STANFORD ARTICIFICTAL INTELLIGENCE PROJECT November 1969
OPERATING NOTE No. 57

SAIL

by
Dan Swinehart

and

Bob Sproull

ABSTRACT: SATIL is a high-level programring system for the PDP-10
computer. It includes an extended ALGOL compiler and a
companion set of execution-time routines. A non-standard
ALGOL 60 compiler 1is extended to provide facilities for
describing manipulations of an associative data structure,
This structure contains information ahout ITEMS, stored as
unordered collections of items (sets) or as ordered triples
of items (associations). The algebraic capabilities of the
language are linked to the associative «capabilities by
means of the DATUM operator, which can associate with any
ITEM an algebraic datunm,

The work reported here was supported in part by the Advanced Research
Projects Agency of the Departwent of Defense under Contract SD-183

Carnegie-Mellon University Version - May, 1970

TABLE OF CONTENTS

CONTENT _ ' PARAGRAPH

SECTION 1--INTRCDUCTION

SECTION 2--PROGRANS, BLOCKS, STATEMENTS

SYNTAX 2- 1
EXAMPLES 2= 2
SEMANTICS 2- 3
Declarations , 2- 3
Statements . 2= 6
Block Names 2- 9
Entry Specifications 2-11

SECTTION 3--DECLARATIONS

SYNTAX 3= 1
RESTRICTIONS - ‘ 3- 2
EXAMPLES ’ 3- 6
SEMANTICS 3-8
Scope of declarations 3-8
Type Declarations ‘ 3-11
Numeric Teclarations 3-13
String Declarations 3-15
Item Declarations 3-18
Ttems 3-19

Ttem Genesis 3-20
Datunms 3-21
Ttemvar Declarations 3-22
Set Declarations : 3-24
Array Declarations . 3-25
Preload Specifications , 3-32
‘Procedure Declarations . 3-37
Formal Paranmneters 3-38
Forward Procedure Declarations ' 3-41
Recursive Procedures . 3-43
External Procedures 3-46
Parametric Procedures : 3-590
Defaunlts in Procedure Declarations 3~-52
Restrictions on Procedure Declarations 3-53
Define Specification ‘ 3-54
Requirements 3-55

SECTION 4--ASSIGNMENT STATEMENTS

SYNTAX 4- 1
RESTRICTION ‘ 4- 2
SEMANTICS . 4- 3
Datum Assignments 4- 7
Swap Assignment 4- 8

Byte statements u-10

1 SATL MANUAL

SECTION 5--EXECUTION CONTROL STATEMENTS
SYNTAX
SEMANTICS
Conditional Statements
If Statement
If ... Else Statement
Ambiguity in Conditional Statements
Go To Statements
For Statements
¥hile Statement
Do Statement
Case Statements
Return Statement
Done Statenment
Next Statement

SECTION 6--PROCEDURE STATEMENTS

SYNTA X

SEMANTICS
Actual Parameters
Call by Value
Call by Reference
Procedures as Actual Parameters
Fortran Procedures
Inplementation Details
Examples:

SECTION 7--LEAP STATEMENTS

SYNTAX

SEMANTICS
LEAP Introduction
General Restrictions
Construction - Retrieval Distinction
PUT and REMOVE
DELETE
MAKE
ERASE
FOREACH Statement
Restrictions and Caveats

SECTION 8--ASSEMBLY LANGUAGE STATEMENTS
SYNTAX

SEMANTICS . . .
Distinctions Between START_CODE and QUICK_CODE

SECTION 9--ALGEBRAIC EXPRESSIONS
SYNTAX
SEMANTICS
Conditional Expressions
Fxample
Assignment Expressions
Example
Case Expressions
Example
Simple Exgressions

2 SAIL MANUAL

5- 1
5- 2
5- 2
5- 4
5- 5
5- 6
5- 8
5-11
5-16
5-17
5-18
5-19
5-23
5-25
6- 1
6~ 2
6~ 4
6~ 5
6~ 6
6-10
6-12
6-15
6-16
7... 1
7- 2
7- 2
7- 7
7- 8
7- 9
7-10
7-11
7-13
7-14
7-21
8~ 1
8- 2
8- 6
9- 1
9- 2
9- 2
9- 3
9- 4
9- 5
9- 6
9- 8
9- 9

The Boolean Fxpression Anomaly 9-10

Precedence of Algebkraic Operators - 9-13
Fxpression Evaluation Rules 9-14
Algebraic Expressions 9-15
Disjunctive Expressions 9-18
Relaticnal Expressions 9-19
Arithmetic Type Conversions 9-21
String-Arithmetic Conversions 9-26
Adding Expressions 9-28
Terns 9-31
Concatenation Operator 9-36
Factors o 9-37
Primaries 9-38
Variables and Constants 9-39
saubstrings 9-40
Special Length Operator (INF) 9-41
Function Designators : 9-43
Length ' 9-46
Lop 9-47
Cvn 9-48
Lnot 9-49
Abs 9-50
Unary Minus 9-51
Foolean Primaries , ‘ 9-52
ISTRI PL® 9-53
LDB and TILDB 9-54
SECTION 10--SET AND ASSOCTATIVE EXPRESSIONS _ ‘
SYNTAX ' 10- 1
SEMANTICS 10~ 2
Set Expressions 10- 2
Set Primaries 10~ 3
Item Constructs ' 10~ 4
Item Selectors 10- 5
NEW Ttcos ‘ 10~ 6
NEW_ITEM Declaration ‘ 10~ 6
ANY Construct 10—~ 7
CVI 10- 8
LEAP Booleans 10- 9
SECTTON 11--BASIC CONSTRUCTS
SYNTAX ' 11- 1
SEMANTICS . ; 11- 2
Variables 11~ 2
Datunms 11— ¢
Identifiers , 11- 7
Sail Reserved Words 11-10
Sail Predeclared Identifiers : 11-11
Arithmetic Constants 11-13
String Constants 11-17
Fxamples 11-20
Comments 11-22

