STANFORD TIME-SHARING PROJECT October 2, 1964
Memo No. 23

USER'S MANUAL TO THE ODIN TIME SHARING SYSTEM

by Gary Feldman and Harold Gilman

Abstract: The following is a description of the
operating procedures of ODIN, the Pre-

liminary Time Sharing System for the
PDP-1.

The research reported here was supported in part by the National
Science Foundation (GP-3207).

TABLE OF CONTENTS

Introduction+
Organization of ODIN
Programming under ODIN
Console Code Translation

Files e e e e e e e e e e e e e e e e e
The ODIN Control Language . . « « « « « . .

Simple Examples of System Commands . .
Expensive Typewriter under ODIN

Macro Under ODIN

Macro Symbol Package under ODIN

Examples of Advanced Cliches

Appendix I Error Messages .

Appendix II PDP-1 Instructions
Appendix III Teletype Code Transliterations
Appendix IV User Drum File Space

Appendix V Philco Displays

Page

oN +

15
20
23
25
26

iii
ix
xi

xii

USER'S MANUAL TO THE ODIN TIME SHARING SYSTEM

by Gary Feldman and Harold Gilman

Introduction:

The ODIN time sharing system provides each of five users simultaneous
computer service. At present there are three local teletype consoles,
a typewriter console, and a connection into the TWX' network. Each user
has a console, access to the real paper tape reader and punch, and a
"computer" similar to the PDP-1 with 4096 words of core memory. The
difference between the user's "computer" and the PDP-1 lies mainly in
changed and expanded input-output services (such as limited communications
with the 1301 disk file and the 7090 computer), the availability of cer-
tain service and library routines, and a system command language for
controlling the operation of programs and using and maintaining paper
tape files stored on the PDP-1 drum. It is this last difference which
is fundamental. Since many users will want to perform paper tape
operations simultaneously, the paper tape facility must be simulated
with a system of private files. Once one has learned how to use the
file system, programming under the ODIN time sharing system is essenti-
ally the same as programming for the bare PDP-1. With certain restric-
tions outlined below any program written for the 4K PDP-1 will run as a
time shared program under ODIN.

Organization of ODIN:

Ag far as a user is concerred, ODIN appears to have the
following configuraticn:

drum files library
¥ y
input ADMINISTRATOR ODIN control .
v [buifer b < > language and
* service routines
1sOle
conso.ie and
o < | User program in
oul output [6 CONTROL LK user core
buffer x B _; o 5
real real ||other 1301 disk
reader] |puochy| IO
} >
! | j[devices
' 7090 computer
CDIN is divided into *two majcr sections One is the administrator

and O control and the other is the service and file contrcl program.
The administrator‘s functicn 1s to parcel out time fairly to each of
the users and tc sort out properiv the stream of input-output generated
in varicus ways. Each user has a bk core image called the user program
stored on a drum fi1eid. When the user 1s activated his user program

is brought into core and started wners last left off. The adminis-
trator cycles through the active usgers in a strict round robin giving
eacn user approximately 70 milliseconds of run time before dismissal.
For each swap (i.e, writing out the old user program and reading in

the new) the system takes 30 milliscconds. The total 100 milliseconds
is called a guantum. A user is active provided:

a]

< !,_.lo ’_l
o+ w»

a. He 1s running auser program Or a sService program.
. He has not filled his console output buffer.
C His program is not wailting for input.

This means that when any program would be waiting for input or for
cutput completion it is immediately dismissed and the next user in the
round robin 18 given service When there is only one active user no
swanps reead fake place sc that user runs at full efficiency.

iticn tho administrator routes all input-output, translates
to DEC cencise ceode and vice-versa, and translates some
Linpul or output; commands into system actions.

The file control programs store a directory of drum files which
simulate PDP-1 paper tape and provide a language for file manipulation.
In addition there is an octal debugging service and cliche decoder which
interprets lists of system control language commands.

Programming Under ODIN:

Programming for the PDP-1 is normally done in an assembly language
called Macro. This assembler produces standard PDP-1 machine code.
A1l commands listed in Appendix II may be user in programs under ODIN
with these exceptions, restrictions,and additions:

1. Do not use program flag one for anything except a type-in
listen loop. (A listen loop is code of the form

szf i 1
Jmp .-1
tyi

which makes the computer wait until the depressing of a typewriter key
changes flag one to on status.) The administrator automatically feeds
flag one on to all programs at the beginning of their quantum and after
each console input. This is done so that any program with a listen
loop will not wait for input but will immediately execute its "tyi".

The "tyi" instruction is seen by the IO control program which checks
for characters appearing in the input buffer. If there are none, the
user program is instantly dismissed; otherwise, the next character is
fed to the user program. Since this is the case, if the user wishes

to save a little time he can replace all his listen loops by bare
"tyi's". This has the disadvantage, however, of rendering his programs
incompatible with the PDP-1 when time-sharing is not running. Because
flag one is always on, it is impossible to use it for any kind of logic.
In order to allow old programs which have logic tests of flag one, the
user may turn off automatic flag one mode by executing the suitable con-
trol command.

2. If the user desires that his program not be dismissed while
waiting for console input, he may use the special system command
iot 117. This command is interpreted as "skip on input buffer empty".
(Iot 1 117 means "skip on input buffer non-empty). A use for this
might be to keep a scope display runnign while listening for input
characters. The code would be.

begin, iot 117
Jmp listen
code
to
run
the
display
Jmp begin
listen, tyi
code
to
handle
the
character
Jmp begin

3. Do not use any of the sense switches. The console may be
assumed to be off, and all sense switches will uniformly have the
value zero. O01d programs which use the switches should be rewritten.
All library routines have already been modified, and descriptions of
how to use them under ODIN will be found below.

L. Do not use the instruction "lat"j the test word will always
have the value zero.

5. Do not attempt to enter extend mode (i.e. execute the command
eem) or leave extend mode (lem). These commands will result in the
error message 'ilg iot". Do not attempt to use any of the sequence
break commands: esm, lsm, asc, dsc, isb, cac, or cbs. These will be
treated by IO control as no-operation (nop) commands. Do not attempt to
read or write the PDP-1 drum except for fields 34-37 which are free (and
unprotected) scratch area. All core addresses inside of drum commands
will be changed to refer to user memory; and all drum commands which
refer to fields other than 34-37 will be treated as illegal iot's,
causing the message "ilg iot" to be printed.

6. Quantum synchronization. There are some operations, e.g. a
data transfer to the 1301 disk which will fail if interrupted before
completion. To guarantee that an operation gets a full quantum of
useful runtime (70 milliseconds), place the special instruction
iot 17 immediately before the first instruction of the operation.
Iot 17 means that the program will be dismissed immediately and the
next instruction will be taken at the beginning of the quantum the
next time around the round robin.

Console code translation:

The internal code of all programs requiring console input is concise
code. Input coming from a teletype console is translated to concise
before being fed to any programs. Thus the command "tyi" serves to read
any console. ©Similarly output going to a teletype is translated from
concise to teletype code; so a "tyo" serves to write on any console.
Because the character set of the teletype is not identical to that of
the typewriter, certain characters have to be transliterated from ASCII
to concise. The list of transliterations may be found in Appendix III.

Files:

Paper tape allows fast input-output to the bare PDP-1. Since
there is only one paper tape reader and one punch (hereafter called real
reader and punch respectively) it is necessary tc simulate paper tape
by means of paper-tape images stored on the PDP-1 drum. Each console
has a section of drum assigned to it for storing paper tape images.
Three of the consoles have "long files" consisting of five drum fields
and two (consoles No. 2 and No. 3) have “short files" containing two
drum fields.

A file is simply a paper tape image on the drum. Associated with it
is a name supplied by the user and an octal drum address supplied
automatically by the file control system or manually by the user. This
address marks the beginning of the paper tape image. At the end of each
file the system automatically supplies an "end of file" mark. The ODIN
control language allows the user to name files, kill files, move paper
tape from the real reader to files, move files to the real punch, move
from one file to another, read from files with & program that reads
paper tape, and punch onto files with a program that punches paper tape.

