FORM 8090014

IC-9000
CENTRAL

PROCESSING
UNIT

PRINCIPLES

OF
OPERATION

PRELIMINARY

Section

1

TABLE OF CONTENTS

Page
IC-9000 PROCESSOR DESIGN . . .t v vt e o e e, 1-1
1.1 GENERAL . .. ittt i et e e e e e e 1-1
1.2 IC-9000 SUMMARY SPECIFICATIONS + v v v o v oo ve v e 1-2
1.3 OPERATING ENGINE DESIGNvvive i, 1-4
1.3.1 General Registers 1-6
1.3.2 Primary Adder, 1-7
1.3.3 Byte/Decimal Adder.o 1-8
1.3.4 Data Mask Registers and Functions. 1-9
1.3.5 Shift Operations. 1-10
1.3.6 External Busses and Registers. 1-11
1.3.7 Operating Engine Language Boards 1-11
4 CONTROL ENGINE DESIGNo oo e s e 1-12
1.4.1 Control Memory Addressing 1-15
1.4.2 Control Memory Design. o', . . 1-16
1.4.3 Ministep Registers and Gating Functions 1-16
1.4.4 Subroutine Return Stack and Stack Control 1-17
1.4.5 Pointer Registers 1-17
1.4.6 MINIFLOW Status Word. vnon e, 1-19
1.4.7 Control Engine Language Boards. 1-20
1.4.8 State Flip-Flops. oo 1-21
1.4.9 Action Request Servicing. 1-24
1.4.10 Control Engine Data Transfers. 1-26
MINISTEP FORMATS AND CONVENTIONS.o v ooee e, 2-1
2.1 GENERAL e, 2-1
2.2 OPERATING INSTRUCTIONS . . .o oo v et eee oo e, 2-1
2.2.1 GEAR - General Arithmetic. 2-3
2.2.2 CEDE - Conditional External Data Exchange........... 2-6
2.2.3 SHIN - Shift Instruction.00.vu.o.... 2-10
2.2.4 CHAD - Character/Decimal oo rnn.. 2-13
2.2,5 GENT - General Data Transfer, e 2-16

TABLE OF CONTENTS (continued)

Section

2 MINISTEP FORMATS AND CONVENTIONS (continued)

2.3 CONTROL MINISTEPS . . v v eevveaesaoassaooseees
2.3.1 BRAT -BranchTestcocceceene s e e e e
2.3.2 BENT - Branch and Enter e e e e c s s s e s e e
2.3.3 BORE - Branch or Return..... e e e e e e e e .
2.3.4 BRAD - Branch and Decrement. e e e e e
2.3.5 BEAD - Branch-Extended Address e e e e e
2.3.5.1 Conditional Absolute Branch cceveaccoee.

2.3.5.2 Absolute Branch Plus Pointer e
2.3.5.3 Continuation Plus Pointer e e e e e e .
2.3.5.4 Unconditional Absolute Branch e e e e
2.3.6 BLOT - Block Transfer.« oo v o v v e v oecvonen
2.3.6.1 Single Block Load Operations. . . .o« v o v vvovee e
2.3.6.2 Multiple Block Load Operations e e e o e
2.3.7 MAST - Manipulate Statuso oo v ev v oo eee e
2.3.8 MOVE - Control Engine MOVEo v v vvvvvevee
TEXT Formatand Coding¢c. ... e e e .

Appendices
A SC-700 MEMORYUNIT«¢0v0e... e e e e

ii

Page

2-18

2-18
2-19
2-20
2-20
2-21

2-21
2-21
2-22
2-22

2-25
2-26
2-30

Figure

R U T Y O I
BN O WN =

I
© W 3o U

|
[hary
~3

T’NNNMNNNNNNNNNNNNNHHHHH
i

e

o

2-20
2-21
2-22
2-23
2-24
2-25

LIST OF ILLUSTRATIONS

IC-9000 Overall Block Diagramc ot v veeennanan ce
Operating Engine Block Diagram cee e e
Byte Data Word Format. vt v i v v vt ittt et ot v anenan RN
Control Engine Block Diagram . . v v v v v v v v v v v vt ot v oo oneess
MINIFLOW Status Word Format vttt i i it eeenn.
Basic Ministep Formats e e e c e e e e e e e e
Operating Ministeps . . v v v v v v v it ittt i it ittt et s easenn

CEDE Format...
SHIN Format. .. .

oooooooooooooooooooooooooooooooooo

SHIN/MULTIPLY Flow Diagram .. v v v v vt v v v vt e o eeoeesnns

SHIN/DIVIDE Flow
CHAD Format . ..
GENT Format . ..
Control Minsteps .

Diagram

Control Ministeps Individual Address Format

BRAT Format . ..
BENT Format.. .
BORE Format . ..
BRAD Format. ..
BEAD Format . . .

..................................

oooooooooooooooooooooooooooooooooo

..................................

BEAD Format, Conditional Absolute Branch
BEAD Format, Absolute Branch Plus Pointer.
BEAD Format, Continuation Plus Pointer .,
BEAD Format Unconditional Absolute Branch.,

BLOT Format. ..
Load Control Word
MAST Format . . .

Format (LMB). o v v v vt et e e e eee e e

oooooooooooooooooooooooooooooooooo

iii

Page

| B D T |
= = 00 U1 W
© W

I
[y
o

P
[y
> o>

DN DNDNDNDD NN e et
[|

= (o230 NS S

w

Table

0
[y

-4

1
[y

[T T N |
DU W

DO DD DO DO DO DD R b s
]
® =3)

LIST OF TABLES

Primary Adder Operations et e et s .

Byte/Decimal Adder Operations et e
Pointer Register Functions I T
State Flip-Flop Listing. e e e e e
IC-9000 Processor Action Request Characteristics

Arithmetic Codes and Functions
State Flip-Flop Functions (GEAR).........

CEDE Exchange Codes . .. v v v v v o vt v v s o et coeanss
Shift Codes and Functionsccc0 .. e e v e e e .

Byte/Decimal OP Codes et e et e e e
State Flip-Flop Functions (CHAD) o e e e e
Miscellaneous Group Registersot

Control Engine Register Address Assignments .

iv

g

®
[v)2]

O

[R S SO U R T SR JA
= e O O U1 © 00
oo U O D ol N o

|
[\
[09]

PREFACE

This document is an introduction to the functional design of the IC-9000 Central
Processing Unit. It includes a description of system architecture, processing facilities

and IC-9000 order codes.

The IC-9000 is a microprogrammed processor with an on-line alterable Control
Memory. It possesses a designed-in capability for efficient interpretive execution of
instructions in formats and languages other than its own internal order code set.

On-line alterable microprogramming is not the only capability needed to make a proces-
sor efficient in multi-lingual interpretive applications. Three design principles were
followed to develop a processor capable of handling a broad spectrum of target languages:

The system architecture is generalized and provides direct control of logic func-
tions and access to all storage elements.

Order codes are well-structured and are similar in function to typical machine
language instruction sets.

The processor uses language-dependent hardware with complementary micro-
programs to efficiently adapt to widely varying target instruction and operand for-
mats, I/0 structures and memory addressing modes.

The language-dependent, plug~in hardware is used to perform a variety of trans-
lation and formatting functions more efficiently than unassisted software. Hardware

aids can provide:

High speed in executing repetitive functions; such as target instruction decomposition,
order code translation and microprogram execution routine entry.

Formatting of memory addresses and translation functions, such as page or byte
addressing, memory protection, relocation, etc.

. Reduction in Control Memory storage requirements.
STANDARD COMPUTER CORPORATION Representatives are available to aid you in

establishing requirements, specifications and performance goals for complementary
firmware and hardware application packages for the IC-9000.

GLOSSARY OF COMMONLY USED TERMS

TARGET LEVEL TERM

Software

Instruction Set (Order Code)
Instruction

Main Memory

Program Execution

Interrupt

Program Status Word
Instruction (Program) Counter
Index Registers

Mode Control (Condition Code) Elements
Memory Fetch/Store Functions
I/O Operations

Memory Protection and Relocation

High Speed Buffer

vi

COMPARABLE MICROPROGRAM
LEVEL TERM

Firmware (Microprogram)
MINIFLOW Language
MINISTEP
Control (Microprogram) Memory
Emulation or Interpretive Execution
Action Request
Miniflow Status Word
Current Address Register
Pointer Registers
State Flip-TFlops
Data Exchange Operations
Transfer External Ministep

Operating Engine Language Board
(Address Modification)

Auxiliary Registers

SECTION 1
IC-9000 PROCESSOR DE SIGN

1.1 GENERAL

The STANDARD IC-9000 is a microprogrammed data processor designed to provide
a high degree of versatility and computing power. One of the most important features
is the high-speed, on-line alterable microprogram memory. The order code is designed
for ease of use. The Processor language is called MINIFLOW*, individual instructions are
Ministeps. MINIFLOW programming resembles certain aspects of machine language
programming on earlier processors. The IC-9000 is designed for direct access at the
microprogram level. The MINIFLOW programmer can "get at' all mode control flip-
flops and machine registers. MINIFLOW routines and complementary hardware tailor
the IC-9000 for efficient execution of a broad spectrum of target languages and systems.
High level procedures in existing languages can be executed in MINIFLOW directly.
Complex macros and subroutines can be synthesized in MINIFLOW and execution can be
initiated by the fetch of a single, problem-oriented, target language instruction.

In a typical processor, the instruction set generally can be separated by function
into three categories:

a. Manipulation of arithmetic and logical operands.
b. Control and sequencing of instruction execution.
c. Input/Output operations (which often combine both arithmetic and control functions).

In the STANDARD IC-9000 Processor, the facilities for performing arithmetic and
logical transformations on data have been separated from the control and sequencing
functions to a large degree. Control signal and data transfer interfaces provide communi-
cation between the data handling section, or Operating Engine, and the sequencer, or
Control Engine. The Control Engine contains the microprogram (control) memory.
Input/Output operations, as in other processors, require considerable interaction between
the sequencing and the data handling elements of the IC-9000.

MINIFLOW instruction words are similarly divided into two types, called Operating
and Control Ministeps, which sequence the elements of the Operating and Control
Engines, respectively. If an Operating Ministep is followed in sequence by a Control
Ministep, the two will be executed simultaneously. Otherwise, a single Control Mini-
step or one Operating Ministep is executed.

Some processor tasks, which are highly repetitive in nature, are relatively inef-
ficient when executed by an unassisted firmware routine. The IC-9000 has provision
for up to four sets of "Language Boards'. The principal functions of Language Boards

*MINIFLOW is a trademark of STANDARD Computer Corporation.

1-1

are to generate addresses and sequence accesses to Main Memory, extract data from
target language instructions, and generate MINIFLOW entry addresses (branch vectors).

MINIFLOW language design and the IC-9000 hardware provide the following
capabilities:

On-line alterable microprogram (Read/Write Control Memory).
. Expandable Control Memory.
. Interpretive execution of a wide range of target languages.
. Multiple general-purpose registers.
. Up to 1024 high-speed data registers (optionaly.
. BCD and byte arithmetic.
Multiple, independent, asynchronous, Input/Output busses.
. Variable data field manipulation.
Direct access to all registers and control flip-flops.
. Indirect register addressing at the microprogram level.
. Flexible microprogram branching and transfer of control,
Microprogram subroutine entry and return.
. Order code organized for efficient use of Control Memory.
Figure 1-1 is a block diagram of the overall IC-9000 Processor design.
1.2 IC-9000 SUMMARY SPECIFICATIONS

. 128 nanosecond clock cycle
. 32 General Registers; 36 bits plus 4 parity
Up to 1024 Auxiliary Registers*; 36 bits plus 4 parity
Expandable Control Memory up to 64K (K =1024) locations; 32 bits plus 1 parity

. Both Read-Write and Read-Only Control Memory available in 512 ~-word modular
increments

32 Data Mask Registers; 36 bits plus 4 parity

*QOptional in increments of 256 words.

1-2

-1

"T-T 2an31g

weidelq Joord [1819A0 0006-D1

EXTERNAL
1/0 BUSSES

AUXILIARY
-
REGISTERS

OPERATING

ENGINE

3

> - —

GATING

?

: DATA

ENGINE

MINIFLOW
INSTRUCTIONS

CONTROL

l

READ - WRITE
MEMORY DATA

CONTROL
MEMORY

0
[~ | bCRIPHERALS, CONTROLLERS
1 COMMUNICATIONS CONCENTRATORS
) 1/0 PROCESSORS, OTHER MEMORY UNITS
¢ | OPERATOR CONSOLE

TYPICAL INTERCONNECT 3
— e e e e <
<> SC-700
HIGH - SPEED CHANNELS 1 MEMORY
1/0 PROCESSOR - UNIT
MULTIPLE CPU'S 0
-
MEMORY
1/0 PORTS
NOTE: THE SC-700 MEMORY UNIT IS EXTERNAL TO THE 1C-9000

PROCESSOR. ANY 1C-9000 BUSS CAN BE CONNECTED TO
ANY SC-700 PORT. UP TO EIGHT, 32K-WORD, SC-700 MEMORY
MODULES FIT INTO A SINGLE SC-700 CABINET. UP TO SIX-
TEEN CABINETS CAN BE ACCOMMODATED ON ONE BUSS.

. 4 independent, asynchronous, half-duplex, External (Input/Output) Busses;
36 bits plus 4 parity

. Automatic microprogram subroutine stacking to 15 levels

. Up to 4 target languages (independent order code sets) per processor

1.3 OPERATING ENGINE DESIGN

Figure 1-2 is the functional block diagram of the Operating Engine. This portion of
the IC-9000 Processor contains registers, shifters and arithmetic and logical elements
used to manipulate operands. The Operating Engine External Busses interface with
Main Memory, peripherals and other external devices. Several interfaces provide com-
munication with the Control Engine. The Operating Engine canexecute six Operating
Ministep types:

a. General Arithmetic (GEAR)--Performs binary arithmetic and logical operations.
b. Character/Decimal (CHAD)--Byte and BCD arithmetic and logical operations.

c. Conditional External Data Exchange (CEDE)--Transfers addresses, target
instructions and data between the IC-9000 and Main Memory.

d. Transfer External (TEXT)--Transfers addresses and data between the 1C-9000
and devices on the External Busses.

e. Shift Instruction (SHIN)--Executes complex shift operations.

f. General Data Transfer (GENT)--Transfers data between Operating Engine
Registers and to and from the Control Engine interface.

The nominal Operating Engine register length is 36 bits. The Primary Adder oper-
ates on two, 36-bit inputs and the Byte/Decimal Adder manipulates two, 8-bit bytes.
Parity is maintained on 9-bit bytes during data transfers in the Operating Engine.
Logical transformations which do not maintain parity, such as arithmetic and shifting
operations, are performed by two identical, independent, logical structures. The out-
puts of the two elements are compared at clock time for identity. If they are identical,
parity is regenerated; otherwise, an Action Request (microprogram interrupt) is forced.
Byte parity (9-bit) is sent out over the External Busses and incoming parity is checked
when data is moved from the External Buss Registers.

The Operating Engine accommodates up to four Language Boards. These provide
a hardware assist to data exchange operations (CEDE Ministeps) which process target
language instructions and format Main Memory addresses. Each Language Board in
the Operating Engine is matched with a corresponding Control Engine (CE) Language
Board. Operating Engine (OE) Language Boards format addresses and commands fo
Main Memory. They also gate indirect addresses to General Registers, control the
Primary Adder and transfer data to External Buss Registers. These functions allow

1-4

PRIMARY BUSS

AUXILIARY |
REGISTERS GENERAL
> REGISTERS ¢
EXCHANGE BUSS
i
H -
i i
DATA MASK
REGISTERS
OP. ENG. '
LANGUAGE ¢
BOARDS i £ }
f Iy P
[f
‘ | PRIMARY : BYTE / DECIMAL .
g *L ADDER i ADDER
cTRL enG, | PRMARY
POINTER |
REGISTERS <>
: CTRL. ENG.
DATA BUSS
EXTENSION |
SHIFTER
:]] |
TAR
EXTERNAL BUSS 'NSTRU%ETTION
REGISTERS REGISTERS
o I CTRL. ENG.
% EXCHANGE
S * CTRL. ENG ey
e 4 . ENG. INTERFACE
{___EXTERNAL BUSSES Y LANGUAGE ¢
7 BOARDS

Figure 1-2. Operation Engine Block Diagram

1-5

certain types of fetches from memory tobe addressed by data in an incoming word.

The third major function of the OE Language Boards is to translate target language
order codes into initial MINIFLOW entry addresses. Memory protection, certain
types of indexing, page searching and other special-purpose address modification
functions can be performed by OE Language Boards. Language Boards translate order
codes and extract data and address fields faster than unaided MINIFLOW. Any function
provided by either the OE or CE Language Boards can be accomplished by a MINIFLOW
routine at the cost of processing speed and increased Control Memory space.

