arithmetic) causes bit zero of either memory or register stack
operands to communicate with the main engine sign bits rather than the
most significant bit of the main engine registers.

TSAT (test satisfied) is set by test conditions to cause a transfer via
the wired-in-sequence or to cause a skip to be taken during MINIFLOW.
Usually this flip-flop is set based on criteria other than just the
combination of the op-code and the translator logic, i.e., generally an
actual test is made of some machine condition.

The last five preconditions can only modify the MINIFLOW actions.

GEX (general exchange) allows the data sent on the main bus (or between
the register stack and main engine) to be switched such that the most
significant 18 bits and least significant 18 bits are interchanged. This
swapping only occurs if GEX is on and the bit 6 flag is on in the instruc-
tion. But this swap may also be forced without GEX ON by the LOAD SOPS
of the zoned Main Engine Operations explained in Section III.

GIN (general inhibit) prevents the data from the adder from going back
into the main-engine registers or the index registers or IC register of
the stack when GIN is on and the bit 6 flag is on in a main engine,

XR or IC instruction.

GOP9 (general operation 9)
GOP10 (general operation 10)
GOP11 (general operation 11)
These flip-flops are set to differentiate object instructions entering
MINIFLOW at the same location. The "DOL'" main engine SOP and the 'DOS"
shift SOP are directly controlled by these GOPS.
TSAT, ARI, GEX, GIN and GOP 9, 10 and 11 may also be turned on or off by
MINIFLOW as well as always being set by the translator. Section III contains
a translator table, which contains the pre-condition flip-flop states when
exiting from the wired-in-sequence.
SIGN AND Q BIT CONTROL
The main engine has a sign bit associated with each of its three registers

(B, C&D) plus a single engine Q bit. The AC register also carries separate
sign and Q bits, giving a total length of 38 bits for this register.

14

Q S Ple———11t035 —| AC REGISTER

[y g J/
D e—
i; S Ole— _1to035 +| B ENGINE REGISTER
S Ole——0 _1t035 +|C ENGINE REGISTER
s —— 1to035 ~|D ENGINE REGISTER
N S
ARI ARI Y
ON OFF 1
A
v N
S - 1to35 +»|MQ REGISTER
o — 1t035 —+|{S1 REGISTER
o) «— 1t 35 __ +|R4 REGISTER
S «—— 1t035 » |MEMORY WORD

Figure 5. General Sign and Q Bit Control

When data is moved between the AC and one of the main engine registers the
signs move with the other data bits. When data is moved between the MQ, SI,

R4 or a memory word and one of the main engine registers, bit zero communicates
with the engine register sign if ARI is on and communicates with the most
significant bit of the engine register if ARI is off.

The engine signs are appropriately changed by signed arithmetic and shifting
operations. The AC sign and Q bit may be turned on or off or toggled by the
MISC POP with appropriate SOPS. The engine Q bit or AC Q bit may be changed
under the following circumstances where X indicates a change which is described
in Section III.

15

EQ ACQ

X 1 Using a Q bit zone (TOP: 05 or 33) with the B or C
register.
X 2. An implicit shift (SOP:20)
X 3. A multiply shift (SOP:11)
X 4. AC POP with LDB or LDC TOP
X X 5. AC POP with load B or C and store
X 6. AC POP with s (store)
1 7. MISC SAQ
0 0 8. MISC RAQ or RSM
X X 9. MISC TAQ

The particulars of these manipulations are in the description of the MINIFLOW
instructions which may affect these flip-flops, and are specifically summarized
in Section III. The state of the sign and Q flip-flops affects the operation
of signed arithmetic and shifting operations as well as comparisons and sign
tests.

CHANNEL B FLIP-FLOP CONTROL allows the programmer to take advantage of the
symmetry found in channel control logic. This is done by using the same
MINIFLOW programs for both Channels A and B and having their separate logic
selected by the Channel B flip-flop. Specifically, MINIFLOW uses CHB flip-flop
as follows:

1. The same mini-instructions will access even (for Channel A) or odd
(for Channel B) words in control memory by addressing even words,
since the Channel B flip-flop is ORed in with the low order address
line in the CMI type of memory access.

2. The same test of an I1/0 channel indicator will test a group assigned
to Channel A or a group assigned to Channel B according to how the
Channel B flip-flop steers the test logic.

3. The channel commands will automatically be steered to the appropriate
channel by the Channel B flip-flop.

4. Several other I/0 oriented controls are automatically steered by
this flip-flop.

16

OBJECT INSTRUCTION EXAMPLES

INSTRUCTIONS are 18 bits long. The first 6 bits (0-5) form the "primary
operation' (POP) code; this POP code also determines the format of the rest
of the instruction. Most instructions have four more fields, as shown below.

Bit 6 A FLAG bit controlling the GIN or GEX feature.

Bits 7-11 A "secondary operation' (SOP) code which further modifies
the primary operation.

Bits 12 A FLAG bit (called EXIT) used to either return from a sub-
routine mode or to return back to the scheduler and
wired-in-sequence.

Bits 13-17 A ''tertiary operation" (TOP) code which may provide
register zoning, a memory address, a skip distance, shift
count, or special controls.

The specific function of bits 6 to 17 will be explained in the writeups for
the individual "POP" groups described in the subsequent parts of this section.

There are instructions:

To perform shifting.

To access and operate on the main engine.
To access and operate on the Hard Registers.
To access and operate on the memories.

To access and operate on the mini-engine.

To access the I/0 Channels and console.

To load immediate data into the main engine.
To perform tests and transfers.

To change control conditions.

In the symbolic code fields of the examples the POP will be listed first as an
operation code. The SOP, TOP and FLAG fields will be listed in that order, as
operands separated by commas; then remarks may follow. See the ICAP Assembly
Language Programmer's Manual for symbolic coding standards.

The most generally used SOP codes are those controlling the main engine

Adder logic and the SOPs which specify the loading of main engine registers.
These two sets of SOP codes are defined in Tables 2 and 3.

Table 2. Load SOPs

MAIN ENGINE REGISTER TO LOAD

SOP CODE MNEMONIC (where the POP specifies the source)
04 LDB Load the B register
0s LDC Load the C register
21 LDD Load the D register

17

Table 3. Main Engine SOPs

SOP CODE MNEMONIC MAIN ENGINE ADDER OUTPUT

00 ZERO All bits are zero

30 B B register

31 c C register

20 D D register

34 B+l B register plus one

35 C+1 C register plus one

14 B-1 B register minus one

15 Cc-1 C register minus one

36 B+C B register plus C register

16 B-C B register minus C register

17 C-B C register minus B register

26 B+C+1 B register plus C register plus
the previous carry

06 B-C-I B register minus C register minus
the previous carry

07 C-B-1I C register minus B register minus
the previous carry

02 NB+1 Twos complement of B register

03 NC+1 Twos complement of C register

22 NB Ones complement of B register

23 NC Ones complement of C register

10 B.NC B register AND ones complement
of C register

11 NB.C Ones complement of B register
AND C register

24 B.C B register AND C register

32 BUC B register OR C register

12 BEC EXCLUSIVE OR of B and C registers

01 DOL DO the logical operation specified
by the precondition* controls.
See Table 4.

Table 4. The DOL Operations

GOPs ADDER OUTPUT

9 10 11

0 0 0 B

0 0 1 BEC

0 1 0 C

0 1 1 B.NC

1 0 0 B.C.

1 0 1 BUC

1 1 0 NB.C

1 1 1 B.NC

*Precondition controls are explained later in this section.

18

The most generally used TOP codes are those which control the main-engine field
specification. There are 32 zone codes which select different contiguous
fields of the main engine registers to participate in the operations. These
zone fields are listed in Table 5.

Table 5. Zone TOPs

ZONE FROM TO FIELD
CODE BIT BIT LENGTH SPECIAL FIELD NAMES
00 00-35 36 Full 36 bit register
33 QQ-35 37 Full register and Q bit
05 QQ-08 10 Floating characteristic
20 09-35 27 Floating mantissa
35 00-08 9 1st quarter word
23 09-17 9 2nd quarter word
15 18-26 9 3rd quarter word
03 27-35 9 4th quarter word
37 00-17 18 Left half word
17 18-35 18 Right half word
27 03-17 15 Decrement field
07 21-35 15 Address field
13 24-35 12 Right third word
25 03-08 6 Translator Group Digits
34 00-05 6 Character 0
36 06-11 6 Character 1
21 12-17 6 Character 2
14 18-23 6 Character 3
16 24-29 6 Character 4
01 30-35 6 Character 5
30 00-02 3 Octal Character 0 (prefix field)
24 03-05 3 Octal Character 1
26 06-08 3 Octal Character 2
32 09-11 3 Octal Character 3
22 12-14 3 Octal Character 4
31 15-17 3 Octal Character S
10 18-20 3 Octal Character 6 (tag field)
04 21-23 3 Octal Character 7
06 24-26 3 Octal Character 8
12 27-29 3 Octal Character 9
02 30-32 3 Octal Character 10
11 33-35 3 Octal Character 11

Zone control masks the operation such that only the specified bits of the
zoned field will change in the receiving register, any initial carry will be
introduced at the least significant bit of the zoned field, any carry out of
the field will set the carry flip-flop.

19

TRANSFER EMULATION WITHOUT MINIFLOW

The TSAT flip-flop will be set by the translator during wired-in-sequence; the
setting is off unless the object code translates to one of the transfer groups
(as specified in section III) which may cause the TSAT flip-flop to be set on.

If the fast transfer control bit (LK7) is on in the group's control and
transfer vector, the wired-in-sequence will test the TSAT flip-flop and
directly emulate the transfer instruction without entering MINIFLOW.*

EXAMPLE 1. Fast Unconditional Transfer

Consider the Unconditional Transfer object instruction (TRA) with the following
format:

0 11 12 14 17 18 20 21 _35
[+0020 INSTR. CODE | T [////// | TAG | BASIC TRANSFER ADDRESS _|

The instruction is to cause an unconditional program transfer to the memory
location specified by the contents of the basic transfer address minus the
contents of the specified index, if indexing is specified; OR if bits 12 and
13 are on (an indirect flag), then the above address is used to fetch a new
tag and memory address field which together determine the final transfer
address. New tag will be used for second level indexing.

During wired-in-sequence the OP code +0020 translates to group 2 and the

TSAT flip-flop is set on, the control and transfer vector for Group 2 (at mini
location 202) is fetched and analyzed. If LKs 1 and 2 are on, the indexing
and indirect addressing called for by the object instruction will be per-
formed in C and D. If LK7 is on the WIS will examine the TSAT flip-flop and
cause the address field of D (21 to 35) to be placed in the IC so that the
next object instruction fetch is from the transfer address.

The control and transfer vector needed is shown below and the address field
points to the transfer trap routine if one exists.

URG N/72G2 ExamMpof 1 T4
vEn CT/141, 11 /TRAP T+a C4TV

EXAMPLE 2. Fast Conditional Transfers
Consider the conditional transfers defined below with the following format:

0 11 12 14 17 18 20 21 35
+01xx INSTR. CODE | 1] ///7// | TAG | BASIC TRANSFER ADDRESS |

Assume the instructions are to cause transfers under the conditions shown
on the following page.

*MINIFLOW is entered however, if transfer trapping control mode is on; see
Section III.

20

MNEMONIC OP-CODE TRANSFER CONDITIONS TSAT FLIP-FLOP

TZE +0100 AC equal to zero on if AC is zero

TNZ -0100 AC not equal to zero on if AC is not zero
TPL +0120 AC plus on if AC is +

T™I -0120 AC minus on if AC is -

TOV +0140 AC overlow on on if OVFL on

TNO -0140 AC overflow off on if OVFL off

TQP +0162 MQ plus on if MQ is +

Indexing and indirect addressing are performed as specified by the instruction,
and the overflow tests will reset the overflow indicator.

During wired-in-sequence all these OP CODES translate to group 10 and the TSAT
flip-flop is turned on under the conditions specified in the table above.
Indexing and indirect addressing as required is performed and then the TSAT
flip-flop is examined to determine whether the IC is incremented by 1 (TSAT
flip-flop off) or it is loaded with the contents of D (TSAT flip-flop on).

The same control and transfer vector, at a different mini-location, would be
used for these transfers.

RG C/21¢C EXAMPL 7 TMI$T2E,:TC
VFED CT/141911/7TRAP Cunl o TRA C4Tv

REGISTER POPs

The registers in the stack are accessed by a group of 6 mini-instructions.
Zoning of the data is implicit in the particular register POP and they are
described below.

POP POP AFFECTED IMPLICIT ENGINE

CODE MNEMONIC REGISTER ZONE CONTROL TEST FLIP-FLOPS
33 AC R1 QQ-35 37 bits and sign Not affected
37 MQ R2 00-35 36 bits Not affected
27 SI R3 00-35 36 bits Not affected
23 R4 R4 00-35 36 bits Not affected
22 iC IC 21-35 15 bits Set appropriately
26 XR XR* 21-35 15 bits Set appropriately

*As specified by the tag field (Bits 18-20) of the D Register.

21

0 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
HARD GIN ENGINE
REGISTER GEX OUTPUT XT| RB] RC| SR| LDx
BITS
0-5 POP: |
6 Flag: Inhibit storing back
to IC or XR if GIN is on;
Half exchange the register
data if GEX is on.
7-11 SOP: Specifies a main |
engine operation from |
Figure 3.
12 Flag: EXIT |
13 Replace "B" in SOP code with the POP register b——————
14 Replace "C'" in SOP code with the POP register |—
15 Store the SOP result back into the POP registeri—
16-17 Store the SOP result back into a main |
engine register as specified below: |
BITS
1 1
0 0 Do not store
0 1 Place in B Register
1 0 Place in C Register
1 1 Place in D Register
REGISTER MINI-INSTRUCTION FORMAT
EXAMPLE 3. Simple Register Load
Consider LDQ, an object instruction to load the MQ register with the following
format:
0 11 12 14 17 18 20 21 35
+0560 INSTR. CODE 11111/ TAG BASIC OPERAND ADDRESS

22

The instruction loads the MQ register with the word in memory specified by
the address after any required address modification has taken place (indexing
and indirect addressing).

This instruction translates to group 56 so the wired-in-sequence is controlled
by the C&TV at mini-location 256. It should have LK's 1 and 2 on (allowing
address modification) and also LK3 on which causes the memory operand to be
fetched from main memory during WIS. The C&TV and the "program'" required to
complete the operation are below:

URG 07256 EXaMPLL 3 LDGQ

vED 3/ 71415/70L064 Lhe C+Ty
e e S

LRG L/10ul
LG MG CoSobXIT STUGRE (Y) IN M@ AND LXIT

Example 4. Emulating Several Register Loads

Consider the object instructions used to load the AC: they are CAL, CLA, and
CLS and they have the following format:

0 11 12 14 17 18 20 21 35
1950x INSTR. CODE I /17177 TAG BASIC OPERAND ADDRESS
MNEMONIC OP-CODE OPERATION PRE-CONDITIONS SET ON

CAL -0500 Clear and add logical none
CLA +0500 Clear and add ARI
CLS +0502 Clear and subtract ARI & SUB

The ac register also may be loaded in any of these three modes with just one
mini-instruction; however, when the memory operand is fetched if ARI is on the
most significant bit goes to the sign bit of the C register and bit 0 of the

C register is set to zero. In addition, if SUB is on this most significant
bit is also inverted as it is loaded. Thus, one entry control and a one
instruction MINIFLOW program are used to emulate three different object
instructions. The translators not only point to the same control and transfer
vector (Group 50), but also set the preconditions differently so the memory
operand is loaded in three different ways.

The C&TV and MINIFLOW programs are shown below:

0GR, G/ 272Hu LXAMPLT 4 CALyLLA,LLS
VFo 3/1,“’/[.{)/\ (,f\L yCLAyCLS (,"’TV

YVom - = - = - = e - Lok
112G S eGutl

LA AC CoySyXIT STURL (Y) IN AC AND bBxIT

23

MEMORY ACCESS POPs
MEM - Memory Instruction 67

Either the Main Memory or the control memory may be accessed by the MEMORY
instruction. The address is generated by the main engine as specified by the
SOP code; if a load SOP is used the address is taken from the console address
keys. The Memory instruction has a mnemonic of MEM and an octal code of 67.

01 2 3 4 5 6 7 11 12 13 14 15 16 17
67 MEM GEX ADDRESS SPEC | XT |[MS|CS|RB | REG
Bits
0-5 POP:}
6 Flag: Half exchange |
data if GEX is on.
7-11 SOP: If a '"load" SOP (Table 2)
then the address is taken from
the address keys; if a main
engine SOP (Table 3) then the
address is appropriately
generated by the adder.
12 Flag: EXIT}
13 MEMORY SELECTION: 0 CONTROL MEMORY
1 MAIN MEMORY
14 CYCLE SELECTION: 0 READ DATA IN
1 WRITE DATA OUT
15 Replace R4 for B in the SOP code |-
16-17 DATA REGISTER: 00 Write Zeros (NOP if read)
01 Use the B register

10 Use the C register l
11 Use the D register

CMI-Control Memory Immediate 77

The first 32 words of control memory may also be directly accessed with the
address specified by the TOP field. The Data and Memory operations are speci-
fied by the SOP field. The Control Memory Immediate instruction has a mnemonic
of CMI and an octal code of 77.

24

01 2 3 4 5 6 7 11 12 13 17

77 CMI GEX| DATA SPEC XT| MEMORY ADDRESS
BITS
0-5 POP: |
6 Flag: Half exchange]
data if GEX is on. |
7-11 SOP: If a ''load" SOP (Table 2),
the memory reads data into the
specified register; If a Main
Engine SOP (Table 3), data is
appropriately generated in the
adder and written into the
control memory.
12 Flag: EXIT |
13-17 TOP: The explicit address of one of the|
first 32 words of control memory I
NOTE : The Channel B flip-flop is ORed in with bit 17 of the instruction

so that only odd addresses are accessed if CHB is on.
EXAMPLE 5. Double Register Load

Consider DLD, an object instruction to load both the AC and MQ. It has the
following format:

0 11 12 14 17 18 20 21 35

+0443 INSTR. CODE I /71117 TAG BASIC OPERAND ADDRESS

The instruction loads the AC with the signed word in memory specified by the
address (after modification) and loads the MQ with the word in memory located
at the next higher address.

This instruction translates to group 45 with ARI set on. Two approaches are
illustrated as follows:

1. This approach fetches the Y operand during wired-in-sequence.
RS /24y EAAMPLL o bLE
VD 3/ 75 15/00L0 ULD C+iv

T S

25

URG Ul 1706

Lo A€ Ced STORE (YY) IN AC
R4 U S MUVE aUDRLESS TG R4
MEM - R&+1,45RC READ (Y+#1) TO C
MQ CoSeeXIT STGRFE (Y+1) IN MQ + FXIT

Note that the last line is the same as the '"Program'" in example 3;
thus the two programs could be combined. This type of combination
is directly illustrated in the second example of the Double Load
(combined with example 4).

2. The second approach doesn't fetch the Y operand to C during the

wired-in-sequence. It is fetched during the execution of MINIFLOW.
It also only takes four mini-steps to complete the operation.

RG 3/245 EXAMPLE 6 LD

ViD 3769 15/70L0 DLL CHIV

ORG L/2bu ‘

VED 3/7,15/7L0A CAL,CLA,CLS C+IV
I T T

URG /LTI
DLD MM C+ 14530 READ (Y+1l) TO ©

M LS STURD (Y+1) IN MG

My CySRU RCALD (YY) TU C
LA AC CrborAlT STLURE LY) T4 AC AND o XIT

There is very little difference between these two approaches. They
both take the same amount of core space and the execution times are
close. The 2nd is 2% faster when wired-in-sequence time is counted
in with the MINIFLOW.

MAIN ENGINE POPs

These six mini-instructions modify the Main Engine Registers. The POP speci-
fies what register receives the result of the operation. The SOP specifies
what registers are used and how they are combined in the operation.

The TOP specifies the zone control field to be used: The adder operation,,

the zero and carry test flip-flops and inserting the data into the receiving
register(s).

POP CODE POP MNEMONIC PRIMARY OPERATION

50 PB Test and zone the SOP results to B
51 PC Test and zone the SOP results to C
53 PD Test and zone the SOP results to D
52 PE Only test the zoned SOP results

40 PBD Test and zone D to B and zone the

SOP results to D
41 PCD Test and zone D to C and zone the

SOP results to D

26

All these instructions will set the engine test conditions in the following
manner:

PB, PC, PD and PE will test the zoned SOP results; PBD and PCD will test the
zoned D register.

BITS

05

7-11

12

13-17

EXAMP

0 5 6

7

11 12 13 17

MAIN ENGINE REG|GIN

ENG OUTPUT |XT| ZONE CONTROL

POP: |

FLAG: Inhibit storing
result in register if GIN
is on.

SOP:* Specifies a main engine[ﬁ
|

operation from Table 3.

Flag: EXIT k-

TOP: Specifies a main engine zone |

field from Table S. i

LE 7. Add and Carry Logical

Consider ACL, an object instruction to add the unsigned value of a memory
location (bits 0-35) to the magnitude of AC (bits P to 35) with end around

carry

0

. It has the following format:

11 12 14 17 18

20 21

35

+0361 INSTR. CODE I 11771/ TAG

BASIC OPERAND ADDRESS

This instruction translates to group 36 with no preconditions turned on. The
following code may be used:

CRG U736 EXAMPLL 7 ACL
VED 3/T419/74CL ACL CHTv

- - = - o 4 - - 4 o oo *
GR6 £/500

ACL PE B+Cy0G-35 GENLRATE P BIT CARRY
Py B+C+1400-3% LUGICAL AUDL WITH CARRY
AL BySeEXIT STORe SUM IN AC + EXiI

*The PB, PC, and PD POPs may also use the LDB and LDC SOPs (Table 2). These
take data from the register specified by the POP and half exchange it and
load it into the register specified by the load SOP under zone control.

27

Note: It might appear that the last two instructions could be replaced by:
CRG L/501 cXAMPLE 7 CONTINUEL
AC B4C+H] S, FE LUGICAL SUM TO AC + EXIT

However, this would allow the Q bit or the overflow indicator to be turned on.
In this example the overflow cannot be turned on and the Q bit is unaltered
because the engine Q bit is set to the AC Q bit during wired-in-sequence when
the AC is unconditionally loaded into B. The Engine Q bit cannot change
because it is not zoned into the engine operations; therefore it is the same
when it is stored back into the AC Q bit.

ALG-Algebraic Add 62

With the exception of the ALG POP the Main Engine SOPs ignore the signs assoc-
ciated with the B and C registers and treat all values as positive. An
algebraic add may be performed taking the signs into account with the ALG POP
and a B-C SOP (Octal code 16).

The ALG instruction is done in two cycles. First, ALG does a trial subtrac-
tion to determine which of the contents (B or C) is the greater. If the signs
of B and C are the same the B-C SOP is interpreted as a B+C SOP for the second
cycle where the result is zoned into B.

If the signs of B and C are different and C is less than B then the B-C SOP is
performed again and the result zoned into B.

If the signs of B and C are different and C is greater than B then the B-C sop

is interpreted as a C-B SOP for the second cycle and the result in zoned into B.
Also the sign of C is placed in B and a special indicator is turned on - the
first carry flip-flop. This indicator is turned off if the signs are

alike or if C is less than B. All other main engine tests are also set so that
the arithmetic tests (TA, TAE, TAW) described later may test for zero, carry out,
most significant and least significant bits, and like signs and first carry.

0 5 6 7 11 12 13 17
62 ALG GIN|14 B-C SOP [XT| ZONE CONTROL
BITS
0-5 POP: |-
6 FLAG: Inhibit storing resultl___d
in B if GIN is on
7-11 SOP: Should be B-C (Code 14)}
12 Flag: EXIT}

13-17 TOP: Specifies a Main Engine Zone field from Table 5.}—

EXAMPLE 8. Emulating Several Arithmetic Instructions

Consider the fixed point arithmetic operations with the following format:

0 11 12 14 17 18 20 21 35
+040x INSTR. CODE I /11117 TAG BASIC OPERAND ADDRESS
MNEMONIC OP-CODE OPERATION PRECONDITION SET ON

ADD +0400 Add ARI
ADM +0401 Add Magnitude MAG
SUB +0402 Subtract ARI and SUB
SBM -0400 Subtract Magnitude MAG and SUB

These instructions all translate to group 40. The memory operand is loaded
into C if LK3 is on in the C§TV; in which case the sign of C will be appro-
priately set to allow emulation to be completed by the following MINIFLOW.

GRO u/24u EXAMPL L 5 ADD,SUB,E1C
VFD 3/ 14157481 ACL»ADM, SUB,ySBM C+TV

¥ - - - - - - - - - - - - - - %
(iIRG C/150¢

LR ALG t=Cywbki—=35 DG THE SIGNED ARITHMETIC
AC RySetXIT STCRE SUM [N AC AND FXIT

ARITHMETIC TEST POPs

Arithmetic results and other machine conditions are tested by a group of three
test instructions. They all work by testing the condition specified by the
SOP field and setting the TSAT flip-flop if the test is met; the TOP field
(bits 13-17) is always placed in the RC register of the mini-engine. The
following points out the differences in the instructions: :

POP CODE POP MNEMONIC PRIMARY OPERATION
61 TA Test Arithmetic
65 TAE Test Arithmetic or Exit
75 TAW Test Arithmetic and enter

Wired-in-sequence.

TA - Will skip forward or back if TSAT is set on and will take the next
instruction if TSAT is off.

TAE- Will skip forward or back if TSAT is set on and will exit if TSAT
is off.

TAW- Will always add RC to RB (or subtract RC from RB); then WIS is

entered with TSAT setup and the operation is terminated like the
end of a fast transfer with LK7 of the C§TV on.

29

0 5 6 7 11 12 13 17

TEST SKIP
ARITH TEST + CONDITION + DISTANCE

BITS
0-5 POP: |—
6 TEST POLARITY: |

0 - Test for False

1 - Test for True I
7-11 SOP: Gives the condition tol

be tested for. See the

TA SOP LIST which follows. l
12 SKIP DIRECTION: I

0 - Forward: Add RC to RB

1 - Backward: Subtract RC from RB‘
13-17 SKIP DISTANCE: The number of mini—instructions|

to move forward or back from this one. I

NOTE: A skip of zero will execute the same test again.

Table 6. TA SOP Test Conditions

OCTAL SOP OCTAL SOP
CODE MNEMONIC CODE MNEMONIC
00 NO 40 YES UNCONDITIONAL TRUE
01 CF 41 CAR CARRY/BORROW FROM ZONED FIELD
02 CX11F 42 CX11 CARRY OR ELSE GOP 11
03 GI1F 43 Gl1 GOP 11
04 NZ 44 Z ZERO IN ZONED FIELD
05 N910F 45 N910 GOP 10 and NOT GOP 9
06 GOF 46 G9 GOP 9
07 G10F 47 G10 GOP 10
10 RNZ 50 RZ ZERO (IN BITS 3-10) OF RE REGISTER
11 FCF 51 FC FIRST CARRY IN ALG POP
12 GINF 52 GIN GIN
13 FOFF 53 FOF FLTG OVERFLOW RMQ OR FAC (2 GEN. IND.)
15 LSF 55 LS LIKE SIGNS IN B AND C
16 AQF 56 AQ AC Q BIT
20 ZX11F 60 ZX11 ZERO OR ELSE GOP 11
21 MSBF 61 MSB BIT O OF PE (MOST SIGNIFICANT BIT)
22 LSBF 62 LSB BIT 35 OF PE (LEAST SIGNIFICANT BIT)
23 EQUF 63 EQU PC EQUAL TO PB (Q & SIGN LOGIC)
24 LESSF 64 LESS PC LESS THAN PB (Q & SIGN LOGIC)
77 SAT PREVIOUS TEST SATISFIED

30

EXAMPLE 9. INDEX CONTROL TRANSFERS

Consider the four index control transfers with the following format:

0 2 3 17 18 20 21 35
+2, 3 INDEX DECREMENT VALUE INDEX FINAL TRANSFER ADDRESS
MENMONIC OP-CODE OPERATION PRECONDITIONS SET ON
TIX +2 Transfer on Index GEX
TNX -2 Transfer on no Index GEX, GOP 11
TXH +3 Transfer on Index high GEX, GIN
TXL -3 Transfer on Index low GEX, GIN, GOP 11
or equal

These instructions compare the value in the index registers specified by the
INDEX field to the decrement value and do a conditional transfer based on

the test result. The ''2" types also subtract the decrement from the index if
it is smaller.

These instructions all translate to group 1. The group 1 C&TV has LK's 1, 2,
and 3 off since the address does not modify and a memory operand is not used;
LK4 is set on to emulate a slow transfer. The code is below:

UrG Gr2C1 EXAMPLE 9 TLXyINX,ETL
VFD G719y 14/TX TIXyTuX,IXH,TXL C+TV

¥ o= = - = = - - - - o L - - %
ORG N/170u

TX X L=RyyGeX TeST LECR. LESS THAN Xi
TA CFy*x43 SKIP It DECR. NDOT LESS
X% R=Cy 5,6 SUBTRACT LECR, GEx + GIN
TAw GLLIF,TRAP TRANSFER IF TXhi OR TIX *
1w Glle1RAP TRANSSER IF TXL OUR Tnx *

b4

IRAP EgL %4273

EXAMPLE 10. Index Linked Transfer

Consider a transfer instruction which preserves the location counter (in twos
complement form) in a specified index register. It has this format:

0 11 12 17 18 20 21 35
+0074 INSTR. CODE 1111111117 TAG FINAL TRANSFER ADDRESS
MNEMONIC OP-CODE OPERATION
TSX +0074 TRANSFER and SET INDEX

“The TAW Skips should point to the transfer trap routine if transfer trapping
is being emulated; See Section III.

31

This instruction translates into group 7 with the following MINIFLOW coding:

ORG (11201 EXAMPLE 1G TSX
VED 4/1514/T5x TSX C+Tv
£ = = = = = = = - - B
LR L/ 150
TSX IC Ry LDC LOAD ThE 1C INTO C
XR NCHD S STGRE 29S COMP. Tu INDEX
TAw YES,TKAP UNCONOITIONAL TRANSFER

EXAMPLE 11. Storing Indexes

Consider the four instructions to store index registers into memory with the
following format:

0 11 12 17 18 20 21 35
+063x INSTR. CODE ///1/1111717/771/// TAG FINAL OPERAND ADDRESS
MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON
SXA +0634 Store Index in Address GIN
SXA -0634 Store Index in Decrement GEX,GIN
SCA +0636 Store Complement in Address none
SCD -0636 Store Complement in Decrement GEX

These instructions store the true value of 2's complement of the index speci-
fied by the INDEX field into the address field or the decrement field of the
addressed memory word. The rest of the memory word is not changed.

These instructions all translate to group 63. The C&TV has LKs 1 and 2 off
since there is no address modification. LK3 is also off since GEX control is
not effective during operand fetch in WIS; and GEX control is useful while
fetching the operand to control accessing the address or decrement field. The
emulation code is below®

GRG /2635 cXAMPLE 11 SXAy53XDyce il
VFTI 13/Sx SXAySKXD,SCAySCD C+TV
S
URG /2500
5X ME M Dy SRCHyGFX LUAD (Y)y SWAP 0ON DECR.
AR Ry LDC JUNE [N THE INDEX VALUE
PC NC+lyel =35, uiN COMPLEMENT UNDLER GIH
Me N [ySWC 67 STURE UNDER GEX AND EXIT

*The TAW Skips should point to the transfer trap routine if transfer trapping
is being emulated; see section TII.

32

EXAMPLE 12. Sense Indicator Logical Instructions

Consider the instructions to test and manipulate the Sense Indicators with the
following format:

0 11 12 17 18 35
+005x INSTR. CODE 1111117711177/ INDICATOR OPERATION MASK

MNEMONIC OP-CODE OPERATION PRE-CONDITIONS SET ON

RZT +0050 Right - Indicators all Zero Test ----

LZT -0050 Left - Indicators all Zero Test GEX

IIR +0051 Invert Indicators - Right GOP11

IIL -0051 Invert Indicators - Left GOP11,GEX

LIR +0052 Load Immediate - Right GOP10

LIL -0052 Load Immediate - Left GOP10,GEX

RFT +0054 Right - Indi~ators Off Test GOP9

LFT -0054 Left - Indicators Off Test GOP9, GEX

SIR +0055 Set Indicators - Right GOP9, 11

SIL -0055 Set Indicators - Left GOP9, 11, GEX

RNT +0056 Right - Indicators on Test GOP9, 10

LNT -0056 Left - Indicators on Test GOP9,10, GEX

RIR +0057 Reset Indicators - Right GOP9,10,11

RIL -0057 Reset Indicators - Left GOP9,10,11 GEX

These instructions will load immediate data i.e., the mask field into the left
or right half of the indicators; or they will selectively turn on, turn off,
toggle, test for zeros or test for ones either the left or right half of the
sense indicators, using the right half of the object instruction as a mask.

They all translate into group 5. The symmetry is such that all 12 instructions
are emulated by the 6 mini-instructions below:

URG /20 cXAMPL . 12 LFT,5IRyITE
VED Lo/ T ST TEST Anb CUONTRIL CeTV
¥ o= = = - = - - - - - - - - - ox
URG L/71C»0
11C SI HaLUn»GFX LUAD SI, SWAP IF LEFT
PB {0Lylo=-39 PO ZONED LOGICAL UPEFR.
TA Cl1F ,*+2 SKIP I+ TEST InNSTRUCTIU!N
S EaSyifx STORE U~NDER GEX AND ExIT
Ta NILC,y %=1 PUT MM DLATE DATA IN S|
TAF Ly %+ TLST kALSE-FXIT
1C F+lypS,EXIT TEST TRUE - BUMP tCyEXIT

33

POP MNEMONIC POP CODE OPERATION

LIB 14 Load Immediate to B
LIC 15 Load Immediate to C
LID 17 Load Immediate to D
0 5 6 11 12 13 17
LOAD 6 BIT
IMMEDIATE DATA FIELD |CL| ZONE CONTROL
BITS
0-5 POP: |
6-11 SOP: The 6 bit binary
pattern broadcast onto l
the bus.
12 CLEAR BIT: If one, the unzoned part of|
the register will be reset.
13-17 TOP: A main engine zone code which gates the |

broadcast pattern into the register (Table 5) |
Load Address

Registers B and C may be loaded with the entire mini-instruction in the right
half (bits 18-35) and zeros in the left half (bits 0-17). These POPs are:

POP MNEMONIC POP CODE OPERATION
LAB 10 Load B with 00000010xxxx (octal)
LAC 11 Load C with 00000011xxxx (octal)
0 5 17
T
LOAD !
ADDRESS I DATA TO BE LOADED
BITS L
0-5 POP:
0-17 PATTERN: 18 bits to be placed into the low half

of the register, high half is cleared.
SHIFT - SHIFT IN MAIN ENGINE 66
Skipping, Multiplication and Division are done with the SHIFT instruction. The

SOP controls the type of shift and the participating registers. The TOP
controls the extent of the shift except as noted on the following page.

34

0 5 6 7 11 12 17

SPECIFIC
66 SHIFT GIN SHIFT SHIFT COUNT

BITS
0-5 POP: |—
6 FLAG: Inhibit register

shifting if GIN is on.
7-11 SOP: Specifies the Shift |

operation. |
12-17 TOP: A shift count specifying the number of bit

positions to shift (0-76); however 77 specifies

that the present contents of the RC is to be used
for the shift count.

SPECIAL NOTE: With the BD-N SOP, the shift count is placed in RC and is incre-
mented until a one bit shifts into bit position 9 of the B
register to terminate the shift. With the DOS SOP, the shift
count is taken from bits 28-35 of C in the main engine.

Table 7. The Shift SOPs

SOP CODE MNEMONIC NOTE SHIFT DESCRIPTION

02 B-L Open Shift B left

03 B-R Open shift B right

22 C-L Open shift C left

23 C-R Open shift C right

04 D-L Open shift D left

05 D-R Open shift D right

12 D-ROT Rotate D left, fill right end with left
end bits

06 BD-L Open shift B and D together left

07 BD-R Open shift B and D together right

26 CD-L Open shift C and D together left

27 CD-R Open shift C and D together right

10 DIV 1 Divide B and D by C

11 MULT 2 Multiply C by D into B and D

16 BD-LF Floating shift Bm and Dm together left

17 BD-RF Floating shift Bm and Dm together right

14 BD-N 3 Normalize shift Bm and Dm together

32 BD-L9 4 Conditionally shift Bm and Dm together
left

33 BD-R9 5 Floating shift Bm and Dm together right
and insert one

30 FDIV 1 Floating divide Bm and Dm by Cm

31 FMUL 6 Floating multiply Cm by Dm into Bm and Dm

20 DOS Do the shift specified by precondition

controls. See Table 8.

35

Table 8. The DOS Operation

GOPS
SEE

9 10 11 NOTE SHIFT PERFORMED
0 0 0 Perform no Shifting
0 0 1 D-ROT Rotate D left (as SOP 12)
0 1 0 B-R Open Shift B right
0 1 1 B-L Open shift B left
1 0 0 BD-R 7 Open Shift B and D right
1 0 1 BD-L 8 Open Shift B and D left
1 1 0 BD-R Open Shift B and D right
1 1 1 BD-L Open Shift B and D left

The shift count is taken from register C in the main engine.

NOTES

1. Set sign of D to the algebraic sign of the quotient (EXCLUSIVE OR
of B and C signs); also set PDCK general flip-flop* if C is less
than B initially. The quotient is right justified in D with a
length equal to the shift count.

2. Set signs of B and D to the algebraic sign of the product (EXCLUSIVE
OR of C sign and initial D sign). The product is left justified in
B and D with a length equal to 36 plus the shift count.

3. The normalize SOP loads the shift count to RC. Bm and Dm are
shifted left until a one bit moves into bit position 9 of B; RC is
incremented by one for each position shifted. If there is no one
bit in B(9-35) or in D(9-35) the machine will hang.

4. Shift only if bit 9 of B is zero; use a shift count of one.

5. A one bit is inserted into bit 9 of B; use a shift count of one.

6. Set signs of B and D to the algebraic sign of the product (EXCLUSIVE
OR of C sign and initial D sign). The product is left justified to
bit 9 and is in B(9-35) and D(9-35); its length is equal to 27 plus
the shift count.

7. The B sign replaces the D sign.

8. The D sign replaces the B sign.

*To MINIFLOW, the PDCK flip-flop set on signifies a divide check has occurred.
Refer to the general flip-flop tests.

36

EXAMPLE 13. Emulation of Shifts
Consider these Shifts with the following format:

0 11 12 17 18 20 21 27 28 35

#07xx INSTR. CODE /I11111171117111| TAG | ///////////] SHIFT COUNT

MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON
NOP +0761 No operation GIN
RQL -0773 Rotate MQ left GIN,GOP 11
ARS +0771 Accumulator Right Shift GIN,GOP 10
ALS -0777 Accumulator Left Shift GIN,GOP 10,11
LRS +0765 Long Right Shift ARI,GOP 9
LLS +0763 Long Left Shift ARI,GOP 9,11
LGR -0765 Logical Right Shift GIN,GOP 9, 10
LGL -0763 Logical Left Shift GIN,GOP 9,10,11

These shifts work in the following manner:

NOP - Do nothing
RQL - Shift the MQ left; bits shifted out of MQ(0) move into
MQ(35)

ARS/ALS - Shift the AC(Q,P,1-35) to the right or left. Zero bits are
shifted in; one bits shifted left into the P position turn
on the overflow flag.

LRS/LSS - Shift the AC(Q,P,1-35) and the MQ(1-35) coupled together to
the right or left. Zero bits are shifted in and one bits
shifted left into the P position turn on the overflow flag.
Put the AC sign in MQ(0) if LRS; put MQ(0) into the AC sign
if LLS.

LGL/LGL - Shift the AC(Q,P,1-35) and the MQ(0-35) coupled together to
the right or left. Zero bits are shifted in; one bits shifted
left into the P position turn on the overflow flag. The signs
are unchanged.