3 ' 'SATL MANUAL

SECTION 12--FXECUTION TIuE ROUTINES

GENERAL 12- 1
Scope ‘ : 12- 1
Notational Conventions 12- 3
Fxample 12- 5

I/0 ROUTINES ' 12- €
Open ‘ ' 12- 6
Close, Clesin, Closo 12-10
Getchan 12-12
Release 12-14
Lookup, Enter : 12-17
Rename ‘ C12-21
Breakset : 12-22
Sethreak ‘ 12-35
Stdbrk . 12-37
Input , 12-40
Scan . 12-43
Out : : 12-45
tinout . 12-46
Wordin ‘ , 12-48
Arryin , 12-50
Wordout 12-53
Arryout 12-55
Mtape ~ ' 12-57
Useti, Useto , 12-59
Realin, Intin ‘ ' 12-61
Realscan, Intscan 12-66
Teletype I/0 Functions . 12~68
Pseudo-teletype functions 12-70

STRING MANTPULATION RCUTINES 12-71
Length ' 4 - 12-71
Equ 12-73

TYPE CONVERSTON ROUTINES 12-75
Setformat , 12-75
Getformat . - 12-78
Cvs : ’ 12-80
Cvos 12-82
Cvis ' ‘ 12-84
Cvsi , 12-86
Cve, Cvf, Cvg : 12-88
Cvstr ‘ ;o 12-93
Cvxstr ’ 12-95
cvd 12-97
Cvo , 12~99
Cvasc ' 12-101
Cvsix 12-103
cvfil A 12-105%

ARRAY MANTPULATION ROUTINES 12-107
Arrinfo : 12-107
Arrblt ‘ 12-109
Arrtran 12-111

LIBERATION-FROM-SAIL ROUTINES . 12-113
Code : 12-113
Call 12-11%
Usererr 12-117
Point 12-119

4 SATIL MANUAL

SECTION 13--USE QF DEFINE

Defining Macros

String Constants in Nacro Bod1ps
Using Macros

‘'Mactro Parameters
Example

Actual Parameter Expansion
Examples

SECTION 14--COMPILER OPERATION
COMMAND FORMAT
Semantics
Rpg Mode
Switches
Debugging modes
ERROR MESSAGES
STORAGF ALLOCATION

SECTION 15--PROGRAM OPERATION
LOADING AND STARTING SAIL PROGRANMS
Loading

Starting the Program -- Normal Operation

Starting the Program in “RPG™ Mode

Starting the Program with Allocation Modifications

ERROR MESSAGES
DEBUGGTING
Sy mbols
Blocks
Sail-Generated Symbols
Warnings
Hanging Store
Long Names

SECTION 16--PROGRAM STRUCTURE
THE SAIL CORE IMAGE (REQUIRED)
Main Program
Storage Allocation, Ba91c utilities
Other RExecution-Time Routines
OPTIONAL ADDITIONS
Separately Compiled Procedures
Fortran Procedures
Assembly Language Procedures
Others

SECTION 17--IMPLEMENTATICN INFORMATION
STORAGE LAYOUT
User Table
Storage Allocation Routines
Corget
Correl
Corinc
Caninc

SAIL

13-
13-
13-
13-
13-
13-
13-1
14— 1
14— 2
1-12
14-13
14-14
14-19
14-22
15- 1
15— 1
15- 2
15- 3
15- 4

15- 5
15- 9
15-10
15-13
15-14
15-15
15-15
15- 16
16~ 1
16~ 2
16- 4
16- 6
16— 7
16- 7
16-11
16-12
16-13
17- 1
17- 1
17- 5
17- 6
17-10
17-11
17-12

MANUAL

- OO

STRINGS
String Descriptors
String Operations
Cat
Substr
Getch
Putch
String Space
Parameters Used by String Operations
String Garbage Collection
String-Oriented Machine Language Routines
ARRAY IMPLEMENTATION
Form
Ex planation
Array Allocation
Dynamic Arrays
Built-In Arrays
Array Access Code
PROCEDURE IMFLEMENTATION
Procedure Body
Discussion

Procedure Calling Sequences
Discussion

SECTTON 18-~APPENDIX -~ USEFUL SUMMARIES
ARTTHMETIC TYPE-CONVEESION TABLE
SAIL RESERVED WORDS
SAIL PREDECLARED IDENTIFIERS
CHARACTER~IDENTIFIER EQUIVALENCES
PARAMETERS TO THE OPEN FUNCTION
BREAKSET MODES
MTAPE COMMANDS
COMMAND SWITCHES
DEBUGGING MODES
VALID RESPONSES TO ERROR MESSAGES