The IC-9000 Processor accommodates up to 1024 full-word Auxiliary Registers.
These registers may be used as high-speed (one-clock-time access) buffers, temporary
data storage, etc. Auxiliary Registers are optionally available in increments of 256
words.

A "'data masking" capability allows manipulation of fields shorter than the full
Operating Engine register length. Thirty-two Data Mask Registers, 36 bits wide, are
preloaded with mask words via MINIFLOW initialization routines. Mask words, or
Masks, modify the operation of both the Primary and Byte/Decimal Adders and data
transfers into the result register from the Primary Buss. One data masking mode
allows loading a field into a register without changing masked-out bits. In the General
Arithmetic (GEAR) Ministep CLEAR mode, masked-out bits are zero-set in the result
register. Only masked-in data is transferred in either mode. Arithmetic and logical
operations apply to masked-in fields and ignore masked-out bits.

A number of register addresses other than General Registers are addressable
during CEDE, TEXT and GENT execution. 1024 addresses are reserved for communi-
cating with the OE Language Board Registers. Other addresses are reserved for the
Target Instruction Registers (Primary and Secondary), the CE Data Buss, Data Mask
Registers, Auxiliary Registers and External Registers.

Ministeps are obtained two at a time from Control Memory each clock cycle.
Operating Ministeps are executed out of the OE Ministep Register (refer to Figure 1-4)
in the Control Engine. Decoded control signals, from the OE Ministep Register,
sequence the logical elements of the Operating Engine.

1.3.1 General Registers

The IC-9000 has 32 General Registers, each 36 data bits wide. Four parity bits,
one for each 9-bit byte, are maintained with each register. All 32 registers are address-
able as inputs to the Primary and Byte/Decimal Adders. Except for General Register 31,
the Shift Extension Register, none of the General Registers has a dedicated function.
General Registers have two independent address structures. The Operand A register
specified by an Operating Ministep is gated to one input of the Adders and the Operand
B input goes to the other, depending on the addressing options of the Ministep. Any of
the General Registers may be specified as either, or both, Operand A or B inputs to the
Adders by most operating Ministeps. Both Operand A and B registers can also be
addressed indirectly. The indirect address mode of an Operating Ministep uses the

1-6

five low-order bits in one of the 16 CE Pointer Registers (refer to paragraph 1.4.5)
to specify the address of the corresponding operandin the General Registers.

Transfers of data to the General Registers from the Primary Buss (GEAR and
CHAD Ministeps) are modified by the contents of one of 32 Data Mask Registers.
In the '"Non-clear'" or replacement mode of data masking operations, logic prevents
""masked-out" bits (corresponding to zeros in the mask word) from being changed in the
General Registers. In the 'Clear'" mode of the GEAR Ministep, masked-out bits are
replaced with zeros. When the '"Test' function of the GEAR and CHAD Ministeps is
enabled, the Operand A General Register is not loaded with the result of the operation,
regardless of masking functions.

Odd-numbered General Registers are also bussed to the Extension Shifter.
During double-register-length shift operations (SHIN Ministep), the Extension Shifter
is paired with the Primary Shifter. Even-odd pairs of General Registers can be speci-
fied. General Register 31, the Shift Extension Register, can be paired with any Gen-
eral Register as an operand for double-length shifts. Refer to paragraph 2.2.3 for
a description of the Shift Instruction, shift paths and functions.

1.3.2 Primary Adder

The Primary Adder is a 36-hit, parallel binary, arithmetic and logical processor.
GEAR Ministeps execute the 16 operations listed in Table 1-1. The result of operating
on the Operand A and B inputs is placed in the Operand A register, except when the
TEST bit true. The Primary Adder is also used with several CEDE, TEXT and SHIN
Ministep types, but operations are limited to binary addition and subtraction.

Operand B inputs to the Primary Adder include General Registers, ''Long'" and
"Short'" Immediate (literal) operands and the contents of any one of 16 Control Engine
Pointer Registers. Operand A inputs are the General Registers or External Buss Input
Registers. Inputs from the External Buss Registers are gated to the Primary Adder
by Operating Engine Language Boards to speed up memory fetches during some types
of CEDE Ministeps. The result of this operation goes to the associated External Buss
Output Register as an External Command Word.

Data Mask words affect the Primary Adder operation. Masking allows the MINI-
FLOW programmer to perform arithmetic, logical manipulation and testing on variable
fields. Masking functions are:

Adder outputs are forced to zero in masked-out bit positions.

. Arithmetic carries are not generated in masked-out bits.

Arithmetic carries are propagated over masked-out bits.

1-7

Table 1-1. Primary Adder Operations

Arithmetic Logical
A <~ A+B A< A‘B (Logical AND)
A < A+B+1 (A-B; 2's Complement) A < A*B
A < A+B+l (B-A) A<A'B
A < A+B+COF1 (Conditional Carry-in) A <AUB (Logical OR)
A < A+B+COF1 A < AUB
A < A+B+COF1 A <« AUB
A<B (Clear and Add) A <« AEB (Exclusive OR)
A<B (1's Complement) A - AEB (Compare)

"A'" is Operand A. "B'" is Operand B. "A" is the 1's complement of A.
"COF1" is the Carry-out State flip-flop used as initial carry-in. "« ' represents the
logical product (AND) operation. "U' represents the logical union (OR) operation.
"E" represents the Exclusive OR function. " « " (Left Arrow) denotes that the result
of the operation on the right is transferred to the location specified on the left.

1.3.3 Byte/Decimal Adder

The IC-9000 Byte/Decimal Adder operates on 8-bit bytes. During the Character/
Decimal (CHAD) Ministep, the Byte/Decimal Adder combines an 8-bit Operand A with
an 8-bit Operand B input. The result goes to the Operand A location unless the TEST
bit is on. Operand A inputs are General Registers. Operand B inputs are Generator
Registers and auxiliary Operand B inputs (refer to paragraph 1.3.2). For full-word
operands, the byte location is also specified. Figure 1-3 shows byte boundaries within
a 36-bit register word.

34 11 12 19 20 27 28 35

BYTE 1 BYTE 2 BYTE 3

Figure 1-3. Byte Data Word Format

Four CE Pointer Registers (refer to paragraph 1.4.5) are available to tally byte
and word locations in two operand character strings. Two of these four Pointers (P02
and P03) are used to indirectly address the A and B byte locations. The other two
(P00 and P01) are used to hold character counters. Pointers 00 and 02 are decremented
if the A byte address is obtained indirectly. Pointers 01 and 03 are decremented if the
B byte is indirectly addressed. "Zero Sense" and "One Sense'' State pseudo-flip-flop
outputs, generated by the contents of the four Pointer Registers, are sampled to control
sequencing.

1-8

The Byte/Decimal Adder executes decimal operations on binary-coded-decimal
(BCD) characters (two per byte) and binary operations on 8-bit bytes, as shown in
Table 1-2. Decimal arithmetic combines the two-BCD-digit A and B bytes and generates
a decimal sum or difference. Both inputs are checked for validity and the result is
corrected for carries. Except when masked, binary operations affect the entire 8-
bit operand field. CHAD Masks are the eight least significant bits of the addressed
Data Mask word.

Table 1-2. Byte/Decimal Adder Operations !
Decimal Binary Logical
A . A+B A ~ A+B A <« A+B+COF1 A ~ B
A <« A+B A < é+B+1 A <« A+B+COF1 A <« A-B
A <« A+B+COF1 A +« A+B+1 A <« A+B+COF1 A <« AUB
A
A <« A+B+COF1 A <+ AEB

A
"B" represents the 9's complement of two BCD characters in the B byte.

1.3.4 Data Mask Registers and Functions

The IC-9000 Processor has 32 Data Mask Registers, each 36 bits wide. Mask
Registers are divided into two banks of 16 registers. Bank selection is controlled by
the "Bank Select'' State flip-flop (refer to paragraph 1.4.8). Data Masking allows selec-
tive operation on bits and fields within a word. Masking is effective during GEAR, CHAD
and SHIN Ministeps. A Mask Register is addressed each execution of these Ministeps.
The eight, low-order bits (bits 28-35) in the selected Mask Register are active for
CHAD. During SHIN, masking is effective on data in the Primary Shifter. Bit posi-
tions in the selected Mask Register which contain a one (1) are defined as '"'masked-in"
bits. Bits containing a zero (0) are masked-out bits.

During GEAR, Masking can operate in one of two modes. In the "CLEAR'" mode,
all masked-out bits of the result word transferred into the Operand A register are
replaced by zeros; masked-in bits are read into the register. If the CLEAR bit is off,
masked-out bits inhibit alteration of the contents of corresponding bits of the receiv-
ing register. Masked-in bits will be loaded normally. The CLEAR mode is equivalent
to the generation of the logical product of the Mask word and the result word. When
the CLEAR bit is false (zero), masked-on bits are loaded into the result register
without disturbing data in masked-off bit positions, which is equivalent to field re-
placement.

Data Masks also modify the operating modes of the Primary and Byte/Decimal
Adders, as described in paragraphs 1.3.2 and 1.3.3, respectively. In all masked-
out bit positions, the Adder output is forced to zero. This makes it possible to test
the result of the operation on masked-in fields. In the Adders, Mask logic enables the
propagation of carries through masked-out bits and suppresses carry generation.
Arithmetic operations are executed correctly on fields shorter than the full register

word (or full byte width during the CHAD Ministep). If a carry-out signal is generated
in a masked-in field it will propagate through masked-out bits. If it encounters no
masked-in bits, it will be sensed as a Carry-Out signal (COP), and will be loaded into
the Carry-Out flip-flop (COF1) at clock time.

Zeros (0) are shifted into vacated, masked-in, bit positions of the result word
when a shift is executed. In the ""Clear' mode of the GEAR Ministep, data is shifted
into masked-out bit positions without being lost.

1.3.5 Shift Operations

The Operating Engine has two functionally identical Shifters. Both are 36-bits wide
and have some shift paths in common. The Primary Shifter operates on the output of
the Primary Adder. The Extension Shifter operates on data in odd-numbered General
Registers and External Buss Registers. Up to 16 bits of cross-over data is passed when
a connected shift is executed. GEAR Ministeps control only single-register shifts by
the Primary Shifter. Shift Instruction (SHIN) Ministeps can execute both single or
double-register shifts. SHIN codes can command connected or independent double-length
shifts, single-length shifts, circular shifts (double or single-length), primitives for
iterated divide and multiply algorithms, normalize shifts and indirect shifts. CEDE and
TEXT Ministeps are used to input and output data in byte format using the IC-9000
shift capability. The SHIFT AMOUNT field of the GEAR, SHIN, CEDE, and TEXT Mini-
steps can specify one-clock-cycle shifts of left or right 0, 1, 2, 4, 6, 8, 12, and 16 bits.

SHIN indirect shifts use the Shift Control Pointer Register (P0T7) in the Control
Engine. The 6- and 12-bit shifts cannot be executed by indirection. When an indirect
shift is executed, the four least significant bits and the Logical OR of the four most signi-
ficant bits in 8-bit-wide Shift Control Point Register are sampled. Since the maximum
single shift is 16 bits, a 16-bit shift is taken each time logic detects a count greater
than 16; i.e., a one (1) somewhere in bits 0-3 of the Shift Control Pointer. On execution,
the Shift Amount count is reduced by 16. If the four most significant bits are zero, the
next lower bit which contains a one (1) controls the shift. If the Shift Control Pointer
has a count of 11 (binary 1011), for example, and the indirect shift is repeated, shifts
of 8, 2, and 1 bit would be executed consecutively. The count in the Pointer is reduced
by the amount of the shift each time. By pairing a "branch' type Control Ministep to
test the SHD (''Shift Done'") State pseudo-flip-flop, with a SHIN Ministep, a 1-clock-time
repetitive loop can be formed to execute indirect shifts until the Pointer count goes
to zero.

Multiply and Divide capability are provided by repeated execution of corresponding
SHIN Ministeps. The number of iterations is initially placed in the Shift Control Pointer
Register. The count in the Shift Control Pointer is reduced by one each iteration and
the loop is normally terminated as the count goes to zero. Normalize shifts are con-
trolled by outputs from the CE Language Board. A tally is kept in the Shift Control
Pointer during Normalize. An output of the Language Boards, the ''Shift Done'" State
‘pseudo-flip-flop, is available for testing to control the process. Specifications for
SHIN Ministep functions are located in paragraph 2.2.3.

1-10

1.3.6 External Busses and Registers

Except for some miscellaneous control outputs and interrupt inputs, the IC-9000
Processor I/0 interface consists of four External Busses. Each is 36 data and 4
parity bits wide. Each Buss uses an associated group of control, signalling and timing
lines to sequence data transfers in both directions. Busses are bi-directional, time-
shared (half-duplex) communications ports, designed to send addresses and data out
and receive data back with equal facility. The IC-9000 communicates with devices
on the buss by way of 8 External Buss Registers. Each Buss has a register for incom-
ing data and a register for outgoing addresses and data. Transfers to and from the
External Buss Registers are sequenced by Conditional External Data Exchange (CEDE)
and Transfer External (TEXT) Ministeps. CEDE Ministeps are designed for fetching
target instructions and operands from Main Memory. TEXT is used to communicate
with peripherals. Various fields of incoming target language instructions are processed
by the IC-9000 Language Boards under the control of the CEDE Ministep. Some of the
CEDE Ministeps provide semi-automatic sequencing of instruction and operand fetches.
A shift capability is provided with some CEDE and TEXT Ministeps for the input and
output of byte-serial data. A number of CEDE and TEXT varieties place the processor
into the ''wait" mode if an external device has not responded to a request when execu-
tion begins. During waits, Ministep execution is inhibited until the desired operation
occurs, or an Action Request forces a transfer of control.

The IC-9000 Processor samples four parity bits on each input transfer. If bad
parity is detected during a fetch sequence, the previously transmitted external address
word in the Output Register allows a retry of the fetch. This greatly improves the
possibility of recovering from a transient error on the input.

The IC-9000 is designed to work with the SC-700 Memory. With proper inter-
facing, however, the processor can be adapted to communicate with almost any type of
self-clocked memory unit, since data transfers inward have few timing constraints.
Appendix A of this document is a short description of the SC-700 Memory.

1.3.7 Operating Engine Language Boards

Operating Engine (OE) Language Boards perform a wide variety of tasks related
to the generation of MINIFLOW entry addresses from target language instructions and
formatting address (External Command) words to Main Memory. In conjunction with a
corresponding Control Engine (CE) Language Board, an OE Language Board adapts the
IC-9000 to a specific target language (instruction set) and target environment (system
framework). Up to four pairs of Language Boards can be installed in each IC-9000
Processor. Appendix B contains a more detailed description of the IC-9000 OE and CE
Language Board inputs, outputs and typical functions.

OE Language Boards have two primary functions. One is "address modification"
for accesses to Main Memory. Address modification is effective when External Com-
mand words, generated by CEDE Ministeps, initiate fetches of target language instruc-
tions and operands and generate write addresses. Address modification facilities

1-11

translate target system addresses into equivalent Main Memory addresses. Typical
functions include:

. Insert Memory Protect keys

. Modify memory addresses using base register inputs
Perform address limit violation checks
Translate relocated page addresses
Translate character and byte addresses to word addresses

Another major function of the OE Language Boards is to generate hard-wired,
initial entry addresses to initialization MINIFLOW during execution of the CEDE /WIN
(Wait for Instruction) Ministep, based on target instruction type. Initialization MINI-
FLOW routines include such functions as operand fetching, indexing, indirection, and
some complex types of address modification. After the initialization routine is com-
pleted, the execution MINIFLOW routine is entered bybranching with the assistance of
the Control Engine Language Boards.

Several secondary functions can be performed by the OE Language boards, such
as generating operand addresses from target instruction data. Similarly, OE Language
Boards can execute fetches, using incoming data, during indirect addressing modes.
Various CEDE Ministep types are implemented to provide semi-automatic addressing
sequences.

1.4 CONTROL ENGINE DESIGN

Figure 1-4 is a functional block diagram of the IC-9000 Control Engine. The Con-
trol Engine can be conceptually divided into two smaller functional groups. One is made
up of the Control Memory Address Generators, the Control Memory itself, its Output
Registers and the Operating and the Control Engine Gating structures. The second
group sequences data fransfers, stores data, monitors status and controls testing and
sequencing. Major operations of this part of the Control Engine include:

Generate Control Memory address inputs.

Translate target language instructions and extract data fields.

. Provide iteration control and indirect register addressing.

Hold "Status' data and tally external and internal interrupts.

. Interface between the Operating and Control Engine registers.