These instructions all translate into group 77. LK1 is set in the C&TV to
allow only indexing the shift count in register C. The emulation code follows:

CRE us/27/¢ EXAMPLE 13 ALL SHIFTS
VFD /13 L7/7SHIFT SHIFT C+TV

LR - = - - - e *
(<G L/ 7%Ju

StlFT M Ky LDD LUAD THI Mg TO D

SHIFT U=LylyGIN CLOSE MG STIGN VAP IF AR
SHIFT s PERFNRY THI SHIFT INST«.
SHIFT U=k LyGIN GPEN ™0 SIGN GAP iF AR
My Gy S RcTURN THE My
e BeSetXIT RETURN THE AC aND FXIT

37

TEST GENERAL FLIP-FLOP POPs

A set of general indicators may be tested and controlled by a group of five
general flip-flop test instructions. They are similar to those described
under Arithmetic Test POPs; that is, TSAT is set by the test condition and the
TOP field is placed in RC. If TSAT is off RB+1 goes to RB, i.e., no skip;

if TSAT is on then RB+RC goes to RB, i.e., skip.

POP CODE POP MNEMONIC PRIMARY OPERATION
60 TG Test and skip if on, no skip if off
64 TGE Test and skip if on, exit if off
71 TGF Test and skip if off, no skip if on
70 TGS Test and skip if on, no skip if off
74 TGR Test and turn off and skip if on,
no skip if off.
0 5 6 11 12 13 17
GENERAL F/F F/F TO BE SKIP
TEST TESTED + DISTANCE
BITS
0-5 POP: |
6-11 SOP: Gives the general flip-flop
to be tested. See the SOP list
which follows.
12 SKIP DIRECTION: |
0 - Forward: Add RC to RB
1 - Backward: Subtract RC from RB
13-17 TOP: The number of mini-instructions to |

move forward or back from this one.

There are 32 general purpose flip-flops which may be assigned any functions

which have the following SOP codes: 04, 05, 07, 10, 11, 12, 13, 15, 17, 20,
21, 23, 25, 26, 27, 31, 33, 35, 37, 41, 43, 45, 47, 51, 53, 55, 57, 61, 63,

65, 71 and 75. ’

Seventeen general flip-flops which also drive console indicator lamps with
specific labels are:

Table 9. TG SOP Test Flip-Flops

SOP CODE MNEMONIC NOTE SPECIAL PURPOSE
52 SL1 Sense Light 1
54 SL2 Sense Light 2
56 SL3 Sense Light 3
50 SL4 Sense Light 4
30 DCK Divide Check
36 10C Input/Output Check

38

Table 9. (Cont.)

SOP CODE MNEMONIC NOTE SPECIAL PURPOSE
44 TCKA 1 Tape Check Error - Channel A
46 TCKB 1 Tape Check Error - Channel B
32 TCEA Tape Check Enable - Channel A
22 TCEB Tape Check Enable - Channel B
06 EOFA 2 End of File - Channel A
14 EOFB 2 End of File - Channel B
34 CTEA Command Trap Enable - Channel A
24 CTEB Command Trap Enable - Channel B
70 TCN Trap Control
40 TRAP 3 Transfer Trapping Enabled
60 MTM 4 Multiple Tag Mode

Nine general flip-flops which are directly controlled by switches or may be
set by means other than the TGS POP are:

SOP CODE MNEMONIC NOTE SPECIAL PURPOSE
00 SSwW 5 Sense Switch Tests
72 PDCK Predivide Check - May be set by
SHIFT Divide
16 DCTM Divide Check Trap Mode - A console
switch
74 CON 6 Console Request
42 DIS 7 Display
76 CIF Current Instruction Display
switch is OFF
62 FMQ 8 MQ factor exceeded
64 FPO 8 Floating Point Overflow
66 FAC 8 AC factor exceeded
Six SOP codes which when tested, will always be off are: 01, 02, 03, 67,
73 and 77.
NOTES
1. The Channel A Tape Check Error General Indicator (44) is turned

off when the Channel A Tape Check Enable General Indicator (32) is
off and a TRANSFER ON CHANNEL A REDUNDANCY CHECK (+0022) is processed
as an object instruction with LK7 on (fast transfer control). Also
TSAT is set on if Indicator 44 was on and 32 off.

The same reset logic applies to Channel B; i.e., indicator 46 is
turned off if indicator 22 is off when the object instruction -0022
is processed with LK7 on; also TSAT is set on if indicator 46 was on
and 22 off.

The Channel A end of file General Indicator (06) is turned off when
the Channel A Command Trap Enable General Indicator (34) is off and
TRANSFER ON CHANNEL A END OF FILE (+0300) is processed as an object
instruction with LK7 on. Also TSAT is set on if Indicator 06 was
on and 34 off.

39

The same reset logic applies to Channel B, i.e., indicator 14 is
turned off if indicator 24 is off when the object instruction -0030
is processed. Also, TSAT is set on if indicator 14 is on and 24

is off.

This flip-flop enables the Transfer Trapping Mode discussed in
Section IIl under Trapping.

This flip-flop enables the Multiple Tag Mode explained under
Special Mode Control Flip-Flops.

The specific Sense Switch tested, of the 6 on the console, is deter-
mined by bits 0-2 in the D register at the time of testing.

Any of the console request interrupt switches will turn on the CON
flip-flop as the scheduler honors the request. These are: The
console timer, the console reset, the clear core, the display switch,
the enter keys switch, the load tape switch or the load card switch.

Display is set when any one of the following display conditions
occur:

a. A register is altered which has its corresponding console
display switch down.

b. An instruction is fetched for emulation and the Current Instruc-
tion Display Switch is down.

c. A memory cell is altered which has that memory's display switch
down and the memory address corresponds to the Address Keys on
the console.

In each of these cases when the display flip-flop is set it also
loads the Display Register with the new data.

The MISC POP (as explained in Section III) may conditionally set
these indicators on; however, they may only be turned off by the
TGR POP.

The conditions to turn on these General Indicators and the results
of these conditions are shown in Table 10. NC indicates no change.

Table 10. General Indicator Conditions and Results

CONDITIONS GENERAL INDICATOR
AND SPECIAL TEST RESULT

MISC PE ENG
SOP P BIT Q BIT FMO FPO FAC
FOFA 0 X NC NC NC
FOFA 1 0 NC ON ON
FOFA 1 1 NC NC ON
FOFQ 0 X NC NC NC
FOFQ 1 0 ON ON NC
FOFQ 1 1 ON NC NC

L0

The TA POP with FOF SOP will also test for logical OR of general
indicators FMQ and FAC.

EXAMPLE 14. Fixed Divide
Consider DVP, a Divide object instruction which has the following format:

0 11 12 14 17 18 20 21 35

+0221 INSTR. CODE I17////7// TAG BASIC OPERAND ADDRESS

This instruction divides the AC and MQ registers by the signed memory operand.
The signed 35 bit quotient is placed in the MQ and the Signed remainder is
placed in the AC. If the magnitude of the AC is greater than the magnitude
of the divisor, the division is not performed. Instead the divide check
indicator is turned on and the computer proceeds to the next instruction.

CRG L/222 EXAMPLE 14 Lvp
vED 371,15/7D1v UlviGe C+Tv
Hom e e e e e e e m e e - *
RS Cl/204éc
Ulv W] RyLDD LAl ek My To D
SHIF I L=Lysl CLESE ~Q SIGN 31T 5AP
SHIFT IV 3S PERFOURM THE DIVISIUN
TLR POCKL,LVCK SCIP IF DIVIDE CHiCk
SHIFT E-Ry 1 UPLN wy SIGH ©vlIT AP
Mg D95 STURE QUOTIENT IN MQ
AC 29SecXIT STURE REMAINDER AnD ELIT
¥ NOTE- THU CODL NEEDN'IT =L CONTIGUOUS HERE
URG *tb
DVYCK 1GS DCKy x+] St T DIvIDE CHoCK FLAG TN
CXIT EXIT FLK DIVIDE CHFCK
ulCK DIER L/ 30
POCK LGl L7172

MAIN TO MINI POPs

The Mini-Engine Registers are aligned so that the least significant bits
correspond to Bit 35 on the Bus. Virtual zeros exist in bit positions to the
left of the Most Significant bit in a mini-engine register. Communication of
Data between the Main Engine and the mini-engine is accomplished by 3 mini-
instructions. Zone control is only effective with the Load SOPs when data is
read into the Main Engine from the Mini-Engine. The Main Engine SOPs generate
data and send it to the Mini-Engine with the following implicit zone control:

POP POP Sop AFFECTED ZONE
CODE MNEMONIC TYPE REGISTER CONTROL
56 RB (note 1) Load Specified by SOP Specified by TOP
Engine NONE NONE
42 RC (note 2) Load Specified by SOP Specified by TOP
Engine RC 30-35
46 RD Load Specified by SOP Specified by TOP
Engine RD 25-35

L1

0 5 6 7 11 12 13 17

ENGINE
MAIN-TO-MINI GEX| OUTPUT XT ZONE CONTROL
BITS
0-5 POP: |
6 FLAG: GEX allows communi-
cation with the left half
of the Main Engine.
7-11 SOP: A load SOP (Table 2) will
load the Main Engine from the
Mini-Engine with zone control.
A main engine SOP (Table 3)
will load the adder output
into RC (6 bits) or RD (11 bits).
RB may not be loaded. See Note 1.
12 Flag: EXIT}
13-17 TOP: Standard zone control (Table 5) applies for
Load SOPS only; however, the exponent zone is treated

specially for the RC POP. See Note 2.
NOTES

1. The RB POP only sends data to the Main Engine with a Load SOP. The
Main Engine SOPS are not effective.

2. The RC POP has a special data path to move eight bits between RC
and Bits 01 to 08 of the Main Engine. This path is enabled by the
00-08 zone control (TOP 35). The path is enabled for both load
SOPS and Main Engine SOPS and is not affected by GEX control.

In addition the RC POP sets the Zero, B and LSB test
flip-flops.

EXAMPLE 15. Variable Length Divide

Consider VDP, a Variable Length Divide object instruction with the following
format:

0 11 12 14 17 18 20 21 35

+0225 INSTR. CODE I | COUNT TAG BASIC OPERAND ADDRESS

The VDP works the same as the DVP explained in the preceding example except
that the length of the Quotient is determined by the count field (bits 11-17)
rather than assumed to be 35. If the count is zero no operation takes place;
otherwise, the C length quotient is right justified in the MQ and the least
significant part of the remainder is in the left end of the MQ. The sign of
the quotient is still in MQ(0).

42

This instruction also translates to group 22 with ARI, GEX, GOP 11 and GIN
set on. In the following MINIFLOW both VDP and DVP are emulated, notice that
the divisor is not loaded in WIS.

ORG /7222 EXAMPLE 1o CvP,vCP
VED 3/76,1/01v DIVIULGL C+1v
L D . -
URG u/22z2?
Dlv Mg RyLDD LUAD THE MQ TO D
SHIFTY U-L,1 CLuSt ™My SIun BIT GAP
TA GINF R f IXcL SKIP IF FIXED LENGTH DLV
PE Lel2-17 TEST iviue CCUNT FleLl
TAR NZ g %42 EXIT Un ZERD CUUNT FIELD
FIXeD LIC 43,12-17 LUAG A FIXED CUUNT OF 25
RC Corll2-174-t 4 MUVE CUUNT FIeLD TO RC
ME M C 9 SR LuAD THE IVISUR
SHIFT LIV,RC LG THe LIVISIUN
THR FUCK s BVCK SrIP I F DIVIDE CHeCK
SHIFT U-Ry 1l OPEN rw SIGN BIT waAP
Mig 09 S STURE WUUTTIENT N MQ
nC ReSyKIT STURE RrMAINDER AND RXIT
OVvCk TLS HEKy %+ 1 SeT DIVIDE CHECK FLAG N
EXLT LXIT Pk LivICL CHECK

The programmer should be aware of certain principles illustrated in this
particular example. One is that the test for zero count could be set up by the
RC without the use of the PE. But inserting a skip test after the RC would
destroy the RC contents so it would have to be reloaded anyway. Another point
is that the divisor was not loaded to C in wired-in-sequence because the count
field needed to be loaded into RC from either C or D. If loaded from D it

must precede loading the MQ into D, but the MQ must be preshifted one bit and
the preshift would destroy the count being held in RC.

An alternative solution might involve loading the divisor in wired-in-sequence,
separating the fixed and variable length division, saving the variable length
count in RD while preshifting the MQ then moving it into RC with a MINI POP as
described under Mini-Engine Operations.

EXAMPLE 16. Comparisons

Consider four comparison instructions with the following formats:

0 11 12 14 16 18 20 21 35
+0340 INSTR. CODE L \//7/17117] TAG BASIC OPERAND ADDRESS

0 11 12 14 17 18 20 21 , 35
-01x4 INSTR. CODE I | COUNT TAG BASIC OPERAND ADDRESS

43

MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON

CAS +0340 Compare AC with Storage ARI
LAS -0340 Logical Compare AC with Storage
VAS -0154 Variagle Length Logical Compare AC
with Storage GEX
TAS -0114 Variable Length Intersect AC with
Storage GEX,GIN

These instructions compare the contents of the AC to the contents of the mem-
ory location. CAS makes the comparison taking the signs into consideration
(both AC sign and YO). LAS compares the magnitude of the AC to the unsigned
memory operand (bits 0-35).

VAS logically compares the most significant portions of the comparands. The
bit length of the comparison field is determined by the count ficld of the
instruction.

IAS tests for any corresponding bits in the AC and the memory operand (i.e.,
the intersection). The fields tested start at bit 0 and have a length equal
to the count field value in the instruction. :

If the AC tests greater than the memory operand (or they have corresponding
bits in the test field for IAS) the computer executes the next instruction and
proceeds from there. If the AC tests equal to the memory operand (or there are
no corresponding bits in the test field for IAS) the computer skips the next
instruction and proceeds from there.

1f the AC tests less than the memory operand the computer skips the next two
instructions and proceeds from there.

CAS and LAS translate to Group 34. VAS and IAS translate to Group 15. The
following code performs the comparisons:

iRty (/21> EXAMPL; 16 CASyVAS,ETL
VFL 3/ 09157 V0Le VARI=LENGTH COMPARE C+Ty
CKO /234
viD 371,15 /C08 CUMPARE (+TV
P
CRC 073303
VLC LI (i LUAD = wITH AL 1's MALK
~C CoalozX LUAD RL wlITH COUNT FI-LU
SHIET F=Ry R GENERAT+ MASK UF ZERUOS
PC NH.C MASK GLFF MEMORY 0P TRANL
AC RaNB,LDB MASK AL INT. B
TA GINF ,CNM SKIP [F VARI-LENGTH COMP
Pr 3.C TFEST Fux IxTEkotCT L
TAE Ly ¥+ EALIT N INTLRSECTING L'y
IRREN PL B=C,00=-3> COMPAR. AC TU ™MLMURY
TA EQUy%¢3 SKIP IF LQUAL
TAL LESS ExLT IF AC CReATER
1C R+l vJMP 2 I+ AC LFSS
1€ «tlyoeF Xt T BUMP 1 If AC riUAL,y EX.]

uy

EXAMPLE 17. Range Comparison

Consider an instruction to compare two numbers and treat them equal if the
N most significant bits of their difference is zero; where N is a range
specified in the instruction count field. The format is as follows:

0 11 12 14 17 18 20 21 35
+0312 INSTR. CODE 1 | COUNT TAG BASIC OPERAND ADDRESS
MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON
RAS +0312 Ranged Compare AC with Storage ARI,SUB

The N (value of count field) most significant bits of the difference of the
AC (bits P to 35) and the signed memory operand are examined as a comparison
result,

If the comparison result is greater than plus zero, the computer takes the
next sequential instruction.

If the comparison result is zero the computer skips the next instruction and
proceeds from there.

If the comparison result is less than minus zero, the computer skips the next
two instructions and proceeds from there.

RAS translates to group 31. The MINIFLOW coding follows:

URG /231 EXAMPLE L7 RAS
VFC 3/T9L9/RAS RANGE CUMPARE C+Tv

HF = - = = - - - . - - - - - - X%
LREG U/3343

JKAS ALG 5=C90C=-35 ALGFERAIC CIFFERENCF
LIC 7? Lualb MASK GF ALL UNCS
SHIFT =Rylo MUVE COUUNT FIFLD TOC ALLR
wC L MOVE COUNT FIebLD 16 RC
SHIFIT L=RyRC LR 3 STGNIFL. MASK GITS
Pt 3eNC TeST SILNIFICANT BITS
TA Ly¥*+ 3 SKIP ON SIGHNIFICANT ZERD
TAE LESS FXLIT SN AC GREATLRK (+B)
ic R+1,y5 BUMP < UN AC LESS (-1)
ic RtlyosbEXIT BUMP | IF EQUAL AND FExIT

4

L5

TRANSFER POPs

There are two types of unconditional program sequence transfers for MINIFLOW.
One is used to enter the Subroutine Mode Control and Transfer.

POP CODE POP MNEMONIC OPERATION
16 TRU LOAD RB with bits 7-17 of mini-instruction
76 SMCT Load RD with RB+1, load RB with bits 7-17 of mini-

instruction, and set the subroutine mode
flip-flop on.

0 5 6 7 17

TRANSFER MB2Z MINIFLOW TRANSFER ADDRESS

POP: |

MUST BE ZERO |—

MINIFLOW Transfer Address |

NOTE

When the Subroutine Mode Control flip-flop is set on, then the
exit condition, instead of returning to the scheduler, will cause
a return to the main MINIFLOW program sequence from the subroutine.
This return is accomplished by loading RD into RB and turning off
the Subroutine Mode Control flip-flop.

MINI - MINI ENGINE OPERATION 02

The Mini-Engine may be controlled directly by MINIFLOW to perform arithmetic
and data movement in the RB, RC and RD registers. The SOP defines the mini-
engine operation and the TOP specifies the data movement.

0 5 6 7 11 12 13 14 15 16 17

02 mini * | MINI ENG OP XT{ *{XO|RB{RC|RD
BITS
0-5 POP: |
6 NOT USED
7-11 SOP: Specifies the mini-enginel
operation performed
12 Flag: EXIT |
13 NOT USED |—
14 CROSSOVER: Steers the SOP results over to
the RD side of the mini-engine and the RD
over to the Adder side. See Note 3. I
15 ENABLE RB: Places the SOP results (or RD if
crossover) into RB
16 ENABLE RC: Places the SOP results (or RD if|_
crossover) into RC !
17 ENABLE RD: Places the SOP results into RD if crossover |
(bit 14) is on.
Table 11. Mini-Engine SOPs
SOP CODE MNEMONIC NOTE MINI ENGINE ADDER OUTPUT
00 ZERO All bits are zero
30 RB 1 Contents of RB
31 RC Contents of RC
34 RB+1 1 Contents of RB plus one
35 RC+1 Contents of RC plus one
14 RB-1 1,2 Contents of RB minus one
15 RC-1 -Contents of RC minus one
16 RB-RC 1 Contents of RB minus contents
of RC
36 RB+RC 1 Contents of RB plus contents
of RC
NOTES
1. The value in RB is the mini-location of the current mini-instruction

plus 1, i.e., the next mini-location,.

47

2. If RB-1 is placed in RB the same mini-instruction will be executed
again. This gives a dynamic halt in MINIFLOW unless the EXIT bit is
on, then the exit is taken. If RB-1 is sent to RD with the exit bit
on MINIFLOW will exit to the scheduler. This occurs whether or not
MINIFLOW has entered the subroutine mode.

3. RD is loaded into RB or RC by setting crossover on, bit 14, and
having RB bit 15 or RC bit 16 on. The Adder output is loaded into
RD by setting the crossover on and having RD bit 17 on.

The RZERO test flip-flop is set on a mini-instruction. The Adder
output is tested for zero if crossover is off and the contents of RD
is tested for zero if crossover is on,

EXAMPLE 18. Unpack

Consider a pair of UNPACK instructions. Both will take 9 bit bytes stored four
to a word out of a string of consecutive words in mamory and unpack them from
left to right storing them right justified one byte to a word into another
string of consecutive words in memory. The difference between the two instruc-
tions is one zeros out the leftmost 27 bits of the put away words and the other
leaves the leftmost 27 bits undisturbed. These instructions have the

following format:

0 11 12 14 16 18 20 21 35
-073x INSTR. CODE I |//|BYTE TAG BASIC BYTE MOVE COUNT
MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON
UPKZ -0730 Unpack into zeros GEX,GIN
UPKI -0732 Unpack and insert GEX

These instructions will unpack N BYTES into N consecutive locations where N

is the value in the instruction address field after address modification (index-
ing and indirect addressing are both allowed). The address of the AC holds the
address of the string of words to receive the unpacked bytes. The decrement

of the AC holds the address of the string of words to be unpacked; and bits 16
and 17 of the instruction indicate which byte of the first word is to be the
beginning of the byte string. Thus 00 in bits 16-17 starts with the left most
byte and unpacks all bytes of the first word; while 11 in 16-17 would start
with the right most byte and only unpack that byte before going on to unpack

the next word.

Both UPKZ and UPKI translate to Group 73. The following code performs the
unpacking:

TR R EAAMPLL 14 UNPALX
vFUL 3/6415/0PF UNPACK (1Y

X e - e e m = = e = = = = - = %
1:R15 G/ 340

LPK Pi Le21-145 TEST PG ZL0 MOVE COUNT
TAF N{ FXIT i MOve COUNT ZeRC
PR B+Cyl1-3% ADL CuunT TO PUT AaDDRLSS
R beS PICK AU PUT ADBR. Ti R4

L8

tNTRY?3

ENTRY?

ENTRY1

EYTEQ
BYTEL
nYTEZ2
BYTE3
NEXT

o
-~

PB
MEM
PB
PC
LiB
RC
PR
MINI
SMCT
TRU
SHIFI
TRU
SHIFT
TRU
SMCT
SMCT
SMCT
SHCT
R4
R&
MLMm
TRU

THE FOULLOWING

INSERT SHIFT

TA
ML M
P
MM
PC
TAE
FXIT

LDB
By SRD
C
B+Colo-17
O6412-17
BeNCyoGEX
/EROL
KB+RC,RB
INSERT+1
NEXT
U-ROI1,18
BYTE2
U-RGT,9
BYTEL
INSERT
INSERT
INSHERT
INSERT
R+1,LDDyLeX
LeSytbX
iy SRU
BYTEC
{S Tht
L=RUTy 4

GINy%+?2

Ly27-35
R4—~CySWR

C-1,21-3»

4

INS

PICK ADDR. TO 8B ADDRESS
FIRST PACKED wURD INTC D
COUPY INSTRUCTIUN INTU &
DOUBLE 1ST BYTE ADDRESS
PLACE YTE ADD MASK IN &
LCAR SKIP DISTANCL TO ®C
LeRDO 1 FUR UNPK Tu ZERy
SKIP TO BYTE ENTRY PUINT
SPECIAL BYT+ 3 ENTRY
FrTCH NcXT PACKED wORD
PRESHIFT BYTE 2
STOURE nYTe 2
PRESHIFT BYTE 1
STORL aYTg 1
STOURE “YTE 0O
STORL uYTF 1
STORE RYTE 2
STURE YTt 3
LOAL AND INCRe ACDRESS
RESTURE ADDRESS TU R4
LOAD O WITH UNPACK wORL
STURe WNEXT U
ERTION SUBROUTINE
POUSITILOV BYTF TG INSERI
SKIP IF UNPACK INTC ZU®R#
LUADL PUTAWAY wURD 10 #
[INSERT RrYTE
STULRE PUTAWAY WCRU
VECREMENT THE MOVE COUNT
SUBRUUTINE EXIT I+ MORL
FINAL £XIT TO SCHeLDULSR

Since there are several new techniques introduced in this example it would be
well to point out some of these directly.

1.

The original count value is added to the putaway address before
storing in R4; thus, when the putaway address is used to address
memory in the subroutine, the count is subtracted from it, giving the

first putaway address initially.

The same instruction that decrements

the count (towards zero and a final exit) also effectively increments
the putaway address.

The first byte specification field is transformed into an index value
stored into RC and used in a mini-instruction to skip and preprocess
the proper byte.

The first preprocessing for byte 3 enters the subroutine at "INSERT+1"
to avoid shifting since the byte is already positioned for storing.

Rather than keeping a loop count for four bytes, four sequential
SMCT instructions to the insert subroutine serve as an economical and
easy way to keep track of a low count iterative process.

L9

5. The Pickup Address for the words to be unpacked are in the decrement
field but must be used out of the address field and must be incre-
mented for each new word. The R4 instruction at ''mnext' uses GEX
control to bring the decrement field to the address position and
increment it. The LDD TOP causes the incremented decrement to be
stored in the address of D.

6. This object instruction emulation is terminated when the count goes
to zero. Since the count is decremented and tested in the INSERT
subroutine, this subroutine must either exit back to the calling
sequence if the count is not yet zero, or exit to the scheduler if
the count goes to zero. This is accomplished by a conditional exit
from the subroutine followed by an unconditional exit to the sched-
uler (see note 2 in the preceding writeup on the MINI instruction).

EXAMPLE 19. Additive Indexed Store Index Instructions

Consider a set of instructions to insert the index into either the address
field or the decrement field in either true value or complement value. The
following format and op-codes will be used:

0 11 12 15 17 18 20 21 35
+053x INSTR. CODE I |/| INDEX TAG BASIC OPERAND ADDRESS
MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON
IXA +0531 Insert Index in address none
IXD -0531 Insert index in decrement GEX
IXCA +0532 Insert complement in address GIN
IXCD -0532 Insert complement in decrement GIN,GEX

Also assume that, for the purposes of illustration, indexing is ADDITIVE in
this object machine. In this type, the index value is added to the address
field; since the IC-M9 does subtractive indexing in its WIS, the indexes will
be held in their registers in complement form.

These instructions will then wish to complement the index value on storing for
the ''Store True' and store directly for the 'Store Complement'. These instruc-
tions are indexable and use the tag field for indexing and bits 15 to 17 to
specify which index to store.

These instructions all translate to group 53; the following MINIFLOW provides
the emulation.

50

GRG (/253 LXAMPLE 19 XA, XD, ZTC

VFD 3/6915/1KX INSERT INLEX C+TV

X = = = = = = = = = - =~ = - %
URG /1600

IX ME M CySKH,GEX LOAD wilRD TO 8 WITH GEX
SHIFT 1=Ry 3 MuVE TWDEX SPEC. TU Tao
XR ReblUn INSERT INUEX INTO B
PR NB+1,4321-39%,01N COMPLEMENTY [F YTRUE®
M= e LeShnyGE STORE wiTH LEX AN EXII

EXAMPLE 20. Cumulative Index Concept

Considering an idea similar to the Multi-tag mode except instead of ORing the
multiple indexes together it ADDS them together before modifying the address
value. This could be accomplished by maintaining the cumulative sums in index
3, 5, 6, and 7. Whenever an index was to be changed it would also change the
"cumulative' indexes associated with it; for instance if XR2 changes XR3, XR6
and XR7 would also be appropriately changed.

This mode of indexing is called the Cumulative Index Mode. A special Instruc-
tion would be used to turn it on or off by setting a general indicator called
CXM. This same instruction would save indexes 3, 5, 6 and 7 in control core
and turn on the CXM flip-flop and generate the cumulative values into 3, 5, 6
and 7 when entering the mode. It would restore the original single index
values from control core and turn off the CSM flip-flop when leaving the mode.

The means to accomplish this is left as a student exercise; however, the next
example may be of some help.

EXAMPLE 21. Additive Indexed Load Index - Cumulative

Consider a set of instructions to load the indexes from an immediate value or
from a word in memory. These instructions are themselves indexable so that on
the Load Index Immediate the address and the tagged index are combined and
loaded into the specified index. If these indexes are the same, then incre-
menting or decrementing will take place since additive indexing is used. If
indirect address is used with LIX, Post indexing is effective on the indirect
address value. We will use the following format and op codes:

0 11 12 15 17 18 21 35
+063x INSTR. CODE I / INDEX TAG BASIC OPERAND ADDRESS
MNEMONIC OP-CODE OPERATION PRECONDITIONS SET ON
LIX +0630 Load Immediate to Index None
LAX +0632 Load Address to Index None
LDX -0632 Load Address complement to GIN
Index
LDCX -0634 Load Decrement complement to GIN,GEX
Index

51

The LIX +0630 translates to group 62 and the rest +0632 and +0634 translate
to group 63.

‘The MINIFLOW to accomplish this emulation is below:

ORG ;1262 EXAMPLF 21 LIXyLAXHETC
VFD 476417014 LCAC XR IMMFDIATE C+TV
VEN 3/6415/7LX LJAD »X FROM MLMOKY C+TV
£ om e e e = m m — = = = = = = X
URG u/150u
LX MEM CySRLLGEX LOAL MEMORY WORD BY GLkX
PC NC+1,21-3%,0L1IN CUMPLEMENT IF TRUL
LIX TG CXM,y %43 TEST FiR CUMULATIVE MOULE
SHIFT UL—-Ry3 MUOVE 14DEX SPeCe TO TAG
xR CeSoeEXIT LOAD L INGLE INULEX, EXIT
LIBc 20418-20 ZLR0O Luw By TAG B WITH 2
PD LOBy33-39 INDEX SPEL TO B AULCRESS
SHIF1 D=-Ry3 MOVE [97EX SPEC Tu D TAG
RC B IvODEX SPFC TO RC
MINI RB+RE ¢ QR ust S2LC AS XFER VECTUR
TAGO EXIT ~XIT U~ NO INDEX SPEC.
1 TRU UPDATL LUAD 1- UPCATL, AD EXITY
2 TRU UPBAT L LOAD 2- UPDATE, AND EXIT
3 TRU >t12 START wllH 2, THEN DU 1
4 TRU UPDATL LiUAL 44— UPCATLE, AND EXIT
) pg H=1y18-20 SET ¢ TAG Tu 1 TO START
[5) TRU SETL1Z USL ¢ TAG AS IS TU STanT
7 SMCT SHFT4 START wlTH 4, THEN 2 + 1
SETZ LID Z0y18-20 ST TG LaaAL 2
SMCT UPDAT: LUADL ¢— UPUCATE, CunTIxUr
LID 10916-20 seT Tt t0AD 1
TRU UPDATEL LOAD 1— UPDRATE AND EXILT
SET1L2 PO dylB8-20 SET Ty LUAU 1 UR 2
SMCT UPDAT UPDAYL AL FINLISH wlTH 4
SETS LID 4G4y18-20 ST TC 1 GAD 4 AND UPDATE
UPDATE XR C-RyLl:E LUAD uUuPDATE VALUE INTUG F
PC Uy lB=-cC LaD (R MASK INTO C
TRU ¥4 2
PD BUCylE-2u PUT NEXT VAG vALUL IN D
PE :918-20 PLACLE TAG BACK IN ¢
AR R+8,S UPLATE INLEX VaALULE
PR B+l,18-20 InCReEMENT TAG VALUE
TAF NZ y¥-4 FXIT A+ TR TAG UF T DOUNt
LRM DG 4

The preceding example illustrated that the same subroutine may be entered at
different points; it also shows that a SMCT may be used for a self-returning
entry or a TRU for a final entry. The use of a transfer table is also
illustrated again.

52

EXAMPLE 22. Additive Indexed Transfer With Index Link

An indexed transfer instruction which saves a return link value in specially
designated index fits in with the foregoing example on Additive Indexed Load
Index-Cumulative. In this transfer instruction the indexing is also additive
and/ the same routine may be used to save the return value in the index. The
op-code and instruction format is:

0 11 12 15 17 18 20 21 35
-0070 INSTR. CODE I v/ INDEX TAG BASIC TRANSFER ADDRESS
MNEMONIC OP-CODE OPERATION
TLX -0070 Transfer and Link with Index

This op code translates to group 7 and the following MINIFLOW puts the trans-
fer address in the IC and prepares the old IC value to be placed into the
index. It then transfers to the same routine as was used in the previous
example to load the index:

URG /201 EXaMPLE Z& TLX
VFD 3/769195/TLX [NUFX LINK TRANSFLR (C+TV
¥ - - - - - - - - - - - - - - %
ORG /0714
TLX 1C R=1sLLP BACK Duwih IC, LOAD TU =
' IC CsS PUT TRanSFER ADBDR 14 IC
PC NB+Ly21-3% PUT [COMPLFMENT IN C
T LIX GL PUT C INTO PRUPER X+

EXAMPLE 23. MINIFLOW Address Modification

It should not be supposed that the general manner in which address modification
and instructions are decoded is limited by the wired-in-sequence. Rather, the
case is, that the wired-in-sequence is used as a speedup technique to enhance

a particular style of address modification (i.e., that used in the IBM 709X and
704X). This is a special feature not found in other micro-program machines.

Address modification and instruction interpretation is still extremely flexible
when done in MINIFLOW, Consider a basic instruction format like the following:

0 89 11 1213 14 15 17 18 20 21 35
BASIC OP CODE |MOD AC | +#| AXC | TAG BASIC ADDRESS FIELD
A B C D E F G
FIELD BITS PURPOSE AND INTERPRETATION
a.0-8 9 Basic operation
b.9-11 3 Op-code modifier
c.12-13 2 Accumulator designator (0,1,2,3)
d.14 1 Add (0) or subtract (1) index value

53

FIELD BITS PURPOSE AND INTERPRETATION

E.15-17 3 Address mode and index control
0-indexed immediate operand
1-indexed direct address-leave XR unchanged
2-indexed direct address-dec.XR by 1 test for ZERO
3-indirect post indexed address (allows double
indexing)
4-indexed indirect address-leave XR unchanged
S-indexed indirect address-inc.XR by X field, test
for carry
6-indexed indirect address-inc.XR by 1, test for X
field
7-indexed indirect address-dec.XR by 1, test for X
field
£.18-20 Index specification field
g.21-35 Basic address field

Assume an indirect address word format like this:

0 2 3 17 18 20 21 35

AXC INDEX CONTROL FIELD TAG BASIC ADDRESS FIELD
E X F G

With this type of address modification, multi levels of indirect are possible,
double indexing is possible, immediate operands are generally available, auto-
matic index control and testing is possible, plus the complexities of their
combinations. For the purposes of this example we will consider only the
MINIFLOW for the general address modification subroutine, INDEX. We will
assume however, that:

1. The Reset machine MINIFLOW will turn on 3 general indicators - ALTER,
USE 1, and DEC (these general indicators will always be on initially).

2. There will be object machine instructions to transfer on FLAG on or
off so the index tests may be used.

3. The C&TV of indexable object instructions will call for indexingD
i.e., VFD 3/2,15/XXX) but appropriate operand fetches will be done
in MINIFLOW.

4, Indexable object instructions will be indexed by a SMCT INDEX call,
following which the final address will be in D21-35 with the general
indicator IMMED set on if D21-35 is an immediate operand.

5. The left half of the original object instruction will still be in
C0-17 unaltered.

54

The MINIFLOW subroutine to accomplish this general address modification
follows:

GRG G/7400 EXAMPLE 23 MINI-INDEX

¥ THIS INDEX SUBRUUTINE 1S eNTEREL RY- SMCT INLEX
INCEX LIBC 10,12-14 CLEAR b AND SET MASK gIT

PE HeC TLeST INDEX PULARITY .

TA NZ g %42 LEAVL A5 SUBTRACT I[F A 1

TGS aD0 SET Tu ADUL IF A ZERD

PC LOB933-35 MUVE AX{ INTO B ADDRESS
IXCCNT RC B MOVE AXU INTO ®C ‘

MINI RE+R({ 4yRB JUMP TUu JTRANSFER) ABLE
UATA TGS IMMED SET IMMEDIATE DATA FLAG
DIR TGF AGD, ADDXR EAIT I+ SUBTRACTIVE Xx»
AXC2 TRU LECDIR INDEXFD DIRECT + DEC Xk
AXC3 TRU IXPO>T INDIRLLT PUSTINDEXED
AXC4 TGR ALTER9AXC/([NDEXLU INLIRFCT- LEAVE
AXCH TGR USEL,AXCT7 INDEXtH INDIRLCT- XR+XF
AXCé6 TGR UeC INDEX L INDIRLCT=- XR+1
AXC7? 16 ADD,y *+¢ INDEXFED INDIRECT- XR-1

XR R+C,LDD DO ApvvuaTIVE INDEXING

MEM Uy SRD READ INGIRECT wCRu TO L

TGS ALTER XDEL SKIP TO ALT=R XR, SET N

PC 0Dy21-3% PUT Niw ADDRESS Iwa C

TRU INDLik+] INGEX ¢+ anvaLvYSiE IaLIRCCT
DECDIR TGS FLAG .

PC C+1421-45 COFSET x« 0EC FULK XR AL

XR K=1lyo DECRLMENT THE INDLX

TA LyDIR FLAG 1F ZERU ANU ak[P

TGR FLAG,L IR NC FLAS TR NOT ZERC=SK P
ADDXR TG6R ADD ReSET 1ADLX PULARITY

XR R+CHyLEDye xIT ANDDATLIVL INUCEX + CX|T
XDEL 165 FLAG PRESET FLAG UN

PCD Coelo-20G SwAP TAG FIZLuLuS-0LT TC U

] LDCy21-35 LUAD x=fFlctiy TO C ADLK.

165S USEL .t VY1 SKIP T INC/DEC, SFT

XR R+Cy > ADU X-FIELC TC UL INULEX

TA CAR9 INDIR FLAG I+ CARRY AND SKIP

TR FLAG,INDI® NU FLA, IF NO CARRY-SKi®
£yl TGS CEC,DUWNI1 SKIP It Xk=1, SET N

XR R+1,+5 INCRE™: NT XR

TRU 42
DOGWNDL XR k=195 DECRIMENT XR

TA £y INUIR FLAG It EwlUAL aNO SKI?

THR FLAG,INDI R NO FLAS IF UNEFQUAL- S0
1 XPOST MEM CoSRU READ UNINDEXED INUe T D

PCD CrylB-145 SwAP TALS AND ADD2ESS: S

16 00,y ¥+ 3 TEST fur INDEX PULARITY

XR C—RyL Ll PUST=1LEX INTU DO, MINUS

TRU 42

AR F+Cy,L0D PUST-{ ;X INTG Dy, PLUS
INDIR +pCD Cylo—-13% SWAP 3aCK TAGS,ADDRESSLS

55

XR L-R,oLCD PRE-INOEX INTO Dy MINUS

PH LERU CLEAR 0UuUT B

SHIF1 tD-1L.3 MOVE AXC FIELC TO B ALU
SHIF] Li=-R MCVE O B8ACK 1IN POSITIUN
IRU 1 XxCOxNT CUNTIwUE The INDIRECT

COMPARISON OF EMULATION AND OTHER INSTRUCTIONS

A BINARY to BCD CONVERSION routine might take a binary number in the AC (less
than 20 bits right justified) and convert it to six 6 bit decimal characters
in the MQ: It would also turn on a flag (divide check) if the number were
too large to convert. Such a routine written in object code is given below:

TXS CONVERT, 4 CALL CONVERSION SUBROUTINE
CONVERT LDQ=0

VDP=#6065000, ,4 100,000B31

VDP=@$47040000, ,6 10,000B25

VDP=¢372000000, ,6 1,000B19
VDP=03100000000, ,6 100B13
VDP=024000000000, ,6 10B7
VDP=0200000000000, ,6 1B1

TRA,4 RETURN TO CALLING SEQUENCE

The time to run this routine on various machines:

7094 - 46 usec. 7090 - 76.3 usec.
7044 - 80 usec. 7040 - 176 usec.
IC-M9 - 115 usec. in EMULATION MODE

If the IC-M9 is mini-programmed to include a BINARY TO BCD CONVERT instruction,
it could leave the AC unchanged, and the MQ unchanged if divide check is set.
Assume CTQ (convert to MQ) has the following instruction format:

0 11 12 35

+0110 CODE LIT111000000700010000000011010110111010771117771177

An op-code of +0110 translates to Group 11 and the following MINIFLOW would
perform the conversion:

-~

URG urs2il EXAMPLL Z24 (T4 mAXI
VED le/CTq CrQ C+7TV

¥} = = = - =~ =~ - - - - - - x
ORrRG Ul/6T71

[Vl N § Po LERL S 2 HIGH BITS WILL P& O
Cri LECylCOM™ LUAD=1/6065000
SHIF1 iilVea X NIvic: BY 160,000 R31
TGR PLCK2RIG SKIP 1¢ 1vER 6 DIGITS
cMl LbCy LUV LOAD=U/4Tua00G0
SHIFY iV, 6 DIVIDL rY LU.CCuL wvéh
Cil LDC M LOAL=0/7372C00000
SHIFT DIVeo DIVIDE 3Y Leulu BlS
CMl LLCye L3AG=01/310000GU00

56

SHIFT bDIV,yo CIVIDE BY 100 5 13

CMI LOCyx LOAC=07240000000CC
SHIFT LIVyo LiviDe BY 10 47
CMI LDC, I LOAD=0/2000006GG00000
SHIFT CIVyo CIVIDE 2y 1 Bl
MQ aSsEXIT STORE RFSULT IN My- EXIT
261G TGS LCK StT DivIDt CHECK
EXIT EXIT FUR UCIVICE CHECK
*THE FOLLOWING ARE THE CONSTANTS USED FOR CONVERSION
ORG 0/62
100M ocT 6,65000 100,000 B31
~10M OCT 47,40000 10,000 B25
M OoCT 372,0 1,000 B19
c oCT 3100,0 100 B13
X ocT 24000,0 10 B7
I ocT 200000,0 1 Bl

The time to execute this CTO instruction on the IC-M9 is 32.2 usec. This is
only 71.5% of the time required by the 7094 to execute the CONVERT subroutine.

