THOR-a display based time sharing

system*

by JOHN McCARTHY, DOW BRIAN,
GARY FELDMAN and JOHN ALLEN
Stanford University
Stanford, California

INTRODUCTION

THOR is a time sharing system for the PDP-1 com-
puter with the capacity to run twenty user programs.
The system has twenty-eight user consoles, twelve
of which are combination keyboard and cathode ray
tube display consoles. THOR is designed to capital-
ize on the display’s ability to present large quantities
of information quickly and to mitigate the fact that
hard copy is not available at display consoles. The
other sixteen consoles are Model 33 teletypes with
the attendant slow presentation of information and
the availability of hard copy.* Because there are
more consoles than user programs available, a user
program may use more than one console.

THOR was designed to serve a number of purposes:

1. To control the computer-based teaching labora-
tory. In this application the displays and several
other devices including six film chip projectors, a
system for presenting audio messages, and teletypes
located in schools, are used as teaching consoles.
The teaching applications are run as standard time-
sharing activities. This has proved quite important
to ordinary users and to the teaching laboratory per-
sonnel since they require very large amounts of
console time for debugging new programs and editing
text material.

2. Text editing. Facilities are provided for keeping
texts on disk files, creating new files and editing old
ones. The texts may represent programs in a variety
of languages, teaching material, or any other informa-
tion organized in pages of lines of characters. Most
of the console usage is spent in text editing. The
display based text editor has proved itself more con-

*Stephen Russell, Brian Tolliver, David Poole, and Paul Stygar
also contributed to the work and the paper.

**Display consoles have provedso superior to teletypes that the
latter have been retained only as input/output devices in the
latest version of the system.

623

venient and faster than other systems. The lack of
immediate hard copy has not proven a serious dis-
advantage. (Hard copy, when desired, may be ob-
tained by teletype or line printer.)

3. General purpose programming for a small
computer. A variety of systems are available in-
cluding assembly language, an algebraic compiler,
an interpreter, a variant of LISP 1.5, and a system
for manipulating and displaying functions represented
by graphs.

4. To provide time shared access to the 1BM
7090 from the display consoles. This has been avail-
able to a limited extent at various times. Unfortunate-
ly, the 7090 batch processing system has required
repeated modifications to give new facilities so the
time sharing work has suffered.

The following are the main results of the project:

1. Displays provide a significant improvement
over teletypes as time shared consoles. Users de-
cisively prefer them. The large (114) character set
and seven character sizes proved valuable.

2. Powerful interactive systems for text editing,
on-line debugging and system control have been
developed. A flexible system of instructions has
been developed which allows the user to design his
own interactive systems.

3.1t has proved practical to combine a general
purpose time-sharing activity with the teaching ma-
chine project, a major special use that requires high
reliability. '

4. Insight has been gained in understanding the
nature of tradeoffs in a time sharing system between
efficiency, core space, generality, and flexibility.

Details of these matters are given in the following
sections.

Hardware
The computer in this system is a Digital Equip-

624 Spring Joint Computer Conf., 1967

ment Corporation PDP-1, a single-address, 18-bit
binary machine.* The central processor has 32 in-
structions and can address 2'2 words directly and 21®
words indirectly. It has a well developed interrupt
system with 16 separate interrupt channels organized
in a priority scheme to prevent a iower channel
from interrupting a higher priority channel. The input/
output connections are easy to modify and inex-
pensive to extend. This machine lacks an index
register and floating point instructions.

There is a restricted mode of operation normally
imposed by the system on user programs. In this
mode, all attempts by a user program to reference
outside of an assigned core area, do input/output, or
stop the machine cause interrupts. This lets the sys-
tem confine the user program space and interpret

g 3mamertfoavataneat -
1iiS ifpuy ouiplt commands.

The core memory is attached-tc two separate con-
trols. The selection of control is made ‘on the high
order bit of the address. Each control has connections
for four independent devices: the drum, the disk data
channel, the display data channel, and the central
processor, in descending priority. When idle, each
memory control gives its next memory cycle to the
highest priority device requesting a cycle from that
control. Thus, two of the devices in the system may be
getting data from memory at full memory speed
simultaneously. For example, the drum may be
swapping users from the higher memory while the
central processor and the display processor share the
lower memory uninterrupted.

Basic to the time sharing system is a very high speed
drum whose basic operation is a swap.t In this opera-
tion the contents of 2!2 locations are transferred from
core to a drum track, and simultaneously the same
core locations are loaded from a different track. This
swap takes 33 milliseconds regardless of drum
position.

Twelve display consoles serve as the primary user
stations. These consoles are capable of displaying
114 different alphanumeri¢ characters, as well as
arbitrary line segments (called vectors) and random-
ly positioned points.