SECTION 19--BIBLIOGRAPHY

17-14
17-14
17-19
17- 20
17-21
17-25
17-26
17-27
17-29
17-30
17-31
17-33
17-33
17-34
17-35
17-35

17-38

SAIL MANUAL

17-42
17-46
17-47
17-48

17-49
17-50

d ved and) e e wd b b
o WO ®w®®DoP D
[T R I R I A
SOOIV WN -

18-1

SECTION 1

TINTRODUCTION

1-1. SAIL is a high~-level programming system for the PDP-10
computer., It includes an extended ALGOL compiler and a companion set
of execution-time routines. A non-standard ALGOL 60 compiler 1is
extended to provide facilities for describing manipulations of an
associative data structure. This structure contains information
about ITEMS, stored as unordered collections of items (sets) or as
ordered triples of items (associations). The algebraic capabilities
of the 1langquage are linked to the associative capabilities by nmeans
of the DATUM operator, which can associate with any ITEM an algebraic
datum, :

1-2. Several forerunners (namely the GOGOL compilers developed at
the Stanford Artificial Intelligence Project) have contributed to the
general appearance of the non-associative ©portions of the SAIL
langquage, The associative data structure is a slightly reworked
version of the LEAP lancuage, which was designed by J. Feldman and
P. Rovner, and implemented on Lincoln Laboratory’s TX-2. This
language 1is described in some detail 1in an article entitled “An
Algol-Based Associative Language™ in the August, 1969 issue of the
ACM Communications [Feldman&RBovnerl. The implementation was modified
to tolerate the non-paging environment of the PDP-10.

1-3. SAIL in a sense has something for evervone, For those who
think in ALGOL, SAIL has ALGOL. For those who want the most from the
PDP-10 and the time-sharing system, SAIL allows flexible 1inking to
hand-coded machine 1language programs, For those who have complex
input/output requirements, the language provides complete access to
the I/0 facilities of the PDP-10 system. For those who aspire to
speed, SAIL generates fairly good code. The user should, however, be
warned that SAIL falls several man-decades short of the extensive
testing and optimization efforts contained in the histories of nmost
commercial compilers, '

D. Swinehart
R. Sproull
November, 1969

7 SATIL MANUAL

SYNTAX

2"1;
<program>

<hlock>

<block_head>

<compound_tail>

<statement>

<compound_statement>

<block_name>

<entry_specificationd>

STCTION 2

PROGRANMS, BLOCKS, STATEMENTS

[T Y'Y

e e
o

.
»
L]

LI Y By
* o8 b
o u

I

&8 s
« 86

S0 60 BU 96 B 53 e S8 69 3 g4 S0 BS 4o sh G664 48 us s es
40 68 8 ¥4 30 ¥% 3 68 B8 06 o B8 43 26 08 B8 s as S2 G0 e
L T T | TN (O A | T O Y (T OO [A O 1 I 1

ey
o

.
it

"

<block>
<eptry_specification> <block>

<block_head> ; <compound_tail>

BEGIN <declaration>
BRGIN <hlock_name> <declaration>
<block_head> ; <declaration>

<statement> END ;
<statement> PND <block_name>
<statement> ; <compound_tail>

<block> _
<compound_statenent>
<assignmpent>
<byte_statement>
<conditional_statement>
<if_statement>
<go_to_statement>
<for_statement>
<while_statement>
<do_statement>
<case_statement>
<return_statement>
Ldone_statement>
<next_statement>
<leap_statement>
<procedure_statement>
<code_block>
<define_specification>
<string_constant> <statement>
<label_identifier> : <statement>
<empty>

BEGIN <compound_tail>

REGIN <block_nrame> <compound_tail>
<string_constant>

ENTRY <id_list>

8 SATL MANUAL

FXAMPLES

2-2.
Given:
S is a statement,
Sc is a Compound Statement,
D is a Declaration,
B is a Block.

Then:

(Sc) BEGIN S; S; S; ... 3 S END

(sc) BEGIN ™SORT™ S; S5; ... 3S END

{B) BEGIN D; D; D; eee¢ 3 S; 52 S; «»e ;3 S END

(B) BEGIN “ENTER NEW INFO™ D; Dy ... 7 S; ... 35S E¥ND

are syntactically valid SAIL constructs.

SEMANTICS
Declarations
2-3. SAIL programs are organized 1in the traditional block

structure of ALGOL-60.

2-4, Declarations serve to define the data types and dimensions of
simple and subscripted (array) variahles (arithmetic variables,
strings, sets, and items). They are also used to describe procedures
(subroutines) and name program labels. The DEFINE construct (see
DECLARATIONS, 3-1, UUSE OF DEFINE, 13-0) may also appear in
declarations.

2-5, Any identifier referred to in a program must. be described in
some declaration. An identifier may only be referenced by statements
within the scope (see Scope of declarations, 3-8) of its declaration.

Statements

2-6. As in ALGOL, the statement is the fundamental nunit of
operation in the SAIL language. Since a statement within. a block or
compound statement may itself be a block or compound statement, the
concept of statement must be understood recursively.

2-7. This definition of a block as a statement has virtues other
than 1its syntactic niceness. In many ways a block behaves as a
single complex statement; most importantly, no transfers (jumps) may
be made from outside a block to any statement within it except the
first (There are exceptions, see [LABGO]), This assures proper
allocation and initialization of the data space for the block.