1-12

e1-1

weaSelq yoolg outduy [0IU0) ‘H-T 2andid

Y

EVEN
ADDRESS
.GENERATOR

J—

i
1
i

i

J ’...

oDD
ADDRESS
GENERATOR

o ,_.A_i__{__, o

EVEN l OoDD
CONTROL CONTROL
MEMORY MEMORY

L e
OPERATING CONTROL
MINISTEP MINISTEP
REGISTER REGISTER
OP. ENG CTRL. ENG
GATING GATING

rvvey

R g

INCREMENTER r» o NEXT
SECONDARY A&?_'Ziﬁ-s il
BUSS . SUBROUTINE =
CURRENT ADR. | T RETURN
REGISTER | - STACK |
EXCHANGE BUSS
. . L_”_E__
MINIFLOW STATU <« > CONTROL |
REGISTER “ . POINTER
; J"‘—‘“““’ REGISTER
cgu\'vg:?\loEL — ‘ t OP. ENG.
DECREMENTERS LANGUAGE
LANGUAGE BOARDS
BOARDS -
; ST EXCHANGE
- .) BUSS
STATE > ADDER OP. ENG.
FLIP-FLOPS INTERFACE
} f — EXCHANGE DATA
INTERRUPT MOVE [®] BUSSSELECT
INTERFACE [—®1seLecT| [TCTRL. ENG. DATA
‘ * 1 BuSSSELECT
A OP. ENG.
EXTERNAL { TARGET AUXILIARY
DEVICES ./ INSTRUCTION OPERAND

REGISTERS

INTERFACE

Two sequential Ministeps are fetched each clock cycle. The even and odd Control
Memory banks are completely independent. Current Ministep addresses may be either
even or odd without restriction. Two Ministeps will be executed simultaneously when
an Operating Ministep is followed sequentially by a Control Ministep (with one exception).
Only the current Ministep is executed for other sequences. Control Engine Ministeps
take no additional processing time when paired. It is not necessary to pair Ministeps
if there are no processing benefits. This may improve efficiency by saving some
locations in Control Memory.

Control Ministeps sequence Control Engine logic just as Operating Ministeps
regulate Operating Engine functions. Eight Control Ministep varieties are available.
There are five Branch Ministeps, a Block Transfer Ministep for data transfers between
Control Memory or the Subroutine Return Registers and the Operating Engine inter-
face, a Ministep for manipulating the State (mode control) flip~flops and a Ministep to
move data between Control Memory registers.

Branch Ministeps test State flip-flops which log the processor current status.
Branch Ministeps can be used to modify the sequence of Control Memory accesses if
the branch test condition is true. Branch Ministep execution can alter the sequential
execution of the microprogram instruction in several ways. Least complex is the Branch
Test (BRAT) Ministep, which executes relative branches based on testing one or a com-
bination of two State flip-flops. Branch and Enter (BENT) is similar to BRAT, except
taking the branch causes the return address to be loaded into the Subroutine Return Stack.
The Branch Or Return (BORE) Ministep executes an automatic subroutine return if the
branch is not taken. Branch and Decrement (BRAD) modifies the amount contained in
one of eight Control Engme Pointer Registers by the count specified in the Ministep.
One of 256 State flip-flops is tested by BRAD.

The Branch-Extended Address (BEAD) Ministep has four modes of execution.
Three modes execute absolute branches, indexed and unindexed, to any location in the
Control Memory. When the branch is made unindexed in one mode, a State {flip-flop
is tested. In the other unindexed mode, the absolute branch is taken unconditionally.
The indexed absolute branch adds the contents of one of the Pointer Registers to the
16-bit branch address in the Ministep. The fourth mode adds the contents of a Control
Engine Pointer Register to the continuation address and transfers. The BEAD Mini-
step can execute a subroutine entry in all modes.

There are three Control Ministeps other than Branches. The Manipulate Status
(MAST) Ministep operates directly on State flip-flops. Any two of the State flip-flops
are addressed independently and a combination of their logical states sets or resets the
result flip-flop. MAST cannot affect State pseudo-flip-flops (refer to paragraph 1.4.8).
Block Transfer (BLOT) loads and reads out the contents of Control Memory and the
Control Engine Subroutine Stack (refer to paragraph 1.4.4) and sequences Operating
Engine data transfers. BLOT is always paired with an Operating Engine CEDE, TEXT
or GENT Ministep. The BLOT Ministep uses '"Load Control Words'' to execute chained
(scatter/load) transfers into the processor. The Control Engine MOVE Ministep trans-
fers data between Control Engine Registers and, in conjunction with the GENT, CEDE

1-14

and TEXT Ministeps, to and from the Operating Engine. Data is transferred in 8- or
16-bit bytes, depending on the MOVE mode elected. The MOVE Ministep also has a

mask capability on 8-bit transfers.

1.4.1 Control Memory Addressing

Control Memory address inputs are gated from a number of sources to the Control
Memory Address Generators by the Next Address Select logic. The major inputs are
from the incremented Current Address Register (when no branching or transfer of con-
trol takes place), Control Engine Pointer Registers, the Subroutine Return Stack (when
a subroutine is EXITED), the Branch Address fields of various Control Ministeps, and
the OE Language Boards when a CEDE/WIN (Wait for Instruction) Operating Ministep
is executed. The CEDE/WIN Ministep generates a starting address for MINIFLOW
routines to initialize target language instruction processing.

An additional source of Control Memory addresses is the interface from the Opera-
ting Engine Exchange Buss. Another input, not shown in Figure 1-2, is a special-
purpose Entry Address Generator, which provides hard-wired transfer addresses into
error and interrupt MINIFLOW routines. Also not shown are Maintenance Console
inputs for troubleshooting and initialization.

The Even and Odd Address Generators are adders and incrementers which form
Control Memory bank addresses from the base address inputs and modifiers gated
by the Next Address Select logic. Several modes of addressing are synthesized from
these inputs. Departing from the nominally sequential, i.e., current address plus
increment (continuation address) and current address plus increment plus one; we have
(neglecting the incremented address of the second Ministep):

. Branch Relative
. Branch Absolute
Branch Absolute plus Pointer Count
. Branch and Store Subroutine Return
Branch and Modify Pointer Count
. Continuation plus Pointer Count
Subroutine Return
"Forced" Transfers
High-priority forced transfers occur immediately when internal monitoring logic
detects an error Action Request interrupt condition, Lower-priority Action Requests

take effect during CEDE ""Wait" modes. Any of a number of lower priority Target

System Interrupts can cause a forced transfer if present when a CEDE/WIN Ministep
execution is attempted.

1-15

1.4.2 Control Memory Design

The Control Memory is organized into odd and even banks. Two sequential Mini-
steps are accessed at a time. An important feature of the IC-9000 Control Memory is
that it is available in either Read-Write or Read-Only versions. The high-speed,
Read-Write Storage (RWS) of the IC-9000 lets the user modify microprograms practically
at will. The IC-9000 Processor with an RWS is highly adaptable and can perform process-
ing functions in different languages (order codes) by reading in a new MINIFLOW and
enabling the corresponding set of Language Boards.

Read-Write Store modules are composed of 512, 32-bit (plus parity), semicon-
ductor registers. To change the microprogram during operation and for initializa-
tion when the processor is turned on, the RWS is loaded from an external storage
element. The BLOT (Block Transfer) Ministep is used for initializing and over-
writing the RWS. Due to its flexibility, RWS is highly useful for program check-out,
debugging, maintenance and sequential overlay of MINIFLOW routines.

Read-Only Store (ROS) is a high-speed, 32-bit word (plus parity) memory with
contents which are permanently fixed when the module is built. Data in the ROS cannot
be altered by over-write, power loss or transient conditions. The contents of ROS
modules must be completely specified at the time hardware is ordered. ROS modules
contain 512 words (256 even and 256 odd locations).

1.4.3 Ministep Registers and Gating Functions

Even Control Memory and Odd Control Memory outputs are read into the Opera-
ting Ministep Register and Control Ministep Register, depending on sequencing and
Ministep type. After the Ministep registers are loaded, their contents are further
decoded and passed to gating structures which sequence the Operating and Control
Engine elements. After each access of the Control Memory, the Operating and Control
Ministep Registers hold the currently addressed MINIFLOW word and its next sequential
successor Ministep. The current Ministep is read from the Control Memory location
which has the numerically smaller address of the pair. It may be located at either an
odd or an even address. The most significant bit in the OP CODE field (bit zero)
determines whether the current Ministep is routed to the Operating or Control Engine
Gating structure.

If the current Ministep is an Operating type and its successor is a Control type,
both Ministeps will be executed simultaneously with these exceptions:

If the current Ministep is an Operating type and it specifies a Long Immediate Data
word (literal operand), the successor word is not an instruction. From the register,
it is gated to the Control Engine Data Buss. From there it goes to the Operating
Engine as an auxiliary Operand B input of the Primary Adder.

CEDE/WIN Ministeps inhibit execution of any successor Ministep, since a forced
branch is always taken (to an even Control Memory location).

1-16

It is possible to have a Control Ministep for the current Ministep. When this happens,
the current Ministep has priority of execution over the successor Ministep. The current
Ministep is routed to the Control Engine Gating when it is a Control Ministep and the
successor Ministep is not executed. Likewise, if the two sequential Ministeps are
both Operating Ministeps, the current Minstep has a priority of execution and it is
routed to the Operating Engine Gating elements. The successor Ministep is not executed
at this clock. If no branch is taken, the Current Address Register is augmented by one
and the successor Ministep and its successor are read from Control Memory the next
cycle.

1.4.4 Subroutine Return Stack and Stack Control

The Subroutine Return Stack is a group of 16 storage registers which hold 16-bit
return addresses. A Subroutine Return Register is loaded each time a subroutine entry
is executed. Entries are made when a BEAD (Branch-Extended Address), with the
ENTRY bit on, or a BENT (Branch and Enter) Ministep executes a branch. Entries are
also made when a breakout from the normal MINIFLOW sequence is forced by an
Action Request (interrupt). Destacking occurs on a BORE (Branch Or Return) Mini-
step that does not take the branch.

Loading of subroutine return addresses is scheduled by the Stack Pointer Register,
which addresses the top of the stack (the active return address). Pointer Register 06
is dedicated to this function. When the four least significant bits of the Stack Pointer
are zero, the stack is empty. Initial entry into an empty stack is location 01. Sub-
sequent entries go into consecutive ascending locations. A "Stack Full" Action Request
occurs when location 15 isloaded. At the next clock, the now current address is entered
in Stack Register 00 and a forced transfer to the Stack Full service routine is executed.
A "Stack Underflow" Action Request occurs when a return is executed and the four
least significant bits of the Stack Pointer Register are zero (0). The Stack Pointer does
not decrement and the Action Request transfers the now current address to Stack Regis-
ter 00 and goes to the Stack Underflow service routine.

Although the usable Subroutine Return stack capacity is only 15 words, with an
8-bit Stack Pointer and two MINIFLOW service routines the stack capacity can be
easily extended to 240 levels (15x 16). More complex service routines can extend the
stack depth indefinitely or handle multiple stacks. However, the stack full service
routine, must detect a real, upper-bound, stack overflow error, otherwise a program-
ming error can cause subroutine entry to an infinite number of levels. Likewise, the
underflow MINIFLOW routine must check for a real, lower-bound, stack limit for
the same reason.

1.4.5 Pointer Registers

A group of 16 Control Engine Pointer Registers are available for counting and in-
direct addressing functions. Register locations 00-07 are counting Pointers. Loca-
tions 08-15 are pseudo-register (non-counting) Pointers, mechanized as sense line
outputs, with functions determined by Language Boards. Most of the counting Pointers

1-17

perform special services for other Control and Operating Engine logic elements at
various times. Otherwise they can be used for general processing functions. Table
1-3 is a list of Pointer assignments.

Table 1-3. Pointer Register Functions

Pointer Register Function
00 - 03 CHAD, BLOT sequence Counters
04, 05 General Purpose (not dedicated)
06 Subroutine Stack Pointer
07 Shift Control Register
08 - 14 CE Language Boards (Pseudo-registers)
15 OE Language Boards (Pseudo-register)

Pointer Register contents indirectly address General Registers for Operating
Ministeps which allow indirection on Operand A and B selection. In addition, the CHAD
(Character/Decimal) Ministep (paragraph 2.2.4) allows indirect selection of the Byte A
and Byte B Operands within the Operand A and B words. However, the CHAD Byte A
indirect address is specified by Pointer Register 02. The Byte B indirect address is
obtained from Pointer 03. Pointers 00 and 01 are normally used as character string
length counters for the A and B byte operands respectively when indirect addressing
occurs. These four Pointer Registers have individual decrementers. The count in the
two pairs of Pointers decrements by one (1) during the execution of the CHAD Mini-
steps when the corresponding indirect byte address mode is specified. In addition to
assisting the CHAD Ministep, Pointers 00 - 03 are also used to automatically tally
locations and word counts during execution of the BLOT (Block Transfer) Ministep
(refer to paragraph 2. 3.6).

Pointer Registers 04 and 05 are undedicated registers and can be used for general-
purpose counting or indirect addressing. Pointer 06 is the dedicated Subroutine Stack
Pointer (described in paragraph 1.4.4). Pointer 07 holds and tallies indirect shift
amounts for several of the Shift Instruction (SHIN) Ministep types and maintains a shift
count during SHIN Normalize (refer to paragraph2.2.3). Pointer Pseudo-registers
08 - 15 represent data translated from target instructions by the Operating and Control
Engine (CE) Language Boards. Pointers 08 - 14 are driven by CE Language Boards
from the Target Instruction Registers in the Operating Engine. Pointer Pseudo-regis-
ter 15 is similarly driven by the OE Language Boards. Pointer Pseudo-registers can
be used for indirect addressing and auxiliary Operand B inputs, but their contents must
be moved to one of the counting Pointer Registers for loop control, shift operations
and similar functions.

In addition to the four dedicated, single-count decrementers of Pointer Registers
00 - 03, a separate Pointer Adder can variably alter the contents of the counting

Pointer specified in a BRAD (Branch and Decrement) Ministep by the amount of the

1-18

DECREMENT field. The Pointer count can be changed by any amount from plus seven
(+7) to minus eight (-8) in one clock cycle.

Each Pointer Register has a State pseudo-flip-flop (ZS100-15) which goes to the
one (1) logic state when the corresponding Pointer count is zero (refer to paragraph
1.4.8). These "Zero Sense' State flip-flop indicators can be tested for zero (0) logic
conditions during the counting process, to maintain loop control. In addition, Pointer
Registers 00 - 03 are mechanized with "One Sense' State pseudo-flip-flops (OSI00-03)
which are true when the corresponding Pointer holds a one (1) count. These outputs
are normally used for loop control during CHAD and BLOT Ministep execution.

Since the BRAD Ministep can increment any counting Pointer (P00-P07 by an
amount other than one, it is possible to pass through a zero count from either direction.
Consequently, a test of the Pointer Zero Sense pseudo-flip-flop will fail. When the
Pointer Register count goes through zero, the overflow (or underflow) output of the
Pointer Adder is used to drive the "Through Zero' State pseudo-flip-flop. This condition
is true only during the clock cycle in which the overflow or underflow occurs. Through
Zero must be sampled during the execution of BRAD to be valid. Since this output is
developed relatively late in the clock cycle, a false branch condition resulting from a
test of Through Zero causes a clock inhibit and a "hiccup' or one-clock-cycle delay.
When testing a Zero Sense or One Sense pseudo-flip-flop of one of the Pointers, the
indication is present at the start of the next clock cycle after the counting operation is
complete and testing cannot cause a hiccup.

- N
Lg | TEXT | CEDE |1y \\ ACTION REQ. CURRENT ADDRESS
BUSS | BUSS \\ MASK
0 12 34 56 7 8 15616 31

Figure 1-5. MINIFLOW Status Word Format

1.4.6 MINIFLOW Status Word

The two elements labeled in Figure 1-4 as "MINIFLOW Status Register'' and
""Current Address Register' are treated as a single 32-bit register by the BLOT
(Block Transfer) Ministep. The composite register holds the MINIFLOW Status Word
(MSW) in the format shown in Figure 1-5. The MINIFLOW Status Word facilitates
initializing the processor from a cold start and when a target language changeover is
executed.

The Language Board Select (LB) bits determine which Language Board set is
active when executing target instructions. These two bits enable one Control and Opera-
ting Engine Language Board pair (out of a possible four). Two groups, of two bits each,
separately select the External Buss address for I/O (TEXT BUSS) and Memory (CEDE

1-19

BUSS) communications. When the MSW Test Mode (TM) bit is on, the IC-9000 is in

an abnormal state. This mode allows special operations to be performed to exercise
and test automatic check and error Action Request logic. The true state (1) of the Test
Mode bit enables:

Writing into Control Memory with bad parity (BLOT/WBP Ministep; paragraph
2.3.6).