The characters are generated automatically by the
display controlled from six-bit binary codes; char-
acters may be displayed in any of seven program
selectable sizes. The time required to generate and
display one character is only five microseconds.

Aorrmadic ~ ~Ee PO

Linc scgmients, o vectors, require five to fifteen
microseconds to display. Both characters and vectors

*The basic design of this computer was done by the late Benjamin
Gurley.

1The idea of the swapping drum for time-sharing is due te E.
Fredkin.

may be displayed at any of three intensities. A vector
is represented by an 18-bit computer word, which
specifies the horizontal and vertical components of
that vector. The origin of the vector is ordinarily
taken to be the end noint of the sreviously '“sp!ayed

en to be the end point of the pr usly di
vector. Thus a displayed figure consisting of many
line segments may be moved to a different position
on the screen by changing only the origin of the first
vector in the figure. This ability has proved very
useful for programs displaying moving pointers.

The display consoles are all driven and controlled
by a single central logic unit. This greatly reduces
the total cost of the system, as each console unit
can be comparatively simpie in design. The informa-
tion to be displayed on a given console is organized
by the program into a table in computer memory.
The information in this table will consist of a mixture
of control words, six-bit codes specifying characters,
and words describing vectors. Approximately once
every 30 milliseconds the monitor program starts a
data channel which transmits the contents of all the
display tables to the display controller, one word at
a time. The central logic unit, guided by the control
words, displays the information in each table on the
proper console. Because the display information is
stored in computer memory, small parts of the dis-
play can be modified quickly and simply, utilizing
the instructions of the main computer. This ability
is especially useful in text editing and in other pro-
grams requiring rapid visual interaction.

Each display is the size of a small refrigerator with
a 16-inch cathode ray tube, and a keyboard mounted
at desk height. (See Figure 1 “A Display Console™.)
The keyboard has 64 keys, with the numbers and let-
ters in a standard typewriter arrangement, with the
additional keys at the right side. In addition, there

LAl iimaiv 3108,

are two control buttons to augment the character

Figure 1 - A display console

THOR 625

code. The keyboards on the displays are logically
separated from the rest of the display system, and
have a separate interface to the central processor.

When a key is struck an interrupt is sent to the
computer and the keyboard locks until the computer
reads the keyboard scanner. The computer interrupt
program reads the console number, the 6-bit code
corresponding to the key, and two bits representing
the state of the two control buttons.

Other input/output devices include sixteen tele-
types, a data channel to an IBM 7090, an IBM 1301
disk file of 50 X 10° characters, shared with the IBM
7090, and an analog to digital converter. The teach-
ing laboratory consists of six installations each con-
taining a display console, an experimental IBM film-
chip projector, and a Westinghouse audio station.
The film-chip projector contains 256 microfilm frames
which may be projected one or two at a time on an
10" X 13" screen. There are eight masks underneath
the screen which may mask off parts of the image.
The projectors can detect a light pen, a feature

which allows user interaction.
The audio system is a Westinghouse Prodac-50

computer which controls twelve random access
audio tape drives, each of which has 1024 two sec-
ond messages.

Both the film-chip projector and audio units have
maximum access times of two seconds or less.

System configuration

The user is a person who is running a computer
program within the THOR time sharing environ-
ment. He has a charge number assigned to him
which determine his identity for THOR. This num-
ber identifies his disk files on a permanent basis;
and, when he is using the system, it identifies his
console, his individual drum track for storing binary
computer- programs, and whatever other facilities he
may be using at any given time. While the user is
logged into the system, he owns at least one console
and one drum track. The console consists of a key-
board which allows the user to type information to
his user programs and to THOR, and an output de-
vice, either CRT display or teletype printer. This
output device provides a slate for the user programs
and THOR to communicate with the user. When the
program is actually being run by THOR it is swapped
into PDP-1 core from the user’s drum track.

The ordinary user program may occupy 4K of
core; however one may request up to 8K additional
core. Up to twenty programs may be run by a regular
process of bringing a program into core from the drum,
allowing it to execute for a short time, marking the
state in which its execution is stopped, returning it
to the drum and picking up the next user program.

User programs are serviced regularly in this fashion
on a round robin basis. After a user program has been
executed, it is placed last in the queue of user pro-
grams waiting to run. Each program in turn is al-
lowed to run for one quantum of time, 64 milliseconds,
and then exchanged for the next program. If only one
program is in a condition to run it is allowed to run
without interruption. The amount of time that the
system takes to exchange programs is 33 milliseconds.
This swap time is the major source of overhead.
However, the swapping time is used to handle sys-
tem functions and 1-O buffering, so it is not entirely
wasted.