The second instruction consists of floating a fixed point number. It is
assumed that a signed whole number is in the AC right justified and may have
up to 36 bits of significance. To float this number in object machine code
the following FLOAT routine is commonly used;

FLOAT LRS 8
PRA =012430000000
ST@ TEMP
CLA =01233000000
LLS 8
FAD TEMP

If the number has typically 12 bits of significance, the time to execute this
on a 7094 (with best case overlap) is 26 usec.

This process may be emulated on the IC-M9 with the following fix to float
instruction. Assume FLT (float the AC) has the following format:

0 11 12 35

+0670 CODE LIITIIIIITIIEII17717171777710717171117171711111717

The op-code +0670 translates to group 67 and the following MINIFLOW would do
the float operation:

ORG /7267 EXAMPLFE 2o FLOAT ®AaXl1
vFEDR le/F L LAT FLUAT C+Tv

¥ - = o~ = - - - - = - - - - = %
URG L/2700

FLOAT PE Hy Q0= 13hH TeoT FOR AL ZERU
TAF N FALT LF £_RO=-1E ALL DU
PO 2t = CLEAR D
SHIET FL=Ry MAKE 201M FCR OUXPUNEFNI

57

SHIFT L-Ryv CHANGE TU FLUATING FORWY

LIR 20y 0u-02 LUAD EXPUNENT BASL VALUE
SHIF1 BO-N NORMALIZE THE MANTISSA
LIig 44,03-038 SCALE ThE LXPUNENT

RC LUC,u0=0c LNAD THE NORMALIZEL CLUNT
P3 B=C,ul-08 ALJUST THE EXPUNENT

AL By SyLxIT RESULT TU AC aND o XIT

Again assuming a 12 bit number is being floated, the time to execute this
FLT instruction by the IC-M9 is 15.575 usec. or 60% of the time required by
the 7094 to execute the FLOAT routine.

58

SECTION III
IC-M9 SYSTEM DESCRIPTION AND INSTRUCTION REPERTOIRE

S CHEDULER AND PROGRAM LEVELS

The scheduler is the basic sequence controller of the IC-M9. It is a priority
decision network which responds to I/0 data buffer servicing and I/o termination
requirements. It also responds to some of the operator switches on the con-
sole and to the real time clock servicing requirements. In addition it is
partially controlled by MINIFLOW to service trap situations, self interrupts,
i.e., Hang or Delay, and normal program operation.

The scheduler buffers requests for attention in a set of interrelated flip-
flops which are grouped to reflect various levels of urgency. There are four
such levels:

LEVEL 1 Channel A data buffer servicing
LEVEL 2 Channel B data buffer servicing

LEVEL 3 Channels A and B termination servicing Real time clock
servicing and console request servicing

LEVEL 4 Trap servicing
Object instruction execution

The scheduler determines which request for service to honor next, selects

the level and turns the Channel B flip-flop on or off for the level. Only one
level may be selected at any one time. It also selects the entry point to the
wired-in-sequence.

Each level has flip-flops to buffer the request for servicing and to control
the manner in which these requests are honored. There are four types of
flip-flops:

REQUEST Buffers a request for new service.
RETURN Buffers a request to continue a self interrupted job.

JIP (Job-in-Progress) records that a request was honored and
servicing for the job has not been completed.

HANG Records that a self interrupted job is not yet ready to return
for completion.

Self interrupt allows a MINIFLOW routine to interrupt itself when it has de-
termined that it cannot properly continue until another level has had a chance
for servicing. Self interrupt may be done with either a DELAY or a MISC HANG
instruction. DELAY inhibits the scheduler from honoring the delayed level for
75 microseconds. HANG requires that another active level unhang the hung level
for it to again be honored by the scheduler. When a DELAY or HANG is executed

in MINIFLOW, the D, RB, and RD registers and subroutine mode are preserved
for the particular level. They are restored when the scheduler again honors
that level and the job is resumed; restoring RB causes the job to continue at
the MINIFLOW instruction following the DELAY or the HANG.

Delay logic is not provided for level 4; if DELAY is executed in level 4 it
will lock out level 4 until the level is reset.

A DELAY or a HANG issued in either level 1 or level 2 will lock out both
levels until the delayed or hung level resumes.

LEVEL 1 is requested in the scheduler when the Channel A buffer needs ser-
vicing. LEVEL 2 is requested in the scheduler when the Channel B buffer needs
servicing. When the scheduler honors one of these requests it will reset the
request when LEVEL 2 is selected and the Channel B flip-flop is set. The
MINIFLOW routine that services a huffer request must acknowledge the request
in the channel. If this is not done logic will cause another request in the
scheduler. MINIFLOW acknowledges the channel by executing the instruction
MISC ACK.

LEVEL 3 is requested in the scheduler when any of the following occur:

1. A channel terminates activity. The state of the Channel B flip-
flop indicates which channel terminated.

2. An interval timer interrupt occurs. This will happen 60 times
each second unless the timer is turned off.

3. A console interrupt occurs when the operator presses one of the
following console keys:

execute entry
execute display

a. general reset
b. clear storage
c. load card

d. load tape

e.

f.

The scheduler level 3 will be reset when it is honored by MINIFLOW. MINIFLOW
must reset the specific condition that caused the level 3 request. The
scheduler will set a general indicator (CON,SOP74) if the honored request was
a console function (timer,case 2, or key,case 3). This indicator may be
tested and reset and the interrupt register may be examined by MINIFLOW to
determine the cause of the level 3 interrupt. The originating requests are
reset by the following MINIFLOW instructions:

1. for channel terminate - MISC RTER
2. for timer interrupt - MISC RTI

3. for console key interrupt - MISC RCN

60

LEVEL 4 is requested in the scheduler when a trap request is set by a MISC SRT
or when a program request is set by either a MISC SR4 or by the START KEY on
the console. When the scheduler honors a trap request it will reset the trap
request. When the scheduler honors a program request, the program request
will be reset only if the MANUAL SWITCH is down on the console. The scheduler
gives a program request the lowest priority. This allows the program request
to be continually honored until a higher priority request is set; thus pro-
viding normal object program execution flow with the interrupts to service

the I/0 and console requirements.

Figure 6 illustrates the scheduler action, the request priority, and the
relationship to the wired-in-sequence and MINIFLOW.

The term W-I-S is used as an abreviation for Wired-in-seauence. The suffixs
-T or -F is appended to scheduler control flip-flops to indicate their state
(true or false).

WIRED-IN-SEQUENCE
There are two wired-in-sequences. The YA W-I-S is used to initiate the start
of a MINIFLOW routine for execution of an object instruction or an interrupt

function; the YS/R W-I-S is used to save and restore MINIFLOW program status
during a delay or a hang/unhang operation.

THE YA WIRED-IN-SEQUENCE
There are seven steps to the YA W-1-S, some of which may be skipped. Each
step involves accessing either the control memory or main memory. Other

operations may also be performed in some steps.

The W-I-S steps are defined below:

W-1-S Memory Primary

Step Accessed Function

YAO Control Fetch Alternate Instr. Address
YAl Main - Fetch Object Instruction

YA2 Control Fetch Control § Transfer Vector
YA3 Main Fetch Indirect Address

YA4 Main Fetch Memory Operand

YAS Control Fetch First Mini-Pair

YA6 Either Execute MINIFLOW Program

6l

A]

1
' WIHED IN- :
i \ SEQUENCE J MINLE Lo
¥
| | |
HARDWARE OR SOFTWARE) (i
CONTROL CONDITIONS | e
! TR REAY > | REFURN !
| 11 RETURN-F WL s V
| | i
L1 OR 12 HONORED o R A OR 12 HP-t - 1 RSH3 -5 i
DELAY OR MISC HANG _ 974 JORIZRETURN-T\ YES FOR WHICH LEVETD ¢ Tl_, I RETURN +
C R ~ =301 OR L2 HANG- T EVEL + :
MISC RH! I o] (!{1514 :_l()\atc F LEVEL" ERTLN WOl s, |
SAME LEVEL) L2
! = “mrr] ! Y-, ! YaG LEVELD t D MISC ACKe TO
| T 13 JP-T Wl U PFER SERVICH PRESED T ATEST]
EXIT - oo oo Ll aAP-F WHICH 1l ug-m; rl | | MINIFIOW CHANNEL BSR
CHANNEL BUFFER sERVICE || 2 Jp-F BOTH REQUEST WS 123l
REQUEST OR MISC SR1*) L1 REQ-T LAST] |
[2 REQ-T HONORED |]
! " \ A) Yan LEVEL 2 1 MISC ACR® TO
1 : WS BUFFER SERVICERESET 1ATFS1
| ! " 1 MINLETOW ' CHARNFL 1SRt
L3 HONORED - == 13 JIP- 1 SELECT LEVEL 3 | |
DELAY OR MISC HANG = - 7 13 RETURN-T SET L3 [YSH3-5 1L vascon
MISC RH3 ERAER 13 HANG-F RETURN-F T RETTRN TINUE 13
| i Wl [SIS TS
\ |
i \ MISC 111
EXIT - 1.3 J1p-F SEY L \ RESETINT
OPERATOR OR TIMER INTERRUPT - CONSOLE OR FERMINATE CHANNEL SET 1 o e we
1/0 TERMINATE REQUEST TERMINATE REQUEST-F \ ORI CHB-T t '
OR MISC SR3 REQUEST | |
TMER INT LDH Lo
! ! iy CONSOLF INT™
SELECT | |
xS W . . LEVEL 1
co E 5 NOT IN MANUAL SET 13 seT tamp-1] ! ! MISC RON
MISC SRT 1-{ L4 TRAP REQUEST CHB-F SEL C&TV [| RESET
MISC HANG Oft MISC HALT - -, = 14 HANG-T - RN ! CONNOL
b N, VOLINTREG
| | e | ey
' | w.ls rof vas LEVEL
14 JIP-T SEL LEVEL 4 \ B MINL
14 HONORED - -}- vEs | T ” | FLOW
MISC HANG ~ - { 1ARETURN-T SET 14 ——— 7 p ——
START OR MISC Rig — -1=Y\ 14 HANG-F RETURN-F '
| ! 7™ Yo con MIsC HIERS
| | i TINUF T4 RESET CH
EXIT e T SET TEVEL ¢ I \ MINIE LOW TERM REQ
CONSOLE 5w — = 1=/ NoT I MANUAL YES T ;cl;u»v |
SRT D SET L3 CHB-1 — v
Lip HONORED Or = = 1=\ 14 T'IE;’;:T“:;""T SET LA AP-T | 1 ([Y6 LEVEL S, T
NO MISC PUST — - |~ - SEL CETV e 243 |} + m:q“l-*\low I EMULATION
. - i
1 YES | :
8 SEL LEVEL 4
EXIT - 14 JIP-F . - - ——— .
- 14 PROGRAM YES SET L4 aP-T I~ TNCTUDE av 1 ¥ a0 !
START OR MISC SR4 REQUEST-T SET [4 CHB-F |INSTR!'CT10N FETCH)]
‘ s Port Y R '
D] AL C&TV, X T
| AND SETTING THE | \ YA6 LEVEL PROG
L BRE_CONDITIONS, 3 T 4CPU pyrLaTION
NO - BOTH OFF) MINIFLOW -
NO o o -
f EXTOIRECT 10 1 '
1 SCHEDULER ON |
LAEAST TRANSFER 4 | 1
SET PRESENT 1 |
RESTART LEVEL JIP-F 1] FINAL EXIT -
SCAN FROM
l YSR0-3 L HANG Y aw
t SAVE 1 MINTF1 OW
\ W LS. } LAY
*STEERED BY CHB F/F 1 | DETAY
. :
Figure 6. Flow Diagram of IC-M9 Scheduler

BY SCHEDULER the W-I-S. Each path is labeled with a letter which keyg
it to the ajoining test. In the text, the INDEXED ADDRESS
is defined to be the value of the address field (C,21-35)
minus the value in the index register as specified by

the TOP field (D,18-20); if C or D are altered in an
operation the initial values in these fields are used.

@:QUEST GRANTE? Figure 7 illustrates the possible entries and paths of

YAO SEQUENCE OF STEPS IN WIRED- IN-SEQUENCE
1 A The Scheduler enters the W-I-S at:

YAl .

1. YAO - program request with AUX1 or AUX2 on.
1 2. YAl - program request with neither AUX on.

YA2
3. YAW - L1, 12, L3 or L4 trap request.

YAO Fetches the auxiliary instruction counter from con-

e ‘ trol memory (at 04 if AUX 1 or 10 if AUYX 2) and
loads it into B.

YA3 YAl Fetches the object instruction from main memory
and loads it into (and . The IC is used for the
address unless AUX is on, then B is used.

YA2 Fetches the control and transfer vector from con-
trol memory and loads the 11 right most bhits into
RB and the other 7 bits are lcaded into 1K]
through IK7. The mini-location of the C&TV is as

YA4 follows: Level 1 at 251, level 2 at 243, level 3
at 241, level 4 trap at 233, level 4 nrogram as

1 determined by the translators (Table 12) examining

YA5 le the op-code (D,0-11). The preconditions are also

set and the AC is unconditionally load~d into 8.
B After YA2, the next state of W-1-S is defined helouw:
D
1. YA3 - LK1, LK?, D,11-12 all are on, i.e., ip-
direct addressing

YA6 2. YA4 - 1K3 is on, i.e., memory operand fetch

3. YAS - LK3 not on, no memory operand fetch
YA3 Uses the INDEXED ADDRESS to fetch the indirecr
address word from main core and to nlace the right
EXIT BACK TO half of the word into bits 21-35 of both © and D.
SCHEDULER

Figure 7. Possible Paths of the YA V-I-S

63

YA4

YAS

YA6

After YA3, the next state of W-I-S is defined below:

1. YA4 - LK3 is on, i.e., memory operand fetch

2. YAS - LK3 is off.

Fetches the memory operand from main memory as addressed by:

1. C,21-35, if LK1 and LK2 are both off.

2. The INDEXED ADDRESS if either LK1 or LK2 is on.
The INDEXED ADDRESS is placed in D,21-35, if LK2 is on. The
memory operand is loaded into C. LK1 and LK2 are reset to prevent
indexing in YAS.

Performs the following functions:

1. Place the INDEXED ADDRESS in D if LK2 is on.

2. Place the INDEXED ADDRESS in C if LK1 is on.

3. Either execute a fast transfer or fetch the first mini-pair from
control core addressed by RB.

Details of YAS are shown in Figure 8.
After YA5, the next state of W-1-S is defined below:

1. YA6-LK7 is off or transfer trap mode is on and D,0-11, is not
+0021 (trap transfer).

2. Scheduler-LK7 is on and transfer trap mode is off or D,0-11,
is +0021.

Execute MINIFLOW starting with the instruction fetched in YAS and con-
tinue with new instructions from control core using RB as the program
sequence counter.

The mini-instruction used to leave YA6 determines what state is next
entered.

1. YAS5 - The TAW instruction was executed.

2. Scheduler -EXIT when not in subroutine Mode.

THE YSR WIRED-IN-SEQUENCE

The YSR W-I-S is divided into two sequences. YSR 0-2 is used to SAVE the con-
tents of the D, RB, RD registers and the status of the subroutine mode con-
trol flip-flops, YSR 3-5 is used to RESTORE the contents of thesc registers
and the status of the subroutine.

6u

EXECUTE
| YA6 ENTRY FROM
— — MINIFLOW _ __ _1' YA2, YA3, OR YA4
SETUP |
SLOW TRANSFER i SUBTRACT THE INDEX
i CONDITIONS, TEST I EITHEI;I SPECIFIED BY D18-20
AND EXIT BY TAW o FROM C21-35.
L LK OR L STORE THE DIFFERENCE
i 13 IN C21-35 IF LK1 IS ON
i : AND IN D21-35 IF LK2 IS ON
|
| ! ’
I ! NOTE: LK4 & LK7
" I SHOULD NOT BOTH
i { BE SET ON
¥ I o
(ENTRYFRmuYAQ;) : AN
~N
| N
! TRANSFER EITHER
TURN OFF I - A BER TEST FOR o
LKL, LK2, LK : FETCH LK4 OR LK7 |
MINIPAIR
LK7 |
|
L ———{ oo vas

TEST FOR

TRAP TRANSFER
DO-11 %0021

NO
NOT EQUAL

TEST THE
TSAT F/F

INCREMENT
THE IC
PLACE IC+1

TRANSFER TRAP INTO THE JC

MODE CONTROL

OFF
TRANSFER TRAP
MODE CONTROL
TRANSFER NO TRANSFER TRANSFER TRAP NON-TRANSFER
CONDITION - 'J | _ _CONDITION | | C_OEI.DIT_IE)N] _ _ MINIFLOW |
PLACE D21-35 FETCH FETCH
INTO THE IC MINIPAIR MINIPAIR

GO TO SCHEDULER GO TO YA6

Figure 8. Tlow Chart of YAS5 Operations

65

The SAVE sequence is entered by executing a DELAY instruction (540000) or a
MISC HANG (065400) or a MISC HALT (066000). HALT should be executed only in
Level 4. DELAY should not be executed in Level 4.

When DELAY is executed a RETURN request is set in the scheduler after 75 micro-
seconds, after this the scheduler is free to start a RESTORE sequence. When

a MISC HANG or a MISC HALT is executed the HANG flip-flop is set for that
level; when the HANG flip-flop is reset by MINIFLOW in another level then the
scheduler is free to start a RESTORE sequence. The RESTORE sequence will

cause MINIFLOW to be re-entered at the mini-location just after the DELAY or
HANG instruction with the contents of the D and RD registers and the state of
the subroutine flip-flop restored to the status that existed when the DELAY

or HANG was executed. There is a separate save area for each level; the
following table gives the area and information stored in the save sequence:

Saved Bit Word Address of Control Memory
Data Positions Level 1 Level 2 Level 3 Level 4
RB 23-35 40 44 50 54
SMCT F/F 22 41 45 51 55
RD 23-35 41 45 51 55
D 00-35 42 46 52 56

NOTE: Words 43, 47, 53 and 57 are not altered.
TRANSLATORS

During wired-in-sequence step YA2, the translators sct up the precondition
control flip-flops and select the Control and Transfer vector to be used to
control the other states of the wired-in-sequence. For levels 1, 2, 3 and
level 4 trap request, the CETV selected is defined by the request being honored
by the scheduler. For a level 4 program request, the object instruction is
loaded into D during YAl of the W-I-S; the translator examines bits 0-11 of D
and generates a group code which specifies the C§TV to be used.

For most op-codes with bits 1 and 2 equal to zero the group code is determined
by bits 3-8 of the object instruction. For example, op-code +0153 translates
to group 15 as does op-code -0155. However, there are many exceptions to

this rule as illustrated in the comprehensive translater Table 12,

The Comprehensive Translator Table gives the group number and the setting of
the precondition control flip-flops for each object instruction, except those
having a 1 in bit positions one or two. The first three octal digits of an
instruction are given to the left of the table and the fourth octal digit is
in the heading line. Each table item consists of a 2 digit octal number and
a 3 digit octal number. The 2 digit number is the group number and when added
to octal 200 it forms the mini-location of the associated C§TV. The 3 digit
number describes the precondition controls and is interpreted as follows:

66

1st Digit ARL MAG SUB

0 OFF OFF OFF
1 OFF OFF ON
2 OFF ON OFF
3 OFF ON ON
4 ON OFF OFF
5 ON OFF ON
6 ON ON OFF
7 ON ON ON
2nd Digit GEX GIN
0 OFF OFF
1 OFF ON
2 ON OFF
3 ON ON
3rd Digit GOP9 GOP10 GOP11
0 OFF OFF OFF
1 OFF OFF ON
2 OFF ON OFF
3 OFF ON ON
4 ON OFF OFF
5 ON OFF ON
6 ON ON OFF
7 ON ON ON

Following the table are additional notes on special considerations.

67

Table 12

Comprehensive Translator - +0000 to +0177

op
CODE

xxx0

xxx1

xXxx2

xxx3

xxx4

XXx5

xxx6

xxx7

+000x
-000x
+001x
-001x

+002x
~-002x
+003x
-003x

+004x
-004x
+005x
-005x

+006x
-006x
+007x
-007x

+010x
-010x
+011x
-011x

+012x
-012x
+013x
-013x

+014x
-014x
+015x
-015x

+016x
-016x
+017x
-017x

00
00
01
01

02
02
03
03

35
35
05
05

06
06
07
07

10
10
11
11

10
10
13
13

10
10
15
15

10
10
17
17

002
002
020
021

000
000
000
000

400
400
000
020

006
004
010
010

000
000
020
020

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

04
04
05
05

06
06
07
07

10
10
11
11

12
12
13
13

10
10
15
15

12
12
17
17

002
002
020
021

000
000
000
000

001
001
001
021

003
001
010
010

000
000
020
020

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

55
04
05
05

06
06
07
07

10
10
11
11

10
10
13
13

10
10
15
15

10
10
17
17

002
002
020
021

000
000
000
000

003
006
002
022

002
000
010
010

000
000
020
020

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

04
04
05
05

06
06
07
07

10
10
11
11

12
12
13
13

10
10
15
15

12
12
17
17

002
002
020
021

000
000
000
000

005
005
003
023

003
001
010
010

000
000
020
020

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

04
04
05
05

06
06
07
07

10
10
11
15

10
10
13
13

10
10
15
15

10
10
17
17

002
002
020
021

000
000
000
000

000
000
004
024

002
000
010
010

000
000
020
030

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

04
04
05
05

06
06
07
07

10
10
11
15

12
12
13
13

10
10
15
15

12
12
17
17

002
002
020
021

002
000
000
000

001
001
005
025

002
000
010
010

000
000
020
030

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

55
23
05
05

06
06
07
07

10
10
11
15

10
10
13
13

10
10
15
15

10
10
17
17

002
002
020
021

000
000
000
000

004
000
006
026

002
000
010
010

000
000
020
030

000
000
400
000

000
000
020
020

000
000
020
020

00
00
01
01

02
02
03
03

04
04
05
05

06
06
07
07

10
10
11
15

12
12
13
13

10
10
15
15

12
12
17
17

002
002
020
021

000
000
000
000

005
005
007
027

002
000
010
010

000
000
020
030

000
000
400
000

000
000
020
020

000
000
020
020

68

Table 12

Comprehensive Translator - +0200 to +0377

opP
CODE

xxx0

xxx1

xxx2

xxx3

xxx4

Xxx5

XXX6

xxx7

+020x
-020x
+021x
-021x

+022x
-022x
+023x
-023x

+024x
-024x
+025x
-025x

+026x
-026x
+027x
-027x

+030x
-030x
+031x
-031x

+032x
-032x
+033x
-033x

+034x
-034x
+035x
-035x

+036x
-036x
+037x
-037x

20
20
21
21

22
22
23
23

24
25
25
25

26
26
27
27

30
30
31
31

61
32
33
33

34
34
35
35

36
36
37
37

420
421
030
030

420
420
000
000

410
410
410
410

400
404
400
404

400
401
400
401

004
004
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
25
25
25

27
27
27
27

31
31
31
31

32
32
33
33

34
34
35
35

36
36
37
37

420
421
030
030

421
421
000
000

400
400
400
400

400
404
400
404

400
401
400
401

015
015
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
24
25
25

26
26
27
27

30
30
31
31

32
32
33
33

34
34
35
35

36
36
37
37

420
421
030
030

420
420
000
000

410
410
410
410

400
404
400
404

500
501
500
501

001
001
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
24
25
25

26
26
27
27

31
31
31
31

32
32
33
33

34
34
35
35

36
36
37
37

420
421
032
032

421
421
000
000

400
400
400
400

400
404
400
404

500
501
500
501

011
011
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
24
25
25

26
26
27
27

30
30
31
31

32
32
33
33

34
34
35
35

36
36
37
37

430
431
030
030

430
430
000
000

410
410
410
410

400
404
400
404

600
601
600
601

004
004
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
24
25
25

26
26
27
27

31
31
31
31

32
32
33
33

34
34
35
35

36
36
37
37

430

431

031
031

431
431
000
000

400
400
400
400

400
404
400
404

600
601
600
601

015
015
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
24
25
25

26
26
27
27

30
30
31
31

32
32
33
33

34
34
35
35

36
36
37
37

430
431
030
030

430
430
000
000

410
410
410
410

400
404
400
404

700
701
700
701

001
001
000
000

400
000
400
400

000
000
010
000

20
20
21
21

22
22
23
23

24
24
25
25

26
26
27
27

31
31
31
31

32
32
33
33

34
34
35
35

36
36
37
37

430
431
034
034

431
431
000
000

400
400
400
400

400
404
400
404

700
701
700
701

011
011
000
000

400
000
400
400

000
000
010
000

69

Table 12

Comprehensive Translator - +0400 to +0577

opP
CODE

xxx0

X

xx1

XXX2

xXxXx3

xxx4

XXX5

XXx6

xxx7

+040x
-040x
+041x
-041x

+042x
-042x
+043x
-043x

+044x
-044x
+045x
-045x

+046x
-046x
+047x
-047x

+050x
-050x
+051x
-051x

+052x
-052x
+053x
-053x

+054x
-054x
+055x
-055x

+056x
-056x
+057x
-057x

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

50
50
51
51

52
52
53
53

54
54
55
55

56
56
57
57

400
300
000
000

000
000
000
000

001
001
400
400

000
000
000
000

400
000
000
000

400
401
010
030

006
003
003
003

000
000
000
000

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

32
32
51
51

52
52
53
53

54
54
55
55

56
56
57
57

200
300
000
000

000
000
000
000

002
002
400
400

000
000
000
000

015
015
000
000

400
401
000
020

002
002
003
003

000
000
000
000

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

50
50
51
51

72
72
53
53

52
54
55
55

56
56
57
57

500
700
000
000

000
000
000
000

005
005
400
400

000
000
000
000

500
100
000
000

000
000
010
030

002
002
003
003

000
000
000
000

40
40
41
41

42
42
43
43

45
45
45
45

46
46
47
47

S0
50
51
51

52
52
53
53

54
54
55
55

56
56
57
57

700
700
000
000

000
000
000
000

400
400
400
400

000
000
000
000

500
100
000
000

400
401
000
020

002
002
003
003

000
000
000
000

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

50
50
51
51

52
52
53
53

54
54
55
55

57
57
57
57

400
300
000
000

000
000
000
000

014
014
400
400

000
000
000
000

400
000
000
000

400
401
010
030

004
001
004
004

000
000
000
000

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

50
50
51
51

52
52
53
53

54
54
55
55

56
56
57
57

200
300
000
000

000
000
000
000

003
003
400
400

000
000
000
000

400
000
000
000

400
401
000
020

000
000
004
004

000
000
000
000

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

50
50
51
51

52
52
53
53

54
54
55
55

56
56
57
57

500
700
000
000

000
000
000
000

016
016
400
400

000
000
000
000

500
100
000
000

000
401
010
030

000
000
004
004

000
000
000
000

40
40
41
41

42
42
43
43

44
44
45
45

46
46
47
47

50
50
51
51

52
52
53
53

54
54
55
55

56
56
57
57

700
700
000
000

000
000
000
000

007
007
400
400

000
000
000
000

500
100
000
000

000
401
000
020

000
000
004
004

000
000
000
000

70

Table 12

Comprehensive Translator - +0600 to +0777

opP
CODE

xxx0

xxx1

Xxx2

Xxx3

Xxx4

XXX5

XXx6

xXxx7

+060x
-060x
+061x
-061x

+062x
-062x
+063x
-063x

+064x
~064x
+065x
-065x

+066x
-066x
+067x
-067x

+070x
-070x
+071x
-071x

+072x
-072x
+073x
-073x

+074x
-074x
+075x
-075x

+076x
-076x
+077x
-077x

71
71
61
61

65
65
62
62

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

66
66
76
76

000
010
004
005

000
000
000
000

004
001
000
000

010
000
000
000

400
400
000
010

000
000
010
030

000
000
010
030

010
000
000
000

60
60
61
61

74
74
63
63

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

77
77
77
77

410
410
004
005

000
000
010
030

000
000
000
000

010
000
000
000

400
400
000
010

000
000
010
030

000
000
010
030

010
012
012
010

60
61
61
61

47
47
63
63

64
65
65
65

66
67
67
67

70
70
71
71

72
72
73
73

74
74
75
75

76
76
76
76

010
005
004
005

000
000
000
020

000
000
000
000

010
000
000
000

400
400
000
010

000
000
000
020

000
000
000
020

001
001
000
000

70
70
61
61

66
66
63
63

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

77
77
77
77

400
400
004
005

010
000
000
020

000
000
000
000

010
000
000
000

400
400
000
010

000
000
000
020

000
000
000
020

405
017
403
011

60
60
61
61

66
66
63
63

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

76
76
37
37

000
000
004
005

010
000
010
030

004
000
000
000

010
000
000
000

400
400
000
010

000
000
010
030

000
000
010
030

000
000
010
000

60
60
61
61

67
46
63
63

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

77
77
77
77

400
400
004
005

000
000
010
030

000
000
000
000

010
000
000
000

400
400
000
010

000
000
010
030

000
000
010
030

404
016
406
014

60
60
61
61

66
66
63
63

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

76
76
76
76

000
000
004
005

010
000
000
020

000
000
000
000

010
000
000
000

400
400
000
010

000
000
000
020

000
000
000
020

005
005
004
004

60
60
61
61

66
66
63
63

64
64
65
65

66
66
67
67

70
70
71
71

72
72
73
73

74
74
75
75

77
77
77
77

400
400
004
005

010
000
000
020

000
000
000
000

010
000
000
000

400
400
000
010

000
000
000
020

000
000
000
020

003
013
003
013

71

NOTES

SPECIAL CONSIDERATIONS OF THE TRANSLATOR

1. Table 13 is a list of groups entered by op-codes which do not have the
group numbers as the two center digits in its op-code. Unless otherwise
specified, precondition controls are determined by the group number and
bits 0 and bits 9-11 of the op-code.

Table 13. Translator Exceptions
GROUP OP CODE GROUP OP CODE
01 +2XXX, ¥3XXX 41 LEVEL 3 REQUEST
10 +0120,+0122,+0124, 43 LEVEL 2 REQUEST
+0126,+014x,+0160, 45 +0443
+0162,20164,*0166 46 -0625
12 +0161,+0163,10165 47 +0622
*0167 51 LEVEL 1 REQUEST
14 Can't Be Entered 55 +0042,+0046
15 -0114,-0115,-0116 57 +0564
-0117 61 +0320,-0602
16 Can't Be Entered 62 +0630
17 +1xxx 65 +0620,-0642
21 -1xxx 66 +0623,+0624,+0626,
23 -0046 +0627,+0760
25 -0240,-0241 67 +0625,-0662
27 0261 70 +0603
31 +0301,+0303,+0305 71 +0600
+0307 72 +0522
32 +0501 74 +0621
33 LEVEL 4 TRAP REQUEST 76 +0770,40772,+0776
35 +0040 77 +0771,+0773,+0775,
37 0774 +0777

Note the following:

GROUPS 14 and 16 may not be reached by the TRANSLATOR. Control
and transfer vectors for groups 33, 41, 43 and 51 are also used
when the scheduler honors requests other than the program request.

2. In GROUP 01 GiN is set on if bit 2 of the op-code is a one (i.e., the
threes); and GOP 11 is set on if bit 0 of the op-code is a one (i.e., the
minus op-codes).

3. In GROUP 07, GIN is not set on if AUX 1 is on (i.e., the instruction

address is taken from AUX 1 instead of from the IC).

72

4. In GROUP 21 GIN is not set on if AUX 1 is on (i.e., the instruction
address is taken from AUX 1 instead of from the IC). Also in GROUP 21
GOP 11 is not set on if Bit 7 of the op-code is a one.

5. GROUPS 02, 03, and 10 will set the TSAT flip-flop under appropriate con-
ditions. This allows fast transfers if LK7 is on in the control and
transfer vectors and the transfer trap mode control flip-flop is off.
When a trap transfer (op-code +0021) is translated then TSAT is set and
the transfer trap mode control flip-flop doesn't affect the transfer
condition. Table 14 shows the translator conditions that set the TSAT
flip-flop.

Table 14. Translator TSAT Control
GROUP NOTE CODE SPECIAL CONDITIONS
2 +0021 Unconditional (trap transfer)
2 +0020 Unconditional (normal transfer)
2 6 +0022 CHA Tape Check (Gen. Ind. SOP44) on and
Tape Check Enable (Gen. Ind. SOP32) off.
2 6 -0022 CHB Tape Check (Gen. Ind. SOP46) on and
Tape Check Enable (Gen. Ind. SOP22) off.
3 7 +003x CHA EOF (Gen. Ind. SOP06) on and Command
Trap Enable (Gen. Ind. SOP34) off.
3 7 -003x CHB EOF (Gen. Ind. SOP14) on and Command
Trap Enable (Gen. Ind. SOP24) off.
10 *01x2 MQ Bit 0 off
10 +010x AC is zero (Q,0-35)
10 -010x AC is not zero (Q,0-35)
10 +012x AC sign bit off
10 -012x AC sign bit on
10 8 +014x AC overflow is on
10 8 -014x AC overflow is off

6. If the Tape Check Enable Indicator for the channel is off, the Tape
Check Indicator for the channel is turned off.

7. If the Command Trap Enable Indicator for the channel is off, the End of
File Indicator for the channel is turned off.

8. The AC Overflow Indicator is turned off.

SIGN AND MOST SIGNIFICANT BIT CONTROL

At the start of MINIFLOW, the Engine signs and most significant bits are set
as shown below.

Register Contents Register Sign Engine Q Bit
B Accumulator AC Sign Bit AC Q Bit
C Object Instruction
or Memory Operand
D Object Instruction

73

If a memory operand was fetched into C during wired-in-sequence, the sign and

most significant bit of register C are defined as shown below:

OPERAND SIGN AND PRECONDITIONS: C REGISTER
BIT O ARI MAG SuUB SIGN MSB
0 X 0 0 + 0
1 0 0 0 + 1
1 1 0 0 - 0
0 X 0 1 - 0
1 0 0 1 + 1
1 1 0 1 + 0
X X 1 0 + 0
X X 1 1 - 0

The "Engine Sign" may determine what is moved as a sign bit or as a most

significant bit. The Engine Sign is defined as follows:

D Sign If the D SOP (20) is used.
C Sign If the C SOP (31) is used.

B Sign If any of the following SOPS are used:

DOL (01), LDB (04), B-C-1 (06), B-1 (14), B-C (16), LDD (21),
NB (22), B'C (24), B+C+I (26), B (30), B+1 (34), B+C (36)

Zero if any of the following SOPS are used:

ZERO (00), NB+1 (02), NC+1 (03), LDC (05), C-B-I (07), B°NC (10),
NB'C (11), BEC (12), C-1 (15), C-B (17), NC (23), BUC (32), C+1 (35).

If the Engine Sign is the B or the C sign, it may have a hard register sign
combined with it. Specifically, the MSB of the Hard Register is logically

ORed with the B sign (or the C sign) if an MQ, SI, or R4 POP is used and ARI
is on and the B replace (or C replace) bit is on.

The "Engine Bit 0" is the result of the engine operation at bit position O.
The manner in which the B, C, and D register Signs and most significant bits

may be altered by MINIFLOW are defined below.

Engine Register.

CONDITIONS:
OPERATION

RESULTS:
X SIGN

X signifies the particular

X MSB

AC with LDX (as TOP)

MQ, SI, R4 with LDX and ARI off

MQ, SI, R4 with LDX and ARI on

AC, MQ, SI, R4 with no load TOP and
with Replace type SOP B or C

CMI with LDX (SOP)

MEM or MKEY-Read with ARI off

MEM or MKEY-Read with ARI on

Engine Sign
Engine Sign
Engine Sign
Engine Sign

Unchanged
Unchanged
Memory MSB

Engine Bit O
Engine Bit 0
Engine Sign

Unchanged

Memory MSB
Memory MSB
Zero

T4

In addition, the B and D signs may be altered as follows:

RESULTS
OPERATION B SIGN D SIGN

SHIFT MULT B®C SIGN# B®C SIGN#*
SHIFT DIV Unchanged B®C SIGN#*
SHIFT DOS WITH ARI ON and GOP11l ON D Sign Unchanged
SHIFT DOS WITH ARI ON and GOPll OFF Unchanged B Sign
ALG with unlike signs in B & C and C Sign Unchanged

first carry true. (With AC Q Bit

off or Q Bit not zoned in).
*B®C SIGN is the EXCLUSIVE OR of the B sign bit and the C sign bit. This

is the same as the algebraic sign resulting from a multiply or a divide

operation.

The conditions and manner in which the AC and other Hard Register signs and
memory signs may be altered by MINIFLOW are defined below:

AC SIGN AND P BIT

RESULTS
OPERATION AC SIGN AC P BIT
MISC RSQ Plus Unchanged
MISC RAS Plus Unchanged
MISC TAS Complemented Unchanged
MISC SAS Minus Unchanged

AC with store

Engine Sign

Engine Bit 0

MQ, SI, R4 Most Significant Bit

MA, SI, R4 with store

MEMORY Most Significant Bit

MEM WITH RM BITS:
14 16 17

1 0 0 (Store
1 0 1 (Store
1 1 0 (Store
1 1 1 (Store

Zero)
B)
C)
D)

75

ARI ON

Engine Sign

ARI ON

Zero

B Sign
C Sign
D Sign

ARI OFF

Engine Bit 0

ARI OFF

Zero

B Bit 0
C Bit 0
D Bit 0

Q BIT AND OVERFLOW CONTROL

The Engine Q bit equals the AC Q bit at the start of MINIFLOW YA6. The con-
ditions and manner in which the AC Q bit or the Engine Q bit may be altered
during MINIFLOW are defined below:

CONDITIONS

OPERATION AC Q BIT ENGINE Q BIT

MISC RSQ Zero Zero

MISC RAQ Zero Zero

MISC TAQ Complement AC Q bit Complement AC Q bit
MISC SAQ One Unchanged

SHIFT MULT Unchanged Left extension of B reg.
SHIFT DOS Unchanged Left extension of B reg.
PB,PC PBD,PCD POPS Unchanged Generated Q bit

with Q bit zone (33 or 05)

AC POP WITH RM BITS

15 16 17

x o0 o0 mememeee- Unchanged

x 0 1 emmeemmme- Generated Q bit
X 1 o memmememee- Generated Q bit
X 1 1 eeeeeee-a- Generated Q bit
0 x x Unchanged fmmeme tmmmaman
1 x X Generated Q bit e ——

The Generated Q bit equals the exclusive OR of the carry out of bit position 0
and the present ENGINE Q BIT**; except the Generated Q bit is zero for the
following SOPS: ZERO, DOL, NB-C, B'C, C, C-1, C+1, D, and LDk, LDC, LDD.

The Overflow indicator is turned off by a console Reset or by the translators
while translating an OP-CODE of +0l4x or by MISC ROV (063000).

The Overflow indicator is turned on by MINIFLOUW under any of the four
following conditions:

1. An AC POP with Store bit on and a carry out of bit position 1.

2. An ALG POP with Q bit zoning, like signs, and a carry out of bit
position 1.

3. A SHIFT MULT or SHIFT DOS with a one bit shifted left out of bit
position 1.

4, A MISC SOV (063100)

**The engine Q bit is replaced by the AC Q bit on the AC POP if the replace B
or Replace C bit is on.

~J
[eal

INPUT/OUTPUT CONTROL
Channel Description

Peripheral devices are controlled by two independent channels, A and B, under
MINIFLOW supervision. Channel A may have tapes, a card reader and a type-
writer attached to it. Channel B may have tapes attached to it. The channels
transmit data between the peripheral device and control core. An 1/0 operation
may be initiated in any level.