Loading Operating Engine registers with bad parity (GENT Ministep; paragraph
2.2.5).

Forcing check errors (""Check Test" State flip-flop; paragraph 1.4.8).

Action Request Mask (ACTION REQ. MASK) bits inhibit some Action Requests
(AR's) or groups of AR's so that they cannot force a transfer of control (refer to
paragraph 1.4.9).

A convenient way to initialize the MINIFLOW when executing a multiple block
transfer (BLOT Ministep) from an external source, is to load the MSW as the final
step. After loading the MSW, the Current Address Register holds the start-up address
for the new MINIFLOW.

1.4.7 Control Engine Language Boards

Four Control Engine (CE) Language Boards are paired with corresponding Opera-
ting Engine (CE) Language Boards. Language Board sets are selected by two bits in
the Miniflow Status Word. The principle function of CE Language Boards to to extract
and translate data from fields in target language instruction words. The mechanism for
performing this function includes the Operating Engine Primary and Secondary Target
Instruction Registers (refer to paragraphl.3.7) which hold the data in original format;
the CE Language Boards, which perform the decomposition and translation operations;
and the Control Engine Pointer Pseudo-registers (refer to paragraph 1.4.5) and the
CE Language Board State pseudo-flip-flops (refer to paragraph 1.4.8) which make the
outputs available to the Control Engine. Appendix B contains a more detailed descrip-
tion of Language Board capabilities and interfaces.

CE Language Boards are passive and contain no internal storage elements.
Extracted and translated data is selectively routed to CE Pointers 08-14, which can be
tested, transferred or used as addresses or operands. If counting capability is
required, the contents of Pointer Pseudo-registers must be moved to one of the count-
able Pointers. CE Language Boards develop the "Group Entry" address into the execu-
tion MINIFLOW from the target language instruction order code and place it in a
Pointer Pseudo-register. The Group Entry address is called the "target entry branch
table. Other fields which are normally held in Pointer Pseudo-registers include oper-
and and index register addresses, character and word counts, shift amount data,
literal operands (up to 8 bits), etc.

Target language instructions generally contain mode control data needed by the
MINIFLOW programmer. To provide access to execution mode data, a group of State

1-20

pseudo-flip-flops (CLB00-11) are driven by the CE Language Boards. Control Mini-
steps can sample these outputs to control execution sequencing. The '"Language Board
Control™ State flip-flops (LBC 00-15) are sensible by CE (and OE) Language Boards.
They can be used to provide program control inputs to CE Language Boards as required.

Another function of the CE Language Boards is to examine the mantissa of float-
ing point operands for leading zeros during execution of the SHIN/NORMALIZE Ministep.
The output of this sampling process is the Shift Amount control to the Primary and Exten-
sion Shifters and a count (modulo the target exponent base) to tally the amount of normal-
ization that takes place. An output is also generated when the process is complete (SHD--
"Shift Done' pseudo-flip-flop).

1.4.8 State Flip-flops

The Control Engine has a group of 256 addressable storage elements, called State
flip-flops, which perform mode control functions. In most cases State flip-flops are
actual, binary storage elements. Some are general-purpose and are available for
scratch-pad use. Others are dedicated and are controlled by internal and external events.
The remainder are synthesized from outputs of various logical elements in the processor
and are called State pseudo-flip-flops. Table 1-4 is a listing of IC-9000 State flip-
flops. They are grouped by characteristics and the addressing structure of the MOVE
Ministep which can access them. Appendix C describes the individual State flip-flops
and their functions.

General Indicator flip-flops are not dedicated and may be used as scratch-pad
registers for housekeeping and status data, program monitoring and testing.

Language Board (LB) Control (LBC00-15) flip-flops are available to use as mode
control inputs to the OE and CE Language Boards. When they are not needed for
this function, they may be used as general indicators.

The External Write (EWR0-7) group can be mechanized to provide signals to external
devices, separately from the External Busses. When not dedicated they can be
used as general indicators.

. The Action Request (AR) flip-flops respond to conditions which are to the IC-9000
Processor what system interrupts are to a machine language processor. They al-
low the normal MINIFLOW processing sequence to be modified by various internal
conditions and external signals. The complement of Action Requests and a sum-
mary of their characteristics are described in paragraph 1.4.9.

Control flip-flops are indicators which monitor status and control several impor-
tant internal processor functions.

Target System Interrupt flip-flops comprise four groups of eight bits each.

For each Target System Interrupt flip-flop, there is a corresponding Interrupt
Mask flip-flop. Each Interrupt Mask inhibits the true state of its corresponding
Target System Interrupt flip-flop from causing a foreced transfer of control immedi-
ately prior to an attempt to execute a CEDE/WIN Ministep.

1-21

General
Indicator F/F's

Table 1-4. State Flip-Flop Listing
(Group 0)

General
Indicator F/F's

Action
Request F/F's

Contr.ol
F/F's

Gen Ind GIOO
Gen Ind GIO1
Gen Ind GIO2
Gen Ind GIO3
Gen Ind GI04
Gen Ind GI05

LB Control LBC00
LB Control LBCO01
LB Control LBC02
LB Control LLBC03
LB Control LBC04
LB Control LBC05

Power On
Power Off

Odd CM Parity
Even CM Parity
Invalid CM Addr
Stack Full

Carry Out 1 COF1
Carry Out 2 COF2
Zero Flag 1 ZRF1
Zero Flag 2 ZRF2
Invalid Digit IDF
Invalid Sign ISF

Gen Ind GI06 LB Control LBC06 Stack Underflow Shift Out Sign SOS
Gen Ind GIO7 LB Control LBCO07 MINIFLOW Trace |Shift Out Flag SOF
ROO R04 RO8 R12

Gen Ind GI10
Gen Ind GI11
Gen Ind GI12
Gen Ind GI13
Gen Ind GI14
Gen Ind GI15
Gen Ind GI16
Gen Ind GI17

LB Control LBC10
LB Control LBC11
LB Control LBC12
LB Control LBC13
LB Control LBC14
LB Control LBC15
LB Control LBC16
LB Control LBC17

Add-Shift Error
Ext-Shift Error
A Buss Parity

B Buss Parity
Extension Parity
Mask Parity
Aux Reg Parity
Ext Buss Parity

Last Buss In LBI
Shift Extnsn SHE
Mask Bank Sel MBS

Mem Buss Inhibit MBI

LB Indicators LIO
LB Indicators LI1
LB Indicators LI2
LB Indicators LI3

RO1

RO5

RO9

R13

Gen Ind GI20
Gen Ind GI21
Gen Ind GI22
Gen Ind GI23
Gen Ind GI24
Gen Ind GI25
Gen Ind GI26
Gen Ind GI27

Gen Ind GI40
Gen Ind G141
Gen Ind GI42
Gen Ind GI43
Gen Ind GI44
Gen Ind GI45
Gen Ind GI46
Gen Ind GI47

Bad Addr Buss 0
Bad Addr Buss 1
Bad Addr Buss 2
Bad Addr Buss 3
Limit Violation
MM Addr Compare
Ext Call Buss 0
Ext Call Buss 1

TSI Inhibit SII

TSI Lockout SIL
Mem Cmnd 0 MCO
Mem Cmnd 1 MC1
Clock Control CKC
Run F/F RUN
Check Test CKT
Initiate Trace ITR

RO2

RO6

R10

R14

Gen Ind GI30
Gen Ind GI31
Gen Ind GI32
Gen Ind GI33
Gen Ind GI34
Gen Ind GI35
Gen Ind GI36
Gen Ind GI37

Ext Write EWRO0
Ext Write EWRI1
Ext Write EWR2
Ext Write EWR3
Ext Write EWR4
Ext Write EWRS
Ext Write EWR6
Ext Write EWRT7

Ext Call Buss 2
Ext Call Buss 3
Ext Interrupt 1
Ext Interrupt 2
Ext Interrupt 3
Ext Interrupt 4
Ext Interrupt 5
Ext Interrupt 6

AR Lockout 1 AL1
AR Lockout 2 AL2
AR Lockout 3 ALS3
AR Lockout 4 AL4
AR Lockout 5 AL5

Retry Cuntr ORTCO
Retry Cntr 1 RTC1

RO3

RO7

R11

1-22

R15

Target System
Interrupts

Table 1-4. State Flip-Flop Llsting,(co\tmued) ‘/\
(Group 1) yd et

Target System

Interrupt Masks /

/ ‘State Pseudo- \
\ F/F's
\

F/F's

State Pseudo-

Interrupt SI00
Interrupt SIO1
Interrupt S102
Interrupt SI03
Interrupt S104
Interrupt SI05
Interrupt SI06
Interrupt SI0O7

Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,

MO0
Mol
IMO02
IMO3
IM04
IMO05
IMO06
IMO7

Carry Out COP
Zero Sense ZSP
Invalid Digit IDP
Invalid Sign ISP
Thru Zero THZ

Wa1tAE Pe mg}W?

nse SW 0 SSW0

nse SW 1 SSW1

nse SW 2 SSW2

se SW 3 SSW3

se SW 4 SSw4

nse SW 5 SSW5
RW MM Test RWM -

| Repeat-Mode-RPM

ROO

R04

R08

R12

Interrupt SI10
Interrupt SI11
Interrupt SI12
Interrupt SI13
Interrupt SI14
Interrupt SI15
Interrupt SI16
Interrupt SI17

Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,

IM10
IM11
IM12
IM13
IM14
IM15
M16
IM17

Buss Busy 0 BB0
Buss Busy 1 BB1
Buss Busy 2 BB2
Buss Busy 3 BB3
Buss Active 0 BAO
Buss Active 1 BA1l
Buss Active 2 BA2
Buss Active 3 BA3

Error Stop ERS
Intrpt Pending NPT
RW-CM-Test-RWE
Shift Done SHD
One Sense OSI00
One Sense OSI01
One Sense OSI02
One Sense 0OSI03

RO1

RO5

RO9

R13

Interrupt SI20
Interrupt SI21
Interrupt SI22
Interrupt SI23
Interrupt SI24
Interrupt SI25
Interrupt SI26

Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,

IM20
IM21
IM22
IM23
IM24
IM25
IM26

OE LB F/F OLB00
OE LB F/F OLBO01
OE LB F/F OLB02
OE LB F/F OLB03
CE LB F/F CLB00
CE LBF/F CLB01
CILBF/FCLB02

Zero Sense ZSI00
Zero Sense ZSI01
Zero Sense ZSI02
Zero Sense ZSI03
Zero Sense ZSI04
Zero Sense ZSI05
Zero Sense ZSI06

Interrupt SI27 Intrpt Mask, IM27 CELBF/FCLB03 |Zero Sense ZSI07
RO2 RO6 R10 R14
‘Interrupt SI30 Intrpt Mask, IM30 CELBF/FCLB04 |Zero Sense ZSI08

Interrupt SI31
Interrupt SI32
Interrupt SI33
Interrupt SI34
Interrupt SI35
Interrupt SI36
Interrupt SI37

Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,
Intrpt Mask,

IM31
M32
IM33
M34
IM35
IM36
IM37

CE LB F/F CLBO05
CE LBF/F CLB06
CE LBF/FCLBO07
CE LBF/F CLBO08
CE LBF/FCLB09
CE LB F/F CLB10
CE LBF/FCLBI11

Zero Sense ZSI09
Zero Sense ZSI10
Zero Sense ZSI11
Zero Sense ZSI[12
Zero Sense ZSI13
Zero Sense ZSI14
Zero Sense ZSI15

RO3

RO7

R11

1-23

R15

The last group of 64 State flip-flops are not hardware but pseudo-flip~flops.
These can be tested for either the true or complement condition but cannot be set
and reset directly. A branch test on the first group of pseudo~flip-flops

(Group 1, R08) causes a hiccup (one clock delay) if the test fails.

1.4.9 Action Request Servicing

There are 32 Action Request conditions in the IC-9000. The presence of an un-
masked Target System Interrupt during a CEDE/WIN is also treated as an Action
Request. Referring to Table 1-5, the first two Action Requests (AR's) provide a
MINIFLOW entry for orderly start-up or shut-down when power is switched. The
next five AR's (Priority 3-7) are set when high-priority errors or status conditions
are detected in the Control Engine. Neglecting the "Trace" flip-flop, the next eight

/)\ o AR's function similarly for the Operating Engine. The four action requests labeled
(O \~ i'Bad Addr" (Address) are set when an access is made to Main Memory and the bank
\p(/' addressed was not active in the system. This AR is also enabled if an I/0 device is
not present when addressed. The "Limit Violation" Action Request (Priority 21)
indicates that a Main Memory address was out of the range previously defined as a
boundary by optional memory protection (such as base or limit registers) which can be
provided on OE Language Boards. The "External Call" Action Requests (Priority 23-26)
enables units communicating with the External Busses to request servicing by the
processor. The "External Interrupt'" AR's provide a means for generating an inter-
rupt from sources which are not necessarily tied to the External Busses.

The order in which the Action Requests arelisted in the table represents their
priority; this is approximately the order in which servicing proceeds if more than one
interrupt occurs. The first 16 AR's in the table are of such priority that a transfer out
of sequence is initiated upon the occurrence of the Action Request. The "External Buss
Parity'" AR (Priority 16) is caused by external conditions but detected during internal
transfers. The last 16 Action Requests in the table are initiated directly by conditions
external to the processor. Breakout for this group is postponed until the first CEDE or
TEXT Ministep with a "Wait" mode is executed. Breakouts for all Action Requests
force a transfer to a dedicated location in Control Memory, called the AR Entry location.
Because of timing constraints, a one-clock-time delay (hiccup) occurs at all breakouts.
Entry location assignments are given in Table 1-5. The AR Entry locations, with one
exception, are placed in the first few locations of Read-Write Control Memory, two
locations per entry. This provides complete flexibility in handling the request, since
a BEAD (Branch/Extended Address) will normally be programmed as one of the two
Ministeps to transfer into a ""soft'" AR service routine. The contents of the AR Entry
locations must be initialized when Control Memory is loaded. One exception is the
"Power On' Action Request, whose entrance location is in Read-Only Control Memory.
A non-volatile MINIFLOW routine is used to bring the processor up from a cold start.

When an Action Request causes a breakout from a sequence, a return address is
set into the Subroutine Return stack. For most detected error conditions, the current
address is used, so that a retry may be attempted. In a few cases, the continuation
address is saved. Except for "Adder-Shifter' and "Extension Shifter Error', a return

1-24

Table 1-5. IC-9000 Processor Action Request Characteristics

AR

Name Priority Delay Special Action Entry Lorm Mask Lockout
Power On 1 Immed. None 65280 No No PWR-ON sig
Power Off 2 None 0 Current ARL1*
Parity, Odd CM 3 Inhibit Clock, Retry once 2 ARL2
Parity, Even CM 4 Inhibit Clock, Retry once 4
Invalid CM ADDR 5 None 6
Stack Underflow 6 None 8
Stack Full 7 None 10 v
MINIFLOW Trace 8 Reset Trace 12 Continue v ARL3
Adder-Shifter Error 9 None 14 ARM1 1
Extsns-Shifter Error 10 None 16 v
A Buss Parity 11 Inhibit Clock 18 Current
B Buss Parity 12 Inhibit Clock 20
Extension Parity 13 Inhibit Clock 22
Mask Parity 14 Inhibit Clock 24
Aux Reg Parity 15 Inhibit Clock 26
Extrnl Buss Parity 16 ¢ [Inhibit Clock 23 v
Bad Addr Buss 0 17 Wait None 30 No ARL4
Bad Addr Buss 1 18 Mode 32
Bad Addr Buss 2 19 34
Bad Addr Buss 3 20 36 v
Limit Violation 21 38 ARM2
MM Addr Compare 22 40 ARM3
Ext Call Buss 0 23 42 ARM4 ARLS
Ext Call Buss 1 24 44 ARM5
Ext Call Buss 2 25 46 ARMS6
Ext Call Buss 3 26 48 ARM7
Ext Interrupt 1 217 50 ARMS
Ext Interrupt 2 28 52
Ext Interrupt 3 29 54
Ext Interrupt 4 30 56
Ext Interrupt 5 31 58
Ext Interrupt 6 32 v v 60 v vVvYYyvw $

*ARL1 is set by both Power On and Power Off AR's

to the normal sequence is still possible after the MINIFLOW service routine has been
executed and the condition cleared.

Some of the Action Requests are inactivated by Mask bits in the MINIFLOW Status
Word (described in paragraph 1.4.6). Two of the Mask bits, Action Request Mask
(ARM) 1 and 8, inhibit two Action Request groups, others allow individual requests to
be masked-off as shown in Table 1-5. Requests masked-off are ignored and do not remain
pending. Maskable Action Requests are active when the corresponding Mask bit is one
(1), and inhibited for zero (0).