There are two ways a user can place a binary user
program on his drum track. He may prepare an octal
program at a console using any of the debugging pro-
gram such as RAID or the system’s octal debugging
feature, or he may load a binary image of a program
from a previously prepared disk file. Binary files pre-
pared by the assembler and compiler are in the proper
format for loading onto a drum track. In addition the
system provides a means of saving binary core images
from a drum track onto a disk file.

FILES o

The main storage device for the system is the
IBM 1301 disk. The disk is divided into logical areas
called reserved files. Each file is referenced through
a unique number and a programmer assigned name.
Facilities are provided for creating new files, extend-
ing, contacting and destroying old files. The disk file
may contain textual information, binary core images,
or scratch data in any format. The user may protect
his file against unauthorized access.

The system maintains three “internal file numbers”
for each user. The user may associate a reserved
file with each internal file number. All disk com-
mands then operate in terms of the internal numbers,
rather than in terms of the actual name and number
of the file. Through this device a user may attach
one of his files to an internal file number, then load
utility or other programs which operate on his file
without having to explicitly open the file for each
utility.

With moderate system activity, ten to twelve users,
one can expect references to disk file to take no more
than 250 milliseconds.

Dsiplays under THOR

We wished to make the display consoles as easy
to use as a teletype and yet allow the user access to
the full generality of the displays. To this end two
display buffers are associated with each of the CRT
consoles. One is called the “‘page printer” buffer and
the other is called the “free” buffer. Only one of the

626 Spring Joint Computer Conf., 1967

two buffers may be in core at a time; the other is
stored on the drum. The user program can control
the visibility of these buffers by either executing an
instruction which explicitly calls one of the display
buffers, or by executing an instruction that implicitly
calls a particular buffer.

The “page printer” is used to output characters on
the displays in a standard format. When the “‘page
printer” is being used, characters placed in the out-
put buffer of a particular console are displayed under
automatic control of the system. As new lines of text
are added at the bottom of the display, old lines disap-
pear off the top. A carriage return is automatically
inserted whenever a line exceeds the width of the
screen, and an * appears at the beginning of the line’s
continuation. The character, backspace, erases the
last character displayed and moves the display pointer
back one space. All system messages to the user ap-
pear on the page printer. In addition many user pro-
grams elect to use this form of output.

Figure 2 — Display of speech segment
This display was made with vectors deposited in the user’s
“free” display buffer
The ““free” buffer is used for any displays which

are more elaborate than the simple page printer.
The uvser is allowed to write display information in
the basic language of the display hardware. An ex-
ample is found in Figure 2 “Display of a Speech
Segment.” User programs may deposit characters
and vectors directly into the “free” buffer. Both
the editor and the debugging program described be-
low use this facility.

When the display load is light, a user program
may access the buffers which are not in use. This
feature allows a program to display on more than
one console or to display extra information on a
single console. This occasionally proved necessary
for display of complex pictures made up of a large
number of vectors.

Considering that not every program can make use of
the extra core of extra display buffers, on the average
tess than half the machine is available to each user
program. We felt that the wide variety of services
that the system supplies and low overhead times
possible with fast but voluminous system code are
more valuable to the time-sharing user than a little
extra space. In particular we felt it vital to keep the
time the user waits for response from either his
system or his program as low as possible. Wholly
new ways of programming arise when response is
instantaneous rather than even a few seconds delayed.

In-core section

The in-core section of the THOR system provides
services which may be divided into three broad
categories:

1. I-O channel routines

2. Scheduling and activation

3. Communication

The I-O channel routines act as the face of THOR
turned toward the input/output devices. On an in-
terrupt-priority basis channel routines receive in-
formation from all input devices, parcel that informa-
tion out to the appropriate buffers, and inform the
activation section when a user program must be acti-
vated to receive its information. Other channel
routines accept output from user programs, buffer
it, and send it to output devices whenever they are
able to receive it.

Activation is handled by a round-robin scheduling
algorithm with the exception that programs with disk
requests pending are run out of turn to optimize disk
usage. The task of the activation routine is to decide
whether to remove the current program from core and
if so to decide which program is to be run next. A
user program may be in one of the following states:

1. Running. The user program is in execution. It
continues execution until its quantum has expired
or until it issues an I-O request that cannot be satisfied
within the time remaining in its quantum.

2. Active. The user program is ready to run and will
be“swapped in when its turn comes. A program can
become active when:

a. an output buffer is almost empty (this assures

continuous output of information),

b. an input buffer is almost full (since it may take
some time before the user actually gets to run),
input requested by a user has arrived,

d. a user determined activation condition has been
satisfied (for example, a user program may
arrange to be dismissed until a given time ar-
rives),

e. or when the user commands the system to begin
execution of his program.