9 SAIL MANUAL

2-8, The block representing the program is known as the
“outer block™., All blocks internal to this one will be referred to
as “inner blocks®™. ;

Block Names

2-9, The block mname construct is used to describe the block
structure of a SAIL .program to a symbolic debugging routine (see
DEBUGGING, 15-9). The name of the outer block becomes the title of

the binary output file (not necesarily the file name). In addition,
if a block name is used following an END, the compiler compares it
with the block name which followed the corresponding BEGIN. A
mismatch is reported to the user as evidence of a missing (extra)
BEGIN or END somewhere, -

2-10. The <string_constant> <statement> construct is equivalent in
action to the <statement> alone; that is, the string constant serves
only as a comment. : :

Entry Specifications

2-11. See Separately Conpiled Procedﬁres, 16-7.

10 A SAIL MANUAL

SAILON NO. 57

SYNTAX
3"1.

<id_list>

<declaration>

<type>

k<alqebraic‘type>

<leap_type>

<type_qualifier>

<type_declaration>

s se

6 83 6 s 2 82 e
" ¥ V& w4 3 38 08

I L T I I (R

06 8% 40 68 66 48 s e
88 08 d8 2B 80 44 a¢ 2

L T I A O 1 O

*e de

[T)

[1YY

83 34 &3 63 ¢3 8 e

(1]
*”e

Wi

e b0 30 ge

8 48

Y& 88 4% % e ¥s 6

LI LI |

o

ot oo of

SAIL
SECTION 3

DECLARATIONS

<identifier>
<identifier> , <id_list>

<type_declarationd>
<array_declaration>
<preload_specification>
<label_declaration>
<procedure_declaration>
<define_specification>
<requirement> '

<algebraic_type>
<leap_type>
<algebraic_type> <leap_type>

<algebraic_type> ARRAY <leap_type>

SET _

SET <leap_type>

SET ARRAY <leap_type>
<type_qualifier> <type>

BEAL
INTEGER
BOOLEAN
STRING

ITEN
ITEMVAR

EXTERNAL
INTERNAL
SAFE
FORWARD
RECURSIVE
FORTRAN
GLOBAL

<type> <id_list>

11 SAIL MANUAL

3-1

<array_declaration>

<array_list>

<array_segment>

<bound_pair_1list>

<bound_pair>
<lower_bound>
<upper_bound>
<preload_specification>

<preload_list>
<preload_element>
<label_declaration>

<procedure_declaration>

<procedure_hecad>
<procedure_body>

<formal_param_decl>

<formal_parameter_list>

<formal_type>

<simpler_formal_type>

s e
" e

"
(1]

(1] (1] (1] " e
0 [

" s

[T

(2] “ o8

(1]
*”e

i}

e e

L2 2
" 4e

e & ¥ " (Y. 1)
it n

e ts se
Wuu

o e e
se e840
ouu

[T Y]

T}

a8

e v

o 8

it

ni

]

] i

o

[}

it

]

on

o

<type> ARRAY <array_list>

<array_segment>
<array_list> , <array_segment>

<id_list> [<bound_pair_list>]

<hound_pair>
<bound_pair_1list> , <bound_pair>

<lower_hound> <ﬁpper_bound>
<algebraic_expression>
<algebraic_expression>

PRELOAD_WITH <preload_list>

<preload_element>

<preload_list> , <preload_element>

<expression>
[expression] <expression>

LABEL <id_list>

PROCEDURE <identifier> <procedure_head>

<procedure_body>
<type> PROCEDURE <identifier>

<procedure_head> <procedure_body>

<ampty>
(<fotmal_param;dcc1>)

<empty>
: <statementd>

<formal_tparameter_list>
<formal_parameter_list> ;
<formal_param_decl>

<formal_type> <id_list>

<simpler_formal_type>
REFERENCE <simpler_formal_type>
VALUE <simpler_formal_type>

<typed>
<type> ARRAY
<type> PROCEDURE

12 SAIL MANUAL

*¥

W

<define_specification> DEFINE <definition_list>
<definition>

<definition_list>
» <definition> , <definition_list>

Wi

L
e ap

<lefinition> <define_identifier> = <define_body>

"
#

<identifier>
<identifier> (<id_list>)

<define_identifier>

e ae
s 2
1|

I

<define_body> <string_constant>

<requirement>

.
i

REQUIRE <require_list>

<require_list> <require_element>

<require_list> , <require_elenment>

Wl

8 o
E 1) o

PNAMES ;
<arithmetic_constant> <space_specd>
<string_constant> <relfile_spec>

<require_element>

i

% B8 be
a8 88 od

<space_spec> STRING_SPACE
SYSTEM_PDL

STRYING_PDL

[T I L1 I 1

s s sa s s
¥ 08 4e te 4s

ARRAY_PDL
NEW_ITEMS
<relfile_spec> ::3= LOAD_MODULE
:2= LIBRARY
RESTRICTTIONS
3-2, For simplicity, the type_qualifiers are listed in only one
syntactic «class. Although their uses are always valid when ‘placed

according to the above syntax, most of them only have meaning when
applied to particular subsets of these productions:

SAFE is only meaningful in array declarations ‘
INTERNAL/EXTERNAL have no meaning in formal parameter
declarations

FORWARD, RECURSIVE, and FORTRAN have meaning only in procedure
type specifications.

ITEM ARRAYS do not exist (use ITEMVAR arrays).

