Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER
Filed Nov. 27, 1967 30 Sheets-Sheet 1
2 [wam Vi Fre l y
/ AEITHETIC meroey 4
G N £EG/5TEES 2] ¢
Y N i) p
7 —Te 27
/ /
4 /5 A0 1e ' %
Z L/0 CHANNEL INNEE [/o CHAMNEL] | ,47
g / COMPUTEEL b4 g
U U
y PEBITS covsore V¢ | y
g AND” DISRAY {2¢] g
o] |85] 2
T]
/mx/v EMGINE BEGISTES BITS AFFECTED
ZTL S N0 B< NN
E QO Q0 |~~~ NN N [DH N
oce| 30
305 2 —
09661 % —
00-11| B2 || /5 —
2-1a| 22 —
1517 3 —
K]
225 oo — .
2 2 - | el
MAN ENGCINE
oo 4 M 2onvE covien coves
0308 &5 —
AR
27| 2
/8:23| 12
eI
2038 o
008 35 —
o917| Zz3 =
o2 7 .
o5)
gg- % /257 1 ////6 [
L
ASZLO (. Gkocz)
A %] 7 BB E b
INVENTORS.
/835 77 — GALY J GOSS
0938 2 e o EEVEST I eceL)
%ﬁ gé | 1 1 1 1
I i l | 1 | ﬁ;«. ?
NEVS

Dec. 1, 1970

Filed Nov. 27, 1967

L. L. RAKOCZI ETAL
LANGUAGE INDEPENDENT COMPUT

3,544,969

ER

30 Sheets-Sheet 2

Zoe

A770

PVBXX //
AMAIN o MmN
ENGINE MEMOBY LECISTEES | -/2
/5/ :]
_____ L4 A=
ceaesrs |
' PIEXX |
PEXN"] scneouce VP MBIXX |
|
PMBXX V57‘< (ng%/\/ {
conreor 96
/’ggX] reod) SIGNALS / ;
) v / Pierts |
MIN/-INSTE. I
WIBED-IN - PEGI5TE55 |
TRANSATOES SEQUENCE DECODES |
AND ConTBoL |
Pren Avexx | lesew '
e V| L-msror 50 % |
™~ / N |
MAIN BUS) |
J /’ []
Wd\b&’\ ~EEXX PMBXX~] MBIXX . TEEXX, ;
' d Z; o “eaNE
wvir V¥ | conreor T sl |
¥ |
—_—] —_— e e e 4]
- Herxx HEAXX_ HBIXX oorxx
HOMXX
N CONSOLE
/4
- e 8
'
|15 // 4 CASSLO ¢ £Aoce/
/0 I/0 DAVID E. FEEFE
CHAN. I chan. 2 Gl I INVENTORS
T MBIK o CENEST et
HEH XX

See
NEVS

L. L. RAKOCZI ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

. 1, 1970

30 Sheets-Sheet 3

Filed Nov. 27, 1967

H

46 | o¢ |peong

qs P9I

bg OLT

Rme._~ Q\%, |
7 S NIV ﬂ
S |
: So07 S
PRGN SV RRUND 5 BT T ¢WJWHN§§1L“WM .
@m.&: TSI, &w&: eSS G B N
02N 7 — N
1N <
&Ré&w w&$ﬁ L o LR
%mm&% w2 13 et ﬁ =
! X S &ﬁkaﬁ
INVIAY
SIS WRUMI VIOV NIV Of
TN RINOIS HRUMe)
LT ST
200239 | | |200020| | | 300090
261 INIY L5374 2NINOIS
7 N 2
Ammm & % or2 T _
X R ~
N 72 QRG]
m ﬂmnum
3
[_c209 297] [szvom) cegr | 2FMTIHIS
IMSHWIZ] OMsw?
] 7 3
NN NN
SEe-00L0W _] £e2 NI INUSES
Ao 7-em \wxm O
I245/927 S-S ; g | X

P TOAUNCD 7 FAUSIO27 2SN/ INIWYV

ia
A

NN i
TCrC Q
B
2 WG AR
QWS
SR
5VMN
NARR
&
(222

PO TIN5 -/ - G2 3
€D IFNITIHIS

INDICATOES & LISAAY .FI & b,

Dec. 1, 1970

Filed Nov. 27, 1967

L. L. RAKOCZI ETAL

3,544,969

LANGUAGE INDEPENDENT COMPUTER

30 Sheets-Sheet 4

| _
|
5]
\ - Se-22 W A N
N e Ty = § 3
Q 3 (LT Z TR S
N D N N
S\ &E}‘ RN P S [{c2em) gv§ ‘
3 o [N N S| N |27 QQQ 0y
§ % AN \Yg % & ~ % .f%‘ﬂm %g)\jl\) §
184 . Q
S || By S8 ZZ N R N >
N NENE AR N N
N NI N E NES 3 N
RIS NN
I : i § %
N 3
- u
TN IBT LT
W RES Q]
3 N
g | B 3
' 188 T S 2 g —
N N [N | X |FFRI
N SE- 00| D
AR § 3
& S
S NE ooy
9 3 3 I
Y QO X< ¥ 1N
Ny Q :
Q N
Q \.%
- - L_ |
Ms&o L. BAOCZ
DAVID E. FEEFE,
INVENTORS.
GALY T GOSS
52/14557 V4 POEC:ELL/

o< ﬁ;«
A7 TOENEVS

Dec. 1, 1970

Filed Nov. 27, 1967

Fré 3c.

MIN/ ENGINE 47

L. L. RAKOCZI ETAL

3,544,969

LANGUAGE INDEPENDENT COMPUTER

30 Sheets-Sheet s

S0-10 7S
—
W [
N &
Q N
N
&\ N
Q
A\
N
~I NN
0
N R
N
N N N
s | S
— & ™ o-072 N
T Q =
°r N
Q S
NS L
oe-92 GV
||

CASELO.L. eakoce/

LAVID E. EEEFER
‘ INVENTORS.
GAEY J. GOSS
B {7‘61/557 S FOECELL!

Lo

A7TTOENE VS

Dec. 1, 1970

L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 6
B V27
{ 2 S
N § R Q
3 N KR STE] |
ler-coand LOEVLT | S S N W
3 * e ¢
mb Ll B
S
le-ooans v, \ % A& RS
S R \ X
3 6 |
~ S
R Yy
J L)Y
AY .
N ‘l.\b’
E N
N . DY
_ R\“‘Q\: § L N 9
e RPN s RETI
AR " SH 3
SRL - el @ 3 S
% N o~ . Y)
- X ¥ s
leeooony QE N S i\& X
L xxHOH 1 - 4
; LASZLO ¢ BAKDCZ)
' SE-§2HIH DavD € iiciee
.. _ INVENTORS.
GAPPT GOSS

BY EENEST T POECELL/

[and O
AT TOENEVS

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER
Filed Nov. 27, 1967 30 Sheets-Sheet 7

\
RN "
A U gg'/ZOV/V :\‘
== W N ks :
SEoTT] R G N
/;{V?ds‘/ Q§C\L’ (t) g ST Qai %
N . 7 E17277)
o §%§ NIER %g%zgw R 3
E S S "i:,,“} § S P §§ E
S N N%mqu% 3
a ‘ N SINE 8 ®
D N IEN %SIJ
(TY2INO X7 AL) 17TV N

)) “\.J_ll_r_u\rL
Mg&‘.’%‘f‘%\“m‘.\:&\)“ ST o
~
SN NE NN 2
NS R 10
NENERE
~ 3
T

GE-00 St S

LASCLO L. LArocs/
LAVIO & LEEFEE
¢wv\éskr;ToRs

££ 557 J FOECELL/

o

EV5

Dec. 1, 1970

Filed Nov. 27, 1967

L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER

30 Sheets-Sheet 8

: " Nk
£2-5/ 77 % g
ViZ; -
Nz s e N — E Y
S Q\§ N
X g 7. N N .
xXxna| Lora ol I SHB
N7 \\ *['i!'
\& S
S L
N 77-000, N
~ . ’ Q
N Q!
N X X X N
) _
S S W
3 Y| & § i
a N ’% g
Q S§ r‘~\J 150 W
IN) 8 N
R N IS NN AN
A SQ S N N
SR ol QL \ N N BN
N 2) N
N 0
J R Y N
N 1 e S
~ Q <HiM-
% X X
X AR
g;_ ;g_. Q []
3 :
X2 % w—-g-*“
ooy S‘(Y 8
&{5_4
€077
| Se-00 FF
—ge-00 g

2?4:122(7 L LAkOCS/
RVID ELEEFEE
- INVENTORS,
GALY J GOSS
Byé567VZE$7';Z'/%2€?1§Zé/

Ko A

AT TOENEVS

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 9
eba 'lo—-asz/a ONE) —
INTEEEVPT | ! |

| I [

| CHAN. | CHAN S |

| BUFFEL EETUEN HANG BUF, EETUBN HANG |

\CEQUEST J1PL 2 1 '.?fuafgﬁt} Jipe 2 2
|

QTAFQ £ r\‘;(\)rkri:r\i L\F T%er\\F!

51 126 §1 127 S 28§ 129 N /30§1 12/ § V4 &)l /23 |

N, . L > N N LN

] L [

e Sl S S

N 1A %’ [N ; N g &’*ﬁ”&’ :

_ P2 TSS,S S S TSSE 733.% |
[

(Fre0 7 (Fe2 "L

KCP3+5EES N |

11]

STATUS 5%’ 5 2] S 2 5 2] !

- T 45 r _r oy g £ 1471 MLF |

oy ' W .
. N ' | |
S 4| Q N
Y N § NIl
3 g |3 S
N w] |
1]
! , .
17/ |
|
L |
YBCON PO — I NI .
s S
0, 0|
VECON 4P +5PBES P — f ¥
l
CLEEENT s 55| | C
OPCEAING N I Nz Féf/%
LEVEL S l N
_(SCoN N N N .
| E]
|
X< ' +—— 5
Fre 5¢. Q?—J i %5/540 % ,84,(_/062/
QN |
Fre | Fre SIS ST G ke
Za | o IRV
4 1 | S,
AT TAENEVS

Dec. 1, 1970 L. L. RAKOCZ! ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

4
L

NTORS.
éAﬁZdO Z. EA,COCZ/
DAVIO E. KEEFEE

BY GALY J
feA/ésr J Pofcaa

Filed Nov. 27, 1967 30 Sheets—Sheet 10
L——f LEVEL THEEE 'R[(L 5?51/54 FOUE -
| I
| |
| |
| TECMINATE | J84P FPOSEIM
| EEUEST TIP3 BETUEN3 HAMGS |\ BEQUEST BEQUEST TIP3 EETURNG. HANG &
i
Tl el 7 £ TF'r,F ot Vi A
N /3¢N B5 N\ 36 B 27 L;‘\) /38 ﬁ\’ /59 “x /@R jar 9| e
S’ R SEE TR

‘\;, ______________________ _t._____ e e e e e e e /)
A
T N O TRy T W~ Ry T \
! o] g W !
Ut W R
. SR SRS 3RR | SRR —3 &R §§§
: l L I /é'é: l 1 L NSNS
| 170
| /64/L /@5J$/§9 U | /é?ké/@ég/égj&
! 71 |)]
, 52 [3 s~ 2y’ 3 S (52
. M8 _£ él ;A S A Az F
pTN {
| Nz S | 8 62 | /53
1 & & &\3 |
z Ll S S
L N ;
|) |
\ |
i L \J LJ ! - _/
1 — — o | . o
! |
] 1
N0 OO 010
i $— l Y
|)]
j | n[s 57 ! ‘ K] %},__
| % z | 3 78
: N { ST
D R L . N
|
| i
1
]
|
]
I

Y574

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER
Filed Nov. 27, 1967 30 Sheets-Sheet 11
ADDEESS N
DECOLE - E§
N
N INTINS
SO He l2 , e
_YBOT |scovi-r Vs7s-T colox]
VIAZTT ICONZ-T M-
Pre307] /CONBT
< Y7A3/-T | | SCONG-T Lolox-7
e B v
A - 3- -7
e VaT NSLT
Vs-7
177
WICED IN SEQUENCE Lcro
YAUX FLIP FLOPS
F YAKLT = (SAXI-T
- Y Gl V 7.7
_L&'Z_J“ YAUX/-F P 7 LEAX/-T
. 5.7
_ YAUXS-T _ 2
' (g
{ - .
[ol L
e 7
o Ef & 2], VSCON FLIP FLOP
7 o2 4603460246024602460846024602460 SPEES-T
LTIB | S e L o7
PNy S S e W g WA e ol (T

(ASZO ¢ Lakocz)
DAVID £ KEEFEE
INVENTORS.
Caey 6055
EENEST J. POLCELL)

P

ATTOENEYS

3,544,969

L. L. RAKOCZ! ETAL
LANGUAGE INDEPENDENT COMPUTER

Dec. 1, 1970

30 Sheets—Sheet 12

Filed Nov. 27, 1967

N ~ %
SUPUS T02UNVCD FIVIIOFS V- T2/ m_m_e N
o Q
EXP O m
GIUOR gR
] - N N
VS)=l G54 PSA £5A 254 74 O ~2zer 3 /%mm \
98 o7 NG
SVBF,
cIA 2N 4 224 74 o724 Mmam
2LGA &
! WNILFF
DG 7~ L /X7 |4
H 2,
237
\ -
L] -4 T G4 OgA FLGA
] |
L S 277 177 HIUFS ONVEZHO
)
Q £27 |
< T
gEA 2 A 277 £bA 2eA T bA ObA N
HULF+ MOLLIIFLSN Y/

08 57

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 13
. FMBIBT
L’CPQ- LEL-T 5
yj /%\é gSPEé's-?‘ L/CFé/ 2l
AVé" 7— - ~)
~L2AVET 3 - , PMBIIT
LES-T F BT
A e - :
VEETT - il - L
—(Jwzzer EBT f
| LE3-T Y@ v 22,
YETE | 195 ~ f4 5! 75 .
YA-7 : b £ £l &3
7 sH—O=zz7r
|
. - PMBE/-
AF |, b eld LGT oy | PIOETT
Va-7T
—7 —-Owrar—t £t
!)
£ . PMB22T
LES-T s A
o7, ~
7 £
18871 - |
FPMBE3T
ViT /9) 7 & I
| F £l
; PMBEL-T
ver_ | 7T L
7 ; 5 o727
F ' El+ = £ £+
V3-7 /%/ . /
7 ! Z | LE
F P T | AP Flops
11 /4 9
' PZ
V-7 547<
’ ' LASZLO ¢, EA‘%NCT?/RS
/ = | &6 9 Be"é%gVéJ CosE
WIEED IN SEQUENCE ‘I EENEST J. FOECELL/

CENEELAL FLIP FLORS
O
ATTOENEYS

Dec. 1, 1970

L. L. RAKOCZ] ET AL

3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967

30 Sheets—Sheet 14

VBZ’W}-(K?%J?I‘ V2, LCP3 CNOIN-T
+ETTE LSCON
LEXTN~T -
VBE 1 LEXTT-T Z TR
4 &3 pere |,
ECPC S (LSBET
SMCT | Y5 LM Vs
£CPG v \
3727 \p <
LEXNLNDIN MJ\ZZZ
- Fr6: 13
- SIGN MAIN MEMOEY _SIGN
O/———~—mem 35 7). 35
ALl v ~ 4 /;’ N— /)
\ | Az I AL | zer I Mg
>
X , - R f —
7] [— & |5 7] [— =\
AN J
S/GN S/GN | %'7 FB Pc oPFD
G lea. aer | |
- TN
SIGN~ S Pl 35
AC
Frs 166
et J
|87 0 1 23456 7 /7 !
| NNNMN NN ADDEESS |
! NNNEININE }
| |
| ENTEY WOED FOBMAT |
|
e |

LASZLO L. EAkocz)
Lavio & Lecree
GAeY J GOSS ’
Byf,é’NéSf I POBCELL)

AT TOENE VS

Fie-loc

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER
Filed Nov. 27, 1967 30 Sheets-Sheet 15
vi4 O
ALLEESS OF INSTELCTION
7O BE EAMULATED
Akl fF———— ——]
(IF XEC INSTE)
AUX Z —— P8
(IF Ly 7€4F)
IC
(NOEMAL CASE)
GO 70 yvA-17
FlG. 14a
yA4 2
ADDPESS OF INSTEUCTION
INSTBUCTION Pr
PB / MAIN
MEMOEY
V”
GO 70 VA4 2
FiG. /196
yA4 2
L& F/Fs
Pl T
CONTEOL #______
PO MEMOEY =
g 4 A7
ENTEY x
JABLE
ADDPESS
OPCODE £5
TEANSLATOES EMULATOL
374er
ADDEESS
GO 70 YA3
F/1G. /4c ENTO

¥ INV .
CAsz 0 ¢ DRSS
AV e e

BY GASY T 'BobS
ENEST S e

Lan

e
ATIOENEYVS

Dec. 1, 1970 L. L. RAKOCZ!I ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER
Filed Nov. 27, 1967 30 Sheets-Sheet 16

YA 3
COMTENTS OF SELECTED
INDEX LEGIBTEPS
xel1 |F———- -
NEW
(Xed OPEEAND
XE2 ——— CONTENTS) ADPPPESS
FéE PC
X3 | ————T ALCEE \(/F k)
077 2D
Xe¢ pe———- - OPECAND (IFLk2)
APDEESS
Xe€5 L———— - PC
Xes SR
xXe7 f————a GO 70 VAL IF (&3
GO 70 VBI IF Z&5 -t
GO 70 VBZ IF (£33 - 757
ZEEOS o TnEEn)
FIG. 144
Y4
¢ /A/g/eecr) g/gé%cqc/\%
b5 2 ADDEESS [CiEze 1
/ MAIN
P MENOLY
2,
/7 (IFLES) 0
GO 7O VA5
FIG 146 ¢ "B
gﬁV’D ; 65 58
CENEST T Poeafcé/
e

ATTOENEVS

Dec. 1, 1970

L. L. RAKOCZI ETAL

3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967

30 Sheets-Sheet 17

YA D
CONTENTSE OF SELECTED
INDEX BEGISTES
X2/]
A
X7 g0
XEZ CONTENTS ADDest_z‘
PE / (FLer) ,
XE3 ADDEP
PD
Yo7 (iflE2)
DREAND
ADDEESS
I S
[Pc_]
Xeo
XE7
GO 7O VB! IF LEG
Zees GO 70 VB2 If (FZ
FIG 14f
YB 2
CUBBENT
JoB Zelo INSTE/CTION
ADDEESS
IC P&
JOB OME
(A) If LE7 (NOT A TEANSFEE INSTEUCTION.)
AND YAUX!+ YAUXZ (NO TEAP)
CUBLENT NEXT
INSTES/CTION INSTELCTION
ADDEESs ADOEESS
[r5] - ¢]
' ADDEE) 107
t/ ——-
LB B
/
| Comysirlesle
NVENTO
FIG. /58, L4520 ¢, azocz"s
24vi0 E KEEFEE
BYGALY J. Goss
ECNEST T POBCELL)
g
AT 7OENENS

Dec. 1, 1970 L. L. RAKOCZ!I ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 18

YB3

OFPEEAND

AC Fb

GO yB4 ¥ ks
GO 70 VvBS5 i 785

FIG. /5¢
OPEEAND
M / PO
GO 70 vBS
F16G. /50
YB O
g S,
wieDb-m- 1505
scaveneel P50 conreny | 1O o5
ADDEESS MEMOEY
DECODE
GO 7O VBS5
F/G I5F
YB I
W
G T
MAIN
re MEMOEY rc
GO 70 VBZ
F1G. /5a INVENTORS.

LASSLO (. EALDCE]

LAVID E EEEFEE
BYGALY J Goss

EENEST T ROECELL/

Can Cann &
AT IOENE VS

Dec. 1, 1970

Filed Nov. 27, 1967

L. L. RAKOCZ| ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER

30 Sheets-Sheet 9

YB5
GO
5748706 CONTEOL
ADDEESS MEMOLY MINI - INSTRUC TION
EMULATOE BOUTINE FALE
€8 . MINSTRKC TIoNS
D gl e—)_ . MOP
——
——
S AR

MINI-INSTBUCTIONS APE FETCHED AND EXECUTED
UNTIL AN EXIT CONDITION OCCUES.

IF NOT IN SUBEBOUTINE MODE, EXIT 7O SCHEDULES

FI1G. /5e

CASZLO L. EAroce/

VIO E KEEFEL
~_ INVENTORS.

ey J GOS,
ngl\/fc;{g[F&Seaféé/

(o g § (o O
AT7CENEVE

Dec. 1, 1970 L.L. RAKOCZI ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 20

.___.__ﬁ_____..._|____..__.-__—.____—.._._—_.__._.—___.___.__1

(B) IF YAUXI o€ yAux? (7€4P)
OF LE 7+ LEG (SLOVw TRAMSFEE)

= IC

GO 70 YB3 IF k5
GO 70 YBE /F (E5- Lk

AND LE7 LEGQ (FAST 7ANSFEE)
ANO LT8AT (TEST B847/5FED)

O £778 (TBAP 7BANSFEE INSTEUCTION)

NEXT
INSTEUCTION
ALLEESS

FD IC

AND LTSAT (TEST NOT 847/8F/ED)

CUEEENT NEXT
INSTEUCTION INSTECTION
ADPDEESS ADDEESS

FB {C

IF PIG 4O (TEANSFEE 7EAP MODE.)
AND BTTE (NOT TEAP TRANSFEE INSTEUCTION.)
AND LTSAT (TEST BAT/SF/ED.)
ANO LE? LEE (FAST TRANSEEEL)

b IC

GO 70 ¥BS

' INVENTORS.
FlG b CASZLO (. B4y
156, A zé/,p W e

va 6%5
S U ROECECL/

A7 IOENEVS

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 21

- 7 VT - [Prears
L4G s PDOOT PTEBL.T
POOIT) PIEB3-7
PDOPT PTEBE-T
PDOBT Pr235-7
odT PEVEN-T
PDO5 T
D067 | PTEOX-T
PDOT-] PreIX—T
PDOBT] PTEZX-T
Po09-7) PIR3X-T
2DIOT PTEIX-T
PDIIT PTCEX-T
PTEGXT
PIEIN-T
PIEXO-T
PTEX1T
PIEXZT
PIEXBT
PIexd-7
TA29-T PTEXE-T
V7A3/-T PTEXCT
VA3 PIEX 7T
V4337
A3LT
V4357
LETCE-T
LCPG gr(r/%: ; ,
(IB]-T DB
PIGOG-T f;fé'a/-”-f
PIGI3T . LOFBT
PIG22-T EAPID7T
PIG2E-T EEAOVT
PIC3-T
PIe3dT
PIGIZT
PGCIGT
EINOPT
ENOZT
EIN]O-
PACOF-T
AACRZ-T
_FACS-7] /. CZ/
MAST %{“/5/2042 fgff”fge
FNTORS
ge/@ér J fmcaa
TANSLATOE A
ﬁ&‘t

/Vf)

Dec. 1, 1970

Filed Nov. 27, 1967

PIGIO

L. L. RAKOCZI ETAL

3,544,969

LANGUAGE INDEPENDENT COMPUTER

30 Sheets—-Sheet 232

FTEX]

PTEIXT

PTEEXT

FPTESXT

PTEIXT

FTesXT

PTEeXT

PTEZXT

PTEXOT

PTEXIT

PTEXCT

PTeX3T

PTEXELT

PTEXsT

Frexer

PTEX7T

POoOT

rPPOZT

PPOGT

PPOST

FPo97

POIOT

POIT

YAUX!-F

kCFPE

TEANSLATOE B

DECOLE
LOG/C

LGROIT
LGRIOT _
LGQIIT
LGAXT
LGANIT
LARGT

LPESQT _

EINOET
EINO3T
CINIOT

ESEAFT

LILE3T

£CP2
VA-T

SUB

('n

3

EIsuB8r <

TEANSLATOE B

st | 9,

Fre /8,

CASZLO L garocs/
LCAVID £ KEEFEE

NVENTOR5
GAaey

5;64/55 7‘ A %ECE&A/

Z?ﬂu"f
A770.

Dec. 1, 1970

Filed Nov. 27, 1967

Lré l9a.

Fré l9c,
FrG [9a, | Fre /94

L. L. RAKOCZI ETAL
LANGUAGE INDEPENDENT COMPUTER

LI95%/
LV
L19dS

1-F72F

L527

158G

LV 29
LVsHST]

L1992 9/d

1229/d

1602

LI72d
LD

fl

s L7910
L-QI 357
L1977
L-Jldb
LOGId 7

L-IAD47

L-dVISY

Z-(L7

&9
2d27

LOO/DF

1-2004 |

L-10d4
L-00ds
L-OMSG]
L-GMSG/

TEANSLATOE C DECOLE (LOGIC

3,544,969

30 Sheets-Sheet 23

s rlsarr

e FILIeAT-~

CASELO L. akoce/
LAVID E EEEFEE

GAey T GO'%ENTORS‘
B<;£A/55r' T POBCELL!

L poecvhoec
AT TOENE VS

Dec. 1, 1970

Filed Nov. 27, 1967

L-VILLT

VL7

Y

N
N

=-ILLT

L. L. RAKOCZI ETAL

3,544,969

LANGUAGE INDEPENDENT COMPUTER

S
\

Z-7VT |
25T |
LU NT
12AWT
ZE2 0 |
12290 |
772 Goid
102G |
167 GVd
78/ g
103y
INDD7
X097
777557
107557
~ 260697
~IVODZA]
VEZZ
;

SE7/LESE] DECODE LOG/C

252

=%

1727
B IS7%7A
I960WT
7G0T |
T 23077

LPNODT 277

*
U)T‘\ L)

FIFY7
LE2IF

S1V7

L/Iv7
N LNVV/?

D.[ez 77

LVID7

ANVD7

D.Z 273

LX797

LI _ IS
M EE

R |

277797
271797

7zr5

LOISOF

LOIA9F

F60797 760750 |
77

—_————e={
LVaS 7

LG 196,

0

L6QAOF

YEXBNT

LECOSOS

TEANSLATOE C LPECOPE LOG/IC

30 Sheets-Sheet 24

TEANSLATOE C

CASZLO L. Eqeoce/
LAVID £ £EEFEL

INVENTORS.
GAEY J. G

T GOSS.
v EENEST J. ROECELL

e e
AT TOENE VS

Dec. 1, 1970

Filed Nov. 27, 1967 30 Sheets-Sheet 2%
Fre 2oa. Fre 206
o0 (XA INSTRUCTION,) 87/ (EXD INSTELCTION)
IIIL
WHdger |G e 72222229499
QBU% / % BusS
FPC (g2zeee|d4dd 44 PC\dd4ddqeezz22
X5 XES
e lezezz2]z77777) }2 {PC aqadad]z77777
FC\222222(277777| | } 3 {(Pc[eeeead]|e77777
—bowsp ¢ égé puss
MEM (222222277777 277777|¢¢2424
Fre 2oc. Fre 20o
(s8cA4 INSTBUCTION,) (SCO INSTRLCTION)
MEM (222222 |d4addeq 222222 |2ddddd
@ 8uss > 1 % BUsS
PC |e2z222 |4ddqaa PCladaqaal|zecz22
XE5 XE5
<o\ geeeee (4727272727 & PClagadea le77777
PC |eeeze2 |4000012 3 PC \Ee44aaa | 200007
Q BUSS » & @Z@ Buss
Menmt | eeezee | 2oo00z7 MEM| 20000 1 | 444444

L. L. RAKOCZI ETAL

LANGUAGE INDEPENDENT COMPUTER

3,544,969

1aszco TSRS

LDAVID E. EEEFEE
BYCAL)Y J GOS.

EENEST .

035
FOECELL]

Ay v@'o«
AT IOENEVS

Dec. 1, 1970 L.L. RAKOCZI ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER
Filed Nov. 27, 1967 30 Sheets-Sheet 26

&

L o |k\ ——
sET A s -
N -

8 ; N g/

\\ 5
BASK 0 =< 7=
05C £ = -

N D
y= N £l

~ /

N v
6 El-
Hd 8

EING COUNTEE F/F?s 1h

J -

6 28

EING COUNTEE
F/Fs 50 100 150 200 50 300 350 4A0 450 500 MAMO SECS
A —
g _ B
—_— [—_
D — ' —
E e } _
fr———— _
z — !
H 4
/ X
J f) -
LRI T e =
WD o —
LCPBD-F L
LCPd=FF L ;
LCPEGH L
ECPG=H / [S
LCP2=1-T —
LASZLO ¢. EAKOCS/
E[G 2 5 ‘ DAVID E KEEF(;’E
FNTORS
G4aey J G

EE/V657 J POECE&.{ /

Zyorigon

ATIOENEYS

3,544,969

ET AL

L. L. RAKOCZI
LANGUAGE INDEPENDENT COMPUTER

. 1, 1970

30 Sheets-Sheet 27

Filed Nov. 27, 1967

2 L7

LAS2LO (. BAOCS/
LAVID E. £EEFER
INVENTORS.
GOSS
J. FOECELL/

CENEST

BY

GAEy T

OCNEVS

Lo

A

v
24VI TEY]
\.< T Auen

mmmUBHlm umzum A
Y .«r E T Eieics &1

uuéﬁmnﬁu
SATN mmumnc< SLHOIT 3ISN3S
2t 57 g Wz ot 22 12 v £ + LEX RK GEY EX f¥X 2uK taX

mmmottooooooooo oowo @o@ocoo

2 gz 17 y? oet? gr? at? A¥I4SIQ ¥O AMING ¥Od
NOILDITES HALSIOTY

‘‘‘‘‘‘‘

440 ¥D070 402

=

RLIZINEIENT wove
RO I ND 4T

@ ©

ITSA0 ELTUM TIDAC

ws NG 4527

6 6

TYEd

TOULNOD dOLS SSTHATY

O
23 ¥e 52 me

e 2z 12

OO_OOO‘OOJOOO_OOO_OOO_OOO_OOO_OOOOOOOOO
©00©0'©

0000000000 0000006000 0000006

)

@00

4 1 -4

OOO_OO

©006

SAIA AMLNZ
[Fuvd Lz mlm<z_l x):m‘m‘.l II¥H AdIKE
YT Iurvw Lnl e iia Gad 2is 30
@oooo@ OO00O0 000 0000 000 O @mwwmw
o B B 2% 0090,.000,000T0 000 0 @
Ny u\ws..?m ELET VN LI uz.h ke e B ¥

3,544,969

L. L. RAKOCZI ETAL
LANGUAGE INDEPENDENT COMPUTER

Dec. 1, 1970

30 Sheets-Sheet 28

Filed Nov. 27, 1967

. X
77 ~J
VLS 10 75775 NEEL
OIS mxm DR
LFE/2TE O \.ﬂ&mﬂm%\ol L-METPE Nfﬁ %w N
-2 Z g TSSNIRAN
EHAUINS 2ianm | ZNE
7L \\mm,ww,wm%w‘ JNDS SIS T /kMJ. m
15600375 | L2ME55LS | TTISOvE 8 2| MMVWPM'
T2
e 2151195 o EF ONEN
AL FNVISE | T Lo I ¢ JSIBN
K ANAY
Lomses s | |\ TImsse | T Mﬂmim. &
€T 2
Y27 ruks| ooty
FENFS FNFS | TaIoM Y
L-GMSES TS | 4 L1-I50VS mﬂby o 177758 |
=3 & 2 mm g
SHAUME) = 2
TN JaUS g 77 m_Qme
\.vimmm.mq\olw.m. .Uim%wwa\miw. TR o
PULAMG 5529505/ | Tt
W75 F0IS gk | T s
AV 2SIT IWNAD N.mx@éw4 FIEY JanEd 12084 [
g g g T
AVZ/SID FAUND Y
avw7
i
g
. . Wens
2 OIT e
* £ o -0
195373 FYID N+

Dec. 1, 1970 L. L. RAKOCZI ETAL 3,544,969

LANGUAGE INDEPENDENT COMPUTER

Filed Nov. 27, 1967 30 Sheets-Sheet 29
(MBC O
—MBEC 1 BUSS CONTRL r
(MBC 2 ODECODE FI@:
IMBC 3 Wi 2ea
\l N X NN 025 !
J[]TNERY gy tedg,
Y |y §%§ N SN)
] Q| N
§§§§§;&3§§%
N N N
_wsroo SISSISION g"*’--*ﬁ ——————— B R
PEOO | |
|
£6£00 | - 5
|
AT OO0 I :
HCH OO f . '
|
’
reroo] PMB OO E
| 4 &
i RSB
[R N N A S e Ity NN T T P
| D
M, I {—\ 1
—AeLE ! — 1 AIB /8|
AL /B | l] b "
' !
£B8L
Loes 1 - |
(PXe) : D |
Frens | — |
[|
{ |
HCH /8 ! j} i
ZE/B | ' |
[N N N Y O R S Y OO S I, e A e _J
CASZLO L. EAEOCS)

JLAVID E. FEEFE,

AN
INVENTORS.
caey FE sfg
Fre Za conrent. 53«'/!}?; F s
MAN BUSS JNPUTS ' BY

& NTPUTS e
ML Srroedeys

Dec. 1, 1970 L. L. RAKOCZ! ETAL 3,544,969
LANGUAGE INDEPENDENT COMPUTER.

Filed Nov. 27, 1967 30 Sheets-Sheet 30
CoNTROL
MBIO/
[]
. PMB Oy
7ECO)
MBI /9
. PMB 19
. -
[]
TEE 19
. ! £r6 266,
. |
C
¢ i
1 CONTEOL
MBI /7
®
. | MB /7 _
TEE 17
MBI B35
[] .
. PMB 25
Y VENT?L)
[]
Gl zé%’cge
TEE 35 BYGALY . Coes
Es7 T POE CECL/

MAIN BUSS INPUTS ¢ OUTPUTS %g o

United States Patent O

]

3,544,969
Patented Dec. 1, 1970

1CC

1

3,544,969
LANGUAGE INDEPENDENT COMPUTER

Laszlo L. Rakoczi, Irvine, and David E. Keefer, Gary J.
Goss, and Ernest J. Porcelli, Mission Viejo, Calif., as-
signors to Standard Computer Corporation, Santa Ana,

Calif., a corporation of Arizona

Filed Nov. 27, 1967, Ser. No. 685,857
Int. Cl. GO6f 15/16, 9/00

U.S. CL 340—172.5 21 Claims

ABSTRACT OF THE DISCLOSURE

A digital computer which may be viewed as a com-
puter within a computer and which can interpret a va-
riety of machine languages permitting direct execution
of program libraries compiled for other computers with-
out modifications or reprogramming. The inner com-
puter has its own memory and registers and acts as an
interpreter. The inner computer is programmed to in-
terpret the language of another computer and to set up
the necessary logic for processing data, while the outer
computer essentially acts as though it were the computer
it is intended to emulate. Generalized console apparatus
and circuitry enables duplication of operating conditions.

The present invention relates generally to digital data
processors and more particularly to digital data proces-
sors that emulate new or prior art computer systems or
the like.

As is well-known to those skilled in the art, a program
consisting of a series of computational procedures are
written in order to permit the computerized solution of
a problem. This program is eventually translated (either
by a programmer or the computer itself) into a sequence
of steps called machine-language instructions before being
executed by the computer. The machine langnage of a
particular computer is the collection of all permissible
machine instructions it can understand and execute. The
number, meaning, and format of these machine-language
instructions varies greatly from one make or model com-
puter to the next. For example, one computer system may
have a machine language expressed in terms of 48 bi-
nary digits (bits); whereas another may be expressed as
a variable number of 8-bit characters. Furthermore, one
computer model may require only one instruction to di-
rect it to take two numbers from memory, add them to-
gether, and put the results back into memory. On the
other hand, it might require three sequential instructions
to perform the same computation on a different com-
puter. It has been estimated that more than a hundred
different programming languages are used with the thou-
sands of computers in the United States.