«

THOR 627

3. Waiting. In this state the program would be
active except that it is waiting for the completion of
some 1-O request or special condition.

4. Dormant. The program is not being entered into
the round robin. The user may be communicating
with the THOR system interpreter or may be dis-
missed for a variety of user determined reasons.

A program may be swapped out for several reasons.

1. The quantum has expired. The program moves
from the running state to the active state.

2.The program has requested the quantum be
terminated. The program moves from the running
state to the active state.

3. The program has filled an output buffer or has
requested input and the input buffer is empty; or
the program has requested a special dismissal con-
dition. The program moves from the running state
to the waiting state.

4. The program has tried the execute an illegal
instruction. The program moves from the running
state to the dormant state.

The in-core section provides mechanisms for com-
munication among the users, user programs, and the
in-core section. Communication is provided through
the input/output transfer instructions (called iot’s)
which are trapped by the system instructions.When
a program executes certain iot’s, the system picks up
locations in the user program as parameters to service
routines. These routines may simulate input/output
to the on-line device, control or release ownership
of devices, handle character communication, or return
information to the user program by filling registers
within the program. Through iot’s the user program
can make its wants known and the in-core section can
inform the user program of any variation in the time
sharing environment.

Next to services provided by the iot’s, character
transmission is the major medium of communication.
Characters are generated by users typing at key-
boards and by user programs sending characters
out. Characters go into input buffers to be read by
user programs or to output buffers to be printed on
scopes or teletype printers. A switchboard provides
the possibility for setting up any useful character
transmission path: any character source (keyboards
and programs) may send to any character sink (input
and output buffers). To insure that unwanted con-
nections are not made, facilities are provided so that
the user owning any sink may grant or deny permis-
sion for a connection into that sink.

This switchboard generality finds application in:

Duplexing — Characters typed at a keyboard can
be printed on any console, display or teletype, with-
out user program intervention.

Inter-program-communication — User programs can
communicate ‘with each other and with the system
interpreter. Thus, several user programs may run as
one system coordinating their separate tasks through
character communication.

Inter-console-communication— Users at consoles
can set up general links for conferences, teaching,
monitoring, or chatting.

Multiple-consoles —User programs may receive
characters from and send characters to more than
one console. This allows a user program to act as a
time sharing system within THOR controlling its
own set of consoles. Applications include teaching
machine monitors and games involving several
players.

Character input is a major cause of user program
swaps. However, programs vary in how promptly
they must pay attention to incoming characters.
One limiting case is in the preparation of a file. Here
characters should be added to the input buffer when
typed, and, when the input buffer gets full, the pro-
gram should receive all the characters at once and
transmit them to the disk. There is no need for this
program to be activated each time a character is
typed; it need only be activated when the input buffer
gets full. On the other extreme is a program whose
operation is controlled from the keyboard. Here
every character typed should go directly to the pro-
gram to have an immediate influence on the pro-
gram’s action. To save swaps, we allow each user
program to specify under which conditions it should
be swapped to receive character input.

In short, the in-core section of the system provides
those services which must be performed immediately
to allow user programs to continue running with as
little delay as possible.

Service programs
There are other services which do not require such
fast action. When it is the user rather than the user
program who is waiting for the completion of a service,
the system need only respond faster than human re-
action time. It is of little importance, for example,
if the user need wait an extra second to receive an
error message. Whenever a service exists whose time
of performance only need be faster than human
response, that service is given by a user program
rather than put within the in-core system. Depending
on the nature of the service, the service user program
may be given the privileged status of direct access
to the in-core part of the system and unrestricted
input/output.
There are three types of service program:
The System Interpreter — privileged
Phantoms —privileged

628 Spring Joint Computer Conf., 1967

Utilities —not privileged

The System Interpreter acts as the external face
of THOR. It accepts commands to THOR from the
user typing on his keyboard or from a user program
sending characters and communicates to the user by
typing into his ‘page printer’ display buffer or onto
his teletype printer. The ‘call’ character directs all
subsequently typed characters to the system in-
terpreter up to and including the next carriage re-
turn. This means the user can type requests to the
System Interpreter “on the fly” while his user pro-
gram is running. Because the System Interpreter
may be receiving messages from as many as twenty-
eight keyboards and twenty user programs it must
be run often. Consequently it occupies its private
position in the round robin as the twenty-first user
being activated whenever there are characters in its
input buffer.

A wide variety of services are provided by the Sys-
tem Interpreter:

1. The System Interpreter verifies the user’s name
and charge number on ‘LOGIN’ and provides him
with a drum track to store user programs. It releases
facilities owned by the user on logout.

2. Accounting is based on both the time spent sitting
at a console and the time the user program has actually
been running.