3-3, For array declarations 1in the outer block substitute
<constant> for <algebraic_expression> in the productions for
<lower_bound> and <upper_bound>.

3-4, ‘A label must be declared in the innermost block in which the
statement being labeled appears.

13 ’ SAIL MANUAL

3-5. The syntax for procedure declarations requires semantic
embellishment (see Procedure Declarations, 3-37) in order to make
total sense., In particular, a procedure body may be empty only in a
restricted class of declarations.

EXAMPLES
3-6. Let 1,J,kK,L,X,Y, and P be identifiers, S a statement:
(<type,dec1aration>) INTEGER I,J,K

EXTERNAL REAL X,Y

ITEM I

SET P

ITEMVAR X

REAL ITEM Y

INTEGER ARRAY ITEM JI[X:Y]

INTERNAL STRING K
(<array_declaration>) INTEGFR ARRAY X{0:10,0:10]

REAL ARRAY Y{X:P(L)]1; Comment illegal

in outer block '

STRING ARRAY II0:IF BIG THEN 30 FLSE 3]

"ITEMVAR ARRAY K[0:5,1:L]/

REAL ARRAY ITEMVAR ARRAY‘P{O:15]A
(<label_declaration>) LABEL L,X,Y

(<procedure declaration>) PROCEDURE P; S
PROCEDURE P(INTEGER I,J:
REFERENCE REAL X; REAL Y) ; S
INTEGER PROCEDURE P (REAL PROCEDURE L;
STRING TI,J; INTEGER ARRAY K); S
EXTERNAL PROCEDURE P(REAL X) ‘
FORWARD INTEGER PROCEDURE X(INTEGER I)
FORTRAN REAL PROCEDURE SIN

(<define_specification>) DEFINE CRLF = “CR&LF™,
TYPE (MSG)="QUT(TTY , MSGSCRLF)™

3-7.. Note that these sample declarations are all given without the
semicolons which would normally separate them from the surrounding
declarations and statements. Here is a sample block to bring it all
together (again, let S be any statement, D any declaratlon, and other
identifiers as above:

14 SATL MANUAL

BEGIN “SAMPLE BLOCK™

INTEGER I,J,K;

REAL X,Y;

STRING A;

INTEGER PROCEDURE P(REFERENCE REAL X; RFAL Y);
BEGIN
D; D; D7 see 3S5; see 75
END “P%;

REAL ARRAY CIPHTHONGS[0:10,1:1001;

S; S; S: S

END “SAMPLE BLOCK™

SEMANTICL
Scope of declarations

3-8, Every block automatically introduces a newv level of
nomencla ture, Any identifier declared in a block’s head is said to
be LOCAL to that block. This means that:

a. The entity represented by this identifier inside the Dblock
has no existence outside the block.

b. Any entity represented by the same identifier outside the
block is completely inaccessible (unless it has been passed
as a parameter) inside the block,

3-9. An identifier occurring within an inner block and not
declared withinp that block will be nonlocal (global) to it; that is,
the identifier will represent the same entity inside the block and in
the block or blocks within which it is nested, up to and including
the level in which the identifier is declared. :

3-10. The Scope of an entity is the set of blocks in which the
entity is represented, using the above rules, by its identifier. An
entity may not be referenced by any statement outside its scope.

Type Declarations

3-11. SAIL . reserves either one or two 36-bit words for each
identifier appearing in a type declaration (exception ~-- no space is
reserved for items -- see Item Declarations, 3-18). The use of these
cells falls into two classes -- values and descriptors -- depending
on the type preceding the identifier, If an identifier represents a.
REAL or INTEGER (BOOLEAN) variable or an ITEMVAR, its value is stored
directly in the reserved cell. For strings (2 words, see String
Declarations, 3-15) and sets (1 word, see Set Declarations, 3-24)
internal descriptors are placed in the reserved cells which allow the

running program to access these entities, These differences are not

- 15 SAIL MANUAL

reflected in the SAIL syntax. The user may treat entities of both
kinds as if their values were directly accessible in the reserved
locations. For this reason we will henceforth refer synonymously to
a simple identifier (one declared in a type declaration) and the
simple variable it represents, as a “variable™,

3-12, Items do not entirely conform to the structure described
above. Please suppress any enpuzzlemsent concerning the roles of
items and 1itemvars until after you have read the paragraph on Item
Declarations, 3-18,

Numeriec Declarations

3-13, Identifiers which appear in type declarations with types
REAL or INTEGER can subsequently be used to refer to numeric
variables. An Inteqger variable may take on values from =-2t35 to
2135-1, A Real variable may take on positive and negative values
from about 104-38 to 10138 with a precision of 27 bits. REAL and
INTEGER variables (and constants) may be used in the same arithumetic
expressions; type conversions are carried out automatically (see
Arithmetic Type Conversions, 9-21 below) when necessary.

3-14, The BOOLEAN type is currently identical to INTEGER. As you
will see, BOCLEAN and algebraic expressions are really equivalent
syntactically., The syntactic context in which they appear determines
their meaning, Algorithms for determining the Doolean and algebraic
inteterpretations of these expressions will be given below. The
declarator BCOLEAN is included for program clarity.

String Declarations

3-15. A variable defined in a String declaration 1is a two-word
descriptor containing the information necessary to represent a SAIL
character string.