One of the most important qualities of a particular ma-
chine language is its ability to control communications
between the various functional stations or subsystems
(memory, register, arithmetic units, input/output de-
vices, etc.) of the computer system. Generally speaking,
in present day computer systems the relationships among
the functional stations is frozen completely, or to a large
extent, by the design and wiring of the system. Since
the machine language format of a particular computer
is generally predicated upon the logic and wiring of the
system, such fixed relationships mean that a particular
computer can execute only one machine language in an
economical manner, and thus is unable to utilize the full
potential of each functional station.

As new and improved computing hardware is devel-
oped, it is almost imperative to use a new and improved
format for the machine-language instructions in order

10

30

40

60

65

70

2

to take advantage of the improved features of the new
generation equipment. Thus, the newer generation com-
puting equipment will not understand and will not be
able to directly execute programs written for the older
generation computers. The user of older generation com-
puters often finds it desirable to trade the older equip-
ment for a newer model to benefit from the improved
speed and computing techniques built into the newer
equipment. In doing so, however, he often finds it costly
and time consuming to rewrite his proven and useful
programs so that they can be used with the newer gen-
eration computer. As related problem is faced by users
of large scale computer installations who have a num-
ber of computer systems. These computer systems fre-
quently have different machine-language repertoires
which are not compatible with each other. That is, a
program written for one computer system of the user
will not perform on another computer system of the same
user.

Accordingly, it is a principal object of this invention to
provide a machine-language independent data processor
for emulating other data processors and which can em-
ploy the program libraries thereof without modifications
Or reprogramming.

Another object of the present invention is to provide
a data processor having the capability to duplicate the
instruction repertoire of other computers.

An additional object of this invention is to provide a
data processor capable of assuming the identity of an-
other data processor in a flexible manner but which is
lower in cost.

A further object of this invention is to provide a data
processor for emulating other data processors and which
can run programs directly from the programming media
used by the processor it emulates.

Another object of this invention is to provide a data
processor having what may be termed an outer com-
puter and an inner computer for emulating a number of
different computer systems.

A still further object of this invention is to provide a
console system for a data processor which emulates the
operational environment of other computers.

Another object of this invention is to provide a pro-
gramable man-machine interface enabling an improved
operating environment and which facilitates relatively sim-
ple on-line program debugging, analysis and diagnostics.

An additional object of this invention is to provide a
data processor in which the machine-language repertoires
of a number of computers may be stored as desired at
various times to allow the execution of programs written
for several different and incompatible computer systems.

Another object of this invention is to provide a data
processor having the capability to include new and im-
proved machine instructions which may be used in addi-
tion to, or in place of, regular machine instructions with-
out requiring hardware changes in the data processor.

Another object of this invention is to provide a data
processor system having the capability to be optimized
for various types of problems.

A further object of this invention is to provide an up-
ward and downward compatible series of data processors
capable of variable performance by tailoring system con-
figurations to particular data throughput requirements.

A still further object of this invention is to provide a
data processor capable of executing higher level lan-
guage statements without the same first being translated
into a machine language.

An additional object of this invention is to provide a
method of emulating computers.

These and other objects and advantages of the present
invention will become more apparent upon reference to

3,644,969

3
the following description and the accompanying drawings
in which:

FIG. 1 illustrates in general block diagram form a
computing system according to the present invention;

FIG. 2 shows the system of FIG. 1 but illustrates the
components of the inner computer in block diagram form;

FIGS. 3a-3g are more detailed block diagrams of the
computing system shown in FIGS. 1 and 2;

FIG. 4 is a diagram of main engine zone control codes;

FiGS. 5a-5c are logic diagrams of a scheduler;

FIGS. 6 and 7 are logic circuits;

FIGS. 8a and 8b are flow diagrams of wired-in-se-
quence control states;

FIG. 9 is a logic diagram of flip-flops used in a wired-
in-sequence;

FIG. 10is a logic diagram of LK flip-flops;

FIG. 11 is a logic diagram of wired-in-sequence aux-
iliary flip-flops;

FIG. 12 is an address decode logic diagram;

FIG. 13 is an exit conditions logic circuit;

FIGS. 14a through 14f and FIGS. 15q, 156, 15b, and
15¢ through 15f are flow diagrams explaining operations
by the wired-in-sequence;

FIGS. 16a through 165 is a sign control flow diagram;

FIG. 16c¢ is a diagram on an entry word format;

FIG. 17 is a logic diagram of a translator A;

FIG. 18 is a logic diagram of a translator B;

FIGS. 19a-19¢ are logic diagrams of a translator C;

FIGS. 20a through 20d are diagrams illustrating the
operations performed in emulating certain instructions;

FIG. 21 is a diagram of mini-control timing;

FIG. 22 illustrates the system clock;

FIG. 23 is a clock timing diagram;

FIG. 24 is a diagram of a console display unit;

FIG. 25 is a diagram of console switches; and

FIGS. 26a, 26b and 26c illustrate the main buss in more
detail.

The above and related objectives are achieved in an
embodiment of the present invention which is a comput-
ing system composed of a number of different and special-
ized functional stations as well as conventional functional
stations which are connected to each other by means of
a controlling arrangement such that together they are
capable of executing a total computational task. In ac-
cordance with one form of the invention some of the
functional stations may be considered small specialized
computers or data processors.

The broad concept of the present invention may be
referred to as a computer-within-a-computer. This con-
cept eliminates the permanent bond between the various
functional stations heretofore experienced in conventional
computers because of the fixed wiring and logic of the
system. With the present invention all functional stations
communicate with each other through the inner computer,
allowing each functional station to behave in its most
natural and economical fashion. The inner computer,
having its own control memory, control units, and regis-
ters, can be set up to emulate the instruction repertoire
and program capacity of new or prior art computers. This
multi-lingual capability, implemented by an emulation
process allows the use of existing program libraries with-
out reprogramming or hardware modification.

In keeping with the computer-within-a-computer con-
cept, the present invention may be considered to be
divided into two parts, namely, the external functional
stations, and the inner computer. The external functional
stations include a main memory, arithmetic units, and
registers, input/output channels, input/output devices,
and an operator’s console. These stations perform the
functions of similar devices on the computers being emu-
lated. The inner computer, including a scheduler, wired-
in-sequence, control memory, translators, mini-instruc-
tion registers and decoders, indicators and display regis-
ters, and mini-engine, takes the place of much of the
wiring and control logic in a conventional system, The

[

10

15

30

45

60

65

70

4

overall computer may be said to contain its own inter-
preter such that it can process data in the language of
other computer systems. The control memory in the inner
computer is used to convert the data used by the other
computer into terms it can then supply to its own logic.
Thus, the inner computer essentially is loaded with a
program to interpret the language of the other computer
and to set up the logic for processing the data., The com-
puter of the present invention interprets rather than mere-
1y translates.

Programs written in the language of the machine being
emulated are stored in the main memory. When the pro-
gram is to be run, the inner computer fetches and instruc-
tion from the main memory, and performs the necessary
indexing and indirect addressing operations by means of
an emulator hardware sequence. The instruction is de-
coded and an emulator routine in the control memory is
entered which directs the inner computer through all the
steps necessary to execute this particular instruction. The
next instruction is then fetched from main memory and
the entire process is repeated until the program is com-
pleted or terminated. The inner computer thus acts as
an interpreter thereby directing the total system to respond
as though it were the computer it is intended to model.

BRIEF SYSTEMS DESCRIPTION

A brief description of an embodiment of the invention
will be given first in order to provide a general understand-
ing of the various functional stations and the manner in
which they operate together in executing a program Wwrit-
ten for another computer. This will be followed by a more
detailed description of the system and the emulation proc-
ess as it is handled by the inner computer, as well as a
more detailed description of the functional stations, in-
cluding various features and unique concepts embodided
therein.

A typical configuration of the invention as it is used
to emulate a well-known second generation data proces-
sing machine is illustrated in FIG. 1 and includes the inner
computer 10 with its associated registers and control
memory, and external functional stations; namely a main
memory 11, high speed registers 12, arithmetic and logical
unit 13, operator’s console and display unit 14, and two
input/output channels 15 and 16 as shown in FIG. 1. One
channel 15 typically controls a card reader 17, 1/0 type-
writer 18, and up to ten magnetic tape units 19 through
28, and the other channel 16 typically handles up to ten
tape units 29 through 38. A brief description of each of
the various units now will be given.

The external functional stations include the main mem-
ory 11, registers 12, the arithmetic unit 13, the operator’s
console and display unit 14, input/output channels 15 and
16, the peripheral units (tape units, card reader and type-
writer). The main memory 11 functions as the core stor-
age of the computer being emulated. It is used to store
data and instructions which are in the form of a program
in the machine language of the computer being emulated.
The main memory typically contains 32,768 words consist-
ing of 36 bits plus one parity bit.

The registers 12 are high speed storage elements avail-
able to the operator and programmer on the same basis as
those in the computer being emulated, The inner com-
puter 10 assigns certain functions to certain of the
registers as required to duplicate those available on the
computer being emulated. Typical assignments are: Ac-
cumulator (AC), 38 bits; Multiplier-Quotient (MQ), 36
bits; Index Registers, (XR1-XR7), 15 bits each; Instruc-
tion Counter (IC), 15 bits, and so forth.

The arithmetic and logical functions such as fixed and
floating point addition, multiplication, logical AND, OR,
and masking operations are performed in the arithmetic
unit 13. The unit is called the “main engine,” and is also
used by the inner computer 10 for internal operations. It
contains registers PB, PC, PD, PE, and PF (to be de-
scribed subsequently) which are 36 bits in length plus
additional bits for overflow and sign control.

3,544,969

The operator’s console 14 is a flexible unit which sim-
ulates all the console functions of the computer being
emulated. The console contains the keys, switches, and
lamps necessary for manual and semiautomatic control
and the visual checking of information in the system.
Power to the system may be controlled from the console.
All memory and register locations can be displayed. An
execute entry function permits execution of console-keyed
instructions without disturbing main memory. Address
stop control provides several optional stop modes.

The input/output channels 15 and 16 control the quan-
tity and destination of all data transmitted between the
inner computer 10 and the peripheral units (e.g., input/
output units). The channels may be considered small
specialized data processors since they perform their func-
tions independently of the inner computer and each other.

The peripheral units on a typical system are magnetic
tape units 19 through 28 and 29 through 38, a card read-
er 17, and an I/0 typewriter 18. The tape units are fully
compatible with the tape units of the computer being
emulated. The card reader and typewriter formats, where
they differ from that of the computer being emulated are
converted within the inner computer 10 to a compatible
format by means of a combination of hardware and sofi-
ware emulation technigues.

The inner computer (see FIG. 2) includes a control
memory 42, a scheduler 43, a wired-in-sequence 44, trans-
lators 45, mini-instruction register and decoders 46, a mini-
engine 47, and indicators and display registers 48. The con-
trol memory 42 contains, for example, 1,024 words con-
sisting of 36 data bits and one parity bit. The control
memory is used primarily to store emulator routines, to
store data and constants used by the routine and the hard-
ware while executing emulator instructions, and as a tran-
sient input/output area for data transmitted between main
memory 11 and the input/output channels 15 and 16. The
control memory 42 and the main memory 11 are com-
pletely independent and fully overlapped, with the control
memory 42 functioning significantly faster than the main
memory, e.g., the former has a cycle time of two micro-
seconds and the latter has a cycle time of four micro-
seconds.

Since certain processes in the external functional sta-
tions may be taking place simultaneously, it is necessary
for the inner computer 10 to take action promptly when
some device needs attention. This function is performed
by the scheduler 43, which receives requests for action
from the input/output channels 15 and 16, the operator’s
console 14, and from circuitry which indicates that a
program in main memory 11 is in progress. The schedul-
er 43 passes control to certain entry points in the wired-
in-sequence 44 depending on the type of priority of the
request honored. The wired-in-sequence 44 contains a
number of wired subroutines or sequences, for example
four, consisting of six steps each. These sequences, for
example, are (see FIG. 8) YA (instruction fetch), YB
(operand fetch), YS (save), and YR (restore). The
scheduler 43 passes control to state zero of one of these
sequences depending upon the type of request which has
been honored. From there, the sequence is stepped from
one state to another, although not necessarily in a se-
quential manner. Steps may be skipped within a sequence
and control may be passed from one sequence to another.
The purpose of the YA sequence is to fetch the instruc-
tion to be emulated from main memory 11, decode it,
and perform indexing and indirect address operations.
The primary purpose of the YB sequence is to update
an instruction counter (IC) and to fetch the operand
or operands required by the instruction being emulated.
The YS sequence is used to save the contents of certain
registers by storing them in predetermined locations in
the control memory 42 when an emulator interrupt or
hang conditions occurs. The function of the YR sequence
is to restore the registers which are saved during the save
sequence.

10

20

30

40

56

60

65

70

6

The translators 45 include three translators (A, B, and
C). The function of the translators is to decode the in-
struction being emulated and to determine (by means of
an entry table in the control memory) the starting ad-
dress of the emulator routine necessary to complete the
emulation and to set certain general control flip-flops (in
translator C) in order to pass on specific information
about instruction characteristics to the emulator rou-
tine.

The inner computer 10 has stored therein a specialized,
hardware-oriented, machine language which is designed
for interpretive work. This is the language in which
emulator routines are written. An individual instruction
in this internal language typically is 18 bits long and
is called a mini-instruction. When an emulator routine
is being executed, mini-instructions are brought from the
control memory 42 to the mini-instruction register 46
from whence the bit configuration is passed to the mini-
instruction decoders. The decoders determine the opera-
tion or operations to be performed and accordingly send
control signals to the various units of the overall system.

The mini-engine 47 is similar in construction to that
of the main engine or arithmetic unit 13 except that no
shifting operations {and hence multiply, divide, and float-
ing point operations) are performed. The mini-engine 47
controls shifting in the main engine 13, and contains sev-
eral registers RB (mini-instruction counter), RC (shift
counter), RD (save counter for subroutine mode), RE,
and RF, all of which typically are eleven bits in length,
except RC which is eight bits.

The indicators and display registers 48 are sets of flip-
flops and high speed storage elements which are used to
store hardware and emulator program status, the occur-
rence of certain events within the system and the like.
The registers in this unit are a display register (36 bits),
general indicators 1 and 2 (32 bits each) and secondary
indicators 1 and 2 (32 bits each). Most of the bits in
these registers may be individually set, reset, or both by
emulator instructions, and many are connected to lamps
on the operator’s console 14.

Before turning to a more extensive discussion of an
exemplary embodiment of a computer according to the
concepts of the present invention, a number of the prin-
cipal concepts or features thereof will first be outlined.
The inner computer is switched to serve the various fa-
cilities of the emulated computer, such as, instruction
execution, 1/0 initiate-terminate, real time clock, con-
sole functions, and 1/0 data flow. This switching is ac-
complished by the scheduler which has been briefly de-
scribed above. The utilization of a switchable inner com-
puter to serve the various facilities of the system in a
flexible manner by means of emulator routines permits
a computer according to the present invention to emu-
late a number of different computer systems. The sched-
uler serves to schedule each task and to service the
various facilities, and this is accomplished through the
emulator routines. For example, to perform a particu-
lar task the scheduler may transfer control to the wired-
in-sequence which controls, for example, translators, con-
trol memory and other functional units, and emulations
requiring actions by means of an emulator program
which interprets the instruction of a computer being
erlnulated. Eventually, control is returned to the sched-
uler.

In order to provide an efficient system and enable the
control memory of the inner computer to be kept within
economical limits, a single emulator routine may be util-
ized in many different types of emulation procedures by
allowing the return at the end of the routine (exit point)
either to the scheduler or to another emulator routine.
In other words, although control is normally returned
to the scheduler after execution of an emulator routine,
the control need not be returned to the scheduler, but by
means of a subroutine mode another routine may be first
executed.

3,544,969

7

Machine-instruction decoding may be accomplished in
a flexible and changeable manner by means of a transla-
tor and an entry table in the control memory. Addition-
ally, machine-instruction fetch, indexing and indirect ad-
dressing also may be controlled by the wired-in-sequence.
These aspects provide flexibility in the emulator pro-
gram memory allocation and facilitate changing emula-
tor routines. As an example, the translator may point to
the control memory where the entry table is stored which
in turn points to a routine in the control memory. The
entry table includes an address along with modifier bits,
which are used to prime an emulator routine contained
in the wired-in-sequence to vary the same.

Of particular significance is the emulation of the oper-
ating environment of various computers by a single com-
puter. In order to accomplish this, the console switches
are executed in an interpretive mode. The console switches
are connected to the inner computer and their function is
controlled through emulator routines. The switches thus
are not hard-wired to specific functional units of the sys-
tem as with conventional computers.

In order to eliminate the need for many time consuming
jump emulator instructions (also referred to as mini-
steps) and to permit a higher speed straight line coding,
as well as to provide an economical system, a single
emulator routine may be utilized for emulating multiple
machine instructions. This type of operation is accom-
plished by control flip-flops, which will be discussed in
greater detail subsequently, under the control of a transla-
tor. As an example, a number of instructions being emu-
lated have common and uncommon portions. Flip-flops
are used to store the nature of the uncommon portions,
and thereby enables either instruction to be executed by
sensing the state of these flip-flops.

The emulator programs can be loaded and overlayed
in order to permit a computer according to the present
invention to emulate multiple machine languages in an
economical manner. This is accomplished through utiliza-
tion of the control memory providing both control read
and write capabilities. This memory can be loaded from
external devices, such as card reader or magnetic tape
units. This approach, for example, enables the present
system to be quickly changed (within a few minutes) so
that it can emulate different computers. Since this memory
has a write capability, storage areas thereof can be used
for storing intermediate results generated by emulator
routines, and may be used for input/output buffer
purposes.

In some applications, it is important to permit the sys-
tem to work on any subfield or a memory word without
disturbing the remaining part of the word. This approach
allows machine-language independency to be accom-
plished through emulation of machines with fixed words
as well as machines with variable words. The same is ac-
complished through “zone” functions of the various arith-
metic unit oriented mini-steps. For example, it may be
desired to add a one to three bit field of one word with
a similar length field of another word to emulate a par-
ticular machine.

Execution of the emulation process may be sped up by
providing self-repeat capabilities for certain multicycle
mini-steps. Control of the repetition is accomplished by
the mini-engine. For example, the main engine may oper-
ate under control of the mini-engine to perform variable
length add-shift and subtract-shift cycles. In this manner
operations can be repeated without returning control to
the control memory.

The specific manner in which the various principal con-
cepts and features discussed above are made possible in
a computer according to the present invention will become
more apparent as the detailed discussion of the overall
system progresses, The components of the system and
their functions now will be considered in more detail with
particular reference to FIG. 3 as well as the other more
detailed figures of subsystems of the computer.

10

20

25

30

40

60

60

65

75

8
THE INNER COMPUTER

Turning now to the inner computer 10 in more detail,
this unit has the general capabilities of typical stored pro-
gram computers, but has a specialized hardware-oriented
machine-language designed for interpretive operations.
Basically, this unit schedules and controls the various
functional stations of the system according to an emula-
tor program comprising a number of mini-instructions
stored in the control memory 42, A routine is made up
of emulator, or mini, instructions, and these instructions
include one or more emulator, or mini, steps. As discussed
before, the main functional components of the inner com-
puter are the scheduler 43, wired-in-sequence 44, control
memory 42, translators 45, mini-instruction registers and
decoders 46, mini-engine 47, and the indicators and dis-
play registers 48. The main engine 47, also referred to
as the arithmetic unit, has been shown as a portion of the
outer computer, but this engine operates extensively in
conjunction with the inner computer and may also be
regarded as a part thereof. The components of the inner
computer are shown within the dotted line in FIG. 2.
The principal communication paths between functional
units also are illustrated, and these communicate through
a main buss 50 which includes gates for appropriately
gating data and signals between units. Such busses are
well-known to those skilled in the art, and a buss is used
as shown rather than complicating the system and draw-
ings with each connection between the various stations.

Before proceeding with an explanation of the units of
the inner computer 10, it may be desirable to discuss fur-
ther the emulator process. In order to emulate a new or
prior art computer, an emulator is first loaded into the
inner computer 10, Briefly, this is accomplished by press-
ing a switch which causes a loader program to be read
into the control memory, for example, from a card reader
or tape unit, which program in turn causes all the neces-
sary emulator routines and entry tables to be loaded into
control memory from said card reader or tape unit. The
emulator “system” consists of sets of programs or rou-
tines ‘which correspond to families of machine-language
instructions of the computer to be emulated. After the
emulator system is loaded, control is passed to the sched-
uler at which time the computer of the present invention
for all practical purposes acts just like the computer it is
intended to model, i.e., the complete set of machine lan-
guage instructions, and the input, output, and console
functions thereof are available.

For each instruction in the program (which is loaded in
main memory) of the machine being emulated, the inner
computer 10 executes a routine or group of routines which
are made up of sequences of mini-steps or mini-instruc-
tions. Similarly, for each input/output operation and each
console function to be performed, the inner computer 10
executes still another set of routines, Most of these routines
are stored in the inner computer’s control memory 42, but
for the sake of speed some of these which are used most
frequently are “stored” or implemented into a portion of
the logic called the wired-in-sequence 44. The entire col-
lection of routines present in the inner computer 10 at any
one time is called an emulator system. It is the emulator
system which tells the inner computer how to interpret the
machine-language instructions of some new or prior art
computer, It follows that in order to emulate a different
computer it is only necessary to change the emulator sys-
tem which, for the most part, consists of a program resi-
dent in the control memory 42.

In a typical sequence of operations, the scheduler 43
passes control to the wired-in-sequence 44 which in turn
causes execution of one or more mini-instructions which
are taken from the control memory 42 and executed from
the mini-instruction register 46. When the execution is com-
pleted, control is returned to the scheduler 43.

When a program request is honored by the scheduler 43,
control is passed to a YA phase (to be discussed subse-

3,544,969

quently) of the wired-in-sequence 44. At this time, an
instruction from the main memory 11 is brought to the
main engine 13. The address of the next instruction to be
emulated is kept in the instruction counter register. The
operation code portion of the instruction is sent to the
translators 45 which generate an address pointing to a word
in an entry table in the control memory 42. This word,
which is the starting address of the emulator routine needed
to complete the emulation, is sent from the control mem-
ory 42 to the mini-engine 47. The address portion of the
instruction is then modified if necessary by index regis-
ters and indirect addressing. A YB phase of the wired-in-
sequence is then entered where the operands, if any, are
brought from main memory 11 or the registers 12 to the
main engine 13. An emulator program is then executed
starting at the control memory address specified by the
word just loaded into the mini-engine 47. When the emu-
lator program is completed, an exit is generated which
returns control to the scheduler 43, The process is repeated
again when the scheduler 43 honors a program request.

The above explanation is somewhat simplified, but pro-
vides a general understanding of the manner in which the
inner computer 10 interprets an instruction. It should be
noted that not all instructions being emulated require the
same wired-in-sequence operations, and a few instructions
require no emulator routine for their execution. In addi-
tion, operations such as input/output and console func-
tions which are not directly connected with the emulation
of a specific instruction use a different portion of the wired-
in-sequence and a different set of emulator routines, but
the process is similar to that described above.

Turning now to a consideration of the manner in which
the inner computer intercommunicates and communicates
with the outer computer, the main buss 50 provides a com-
mon data path through the machine. The main buss can
accept data from a majority (for example eleven) of the
inner and outer units, and gate data into the output lines
(PMBO00 through PMB35). Main buss decode control sig-
nals (LMBO through LMB3) determine which of the ele-
ven inputs are gated onto the output lines. The code for
these control signals and a description of each of the in-
puts will be discussed subsequently. Each device or func-
tional station that is connected to the main buss outputs
contain its own gates so that the data from the main buss
will enter a particular functional station when an appro-
priate control signal is enabled.

The main buss also can perform a half-exchange, in
which the data on the main buss is divided in half and the
halves exchanged, i.e., output bits 00 through 17 are ex-
changed with output bits 18 through 35, When a control
signal LMBC is false, the main buss output is normal and
when this control signal is true a half exchange occurs.

The main buss is used in the exemplary embodiment of
the invention to simplify the logic, and used in the descrip-
tion and illustration in order to facilitate understanding of
the present invention. Improved performance can be re-
alized by making direct connections between the various
functional units but this increases the complexity of the
control logic. In a version of the invention, for example,
greater speed can be realized by making a direct-connec-
tion between the registers 12 and the main engine 13,
rather than using the main buss 50 and its gates to transfer
the data between these two functional stations.

The control memory 42 contains, for example, 1024
words consisting of 36 data bits and one parity bit. The
control memory is used primarily to store emulator rou-
tines, to store data and constants used by the emulator
system and the hardware while executing emulator instruc-
tions, and as a transient input/output area for data trans-
mitted between the main memory 11 and input/output
channels 15 and 16. The control memory 42 and the main
memory 11 are independent and fully overlapped, with the
control memory functioning significantly faster than the
main memory as noted previously. The control memory
is protected during system operation, i.e., neither the opera-

10

15

20

30

40

45

50

60

70

75

10
tor nor the program being emulated can destroy the data
in the control memory.

Emulator instructions may be only 18 bits long and
stored two per control memory word. As far as the emula-
tor instructors are concerned, the control memory 42
contains 2,048 18-bit mini-locations. These mimi-loca-
tions have mini-addresses numbered from 0000 through
3777 in octal notation. Certain portions of the control
memory 42 are reserved for specific purposes, as set forth
below:

Mimi-Address (octal) Description

0000-0077 ____ Temporary Storage & Soft Registers.
0100-0117 ___. Register Save Area, Level 1.
0120-0137 ____ Register Save Area, Level 2.
0140-0157 ____ Register Save Area, Level 3.
01600177 __._. Register Save Area, Level 4.
0200-0277 _.... Entry Table.
0300-0377 __..._ Duplicate Entry Table.
04000477 ___. 1/0 Buffer, Channel A.
0500-0577 ____ 1/0 Buffer, Channel B.
0600-3777 .___ Emulator Routines.

The control memory 42 as seen in FIG. 34 includes
data input gates 65, data and address registers 66 and 67,
a core storage unit 68, a parity generator and check cir-
cuit 69 and a buffer 70. The memory 42 receives data
from two sources: (1) the main buss 50 (lines PMB00—
35); and (2) the I/0 channels 15 and 16 (lines HDM00—
35). The outputs of the channel word buffers 74 and 75
(FIG. 3d) in I/0 channels 1 and 2 are ORed together
as indicated at 76 before they appear at control memory
data input gates 65. The dashed line 77 in line HDM00—
35 from the buffers 74 and 75 extending across the main
buss 50 indicates that the line bypasses the buss. In refer-
ence to the nomenclature used in FIG. 3, which illustrates
an exemplary embodiment in detail, it should be noted
that in order to prevent cluttering up the drawings with
a maze of lines which would tend to obscure the system
and interconnections thereof, single lines with alpha-
numeric relations are shown. These notations indicate the
data and signal flow. For example, two lines 79 and 80
into the control memory 42 in FIG. 34 are shown as in-
puts to data input gates 65 and are labelled respectively
“PMB00-35" and “HDM00-35, and thereby indicate
thirty six inputs to the gates 65 respectively from the main
buss 50 and from the 1/0 channels 15 and 16. These types
of notations are used throughout the specification and
drawings rather than reference numerals alone in order
to more clearly designate the interconnections of the vari-
ous units and the data and signal flow therebetween. Al-
though a single line is used between components of the
system, it will be understood that multiple lines are used
(e.g., PMB00-35) to transfer multiple bits. The various
inputs and outputs of the main buss 50 will be covered in
greater detail subsequently along with a more detailed
discussion of the main buss.

The address of the memory area in the storage unit
68 to be written into or read from comes to the control
memory address register 67 from three sources: (1) the
mini-engine 47 (line RE00-09) (FIG. 3¢); (2) the main
buss 50 (lines PMB26-35); and (3) the 1/0 channels 15
and 16 (lines HCA02-09). The outputs of the channel
controls 82 and 83 of the I/O channels 1 and 2 (FIG.
3d) are ORed together as indicated at 84 before appear-
ing at the input of the control memory address register
67. These channels will be discussed subsequently, Each
of the controls 82 and 83 includes an address counter for
selecting the desired words,

During a write to memory, data from one of the above
sources is transmitted through the data input gate 65 to
the data register 66. The data goes to the parity gen-
erator and check circuit 69 and on a line 86 to the core
storage unit 68. The circuit 69 generates a parity bit

3,544,969

11
(MMB36-F) and passes this to the unit 68. Odd parity
is used.

During a read operation data is passed through the line
86 to the register 66, with the parity bit going to bit po-
sition 36. This data is transferred to the parity circuit
69 where parity is checked. The data (without the parity
bit) is passed (lines MBI0O0-35) from the circuit 69 to
the main buss 50, and through the buffer 70 (lines HBI00—
35) as a separate data path to the channel word buffers
74 and 75 of the respective I/0O channels 15 and 16. An
error signal (MERR-T) is generated by the parity cir-
cuit 69 if an even number of bits are read out. This error
signal is ORed at 88 (FIG. 3¢) with a similar signal
(NERR-T) from the main memory 11 and supplied
(OERR-T) to the console 14.

Turning briefly to the main memory 11, it will be seen
from FIG. 3e that the data flow to and from the main
memory is similar to that of control memory 42. The
main memory 11 includes similar data and address regis-

ters 96 and 97 respectively, a core storage unit 98 and ¢

a parity generator and check circuit 99. No data input
gates (like gates 65 in the control memory 42) are used;
otherwise, data flow is the same as in the control mem-
ory.

Turning for the moment to the main engine 13 (FIG.
3f), although it is shown as part of the outer computer,
it also performs functions for the inner computer. The
main engine performs all required storage and data
manipulations when emulating an instruction taken from
the main memory 11, This engine may be controlled in a
conventional manner to perform single and multiple pre-
cision, fixed and floating point arithmetic, and shift opera-
tions. The main engine consists of five registers (PB, PC,
PD, PE, PF), an adder, zone control circuitry, and shift
circuitry as seen in FIG. 3f. The registers are 36 bits
long, with additional bits for overflow and sign control.
The PE and PF registers are used strictly as data paths
or a temporary storage. Data sent from the main engine
11 to other parts of the system passes through the PE
register to the main buss 50. The input (lines PMB00-35)
to the main engine is through shift gates 102, The shift
gates 102 and shift gates 103 are interconnected so that
information may be transmitted from the main engine
input PE register or PF register to the PB, PC, or PD
registers. At any one time, a number may be shifted
1, 2, 3, or 4 positions either right or left or transferred
straight through without shifting by the shift gates 88 and
89. Zone controls 104 through 106 perform operations
on the data as it is transferred to the PB, PC, or PD
registers. There are 32 different zone control codes which
will be discussed subsequently. The adder 107 allows a
large number of different arithmetic and logical opera-
tions to be performed on data residing in the PB and PC
registers.

The principal function of the main engine is to store
data, but it also contains the adder and shift control cir-
cuits, and performs arithmetic and logical manipulations
of 36 bit binary words. The main engine registers may be
called the working registers of the system. The main en-
gine is used during operation of the wired-in-sequence 44
and during execution of emulator routines to perform all
the required storage and data manipulations when emulat-
ing another computer’s instruction. As noted before, in-
puts to the main engine are from the main buss 50. Out-
puts from the main engine go to the main buss 50 and
to the translators 45 to begin the emulation.

Data flow during a straight transfer is from the adder
107 to the PE register and from the PD register to the
PF register. During a cross transfer, which is provided
by lines 110 and 111, the data flow is from the adder 107
to the PF register and from the PD register to the PE
register, This enables the contents of the PD register
to be used as an operand for the adder 107 by first pass-
ing through the PE register and then being loaded into
either the PB or PC registers. It also allows results from

ot

10

30

40

60

70

75

12
the adder 107 to be loaded into the PD register via the
PF register.

The adder 107 may do more than just add, it allows
all logical combinations of data in the PB or PC registers.
For example, control signals may be supplied to the adder
to provide data combinations called PXBN, PXBC,
l1:)1(NC, and PXNN, the meanings of which are set forth

elow:

PXBC=exclusive OR, PB and PC;
PXBN==exclusive OR, PB and T’C;
PXNC=exclusive OR, PC and PB;
PXNN=exclusive OR, PC and PB.

Thus, for any data bit combinations, the adder outputs
are as shown below:

INPUT OUTPUT
PB rc
BIT BIT PXBC PXBN PXNC PXNN
0 0 0 0 0 1
0 1 0 0 1 0
1 \] 0 1 0 [
1 1 1 0 0

The shift gates 102 and 103 are coupled with the out-
puts of the PE and PF registers, and each is in two stages,
shift three bits and shift one bit. At each state, control
signals are used to specify shift left, shift right or no shift.
Control comes from the mini-instruction registers and
control 46 which will be described subsequently. The RC
register on the mini-engine 47 (FIG. 3c¢) holds the shift
count which is monitored during shift operations. On any
one data pass through the shift gates, nine combinations
are possible in one clock cycle as follows: left four,
left three, left two, left one, none, right one, right two,
right three, or right four. More shifts can be provided over
a number of clock cycles. Note that the shift gates are
the entry point for data from the main buss entering the
main engine. In entry, no shift occurs as data is gated
from main buss 50 to the PB, PC or PD registers.

The zone controls 104 through 106 allow the thirty six
bit PB, PC and PD registers to perform arithmetic, logi-
cal and masking operations. For example, a six bit add
operation may be performed by zoning off unnecessary or
unwanted bits; e.g., the desired six bits of words stored
in the PB or PC registers may be added together in the
adder 107 while ignoring the remaining bits of these
words. A carry flip-flop (not shown) preferably is pro-
vided to receive any carry or overflow from the most sig-
nificant bit of the specified zone in a conventional manner
for use as desired (e.g., to enable the system to test for
overflow). The blocked in portions of FIG. 4 show the
allowable zones (of several bits) for main engine opera-
tions. The octal code given in the left hand column is in-
corporated as a part of certain mini-instructions to
specify which zone is to be used. In loading the registers
PB, PC and PD, zone control can be used to load only
desired bits of a thirty six bit word. For example, the in-
struction “502030” means to take the contents of the PD
register and load them into the PB register, but load
only bits 0, 1 and 2 (discarding bits 3-35). The “50”
in the instruction means the PB register is the destination
of the data, the “20” means the PD register is the source,
and the “30” means to load only the first three bits of the
word in the PB register (as indicated in FIG. 4 at 115).
Another instruction, for example, “533627” means to add
bits 3-17 of the PB register to bits 3-17 of the PC regis-
ter and store the results in the PD register. The “53” in
the intsruction means to store the result in the PD regis-
ter, the “36” means to add PB to PC, and the “27” means
to operate on only bits 3-17 of the affected registers (as
seen in FIG. 4 at 116). The entire contents of the PB
and PC registers are brought into the adder in this case,

3,544,969

13

but the zone control 106 only allows bits 3-17 of the
result to be stored in the PD register. By substituting
other digits (i.e., 24) for the middle two digits of the
above instruction, the logical AND of the PB and PC
registers can be performed on the specified zone. More
examples will be apparent later when specific “primary
operation codes” (POP) and “secondary operation codes”
(SOP) are discussed.

The mini-engine 47 (FIG. 3c¢) is similar to the main
engine 13 except that no shifting or zoning operations
are performed. The registers employed are RB, RC, RD,
RE, and RF as seen in FIG. 3¢. These registers are, for
example, eleven bits in length, except the RC register
which is eight bits in length. The output (lines RE00-10)
of the mini-engine 47 is through the RE register. Inputs
(lines PMB25-35) from the inner computer go directly
to the RB, RC or RD registers from the main buss with-
out going through shift circuits as is the case with the
main engine 13, The adder 118 functions in a manner
similar to the adder in the main engine 13.