3. The System Interpreter parcels out such limited
facilities as extra consoles, extra display buffers,
extra core memory, and input/output devices. Extra
consoles may be made ‘slaves’ so that it is impossible
to call the system from them. Slave consoles are
used only as character input/output devices. For
equipment which several user programs may want to
use together, a ‘club’ is formed with one user as
president. Only he has the power to add or delete
user programs from the membership list.

4. The System Interpreter provides commands
for general file handling and maintenance.

5. The System Interpreter allows the user to save
all or part of his binary user program at any time for
future use and reference, and to restore it with its
state unchanged.

6. The user can start, stop, and continue his user
program.

7. The System Interpreter can provide the user with
information about the state of his program while it
is running, as well as information about the state of
in-core tables concerning the user program.

8. The System Interpreter provides commands for
calling the various utility programs.

9.The System Interpreter provides a primitive
debugging service that allows the user to look at and
modify all registers of his core image and look at all

the registers of the in-core section of the system.

Phantoms provide a means of charging slow serv-
ices to the running time of a user program. Phantoms
are privileged user programs which run in place of
a regular user program in the round robin. Thus, the
time that the phantom takes to perform its service for
a user program is charged to that user program with-
out degrading the performance of the system for the
other user programs. There are two phantoms:

The Error Phantom prints all the error messages
for running user programs. Printing a lengthy message
may require several quanta; the use of the error
phantom ‘punishes’ the user responsible for the error
and no one else.

The Iceberg Phantom handles all modifications
to the reserved file directory such as the creation,
destruction, lengthening and renaming of disk files.
These operations require time-consuming references
to file control information on the disk. The Iceberg
may be brought into operation by a user program.
executing certain iot instructions or by the system
interpreter acting in the name of a user program.

As an additional refinement, orders for the phantom
programs are stacked within the in-core section so
that, if a phantom completes a task for a particular
user program before the end of its quantum, it may
start the next task without additional swaps.

Utility programs are non-privileged user programs
which may be called from the disk to perform the
workhorse services of the time sharing system. They
include a scope text editor, a teletype text editor, as-
sembler, compiler desk calculator, and listers.

Text editor

Virtually all editing of symbolic programs is done
on the display consoles, using the TVEDIT text
editor. The editor is oriented toward the average user
of the system, not just the expert programmer. The
central design objective was a simple, easily re-
membered command structure, which would not re-
quire the user to have any knowledge of the manner
in which the files are actually stored on the disk.

TVEDIT is a random-access editor interacting with
the user on a character-by-character basis. Any
change in the text directed by the user is immediately
reflected in the display, and the appearance of the
display at any time is an accurate picture of the cur-
rent status of the text file and the editor. An example
of displayed text is found in Figure 3 “TVEDIT text
for a Demonstration Program.”

Both control information and new text are typed
from the keyboard. Control characters are dis-
tinguished by use of one of the special buttons on the
display keyboard. This scheme is felt to be more

THOR 629

«TITLE DgMO

begyn

cong Plu' Two o three

Figure 3—TVEDIT text for a demonstration program
This is assembly text for a simple program to add 1 and 2
The pointer under the ‘c’ indicates character mode editing

efficient for both the human user and the machine
than alternatives involving escape characters or light
pens; it allows the carriage return, space bar, and
backspace to be used as control characters in a very
natural way.

A pointer symbol displayed with the text always
indicates the spot at which editing activity will be
applied, and also indicates the line/character mode
status of the editor. The user can set the pointer to
an arbitrary page or move the pointer by lines or
characters in any direction. Commands which would
move the pointer off of the screen cause a new dis-
play “window” to be generated, keeping the pointer
in view at all times. Windows usually contain 15 to
20 lines of text. Page divisions in the text are entirely
under control of the user, and bear no particular re-
lation to disk records, display windows, or paper
sizes.

Following is a very brief description of the complete
command set:

n space bar Move pointer right n
characters.

n backspace Move pointer up n lines
or left n characters.

n carriage return Move pointer down n
lines.

n K Kill (delete) n characters
or lines starting at the
pointer.

n G Go to page n.

P Insert page mark above
current line (page marks
can be deleted with K).

I Enter insert mode.

w Get next display window

(allows rapid serial scan-
ning).

F Finish. Terminates edit

run.