The user makes use of various files by manipulating the location of
the input pointer and the output pointer. This is done by the ODIN control
language. The input pointer tells the user or system service program from
which file it should read its paper tape input and the output pointer
tells onto which file the paper tape output should be punched. It is
possible to set the pointers directly to the beginning of files by re-
ferring to the files by name, or to the middle of files by manually
setting the appropriate octal drum addresses.

The drum is formatted into a continuous string of forty (octal)
word blocks. Two frames of paper tape are stored in each word.
(Alphabetic information is stored at two characters per word and binary
information at two-thirds of a binary word per word. Thus one could
expect to store one core load of binary information in 1-1/2 drum fields.)
When forty words have been read or written a drum transfer takes place.
If a file is ended in the middle of a forty word block the end of file
is placed at the end of the block. This means that all drum addresses
referred to should be multiples of ho8.

The ODIN Control Language:

In the description of the ODIN control language the character
'carriage return’ will be denoted by 'y', the character 'backspace'
will be denoted by 'w', and the character 'center dot' by ‘:°.

The control language is an interpreter for a specialized set of single
character contol statements. Like the debugging program DDT each legal
control character specifies a different service routine to perform some
action or change the state of the universe in some way. Unlike DDT
many of the control characters can be followed by parameters to give
additional information about the control action. It is also possible to
list several control functions inside of a cliche and have the executed
interpretively as a control "program".

In order to talk to ODIN in its control language, it is necessary
to call the system. Depending on the type of conso’e this is done in
different ways. From the typewriter use ":," or ":w". If the ‘center
dot' is followed by the 'carriage return', it means that the system will
be ready to listen to the control language from the console; if the
‘center dot' is followed by the 'backspace', control is passed directly
to the next instruction of the current control cliche, (For illustrations
of how to use ":0" effectively see the sections of examples). To indicate
that it is ready to accept control information, the control system types

HO-DIN" .

Because the typewriter will not accept input while it is typing out,
it may be necessary to call the system while caught in a type out loop.
An emergency call can be made from the typewriter by depressing the ribbon
switch and typing "y 's" until “ODIN™ is typed out. Sometimes the user
may want to include the character ‘center dot' within text and not have
it call the system. This may be done by typing 'center dot' twice. The
'center dot' will be entered into text once for every two times it is typed.

From the teletypes the procedure is exactly the same except that
"#" (sharp) is used in place of 'center dot'. (Note that "#" does not
transliterate into 'center dot' but rather into "~". It is "\" (i.e.
'"backward slash' made by shift "L") which means 'center dot' on the
typewriter.) As in the case of the typewriter, enter "#" into text by
typing it twice. Because the teletype will listen while it is typing
out, there is no need for an analogue of the ribbon switch.

In the description of the control functions to follow we will use these
conventions.

1. An asterisk (¥) preceding any control function will mean that the
function may not be included in a cliche.

2. Numerical parameters to control functions are always octal numbers
and will be represented below by #1, #2,

3. Alphanumeric identifiers used as parameters may be 1-6 characters
long and must begin with an alphabetic character. They will be represented
below by €l, €2,

L. A command part is a system control command minus the 'carriage
return' When command parts appear as parameters to cliche definitions
they w1ll be represented by %1, %2,

5. ©Some parameters will be dlrectly spe01f1ed rather than by the
above notations, as in the command "1,et (which means load expensive
typewriter). The types of parameters an the formats for the parameters
are indicated implicitly by the symbols used. E. E.g.the command 'n,el
indicates that the control function "n" takes an alphanumeric 1dent1%1er

for its only parameter.

The control functions command are field free in that spaces are
ignored.
b,el,e%é Causes the file named "el1" to be renamed "ez".
Example: if one had a file named "eng",
"b,eng,songa" would rename the file "song".

*c,el,(%1) Causes a cliche named "el" to be defined.
4 When the cliche is executed it will perform
the command "%1y". Example: To define a
cliche to rename the file as above use

"c,rename,(b,eng,songkf'

%nD Causes a cliche named "el" to be defined.
When the cliche is executed it w1ll perform
the commands %l s%2y, ... ,#n in segquence.

If any of the comman s is an ex1t to a user
program, the exit will occur and the cliche
will be suspended. If the system is recalled
by typing ":0" ('center dot' ‘'backspace’) the
execution of the cliche will continue where
it left off. (See examples below and c.f.
the section ODIN Control Language abov577

*d& Causes all cliches to be deleted.
*d,el,e2, ...,en) Causes the cliches named "el,e2, ...,en" to
be deleted.

i,#l‘)

k,el,e2,

1,et

.. ,€n
o

Causes the cliche named “el" to be executed.
Example:'e,rename " will cause the cliche
dfeined above to be executed.

Causes automatic-flag-one mode (see above) to
be entered. ("fb" will have this effect also).

Causes automatic-flag-one mode to be discontinued.
This command is used only in very special cases.

Causes the system to type out a messate telling
the location at which the user program was last
interrupted and the contents of the accumulator
and 1-0 register at the last interruption.

Causes the location of the reader pointer to
be typed out.

Causes the input pointer to be attached at the
beginning of the file named 'el". Example:

to have a program read the file named "song",
it would be necessary to type "i,song,"
sometime before entering the program that would
do the reading.

Causes the input pointer to be attached directly
to the drum address "#1". The restrictions on
"#1" are that it be smaller than the end address
of the console's file area and that it be equal
to zero modulo 40 (octal). To have a program
read from file starting at 270440 type
"i,27ol+4cb ",

Causes all the files to be killed and the

output pointer to be moved to the beginning

of the drum block of files. For example if

one were at the typewriter "k, " would kill

all the files and move the od%put pointer to
230000.

Causes the files named "el,e2, ...,en" to

be killed. This command does not move the
output pointer.

Causes the text editor called Expensive
Typewriter to be loaded and begun as the user
program. Instructions for using the modified
version which lives in the ODIN library will
be found below.

10

1,ddty

l,macro)

l,macsynb

m,el,eQQ

m,rdr,el)

Causes the debugger called DDT (DEC Debugging
Tape) to be loaded and begun as a user program.
The version in the ODIN library is the non-
extend mode version whose starting address is
60008.

Causes the assembler called Macro to be loaded
and begun as a user program. Instructions for
using the modified version that lives in the
ODIN library will be found below.

Causes the symbol package that mates with
Macro to be loaded and begun as a user program.
Instructions for use to be found below.

Causes the contents of the file named "el"

to be moved to the file named "e2". The raper
tape image beginning at the drum address
associated with "el" is copied on the drum
beginning at the drum address associated with
"e2". When the move is completed the system
will type out "end of file.".

Causes the paper tape which is in the real
reader to be copled onto the drum files starting
at the drum address associated with the file
"e1l". This command waits for the reader to be
turned on before commencing; however, it cannot
detect the end of the paper tape. When the
tape has run out of the real reader wait
approximately 20 seconds and then call the
system. This wait allows the read-in buffer

to empty onto the drum; the time is a function
of the number of active users.

Causes the contents of the file named "el"
to be copied onto the paper tape in the real
punch. When the transfer is completed the
system will type out "end of file.".

Causes the list of all the files named by
the user to be typed out with their associated
addresses.

Causes a file to be created named "el". The
drum address associated with this file will be
the current location of the output pointer.

For example, if the output pointer were located
at 270440 the command "n,easy." would define
the file "easy" to begin at dr¥um location

270440.

11

¥

0,6%2

o,#l/’
%

B

Causes the current location of the output
pointer to be typed out.

Causes the output pointer to be attached to
the beginning of the file named "el". Example:
to have a program write out onto the file
named “song", it would be necessary to type
"o,song)" sometime before entering the program
that would do the punching.

Causes the output pointer to be attached
directly to the drum address- "#1". The
restrictions on "#1" are that it be smaller than
the address of the console's file area, larger
than the beginning address of the console's

file area, and that it be equal to zero modulo
h08. To have a program punch onto files
starting at 236040 type “o,236040, "

Causes all the user's cliche definitions to be
punched out starting at the current location
of the output pointer. The format is com-
patible with Expensive Typewriter.

Causes system to simulate the PDP-1's read-in
mode. Reading commences at the current location
of the input pointer. If one had a binary pro-
gram stored in a file named "song", "i,songi"
"r," would serve to have it read in and begun

as a user program.