1-25

The Action Request system is mechanized with a multi-level priority structure
which allows some AR's to interrupt certain others. A set of "Action Request Lockout"
State Flip-flops (ARL 1 - 5) provide priority control. When a breakout occurs, the AR
Lockout of that Action Request group is set. This inhibits other AR's in that group and
lower priority groups. If an AR service routine is underway, and another Action
Request occurs in a higher priority group, a breakout to the higher level is executed.
This permits the execution of an interrupt while an interrupt is being serviced. Locked-
out AR's remain pending. Lower priority AR's break out as soon as all Lockout flip-
flops of higher priority are reset. If a Control Memory parity error is detected when
the ""Control Memory Error' AR Entry Ministep is accessed (two CM parity errors in
a row), the IC-9000 stops.

1.4.10 Control Engine Data Transfers

In Figure 1-4, the '""Move Select'" functional block represents the control and gating
elements used to move information between the various portions of the Control Engine;
obtain data from the Operating Engine Exchange Buss interface; and send data back to
the Operating Engine over the Control Engine Data Buss. Transfers of data are, in
general, accomplished by the Control MOVE Ministep. Some subsidiary functions
are performed by Move Select logic during the BRAD Ministep, to execute the "Copy A
into B' test mode for "Branch'' type Control Ministeps other than BRAD and BEAD and to
perform the '"Conditional Copy" operation during MAST. The MOVE Ministep executes
16-bit and 8-bit transfers.

State flip-flops are addressed as a group of 8-bit or 16-bit registers by the MOVE
Ministep as well as one mode where a single State flip-flop can be used as the FROM
address. The contents of any of the source addresses can be read out, but some desti-
nation addresses are not mechanized so that data may be read into them. This includes
the State pseudo-flip-flops and Pointer Pseudo-registers 08 - 15. The Current Address
Register contents cannot be altered by the MOVE Ministep. Selection logic can pick up
one of four 8-bit bytes from the Operating Engine Exchange Buss if the MOVE Ministep
specifies an 8-bit transfer. If the transfer is 16 bits, the most significant two bytes or
the least significant two bytes will be picked up as a unit and transferred to the destination
register. Control Engine Register addresses and a description of the MOVE Ministep
can be found in paragraph 2.3.8.

In addition to the Control MOVE Ministep, the Block Transfer (BLOT) Ministep
transfers data blocks of words to and from various groups of IC-9000 registers (in con-
junction with the GENT Ministep) or between the External Buss interfaces and register
_groups (paired with a CEDE or TEXT Ministep). These functions are described in para-
graph 2. 3. 6.

1-26

SECTION 2
MINISTEP FORMATS AND CONVENTIONS

OXXX OPERATING MINISTEP
IXXX CONTROL MINISTEP

Figure 2-1. Basic Ministep Formats

2.1 GENERAL

IC-9000 Ministeps are 32 bits long and are divided into Operating and Control
varieties. One exception occurs where the 32-bit word immediately following a cur-
rent Operating Ministep is processed as data. This occurs when the B SELECT field
in an Operating Ministep specifies a Long Immediate Data word. A 36-bit operand is
synthesized, using the LONG IMMEDIATE EXTEND field in the Operating Ministep to
supply the four high-order bits and the 32-bit successor word for the low-order part
of the operand.

Bits are numbered 0 through 31, left to right. The leftmost bit in a word, field
or sub-field is the most significant bit (MSB) for addressing, decoding, use as an
operand, etc. The least significant bit (LSB) is to the right. Ministep names are gener-
ally acronyms which are four letters long and form an English word, except for the
MOVE Ministep, which transfers (moves) data between Control Engine registers. The
names of Ministeps and fields are capitalized. Where the same bit is used to perform
multiple functions in different modes of execution, the alternatives are shown in the
drawing as subdivided fields.

2.2 OPERATING INSTRUCTIONS

Operating Ministep formats are shown in Figure 2-2. Abbreviations and symbols
follow a common notation where possible. Notation conventions for describing Opera-
ting Ministeps are shown below. Less commonly used designators are defined at their
first appearance.

"A" is Operand A. '"B'" is Operand B. '"A" is the 1's complement of A. ""COF1"
is the "Initial Carry-Out'" State flip-flop, which functions as a conditional carry-in
for some arithmetic operations. '-'" denotes the logical product (AND) operation.
"U" denotes the logical union (OR) operation. "E' denotes the Exclusive OR function.
""«" (Left Arrow) denotes that the value of the right-hand term replaces the contents
of the elements to the left.

2-1

0 12 34 5 678 9 10 11121314 1516 17 18 1920 21 22 2324 25 26 27 28 29 30 31

lllllllll!IITIIIIIIIIIIII
clT
E OP. B
cean | TE | Aoms | awount |5 [F (AT seL |8
0000 R IND.ADRS |OR IND.ADRS |OR
GENERAL ARITHMETIC |LONG M. EXT.
I - - - - —
‘:;F iy |_ SHORT M.__|
)
N\JCONDITION ~ SHIFT \
CEDE EXCHANGE § O(I;OEE AMOUNT lSJ % 1 OP. A B | OP.B
0001 CODE \\ ExTEND| OPAGRP |B Ny A |iIND.ADRS |oR|SEL |B |IND.ADRS |OR
CONDITIONAL EXTERNAL DATA EXCHANGE [LONG IM. EXT.
SHORT IM.
' N
SHIN SHIFT MASK SHIFT [% | oP. A B |1 OP.B
CODE ADRS | AMOUNT |S \ A SEL |B
0010 N | IND. ADRS |oR IND.ADRS [OR
SHIFT INSTRUCTION [LONG M. EXT |
SHORT IM.
IND
CHAD ,‘fgﬁ% ’ MASK [BYTE [BYTE BAYE [OP. A B |1 OP.B
18
0011 CODE | ADRS A | B ITE[3 |A|iND. ADRS |OR|SEL | B |iND. ADRS |OR
CHARACTER/DECIMAL L « IMMED CHAR =

N N N\
GENT §65 PAR% OP.A | OP.A \\ i | OP.A oP.B| I |_OP.B
0100 \\ 10 N EXTEND GROUP R\ A |inD. Aors |0r|GRP | B |inp. ADRS |OR

GENERAL DATA TRANSFER

TEXT {(UNDEFINED — SIMILAR TO CEDE)

0101
TRANSFER EXTERNAL

0110

UNUSED

0111

UNUSED

l!llilll}'IllllllllllllllIl[

| | L 1 } 1
0 12 345 678 9 101112131415 16 1718 19 20 21 22 23 2425 26 27 28 29 30 31
Figure 2-2, Operating Ministeps
2-2

C
GEAR | ARITH | MASK SHIFT | % [OP. A B |1 OP.8
CODE | ADRS | AMOUNT |8 |'F | A]inD.aDRs|oR[/SEL| B |ino.ADRS |or

Figure 2-3. GEAR Format ILONG IM.EXT.
| SHORT IM. _ |

2.2.1 GEAR - General Arithmetic

GEAR selects two operands and a Mask, routes them to the Primary Adder and
specifies a shift of the result through the Primary Shifter. The OPERAND A and
OPERAND B addressing structure of GE AR is repeated with some variations in the
other Operating Ministeps.

ARITHMETIC CODE (ARITH CODE), Bits 4-7: The Arithmetic Code field commands
one of 16 binary arithmetic and logical operations on COPERAND A and B inputs.
Table 2-1 lists the Primary Adder operations and coding.

MASK ADDRESS (MASK ADRS), Bits 8-11: Specifies one of 16 Mask Registers. Mask
Bank selection is accomplished by the MBS State flip-flop. Masking is always enabled
for GEAR.

Zero is forced in masked-out bits.
One (1) bits in mask words are masked-in bits in the result.
Carry generation is suppressed in masked-out bits.

Carries propagate over masked-out bits.

SHIFT AMOUNT, Bits 12-15: Specifies a single-length shift on the result word. Coding

is given in paragraph 2.2 (SHIN Ministep). Programmable shift amounts are left and

right 0, 1, 2, 4, 6, 8, 12, and 16 bits. Bits shifted out of the result are lost, except

that during left shifts, the last bit shifted out of the result word goes to the ''Shift Extension'
State flip-flop (SHE). Bits shifted in at the left end of the register are zeros or ones,

as controlled by the "Shift Out Sign' State flip-flop (SOS. Bits shifted in at the right end

of the word are zeros.

CLEAR, Bit 16: This bit is the mode specification for the masking operation. When
CLEAR is true (1), masked-out bits (as translated by the SHIFT AMOUNT) are cleared
to zero in the corresponding bits of the result (OPERAND A) register. When the CLEAR
is zero, masked-out bits are undisturbed and zeros are shifted into unmasked fields
from masked-out bit positions. Masked-in bits are copied into the result register in
both cases for a SHIFT AMOUNT of zero. When CLEAR is false and shifts other than
zero are specified, bits shifted into masked-out bit positions are lost. CLEAR true is a
'""No Op'" when the TEST bit is true.

TEST, Bit 17: Inhibits transfer of the result word into the OPERAND A register when
on (1). Permits testing status outputs of the result word without altering OPERAND A
register contents.

2-3

INDIRECT A; B (IA; IB), Bits 18: 26: Indirect address control for OPERAND A and B
selections. When the B SELECT coding specifies the General Registers, both IA and
IB perform idential functions. IB is inactive for other B SELECT modes. When IA and
IB are true (1), the respective indirect address (IND ADRS) field specifies one of the

16 Pointer Registers in the Control Engine. The contents of the five LSB's in the
specified Pointer Register address General Registers as operands indirectly.

"OPERAND A; B (OP A; OP B) Bits 19-23; 27-31: These address fields select one of 32
General Registers as OPERAND A and OPERAND B inputs. The OPERAND A mode is
active when the IA bit is off (0). The OP B mode is active when the B SELECT mode

specifies the General Registers for OP B and the IB bit is off.

INDIRECT ADDRESS A; B (IND ADRS), Bits 19-22; 27-30: Selects one of 16 CE Pointer
Registers as an INDIRECT ADDRESS Register. When active, the least significant five
bits of the specified Pointer address one of the General Registers. The A IND ADRS
specifies a Pointer when the IA bit is one (1). The B IND ADRS field specifies a Pointer
when B SEL specifies the General Registers (B SEL=0) and the IB bit is one (1); or

when the contents of a Pointer are used as an 8-bit operand (B SEL=1).

OR (A; B), Bits 23-31: Modifies the indirect address in the Pointer Register by logically
OR'ing into the least significant bit (LSB) position. If the LSB in the Pointer Register

is a one (1), the OR bit specification does not change the operand address. If LSB is
zero (0), a one (1) OR bit can alternately select one member of an even/odd register
pair (normally used for double-register-length arithmetic).

B SELECT (B SEL), Bits 22 and 25: Selects one of four sources of Operand B inputs.
The coding of the B SELECT Field is:

B SELECT Code OPERAND B Input
0 General Registers
1 Pointer Registers
2 Short Immediate Data
3 Long Immediate Data

For General Register inputs (B SEL=0), the OP B specification is identical to that
of the OP A field, both direct and indirect. B SEL=1 specifies the Pointer Registers,
as addressed in the IND ADRS field, as an 8-bit auxiliary OP B input. This input is
copied into the eight, LSB positions of the OP B input. OP B is zero in all other posi-
tions. B SEL=2 inputs bits 25-31 as a Short Immediate (literal) operand into the six
LSB positions of OP B. Upper bits in OP B are zero. B SEL=3 specifies the Long
Immediate Operand. The Long Immediate Operand is formed from the successor word
from the Control Memory plus the 4-bit LONG IMMEDIATE EXTENSION (LONG IM EXT)
to form up a complete, 36-bit, OP B input word. The 32-bit word from Control Memory
goes into the 32 LSB positions of the OP B word and bits 28-31 in the OP B field are

copied into the four MSB positions.

2-4

Table 2-1. Arithmetic Codes and Functions

ARITHMETIC CODE PRIMARY ADDER OPERATION
09 A< A+B
14 A «~A+B+H1 (A-B; 2's complement subtract)
10 A «A+B+1 (B-A)
11 A <A+B+COF; (Conditional carry-in)
12 A «~A+B+COF1
13 A < A+B+COF;
02 A<B (Clear and Add)
07 A<B (1's complement)
05 A<A'B (Logical AND)
01 A<A-B
03 A<A'B
06 A+ AUB (Logical OR)
00 A< AUB
04 A« AUB
15 A< AEB (Exclusive OR)
08 A~ AEB (Compare)

State Flip-Flops Affected. Several State flip-flops and pseudo-flip-flops may be active
during GEAR. They are:
. Carry Out Pseudo (COP)
Carry-out Flip-Flop1 (COF1)
. Carry-out Flip-Flop2 (COF2)
. Zero Sense Pseudo (ZSP)
Zero Register Flip-Flop1l (SRF1)
Zero Register Flip-Flop 2 (ZRF2)
(For SHIFT AMOUNTSs other than zero)

Shift Out Sign (SOS)
Shift Out Flag (SOF)
. Shift Extension (SHE)

Their logic functions are shown in Table 2-2.

2-5

Table 2-2. State Flip-Flop Functions (GEAR)

FUNCTION CONDITIONS MECHANIZATION
Carry-out ARITH CODES 09, 14, 10, COF2 «COFl1+«COP
11, 12, 13
Register Zero All ARITH CODES Except ZRF2+«ZRF1+«ZSP

Initial Carry-in (COF1)
Register Zero With Carry-in ARITH CODES 11, 12, 13 ZRF2+«ZRF1+« ZRF1 - ZSP
Sign Control Right Shift # 0 Bits shifted in copy SOS

Significance Check Left Shift # 0 Bits shifted out are com-
pared to SOS.
Comparison false sets SOF.

Register Extension Left Shift # 0 Last bit shifted out of
P OFF 'M | register goes to SHE.
i SET M
Q CONDITION| SHIFT
CEDE EXCHANGE\ CODE__| AMOUNT

OP. A
CODE :\\ EXTEND | OPA GRP A |IND.ADRS [OR|SEL | B |INDADRS |OR

Figure 2-4. CEDE TFormat]LONG IM. EXT.

SHORT M.
2.2.2 CEDE- Conditional External Data Exchange @~ = +-— — - — —

1 OP._A B 1 OP.B

7

CEDE transfers data addresses and control codes between Main Memory and the
Operating Engine External Registers. The active External Buss is specified in the
MINIFLOW Status Word. CEDE types are mechanized to perform the sequences which
fetch and translate target instructions, fetch and store operands and load MINIFLOW
and processor initialization data. Corresponding timing and acknowledge inputs from
Main Memory aid in sequence control. Some CEDE's place the IC-9000 Processor in
the "Wait" mode. If the corresponding acknowledge signal has not been received from
* Main Memory, the Wait mode is entered unless an Action Request (AR) or, for the

CEDE/WIN, a Target System interrupt is pending. Receipt of the correct acknowledge
"signal initiates execution of the CEDE Ministep. The Wait mode is not entered if the
acknowledge signal is present prior to the start of CEDE execution and no AR's (or
Target System Interrupts with CEDE/WIN) require servicing.

EXCHANGE CODE, Bits 4~7: Specifies one of the CEDE types for Execution. CEDE
codes and functions are described in Table 2-3. A more detailed description of CEDE
codes and functions can be found in Appendix D. CEDE Ministeps can be classed into
three types:

Memory Command Word Generation
. Data Transmission

Combinatorial (Complex)

2-6

CONDITION CODE, Bits 9-11: The CEDE condition code field is usable by the MINI-
FLOW programmer to provide specific inputs and control functions to Memory devices
on the External Buss. These bits have no meaning to the IC-9000 Processor; however,
they do have assigned functions for the SC-700 Memory unit.

OFFSET, Bits 9-10: Specifies the relative address of the data buss, referenced to the
External Command Word buss, at the SC-700 Memory. If the offset field is zero (0) data
to and from Memory is passed over the same buss as the incoming address. For OFF-
SET's other than zero, the amount is added (modulo 4) to the number of the buss which
accepted the CEDE Command Word to memory. Data words are then transferred over
the OFFSET buss.

MAIN MEMORY CONTROL (MMC), Bit 11: Specifies that the address field in the Command
Word is a control address and not an SC-700 Memory address. This bit is used to

access registers of special-purpose devices which can be installed in the Memory cabinet,
but which require separate addresses.

SHIFT AMOUNT, Bits 12-15: Coding of this field is specified in paragraph 2.2.3
(SHIN Ministep). The SHIFT AMOUNT field is active only for SHI (Shift In) and SHO
(Shift Out). These two CEDE Ministeps may be used to assemble byte input data into
register word format for SHI and take bytes from register words for transmission
when SHO is executed.