3-16, A String may be thought of as a variable-length,
one~-dimensional array of 7-bit ASCII <characters. 1Its descriptor
contains a character count and a byte pointer to the first character
(see STRINGS, 17-14), Strings originate as constants at conpile time-
(String Constants, 11-17), as the result of a String INPUT operation
from some device (see Input, 12-40), or from the concatenation or
decompos ition . of already existing strings (see Concatenation
Operator, 9-36 and Substrings, 9-40).

3-17. When strings appear in arithmetic operations or vice-versa, .
a somewhat arbitrary conversion is performed to obtain the ©proper
type (by arbitrary we do not mean to imply random -- se«

string~-Arithmetic Conversions, 9-26), For this reason arithmetic and
String variables are referred to as “algebraic variables™ and their
corresponding expressions are called “algebraic expressicns®,

16 SAYTL MANUAL

(Suggestions for a better term will be given a high priority). No
other direct, or *“forced™, conversions (except for Integer/Real
conversions) are present in the language,

Item Declarations
Prereguisite

3-18. Please make no attempt to understand the sections of this
manual describing the associative capabilities of the SAIL language
until you have read the article describing 1its basic flavor in
[Feldman]. If you do not have access to a copy of the CACM, reprints
are available from the anthors., The structure and operations of the
associative portions of LEAP and SAIL are so nearly identical that it
seemed foolish to repeat them completely here. However, a full
description of the syntax and a brief discussion of each construct is
given here, ’

Itens

3-19, The ™Associative menmory™ of the SAIL system is constructed
from a universe of items and a universe of associations anong these
items, An Item is an entity which is represented inside the machine
by its interral name and is otherwise uninterpreted. Items may be
combined to form “associations® which express facts (see Triples,
7-6) . They may also be «collected into unordered sets (Set

Declarations, 3-24).

Item Genesis

3-20. The universe of items is divided 1into three classes
differing in the way an Item enters it: :

D) A declared Itenm reSults from each declaration of an
identifier to be of type ITEM. The declaration causes a
single internal name to be created for the itemn. Declared

items do not obey the usual rules in recursive functions.
In particular, items behave as if they were declared in the
outer blcck. Although they may referred to by name only
within the scope of their declarations (see Scope of
declarations, 3-8), they may be accessed from outside the
scope. if they have been included in (and not rTemoved fronm)
any associations or sets, or assigned to itemvars which are
still accessible. They are not deleted at block-exit. It
might be helpful to think of declared items as the
associative analogue of algebraic constants.

2) A created Item results from the execution of a NEW
expression (see NEW Ttems, 10-6). Any created Item may be
deleted from the wuniverse of items (see DELETE, 7-10).
Again, wusual block structure rules do not apply to any
items. '

17 ; ' SAIL MANUAL

3) An association Item results from the execution of a

- bracketed construction triple (Construction - Retrieval

Distinction, 7-8). These may also be explicitly, but never
automatically, deleted.

Datums

3-21, An Item of type 1) or 2) may have an associated value
(Datum) of algebraic or SET type which can be used or altered 1like
any other variable. This Datum may represent a simple or array

variable of any type except TTEM or TTEMVAR, Datums may be referred
to by use of the DATUM operator (Datums, 11-6, Datum Assignments,
ll-7) . ’

Itemvar Declarations

3-22. An Ttemvar is a variable whose value is an Item (it is a
reference to an Ttem). Just as the statements “X«3; A«+X™ and ™“A«3*
are equivalent with respect to A, the statements ™Y«EDGE; A«<X™ and
"™A«EDGE®™ are equivalent with respect to A, if X and A are itemvars,
FDGE an item., The use of an Itemvar is equivalent to the use of the
Item to which it refers. The difference is, of course that the
itenvars may reference different items at different times,

3-23. Just as algebraic variables may be bound as loop variables
in FOR statements, itemvars observe a special binding in the FOREACH
statement. This very important construct is described 1in FOREACH
Statement, 7-14 below.

Set Declarations

3-24, Because the answers to prany associative questions are
many-valued (all the sons of Harry, for example), sets of items are
provided. A SATIL Set is an unordered collection of items containing
at most one occurrence of any single 1itenm. The more common Set

operations are ‘available for convenient manipulation of sets,

Array Declarations

3-25. In general, any data type which is applicable to a simple
variable may be applied in an array declaration to an array of
variables. Note, however, the restriction (see RESTRICTIONS, 3-2)
prohibiting ITFM ARRAY X as a legal declaration (ITEMS are
“constants“), although ITEMVAR arrays are allowed. The entity
represented by the name of an array, qualified with subscript
expressions to locate a particular element (e.g. A[I,J1) behaves in
every way like a simple variable. Therefore, in the future we shall
refer to both simple variables and single elements of arrays
(subscripted variables) as ™“variables™, The formal syntax for
<variable> can be found in Variables, 11-2.

18 SATL MANUAL

3-26. Each subscript for an array which is not qualified by the
SAFE attribute will be checked to ensure that it falls within the
lower and upper bhounds given for the dimension it specifies. An
overflow triggers an error message and -job abortion. ‘The SAFE
declaration inhibits this checking, resulting in faster, smaller, and
bolder code. '

3-27, Arrays are stored by rows., That is, if AlI,J) is stored in
location 10000, then A(I,J+1] is stored in location 10001.