For read operations, Channel A will generate a level 1 request each time

8 words have been moved from the device to control memory. Channel B will
generate a level 2 request each time 8 words have been moved to control
memory .

For write operations, Channel A will generate a level 1 request each time

8 words have been moved from control memory to the device. Channel B will
generate a level 2 request each time 8 words are moved from control core to
the device.

Both Channels A and B will set a level 3 request on termination of activity.
Activity is terminated in the following ways:

Read - Channel detects end of record on media.
Write- Channel is directed to generate an end of record on the media.

Non Data Operation
Backspace - Backspace is completed
Write EOF - Operation is completed
Rewind or Unload - Operation is started.

The channels use a fixed buffer region in control memory. octal word loca-
tions 200 to 237 for Channel A and 240 to 277 for Channel B. This gives

32 words of buffering for each channel. The channel can therefore stack 4
buffer requests (level 1 and 2). The buffer request is serviced by a
MINIFLOW routine which may move the data from the buffer. This routine must
acknowledge the request.

Channel operations are controlled by three control registers for each channel,
as shown below:

a. Channel Register 1 receives the channel instruction when a channel
activity is initiated by a CH1 POP, described under MINIFIOW
instruction descriptions.

b Channel Register 2 controls the channel termination. It is accessed
by the CH2 POP to either stop the channel data transfer or to locatc
the last word of a record or the first word in error.

c. Mode control is a set of 4 flin-flops nused to control channel sequence
and timing. The mode control are loaded into the main engine bv o
ClI1 POP with a load SOP There are ten active states A to J, plus
an idle state.

77

The peripherals and their interaction with the IC-MY through the channels
are described next.

THE CARD READER is a unit record device which is selected by placing the
following bit pattern into Channel Register 1.

0 1 7 8 10 11 27 28 30 31 32 3

wm

0 XXXXXXX 001 XXXXXXXXXXXXXXXXX 110 1 XXXXXXXXX

Notice that the object instruction +076200001321 which is used to read cards
from the IBM 7094 conforms to this pattern.

The card is read endwise from column 1 to 80 in full binary fashion.

Columns 1, 2, and 3 form the first word stored in the buffer at octal word
location 200. Every succeeding three columns form a new word at the next
higher address. The columns fill the word from left to right with the twelfth
row most significant. Holes are read as ones. Twenty-seven full words are
read into control core with column 81 read as zeros.

When the data is all moved, a level 1 buffer service request is set in the
scheduler. When the trailing edge of the card is sensed, a channel terminate
request is set in the channel and propogates into the scheduler. This ter-
minate request must be reset in level 3 by MINIFLOW with a MISC RTER once the
request is granted or it will cause a level 3 interrupt again.

A procedure to read a card is as follows:

a, Issue the CH1 to select the card reader and EXIT.
b. When the level 1 interrupt occurs, move and check the data as
desired. This may include check sum tests, corner turning or

binary to BCD code conversion, look ahead buffering, and moving to
main storage under [/0 command control.

c. when the level 3 (terminate) interrupt occurs, reset the terminate
request with a MISC RTER and perhaps reissue a select if command
chaining or other conditions require it.

Pressing the LOAD MACHINE key on the maintenance panel or placing a 10

(bits 0, 8-10) into the Channel Register 1 will also cause a card to be

read identically except that the data will be read into octal word loca-
tions 100 to 132. This is the first part of the MINIFLOW entry table, which
consists of mini-locations 200 to 265, and is the means provided to read and
start execution of a bootstrap loader. The bootstrap loader is exnlained

at the end of Section IIT.

78

THE CONSOLE TYPEWRITER is a unit record device also, and it will type when the
following bit pattern is loaded into Channel A Register 1:

0 1 7 8 10 11 27 28 30 31 32 35

0 XXXXXXXX 011 XXXXXXXXXXXXXXXXX 111 1 XXXXXXXXXXXXX

Notice that the IBM 7094 instruction to select the printer conforms to the
bit pattern used to select the typewriter. If bit zero is a one, i.e.,
-076600001361, then the typewriter will space vertically one line.

The procedure to TYPEWRITE A LINE is as follows:

a. Move the data to the Channel A buffer at octal word location 200 in
control memory. This operation may include moving under 1/0 com-
mand control, corner turning and/or code conversion (refer to Table 15)
and generating printer or time echos if simulating the 407 printer.

b. Issue the CH1 instruction to Channel A Register 1 as defined by the
previously defined bit pattern. A level 1 buffer service request
will not be set in the scheduler when a CH1 is directed to the
typewriter.

c. Issue a CH2 instruction to Channel A Register 2 to give the channel
the number of words to be typed. This is specified by the low
order 5 bits of the data generated by the CH2 instruction. This
count should be a value between 1 and octal 37 which gives a
character count hetween 6 and 186. A speedup technique to use
when simulating a printer on the typewriter is to examine words from
right to left for blanks and to decrease the word count in the Cli2
to eliminate typing out trailing blanks. The exit bit may be used
in the (HZ instruction to exit to the scheduler.

d. A terminate request is set in the channel logic and the schedvler

when the channel disconnects from the tvpewriter. This terminate
request must be reset in the channel with a MISC RTER instruction.

79

Table 15. Octal Code vs. Typewriter Character

OCTAL

CODE X0 X1 X2 X3 X4 X5 X6 X7
0X . I 3 [F D B ?
1X + H <) G E C A
2X $ R A] 0 M K !
3X - Q ; * P N L J
4% s z H m W U S £
5X ¥ Y \ (X \ T /
6X = 9 v : 6 4 2)
7X blank 8 > ' 7 5 3 1

THE MAGNETIC TAPE UNIT are physical record devices which are attached to
either Channel A or Channel B. They are selected by placing the following
pattern into Channel A (or B) Register 1 with a CH1 POP:

0] 7 8 10 11 28 29 30 31 32 35

C XXXXXXXXX CCC XXXXXXXXXXXXXXXXX 0] X| M uuuu

C indicates the operation to he performed by the channel, as shown helow:

C (Octal) Operations
01 Read Tape
03 Write Tape
04 Write Fnd-of-File Mark
13 Write Blank Tape
02 Backspace Record
12 Backspace File
05 Rewind Tape
15 Rewind Tape and Unload
07 Test Tape for Unit Present

Setting bit 29 to a zero causes tape to be selected. Bit 31 () indicates the
tape mode as follows:

0 BCND Mode (even parity)
1 Binary Mode (odd parity)
Bits 32-35 (u) indicate which tape unit is to be selected. It is a binary

coded number from one (000)) to ten (1010).

80

The specific channel selected by a CH1 or CH2 POP is determined by the CHB
flip-flop. Channel A is selected if the CHB flip-flop is off and Channel B
is selected if the CHB flip-flop is on. The specific buffer area in control
memory is also specified by the CHB flip-flop. If CHB flip-flop is off,
octal word locations 200-237 are used and if it is on, locations 240-277 are
used.

If the tape operation does transmit data then the specific channel buffer is
partitioned into four, 8 word, sub bhuffers. Data transmission always startine
with the first buffer word. i.e., 200 for Channel A, 240 for Channel B.
Whenever a new sub buffer is accessed, i.e., the channel moves 8 more words, a
request counter in the channel is incremented. If this counter is not zero,

a buffer service request is set in the scheduler. On granting this request
from the scheduler, the buffer service MINIFLOW routine (executed in level 1
for Channel A and level 2 for Channel B) must acknowledge the channel request
which caused the level 1 (or 2) interrupt. This is done with a MISC ACK
instruction which will decrement the channel request counter. The MINTFLOW
buffer service routine must move the data fast enough so that, on the average,
it will stay ahead of the channel data movement. At the time the last buffer
word is moved it must start again in order to move the first word of the buffer.

Similarly when the channel accesses the last word of the buffer (237 for
Channel A, 277 for B) then channel addressing wraps around and starts back at
the first buffer word. If the channel data movements starts to get more than
32 words ahead of MINIFLOW a transfer timing error will occur because data is
lost while reading or repeated while writing. This condition is detected

when the channel request counter attempts to count above 4, meaning that the
channel is more than 4 sub buffers ahead of the servicing routine. However,
when this occurs, all 32 words in the buffer will still be good. When a
transfer timing error occurs the channel indicator ER2 will be turned on. The
channel will be disconnected and a terminate request will be set in the channel
and sent to the scheduler. Channel indicator ER1 is turned on if a parity or
other data error is detected. A procedure to read or write tape is shown

in Figure 9.

It should be emphasized that the flow chart in Figure 9 is only one example
and is not intended to emulate the tape 1/0 control for any particular machine.
The example assumes that commands are not chained and that a parity error

will disconnect the channel and turn on a tape redundancy indicator. Many
different options are available by proper MINIFLOW control, such as command
chaining, special trapping, continuing to read on an error, synchronizing the
CPU and channels and transfer timing error recovery procedures. The transfer
timing recovery might include backspacing a record and reading without data
transmission until the previously lost data is read again and then continuing
with data transmission. If channel synchronizing is included, the data moving
routines must be executed in levels 1 and 2 so that a delay may be given to
allow the synchronizing instruction to be executed in level 4.

81

FIL1. BUFFER
WITH 32 WORDS
OR LESS UNDER

1,0 COMMAND

CONTROL

DECREMENT THE
COMMAND COUNT

FOR EACH WORD

ISSUE. THE
TAPE WRITE
WITH A CH1

ISSUE THE
TAPE READ
WITH A CH1

L1/2
SCHEDULER
BUFFER
SERVICE
ENTRY

CHANNEL
BYPASS SWITCH

OFF
ﬂ—Q ER])

ACKNOWLEDGE
THL BUFFLR

OFF

SERVICE REQUEST

1S COMMAND
COUNT ZERO

TURN ON CHANNEL
BYPASS SWITCH

ISSt1 N CH2

L.‘ 10 STOP SUBSEQUENT

BUFFER SERVICLE
REQUESTS AND TO
DESIGNATE THE
LAST WORD TO BE
WRITTLEN (IF WRITE)

/”/L\\\

MOVE IN THE
NEXT % WORDS OR
LESS UNDER 1.0
COMMAND CONTROI.
DECREMENT THI
COMMAND COUNT
FOR EACH WORD

.

MOVI. OUT THE
NEXT 8 WORDS OR
LESS UNDER L'O

COMMAND CONTROL

DECREMENT THE
COMMAND COUNT
FOR EACH WORD

)

READ, WRITE ’

R

|

END OF RECORD
LOR

ON

MOVE OUT THE
NEXT 8 WORDS OR

DECREMENT THE
COMMAND COUNT
FOR EACH WORD

LESS UNDER FOR &
O COMMAND CONTROL

ISSUE \ CH2
WITH A LOAD
SOP TO GET THE
ADDRESS OF
THE LAST WORD
IN THF RECORD

L3
SCHEDULER
TERMINATE

ENTRY

T
y——< TERMINATE/CONSOLE

RESET THE CHANNEL

TERMINATE
REQUEST

TURN OFF CHANNEL
BYPASS SWITCH

(ER2

OFF

)FF
o (")

PERFORM THE
CONSOLE
ROUTINE

ON

READ/WRITE

w

ON
PERFORM
TU‘RN ()N‘ THE TRANSFER
THE TAPE TIMING ERROR
REDUNDANCY RECOVERY
INDICATOR PROCEDURE

Figure 9.

Read or Write Tape Flow Chart

REMOTE EXECUTION AND TRAPPING

Remote execution is a means by which the machine may temporarily interrupt
its normal program sequence to execute an extra instruction and then return
to the normal program sequence (unless the extra instruction alters the IC,
such as a skip or a transfer).

Trapping is a means by which the object program may be made aware of special
machine conditions which need to be monitored without requiring frequent test
instructions. The machine status is constantly monitored and when one of the
special conditions occur, the machine will “TRAP'-. When the machine traps,
the instruction counter (IC) is stored, along with trap identification data,
into a location determined by the type of trap condition. The program then
goes to another location (also determined by the type of trap) for its next
instruction. This next instruction starts the trap analysis which determines
the action to take. It may subsequently return back to the main program.
Several of the special situations which may be monitored with traps are:

a. Privileged Instruction - When in a non-privileged mode.

b. Transfers - When in transfer trap mode.

c. I/0 Termination - Both data and non-data operations.

d. Timer - Service and overflow.

e. Exceptions - Floating point, divide check.

f. Self trapping - Such as a Store and Trap.

g. Attention - For operator or external control.

h. Illegal TInstruction - Such as illepal op codes, illegal addresses,
illegal data, and illegal instruction operands.

It should be kept in mind that many of these situations may not occur on some
object machines or they may be handled in a different manner than by trapping.
The four methods used in the IC-M9 to handle trapping or remote execution

are:

1. The normal MINIFLOW

2. The transfer trap mode control
3. The channel trap request logic
4, The auxiliary instruction counters

83

NORMAL MINIFLOW handles trapping situations which occur in level 4 program
(object instruction) execution which may be monitored by MINIFLOW and will
cause a direct sequence change. Some examples would be floating point
exceptions, self trapping, privileged instructions or illegal op codes.

TRANSFER TRAP MODE CONTROL allows object program transfer instructions to

be trapped without monitoring them in MINIFLOW or slowing down their emulation
when not trapping them. This form of monitoring is enabled when the General
Indicator TRAP (SOP40) is on. Transfer trapping is performed during the
W-1-S state YAS just before entering MINFLOW. Refer to Figure 10 for details
of transfer trapping. LK7 identifies a fast transfer which may be trapped.
Special logic excludes the op code +0021 from being trapped. If LK4 is on
for a slow transfer it is assumed that the transfer will be trapped later
when it is processed as a fast transfer. Figure 10 illustrates the logic
involved in the W-1-S state YAS and in MINTFLOW (W-J-S state YA6) to handle
transfer traps.

84

r—. SCHEDULER — STATES

W-I-§

YAO0 TO YA4

POST-INDEXING
FOR W-I-S
STATE YAS

— RESET LK4
SET LK7

YA6 MINIFLOW FOR
SLOW TRANSFER
SET UP THE TSAT
F/F AND RETURN
TO YAS WITH TAW

BOTA
OFF

g

|

OP-CODE %0021 XD_.

—GX TRAP MODE

T SAT F/F ON E—.

YA-6 MINIFLOW
FOR NON-TRANSFER
INSTRUCTION DO
EMULATION AND EXIT
TO SCHEDULER

YA6 MINIFLOW
FOR TRANSFER TRAP
T SAT F/F INDICATES IC + 1—e=IC
IF TRANSFER WOULD NO TRANSFER

HAVE TAKEN EXIT

TO SCHEDULER

D(21-35) —==IC
TRANSFER

'

‘ '

Figure 19, TFlow Chart of Transfer Trapping in YAS

85

NOTE

In both examples 1 and 2 in Section II, if the transfer trap mode control is
on then the IC is always incremented by 1 and MINIFLOW is entered at the point
specified by the control and transfer vector, bits 7-17.

CHANNEL TRAP REQUEST LOGIC is used to provide trapping for special conditions
detected while not executing level 4 program MINIFLOW. Some examples are: a
timer overflow trap, an operator interrupt trap, or termination of an I1/0
operation. These would set a level 4 trap request while executing MINIFLOW
in level 3 and they would also set appropriate indicators to convey the trap
conditions before EXITing to the scheduler.

The scheduler will normally honor the trap request ahead of the program request
in level 4. The W-I-S will select the trap control and transfer vector at
mini-location 233 which in turn points to the trap analysis routine. The trap
request will be inhibited if the console AUTO/MANUAL switch is in manual. The
trap request is also inhibited if the trap postpone flin-flop is on. This
flip-flop may be set by the MISC POST instruction. It will be reset each

time the scheduler honors a level 4 request. Therefore, this flip-flop will
postpone trapping only long enough to execute one object instruction. If 1/0
trapping involves remote execution rather than directly altering the program
sequence, then AUX 2 may be used as outlined in the next paragraph.

AUXILIARY INSTRUCTION COUNTERS are used to execute an instruction out of
sequence, i.e., remote execution. This is done by storing the address of the
instruction to be executed in either control memory octal location 4 (AUX 1) or
octal location 10 (AUX 2) by means of the CMI POP. This causes the AUX 1

(or AUX 2) flip-flop to be set. When the scheduler next honors level 4 pro-
gram, the W-I-S will start with YAO where the AUX 1 (or AUX 2) is recad from
control memory and the low order 15 bits are used to address the object in-
struction. The IC 'is not used and not incremented. The AUX 1 (or AUX 2)
flip-flop is reset so that the W-I-S control will return to the IC the next
time. AUX 1 has priority over AUX 2 when both are set, but AUX 2 will be used
before returning to execute instructions pointed to by the IC.

When AUX 1 is on and an instruction from group 7 (code +007x) or group 21
(code -1xxx or code +021x) is translated, then GIN is not set as it normally
would be. This allows MINIFLOW to detect if the object instruction is being
remotely executed.

CONSOLE CONTROLS

Console switches and indicators on the operator's console and on the maintenance
panel are used to control and indicate machine status to the operator. Many,
but not all, of these are accessible to MINIFLOW interruption and control.

Some indicators are controlled jointly between MINIFLOW and non-program control
conditions. This section will treat those controls of special significance to
the MINIFLOW programmer.

86

Most controls on the maintenance panel must first be enabled by the MAINTENANCE
ENABLE switch before they are effective. This switch is located on the main-
tenance panel. More information on console controls and indicators is found
under the following computer instruction descriptions:

INT - Console Interrupt Status

AKEYS - Address Keys Operation

KEYS - Entry keys Operation

Test Instructions

General Conditional Test Instructions

Also refer to the IC-6000 System Operation Guides for 7090/7094 Emulation and
7040/7044 Emulation.

1. The GENERAL RESET switch on the operator's console will set a console
interrupt (bit 9 for a reset request) and it will reset all of the
following:

All the scheduler and W-1-S flip-flops.

The Halt, Postpone, AUX 1, AUX 2 and Program Run flip-flops.
The timer interrupt request.

The IC and all index registers

The AC overflow flip-flop

The AC and Engine Q bit

All the General Indicator flip-flops

All the Channel Indicators except SOPs 00, 01, 20, 21, 30.
Channel Register 1 in both channels

Channel terminates and buffer service requests

Tape low threshold controls

Card reader and load machine control flip-flops.

R e T M D AN TR

2, The MACHINE RESET switch on the maintenance console, when enabled by
the MAINTENANCE ENABLE switch, will stop the clock, reset the console
interrupts (including a console reset request) and resynchronize the
mini-step control logic and both the memories.

3. The START switch on the operator's console will start the machine clock
running and will reset a level 4 HAND if HAIT is on and will set a level 4
program request in the scheduler.

4. If the PROGRAM START INHIBIT switch is on and the MAINTENANCE ENABLE
switch is on then the START switch on the operator's console will only
start the machine clock.

5. The HALT indicator on the operator's console will be turned on when a
MISC HALT is executed. Level 4 will then be in a HANG condition and
cannot be taken out of this condition by either a MISC RH4 of MISC RINT.
However, level 4 will be taken out of the HANG condition by the START
switch. The HALT indicator will be reset by GENERAL RESET or whenever
the scheduler grants level 4. MISC RESL4 will also reset the hang
condition.

87

If the MANUAL switch on the operator's console is on, the program request
flip-flop will be reset each time it is; honored by the scheduler. This
then requires that the START switch be pressed to execute each object
instruction so that the machine operates in a single step mode. However,
if either Channel A or B has a data select in process (Channel Indicator
SOP 26) then the manual mode will not be effective until both channel
data operations are completed. This allows the execution of any LCH's
which command chaining may require. The MAINTENANCE ENABLE switch being
on and the MANUAL OVERRIDE switch on will cause the MANUAL switch to
disregard the channel data select and process indicators and go
immediately into the manual mode.

A trap request will be honored by the scheduler when not in the manual
mode. The EXECUTE ENTRY switch is only enabled when the MANUAL switch
is on.

The six CONSOLE REQUEST switches on the operator's console have the
following W-I-S priority and cause the following bit positions to be set
to one in the console interrupt register:

SWITCH FUNCTION BIT POSITION GENERAL NOTES

GENERAL RESET 9 See Para. 1
CLEAR STORAGE 10

LOAD CARD 11

LOAD TAPE 12

EXECUTE ENTRY 13 Enabled by MANUAL
EXECUTE DISPLAY 14

If any of these switches are enabled, then a console rcquest is set in
the scheduler and the General Indicator CON will be turned on when the
request is granted.

The STORAGE CLOCK OFF switch on the operator's console will prevent the
real time clock from setting console requests when the switch is down.
When this switch is up the interval timer interrupt flip-flop is turned
on every sixtieth of a second. This sets a console request in the
scheduler and turns on bit 8 of the console interrupt register.

There are thirteen REGISTER SELECTION switches on the operator's console.
They are used to select a particular register or memory location to be
loaded with information from the entry keys or displayed on the display
indicators. They are listed below in the order of their wired in
priority:

Index Register 1 XR1 15 bits displayed
Index Register 2 XR2 15 bits displayed
Index Register 3 XR3 15 bits displayed
Index Register 4 XR4 15 bits displayed
Index Register 5 XRS5 15 bits displayed

88

10.

11,

12.

Index Register 6 XR6 15 bits display

Index Register 7 XR7 15 bits display

Main Storage (word specified by the Address keys)
Accumulator AC S & Q bit also display
Multiplier Quotient MQ 36 bits display
Instruction Counter IC 15 bits display

Current Instruction (may only be displayed dynamically)
Sense Indicators SI 36 bits display

The two REGISTER SELECTION switches on the maintenance panel do not have
a wired in priority but they must be enabled by the MAINTENANCE ENABLE
switch, they are:

Control Storage (word specified by address keys)
Hard Register 4 HARD 4 36 bits display

The data is placed in the display register whenever a register is accessed
and its switch is down and a switch of higher priority is not down. In the
case of CONTROL STORAGE or HARD 4 switches, the maintenance panel must

be enabled. The CURRENT INSTRUCTION switch does not have a register
associated with it, Therefore, the display register is loaded at the

time that the object instruction is fetched for execution, i.e., during
W-I-S step YAl. The CURRENT INSTRUCTION switch may be directly
interrogated as a General Indicator (CIF-S0P76) .

The Display General Indicator is turned on (DIS-SOP42) whenever the dis-
play register is turned on (DIS-SOP42). This may be used by MINIFLOW
to indicate when a register has been displayed and hence which register
had its display switch down.

The LOAD MACHINE switch, located on the maintenance panel, will cause
a card to be read from the card reader (if it is ready). This places
the card image into the entry table at octal word locations 100 to 132,
Also, a buffer service request and a terminate request will be set in
the scheduler. The MAINTENANCE ENABLE switch need not be on.

The 36 ENTRY KEYS on the operator's console are used by the operator to
enter data into the computer. They may be loaded into the main engine
registers or stored directly into either the control or main memories,
Refer to the following computer instruction descriptions:

MEM - Memory Operation

MKEY - Memory/Keys Operation
KEYS - Entry Keys Operation
AKEYS - Address Keys Operation

The 15 ADDRESS KEYS on the operator's console are used by the operator

to enter address data into the computer, Also, they are used in con-
junction with a comparator circuit to indicate when a memory display or
an address stop condition has occurred. The ADDRESS KEYS are used either
to load main engine registers or used to specify a memory address under
MINIFLOW control, Refer to the computer instructions in paragraph 11,

89

13. The AC OVERFLOW indicator on the operator's console will be turned on by
MINIFLOW by the following:

a. An AC POP and a carry out of bit 1,
b. An ALG POP and a carry out of bit 1 with like signs and Q bit zoning.

c. A SHIFT POP and DOS or MULT SOP with a 1 bit shifted left through
bit 1.

This indicator will be turned off by the GENERAL RESET switch or by

translating an op code of +014x during W-1-S step YA2. During this

translation, the TSAT flip-flop is set to the exclusive OR of the AC
OVERFLOW and the sign of the +014x instruction.

The following is a list of operator console controls which may not be
interrogated by MINIFLOW coding:

a. TAPE WORD INCOMPLETE - (CHANNEL) SWITCH

b. NO WRITE RING - (CHANNEL) LAMP

C. TAPE MULT-SELECTED - (CHANNEL) LAMP

d. TAPE UNIT REQUESTED - (CHANNEL) 4 LAMPS

e, CARD READER NOT READY - (CHANNEL A) LAMP

f. TYPEWRITER NOT READY - (CHANNEL A) LAMP

g. AC OVERFLOW* - LAMP

h, POWER ON/OFF CONTROLS - LAMP/SWITCH/BUTTON
i. PROGRAM HALT* - LAMP

j. MANUAL or ADDRESS HALT LAMP

k. INTERNAL CHECK LAMP

1. MAINTENANCE ENABLE* - LAMP

m, ADDRESS TOP CONTROLS - 4 SWITCHES
n. START - SWITCH

o. MANUAL - SWITCH

p. CARD END-OF-FILE - SWITCH

q. STORAGE CLOCK OFF*

The following is a list of maintenance panel controls which may be interrogated
by MINIFLOW coding:

1, DIVIDE CHECK and TRAP MODE - SWITCH (GENERAL INDICATOR)

b. ABSOLUTE DISPLAY** - SWITCH TO DISPLAY CONTROL
STORAGE

c. HARD 4** - SWITCH TO DISPLAY HARD REG 4

* These controls are explained in the foregoing paragraphs.
**Must be enabled by the MAINTENANCE ENABLE switch. They are then inter-
rogated by accessing them and testing the General Indicator DISPLAY (SOP42).

90

COMPUTER INSTRUCTIONS

This section defines all computer instructions and describes their execution
and the indicators that may be affected.

Instruction Diagrams

A diagram representing the format of the instruction is given for each class
of instructions, i.e., a class may include more than one instruction. In

the diagram is the alphabetic and the numerical primary operation code (POP)
given in the octal number system. This can easily be converted to tho binary
system for reference to the bit pattern interpreted by the computer. The
numbers appearing above the diagram indicate the bit positions of the computer-
word that are concerned with this particular instruction. A typical format is
shown below:

0 5 6 7 11 12 13 17

PRIMARY OPERATION | G | SECONDARY OPERATION | E | TERTIARY OPERATION
CODE (POP) CODE (SO0P) CODE (TOP)

The terms POP, SOP, and TOP are defined in the definition of terms found in
the front part of the manual.

The instructions subject to precondition control are identified by the

symbol G appearing in bit 6. The precondition control symbol, identified by
GIN or GEX in the description, represents a 1 bit in position 6 of the
instruction.

Similarly, the symbol E appearing in bit 12 represents a 1 bit in this position.
Its presence indicates that, on the completion of this instruction, control

will EXIT back to the scheduler or to the call program if in subroutine mode.
Definitions

1. R(POP) denotes the contents of the register specified by POP. Unless
otherwise stated, the entire field is implied.

2. C{C)Z denotes the contents of the field of register C as specified by
the zone TOP.

3. RO(SOP)Z denotes the result of an engine SOP operation, as specified by
zone TOP,

4. R(SOP) denotes the register specified by SOP field under zone control.
5. (A)HX denotes contents of register A are half exchanged.

6. CI(SOP) denotes channel indicator specified by SOP and channel B8 flip-flop.

91

7. (ME)Z denotes the outputs of the main engine under zone control.

8. C(Y) denotes the contents of location Y, where Y refers to some location
in storage.

9. I(SOP) denotes the general indicator specified by the SOP field.
10. T(SOP) denotes the test condition specified by the SOP field.

11. When the word ''load" is used, the transmission of a word or a part of a
word from some location in the specified core storage to some specified
register is always implied. Also, the transmission may be of one
register to another.

In the following instruction descriptions, an instruction format is shown for
each class of instructions. Beneath the format diagram a paragraph, or more,
is included describing the overall characteristics of this group of instruc-
tions. Tables of SOPs and TOPs may also be referenced to in the process of
describing the characteristics. Following this will be a functional (non-
hardware) description, precondition controls and affected conditions.

Note again that all addresses and numbers, unless otherwise specified, are
given in the octal number system.

SHIFT OPERATIONS

Shift instructions are used to move the contents of D and B (or C) either to
the right or the left of their original positions. Coupled shifts between B
and D, or between C and D may be done on the whole register or in just the
mantissa zones (bits 9-35). Zeros are introduced in the vacated positions of
a register, with the exception of conditional floating shift B and D (9-35)
left. A shift larger than the bit capacity of the register will cause the
contents of the register to be replaced by zeros.

When a shift instruction is interpreted, the amount of the shift is specified
by RC, with the exception of BD-N(14). The C(SOP) specify the shift operation
to be performed.

SHIFT - MAIN ENGINE SHIFTS

0 5 6 7 11 12 17

66 G SopP TOP

Description. The C(SOP), Table 16, specify the shift operation to be per-
formed. 1f the DOS(20), Table 17 is used C(C)28-35 are loaded to RC. The
C(TOP) are tested when other SOPs are used. If the TOP contains 77, RC is
not altered; otherwise, the C(TOP) are loaded to RC. With the exception of
SOP BD-N(14), RC specifies the number of bits to be shifted.

92

Table 16. The Shift SOPs

CODE MNEMONIC NOTE SHIFT DESCRIPTION
02 B-L Open shift B(0-35) left

03 B-R Open shift B(0-35) right
04 D-L Open shift D(0-35) left
05 D-R Open shift D(0-35) right
06 BD-L Coupled shift B§D(0-35) 1left
07 BD-R Coupled shift B§D(0-35) right

10 DIV (0 Divide B&D(0-35) by C(0-35)

11 MULT (2) Multiply C(0-35) by D(0-35) into B§D(0-35)
12 D-ROT Ring shift D(0-35) left

14 BD-N (3) Normalize shift B§D(9-35) left

16 BD-LF Floating shift B§D(0-35) left

7 BD-RF Floating shift BD(9-35) right
20 DOS Do the shift specified by the table below
22 C-L Open shift C(0-35) left

23 (C-R Open shift C(0-35) right

26 CD-L Coupled shift C§D(0-35) left

27 CD-R Coupled shift C§D(0-35) right
30 FDIV (1) Floating divide B§D(9-35) by C(9-35)

31 FMUL 4 Floating Mult. (9-35) by D(9-35) into B&D(9-35)
32 BD-L9 (5) Conditional floating shift B§D(9-35) left
33 BD-R9 (6) Floating shift B§D(9-35) right

Table 17. The DOS Operations

GOPS MNEMONIC NOTE SHIFT PERFORMED
9 10 11
0 0 O Perform no Shifting
0 0 1 D-ROT Ring Shift D(0-35) left
0 1 0 B-R Open Shift B(0-35) right
¢ 1 1 B-L Open Shift B(0-35) left

1 0 0 BD-R (7) Coupled Shift B§D(0-35) right
1 0 1 BD-L (8) Coupled Shift BGD(0-35) left

1 1 0 BD-R Coupled Shift B&D(0-35) right

1 1 1 BD-L Coupled Shift B§D(0-35) left

Note: The shift count is taken from register C in the main engine.

93

SPECTIAL NOTES

1. Set sign of D to EXCLUSIVE OR of B and C signs: also set PDCK general
flip-flop* if C is less than B initially. The quotient is right justified
in D with a length equal to the shift count.

2. Set signs of B and D to EXCLUSIVE OR of C sign and initial D sign. The
product is left justified in B and D with a length equal to 36 plus the
shift count.

3. The normalize SOP loads the shift count to RC and increments RC until a one
bit moves into bit position 9 of B; if there is not a one bit in B(9-35)
or in D(9-35) the machine will shift independently.

4, Set signs of B and D to EXCIUSIVE OR of C sign and initial D sign. The
product is left justified to bit 9 and is in B(9-35) and D(9-35); its
length is equal to 27 plus the shift count.

S. Shift only if bit 9 of B is reset. Use a shift count of one unless other-
wise specified.

6. A one hit is inserted into bit 9 of B. Use a shift count of one unless
otherwise specified.

7. The B sign replaces the D sign and the B sign is not changed.
8. The D sign replaces the B sign and the D sign is not changed.

Execution. Shifting is accomplished by a two stage shift matrix which allows
a shi€t from 0 to 4 in either direction for each cycle time. Normalize shift
justifies to bit position 9 in the B register.

All shifts continue until the shift count is reduced to zero, except the
normalize which increments the count and stops when a 1 bit is in bit 9 of B.
At the completion of the SHIFT instruction, the C(RC) will be zero. For
BD-N the RC will contain the C(TOP) plus the number of bits shifted.

Multiplication is accomplished by alternate adds and right shifts. Go to
step one if the LSB of the D register is one, and go to step 2 if it is zero.

Ster 1. Add the C register to the B register and shift B and D one bit
position to the right.

Step 2. If the shift count is zero, condition the CARRY, ZERO, MSB and LSB
indicators and test the multiplication result (product) in the B
register. Then execute the next sequential instruction. If the
LSB of D is on go to step 1, if it is off, continue shifting to the
right. Repeat this until either a one bit is encountered or the
shift count is reduced to zero.

Division is accomplished by alternate subtractions or additions followed by
left shifts in a non-restoring algorithm until the shift count goes to zero.
The remainder is then tested and, if in the adding mode, it is complemented.

*See general flip-flop tests.
94

Precondition Control. If GIN is set and bit 6 of the instruction is on, no
shifting takes place but the zero, MSB, LSB and carry tests are performed on
the unshifted data.

Affected Conditions. In addition to the registers being shifted the following
will also happen:

1. Signs will be changed as indicated by notes 1, 2, 4, 7, and 8.

2. The ZERO, CARRY, MSB and LSB flip-flops will be conditioned for
testing to reflect the last value of the shift operation.

COMBINATION OPERATIONS

Combination operations are used to move the adder outputs or the contents of
main engine register (B, C, D) to any designated register,

When main engine SOPs are used, the POP field designates the receiving
register, the SOP field designates the operands and the operation performed
and the TOP field designates the zone field participating in the operation.
The main engine SOPs are shown in Table 18, and the main engine zones are
shown in Table 22. The ZERO, CARRY, MSB and LSB flip-flops reflect the
result of the adder operation performed.

In all these instructions, the condition flip-flops are set before the half

exchange (if any) takes place. In this case data from the sending register
is tested rather than data from receiving register.

Table 18. The Main Engine SOPs

CODE MNEMONIC ENGINE OUTPUT

00 ZERO All bits are zero

01 DOL (See the Table 20)

02 NB+1 Twos complement of B

03 NC+1 Twos complement of C

06 B-C-1I B minus C minus previous carry
07 C-B-1I C minus B minus previous carry
10 B*NC B AND ones complement of C

11 NB°C C AND ones complement of B

12 BEC B OR ELSE C (exclusive OR)

14 B-1 B minus one

15 C-1 C minus one

16 B-C B minus C

17 C-B C minus B

20 D D register

22 NB Ones complement of B

23 NC Ones complement of C

24 B-C B AND C

95

Table 18. The Main Engine SOPs (Cont)

CODE MNEMONIC ENGINE OUTPUT
26 B+C+I B plus C plus previous carry
30 B B register
31 C C register
32 BUC B OR C
34 B+1 B plus one
35 C+1 C plus one
36 B+C B plus C
Table 19. The Load SOPS
SOP CODE MNEMONIC REGISTER LOADED

04 LDB B

0s LDC C

21 LDD D

The DOL SOP, which is a main engine SOP, causes the logical operations to be
performed, as shown in Table 20.

Table 20. The DOL Operations

GOPS MNEMONIC DOL OPERATIONS
9 10 11 ENGINE OUTPUT
6 0 O B B Register

o o 1 BEC B OR ELSE C

0 1 0 C C Register

0 1 1 B-NC B AND NOT C

1 0 0 R-C B AND C

1 0 1 BUC B OR C

1 1 0 NB-C NOT B AND C

1 1 1 B-NC B AND NOT C

Using the load SOP's, Table 19, in conjunction with the PB, PC and PD oper-
ation codes causes the register speccified by the POP field to be tested and
forces a half exchange of the word. Zone control is effective and the
arithmetic indicators (ZERO, CARRY, MSB, LSB) are set by the zoned data hefore
the half exchange takes place. However, the entire word is half exchanged
independent of the zone code used. The word is then loaded into the receiving
register under zone control.

96

Table 21. Main Engine Operations Associated With Load SOPs

ENGINE LOAD S0P
POP LDB(04) LDC(05) LDD(21)
PB Test B Test B

- (B) HX to B (B) HX to C

PC Test C Test C
(C) HX to B (C) HX to C

PD Test D Test D Test D
(D) HX to B (D) HX to C (D) HX to D

Table 22. Main Engine Zones

ZONE FROM-TO FIELD SPECTAL NAMES

CODE MNEMONIC LENGTH FOR THF FIELDS

00 00-35 36 Full 36 bit register

01 30-35 6 Character 5

02 30-~-32 3 Octal Char 10

03 27-35 9 4th Quarter word

04 21-23 3 Octal Char 7

05 QQ-08 10 Floating AC Characteristic
06 24-26 3 Octal Char 8

07 21-35 15 Address field

10 18-20 3 Tagfield and Octal Char 6
11 33-35 3 Octal Char 11

12 27-29 3 Octal Char 9

13 24-35 12 Right third word

14 18-23 6 Character 3

15 18-26 9 3rd Quarter word

16 24-29 6 Character 4

17 18-35 18 Right half word

20 09-35 27 Floating mantissa

21 12-17 6 Character 2

22 12-14 3 Octal Char 4

23 09-17 9 2nd Quarter word

24 03-05 3 Octal Char 1

25 03-08 6

26 16-08 3 Octal Char 2

27 03-17 15 Decrement Field

30 00-02 3 Prefix and octal Char. 0
31 15-17 3 Octal Char 5§

32 09-11 3 Octal Char 3

33 Q0-35 37 Full 37 bit (AC) register
34 00-05 6 Character 0

35 00-08 9 Ist quarter word and floating Char.
36 06-11 6 Character 1

37 00-17 18 Left half word

97

PB-PLACE IN B
0 56 7 11 1213 17

50 G sop E TOP

Description. With a main engine SOP, the operation specified by the SOP is
performed. The results replace C(B)Z. With a load SOP, the C(B) are half
exchanged and the resulting data replace C(SOP)Z.

Execution. See Figure 11.
Precondition Control. GIN set and bit 6 set to a one inhibits word from being

changed in the registers but the zoned tests are still made. Bit 12 set
causes the instruction to exit.

Affected Conditions. The ZERO, CARRY, MSB and LSB tests are conditioned.

PC-PLACE IN C

0 5 6 7 11 12 13 17

51 G Sop E TOP

Description. With a main engine SOP, the operation specified by the SOP is
performed. The results replace C(C)Z. With a load SOP, the C(C) are half
exchanged and the resulting data replace C(SOP)Z.

Execution. See Figure 11.
Precondition Control. GIN set and bit 6 set to a one inhibits word from

being changed in the registers but the zoned tests are still made. Bit 12
set causes the instruction to exit.

Affected Conditions. The ZERO, CARRY, MSB and LSB tests are conditioned.

PD-PLACE IN D

0 5 6 7 11 12 13 17

53 G Sop E TOP

Description. With a main engine SOP, the operation specified by the SOP is
performed. The results replace C(D)Z. With a load SOP, the C(D) are half
exchanged and the resulting data replace C(SOP)Z.

Execution. See Figure 11.

Precondition Control. GIN set and bit 6 set to a one inhibits word from
being changed in the registers but the zoned tests are still made. Bit 12 set
causes the instruction to exit.

Affected Conditions. The ZERO, CARRY, MSB and LSB tests are conditioned.

98

PB, PC, PD, PE
DECODED

MAIN
‘MAIN ENGINE ENGINE OR LOAD

?

1 LOAD SOP 1

PERFORM OPER-
ATION AND SET R(POP)Z
CONDITION CONDITIONS
INDICATORS TESTS

'

HALF
EXCHANGE
DATA

l

R(SOP)Z
RECEIVES
THE DATA

R(POP)Z
RECEIVES
THE
RESULT

B ! '

BIT
12 ON EXIT

NO
EXECUTE NEXT SEQUENTIAL INSTRUCTION

Figure 11, PB, PC, PD, PF Flow Chart

99

PE-PERFORM OPERATION SPECIFIED BY MAIN ENGINE SOP

0 5 6 11 12 13 17

52 G SOP E TOP

Description. With a main engine SOP the (ME)Z are tested. Only main engine
SOPs are used.