The functions of the various mini-engine registers will
be explained in more detail in conjunction with other sec-
tions of the system. The RB register functions as the mini-
instruction counter, and may be loaded from the buss
or from the RE register. The contents of the RB register
specify the mini-address of a mini-instruction located in
the control memory 42. The most significant ten bits (bits
0-9) indicate the address of a pair of mini-instructions
residing in the control memory, and the least significant
bit (bit 10) specifies which instruction of the pair is to
be executed,

The register RC is used as a shift counter to control
shifting in the main engine 13, i.e., it counts the number
of bits data is to be shifted in the main engine, The RC
register also serves to hold a skip distance when a skip
instruction is executed. The RC register is decremented
during shifting operations which are discussed below. No
shifting of data takes place within the mini-engine. A
shifting operation (including multiply and divide opera-
tions) may be performed on the data contained in one
or more of the main engine PB, PC or PD registers, i.e.,
the contents of PB, PC, or PD may be shifted individu-
ally, or PB with PD, or PC with PD. Shifting takes place
through the shift gates 102 and 103 of the main engine.
During a shift, a shift count from bits 12-17 of a shift
mini-instruction is loaded into the mini-engine RC regis-
ter. The remaining bits of the mini-instruction specify
which main engine register or registers is to be shifted and
whether to shift left or right. This shift count stored in

the mini-engine RC register controls the number of places ;

the data is to be shifted. For example, if the RC register
contains a count of 4 or greater, the data is shifted 4
places by the shift gates, and the register is decremented
by 4. This process is repeated during subsequent clock
cycles until the RC register contains a count less than 4.
If the contents of the RC register is zero, the shifting
operation is complete. If it is a 1, 2, or 3, the data is
then shifted 1, 2, or 3 places, respectively, and the RC
register is cleared to zero. Consider a mini-instruction
“662605.” The “66” specifies a shift operation, the “26”
specifies that the PC and PD registers are to be shifted
together and the entire contents of both shifted left as
one data group, and the “05” specifies that the registers
are to be shifted five bits, When this instruction is exe-

cuted, the 05 is loaded into the RC register. Since it

is greater than 4, the PC and PD registers are shifted 4
places left during the first clock cycle, and RC is decre-
mented by 4, becoming a 1. Then the contents of PC and
PD are shified 1 place left during the next clock cycle,
and RC is cleared to zero, completing the operation. In
the shifting operation, the data from the PC and PD
registers are transferred through the PE and PF regis-
ter to the shift gates 102 and 103. The first shift of
4 occurs and the shifted results are returned to the PC
and PD registers. It will be apparent that the most sig-

10

15

30

40

45

60

14

nificant bits of PC are lost and the most significant bits of
PD become the least significant bits of PC. A similar op-
eration occurs for the remaining one bit shift.

During a floating point normalize operation, the num-
ber of places to be shifted is determined by the data itself,
i.e., the data is to be shifted left an undetermined number
of times until a “one” appears in the most significant bit
position, For this type operation, bits 9-35 of the PB
register are shifted along with bits 9-35 of the PD regis-
ter, and shifted left until a one appears in the bit 9 posi-
tion of the PB register, Bits 0—8 in each register are not
involved in a normalize operation and are not disturbed.
Bits shifted out of the most significant bit positions of the
PD register are shifted into the least significant bit posi-
tions of the PB register. The normalize operation is started
as a result of executing the normalize mini-instruction
“6614xx”, where the “66” specifies shift, the “14” specifies
a floating normalize operation using the PB and PD regis-
ters in the manner described above, and the“xx™ may be
any octal number ranging from 00 through 77. If the latter
is any number from 00-76, it will be loaded into the RC
register as described previously for a shift count. If it
is 77, the contents of the RC register will not be altered.
The normalize operation is performed as follows. If the
PB register bits 9-12 do not contain a “one,” the con-
tents of PB and PD as described above are shifted 4
places left and a 4 is added to the contents of the RC
register. This process takes one clock cycle, and is re-
peated until a “one” appears in bits 9-12 of PB. If the
one is in bit position 9, the normalize operation has been
accomplished; otherwise, bits 9-12 are decoded to cause
a shift 1, 2, or 3 places left and a 1, 2, or 3, respectively,
is added to the contents of the register. This completes
the operation. During each clock cycle the data from the
PB and PD registers passes through the PE and PF regis-
ters and is shifted by the shift gates 102 and 103, with the
results being returned to the PB and PD registers. This is
repeated for as many clock cycles as necessary to com-
plete the required operation.

A masking operation is performed on the mini-engine
RC register under the following conditions. Whenever any
test mini-instruction is decoded, the skip distance portion
of the instruction is loaded into the RC register., The
purpose of a skip instruction is to jump up or down an
instruction list, or emulator routine, to fetch another in-
struction. Inasmuch as the skip distance is five bits long,
and the RC register is eight bits long, the three most signi-
cant bits of the RC register are cleared to zero during this
particular loading operation to ensure that the register
does not comntain any bits not involved in the skip opera-
tion, Under test conditions which will cause a skip, the
contents of the RC register are added to the contents of
the RB register and the result is stored in the RB register
thereby giving the location of the next instruction. A
simple example of the use of a skip operation may occur
where the sign of a number is tested to determine if it is
plus or minus. If the sign is minus, it may be desired to
skip a part of a routine dealing with positive numbers
and thus use only the steps of the routine dealing with
negative numbers,

The register RD is used to save the contents of the mini-
instruction counter (RB register), incremented by one,
when the emulator program enters a subroutine mode.
That is, the address of the next instruction to be executed
after completion of a subroutine is saved in the RD regis-
ter. During execution of an emulator routine it often is
desirable to branch from the emulator routine temporarily
and execute an emulator subroutine, subsequently return-
ing to the next instruction in the emulator routine. This is
accomplished through use of a SMCT mini-instruction
which signals a branch or jump to the subroutine. When
the SMCT instruction is encountered within a list of in-
structions in the emulator routine, the mini-address of the
next instruction following the SMCT instruction is saved
by incrementing the contents of the RB register by one

3,544,969

15

in the adder 118, and transferring the result to the RD
register. The start address of the subroutine as specified
by the SMCT instruction is loaded into the RB register,
and the subroutine is executed under control of the RB
Tegister until completion of the subroutine. When the
subroutine is completed, the contents of the RD register
are then loaded back into the RB register in order to con-
tinue execution of the emulator routine commencing with
the next instruction following the SMCT instruction.

The registers RE and RF are used when a transfer
within the mini-engine occurs, and thus are used for tem-
porary storage and data paths within the mini-engine. Data
flow during a straight transfer is from the adder 118 to
the RE register and from the RD register to the RF regis-
ter. During a cross transfer provided by lines 121 and
122, the data flow is from the adder to the RF register and
from the RD register to the RE register.

The scheduler 43 (FIG. 3a) is the basic controller of
the inner computer. The scheduler receives requests from
the various functional stations and determines the ap-
propriate action to be taken based upon a system of
priorities. By this means, the facilities of the system
are switched and controlled in a flexible manner to per-
form the operations corresponding to those of the com-
puter being emulated, such as, instruction execution,
input/output initiation and termination, input/output
data flow, console functions, and real time clock. In
general, the scheduler 43 determines the request which
is to be serviced, and passes control to the wired-in-se-
quence 44 which in turn causes execution of the appro-
priate emulator routine. The utilization of a switchable
inner computer to serve the various systems facilities in
a flexible manner by means of emulator routines permits
a computer embodying the concepts of this invention to
emulate a number of different computer systems. The
scheduler is of principal importance in accomplishing
this objective.

The requests to the scheduler 43 are divided into four
levels according to their urgency. When several requests
are simultaneously present, the scheduler selects the re-
quest which has the highest priority. Control is then
passed to the appropriate state of the wired-in-sequence
44, The following is a list of the scheduler requests in
descending order or priority, and the corresponding
wired-in-sequence states to which control is passed.

First

Priority Tlip-flop Ww-1-8
Jevel set Request or interrupt state
) P, ICON1 Return oo .ooooiiaaaaas YRO

Channel 1 buffer service - ¥BO
b P I CON 2 Return ¢

Channel 2 buffer s
S, 1 CON 3 Return

Terminate

Console
4 iaas I CON 4 Return

B 4 7Y o IR

Program

The channel one buffer service request may be indi-
cated by an emulator instruction, or as a result of the
1/0 channel filling one of its buffers. The object of this
request is to inform the innmer computer to remove the
data from the buffer before the channel has a chance
to overlay the buffer with new data. When the buffer
service request is recognized by the scheduler 43, wired-
in-sequence state YBO is enabled. The wired-in-sequence
states and the resulting action will be described subse-
quently.

The channel two buffer service request is similar to
the channel one buffer service request except that it is
used to service channel two on two channel systems and
has a lower priority than the channel one buffer service
request. When this request is recognized by the scheduler
43, wire-in-sequence state YBO is enabled.

(=3

40

50

60

65

70

75

16

The terminate request may be set by an emulator in-
struction or by a signal from one of the I/O channels
indicating the end of an input/output operation. When
the scheduler 43 recognizes this request, it enables wired-
in-sequence state YBO,

There are six keys on the operator’s console 14 which
will cause a console request. These are the interval timer,
reset, clear, load card, load tape, execute entry, and
execute display. If any of these keys are on, a flip-flop
in the scheduler 43 will be set. When this request is
recognized by the scheduler, control will be passed to
state YBO of the wired-in-sequence.

If a condition occurs which would cause a trap on the
computer being emulated, the trap request may be set
by an emulator instruction. When the trap request is
recognized by the scheduler 43, state YBO of the wired-
in-sequence is enabled. When emulating a certain present
day computer, there are some conditions under which it
is desirable to delay the recognition of a trap request.
This may be accomplished by providing a postpone trap
flip-flop which is set by means of an emulator instruc-
tion in addition to setting the trap request. This allows
one program request to be recognized before the trap
request will be recognized. In effect, this reverses the
priority of the program and trap requests for the dura-
tion of one instruction in the language of the computer
being emulated.

The program request may be set by an emulator in-
struction or by the operator when he presses the start
key of the console. When a program request is recog-
nized by the scheduler 43, sequence state YAO of the
wired-in-sequence 44 is enabled.,

It is sometimes necessary to temporarily interrupt the
operation of one level until some later event takes place.
To control this activity, each level has what is called
a “hang” and a “return request.” A hang condition may
be set for any scheduler level by an emulator instruction.
This also sets a return request, but causes all requests
occurring at that level to be temporarily ignored. When
the hang is cleared, the return request will be honored
according to its level’s priority. If in any one level there
exists both an “original” request and a return request,
the return request will be honored first. When the sched-
uler 43 recognizes any return request, step YRO of the
wired-in-sequence is entered.

Within each scheduler priority level there are three
groups of flip-flops as seen in FIGS. 5a and 5. These
flip-flops are the interrupt (INTxx) flip-flops 126 through
142, and status flip-flops 144 through 153, and the cur-
rent operating level flip-flops (ICONx) 155 through 158.
Briefly, the interrupt flip-flops are used to store any
one or more conditions or requests (such as a program
request) which requires servicing by the scheduler 43.
One or more interrupt flip-flops are set whenever such
conditions occur. The outputs of these flip-flops are
coupled as inputs to the following AND gates 160
through 170 as indicated by the designations on outputs
of these gates in FIGS. 5a-5b. As will be described later,
each cycle of the system clock includes pulses KCPO
through KCP7, the “KCP” indicating a clock pulse and
the numeral (e.g., 7) indicating the clock time. At KCP4
time of each clock cycle, as indicated by line 172, all
of the interrupts present at each level are gated into
the status flip-flops 144 through 153 by the gates 160
through 170 which are coupled to the set inputs of these
flip-flops. At this time, all the requests present are “froz-
en,” so to speak, in the status flip-flops 144 through
153 so that there will be no further changes in the states
of these flip-flops untit KCP3 time of the next clock
cycle when these flip-flops are reset. After KCP4 time
noted above, if the scheduler gains control it will use
the outputs of the status flip-flops at KCPO time to set
the proper current operating level flip-flop (ICONx) 155
through 158 according to the logic shown in FIGS. 5a
and 56.

3,544,969

17
More specifically, there are four basic interrupt flip-
flops (level four contains five) for each level as shown
below:

18

utilized to service other requests. The hang flip-flop
for any level can be set by the mini-instruction “0654xx™
where the “06” specifies a miscellaneous mini-instruc-

Flip/Flop Level 1 Level 2 Level 3 Level 4
ReqQuest . oo 126(INT19) 130(INT23) 134(INT27) 138(INT3L)
13{INT32)
Joh-In-progress_. coeooo 127(INT20) I3K(INT24) 135(INT28) 140(INT33)
Return. ... 8(INT2L) 132(INT25) 136(INT20) 141(INT34)
JIang. . .. [29(INT28) 133(NT26) 137(INT30) 142(INT35)
The “request” flip-flops 126, 130, 134, 138 and 139 10 tion, and the “54” specifies hang present level. The xx
(INT19, INT23, INT27, INT31 and INT32) are set and portion of the instruction is not used. Logically, this may
reset in the following manner: be expressed as for any level “n” as
INT19 (SET)=Channel 1 Buffer Service Request HANG# (SET)==ICONn-RGI5X-RGIX4-LMIS-KCP6
(HCBSR), OR “Set Level 1 Bufler Service Request” 15 In addition to the above logic, the level 4 hang flip-flop

mini-instruction;

INT19 (RESET)="Reset all Hangs and Requests” mini-
instruction, OR Machine Reset (SRES);

INT23 (SET)=Channel 2 Buffer Service Request
(BCBSR), OR “Set Level 2 Buffer Service Request”
mini-instruction;

INT23 (RESET)} =same as INT 19 Reset;

INT27 (SET)=Terminate Request (HTERM-T) AND
Level 3 not in operation (ICON3-F), OR “Set Termi-
nate Request” mini-instruction;

INT27 (RESET)=same as INT19 Reset;

INT31 (SET)="Set Channel Trap Request” mini-in-
struction;

INT31 (RESET)="Reset Level 4” mini-instruction, OR
Machine Rest, OR Console Reset (SPRES);

INT32 (SET)=Trap Request Status F/F (ITRRQ), set
AND no higher level status flip-flops set, AND
YSCON, OR “Set Program Reset” mini-instruction;

INT32 (RESET)=Reset Program request signal, OR

Program Request Status F/F (IPGRQ) set AND no -

higher level status F/Fs set AND Manual Mode AND
YSCON.

The general logical form for setting and resetting the
above interrupts may be illustrated by means of the fol-
lowing example. The “Reset and hangs and requests”
mini-instruction term for resetting INT19 is: RG17x-
RGIx6-LMIS-KCP6. The RGIxx signals originate in a
RGI decide circuit which will be discussed later, and in
this example mean that a SOP code of 76 has been de-
coded. The LMIS means that a miscellaneous instruc-
tion performs this operation, and the KCP6 means the
INT19 flip-flop 126 is reset at clock time six.

The Job In Progress (JIPx) flip-flops 127, 131, 135
and 140 (INT20, INT24, INT28, INT33) for any level
are used to store the fact that the last request recognized
by the scheduler at this level is still being serviced even
though the servicing of such a request may have been
temporarily interrupted by a hang condition. The JIPx
flip-flops are set at KCPO time by the same conditions
that set the current operating level (ICONx) flip-flops
155 through 158 as will be discussed. The JIP flip-flops
are reset as follows: :

INT20 (RESET)=same as INT1Y reset, OR Exit from
Level 1;

INT24 (RESET)=same as INT19 reset, OR Exit from
Level 2;

INT28 (RESET)=same as INT19 reset, OR Exit from
Level 3;

INT33 (RESET)=same as INT19 reset, OR Exit from
Level 4.

A hang is a condition initiated by a “miscellancous”
mini-instruction which indicates that the scheduler level
currently in operation must be temporarily interrupted.
The hang condition is useful, for example, in the emula-
tion of certain input/output functions where an input/
output operation cannot be initiated because some other
input/output operation is already in progress. Due to the
hang feature of the scheduler, the time which might be
wasted in waiting for the first operation to finish can be

20

25

30

40

55

60

142 may be set by the mini-instruction “0660xx” which
means “set program halt and hang level 4. This mini-
instruction is used to emulate halt instructions of other
computers.

The same logic which sets the hang flip-flop for any
level also sets the return flip-flop for that level, that is,
RETURN, (SET)=HANG# (SET). Also, the decoding
of the “hang current level” mini-instruction generates the
signal YSTS by means of gate 175 (F1G. 6). The decod-
ing of the “set program halt and hang level 4” also gener-
ates YSTS by means of gate 176. The YSTS signal starts
the wired-in-sequence at state YS0.

The wired-in-sequence proceeds from states YS0
through YSS, storing the contents of certain registers in
control memory, as will be explained in the discussion
of the wired-in-sequence 44. When the operation is com-
plete, the signal LSCON is generated which sets the
YSCON flip-flop (FIG. 7) which returns control to the
scheduler, but does not reset the job-in-progress (JIP)
flip-flop for the level currently in operation. The job-in-
progress flip-flop is usually reset by the signal LEXIT
which means exit from current level. Observe on FIGS.
Sa and 5b that if for any level the hang flip-flop is set
and the job-in-progress flip-flop is also set, no status flip-
flop for that level can be set at KCP4 time. Thus, any
request for a level which has been “hung” is “locked
out” temporarily, The signal YSCON will reset the cur-
rent operating level flip-flop ICONx at KCP7 time, and
if a request for some other level or levels is stored in the
status flip-flops, the appropriate ICONx flip-flop will be
set at KCPO time. The level which was “hung” will be
ignored by the scheduler until the hang flip-flop for that
level is reset. The hang flip-flop for any level is usually
reset at some point in time when an emulator routine de-
tects conditions which make it appropriate to continue
the emulator program which caused the hang condition.
For example, assume that an I/0 emulation program at
level 2 cannot be continued because of an 1/0 operation
already in progress, so that hang 2 flip-flop 133 is set
which also sets the return 2 flip-flop 132 and control passes
to the scheduler as previously described. Later, an emu-
lator routine may be entered, for example as the result of
a terminate request, which detects that the I/0 operation
which was in progress has been completed. This routine
may then issue a mini-instruction to reset the hang 2
flip-lop 133. When this is done, the level 2 return status
flip-flop 147 will be set at KCP4 time by means of gate
163 (FIG. 5a) since the JIP2 flip-flop 131 and return
2 flip-flop 132 are both set and the hang flip-flop 133
is now reset.

The next time the scheduler regains control, the return
from level 2 which is now stored in the status flip-flop
147 will be recognized because level 1 requests are blocked
out or interlocked when channel 2 is in a hang condition
and, thus, level 2 is the highest priority level at this time.

In reference to the interlock feature, assume that the
scheduler has been reset by the SRES and SPRES signals
and that no requests (interrupts INTxx) are present.
Inasmuch as no requests are present, the status flip-flops
will not be loaded at KCP4, and therefore none of the

3,544,969

19

ICON flip-flops will be set even though the signal YSCON
is true, and YSCON flip-flop having been set by the
SPRES signal. Also assuming a channel 1 buffer request
occurs, the flip-flop 126 is true, and the flip-flops 127
and 128 are false thereby allowing the channel 1 buffer
service status flip-flop 144 to be set at KCP4. At the
following KCPO the ICON1 flip-flop 155 will be set. The
signal LSCON also will be true, having been generated
by the logic in FIG. 13. The true output of the status
flip-fiop 144 will be gated by the gate 174 and the LSCON
signal thereby generating signal YSTB which causes the
wired-in-sequence to enter state YBO, ultimately ending
up in sequence state YBS where an emulator routine may
be executed. Now, assuming that this emulator program
has a miscellaneous mini-instruction “hang current level”
which has been executed, the instruction will cause the
hang 1 flip-flop 129 to be set and the save sequence of the
wired-in-sequence will be entered. It should be noted that
the JIP1 flip-flop 127 is true and prevents any channel 2
requests from setting the status flip-flop 146 through gate
162. Since level 2 has not been in operation during this
example, the JIP2 flip-flop 131 will be off which pre-
vents the level 2 return status flip-flop 147 from being
set. Accordingly, all the level 2 status flip-flops are reset
and will remain so until the JIP1 flip-flop 127 is reset.
When the entered save sequence is completed, the signal
1LSCON will be generated which will return control back
to the scheduler which may at this time service any
requests from levels 3 and 4. Level 1 is ignored because
the JIP1 fiip-flop 127 prevents any new buffer service
request from setting the status flip-flop 144 through gate
160, and level 2 is locked out as described above. During
the same emulator program being serviced in levels 3
or 4 a miscellaneous mini-instruction “reset bufler hang”
may occur. This will cause the hang 1 flip-flop 129 to
be reset which then allows the output of the return status
fiip-flop 145 to pass through gate 161 inasmuch as the
J1P1 flip-flop 127 is set and the return 1 flip-flop 128 has
been set as was discussed earlier. The next time the sched-
uler is again in control, level 1 will be re-entered because
its return status is the highest priority signal present,
and the return sequence of the wired in sequence will be
entered, ultimately returning control to the emulator pro-
gram which was interrupted in level 1. When this emu-
lator program is completed, it will return control to the
scheduler, e.g., by means of an exit mini-instruction {as-
suming no subroutine mode is in effect), and the JIP1
flip-flop 128 will be reset.

Similarly, level 1 may be locked out when a bhang con-
dition occurs in level 2. As is noted above, no level 2
status requests will be available as long as the JIP1 flip-
flop 127 is set. Thus, it follows that if any level 2 request
is honored by the scheduler, the JIP1 flip-flop 127 will be
in the reset state. When level 2 is in operation, level 1
will be locked out, because the JIP2 flip-flop 131 (INT24)
is set which inhibits any buffer service request (INT19-T)
from passing through gate 160 into the channel 1 status
flip-flop 144. Thus, a request from channel 1 will not
reach the status flip-flop 144. Likewise, while channel 2
is in a hang condition the level 1 return flip-flop 143
cannot be set because in order to do so the JIP1 flip-flop
127 must be on and in this case the JIP1 flip-flop 127 must
be in a reset state as explained above. Thus, it will be
apparent that then level 1 is in a hang condition, level 2
is automatically locked out or ignored by the scheduler
and vice versa.

Returning to the 1/0 emulation program example dis-
cussed above, in finishing the emulator routine which is
servicing the terminate request, assume that an exit mini-
instruction is the last instruction of the routine and that
subroutine mode is not in effect. The decoding of the exit
mini-instruction ultimately generates the signal LSCON
which returns control to the scheduler. Since all of the
status flip-flops 144, 145 and 146 are reset and the level 2
return status #ip-flop 147 is set (true), the output of gate

10

15

30

40

GO

70

-1

20

171 is true and will pass through gate 172 since signal
LSCON is “on,” thereby generating the signal YSTR. At
KCPe tirpe, the signal YSTR will set the first rank of the
YRET flip-flop in FIG. 9 (this flip-flop as well as the
o(her' ﬁi.p-ﬂops in FIG. 9 will be discussed shortly in the
description of the wired-in-sequence). This signal YSTR
a'lso sets the first rank of the YO flip-flop in FIG. 9. Addi-
ponally, at the KCP6 time, the YSCON flip-fiop (FIG. 7)
Is set by the LSCON signal, At KCP7 time, the YSCON
signal resets all of the ICON flip-flops 155-158 in FIGS,
5a-5b. Only one ICON flip-flop can be set at one time,
and in this case (since a terminate Tequest is being
serviced) only ICON3 was on in this example and thus is
reset at KCP7 time.

Immediately following, at KCPO time, the YSCON sig-
nall gates the output of the gate 171 through the gate 173
which in turn sets the ICON2 flip-flop 156. At the same
KCP0 time, the first rank of the YRET and first rank of
the YO flip-flops in FIG. 9 will be gated into the second
rank thereof thereby starting the wired-in-sequence at
state YRO which restores the register previously saved,
finally ending up in wired-in-sequence state YBS at which
point the emulator routine which had been temporarily
interrupted will continue where it left off. Control will
then be returned to the scheduler when an exit condition
occurs in the emulator roatine. Further details of the ac-
tions taken in the return portion of the wired-in-sequence
states will be described subsequently.

Hang flip-flops 1, 2, and 3 (129, 133 and 137) may be
reset by the same logic that resets the request flip-flops,
e.g., the same resets as INT19 (flip-flop 126). In addition,
the miscellaneous mini-instruction “0662xx” termed “reset
buffer hang” will reset the hang 1 flip-flop 129 (INT22)
%f the CHBC flip-flop (which is described subsequently)
is reset (false), and this instruction will reset the hang 2
flip-flop 133 (INT26) if the CHBC flip-flop is set. The
“06” in the instruction means that this instruction is a
miscellaneous POP code, the “62” means to reset buffer
hang, and the “xx” is not used. The hang 3 flip-flop 137
(INT30) may be reset by miscellaneous instruction
“0666xx.” The “66” means “reset terminate hang.” The
hang 4 flip-flop 142 (INT35) may be reset in several
ways. It may be reset by the console reset switch. It also
may be reset by three mini-instructions. It will be reset by
the miscellaneous mini-instruction “0674xx,” wherein
“74” means “reset level 4.” Miscellaneous instruction
“0670xx” will reset this flip-flop wherein “70” means “re-
set hang 4 if halt flip-flop is reset.” The hang 4 flip-flop
also will be reset by miscellaneous mini-instruction
“0676xx” wherein “76” means “reset all hangs and re-
quests.” However, this instruction will not reset certain
interrupts, including the hang 4 flip-flop unless the halt
flip-flop is reset. The hang 4 flip-flop also will be reset
yvhen the console start switch is pressed if the halt flip-flop
is set.

The return flip-flops (INT21, INT25, INT29, INT34)
for any level are used to store the fact that the current
level had to be temporarily interrupted and must be re-
sumed at a later time. The return flip-flop for any level
“n” is set by the same logic as the hang flip-flop for that
level, that is, RETURN#n (SET) =HANGn (SET). As in-
dicated in the logic of FIGS. 5a and 5b, the return re-
quest for any level cannot be stored in the status flip-flops
if the hang flip-flop of the same level is set. In addition,
the return flip-flops for levels 1, 2, and 3 (INT21, INT2S,
and INT29) may also be set by a “delay” mini-instruc-
tion, “54NNuxx” where the “NN” may be any octal num-
ber except 04, 05, or 21 and the “xx™ is not used. The
execution of this delay mini-instruction generates the sig-
nal LNSI which generates the signal YSTS by means of
the AND gate 177 in FIG. 6 causing the wired-in-se-
quence save sequence (YS0-YSS5) to be performed. Upon
completion of YSS5, the signal LSCON is generated which
sets the YSCON flip-flop (see FIG. 7) returning control to
the scheduler. The scheduler then has a period of approxi-

3,544,969

21

mately 100 microseconds in which it may service requests
if any are present. Note as above, if the delay occurred
in level 2, level 1 will be locked out and vice versa. In
about 100 microseconds after the time the delay instruc-
tion was executed, the signal IDEL1 for levels 1 and 2;
and the signal IDEL3 for level 3 will occur, genreated
by timing circuitry. The IDEL1 signal will set the return
request flip-flop 128 for level 1 if the delay occurred in
level 1, or will set the return request flip-flop 132 for level
2 if the delay occurred in level 2. The IDEL3 signal sets
the return flip-flop 136 for level 3. The return status flip-
flop for whichever level was temporarily interrupted by
the delay is now set at KCP4 time, and the scheduler serv-
ices this request whenever there are no higher priority
requests stored in the status flip-flops when YSCON
occurs. The signal YSTR is generated by any one of the
return status flip-flops 145, 147, 150, and 153, being set
in combination with the signal LSCON, and the return
sequence of the wired-in-sequence is entered which has
been described previously.

The four ICON flip-flops 155 through 158 determine
which scheduler control level is to be serviced next, and
are reset and set by the following general logic:

RESET=YSCON-KCP7
SET==YSCON-KCP0: (RETURN STATUS+REQUEST
STATUS-(NO HIGHER LEVEL REQUESTS OR RE-

TURNS)

The YSCON signal is generated by an exit condition
which is to be described subsequently. Each of the return
status flip-flops 145, 147, 1506, and 153 has the highest
priority within its respective level. The various status flip-
flops within a level have a priority according to the level,
e.z., the status flip-flops 144 and 145 in level 1 have a
higher priority than the status flip-flops 146 and 147 in
level 2. For example, the level 3 status flip-flops 148, 149
or 150 being set still will not enable this level to be
serviced if any status flip-flop is set in level 1 or 2. The
following is the priority of the status flip-flops starting
with the flip-flop of highest priority and proceeding in
the descending order: Level 1 return flip-flop 145, chan-
nel 1 buffer service flip-flop 144; level 2 return flip-flop
147, channel 2 buffer service flip-flop 146; level 3 return
flip-flop 150, terminate flip-flop 148, and console flip-flop
149; and level 4 return flip-flop 153, trap flip-flop 151 and
program flip-flop 152.

The program halt flip-flop (IHALT) is included in the
console request circuit in FIG. 3b, and is set when a
miscellaneous mini-instruction “0660xx™ has been de-
coded. This instruction means “set program halt and hang
level 4.” The set logic for this flip-flop is:

THALT=LMIS-KCP6-RGI6X-RGIX0
The reset logic is:
THAT T=KCP0- YSCON: (ITRAP4IPGRQ--IRET4)
Tt should be noted that the TNONE signal input to the

gate 165 in level 3 (FIG. 5b) is a signal from the console

which indicates that no console request switch is on. The
ISCRQ signal input to the gate 165 is an output of the
console request circuit in FIG. 3b and indicates that a
console request switch is on. The console request circuit
in FIG. 3b includes seven console request flip-flops which
indicate there is an unserviced request from the console.
The outputs of these flip-flops are ORed together giving
the signal ISCRQ which is sent to the scheduler. The
seven console request flip-flops are set by the console
reset switch, clear switch, load card switch, load tape
switch, entry switch, display switch, and internal timer,
respectively. The general reset logic is:

RESET=SRES+LMIS-RGI7X -RGIX2-KCP6

The SRES term of this equation is from a machine reset
switch. The remainder of the reset equation means the
request flip-flops are reset by the miscellaneous mini-

20

30

40

GO

22
instruction “0672xx.”" The scheduler console request flip-
flops are identified below:

Switch Description Flip-flops
Internal timer.____._.________ TNT08
Reset_ o ... INTO®
Clear. INT10
- Load card ... INT11
. Load tape .- INTI2
_ Entry_ INTI13
Sbdsplay. .. INTI4

The console request circuit in FIG, 36 also includes the
postpone trap flip-flop and timing circuitry which gener-
ates the signals IDEL1 and 1DEL3 which are used with
the delaved return which was discussed earlier.

The IPPTR-F signal input to the gate 167 in level 4 is
the false output of the postpone trap flip-flop. The AUTO
input to the gate 167 is the inverse of the TMAN signal
from the console. The latter is generated when the auto/
manual switch is in the manual position. The AUTO
signal, when true, means that the machine is in the auto-
matic mode.

The scheduler has three general reset terms, which are:

Machine reset (SRES) from the maintenance panel
will reset the major elements in all four scheduler prior-
ity levels.

Certain elements are also reset by the reset key on the
operator’s console (SPRES). The flip-flops affected by
SPRES-T are:

(1) Interrupt 21, Dam Return;

(2) Interrupt 29, Terminate Return;

(3) Interrupt 31, Channel Trap;

(4) Interrupt 32, Program Request;

(5) Interrupt 33, Program Job-In-Progress;
(6) Interrupt 34, Program Return; and

(7) Interrupt 35, Program Hang.

A general reset is initiated by the use of the miscel-
laneous POP code 06 with the RINT SOP code 17, which
resets all hangs and requests. This instruction will reset
all major elements except channel trap, program request,
program job-in-progress, and program return.

Generally speaking, the various requests are set by an
emulator instruction or the channel hardware. The re-

5 quests are then recognized by the scheduler, and some

wire sequence control state is enabled.

The wired-in-sequence 44 (FIG. 3a) is a hardware
implementation of certain “housekeeping” subroutines
which take care of, for example, fetching the instruction
to be emulated and performing indexing and indirect
addressing functions, By performing such functions in this
manner instead of via an emulator routine in control
memory 42, the overall speed of the emulation process
is increased, and control memory space is conserved. Also,
during the time the wired-in-sequence 44 is in control,
the instruction of the machine being emulated is decoded
by means of the translators 45 (FIG. 3f) and the start-
ing address of the “soft” emulator routine is determined
through the entry table in control memory 42. This feature
provides the needed flexibility in the emulator program
memory allocation, and the ease by which emulator sub-
routines may be changed.

The wire-in-sequence contains four subroutines or cycles
including six steps each. These sequences are YS (Save),
YR (Restore), YA (Instruction Fetch), and YB (Operand
Fetch) as shown in flow diagram form in FIGS. 8a-8b.
Depending on the type of request which the scheduler 43
has honored, control will be passed to state zero of one
of the above sequences. From there, the sequence is
stepped from one state to another, although not neces-
sarily in a sequential manner. Sometimes steps are skipped
within a sequence and control may be passed from one
sequence to another. The various cycles and the opera-
tions which are performed during the individual sequence
steps are described below,

3,544,969

23

When the program request is honored by the scheduler
43, control is passed to the YAQ step (FIG. 14a) of the
wired-in-sequence. The purpose of the YA portion (note
FIG. 8a) of the wired-in-sequence is to fetch the instruc-
tion to be emulated from main memory, decode it, and
perform indexing and indirect address operations.

In the YA® step (FIG. 14a) the address pointing to the
instruction in main memory to be interpreted is loaded
into main engine register PB (FIG. 3f) from any one
of the three instruction counter registers, namely the IC
(FIG. 3¢), AUX1 and AUX2 registers. The AUX registers
are in the control memory core storage unit 68. Normally
the address is loaded from the IC register. The AUX1 and
AUX2 registers are used when trap conditions exist. If the
YAUX1 flip-flop (FIG. 11) is set, a XEC (non 1/0) trap
condition exists, and the AUX1 register will be loaded
into the PB register. If the YAUX2 flip-flop is set, an 1/0
trap condition exists, In this latter case, the AUX2 register
will be used as the address source, unless the YAUX1
flip-flop is set in which case the AUX1 register will be
used. If neither the YAUX1 or YAUX2 flip-flop is set, the
IC register will be used. The AUX1 and AUX2 registers
are loaded by emulator routines. Control is passed to the
YA1 step.

In the YA1 step (FIG. 14b), the instruction addressed
by register PB is fetched from main memory 11 and
loaded into main engine registers PC and PD. Control is
passed to step YA2.

In the YAZ2 step (FIG. 14c), the operation code of the
instruction located in the PD register is decoded by the
translators. As a result of the decoding, the entry word
corresponding to the classification of the instruction is
brought from the control memory entry table and loaded
into mini-engine registers RB. The most significant seven
bits of this entry word contain information which sets the
LK flip-flops shown in FIG. 10. The entry word from the
control memory is sent over the main buss 50 and the
seven most significant bits (PMB18-24) are sent to the
wired-in-sequence and loaded into the LK flip-flops. The
remaining eleven bits (PMB25-35) are loaded into the
register RB. The seven bits are applied through AND
gates (FIG. 10) to the set inputs of the LK flip-flops along
with the output of an AND gate 182. The inputs to this
gate are the KPC6 clock pulse, a combination of signals
indicating state YA2 (YA-T and Y2-T) which come
from the general flip-flops in FIG. 9, and a job one signal

(LJB1-T) which esesntially is a timing pulse from

<

10

20

30

40

24

mini-control (FIG. 3a). The gate 183 on the set input
of the LK3 flip-flop includes additional inputs pertaining
to indirect addressing and transfer, The inputs PD12-T
and PD13-T are from bit positions 12 and 13 of the PD
register and are a part of the instruction being emulated
which indicates that indirect addressing must take place.
If these bits are not present (false), the bit from the entry
table (PMB20) which indicates that indirect addressing is
possible will be inhibited from setting LK3. When the
LK3 flipflop is reset, the wired-in-sequence will skip
steps YA4 and YAS which are concerned with indirect
addressing. The LILK3 signal will also inhibit the setting
of the LK3 flip-flop if this signal is false. This signal is
false if a transfer instruction is decoded and the transfer
trap mode indicator (general indicator PIG40) is set
thereby indicating that indirect addressing is not to be
performed in order to emulate this mode on a well-known
second generation computer, The LK flip-flops are reset
from the output of a gate 184 at KCP2 time in accordance
with the remaining inputs to this gate which have been
described. The LITY-T input to the reset input of the LK4
flip-flop is generated as a result of decoding a TAW instruc-
tion which will be discussed shortly.