The detailed operation of each command is highly
context-dependent, with regard to both the current
state of the editor and the text being edited. Instead
of employing a multiplicity of hard to remember
commands, similar functions are lumped into a single
command code, and distinctions are made on the
basis of factors obvious to the user. For example,
“backspace” and “’kill” operate by lines or characters,
according to the current mode, which is clearly repre-
sented in the display. There are no explicit commands
for setting line or character modes since this shift
is implicit in certain instructions such as spacing into
a selected line or entering line mode by using the
carriage return. An individual command is limited
by the text on which it operates, for example, one
cannot space past the end of a line or kill more than
a page of text in a single command. The backspace
and carriage return normally affect only the pointer
and do not change text. After an insert command the
backspace deletes preceding characters and carriage
returns may be inserted as text. Any command using
the control button causes the editor to revert to the
normal mode in which typed text replaces existing
characters. This type of special-case complexity was
deliberately added to make the editor behave in a
more natural manner, rather then conform to a set
of rigid definitions. Such loosely defined operations
are practical only because of the highly interactive
nature of the display.

The editor is efficient in usage of machine time,
being neither compute-bound nor 1/O bound. The
average editing run produces a very light load on
the system. The random access feature and the file
organization greatly reduces the amount of disk
activity.

Two hardware factors are worthy of comment in
relation to text editing. Efficiency would be enhanced
by automatic tab stops in the display equipment;
we ‘have to generate a carefully counted series of
spaces to achieve presentable tabs. A much more
serious problem arises from the basic structure of
the character set. Our six-bit characters with separate
codes for case shifts generate tremendous problems
in all phases of text handling. We cannot engphasize
too strongly the importance of a seven-or eight-bit
character coding to allow case shift status to be an
integral part of each character.

Text files on the disk are organized as a page
directory record followed by text records of identical
format. This enables the editor to go directly to the

630 Spring Joint Computer Conf., 1967

proper record for each new page. Local relative line
addressing is easily handled since each record con-
tains forward and backward links to its logical neigh-
bors, and lines within a record are indexed for either
forward or backward scanning. Text is packed in
serial order in each record, and the link information
is hidden behind the end-of-record mark. This fact,
together with the unique escape character introduc-
ing file control codes, makes it simple for a serial
text processor, such as the assembler, to read the
file. The explicit “tab” and ‘“‘carriage return” codes
in our character set allows a high density on the file;
however, a certain amount of space is normally left
free in each record to allow for minor expansions
without incurring the cost of linking in an overflow
record. This overflow process is invoked automatical-
ly when necessary, and the user need not be concerned
about such factors.

Random access text editing causes one distinct
problem which must be provided for. Upon system
or program failure we need to be able to recover as
gracefully as possible in the face of lost or improper
linkage information. Such a clean-up program is pro-
vided, along with serial file read/write services. A
merge program is also available for merging selected
pages from any number of files.

Assembler

The main characteristics of the assembler were
largely determined by conditions of the hardware
and software environment in which it operates. The
emphasis in the system as a whole on rapid, simple,
symbolic debugging dictated that the assembler be
as fast as possible, and that symbolic programs be
easy to read and modify.

Identifiers may be of any length, with the first six
characters unique. Two methods of commenting are
provided: one is a singl¢ character (<) which causes
the rest of the line to be taken as a comment, and the
other is the Algol variety, beginning with the word
‘comment’ and terminated by the next semicolon.

The input format is flexible, involving no fixed
columns or fields. Statements are separated by end-
of-line, or within the line by semicolons. Spaces,
other non-printing characters, and blank lines are
ignored. The large character set is used to keep the
appearance of the program neat and pleasing, and to
avoid confusion by assigning each operation in the
assembler t¢ a unique character. Thus, whenever a
character appears it has a unique function regardless
of context.

Block structure is provided in the assembler for two
main reasons. The first is economy of symbol table
space. Since each identifier takes at least three 18-
bit words, and since the assembler must operate

entirely within one 4096 word block, the space re-
covered by purging local symbols at the end of blocks
is very important in assembling large programs.
Secondly, block structure facilitates the inclusion
of symbolic library routines and the combination of
independent programs. The block structure works as
in Algol, except that no declarations are required
(an important point in machine language code, which
tends to have a large number of labels). Prefixing
the defining occurrence of a symbol with the char-
acter (1) makes a symbol visible outside the block
in which it is defined, allowing subroutines with
multiple entry points to be enclosed in a single block.

The requirement for maximum assembly speed sug-
gested a single-pass assembler, and the desire to save
symbol storage space with block structure neces-
sitated this approach. The assembler is organized
internally as a simple two-stack translator; it evaluates
expressions which may contain all of the ordinary
arithmetic and logical operators and assembles the
values into computer words. In addition there are
the usual collection of symbol-defining and assembly
control operations, and a general purpose recursive
macro processor.

If a symbol is encountered before its definition it
is called a forward reference. The symbol is entered
in the symbol table, along with the address of the
location from which it was referenced. Additional
forward references to such a symbol are stored as a
linked list in a general storage area shared with the
symbol table. As soon as the symbol becomes de-
fined, a “fixup” is issued to every location on the
symbol’s list of forward references. A ‘“fixup” is a
direction to the loader to change the contents of a
specified location. References to non-local symbols
must be treated as forward references until the end
of the block, since no declarations of local symbols
are required.