Execution. See Figure 11.

Precondition Control. Bit 12 set causes the instruction to EXIT. GIN is
meaningless when used with PE.

Affected Conditions. The ZERO, CARRY, MSB and LSB are conditioned.

PBD-PLACE D INTO B

0 5 6 7 11 12 13 17

40 G SOP E TOP

Description. The C(D) will replace C(B)Z and the (ME)Z replace C(D). The
ZERO, CARRY, MSB and LSB are conditioned by the original C(D)Z for testing.
Only main engine SOPs are used.

Execution. See Figure 12.

Precondition Control. If GIN is set and bit 6 is set to one, the registers are
not changed. Bit 12 set causes the instruction to EXIT.

Affected Conditions. The ZERO, CARRY, MSB and LSB are conditioned for testing.

NOTE

The D SOP with a PBD will load B with C(D) and
will replace C(D) with zeros.

PCD-PLACE D INTO C

0 5 6 7 11 12 13 17

41 G Sop E TOP

Description. The C(D) will replace C(C)Z and then the (ME)Z replace C(C). The
ZERO, CARRY, MSB and LSB are conditioned by the original C(D)Z for testing.
Only main engine SOPs are used.

Execution. See Figure 12.

Precondition Control. If GIN is set and bit 6 is set to one, the word is not
changed in the registers. Bit 12 set causes the instruction to EXIT.

100

PBD

PBD OR PCD
DECODED

cm)z
CONDITIONS TESTS

YES

C(D)Z —= C(B)Z

J

C(DYZ ——» C(C)Z

Figure 12,

(ME)Z —e D

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

EXIT

PBD and PCD Flow Chart

101

Affected Conditions. The ZERO, CARRY, MSB and LSB are conditioned for testing.

NOTE

The D SOP with a PCD will load C with C(D) and
will replace C(D) with zeros.

ALG-ZONED ALGEBRAIC MAIN ENGINE OPERATION

0 567 11 12 17

62 0 16 E TOP

Description. The C(B)Z and the C(C)Z are added algebraically. The sum
replaces C(B)Z and the sign of B is set to the algebraic sign of the sum.

Indicators. Zero, Carry, LSB, MSB, FIRST CARRY, AC OVERFLOW are set by a
carry from bit position 1 if TOP code of 05 or 33 are used, i.e., the Q bit
is included in the zone.

Execution. The instruction is executed in 2 cycles. In the first cycle the
magnitudes are compared and in the second cycle the addition is performed.

The way in which the additions are performed depends on the operand signs and
the result of magnitude test performed in the first cycle. With like signs the
operands are added and the sign of the result is the same as the sign of the
operands. With unlike signs, the operand of smaller magnitude is subtracted
from the operand of the larger magnitude. The sign of the result is the sign
of the larger operand.

The only valid SOP used with the ALG POP is B-C with an octal code of 16, The
following table summarizes the execution of the ALG POP with a B-C SOP.

ENGINE OPERATION

SOP LIKE UNLIKE SIGNS
CODE SIGNS NO 1st CARRY 1st CARRY*
16 B+C B-C C-B

On the first cycle C(B) are not modified but if the signs are opposite then a
carry out sets a special flip-flop called FIRST CARRY rather than setting the
CARRY flip-flop. If this is not the case, the FIRST CARRY is not set. On the
second cycle, the SOP is effectively changed as follows: If the signs of

B and C are the same the operation performed is B+C. If the FIRST CARRY is
set then the sign of B is toggled the operation performed is C-B. If the signs
are not alike and the FIRST CARRY is false the operation performed is B-C.

The C(B) now contain the algebraic sum of the B and C registers. The FIRST
CARRY flip-flop is set only if the B and C signs are opposite and there is a
carry out of the zoned field. If the AC Q bit is on and the zone includes the
Q bit, the FIRST CARRY cannot be set.

*Toggle B sign to equal C sign.

102

Precondition Control. If GIN is set and bit 6 is set to a one no registers are
altered. Bit 12 set to a one causes the instruction to exit.

Affected Conditions. The RB sign, AC OVERFLOW, FIRST CARRY, ZERO, CARRY,
MSB, LSB.

REGISTER STACK OPERATIONS

The instructions in this group operate on the following hardware registers:
AC, MQ, SI, HARD 4, IC, XR1, XR2, XR3, XR4, XRS5, XR6 and XR7. Main engine
SOPs are used in this group of instructions. A one in bits 13 or 14 cause
the hard register to be used as one of the operands in place of B or C,
respectively. Bits 16-17 specify the destination of the main engine result.

Arithmetic or logical operations may be performed using the main engine or the
hardware stack registers as operands. The R(POP) designates the register
participating in the execution of the instruction. The operation specified by
the SOP field, bits 7-11, is performed. The result is placed into the register
specified by the TOP, bits 15-17. The format is shown below:

0 5 6 7 11 12 13 17

PQOP G Sop E TOP

The B or C operand specified by the SOP will optionally be replaced by the

hard register specified by the POP under control of bits 13 or 14, respectively.
The programmer has a choice of placing the result into any one of the main
engine registers and/or the hardware stack registers.

The TOP field controls the instruction as shown in Table 23.

Table 23. Function of Bits 13-17

BITS VALUE OPERATION
13 0 Use B operand

1 Replace B operand with stack register
14 0 Use C operand

1 Replace C operand with stack register
15 0 Stack register unchanged

1 Result to stack register
16-17 00 Engine registers unchanged

01 Result into B

10 Result into C

11 Result into D
15-17 111 The C(D) will go to the hard register

and the engine output will go to D.

Because of the replace capability, it is possible to change the contents of
either a main engine register or a stack register or both with a single
instruction,

103

AC-AC REGISTER OPERATION

0 5 6 7 11 12 13 17

33 G Sop E TOP

Description. The main engine operation specified by the SOP is performed.
The SOP code and bits 13 and 14 of the instruction determine which registers
are to be used as operands. See Table 23. The results are placed into the
AC and/or one of the main engine registers as specified by bits 15-17. A
zone of QQ-35 applies to the AC.

Execution. See Figure 13.
Precondition Control. With GEX set and bit 6 set to a one, the AC will be half

exchanged before being used as an operand in the main engine. The result will
be half exchanged before being loaded into the AC.

Affected Conditions. If bit 15 of the instruction is a one (result to AC), a
carry from position 1 to O of the adder will set the AC OVERFLOW. The engine
Q bit, AC Q bit and AC sign bit may be changed.

MQ-MQ REGISTER OPERATION

0 5 6 7 11 12 13 17

37 G Sop E TOP

Description. The engine operation specified by the SOP is performed. The
SOP code and bits 13 and 14 of the instruction determine which registers are
to be used as operands. See Table 23. The results are placed into the MQ
and/or one of the main engine registers as specified by bits 15-17. A zone
of 00-35 applies to the MQ.

Execution. See Figure 13.
Precondition Control. With GEX set and bit 6 set to a one, the MQ will be

half exchanged before being used as an operand in the main engine. The result
will be half exchanged before being loaded into the MQ.

Affected Conditions. The MQ bit zero communicates with the main engine sign
if ARI is on.

SI-S1 REGISTER OPERATION

0 5 6 7 11 12 13 17

27 G SOP E TOP

Description. The engine operation specified by the SOP is performed. The SOP
code and bits 13 and 14 of the instruction determine which registers are to be
used as operands. See Table 23. The results are placed into the SI and/or one
of the main engine registers as specified by bits 15-17. A zone of 00-35
applies to the SI.

104

Execution. See Figure 13.

Precondition Control. With GEX set and bit 6 set to a one, the SI will be
half exchanged before being used as an operand in the main engine. The result
will be half exchanged before being loaded into SI and/or register specified
by bits 15-17.

Affected Conditions. SI bit zero communicates with the main engine sign if
ARI is on.

R4-HARD REGISTER NO. 4 OPERATION

0 S 6 7 11 12 13 17

23 G Sop E TOP

Description. The engine operation specified by the SOP is performed. The SOP
code and bits 13 and 14 of the instruction determine which registers are to be
used as operands. See Table 23. The results are placed into R4 and/or one of
the main engine registers as specified by bits 15-17. A zone of 00-35 applies
to R4,

Execution. See Figure 13,
Precondition Control. With GEX set and bit 6 set to a one, R4 will be half

exchanged before being used as an operand in the main engine. The result will
be half exchanged before being loaded into R4.

Affected Conditions. R4 bit zero communicates with the main engine sign if
ARI is on.

IC-IC REGISTER OPERATION

0 5 6 7 11 12 13 17

22 G SOP E TOP

Description. The engine operation specified by the SOP is performed. The SOP
code and bits 13 and 14 of the instruction determine which registers are to be
used as operands. See Table 23. The results are placed into IC and/or one of
the main engine registers specified by bits 15-17. A zone of 21-35 or 03-17
applies to the IC.

Execution. See Figure 13.
Precondition Control. No registers will be altered with GIN set and bit 6 set

to a one. If GEX is set and bit 6 set to a one then half exchange is enabled
and zone 03-17 is used.

Affected Conditions. The ZERO, CARRY, MSB and LSB arithmetic tests are
conditioned.

105

.

AC, MQ, 1,
R4, IC, XR
DECODED

HALF EXCHANGE
THE OUTPUT
OF R(POP)

;

SUBSTITUTE R(POP)
FOR C(B) INTO
MAIN ENGINE

SUBSTITUTE R(POP)
FOR C(C) INTO
MAIN ENGINE

)

SET ZONE FOR
QQ-35 AND

SIGN

CONDITION FOR
OVERFLOW ON
CARRY FROM 1

S

EXIT

AC IC, XR
l INSTR
MQ, SI, R4
YES
SET ZONE FOR
00-35 AND SIGN
IF ARI I$ ON
SET ZONE SET ZONE
FOR 21-35 FOR 03-17
PERFORM OPERATION
SPECIFIED BY S0P
(ME)Z —=R(BITS 16,17)
SUBSTITUTE
NO ORIGINAL C(D)
FOR (ME)
(ME) —=-R(POP)

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

Figure 13.

AC,

MO,

SI, RU,

106

IC and XR Flow Chart

XR-INDEX REGISTER OPERATION
0 5 6 7 11 12 13 17

26 G sop E TOP

Description. The engine operation specified by the SOP is performed. The SOP
code and bits 13 and 14 of the instruction determine which registers are to be
used as operands. Sece Table 23. When the code specifies that XR is to be
used as an operand or a result register, bits 18-20 of the D register specify
the index register to be used. When bits 1820 are zero, a zero value is
assumed for the operand and no index register will receive the result. A zone
of 21-35 or 03-17 applies to the XR POP.

Execution. See Figure 13.
Precondition Control. No registers will be altered with GIN set and bit 6 set

to a one. If GEX is set and bit 6 is on, then half exchange is enabled and
zone 03-17 is used.

Affected Conditions. The ZERO, CARRY, MSB and LSB arithmetic tests are
conditioned.

NOTE

At the begirning of MINIFLOW executions, the D
register contains the target instruction. However,
the C(D) may be changed by the programmer at any

time so that there is no guarantee that the tag field,
bits 18-20 of D, will specify the same index register
as originally specified by the target instruction.

107

MEMORY ACCESS OPERATIONS

In these instructions, the engine operation specified by the main engine SOP
code is performed. The result is used as a memory address. If a load SOP is
used, the address is taken from the console address keys. The TOP field
specifies the memory (main or control) to be accessed and also indicates
whether a read or write operation is to be executed. The functions of bits
13-17 are shown in Table 24, for MEM and MKEY only.

Table 24. Functions of the TOP Field

BITS VALUE OPERATION
13 0 Access the control memory

1 Access the main memory
14 0 Read from the memory

1 Write into the memory

Write the ENTRY KEYS if POP=63 (MKEY)

15 0 Normal SOP generates address

1 Replace B in SOP with R4
16-17 00 *Write zeros

01 B is data register

10 C is data register

11 D is data register.

MEM-MEMORY OPERATION

0 5 6 7 11 12 13 17

67 G SOpP E TOP

Description. The engine operation specified by the SOP is performed. The
Tesult is used as a memory address. Main engine SOPs are used if bit 15 1is

a one. Refer to Table 24 for a description of functions specified by the bits
of the TOP field. These bits specify the memory to be accessed. Also, they
indicate whether a read or a write operation is to be performed.

The console ADDRESS KEYS will be loaded into the register specified by a load
SOP. The load SOPs will cause the ADDRESS KEYS to be used to address the
specified memory.

Execution. See Figure 14.
Precondition Control. With GEX set and bit 6 set to a one, the data word will

be half exchanged between memory and the specified register. Bit 12 set to a
one causes the instruction to exit.

Affected Conditions. The sign of the data register if ARI is on during a
read operation. If ARI is set on a write operation, the data register sign
bit, rather than bit 0, replaces bit 0 of the memory word.

*X0X00 is a NOP

108

MKEY -MEMORY/KEYS OPERATION

0 5 6 7 11 12 13 17

63 G sop E TOP

Description. The engine operation specified by the SOP is performed. The re-
sult is used as a memory address. Main engine SOPs are used if bit 15 is a
one. Refer to Table 24 for functions specified by the bits of the TOP field.
These bits specify the memory to be accessed and they also indicate whether a
read or a write operation is to be performed.

When writing into memory, the data placed into the console ENTRY KEYS are used.
The load SOPs will cause the console ADDRESS KEYS to be used to address the
specified memory but they will not be loaded into any main engine register.

Execution. See Figure 14.
Precondition Control. With GEX set and bit 6 set to a one, the data word will

be half exchanged between memory and the specified register. Bit 12 set to a
one causes the instruction to EXIT.

Affected Conditions. The sign of the data register if ARI is on during a
read operation.

CMI-DIRECTLY ADDRESSED CONTROL MEMORY OPERATION

0 5 6 11 12 13 17

77 G SOpP E TOP

DescriRtion.

For MAIN ENGINE SOPs: The operation specified by the C(SOP) is performed. The
result replaces the C(control memory) addressed by the TOP.

For LOAD SOPs: The contents of memory addressed by the TOP replaces the
register addressed by the SOP.

Execution. See Figure 14. It is possible to directly address the first 32
words of control memory. The data used to write into control memory is gen-
erated from the main engine as specified by a main engine SOP. A load SOP
will specify which engine register to read into from control memory. The out-
put of the Channel B flip-flop is ORed into the TOP field so that, if the
channel B flip-flop is set, only the odd control memory addresses will be
accessed.

1089

O0TT

cM1
DECODE

MAIN ENGINE

(ME) USED TO CON-
DITION THE ZERO
CARRY, MSB AND

LSB FLIP-FLOPS

GEX
CONTROL

NO

MAIN

ENGINE OR

LOAD SOP
?

READ CONTROL
MEMORY
ADDRESSED
BY TOP

GEX
CONTROL

NO

HALF EXCHANGE
ENGINE OUTPUT

HALF EXCHANGE
DATA READ

STORE OUTPUT INTO
CONTROL MEMORY
LOCATION
ADDRESSED BY TOP

PLACE INTO
R(SOP)

MEM, MKEY

DECODE
MAIN
MAIN ENGINE ENGINE OR LOAD
LOAD SOP
?
YES — MEM
SUBSTITUTE R4 LOAD ADDRESS
FOR C(B) IN KEYS INTO
SOP CONTROL R(SOP)
NG } { MKEY

SEND ADDRESS GEN-
ERATED BY (ME)

SEND ADDRESS KEYS

AS MEMORY AS MEMORY
ADDRESS
v
[]
ACCESS CONTROL NO YES ACCESS MAIN
MEMORY MEMORY

{

R]

NO

MEM

MKEY

|

1

READ MEMORY
INTO
R(BITS 16,17)

WRITE ZEROS
OR R (BITS 16, 17)
INTO MEMORY

WRITE CONSOLE
ENTRY KEYS
INTO MEMORY

!

t

!

Figure 14,

BIT YES

12 ON
?

NO

FXECUTE NEXT SEQUENTIAL
INSTRUC TION

ME!NM,

MDY and CMI Flow Chart

EXIT

A write operation with a TOP specifying octal location either 04 or 10 will
write into memory and also turn on either AUX 1 or AUX 2 flip-flop, respectively.
Refer to the paragraphs describing REMOTE EXECUTION and TRAPPING in Section III
for more information on the AUX 1 and AUX 2 flip-flops and the Wired-In-
Sequence.

Precondition Control. GEX being set and the 6 bit set to a one causes the
data to be half exchanged between control memory and the main engine. The
12 bit set to a one causes the instruction to exit.

Affected Conditions. Register signs are not affected by the CMI instruction.
ZERO, CARRY, MSB and LSB tests are conditioned for write operations.

MINI ENGINE OPERATIONS

The instructions in this group are: MINI, RB, RC and RD. The MINI instruction
uses the mini engine to perform arithmetic and logical operations as specified
by the SOP field and the TOP field. The RB, RC and RD instructions are used
for the transfer of data between the mini engine and the main engine.

Using main engine SOPs with either RC or RD causes a transfer of data from the
main engine to the mini engine.

Using load SOPs with either RB, RC or RD causes a transfer of data from the
mini engine to the main engine.

RB is an 11-bit register with bit positions 25-35.
RC is an 8-bit register with bit positions 28-35,
RD is an 11-bit register with bit positions 25-35.

MINI-MINI ENGINE COMBINATION OPERATION

0 5 6 7 11 12 13 14 15 16 17
TO|TO|To
02 /17 sop E|//| DC|RB|RC|RD

Description. Perform operation specified by the SOP field. The TOP field,
i.e., the bit configuration of bits 14-17, indicate transfer path (straight
or down crossed) through mini engine and destination register.

Execution. See Figure 15. Arithmetic and logical operations are performed
in the mini engine using the MINI instruction. The mini engine SOPs, listed
as follows, indicate the arithmetic operation to be performed. Therefore,
the SOP also indicates the source register.

SOP MNEMONIC ENGINE OUTPUT

00 ZERO ZERO

30 RB RB register (MINI sequence counter)
31 RC RC register (MINI shift counter)

14 RB-1 RB minus 1

34 RB+1 RB plus 1

35 RC+1 RC plus 1

15 RC-1 RC minus 1

36 RB+RC RB plus RC

16 RB-RC RB minus RC

Zone control is implied by the register length/ that is, 11 bits for RB and RD
and 8 bits for RC. RC acts like an 1l-bit register with bits 25-27 always
zeros.

The TOP field (bits 14-17) controls the destination of the mini-engine output
as shown below.

TOP DESCRIPTION

00 R(SOP) affects mini-engine zero test (RZ) flip-flop.

02 R(SOP) affects RZ flip-flop. R(SOP replaces C(RC).

04 R(SOP) affects RZ flip-flop. R(SOP) replaces C(RB).

06 R(SOP) affects RZ flip-flop. R(SOP) replaces C(RB)
and C(RC).

10 C(RD) affect RZ flip-flop.

11 C(RD) affect RZ flip-flop. C(SOP) replaces C(RD).

12 C(RD) affect RZ flip-flop. C(RD) replaces C(RC).

13 C(RD) affect RZ flip-flop. C(RD) replaces C(RD).
C(SOP) replaces C(RD).

14 C(RD) affect RZ flip-flop. C(ID) replaces C(RB).

15 C(RD) affect RZ flip-flop. C(RD) replaces C(RB).
C(SOP) replaces C(RD).

16 C(RD) affect RZ flip-flop. C(RD) replaces C(RB)
and C(RC).

17 C(RD) affect RZ flip-flop. C(RD) replaces C(RB)

and C(RC). C(SOP) replaces C(RD).

Precondition Control. Bits 6 and 13 are not used in the execution of this
instruction. Bit 12 set to a one causes the instruction to exit.

Affected Conditions. The mini engine zero test (RZ) flip-flop.

112

eTT

MINI

DECODED
NO BIT YES
i 14 ON i
?
SOP RESULT SETS \/ C(RD) SETS
RZ FLIP-FLOP RZ FLIP-FLOP

YES YES

SOP RESULT C(RD)—RB
NO to RB

NO
y y

SOP RESULT
NO TO RC

y

C(RD) —=RC

y

YES

SOP RESULT
TO RD

NO

BIT
12 ON YES

NO EXIT

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

Pigure 15, IMINI Flow Chart

RC-MINI ENGINE C REGISTER OPERATION

0 5 6 7 11 12 13 17

42 G SOP E TOP

Description.

When using:

a. Main engine SOPs, C(RC) 30-35 are replaced by the output of the
adder specified by the SOP. Bits 28, 29 of RC are zeroed. The zone
field is not interpreted except for zone 00-08, see the note below.

b. Load SOPs, the C(RC) 30-35 replace the register specified by the SOP
under main engine zone control. Leading zeros are loaded if the
zone field is for more than bits 30-35.

NOTE

Using RC with the floating characteristics zone 00-08
(code of 35) will cause special communication between
all 8 bits of the RC register and bits 1-8 of the main
engine registers. This path of communication is in both
directions, since load SOPs and main engine SOPs can be
used.

Execution. See Figure 16.

Precondition Control. With GEX set and bit 6 set to a one, the word on the
main bus will be half exchanged as it is transferred to or from the decrement
fields of the main engine registers. GEX control is not effective when a zone
of 00-08 is used. Bit 12 set to a one causes the instruction to exit.

Affected Conditions. The ZERO, CARRY, MSB and LSB general arithmetic tests
and indicators are affected when using the main engine SOPs.

RD-MINI ENGINE REGISTER D OPERATION

0 5 6 7 11 12 13 17
46 G SOP E TOP
Description.
When using:
a. Main engine SOPs, the C(RD) 25-35 are replaced by the output of the

adder specified by the SOP.

b. Load SOPs, the C(RD) 25-35 replace the register specified by the SOP
under main engine zone control. Leading zeros are loaded if the zone
field is for more than bits 25-35.

(ME) CONDITIONS
THE CARRY, ZERO,
MSB, LSB
FLIP-FLOPS

NO

RC, RD
DECODED

LOAD

(ME) - RD
ZONED 25-35

YES

C(RC) +R(SOP)
ZONE 00-03

YES

R(POP) = R(SOP)Z
ONLY 6 BITS
FROM RC

NO

(ME) ZONED 7-17

R(POP) ®R(SOP)Z
WITH HALF

-» RD EXCHANGE ONLY

(ME) ZONED 25-35
- RD

(ME) ZONED 1-08

- RC

(ME) ZONE 12-17

- RC

(ME) ZONE 30-35
- RC

6 BITS FROM RC

Migure 16,

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

RC,

115

”D Flow Chart

Execution. See Figure 16.

Precondition Control. With GEX set and bit 6 set to a one, the word on the
main bus will be half exchanged as it is transferred to or from the decrement
fields of the main engine registers. The instruction will exit if bit 12 is
set to a one.

Affected Conditions. None.

SPECIAL DATA PATHS

The instructions in this group are: CH1l, CH2, INT, AKEYS and KEYS. The CH1
and CH2 instructions initiate and terminate channel activity. Data is trans-
ferred to/from the I/0 devices using the decode of channel register one

to specify the type of operation.

The INT instruction allows console interrupt requests to be loaded into the
R(SOP)Z. In this manner, the specific condition causing the interrupt can
be determined.

The AKEYS and KEYS instruction allow the set of console keys specified to be
loaded into the register specified by the SOP.

CH1-1/0 CHANNEL OPERATION CONTROL

0 5 6 7 11 12 13 17

47 G SOP E TOP

Description. The adder outputs are loaded to channel (A or B) register
number one specified by the Channel B flip-flop. I/0 operations are initiated
depending on the decode of bits 0, 8-10.

Execution. Specifying a main engine SOP causes the data generated by the
adder to be loaded into channel register number one and the 1/0 operation
specified by the bit configuration of this word is initiated. Using a load
SOP (LDB, LDC, LDD) reverses the load operation, i.e., the word loaded in the
specified main engine register will be in the following format.

0, 9-11 Operation control bits (notice the one bit offset).
5-8 Channel mode counter flip-flops

28-30 Device type

31 BCD/BIN mode bit

32-35 Tape unit specified

When main engine SOPs are used, the following format applies.

=
'_l
»

CHANNEL REGISTER ONE I/0 OPERATIONS

OPERATION TYPE BCD/BIN

CONTROL DEVICE MODE

OCTAL BINARY

BITS BITS BIT

0,8-10 28-30 31 I/0 OPERATION
CARD READER OPERATIONS

01 110 1 Read from card Reader

10 XXX X Load machine from card reader
TYPEWRITER OPERATIONS

03 111 1 Write on typewriter

13 111 1 Index typewriter (vertical space)
TAPE OPERATIONS (UNIT IS SPECIFIED
BY BITS 32 to 35)

01 X0X 0 Read tape BCD

01 X0X 1 Read tape BINARY

03 X0X 0 Write tape BCD

03 X0X 1 Write tape BINARY

04 X0X X Write end of file mark

13 X0X X Write blank tape (3 1/2 inches)

02 X0X X Backspace tape record

12 X0X X Backspace tape file

05 X0X X Rewind tape

15 X0X X Rewind and unload tape

07 X0X X Test tape for presence

Precondition Control. GEX being set and bit 6 set to a one causes the word to
be half exchanged in its transmission between the main engine register and
channel register one. Bit 12 being set to a one causes the instruction to exit.

Affected Conditions. A CH1 POP with a main engine SOP will always reset
channel indicators ER1 and ER2, and will always cause a terminate interrupt
when the I/0 operation is completed. It will also reset EOR and CEF.

CH2-I/0 TERMINATION CONTROL

0 5 6 7 11 12 13 17

45 G sop E TOP

Description. Channel write operations: Depending on the state of the

channel B flip-flop, the adder outputs specified by the C(SOP)Z are trans-
mitted to channel register number two. The end condition is thus specified
for the channel. Any pending buffer service requests in the channel are reset
and no more are set. However, if two or more requests are outstanding in the
channel before the CliZ (or MISC. ACK) POP, then a buffer service request will
remain in the scheduler and will be honored later.

117

The end condition is determined by the low order five bits of the data gen-
erated by the main engine and goes to the address stop register. The address
stop register is loaded with the word count value (modulo 32) and will point
to the first word which will not be written out of control memory.

When the channel address equals the stop address then the transmission of
data words will terminate from control memory. An interrecord gap will be
generated and the tape motion will stop. Note that the programmer determines
the record length, the CHZ POP merely terminates a record when writing.

Channel read operations. Depending on the state of the channel B flip-flop,
the adder outputs specified by the C(SOP)Z are transmitted to channel register
number two. In the event a read select was decoded, i.e., 01 in CH1l, to ter-
minate the operation, the channel address counter stops counting. Data trans-
mission ceases at this point; however, tape motion will not terminate until an
interrecord gap is encountered.

For both read and write channel operations, a load SOP used in conjunction
with a CH2 POP will cause the C(Channel reg. no. 2) to be zoned into the main
engine register in the following format:

BITS FORMAT
0-14 Zeros

15-17 Address stop register (low order 3 bits)
18-22 Zeros

23 One if bits 24-26 are all zero.

24-26 Buffer address counter (low order 3 bits)
27-29 Zeros

30 Channel B flip-flop

31-32 Address stop register (high order 2 bits)
33-35 Zeros

Precondition Controls. With GEX set and bit 6 set to a one, information is
half exchanged as it is passed between the main engine and channel register
number two. Bit 12 being set to a one causes the instruction to exit.

INT-CONSOLE INTERRUPT STATUS

0 5 6 7 11 12 13 17

57 G SOpP E TOP

Description., This instruction loads console interrupt requests into (R(SOP)Z.
The console requests and their positions are shown below:

118

BIT CONSOLE REQUEST FUNCTION
0 External Interrupt

1

8

Postpone Trap (Not a Console SW.)
Interval Timer Interrupt

9 Reset Request (Hardware Functions Also)
10 Clear Request

11 Load Card Request

12 Load Tape Request

13 Execute Entry Request

14 Execute Display Request

0,2-7,15-35 Zero

Execution. Console interrupt requests are zoned into a main engine register
specified by a load SOP. An example is as follows:

A level 3 request enters state YA6 (MINIFLOW EXECUTION) at the address
specified by the C&TV located at mini address 0241 (group 41). The routine
entered should test General Indicator 74. The indicator is on if the request
for service was the result of a console operation or a timer request. The
indicator is off if the request for service was because of a channel termin-
ation. If the request was because of the console or timer, the instruction
INT LDX can be used to determine the specific condition causing the interrupt.
An example of a level 3 entry analysis routine follows:

IUUZQI URG 07241 EXAMPLE 26 L 3 ENTRY
U241 0C1500G VFD 18/L3 LEVEL 3 C+Tv

£ - - - = = = - o o - - - - - x
ul500 (RG u/1su¢
y1500 747402 L3 TGR CUNyp%k+2 CONSULF INTERRUPT TEST
1501 16105¢C TRU {OTERM GO TO [/0 TERMINATION
L1902 70400 INT LDB LOGAD CUNSULEt INTERRUPTS
ul503 523026 PE B,06-08 TEST FUR REAL TIMr CLUCK
w1904 614403 TA lqg%+3 SKIP IF NUT CLUGK
“1150% 06120C MISC RT1 RESET TIMER INTERSLPT
Ul506 16110C TRU ICLOCK GU TO TIMER ROUTIN:
G507 06720C MISC RLN RESET CONSOLe INTHRRUPTS
J15106 601400 SHIF Y BU-N NORMALIZE PRIGRITY TU Rt
Uls11l 023604 MINT RB+RL 4RHB SKIP TO TRANSFER vt(T(=
(11517 161110 TRU RESET GU T RESET ROUUTINF
1513 161116 TRU CLEAR GO TO CLEAR CULRE RCUTINF
w1514 Tu4 301 16S CARD PRESET FLAG T{ LOAD LAy
L1511 16114¢C TRU LOAD GN TO LUAD TaAPL Ox CA®D
Ulsle 7104101 16S tNTER ST FLAG TU ENTER KEYS
t 1517 l16112C 1)U .1SPLA Ll TO ulISPLAY ROUTIN:
JO0 T4 CUN Lol g NOTE
105¢ IOTERM ¢ QU G/10%¢
. 1100 TCLUCK twU L/7110C The normalize shift and the
Ullio RESET FQU C/L111y mini instruction provide a
Ullle (LEAR EyU u/llle way to examine the console
u0043 LARD LG Gr43 interrupt and transfer to
wllag LUAD QU /71140 the appropriate routine.
L0061 ENTFER DG 3741
1120 DISPLA EQU L/1120

119

Precondition Control. With GEX set and bit six set to a one, the data are
half exchanged os that it will be loaded into bit positions 18 and 26
through 32. Bit 12 set to a one causes the instruction to exit.

Affected Conditions. -Issuing a main engine SOP with this instruction causes
a NO-OPERATION.

AKEYS-ADDRESS KEYS OPERATION

0 5 6 7 11 12 13 17

54 G Sop E TOP

Description. The console ADDRESS KEYS are loaded into the register specified
by the load SOP under main engine zone control. AKEYS used with a main

engine SOP will convert it to a DELAY instruction which causes the current
level to hang for a specified time interval. The time delay is approxi-
mately 75 microseconds. Control will be returned to instruction following the
delay after all other higher priority levels are serviced. With bit 13 set

to a one, a half exchange will occur; thus, zoning the address keys into the
decrement field.

Execution. See Figure 17.
Precondition Control. With GEX set and bit 6 set to a one, the word is half

exchanged prior to loading into destination register. Bit 12 set to a one
causes the instruction to EXIT.

KEYS-ENTRY KEYS OPERATION

0 5 6 7 11 12 13 17

55 G SopP E TOP

Description. The console ENTRY KEYS are loaded into the register specified
by the load SOP under main engine zone control. Using a main engine SOP
with KEYS causes the contents of the main engine register specified by the
SOP to be displayed.

Execution. See Figure 17.

Precondition Control. With GEX set and bit 6 set to a one, the word is half
exchanged prior to loading into the destination register.

IMMEDIATE DATA OPERATIONS

The LIB, LIC and LID instructions in this group allow data to be zoned into
any main engine register using bits 6-11 of the instructions for a 6-bit octal
pattern.

The MOPB and MOPC instruction allow the entire mini instruction to be loaded
into the specified register.

120

AKEYS, KEYS

DECODED
AKEYS
MAIN MAIN
MAIN ENGINE ENGINE OR LOAD ENGINE OR MAIN ENGINE
LOAD SOP LOAD SOP
2 ?
LOAD
CONVERT
AKEYS TO A
GEX .
DELAY YES GEX
INSTRUCTION CONTROL CONTROL YES
DELAY IS ! ?
APPROX
75 USEC
NO BIT 6?3(131;]
6 ON YES ¢
?
NO
NO YES
NO *
RETURN CON- HALF
TROL TO EXCHANGE HALF
INSTR AFTER DATA EXCHANGE
SERVICING WORD DATA
ALL OTHER WORD
HIGHER '
PRIORITIES
r
| {
LOAD ADDRESS LOAD ENTRY IggT%PCTTON
KEYS IN R(SOP)Z KEYS INTO COMES A
R(SOP)Z NO-OP
r |
YES
NO EXIT

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

Figure 17. NAKEYS

, KLYS

b
N
o

I"'low Chart

LIB-LOAD B

0 5 6 11 12 13 17

14 DATA z TOP

Description. The 6-bit octal pattern is repeated six times across the main
bus, then it replaces the C(B) under main engine zone control.

Execution. See Figure 18.

Precondition Control. Bit 6 is used as part of the 6-bit octal data pattern.
Bit 12 set to a one causes the unzoned part of B to be set to zeros.

LIC-LOAD C

0 5 6 11 12 13 17

15 DATA Z TOP

Description. The 6-bit octal pattern in bits 6-11 is repeated six times across
the main bus, then it replaces C(C) under main engine zone control.

Execution. See Figure 18.

Precondition Control. Bit 6 is used as part of the 6-bit octal data pattern.
Bit 12 set to a one causes the unzoned part of C to be set to zeros.

LID-LOAD D

0 5 6 11 12 13 17

17 DATA Z TOP

Description. The 6-bit octal pattern in bits 6-11 is repeated six times
across the main bus, then it replaces C(D) under main engine zone control.

Execution. See Figure 18.

Precondition Control. Bit 6 is used as part of the 6-bit octal data pattern.
Bit 12 set to a one causes the unzoned part of D to be set to zeros.

MOPB-MOP REGISTER TO B

0 5 6 17

10 DATA

Description. Bits 18-23 of B are replaced by bits 0-5 of the instruction.
The 12-bit octal data pattern in bits 6-17 of the instruction replace
bits 24-35 of B. The most significant half, i.e., bits 0-17, of B are set
to zeros.

122

Execution. Octal 00000010XXXX will replace C(B). The XXXX field is variable
and defined by the 12-bit pattern in the instruction. Refer to Figure 18.

Precondition Control. Not effective.

MOPC-MOP REGISTER TO C

0 5 6 17

11 DATA

Description. Bits 18-23 of C are replaced by bits 0-5 of the instruction.
The 12-bit octal data pattern in bits 6-17 of the instruction replace

bits 24-35 of C. The most significant half of C, i.e., bits 0-17 are set to
zeros.

Execution. Octal 00000011XXXX will replace the C(C). The XXXX field is

variable and defined by the 12-bit pattern in the instruction. Refer to
Figure 18.

123

LB, LIC, LID, MOPC,
MOPB DECODED

LiB, LIC, LID l MOPC, MOPB

MOPB MOPC
y
00000010XXXX 00000011XXXX
REPLACE C(B) REPLACE C(C)

|

6-BIT OCTAL PATTERN IN
SOP FIELD REPLACES
THE CONTENTS
R(POP)Z

l . ,
l

EXECUTE NEXT
INSTRUCTION

Figure 18, LIB, LIC, LID, MOPC, MOPB Flow Chart

124

CONTROL INSTRUCTIONS

Tnstructions which govern the flow of a program, and in particular those
which cause an alteration in the computer's normal process of taking its in-
structions from sequential locations, are called control instructions.

Uncondition transfer instructions specify the location "Y' from which the
computer is to take the next instruction. Conditional transfer instructions
also specify a location Y. However, whether the computer takes its next
instruction from Y or the next sequential location depends upon the outcome
of a test. This test is specified by the primary operation code (POP) of
the instruction.

Test instructions are similar to conditional control instructions in that they
cause some test to be performed. Unlike conditional instructions, however,
test instructions do not specify a location Y to which control may be trans-
ferred. Tnstead the alternative location to which control may be transferred
is fixed relative to the location of the test instruction. This is referred
to as the 'skip distance' and is added to or subtracted from the MINIFLOW
program sequence counter,

NOP-NO OPERATION

0)

01 IIITTIIII0700700710717717111111171

Description. This instruction causes the computer to take next instruction
in sequence. Bits 6 through 17 arc not examined. NOP is used to fill in for
deleted instructions and to provide instruction alignment.

HALT-STOP CLOCK

0 5

00 HILLITELIII 178200 010070100777717

Description. This instruction causes the computer to halt. The program se-
quence counter contains the location of the next sequential instruction. When
the start key on the operator's console is depressed, the computer proceeds and
executes the next sequential instruction. The exception to this is if a ALT
is executed at an odd mini-address, the machine will not start again because

of an interrupted mini-fetch control memory cycle.

125

TRU-TRANSFER

0 5 6 7 17

16 11/ Y

Description. Issuing a TRU causes the computer to take its next address from
MINIFLOW address specified by Y and proceed from there. Bits 7-17 of the
instruction replace the C(RB), resulting in a transfer of control.

Execution. MINIFLOW program sequence is unconditionally changed by a TRU.

Precondition Control. Bit 6 is not used.

SMCT-STORE MINI COUNT AND TRANSFER

0 5 6 7 17

76 0 Y

Description. This instruction causes C(RB)+1 to replacec the C(RD). The
subroutine mode is set, and C(Y) replace C(RB), transferring control to Y.

Execution. Refer to Figure 19. MINIFLOW program scquence is unconditionally
changed by a SMCT. The execution of a SMCT causes the previous C(RB) to be
incremented by one and replace C(RD), to be used at the next EXIT condition as
a return address. The subroutine mode is entered so that the next EXIT will
cavse a return to the instruction following the SMOT. When not in the snub-
routine mode, an exit will return control to the scheduler. If already in

the subroutine mode when a SMCT is issued, the machine stays in the subroutinc
mode and the previous C(RD) are replaced by C(RB)+1.

Precondition Control. BRit 6 must be zero,.

Affected Conditions. The computer will be placed in the subroutine mode

ARITHMETIC TEST INSTRUCTIONS

Several machine conditions are tested by the test instructions. The test
criteria is specified by the SOP field, bits 7-11, T(SOP). Rit 6 will specity
the polarity of the test. Zero scts the Test Satisfied (TSAT) flip-flop on

if the test condition is false. One sets the TSAT flip-flop on if the test
condition is true.

The skip distance is specified by the TOP field, bits 13-17. The state of

bit 12 specifies the direction of the skip. Zero indicates a positive, i.e.,
forward skip listance. One indicates a negative, i.e., backward skip distarce.

126

SMCT
DECODED

C@®B + 1) REPLACE
C(RD)

SET SUBROUTINE
MODE

C(Y) REPLACE
C(RB)

TRANSFER
CONTROL TO
Y

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

Figure 19, SMCT Flow Chart

127

The arithmetic test SOPs shown in Table 25 are used in conjunction with the
arithmetic test instructions.

Table 25. Arithmetic Test SOPs

SKIP ON FALSE SKIP ON TRUE

CODE SOP CODE SOop NOTE TEST CRITERIA

00 NO (No Skip) 40 YES (Skip) Unconditional

01 CF 41 CAR 1 Carry/Borrow from zoned field
02 CX11F 42 CX11 1 Carry or Else GOP 11

03 G11F 43 Gl11 GOP 11 (Precondition)

04 NZ 44 yA 1 Zero in Zoned Field

05 N910F 45 N910 GOP 10 and not GOP 9 (Precond.)
06 G9F 46 G9 GOP 9 (Precondition)

07 G1OF 47 G10 GOP 10 (Precondition)

10 RNZ 50 RZ 2 Zero in RE Register (Bits 3-10)
11 FCF 51 FC 3 First Borrow in ALG POP

12 GINF 52 GIN GIN (Precondition)

13 FOFF 53 FOF 4 FMQ OR FAC (Floating overflow)
14 (skip) 54 (no skip)

15 LSF 55 LS Like signs in B and C

16 AQF 56 AQ AC Q BIT

17 (skip) 57 (no skip) 7

20 ZX11F 60 ZX11 1 Zero or else GOP 11

21 MSBF 61 MSB 1 Bit 0 of PE (most significant bit)
22 LSBF 62 I.SB 1 Bit 35 of PE (least sign. bit)
23 EQUF 63 EQU S PC Equal to PB (Q&SIGN Logic),
24 LESSF 64 LESS 6 PC Less than PB (Q&SIGN Logic)
25 AOVF 65 AOV AC Overflow On

26 ACP 66 ACM AC Sign (Minus or Plus)

37 (skip) 77 SAT 8 Previous test satisfied.