Causes the system to transfer to the user
program and begin running it at the location
after the-last executed instruction. The
contents -of the accumulator and i-o register
as- well as- the state of all the program flags
(except flag one) are restored to their state
previous to interruption. For example if the
user program was typing out and the system
was called, the command "t)" would cause the
typing to continue exactly where it left off.

Causes the system to transfer to the user
program and begin running it at the octal
location "#1". The parameter "#1" is

always taken modulc 10000g. For

example, if DDT is the current user program
the command "t,6009/" would serve to restart
it.

12

Causes the control system to take alphabetic
information from the drum starting at the
current location of the input pointer.

These -characters are interpreted as if they
came from the console and -are executed Jjust
as if they were control commands typed by
the user. If, for example, the cliches were

punched onto a file named "song" by the
11"

sequence 'n,song," "o,song)" "EQ , they
could be read into the system to redefine the
cliches by the sequence "d," "i,song," "v,".

As the control information is used by the
interpreter, the characters are typed out onto
the console as that the user may monitor them.

Causes the system to wait inactive until the
appropriate character is typed. The system
types out "to continue type ='. When '-'
is typed the system becomes active again.

Causes the same action as the control function
"Y/“’ except that the type out of control
information is supressed.

Typing an octal number of four or fewer

digits followed by a ‘)' puts the ODIN control
language into octal debugging mode. The con-
tents of the register at location "#1" in user
core is typed out and the register is opened
similarly to DDT. At this point ODIN acts
exactly like DDT in spirit, but, of course,
with a different set of conventions. When

a register is open the contents may be

changed to any octal constant of six or

fewer digits by typing that constant. Typing
"#1," has opened the register #1. Whether

one changes its contents or not one may close
it and open the next register (#1+1) by typing
'w' or 'a' or open the preceding register
(#1-1) by typing 'u' or open the current
contents of register #1 by typing the character
'tab'. One may close the currently open
register and exit from the cctal debugging
mode by typing Yy '. To rectify a mistake

in entering an octal constant type 'x' and
then begin typing the constant again. As an
example of the use of the octal debugging
mode, here is a dialogue to change three
locations.

13

B

(The information typed out by ODIN will be underlined)

1245
1244

2

600100w
200012'tab’

This causes the current imcompletely typed
control command -to be forgotten. It is used
when a mistake is made while typing in a
control command. (While in octal debugging
mode it does not have this effect, see above).
Example: 1if one were trying to name a file
"song", and typed "n,sin", typing a "w"
would make ODIN forget the command. Once

a command is ended with a ‘Y" (or ")" in the

case of cliches) then the "w" has no effect.

1k

Simple Examples of Some of the System Commands:

The following is a dialogue between a user sitting at a teletype
console and the ODIN control system. Then conventions are that "#"
is the character that calls the system and that all information that the
system types out will be underlined.

Y

name drum address

n,georgﬁg

"

name drum address

george 110000

n,rdr,georgeg

oy
ODIN

b,george,spcwai!

P

name drum address

spcwar 110000

n,file%2

(To call the system)

(To kill all the files so as to begin fresh).
(As confirmation that all files are killed)
(The system lists no files)

(The user names a file)

(Checking.)

(The file has been named and its corresponding
drum address is 110000 which is located. at the
beginning of the user's file area.)

(The user wishes to run a binary program called
spacewar.)

(The paper tape containing spacewar is read
onto the file called "george'. After the
tape runs out of the real reader the system
is called.)

(The user renames the file appropriately.
This is unnecessary, of course.

(The user names a file to begin after the
spacewar file. "File2" will be placed at
the current location of the output pointer.)

15

)

name drum address

spewar 110000

file2 117540

i,SpcwarJ

i
reader= spcwar 110000

(In order to run spacewar, the user attaches
the input pointer to the beginning of the
file “spcwar", so that the read-in mode
simulator can read the image of the binary
program into user core and start it as

a user progrem.-)

(Spacewar is now running. It will continue
to run indefinitely until the system is
called.)

(The user is now talking to the system)

(He asks where spacewar was interrupted when
the system was called.)

now at 44756 ac - 625751 i0-622377

t,%)

7)

ODIN

m,spcwar,file%2
end of file.

n,fileéy

n

Py

name drum address

spcwar 110000

(This continues spacewar where it left off.)

(Calling the system again.)

(Spacewar begins at octal location 4, so
that the command will restart spacewar.)

(Recalling the system.)

(The user is moving the image in file "spcwar"
to the file "file2". When the move is com-
pleted the system types out "end of file.".)

(Naming a third file to begin at the end of

"£ile2".)

16

file2 117540
file3 127300
k,fileEL)

P,

name drum address
spewar 110000
file® 127300

k,fileB,spcwai,
o)
/

punch= file2 127300

®
Y
punch= 110000

0,127300
o’ ¢

/

punch= octal. 127300

i,15h6u§9

i

reader= octal. 134640

(Killing "file2".)

(Killing the other two files. Notice that
the location of the output pointer remains
unchanged, at the end of "file2" since
that was the last punching done.)

(However, "k," does move the output pointer
back to the beginning of the drum space.

(The user can move the output pointer
directly to an octal drum address.)

(Also the input pointer.)

(Now for some exercises using cliches)

d
/
c
J
name text

c,useles,(w

w Z
Y
W)
<)

name text
useles

=1 =

D)

(Deleting all the cliches.)

(Checking that there are no defined cliches.)

(For practice, the user names a useless
cliche. Notice that the last control
function in the cliche is not terminated
by a "y", but rather by a ")". When the
system sees the ")" it types back a
carriage return.)

(This is the format that the system uses
to store cliiches.)

17

e,useles

to continue type —
5
-to continue type —
-3
to continue type —
-

c,silly,(h)d
c
P
name text
useles w

w

W

)
silly h

)
e,sill;:)

now at 17311

d,sill¥

d

)
c,restrt,(t,b—
h

é{restrt)

c

name text
restrt t,h

h
e,restrt

)

e,restrﬁg

(To execute this useless cliche. The cliche
interprets the first control function which

1" 1"

is "wy . Then it waits until the user types
an " =". At this point it interprets the
second control function which is also a 'w,'
Each control function in a cliche is inter-
preted in turn. When the last one is
finished the system exits the cliche and

is ready to accept new console input.
During the execution of a cliche, if the
user wants to interrupt and talk to the
system, he may do so by calling the

system with "ﬁ?".)

(Naming another useless cliche. Notice
that cliches which contain only one -control
function take a special format in which
the ")" must be followed by a ')". This
is because the interpreter looks at console
input a line at a time, -and,hence, will
not process any command until it sees at
least one '

PR

(Executing silly.)

(Notice that the printing of the contents
of the accumulator and the i-o register
are suppressed inside of a cliche.)

(Deleting silly.)
(Deleting everything.)

(Recall that the user program is still
spacewar. The user can restart it any

time by typing "t,4)". Instead he defines
a cliche that will start spacewar, and when
it is recalled by typing "#u" it will type
out the last location before interruption and
then start spacewar over again. It is per-
fectly legal to have a cliche execute itself
in a recursive manner.)

(This executes the restart cliche. The
first action of the cliche is to exit to
location 4 in user core, starting space-
war. At this point space war is running).

18

o

now at 44200

fw

now at 44134

%
obrn

k
n,cliche‘)
o,clichgz
Y

punch= cliche 110000

E
m,cliche,pc%;
end of file!.

4
k
7
n,cllch%)
m,rdr,c ichz)
02,
ODIN
i,clichi)

Y

c

name text
restrt t,4

=

e,restrt

|

(This calls the system and continues the
execution of the cliche.)

(This is the location at which spacewar
was interrupted. The cliche continues
and executes the command "e,restrty"

is executed and now spacewar is running.

(Calling the system -again. continues the
cliche.)

(This allows the user to call the system and
exit from the cliche.)

(The user wants to punch this cliche out
onto paper tape in order to permantly save
it. He names a file, attaches the output
pointer to the file, observes that the
pointer 1s correctly attached, gives the
command to punch the cliches onto the
file, and finally moves the contents of
the file onto the punch. When the system
is finished moving it types out

"end of file.".)