The LK flip-flops are subsequently used to control
skipping of sequence steps within the wired-in-sequence
to follow. The general control flip-flops (FIG. 9) are
set by the translators during this step YA2. Control is
then passed to step YA3.

Turning for the moment to the translators (FIG. 3f),
the inptus to tramslator A come directly from the PD
register which contains the instruction being emulated.
The operation code of the instruction is decoded by the
translator A, and one of a possible 77 octal group codes
is generated. Instructions are grouped according to the
type of emulator routine which is necessary to complete
the emulation of the instruction. More than one instruc-
tion may belong to a group. Table A below gives the group
codes for the instructions of a well-known seccond genera-
tion data processing machine, The group code is combined
with other bits to form an address ranging from 200-277
(octal) which is sent over the main buss 50 to the address
register 67 in the control memory 42, This address is used
to fetch a word from the control memory entry table
which resides in mini-locations 200-277. The entry word
will be described subsequently. The group code is sent in
another form to translator B.

TABLE A
Trans-
Instruction emulated Jator A, Genaeral control {lip/flops
group —

AMuemonie Octal code SUB MAG GOP0Y GOF10 GOFP1l GEX GIN ARI

HTR 0000 00 0 0 0 1 0 0 0 Q
HTR 0000 00 0 0 0 1 0 0 1] Q
TIX 2000 01 0 0 0 0 0 1 4 0
TNX 6000 01 0 0 0 Q 1 1] 4]
TXH 3000 01 i3 0 0 0 0 1 1]
TXL 7060 01 0 0 0 0 1 1 1 [i}
PAL 0044 04 0 0 0 i) Q 0 4] [
1IA (041 04 Q 4] 1]) 1 0 4 0
RIA 40142 04 0 0 1 1 1] 0 O 0
OAI 043 Ok Q Q 1 Q 1 G))
ITR (a1 05 Q0 QO 1 ¢] 0 1]]
IIL 4061 05 0 0 Q0 0 1 1) 0
R¥FT 0054 05 0 0 1 0 0 i} { 0
LEFT 4054 05 [Q 1 a 0 1 0 {]
SIR 0055 05 [i] 0 1 0 1 0 i Q
BNT 0056 05 { 0 1 1 O 0] L]
LNT 4056 05 0 0 1 1 0 1 4} Q
RIR 0057 05 0 4] 1 1 0 0 0 0
RIL 4057 05 0 0 1 1 1 1 Q 0
TCOA 0060 06 0 0 1 1 0 0 0 0
TCOB 0061 06 0 [)] 1 1 0 0 0
TCNA 4060 06 0 0 1 0 Q 0 Q 0
TCNB 4061 06 0 0 (1} [1 0 __ 0 0
TSX 0074 07 0 0 0 0 Q 0 YAUX 1 0
CVR 0114 11 0 0 0 0 0 1 0 0
XCA 0131 13 0 0 0 0 1] 0 [1
XCL 4130 13 Q Q ¢ (] 0 0 [d 0
CAQ 4114 15 0 0 0 0 [1 1 0
CRQ 4154 15 0 0 0 0 0 1 a 0
TXI 1000 17 0 0) 4 10 1) I}
MPY 0200 24 0 0 0 (] (1} 1 u 1
MPR 4200 20 i} 0 1] a 1 1] 4]
VLM 0204 20 0 1] 0 (1]] 1 1 1

3,544,969

TABLE A —Continued
Trans-
Instruction emulated lator A, General control flip/flops
group —
Mnemonic Octal code SUB MAG GOP® GOPIY GOPIL (UEX GIN ARI
HTR 0000 00 0 0 0 1 0 0 [} 0
DVP 0221 22 0 0 0 0 1 1 0 0
DVH 0220 22 0 0 0 0 0 1] 0
VDP 0225 22 0 0 0 0 1 1 1 0
VDH 0224 22] 0 0 0 0 1 1 0
FDI 0240 24 0 0 0 0 0] 1 1
FDP 0241 24 0 0 0 0 0 a 0 1
DFDP 4241 25 0 0 0 0 0 0 0 1
DFDH 4240 25 0 0 0 0 0 ¢ 1 1
FMP 0260 26 0 0 1] 0 0 0 0 1
JFM 4260 26 Q 0 1 0 9 0 1] 1
DFMP 0261 27 0 0 0 0 0 0 0 1
DUFM 4261 27 0 0 1 i]) 0 1
AD 0300 30 0 0 0 0 i 0 [i 1
FAM 0304 30 0 1 0 0 0 0 0 1
UFA 4300 30 0 0 0 1] 1 0 0 1
FsB 0302 30 1 0 0 0 0 0 0 1
UAM 4304 30 0 1 ¢ q 1 0 0 1
FsM 0306 30 1 1 0 0 0 0 0 1
UFS 4302 30 1 0 0 0 1 0 0 1
USM 4306 30 1 1 0] 1 0 0 1
DFAD 0301 31 0 0] 0 0 0 0 1
DFAM 0305 31] 1 0 1] 0 0 1] 1
DUFA 4301 31 0 0 0 0 1 0 0 1
DFSB 0303 31 1 0 0] 0 i 0 1
DUAM 4305 31 0 1 0 0 1 0 0 1
DFSM 0307 31 1 1 0 0 0 [} 0 1
DUFS 4303 31 1 0 0 o 1 0 0 1
DUSM 4307 31 1 1 0 0 1 1] 0 1
Ra 0822 32 0 0 0 0 1 0 1 0
ANA 4320 32 0 0 1] 0 0 0 0
ORA 4501 32 1 0 1 0 1 i 0 i
CAS 0340 34 0 0 0 0 0 0 0 1
LAS 4340 34 0 0 0 0 4 0 0 1]
TLQ 0040 35 0 0 0 0 0 0 0 1
AXT 0774 37] 0 0 0 0 0 1 G
AXC 4774 37 0 0 0 [} 0 0 0 0
ADD 0400 40 0 0)] 0 0 0 0 1
ADM 0401 40 0 1 [} i a 0 0 0
sSUB 0402 10 1 0 0 0 0 i 0 1
SBM 4400 40 1 1 0 0 0 a 0 0
118 0440 44 0 o 0 0 1 0 0 [}
LDI 0441 44 0 0 0 1 0 1] 0 U
08I 0442 44 0 0 1 0 1 0 0 [}
OFT 0444 44 0 0 1 0 0 0 1 0
ONT 0446 44 0 0 1 1 Q 0 1 0
RIS 0445 44 0 0 0 1 1 0 0 0
DLD 0443 45 0 0 1] o 0 0 0 1
CLA 0500 50 0 0 0 0 0 0 0 1
CAL 4500 50 0 0 0 a 0 0 0 0
CL3 0502 50 1 0 0 i 0 0 0 1
ZET 0520 52 0 0 0 0 0 0 0 1
NZT 4520 52 0 0 0 0 1 0 0 1
LXA 0534 53 0 0 0 0 0 0 1 Q
LXD 4534 53 0 0 0 0 0 1 1 0
LAC 0535 53 0 0 0 0 0 0 0 0
LDC 4535 53 0 0 0 0 Q 1 0 0
RCHA 0540 54 0 0 1 1 Q 0 0 ¢
LCHA 0544 54 0 0 1 0 Q 0 0 0
RCHB 4540 54 0 0 0 1 1 0 0 0
LCHB 4544 54 0 Q 0 0 1 0 0 0
TIO 0042 55 0 0 0 0 i 0 0 0
TIF 0045 55 0 0 1 a 0 0 0 0
STO 0601 60 0 0 0 0 0 0 1 1
SLW 0602 60 0 0 0 0 0 [1 0
STI 0604 GO 0 0 0 0 0 0 0 0
ANS 0320 61 0 0 1 0 0 0 0 0
ORS 4602 61 0 0 1 0 1 0 0 0
SXA 0634 63 0 0 0 0 i 0 1 0
SXD 4634 63 i 0 0 \ 4 1 1 0
SCA 0636 63 0 0 0 0 0 0 [} 0
SCD 4636 63 0 0 0 i} 0 1 0 v
SCHA 0610 64 0 0 1 0 0 0 0 0
SCHB 4640 64 [i] 0 0 0 0 Q 0 v
(ALL) 0760's 66 0] 0 0 0 0 0 0
(ALL) 4760"s 66] 0 4} 0 0 [} 1 g
DST 4603 70 i 0 0 bl 0 0 0 1
STZ 0600 71 0 0 0 0 0 0 0 0
8STQ 4600 71 0 0 0 0 0 0 1 0
PAX 0734 73 i 0 0 0 0 0 1 0
PDX 4734 73 0 0 0 0 0 1 1 0
PAC 0737 73 i 0 0 [} 0 0 0 0
PDC 4737 73 0 0 0 0 0 1 0 o
PXA 0754 75 0 0 0 0 0 0 1 0
PXD 4754 75 0 0 0 0 0 1 1 0
PCA 0756 75 0 0 0 0 0 0 0 0
PCD 4756 75 0 0 0 0 0 1 0 0
RDS a762 76 0 0 0 0 1 0 0 0
WRS 0766 76 ¢ o 1 0 1 0] 0
BSR 4754 76] 0 1 0 0 0 0 0
BSF 4764 76 0 0 1 0 0 0 0 0
WEF 0770 76 0 0 0 0 0 0 Q 0
REW 0772 76 0 0 0)] 0 0 0 Y
RUN 4772 76 0 0 0 0 0 Q 0 0
SDN 0776 76 0 0 1 o 0 0 qQ 0
ALS 0767 77 0 0 0 1 1 0 0 0
ARS 0771 77 0 0 0 1 0 0 1 0
LLS 0783 77 0 [1 0 1 0 0 1
LRS 0765 77 0 0 1 0 0 0 0 0
LGL 4763 77 ¢ 0 1 1 1 0 1 0
LGR 4765 7 0 0 1 i 0 1} 1 i}
RQL 4773 77 0 0 0 0 1 0 1 1
NoOP 0761 77 [d 0 0 0 0 0 0 0

3,544,969

27

Considering the translators B and C (FIG. 3f), the
group code from the translator A and the operation code
of the instruction being emulated from the PD register
are used by the translator B to set the general control flip-
flops (FIG. 3f and FIGS. 18 and 194). There are eight
of these flip-flops, two of which are located on the trans-
lator B (FIGS. 3f and 18) and the remaining six on the
translator C (FIGS. 3f and 19b). The former two are
the subtract (SUB) and magnitude (MAG) flip-flops. The
function of the subtract flip-flop is to complement the sign
of a word taken from the main memory when it is loaded
into the PC register during wired-in-sequence state YB1.
The magnitude flip-flop forces the sign of a word taken
from the main memory to the same state as the subtract
flip-Alop when this word is loaded into the PC register
during wired-in-sequence state YBI.

The remaining six general control flip-flops, along with
the gates necessary to load these flip-flops from the trans-
lator B as well as auxiliary gates to load them from the
main buss and to output the states thereof to thc main
buss, are contained in the translator C (FIG. 3 and FIG.
196). These flip-flops are general operation control 9
(GOP09), general operation control 10 (GOP10), gen-
eral operation control 11 (GOP11), general exchange
(GEX), general inhibit (GIN), and arithmetic opera-
tion control (ARI), The translator C also contains the
LTSAT flip-flop.

The general operation control flip-flops (GOP09-
GOPI11) are used individualy and in combination to (1)
define variations in logic operations, e.g., AND, exclu-
sive OR, when a main engine “do logical” SOP code is
used. (2) control shifting operations when a main en-
gine “do shift” SOP code is used, and (3) control skips
in the emulator programs when arithmetic test instruc-
tions are used. These various instructions will be dis-
cussed in detail under a separate heading “mini-instruc-
tions.” The seltings of these flip-flops (as well as the
GIN flip-flop) to define the variations in logic operations
is set Torth below. The mnemonic SOP codes define the
operation which occur. The various codes are described
in detail in the subsequent discussion of the various mini-
instructions. The mini-instructions for which main en-
gine logical SOP codes are valid are used, particularly
main engine mini-instructions.

General control F/F Mnemonie

GOP GOP GOP
o 10 11

SOP code Opcration
0 1] 0 B C{I’B) unaltered.
4]] 1 BEC C{PB) exclusive O Red with
Sy

0 1 0 C (CPC) unaltered.

0 1 1 B.NC C{PB) ANDed with C(PC).
1 0 0 B.C C(PB) AN Ded with C(PC).
1 0 1 BUC C(PB ORed with C(PC).

1 1 0 NB.C C(PB) ANDed with C(PC).
1 1 1 B.NC C(PB) ANDed with C(PD).

The settings of the general control flip-flops for con-
trol of shifting operations is identified below, and the
mini-instructions used are described subsequently in the
description of shift mini-instructions.

20

30

40

e

60

70

75

28

Muemonic

Goneral eontrol F/F

GOP GOP GOP
(4] 10 11 SOP code Operation

0 1 1 B-L Shift C{PB), bits 00-35 loft.

0 1 0 B-R 8hift C(PB), bits 00-35 right.

1 0 1 BD-L Shift C(PB), bits 00-35 and
C(PD), bits 00-35, left as
one register.

1 1 1 BD-L {Same as preceding).

1 0 0 BD-R Shift C(PB), bits 00-35, and
C(PD), bits 00-35, right as
oo register.

1 1 0 BD-R (Same as preceding).

0] 1 D-ROT Rotate C{PD), hits 00-35 left;
bits shifted out of position
00 enter position 35.

0 4] 0 NoOP No operation.

Note, “C(PB)-,” for example, means the contents of the
PB register. The control skip operations are covered un-
der the subsequent description of arithmetic test mini-
instructions.

With respect to the GEX flip-flop, any data on the
main buss 50 will be half-exchanged during the execu-
tion of certain emulator instructions provided the pre-
condition bit (bit §) of the mini-instruction is set to one
and this flip-flop also is set.

The principal use of the GIN flip-flop is to disable
or inhibit certain engine mini-instructions. All mini-in-
structions for which the GIN flip-flop is effective will
functon as a “no operation” (NOP). For example, load-
ing of registers PB, PC and PD may be inhibited. This
may occur, for example, when an instruction requires
the contents of the PB register to be added to the con-
tents of the PC register, with the result being stored in
the PB register. If the GIN flip-flop is on and the mini-
instruction bit 6 is on, the addition takes place but the
result does not return to the PB register. This allows an
addition to be performed without disturbing the con-
tents of the register to determine, for example, if an
overflow occurs; or may be used to consume a required
amount of time. If the GIN flip-flop has been set pre-
viously, the only thing necessary to make it effective is
to have bit 6 of certain mini-instructions set to one. The
GIN flip-flop may also be used for skip control.

The arithmetic control flip-flop (ARI) is used to con-
trol the sign of information transferred between main
memory 11 and the PB, PC, or PD registers; or between
these registers and the AC or MQ registers. When the
ARI flip-flop is set and one of the main engine registers
is loaded from memory, for example, bit zero of the re-
ceiving register is forced to zero and the sign bit from
memory goes into the sign flip-flop of the register. This
and the remaining cases are illustrated in FIGS. 16a—
16b.

The test satisfied flip-flop (LTSAT) is in the transla-
tor C (see FIG. 19a). This flip-flop is set during any of
the emulator operations in which an arithmetic or in-
dicator test is made and the conditions of the test are
satisfied. These tests will be described later when the
specific mini-instructions are discussed. It may also be
set during the operation of the wired-in-sequence if a
“fast transfer” occurs.

The control memory entry table resides in mini-loca-
tions 200-277 in the control memory 42. The last two
octal digits of the address of an entry word correspond
to the group code (Table A) generated by translator A.
The entry table is made up of 64 18-bit words having a
format shown in FIG. 17. See also Table B below. When
a word from the entry table is fetched during YA2, the
seven most significant bits are loaded into the LK flip-
flops to control subsequent wired-in-sequence operations,
and the remaining bits are loaded into the RB register
(mini-instruction counter) as the starting address of the
emulator routine necessary to complete the emulation.

3,544,969

29 30
TABLE B
Entry word
Mini flow
Translator A Control memory LKl LEK2 LK3 LK4¢ LK LK6 LK7 add f{ts’rﬂggj
Group code Entry table address Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit 6 07-17 (octal

200

e

o
[

r
=3
~1
—
o

1 1000
1020
2714
2714
1276

The LK flip-flops are loaded from the seven most sig-
nificant bits of an entry word during wired-in-sequence
state YA2 (see FIG. 14c and FIG. 10). The functions of
the various LK flip-flops are as follows: (1) if LK1 is
set, index the PC register; (2) if LK2 is set, index the
PD register; (3) if LK3 is set, indirect addressing may
be necessary; (4) if LK4 is set, load the operand from
main memory to the PC register; (5) if LK5 is set, move
the contents of the AC register to the PB register; (6) if
LKé is set, move the contents of MQ to PD; and (7) LK7
set indicates a transfer instruction is being emulated, If
the instruction being emulated (residing in PD) does not
call for indirect addressing, the setting of LK3 will be
inhibited even though the word in the entry table has the
appropriate bit set.

Turning again to the flow diagrams, in YA3 step (FIG.
14d) the first level of indexing is accomplished. The
contents of the index register specified by the instruction
are loaded into the main engine register PB. In the ex-
ample discussed earlier (instruction “subtract magni-
tude”), index register four (XR4) is used. The difference
between the index register and the operand address re-
siding in the PC register is then generated through the
adder 107, and sent to the PC register if the LK1 flip-flop
is set and to the PD register if the LK2 flip-flop is set.

60

65

75

Control is then passed to step YA4 if the LK3 flip-flop
is set; otherwise, control is passed to YBI step if the LK4
flip-flop is set, or to the YB2 state if the LK4 flip-flop is
not set. It is possible under certain conditions to Joad the
inclusive OR of any combination of index registers XR1,
XR2 or XR4 during state YA3. One present-day com-
puter includes three index registers from which it is pos-
sible to obtain the inclusive OR of any combination of
these registers. Another present-day computer includes
seven index registers (as in the system described herein),
but includes a multiple tag mode to enable the inclusive
OR of any combination of three of these registers to be
obtained. It will be apparent that it is possible to emulate
the inclusive OR operation of either of these two com-
puters,

In the YA4 step (FIG. 14e) indirect addressing is ac-
complished if required. Bits 18-35 of the word in main
memory 11 specified by the address residing in the PC
register is brought to main engine and loaded into bits
18-35 of the PC register if LK1 flip-flop is set and to
bits 18-35 of the PD register if LK2 flip-flop is set. Con-
trol is then passed to wired-in-sequence step YAS.

The second level of indexing is performed during YA
step (FIG. 14f). The operations are identical to those
performed during the YA3 step. In the current example,

3,544,969

31
index register 7 (IR7) is used at the second level of in-
dexing. This step is followed by YB1 if the LK4 flip-flop
is set or by YB2 if the LK4 flip-flop is not set.

In the YBL step (FIG. 13a) the operand specified by
the address residing in the PC register is fetched from
the main memory 11 and loaded into the PC register.
Step YB1 is followed by step YB2.

During the YB2 step (FIGS. 15b;, and 15b,), the in-
struction counter (IC) is updated by one of several meth-
ods. Basically, if no trap condition exists and if the in-
struction being emulated is not a transfer instruction, the
IC is incremented by one to point to the next sequential
instruction. (Condition A in FIG, 156;). This is the case
for the current example under consideration. The con-
tents of IC are loaded into the PB register. These con-
tents then pass through the adder 107 where a one is
added, and the result is returned to the 1C register.

If the instruction being emulated is a transfer instruc-
tion, there are several different methods of updating IC.
Transfer instructions may be divided into two groups,
i.e., fast transfers and slow transfers. For a fast transfer
in which the test or transfer conditions are not satisfied,
the IC is incremented by one and control is passed to the
scheduler 43. (Condition D in FIG. 15b3). If the test
or transfer conditions are satisfied and the machine is
not in the transfer trap mode, the new instruction address
will be taken from the PD register (condition C in FIG.
15b,). Control will be passed to the scheduler 43. If the
test or transfer conditions are satisfied and the machine is
in transfer trap mode, the IC will not be updated and
control will be passed to YBS to enter an emulator pro-
gram to emulate the trap condition. A slow transfer is one
in which all the conditions necessary to emulate the
transfer instructions are not present during YB2, ie.,
some sort of arithmetic or logical test, for example, must
be performed (by an emulator program) before the ad-
dress of the next instruction can be determined. In this
case the IC is not updated, and control passes to wired-
in-sequence state YB3, YB4, or YBS depending on the
settings of the LK flip-flops (see FIG. 15b, condition
B). During step YBS an emulator program sets up all the
conditions to emulate the transfer and then executes a
TAW mini-instruction. This mini-instruction resets the
1K4 flip-flop and causes the wired-in-sequence to jump
from state YB5 back to YB2. Since the LK4 flip-flop is
now reset, the wired-in-sequence proceeds as if a fast
transfer were being emulated.

In the YB3 step (FIG. 15¢), the contents of the AC
register are loaded into the PB register if required. The
settings of the LK flip-flops determine whether to go to
YB4 or YBS.

In the YB4 step (FIG. 15d), the contents of the MQ
register are loaded into the PD register if required. Con-
trol passes to step YBS. During the YBS step (FIG.15¢)
all the emulator instructions necessary to emulate an in-
struction from main memory or satisfy a scheduler re-
quest are executed, Control is passed back to the scheduler
when an exit or hang condition is encountered, or back to
the wired-in-sequence if a TAW mini-instruction is proc-
essed.

The YBO step (FIG. 15f) is functionally independent
of the other steps in the wired-in-sequence. It is entered
from the scheduler to handle buffer service, terminate,
console, and trap requests. Depending on the type of re-
quest which has been honored, an address is generated
which points to an entry word in the control memory entry
table, as follows:

Type of request Mini-Address generated

Channel 1 Buffer Service oo __. 251
Channel 2 Buffer Service _ .o - 243
Terminate or Console _ ..~ 241
TIAD e e e 233

The entry word is taken from one of the above addresses
and loaded into mini-engine register RB. The entry word

10

15

20

25

30

40

55

60

70

75

32
represents the address of the first emulator instruction
in the routine required to service the particular request.
The YBO step is quite similar to step YA2 except that the
type of request rather than the type of instruction fetched
from main memory determines the location of the entry
word. Control now passes to YBS.

The save sequence or cycle (FIG. 8b) is used to save
certain registers by storing their contents in predetermined
control memory locations. The save sequence is entered
when an emulator instruction is encountered that causes
a hang condition. This means that the current level of
emulator execution is temporarily interrupted, to be
resumed at some later point in time when the return re-
quest at that level is activated. The save cycle steps se-
quentially from YSO through YS5, during which the con-
tents of registers RB, RC, RD, PB, PC, and PD, respec-
tively, are stored in the control memory, each scheduler
level having a different save area reserved in the memory.
Control is then passed to the scheduler.

The function of return sequence (FIG. 8a) is to store
the registers which were saved during the save sequence.
The return sequence is entered at YR@ by the scheduler
43 when a return request has been honored. The level of
the return request determines which register’s save area
in control memory 42 will be accessed. The registers are
restored in the same order that they were saved. The
sequence steps YRO, YR1, YR2, YR3, YR4, and YRS
are performed sequentially during which respective regis-
ters RB, RC, RD, PB, PC, and PD are restored from
predefined control memory locations. After step YRS, the
control sequence jumps to YBS where the emulator pro-
gram which was interrupted by the hang condition begins
at the address specified by the RB register.

The wired-in-sequence general flip-flops in FIG. 9 are
employed to generate signals which control the various
operations of the wired-in-sequence states. To enter a
wired-in-sequence state, the various YA, YB, YRET, or
YSAVE, and Y0 signals are generated as a result of sig-
nals YSTA, YSTB, YSTS or YSTR from the scheduler,
and several other signals, It will be noted from FIG. 9
that the outputs of these flip-flops are YSAVE, YRET,
YA, YB and YO0-YS5. The signals YA-T and YO-T, for
example, are used in enabling the state YAO. The output
of the YO flip-flop 188, for example, is returned to an
input gate 189 of the Y1 flip-flop 190. Typically, the Y0—
YS flip-flops are set sequentially to step through the sev-
eral states. Thus, when a zero state is completed, the Y1
flip-flop 190 will be set provided the input signal YEXP1
to the gate 189 is false. When the first state (YA1, YBI,
etc.) is completed, the output from the Y1 flip-flop en-
ables the Y2 flip-flop to be set. The YEXP1 signal, if false,
indicates that the sequential counting operation through
YO0-Y5 flip-flops occurs. If this signal is true, the sequen-
tial count operation is disabled (inhibited) and a jump is
enabled. For example, there may be a jump from state
YA1 to state YA3, in which case a gate 191 would set the
Y3 flip-flop 192. The YST3 signal input to the gate 191 is
generated by a matrix.

The outputs of the wired-in-sequence general flip-flops
are coupled with a matrix (not shown) which is formed
in a conventional manner of AND and OR gates to gen-
erate control signals which control the various defined
operations which are to take place in the several wired-
in-sequence states. As an example, consider state YB3
shown in FIG. 15c. Five signals are generated by the
matrix to control this operational state. The combination
of YB and Y3 (from the respective outputs of the YB
flip-flop and the Y3 flip-flop) are Anded to generate these
signals. Two of these signals (YHRD1-T and LREG-T)
select the AC register (FIG. 3¢), and the third signal
(LOADB-T) directs loading of the PB register. The YB
and Y3 signals Anded along with LK6-F (from the LKé6
flip-flop in FIG, 10) generate two signals (YST5-T and
YEXP1-T) which control the sequence to cither step YB4

3,544,969

33

or YBS. If these control signals are true, a jump to state
five occurs by setting the Y5 flip-flop (the YEXP1-T sig-
nal inhibits the output of the Y3 flip-flop from setting the
Y4 flip-flop). If the output of the LK6 flip-flop is true,
the Y4 flip-flop will be set and state YB4 will be entered.
The YEXPI signal indicates a jump operation (not se-
quential) between the numbered states of the same se-
quence, i.e., YB3 to YBS. The YEXP2 signal (see input
to YSAVE flip-flop) indicates a jump operation (not se-
quential) between sequences, i.e., from YA to YB or
YRET to YB.

It will be noted that the general flip-flops in FIG. 9
comprise pairs of flip-flops (called dual rank flip-flops)
with the input of the second flip-flop of the pair being
Anded with a signal on a line 194, The dashed line (e.g.,
195) indicates that a like circuit and connection is pro-
vided in each of the general flip-flops. The signal on the
line 194 is provided at KCPO time when the LEND-T
signal is present. This signal indicates the end of a mini
step and will be further explained later when the mini
control in FIG. 3a is discussed. The signal on the line 194
loads the contents of the first rank of flip-flops into the
second rank. The SPRES-T signal, which is a console
reset signal also appears at the reset inputs of all the first
rank flip-flops in FIG. 9, and also appears on line 194.
Both ranks will be reset by this signal since it resets the
first rank and loads the status of the first rank (in this
case, reset) into the second rank.

An exemplary operation is given below wherein it is
assumed that the instruction being emulated is contained
in main memory location 1574, and this instruction is an
SXA instruction, which specifies “store the contents of
the XRS5 index register in address portion of main
memory location 1000.” The address portion of a word
in main memory is defined as the last or least significant
five octal digits or digits 8-12 of the word. There are a
total of 12 octal digits per word. The decrement portion
of such a word is defined as octal digits 2-6. The memory
location 1000 contains the octal number 222222444444,
The instruction counter (IC) contains the number 1574,
and the XRS register contains 77777. It is also assumed
that no trap mode or subroutine mode is involved. Ulti-
mately, as will be seen, execution of the instruction SXA
takes the five sevens in the XRS5 register and substitutes
these for the last five fours (five least significant octal
digits which are the address portion of the word in mem-
ory location 1000), giving the result 222222477777.

Assuming that a program request flip-flop has been
turned on and no higher level request is present, the
scheduler 43 will set the ICON4 flip-flop and generate
signal YSTA which starts the wired-in-sequence at step
YAO (FIGS. 8a and 14a), During state YAQ, the con-
tents (number 1574) of the IC register are loaded into
the main engine PB register (note the flow diagram in

FIG. 14a). The wired-in-sequence transfers to step YAL !

(FIG. 14b) where the instruction addressed (the one be-
ing emulated) by the contents of the PB register is fetched
from main memory location 1574, and the SXA instruc-
tion (store index register XRS5 in address portion of main
memory location 1000) is loaded into the PC and PD
registers. Operation transfers to step YA2 (FIG. 14c¢),
and the bits representing the operation code (store index
register in address) of this instruction is sent to the trans-
lators. Recognizing this operation code, the translators B
and C set the GIN flip-flop and reset all other general con-
trol flip-flops (see Table A, group code 63, “SXA” in-
struction). The translator A decodes the instruction being
emulated and generates group code 63 (binary 110 011),
which identifies which group to which the instruction has
been assigned. The additional bits (binary 00 010) are ap-
pended to the most significant end of the group code to
generate the entry table mini-address 0263 (binary 00
010 110 011). This address contains eleven bits. The ten
most significant bits (binary 0001011001) of this mini-
address are called the control memory address and are

10

15

20

25

30

40

60

70

75

34

sent over PTR26-35 lines to the main buss 50 and then
over lines PMB26-35 from the main buss to the control
memory address register 67 (FIG. 3b). The thirty-six bit
control memory word (which contains two entry words
of eighteen bits each) addressed is sent to the main buss
50. Bits 25-35 of this entry word are sent from the buss
50 on lines PMB25-35 to the RB register, and the infor-
mation from bits 18-24 of this entry word are sent over
lines PMB18-24 to the LK flip-flops (FIG. 10) in the
wired-in-sequence. The RB register contains mini start
address 1730 and all LK flip-flops are reset (see Table B,
group code 63). The wired-in-sequence transfers to state
YA3.

Before discussing state YA3Z it should be noted that the
least significant bit of the mini-address is used to control
half-exchange of the 36-bits of data on the main buss 50
during wired-in-sequence state YA2. If the group code
(and hence the mini-address) is odd (e.g., 63), that is the
least significant bit is a one, no half exchange takes place
because the 18-bit entry word, being in the right half, or
bits 18-35, of the 36-bit control memory word sent to the
buss, is properly aligned for loading into the LK flip-flops
and the RB register. However, if the group code is even
(e.g., 62), i.e., the least significant bit is zero, meaning
the entry word is located in bits 00-17 of the 36-bit con-
trol memory word sent to the buss, a half-exchange is per-
formed on the buss which gates the entry word to lines
PMB 18-35.

Considering now state YA3 (FIG. 14d), the first level
of indexing of an instruction is usually accomplished dur-
ing this state. However, since the SXA instruction being
emulated is never indexed, the results (new operand ad-
dress from the adder 107) of the operations performed
during this step are not loaded into the main engine PC
or PD registers because both the LK1 and LK2 flip-flops
are reset, operation transfers to the YB2 step (FIG. 155,
and 156,.)

During job zero of step YB2, the IC register (which
contains number 1574) is loaded into the main engine
PB register. During job one, since the LK7 flip-flop is
reset (i.e., the instruction being emulated is not a transfer
instruction) and there is no trap, the contents of the PB
register are incremented by one in the adder 107, and
the result is loaded back into the IC register. The IC regis-
ter now contains 1575 which is the main memory address
of the next sequential instruction to be emulated. Since
the LK5 and LK6 flip-flops are reset, there is a jump to
state YBS (FIG. 15¢).

At this point, the execution of an emulator routine is
started commencing with the mini-instruction addressed
by the contents of the RB register, that is, the mini-instruc-
tion residing in mini-location 1730 of control memory as
described above, The emulator routine starting in mini-
location 1730 includes four mini-instructions to emulate
the instruction SXA (FIG. 20q). These mini-instructions
are:

Mini-Location Mini-Instruction

01730 __ 676022
01731 e 440504
01732 514307
01733 676072

The first and last of these mini-instructions are memory
mini-instructions, the second is an index register mini-
instruction, and the third is a main engine mini-instruc-
tion. The various mini-instruction formats and functions
will be described in a separate section later,

The mini-instruction (676022) in mini-location 1730
means to fetch the word in main memory addressed by
bits 21-35 of the PD register and store this word in the
PC register. The precondition bit (bit 6) of this mini-
instruction is on which means to perform a half-exchange
on the main buss 50 if the GEX flip-flop is set. In this ex-
ample GEX is reset as noted earlier and no half-exchange
will occur. The PC register now contains the octal number

3,544,969

222222444444, The second mini-instruction (440504) in
mini-location 1731 is executed which means to load the
contents of the index register (in this case XRS5) specified
by bits 18-20 in the PD register into bits 21-35 of the PC
register. The remaining bits in the PC register are not
disturbed. The PC register now contains 222222477777

The third mini-instruction (514307) residing in mini-
location 1732 performs a two’s complement of bits 21-35
of the PC register by the adder 107, and loads the result
back into the PC register if the GIN flip-flop is reset.
However, in this case the GIN flip-flop is set and the
complement takes place but the result does not return to
the PC register and thus the contents thereof are not
affected as seen in step No. 3 in FIG. 20a.

The last mini-instruction (676072) in mini-location
1733 means to store the entire contents of the PC register
in the main memory location addressed by bits 21-35 of
the PD register, The precondition bit of this instruction is
on (as with the instruction in mini-location 1730 above),
and thus specifies the performance of a half-exchange if
the GEX flip-flop is set. However, as before, no half-ex-
change is performed since the GEX flip-flop is reset. This
last mini-instruction also has an exit bit (bit 12) which
is on (set) and which causes signals LEXIT and LSCON
to be generated returning control to the scheduler 43
since the subroutine mode is not involved.

The four mini-instructions described above also are
used to emulate the three remaining instructions of Group
63 shown in Table A: SXD (FIG. 20b), which means to
store the contents of XRS5 in the decrement portion of the
main memory word, SCA (FIG. 20c¢), which means to
store the two’s complement of XRS5 in the address portion
of the main memory word, and SCD (FIG. 20d4), which
means to store the two’s complement of XRS5 in the decre-
ment portion of the main memory word. The settings of
the GEX and GIN flip-flops for these three instructions
are set forth in Table A. It will be noted that when the
index register contents are to be stored in the address por-
tion of the main memory word (as indicated by the “A”
in instructions SXA and SCA), the GEX flip-fiop is reset
(zero) and no half-exchange is performed on the main
buss 50. When the contents of the index register are to
be stored in the decrement portion or bits 3—-17 of the
main memory word (SXD and SCD instructions) it will
be noted that GEX flip-flop has been set by the translators
during the wired-in-sequence operation thereby causing
the first mini-instruction of the emulator routine to perform
a half-exchange of the memory word as it is loaded into
the PC register (see the first step of FIGS. 20b and 204).
The address portion (4 . . . 4) of the word now is in the
left half of the PC register and the decrement portion
(2...2) is in the right half. The second mini-instruction
(step 2 in FIGS. 2056 and 20d4) loads the contents of the
XRS register into bits 21-35 of the PC register which, as
just noted, is the decrement portion of the word as it
originally appeared in the main memory. Considering only
the instruction SXD shown in FIG. 205 for the moment,
the contents of the PC register are not affected by the third
mini-instruction (as with the SXA instruction described
above) because the GIN flip-flop is set and the two’s com-
plement result is not returned to the PC register, However,
with the SCA and SCD instructions as shown in FIGS. 20c¢
and 204 the two’s complement is performed by the adder
107, and the result is returned to the PC register as a
result of the third mini-instruction, The last mini-instruc-
tion will not perform a half-exchange for SCA as seen in
FIG. 20c because the GEX flip-flop is reset. However,
this last instruction does cause a half-exchange for SCD
and SXD, as seen in FIGS. 205 and 20d, of the contents
of the PC register as they pass through the main buss 50
to the main memory. In this latter case, it will be seen
that the original order of the decrement and address por-
tions of the memory word is restored, but with the contents
of the decrement portion having been changed.