NOTES

1. CARRY (or BORROW) out of the zoned field of a main engine result,
ZERO test of the zoned field of a main engine result, Bit position 0
and bit position 35 of an engine result are all stored for testing on
any of the following POP's: PB, PC, PD, PE, PBD, PCD, ALG, 1C, XR,
RC, SHIFT and CMI (write data only).

2. Zero test of the mini engine result is stored on a MINI POP.
3. First carry test is stored on the trial subtraction of an ALG POP.
It will be set on if the signs are not alike and there is a carry

out of the zoned field, but it will be reset if the AC Q bit is on
and the zone includes the Q bit.

128

4. This tests the logical OR of general indicator FMQ and FAC (floating
overflow).

5. The EQUALITY test should be primed by an engine operation (SOP B-C,
C-B, BEC, etc.) to set the zero flip-flop; it will test true if
the AC Q bit is reset and the ZERO test is true and either the signs
are alike or ARI is off.

6. The LESS test should be primed by an engine operation. (SOP B-C)
to test if the AC (B) is less than C. The following table gives
the conditions when the LESS test is true.

ARI CARRY AC B C ZERO
FLIP-FLOP TEST Q BIT SIGN SIGN TEST
OFF TRUE OFF X X X
ON FALSE X MINUS X FALSE
ON X X MINUS PLUS X
X TRUE OFF X MINUS X

However the LESS test is false if ARI is on, AC Q bit is one, and
the B sign is minus.

7. Undefined tests will be false.

8. Does not alter previous state of TSAT, all other SOPs may alter the
previous state of TSAT.

TA-TEST AND SKIP

0 5 6 7 11 12 13 17

61 P SopP D TOP

Description. If T(SOP) is satisfied, set TSAT flip-flop and the computer
skips the distance specified by C(TOP) in direction indicated by bit 12.
Otherwise, the computer will execute the next instruction in sequence.

Execution. See Figure 20.

Precondition Control. Bit six specifies the polarity of the test and bit 12
specifies the direction of the skip.

Affected Conditions. The TSAT flip-flop.

[
N
[Ce}

TAE-TEST AND SKIP OR EXIT

0 5 6 7 11 12 13 17

65 P Sop D TOP

Description. If T(SOP) is satisfied, set TSAT flip-flop and the computer skips
the distance specified by C(TOP) in direction indicated by bit 12. Otherwise
an exit will occur.

Execution. See Figure 20.

Precondition Control. Bit 6 specifies polarity of test and bit 12 specifies
the direction of skip.

Affected Conditions. The TSAT flip-flop.

TAW-TEST AND TRANSFER TO WIRED-IN-SEQUENCE

0 5 6 7 11 12 13 17

75 P SOpP D TOP

Description. If T(SOP) is satisfied, set TSAT flip-flop, otherwise TSAT
flip-flop is reset. If bit 12 is set to a one, add C(RC) to C(RB). 1If bit 12
is set to zero, subtract C(RC) from C(RB). Program control will then transfer
to wired-in-sequence state YAS.

Execution. See Figure 20.

Precondition Control. Bit 6 specifies polarity of test and bit 12 specifies
direction of skip.

Affected Conditions. The TSAT flip-flop.

130

TA, TAE, TAW
DECODED

t

TOP—e=C(RC)

SET TSAT
FLIP-FLOP

RESET
TSAT

)

|

C(RB - C(RC)—»C(RB)

CRB

+ C(RC)—»C(RB)

ALSE
RESET
TSAT
NO
TAW TA
TAE
EXIT
TO W-I-S
YAS5
-—

TA, TAE

EXECUTE NEXT
SEQUENTIAL INSTRUCTION

Figure 20, TA,

INSTR

TO W-1-8
YAS

TA, TA"™ FTlow Chart

131

GENERAL CONDITIONAL TEST INSTRUCTIONS

A set of fifty-eight general and special purpose indicator flip-flops may be
tested and set or reset by the general conditional test instructions.

The test condition is specified by the SOP field, bits 6-11, which defines a
flip-flop indicator, I(SOP). Some flip-flops have hardware defined functions,
see Table 26, and the remaining flip-flops may be used for functions defined by
the programmer.

The skip distance is specified by the TOP field, bits 13-17. The state of
bit 12 (0,1) specifies the direction of the skip. Zero indicates a positive,
i.e., forward skip distance. One indicates a negative, i.e., backward skip
distance. Bits 13-17 always replace the C(RC). C(RC) are added to C(RB) or
subtracted from C(RB), if the TSAT flip-flop is set on and the skip is taken.
Otherwise, the TSAT flip-flop is turned off and the computer executes the
next instruction in sequence.

The general indicator test SOPs are shown in Table 26.

Table 26. General Indicator Test SOPs

SOP SOP CONSOLE

CODE MNEMONIC PURPOSE LAMP REMARKS

00 SSW Sense Switch Tests See Note 1
04 General Purpose

05 General Purpose

06 EOFA Channel A END OF FILE YES See Note 2
07 General Purpose

10 General Purpose

11 General Purpose

12 General Purpose

13 General Purpose

14 EOFB Channel B END OF FILE YES See Note 2
15 General Purpose

16 DCTM Divide Check Trap Mode (a maintenance console switch)
17 General Purpose

20 General Purpose

21 General Purpose

22 TCEB Channel B tape check enable YES See Note 3
23 General Purpose

24 CTEB Channel B Command trap enable YES See Note 2
25 General Purpose

26 General Purpose

27 General Purpose

Table 26. General Indicator Test SOPs (Cont)

SOP SOP CONSOLE

CODE MNEMONIC PURPOSE LAMP REMARKS

30 DCK Divide Check YES

31 General Purpose

32 TCEA Channel A tape check enable YES See Note 3
33 General Purpose

34 CTEA Channel A Command Trap YES See Note 2
35 General Purpose

36 10C 1/0 check YES

37 General Purpose

40 TRAP Transfer trap mode YES See Note 4
41 General Purpose

42 DIS DISPLAY See Note 5
43 General Purpose

44 TCKA Channel A tape check error YES See Note 3
45 General Purpose

46 TCKB Channel B tape check error YES See Note 3
47 General Purpose

50 SL4 Sense Light 4 YLS

51 General Purpose

52 SL1 Sense Light 1 YES

53 General Purpose

54 SL2 Sense Light 2 YES

55 General Purpose

56 SL3 Sense Light 3 YES

57 General Purpose

60 MI'M MULTIPLE TAG MODE YES See Note 6
61 General Purpose

62 FMQ MQ Factor exceeded See Note 7
63 General Purpose

64 FPO Floating Overflow See Note 7
65 General Purpose

66 FAC AC Factor Exceeded See Note 7
67 ——-- (Not Available) See Note 10
70 TCN Trap control YES

71 General Purpose

72 PDCK Predivide Check See Note 8
73 ——— (Not Available) See Note 10
74 CON Console Request Sec Note 9
75 General Purpose

76 CIF Current Instruction OFF (a console display switch)

-
w
w

NOTES

The Console Sense Switch to be tested is specified by bits 0-2 of
the D register at the time of testing. Octal 0 and 7 will always
test OFF (false); Octal 1 to 6 will test the position of the
corresponding Console Sense Switch.

The End of File General Indicator is automatically turned off and

the TSAT flip-flop set on during wired-in-sequence under these con-
ditions: The End of File General Indicator is on and the Command
Trap Enable (for the corresponding Channel) if OFF and an object
instruction +003X (TRANSFER ON END OF FILE) is translated (with
Channel A correspondlng to +003X and Channel B corresponding to -003X).

The Tape Check General Indicator is automatically turned off and

the TSAT flip-flop set on during wired-in-sequence under these con-
ditions: The Tape Check General Indicator is on and the Tape Check
Enable (for the corresponding channel) if OFF and an object instruc-
tion +0022 (TRANSFER ON REDUNDANCE CHECK) is translated (with

Channel A corresponding to +0022 and Channel B corresponding to -0022.
Also, provided that the group is defined as a fast transfer. On the
7044 emulator, op codes +0022 and -0022 are programmer controlled).

The Transfer Trap Mode is enabled when this flip-flop is on.
Section III discusses the control exercised by this flip-flop.

The Display flip-flop is also set on automatically whcnever the dis-
play register is loaded. The following events will cause the
display to be loaded:

a. A register (AC, MQ, SI, R4, IC or onc of the XR's) is altercd
and the corresponding register's console display switch is
down (ON).

b. An object instruction is fetched for emulation and the current
instruction switch is down (ON).

c. A memory cell is altered and the corresponding memory's con-
sole display switch is down (ON) and the address used for the
write cycle is the same as is held in the console address keys.

The multiple Tag Mode is enabled when this flip-flop is on.
Section II discusses the control exercised by this flip-flop.

These Floating Point Exception Indicators also may conditionally be
set on by two SOPS of the MISC POP (as explained earlier) the
LOGICAL OR of FMQ and FAC will be tested by the FOF SOP of the TA
(TAE, TAW) POP. The conditions to set these flip-flops by a MISC
POP are illustrated in the following table.

GENERAL INDICATOR MISC ENGINE CONDITION

Turned On sop

FAC FOFA MSB Test true

FMQ FOFQ MSB Test true

FPO FOFA or FOFQ MSB Test true and

(if FPO set, then FAC or FMQ also set) Engine Q bit false

8. The predivide check flip-flop is also turned on when a SHIFT POP with
a Divide SOP (10 or 30) does not cause a borrow out on the first
trial subtraction of the divide.

9. The Console Request flip-flop is also turned on whenever one of the
console interrupt switches is pressed. These switches are: Reset,
Clear, Enter Keys, Display, Load Cards and Load Tape.

10. SOPS corresponding to non-existant General Indicators will always
test false.

TG-SKIP IF TEST SATISFIED; OTHERWISE, EXECUTE NEXT SEQUENTIAL INSTRUCTION

0 5 6 11 12 13 17

60 Sop D TOP

Description. If I(SOP) is on, set the TSAT flip-flop and skip the distance
specified by C(TOP) in direction indicated by bit 12. Otherwise, the com-
puter will execute the next instruction in sequence.

Execution. See Figure 21.

Precondition Control. Bit 12 specifies the direction of skip.

Affected Conditions. The TSAT flip-flop.

TGE-SKIP IF TEST SATISFIED; OTHERWISE, EXIT

0 S 6 11 12 13 17

64 SOP D TOP

Description. If I(SOP) is on, set TSAT flip-flop and skip the distance
specified by C(TOP) in direction indicated by bit 12. Otherwise, the
instruction will EXIT.

Execution. See Figure 21.

Precondition Control. Bit 12 specifies the direction of the skip.

Affected Combinations. The TSAT flip-flop.

TGF-SKIP IF TEST NOT SATISFIED

0 5 6 11 12 13 17

71 Sop D TOP

Description. If I(SOP) is off, set TSAT flip-flop and skip distance speci-
fied by C(TOP) in direction indicated by bit 12. Otherwise, the computer
will execute the next instruction in sequence.

Execution. See Figure 21.

Precondition Control. Bit 12 specifies direction of skip.

Conditions Affected. The TSAT flip-flop.

TGS-LIKE TG BUT ALWAYS SETS I(SOP) ON.

0 5 6 11 12 13 17

70 Sop D TOP

Description. If I(SOP) is on, set the TSAT flip-flop and skip the distance
-specified by C(TOP) in direction indicated by bit 12. Otherwise, the com-
puter executes the next instruction in sequence. I(SOP) is unconditionally
set on after being tested.

Execution. See Figure 21.

Precondition Control. Bit 12 specified the direction of the skip.

Affected Conditions. [(SOP) is always set on and the TSAT flip-flop is
either set or reset.

TGR-LIKE TG BUT ALWAYS SETS I(SOP) OFF.

0 5 6 11 12 13 17

74 SOp D TOP

Description. If I(SOP) is on, set TSAT flip-flop and skip the distance
specified by C(TOP) in direction indicated by bit 12. Otherwise, the
computer executes the next sequential instruction. I(SOP) is uncondi-
tionally set off after being tested.

Execution. See Figure 21.

Precondition Control. Bit 12 specifies the direction of the skip.

Affected Conditions. I(SOP) is always set off and the TSAT flip-flop is
either set or reset.

TG, TGE, TGF
TGR, TGS
DECODED

TOP —e=C(RC)

NU 1(SOP)
ON
”

RESET TSAT SET TSAT
FLIP-FLOP FLIP-FLOP
TGR ‘\\\\\iifTR TGS
RESET L(SOP) TG, TGE, SET I(SOP)

TGF

YES NO
EXIT
EXECUTE NEXT
SEQUENTIN!
INSTRUC TION
Figure 21,

C(RB) ~ C(RC)
~& C(RB)

C(RB) - C(RC)
—e C(RB)

TG, TCL, TGF, TCR,

137

TGS Tlow Chart

MISC-SCHEDULER AND AC SIGN AND Q BIT CONTROL

0 5 6 11 12 13 17

06 SoP E|///////7//7/7/

Description. This instruction causes the operation specified by the C(SoP),
Table 27, to be performed.

Execution. Contrel over many functions of the scheduler operation and level
control are performed by this instruction. Also, it is used to set, reset
and toggle the AC sign and Q bit. The control action is specified by the
Miscellaneous Control SOPs shown in Table 27.

Table 27. THE MISCELLANEOUS CONTROI. SOPS

CODE MNEMONIC NOTE CONTROL ACTION
10 RXI Reset external interrupt
12 RTI Reset Interval timer interrupt request
16 RTER 1 Reset CHANNEL terminate request
20 RAQ Reset AC Q bit (also reset Engine Q bit)
21 SAQ Set AC Q bit
22 TAQ Toggle AC Q bit (also store in Engine Q bit)
23 - FOFrA 2 Conditionally set AC Floating Overflow
24 RAS Reset AC Sign bit (plus)
25 SAS Set AC Sign Bit (minus)
26 TAS Toggle AC sign bit
27 FOFQ 2 Conditionally set MQ Floating Overflow
30 ROV Reset AC Overflow
31 Sov Set AC Overflow
33 RSQ Reset AT sign and Q bit and Engine Q bit
37 ACK 1 Acknowledge last buffer request
42 SR1 1 Set scheduler Buffer Service Request Level 1 or 2
46 SR3 Set Scheduler Terminate request (level 3)
50 SRT 3 Set Channel Trap request (level 4)
52 SRu Set Program Request (program level Uu)
Sk HANG Y Hang the present level
56 POST 5 Postpone a trap request
60 HALT 4 Set program Halt and Hang (level 4)
62 RH1 1 Reset Buffer Service Hang (level 1 or 2)
66 RH3 Reset terminate Hang (level 3)
70 RHu4 Reset Program Hang unless Halt is set (level 4)
72 RCN 6 Reset all console interrupt requests
T4 RESL4 7 Reset trap and program (level U4)
76 RINT 8 Reset interrupt (levels 1, 2, and 3)
NOTES

1. The Channel B F/F determines whether level 1 (Channel A) or level 2
(Channel B) is selected.

RTER (code 16) resets the terminate request held in channel flip-flop.

138

ACK (code 37) counts down by one the number of outstanding buffer service
requests; up to four may be safely stacked. But a fifth one causes a
transfer timing error due to buffer spill (read) or buffer depletion
(write.)

FOFA and FOFQ will set the General Indicators FAC, FMQ, and FPO based
on the conditions described under General Conditional Test instructions.

A TRAP request will not be granted by the scheduler if the manual mode
console switch is on (down) .

A HANG will start a save Sequence and save the RB, RD, D registers and
the Subroutine Mode Control flip-flop for later restoration. The Hung
level will be locked out until the Hang is reset by MINIFLOW or the
console reset key, if the hang is reset by MINIFLOW then the Return
Sequence will be taken. A HALT should only be given in level 4 where
it will hang level 4 and turn on the Console Halt Light.

Using the POST SOP will inhibit a trap request until one more main
memory object instruction has been executed. However, if bit 12, the
EXIT bit, is set to a one, the scheduler may select the trap request
before the POST SOP has time to postpone one more instruction.

Reset Console Requests for: Reset, Clear, Load Card, Load Tape, Enter
Keys, and Display.

Reset level 4 scheduler control flip-flop, i.e., Trap Request, Program
Request, Job-in-Progress, Return and Hang.

Reset the Request, Job-in-Progress, Return and Hang flip-flops for
levels 1, 2 and 3. Only a Terminate Request is reset in level 3, not
a Console Request; also the Hang flip-flop for level 4 is reset if the
Halt indicator is off.

An EXIT instruction is provided by using an undefined SOP with the MISC
POP and setting bit 12 to a one. The undefined SOP causes the instruc-
tion to act as a No-Operation. An example of such an EXIT instruction

would be 064440.

A Return Sequence is taken after a HANG by resetting the Hang flip-flop
for the Hung level while in another level. An exception to this is if

HALT is issued in level 4 the Hang 4 flip-flop cannot be reset except

by one of the following three methods:

a. Pressing the start key resets the Hang flip-flop, activates
a Return Sequence and resets the Halt indicator.

b. Executing a MISC SRT will set a trap request during the execu-
tion of a program. When the trap request is granted, the
return sequence for this particular incident is aborted. A
new program request is then set.

The only way to set a trap request is with an SRT. Trap request
effective if JIP4 and postpone is off or if Hang 4 is on. Also
only effective if not in manual or an I/0 data operation is not
being performed.

c. Reset Level 4 (SOP 74) followed by a Program Request (SOP 52)
will start the program level with the next object instruction
pointed to by the IC. If AUX1 or AUX2 is set, their contents
will determine the next instruction to be executed, rather than
the IC.

Precondition Control. Bit 6 is defined as being part of the SOP field in
this instruction. The instruction will exit if bit 12 is set to a one.

Affected Conditions. The flip-flops specified by the SOP field.

DELAY-DELAY PRESENT LEVEL.

0 5 6 7 11 12 13 17

54 // oy 7771/717771711171

Description. This instruction causes a delay to be executed by the computer
when used in conjunction with any main engine SOP.

Execution. When DELAY is executed in level 1, 2 or 3, the SAVE sequence will
be entered and control will return to the scheduler to scan for other re
requests. The level issuing the delay is locked out for approximately 75
microseconds, after which a return request is set in the scheduler. When

it is granted, a Return sequence will he entered and the previously inter-
rupted program will continue as the C(RB), C(RD), C(D) and the subroutine
mode control status are all restored from the predefined save area calls for
the specified level.

When a DELAY or a Hang is issued in either level 1 or 2, both levels 1 and
2 will be locked out of the scheduler until the return is made and a normal
FXIT is taken.

This instruction is primarily used to allow temporary execution in another
level to simulate atonomous CPU and data channels.

A DELAY should not be issued in level 4 because a return request will not
be set.

Precondition Control. Bit 6 is not used. Bit 12 must be zero

Affected Conditions. The predefined SAVE area in control memory for the
level bheing delayed.

140

PRE-PRECONDITION CONTROLS

0 5 6 7 8 9 10 11 12 13 14 15 16 17

12 ///// | Control | ///1// TOP

Description. This instruction causes the precondition indicators specified
by C(TOP) and bits 8 and 9 to be effective.

Execution. A one bit in the TOP field, bits 12-17 means the corresponding
indicator is to be altered as indicated by hits 8 and 9. A zero bit in
the TOP field means that the corresponding indicator is not to be altered.
The Mnemonic and Purpose for bits 12-17 are shown below.

BIT MNEMONIC PURPOSE

12 GOP9 General Operation number 9

13 GOP10 General Operation number 10

14 GOP11 General Operation number 11

15 GEX General Half Exchange on bus

16 GIN General Inhibit result to Engine Register
17 ARI Operate with signs

Bits 8 and 9 indicate the control to be performed on the precondition indi-
cates as shown below.

BIT MNEMONIC PURPOSE

0 X No change

] 0 Turn off specified flip-flops
1 1 Turn on specified flip-flops

Precondition Control. This instruction is a special case as previously
described.

Affected Conditions. The specified precondition indicators.

1/0 CHANNEL CONTROL TNSTRUCTIONS

There is a set of 31 channel indicators for each channel (A or B). Each
indicator is tested and set or reset by the I/0 channel control instruc-
tions. Some of the channel indicators have hardware defined functions,
shown in Table 28. The remaining indicators may be used for any function
defined by the programmer.

Each instruction has the following format: The POP field, bits 0-5., specify
the operation to be performed. Bit 6 must be zero. The SOP field, bits
7-11, and the channel B flip-flop specify the channel indicator to bhe

tested and set or reset. The abbreviation for this is CI(SOP).

If the channel B flip-flop is off the SOP field specifies indicators
associated with channel A. The channel B indicators are specified if the
channel B flip-flop is on.

141

Bit 12 specifies the direction of skip A zero specifies a positive, i.e.,
forward skip. A one specifies a negative, i.e., backward skip. The TOP
field, bits 13-17, always contain the number of instructions the computer
skips. The C(TOP) always replaces the C(RC). If the test is satisfied,
the C(RC) are added to or subtracted from C(RB), the program sequence
counter, depending on the state of bit 12. If the test is not satisfied,
plus one is added to C(RB) and the computer executes the next sequential
instruction.

The channel indicator test SOPs and their purpose are shown in Table 28,

Table 28. Channel Indicator Test SOPs

SOP SOP CONSOLE

CODE MNEMONIC PURPOSE LAMP NOTE
00 ER1 Tape Parity Error Note 1
01 ER2 Transfer Timing Error Note 2
02 General Purpose

03 General Purpose

04 General Purpose

05 General Purpose

06 General Purpose

07 General Purpose

10 BOT Beginning of tape YES Note 3
11 EOT End of Tape YES Note 3
12 General Purpose

13 General Purpose

14 General Purpose

15 General Purpose

16 General Purpose

17 General Purpose

20 CEF Channel End of File Note 4
21 EOR End of Record Note 4
22 General Purpose

23 General Purpose

24 General Purpose

25 General Purpose

26 nSp Data Select in Process YES

27 10P I/0 in Process YES

30 TNR Tape not Ready Note 5
31 ———- (Not Available)

32 General Purpose

33 General Purpose

34 General Purpose

35 General Purpose

36 GHB Channel B Flip-Flop

37 cop Card or Printer (Channel A)

142

NOTES

1. PARITY ERRORS are sensed by the channel during either a read or write
operation. Any CH1 POP will turn the indicator associated with these
errors off,

2. A TRANSFER TIMING ERROR sensed by the channel will cause indicator 0l
to be set. The TCS instruction will not set this indicator and TCR will
not reset it. The indicator will be reset by a CH1 instruction.

3. BEGINNING OR END OF TAPE sensed by the channel and either indicator 10
or 11 are set. The indicator will be reset by a CHl1 instruction. If
the tape is at load point and the BOT jindicator is turned off, it will
be turned back on if a backspace tape or rewind is issued. In this
case, the tape will not move from the load point.

q. END OF FILE OR RECORD conditions set either indicator 20 or 21. These
indicators are not set or reset by MINIFLOW.

5. TAPE NOT READY condition sets indicator 30. This indicator is not set
or reset by MINIFIOW.

6. CHANNEIL. B Flip-Flop is tested by SOP 36. There are actuvally three
Channel B Flip-Flops:

a. One flip-flop is sensed in, and controls within, levels 1 and 2.
It is always turned off for level 1 (Channel A Buffer Service)
and turned on for level 2 (Channel B Buffer Service).

b. A second flip-flop is sensed in and controls within level 3 It is
always turned off for a console interrupt or a timer interrupt or
a Channel A terminate but is turned on for a Channel B terminate.

¢. The third flip flop is only sensed in and controls within level 4.
It is always turned off for a trap request or a program request;
this level 4 Channel B flip-flop may be set on by MINIFLOW while
in any level. It may not he reset by MINIFLOW.

The status of the Charnel B flip-flop is preserved on a level basis
during Hangs or delays by this separation.,

7. COP is an Indicator in Channel A only and will always test false if the
Channel B flip-flop is on. It may be tested and turned on or off when
the Channel B flip-flop is off.

TC-SKIP +F CI(SOP) IS ON

0 S 6 7 11 12 13 17

20 0 SoP D TOP

Description. 1f CI(SOP} is on, the test is satisfied, and the TSAT flip-flop
is set. The computer skips the number of instructions specified by C(TOP)

in the direction indicated by bit 12 1If C1(SOP) is off, the computer will
execute the next seaquential instruction.

143

Execution. See Figure 22.

Precondition Control. Bit six must be zero. Bit 12 indicates direction of
skip.

Affected Conditions. The TSAT flip-flop.

TCE-SKIP IF CI(SOP) IS ON; OTHERWISE, EXIT

0 5 6 11 12 13 17

24 0 sop D TOP

Description. If CI(SOP) is on, the test is satisfied and the TSAT flip-flop
is set. The computer skips the number of instructions specified by C(TOP)
in direction indicated by bit 12. The instruction will EXIT if CI(SOP) is
off.

Execution. See Figure 22.

Precondition Control. Bit 6 must be zero. Bit 12 specifies the direction
of the skip.

Affected Conditions. The TSAT flip-flop.

TCF-SKIP IF CI(SOP) IS OFF; OTHERWISE EXECUTE NEXT INSTRUCTION.

0 S 6 7 11 12 13 14

31 0 sop D TOP

Description. Tf CI(SOP) is off, the test is satisfied, and the TSAT flip-
flop is set. The computer skips the number of instructions specified by
C(TOP) in direction indicated by bit 12. If CI(SOP) is on, the computer will
execute the next instruction in sequence.

Execution. See Figure 22.

Precondition Control. Bit 6 must be zero. Bit 12 specifies the direction of
shift.

Affected Conditions. The TSAT flip-flop.

TCS-SKIP IF CI(SOP) IS ON. CI(SOP) IS TURNED ON AFTER TESTING.

0 5 6 7 11 12 13 17

30 0 sup D TOP

Description. If CI(SOP) is on, the test is satisficd. The computer skips
the number of instructions specified by the C(TOP) in direction indicated
by bit 12. 1If CI(SOP) is off, the computer will execute the next sequen-
tial instruction. CI(SOP) is unconditionally turned on after testing.

1uy

Execution. See Figure 22.

Precondition Control. Bit 6 must be zero. Bit 12 specifies the direction
of the skip.

Affected Conditions. The CI(SOP) is turned on. The TSAT flip-flop.

TCR-SKIP IF CI(SOP) IS ON. TURN OFF CI(SOP) AFTER TESTING.

0 5 6 7 11 12 13 17

34 0 Sop D TOP

Description. If CI(SOP) is on, the test is satisfied. The computer skips
the number of instructions specified by C(TOP) in direction indicated by
bit 12. The computer will execute the next sequential instruction if
CI(SOP) is off. The CI(SOP) is unconditionally turned off after testing.

Execution. See Figure 22.

Precondition Control. Bit 6 must be zero. Bit 12 specifies the direction
of skip.

Affected Conditions. The CI(SOP) is turned off. The TSAT flip-flop.

145

TC, TCE, TCF, TCS,
TCR DECODED

TOP -e= C(RC)

NO CI{SOP) YES

W

EXIT

RESET TSAT SET TSAT
FLIP-FLOP FLIP-FLOP
SET CI(SOP) SET CLEOP)
N()<>ES
YES NO YES NO
C(RB) + C(RC) C(RB) - C(RC)
~e= C(RB) —== C{RB)
]
EXECUTE NEXT
SEQUENTIAL
INSTRUCTION
Figure 22. TC, TCLK, TCF, TCS, TCP Flow Chart

146

A BOOTSTRAP LOADER FOR BINARY CARDS

Figure 23 is a flowchart for a binary card bootstrap loader.

NATE ENTRY
C&TVAT 241 i

TERMNS

RESET CONSOLE
REQUEST &
TIMER REQUEST

MOVE A MINI-PAIR

DA pslj'%ngCﬁ,f‘gRRggDvyz%gg b 9 UPDATE CHECKSUM
TERMINATE CFER | KSUM
REQUEST SAVE ADJUSTED CHECK- | | (obDATE PICKUP AD

UPDATE PUTAWAY ADDR
UPDATE WORD COUNT

SUM IN MQ

1ST TERMINATE

IS WORD
CLEAR CORE COUNT ZERO
TO HALTS
EXCEPT THE SW 2 ON
LOADER
i 12 PUNCH IN COL 1 SW 3 ON ﬁ
READ
. LOAD TAPE
SW 1 ON ADDRESS
Q PARITY ERROR CHECKSUM ERROR
% Y
TURN ON TURN ON
TCK LIGHT 10C LIGHT
AND HALT AND HALT
LOAD CARD 1SSUE READ
ADDRESS SELECT ‘ l
PRESS START PRESS START
TURN OFF TURN OFF
TCK LIGHT I0C LIGHT
- CONTINUE - - CONTINUE -

F'igure 23. Tlow Chart of a Bootstrap IlLoader

147

0080000000000000000000000000060
ASETAOMNINUISIEN WNDZI223247526 21 702930 323334 3536 17 38 39 40 41 42.43 44 45 45 47 484950 51 5253 54.55/56 57 58 5360 51 62 63 64 65 66 6768 63 70 11 7273 74 75 % 77 18 79 b0
llllllIlllll111111111lllllll!lllllllllllllllllllillllllllllllllllllllllllllll
22
33
444144(444444444444444444#4444
55555555S5555555555555555§55
SSGGGGE66656G66865G585666885585665556566555868866555656 S;tzar’cjiirt’ 666668

7777777777777777777777777777777777177777777777777777777 Standard Computer Corporation J117111717

g6oo
123
111

8888888888888B88888888888!88888888888888888BBBB88888888888888888888888888888!883
9999999939999999999
123456 780t00n20u 1

BNCT STRAP CARD IMAGE

URG o/ 200 FXAMPLe 27 LGOOCTLTRAY
BINARY wORy BUUTSTRAP LUADER Fiik vERSION 9 CpPL %

*

*

BINARY CAKL FURMAL-
CULUMN 1,17 PUNCH=- BYPASS CHLCKSUM FOR THIS CARD
CULUMN 2412 TC 3= NUMBLR UF MiNI-PAIKS TG LOAC
CLLUMN 3, « Tu 9- wORD ADDRESS OF 1ST MINI-PAIx
COLUMNS 4 T0 6= 36 BIT 1'S CUMPLEMENT CHECKSUN
COLUMNS 7 10 Tg-= UP TO 2o MINI-PAIRS IN BiNARY
COLUMNS 73 TO 80U~ NOT rXAMINED, MAY BE SEwltnG:

* 3

*ow g

e
W

3

a4

Sl TCH 1-
TFF- LOAL FROM TAPL Al
UN= LUAD FRC™ CARL RtADEr
SwlTCH 2~
UFF= PRE-CLFAR CURE WITH HALTS BFiFCORL LUAI
ON= LC NCT PRE-CLFAR CONTRNL CORE
SnlTCH 3-
UFF- PERFURM CHECKSUM TESTS UNLESS CilLel +
UN= U I T CHECKFSUE ToSTS N ALL CAXES
SENSE LIGHT 1= TURNS &% wHLEN L1ADER START
HALT AND 1CC LIGHT ON- CHLOUKSUM Tt ol FALL: T
HALT AND TCK LIGHT GN- PARITY ERRUR IN REAGING

¥ 3

s g

LR LR

148

CLK
TERMNS

* ONLY

READ

NOTLST

MUVE

TAPERR

SETIOC

MISC
TGR
MISC
TGS
LID
TG
LWAB
MOPC

RTI9,EXIT
CONy,CLK
RTER
SLLyNCOTILST
20,00-02
SWyREAD

CLK

60431

RESET TIMER REQ AND EXIT
TEST + RESET CUNSULE RrQ
RESET TERMINATE REQUEST
TEST AND SET NEXT FLAG
LOAD SENCE SwITCH NUMBER
DUNT CLEAR CORE I+ Sw ON
LOAD OFSET T{END ADDRESS)
LUAD LST ADDRESS

TEN BITS ARE USED AS A CONTROI MEM. ADDRESS

MEM
MEM
PC
TA
MOPB
LID
TGF
MoPB
LIB
CH1
LWAC
MEM
Ra
MEM
Pt
MY
MEM
MEM
MQ
My
R4
PB
P8
TA
TA
NOP
LIl
16
MQ
PE
TA
TCF
16S
HALT
TGR
165
HALT
TGR
TRU

B+C 4 ARD
B+C 4y AWD
C+1,24-35
NZy*-2
12,21
10,00-02
SWe*+2
13,21
U2,09-11
By gEXIT
BUFFER+2
C—145ARR
C+1,y5
CyARC

B+C
B+C+[,S
R4 4, ARC

tsy AWC

R+C
R+C+1,4S
R+1,5
B+l,24-35
B-lele-17
NZ 9y MOVE
MSB4, TAPERR
TERMNS
30)00‘02
SWeTAPERR

"NR,LDD

U
NZ,SETIOC
ER1,READ
TCK

EXIT
TCK,READ
10C

1CC
KEAD

LOAD A CLEARING PATTERN
STORE A CLEARING PATTERN
INCREMENT THE ADDRESS
LOOP TILL CORE CLEARED
SET FOR TAPE Al

LOAD SENCE SWITCH NUMBER
SKIP IF TAPE LOAD

SET FOR CARDS

LUAD READ CODE

[SSUE SELECT ANLC exIT
LOAD ADDRESS OF CHECKSUM
READ CONTROL WORD TO B
SET R4 FOR FIRST INSTR.
CHECKSUM TO C- L'y COMP.
GENERATE END CARRY

LOAD ADJ. CHECKSUM T0O MQ
LOAD MINIPAIR TO C

STORE MINIPAIR AWAY
GENERATE END CARRY
UPDATH CHECKSUM

UPDATL BUFFER ADDRESS
UPDATE PUTAWAY ADDRESH
DECREMENT MINIPAIR COUNT
LOOP ON NUN-ZERU COUNT
NO CKSUM TEST IF COL 1 +
C+TV FOR TERMINATE ENTRY
LOAD SENCE SWITCH NUMBER
NG CKSUM TEST IF SWw 3 LN
COMPLEMENT CHECKSUM TG D
TEST CHECKSUM FOR LERu
SET 10C ON INVALIU CHECK
SKIP UN NU PARITY ERROR
TURN ON TCK LIGHT + HaALT
HALT AND BUFF SERV C+TV
TURN OFF LIGHT AND REAC
TURN OUN TUC LIGHT + HALT
OPPEFRATOR LCECISION STOP
TURN OFF I0C LIGHT

READ NEXT CARD

148

EXIT EXIT UNCONDITIONAL EXIT INSTR

ocT 7700417700 HALT AND NOP FILLLR
0cT 7700,1770¢ CURE CLEARING PATTERN
ocT 71700,17700

150

APPENDIX A

NUMBER SYSTEMS AND CONVERSION

The common decimal notation of the commercial
and scientific world is familiar to all of us. This no-
tation is so familiar that you probably have never be-
fore questioned its use. Could it be possible that, for
some purposes, another system is more convenient?
The decision is entirely a matter of convenience. Deci-
mal notation is used because it is most familiar and
is understood by most people. However, had our
primeval ancestors developed eight fingers instead of
ten we would probably be more familiar with the octal
system and would be questioning the decimal system.

The decimal system, with its ten digits, is learned
by most people early in their training. This system
serves very well for counting purposes. Why then,
should computers which are designed to assist mathe-
maticians, or engineers and businessmen, be designed
to use the binary system of numbers?

Current digital computers use binary circuits and
the mathematics of the computers is therefore binary
in nature. The only convenient way to learn the op-
eration of a computer is to learn the binary system.
The octonary or octal system is a shorthand method
of writing long binary numbers. Octal notation is
used when discussing the computer but has no rela-
tion to the internal computer circuits.

Perhaps, as a first step, it would be well to see what
is meant by the binary system of numbers. The bi-
nary, or base-two system, uses two symbols, 0 and
I, to represent all quantities. Counting is started in
the binary system in the same manner as in the deci-
mal system with 0 for zero and 1 for one. At two in
the binary system it is found that there are no more
symbols to be used. It is therefore necessary to take
the same move at two in the binary system that is
taken at ten in the decimal system. This move is to
Place a 1 in the next position to the left and start
again with a 0 in the original position. A binary 10
is equivalent in this respect to a 2 in the decimal sys-
tem. Counting is continued in an analogous manner
with a carry to the next higher order every time a
two is reached instead of every time a ten is reached.
Counting in the binary system is as follows:

BINARY DECIMAL BINARY DECIMAL
0 0 101 5
1 1 110 6
10 2 11 7
11 3 1000 8
100 4 1001 9

151

The binary system is used in computers because
all present components are inherently binary. That
is, a relay maintains its contacts either closed or open,
magnetic materials are utilized by magnetizing them
in one direction or the other, a vacuum tube is con-
veniently maintained either fully conducting or non-
conducting, or the transmission of information along
a wire may be accomplished by transmitting or not
transmitting an electrical pulse at a certain time.

Although binary numbers in general have more
terms than their decimal counterparts (about 3.3
times as many), computation in the binary system is
quite simple.

For addition, it is only necessary to remember the
following three rules:

1. Zero plus zero equals zero.
Zero plus one equals one.

3. One plus one equals zero with a carry of one to
the next position on the left.

To see how the rules work, consider the addition of

15 plus 7 with these numbers expressed in binary
notation:

SIXTEENS EIGHTS FOURS TWOS ONES

(carries) I n 1 1
0 1 1 1 1 =15
+ 0 0 1 1 1 =7
1 0 1 1 0= 22

In the ones column we have 1 plus 1 for a sum of
0 and a 1 carried to the two column. In the twos
column we have 1 plus 1 for a sum of 0 but we must
also add the carrv from the ones column, making a
final sum of 1 with a carry to the fours column. The
same procedure occurs in the fours column. In the
eights column we have a 1 plus a 0 giving a sum of
I, but adding in the carry from the fours column
makes the final sum 0 with a carry to the sixteens
column. In this column we have 0 plus 0 giving a sum
of 0 and to this we add the carry from the eights col-
umn, making a final sum of 1.)

The resultant sum of the addition contains 1’s in
the sixteens, fours, and twos columns, which is the
binary representation of 22, the correct sum of 15 plus
7 (16 plus 4 plus 2 equals 22) .

The rules for subtraction of binary digits are
equally simple:

1. Zero minus zero equals zero.

2. One minus one equals zero.

3. One minus zero equals one.

4. Zero minus one equals one, with one borrowed
from the left.

Using the same numbers as we did in the addition,
the subtraction works as follows:

SIXTEENS EIGHTS FOURS TWOS ONES
(borrows) 0 0 0 0 0
0 1 1 1 1 =15
-0 0 1 1 1 =17
0 1 (1] 0 0= 8

In the ones column we have 1 minus 1 for a sum
of 0 with no borrows. The same procedure occurs
in the twos and fours columns. In the eights column
we have 1 minus 0 for a sum of 1. In the sixteens col-
umn we have 0 minus 0 for a sum of 0. With the
subtraction finished we have 1's in the eights column
only, signifying the answer to be 8.

For multiplication only three rules need to be re-
membered:

1. Zero times zero equals zero.

2. Zero times one equals zero; no carries are con-
sidered.

3. One times one equals one.

The binary multiplication table is such that all that
is necessary when multiplying one number (multi-
plicand) by another (multiplier) is to examine the
multiplier digits one at a time and, each time a 1 is
found, add the multiplicand into the result, and each
time a 0 is found add nothing. Of course, the multi-
plicand must be shifted for each multiplier digit, but
this is not different from the shifting that is done in
the decimal system.