The main symbol table is stored and searched
linearly. This facilitates implementation of the block
structure, and since most references are to local
symbols, searches of the table are usually short. At
the end of the block, all symbols local to it are re-
moved from the table, and stored on a disk file for
use by the symbolic debugging program.

This assembler is noticeably faster than its prede-
cessors on the same machine, all of which were
fwo-pass processors. 1t cxecutes between 600 and
900 instructions per word of code assembled, and re-
quires about 75 seconds to assemble itself.

The most interesting conclusions reached in our
experience with this processor are that block structure
can be very useful in an assembly language, that
single-pass assemblers are more efficient than their

THOR 631

multiple-pass counter-parts, and that flexible, read-
able format of the source program is a- great saver
of time and frustration.

Debugging

THOR’S primary debugging aid is called RAID.
It occupies the upper three-eighths of the user’s core
and is used to monitor the user’s program. RAID’s
display shows the contents of sixteen memory loca-
tions in the user’s program and the state of his ac-
cumulator, in-out register and program flags. The
contents of each location are given in both octal and
symbolic reconstruction of the assembly text. This
presentation is far more informative than the con-
ventional computer console. The program in Figure 3
was assembled and loaded into core. Figure 4, “A
RAID Display of a Demonstration Program” shows
the result of its execution.

loe ong
adqgq resultes
dec result

100 298103
101 a@A?7?
108 2aal7e

103 1 ong: 1

alls B] result:
ar7? resulltel:

a®e ong+2793:
ong «278:
ade ong-877:
ong.- 388!
ala ong +3081:
ong +382:

Figure 4-RAID display of a demonstration program
This is a display of the binary and symbolic of the simple
demonstration program. The code was executed with the single
step feature It left 3 in the accumulator (displayed near the
bottom) and in the location ‘result’ (indicated by the pointer)
The array of locations from ‘one + 275’ to ‘one + 302’ was
displayed to illustrate the number of locations that may be

simultaneously visible

RAID displays a pointer next to one of the sixteen
locations to act as a focus of the user’s attention.
By typing single character commands the user can
move the pointer to any location on the display. Other
commands exist to modify the contents of any loca-
tion or change the accumulator, in-out register and
program flags. Still other commands enable the user
to delete old locations and add new locations to the
display. The command structure is designed to allow
the user to change his focus of attention to the in-
teresting parts of his program in a natural manner.
He can trace the program flow, address chains, in-
direct references, and subroutine calls with a minimum

of fuss.

The most useful features of RAID are the vari-
ations of single stepping. When the user single steps
the instruction at the location indicated by the pointer
the instruction is executed and the pointer moves to
the next location in the program flow. All displayed
locations and registers effected by the execution of
that instruction are updated. The user may also plant
breakpoints in his code. Normal usage is to plant a
breakpoint just before a seciion of questionabie code
and start the program. When the breakpoint is
reached, control passes to RAID, and all of the dis-
played locations are updated. The user then single
steps through the questionable code, carefully observ-
ing the effects of each instruction. As soon as errors
appear the user may investigate them immediately.

The single character control language allows skilled
users to interact with RAID very rapidly. Typically
bursts of such rapid activity will alternate with periods
of thoughtful analysis. RAID’s value as a self-in-
structional device is obvious: the novice programmer
may enhance his understanding of the various com-
puter instructions by executing them and observing
the effects. The experienced programmer may oc-
casionally revamp his understanding of a particular
instruction. Generally a programmer single-stepping
through his code will encounter occasions on which
his image of the situation does not correspond to
the actual situation. In writing code a programmer
must anticipate the effects of the various instructions
and he must maintain an image of what his code does
to the memory registers involved. When debugging
with RAID, he recreates this anticipated image, and
can then correct his thinking where necessary.)

The elimination of paper output and lengthy com-
munication with the computer have made a great
increase in the effectiveness and speed of debugging.

Usage

Flexible and efficient utility programs and basic
system speed have given us a very fast edit —assemble
or compile—-debug cycle. This has introduced new
programming habits. Programmers can now afford

to edit and reassemble or compile to purge even

moderately trivial bugs rather than make patches to
octal code. The practice also helps alleviate the
possibility of creating new bugs while correcting old
bugs.

Our experience shows that it is easy to live without
up-to-the minute listings of programs. One need only
know the general position in the text of the proposed
changes and a few TVEDIT commands will rapidly
locate the desired area.

The fast edit—assemble —debug cycle pays other

632 Spring Joint Computer Conf., 1967

dividends. We have observed a tendency toward
composing programs con-line. The programmer de-
scribes an overview of his program, perhaps sketching
out parts of the code, but he leaves the detailed coding
for the console session.