10

15

20

25

50

60

70

75

36

The address decode circuit shown in FIG. 12 is a con-
ventional decode logic circuit and serves two functions,
This circuit generates a mini-address of the entry word
in the control memory entry table during state YBO (see
discussion of state YBO above). For example, during
this state, (FIG. 15f) when a terminate request is recog-
nized by the scheduler, the mini-address 241 is generated
to indicate the location of the entry word which is to be
loaded into the RB register so that the RB register will
contain the starting address of the emulator routine re-
quired to service this request, Additionally, the addresses
of the save areas in the control memory required to save
the contents of the RB, RC, RD, PB, PC, and PD regis-
ters during the save sequence (YS) of the wired-in-
sequence are generated by this circuit. For example, if
a hang condition is encountered during an operation of
level 2 of the scheduler, the registers described above will
be loaded into control memory addresses 50 through 55
during the YS states YSO through YSS5, respectively.
The addresses 50 through 55 are addressed of full thirty-
six bit words and correspond to mini-addresses 0121
through 0133, These same addresses are generated by the
YR sequence when the original contents of these regis-
ters are restored. The signal PTR30 is a 1 during the YS
and YR sequences only.

Turning to the translators in more detail, the translator
A contains conventional decoding logic to perform sev-
eral functions as noted earlier. This translator generates
a group code (e.g., 63) and a mini-address, to be sent
to the main buss 50, as a result of decoding the instruc-
tion being emulated. This operation occurs during state
YA2. The input signals YA and Y2 indicate state YAZ2,
and bits from the PD register (PD00-PD11) are used.
As a result, the signals PTR29, PTR31-35 and PEVEN
are generated. PTR30 is a zero. As noted earlier PTR
bits 26-28 also are zeros. The mini-address is defined
by PTR26-35 and the group code is PTR31-35 and
PEVEN, The PEVEN is the opposite (inverse) of the
least significant bit of the group code, and is used to
control half-exchange of data on the main buss as has
been described previously. The input signals YTA29 and
YTA31-35 to the translator A provide the address from
the address decode circuit (FIG. 12) and supply this
address over the PTRxx lines to the main buss 50.

The translator A also decodes the group code and
generates signals PTROX through PTR7X and signals
PTRX0 through PTRX7. These sixteen bits are sent to
the translator B as another form of expressing the group
code. Thus, any combination of the first and second
PTR signals denotes a group code, e.g., PTR6X and
PTRX3 when both true indicate a group code of 63.
These signals are generated during YA2 state using the
PTR31-35 and PEVEN signals.

Another function of the translator A is to set or reset
the LTSAT flip-flop (FIG. 19a) in translator C during
the emulation of a fast transfer instruction, The signals
RINO2, RIN03, and RIN10, which come from translator
B and indicate that a fast transfer instruction has been
decided, are combined with the PD00-11 bits and other
signals which indicate conditions to be tested to generate
the signal RAPID which sets the LTSAT flip-flop if con-
ditions are such that the transfer, or jump, is to be per-
formed in the program being emulated. 1f the conditions
are satisfied the LTSAT flip-flop is set, and if not this
flip-flop is reset by translator A. These other signals are
from the general indicators (PIGxx), sign of MQ
(PMQS), overflow (PACOF), contents of AC are zero
(PACQZ), and AC sign (PACS). If the conditions for
a fast transfer are satisfied, the address portion (bits
21-35) of the instruction residing in PD is Ioaded into
the IC register (see state YB2, condition C in FIG. 155b,).
If the conditions are not satisfied (see condition D in
FIG. 15b,), the Iocation of the instruction being emulated
is incremented by one and transferred to the IC register
thereby indicating that the next sequential instruction

8,544,969

37

is to be emulated. For example, a TZE instruction, which
is classified as a fast transfer, may be emulated, which
means to transfer control if the entire contents of the
AC register is zero, or take the next sequential instruc-
tion if the AC register is not zero. If the entire contents
of the AC register are zero, this condition will be indi-
cated by the signal PACQZ. If the condition exists (this
signal is true) the LTSAT flip-flop is set which causes
the operation in condition C (FIG. 15b3) of state YB2
to take place. If the contents of the AC register are not
zero, PACQZ is false, and the LTSAT flip-flop is reset
(condition D) indicating to the program being emulated
to use the next sequential instruction, There are certain
instructions to be emulated in which indicators are to be
tested and reset if they are on in addition to making the
jump or transfer as described above, Hence, general
indicator inputs (PIGxx) and the overflow indicator
(PACOF) also are provided as inputs to the translator
A, and the translator provides output signals to reset
the overflow indicator (REAQOV), and signals to reset the
general indicators which were tested (RETCK, RTCKB,
REEOF and REOFB), and a signal (RTTRA) which
indicates there has been decoded a trap transfer instruc-
tion which is exempt from any trap mode in effect. This
signal sets the RTTR flip-flop. For example, end of file
on channel 1 may be tested to determine if the indicator
(PIG06) is on. If this indicator is on, not only does the
transfer occur, but this indicator also must be turned off
(by signal REEOF).

The translator B also contains conventional decode
logic. It will be apparent from FIG. 18 that this trans-
lator receives the PTRxx signals (which have been dis-
cussed previously) from the translator A, along with
certain bits from the PD register, a general indicator
signal (PIG40) and the output of the YAUX1 flip-flop.
This translator generates the RINxx signals which are
returned to the translator A as described above. Addi-
tionally, this translator generates signals (LGQ09-11) to
set the general operation flip-flops (GOP09-11, respec-
tively), as well as signals (LGQX, LGQNI and LARQ)
to set the GEX, GIN and ARI flip-flops, respectively.
The signal LRESQ is used to reset the Q bit of the AC
register (FIG. 3e), and the LILK3 signal is used to in-
hibit setting of the LK3 flip-flop as has been described.
Additionally, the translator B serves to set the SUB and
MAG flip-flops. These flip-flops are reset at KCP2 time
as indicated in FIG. 18 (during YA2 and job0), and
set thereafter by the inputs supplied to the translator B
at the next KCP2 time.

An example of the manner in which the MAG flip-
flop in the translator B in FIG. 18 is set may be given
considering an add magnitude (ADM) instruction which
has an OP code of 0401 (octal). As seen in Table A,
this instruction has a group code of 40 which is identi-
fied by the translator B by the input signals PTR4XT and
PTRXOT. Since the least significant octal digit is a one,
the signal PD11 is true. The MAG flip-flop is set by
Anding these three signals. Note that the three other
instructions in group 40 in Table A all have even OP
codes which means that for these, PD11 will be false.
Another instruction in this same group 40 has octal code
4400 indicating subtract magnitude (SBM). Inasmuch as
none of the other OP codes in this group has a “4” in
the first digit, PD00 is true only for this instruction. The
decoding of this instruction sets both the MAG and SUB
flip-flops by Anding the signals PTR4X, PTRX0 and
PD00.

Translator C includes the general control flip-flops
GOP09-11, GEX, GIN and ARI which have been dis-
cussed. There are three ways in which these flip-flops are
set. They may be loaded during wired-in-sequence state
YA2 at KCP6 time from the translator B on lines LGOxx
and LARQ. They may be loaded from the main buss 50
from lines PMB18-23 during state YRO at KCP6 time,
They also may be set by “load preset conditions” mini-

10

15

20

25

30

40

45

55

60

65

70

75

38

instructions over lines RM12-13. These flip-flops are re-
set (1) upon control returning to the scheduled (YSCON)
at KCPO time, (2) during state YA2 at KCPS time,
(3) during state YRO at KCPS time, and (4) during
execution of “load of preset conditions” mini-instructions
(over lines RMxx). The set/reset decode logic 200 shown
in FIG. 194 includes a plurality of conventional logic
gates to combine various signals for setting and resetling
these flip-flops. The table below indicates the input sig-
nals and gate signals which are employed in setting the
flip-flops GOP09, 10, 11, GEX, GIN and ARI, respec-
tively.

Set Input Signals Gate Signals

LGQU9-YGQI11, LGQX,

LGQN, LARQ ________ YAZ-KCP6.
PMD18-PMD23 ___._____ YRO-KCP6.
RMI12-RM17 __ . LPDM-LPDE-RMOS$B-
RM09B-T
(Note—the first three
terms denote the load pre-
set conditions, mini-in-

struction, and RMO09B--T is
a set signal; RMO9B-F is
used to reset.)

The outputs of the general control flip-flops GOP09-
11 are applied on respective lines RGP09-11 to the
shift control circuit (to generate shift control signals)
and to the first decode circuit (to generate logic oper-
ations) in FIG 3a. These lines also are applied to the
translator C decode logic 201 for testing purposes
as will be described below. The outputs of the GEX,
GIN and ARI flip-flops are used respectively for half-
exchange control, general inhibit control and sign con-
trol as has been described. These outputs also are applied
to the decode logic 201 for testing purposes. The RE18-
23 outputs from the AND gates coupled with the outputs
of these six flip-flops are enabled during state YSO by
signal YRXBNT to save the contents of these flip-flops
in bits 18-23 of the control memory save area along
with the contents of the RB register (bits 25-35). A gate
202 receives the true output of the BIN flip-flop and
signal RMOG6A (preconditioned bit), ultimately provid-
ing a signal LINEN which goes to the main engine con-
trol circuit and the first decode circuit in FIG. 3a re-
spectively to inhibit loading of the PB, PC and PD regis-
ters during the skip operation and to inhibit loading of
these registers following an adder operation,

The other inputs of the translator C are employed in
test and skip mini-instructions, and particularly the arith-
metic test, general indicator test, and secondary indicator
test instructions. These signals merely represent condi-
tions which can be tested, and if the status of these sig-
nals matches the conditions or conditions tested, the
LTSAT flip-flop is set; and if not, this flip-flop is reset.
For example, consider the arithmetic test mini-instruction
610317. The “61” means skip if the test is satisfied,
otherwise take the next sequential mini-instruction.
The “03” means to test for GOP11 false, and the “17”
is the skip distance in the mini-instruction list if the
test is satisfled. The POP code (61) is decoded in the
translator C in a conventional manner from the sig-
nals on lines LPDM and RMO5-F. The SOP code (03)
is decided from the signals on lines RM07-11. Presum-
ing that the state of the GOP11 flip-flop is false (as indi-
cated by the signal on the RGP11 line) during the time
this mini-instruction is executed, the test is considered
to be satisfied, and the decode of the instruction plus the
false condition of the GOP11 flip-flop causes the LTSAT
flip-flop to be set. Meanwhile, the skip distance will have
been loaded to the RC register, and since the LTSAT
flip-flop has been set, the contents of the RC register are
now added to the contents of the RB register giving the
mini-address of the next mini-instruction to be executed.
If the LTSAT flip-flop were not set (meaning that GOP11

3,544,969

39

was true in this case), the skip distance in the RC register
would be ignored and the contents of the RB register
would have been incremented by one to address the next
sequential mini-instruction.

Many other conditions can be tested, e.g., P bit “on”
(PPBI), existence of a carry (PCAR), and console sense
switches “on” (TSSW1-6). To test sense switch No. 1,
for example, PD register bits 00-02 must be loaded with
the binary number 001 which in turn is decoded by the
translator C and Anded with the output (TSSW1) of con-
sole switch 1. If this switch is on, the LTSAT flip-flop
will be set. The instruction for this test if 6000xx. When the
SOP code (00) is decoded, since this is a general indicator
test, the signal RGI00 is generated by the RGI decode
circuit in FIG. 3b. The RGI0Q signal indicates that the
SOP code for “test sense switch” has been decoded. This
signal also is Anded with the PD and TSSW1 signals. As
will be apparent from FIGS. 19a and 195, other signals
are applied to the translator C. For example, the LPDxx
signals (LPDM, LPDTO, LPDDO, LPDM and LPDE)
come from the first decode circuit (FIG. 3a) which de-
codes the POP code. The PZERT signal comes from the
main engine zero test flip-flop. The RAPID-T comes from
translator B and indicates existence of a fast transfer
condition as described earlier. The LTGI and CTGI
signals are decoded in the RGI and RGS decode circuits,
respectively, in FIG. 3b. The former signal is generated
by Anding the RGIxx signal and the true output of a
general indicator flip-flop (in general indicator register
No. 1 or No. 2 in FIG. 3b). That is, LTGI will be true
if the selected general indicator flip-flop is true. Thus, this
signal indicates the status of a general indicator flip-flop
when required by a general test instruction. The CTGI
signal is generated in the same manner but applied to
the secondary indicators in FIG. 3b. The PBS and PCS
signals into the translator C indicate the signs of the con-
tents of the respective PB and PC registers and enables
the condition of the same to be tested.

As is well-known to those skilled in the art, a number
of individual storage elements, e.g., flip-flops, are used in
digital equipment to store various items of data or con-
ditions. The same is true in the present system. While
many of these flip-flops are shown in the drawings, sev-
eral which are easily understood to those skilled in the
art are not shown in order to simplify the illustration
and discussion, and to prevent cluttering the drawings
and data flow paths. The operation and function of many
of the more important of these flip-flops are described be-
low. One of the most conventional conditions it is desired
to store is the existence of a carry from a register. A
carry typically results from an arithmetic or shift opera-
tion. Various carries will be encountered in the present
system when performing internal operations, and some-
times it is desired to store such carries. Similarly carries
also result when emulating operations of other computers,
and frequently a carry in this case is denoted as an “over-
flow.” Accordingly, carry flip-flops (PCAR and PFCAR)
are used in the present system to store carries encountered
when performing internal operations. An overflow flip-flop
(PACOF) is used to store a carry, when emulating an
instruction of another computer, which can be interpreted
as an overflow.

Sign flip-flops are provided for the main engine re-
gisters PB, PC, PD (PBS, PCS, PDS, respectively) as
well as for the MQ (PMQS) and AC (PACS) registers.
These flip-flops are used for storing the sign of the con-
tents in the respective registers. Additionally, in connec-
tion with the AC register, two additional bits are stored
by flip-flops, and these bits are the Q and P bits. The P
bit is used when emulating certain logical operations,
and the Q bit is a special overflow bit which is used in
connection with the AC register when emulating special
overflow conditions of a well-known second generation
computer. A subroutine flip-flop (PSRM) also is em-
ployed, and will be discussed subsequently. This flip-

15

20

25

30

35

40

45

50

55

60

65

70

75

40
flop stores the fact that a subroutine has been entered
and the machine is functioning in a subroutine mode.

Several flip-flops are employed in connection with
arithmetic operations. Among these flip-flops are the AC
zero (PACQZ), main engine zero test (PZER), mini-
engine zero test (RZER), LS bit (PLSBI), and like sign
(RLKSN) flip-flops. The AC zero flip-flop indicates that
the entire contents of the AC register (including bits Q
and P) are equal to zero. The main and mini-engine zero
test flip-flops are set if the result of an adder operation
in the respective engine is zero. The LS bit flip-flop is
set when the least significant bit of the PE register is
a one as a result of an adder operation. The like sign
flip-flop is set during an adder operation if the operands
sets an equal sign flip-flop (PEQSN) which denotes that
two operands have the same sign. Many of the foregoing
miscellaneous flip-flops are controlled, set and reset by the
“decode” circuit in FIG. 3a.

During state YS1 when saving the contents of the RC
register, the contents of some miscellaneous flip-flops
are also saved. The AC zero, carry (PCAR and PFCAR),
subroutine mode, main engine zero test, mini engine
zero test, and P bit flip-flops ares sent on lines PE18-23
and stored side by side with the contents of the RC reg-
ister in the control memory save area. During state YS2
when the contents of the RD register are being saved, the
contents of the PB sign, PC sign, PD sign, MQ sign, AC
sign and equal sign flip-flops, as well as the LS bit flip-flop
are saved in a similar manner.

The CHBC flip-flop (which is a secondary indicator)
controls the operation of the secondary test POP codes
and channel register mini-instructions. The flip-flop acts
as a switch to direct the start of an operation in either
1/0 channel 1 or I/0 channel 2. An instruction refers
to a channel in general, and if this flip-flop is reset chan-
nel 1 is used and if set channel 2 is used. This flip-flop is
set and reset as set forth below. In scheduler level 1
(1/0 channel 1 to be serviced) it is reset during wired-in-
sequence state YBO. In level 2 (I/0 channel 2 to be serv-
iced) it is set during state YBO. In level 3 it is reset during
state YBO, if a terminate request was from channel 1; and
set during state YBO, if the terminate request was from
channel 2. In level 4 it is reset during wired-in-sequence
state YA and also reset during state YBO. It may be set
during state YBS by a TSGS (POP code), CHBC (SOP
code), xx instruction, coded as 3036xx. This flip-flop
also is reset by the console reset switch in any level.

Referring to FIG. 13, an Exit may be generated in
several ways. During YB2 state if the LK4 flip-flop is
false and the LK7 flip-flop is true and PIG40 is false,
thereby indicating that a fast transfer is to be executed,
or if RTTR is true and indicating that a trap transfer
instruction is being emulated (conditions C and D of
FIG. 15b,, the signal LEXIT-T will be generated by And
gate 220 during job 1 (LIB1). At KCP3 time the LEXIT
signal will set a flip-flop 221 generating the signal
LEXDL-T. When this latter signal is Anded with signal
LNDIN-T from the mini-control circuit (FIG. 3a), which
means that the mini-instruction being executed is com-
pleted, the signal LSCON is generated. The LSCON
signal, as noted before, sets the YSCON flip-flop (FIG.
7) at KCP6 time. The signal YSCON passes through a
gate forcing LSCON to remain on until the scheduler
enters the wire-in-sequence state YO. This is to ensure
that the scheduler waits for a request if none is present
at the time LSCON is generated. The signals LSCON and
YSCON return control to the scheduler as noted earlier
in the description of the scheduler operation. The signal
1.SCON also is generated during state YSS as indicated
by gate 222 in FIG. 13 when state YS5 is completed
(note FIG. 8h) as denoted by the signal LNDIN-T.

The signal LEXIT also may be generated during state
YBS if the subroutine flip-flop (PSRM) is not set and
the signal LEXIN will become true if any one of several
mini-instructions are decoded which have the Exit bit

3,644,969

41
(bit 12) set. The LEXIN signal also is generated when the
TAE or TGE mini-instruction is executed and the LTSAT
flip-flop is reset.

FIG. 13 also illustrates the subroutine flip-flop 225
(PSRM3. This flip-flop will be set upon decoding a SMCT
mini-instruction. In addition to setling this flip-flop, this
mini-instruction causes the contents of the RB register
to be incremented by one and stored in the RD register,
The address field of the SMCT mini-instruction is then
loaded into the RB register., This causes the next mini-
instruction to be fetched from the control memory at
the mini-address just loaded into the RB register. When
the signal LEXIN is generated as described earlier, for
example by an instruction which has its exist bit (bit 6)
on, the signal LEXIT will not be generated by gate 223
since the subroutine mode flip-flop is set. The PSRM
signal passing through the gate 226 will be inverted to
inhibit the signal LEXIT which is the output of the gate
223. Instead, the signals PSRM and LEXIN are Anded
together through the gate 224 to generate signal LSBRT.
This signal is applied to the mini-control circuit (FIG.
3¢) and the mini-decode circuit and causes the contents
of the RD register to be stored in the RB register. At
the end of this operation, the subroutine mode flip-flop
225 will be reset. The next mini-instruction will be taken
from the control memory mini-address specified by the
contents of the RB register. The mini-address in the RB
register is one greater than the address of the SMCT
instruction discussed above, and thus the emulator pro-
gram will continue with the mini-instruction immediately
following the SMCT instruction,

When emulating instructions of another computer,
usually one or more emulator routines for each group of
mini-instructions are involved. Almost invariably, these
routines end with either a test mini-instruction (i.e.,
TGE or TAE) which sets up exit conditions (LEXIN) if
the test if false, or with a mini-instruction which has an
exit bit on (which also causes LEXIN to be generated).
Any such routines may be used as a main emulator pro-
gram or as a subroutine for some other emulator pro-
gram. The subroutine mode flip-flop enables this feature
to be accomplished. Whenever an emulator routine is
used as a main program, it is entered with the subroutine
mode flip-flop reset, and when the program is completed
(LEXIN generated) the signal LESCON is generated
returning control to the scheduler, When an emulator
program is used as a subroutine, it is entered by means of
SMCT instruction which sets the subroutine mode flip-
flop, and when exit conditions utlimately occur control
is transferred back to the emulator program containing
the SMCT instruction as described above. This feature
allows a single emulator program to be used in many
types of emulation procedures either independently or as
a subroutine without any need for modification by the
program calling it as a subroutine.

Referring now to the mini-instruction register and
control 46 in FIG. 3a, first certain timing aspects will be
considered, followed by a description of this portion of
the system. The mini-control circuit 232 controls the tim-
ing of the mini-steps to be performed. Mini-steps are
those increments of time during which specific operations
are performed, in order to execute a mini-instruction.
They are considered to be all states of the wired-in-se-
quence including the YBS state, where multiple mini-
steps can be executed.

Mini-steps may be either one job or two jobs in time
duration depending on the type of instruction. Job 0
(LJB1-F), which is one clock cycle, is designated as the
first job. Job 1 (LIB1-T) which may be either one or
more clock cycles in duration is designated as the second
job. Mini-steps also include mini-fetch 42 cycle (LMF),
during which a mini-instruction pair is fetched from con-
trol memory 42 and stored in the MOP register 233 in
FIG. 3a. During those mini-steps requiring memory ac-
cesses, the memory address is provided during job 0, and

5

10

20

25

30

50

[
o

G0

70

75

42

the data is either read or written during job 1. The fol-
lowing are those mini-instructions which are two jobs.
TGF, TGS, TSGF, SMCT, REG, TAW, TGR, TSGS,
SHFIT, MEM, TAE, TGE, TSGR, ALG, TA, TG, AND
TSGE. All of the wired-in-sequence states consist of two
jobs.

The mini-control timing diagram in FIG. 21 illustrates
the basic timing for a mini-step with two jobs. Alsg
shown is the case where job 1 is more than one clock cycle
in duration.

Four flip-flops are included in the mini-control 232
to control the basic job timing, and these flip-flops are
LEND, LTIB, LIB1, and LFCY1. The LEND flip-flop
termiantes the previous mini-step and initiates a new
mini-step. The mini-step will be terminated in some cases
after job 0, in others after a certain condition is reached
during job 1. The set and reset logic is shown below:

LEND—T=KSTO--KCP6*
[PDVD*RCZER*PSHF1 Not a divide, shift is fin-
ished
+MMEM*LJB1 Main Memory, Job 1
+LMF*TGNOP Gen No Op Sw., not on LMF
+LPDD1 Test POP (60, 61, 64, 65, 70, 71, 74, 75),
Job 1
+LPDK1*LPDQ SMCT POP 76, Job 1
+LPCK1*LPDQ ALG POP 62, Job 1
+LMF*RM00 All POPs of 0X, 1X, 2X,
+TMF*RMO1 3X, 4X and 5X
+PDV2
+YMEM*LJB1 Job 1, non-mem cycle of WIS
+TRMP*YBS*LMF Repeat Minipair Mode*LMF
—+LIB1*LCMEM Control Mem, Job 1
+LIB1*LREG] POP 73 or 77, Job 1
T.END=SRES+KCPé6

The LTIB flip-flop is the preset condition for sefting
LIBL. It is set by any one of several conditions specifying
a two-job mini-step.

LTIB=KCP6*T.TB1*(LREG -+ YMEM +LPDK0
+LPDD0+LPT0+LMMEM+LCMEM)
LTIB=SRES+KCP2A+LEND

The LIB1 flip-flop indicates that Job 1 of a ministep is
being executed.

LIB1=KCPO*LTIB
LBJ1=KCPO*LEND--SRES

The LFCY1 flip-flop indicates the first cycle of Job 1.

LFCY1=KCPO0*LTJIB
TFCYI=LTIB*KCP7}+SRES

Turning to the mini-instruction register and control 46
in FIG. 3a, during the YBS5 step of the wire-in-sequence,
mini-instructions are fetched from the control memory
42 in pairs and stored in the 36-bit mini-instruction opera-
tion (MOP) register. Bits 00-09 of the mini-engine RB
register (mini-instruction counter) provide the control
memory address of the pair of mini-instructions to be ac-
cessed. The least significant bit (bit 10) of the RB regis-
ter specifies which instruction of the pair is to be executed.
If this bit 10 is zero, the even or left-hand instruction of
the pair is to be executed, and the signal LMSWL gates
output bits 00-17 of the MOP register to RM gates.
These bits are then decoded to execute the instruction. If
RB10 is one, the odd or right-hand instruction of the pair
is to be executed and the signal LMSWR gates the out-
puts of MOP18-35 to RM00-17.

For the purposes of discussion, assume that the MOP
register 233 has just been loaded with a mini-instruction
pair, both of which are not test and skip instructions. Also
assume that the even instruction is to be executed first.
In this case RB register bit 10 will be zero and a RB16D
flip-flop in mini-control, which indicates which instruc-
tion is to be executed (even or odd), will be reset, This

3,544,969

43
flip-flop samples the state of bit 10 of the RB register.
The set and reset logic is:

RB10D=KCP7*(RB10+4-LUPME)
RB10D=KCP7*RB10*LUPME.

The term LMSWL gates the even half of the MOP register
through the RM gates to the RM00-17 lines is:

LMSWL=RBIOD*YBSC*LKCL*TGNOP*LMF.

After the even instruction is executed, bit 10 of the RB
register is forced to one by the signal LUPME (meaning
mini-counter from even to odd) from mini-control. The
logic is:

LUPME=YBAC*LKCL*LMF*LDMF*LEND*

LPMF*LPIJMP.

This term also sets the RB10D flip-flop which indicates
that the odd instruction is to be executed. The odd half

of the MOP register is gated through the RM gates to the
RM lines by:

LMSWR=RB10D*YBSC*LKCL*TGNOT*LMF.

After the odd instruction is executed, the RB register
must be incremented by one and the next mini-instruc-
tion pair must be fetched. The term which indicates to
update the mini-counter from odd to even is:

LUPMO=YBSC*LKCL*LIBI*LMF

‘This in turn generates the term RINK which causes a
“one™ to be added to the RB register. The logic for RINK
is:

RINK=LUPMO*LJMP Updated RB, odd to even
--LPKO*LPDN SMCT POP
+EBMI0A*RM9A*LPDE*LPDQ MINI POP
-+YO0*YSAVE W-I-S SAVE sequence

After each pair of mini-instructions is executed (and
more often if test and skip instructions are executed) a
new pair of mini-instructions is fetched under control of
the LPMF, LMF, and LDMF flip-flops in mini-control.
The operation of these flip-flops is described below. The
setting of the pre-mini fetch flip-flop (PLMF) is con-
trolled basically by a clock pulse, and the RB10D flip-
flop which indicates that the last instruction executed was
the odd instruction, and the last control cycle was not an
LMF cycle (LMF) and the conditions for setting LEND
are present (pre-LEND) which indicates that the last
cycle is about to terminate, The set and reset logic for
the LPMF flip-flop is:

LPMF=KCP5A*RB10D*LMF*(pre-LEND)
—+KCPSA*LPDQ*RMI15A*LPDE
+KCPSA*LOVMF

LPMF=SRES+KCP2*LMF.

When the mini fetch ip-flop (LMF) is set, a pair of mini-
instructions will be brought from the control memory ad-
dress specified by bits 0009 of the RB register and stored
in the MOP register. The set and reset logic for this flip-
flop is:

LMF=KCP7TA*LEND*(LPMF+LPIMP)
LMEF=SRES+KCP7A*LEND*LPMF*LPJMP

The purpose of the delay mini-fetch flip-flop (LDMF) is to
introduce a delay long enough to prevent the LUPME
signal from being generated while the MOP register is
being loaded. Otherwise the LUPME signal would set
the RD10D flip-flop causing the odd instruction of each
pair fetched to be executed every time. The set and reset
logic for the LDMF flip-flop is:

LDMF=KCP2A*LMF
LDMF=KCP2A*LMF

Two flip-flops in mini-control non-sequential execution
of emulator instructions are called the pre-jump flip-flop

10

15

20

25

30

35

40

60

70

(5

44
(LPIMP), and the jump flip-flop (LYMP). The pre-jump
flip-flop is set at KCPS time if the LYUMP flip-flop is reset
and a variety of conditions indicating that non-sequential
instruction execution is to take place.

LPIMP=KCP5A*T.JMP*
[YSTS Set W-I-S. Save Sequence
+LPDN*LPDK1 SMCT POP, Job 1
--LPDN#*LPDE TRU POP
+LPDDI*LTSAT TEST POP, Job 1, Test Satisfied
+LSBRT Exit from Subroutine Mode
+YSIMP*TGNOP] Jump to W-I-S State YB5
LPIMP=SRES+LMF*LIMP

The jump flip-flop is controlied by the pre-jump flip-flop
as follows:

LIMP=KCP7A*LEND*LPIMP
LIMP=KCP7A*LEND*LPJMP

The setting of the LPJMP flip-flop causes the LMF cycle
to be initiated. The address of the mini-instruction pair to
be fetched will have been generated by one of two meth-
ods during the last mini-instruction executed. Register RB
may be loaded with the new address (SMCT and TRU
POP codes), or test POP codes. When the test is satis-
fied, the skip distance is loaded into the RC register, and
the contents of the RC register added to or subtracted
from the contents of the RB register forming the new
address. This new address may, of course, be either even
or odd. If it is odd, the right-hand (odd) instruction of
the pair just fetched will be executed since bit 10 of the
RB register will set the RBIOD flip-flops. The even in-
struction will be ignored in this case.

The bits gated through the RM gates go to the various
decode and control circuits as seen in FIG. 3a, to the
RGI and RGS decode circuits in FIG. 3b, and to the
translator C in FIG. 3f. The first decode circuit 24¢ de-
codes the POP code and generates signals based on this
code. These signals are supplied to other decoders in the
system to indicate what action is to take place. The mini-
decode circuit 241 receives job timing signals from the
mini-control circuit 232 and various RM bits, and gener-
ates instructions to control the operation (e.g., loading,
adding, subtracting, logic operations, transfer switching)
of the mini-engine. The miscellaneous decode circuit 242
functions to perform partial decoding of certain miscel-
laneous mini-instructions, as well as to generate signals
to set and reset the miscellaneous flip-flops. The main
buss decode circuit 243 controls the gating of the inputs
and the outputs of the main buss when required by other
parts of the system. The shift control circuit 244 receives
the SOP code of a mini-instruction and signals GOP09-
11. This circuit decodes signals to indicate the type of
shifting to be performed and sends control signals to the
main engine 13, and also sends signals to the main engine
control 245 indicating which registers are to be affected.
The main engine control 245 controls the arithmetic, logic
and loading operations of the main engine 13,

The basic machine clock cycle is 500 nanoseconds.
Within this cycle there are ten phases, eight of which are
distributed through the machine. As shown in FIG. 22,
these phases are produced from a 10-bit ring counter, i.e.,
ten flip-flops in sequence. The ring counter is driven by
a 50 nanosecond clock. The flip-flops are labelled A
through J.

The output clock signals (FIG. 23) are KCP0 through
KCP7, and the logic thereof is as follows:

KCPO=J-A (time 0)

KCP1=A"'B (time 1)
KCP2=C-D (time 3)
KCP3=D-E (time 4)
KCP4==E-F (time 5)
KCP5=G"-H (time 7)
KCP6=H"1I (time 8)
KCP7=I'J (time 9)

3,544,969

45

The clock is started by depressing the start key (START-
T) on the operator’s console, and then releasing it
(START-F). This triggers the last flip-flop in the ring
counter which in turn starts the counter. A stop clock
indicator is turned on whenever the 10 ring counter flip-
flops are in the reset state simultaneously. A stop clock
indication signal is Anded with the start clock signal
(START-T) when starting the clock. The system clock
will paunse between KCP4 and KCP5 for an indefinite
period of time to allow for a memory operation such as
a memory busy condition. A clock error condition occurs
if phase zero is up when any of the other nine phases are
up. This condition causes all flip-flops in the ring counter
to be reset and stops the clock. The stop clock indicator
then indicates this condition to the operator.

The I/0 channels 15 and 16 (FIG. 3d) serve as the
link between the inner computer 10 and the peripheral
units. Data transmitted between the control memory 42
and any input/output device passes through an I/0 chan-
nel. The channels have the responsibility for controlling
the quantity and destination of all data transmitted. They
also perform limited counting and testing operations con-
cerned with the transmission of data. Emulator routines
for channel operation are stored in the control memory
42 just as are emulator routines for instruction emulation.

The operation of an I/0 channel is initiated by the
execution of one emulator instruction. Once started, the
channel operates independently of the program bein
emulated from the main memory 11. Although a chanrﬁ
operation once started operates asynchronously, the pro-
gram being emulated may exercise a large degree of super-
visory control through instructions which test the status
of the channel.

A single channel command may transmit a large block
of words between the control memory 42 and a peripheral
unit so that many instructions in the main memory 11
may be emulated during the time taken to execute just one
command in the channel. All transmission to and from a
channel is in thirty-six bit word parallel fashion.

Channel operations are controlled by commands, trans-
ferred from the main engine 13 to channel registers by the
operation of channel mini-instructions (CH1, CH2). The
commands are then decoded into specific channel op-
erations which cause specified 1/0 devices to transfer data
to and from the control memory 42 and to perform non-
data transfer type operations, such as magnetic tape back-
space operations, typewriter carriage returns, and so forth.

Two channels as illustrated may be employed. The
CHBC flip-flop, which was described earlier, controls
which of these two channels is to be loaded by the CH1
or CH2 mini-instructions. These mini-instructions refer

to channel 1 if the CHBC flip-flop is reset and refer to :

channel 2 if the CHBC flip-flop is set.

Upon execution of a channel register 1 (either CHR1
in FIG. 3d depending on which channel is being serviced)
mini-instruction, the contents of the main engine PB regis-
ter, which contains an I/0 command, device type, device
number, and mode of operation, are placed on the main
buss 50. The channel then loads the information from
the buss 50 into channel register No. 1 (either register
300 or 301 in FIG. 3d depending on which channel 15
or 16 is selected). Channel register 1 receives only bits
0, 8, 9, and 10 of the instruction op-code (bits 0-11)
since the other bits are redundant as far as the I/0Q chan-
nel is concerned. In the case of magnetic tapes, the com-
mand is decoded into any one of the channel commands
shown in the table below. The tape device number specified
by bits 32-35 is addressed and, in the case of a data trans-
fer command, the channel will automatically start trans-
ferring data to or from the buffer service area of the
control memory 42,

10

15

20

25

30

35

40

50

60

70

75

46

COMMANDS SENT TO I/0 CHANNEL

Instruction OP-Code Bits

Bits 0 8 9 10 Decode

0-11
Mnemonic (Octal) Description
RDS 40762 Read Select_____________ 00 01 HRDS
WRS +-0766 Write Select..___________ 0 01 1 HWRS
BSR +0764 Backspace Record.._.._. ¢ 01 0 HBSR
BSF —0764 Backspace File_________. 1 01 0 HBSF
WEF +0770 Write End-of-File. 010 0 HWEF
REW +0772 Rewind. __.______ 0101 HREW
RUN —0772 Rewind and Unloas 1101 HRUN
SDN 40776 Set Density...____ ¢ 11 1 HSDN
ERSE . ____..._ Erase Tape (Special)..__1 ¢ 1 1 HERSE
...................... Load Machine from . __._

Tape (Special). 100 0 HLDCD

Bits 28 through 35 of the channel Register 1 designate
the device type (e.g., magnetic tape unit, typewriter) and
the device number (e.g., tape unit 1, 2, etc.) to be used
when performing the channel operation. Bits 28, 29 and
30 define the type of operation (tape, card reader, type-
writer); bit 31 defines either the mode (binary, BCD),
or the magnetic tape density to be used. Bits 32-35 con-
tain the device number to be addressed by the channel
command. The table below contains the address of the
input/output devices and the related channel 1 decode
signals. Both the binary and the BCD address of the I/Q
device are included.