3-28. There is no limit to the nunmber of dimensions allowed for an
array, However, the efficiency of array references tends to decrease
for 1large dimensions. Avoid 1large dimensionality if it is not

necessary.

3-29., The item instances stored in an Itemvar array may have
datums which are themselves algebraic or Set arrays. This provides a
good deal of power, since an array of algebraic values can be
dynanrically associated with any item.

3-30. Arrays declared 4in the outer block must -have constant
bounds, since no variable may yet have been assigned a value. A
certain degree of extra efficiency is possible in accessing these
arrays, since they may be assigned absolute core locations by the
compiler, eliminating some of the address arithmetic. Constant
bounds always add a little efficiency, even in inner blocks.

3-31. For more details concerning the internal structure of arrays
see DEBUGGING, 15-9, Separately Compiled Procedures, 16-7 and ARRAY
IMPLEMENTATION, 17-33. ' :

Preload Specifications

3-32, Any arithmetic or String array which 1is declared in the
outer block may be ™pre-loaded™ with constant information by
preceding its declaration with a <preload_specification>,. This

specification gives the values which are to be placed in consecutive -
core.locations within all arrays declared immediately following the
<preload_specification>. “Immediately®, in this case, means all
identifiers wup to and including cne which is follovwed by
bound_pair_list brackets (e,g. in REAL ARRAY X,Y,Z{0:101,W[1:51; -~
preloads X,Y, and Z; not ¥). It 1is the wuser’s responsibility to
guarantee that the proper values will he obtained under the subscript
mapping.

3-33, The original values of pre-loaded arrays will not be lost by
restarting the program (most arrays are cleared when their
declarations are processed), but they will not be re-initialized
either. The values can te changed by assignment statements,

19 ' SAIL MANUAL

3-34, For string arrays, the original pre-loaded values remain if
not changed by assignment statements. In general, however, String
array elements whose values have been changed during program
executions will be set to null strings when the program is restarted.

3-35. Algebraic type conversions will be performed at compile-time
to provide values of the proper types to pre~loaded arrays. All
expressions in these specifications must be constant expressions --
that is, they nmust contain only constants and algebraic operators.
The compiler will not allow you to fill an array beyond its meager
capacity to be filled. You may, however, provide a number of
elements less than the total size of the array; remaining elements
will be set to zero or the null string. ‘ '

Example

3-36.

PRELOAD_WITH (51 0, 3, 4, [4]) &, 2:

INTEGER ARRAY TABLI1:4,1:3];

The first five elements of TABL will be initialized to O
(parenthesized number is used as a repeat argument). The next two
elements will be 3 and 4, followed by four 6’s and a 2. The array
will look like this: '

1 2 3
1 0 0 0
2 0 0 3
3 4 6 6
4 6 6 2

Procedure Declarations

3-37. If a procedure is typed, it may return a value (see Retuyrn
Statement, 5-19) of the specified type. If formal parameters are
specified, they must be supplied with actual parameters in a one to
one correspondence when they are called (see Function Designators,
9-43 and Procedure Statements, 6-2).

Formal Parameters

3-38. Formal parameters, when specified, provide information to

the body (executable portion) of the procedure about the kinds of
values which will be provided as actual parameters in the call. The

type and complexity (simple or array) are specified here. TIn
addition, the formal parameter indicates whether the value (VALUE) or
address (REFERENCE) of the actual parameter will bhe supplied. If the

20 SAIL MANUAL

address is supplied, the variable whose identifer is given as an
actual parameter may be changed by the procedure, This is not the
case if the value is given,

3-39. To pass a PROCEDURE by value or an ITEM by reference has no
readily determined meaning. ARRAYs passed by value (requiring a
complete copy operation) have not yet been implemented. Therefore

these cases are noted as errors by the compiler.

3-40, The proper use of actual parameters is further discussed in
the paragraphs on Procedure Statements, 6-2 and Function Designators,
9"“3. .

Forward Procedure Declarations

3-41. A procedure’s type and parameters must be described before
the procedure may be called. Normally this is accomplished by
entering the procedure declaration in the head of some block
containing the call, If, however, it 1is necessary to have two
procedures, declared in some block head, which are both accessible to
statements in the compound tail of that block and to each other, the
FORWARD construct permits the definition of the parameter information
for one of these procedures in advance of 1its declaration. The
procedure body must be empty in a forward procedure declaration.
When the body of the procedure described in the forward declaration
is actually declared, the types of the procedure and of its
parameters must be identical in both declarations. The declarations
must appear at the same level (within the same block head).

Example
3""“20

BEGIN “NEED FORWARD™ ; ;
FORWARD TNTEGER PROCEDURE T1(INTEGER I); COMMENT PARAMS DESCRIBED;

INTEGER PROCEDURE T2(INTEGER J);
RETURN (T1(J)+3); COMMENT CALL T1 ;

INTEGER. PROCEPURE T1 (INTEGER I)j; COMMENT ACTUALLY DEFINE T1;
RETURN (IF T=15 THEN I ELSE T2(I-1)); COMMENT CALLS T2;

K«T1 (L): 00 H L“TZ(K); se e
END ®NEED FORWARD™;

Notice that the forward declaration is required only because BOTH
procedures are called in the body of the block. If only T1 were

21 SATL MANUAL

cilled from statements within the block, this example could be
implemented as:

BEGTN “NO FORWARD™
INTEGFR PROCEDURE T1(INTEGER I);
BEGIN '
INTEGER PROCEDURE T2(J);
RETURN (T1(J)+3);

RETURN(IF I=15 THEN T ELSE T2{(I-1));
END “T1™;

K«T1(L);

L

END ™NO FORWARD™;

Recursive Procedures

3-43, Tf a procedure is to be entered recursively, the conmpiler
must be instructed to provide code for saving its local variables
when the procedure is called and restoring them when it returns. Use
the type-qualifier RECURSIVE in the declaration of any recursive
procedure. o

3-44, The compiler c¢an produce mwmuch mnore efficient code for
non-recursive procedures than for recursive ones, - We feel that this
gain in efficiency merits the necessity for declaring procedures to
be recursive.