OPERAND A (Composite) : Includes OP A EXTEND, OP A GROUP, IA and OP A fields
as specified below. This addressing mode is active for WOP (Wait for Operand) and
WAS (Wait for Acknowledge and Store).

OPERAND A EXTEND (CP A EXTEND), Bits 9-11: An extension of the OP A address field.
Affords an 8-bit, OP A span of 256 directly addressable register locations. Used with
the OP A GRP to access up to 1024 Auxiliary Register or OE Language Board locations.

OPERAND A GROUP (CP A GRP), Bits 12-15: Divides Operating Engine Registers (and
the Control Engine interface) into related groups of registers for addressing purposes.
The coding of the OP A GRP field is shown below:

2-1

OPERAND A GROUP CODES

OP A GROUP REGISTER ASSIGNMENT
0000 General Registers
0001 Unassigned
0010 Miscellaneous
0011 Data Mask Registers
0100 Aux. Bank 0
0101 Aux. Bank 1
0110 Aux. Bank 2
0111 Aux. Bank 3
10XX Control Engine
1100 OE Language Board Bank 0
1101 OE Language Board Bank 1
1110 OE Language Board Bank 2
1111 OE Language Board Bank 3

The location assignment in the Miscellaneous Group (GROUP code 0010) is:

MISCE LLANEOUS GROUP REGISTERS

LOCATION NAME
00 Data Entry Switches
01 Main Memory Addr. Switches
02 Processor Addr. Switches
03 Unused
04 Primary Instruction Reg.
05 Secondary Instruction Reg.
06 Unused
07 Unused
08 External Register In 0
09 External Register In 1
10 External Register In 2
11 External Register In 3
12 External Register Out 0
13 External Register Out 1
14 External Register Out 2
15 External Register Out 3

SUBTRACT (SUB), Bit 16: Specifies performance of a two's complement subtraction.
This bit is only active for CEDE varieties which combine two operands in the Primary
Adder. When the bit is a one (1), two's complement subtraction is executed by the
Primary Adder when the EXCHANGE CODE enables the operation. When the SUB bit
is zero, an addition of the two operands is executed in the Primary Adder.

2-8

OPERAND A; B (Composite): Bits 18-31: Coding format is identical to GEAR Ministep
(refer to paragraph 2.2.1) except both operands are not specified for some CEDE
varieties.

Notes on Table Symbols and Callouts:

"EQ" is an External Output Register.

"EI" is an External Input Register.

"ADR" is the SC-700 Memory Address field, hits 10-31 in the EO.

""CM BRANCH ADR' denotes a Control Memory MINIFLOW "initialization" entry
(even location only).

"SE" is the Shift Extension Register.

"+" denotes an add or subtract operation, specified by the SUB field.

"OAD'" is an operand address field extracted from an incoming word.

"LB" denotes the Operating Engine Language Boards.

"IR" denotes the OE Target Instruction Registers.

Tabhle 2-3. CEDE Exchange Codes

CODE MNEMONIC FUNCTION DESCRIPTION
00 FIN EO-~ (A+B) ADR Fetch Instruction
01 WIN* CM BRANCH ADR- EILB Wait for Instruction; Execute
MINIFLOW entry; Generate
< (T * %k
A, EO (EIOAD B) Address and Save; Fetch

IR~ EI Operand; Load Target Instruc-
tion in Register.

02 FOP A, E OA DR (A£B) Fetch Operand
12 WOP A<EI Wait for Operand and Load
08 WOF A-<EI : Wait for Operand and Load;
EOADR* B Fetch Operand
15 WON A<EI Wait for Operand and Load;
EO<«B ADR Fetch Instruction
07 WIF A, EO ~(EIl +B)** Wait for Indirect Word;
D —_— -—
ADR OAD Fetch Operand
03 SOop EO ADR" (A+B)’ Store Operand (Write Request)
09 WAS EI, EO<A Wait for Addr. Acknowledge
and Store Data
10 UNUSED

*Inhibited if Action Request or Target System Interrupt is pending.
**Inhibited if operand fetch unnecessary.

2-9

Table 2-3. CEDE Exchange Codes (continued)

CODE MNEMONIC FUNCTION DE SCRIPTION
11 SHO EO*AODD (0-17 AEVEN (18-35); Shift on Output
or AEVEN (0-17) AODD (18-35);
Left and Right Shift, respectively
Aopp” “0DD (shifted)
13 WSI A, SE«EI (shifted) Wait for Operand, Shift on
Input
14 ROW EOA DR EOA DR Retry Output Word
(Generate Command Strobe)
04 GAD A+EO ADRiB) Generate Address and Save
05 RMW EO « (A+B) Read/Modify/Write Cycle
ADR = — -
Request
06 WSS Write Inhibit Output Wait for Command Acknow-
ledge and Suppress Store
f N\
SHIFT | MASK - SHIFT | \ 1 OP. A B | I OP. B
SHIN CODE ADRS AMOUNT |S § A SEL | B
5 k IND.ADRS|OR IND.ADRS |OR
Tigure 2-5. SHIN Format [LONG M. EXT,
_ SHORT M|

2.2.3 SHIN-Shift Instruction

The SHIN Ministep controls single and double register shifts in several modes and
provides the basic functions for performing Multiply, Divide and Normalize.

SHIFT CODE, Bits 4-7: Specifies one of 11 shift modes. A complete list of the SHIN
codes and functions is given in Table 2-4. During double-length register pair shifts,
the OP A field will normally address the even register and the odd address is implied.
If the odd address is specified for a register pair shift, the OP A input and the OP B
input are both the odd register, effectively operating as a one-register circular shift.
When a SHIN Ministep which calls for a double-length shift is executed, the Extension
Shifter functions with the Odd General Registers. Single-length shifts may use any
General Register as an operand. Some SHIN Ministeps execute a double-length Shift
with the Shift Extension Register. Both even or odd General Registers can be specified
as OP A when the Shift Extension Register takes part in the Shift. OP B is used for
addressing only with SHIN/MULTIPLY and DIVIDE, where it holds the Multiplicand
and Divisor, respectively.

2-10

—=~ RIGHT SHIFT (1 BIT/EXECUTION)

OP A(PAIR): FINAL, OP A(ODD): INITIAL,
2-WORD PRODUCT MULTIPLIER

%c%/ CONTROL BIT

NO OP,

CONTROL BIT OPERATION
0 + (ADD)
OP B:
- T
MULTIPLICAND I 1 (SUBTRACT)

Figure 2-6. SHIN/MULTIPLY Flow Diagram

\l/ «z— LEFT SHIFT (1 BIT/EXECUTION)
OP A(PAIR): INITIAL, OP A(ODD): FINAL,
2-WORD DIVIDEND QUOTIENT

st e A et S e = b ~an

QUOTIENT BITS:

CARRY OUT PSEUDO (COP)

e et n <
CONTROL BIT:

INITIAL CARRYOUT F-F(COF1)

L_<

e CONTROL BIT OPERATION
OP B: 0 + (ADD)
DIVISOR 1 — (SUBTRACT)

T .

Figure 2-7. SHIN/DIVIDE Flow Diagram

2-11A

During NCRMALIZE and DIVIDE, when the two-register pair specified by OPERAND
A is used in a target language format which does not require ‘a 72-bit word length, data
in the even register (upper half) must be right justified and the data in the odd register
(lower half) must be left justified. For multiply, the multiplier in the odd register is
left justified. Multiplicands and Divisors in the OPERAND B register (or auxiliary input
locations) must be right justified, as they are processed relative to the even register of
the OPERAND A pair. A flow diagram of the MULTIPLY and DIVIDE operation is shown
in Figure 2-6 and Figure 2-7. NORMALIZE shifts are sequenced by the CE Language
Boards and are executed in a manner similar to indirectly controlled shifts. A tally of
the shifted amount is generated in the Shift Control Pointer Register (P0T7) by outputs
from the CE Language Board.

" MASK ADDRESS (MASK ADRS), Bits 8-11: Specifies one of the 16 addressable Mask
Registers as described in paragraph 2.2.1 (GEAR Ministep). Masking affects only the
input to the Primary Shifter and never the implied register of an even/odd register pair.
Masked-out bits in the OP A register remain unchanged, since there is no CLEAR option
on the SHIN Ministep.

SHIFT AMOUNT, Bits 12-15: Specifies the number of bits to be shifted. A zero (0)

in bit 12 specifies a right shift. A one (1) in this bit specifies a left shift. Coding of
the rest of the field (bits 13-15) is treated as a 3-bit control number. Coding specifies
the following shifts:

Shift Amount Code 0 1 2 3 4 5 6 7
Shift Span 0 1 2 4 6 8 12 16

INDIRECT SHIFT (IS), Bit 16: Controls the source of shift control inputs to the Shifters.
If the IS bit is one (1), the five LSB positions in CE Pointer Register 07 specify the
amount of the shift, except where one or more of the three high-order bits is a one (1).
In this event, a 16-bit shift is executed.

A shift amount of 16 bits or less, and which is a power of two (1, 2, 4, 8, 16),
can be executed in one clock cycle. Indirect Shift execution out of the Shift Control
Register, for the five LLSB's, is related directly to the highest-order bit that is on.
Indirect Shifts are executed in the following order of precedence:

Bit Pattern (Bits 11-15) Shift Amount
1XXXX 16
01XXX 8
001XX 4
0001X 2
00001 1

At the time of execution, the amount of the shift is subtracted from the contents
of the Shift Control Register. By pairing a Branch Ministep to test the '"Shift Done"
State pseudo-flip-flop, indirectly specified shifts up to the counting capability of the
Pointer Register can be iteratively executed. BRAD (Branch and Decrement) Control
Ministeps should not be paired with indirect shifts for simultaneous execution.

2-11

OPERAND A; B (Composite), Bits 18-31: Coding format is identical to paragraph 2.2.1

(GEAR Ministep) except both operands are not needed for some SHIN varieties.

State Flip-Flops Affected. The Shift Out Sign (SOS), Shift Out Flag (SOF) and Shift

Extension (SHE) State flip-flops are active for all except double-length circular shifts.
Logic mechanization is the same as for GEAR (refer to Table 2-3).

SHIFT CODE

@ -3 O O bk W DN = O

10

11-15

Table 2-4. Shift Codes and Functions

OPERATION

AEVEN) * AODD

A (ODD)* A(EVEN)

A

A(EVEN)/A ODD)

AEVEN) - AODD)+» A(EVEN)
A+ SE

SE - A

A+ SE- A

NORMALIZE:
A(©DD)+ A(EVEN)

SHIFT MULTIPLY;
AEVEN-+ AODD)
OP B holds Multiplicand

SHIFT DIVIDE:
A(ODD~» A(EVEN)
OP B holds Divisor

UNASSIGNED

SHIFT TYPE

CONN. LONG SHIFT
CONN. LONG SHIFT
SINGLE SHIFT

DISCONN. DUAL SHIFT
LONG CIRCLE SHIFT
CONN. LONG SHIFT
CONN. LONG SHIFT
LONG CIRCLE SHIFT
CONN. LONG LEFT SHIFT

CONN. LONG RIGHT SHIFT

CONN. LONG LEFT SHIFT

" » " (Right Arrow) indicates that bits shifted out of the register on the left of
the arrow are shifted into the register on the right, independently of shift direction.
n/m (slash) indicates that no transfer of bits takes place. "A(EVEN)'" and "A(ODD)" are
a register pair, with A(ODD) implied when the OPERAND A address is even. "SE"
denotes the Shift Extension Register (G31).

2-12

f
CHAD MASK |BYTE[BYTE[A|E | I . A | B it] oprB
CHAD ARITH ADRS A | B BYS|al SEL IB
CODE TE|T | |IND.ADRS |OR { |IND.ADRS |OH
L _ | « IMMED CHAR » L _]

Figure 2-8. CHAD Format
2.2.4 CHAD - Character/Decimal

CHAD operates on the 32 low-order bits of the Operand A and Operand B inputs (see
Figure 2-8). These 32 bits are grouped into four 8-bit bytes (bits 4-11, 12-19, 20-27,
and 28-35). OP A and OP B selection incorporates direct and indirect addressing to the
byte level. For decimal operations, the CHAD Ministep treats the 8-bit byte as two BCD
digits. Invalid signs and digits are detected and indicated by State flip-flops and pseudo-
flip-flops (IDF, IDP, ISF, ISP). Carry correction is automatic.

CHARACTER ARITHMETIC CODE (CHAR ARITH CODE), Bits 4-7: Selects decimal
arithmetic, binary arithmetic and logical operations of 8-hit bytes. Table 2-5 lists
the codes and functions of the Byte/Decimal Adder. Decimal arithmetic operations
treat operands as two, 4-bit, binary-coded decimal (BCD) characters. Logical and
binary arithmetic operations are executed on 8-bhit bytes. The OP A Byte normally
holds the result of the operation (TEST hit off).

MASK ADDRESS (MASK ADRS), Bits 8-11: Specifies one of 16 Data Mask Registers
for the Mask word. For the CHAD Ministep, only the low-order eight bits of the Mask
Word are active. Masking operations and functions are identical to GEAR.

BYTE A: B: Bits 12 and 13; Bits 14 and 15: Specifies byte positions within the OP A
and OP B inputs, respectively.

INDIRECT A BYTE (IND A BYTE), Bit 16: Enables indirect specification of the Byte A
address within the OP A word. When on (1), the two low-order bits of CE Pointer Register
02 provide the indirect Byte A Address. Pointer Registers 00 and 02 are decremented by
one count each execution of CHAD when byte A is indirectly addressed. Branch Ministeps
can test Pointer ""Zero Sense'’ and ""One Sense'' pseudo-flip-flops and control the sequenc-
ing of operations to process character strings. For such operations, Pointer 02 is nor-
mally used to maintain the OP A byte position in the register word and Pointer 00 is used
for the OP A character count in a variable-length string.

TEST, Bit 17: Identical to GEAR function. When on (1), no registers are changed by
executing the Ministep but adder outputs can be tested by Control Ministeps.

OPERAND A (Composite), Bits 18-23: Same format as GEAR.

2-13

B SELECT (B SEL), Bits 24 and 25: Selects one of four sources of Operand B inputs.
Coding of the B SELECT Field is:

B Select Code B Operand Input
00 General Registers
01 Pointer Registers
02 Immediate Character
03 Indirect B Byte

For B SEL 00 and B SEL 01, the OP B inputs are the same as for the GEAR Mini-
ste. B SEL 02 specifies the 8-bit IMMEDIATE CHARACTER (IMMED CHAR) as the
OP B input. The IMMED CHAR input is a composite of bits 14, 15, and 26-31 of
the Ministep in that order. B SEL 03 enables the two LSB's of Pointer Register 03 to
address the byte position within the OP B input word. Pointer Registers 01 and 03 will
be decremented each CHAD iteration when B SEL 03 is specified. Pointer 01 is nor-
mally used to hold the OP B byte count for processing a character string.

State Flip-Flops Affected
Several State flip-flops and pseudo-flip-flops are active during CHAD. They are:

Carry Out Pseudo (COP)
Carry-out Flip-Flopl (COF1)
Carry-out Flip-Flop 2 (COF2)

. Zero Sense Pseudo (ZSP)
Zero Register Flip-Flop1 (ZRF1)
Zero Register Flip-Flop 2 (ZRF2)
Invalid Digit Pseudo (IDP)
Invalid Digit Flip-Flop (IDF)
Invalid Sign Pseudo (ISP)

. Invalid Sign Flip-Flop (ISP)

Their functions are shown in Table 2-6.

2-14

OP CODE

00
04
01
05

08
12
10
09
13
11

06
14
15
07
02
03

Table 2-5. Byte/Decimal OP Codes

DECIMAL

A« A+B

A« A"’ﬁ""l

A « A+B+COF1
A+ A+B+CcOF1

BINARY

A+ A+B

A« A+B+1

A« A+B+1

A« A+B+COF1
A+ A+B+COF1
A+ A+B+COF1

LOGICAL

A+ A‘B
A+ AUB
A+ AEB
A+«B
Unused
Unused

”ﬁ" represents the 9's complement of B.

FUNCTION

Carry-out

Register Zero

Register Zero
with Carry-in

Invalid Digit

Invalid Sign

Table 2-6.
CONDITIONS

CHAR ARITH Codes
00, 04, 01, 05, 08,
12, 10, 09, 13, 11

ALL CHAR ARITH Codes
Except with Carry-in
(COF1Y)

CHAR ARITH Codes
01, 05, 09, 13, 11

All Decimal Codes
00, 04, 01, 05

All Decimal Codes
00, 04, 01, 05

2-15

OPERATION

(Add)

(Sub)

(Add, Conditional Carry)
(Subtract, Conditional Carry)

(Add)

(Sub, 2's complement)

(Sub, 2's complement)

(Add, Conditional Carry)
(Subtract, Conditional Carry)
(Subtract, Conditional Carry)

(AND)

(OR)

(Exclusive OR)
(Clear and Add)

State Flip-TFlop Functions (CHAD)

MECHANIZATION

COF2« COF1+ COP

ZRF2+« ZRF1+ ZSP

ZRF2+« ZRF1l+ ZRF1' ZSP

IDF+« IDP
If any of the four BCD operand digits
is greater than 9, IDP is true.