An example of binary multiplication is 26 multi-
plied by 19:

DECIMAL BINARY
26 = 16 + 8 + 0 + 2 + 0 = 11010

x 19 =16 + 0 + 0 + 2 + 1 = 10011
Using the above rules, the product 11010
will be arrived at by a series 11010
of adding the multiplicand 00000
and shifting whenever 00000
a 1 is found in the 11010

multiplier. 111101110

Interpreting the binary result of the multiplication
by using the ones, twos, fours, . . . etc., system we find
that we have,

256 + 128 + 64 + 32+ 0 +8 +4+2 40

which equals 494, thus proving the problem.
Binary division is accomplished by applying similar
concepts. From the examples of addition, subtraction,

and multiplication, it may be seen that whatever
operation the computer is working on will be accom-
plished by repetitive addition.

The computer operates internally using the binary
system. However, it is able to convert from one sys-
tem to another by use of a stored program. Thus,
input-output data may be expressed in decimal (or
any other) form when the operator finds it more con-
venient to do so.

Octal Number System

It has already been pointed out that binary numbers
require about three times as many positions as decimal
numbers to express the equivalent number. This is
not much of a problem to the computer itself. How-
ever, in talking and writing, these binary numbers are
bulky. A long string of ones and zeros cannot be
effectively transmitted from one individual to another.
Some shorthand method is necessary. The octal num-
ber system fills this need. Because of its simple rela-
tionship to binary, numbers can be converted from
one system to another by inspection. The base or
radix of the octal system is 8. This means there are
eight symbols: 0, 1, 2, 8, 4, 5, 6, and 7. There are no
8's or 9's in this number system. The important rela-
tionship to remember is that three binary positions
are equivalent to one octal position. The following
table is used constantly when working on or about the
computer.

BINARY OCTAL

000 0
001
010
011
100
101
110
11

N O 00 N~

At this point a carry to the next higher position of
the number is necessary, since all eight symbols have
been used.

BINARY OCTAL
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14

and so on.

Remember that as far as the internal circuitry of the
computer is concerned it only understands binary

152

ones and zeros. The octal system is used to provide a
shorthand method of reading and writing binary
numbers.

Number Conversions

Before an attempt is made to convert numbers from
one system to another, it is best to review what a
number represents. In the demical system a number
is represented or expressed by a sum of terms. Each
individual term consists of a product of a power of
ten and some integer from 0 to 9. For example, the
number 123 means 100 plus 20 plus 3. This may also
be expressed as:
(1 X 102) + (2 x 101) + (3 X 100)

Ten is said to be the base or radix of this system be-
cause of the role that the powers of 10 and the in-
tegers up to 10 play in the above expansion. If two
is chosen as the base, numbers are said to be repre-
sented in the binary system. Consider the binary
number 1 111 011. What do these zeros and ones
represent? They represent the coefficients of the as.
cending powers of 2. Expressed in another way the
number is:

(1 X2) 4+ (1 x2) + (1 x24) +
(1 X23) + (0x2) + (1x21) + (1x 2

The various orders do not have the meaning of units,
tens, hundreds, thousands, etc., as in the decimal sys-
tem; instead they signify units, twos, fours, eights,
sixteens, etc. In applying the above information it
is found that the number 128 breaks down in both
systems as follows:

BINARY DECIMAL
1 111 o011 123
ll—l units Ls units
2 twos 20 tens
0 fours 100 hundreds
8 eights 123
16 sixteens
82 thirty-twos
—64 sixty-fours

123

In the octal system, a number is represented in the
Same manner except that the base is 8. The digits ot
the number represent the coeficients of the ascending
powers of 8. Consider the octal number:

173

(1X82%) + (7x8Y + (3 X 89
64 + 56 4+ 3
123 (decimal)

i

153

Similarly:
Octal 173
IE_L—S units
56 eights
64 sixty-fours
By remembering what a number represents in the
binary or octal system, the number can be converted
to its decimal equivalent by the method shown above.
As the numbers get bigger, this method becomes quite
impossible to use. The following section provides
detailed methods for converting from one system to
another.

integers

DeciMaL 1O OcTAL

Convert the decimal number 149 to its octal equiva-
lent. RurEe: Divide the decimal number by 8 and de-
velop the octal number as per example.

8| 149 Remainder 5
8 | 18 « 2
8 |2 “ 2

0 read

= 225

We first divided the original number to be converted
by 8. The remainder of this first division becomes the
low-order digit of the conversion (5). We then di-
vide the quotient (received from the first division)
by 8. Again the remainder becomes a part of the an-
swer (next higher order, 2). This is continued until
the quotient is smaller than the divisor. At this time
the final quotient is considered the high order of the
conversion (2).

OctAL TO DECIMAL

Convert the octal number 225 to its decimal equiva-
lent. Rure: Multiply by 8 and add, as per example.

225

X 8
1

1
X

4
I

|

’+
RSN

[0 =Ne o}

+>—-
[SAE

|

149

The high-order digit is multiplied by 8 and the next
lower-order digit is added to the result. The resultant
answer is then multiplied by 8 and the next lower-
order digit is added to the result. When the low-
order digit has been added to the answer, the process
ends. In the following examples, where multiplication
or division is used, detailed explanations will not be
used because the operations are similar.

Octal-Decimal Integer Conversion Table

4000
to
4777
(Octal)

2048
to
2559
(Decimal)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000
to
5777
(Octal)

2560
to
3071
(Decimal)

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 1
4000 2048 2049 2050 2051 2052 2053 2054 2055| |4400] 2304 2305 2306 2307 2308 2309 2310 2311
4010 2056 2057 2058 2059 2060 2061 2062 2063| |4410|2312 2313 2314 2315 2316 2317 2318 2319
4020| 2064 2065 2066 2067 2068 2069 2070 2071| |4420|2320 2321 2322 2323 2324 2325 2326 2327
4030| 2072 2073 2074 2075 2076 2077 2078 2079| |4430|2328 2329 2330 2331 2332 2333 2334 2335
4040| 2080 2081 2082 2083 2084 2085 2086 2087| |4440| 2336 2337 2338 2339 2340 2341 2342 2343
4050 2088 2089 2090 2091 2092 2093 2094 2095| [4450] 2344 2345 2346 2347 2348 2349 2350 2351
4060 2096 2097 2098 2099 2100 2101 2102 2103 |4460|2352 2353 2354 2355 2356 2357 2358 2359
4070| 2104 2105 2106 2107 2108 2109 2110 2111 4470|2360 2361 2362 2363 2364 2365 2366 2367
4100! 2112 2113 2114 2115 2116 2117 2118 2119] (4500|2368 2369 2370 2371 2372 2373 2374 2375
4110 2120 2121 2122 2123 2124 2125 2126 2127| |4510|2376 2377 2378 2379 2380 2381 2382 2383
4120) 2128 2129 2130 2131 2132 2133 2134 2135 |4520|2384 2385 2386 2387 2388 2389 2390 2391
4130| 2136 2137 2138 2139 2140 2141 2142 2143 |4530|2392 2393 2394 2395 2396 2397 2398 2399
4140| 2144 2145 2146 2147 2148 2149 2150 2151] |4540|2400 2401 2402 2403 2404 2405 2406 2407
4150/ 2152 2153 2154 2155 2156 2157 2158 2159| |4550|2408 2409 2410 2411 2412 2413 2414 2415
4160 2160 2161 2162 2163 2164 2165 2166 2167| |4560|2416 2417 2418 2419 2420 2421 2422 2423
4170| 2168 2169 2170 2171 2172 2173 2174 2175 4570|2424 2425 2426 2427 2428 2429 2430 2431
4200 2176 2177 2178 2179 2180 2181 2182 2183| (4600 |2432 2433 2434 2435 2436 2437 2438 2439
4210! 2184 2185 2186 2187 2188 2189 2190 2191| |4610|2440 2441 2442 2443 3444 2445 2446 2447
4220, 2192 2193 2194 2195 2196 2197 2198 2199| |4620 2448 2449 2450 2451 2452 2453 2454 2455
4230! 2200 2201 2202 2203 2204 2205 2206 2207| |4630|2456 2457 2458 2459 2460 2461 2462 2463
4240) 2208 2200 2210 2211 2212 2213 2214 2215 |4640|2464 2465 2466 2467 2468 2469 2470 2471
l4250! 2216 2217 2218 2219 2220 2221 2222 2223 [4650|2472 2473 2474 2475 2476 2477 2478 2479
4260, 2224 2225 2226 2227 2228 2229 2230 2231| |4660 ;2480 2481 2482 2483 2484 2485 2486 2487
4270| 2232 2233 2234 2235 2236 2237 2238 2239] [4670|2488 2489 2490 2491 2492 2493 2494 2495
4300|2240 2241 2242 2243 2244 2245 2246 2247| 4700|2496 2497 2498 2499 2500 2501 2502 2503
4310, 2248 2249 2250 2251 2252 2253 2254 2255 4710{2504 2505 2506 2507 2508 2509 2510 2511
4320|2236 2257 2258 2250 2260 2261 2262 2263] |4720|2512 2513 2514 2515 2516 2517 2518 2519
4330 2264 2265 2266 2267 2268 2269 2270 2271 |4730]2520 2521 2522 2523 2524 2525 2526 2527
43402272 2273 2274 2275 2276 2277 2278 2279 4740|2528 2529 2530 2531 2532 2533 2534 2535
43501 2280 2281 2282 2283 2284 2285 2286 2287 475012536 2537 2538 2539 2540 2541 2542 2543
4360|2288 2289 2290 2291 2292 2293 2204 2295 |4760|2544 2545 2546 2547 2548 2549 2550 2551
43701 2296 2297 2298 2299 2300 230f 2302 2303 47702552 2553 2554 2555 2556 2557 2558 2559

{;; 1 2 3 4 s 6 1| o 1 2 3 4 5 8 1
T 1

5000, 2560 2561 2562 2563 2564 2565 2566 2567 5400 ‘2816 2817 2818 2819 2820 2821 2822 2823
5010|2568 2569 2570 2571 2572 2573 2574 2575' |5410 2824 2825 2826 2827 2828 2829 2830 2831
5020 ' 2576 2577 2578 2579 2580 2581 2582 2583, |5420 2832 2833 2834 2835 2836 2837 2838 2839
5030|2584 2585 2586 2587 2588 2589 2590 2501 543012840 2841 2842 2843 2844 2845 2846 2847
50402592 2593 2594 2595 2596 2597 2598 2599 5440|2848 2849 2850 2851 2852 2853 2854 2855
5050 2600 2601 2602 2603 2604 2605 2606 2607 545012856 2857 2858 2859 2860 2861 2862 2863
5060 | 2608 2609 2610 2611 2612 2613 2614 2615, |5460 (2864 2865 2866 2867 2868 2869 2870 2871
507012616 2617 2618 2619 2620 2621 2622 2623 |5470| 2872 2873 2874 2875 2876 2877 2878 2879
5100 {2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 2882 2883 2884 2885 2886 2887
51102632 2633 2634 2635 2636 2637 2638 2639 5510|2888 2889 2890 2891 2892 2893 2894 2895
5120|2640 2641 2642 2643 2644 2645 2646 2647 5520|2896 2897 2898 2899 2900 2901 2902 2903
5130|2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
5140|2656 2657 2658 2659 2660 2661 2662 2663 55402912 2913 2914 2915 2916 2917 2918 2919
5150|2664 2665 2666 2667 2668 2669 2670 2671 5550 (2920 2921 2922 2923 2924 2925 2926 2927
5160|2672 2673 2674 2675 2676 2677 2678 2679 |5560 2928 2929 2930 2931 2932 2933 2934 2935
5170|2680 2681 2682 2683 2684 2685 2686 2687| |5570|2936 2937 2038 2939 2940 2941 2942 2943
5200|2688 2689 2690 2691 2692 2693 2694 2695| |5600 |2044 2945 2046 2947 2948 2949 2950 2951
5210|2696 2697 2698 2699 2700 2701 2702 2703| |5610 {2952 2953 2954 2955 2956 2957 2958 2959
5220|2704 2705 2706 2707 2708 2709 2710 2711| |5620 [2960 2961 2962 2963 2964 2965 2966 2967
5230 (2712 2713 2714 2715 2716 2717 2718 2719 |5630 |2968 2969 2970 2971 2972 2973 2974 2975
5240 (2720 2721 2722 2723 2724 2725 2726 2727 5640|2976 2977 2978 2979 2980 2981 2982 2983
5250|2728 2729 2730 2731 2732 2733 2734 2735| |5650 (2984 2985 2986 2987 2988 2989 2990 2991
5260 [2736 2737 2738 2739 2740 2741 2742 2743] |5660 |2992 2993 2994 2995 2996 2997 2998 2999
5270|2744 2745 2746 2747 2748 2749 2750 2751, |5670|3000 3001 3002 3003 3004 3005 3006 3007
5300|2752 2753 2754 2755 2756 2757 2758 2759 5700 {3008 3009 3010 3011 3012 3013 3014 3015
5310|2760 2761 2762 2763 2764 2765 2766 2767 5710|3016 3017 3018 3019 3020 3021 3022 3023
5320|2768 2769 2770 2771 2772 2773 2774 2775| |5720|3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2778 2779 2780 2781 2782 2783| 5730|3032 3033 3034 3035 3036 3037 3038 3039
5340|2784 2785 2786 2787 2788 2789 2790 2791 5740|3040 3041 3042 3043 3044 3045 3046 3047
5350|2792 2793 2794 2795 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807| |5760|3056 3057 3058 3059 3060 3061 3062 3063
5370|2808 2809 2810 2811 2812 2813 2814 2815| |5770|3064 3065 3066 3067 3068 3069 3070 3071

154

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 K
6000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335 6000 3072
60103080 3081 3082 3083 3084 3085 3086 3087 6410| 3336 3337 3338 3339 3340 3341 3342 3343 to to
6020 {3088 3089 3090 3091 3092 3093 3094 3095 6420| 3344 3345 3346 3347 3348 3349 3350 3351 8777 3583
6030|3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359 (Octal) | (Decimal)

6040|3104 3105 3106 3107 3108 3109 3110 3111 6440) 3360 3361 3362 3363 3364 3365 3366 3367
60503112 3113 3114 3115 3116 3117 3118 3119 6450(3368 3369 3370 3371 3372 3373 3374 3375

6060|3120 3121 3122 3123 3124 3125 3126 3127 6460(3376 3377 3378 3379 3380 3381 3382 3383 Octal Decimal
60703128 3129 3130 3131 3132 3133 3134 3135 6470| 3384 3385 3386 3387 3388 3389 3390 3391 10000 - 4096
6100 {3136 3137 3138 3139 3140 3141 3142 3143 6500| 3392 3393 3394 3395 3396 3397 3398 3399 ggggg' 12;3%
61103144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407 40000-16384
612013152 3153 3154 ‘3155 3156 3157 3158 3159 6520] 3408 3409 3410 3411 3412 3413 3414 3415 50000-20480
61303160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423 60000.24576
6140 | 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431 70000:28672

61503176 3177 3178 3179 3180 3181 3182 3183 6550| 3432 3433 3434 3435 3436 3437 3438 3439
6160 {3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447
61703192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455

6200 (3200 3201 3202 3203 3204 3205 3206 3207 6600| 3456 3457 3458 3459 3460 3461 3462 3463
6210|3208 3209 3210 3211 3212 3213 3214 3215 6610| 3464 3465 3466 3467 3463 3469 3470 3471
6220 {3216 3217 3218 3219 3220 3221 3222 3223 6620|3472 3473 3474 3475 3476 3477 3478 3479
6230|3224 3225 3226 3227 3228 3229 3230 3231 6630(3480 3481 3482 3483 3484 3485 3486 3487
6240 13232 3233 3234 3235 3236 3237 3238 3239 6640| 3488 3489 3490 3491 3492 3493 3494 3495
6250 {3240 3241 3242 3243 3244 3245 3246 3247 66501 3496 3497 3498 3489 3500 3501 3502 3503
6260 | 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
6270 13256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

6300 |3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
6310|3272 3273 3274 3275 3276 3277 3278 3279 6710|3528 3529 3530 3531 3532 3533 3534 3535
6320 (3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
6330 (3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
6340 | 3296 3297 3298 3299 3300 3301 3302 3303 67401 3552 3553 3554 3555 3556 3557 3558 3559
6350 13304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567
6360 13312 3313 3314 3315 3316 3317 3318 3319 6760) 3568 3569 3570 3571 3572 3573 3574 3575
6370|3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 K
7000) 3584 3585 3586 3587 3588 3589 3590 3591 7400| 3840 3841 3842 3843 3844 3845 3846 3847 7000 3584
7010 3592 3593 3594 3595 3596 3597 3598 3599 7410(3848 3849 3850 3851 3852 3853 3854 3855 to to
7020| 3600 3601 3602 3603 3604 3605 3606 3607 7420 3856 3857 3858 3859 3860 3861 3862 3863 7777 40?5
7030] 3608 3609 3610 3611 3612 3613 3614 3615 7430| 3864 3865 3866 3867 3868 3869 3870 3871 (Octal) | (Decimal)
7040] 3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 3877 3878 3879
7050| 3624 3625 3626 3627 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887

7060| 3632 3633 3634 3635 3636 3637 3638 3639 7460 3888 3889 3890 3891 3892 3893 3894 3895
7070] 3640 3641 3642 3643 3644 3645 3646 3647 7470| 3896 3897 3898 3899 3900 3901 3902 3903

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 3909 3910 3911
7110] 3656 3657 3658 3659 3660 3661 3662 3663 751013912 3913 3914 3915 3916 3917 3918 3919
7120] 3664 3665 3666 3667 3668 3669 3670 3671 7520|3920 3921 3922 3923 3924 3925 3926 3927
7130] 3672 3673 3674 3675 3676 3677 3678 3679 75303928 3929 3930 3931 3932 3933 3934 3935
7140] 3680 3681 3682 3683 3684 3685 3686 3687 7540|3936 3937 3938 3939 3940 3941 3942 3943
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951
7160| 3696 3697 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956 3957 3958 3959
7170] 3704 3705 3706 3707 3708 3709 3710 3711 75703960 3961 3962 3963 3964 3965 3966 3967

%200| 3712 3713 3714 3715 3716 3717 3718 3719 7600 | 3968 3969 3970 3971 3972 3973 3974 3975
72101 3720 3721 3722 3723 3724 3725 3726 3727 7610|3976 3977 3978 3979 3980 3981 3982 3983
7220(3728 3729 3730 3731 3732 3733 3734 3735 7620 (3984 3985 3986 3987 3988 3989 3990 3991
7230|3736 3737 3738 3739 3740 3741 3742 3743 7630|3992 3993 3994 3995 3996 3997 3998 3999
7240(3744 3745 3746 3747 3748 3749 3750 3751 7640 {4000 4001 4002 4003 4004 4005 4006 4007
7250(3752 3753 3754 3755 3756 3757 3758 3759 76504008 4009 4010 4011 4012 4013 4014 4015
7260| 3760 3761 3762 3763 3764 3765 3766 3767 76604016 4017 4018 4019 4020 4021 4022 4023
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670|4024 4025 4026 4027 4028 4029 4030 4031

7300|3776 37717 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039
7310|3784 3785 3786 3787 3788 3789 3790 3791 771014040 4041 4042 4043 4044 4045 4046 4047
7320] 3792 3793 3794 3795 3796 3797 3798 3799 7720|4048 4049 4050 4051 4052 4053 4054 4055
7330f 2800 3801 3802 3803 3804 3805 3806 3807 7730 [4056 4057 4058 4059 4060 4061 4062 4063
7340) 3808 3809 3810 3811 3812 3813 3814 3815 7740|4064 4065 4066 4067 4068 4069 4070 4071
7350(3816 3817 3818 3819 3820 3821 3822 3823 7750|4072 4073 4074 4075 4076 4077 4078 4079
7360|3824 3825 3826 3827 3828 3829 3830 3831 77604080 4081 4082 4083 4084 4085 4086 4087
7370] 3832 3833 3834 3835 3836 3837 3838 3839 777014088 4089 4090 4091 4092 4093 4094 4095

155/156

0000 0000
1o to
0777 0511
(Octal) | (Decimal)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000 0512
fo fo
1777 1023

(Octal) | (Decimal)

APPENDIX B

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 ro 1 2 3 4 5 6 7
0000 {0000 0001 0002 0003 0004 0005 0006 0007 | 0400 | 0256 0257 0258 0259 0260 0261 0262 0263
0010 {0008 0009 0010 0011 0012 0013 0014 0015 : 0410 {0264 0265 0266 0267 0268 0269 0270 0271
0020 {0016 0017 0018 0019 0020 0021 0022 0023 04200272 0273 0274 0275 0276 0277 0278 0279
0030 [0024 0025 0026 0027 0028 0029 0030 0031, 0430|0280 0281 0282 0283 0284 0285 0286 0287
0040 [0032 0033 0034 0035 0036 0037 0038 0039 ' 0440 {0288 0289 0290 0291 0292 0293 0294 0295
0050 |0040 0041 0042 0043 0044 0045 0046 0047 0450 {0296 0297 0298 0299 0300 0301 0302 0303
0060 [0048 0049 0050 0051 0052 0053 0054 0055 | 0460|0304 0305 0306 0307 0208 0309 0310 0311
0070 {0056 0057 0058 0059 0060 0061 0062 0063 ; 047010312 0313 0314 0315 0316 0317 0318 0319
1
0100 [0064 0065 0066 0067 0068 0069 0070 0071 0500 {0320 0321 0322 0323 0324 0325 0326 0327
0110 {0072 0073 0074 0075 NO76 0077 0078 0079 0510 {0328 0329 0330 0331 0332 0333 0334 0335
0120 {0080 0081 0082 0083 0084 0085 0086 0087 0520 ;0336 0337 0338 0339 0340 0341 0342 0343
0130|0088 0089 0090 0091 0092 0093 0094 0095 0530 {0344 0345 0346 0347 0348 0349 0350 0351
0140 {0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355 0356 0357 0358 0359
0150 {0104 0105 0106 0107 0108 0109 0110 011} 0550 : 0360 0361 0362 0363 0364 0365 0366 0367
0160 {0112 0113 0114 0115 0116 0117 0118 0119 0560|0368 0369 0370 0371 0372 0373 0374 0375
01700120 0121 0122 0123 0124 0125 0126 0127 0570 {0376 0377 0378 0379 0380 0381 0382 0383
02000128 0129 0130 0131 0132 0133 0134 0135 0600 0384 0385 0386 0387 0388 0389 0390 0391
021010136 0137 0138 0139 0140 0141 0142 0143 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 0620|0400 0401 0402 0403 0404 0405 0406 0407
02300152 0153 0154 0155 0156 0157 0158 0159 063010408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0167 0640 10416 0417 0418 0419 0420 0421 0422 0423
0250]0168 0169 0170 0171 0172 0173 0174 0175, 0650 | 0424 0425 0426 0427 0428 0429 0430 0431
0260|0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 0434 0435 0436 0437 0438 0439
0270 (0184 0185 0186 0187 0188 0189 0190 0191 0670 0440 0441 0442 0443 0444 0445 0446 0447
!
0300 {0192 0193 0194 0195 0196 0197 0198 0199 ; 0700 0448 0449 0450 0451 0452 0453 0454 0455
03100200 0201 0202 0203 0204 0205 0206 0207 ,o710Io4ss 0457 0458 0459 0460 0461 0462 0463
03200208 0209 0210 0211 0212 0213 0214 0215 ;0720 0464 0465 0466 0467 0468 0469 0470 0471
0330|0216 0217 0218 0219 0220 0221 0222 0223 0730|0472 0473 0474 047, 0476 0477 0478 0479
0340|0224 0225 0226 0227 0228 0229 0230 0231 0740|0480 0481 0482 0483 0484 0485 0486 0487
0350 {0232 0233 0234 0235 0236 0237 0238 0239 | 0750|0488 0489 0490 0491 0492 0493 0494 0495
0360|0240 0241 0242 0243 0244 0245 0246 0247 0760 | 0496 0497 0498 0499 0500 0501 0502 0503
03700248 0248 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 0511
0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7
1000 0512 0513 0514 0515 0516 0517 0518 0519 1400 ' 0768 0769 0770 0771 0772 0773 0774 0775
1010} 0520 0521 0522 0523 0524 0525 0526 0527 1410/0776 0777 0778 0779 0780 0781 0782 0783
10200528 0529 0530 0531 0532 0533 0534 0535 114200784 0785 0786 0787 0788 0789 0790 0791
1030 0536 0537 0538 0539 0540 0541 0542 0543 1143010792 0793 0794 0795 0796 0797 0798 0799
1040} 0544 0545 0546 0547 0548 0549 0550 0551 14400800 0801 0802 0803 0804 0805 0806 0807
1050|0552 0553 0554 0555 0556 0557 0558 0559 1450 | 0808 0809 0810 0811 0812 0813 0814 0815
1060 | 0560 0561 0562 0563 0564 0565 0566 0567 146010816 0817 0818 0819 0820 0821 0822 0823
1070 0568 0569 0570 0571 0572 0573 0574 0575 ! 147010824 0825 0826 0827 08280829 0830 0831
1100/ 0576 0577 0578 0579 0580 0581 0582 0583 150010832 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0387 0588 0589 0590 0591 15100840 0841 0842 0843 0844 0845 0846 0847
112010592 0593 0594 0595 0596 0597 0598 0599 1 15200848 0849 0B50 0851 0852 0853 0854 0855
11300600 0601 0602 0603 0604 0605 0606 0607 1530 0856 0857 0858 0859 0860 0861 0862 0863
114010608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
1150|0616 0617 0618 0619 0620 0621 0622 0623 1550 | 0872 0873 0874 0875 0876 0877 0878 0879
116010624 0625 0626 0627 0628 0629 0530 0631 1560|0880 0881 0882 0883 0884 0885 0886 0887
11700632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 0896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610 {0904 0905 0906 0907 0908 0909 0910 0911
1220|0656 0657 0658 0659 0660 0661 0662 0663 1620 {0912 0913 0914 0915 0916 0917 0918 0919
123010664 0665 0666 0667 0668 0669 0670 0671 1630|0920 0921 0922 0923 0924 0925 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 1640 {0928 0929 0930 0931 0932 0933 0934 0935
1250{ 0680 0681 0682 0683 0684 0685 0686 0687 1650 [0936 0937 0938 0939 0940 0941 0942 0943
1260}0688 0689 0690 0691 0692 0693 0694 0695 1660 |0944 0945 0946 0947 0948 0949 0950 0951
127010696 0697 0698 0699 0700 0701 0702 0703 1670 {0952 0953 0954 0955 0956 0957 0958 0959
1300|0704 0705 0706 0707 0708 0709 0710 0711 1700 |0960 0961 0962 0963 0964 0965 0966 0967
1310|0712 0713 0714 0715 0716 0717 0718 0719 1710 {0968 0969 0970 0971 0972 0973 0974 0975
1320|0720 0721 0722 0723 0724 0725 0726 0727 1720|0976 0977 0978 0979 0980 0981 0982 0983
1330(0728 0729 0730 0731 0732 0733 0734 0735 1730 {0984 0985 0986 0987 0988 0989 0990 0991
1340|0736 0737 0738 0739 0740 0741 0742 0743 1740 {0992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751 1750|1060 1001 1002 1003 1004 1005 1006 1007
1360|0752 0753 0754 0755 0756 0757 0758 0759 1760 (1008 1009 1010 1011 1012 1013 1014 1015
1370|0760 0761 0762 0763 0764 0765 0766 0767 17701016 1017 1018 1019 1020 1021 1022 1023

157

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 7 i 0 1 2 3 4 5 6 7
2000|1024 1025 1026 1027 1028 1029 1030 1031f 2400|1280 1281 1282 1283 1284 1285 1286 1287
2010{1032 1033 1034 1035 1036 1037 1038 1039: 241011288 1289 1290 1291 1292 1293 1294 1295
2020 {1040 1041 1042 1043 1044 1045 1046 1047 2420|1296 1297 1298 1299 1300 1301 1302 1303
2030|1048 1049 1050 1051 1052 1053 1054 1055 2430|1304 1305 1306 1307 1308 1309 1310 1311
204011056 1057 1058 1059 1060 1061 1062 1063 24401312 1313 1314 1315 1316 1317 1318 1319
2050|1064 1065 1066 1067 1068 1069 1070 1071 24501320 1321 1322 1323 1324 1325 1326 1327
2060 (1072 1073 1074 1075 1076 1077 1078 1079 2460]1328 1329 1330 1331 1332 1333 1334 1335
2070{1080 1081 1082 1083 1084 1085 1086 1087 1247011336 1337 1338 1339 1340 1341 1342 1343
210011088 1089 1090 1091 1092 1093 1094 1095 2500(1344 1345 1346 1347 1348 1349 1350 1351
21101096 1097 1098 1099 1100 1101 1102 1103 25101352 1353 1354 1355 1356 1357 1358 1359
21201104 1105 1106 1107 1108 1109 1110 1111 2520|1360 1361 1362 1363 1364 1365 1366 1367
21301112 1113 1114 1115 1116 1117 1118 1119 253011368 1369 1370 1371 1372 1373 1374 1375
21401120 1121 1122 1123 1124 1125 1126 1127 25401376 1377 1378 1379 1380 1381 1382 1383
2150|1128 1129 1130 1131 1132 1133 1134 1135 255011384 1385 1386 1387 1388 1389 1390 1391
2160|1136 1137 1138 1139 1140 1141 1142 1143 1256011392 1393 1394 1395 1396 1397 1398 1399
21701144 1145 1146 1147 1148 1149 1150 1151 1257011400 1401 1402 1403 1404 1405 1406 1407

: {
22001152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415
2210{1160 1161 1162 1163 1164 1165 1166 1167 12610, 1416 1417 1418 1419 1420 1421 1422 1423
222011168 1169 1170 1171 1172 1173 1174 1175 i2620 1424 1425 1426 1427 1428 1429 1430 1431
2230,1176 1177 1178 1179 1180 1181 1182 1183 263011432 1433 1434 1435 1436 1437 1438 1439
22401184 1185 1186 1187 1188 1189 1190 1191 2640|1440 1441 1442 1443 1444 1445 1446 1447
225011192 1193 1194 1195 1196 1197 1198 1199 , 2650 1448 1449 1450 1451 1452 1453 1454 1455
22601200 1201 1202 1203 1204 1205 1206 1207 ;2660?1456 1457 1458 1459 1460 1461 1462 1463
2270|1208 1209 1210 1211 1212 1213 1214 1215 12670 1464 1465 1466 1467 1468 1469 1470 1471
2300|1216 1217 1218 1219 1220 1221 1222 1223, 12700 1472 1473 1474 1475 1476 1477 1478 1479
2310|1224 1225 1226 1227 1228 1229 1230 1231 12710 1480 1481 1482 1483 1484 1485 1486 1487
23201232 1233 1234 1235 1236 1237 1238 1239, 2720 1488 1489 1490 1491 1492 1493 1494 1495
23301240 1241 1242 1243 1244 1245 1246 1247 27301496 1497 1498 1499 1500 1501 1502 1503
23401248 1249 1250 1251 1252 1253 1254 1255 1274011504 1505 1506 1507 1508 1509 1510 1511
2350|1256 1257 1258 1259 1260 1261 1262 1263 12750(1512 1513 1514 1515 1516 1517 1518 1519
23601264 1265 1266 1267 1268 1269 1270 1271 '2760}1520 1521 1522 1523 1524 1525 1526 1527
23701272 1273 1274 1275 1276 1277 1278 1279 12770 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 1
3000 {1536 1537 1538 1539 1540 1541 1542 1543 3400|1792 1793 1794 1795 1796 1797 1798 1799
3010|1544 1545 1546 1547 1548 1549 1550 1551 34101800 1801 1802 1803 1804 1805 1806 1807
3020|1552 1553 1554 1555 1556 1557 1558 1559 34201808 1809 1810 1811 1812 1813 1814 1815
3030 {1560 1561 1562 1563 1564 1565 1566 1567 /3430|1816 1817 1818 1819 1820 1821 1822 1823
30401568 1569 1570 1571 1572 1573 1574 1575 1344011824 1825 1826 1827 1828 1829 1830 1831
3050 (1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838 1839
3060 {1584 1585 1586 1587 1588 1589 1580 1591 34601840 1841 1842 1843 1844 1845 1846 1847
30701592 1593 1594 1595 1596 1597 1598 1599 347011848 1849 1850 1851 1852 1853 1854 1855
3100}1600 1601 1602 1603 1604 1605 1606 1607 35001856 1857 1858 1859 1860 1861 1862 18863
31101608 1609 1610 1611 1612 1613 1614 1615 3510|1864 1865 1866 1867 1868 1869 1870 1871
3120{1616 1617 1618 1619 1620 1621 1622 1623 3520,1872 1873 1874 1875 1876 1877 1878 1879
3130|1624 1625 1626 1 "7 1628 1629 1630 1631 353011880 1881 1882 1883 1884 1885 1886 1887
3140{1632 1633 1634 1635 1636 1637 1638 1639 3540, 1888 1889 1890 1891 1892 1893 1894 1895
3150|1640 1641 1642 1643 1644 1645 1646 1647 35501896 1897 1898 1899 1900 1901 1902 1903
31601648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1910 1911
3170/1656 1657 1658 1659 1660 1661 1662 1663 3570|1912 1913 1914 1915 1916 1917 1918 1919
3200 {1664 1665 1666 1667 1668 1669 1670 1671 3600|1920 1921 1922 1923 1924 1925 1926 1927
3210|1672 1673 1674 1675 1676 1677 1678 1679 36101928 1929 1930 1931 1932 1933 1934 1935
3220|1680 1681 1682 1683 1684 1685 1686 1687 36201936 1937 1938 1939 1940 1941 1942 1943
3230|1688 1689 1690 1691 1692 1693 1694 1695 36301944 1945 1946 1947 1948 1949 1950 1951
3240 {1696 1697 1698 1699 1700 1701 1702 1703 36401952 1953 1954 1955 1956 1957 1958 1959
3250 (1704 1705 1706 1707 1708 1709 1710 1711 }3650|1960 1961 1962 1963 1964 1965 1966 1967
326011712 1713 1714 1715 1716 1717 1718 1719 ;3660‘1968 1969 1970 1971 1972 1973 1974 1975
3270 (1720 1721 1722 1723 1724 1725 1726 1727 136701976 1977 1978 1979 1980 1981 1982 1983

|
3300|1728 1729 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1989 1990 1991
331041736 1737 1738 1739 1740 1741 1742 1743 37101992 1993 1994 1995 1996 1997 1998 1999
332011744 1745 1746 1747 1748 1749 1750 1751 3720|2000 2001 2002 2003 2004 2005 2006 2007
33301752 1753 1754 1755 1756 1757 1758 1759 3730(2008 2009 2010 201! 2012 2013 2014 2015
3340|1760 1761 1762 1763 1764 1765 1766 1767 374012016 2017 2018 2019 2020 2021 2022 2023
33501768 1769 1770 1771 1772 1773 1774 1775 3750|2024 2025 2026 2027 2028 2029 2030 2031
3360|1776 1777 1778 1779 1780 1781 1782 1783 37602032 2033 2034 2035 2036 2037 2038 2039
3370(1784 1785 1786 1787 1788 1789 1790 1791 3770] 2040 2041 2042 2043 2044 2045 2046 2047

158

2000 1024
to to
2777 1535

(Octal) | (Decimal)

Octal Decimal

10000 - 4096
20000- 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000 1536
fo to
3777 2047
(Octal) | (Decimal)

OcTAL TO BINARY AND BINARY TO OCTAL

RuLe: Express the number in binary groups of three.

OCTAL TO BINARY

2 2 5 010 010 101
A A A)
010 010 101 = 010 010 101 2 2 5 = 22

BINARY TO OCTAL

DECIMAL TO BINARY

RuLE: Divide the decimal number by 2 and develop
as per example; convert 149 to its binary equivalent.
2| 149 Remainder 1|
2 74 - 0
2 |37 “ 1
2 “ 0
Il = 010 010 101

0

0

[1
“ read

N NN N
okl

BINARY TO DECIMAL

RULE: Multiply by 2 and add as per example; convert
010 010 101 to its decimal equivalent.

10 010 101
2

[& ol

X
[CR

[T

..I_
— Q0

OR 10 010 101

% ol
—
N O

=1(27) + 0(2°) + 0(2%) + 1 (2) +
0(2°) 4+ 1(29) +0(2) + 1(2)
=128 416 4441

X__|+
chl

Ll
|

=149

X
[$7:]
o3

~
O

X +
[3l

5=
= QO

|+._

—
>
=]

Fractions

DeciMAL To OcTAL

RuLe: Multiply by 8 and develop the octal number
as per example:

Read .149
. X 8
1 192
X 8
1 .536
X 8
4 .288
X 8
2 304
= .1142 +

OcTAL TO DECIMAL

RuLE: Express as powers of 8, add and divide as per
example:

J142=1(8-1) +1(8-2) +4(8-3) +2(8-4)
=1/8+1/64 +4/512 +2/4096
= 610/4096
=.1489 plus
or.149

OcTAL TO BINARY AND BINARY TO OCTAL

RuLe: The same rule applies for fractions as for
whole numbers.

Example:
1 1 4 2 001 001 100 010
SN A Al A Y e A —
001 001 100 o010 1 1 4 2

BiNARY TO DECIMAL

The same rule applies as for whole numbers; for
example:

001 001 100 010
=1(2-3) +1(2-6) +1(2-7) +1(2-11)
=1/8+1/64+1/128 +1/2048
= 305/2048
= .1489 plus

or.149

DEcIMAL To BINARY

The same rule applies as for whole numbers. For
example:

159

Read 149 BINARY TO DECIMAL

+ X2 This requires conversion from binary to octal and
0 298 then to decimal.
X 2
0 |.596 Convert to decimal:
X 2
1 192 010 010 101001 001 100 010
% 2 B e i e W W
e W = 2 2 b« 1 1 + 2
0 |.384
X 8
X 2 T
0 |.768
X 2 T2 1 1 4 2
1| 5% 18 T w Tt oae =
X 8
X 2 14 610
1 .072 1096 —
% 2 t5
0o (14 149 .149
X 2
0 288 As with decimal-to-binary, conversion of the integer
X 2 and fraction parts is performed independently.
0 576
X 2
1 152
X 2
0 304
Y = .001 001 100 010 +

Floating-Point Word

DEeciMAL TO FLOATING POoIN1

Improper Fractions . . .
Convert decimal 149.149 to normal floating-point

DECIMAL TO BINARY word.

This requires conversion from decimal to octal and
then to binary. For example, convert 149.149 to its
binary equivalent.

Decimal to octal:

149.149,, = 225.1142,

Octal to binary:

8 | 149. remainder 5 149 0951 1 00 o1
8 l 18. “ 2 X 8 1142, =010 010 101.00 1 100 oO10,
8 2. “ 2
I—O_ read : X19§ Binary to floating point word:
1 536 10 010 101.001 001 100 010 X 20 =
X 8 .10 010 101 001 001 100 010 X 28
4 988 8 + 128 =136 (Characteristic)
X_S 10 001 000.100 101 010 010 011 000 1 FP
read. 2 .304 . . /

Characteristic Fraction
21 0.4 5 2 2 3 04,

NOTE: Word is normal if the fraction is less than 1, but greater

1 1 1
149.149,, = 225.1142, = 010 010 101.001 001 100 010, than or equal to one-half.