DECODE OF 1/O INSTRUCTION ADDRESS

Octal I/O Dovice Device
Instruction Type No.
Address (Bits Mode (Bits
(Bits 24-35) 28-30) (Bits31) 32-35), Description
1201 100 0 0001) Tapes, BDC or Low Den-
H : : : sity #1 thru #10,
1212 100 0 1010
1221 100 1 0001} Tapes, Binary or Hi Den-
: : : sity #1 thru #10.
1232 100 1
1321 110 1 0001 Card Read #1 BCD.
1361 111 1 0001 Yrmtl(;r #1 Normal (Decl-
mal).
1362 111 1 0010 Printer #1 Binary.

After the command is stored in the channel register 1,
it is further decoded into specific operations and/or
checks. These are listed and defined below:

HBS=Tape backspace, a record or a file.

HREV=Reverse tape operation (BSR, BSF, REW, RUN),

HYTP="Typewriter Selected.

HTAP=Magnetic Tape Selected.

HCRS=Card Reader Selected.

HBCD=Binary mode.

HDEOK =Density O.K.

HAWT=Actual write tape operation (WRS or WEF).

HWRT=Write tape operation (WRS, WEF, ERSE).

HRDT=Read tape operation.

HNOP=Acts as a reset term for the channel logic to ini-
tialize it prior to going busy.

HNOP=Is a check to insure that only available commands
have been decoded before the channel goes busy.

The channel register 2 (302 and 303 in FIG, 3d) are
each seven-bit registers and one is used during a read and
a write operation, but it functions differently during each
of the operations. During a write operation, an emulator
subroutine keeps track of the total number of words to be
written. It does this only when the number of words to
be written exceeds the total capacity (32 words) of the
buffer area in the control memory 42. The buffer area
within the core storage unit of the control memory 42 in-
cludes buffers A, B, C, and D, each of which has a capaci-
ty of eight words. When a channel buffer service request
is received, the number eight is subtracted from the total
number of words to be written (word count) until the
word count is equal to or less than 32. The remaining word
count is loaded into the channel register 2 with a CH2
mini-instruction. When an equal compare is reached, the
stop writing signal is enabled, which stops the operation.
The end address is placed in the channel register 2. This

3,544,969

47

register is not used for a read operation unless an error
occurs. When an error condition occurs, the error address
is placed in the six least significant bits of the channel regis-
ter 2.

The channel word buffers 74 and 75 are each thirty-six
bits in length. During a write select operation, thirty-six
bits of information (HBIf0-35) are loaded into one of
these buffers from the control memory 42, The outputs
of the selected buffer are then gated six bits at a time to
its respective write character buffer 306 or 307. During a
card reader operation, the data is gated directly to the chan-
nel word buffer, twelve bits at a time, at character counts
of 0, 1, 2. When the channel word buffer is full (charac-
ter count of 2) a channel memory request is set so that
the word can be written to control memory via lines
HDMO00-35. Magnetic tape read data is received by the
channel word buffer six bits at a time from the associated
read buffers, at character counts of 0, 1, 2, 3, 4, and 5.
The information is either converted tape read data (BCD
conversion) or buffered tape read data (no conversion re-
quired). As in the card reader operation, a memory re-
quest is needed to transfer the word information to the
control memory 42. All data transmissions to and from
the peripheral units are routed through the channel word
buffer to be either sent to the control memory 42 thirty-
six bits at a time or to the peripheral unit via the appro-
priate write character buffer at the correct character count.

A channel buffer service request (HCBSR-T) is pro-
vided on a line 309 to tell the scheduler 43 that one of the
four buffers (A, B, C, D) in control memory 42 is full or
empty. This occurs during either a read or write opera-
tion and is an indication that a transfer of data between
the control memory 42 and the main memory 11 is neces-
sary.

In dual channel systems (as shown in FIG. 3d), the I/0
buffer area for channel 1 includes control memory word
locations 200 through 237 (octal). A channel buffer serv-
ice request is generated every ten octal words for mag-
netic tape operations, For card reader or printer opera-
tions, one buffer service request is genearted for each card
record read or typewriter record printed. The channel 2
1/0 buffer area includes control memory locations 240
through 277 (octal). A buffer service request is generated
every ten octal words for magnetic tape read or write op-

During 1/0 operations, data is actually transferred be-
tween an 1/0 device (magnetic tape, card reader, typewrit-
er) and a buffer area (A, B, C, D) in the control memory
42. All data movement to and from the channel involves
the buffer area of the control memory. There are four
buffers of eight words each, which are set aside for trans-
mission of data between the peripheral units and any stor-
age area in the main memory 11 designated by the pro-
gram being emulated. During a read operation, the channel
transmits the data to the buffer area starting at the low or-
der address. When the channel has filled the last buffer,
it starts over at the low order address and the cycle con-
tinues. Each channel buffer service request will be an-
swered by the scheduler 42 and the wired-in-sequence 44
on a priority basis as described earlier. Handling of the
data placed into the buffer areas is done by a buffer serv-
ice emulator routine. Data transmission for write opera-
tions is essentially done in reverse of a read operation. On
a write operation, the channel extracts information from
the buffer areas and sends it on to the designated periph-
eral unit. That is the channel receives data from the
conirol memory and places this into the channel word buf-
fer. This buffer then dumps the data to the peripheral unit
(e.g., tape unit). When dumped, the channel then gen-
erates a new address to the control memory to pick out the
next word, and this continues until thirty-two words have
been taken from the control memory. If the channel is to
receive more than eight words, it signals the scheduler that
an eight word portion of the control memory buffer area
is empty and that the scheduler is to refill the bufTer arca
with new data to be sent to the channel.

10

15

20

30

35

40

50

55

60

65

70

48

The channel control includes terminate logic to termi-
nate either a read or write operation when the address
counter in the channel control equals the end address held
in the channel register 2. During a write select operation,
for example, this occurs when a CH2 POP code and not
a load SOP code is decoded which gates the end address
from the main buss 50 to the channel register 2. When the
two addresses are equal the operation will be terminated,
and the signal HTERM-T will be generated and sent to
the scheduler.

EMULATOR INSTRUCTIONS

The emulator, or mini, instructions are eighteen bits
in length and are loaded into the control memory. They
have the following general format:

Bits 0 5 6 1 12 17

POP sor ZONE

The first field (bits 0-8) of the mini-instruction is called
the primary operation (POP) code which defines the
basic operation to be performed. There are forty five
basic POP codes which fall into twenty two groups as
follows:

Group POP description
1 o Main Engine.
2 - Load Immediate.
3 s Load Direct.
4 - Exchange.
5 o Mini Engine.
6 e Mini Exchange.
7o Algebraic to PB Register.
8 - Index Register and Instruction Counter.
S S Channel Register.
10 ______ Delay or Load Address Keys.
1 .~ Interrupt.
12 - Load Entry Keys.
13 .- Memory.
14 ______ Miscellaneous.
15 - Shift.
16 ______ Transfer.
17 oo Arithmetic Test.
18 _ .- General Test.
19 - Halt.
20 oo No Operation.
21 - Load Preset Conditions.
22 e Exit.

The second field (bits 6-11) of the mini-instruction
is called the secondary operation (SOP) code which in
general forms an extension of the POP code and further
defines the operation to be performed. On some mini-
instructions there is no SOP code. In general, certain
groups of SOP codes may be used only with certain
groups of POP codes. Any illegal combination will be
ignored by the inner computer 10 and will have the
same effect as a “no operation” code. There are 64 dif-
ferent SOP codes which may be divided into six basic
groups, as follows:

Group SOP description
] e Main Engine.
2 e Mini Engine.
£ T U Shift,
A Miscellaneous.
8 e Arithmetic Test.
6 e General Test.

The third and final field (bits 12-17) of the mini-
instruction is called the Zone field or code. When execut-
ing POP codes in groups 1,2, 4, 5,7, and in some cases
group 14, the Zone field truly represents the “zone” (a
particular group of bits) of the register to be affected.
With most of the POP codes in the above group, the
zone defines 32 separate and distinct fields (see FIG. 4)
of operalion within the main engine PB, PC and PD
registers. For example, these 36-bit registers may be used

3,544,969

49

to perform a 6-bit add operation by zoning off the un-
necessary or unwanted bits by means of the proper zone
code in bits 12-17 of the mini-instruction. Some zone
codes include a Q bit (FIG. 4) which is an overflow
bit. For the POP codes not in the above groups, the
zone field may take on the characteristics of a third
operation code, may be used as a count field, an address
field, a data field, or not necessary at all. There are 83
different zone codes, not including shift counts and bit
patterns used under a “load immediate” group. The for-
mer may be divided into the following six groups:

Group Zone description
1 e MainEngine,
2 e Shift.
O Mini Engine.
4 e Memory.
S Register.
O Index Register.

Bit 6 of the mini-instruction can be used as a “pre-
condition” bit with certain POP codes. The states or
conditions of certain General Control flip-flops will be
recognized and will affect or alter the operation of cer-
tain mini-instructions if bit 6 is set (a “one” is present).
In this case the SOP field consists of bits 7-11.

Bit 12 of the mini-instruction can be used as an “exit”
bit with most POP codes. When bit 12 is set the emula-
tor routine will exit to control from the scheduler after
the instruction is executed, unless the instruction is being
executed in a subroutine mode. In the latter case, a trans-
fer or jump is made back to the emulator routine which
“called” the subroutine being executed as was discussed
previously in connection with the mini-engine and the
SMCT mini-instruction. The various specific mini-instruc-
tions now will be discussed.

The format of the instructions (group 1} for the main
engine 13 is as follows:

Bits 0 5 6 7 112

13 17

roOP 50P ZONE

g
e

These main engine instructions include primary opera-
tion (POP) codes, secondary operation (SOP) codes and
zone codes. Each of these codes, as well as precondition
and exit bits (bits 6 and 12), will be described below.
The main engine instructions are used to transfer informa-
tion from one main engine register to any other main
engine register, or to perform arithmetic or logical opera-
tions on the contents of the PB or PC registers, or both.
The POP code describes the destination register and the
SOP code describes the source register, or registers) in-
volved in main engine operation, except when the LDD,
LDB, or 1L.DC (listed below) SOP codes are used. For
the latter cases, the POP code describes the source and
the SOP code describes the destination, When the LDB
and LDC SOP codes are used, the information transferred
between registers is “half-exchanged” by the main buss
50. This half-exchange occurs regardless of the settings
of Pre and the Gex flip-flop. That is, bits 00-17 of the
source register are loaded into bits 18-35 of the distination
register, and bits 18-35 of the source register are loaded
into bits 00-17 of the destination register. For any opera-
tion, only that part of the register or registers specified
by the zone control code is affected. For arithmetic opera-
tions, the data is considered unsigned and true binary
arithmetic is performed.

The primary operation (POP) codes (bits 0-5) are:

Octal
Code

50
51
53
52

Mne
monic Description

Main engine PB register.
Main engine PC register.
Main engine P register.
Main engine PE register.

5

10

15

20

25

30

3

v

40

65

70

50
The secondary operation (SOP) codes (bits 7-11) in-
clude any main engine SOP code except LDD. The SOP
codes are listed below,

Octal Code
Arithmetic:

Mnemeoenic Description

ZERO
B

o}

D .

C(PB) plus1.

C(PC) plus 1.

C(PB) minus 1.

C(PC) minus 1.

C(PB) plus C(PC).

C(PB) minus C(PC):

C(PC) minus C(PB):

C(PB) minus C{PC) minus borrow.

C(PC) minus C(PB) minus borrow.

C(PB) plus C'PC) plus carry.

Logical:
22
23

32

C(PB).

C(PC).

C(PB) ANDed with C{PC).

C(PB) ORed with C(PC),

C(PB) ANDed with C(PC).

C(PB) ANDed with C(PC).

C(PB) plus 1.

C(PC) plus 1.

C(PB) EXCLUSIVE-ORed with C(PC),
Do Logical operation (present conditions).

Load PB,
Load PC,
Load PD.

NB

NC
B.C
BUC

NB.C

B.NC
NB+1
NC+1
BEC
DOL

LDB
LDC
LDD

The letters in parentheses (e.g., “PB”) indicate the reg-
isters involved. Thus, C(PB) means “contents of the PB
register”; and C(PB) means “the logical NOT or inverse
of the contents of the PB register.”

The Zone code (bits 13-17) was discussed earlier, and
any of the main engine zone control codes as shown in
FIG. 4 may be used.

The preconditioned bit (bit 6) functions as a “no op-
eration” (NOP) if the Pre bit is a one and the Gin flip-
flop is set, except this does not occur when the PE (octal
code 52) POP code or the LDB or LDC SOP codes are
used. The exit bit (bit 12) causes an exit to take place
after the instruction is executed if this bit is a one.

The format of the load immediate instructions (group
2) is as follows:

Bits 0 5 6 11 2 13 17

POP DATA ZONE

TEHEQ

This instruction is used to place a constant (the data field)
in one of the PB, PC or PD registers of the main engine,
and provides an efficient manner to load numbers into a
register. The POP codes (bits 0-5) are:

Octal
Code

14
15
17

Mne-
monic

LIB
LIC
LID

Description

Load Immediate to PB.
Load Immediate to PC.
Load Immediate to PD.

Any six-bit configuration may be used in the data field
(bits 6-11). The six-bit configuration in the data field is
repeated six times to make a 36-bit word and then sent
over the main buss 50 to the receiving register. Only the
bits of this 36-bit word specified by the zone control code
will be loaded into the receiving register. The bits in the
receiving register outside of the field specified by zone
control are not disturbed unless the clear bit (bit 12) of
the mini-instruction is set. If the clear bit is set any data
outside of the zone is cleared in the receiving register, and
if not set this data is left undisturbed. Mini-instruction
“153021,” for example, causes the octal number 30 to be
loaded in the PC register in bit positions 12-17 (as de-
fined by the zone code 21 as seen in FIG. 4).

3,644,969

The format of the load direct instructions (group 3) is
Bits 0 56 17

POP DATA

The POP codes (bits 0-5) are:

Octal
Code

10
11

Mne-
monie

MOPB C(MOP)1io PB.
MOPC C(MOP) to PC.

Deseription

As discussed earlier, “C(MQOP) to BB” means transfer the
contents of the MOP register (36-bits) to the PB register.
Any twelve-bit configuration may be used as the data field
(bits 6-17). The entire eighteen bits of the mini-instruc-
tion are loaded into bits 18-35 of the specified main en-
gine register. Bits 00-17 of this register are cleared to
zero. The load direct POP code may be used, for exam-
ple, to provide a means of direct address modification of

mini-instructions. Zone control is not used.
The format of the exchange instructions (group 4) is:
Bits 0 5 6 7 1 12

13 17

<]

POP ZONE

=

sop | ¥
T

These instructions allow the contents of main engine reg-
isters to be exchanged at the same time that an arith-
metic or logical operation is being performed. The opera-
tion specified by the SOP code is performed and sent to
the PD register. Meanwhile, the contents of the PD reg-
ister are loaded into the PB or PC register depending on
which POP code is used. Zone control affects each destina-
tion register. The POP codes (bits 0—5) are:

Octal Mne-

Code monic Deseription

40 PBD SOP results to PD; C(PD) to PB.
41 rcp SOP results to PD; C(PD) to PC.

If the Pre bit is a one and the Gin flip-flop is set, this
mini-instruction will act as a NOP. Any main engine
SOP code except the load SOP codes (LDB, LDC, and
LDD) may be used. An exit will occur after this mini-
instruction is executed if the exit bit is a one. Any main
engine zone control code may be used.

The format of the mini-engine instructions (group 5)
is:

Bits 0 5 6 7 1 12 13 17
P E
X
POP R SOP 1 ZONE
E T
The POP codes (bits 0-5) are:
Octal Mne-
Code muonic Description
42 RC Mint engine RC register.
46 RD Mini engine RD register.

Data will be half-exchanged on the main buss 50 Pre
is a one and the Gex flip-flop is set. Any of the main en-
gine SOP codes may be used. An exit will occur after
the mini-instruction is executed if the exit bit is a one.
The zone control bits do not affect data transfered to
the mini-engine registers except when a zone code of 32

10

—
t

2

25

30

35

40

50

55

60

65

70

75

52

octal (floating point exponent bits 00—08) is used with
an RC POP code. This is discussed below. Normally
eleven bits are transfered to or from the RB and RD
registers, and six bits (bits 95-10 only are transferred to
and from the RC register. Bits 00-04 are cleared when
loading the RD register. Zone control bits do affect data
transferred from the mini-engine to the main engine (load
SOP codes). Main engine zone control codes are used.

The mini-engine POP codes are used to transfer data
between the main engine and the mini-engine, When the
main engine arithmetic and logical SOP codes are used
with the mini-engine POP codes, the contents of a main
engine register or the results of a main engine operation
are loaded into the mini-engine register. In this case the
SOP code specifies the source and the POP code specifies
the destination. Only the least significant eleven bits (bits
25-35) are transferred from the main engine on an RB
or RD POP code, and only bits 30-35 on an RC POP
code. Zone control has no effect for an arithmetic or logi-
cal SOP code except when a zone code of 32 (floating
zone) is used with an RD POP code as noted above, In
this case eight bits (bits PE 01-08) of the main engine
are transferred by a line 138 to the RC register (bits 03—
01). For the load SOP codes, data is transferred from
the mini-engine to the main engine and is affected by
zone control. Eleven bits are transferred over the main
buss from the RB and RD registers, and normally six
bits are transferred over the main buss from the RC
register. When an RC POP code is used with a load SOP
code and a zone control code of 32 octal (floating zone},
eight bits (bits 03—10) are transferred from the RC regis-
ter by a line 139 to any one of the main engine PB, PC
or PD registers (bits 01-08).

The format of the mini-exchange instructions (group
6) is:

Bits 0 5 6 1 12 14 15 16 17
IB'){ }}2 R R | R
02 SOoP T C B c D
T H
The POP code (bits 0-5) is:
Octal Mne
Code monic Description
02 MINI Mini engine operation

The mini-engine SOP codes defined below are:

Octal Mne-
Code monic Description
30 RB C(RB).
31 RC C(RC).
34 RB+1 C(RB)plusl.
35 RC+1 C(RC)plusl.
15 RC—1 C(RC) minus 1.
36 RB+RC C(RB) plus C(RC).

RD—RC C(RB) minus C{RC).

If the exit bit is a one, an exit will occur after the in-
struction is executed. Bit 13 is not used.

This mini-instruction is used to perform mini-engine
arithmetic operations or exchange data between registers
of the mini-engine or both, The data exchanged is eleven
bits in length (no zone control is used). What normally
is a zone field (bits 13-17) is used as an extension of the
operation code. The SOP code generally indicates the
source of the data and bits 15-17 specify the destination
of the data. However, the RD register may also be used
as a source, The particular operation to be perfomed is

3,544,969

53
confrolled by the exchange bit (bit 14). Valid combina-
tions for the modifier bits are as follows:

54

the data as it passes over the main buss 50 to be half-
exchanged (regardless of the condition of Pre and Gex).

Bit
4 15 16 17 Octal Mne-
EX RB RC RD Code monic Deseription

[1] 0 0 0 00 NOP No data exchange,

1] 0 1 0 02 SOP results to RC.

0 1 0 0 04 SOP results to RB,

] 1 1 (] 06 - ... SOP results to RB and RC.

1 0] 0 10 No data exchange.

1 0 1 0 12 C{(RD) to RC.

1 1 0 0 14 -e-- C(RD) to RB.

1 1 1 0 16 ... C(RD) to RB and RC.

1 0 0 1 11 SOP results to RD.

1 0 1 1 13 . .- 8OPresults to RD;C(RD) to RC.
1 1 0 1 15 .. SOP results to RD;C(RD) to BB,
1 1 1 1 17 SOP results to RD;C{RD) to RB and RC.

If this instruction changes the contents of the RB register
(mini-instruction counter), an LMF cycle (mini fetch)
is forced which essentially causes a transfer control oper-
ation, or batch, to take place. As has been described, the
RB register usually points to the next sequential instruc-
tion. Thus, if the contents thereof are changed by the
mini-exchange instruction, the RB register then points to
some new instruction. The LMF cycle is forced in order
to fetch this instruction for execution. During any LMF
cycle, the RB register is updated by one.

The format of the algebraic instructions (group 7) is:

Bits 05 6 7 11 12 17

62 ZONE

=

16

The POP code (bits 0-5) is:

Octal Mne-
Code monic Description
62 ALG Algebraic add; results PB.

If the Pre bit is a one and the Gin flip-flop is set, this mini-
instruction will function as a NOP, Only the main engine
B-C SOP (16 octal) is used. Any main engine zone may
be used.

An algebraic add is performed on the data in the PB
and PC registers. The signs are assumed to be in conven-
tional sign registers (not shown) associated with the PB
and PC registers. If the signs of the two operands are
alike, an add operation is performed and the result is
stored in the PB register. The proper sign is already as-
sociated with the PB register. If the signs are not alike,
the smaller operand is subtracted from the larger and the
result stored in the PB register. The sign of the larger
is stored in a sign register associated with the PB register.
A. carry out of the most significant bit position may be
used to set an overflow indicator. The carry may be stored
in a conventional manner.

The format of the index register (XR) and instruction
counter (IC) instructions (group 8) is:

Bits 0 5 6 7 11 12 13 1516
b % x| 1
#4| & |sop | ¥ | ¥ iz

T H

The instruction registers (XR1-XR7) and the index regis-
ter (IC) are shown in FIG. 3e. The POP code (bits 0-5)

182
Octal Mne-
Code monie Description
44 XIC Index Register or Instruction Counter Operation.

If the Pre bit is a one and the Gex flip-flop is set, a half
exchange will be performed on the main buss. Any main
engine SOP code may be used. If the Exit bit is a one,
an exit will occur after the instruction is executed.
Bits 13-17 are termed modifier bits. Bit 13 set will cause

20

40

50

55

60

70

75

Bits 14 and 17 are not used. Bit 15 set indicates an index
register operation is to be performed, and bit 16 set indi-
cates an instruction counter operation.

Zone control is not provided with this instruction. For
arithmetic or logical SOP codes, the main engine 13 is
the source of data and an XR register or the IC register
(see FIG. 3e) is the destination; and, for Load SOP codes,
an XR register or the IC register is the source and the
main engine 13 is the designation. The XR registers and
the IC register are short registers and are considered as
bits 21-35 with reference to the main buss 50. If an XR
register is involved in the instruction, the particular XR
register to be operated upon is specified by bits 18-20
of the PD register. If multiple tag mode is in effect it
signifies that a certain computer with three index registers
(XRs) is being emulated which has instructions specifying
that the contents of any of these registers may be used
individually; or an inclusive OR operation may be per-
formed on any two or all three of these registers. An in-
struction being emulated specifies the multiple tag mode.
The inclusive OR of the specified XR registers will be ob-
tained when PD register bits 18-20 (tag bits of the emu-
lated instruction) are equal to 3, S, 6, or 7 octal,

The format of the channel register instructions (group
9) is:

Bits 0 5 6 7 n 12

13 17

B
P 2
| sop | X
E

PropP ZONE

T

The POP code (bits 0-5) are:

Octal Mne-

Code monic Description
47 CH1 Channel Register No. 1.
45 CH2 Channel Register No. 2.

If the Pre bit is a one and the Gex flip-flop is set, a half-
exchange will take place on the main buss 50. Any main
engine SOP code may be used. If the Exit bit is a one,
an exit will occur after the instruction is executed. A zone
code of 00 octal, corresponding to bits 00-35 generally
is used, although any main engine zone control code may
be used.

The channel register mini-instructions may be used to
move data or commands (arithmetic or logical SOP
codes) from the main engine 13 to the channel registers
(CHR1 or 2 of either 1/0 channel), or (load SOP codes)
from the channel registers to the main engine. The same
instructions will affect the specified registers of either chan-
nel 1 or 2 depending on whether the CHBC flip-flop is re-
set or set, respectively,

The use of a CH1 PTP code (except with load SOP
codes) will initiate a channel operation. The data sent to
the CH1 register should have the following format: An
I/0 command (bits 0, 8, 9, 10), a device type (bits
28-30), mode (bit 31), and, if necessary (where more
than one device of a given type, e.g., plural tape units, are
used), a device number (bits 32-35), Standard I/0 com-

3,544,969

55

mands were described in the discussion of the I/0 chan-
nels. If the command is a data transfer, the channel will
automatically start transferring data to or from a buffer
service in the control memory 42, starting at the low order
buffer address for the particular channel in operation.

Data transfer to the buffer area in the control memory
is terminated by means of the CH2 POP code. On a read
operation, the data transfer is terminated after trans-
ferring the required number of words, but the device,
such as a tape unit, proceeds to the End-of Record with-
out transferring further data as is conventional. On the
write operation, the CH2Z POP code is used to send an
end address to the CHR2 register of the selected channel
(over bits 29-35 of the main buss). Data transfer will stop
when the end address (in the CHR2 register) agrees with
the buffer address (HCA02-09) in the associated chan-
nel address counter within the channel control.

When an error occurs on a read operation, a flag (ER1
in a secondary indicator register) is set, and the error
address may be obtained by using a CH2 POP code with
a load SOP code, in order to determine the location of
the error. This instruction gates the outputs of the CHR2
register and the address counter to the main buss 50 as
follows: CHR2 register bits 3-5 are gated as main buss
bits 30-32 (HCH30-32); CHR2 register bits 6-9 are
gated as main buss bits 15-17 (HCH15-17); address
counter bits 6-9 are gated as main buss bits 24-26
(HCH24-26). If the address counter bits 6-9 are all
false (zero), the main buss bit 23 (HCH23) will be true
(one).

The format of the load address keys or delay in-
structions (group 10) is:

Bits0 5 6 7 1112 13

54 sop | ¥

T

ZONE

c}-vlae]

The POP codes (bits 0-5) are:

Octal Mne-
Code monic Description
4 LAK TL.oad Address Keys

54 DELAY Hang Current Level Temporarily

If the Pre bit is a one and the Gex flip-flop is set, a half-
exchange of the data will take place. Any main engine
SOP code may be used. However, only the load SOP
codes are effective in loading the address keys as noted
below. If the Exit bit is a one, an exit will occur after the
instruction is executed. A zone code of 00 octal, corre-
sponding to bits 00~35 generally is used, although any
main engine zone control code may be used.

When a load SOP code is used, the setting of the ad-
dress keys (on the operator’s console 14) is transmitted
over the main buss 50 to the main engine PB, PC or PD
registers, The use of any other SOP code will cause
the save sequence YSO0-YS5 of the wired-in-sequence
to be performed, and control will return to the scheduler
43 which may then service certain other requests as pre-
viously described in connection with the scheduler opera-
tion. The return flip-flop for the scheduler level in effect
when the delay instruction was executed will be set in
approximately 100 microseconds, and control will be
returned to that level when this return request is recog-
nized by the scheduler.

The format of the interrupt instructions (group 11) is:

Bits 0 5 6 7 11 12 13 17

POP 30P ZONE

3 b

[}

10

25

30

40

50

60

70

56
The POP code (bits 0-5) are:

Qctal Mne-
Code monic Description
57 INT Load Interrupts into Main Engine.

If the Pre bit is a one, and the Gex flip-flop is set, a
half-exchange will occur on the main buss. Only the main
engine load SOP codes may be used. If the exit bit is a
one, an exit will occur after this instruction is executed.
Any main engine zone control code may be used.

The interrupt instruction is used to load the status of
the scheduler (INT19-35) and console (INT08-14)
interrupt flip-flops into the main engine. The interrupts
and the bit positions they occupy in a register (provided
a half-exchange has not taken place) are shown below:

Console Flip-
Bit switch flop Description
01 INTO01L Postpone Trap.
TKIT INTO08 Interval Timer.
SPRES INT09 Reset.
TCLR INT16 Clear.
TLDC INT11 Load Card.
TLDT INT12 Load Tape.
Execute Entry.

Executs Display.

Buffer Service Request, Channel 1.
Job in progress, level 1.

Return request, level 1.

Hang, level 1.

Bufter Service Request, Channel 2.
Job in progress, level 2.

Return request, level 2.

Hang, level 2.

Terminate request.

Job in progress, level 3.

Return request, level 3.

Hang, level 3.

Program trap request.

Program request.

Job in progress, level 4.

Return request, level 4,

Hang, level 4.

This interrupt instruction normally is used to service
the console interrupts (INT08-INT14). In a typical ap-
plication the INT POP code is used to load the console
interrupts, then a normalize operation is performed to
identify the interrupt of highest priority. Interrupts with
lower numbers have higher priority.

The format of the keys instruction (group 12)

Bits0 5 6 7 1213 17
P B
X

55 | R| sop | X! zoNE
E T

This mini-instruction is used to load the contents of the
console entry keys to the main engine register specified
by the SOP code. The POP code (bits 0-5) is:

Mne-
monie

Octal

Code Description

44 KEYS Load console Entry Keys into main engine.

If the Pre bit is a one, and the Gex flip-flop is set, a half-
exchange takes place over the main buss. Only the main
engine load SOP codes may be used. If the exit bit is a
one, an exit will occur after this instruction is executed.
Any main engine zone control code may be used.

The memory instructions (group 13) fall into two
categories. The format of the first is:

Bits 0 56 7 M1 1B 4 15 18 T
p B C IR
X{M|{D|{P|P|P
por |k | sor [¥| G gl 5 |G| D
T MR

3,644,969

57
The POP codes (bits 0-5) are:

Octal Mne-

Code monle Description

67 HEM Read from memory the main englne; Write from
maln engine to memory.

63 MKEY Read from memory the maln engine; Write from

entry keys to memory.

For the MEM POP code, if the Pre bit is a one and the
Gex flipflop is set, a half-exchange takes place on the
main buss. Bit 6 is zero for the MKEY POP code. Any
main engine SOP code may be used. When the Exit bit
is a one, an exit will occur after the instruction is exe-
cuted.

When the CM/MM bit (bit 13) is a zero, the control
memory is to be accessed; and when it is a one, the main 13
memory is to be accessed. When the RD/WR bit (bit 14)
is a zero, a read memory operation is to be performed;
and when it is a one, a write memory operation is to be
performed. When the PB bit is a one, the data is trans-
ferred to or from the PB register. When the PC bit is a
one, the data is transferred to or from the PC register.
When the PD bit is a one, the data is transferred to or
from the PD register,

This first category of memory instructions is used to
transfer data between the main engine and the control
memory or main memory, and from the console entry
keys to either memory. The address or core location in
memory to be accessed is determined by the SOP code.
For arithmetic or logical SOP codes, the address origi-
nates in the main engine 13 and is sent over the main buss
50 to the address register (67 or 97) of the appropriate
memory. For load SOP codes, the address is taken from
the console address keys and sent to the appropriate
memory address register. Normally, a load SOP code will
affect the specified main engine register, but in the case of
the MEM POP code, loading of the main engine with
the address from the address keys is inhibited.

For read memory operations (bit 14=0), the data
from memory is loaded into the main engine register or 0
registers specified by bits 15-17. More than one register
may be loaded with the same data using a single instruc-
tion.

For the MEM POP code and a write operation (bit
14=1), zeros will be stored in memory if bits 15, 16, and
17 of the instruction are equal to zero. If one of these bits 4
is set, the data from the indicated register (PB, PC or
PD) is stored in memory. If more than one of these
bits is set, the logical OR of the data in the specified
registers will be stored in memory.

With the MKEYS POP code, bits 15-17 are not mean-
ingful on a write operation since the data originates from
the console entry keys instead of a main engine register.
However, if a load SOP code also is used on a write op-
eration, the data from the entry keys will be loaded into

10

[3e]

0

b

30

<t

the specified main engine register. 53
Mnemonics for combinations of bits 13-17 are shown
below:
Binary bits
Octal —————— Ine-
Code 13 14 15 16 17 monic Deseription 60
ead opPratxons (MEM and MKEY POP code)
[z} 0 0 AR C(Control memory) to PRB.
02 0 0 0 1 0 ARC C(Control memory) to PC.
01 0 0 0 0 1 ARD C(Contrel memory) to P1.
24 1 0 1 0 0 SRC C(Main memory) to PB.
22 1 0 0 1 0 SRC C(Mam memory) to I'C. 65
21 1 0 0 0 1 SRD C{(Main memory) to PD.
Vrite operatwns (MEM POP code only)
14 9 1 1 0 0 AW C(PB) to control memeory.
12 4 1 0 1 O AW C(PC) to control memory.
11 0 1 0 0 1 AWD C(PD) to control memory,
10 0 1 0 0 0 AWZ Zeros to control memory.
34 1 1 1 0 0 SWB C(PB) to main memory.
32 1 1 0 1 0 SWC C(PC) to main memory. 70
31 1 1 ¢ 0 1 SWD C(PD) to main memory.
30 i 1 0 0 0 SWZzZ Zeros to main memory.
‘Write operations (MKEY POP code only)
1X 0 1 X X X AWK C(Console entry keys) to control
memory.
3X 1 1 X X X SWK C{(Console entry keys) to main
memory. 75

58

X is equal to any value (0-7 octal or 0, 1 binary).

The format of the second category of memory instruc-
tions is:

Bits 0 5 8 7 11 12 13 17
P E
X
77 R | SOP I ADDR
E T
The POP code (bits 0-5) is:
Octal Mue-
Code monie Description
77 REG Read or write to special registers,

If the Pre bit is a one and the Gex flip-flop is set, a half-
exchange will occur on the main buss. Any main engine
SOP code may be used. If the Exit bit is a one, an exit
will occur after this instruction is performed. The five
ADDR bits (bits 13-17) specify the address of the reg-
ister to be accessed.

The registers operated on by the REG POP code con-
sist of the accumulator (AC), multiplier-quotient (MQ),
sense indicators (SI), and absolute (full 36 bit words with
no reference to the right or left half thereof) core loca-
tions 00 and 04-37 (octal) of control memory. With the
exception of the AC register, all of these registers are 36
bits in length. The addresses and functions of the registers
are as follows:

Octal Mne-

address monic Description
00 REGO Working Storage.
01 AC Accumulator (hard register).
02 MQ Multiplier-Quotient (hurd register).
03 SI Sense Indicators (hard register).
04 AUX1 Execute Register No. 1,
05 REG5 Temporary Storage.
06 BCWA Buffer Control Word, Channel 1.
07 BCWB Buffer Control W oxd Channel 2,
10 AUX2 Execute Register No 2,
11 DATE Printer Date.
12 RCWA Retry Control Word, Channel 1.
13 RCWB Retry Control W old Channel 2.
14 DCWA Data Control Word, ‘Channel 1.
15 DCWB Data Control W 01d Channel 2.
16 IWA Initialize Word, Channel 1.
17 IWB Imt]almeWmd Channel 2.
20 CPA Command Pointer Word, Channel 1,
21 CPB Command Pointer Woxd Channel 2,
22 CWA Command Word, Channel 1,
23 cwB Command Word, Channel 2,
24 L To Save CAO; (‘AQ CRQ Instruetion.
25 REG25 Temporary Smm e,
26 DSRA Data Select Regwter Channel 1.
27 DSRB Dats Select Register, Channel 2.
30 NSRA Non-data Select chlstel Channel 1.
31 NSRB Nou-data Select Register, Channcl 2.
32 ACPA Auxiliary Comn. and Pointer, Channel 1.
33 ACPB Auxiliary Comm. and l’mntcr Chunnel 2,
34 IPw Initialize Print Word.
35 ... (Not used).
36 ... Do.
37 . Do.