THOR may be used to prepare batch processing
jobs to be run on the IBM 7090. One method consists
of writing the program using TVEDIT, and then
converting the text to a disk file format compatible
with the 1BM processors. To use programs one sub-
mits a short job into the 7090 batch processing queue
which calls the program from the disk.

Information may also be sent directly between the
PDP-1 and the 7090 through a direct data channel.
The PDP-1 interrupts the 7090 batch processor be-
tween jobs in a process known as time-stealing. Con-
sequently, THOR users may prepare a TVEDIT
image of the 7090 job, convert it to the BCD character
code, and send it through the data channel. The
7090 sends output back which may be displayed
immediately or placed in a disk file to be examined
later.

A good example of a user program employing many
of the features of THOR is our implementation of
the Culler-Fried functional analysis display system.
The left special control button was used to distinguish
characters standing for operations from those stand-
ing for functions. Most operators and all functions
are stored on the disk. Rapid disk access was critical
in making the system practical.

The structure of the system was sketched out, but
the majority of the code was composed at the con-
sole. About 4000 words of code were written and de-
bugged in less than two man-weeks. A THOR dis-
play console was in use six to eight hours a day and
the edit-assemble-debug cycle was constantly exer-
cised. We feel that the Culler System would have
taken at least twice as long to develop at a teletype
console and months in a batch processing system. It
has been impossible to gain exact statistics on the
virtue of displays versus teletypes since no users could
be coerced into using teletypes if display consoles
were available. It seems that the teletype versions of
most utility programs are harder to learn, less general,
and more difficult to use.

The benefits of efficient and forgiving system and
command languages cannot be overemphasized. If
a time sharing system is to be used as a good de
bugging tool, the user must be able to spend long
hours at a console without feeling frustration due to
excessive waits or errors caused by either himself
or the system.

The in-core system, system interpreter, and the
error phantom can all be modified while the system

is in operation. Thus partial system failures do not
necessitate stopping the system. Naturally the normal
THOR user may not be so omnipotent but by proper
setting of the PDP-1 console test word switches any
user program can attain priviieged status. The system
interpreter and error phantom were written and de-
bugged as user programs with occasional sorties into
privileged mode. Though a certain amount of care
and caution must be exercised, this feature has proved
invaluable.

Computer based teaching laboratory

One of the major projects under THOR has been a
system of programs designed to teach mathematics
and reading to elementary school children. The follow-
ing is a brief outline of one of the programs, a drill
program, and its use of THOR features:

The drill program gives practice in arithmetic and
spelling skills. Twelve teletype consoles are located
in local elementary schools. Each of the three hundred
children in the experiment does twenty to thirty
problems on the console in less than three minutes.
Average response times are one to six seconds, so
a fast system response time is necessary to keep up the
pace. The consoles are placed in slave status to pre-
vent the children from stopping the drills by calling
the system interpreter.

The drill program is actually run by three user
programs. One is a monitor which keeps a log of
usage. The second is an elaborate report generator
which may be called while a child is typing so that the
teachers receive immediate data analysis of his
progress and errors. The third program handles the
typing of the problems on the teletypes, the receiving
of answers, and data recording. The programs com-
municate with each other through the character
switchboard, the extra user core memory, extra drum
tracks available to user programs, and disk files modi-
fied while the programs are running. In short the drill
programs make full use of the generality provided by
THOR for program and console interaction.

REFERENCES

1 J McCARTHY etal
A time-sharing debugging system for a small computer
Spring Joint Computer Conference pp 51-57 1963
2 A KOTOK
DEC debugging tape
Memo MIT-1 rev MIT Cambridge Mass December 11 1961
3 JSAUTER
The Stanford University PDP-1 manual
Stanford Time-Sharing Memo No 36 August 30 1965
TOLLIVER
TVEDIT
Stanford Time-Sharing Memo No 32 March 1 1965

KN

THOR 633

5 PSTYGAR

RAID

Stanford Time-Sharing Memo No 37 Nov 2 1965
6 B W LAMPSON

Interactive machine language programming

Fall Joint Computer Conference pp 473-481 1965
7 B D FRIED

The STL On-Line Computer

Volis 1 and 2

10

G J CULLER

Function Oriented On-Line Analysis

Workshop on Computer Organization pp 191-213 1962

J GILMORE

Lincoln Lab memo out of print

G STRACHEY

Time-sharing in large fast computers

in Proceedings of the International Conference on Informa-
tion Processing pp 336-341 UNESCO Paris 15-20 June 1959
UNESCO Paris 1960

	623
	624
	625
	626
	627
	628
	629
	630
	631
	632
	633