160

APPENDIX C

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC, OCTAL DEC. OCTAL DEC,
. 000 .000000 . 100 .125000 .200 . 250000 .300 . 375000
.001 .001953 .101 . 126953 .201 .251953 .301 . 376953
.002 .003906 .102 . 128906 .202 . 253906 .302 . 378906
.003 .005859 .103 . 130859 .203 .255859 .303 . 380859
.004 .007812 . 104 .132812 . 204 .257812 .304 .382812
.005 . 009765 . 105 . 134765 .205 . 259765 .305 .384765
.006 ,011718 . 106 . 136718 . 206 .261718 .306 .386718
.007 . 013671 107 .138671 .207 . 263671 .307 . 388671
.010 . 015625 .110 . 140625 .210 . 265625 .310 .390625
.011 .017578 111 . 142578 .211 . 267578 .311 .392578
.012 .019531 112 .144531 .212 ,269531 .312 . 394531
.013 .021484 .113 . 146484 .213 . 271484 .313 . 396484
.04 .023437 114 . 148437 .214 .273437 .314 . 398437
.018 .025390 115 . 150390 .215 .275390 .315 . 400390
.016 » 027343 .118 . 152343 .216 . 277343 .316 .402343
.017 . 029296 117 . 154296 .217 .279296 .317 .404296
. 020 . 031250 «120 . 166250 .220 .281250 .320 .406250
.021 , 033203 .21 . 158203 .221 .283203 .321 .408203
.022 .035156 . 122 . 160156 .222 .285156 .322 .410156
023 . 037109 .123 . 162109 .223 . 287109 .323 .412109
.024 . 039062 .124 . 164062 .224 . 289062 .324 . 414062
.025 .041015 .125 . 166015 .225 .291015 .325 .418015
.026 .042968 . 126 . 167968 .226 .-292968 .326 .417968
. 027 . 044921 127 .169921 .227 .294921 .327 .419921
.030 . 046875 .130 . 171875 .230 . 296875 .330 421875
.031 .048828 .131 .173828 .231 .298828 .331 .423828
.032 .050781 .132 . 175781 .232 .300781 .332 .426781
.033 . 052734 .133 177734 .233 .302734 .333 .427734
.084 .054687 . 134 . 179687 .234 .304687 .334 .429687
. 035 . 056640 .135 . 181640 .235 . 306640 .335 .431640
.036 . 058593 .136 .183593 . 236 .308593 .336 ,433593
.037 . 060546 .137 . 185546 .237 .310546 ,337 .435546
. 040 . 062500 . 140 . 187500 . 240 .312500 . 340 .437500
.041 . 064453 . 141 . 189453 .241 , 314453 .341 ,439453
. 042 . 066406 .142 . 191406 . 242 .316406 .342 .441406
.043 . 068359 . 143 . 193359 .243 . 318359 .343 . 443359
. 044 .070312 . 144 . 195312 244 .320312 .344 .445312
. 045 . 072265 . 145 . 197265 .245 . 322265 345 . 447265
. 046 .074218 . 146 . 199218 .246 . 324218 .6 .449218
. 047 076171 . 147 .201171 . 247 .326171 . 347 .451171
. 050 .078125 . 150 .203125 .250 .328125 .350 .453125
.051 . 080078 . 181 . 205078 . 251 .330078 .351 .455078
. 052 .082031 . 152 .207031 .252 .332031 . 352 .457031
.053 . 083984 L1583 .208984 .253 .333984 .353 .458984
. 054 . 085937 . 154 .210937 .254 + 335937 .354 . 460937
.055 . 087890 . 155 .212890 . 255 .337890 . 355 .462890
.056 . 089843 . 156 .214843 .256 . 339843 . 356 .464843
.057 .091796 . 157 .216796 .257 . 341796 .357 .466796
.060 . 093750 . 160 .218750 .260 . 343750 .360 .468750
.061 . 095703 .161 .220703 . 261 .345703 .361 .470703
.062 . 097656 .162 . 222656 .262 . 347656 +362 .472656
.063 . 099609 . 163. . 224609 .263 . 349609 .363 .474609
.064 .101562 .164 .226562 . 264 .3561562 .364 .476562
.065 .103515 . 165 .228515 .265 .353515 .365 .478515
. 066 . 105468 . 166 .230468 .266 . 355468 . 366 .480468
.067 »107421 .167 .232421 .267 .357421 .367 .482421
.070 . 109375 .170 . 234375 .270 . 359375 .370 . 484375
.071 .111328 .17 .236328 .27 .361328 .371 .486328
.072 »113281 .172 . 238281 .272 .363281 .372 .488281
.073 . 115234 .173 .240234 .273 . 365234 L3713 .490234
.074 . 117187 .174 .242187 .274 . 367187 .374 .492187
.075 . 119140 . 175 .244140 .275 .369140 .375 .494140
.076 . 121093 .176 .246093 .27 .371093 .376 .496093
.077 . 123046 177 .248046 .27 . 373046 .317 .498046

161

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC, OCTAL DEC.

.000000 . 000000 .000100 . 000244 .000200 . 000488 .000300 .000732
.000001 .000003 .000101 . 000247 .000201 . 000492 .000301 .000736
.000002 . 000007 .000102 .000251 . 000202 . 000495 .000302 .000740
.000003 .000011 .000103 . 000255 . 000203 . 000499 .000303 .000743
.000004 .000015 .000104 . 000259 . 000204 . 000503 .000304 . 000747
. 000005 .000019 . 000105 .000263 . 000205 . 000507 .000305 .000751
. 000006 . 000022 .000106 .000267 . 000206 .000511 .000306 . 000755
.000007 . 000026 . 000107 .000270 . 000207 .000514 .000307 .000759
.000010 . 000030 ,000110 .000274 .000210 .000518 .000310 .000762
.000011 . 000034 .0001i1 .000278 .000211 . 000522 .000311 .000766
.000012 .000038 .000112 .000282 .000212 . 000526 .000312 .000770
.000013 . 000041 .000113 .000286 .000213 . 000530 .000313 .000774
.000014 . 000045 .000114 1000289 .000214 . 000534 .000314 .000778
.000015 . 000049 .000115 . 000293 .000215 . 000537 .000315 .000782
.000016 .000053 .000116 . 000297 .000216 . 000541 .000316 .000785
.000017 . 000057 .000117 .000301 .000217 . 000545 .000317 .000789
.000020 .000061 .000120 . 000305 .000220 . 000549 .000320 .000793
.000021 . 000064 .000121 .000308 . 000221 . 000553 .000321 .000797
,000022 . 000068 .000122 .000312 . 000222 . 000556 .000322 .000801
.000023 .000072 .000123 .000316 . 000223 . 000560 .000323 .000805
. 000024 . 000076 . 000124 .000320 . 000224 . 000564 .000324 .000808
. 000025 . 000080 .000125 .000324 .000225 .000568 .000325 .000812
.000026 .000083 .000126 .000328 . 000226 .000572 . 000326 .000816
.000027 .000087 .000127 .000331 . 000227 . 000576 . 000327 .000820
.000030 .000091 .000130 .000335 . 000230 . 000579 . 000330 .000823
.000031 . 000095 .000131 .000339 . 000231 .000583 .000331 . 000827
.000032 . 000099 .000132 .000343 . 000232 . 000587 . 000332 .000831
.000033 .000102 .000133 . 000347 .000233 . 000591 .000333 .000835
.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839
.000035 .000110 .000135 . 000354 . 000235 . 000598 .000335 .000843
.000036 .000114 .000136 .000358 . 000236 .000602 .000336 .000846
.000037 ,000118 .000137 .000362 .000237 . 000606 .000337 .000850
. 000040 .000122 . 000140 . 000366 .000240 .000610 .000340 .000854
.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858
.000042 .000129 .000142 .000373 . 000242 .000617 .000342 . 000862
.000043 .000133 . 000143 .000377 . 000243 .000621 .000343 .000865
. 000044 .000137 .000144 .000381 . 000244 . 000625 .000344 . 000869
. 000045 .000141 .000145 .000385 . 000245 . 000629 . 000345 .000873
. 000046 . 000144 .000146 .000389 . 000246 .000633 . 000346 .000877
.000047 .000148 .000147 .000392 . 000247 . 0006837 .000347 .000881
.000050 . 000152 .000150 .000396 . 000250 . 000640 . 000350 .000885
.000051 .000156 .000151 . 000400 . 000251 . 000644 .000351 ,000888
. 000052 .000160 . 000152 .000404 . 000252 .000648 .000352 .000892
.000053 . 000164 .000153 . 000408 .000253 . 000652 .000353 .000896
.000054 .000167 .000154 .000411 .000254 . 000656 .000354 . 000900
. 000055 .000171 .000155 . 000415 . 000255 . 000659 .000355 .000304
.000056 . 000175 .000156 .000419 . 000256 . 000663 .000356 .000907
.000057 ,000179 .000157 . 000423 . 000257 . 000667 .000357 .000911
.000060 .000183 .000160 .000427 . 000260 . 000671 .000360 .000915
.000061 .000186 .000161 .000431 .000261 . 000675 .000361 .000919
.000062 . 000190 .000162 . 000434 . 000262 . 000679 .000362 .000923
. 000063 . 000194 .000163 .000438 . 000263 . 000682 .000363 .000926
. 000064 .000198 .000164 . 000442 . 000264 . 000686 . 000364 .000930
. 000065 . 000202 .000165 . 000446 . 000265 . 000690 . 000365 .000934
. 000066 . 000205 .000166 .000450 . 000266 . 000694 .000366 .000938
. 000087 . 000209 .000167 .000453 . 000267 .000698 . 000367 . 000942
.000070 .000213 .000170 . 000457 ,000270 .000701 .000370 .000946
.000071 . 000217 .000171 .000461 . 000271 .000705 .000371 .000949
.000072 . 000221 .000172 .000465 .000272 . 000709 .000372 .000953
.000073 . 000225 .000173 . 000469 .000273 .000713 .000373 . 000957
.000074 . 000228 .000174 . 000473 .000274 .000717 .000374 .000961
. 000075 . 000232 .000175 . 000476 . 000275 . 000720 .000375 .000965
.000076 . 000236 .000176 .000480 . 000276 . 000724 .000376 .000968
. 000077 . 000240 .000177 . 000484 .000277 . 000728 .000377 .000972

162

Octal-Decimal

Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC, OCTAL DEC,

. 000400 . 000976 . 000500 . 001220 . 000600 .001464 . 000700 001708
. 000401 . 000980 . 000501 .001224 . 000601 . 001468 .000701 ,001712
. 000402 . 000984 000502 . 001228 . 000602 ., 001472 . 000702 . 001716
. 000403 . 000988 . 000503 . 001232 . 000603 . 001476 . 000703 001720
000404 . 000991 . 000504 , 001235 . 000604 . 001480 000704 .001724
, 000405 . 000995 . 000505 .001239 000605 .001483 . 000705 .001728
. 000406 .000999 . 000506 . 001243 . 000606 . 001487 . 000706 .001731
. 000407 . 001003 . 000507 . 001247 . 000607 . 001491 . 000707 .001735
. 000410 .001007 .000510 . 001251 ., 000610 . 001495 .000710 001739
, 000411 .001010 .000511 . 001255 . 000611 .001499 .000711 ., 001743
. 000412 .001014 . 000512 .001258 . 000612 ., 001502 .000712 ,001747
. 000413 .001018 .000513 .001262 , 000613 . 001506 .000713 . 001750
.000414 .001022 .000514 . 001266 . 000614 . 001510 .000714 001754
. 000415 .001028 . 000515 .001270 . 000615 .001514 . 000715 .001758
. 000416 .001029 . 000516 .001274 .000616 .001518 .000716 .001762
. 000417 .001033 . 000517 .001277 . 000617 . 001522 . 000717 .001766
. 000420 . 001037 .000520 , 001281 . 000620 .001525 . 000720 .001770
. 000421 . 001041 .000521 .001285 . 000621 .001529 . 000721 001773
. 000422 . 001045 . 000522 .001289 . 000622 . 001533 . 000722 .001777
. 000423 .001049 . 000523 .001293 . 000623 . 001537 . 000723 , 001781
000424 . 001052 . 000524 .001296 . 000624 . 001541 . 000724 .001785
. 000425 .001056 . 000525 .001300 . 000625 . 001544 .000725 .001789
. 000426 . 001060 . 000526 .001304 . 000626 .001548 .000726 .001792
. 000427 .001064 . 000527 .001308 . 000627 . 001552 . 000727 ,001796
. 000430 .. 001068 . 000530 .001312 . 000630 . 001556 .000730 ,001800
. 000431 . 001071 . 000531 .001316 . 000631 . 001560 . 000731 , 001804
.000432 . 001075 . 000532 . 001319 . 000632 . 001564 . 000732 . 001808
. 000433 . 001079 , 000533 .001323 . 000633 . 001567 .000733 ,001811
, 000434 .001083 . 000534 .001327 . 000634 .001571 . 000734 .001815
. 000435 .001087 . 000535 .001331 . 000635 . 001575 . 000735 .001819
. 000436 . 001091 . 000536 .001335 . 000636 .001579 . 000736 .001823
», 000437 . 001094 . 000537 .001338 . 000637 . 001583 . 000737 , 001827
. 000440 ,001098 . 000540 .001342 . 000640 .001586 . 000740 .001831
., 000441 . 001102 . 000541 .001346 . 000641 . 001590 . 000741 .001834
. 000442 .001106 . 000542 . 001350 . 000642 .001594 . 000742 .001838
. 000443 .001110 . 000543 .001354 . 000643 .001598 . 000743 .001842
.000444 .001113 . 000544 .001358 . 000644 .001602 .000744 .001846
. 000445 .001117 . 000545 . 001361 . 000645 . 001605 . 000745 ,001850
. 000446 + 001121 .000546 . 001365 . 000646 .001609 .000746 .001853
000447 .001125 . 000547 .001369 . 000647 . 001613 . 000747 . 001857
, 000450 .001129 . 000550 .001373 . 000650 . 001617 . 000750 .001861
.000451 .001132 .000551 .001377 . 000651 . 001621 000751 001865
. 000452 .001136 . 000552 .001380 . 000652 . 001625 . 000752 .001869
. 000453 .001140 . 000553 .001384 . 000653 . 001628 . 000753 .001873
. 000454 .001144 . 000554 .001388 . 000654 . 001632 . 000754 . 001876
« 000455 . 001148 , 000555 .001392 . 000655 .001638 . 000755 .001880
+ 000456 .001152 . 000556 .001396 . 000656 . 001640 . 000756 ,001884
. 000457 .001185 + 000557 ,001399 . 000657 . 001644 .000757 .001888
. 000460 .001159 . 000560 .001403 . 000660 .001647 . 000760 .001892
., 000461 ,001163 . 000561 .001407 . 000661 . 001651 000761 .001895
.000462 . 001167 . 000562 .,001411 .000662 . 001655 .000762 . 001899
. 000463 .,001171 000563 . 001415 . 000663 . 001659 .000763 .001903
, 000464 .001174 . 000564 .001419 . 000664 .001663 . 000764 . 001907
. 000465 .001178 . 000565 .001422 . 000665 .001667 000765 .001911
. 000466 .001182 . 000566 . 001426 .000666 . 001670 . 000766 .001914
. 000467 .001186 . 000567 .001430 . 000667 .001674 . 000767 ,001918
. 000470 .001190 . 000570 .001434 . 000670 . 001678 . 000770 ,001922
. 000471 .001194 .000571 .001438 . 000671 . 001682 .000771 ., 001926
.000472 .001197 . 000572 .001441 . 000672 . 001686 .000772 . 001930
. 000473 ,001201 . 000573 .001445 . 000673 .001689 . 000773 .001934
. 000474 . 001205 .000574 . 001449 .000674 . 001693 .000774 , 001937
. 000475 . 001209 .000575 . 001453 . 000675 . 001697 000775 , 001941
. 000476 .001213 . 000576 . 001457 . 000676 . 001701 . 000776 .001945
. 000477 , 001216 . 000577 .001461 . 000677 . 001705 000777 .001949

163/164

APPENDIX D

TABLE OF POWERS OF TWO

16
32
64
128

256
512
1024
2 048

4 096
8 192
16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 4776 736
137 438 953 472
274 877 906 944
549 755 813 888

[y
OO IO Ol WNHO R

[y
—t

[y U
O W o N

T
Ww-IN

NN
- O

1

0

0

0

0

0.

0.015 625
0.007 812 5
0.003 906 25
0.001 953 125
0
0
0
0

.000 976 562 5
00 488 281 25

.0

.000 244 140 625

.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

165/166

APPENDIX E

HARDWARE ORIENTED CONTROL MEMORY

0000 0200 0400 0600 1000 1200 1400 1600
AUX 1 ! '
AUX 2
CMI CHANNEL
A
MORY
XIII,::E A BUFFER
040 FAVE T1 .
SAVE L2 |
SAVE L4 {CHANNEL
SAVE L3 [B
BUFFER
UNCOMMITTED
MEMORY AREA
FOR GENERAL
100 T MINIFLOW AND -
TRANS- TABLE USAGE
LATOR
ENTRY
TABLE
AND
LOADER
AREA
140 ' -
| | | |
FULL WORD CONTROL CORE MAP
ADDRESS HHARDWARE SPECIFIED AREAS SAVED ARLA FORMAT
WORD BITS SAVED DATA
4 AUX 1 REGISTER 1~ 23-35 RB REGISTER
10 AUX 2 REGISTER 2 22 SMCT F/F
00-37 CMI MEMORY AREA 2 23-35 RD REGISTER
40-42 LEVEL 1 SAVE AREA 3 00-35 D REGISTER
44-46 LEVEL 2 SAVE AREA
50-52 LEVEL 3 SAVE AREA
54-56 LEVEL 4 SAVE AREA
100-137* TRANSLATOR ENTRY TABLE (control and transfer vectors)
200-237 CHANNEL A BUFFER AREA
240-277 CHANNEL B BUFFER AREA

*Correspond to MINIFLOW address 200-277,

167/168

APPENDIX F

WIRED-IN-SEQUENCE EXECUTION TIME

All times are in basic cycles and each cycle equals 175 nanoseconds. Memory
interference time is considered and added to the number of basic cycles. No
additional time is needed to index. All total times exclude the time in
MINIFLOW (YA6), so execution times must be added to the times shown below.

No. of W-1-S
Basic Cycles Steps Taken Type of W-I-S
11 2,5,6 MINIFLOW entry from L1, L2, L3, and L4 trap.
18 1,2,5 Fast transfer (direct) - Total emulation time.
27 1-3,5 Fast transfer (indirect) - Total emulation time.
20 1,2,5,6 MINIFLOW program (direct).
28 1-3,5,6 MINIFLOW program (indirect).
28 1,2,4,5,6 MINIFLOW program (direct with op fetch).
42 1-6 MINIFLOW program (indirect with op fetch).
23 0-2,5 Execute fast transfer (direct) - Total
emulation time.
32 0-3,5 Execute fast transfer (indirect) - Total
emulation time.
25 0-2,5,6 Execute MINIFLOW program (direct).
33 0-3,5,6 Execute MINIFLOW program (indirect).
33 0-2,4-6 Execute MINIFLOW program (direct with op fetch).
47 0-6 Execute MINIFLOW program (indirect with op fetch).

Conversion Table

Cycles to Microseconds

1 .175 11 1.925 21 3.675 31 5.425
2 .350 12 2.100 22 3.850 32 5.600
3 .525 13 2.275 23 4.025 33 5.775
4 .700 14 2.450 24 4,200 34 5.950
5 .875 15 2,625 25 4,375 35 6.125
6 1.050 16 2.800 26 4,550 36 6.300
7 1.225 17 2.975 27 4.725 37 6.475
8 1.400 18 3.150 28 4.900 38 6.650
9 1.575 19 3.325 29 5.075 39 6.825
10 1.750 20 3.500 30 5.250 40 7.000

169/170

APPENDIX G

MINIFLOW INSTRUCTION PAIR EXECUTION TIME

All figures refer to times in YA6 (MINIFLOW) only and do not include W-I-S steps
YAO0-YA5. Each cycle equals 175 nanoseconds. Memory interference time is added
and includes W-I-S interference in those cases where an exit is taken to the scheduler.

SECOND OR ONLY ONLY ONE FIRST INSTRUCTION EXECUTEDOF A PAIR
INSTRUCTION INSTRUCTION 9 4 Control Main
EXECUTED BEFORE EXECUTED Cvele lcvele | shit Memor Memor
AN EXIT OR A NEW BEFORE AN Iti,ste Iy t Inst. * Accessy Accesg
PAIR IS FETCHED EXIT OR A - | st [oSt
FETCH
NEW PAIR FETCH
With Overlap
2 cycle inst. 6 7 9 9+2n 12 14
4 cycle inst. 7 9 11 |11+2n 13 16
Without Overlap
2 cycle inst. 7 9 11 |11+2n 13 16
4 cycle inst. 9 11 13 13+2n 15 18
Shift* 9+2n 11+2n{ 13+2n]13+ 15+2n 18+2n
2 n1+n2)
Control mem. access 12 13 15 15+2n 18 20
Main mem. access 14 16 18 18+2n 20 28
EXIT WITHOUT FETCH
Exit to YAO
2 cycle inst. 2 4 6 6+2n 8 11
4 cycle inst, 4 6 8 8+2n 10 13
Control mem. access 7 8 10 10+2n 13 15
Main mem. access 9 11 13 13+2n 15 23
Exit to YAl
2 cycle inst. 2 4 6 6+2n 8 14
4 cycle inst. 4 6 8 8+2n 10 14
Control mem. access 6 7 9 9+2n 12 14
Main mem. access 14 16 18 18+2n 20 28

171

*n is determined as follows:
n, is the shift count or,
n, is the contents of RC if the TOP is 77 or,
n, is the distance to the first bit on normalize or,

nc is the contents of C27_35 on a DOS

then
For a DIV SOP n = nC
For a shift other than a DIV or MULT SOP, where
nC has been rounded up to a modulo 4 number, n = nc/4, otherwise n = nc.

For a MULT SOP, the bit content of the multiplier determines the value of n
as follows:

Examining the multiplier from right to left (LSB first) each 1 bit requires 1 shift
count; consecutive 0 bits of 3 or less, require no shift count; groups of four 0 bits
require 1 shift count, except the MSB 4 bits which each require a shift count whether
1 or O.

Overlap occurs when an eligible instruction (defined later) is executed in one of
the three situations below:

1. At an odd location which does not exit back to the scheduler.
2. When an exit is taken from the subroutine mode.

3. A test instruction (not TAW) skips.

172

The eligible instructions for address cycle overlap during a mini fetch are listed
below. Also shown are the basic cycle types.

Instruction Cycles Overlap Instruction Cycles Overlap
AC 2 yes PCD 2 yes
AKEYS 2 PD 2 yes
ALG 4 PE 2 yes
CH1 2 yes RC 2
CH2 2 yes RD 2
CMI CA RESET 2 yes
DELAY 2 R4 2 yes
EXIT 2 SET 2 yes
HALT 2 yes SHIFT 4+2n
IC 2 yes SI 2 yes
INT 2 yes SMCT 4
KEYS 2 TA 4 yes
LAB 2 yes TAE 4 yes
LAC 2 yes TAW 4
LIB 2 yes TC 4 yes
LIC 2 yes TCE 4 yes
LID 2 yes TCF 4 yes
MEM MA TCR 4 yes
MINI 2 TCS 4 yes
MISC 2 TG 4 yes
MKEY MA TGF 4 yes
MQ 2 yes TGF 4 yes
NOP 2 yes TGR 4 yes
PB 2 yes TGS 4 yes
PBD 2 yes TRU 2
PC 2 yes XR 2 yes

CA - Control memory access

MA - Main memory access

173/174

Operation Code

Alpha

AC
AKEYS
ALG
CH1
CH2
CMI
DELAY
HALT
IC
INT
KEYS
LIB
LIC
LID
MEM
MINI
MISC
MKEY
MOPB
MOPC
MQ
NOP
PB
PBD
PC
PCD
PD
PE
PRE
R4
RC
RD
SHIFT
SI
SMCT
TA
TAE
TAW
TC
TCE
TCF
TCS
TCR
TG
TGE
TGF

Octal

33
54
62
47
45
77
54
00
22
57
55
14
15
17
67
02
06
63
10
11
37
0l
50
40
Sl
41
53
52
12
23
42
46
66
27
76
61
65
75
20
24
31
30
34
60
65
71

APPENDIX H

LISTING OF INSTRUCTIONS

Instruction

AC REGISTER OPERATION

ADDRESS KEYS OPERATION

ZONES ALGEBRAIC MAIN ENG. OPERATION
I/0 CHANNEL OPERATION CONTROL

I/0 TERMINATION CONTROL

DIRECTLY ADDRESSED CONTROL MEM. OPERATION
DELAY PRESEN: LEVEL

STOP CLOCK

IC REGISTER OPERATION

CONSOLE INTERRUPT STATUS

ENTRY KEYS OPERATION

LOAD
LOAD

B
C

LOAD D
MEMORY OPERATION

MINI

ENGINE COMBINATION OPERATION

SCHEDULER & AC SIGN & Q BIT CONTROL
MEMORY/KEYS OPERATION

MOP REGISTER TO B

MOP REGISTER TO C

MQ REGISTER OPERATION

NO OPERATION

PLACE IN B

PLACE D INTO B

PLACE IN C

PLACE D INTO C

PLACE IN D

PERFORM OPER. SPECIFIED BY SOP
PRECONDITION CONTROLS

HARD REGISTER NO. 4 OPERATION
MINI ENGINE C OPERATION

MINI ENGINE D OPERATION

MAIN ENGINE SHIFTS

SI REGISTER OPERATION

STORE MINI COUNT & TRANSFER

TEST
TEST
TEST
SKIP
SKIP
SKIP
SKIP
SKIP
TEST
SKIP
SKIP

& SKIP

& SKIP OR EXIT

& TRANSFER TO W-I-S

IF CI (SOP) IS ON

IF CI (SOP) IS ON; OTHERWISE, EXIT

IF CI (SOP) IS OFF

IF CI (SOP) IS ON THEN TURN CI (SOP) ON
IF CI (SOP) IS ON THEN TURN CI (SOP) OFF
& SKIP IF SATISFIED

IF SATISFIED; OTHERWISE, EXIT

IF TEST NOT SATISFIED

175

100
141
105
114
114
92

104
126
129
130
130
143
144
14y
144
144
135
130
136

Operation
Alpha

TGR
TGS
TRU
XR

Operation
Octal

00
01
02
06
10
11
12
14
15
16
17
20
22
23
24
26
27
30
31
33
34
37
40
41
42
45
46
47
50
51
52
53
54
54
55
57
60
61
62
63
64
65

Code
Octal

74
70
16
26

Code
Algha

HALT
NoP
MINI
MISC
MOPB
MOPC
PRE
LIB
LIC
TRU
LID
TC
IC
R4
TCE
XR
SI
TCS
TCF
AC
TCR
MQ
PBD
PCD
RC
CH2
RD
CH1
PB
PC
PE
PD
AKEYS
DELAY
KEYS
INT
TG
TA
ALG
MKEY
TGE
TAE

Instruction

LIKE TG, BUT ALWAYS SETS I (SOP) OFF
LIKE TG, BUT ALWAYS SETS I (SOP) ON
TRANSFER

INDEX REGISTER OPERATION

Instruction

STOP CLOCK

NO OPERATION

MINI. ENGINE COMBINATION OPERATION
SCHEDULER & AC SIGN § Q BIT CONTROL
MOP REGISTER TO B

MOP REGISTER TO C

PRECONDITION CONTROLS

LOAD B

LOAD C

TRANSFER

LOAD D

SKIP IF CI (SOP) IS ON

IC REGISTER OPERATION

HARD REGISTER NO. 4 OPERATION

SKIP IF CI (SOP) IS ON; OTHERWISE, EXIT
INDEX REGISTER OPERATION

SI REGISTER OPERATION

SKIP IF CI (SOP) IS ON THEN TURN CI (SOP) ON
SKIP IF CI (SOP) IS OFF

AC REGISTER OPERATION

SKIP IF CI (SOP) IS ON THEN TURN CI (SOP) OFF
MQ REGISTER OPERATION

PLACE D INTO B

PLACE D INTO C

MINI ENGINE C REGISTER OPERATION
1/0 TERMINATION CONTROL

MINI ENGINE D REGISTER

I1/0 CHANNEL OPERATION CONTROL

PLACE IN B

PLACE IN C

PERF. OPER. SPEC. BY SOP

PLACE IN D

ADDRESS KEYS OPERATION

DELAY PRESENT LEVEL

ENTRY KEYS OPERATION

CONSOLE INTERRUPT STATUS

TEST & SKIP IF SATISFIED

TEST & SKIP

ZONED ALGEBRAIC MAIN ENG. OPERATION
MEMORY/KEYS OPERATION

SKIP IF TEST SATISFIED; OTHERWISE, EXIT
TEST & SKIP EXIT

176

Page

125
125
111
138
122
122
141
122
122
126
122
143
105
105
b4
107
1ou4
1hy
lay
1o0u
1uy
104
100
100
11y
117
11y
109
98

98

100
98

120
140
120
118
135
129
102
109
130
130

Operation Code

Octal

66
67
70
71
74
75
76
77

Alpha

SHIFT
MEM
TGS
TGF
TGR
TAW
SMCT
CMI

Instruction

MAIN ENGINE SHIFTS

MEMORY OPERATION

LIKE TG, BUT ALWAYS SETS I (SOP) ON
SKIP IF TEST NOT SATISFIED

LIKE TG, BUT ALWAYS SETS I (SOP) OFF
TEST & TRANSFER TO W-I-S

STORE MINI COUNT & TRANSFER

DIRECTLY ADDRESSED CONT. MEM. OPERATION

177/1178

108
136
136
136
130
126
109

APPENDIX I

POP REFERENCE

CHART

PAGE POP o 1 2 3 4 5 6 7 8 9 10 11} 12 13 14 15 16 17
NO. CODE
92 66 SHIFTS SHIFTS. MULT. & Div. GIN SHIFT SOPS SHIFT COUNT
98 50 PB MAIN ENGINE SOPS
98 51 PC MAIN ENGINE GIN LDB AND LDC WITH EXiT MAIN ENGINE
98 53 PD HALF EXCHANGE
100) PE COMBINATIONS ZONES
S
100 40 PBD EXCHANGE o Exit
100 41 PCD INATIONS | MAIN ENGINE SOPS MAIN ENGINE ZONES
102 62 ALG ALGEBRAIC GIN (8-C) SOP, 16 EXIT| MAIN ENGINE ZONES
104 33 AC LOAD
104 37 MQ REGISTER GEX MAIN
104 27 SI COMBINATIONS EXIT ENGINE
105 23 R4 MAIN ENGINE SOPS REPL f REPL STORE RoEoG'STER
NONE
105 22 IC INSTRUCTION COUNTER| SN "¢ o1 es
107 26 XR AND INDE XES GE X ;(1) 23
108 00 ZEROS
109 gg uﬁgy MEMORY SO 1USE AR *REVS 17 Loan sor |exit[rCaN oag Faav{s B8
E ON OR uhll PD
109 77 Cmi JMMEDIATE MEMORY DATA [A(;A'g ng,:gfj’fgﬁowgés”,‘ﬁ“' EXIT | CONTROL MEMORY ADDRESS
111 02 MINI _encine comainaTions ¥////] MINI ENGINE soPs exi 1/ //]crosq re | rc | D
MAIN ENGINE ex17] MAIN ENGINE ZONES &
11y 42 RC T0 SEX | MAIN ENGINE AND LOAD FLOATING ZONE
J'L'?L_g 39 231 MIN{ ENGINE SOPs SPECIAL
cEx MAIN ENGINE AND MAIN ENGINE ZONES
ii; g; CH2 CHANNEL LOAD SOPS EXiTlecTive oN LOADS oxt
120 55 :(NETIYS INTERRUPT
120 2 KEY AND GEx LOAD SOPS ONLY EXIT MAIN ENGINE ZONES
122 14 LIB
122 15 LIC Loap iMmMeEDIATE DATA 6 BIT DATA PATTERN CLEAR MAIN ENGINE ZONES
122 17 LID
12
125 :I|(]) mgsg LOAD ADDRESS 18 BIT DATA PATTERN
126 16 TRU 4
126, 76 SHMCT TRANSFER / MINI FLOW TRANSFER ADDRESS
129 61 TA TEST FWD
SPECIAL TEST TRUE .
130 65 TAE rf‘}se TEST CONDITION F\?;V SKIP DISTANCE
130 75 TAJ AND SKIPS
135 60 TG
135 64 TGE FWD
136 71 TGF GENERAL TEST GENERAL INDICATOR ggv SKIP DISTANCE
136 70 TGS AND SKIPS TEST FLIP FLOPS
136 74 TGR
143 20 TC /
14y TCE /
24 CHANNEL TEST CHANNEL INDICATOR Fuo
bk 31 TCF AND SKiPS TEST FLIP FLOPS °R SKIP DISTANCE
14y 30 TCS REV
Lus 34 | TCR /
138 06 MISC speciaL conTROL MISCELLANEOUS ACTION EXIT ///////////
iti 540000 DELAY IEMPORARY HANG //////// J /
[y 0X NOP
1ul 12 PRE conTroL PRESET 11% o epog |eri0|er1i
138 064440 | EXIT / /
125 01 NOP oo noTHING
125 00 _ H.ALLSTOPT:LOCK / ///

179/180

APPENDIX J

SOP REFERENCE SHEET

MAIN ENGINE MISCEL- DIRECT | GENERAL/SPECIAL CHANNEL
SOPS SHIFT LANEOUS TEST TEST SOPS TEST SOPS
AND LOADS SOPS SOPS SOPS GEN-HDW NOTE | CODE NOTE
00 ZERO 02 B-L 54 HANG 40 SKIP 04 00 SSW S 00 ER1 R
30B * 03 B-R 62 RH1 * | 41 CARRY |05 52 SL1 L 01 ER2 R
31¢C * 22 C-L 66 RH3 42 cx11 07 54 SL2 L 02
20D * 23 C-R 70 RH4 43 G11 10 56 SL3 L 03
34 B+l * 04 D-L 44 ZERO 11 50 SL4 L 04
35 C+l * 05 D-R 60 HALT 45 9F.10 |12 74 CON N 05
14 B-1 12 D-R 76 RINT 46 G9 13 42 DIS N 06
15 C-1 * 74 RESL4 | 47 Glo0 15 76 CIF S 07
16 B-C * 06 BD-L 42 SR1 * | 50 RZERO |17 60 MTM LC 10 BOT LO
17 C-B 07 BD-R 46 SR3 51 FC 20 40 TRAP LC 11 EOT LO
36 B+C * 26 CD-L 50 SRT 57 GIN 21 66 FAC NC 12
06 B-C-1I 27 CD-R 52 SR4 53 FOF 23 62 FMQ NC 13
07 C-B-1I 10 DIV 54 25 64 FPO NC 14
26 B+C+I 11 MULT 56 POST 55 LS 26 72 PDCK N 15
02 NB+l 56 AQ 27 30 DCK L~ 16
03 NC+1 44 NOP 57 unused | 31 16 DCTM S 17
10 RXI
22 NB 16 BD-LF| 37 ACK * | 60 ZX11 33 32 TCEA LC 20 CEF R
23 NC 17 BD-RF| 16 RTER* | 61 MSB 35 22 TCEB LC 21 EOR R
10 B.NC 14 BD-N 12 RTI 62 LSB 37 44 TCKA LCF | 22
11 NB.C 32 BD-L9| 72 RCN 63 EQU 41 46 TCKB LCF | 23
24 B.C 33 BD-R9 64 LESS 43 54 CTEA LC 24
32 BUC 30 FDIV 23 FOFA 65 AOV 45 24 CTEB LC 25
12 BEC 31 FMULT| 27 FOFQ 66 ACM 47 06 EOFA LCF | 26 DSP L
01 DOL 20 DOS 51 14 EOFB LCF | 27 IOP L
13 20 RAQ 53 70 TCN L 30 TNR R
25 21 SAQ 55 36 1I0C L 31 unused
27 22 TAQ 57 01 unused 32
33 24 RAS 61 02 unused 33
37 25 SAS 63 03 unused 34
04 LDB 26 TAS 65 67 unused 35
05 LDC 33 RSQ 71 73 unused 36 CHB RC*
21 LDD gg ggg 77 SAT 75 77 unused 37 COP A
*DENOTES MINI-ENGINE *DENOTES S-SWITCH CONTROLLED ONLY
SOPS CHB F/F L-INDICATOR LAMP
STEERENG C-DIRECTLY CONTROLS LOGIC
IS USED N-ALSO TURNED ON REMOTELY

F-ALSO TURNED OFF REMOTELY
R-ONLY CONTROLLED REMOTELY
O-ONLY TURNED ON REMOTELY
A-ONLY EXISTS ON A CHANNEL
*ALSO SEE NOTE IN WRITEUP

181/182

ZONE 00 03 PpP6 P9 [z Q15 I8 pI 24 27 130 |33
CODE | 01 | 04 107 (10|13 |16]19 |22 25| 28| 31| 34
NAME OF THE FIELD QQ] 02 05 08 111 14 17} 20 23 26 29 32 35
ENTIRE REGISTER 00
REGISTER & Q BIT 33
FLOATING EXPONENT 05
FLOATING FRACTION 20
1ST QUARTER WORD 35
2ND QUARTER WORD 23
3RD QUARTER WORD 15
4TH QUARTER WORD 03
LEFT HALF WORD 37
RIGHT HALF WORD 17
DECREMENT FIELD 27
ADDRESS FIELD 07
RIGHT THIRD WORD 13
TRANSLATOR DIGITS 25
CHARACTER 0 34
CHARACTER 1 36
CHARACTER 2 21
CHARACTER 3 14
CHARACTER 4 16
CHARACTER 5 01
OCTAL CHAR. 0 30 -—-4
OCTAL CHAR. 1 24 rem—
OCTAL CHAR. 2 26
OCTAL CHAR. 3 32
OCTAL CHAR. 4 22
OCTAL CHAR. 5 31
OCTAL CHAR. 6 10
OCTAL CHAR. 7 04
OCTAL CHAR. 8 06
OCTAL CHAR. 9 12
OCTAL CHAR. 10 02
OCTAL CHAR. 11 11
00 03 pP6 P9 Q12 (15 N8 21 p4 (27 [30 |33
01 104107 |10 (1316 19|22]|25]{28]| 31 34
QQl_02 05 08 11U 14 171 20 231 26l 29 321 35

APPENDIX K

ZONE REFERENCE SHEET

BIT POSITION

BIT POSITION
183/184

READER'S COMMENT FORM

Standard Computer Corporation IC-M9

Principles of Operation

Your comments, accompanied by answers to the following questions, help us
produce better publications for your use. If your answer to a question is
"No" or requires qualification, please explain in the space provided below.
Comments and suggestions become the property of Standard Computer Corp.

Yes No
Does this publication meet your needs? O O
Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O 0
Complete? | O
Well illustrated? O O
Written for your technical level? a O
What is your occupation?
How do you use this publication?
As an introduction to the subject? 0 As an instructor in a class?
For advanced knowledge of the subject? [0 As a student in a class?

For information about operating procedures? O As a reference manual?

Other

Please give specific page and line references with your comments when
appropriate. If you wish a reply, be sure to include your name and address.

COMMENTS :

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
185

STAPLE STAPLE

-
o
-
o
T . G S S —— —— I S —— — — — —

FIRST CLASS
PERMIT NO. 1762
SANTA ANA, CALIF.

ATTN: PUBLICATIONS UNIT

]
l
|
92705 |
EE——— l
-]
] l
] |
BUSINESS REPLY MAIL —
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES —— l
—]
POSTAGE WILL BE PAID BY = ‘
STANDARD COMPUTER CORPORATION T |
P.0. BOX 539 — |
Santa Ana, Cclyif, 92705 R —
SEE——— |
l

STAPLE STAPLL

CUT ALONG THIS LINE

o

i

-

o
e
o

o

e

o
i

e

.

o

L

S

i

e
-
e
S

L

i

g

et

e

e

e

o

L
o

o

o

e

L
L

i

e
-

S

-

o
o
o

L

-

m R i

i

o

-
s
S

o

o
L

-

s
L

-

o

o

-

e

e

S
o

L

e
o

e

e
:

-
-
.
y

o
e

GHnetin
i

o

e

o
e

i

e iE g
S

o

e
=

o

L
L
e
-

i
e

e

Lee
.

s

e
e

-
i

S

e

i

L

L

o
o

G

o

.

S
L

=

e
B
e
e

s
L
o
e
L
e

o
-

S

-

S
S
o

o

:
.

e

S

-

S

S

o

:

e

-
o

Cou
76

4807

Park

Mic

13

SRR

thi

outhf

17500

1

“éikéi“ﬁaiiiéfﬁ“
evard

Boul

I,

uler Lo

pu

ympic

t Comj
. Of
|

ge

Hi

d

r

B e

) 3

i
(3

s

HIDFRG

Cali

s

1

-
e

e

e

fvania 191

LO3

i f eiiiae

T

| it

iite 60

715

95112
5

5
reet

267
M”“f:i%éjﬂ

aliforn

a
294

36:

, C

Qs
(408

irst

{213}

San Jo

o

63

M

hia,
{215)

36th Street

)

i e
o

sota

nne

i

75240

st D

lecre

ran
as,

7718

Waltham,

e
e

Te

éi

Dall

AR

27

123
2%.

uth
3

S

-

.

-1834

-

W

e
e
-

e
A

726-0

M
12)

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	157
	158
	159
	160
	161
	162
	163
	165
	167
	169
	171
	172
	173
	175
	176
	177
	179
	181
	183
	replyA
	replyB
	xBack