(To begin afresh. The user reads the cliches

from paper tape onto a file and then reads
them into the system from the file.)

19

Editing with Expensive Typewriter under ODIN

Expensive typewriter is used exactly as before, except, of course,
reading and punching done with drum files rather than directly with
paper tape. However, since sense switches cannot be used under ODIN
some method other than flipping sense switch one must be used to return
control mode from text mode. It turns out that ET jumps to location
440 when sense switch one is on. This means that the act of starting
ET at location 440 puts it into control mode. This method, like the
sense switch, is subject to the restriction that the last character
typed in text mode must have a 'carriage return'. As an example:
load Expensive Typewriter by

l,et2

ki (These are ET commands not ODIN commands)
8

Now we are apending to the bufer

but we are making typpin misteaks so

we will hve to edit the textt.

o (In order to transfer to locaticn 44O we
ODIN must call the system)
t,hh%) ' (Now we are back in ET but in control mode.

We will edit the text, going into control
mode by the above méthod whenever necessary)

1lc :

Now we are appending to the buffer

7

ODIN

t,uug,

2(22

but we are making typing mistakes

#
oo
t,uu%!
5Qy
~ so we will have to edit the text.
Ly
t, %L |
It is certainly a nuisance to have to go through such a complicated
ritual everytime it is necessary to change from text mode to control
mode. Fortunately cliches can make matters considerably simpler.
Consider these two cliches:

c,etl,(l,et‘g
e,et2)
c,et2,(t,hhqg
e,et2)

20

When the cliche "etl" is executed it loads and starts Expensive
Typewriter. The first time that we must enter control mode we type
"#0". This calls the system and continues the execution of "etl".

The effect is to execute the cliche "et2" which transfers to ET
control mode. Thereafter, everytime we want to enter control mode

we type "#w" which causes the cliche "et2" to begin again and transfer
to location 440. Example: :

e,etl

lv 2

a

W% will edt teh above

with our new brigh

cliches.

F#o (Entering control mode)
l%)

We will edit the above

#o (Entering control mode)
A

We will edit the above

31

shiny

(Entering control mode)

W,
wi will edit the above
with our new bright

shiny

cliches.

(If we wish we may exit from the recursive cliche to talk to the
system for some reason, say naming an output file; we type:)

1y

ODIN

n,outp

o,out

t,log? (Tnis is the regular starting place of
Expensive Typewriter.) ’

B ' (This is the ET command which punches the

buffer.)

(This command punches a stop code.)

SR

IN
m,outp,ch) (This transfers the file to the punch)

end of file.

21

If we want to make use of the line numbering feature of ET which is
ordinarly activated by turning on sense switch two, we may do so by
changing one command in user core. What is done is to make the code
that checks the state of sense switch two go automatically to the
line numbering section. We replace the "jmp" command after a skip
with a "nop" using the octal debugging feature. The ritual is:

72(2Z ("720 " opens the register; it
600727 760000) will contain 600727 which is "jmp T727".
We replace it with 760000 which is the
command "nop".)

t,loqi (We start ET and ask it to write out the
%i ' buffer.)

1 We will edit the above
2 with our new bright:
3 shiny '

N cliches.

22

Using Macro under ODIN

The assembler Macro is used Jjust as before, except, of course,
reading and punching are done with drum files rather than directly
with paper tape. The procedure is to load Macro with the command
"1,macro “. Macro then halts waiting for the tape to be loaded.
Attach the input pointer to the file containing the english to be a
assembled; e.g. if the english is in a file named "eng", use the
command "i,engg". To simulate pressing the continue switch type
"t ", Macro now reads from the file "eng", -doing pass one of the
assembly process. When pass one is complete Macro halts. Re-attach
the input pointer to the beginning "eng" with "i,eng,", since pass
two reads the english again. Punching should be doné onto a drum file,
say "bin". Attach the output pointer to this file with "o,bin,".
Simulate the continue switch with "t,". When pass two is completed
punch a jump block by typing "tQ'ﬂ ¢

This process may be made into a cliche as follows:

c,assem,(l,macrgz This cliche works because each time a
i,engz user program halts the system is

@l called. If the system is in the middle
i,eng of executing a cliche, it continues
o,bin from where it left off.

tp ‘
t)
A two (or more) tape assembly can be handled with a slightly more
complicated cliche. Macro begins at location 0, so simulate
pressing the start switch with "t7Q2"° For example:

c,assem,(l,macr%)
i,englﬁ
Y
i,engEI)
t,qZ
i,egg]v
o,blqz
Y
1,eng%,
t,0)

t)

There is one problem in using these assembly cliches, namely, Macro
halts inopportunely whenever it encounters an error condition in the
assembly. This throws the whole cliche execution out of synchronization.
This problem can be cured by making some octal patches and starting at
location 1421 instead of "pressing continue" to start pass one. A
cliche ritual for this is:

23

c,assem,(e,fix
i,eng, 2
t,llLEld

i,em@

o,birz

5

c,fix,(l,macr%

0
féOQOq!
L2y
760000,
3635
600000)

This cliche uses the octal debugging
feature of ODIN to make the patches that
cause Macro to eliminate all error halts.
Now the cliche assemblies will proceed in
all cases until completion of the entire
assembly

2l

Using the Macro Symbol Package under ODIN

The Macro Symbol Package has been modified so that it only punches
and does not type out any symbol lists. Therefore, since there are no
choices, the sense switches may be left down. The symbol package is
loaded immediately after running an -assembly with the commend "1,macsym,)".
It then waits for a title to be typed from the console. When the title-
is terminated with the “carriage return", the symbols are punched onto
the current output file. If desired the symbol punch may be included
in the assembly cliche: ' .
c,assem, (e, fix See above for the definition of "fix".
i,eng,.

t,142])

i,eng‘z

0,bin

t') 2

t)

1,macsym) After the symbol package is loaded, type
a title to initiate the punching onto the

file "bin™".

J

25

Examples of Advanced Cliches:

1. The user has a program which does a data analysis on alphanumeric
tape punching out the analysis as it reads the data. Assume the program
begins at location 100 and then halts waiting for its input tape. After

each analysis the program halts.

There are several tapes to process so

the following cliches would be useful:

c,first,(kd
n,prog,
W

m,rdr,pro
i,prog
5 Y
€,second).

%

c,second,(n,data)
W

m,rdr,datgg
n,outy

i,dataé

o,out

té. 2

e,third)

¢,third,(m,out,pch
W 2
m,rdr,dat%

k,outy

n,oug

t,100)

i,data

o,ouﬁzi

Y
e,third)

The "first" cliche reads the program into
the file "prog'". The command "w)"

is used so that the user can wailt until the
reader is free. After the "m,rdr,progy"

is executed the user will call the system
with "#w" to remain in the cliche. After
"ré" is executed, the analysis program
begins at location 100 and then halts.

This has the effect of continuing the cliche.

The "second" cliche moves the first data
tape onto the file "data". Typing "#o"

continues the cliche. It then attaches

the input and output pointers and allows
the analysis program to continue. When

the analysis is finished, control passes
to the "third" cliche.

This cliche punches out the last analysis.
Then it reads in the next data tape.
Typing "#»'* continues the cliche. It
names an output file and starts the
analysis program. The program halt
returns control to the cliche, whereupon
it sets up the input and output pointers
and continues the program. When the
analysis is finished the "third" cliche
is restarted. It is executed as many
times as necessary to process all the data
tapes.

2. The user has an english program to edit, assemble, and debug. Before
he loads the english tape, he loads an english tape with the following list
of system commands and cliches into a file. (The tape must end in a stop

code):

26

d,e,d,et,etl,begini

d,lm,mac,mac%,
c,d,(t,bOOOOé)

e,e)
c,et,(l,et}l
e,etly

t,100,

e,e)
c,etl,(i,eng
k,neweng
n,newengf
0,neweng)
c,lm,(l,macrqz

%
0200
1421, v

760000)

3635

600000

i,eng

i

J

z; C

t)

c,mac,(k,bi%)

m,neweng,en

k,newen

n,birny

0,bin)

e, lmL)

l,macsyqz

e,macl)

c,macl,(i,biq2

k,out;b

n,outg&

o,outh

l,dd@g

e,d)

c,begin,(k,eng)

n,eng, &
=«

m,rdr,eng
e,et)

A recursive cliche for entering DDT

A recursive cliche for entering ET
control mode

A cliche for entering ET, setting up
files, starting ET, and initially going
control mode.