ISF « ISP
If either of the LSD's of the two oper-
ands is less than 9, ISP is true.

\‘(T)/ '

GENT \\\ 5

2.2.5 GENT-General Data Transfer

PAR|PAR

P

OP.A | OP.A & oP.A__ lopB|i| _orB
EXTEND | GROUP &\A iNp ADRs |or|®RP |B | iND ADRS|OR

Figure 2-9. GENT Format

GENT performs direct transfers of the contents of Operating Engine Registers (see
Figure 2-9).

TO/FROM, Bit 5: Designates whether the extended OPERAND A field is a data source

or a destination. When TO/FROM is one (1), OPERAND A is moved to the OPERAND

B location. When TO/FROM is zero (0), the transfer reverses direction. Data addressed
by the OP A GRP and OP A fields transfers to the B GRP and OP B address.

PARITY ONE (PAR 1), Bit 6: In conjunction with PARITY ZERO bit, controls parity
logic when the MINIFLOW Status Word TEST MODE (MSW TM) bitisone. Used to per-
form tests on parity error detection logic. Coding of these two bits is shown below.

PARITY ZERO (PAR 0), Bit 7: Same function as PAR 1 bit, except zero parity is controlled.

PARITY ONE PARITY ZERO PARITY BITS STATE*
0 0 Normal Parity
0 1 0
1 0 1
1 1 1

*MSW TEST bit is on (1).

OPERAND A (Composite): Includes OP A EXTEND, OP A GROUP, IA and OP A fields
as specified below.

OPERAND A EXTEND (OP A EXTEND), Bits 9-11: An extension of the OP A address
field. Affords an 8-bit, OP A span of 256, directly addressable register locations. Used
with the OP A GRP to access up to 1024 Auxiliary Register and OE Language Board
locations.

OPERAND A GROUP (OP A GROUP), Bits 12-15: Divides Operating Engine Registers (and
the Control Engine interface) into related groups of registers for addressing functions.
The coding of the OP A GRP field is shown below:

2-16

01 234 5678 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L |||||||||||||ll||l||||1|
\ i
BRAT | TEST |A1B TEST BIT A TEST BIT B ‘ RELATIVE
, MODE |A | B ADDRESS
1000
BRANCH TEST
A l RELATIVE
BENT | TEST|AIB TEST BIT A TEST BIT B
MODE |A |8 ADDRESS
1001
BRANCH AND ENTER
BORE | TEST 1A 1B TEST BIT A TEST BIT B RELATIVE
MODE|A |B ADDRESS
1010
BRANCH OR RETURN
\ | j
BRAD @? POINTER | DECRE TESTBIT B RELATL‘;E
B MENT ADDRESS
1011 & I
BRANCH AND DECREMENT
BEAD K TEST BIT A
;EST A I S EXTENDED BRANCH ADDRESS
1100 ODE|A B ronvTEr. NN

BRANCH EXTENDED ADDRESS

’ N
BLOT BLOT \\\\\\\\\& RELATIVE
1101 CODE & ADDRESS
BLOCK TRANSFER
i
MasT |LOGICIAIB T sratusBIT A STATUS BIT B RESULT
1110 | CODPE|A B STATUS BIT
MANIPULATE STATUS
o MOVE ’ IMMEDIATE
MOVE CODE FROM ADDRESS TO ADDRESS ‘ MASK
MOVE S
T T T R
N N A T T U T 1 O O A Y

01 23 45 6 78 9 10111213 1415 1617 18 1920 21 22 23 24 25 26 27 28 29 30 31

Figure 2-10, Control Ministeps
2-17A

OPERAND A GROUP CODES

OP A GROUP REGISTER ASSIGNMENT
0000 General Registers
0001 Unassigned
0010 Miscellaneous
0011 Unassigned
0100 Aux. Bank 0
0101 Aux. Bank 1
0110 Aux. Bank 2
0111 Aux. Bank 3
10XX Control Engine
1100 OE Language Board Bank 0
1101 OE Language Board Bank 1
1110 OE Language Board Bank 2
1111 OE Language Board Bank 3

JIA; OP A (Composite), Bits 18-23: Same as GEAR.

OPERAND B (Composite): Includes OB B GRP, IB and OB B fields as specified below:

OPERAND B GROUP (OP B GRP), Bits 24 and 25: Specifies register groups for OP B
addressing. Several register-to-register transfers are not possible in the IC-9000,
such as transfers from one Auxiliary Register to another Auxiliary Register address
in the same clock cycle. Consequently, there are fewer OP B GRP assignments than
OP A Group Assignments. They are:

OPERAND B GROUP CODES

OP B GROUP REGISTER ASSIGNMENT
00 General Registers
01 Mask Registers
10 Miscellaneous
11 Control Engine

Register addresses in the Miscellaneous (both OP A and OP B) Group are shown in
Table 2-7.

2-17

Table 2-7. Miscellaneous Group Registers

LOCATION NAME
00 Data Entry Switches
01 Main Memory Addr Switches
02 Processor Addr. Switches
03 Unused
04 Primary Instruction Reg.
05 Secondary Instruction Reg.
06 Unused
07 Unused
08 External Register In 0
09 External Register In 1
10 External Register In 2
11 External Register In 3
12 External Register Out 0
13 External Register Out 1
14 External Register Out 2
15 External Register Out 3

2.3 CONTROL MINISTEPS

Control Ministep formats and field definitions are shown in Figure 2-10. In the tables
in this section, A and B designators refer to TEST BIT A and TEST BIT B, respectively
(instead of OPERAND A and OPERAND B). TEST BIT fields address the 256 State
flip-flops and pseudo-flip-flops of the IC-9000 (refer to paragraph 1.4.1).

Individual State flip-flop addresses in all Control Ministeps, have the following
format (see Figure 2-11):

REGISTER BIT GRP |
. i
|

0 34 67
Figure 2-11. Control Ministep Individual Address Format

TEST
MODE

RELATIVE
ADDRESS

BRAT TEST BIT A TEST BIT B

A |B
A |B

Figure 2-12. BRAT Format
2.3.1 BRAT-Branch Test

BRAT is the least complex Branch Ministep (see Figure 2-12). If the logic state
specified by the TEST MODE, A/A and B/B fields is true, a branch address is generated
by adding the continuation address and the contents of the RELATIVE ADDRESS field of
the Ministep.

2-18

TEST MODE, Bits 4 and 5: Specifies the type of operation or logical combination of

the TEST BIT A and B fields which are being sampled. When the TEST MODE condition
is true (1) the branch is taken. '"Move A to B' takes place whether branching occurs or
not. The coding of the TEST MODE field is:

TEST MODE CODE TEST CONDITION
0 TEST A and Move A to B (B« A)
1 TEST AUB (OR)
2 TEST AB (AND)
3 TEST AEB (Exclusive OR)

A/A; B/B, Bit 6; Bit 7: Specifies the logical states of TEST BIT's A and B, for Test-
ing. A/A, when one (1) specifies that the one side of the flip-flop is tested for the
logical one (1) or set, condition. When A/A is zero (0), the test is for the zero (com-
plement) output of the flip-flop true. The B/B field is coded in the same way. It per-
forms the same operation for TEST BIT B, except for TEST MODE 0 (Move A to B),
when it specifies whether a copy or complement move is to be taken.

TEST BIT A; B, Bits 8-15; Bits 16-23: Independently specify addresses of two of the
256 State flip-flops which are to be tested. As the two specifications are independent;
the address of the same flip-flop can be coded in hoth fields.

RELATIVE ADDRESS, Bits 24-31: Specifies the amount by which the continuation
address is to be altered. RELATIVE ADDRESS is added to the continuation address
instead of the current address, in order that a zero increment has the correct position
relative to all other possible branch points. The span of the relative branch address
field is Continuation Address +127, -128.

TEST
MODE

% TESTBIT A TEST BITB RELATIVE

BENT T ADDRESS

Iigure 2-13. BENT Format

2.3.2 BENT-Branch and Enter

BENT is very similar to BRAT. The significant difference is that when the test
is satisfied and the branch taken, a subroutine entry is executed. The continuation
address (the two Ministeps that would have been accessed if the branch had not taken) is
loaded into the Subroutine Return Stack. Paragraph 1.4.4 contains a description of the
operation of the Subroutine Return Stack. Refer to Figure 2-13.

2-19

TEST

BORE | MODE RELATIVE

TEST BIT A TEST BITB ADDRESS

>i>
w|w

Figure 2-14. BORE Format
2.3.3 BORE-Branch or Return
BORE complements the BENT Ministep. All other specifications are the same as
BRAT. If the test is satisfied, the branch is taken. If the test fails, a subroutine
return is executed by extracting a return address from the active Subroutine Return

Register. The Subroutine Pointer Register is decremented by one and MINIFLOW
execution proceeds from the return address point. Refer to Figure 2-14.

N .
BRAD \\ B | poinTER | DECRE- TESTBITB RELATIVE
B MENT ADDRESS

Figure 2-15. BRAD Format

2.3.4 BRAD-Branch and Decrement

BRAD is a specialized branch Ministep which is generally used for loop and count
control. It operates in only one mode, and samples TEST BIT B for the true or ccm-
plement state. BRAD should not be executed in conjunction with a SHIN Ministep when
the INDIRECT SHIFT (IS bit is on or NOCRMALIZE code is specified. Refer to
Figure 2-15,

POINTER ADDRESS (POINTER), BITS 8-11: Addresses the CE Pointer Register which is
to be modified. One of the Counting Pointers (P00-07) must be addressed for BRAD to
change the Pointer contents.

DECREMENT, Bits 12-15: Specifies the amount by which the Pointer Register is to

be modified when BRAD is executed. Coding of the DECREMENT field uses the MSB

as a sign, which gives a counting span of plus seven (+7) to minus eight (-8) in a single
execution. If TEST BIT B is the '""Zero Sense' flip-flop of the register specified by the
POINTER field, BRAD can function as a loop or count control. However, using an in-
cremented valus of other than one (plus or minus), it is possible to pass through zero
and end up with a non-zero residue in the Pointer. To test this situation, the "Through
Zero' State pseudo-flip-flop is provided. Testing must take place during the same clock
cycle that the modification occurs. The Through Zero output is developed so late in the
execution cycle that a one-clock-cycle delay (hiccup) occurs when the branch is not taken.

2-20

TEST| A
MODE| A

TEST BIT A

POINTER W

Figure 2-16. BEAD Format

BEAD EXTENDED BRANCH ADDRESS

oM=-{2Zm

2.3.5 BEAD-Branch-Extended Address

BEAD has four modes of operation. One of its major functions is to provide a
capability for specifying absolute branch addresses to Control Memory.

TEST MODE, Bits 4 and 5: Specifies test and addressing variations. TEST MODE
functions are:

TEST MODE CODE TEST FUNCTIONS
0 Conditional Absolute Branch
1 Absolute Branch plus Pointer
2 Continuation plus Pointer
3 Unconditional Absolute Branch

The four variations are:

TEST BIT A

I

Figure 2-17. BEAD Format, Conditional Absolute Branch

EXTENDED BRANCH ADDRESS

A
BEAD | 0 |,

om—-Zm

2.3.5.1 Conditional Absolute Branch. If the test condition specified by the A/A

field (bit 6) is true for the State flip-flop specified in TEST BIT A, the branch address
in the Control Memory is specified absolutely in the 16-bit EXTENDED BRANCH
ADDRESS field.

BEAD 1 |A
A

oM~Zmi

POINTER W BRANCH ADDRESS

Figure 2-18. BEAD Format, Absolute Branch Plus Pointer

2.3.5.2 Absolute Branch Plus Pointer. When this BEAD is executed, the branch
address is generated by adding the contents of the POINTER register specified in

bits 8-11 to the contents of the EXTENDED BRANCH ADDRESS field as an 8-bit posi-
tive number.

2-21

BEAD 2

>|>
om—zm

POINTER m

Figure 2-19. BEAD Format, Continuation Plus Pointer

2.3.5.3 Continuation Plus Pointer. In this mode of the BEAD Ministep, the absolute
branch capability is not employed. The effect is similar to TEST MODE 1 in the preceding
paragraph, except that the branch is taken by adding the contents of the specified
POINTER Register to the MINIFLOW continuation address. The contents of the

POINTER are treated as an 8-bit positive number.

EXTENDED BRANCH ADDRESS

A
BEAD 3 A

om—Zm
!

O

Figure 2-20. BEAD Format Unconditional Absolute Branch

2.3.5.4 Unconditional Absolute Branch. In this mode, BEAD takes the branch to the
location specified in the EXTENDED BRANCH ADDRESS field unconditionally and un-
modified.

The field specifications of the remaining BEAD bits are:

A/K, Bit 6: This bit is active with TEST MODE 0 and specifies the test condition
for TEST BIT A as in the BRAT Ministep.

ENTER, Bit 7: Executes a subroutine entry when a branch is taken. The continuation
address goes to the Subroutine Return Stack. ENTER is active for all TEST MODE A
types. When true, this bit causes BEAD to function similarly to the Branch and Enter
(BENT) Ministep.

TEST BIT A, Bits 8-15: Active during TEST MODE 0. Addresses one of the State
flip-flops for testing, as in BRAT.

POINTER ADDRESS (POINTER), Bits 8-11: Active during TEST MODE's 1 and 2.
Specifies the Pointer Register whose contents are to be used to develop the branch
address.

EXTENDED BRANCH ADDRESS, Bits 16-31: Holds a 16-bit, absolute branch address
to Control Memory. Active during TEST MODE's 0, 1, and 3.

2-22

I OO

Figure 2-21. BLOT Format

2.3.6 BLOT-Block Transfer

BLOT is used to transfer multiple-word blocks of data within the processor, from
an external source or to an external element. BLOT can also load in multiple (chained)
blocks from external sources for processor start-up and initialization, Control Memory
overlay, etc. BLOT is always teamed with CEDE, GENT or TEXT Ministeps, depend-
ing upon whether the move is to or from an external device or is an internal transfer.
When transferring data to and from the Control Memory and the Subroutine Return Stack,
the BLOT code controls the transfer directly, in conjunction with an Operating Ministep
(CEDE, GENT or TEXT). For Operating Engine transfers and when loading multiple
blocks, BLOT functions as a sequence control for the operation. Pointer Registers
00-03 are mechanized to function as counters and address generators during BLOT
execution. Refer to Figure 2-21.

STREAM CONTROL (STREAM), Bit 4: The STREAM bit is effective when a CEDE/WOP
(Wait for Operand) is executed with a BLOT Ministep. The function of the STREAM bit

is to allow loading of multiple operand words from an input device which is itself de-
signed for block transfers. (The block-transfer mode of read or write operation requires
only a start address and an explicit or implicit block length specification.) STREAM
resets the '"Buss Busy'" State flip-flop after the execution of the CEDE /WOP;BLOT
Ministep pair so that another data word can be read in without sending a Command Word
out.

BLOT CODE, Bits 5-7: Specifies the type of block transfer operation. Mnemonics for
block transfers and their functions are:

CODE MNEMONIC FUNCTION
0 RCM Read one block from CM; send to OE
1 WCM Write one block into CM from OE with good parity
2 RSB Read one block from Subroutine Stack; send to OE
3 WSB Write one block into Subroutine Stack; from OE
4 MOE Move one block in OE
5 WBP Write one block into CM from OE with bad parity
6 LMB Load Multiple Blocks

RELATIVE ADDRESS, Bits 24-31: Specifies the increment for branching until Pointer
01 (Word Counter) goes to one (1), unless Load Multiple Block (LMB) is active and the
CHAIN bit in the Load Control Word is true.

2-23

2.3.6.1 Single Block Load Operations. Single block transfers use Pointer Registers
00-03 which in combination, are called the '""Load Control Word". Pointer Register 00
is available for use as an indirect OE address pointer. 01 will always be used as a
word counter and Pointer Registers 02 and 03 are used together as a 16-bit counter to
designate a Control or Operating Engine address. When BLOT is executed, all three
counters (P00, P01, P02/03) are decremented by one. BLOT execution starts at the
high-order address and works down. Pointer 01 is tested for '""One Sense'' true and
exits when the one (1) count is present. Pointers must be initialized for all single
block transfers. When Pointer 01 (the word counter) has a count other than one, the
contents of the RELATIVE ADDRESS field is used as the branch address. The count of
one in Pointer 01 causes the continuation Ministep pair to be accessed. In order to
utilize the full count span of Pointer 01 (256 words), the word count must start at zero
(0), to adjust for the breakout at the count of one.