Arithmetic and logical SOP codes cause a write opera-
tion, i.e.,, data from the main engine as specified by the
SOP code is stored in a register. A load SOP code indi-
cates a read operation, i.e., information is read from a
register and loaded into the main engine. When addresses
of 01, 02, and 03 are used, the hard registers (AC,
MQ, and SI) are accessed instead of the control memory.
When addresses 00, and 04-37 are used in the instruction,
control memory locations having these addresses are ac-
cessed, subject to the state of the CHBC flip-flop. If this
is set, the least significant bit of the address (core loca-
tions only) will be forced to a one. Thus, an address of
20 would cause control memory location 21 to be ad-
dressed if the CHBC flip-flop were set. In particular, an

3,544,969

59
address of 00 with the CHBC flip-flop set would cause
core location 01 to be accessed, not hard register 01
(AC). In this way, the same instruction may be used to
service two different registers, depending on the setting
of the CHBC flip-flop.

When registers 04 (AUX1) and 10 (AUX2) are writ-
ten into using a REG POP code, the respective YAUX1
and YAUX2 flip-flops in the wired-in-sequence will be
set. When the YAUXI flip-flop is set in this manner, the
trap postpone flip-flop is also set. However, if the REG
POP code which caused the trap postpone flip-flop to
be set also has the exit bit on, the exit occurs and the
scheduler gains control before the trap postpone flip-flop
has time to set, which means that this flip-flop will not
affect the next decision of the scheduler.

The format of the miscellaneous instructions (group
14) is:

Bits 0 56 11 13 17

SOP (NOT USED)

B

This instruction is used to set and reset various flip-flops
in the system. The SOP field defines the operation to be
performed. Bits 13-17 are not used. Zone control does
not apply. The POP code (bits 0-5) is:

Oc¢tal Mne-
Code 1monic Description
06 MISC Set and reset specified flip-flop or indicator.
The following SOP codes may be used:
Octal Mne-
Code monic Description
12 T1 Reset Interval Timer.
16 TRER Reset Terminate.
2 SR1 Set Buffer Request (Channel 1).
46 SR3 Set, Terminate Request,
50 SRT Set Channel Trap Request.
52 SR4 Set Program Request.
54 HANG Hang Present Level.
56 POST Set Trap Postpone.
60 HALT Set Program Halt and Hang Level 4,
62 RH1 Reset Buffer Hang.
66 RH3 Reset Terminate Hang.
70 RH4 Reset Program Hang.
72 RCN Reset Console Request. .
76 RINT Reset All Hangs and Requests {will not reset Con-
sole Request, JIP3, Trap Request, Program
Request, JIP4, and Hang 4 unless Halt flip-flop is
set).
20 RAQ TReset Q-Bit.
21 SAQ Set Q-Bit.
22 TAQ Toggle Q-Bit,
23 FOFA Set Floating Overflow (AC).
24 RAS Reset AC Sign.
25 SAS Set AC Sign,
26 TAS Toggle AC Sign.
27 FOFQ Set Floating Overflow (MQ).
33 RS8Q Rezet AC Sign and Q-Bit.
37 ACK Acknowledge Buffer Request. i
74 RESL4 Reset Level 4 (resets HALF flip-flop, JIP4,

HANG 4, RETURN 4 and Program Requoest).

If the exit bit is a one, an exit will occur after the in-
stryction is executed.)
The format of the shift instructions (group 1§) is:

Bits 0 5§ 6 7 1 12 17

|

SIIFT COUNT I

\

P
66 R S0P
E

15

20

25

30

35

40

55

60

The POP code (bits 0-5) is:
Octal Mne-
Code monic Description

66 SHIFT Performs shift, multiply, and divide operations.

If the Pre bit is a one, and the Gin flip-flop is set, this
instruction will function as a NOP, The shift SOP codes
defined below are used.

Octal Mne-
Code monic Description

2 B-L Shift C(PB), bits 00-35, left,

03 B-R Shift C(PB), bits 00-35, right.

22 C-L shift C(PC), bits 00-35, left.

23 C-R Shift C(PC), bits 00-35, right.

04 D-L Shift C(PD), bits 00-35, left.

45 D-R Shift C(P D}, bits 00-35, right.

06 BD-L Shilt C{PB), bits 00-35, and C(PD), bits 00-35,
left as one register.

07 BD-R Shift C(PB), bits 00-35, and C(PD), bits 00-35,
right as one register.

2% CD-L 8hift C(PC), bits 00-35, and C(PD), bits 00-35,
left as one register.

27 CD-R Shift C(PC), bits 00-35, and C(PD), bits 00-35,
right as one register.

12 D-ROT Rotate C(PD), bits 00-35, left; bits shifted out of
position 00 enter position 35.

24 D-LS Save sign (PD bit 00); Shift PD left.

25 D-RS Shilt PD right; Restore sign previously saved to
P D bit 00.

10 DIV Fixed-point divide.

11 MULT Fixed-point multiply.

16 BD-LF Shift C(PB), bits 09-35, and C(PD), bits 09,-35
left as one register (floating-point mantissa).

17 BD-RF Shift C(PB), bits 09-35, and C(PD), bits 09-35,
right as one register (floating-point mantissa).

30 FDIV Floating Divide.

31 FMUL Floating Multiply.

14 BD-N Normalize (foating) C(PB), bits 09-35 and
C(P 1), bits 04-35, as one register.

32 BD-LY Shift C(PB), bits 08-35, and C(PD), bits 09-35,
left as one register if PB bit 09=0.

33 BD-RY Shilt C(PB), bits 09-35, and C(PD), bits 04-35,
right as one register then set PB bit 09,

20 DOS Do Shift specified by general control flip-flop.

The shift count (bits 12-17) is loaded into the RC
register (shift counter) unless a code of 77 octal is used.
In the latter case (77 octal), whatever value is present in
the RC will be used as a shift count, The following table
summarizes the shift count possibilities:

Octal Mne-
Code monie Description
00 00 Causes all shifts except BD-N and DOS to act as a
00 NOP.
XX XX Shilt XX bits, where XX is an octal number.
77 RC Use present RC contents as the number of bits to be

shifted.

The shift POP code is used for all operations which re-
quire shifting, including fixed and floating-point multiply
and divide operations. The SOP field specifies the registers
involved in the shift operation, as well as the specific op-
eration to be performed. The shift count field (bits 12—
17) gives the number of bits to be shifted as explained
above. In a multiply or divide operation, the shift count
is also the number of bits in the operands which will be
operated upon.

In the normalize operation (BD-N), the bits 09-35 of
the PB register and bits 09-35 of the PD register are
transferred together to the shift gates 102 and 103 (FIG.
3f) effectively as one register (PB is the most significant
half) and shifted left until bit 09 of the PB register con-
tains a one. Each time the data is shifted left one bit, the
RC register is incremented by 1, using any value pre-
viously loaded into the RC register as the base.

For fixed point divide, the dividend must be in the PB
register (most significant half) and PD (least significant
half), and the divisor in the PC register. At the end of

3,544,969

61
the divide operation, the quotient is in the PD register
and the remainder in the PB register. For floating-point
divide, the operation is the same as fixed-point divide
except only bits 09-35 of the registers are affected.

For fixed point multiply, the multiplier must be in the
PD register and the multiplicand in the PC register. At
the end of the multiply operation, the most significant
partial product is in the PB register and the least signifi-
cant partial product is in the PD register. For floating-
point multiply, the operation is the same as fixed point
multiply except only bits 09-35 of the register are af-
fected.

The general control flip-flops control the type of shift
to be performed by the DOS SOP code. In this case, the
shift count will be taken from bits 28-35 of the PD
register instead of the shift count portion of the mini-
instruction. The operations performed are as follows:

General control F/¥s
GIN GOP03 GOPI10

Instruction emulated GOPI1
ALS—Accumulator Left Shift____
A RS—Accumulator Right Shift__
LLS8-—Long Left Shift______.
LRS—Long Right Shift__.__
LGL—Logical Left Shift____
LGR~—Logical Right Shift__
RQL—Rotate MQ Left.._.__
NOP~—No Operation____.___..._.

'
ORFRHOOWO
O D b bk bt s DD
O e DD
O Dt O

The format of the transfer instructions (group 16) is:
Bits 0 5 6 7 17

POP 0 | ADDRESS

The POP code (bits 0—5) are:

Octal Mne-
Code monic Description
16 TRU Transfer unconditionally.
76 SMCT Store-Mini Counter and transfer,

Bit 6 is a zero for both POP codes. The next mini-instruc-
tion will be taken from the control memory address
{mini-location) specified by the address field (bits 7-17).

The TRU POP code will cause the eleven bit address
field to be loaded into the RB register (mini-counter).
The next instruction will be executed from the control
memory and mini-location specified by the contents of the
RB register.

The SCMT POP code, which was discussed earlier, will
cause C(RB)+1 to be stored in the RD register. The
address field of the mini-instruction is loaded into the
RB register and the next instruction will be taken from
the mini-location specified by RB. The subroutine mode
flip-flop will be set. When the next exit occurs, control
will not pass to the scheduler. Instead, C(RD) will be
loaded into the RB register and the next instruction will
be executed from the mini-location specified by RB. In
this way, control returns to the instruction immediately
following the SMCT instruction.

The format of the arithmetic test instructions (group

17) is:
Bits 0 5 6 112 13 17
D
SKIP
FOP | SOF | 1| pDISTANCE

The POP code (bits 0-5) are:

Octal Mne-
Code monic Description
61 TA Test Arithmetic condition; skip if test satisfied,
otherwise take next sequential instruction.
65 TAE Test Arithmetic condition; skip if test satisfied,
otherwise exit,
75 TAW Test Arithmetic condition and transfer to wire-in-

sequence.

5

10

20

25

30

35

40

50

60

65

70

75

62

The arithmetic test SOP codes below are used.

Octal Mne
Code monfc Test condition

0 NO No skip. Test unconditionally false.

40 YES Skip. Test unconditionally true.

o6 CFP Skip if no carry. (Note—the carry F/F will be set by
a carry out of the MSB of the zone on a mian engine
operation).

41 CAR Skip if carry. (See note above.)

02 CXI1IF Bkipifcarry F/Fand GOP11are equal. (This Instrue-
tion sets LTSAT if Rapld Transfer, Carry, and
GOPI11 are true.)

42 CX1 Skip if carry ¥/F and GOP11 are not equal.

03 GIIF Skip If GO P11 is false.

43 Gi1 Skip if GOP11 is true.

04 NZ Skip it PE Is nonzero, (Note—the contents of PE
register, including bit 0 are tested. PE is loaded
under zone control).

44 Z 8kip if PE is zero, (See note above.)

05 NOOIF Skip if GOP09 or NOT GOP10 s true.

45 N910 Skip if NOT GOP09 and GOPI0 are true.

08 GIF Skip If GO P09 is false.

46 G9 Skip if GOP09 is true.

07 GIOF Skip if GOP10 is false.

47 G110 Skip if GOPI0 is true.

10 RNZ Skip if RE register (bits 3-10) are non-zero.

50 RZ Skip if RE register (bits 3-10) are zero.

11 FCF Skip if first carry is false.

51 C Skip if first carry is true,

12 GINF Skip if GIN is faise.

52 GIN Skip if GIN is true.

13 FOFF Skip if no floating overflow.

53 FOF Skip if floating overflow.

14 COF 8kip if no carry out of bit 9 in floating point operation.

54 C9 Skip If carry out of bit ¢ in floating point operation.

15 LSF Skip if unlike signs in PB and PC registers (enabled
by SMCT, SHIFT, ALG, REQ, MEM, or KEYS
POP codes).

55 LS Skip if like signs in PB and PC reglisters.

16 AQF Skip if Q-bit false,

58 AQ Skip if Q-bit {rue.

20 ZX11F Skip If zero test (result of arithmetic operation is zero}
and GOPI11 are equal.

60 ZX11 Skip if zerc test and GOP11 are not equal.

21 MSBF Skip if PE bit 0 is false.

61 MBSB Skip if PE bit 0 is true.

22 LSBF Skip if PE bit 35 is false.

62 LSB Skip if PE bit 35 is true,

24 LESSF S8kipif PC notless than PB. (Sign bits are used).

64 LESS Skip if PC 15 less than PB. (Sign bits are used.)

77 SAT Skip if pervious test satisfied.

If the Dir bit is a zero, the skip distance is to be added
to the RB register (forward or positive skip). If the DIR
bit is a one, the skip distance is to be subtracted from
the RB register (backward or negative skip). The skip
distance (bits 13-17) may be any number from 0 through
37 octal.

The arithmetic test instructions are used to test various
arithmetic conditions or indicators specified by the SOP
field, and then skip up to a maximum of 31 instructions
either forward or backward or perform the next sequen-
tial instruction or exit depending on the outcome of the
test. In any case, the contents of the RC register are un-
conditionally destroyed by the use of these POP codes.
The exit bit is not used by this group.

The TA POP code tests the condition specified by the
SOP code. If the test condition is satisfied, the skip dis-
tance (bits 13-17) will be added or subtracted from the
RB register (mini-instruction counter) and the next in-
struction will be taken from the mini-location specified
by the RB register. A skip distance of plus or minus zero
results in repeating the same mini-instruction. If the
test condition is not satisfied, the RB register is updated
by one, and the next sequential instruction is executed.

The TAE POP code is used to test the condition speci-
fied by the SOP code, and if the test condition is satisfied,
a skip is accomplished identical to that of the TA POP
code. If the test condition is not satisfied, an exit will
occur.

The TAW POP code causes an unconditional exit to
state YB2 of the wired-in-sequence. The RB register is
always updated by the skip distance and the LK4 flip-flop
is reset. If the test specified by the SOP code is satisfied
the LTSAT flip-flop in the translator C will be set.

The test instructions (group 18) fall into the categories

3,544,969

63

of general test and secondary test instructions. The format
of the general test instructions is:

Bits 0 5 6 11 12 13 17
D
SKIP
POP | SOP | 1| DISTANCE

The POP code (bits 0-5) are:

Octal Mne-
Code monic Description
60 TC Test General Indicator; skip if set, otherwise take
next sequential instruction.
64 TQE Test (General Indicator; skip if set, otherwise exit.
71 TGF Test General Indicator; skip if not set, otherwise
take next sequential instruction.
70 TGS Test and set General Indicator; skip if originally set,
otherwise take next sequential instruetion.
4 TGR Test and resst General Indicator; skip if originally
set, otherwise take next sequential instruction.
The general test SOP codes below are used.
Gated
to Dis-
lay
Octal G.I eg. Mne-
Code reg bit monic Description
(1, R S8W Sense switch (operation console) test.

04 1 30 MQO MQ overflow.

05 2 30 Unassigned.

a6 1 3t EOFA End-of-file, Channel 1.*

[2 31 Unassigned.

10 1 18 Unassigned.

11 2 18 PASS1 Temporary program control.
12 1 06 ECI Enter Current Instruction.

13 2 06 Unassigned.

14 1 24 EOFB End-of-file, Channel 2.*

15 2 24 CCKB Command Check, Channel 2.
16 1 12 DCTM Divide Check Trap Mode.

17 2 12 RSPT Read Select Printer Mode.

20 1 19 PDATE Read Printer Date.

21 2 19 RNOT Suppress Printer.

22 1 07 TCEB Tape Check Enable, Channel 2.*
23 2 07 LOD Load indicator.

24 1 25 CTEB Command Trap Enable, Channej 2.*
25 2 25 Unassigned.

26 1 13 Unassigned.

27 2 13 Unassigned.

30 1 20 DCK Divide Check.*

31 2 20 Unassigned.

32 1 08 TCEA Tape Check Enable, Channel 1.*
33 2 08 Unassigned.

34 1 26 OTEA Command Trap Enable, Channel 1.*
35 2 26 Unassigned.

36 1 14 10C 1/O Check.*

37 2 14 DFAC Double Add carry from bit 9.
40 1 21 TRAP Transfer Trap Mode.”

41 2 21 ENT Enter from Keys.

42 1 09 DIS Display.

43 2 09 CCKA Command Check, Channel 1.
44 1 27 TCKA Tape Check Error, Channel 1.*
45 2 27 Unassigned.

46 1 15 TCEB Tape Check Error, Channel 2.*
47 2 15 Unassigned.

50 1 22 Bl4 Sense Lite 4.*

51 2 22 SFD Single Floating Divide.

52 1 10 SL1 Sense Lite 1.*

53 2 10 Unassigned.

54 1 28 SL2 Sense Lite 2.*

55 2 28 NFT Not Floating Trap Mode.

56 1 16 SL3 Sense Lite 3.*

57 2 16 Unassigned.

60 1 23 MTM Multiple Tag Mode.*

61 2 23 Unassigned

62 1 11 FMQ MQ Factor Exceeded.

63 2 11 Unassigned.

64 1 29 FPO Floating Point Overflow.

65 2 20 Unassigned.

66 1 17 FAC AC Overflow.

67 2 17 Unassigned.

70 1 32 TCN Trap Control.*

7 2 32 FCFA First Carry Fist Add.

72 1 33 PCD Pre Divide Check.

73 2 33 Unassigned.

74 1 34 CON Console Request.

75 2 34 Unassigned.

76 1 35 CIF Current Instruction off.

ki 2 35 Unassigned.

NorE.—An * denotes a register bit, specified by the SOP code, which
also controls a lamp on the operator’s console.

If the Dir bit is a zero, the skip distance is to be added
to the RB register (forward or positive skip). If the Dir
bit is a one, the skip distance is to be subtracted from the
RB register (backward, or negative skip). The skip dis-
tance (bits 13-17) may be any number from 0 through
37 octal,

[*14

10

20

25

30

40

60

65

5

64

The general test instructions are used to test the status
of the general indicators (FIG. 3b) as specified by the
SOP field, and then skip up to 31 instructions (either for-
ward or backward) or perform the next sequential in-
struction, or exit, depending on the outcome of the test.
The exit bit is not used with this group of instructions.
All general indicators will be reset when the reset switch
on the console is pressed.

The TG POP code will test the general indicator speci-
fied by the SOP ficld and skip if the indicator flipflop is
set (true). The skip is performed by either adding or sub-
tracting (depending on bit 12 of the instruction) the skip
distance to or from the RB register (mini-instruction
counter) to obtain the location of the next mini-instruc-
tion. A skip disance of plus or minus zero results in re-
peating the same mini-instruction. If the indicator is re-
set (false) when the test is made, the RB register is up-
dated by one causing the next sequential instruction to
be taken.

The TGE POP code will test the general nidicator
specified by the SOP field and skip if the indicator is true,
or exit if the indicator is false. The TGF POP code will
test the general indicator specified by the SOP field and
skip if the indicator is false, or take the next sequential
instruction if the indicator is true.

The TGR POP code performs like the TG POP code
but also resets the specified indicator after the test is made.
The TGS POP code performs like the TG POP code but
also sets the specified indicator fater the test is made.

The format of the secondary test instructions is:

Bits 0 68 1 12 13 17
D
SKIP
POP | BOP | 1| piSTANCE
The POP code (bits 0-5) are:
Octal Mne-
Code monilc Description
20 TSG Test Secondary Indicator; skip If set, otherwise take
next sequential instruction.
24 TSGE Test Secondary Indieator; skip if set, otherwise exit.
31 TSGF Test Secondary Indicator; skip if not set, otherwise
. take next sequential instruction.
30 TSGS Test and set Secondary Indicator; skip if originally
set, otherwise take nest sequential instruction.
34 TSGR Testand reset Secondary Indicator; skip if originally
set, otherwise take next sequentiia instruction.
The secondary test SOP codes below are used.
Octal Mne-
Code monie Description
00 ERIA Error.
01 ER2A 'Transfer Timing Error.
a2 Unassigned.
03 CIOA Channel in Operation.
094 WRSA Write Select.
03 Unassigned.
06 RHWA Wait for reset and load channel instructions (RCH).
07 NSUA Non Data Select Register in use.
10 BOTA Beginning of Taps.*
11 EOTA End of Tape*
12 DSUA Data Select Register in use.
13 DI1A End Data.
14 D2A Error Processed.
15 D3A Error This Block.
16 WEFA Write End-of-File in Process.
17 BSFA Backspace File.
20 CEFA Channel End-of-Flle,
21 EORA Channel End-of-Record.
22 FTMA First Time Mark.
23 LCWA Wait for load channel instruction (LCH).
24 LCPA Load channel instruction present (LCH).
25 Unassigned.
26 DSPA Data Select in Process.®
27 I0PA I/O in Process.*
30 RDYA Channel Ready.
31 TERA Terminate on Channel.
32 TIA End of IOR.
33 T2A End of Record.
34 T3A End of Select.
35 FTUA First Time Command Used.
36 CHBC CHB Control F/F.
37 COoP Card or Print (Channel 1 only).

Nork.—The * denotes a register bit, specified by the SOP
code, whieh alse controls a lamp on the operator’s cousole.

3,544,969

65

If the Dir bit is a zero, the skip distance is to be added
to the RB register (forward or positive skip). If the Dir
bit is a one, the skip distance is to be subtracted from
the RB register (backward, or negative skip). The skip
distance (bits 13-17 may be any number of 0 through
37 octal,

The secondary test POP codes are used to test the
status of the secondary indicator flip-flops (FIG. 35b)
under control of the CHBC {lip-flop. There are actually
two groups of 32 indicators, one group for channel 1
and one group for channel 2. Which group is tested de-
pends on the state of the CHBC flip-flop. If the CHBC
flip-flop is reset, the indicator group for channel 1 will
be tested, and may be set or reset by the secondary test
POP codes; and if the CHBC flip-flop is set, the ingicator
group for channel 2 will be tested and may be set or
reset by these POP codes. The individual indicator affected
is determined by the SOP code. Indicators of either group
having SOP codes ending in 0 or 1 will be set by I/0 chan-
nel control whenever the specified condition (for example,
end-of-file) occurs on a particular I/0 channel, and may
be tested, set or reset by these mini-instructions.

Whenever a channel register CH1 POP code is exe-
cuted, all the channel 1 indicators having SOP codes end-
ing in 0 or 1 will be reset if the CHBC flip-flop is reset,
and all the channel 2 indicators having SOP codes end-
ing in © or 1 will be reset if the CHBC flip-flop is set.
All secondary indicators (both groups) will be reset when
the reset switch on the console is pressed, provided the
system clock is not stopped.

The TSG POP code will test the secondary indicator
specified by the SOP field and the CHBC flip-flop, and
will skip if the indicator flip-flop is set (true). The skip
is performed by either adding or subtracting the skip dis-
tance to the RB register (mini-instruction counter) to
form the location of the next mini-instruction, A skip
distance of plus or minus zero results in repeating the
same mini-instruction. If the indicator is reset (false)
when the test is made, the RB register is updated by one
causing the next sequential instruction to be taken.

The TSGE POP code will test the secondary indicator
specified by the SOP field and the CHBC flip-flop, and
will skip if the indicator is true, or exit if the indicator
is false.

The TSGF POP code will test the secondary indicator
specified by the SOP field and the CHBC flip-flop, and
will skip if the indicator is false, or take the next sequential
instruction if the indicator is true.

The TSGR POP code performs like the TSG POP code,

but also resets the specified indicator after the test is !

made. The CHBC flip-flop (SOP code 36) is not reset
by this instruction. The TSGS POP code performs like the
TSG POP code but also sets the specified indicator after
the test is made.

The format of the halt instruction (group 19) is:

Bits 0 & 6 17

[CO{ (NOT USED)

The POP code (bits 0-5) is:

Mne-
monie

Octal
Code

00

Description

TTALT Stop machine

Bits 6—17 are not used with this instruction.

This instruction stops the execution of instructions by
stopping the machine clock. This is done regardless of
whether any 170 operations are in progress. Halting with
an I/0 operation in progress may result in positioning
errors. The machine may be restarted with the next se-
quential mini-instruction by pressing the start switch on the
console.

10

20

30

45

60

66

The format of the no operation instruction (group 20)
is:

Dits 0 5 6 17

01 (NOT USED)

The POP code (bits 0-5) is:

Octal Mne-
Code monie

01

Description

NoPp No operation.

Rits 6-17 are not used with this instruction. The execu-
tion of this instruction results in no operation taking
place. Any illegal (undefined) POP code will be treated
as a NOP mini-instruction.

The format of the load preset conditions instructions
(group 21) is:

Bits0 5 8 9 12 14 15 16 17
a
Flir a ol alala
12 o1y 0 P E|L|R
A% 9 LIX (N
}

The POP code (bits 0-5) is:

Octal Mne-

Code maonic Description

12 PRE Set or reset {ieneral Control F/¥.

If the Load bit is a zero, this instruction will function
as a NOP. If the Load bit is a one, the operation speci-
fied by the remaining bits will be performed.

If the R/S bit (bit 9) is a zero, the specified flip-flops
will be reset; and if a one, the specified flip-flops will be
set. Bits 12 and 14-17 are explained below.

This instruction is used to set or reset the general
control flip-flops. The flip-flops to be loaded are specified
by bit 12 (GOP@9), bit 14 (GOP11), bit 15 (GEX),
bit 16 (GIN), and bit 17 (ARI). Each of the above
flip-flops will be operated upon if a one appears in its
particular bit position in the mini-instruction format
above. If the bit corresponding to any flip-flop is zero,
the flip-flop will not be affected by this instruction. The
GOP10 flip-flop is not set or reset with this instruction.
Bits 6, 7, 10, 11, and 13 are not used.

The format of the exit instruction (group 22) is:

Bits 0 56 11 12 17

65 00 (NOT USED)

The POP code (bits 0-5) is:

Octal Mne-

Code monie Description

65 EXTT Exit.

The SOP field (bits 6-11) is zero. Bits 12-17 are not
used.

This instruction is not actually a separate primary
operation code, but is a special case of the TAE POP
code. The zero SOP field causes the test to be false which
unconditionally causes an exit to occur. This special
case is given a separate mnemonic (EXIT) because of
its frequent use.

Turning now to the indicators and display registers
48 in FIG. 3b, two registers, designated general indi-
cator No. 1 and general indicator No. 2 comprise the
general indicators. All general indicators with even SOP
codes are in general indicator register No. 1, and all odd

3,544,969

67

SOP codes in general indicator register No. 2. The gen-
eral indicator registers are set, reset and tested by the
general test mini-instructions. Four of the flip-flops in
the general indicator register No. 1 are set by conditions
in the system, such as by console switches, in addition
to being set, reset and tested by the general test instruc-
tions. These flipflops are divide check trap mode (PIG
16), console request (PIG74), display (PIG42), and
pre-divide check (PIG72). The general indicators as-
sociated with the operator’s console are listed in the table
below.

10

CONSOLE INDICATOR LAMPS

68

The signal LSGI when true specifies register number 1
or even numbered outputs, and when false specifies reg-
ister number 2 or odd outputs. For example, PIG46
(register No. 1) is selected by the combination RGl4x,
RGIx6, and L.SGI-T. The indicator P1G47 (register No.
2) is selected by the combination RGI4x, RGx6, and
LSGL-F. The signal LSIM means set general indicator,
and LRIM means reset general indicator, KCP6 is a
timing pulse.

The RGI decode circuit in FIG. 35 functions to decode
the SOP code into meaningful control signals in a man-

Indicator Signal Source

YO Cheek . o oo . PIG36-T (ioneral Indicator Register 1, bit 14.

Divide Check R . PIG30-T General Indieator Register 1, bit 20.

AC Overflow .. .o QACOP-T PACOF flip/flop.

Transfer Trap Mode_ ___ PIG40-T Genersl Indieator Register 1, bit 21,

Channel Trap Permit_ P1GT0-T Ueneral Indicator Register 1, bit 32.

Multiple Tag Mode. . ._.____ _... PIGS0-T (3eneral Indicator Register 1, bit 23.

Program Halt_ ... __._ OHLT-T THLT flip/fop.

Internal Cheek OERR-T Memory Parity Errors (MERR-T plus

NERR-T).

Maint. Enable. oo SMAINT Maintenance Enable Switch,

Sense Light 1. _ . PIG52-T General Indicator Register 1, bit 10,

Sense Light 2. PLE64-T Genral Indicator Register 1, bit 28,

Sense Light 3. PILGSS-T General Indicator Register 1, bit 16,

Sense Light 4. __ ... PIGS-T General Indicator Register 1, bit 22,

Displays Bits 8, 1-85_ _ 01)100-35 Display register, bits 00-35.

Display Bit P .o OPBIT-T P-bit Nip/flop.

Display Bit Q.- 0QBIT-T Q-bit llip/flop.

Tape Cheek__ Channel 1. ... PIG4-T General Indicator Register 1, bit 27.
Channel 2________. P1G46-T General Indicator Register 1, bit 15.

EOT e o Channel 1.__._____ OEOTA-T
Chamnel 2. ____ OEOTR-T
BOT . e Channel 1.__..___. OBOTA-T
Channel 2. ________ OBOTBT
EOF. _ ... Channel 1___.____. PIGo6-T
Channel 2________ PIG14-Y
Channel Selected. ______._..__. Chammel 1. .. OI0PA-T
Chanuel 2.__..___. G10PB-T
RD/WR Selectoo... ... Channel 1. __.__ ODSPA-T
Channel 20 ODSPB-T
Command Trap Enablo Chanuel 1. ... PIG34-T
Channel 2.________ PIGH-T
Tape Check Trap Enable._.._ . Channel 1_________ P1G32-T
Channel 2. - PIG22-T
Tapeo Not Ready____.____._... Channel 1_____ HL1T2-T
Channel 2_.__.___. BLIT2-T
NoWrite Ring__..____._._._.... Channel 1.___.____ HLIT3
Channel 2. BLIT3-T
Tape Multi-Selected __ Channel 1. HLIT4-T
Chanuvel 2...___... BLIT4-T

Channel 1. ______
Channel 1., ____
Channel 1. . _

OCHNEA-T
OCD4A-T
OCD2A-T
OCDIA-T
OCHEB T
OCD4B-T
OCD2B-T
OCDIB-T
HLITHT
1ILITs T

Tape Unit Requested 8..___.__
Tapo Unit Requested 4...
Tape Unit Requested 2.,
Tape Unit Requested 1.__ Channel 1. ...
Tape Unit Requested 8... - Chanuel 2. .
Tape Unit Requested 4. ___ Channel 2_________
Tape Unit Requested 2.___.__. Channel 2_____.___
Tape Unit Requesied 1_______. Channel 2_______
CHR Not Ready._.._.__._. e Chanmel 1..___.__.
Typewriter Not Roady Channel 1.______ ..

Secondary Indicator Register 1, SO 11,
Secondary Indicator Register 2, SOP 11,
Seeondary Indicator Register 1, SOP 10,
Secondary Indicator Register 2, SO 10.
(teneral Indicator Register 1, bit 31.
General Indicator Register 1, bit 24,
Secondary Indicator Register 1, SOP 27.
Secondary Indicator Register 2, SOP 27.
Secondary Indicator Register 1, SOP 26,
Secondary Indicator Register 2, SOP 26,
General Indicator Register 1, bit 26,
General Indicator Register 1, bit 25.

General Indicator Register 1, bit 08.
General Indicator Register 1, bit 07.
Channe! 1 Hardware (Control).
(hannel 2 Hardware (Control).
Channel 1 Hardware (Control).
Channel 2 Hardware (Control).
Channel 1 Hardware (Control),
Channel 2 Hardware {Control},
Channel 1 Hardware (Control).
Channel 1 ITardware (Control).
Channel 1 Hardware (Control).
Channel 1 Hardware (Control).
Channel 2 Hardware (Control).
Channel 2 Hardware (Control).
Channel 2 Tardware (Control).
Channel 2 Hardware (Control).
Channel L Hardware (Coutrol).
Chanuel 1T Hardware (Control).

The SOP code for each indicator may be found under
the general test instruction description. The bit number
listed above under the heading “SOURCE” in reference
to general indicators specifies the bit position of the dis-
play register (and hence the display indicators on the
operator’s console) in which the indicator may be dis-
played for maintenance purposes.

The set and reset logic for any general indicator P1Gmim
may be expressed as follows:

Register No. 1 {even numbered outputs)

PIGmn (SET) equal_. ... RGImx- RGIxn-L8GI-T-KCP6-L.SIM
PIGum (RESET) equal. .. RGImx RGIxn-LSGI-T-KCI'6-LRIM

Register No. 2 (odd nuimnbered outputs)

TTGmn+1 (SET) equal__ .. RGlmx-RGInn- LSGI-F- KO8 - 1.8IM
I'taimnd 1 {RESET) equal. RGImx- RGIxn- LIGT-1 KOPG LRIM

GO

G5

ner similar to decode of the group codes by the transla-
tors. Two output signals identify each of the various
general indicators, The SOP code is applied on lines
RM06-10, and this is decoded in a conventional manner
to obtain signals RGI1X-7X and RGIX0, X2, X4 and
X6 which are used for identifying the general indicators
in the general indicator register number 1. For example,
general indicator PIG46 is identified by a combination of
signals RGI14X and RGIX6. A signal LSGI serves to
select either the general indicator register number 1 or
number 2 depending upon whether this signal is true or
false, This signal is derived from RM11 which is the
least significant bit of the SOP code, and when true the
register number 1 is selected by the RGI signals as noted
just previously, thereby indicating that an even SOP code
has been decoded. If the signal LSGI is false, the general
indiactor register number 2 is selected, meaning that an
odd SOP code has been decoded. For example, indicator

3,544,969

69

PIG47 is selected by the signals RGI4X, RGIX6 and
LLSGI-F. Scveral RGI signals are sent to the scheduler,
as indicated in FIG. 6, and employed to generate the
YSTS signal when the LMIS signal is true. The RGI
decode circuit decodes the SOP code of every mini-
instruction currently being executed. When combined with
other signals which indicate the POP codes, specific oper-
ations can be performed. For example, the signal LMIS
(indicating a miscellanecus mini-instruction) along with
RGISX and RGIX4 indicate which mini-instruction, in
this case “hang present level,” is going to be executed
(note FIG. 6).

The RSG decode circuit in FIG. 3k is used for the
secondary indicators, and decodes somewhat in the same
manner as the RGI decode circuit, Two RSG signals
specify a single secondary indicator in either secondary
indicator register number 1 or number 2. The signals on
lines RM06--11 which completely specify the SOP code
along with a signal LTBTB, which specifies a secondary
test mini-instruction, are employed to provide outputs
RSGOX-3X and RSGXO0-X7 to select a particular sec-
ondary indicator. The CHBC flip-flop indicates which
of the two secondary indicator registers is involved (i.e.,
if false register number 1 and if true register number 2).
The RSGux signals specify a particular SOP code (as
with the RGlLrx signals), but are only present when a
secondary test POP code is being executed.

There are two groups of secondary indicators. One
group is in secondary indicator register number 1 and
is for I/0 channel 1, and the other group is in secondary
indicator register number 2 and is for I/0O channel 2.
There are thirty-two indicators (flip-flops or high-speed
storage elements) in each group. These indicators may
be tested, set, and reset by the sccondary test POP codes.
For each SOP code (00-37 octal), there are two indi-
cators, one for channel 1 and the other for channel 2.
The status of the CHBC flip-flop determines which indi-
cator register is being operated upon, as noted in the
prior description of secondary test POP codes. The indi-
cators whose SOP codes end in 0 or 1 are also set and
reset by the channel control (indicator control lines) in
FIG. 3d. Some of the secondary indicators are connected
to console lamps, and these are shown in the table “Con-
sole Indicator Lamps” above.