This cliche is called by "et" to set
up file pointers.

A cliche for the assembly

The master cliche for setting up files,
calling the assembly cliche,

doing a symbol punch, and arranging
for the loading of DDT.

This cliche sets up the file pointers for
DDT input and output, loads DDT, and sets
up a call to the recursive cliche "a".

The cliche for reading in the english
tape and calling the editing cliche.

27

To load the tape use:

30
~ n,cliches
m,rdr,clichei)

T
ODIN
i,clicheﬁz

v

Q
Then begin the editing process with

e,begini
The system will type out:

to continue type —

When the reader is free type:
N

After the english tape has been moved onto the drum recall the system:

w

This passes control to the cliche "et". Expensive Typewriter will be
loaded; to continue to execute the cliche type:

w

This cliche calls "etl" to set up the pointers and restarts ET. Now
begin editing as usual. The first time it is necessary to enter control
mode type:

w

This passes control to the cliche "e . -Whenever control mode must be
entered type: v

i

When the editing is finished, it is time to do the assembly. Type:
e,mac

When this cliche finishes the new eglish will be in file "eng", and the
binary with symbol punch will be in file "pin". (Do not forget that the

macro symbol punch waits for a title, Because there are input buffers, the
title may be typed anytime after the cliche "mac" has begun.) The cliche

28

finishes by setting up the input and output pointer for DDT and loading
it. To read in the binary program to DDT type its control characters:

Zero core.

Kill the symbol table.

Read in the binary program.
Read in the symbols.

HK KRN

When it is necessary to go from the binary program back to DDT type:

o

This passes control onto the cliche "d" which recalls DDT. Whenever it
is necessary to recall DDT thereafter type:

o

When the debugging is finished, punch out the binary from DDT. The
file "outp" has been set up for that purpose. If copies of the files
are wanted they can be moved to the punch:

m,outp,pchz

m,eng,pch,
m,bin,pcﬁl

29

APPENDIX T

bff

cbf

cfe

cnu

gfe

ion

mfe.

nad

noc

ntl

udn

Error Messages

Buffer Full. This indicates that more than 36 characters have
been typed into the ODIN interpreter without any 'carriage return’'.

Cliche Buffer Full. This indicates that the text of a cliche has
exceeded 70 characters. To avoid this trouble use nested cliches,
i.e. where one cliche calls another.

Cliche Format Error. This means that some format mistake has
been made in defining a cliche. To correct is Just retype the
cliche definition.

Cliche Name Undefined. This message indicates that the user has
asked to execute a cliche that has not been defined.

General Format Error. This means that some format error has been
made in entering a system control command.

Illegal Octal Number. This message 1s typed out when the user
attempts to directly attach either the input or output pointers
outside the legal limits.

Move Format Error. This means that a move file command has been
incorrectly typed.

Name Already Defined. This means that either the name in a file
naming command or the cliche name in a cliche definition has

already been defined.

Non Octal Character. This means that a character not in the set
O,l,2,5,h,5,6,7 has been typed when ODIN expected a purely octal
number. Such times are in octal debugging mode and in directly
attaching an input or output pointei‘°

Name Too Long. This indicates that an identifier has exceeded
six characters.

Undefined Name. This means that either a file name or
cliche name referred to in the control command in undefined.

exceeded drum space

halt at #1 ac- #2 io-#3

ilg instr at #1

ilg iot at #1 ac-#2 io-#3

nesting too deep

too many cliches

too many names

ac-#2 io-#3 -

This means that the user has attempted

to read or punch beyond his allotted drum
space. The only recovery is to move
un-needed files to the real punch to make
room for additional paper tape images.

This means that a user or service program has
halted at location #1 with the contents of
the accumulator equal to #2 and the contents
of the I - O register equal to #3.

This means that the user or service program
attempted to execute an illegal instruction
at location #1. The contents of the AC and
IO are indicated as above.

This means that the user program attempted to
1"

execute an illegal "iot" commend at location
#1. AC and IO as above.

This means that cliches have been nested to
a depth greater than 8.

This means that more than 13 cliches have
been defined.

This means that more than 18 files have
been defined.

ii

ADD
AND
ASC
CaC
CAL
C8S
COF
CKS
CLA
CLF
CL!
CLO
CMA
CMl
CTF
DAC
DAP
DBA
DCH
DCL
ocTy
DEN
OF1
DIA
D10
o1P
D1V
OPY
DRA
RT
DRD
DRS
DSN
DWC
DWR
DZM
EEM
ERM
ESM
GCF
GLF
GP{
GPR
GSP
HLT
190
10¢C
10X
I0R
107
1S8
Isp

40
02
72
72
16

74
72
76
76
76
65
76
77
75
24
26
72
14
72
72
72
74
72
32
30
56
72
72
72
72
72
72
72
T2
34
72
72
72
72
72
72
72
72
76
72
74
44
04
72
72
46

YYYY
YYYY
ccsl
0053
YYYy
0056
6000
0033
0200
000F
4000
1600
1000
0000
2000
Yyvy
YYYY
2061
YYYY
0063
0710
0110
4000
0061
YYYY
YYvyy
YYYY
0007
2062
€c50
0510
0010
0410
0062
0610
YYYY
4074
0065
0055
0127
2026
2027
0027
0026
0400
0446
1000
YYYy
YYYy
NNNN
ces2
YYvy

APPENDIX I

ADD

LOGICAL AND

ACTIVATE SEQ BREAK CHANNEL CC
CLEAR ALL CHANNELS

CALL SUBROUTINE

"CLEAR SEQ BREAK SYSTEM

CLEAR 10, TRANSFER (PF) TO 10
CHECK STATUS CEXCLUDING TELETYPES)
CLEAR AC

CLEAR SELECTED PROGRAM FLAGS
CLEAR 10

CLEAR OVERFLOW :
COMPLEMENT (AC) [ONES COMPLEMENTY.
COMPLEMENT (I0) C(ONES COMPLEMENT)
CLEAR AND TRANSFER FLAGS <CLEAR RNG>
DEPOSIT (AC) |
DEPOSIT ADDRESS PART

DRUM BREAK ADDRESS

DEPOSIT A CHARACTER

DRUM CORE LOC"N

IBM DISK CONTROL

IBM DISK END

DEPOSIT (PF) IN 10 CINCLUSIVE OR)
DRUM INITIAL. ADDRESS

DEPOSIT C(10)

DEPOSIT INSTRUCTION PART

DIVIDE [WITH POSSIBLE SKIP)
DISPLAY ONE POINT ON CRT

DRUM REQUEST ADDRESS

DEACTIVATE SEQ BREAK CHANNEL CC
1BM DISK READ

IBM DISK RESET

IBM DISK SENSE

DRUM WORD COUNT

IBM DISK WRITE

DEPOSIT ZERO IN MEMORY

ENTER EXTEND MODE

ENTER RESTRICT MODE

ENTER SEQ BREAK MODE

CLEAR LIGHT=PEN STATUS BIT

LOAD SYMBOL GEN FORMAT

GENERATOR PLOT LEFT

GENERATOR PLOT RIGHT

GENERATOR SPACE

HALT

INITIATE "90 DD INTERRUPT

INDEX CHARACTER

INDEX

INCLUSIVE OR

IN=OUT TRANSFER GROUP

INITIATE SEQ BREAK ON CHANNEL CC
INDEX AND SKIP IF POSITIVE

iii

JOA
Jup
J3P
LAC
LAY
LAP
LAT
LAW
LAW
LCH
LEM
LIA
.10
LRM
LSM
ML
NOP
OPR
PRA
PPR
RaL
RAR
RCK

RCL

RCR
RCV
R,
RIL
RIR
R¥B
R0

RNG
RNG
RPA
RPB
RPR
RPS
RRB
RER
RTS
RTY
SAD

wy
Tom
i~

nLn N Win Wn
TS DT W DD

A3 O 3

w
- ™
O -

STL
SIM
SIR

17
60
62
20
76
76
76
70
71
12
72
76

~

(-4

72

~

f e

34
75
76
72
72
66

67

72

64
67
72
72
66
67
72
72
72
75
75
72
72
72
772
72
72
72
72
50
&5
67
52
66
67
72
72
66
72
66
72
67

YYYY
YYYY
YYYY
YYYY
0040
0100
2200
NANNN
NNNN

YYYY.