Single block transfers use a GENT;BLOT pair to transfer data between the Control
Engine and the Operating Engine or between Operating Engine Register Groups. The
GENT Ministep can specify both source and destination register addresses directly,
but indirect addressing is generally used, with P00 and P02/03 available for use as
independent Pointers. Single block load operations move data into the processor from an
external source, such as Main Memory or an I/O device. Execution of this function
uses a CEDE or TEXT paired with the BLOT Ministep. Where the registers are in
the Operating Engine, the CEDE and TEXT Ministep OP A GRP and OP A EXTEND fields
specify the data destination. When the destination registers are in the Control Memory,
the appropriate BLOT code must be used to perform the transfer. Single block store
operations are used to read a block of words out to an external device. If the Control
Memory is the source of data, the CEDE /WAS is paired with the BLOT/RCM to perform
the operation.

When the combined Pointer 02/03 is used to indirectly address registers in the
Operating engine and the Subroutine Stack in the Control Engine, care must be taken to
prevent rollover of the address count within a register group. This is caused by
attempting to load or read a register with a higher address than is contained in the
group (for instance, addressing a General Register with an address greater than 31),
or counting one of the Pointers used for addressing through zero and going around to
count 255.

\\\ Sl REG WORD START
N| GROUP COUN

& T ADDRESS
|

34 78 16 16 31
« P00 » ! « P01+ l « P02+ l « P03+ |

Figure 2-22. Load Control Word Format (LMB)

2.3.6.2 Multiple Block Load Operations. The Load Multiple Blocks (LMB) mode of
BLOT utilizes the Load Control Word (LCW), shown in Figure 2-22, as a header for
blocks which are read in from an external source. BLOT/LMB, generally in con-
junction, witha CEDE/WOP is used for initializing the processor from a cold start or

2-24

for reinitializing the processor for a language changeover. The operation is basically
a scatter/load technique. A sequence of self-defining data blocks can be loaded into all
addressable register groups in the IC-9000 Operating Engine, Control Memory and the
Subroutine Return Stack. The first word in any chained block must be the Load Control
Word (LCW), which defines the number of words in the block, the register group they
are to be loaded into and the starting address within the group. To load the LCW, the
count in Pointer 00 must be initialized to zero. The LCW also includes a CHAIN (CHN)
bit, which indicates whether or not there is another block following the current one.

A count of one (1) in Pointer 02 during LMB addresses the MINIFLOW Status Word.

If the CHAIN bit is true, only the 16-bit MINIFLOW Status Register is loaded and P01
is counted to zero (0) for the next LCW. The branch is taken. When the CHAIN bit is
false, the Current Address Register is loaded, as well as the MINIFLOW Status Regis-
ter, when P01 is one. The next Ministep pair is addressed by the Current Address
Register. During LMB, the REGISTER) GROUP coding controls the transfer destination
in conjunction with the count in P02 and P03. P00 is not decremented during LMB.
Register Group assignment is as follows:

CODE GROUP
0000 General Registers
0001 Mask Registers
0010 Miscellaneous Registers (Operating Engine)
0011 Unassigned
0100 Auxiliary Register Bank 0
0101 Auxiliary Register Baunk 1
0110 Auxiliary Register Bank 2
0111 Auxiliary Register Bank 3
1000 Control Memory
1001 Subroutine Stack
1010 MINIFLOW Status Word
1100 OE Language Board Bank 0
1101 OE Language Board Bank 1
1110 OE Language Board Bank 2
1111 OE Language Board Bank 3
masT [LOCGICIA B STATUS BIT A STATUSBIT B RESULT
CODE|A |B STATUS BIT

Figure 2-23. MAST Format
2.3.7 MAST-Manipulate Status

MAST sets or resets one State flip-flop based on a logical combination of the set
or reset condition of two State flip-flops. The manipulation to be performed is speci-
fied by the LOGIC CODE field. Pseudo-flip-flops can be sensed but cannot be directly
modified. Refer to Figure 2-23.

2-25

LOGIC CODE, Bits 4 and 5: Specifies the type of logical combination that is to be
imposed on the RESULT STATUS BIT. The LOGIC CODE functions are shown below:

LOGIC CODE LOGIC MODE
0 If B test =1 then RESULT « A (Conditional Move)
1 RESULT+ AUB (OR)
2 RESULT« A-B (AND)

[JV)

RESULT « AEB (Exclusive OR)

LOGIC CODE 0 provides a conditional move of the logic state of STATUS Bit A
or its complement (A/Ai_ field) to the RESULT STATUS BIT if the STATUS BIT B test
(as specified by the B/B bit) is true.

The other three codes provide the logical operations of OR, AND, and Exclusive OR.

A/Z; B/ﬁ; Bit 6; Bit 7: These fields control sampling of the set or reset condition of
STATUS BIT A and B, respectively. In conjunction with the LOGIC CODE field, these
bits provide a capability to specify logical combinations of the two test bits, to derive
set and reset inputs to the RESULT BIT State flip-flop.

STATUS BIT A; B, Bits 8-15; Bits 16-23: Specifies the inputs to the combining logic
which drives the RESULT BIT. It is possible to code TEST BIT A and B for the same
State flip-flop. Addressing format is the same as the TEST BIT A and B fields of the
BRAT Ministep.

RESULT STATUS BIT, Bits 24-31: Addresses the driven State flip-flop. The function
specified in the LOGIC CODE field and in the A/A and B/B fields is used to reset or set
the RESULT STATUS BIT, depending on the inputs and the logical mechanization of the
RESULT flip-flop. Addressing format is the same as for the two STATUS BIT fields.

MOVE MOVE FROM ADDRESS TO ADDRESS IMMEDIATE

Figure 2-24. MOVE Format

2.3.8 MOVE-~Control Engine MOVE

MOVE provides a means for moving data between registers in the Control Engine.
MOVE can address all Control Engine Registers as if they are 8 bits wide. When a 16~
bit transfer is specified, two, 8-bit bytes are transferred in either normal or reversed
address sequence. Register addressing format, except for the FROM address of the
MOVE/MOM (Move One to Many) is shown below. FROM in the MOVE /MOM is the
same format for addressing individual State flip-flops shown in paragraph 2.3. Refer to

Figure 2-24.

2-26

MOVE CODE, Bits 4-7: Specifies one of six different modes of operation. MOVE CODE
functions are:

MOVE CODE OPERATION MNEMONIC MASKABLE DATA LENGTH
000 Move Short Immediate MSI YES 8 bits
001 Move One to Many MOM YES 8 bits
010 Move and Replace MAR YES 8 bits
011 Move and Complement MAC YES 8 bits
100 Move and Clear MCL YES 8 bits
101 Move Double Byte MDB NO 16 bits

For MSI, the FROM field is treated as an 8-bit data word and moved to the speci-
fied TO address. MOM uses FROM as a State flip-flop address (address format is the
same as for the BRAT Ministep). The state of the designated flip~flop is moved to all
masked-in bits of the TO register. For MAR, FROM specifies an 8-bit register whose
contents replace corresponding masked-in bits in the TO location. MAC is similar to

-MAR, but bits which are moved are complemented. Masked-out bits in the destination
register are not changed. MCL differs from other MOVE's, as masked-out bits are
cleared to zero, otherwise it is identical to MAR. MDB allows two 8-bit bytes to be
transferred. This MOVE is not maskable and is done on even/odd register pairs only.
The two bytes will end up in normal or reversed sequence duc to addressing mode.
Register address in the TO and FROM Address fields are decoded as follows for 16-
bit MOVES:

FROM ADDRESS TO ADDRESS SEQUENCE
Even Even Normal
Even Odd Reversed
Odd Even Reversed
Odd Odd Normal

FROM; TO ADDRESS, Bits 8-15; Bits 16-23: Specifies the source and destination
registers in the Control Engine for MOVE. Register addresses in the Control Engine

are divided into six groups, each containing up to sixteen 8-bit registers. Register
address assignments are shown in Table 2-8. Addressing format is shown in Figure 2-25.

REGISTER GROUP
ADDRESS ADDRESS

0 34 7

Figure 2-25 Addressing Format

2-27

The Subroutine Return Registers, although 16 bits wide, can also be addressed by
8-bit transfers. Access to the least significant eight bits of a Return address is obtained
by specifying the corresponding odd register in the appropriate group (Groups 4 and 5)
during an 8-bit MOVE. Byte transposition between upper and lower halves of the regis-
ter can be accomplished by coding TO and FROM fields according to the rules given
previously.

IMMEDIATE MASK, Bits 24-31: Specifies which destination register bits will be affected
by the MOVE. Masked-in bits allow transfer without alteration. For the MOVE/MCL
(Move and Clear), masked-out bits are cleared to zero in the TO location. For other
MOVE CODE options, masked-out bit positions remain in their original state. The
Double-byte MOVE, MDB is not maskable.

Table 2-8. Control Engine Register Address Assignments

GROUP 0 - STATE FLIP-FLOPS

GENERAL INDICATOR F/F's
ROO [RO1 | RO2 | RO3

LANGUAGE BOARD CONTROL F/F's GEN. IND. F/F's EXT. WRITE F/F's

RO4 | RO5 | R06 | RO7
ACTION REQUEST F/F's
RO8 | RO9 R10 | R11
OE CONTROL F/F's CE CONTROL F/F's
R12 | R13 R14 l R15

GROUP 1 - STATE FLIP-FLOPS

TARGET SYSTEM INTERRUPT F/F's
R00 | RO1 , R02 , RO3

TARGET SYSTEM INTERRUPT MASK F/F's

R04 | RO5 R06 | RO7

OE PSEUDO F/F's OE & CE PSEUDO F/F's

ROS8 | RO9 R10 | R11
MANUAL & POINTER ONE SENSE POINTER ZERO SENSE
R12 | R13 R14 | R15

2-28

Table 2-8. Control Engine Register Address Assignments (continued)

GROUP 2 - POINTER REGISTERS

F/F POINTERS

ROO | RO1 | RO2 | RO3
SUBRTN CNTR SHIFT CNTR
RO4 | RO5 , RO6 | RO7
LB PSEUDO-POINTERS
RO8 , RO9 | R10 | R11
R12 | R13 | R14 | R15

GROUP 3 - MISCELLANEOQOUS

MINIFLOW STATUS

CURRENT ADDRESS REG

R00 " RO1 RO2 | RO3
CE DATA BUSS OUT
RO4 , RO5 | RO6 | RO7
OE EXCHANGE BUSS IN
RO8 1 RO9 | R10 | R11

GROUP 4 - SUBROUTINE STACK REGISTERS

ROO (SUBRTN REG 00)

R02 (SUBRTN REG 01)

RO4 (SUBRTN REG 02)

RO6 (SUBRTN REG 03)

RO8 (SUBRTN REG 04)

R10 (SUBRTN REG 05)

R12 (SUBRTN REG 06

R14 (SUBRTN REG 07)

GROUP 5 - SUBROUTINE STACK REGISTERS

ROO (SUBRTN REG 08

R02 (SUBRTN REG 09)

R04 (SUBRTN REG 10)

R06 (SUBRTN REG 11)

RO8 (SUBRTN REG 12)

R10 (SUBRTN REG 13)

R12 (SUBRTN REG 14)

R14 (SUBRTN REG 15)

2-29

NOTE

TEXT FORMAT AND CODING

The TE XT Ministep is not implemented for the initial
version of the IC-9000 Processor, as system applications
currently scheduled do not require direct communication
to external devices other than SC-700 Main Memory
Modules and a special purpose Data Exchange Unit (DEU)
in the Memory Cabinet. When TEXT is implemented,
retrofit to installed processors will be scheduled on a
non-interference basis.

The TEXT Ministep format is similar to CEDE, with
TRANSFER CODES tailored for communication with a
broad range of devices and I/0O interfaces.

2-30

APPENDIX A SC-700 MEMORY UNIT

The SC-700 Memory Cabinet holds up to eight, 32K-word Memory Modules (K=1024).
Each of the four processor busses can communicate with up to sixteen cabinets of eight
Memory Modules. The nominal cycle time of the SC-700 unit is 700 nanoseconds. Read
access time, affer the receipt of an address and the initiation of a Read/Restore cycle,
is a nominal 300 nanoseconds. Actual read access will not be this fast due to delays in
the transmission of information to the processor External Buss Register. Assuming only
one SC-700 Memory Cabinet, typicalaccess times are on the order of 350 nanoseconds.
There will be some minor variations due to differing transmission path lengths in the
Memory Cabinet to the various Memory Modules. When more than one Memory Cabinet
is used on a buss, the signals are ''chained" through each cabinet by line receivers and
drivers in the interface area. Additional circuit and transmission delays are incurred
for each successive employment of this chaining technique. Two-way interlace of mul-
tiple Memory Modules is also available to improve effective access time in memory-
limited applications.

The SC-700 Memory has four External Busses for communication with the outside world,
and was designed to complement the IC-9000 Processor architecture. Any of the four
IC-9000 External Busses may be interfaced to any of the four SC-700 Memory busses.

It is even possible to connect more than one buss from a processor into a Memory
Cabinet to different, or even the same Memory Unit. The SC-700 is designed to accept
addresses from one buss, and, directed by '"Buss Offset'" coding in the External Command
(address) word, read data from or transfer data to a "foreign' buss. The format of the
command word is shown in the diagram below.

The SC-700 has two I/C interface mechanization modes. The Direct-Coupled interface
(DCIO) is used where compatible signal levels, short cable runs and a benign electro-
magnetic environment allow. The Alternating Current interface (ACIO) uses transformer
coupling and a high frequency carrier (85 mhz) to provide isolation and a capability to
operate in high ambient noise environments.

Several card positions are reserved in the Memory Cabinet for implementation of func-
tions which are conveniently handled on the Memory Buss, but which are separated from
the Memory functions. These facilities allow multiple use of the Memory Buss as an
aid to system implementation. The address of a control element is distinguished from
a Memory location by the presence of the MMC signal (bit 4 of the External Command
word).

s OZ=Z

INSTR
CODE

NOT ASSIGNED CABINET [MODULE WORD ADDRESS

5 a 1314 1718 2021 35

EXTERNAL COMMAND WORD FORMAT

The SC-700 INSTRUCTION (INSTR) CODE field, bits 00 and 01 are decoded as follows:

CODE OPERATION
00 Unused
01 Write into Location
10 Read from Location
11 Read/Modify/Write to Location

After reading out data for a Read/Modify/ Write cycle, the SC-700 stays on the buss
until the write cycle is initiated by receipt of a data word. No other commands can be
accepted until the sequence is completed.

The other two bits of the INSTR CODE field (bits 02, 03) contain the ""Relative Offset"
between the buss which received the External Command word and the buss over which
data is to be passed. The amount of the offset is added to the command buss number,
modulo four, to obtain the offset buss address.

Bit four, the MAIN MEMORY CONTROL (MMC) bit, wheun true, indicates that the word
address field in the External Command word is not directed to one of the SC-700 Memory
Units within the addressed cabinet. The cabinet has spare module slots for incorporat-
ing added facilities (such as protect key check logic or an operator's console interface)
which are required to communicate over the same External Buss used for access to

Main Memory.

Bits 5 - 13 are not assigned but are potentially available to perform subsidiary control
functions (such as holding a memory protect key) where needed.

Bits 14 - 17 select one of up to sixteen Main Memory CABINETS which can be chained
on the buss.

Bits 18 - 20 select one of up to eight SC-700 Memory MODULES which can be accommodated
in each cabinet.

Bits 21 - 35 define the WORD ADDRESS of one of 32K locations in the Memory Module
(or special purpose control device in the Memory Cabinet).

In addition to the data bits of the External Command Word, there are several other lines
that provide subsidiary logic and timing signals. The logic functions that are provided
are:

« Parity - Four parity bits are transferred each time a data word is passed over
the buss. Parity is generated at the data source and is maintained in the Memory.
Parity checking is accomplished at the receiver. Each parity bit applies to a
9-bit byte.

+ Presence Acknowledge - This signal is generated by the addressed Memory
Module. Lack of this signal notifies the originator of the External Command
word that the addressed Memory Module is unavailable or inactive.

+ Store Suppress - This signal is originated by the requestor of a Store or Read/
Modify/Write cycle. It causes the Memory to restore the original data in the
word and not continue in the storage mode. The usual cause for suppressing
a store is the detection of a Memory Protect Address Violation at the IC-9000.

A-3/A-4

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11A
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17A
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	A-01
	A-02
	A-03