The display register in FIG. 35 enables the following
information to be displayed on the operator’s console
display indicator lamps:
(1) The contents of the general indicator register No. 1

(PIGxx-gven);

(2) The contents of the general indicator register No. 2

PIGxx-0dd);

(3) The contents of the
ter (MOP#0-35);

(4) Data going to Control Memory (MDAQ0-35); and

(5) Data on the Main Buss (PMB00-35).

mini-instruction operation regis-

The above information is supplied to the console 14
by lines ODI0O0-35, and may be displayed statically or
dynamically. During static operation (maintenance func-
tions) the system clock must be stopped in order to see
the display. A selector switch F127 (not shown) is pro-
vided on a maintenance panel to enable the above inputs
to be gated to the display register. In addition, the selector
switch gates data from various sources on to the main
buss so that the mini-engine registers, main engine regis-
ters, entry keys, etc., may also be displayed.

Dynamic display occurs whenever any one of the fol-
lowing switches on the operator’s console is on during
normal system operation (see FIGS. 24 and 25): XR1-
XR7, Main Storage, AC, MQ, SI, Current Instruction,
and IC. Any time the data corresponding to the switch
which is “on” appears on the main buss, a signal KPMB
is generated which gates the data into the display register.
If the program being emulated is halted, the data corre-

[

10

30

40

GO

70

sponding to one of the operator’s console switches may
be displayed by pressing an Execute Display switch on
the operator's console. This action generates control sig-
nals which gate the specified data (except the current
instruction being emulated) onto the main buss and into
the display register.

Turning now to the operator’s console and display 14,
the console display unit is illustrated in FIG. 24. The
function of the keys, switches, and lamps on the console
will be explained in groups beginning in the upper right-
hand portion of a display unit and proceeding generally
from right to left. The console functions are similar, if
not identical, to those of a well-known second generation
computer,

All indicators are neon lamps. When a lamp on the
console is illuminated, it indicates the program or equip-
ment condition specified in the legend above or below
the lamp. When a register is displayed, a lamp being ON
signifies a “one,” while a lamp being OFF signifies a
“zero.” Generally, a switch is ON or indicates a “one”
when it is down, and is OFF or indicates a “zero”
when up.

In the discussion to follow, the paragraph numbers
relate to the groups of switches and indicators shown in
FIG. 24. FIG. 25 is a schematic diagram of the console
switches which are shown in an off position. The output
signals of these switches are buffered and shaped. The
labels for the switch signals being with an “S,” and after
being buffered and shaped the same signal notation is
used, but beginning with the letter “T” rather than “S.”

(1) Power.—This group consists of two switches and
one indicator located within a border (red) in the upper
right hand corner of the console.

(a) POWER ON Indicator (yellow). This lamp turns
on during the final step of the power-on sequence and
remains on as long as the system is energized. It turns
off during the first step of the power-off sequence.

(b) POWER ON/OFF Switch. The power-on sequence
will be initiated when this switch is turned on. Assuming
the system is already on, turning this switch off initiates
a normal power-off sequence. .

(c) EMERGENCY OFF Button (red). All power is
immediately removed from the system when the EMER-
GENCY OFF button is pressed.

(2) Machine and Program Status-—This group (see
FIGS. 24 and 25) consists of two rows of switches and
indicators located to the left of the power group. The
bottom row is enclosed in a border (red).

(a) I/O CHECK Indicator (yellow). This indicator
is turned on by general indicator signal PIG36-T.

(b) DIVIDE CHECK Indicator (yellow). This indi-
cator is turned on by general indicator signal PIG30-T.

(c) AC OVERFLOW Indicator (yellow). This indi-
cator is turned on by signal OACOF-T.

(d) TRANSFER TRAP MODE Indicator (yellow).
This indicator is turned on by general indicator PIG40-T.

(e) CHANNEL TRAP PERMIT Indicator (yellow).
This indicator is turned on by general indicator signal
PIG70-T.

(f) MULTIPLE TAG MODE Indicator (yellow).
This indicator is turned on by general indicator signal
PIG60-T.

(g) EXECUTE ENTRY Key. Pressing this key causes
information in the ENTRY KEYS to be loaded into one
of the index registers, the AC, MQ, IC, or SI (sense
indicator) registers, or into the main storage depending
on which of these switches in the “Register Selection for
Entry or Display” group is on. The EXECUTIVE EN-
TRY key may also be used to cause immediate execu-
tion of an instruction. Pressing this key generates the con-
sole interrupt signal TENTR. The above functions are
performed by a group of mini-instruction routines when
this interrupt is recognized by the scheduler.

(h) PROGRAM HALT Indicator (red). This lamp
turns on when the computer emulates a halt instruction.

3 544 969

71

(i) MANUAL OR ADDRESS STOP Indicator (red).
This indicator illuminates when the computer is placed
in manual mode or stops because an address stop con-
dition is encountered. (See “Address Stop Control”).

(i) INTERNAL CHECK Indicator (red). This lamp
turns on when a memory parity error has been detected.

(k) MAINT. ENABLE Indicator (red). This lamp
turns on when the Field Engincering Maintenance Panel
is enabled.

(1) CLEAR STORAGE Key. This key generates the
signal TCLR (console request}.

(3) Address Keys—These switches, located just below
center on the right side of the console are used in con-
junction with the “Register Selection For Entry or Dis-
play” switches and the EXECUTE ENTRY key to alter
and display memory. Under dynamic operating condi-
tions the address keys may be used by mini-instructions
such as the LAK and MEM POP codes.

(4) Controls Keys and Switches—This group of keys
and switches is located on the bottom row on the right
side of the console.

(a) START Key. When pressed this key generates the
signal TTART-T which starts the system clock (if the
clock is stopped), sets the scheduler program request
flip-flop if the Program Start Inhibit switch (maintenance
panel) is not on.

(b) AUTO/MANUAL Switch. In the manual posi-
tion this switch generates the signal TMAN-T which re-
sets the scheduler program request flip-flop, if the sched-
uler is in level 4.

(¢) RESET Key. This key generates the signal SPRES
(console request).

(d) LOAD CARD Key. This key generates the signal
TLDC (console request).

(e) LOAD TAPE A1l Key. This key generates the sig-
nal TLDT (console request).

(f) CARD EOF Key. When all the cards of a deck
have been read by the card reader, the operator must
press this key to indicate that no more cards are to be
loaded. A card EOF (end-of-file) is not generated auto-
matically after the last card is read.

(g) STORAGE CLOCK OFF Switch. When this
switch is up, the storage clock (interval timer) in mem-
ory location 5 will be updated by an emulator routine
every 1o of a second. When down (off) the storage
clock will not be updated. When off, this switch inhibits
the timing circuitry which generates the console inter-
rupt TKIT.

(5) Sense Lights and Switches—This group is en-
closed in a border (white) located on the bottom two
rows and to the left of the address keys.

(a) SENSE LIGHTS (yellow). The four sense lights
are turned on by the signals P1G52-T, PIG54-T, PIGS6-
T and PIGS0-T from the general indicators.

(b) SENSE SWITCHES. The six sense swilches may be
set by the operator and tested by a general test POP
code with a zero SOP code.

(6) Entry Keys—There are thirty-six entry keys
(switches) on the console which correspond to bit posi-
tions S, 1-35 of a register or a word in storage. De-
pressing a key sets a “one” in that position; leaving a key
normal (up) puts a “zero” in that position. These
switches generate the signals TEK00-TEK35.

(7) Display Indicators—The display indicators, lo-
cated immediately below the entry keys, consist of thirty-
eight lamps corresponding to bit positions, S, Q, P, 1-35
of a register or a word in storage. Information may be
displayed either dynamically or statically (Automatic
Mode or Manual Mode). These indicators are turned on
by the signals ODI00-ODI35. OPBIT-T, and OQBIT-T.

(8) Register Selection For Entry Or Display —This
group consists of thirteen switches and one key located
within a border (blue) to the left of the sense lights
and switches. The switches are used to select the partic-
ular register or memory location to be loaded with in-

[543

35

45

60

72

formation from the entry keys or displayed on the dis-
play indicators.

{a) XR1-XR7 Switches. When one of these switches is
down, the contents of the specified index register (FIG.
3e¢) may be displayed or altered by means of the entry
keys. Only bits 21 through 35 are meaningful.

(b) MAIN STORAGE Switch. When this switch is
down, the core location specified by the address in the
ADDRESS KEYS may be displayed or altered.

(c) AC, MQ, SI Switches. When one of these swiiches
is down the contents of the specified register (FIG. 3¢)
may be displayed or altered.

{d) IC Switch. When this switch is down, the contents
of instruction counter (IC) may be displayed or altered.
Only bits 21 through 35 are meaningful.

() CURRENT INSTRUCTION Switch. This switch
is used to execute an instruction from the ENTRY KEYS
or to display the current instruction being executed.
Hence the current instruction cannot be displayed in
manual mode unless executed from the console.

(f) EXECUTE DISPLAY Key. In the manual mode,
pressing this key will cause the contents of a register or
core storage location to be displayed (depending on which
of the above swiiches is on). The EXECUTE DISPLAY
key has no effect when the CURRENT INSTRUCTION
switch is on.

(9) Address Stop Control—This group of four switches
is used to cause the computer to stop when the core
memory location specified by the ADDRESS KEYS is
accessed. When the computer stops, the MANUAL OR
ADDRESS STOP indicator will illuminate. At least one
switch on the top row and one switch on the bottom
row must be on before any action will take place.

(1) To stop the computer when data is read from a cer-
tain memory location.

{a) Set desired memory address in ADDRESS KEYS.
(b) Turn on STOP ON READ CYCLE Switch.
(¢) Turn on STOP ON DATA Switch.

(2) To stop the computer when an instruction is executed
from a certain memory location.

(a) Set desired memory address in ADDRESS KEYS
(b) Turn on STOP ON READ CYCLE Switch.
(c) Turn on STOP ON INSTRUCTION Switch.

(3) To stop the computer when information is written
into a certain memory location.

(a) Set desired memory address in ADDRESS KEYS.
(b) Turn on STOP ON WRITE CYCLE Switch.
(c) Turn on STOP ON DATA Switch.

(4) To stop the computer when data is read from or
written into a certain memory location.

(a) Set desired memory address in ADDRESS KEYS.
(b) Turn on STOP ON READ CYCLE Switch.

(¢c) Turn on STOP ON WRITE CYCLE Switch.
(d) Turn on STOP ON DATA Switch.

(5) To stop the computer when data is read or an in-
struction is executed from a certain memory location.
(a) Set desired memory address in ADDRESS KEYS.
(b) Turn on STOP ON READ CYCLE Switch.

(¢) Turn on STOP ON DATA Switch.
(d) Turn on STOP ON INSTRUCTION switch.

(6) To stop the computer when a certain memory loca-
tion is accessed for any reason.

(a) Set desired memory address in ADDRESS KEYS.
(b) Turn on all four Address Stop Control Switches.

(10) Input/OQutput Channels—The group of indicators
and switches for the input/output chanmnels is located
within a border {green) at the upper left of the console.
There are two rows of identical switches and indicators,
the top row being for channel 1 and the bottom row for
channel 2.

(a) TAPE WORD INCOMPLETE Switch. When this
switch is on, the INTERNAL CHECK indicator will il-

3,544,969

73

luminate if the last word appearing on a magnetic tape
record is an incomplete binary word (that is, a word con-
taining less than six 6-bit characters).

(b) TAPE CHECK Indicator (yellow). This lamp
will be turned on by the signal PIG44-T (channel 1)
and PIG46-T (channel 2).

(c) EOT Indicator (yellow). When the end-of-tape
marker has been detected on the selected tape drive on
channel 1, a secondary indicator will be set which gen-
erates the signal OEOTA-T which turns on the lamp.
When a similar situation occurs on channel 2, a second-
ary indicator will be set which generates OEQOTB-T
which turns on the channel 2 EOT lamp.

(d) BOT Indicator (yellow). When the beginning-of-
tape marker has been detected on the selected tape drive
on channel 1, a secondary indicator will be set which
generates the signal OBOTA-T which turns on the lamp.
When a similar situation occurs on channel 2, a secondary
indicator generates OBOTB-T which turns on the chan-
nel 2 BOT lamp.

(e) EOF Indicator (yellow). This indicator is turned
on by the signal PIG06-T (channel 1) and PIG14-T
(channel 2).

(f) CHANNEL SELECTED Indicator (yellow). This
lamp is turned on by the secondary indicator signal
OIOPA-T (channel 1) and OIOPB-T (channel 2).

(g) RD/WR SELECT Indicator (yellow). This indica-
tor is turned on by the secondary indicator signal
ODSPA-T (channel 1) and ODSPB-T f(channe!l 2).

(h) COMMAND TRAP ENABLE Indicator (yellow).
This lamp is turned on by the general indicator signal
PIG34-T (channel 1) and PIG24-T (channel 2).

(i) TAPE CHECK TRAP ENABLE Indicator (yel-
low). This lamp is turned on by the general indicator
signal PIG32-T (channetl 1) and PIG22-T (channel 2).

(i) TAPE NOT READY Indicator (red). When illu-
minated, this lamp indicates the selected tape drive is not
ready (tape not loaded, loss of vacuum, in local mode of
operation, etc.). It is turned on by channel hardware
(channel control).

(k) NO WRITE RING Indicator (red). This lamp
illuminates when a write tape operation is attempted and
the selected tape drive has its write ring removed. It is
turned on by channel control.

(1) TAPE MULTI-SELECTED INDICATOR (red).
This lamp illuminates if more than one tape drive is on-
line and set to the same address. It is turned on by chan-
nel control.

(m) TAPE UNIT REQUESTED 1Indicators (yellow).
This group of four lamps indicates the binary address of
the tape unit selected. These lamps remain on after the
tape operation is completed and are not changed until a
different tape unit on the same channel is selected. They
are turned on by channel control.

(n) CR NOT READY Indicator (red). This lamp illu-
minates when the card reader is not ready (no cards in
the input hopper, card failing to register, etc.). It is turned
by channel control.

(0) TYPEWR NOT READY Indicator (red). This
lamp illuminates when the typewriter is not ready (power
oft, etc.). It is turned on by channel control.

It is desired to emulate the operator’s environment as
well as the specific arithmetic, logic, etc., functions of
the machine being emulated. As is known, the environ-
ment includes displaying certain registers, memory loca-
tions, and so forth in a dynamic fashion (i.e., while the
machine is executing a program) or in a static fashion
(i.e., wherein a program to be emulated is loaded but not
being executed). In the latter case, the operator may de-
sire to observe information about the program, such as
the contents of registers, memory locations, flags, and so
forth, which may have been set as a result of some prior
execution of the program. This is principally for debug-
ging purposes. Additionally, certain switches which per-

10

20

30

s
el

60

70

74

form various start-up procedures and which may control
various options in a program which is being emulated are
provided to select certain registers to be displayed at any
particular time. Other switches may perform certain hard-
ware functions, such as clear storage, or resetting of cer-
tain registers or indicators. In order to emulate this envi-
ronment in a flexible and changeable manner, the various
indicators and switches are not directly connected to the
hardware components involved. Instead, they are con-
nected to indicator registers or flip-flops which may be
tested, set and reset by mini-instructions. The function to
be performed, which is normally performed by a direct
conncction to hardware in present-day computers, is per-
formed by an emulator program. The apparent function
of a switch or indicator as far as the operator is con-
cerned is identical to that of the machine being emulated.
However, the assigned function of a particular switch or
indicator may be changed when emulating a different
computer by simply changing the emulator routine which
test, sets and resets the switches and indicators. Certain
switches on the console, namely the clear, reset, load
card, load tape, enter and display switches causes a
signal ISCRQ to be gencrated when any one of these
switches is operated. This signal ISCRQ is sent to the
scheduler and denotes a console request. When the sched-
uler determines that this request is of the highest priority
available, it will start the wired-in-sequence with control
ultimately being passed to an emulator routine to service
the console request. Reference should be made to the
previous discussion of the wired-in-sequence, state YB.
In state YBO, the mini-address of the entry word for a
console request is generated. At state YBS the RB regis-
ter contains the mini-address of the first mini-instruction
to be executed. This mini-instruction will be the first
instruction of the console request servicing routine. A test
is made to determine if any indicators are on, and if so a
transfer is made to a console routine which is followed
by another instruction which directs the console inter-
rupts to be loaded into the PB register. Bits represent-
ing which switches are on are then examined to detect a
particular switch, and then a branch is made to a routine
to emulate the function of this switch. For example, a
key on the console may be labelled “clear,” and the func-
tion of this switch may be to zero the contents of all core
storage locations and arithmetic and working registers
of the computer being emulated. The emulator routine
to perform this operation will include several instructions
which first generate a zero and then store the zero in
these memory locations and registers, Then, an exit will
be generated which returns control to the scheduler.
When emulating the environment of a different computer
it may be desired to assign a different function to the
clear swtich. This is easily accomplished by simply chang-
ing the routine which caused zeros to be stored in the
memory locations and registers, and substitute therefore
appropriate mini-instructions which perform the newly
assigned function of this switch,

The logical construction of the main buss 50 is illus-
trated in greater detail in FIGS. 26a and 26b. Although
the buss is constructed of conevntional logical circuitry,
further details of the buss are illustrated to ensure that
the operation thereof, particularly the half-exchange fea-
ture, is abundantly clear. The buss control decode circuit
receives signals LMBCO-3 which are decoded to pro-
vide control signals (identified on the vertical lines 01-17
in FIG. 26a) to gate the appropriate information from
the input lines (horizontal inputs) to output lines
PMBOO0-18. FIG. 264 illustrates in detail the gating logic
for the first bits (60 and 18) of the various input signals.
Similar logic is provided for the remaining signals (01-17
and 19-23) as illustrated in FIG. 26b. The lines LMBC,
as will be apparent, control the half-exchange operation.
Note FIG. 26a wherein a first bit (e.g., MBI00) may be
gated as PMBO# if signal LMBC is false, or gated as
PMBI18 if signal LMBC is true. The chart below lists

3,544,969

75
the control lines (line 00 is not shown in FIG. 26),
input signal lines and corresponding output signal lines
(without half-exchange).

76

control memory means for storing emulator routines
including mini-instructions,
sequence means responsive to said scheduler means for

MAIN BUSS INPUTS

10 1

00 03 02 03 04 05 o7 12 15 17

Mini- Muin

Mem- Muain Broad- Diudex Mini- ‘Trans- eng. Address Enlry buss
Zeros ory Clg. cust reg oug. lator offset Inlerrupt Chunnel Keoeys Keys outpuls
MBIOU PR RBROO i INTO0 NCHe TEK0) PMBOO
CMBICL PBOL RBROL Co INTO1 HOL0L TEK0L PMBiL
CUMBIE PROU RBROZ L IN'T02 KOH02 TEKO2 PMB2
CMBIO3 PR3 RBROB L INTH3 131 H03 TEK03 PMB03
MBI DR RBBROY e INTN4 11CHO4 TEK0M PIMB04
CMBIOS PROS RBROS - INTO05 TICHS TEK05 PMBO05
CMBING PEOS RBROS o INTO6 HCI106 TEK06 PMBO0G
CMBINT PEOT RBROT oo i INTY7 HCHO7 TREKo7 PMBO7
COMBIOS PESS RBROB L e INTO8 HOTI08 TEK08 IMB08
MBI PE0W RBROY e INTOY 11109 TEK0S PMBO09
MBI10 PEH RBRIO ..o INTI0 neuyuw TEXK1) PMBI10
CMBIIL PEIL RBRIL Lo INTIL HCIHL TEK1lL PMBIl
MBIIZ PE12 RBRI2 L INTI2 110412 TEK!2 PMBI2
MBII3 PEW3 RBRI3 i INTI13 HCHI3 TEK13 PMBi3
MBIl4 PEM IBRIS INT14 HC1il14 TEK14 PMBl4
MBIIS PEI5 RBRIS o e INTI5 HCHIS TEK15 PMBI5
MBIIG PEW RBRIS e INT18 HCHI16 TEKI1t PMBI18
MBIIT PE17 RBRIT Lo imimmiace e INTI17 IICI17 TEK1T PMBI7
___________ MBII8 PEIS RBRIS __ RE18] HCHIB . TEK18 PMBI18
_MBIl9 DI’E19 RBRI1Y . RE1Y RTRI1Y ______._ HCH TEK19 PMBI19
eeee.-. MBI20 PE20 RIBR20 RE20 RTE BCH20 .. TEK20 PMB20
___________ MBI2L PE21 HBR21 { RTR Hneiu TAK2 TEK?2l PMB21
___________ MBI22 PE22 RBRI2 2 RTR HCH22 TAK22 TEK22 PMB22
... MBI23 PE2 RBR23 { B RT HCH23 TAK23 TEK23 PMB23
_MBI24 PE24 R8R24 PXR2 RT HCiI24 TAK24 TEK24 PMB24
_MBI25 PE25 RBR25 PXRZ RTR25 ___ HCII2S TAK25 TEK25 PMB2S
_MBI26 PE26 RBR2 L R26 RTR26 RI HCH26 TAK2 TEK26 PMBI6
T MBI27 PE27 RBR2r PXR27 RE02 RTR27 REO HOH27 TAK27 TEK27 PMBTY
MBI PE2® RIBK2$ PXR28 RE03 RTR2 REG HC1I28 TAK2S TEK28 TIMB28
_ MBIzY PE29 RBR» PXR2 REM RTR2 RE0G HCH2Y TAK29 TEK2 PMB2Y
T MBISU PE30 RBR30 PXRs0 RE0S RTR30 RE04 1LCH 3 TAXK30 TEK30 PMB30
TMBIS1I PE3L RBR3L PXR31 RB0 RTR31 RE0S IO TAK31 TEK31 PMB31
T MBI PEs2 RBR32z IPXR3z RE0T WTR3IZ REW HC32 TAKZ2 TEK32 PMB32
MBI33 PE33 RBR33 IPXR33 REM KTR33 RE HCIL3s TAK33 TEK33 PMB33
T MBI34 PE#4 RBR34 PXR34 RE0W RTR34 RE0S INT34 HC1834 TAK4 TEK34¢ PMB34
___________ MB35 PE35 RBR35 PXKis RE{0 RTR3 REW INT3S HC1185 TAK35 TEK35 PMB35

The present embodiment of this invention is to be con-
sidered in all respects as illustrative and not restrictive,
the scope of the invention being indicated by the appended
claims rather than by the foregoing description and all
changes which come within the meaning and range of
equivalency of the claims therefore are intended to be
embraced therein.
What is claimed is:
1. A digital data processor including an outer and inner
computer for emulating the operation of another com-
puter system by emulating a group of multiple machine
instructions thereof through use of a single emulator
routine comprising
main memory means in the outer computer for storing
said group of multiple machine instructions, said
instructions having predetermined common char-
acteristics and at least one uncommon characteristic,

means for controlling the fetch of said instructions from
said main memory means and for generating signals
indicative of the uncommon characteristics of said
instructions,

translator means and control storage elements, said

translator means receiving said signals and causing
said signals 1o be stored in a predetermined combina-
tion of one or more of said control storage elements,
and

control memory means in the inner computer for stor-

ing said emulator routine, and

means for controlling predetermined operations of said

processor as a function of the information stored
in said control storage elements in combination with
operations directed by said emulator routine.

2. A digital data processor for emulating the operation
of a computer system through the use of the instruction
repertoire thereof, said data processor having a main
memory, arithmetic unit, storage registers, console, and
input/output devices, and including an inner computer
comprising

scheduler means for receiving requests from said input/

output devices and said console and for generating
control signals to commence a starting sequence,

40

G5

r

=T
1

[

sequencing through states of operation to fetch mini-
instructions from said control memory means,

subroutine control means responsive to a predetermined
mini-instruction in a first emulator routine, and

means responsive to said subroutine means and a con-
dition of a mini-instruction in said first emulator
routine for causing another emulator routine to be
fetched and performed, at the end of which said
scheduler means initiates control signals to said se-
quence means which in turn causes continued execu-
tion of said first emulator routine.

3. In a digital data processor having an outer and inner
computer for emulating the operation of computer sys-
tems, means for emulating the operational environment
thereof comprising

console and display means in said outer computer in-

cluding switch means which may be positioned by
an operator for controlling operations of said proces-
sor and including indicia means for indicating to an
operator operational conditions of functional units
of said processor,

first register means coupled with said switch means and

indicia means for respectively receiving signals there-
from and supplying signals thereto,

second register means coupled with operational units

of said processor for storing the existence of opera-
tional conditions of said functional units, and
control memory means in said inner computer for stor-
ing an emulator program of the inner computer for
controlling the inneraction between said first and
second register means and for causing setting of
the operational function of said switch means and
said indicia means to simulate switches and indi-
cators of the computer system being emulated.

4. A digital data processor for emulating the operation
of conventional computer systems through the use of the
instruction repertoire thereof, said data processor includ-
ing an outer computer and an inner computer comprising

said outer computer including main storage means for

storing instructions of another computer and for
communicating with said inner computer,

3,544,969

77

said outer computer including input/output means for
receiving and supplying data from and to said inner
computer, .

console means for enabling control of said data proces-
sor and for displaying information therein and opera-

78

one system, and performing the indicated operations,
and

repeating the foregoing steps for another computer sys-
tem for emulating the operation thereof through the
use of the instruction repertoire therzof and another

=
tional states thereof, 2 emulator routine.
said inner computer means including control means, 7. A digital data processor for emulating the opera-
engine means, control memory means and register tion of a computer system by means of emulator routines
means, which interpret the instruction repertoire of said sys-
said inner computer including control memory means 10 tem, comprising
for storing emulator routines which are utilized by outer computer means for performing operations sim-
said inner computer in performing operations as di- ilar to those of said computer system, said outer
rected by said insiruction repertoire of another computer means including data input/output means
computer, and main memory means communicating therewith,
said inner computer including control means compris- 15 said main memory means having stored therein in-
ing a scheduler for receiving requests from said in- structions from said instruction repertoire including
put/output means, and said console means and main a sequence of subject instructions, said outer com-
memory means, and comprising sequence means to puter means including a processor,
which operational control is passed by said sched- inner computer means communicating with said outer
uler for automatically performing operations of said 9g computer means,
inner computer in fetching an instruction to be emu- said inner computer means including control memory
lated from said main storage means and directing means having stored therein emulator routines for
emulator operations to be performed by an emulator interpreting said subject instructions main memory
routine stored in said control memory means, means, the data input/output means, main memory
said inner computer including engine means for deter- 23 means and processor of said outer computer means
mining addresses of emulator instructions in said being coupled with and controlled by said inner com-
emulator routine and for performing arithmetic, logic puter means as a function of said emulator routines,
and shift operations, and and
said inner computer including register means for re- said inner computer means having sequence means for
ceiving said addresses of emulator instructions in 30 fetching said subject instructions from said main
said emulator routine and for supplying signals to memory means and performing indexing and ad-
cause operations required by said emulator instruc- dressing operations thereon, and having means for
tions, deceding said subject instructions and addressing said
5. A digital data processor including an outer and inner control memory means to commence an emulator
computer for emulating the operation of conventional 35 routine for directing said inner computer means
compuier systems through the use of the instruction rep- through a series of steps 10 exccute the subject instruc-
ertoire thereof, tions,
main memory means in said outer computer for stor- 8. A digital data processor for emulating the operation
ing said instruction repertoire, of a computer system by means of emulator routines
control memory means in said inner computer for stor- 40 which interpret subject instructions of an instruction
ing an emulator routine, repertoire of said system, comprising
sequencer means in said inner computer for fetching outer computer means for performing operations like
an instruction to be emulated from said main mem- those of the computer system being emulated, said
ory means and generating an address of an instruction outer computer means including intercommunicat-
in said control memory means, 45 ing main memory means, storage registers, input/
register and gate means for storing said instruction from output means, and an arithmetic unit, said main
said control memory means and for generating groups memory means functioning to receive an instruc-
of data representative of a portion of said instruction, tion repertoire for said system,
and inner computer means communicating with said outer
engine means having register means for receiving said 50 computer means,
groups of data from said register and gate means, said inner computer means including control memory
said engine means including zone means for prevent- means for receiving and storing emulator routines for
ing selected portions of said data from entering said interpreting said subject instructions from an instruc-
register means thereof. . tion repertoire stored in said main memory means,
6. A method of emulating the operation of a plurality 55 said inner computer means including scheduler means
of computer systems through the use of an outer and for servicing requests from said input/output means,
inner computer and the respective instruction repertoires said inner computer means including hardwired se-
of said systems, comprising the steps of quence means for automatically performing prede-
sioring in a main memory of an outer computer in- termined subroutines and sequences upon command
structions of an instruction repertoire including a se- 60 by said scheduler means,
ries of subject instructions of one computer system, said inner computer means including translator means
storing in a control memory of an inner computer an for decoding subject instructions and for determin-
emulator routine comprising a plurality of mini-in- ing the starting address of emulator routines neces-
structions for interpreting the subject instructions of __ sary to complete the emulation of said subject in-
said one system to enable emulation of said one sys- 65 structions, and
tem, and storing in said control memory an entry mini-register means for receiving instructions from
table defining addresses of said mini-instructions, said emulator routine and providing contro] signals
sequentially examining subject instructions, checking for operation of said processor.
operation codes thereof for generating respective ad- 70 9 A data processor as in claim 8§ including
dresses pointing to respective words in said entry console means coupled with said inner and outer com-
table, and selecting predetermined mini-instructions puter means,
from said emulator routine in said control memory said inner computer means including display register
at respective addresses defined by said words to de- means for controlling the function of displays and

termine operations to be performed in emulating said 75 controls of said console means, said display regis-

3,544,969

79
ter means communicating with said mini-register
means for storing in said display register means in-
formation selected by said emulator routines.

10. A data processor as in claim 8 wherein

said control memory means is a read/write memory

for allowing new emulator routines to be stored
therein for interpreting instructions from the instruc-
tion repertoire of other computer systems.

11. A data processor as in claim 8 wherein

said translator means includes storage element means

which are settable to store predetermined informa-
tion about code characteristics of subject instruc-
tions.

12. A digital data processor for emulating the opera-
tion of a computer system by means of emulator rou-
tines which interpret the imstruction repertoire of said
system, comprising

outer computer means for performing operations like

those of the computer system being emulated, said
outer computer means including an intercommuni-
cating main memory means, storage registers, in-
put/output means and an arithmetic wnit, said main
memory means functioning to receive an instruc-
tion repertoire, including a series of subject instruc-
tions, for said system supplied by said input/output
means said storage registers having assignable func-
tions to duplicate those available in the computer
system being emulated,

console means for controlling the operation of said data

processor, said console means having indicators and
control switches,

inner computer means communicating with said outer

computer means and said console means,
said inner computer means including control memory
means for storing (a) emulator routines including
mini-instructions for emulating the instruction reper-
toire of said system and for controlling the opera-
tion of said input/output means, and (b) an entry
table which defines emulator routine addresses for
performing said subject instructions,
said inner computer means including scheduler means
which responds to requests of said input/output
means, said console and mini-instructions,

sequencing means including plural hardwired logic
means for performing subroutines each having steps
of operation, one subroutine having steps for con-
trolling access of said main memory means and
said control memory means and another subroutine
having steps for saving and restoring the contents of
registers in said data processor, said sequence means
and said scheduler intercommunicating to cause said
scheduler means to pass operational control to pre-
determined steps of said subroutines of said se-
quence means to thereby cause said sequence means
to sequence automatically through predetermined
steps of a subroutine,

said inner computer means including translator means

for receiving subject instructions from said main
memory means and decoding said subject instruc-
tions and addressing a word in said entry table in
said control memory means, said word addressed
in said entry table establishing the sequence of op-
eration of said sequence means and providing a
starting address in said control memory means of
an emulator routine necessary to complete the emula-
tion of said subject instruction, and

mini-register means for receiving mini-instructions

from said control memory means and decoding such
mini-instructions and providing control signals for
directing the operation of said data processor.

13. A data processor as in claim 12 wherein

said entry table of said control memory means de-

fines both emulator routine addresses and the se-

[

10

20

40

GO

65

80

quences and steps of said sequences to be performed
by said sequence means for said subject instructions.

14. A data processor as in claim 13 wherein

said sequence means includes a plurality of storage
elements, said storage elements being settable in pre-
determined combinations to select the steps of said
subroutines of said sequence means to be performed
in the emulation of a subject instruction.

15. A data processor as in claim 12 wherein

said translator means includes a plurality of storage
elements which are settable in response to certain
predetermined characteristics of subject instructions,
said storage elements being sensable to enable the
emulation of subject instructions of a predetermined
group of subject instructions without requiring emu-
lation of each such subject instruction of said group.

16. A data processor as in claim 12 including

mini-engine means for performing emulator routine se~
quence and shift counting.

17. A data processor as in claim 12 including

indicator and display register means coupled between
said inner computer means and said console means
for storing states of operation of said sequence means
and status of emulator routines, said indicator and
display register means being settable and resettable
by mini-instructions of an emulator routine for en-
abling an emulator routine to control the function of
the indicators and control switches of said console
means.

18. A method of emulating the operation of a com-

puter system through the use of an outer and inner com-

puter, and the environment of the computer system by

simulating the console thereof with a console of the outer
computer, by interpreting an instruction repertoire for
the computer system, comprising the steps of
storing instructions of an instruction repertoire of a
computer system in a main memory of an outer
computer,
storing an emulator routine in a control memory of an
inner computer, and performing indexing and ad-
dressing operations thereon,
decoding respective instructions and initiating an emu-
lator routine in said control memory,
executing instructions within said emulator routine for
performing operations indicated by instructions
fetched from said main memory, and
controlling the function of console indicators and con-
trol switches of the outer computer to simulate the
console functions of said computer system.
19. A method of emulating the operation of a com-

puter system through the operations of a data processor
including an outer and inner computer by interpreting an
instruction repertoire for the computer system through
the use of an emulator routine, comprising the steps of

(a) storing instructions of said instruction repertoire of
a computer system in a main memory of an outer
computer, said instruction repertoire including sub-
ject instructions,

(b) storing an emulator routine in a control memory of
an inner computer, said emulator routine having
mini-instructions, and storing an entry table in said
control memory defining addresses of said mini-in-
structions in said emulator routine,

(c) receiving and honoring by said inner computer a
request from a functional station of the outer com-
puter of said processor,

(d) fetching subject instructions from said main mem-
ory,

(e) sensing an operation code of each subject instruc-
tion and generating an address pointing to a word in
said entry table, each such word addressing a mini-
instruction and defining a starting address for com-
pleting a subject instruction interpretation,

(f) executing a plurality of said mini-instructions in
said inner computer, and

3,544,969

81

(8) honoring another request for operation and repeat-
ing steps (d) through (f) until a predetermined num-
ber of subject instructions have been interpreted.

20. A method as in claim 19 wherein

at least one mini-instruction defined by said word from
said entry table is a subroutine instruction, and mini-
instructions preceding said subroutine instruction are
executed according to step (f) until said subroutine
instruction is reached, then the mini-instructions of
another emulation routine are executed, followed by
execution of the remaining mini-instructions in said
emulator routine having said subroutine instruction.

21. A method as in claim 19 wherein

said step (e) of sensing an operation code includes
sensing of uncommon portions of a group of plural
subject instructions which are otherwise common to
allow such group of subject instructions to be emu-

82

lated without determining all the characteristics of
the instructions in said group of instructions.

References Cited
5 UNITED STATES PATENTS

3,400,371 9/1968
3,374,466 3/1968
3,315,235 4/1967
3,364,473 1/1968
3,346,851 10/1967
3,325,788 6/1967
3,323,110 5/1967
Re26,171 3/1967

10

15 GARETH D. SHAW

Amdahl __________ 340—172.5
Hanf et al. ._______ 340—172.5
Carnevale et al. ___ 340—172.5
Reitz et al. ________ 340—172.5
Thornton et al. .___ 340—172.5
Hackl .. ______ 340-—172.5
Oliari et al. _______ 340—172.5
Falkoff ___.________ 340—172.5

, Primary Examiner