0074
0020
YYYY
0064
0054
YYYY
0000
NNNN
0005
00C6
1 NANN
ENNN
co32
INMN
SNNN
0031
6G35
2NNN

EXENE Y

0NN

2
2
~

(e S ¢
< L £
W L3 (W
o G

SHNN
SMANN
YYYY
TRAN

RMN
2007
0146
KNNN
1346
S6NNN
0346
6NNN

JUMP AND DEPOSIT (AC)

JUMP

JUYP AND SAVE PROGRAM COUNTER
LOAD AC

LOAD AC WITH (IO

LOAD AC WITH (PC)

LOAD AC FROM TEST WORD

LOAD AC WITH NNNN

LOAD AC WITH =NNN

LOAD A& CHARACTER

LEAVE EXTEND MODL

LOAD 1D WITH (ACS

LOAD 1D

LEAVE RESTRICT “0ODE

LEAVE SEQ BREAK MODE

MULTIRLY

NO DPERATION

OPERATE GROUR

PUNCH PERF TAPE, ALPHA

PUNCH PERF TAPE, BINARY

ROTATE AC LEFT

ROTATE AC RIGHTY

READ MILLISEC CLOCTK

BOTATE cuUMRINED AC AND I0 (EFT
ROTATE COMBINEZD AC AND IOD RIGHT
READ A/D CONVERTER

READ HIGH-EZINERGY LABS DATA LINES
ROTATE 10 LEFT

ROTATE 10 RIGHT

READ KEYROARD BUFFER

READ LOCATION COUNTER [131D="901]
READ LOCATION COUNTER {[131iM=PRILCO]
ENTER RNG MODE IF 10 BIT 11=i
ENTER RNG M0DE IF 10 BIT {1=1
READ PERF TAFE, ALPHA

READ PERF TAPE, BINARY

READ IBM PROJECTOR UNIT U

READ IBM PROJECTOR STATUS

READ REASER BUFFER

RTAD SuIV{H REGISTER

READ TELETYRPE STATUS REGISTER
READ TELETYPE UNIT U

SKIP IF C(ACY X (YYYY)

SHIFT AC LEFTY

SHIFT AC RIGHT

SKIP IF (AL (YYYY)

SHIFT COMBINZD AC AND 10 LEFY
SHIFT COMBINED AC AND ID RIGHT
SET DISPLAY BUFFER» NO INTENSITY
570P DATA FLOW [13iM="00]

SHIFT GRrOUP

SET INITIAL ADDRESS [131D0="901
SHIFT 10 LEFT

SET INITIAL ADDRESS [13iM=PHILCO]
SHIFT 10 RIGHT

1]

iv

SKP
SMA
SN1
SPA
SP1
SRB
STF
Sus
SWD
SWM
SWP
SZA
SZF
SZ1
SZ0
RYA)
TIF
TY!
TYO
WPR
HTY
XCT
XOR

AND
10R
X0R
XcT
LCH
DCH
CAL
JDA
LAC
LI0
DAC
DAP
DIP
D10
DZM
ADD
sus
10X
15P
SAD
SAS
MUL
DIV
Jup
JsP
SZF
S2
SZA
SPA
SMA
SZo

64
64
64
64
64
72
76
42
72
72
76
64
64
65
64
64
75
72
72
72
72
10
06

NNNN
0400
4000
0200
2000
0021
001F
YYYY
0546
X046
0060
0100
000F
4000
1000
0050
0000
0004
0003
2U12
1U66
YYYY
YYYY

SKIP GROUP
SKIP IF (AC)
SKIP IF (I0)
SKIP IF (AC)
SKIP IF (107 2
SET RELAY BUFFER
SET SELECTED PROGRAM FLAG

SUBTRACT

SET WORD COUNT (131D""901

SET WORD COUNT (131M=PHILCO)

SWAP (AC) AND (10)

SKIP IF (AC) = +0

SKIP IF SELECTED FLAG = 0

SKIP IF (I0) = +0

SKIP IF OVERFLOW = 0» CLEAR OVFLO
SKIP IF SWITCH S = 0

TRANSFER I0 7O PROG FLAGS [INCL OR1
TYPE IN

TYPE OUT

WRITE 1BM PROJECTOR UNIT U

WRITE TELEYYPE UNIT U

EXECUTE INSTRUCTION IN YYYY
EXCLUSIVE OR

vV Yu A
OO QOO

PDP OP=CODES» NUMERIC

02
04
06
10
12
14
16
17
20
22
24
26
30
32
34
40
42
44
46
50
52
54
56
60
62
64
64
64
64
64
64

YYYY
YYYY
YYvyy
YYyvyy
YYYY
YYYY
YYYY
YYYY
YYYY
YYYY
YYYY
YYYY
YYvyy
YYYY
YYvyy
Yyvyy
YYvyy
YYyvy
YYYy
YYYY
YyYyvyy
YYYY
YYYY
YYYY
YYYy
000F
00S0
0100
0200
0400
1000

.OGICAL AND

INCLUSIVE OR

EXCLUSIVE QR

EXECUTE INSTRUCTION IN YYYY
LOAD A CHARACTER

DEPOSIT A CHARACTER

CALL SUBROUTINE

JUMP AND DEPOSIT (AC)

L.0AD AC

LOAD 10

DEPODSIT (AC)

DEPOSIT ADDRESS PART
DEPOSIT INSTRUCTION PART
DEPOSIT (I10)

DEPOSIT ZERO IN MEMORY

ADD :
SUBTRACT

INDEX

INDEX AND SKIP IF POSITIVE
SKIP IF (AC) ¥ (YYYY)

SKIP IF (AC) = (YYYY)
MULTIPLY

DIVIDE [WITH POSSIBLE SKIP)
JUMP

JUMP AND SAVE PROGRAM COUNTER
SKIP IF SELECTED FLAG = 0
SKIP IF SWITCH S = 0

SKIP IF CAC) = +0

SKIP IF (AC) 2 0

SKIP IF (AC) < O

SKIP IF OVERFLOW = 0» CLEAR OVFLO

v

sp1
SNI
SKP
Lo
S71
RAL
RIL
RCL
SAL

SIL

SCL
SFT
RAR
RIR
RCR
SAR
SIR
SCR
LAW
LAW
RPA
RPB
TYO
TY1
PPA
PPB
DRY
DRS
RSR
RPS
SRB
GSP
GPR
RRB
RCV
RCK
CKS
RHL
RLM
RKB
CAC
LSM
ESM
CBS
DIA
DHC

DCL

LRM
ERM
LEM
DEN
GCF
SDF
SIM
DSN

64
64
64
65
65
66
66
66

66

66
66
66
67
67
67
67
67
67
70
71
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72

2000
4000
NNNN
1600
4000
I NNN
2NNN
3NNN
SNNN
6NNN
TNNN
NNNN
I NNN
2NNN
3NNN
SNNN
ONNN
TNNN
NNNN
NNNN
0001
0002
0003
0004
0005
0006
0007
0010
0011
0012
0021
0026
0027
0030
0031
0032

0033.

0035
0036
0037
0053
0054
0055
0056
0061
0062
0063
0064

0065

0074
0110
0127
0146
0346

0410

SKIP IF (10) 2
SKIP IF (1D) ¢
SKIP GROUP
CLEAR OVERFLOW
SKIP IF (I0) = +0

ROTATE AC LEFT

ROTATE 10 LEFT

ROTATE COMBINED AC AND I0 LEFT
SHIFT AC LEFT

SHIFT 10 LEFT

SHIFT COMBINED AC AND 10 LEFT
SHIFT GROUP

ROTATE AC RIGHT

ROTATE 10 RIGHT

ROTATE COMBINED AC- AND IO RIGHT
SHIFT AC RIGHT

SHIFT I0 RIGHT

SHIFT COMBINED AC AND ID RIGHT
LOAD AC WITH NNNN

LOAD AC WITH =NNNN

READ PERF TAPE, ALPHA

READ PERF TAPEs BINARY

TYPE OUT

TYPE 1IN

PUNCH PERF TAPE, ALPHA

PUNCH PERF TAPE» BINARY

DISPLAY ONE POINT ON CRT

I8M DISK RESET

READ SWITCH REGISTER

READ 1BM PROJECTOR STATUS

SET RELAY BUFFER

GENERATOR SPACE

GENERATOR PLOT RIGHT

READ READER BUFFER

READ A/D CONVERTER

READ MILLISEC cLOCK

CHECK STATUS [EXCLUDING TELETYPES)
READ HIGH=ENERGY LABS DATA LINES
READ LOCATION COUNTER [131M*PHILCO)
READ KEYBOARD BUFFER

CLEAR ALL CHANNELS

LEAVE SEQ BREAK MODE

ENTER SEQ BREAK MODE

CLEAR SEQ BREAK SYSTEM

DRUM INITIAL ADDRESS

DRUM WORD COUNT

DRUM CORE (OC"N

LEAVE RESTRICT MODE

ENTER RESTRICT MODE

LEAVE EXTEND MODE

IBM DISK END

CLEAR LIGHT=PEN STATUS BIT

STOP DATA FLOW (13iM="90]

SET INITIAL ADDRESS [131M=PHILCO)
IBM DISK SENSE

0
0

vi

190 72 0646 INITIATE ©00 DD INTERRUPT
oR 72 0510 IBM DISK BTAD

SHD 72 0546 SET WORD COUNT [131D="901
D 72 0610 184 DISK WRITE

DCT 72 071 184 DI3K CONTROL

RTS 72 OX34 READ TELETYPE STATUS REGISTER
RLD 72 1336 READ LOCATION COUNTER [131D="90]
SID 72 1246 SET INITIAL ADDRESS (131D=%90]
RPR 72 1UL2 READ IDM PROJECTOR UNIT U

RTY 72 U4 READ TELETYPE UNIT U

WTY 72 1UbB6 WRITE TELETYPE UNIT U

SpB 72 2007 SET DISPLAY BUFFERs NO INTENSITY
GLF 72 2026 LOAD SYHMBOL GEN FORMAT

GPY 72 2027 GENE Ra?ﬁ? PLOT LEFT

DBA 72 2061 DRUM BREAK ADDRESS

ORA 72 2042 DRUM QEOSaﬁ? ADDRESS

WPR T2 2UL2 WRITE IBM PROJECTOR UNIT U

EEM 72 4074 ENTER EXTEND HODE

DsC 72 CC50 DEACTIVATE SEa SDEAK CHANNEL CC
ASC 72 CC51 ACTIVATE SE@ ZREAK CHANNEL CC

158 r2 ¢cs2 INITIATE SEN BREAK ON CHANNEL CC
107 72 NNNN Iﬁ““ T TRANOFER GROUP

Siiu 72 X046 ET WORD COUNT [1314=PHILCO]

10C 76 1000 T\ﬁ X CHARACTER

DF1 74 4000 DEFOSIT (PF) IN ID LINCLUSIVE OR)

COF 74 6000 LEAR. 10, TRANSFER ¢PF) TO 10

TIF 75 0000 TRANSFER [0 TD PROG FLAGS C[INCL' OR)

RNG 75 0100 ENTER RNG MODE IF 10 BIT 11=1

CTF 75 2000 CLEAR AND TRANSFER FLAGS <CLEAR RNG>

RNG 75 2100 ENTER RNG MODE IF 10 8IT 11=1

NOP 76 0000 NO OPERATION

CLF 76 000F CLEAR SELECTED PROGRAM FLAGS

STF 76 00LF SET SELECTED PROGRAM FLAG

LIA 76 002 LOAD I0 HITH (AC)

LAT 76 0050 LOAD AC WITH €100

SWP 76 0050 SWAP (AC) AND (ID)

LAP 76 0100 LOAD AC WITH (PC)

CLA 76 0200 CLEAR AC

HLT 76 0400 HALT

CYA 76 1000 COMPLEMENT C(AC)Y CONES COMPLEMENT)

LAT 76 2200 LOAD AC FROM TEST WORD

CLI 76 4000 CLEAR I0

OPR 76 NNNN OPERATE GROUP

Cyl 77 0000 COMPLEMENT €10) C[ONES COMPLEMENT)
PDP=1 10T INSTRUCTIONSs BY CLASS

RPA 72 0001 = READ PERF TAPE, ALPHA

RPB 72 0002 READ PERF TAPE, BINARY

TYO 72 0003 TYPE OUT

TYT 72 0004 TYPE IN

PPA 72 0005 PUNCH PERF TAPEs ALPHA

PPB 72 0006 PUNCH PERF TAPEs BINARY

DPY 72 0007 DISPLAY OME POINT ON CRT

SOB 72 2007 SET DISPLAY BUFFERs NO INTENSITY

DRS 72 0010 IBM DISK RESET

DEN 72 0§10 IBM DISK END

vii

DSN
DRD
DHR
ocrt
RSR
RPS
RPR
WRR
SRB
GSP
GLF
GPR
GCF

GPL.

RRB
RCY
RCK
CKS
RYS
RTY
RHKL,
RLM
RLD
RKB
SDF
SIM
190
SWD
S1D
SHM
DSC
ASC
188
caC
l.SM
ESM
c8s
.DIA
DBA
DWC
DRA
DCL
LRM
ERM
WTY
LEM
EEM

72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72

72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72

0410
0510
0610
0710
0014
0012
1u12
2Vid
0021
0026
2026
0027
0427
2027
0u30
0031
0032
0033
0xX34
1U34
0035
0036
1336
0037
0146
0346
0u46
0546
1346

X046

¢C50
CC51
£cs52
0053
0054
0055
0056
0061
2061
0062
2062
0063
0064
0065
1U66
Qo746
4074

IBM DISK SENSE

IBM DISK READ

IBM DISK WRIVE

IBRM DISK CONTRO|

READ SWITCH REGISTER

READ IDM PROJECTOR STATUS

READ 1BM FROJECTYOR UNIT U

WRITE IBM PROJECTOR UNIT U

SET RELAY BUFFER

GENERATOR ESPACE

LOAD SYMBOL GEN FORMAT

GENERATOR PLOT RIGHT

CLEAR LIGHT“PEN STATUS BIT
GENERATOR PLOT LEFTY

READ READER BUFFER

READ A/D CONVERTER

READ MILLISEC CLOCK

CHECK STATUS [EXCLUDING TELETYPES]
READ TELETYPE STATUS REGISTER
READ TELETYPE UNIT U

READ HIGH=ZNERGY LABS DATA LINES
READ LOCATION COUNTER [131M=PHILCO)
READ LOCATION COUNTER [131D="901]
READ KEYBOARD BUFFER

STOP DATA FLOW [13i1M="901]

SET INITIAL ADDRESS [131M=PHILCO)
INITIATE "90 DD INTERRUPT

SET HORD COUNT (131D*"901]

SET INITIAL ADDRESS (131D~-"90)
SET WORD COUNT [12IM~PHILCO]
DEACTIVATE SEQ BREAK' CHANNEL CC
ACTIVATE SEQ BREAK CHANNEL CC
INITIATE SEQ BREAK ON CHANNEL cC.
CLEAR ALL CHANNELS

LEAVE SEQ BREAK MODE

ENTER SEQ BREAK MODE

CLEAR SEQ BREZAK SYSTEM

DRUM INITIAL ADDRESS

DRUM BREAK ADDRESS

DRUM WORD COUNT

DRUM REQUEST ADDRESS

DRUM CORE LOC"N

LEAVE RESTRICT MODE

ENTER RESTRICT MODE

ARITE TELETYPE UNIT U

LEAVE EXTEMD MODE

ENTER EXTEND MODE

viii

APPENDIX III

The following is a list and explanation of the transliteration between
the teletype and typewriter characters under the ODIN Time Sharing System.

A -7 and O - 9 are translated directly.
The special characters are as follows:

Teletype Concise(Typewriter)
! (Exclamation Point) | (Vertical Bar)
" "
~
$ -
% V
& A
' '
> >
< <
+ +
5 " ,(Center Dot Comma)
: *.(Center Dot Period)
*. X (Times Sign)
’
? ?
/ /
— -
@ — (Over Strike)
TAB TAB
CARRIAGE RETURN CARRIAGE RETURN
RU _ (Under Bar)
\ * (Center Dot)
LINE FEED NULL

((

ix

))

((shift K) [

] (shift M)]

4 T

ALT MODE \ UPPER CASE SHIFT
(ALPHABETIC ONLY)

RUBOUT BACKSPACE

A1l other teletype characters (e.g. '"BELL', 'EOT', Etc.) are
translated NULL and are invisible to the 'TYI' instruction.

'Alt Mode' acts as upper case shift for alphabetic characters only:
All upper case special characters are handled automatically. It is
necessary to type 'Alt Mode' before each upper case alphabetic character
desired, because a downshift is automatically inserted before the second
alphabetic after an 'Alt Mode'. For example, to insert 'TITLE' from a
teletype, one would type 'Alt Mode' 't' 'Alt Mode' 'i' 'Alt Mode' 't'
'Alt Mode' '1l' 'Alt Mode' 'e'.

Upper case type out materializes as the character preceded by
backward slash, hence the example word would be typed out as \ﬂ“@\@\@ﬁ@
on the teletype. :

The 'Shift! key on the teletype changes a key from the lower
character to the upper, as printed on the key. The 'control' key
causes the generation on those control functions indicated in writing
on the top half of the key. The only 'control' character used by
ODIN is ‘'tab; which translates to typewriter 'tab' and materializes
as a number of spaces. All others are ignored.

It is important not to confuse the use of the 'Shift' key and
'Alt Mode'. 'Shift' changes a key from one teletype character to
another, whereas 'Alt Mode' causes the character to be in typewriter
upper case. (e.g., 'Shift' n is the character '¢', while 'Alt Mode;

n is N.)

APPENDIX IV

Limits on the user drum file space

User O
User 1
User 2
User 3
User 4

(teletype)
(teletype)
(teletype)
(Twx ")
(typewriter)

110000
160000
300000
320000
230000

xi

77T
27777
317777
337777
277777

APPENDIX V

It is proposed to provide limited system services, under ODIN,
to aid users in running the Philco displays. These services are:

1. Sorting and buffering of input from the keyboards. (User
program executes an "RKB" instruction and receives the
next character from his keyboard.

2. System maintenance of all displays. (The user is responsible
for setting up the display buffer).

Each of ODIN's consoles will have one Philco display and keyboard asscoiated
with it. All input from the keyboard will be placed in that keyboard':

input buffer. Only the user associated with that display will be able te yns-

its keyboard. The "RKB" instruction will take the next character, incluui:
“Special Button Bits" but not unit number bits, from the buffer. If therec
is no character in the buffer the program will be dismissed until a
character is typed.

Each user will have a display buffer area in core 3. He will be able
to reference it in extend mode as if he had the bare machine. The buffer
for each user will extend from 500018 to 31000g. (The system will relocate
the address part of all instructions appropriately for each user). Any
extend mode references outside this area will cause a system error message
and discontinuance of the program.

The system will maintain the display buffer as directed by the program.
The display area will always begin at the start of the buffer, but the word
count can be set by the "sum" instruction. If the word count is set to
zero the display will be stopped. Any word count greater than lOOO8 will
be taken to be 10008.

xii

Addendum No. 1 to TS Memo No. 23 November 17, 1964
(User's Manual to the ODIN Time
Sharing System)

Additions and Changes to the ODIN Time Sharing System

by Harold Gilman

A number of additions and changes to the ODIN system have been
made in order to allow the use of the Philco displays and keyboards
within the system. There are 12 displays, six in the new building
and six in the area around the PDP-1. FEach of the five users in the
ODIN system 1s allotted two of the displays and keyboards, with the
extra two being given to the two less frequently used consoles in
order to facilitate testing of the displays themselves. Each user has
at least one display and keyboard in each of the rooms.

Each user has also been allotted a fixed area in core 3 to be
used as a display buffer. This area is referenced in extend mode as
if it were locations 30000 - 30773%; the svstem relocates all references
so that they refer to the proper location., All instructions which look
at or change these locations may be performed, but Jumps or other
transfers of control will be freated as illegal instructions and
interrupt execution of the program. Any attempt to reference locations
outside the proper area will cause execution to be interrupted and the

error message 'ilg mem ref' to be printed by the system.

The contents of the buffer should be the same as i1f the Phiico's
were being run on the bare machine. (See memo 17, Supplement to the
PDP-1 Handbook, by Gary Feldman). In order to prevent one user from
displaying on another user‘s console, and also to insure that the
proper consoles are selected for each user, the system maintains four
words of console selecting code at the beginning of each buffer. This
area is inaccessible to the user. Any Philco control word (a word which
has the form Thxxxx) which is placed in the buffer area will be changed
so as to have the form T476xx, This allows the user to change mode,
brightness, and size; but prevents him from changing the console select.
Whether or not the buffer area i1s being displayed the system will make
that change and not say a word about it.

There are two instructions which affect the display of information
on the Philco screens. The user may tell the system to begin displaying
at a certain location by placing that location in the I-0 register and
executing the "sim" instruction (720%346). This sets the initial location
being displayed. This will not change until the next "sim" instruction
is executed. The location speclifled must be between 3000C and 30773
inclusive. The word count of the displayed information is set with the
"swm" instruction (720046). A word count of zero will cause no display.

The desired word count is loaded in the I-0 and the "swm" executed.

The word count will remain the same until changed by another "swm". The
word count may be as large as 7758, but the sum of word count and
initial location must not be greater than 30773. If the word count is
too large, the system will adjust it so that it is the maximum allowable
for the current initial location. Once the location and word count are
set, the system will continue displaying with those specifications

at a thirty cycle repetition rate until either is changed. The display
can be stopped only by setting the word count to zero.

Keyboard input is interrogated with the "rkb" instruction (720057).
When "rkb" is executed, the next character from the keyboards associated
with the user's displays will be placed in the I-0 register. The input
is untranslated eight bit code of the form ssccccee, where the s bits
are the special buttons on the keyboard and ccccee is the six bit character
code. The character is placed in the low order end of the I-0. If there
are no more characters in the input buffer, the program will be dismissed
upon execution of "rkb". At present it is impossible for a program to get
typewriter concise code from the Philco keyboards. The instruction
720417 is available to test the state of the Philco input buffers. If
the buffer is empty, the instruction will skip the next instruction.
(730417 will skip if the buffer is not empty.) This instructicn should
only be used if it is imperative that a program run while waiting for
keyboard input,

In addition to the aforementioned changes, two new features have
been added to the general operations of ODIN. In order that programs
may be written to be compatible with both time-sharing and the bare
machine, a "skip on ODIN" instruction (720617) has been implemented.
This instruction is a "nop” on the bare machine, but causes the next
instruction to be skipped when lhie program is running under ODIN,

The cliche feature of ODIN has alsc been expanded slightly to add
versatility. Skip instruction tests of the A-C, I-0, and program flags
may now be included within cliches. If the instruction would skip the
next instruction in a program, it will skip the next system command in
the current cliche. This command has the forwm ".,xxxxxx", where xxxxxx
is the octal for a skip instruction. For example:

A user defines the following cliche to the system:

c,foo, (s,640006
e,fool
e,foo?)

During the execution of this cliche, if program flag six were zero,
the cliche would skip the execution of 'fool' and proceed with the
execution of "foo2', (640006 is octal for "szf &").

It is possible with this system to have program control of cliches,
since a program could go "stf 6", "hit", and cause 'fool' to be
executed within the cliche 'foo'.

Any questions or problems about this new version of ODIN should
be referred to Gary Feldman or Harold Gilman.

NOTE: In order to prevent accidental destruction of files, the system
command "k <carriage return >" has been replaced with "k,all

s '
< carriage return >".

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	D-01
	Nov64upd_01
	Nov64upd_02
	Nov64upd_03