3-45, Tf a procedure vwhich has not been declared recursive is
called recursively, all its local variables (and temporary storage
locations assigned by the compiler) will behave as if they were
global to the procedure -- no values will be saved., Otherwise no ill
effects should ke observed.

Fxternal Procedures

3-46. A file compiled by SAIL represents e2ither a “main™ progran
or a collection of independent procedures to be called by the main
program. The method for preparing such a collection of procedures is
described in Separately Compiled Procedures, 16~-7. The EXTERNAL and
FORTRAN type-qualifiers allow descripticn of the types of these
procedures and their parameters. An EXTERNAL or FORTRAN procedure
declaration, 1like the FORWARD declaration, does not include a
procedure body. Both declarations instead result in requests to the
loader to provide the addresses of these procedures to all statements
which call them. This means that an EXTERNAL Procedure declaration
(or the declaration of any External identifier) may be placed within
any block head, thereby controlling the scope of this External
identifier within this program.

22 SAIL MANUAL

3-u7. Any SAIL procedure which is referenced via these external
declarations must be an TINTERNAL procedure., That is, the
type-qualifier TNTERNAL must appear in the actual declaration of the
procedure., Again, see Separately Compiled Procedures, 16-7.

3-u8., The type-qualifier FOBTRAN is used to describe the type and
name of an external gprocedure which is to be called using a DEC
Fortran calling sequence. All parameters to Fortran procedures are
by reference, In fact, the procedure head part of the declaration
need not be included unless the types expected by the procedure
differ from those provided by the actual parameters--the number of
parametars supplied, and their types, are presumed correct. Fortran
procedures Aare automatically External Procedures. See Restrictions
on Procedure Declarations, 3-53, Procedure Statements, 6-2, Function
Designators, 9-43 for more information about Fortran procedures.

Example:

3-49,
FORTRAN PROCEDURE MAX;
Y-MAX(X,2);

Parametric Procedures

3-50. The calling conventions for procedures with procedures as
arguments, -and for the execution of these parametric procedures, are
described in Procedure Statements, 6-2 and Function Designators,
9-43, Any procedure PP which is to be used as a parameter to another
procedure CP must not have any procedure or array parameters, or any
parameters called by value., 1In other words, PP may only have simple
reference parameters, The number of rarameters supplied in a call on
PP within CP, and their types, will be presumed correct.

Example
3“51.

PROCEDURE CP (INTEGER PROCEDURE FP):

BEGIN INTEGER A,I; REAL X;

A<FP(I,X); COMMENT I AND X PASSED BY REFERENCE,
NO TYPE CONVERSION:

TEND ™Cp™;

"INTEGER PROCFDURE PP (REFERENCE INTEGER J; REFERENCE REAL Y);
BEGIN

e *

END “PP*;
CP(PP);

23 SAIL MANUAL

Defaults in Procedure Declarations

3-52, If no VALUE or REFERENCE qualification appears in . the
description, the following qualifications are assumed:

VALUE Variables -- simple TINTEGER, STRING, TITEM, TITEMVAR
declarations.
REFERENCE Arrays and Procedures,

Restrictions on Procedure Declarations
3-53.

1) The scope of a formal parameter f€for a procedure P does not
include statements within any procedure 0 declared within P. 1In
other words, Q may refer only to its own formal parameters. It
may, however, refer to variables which are local to some global
procedura, Here is an example:

PROCEDURE P1(INTEGER I);
BEGIN INTEGER J;
PROCEDURE P2(INTEGFER K);
BEGIN
INTEGER L;
L«T; COMMENT THIS IS WRONG —-- WON’T WORK;
Le-J; COMMENT THTS IS ALL RIGHT;
L<K; COMMENT CLEARLY ALL RIGHT;

2) There is no such thing as an ITEM procedure (use ITMVAR).
3) Fortran procedures can not bhandle String, Set, ‘or Item
parapeters., Nor can a Fortran procedure return any of these

types as a result.

4) Go To Statements appearing in a procedure body may not name
statements outside that procedure hody as targets,

5) Labels may never be passed as arguments to procedures.

Define Specification

3-54, See the section on USE OF DEFINE, 13-0 for a complete
discussion.

Requirements

3-55. The wuser may, using the REQUIRF construct, specify to the
compiler conditions which are required to be true of the

24 SAIL MANUAL

execntion-time environment of his programs. The requirements fall
into three classifications, described as follows:

Group 1 ——- PNAMTS

3-56, If the specification "REQUIRE PNAMES™ appears in a progranm,
the compiler is 1instructed to save the external representations
(print names) of all declared Ttem identifiers. The functions CVIS
and CVSI may be used to convert from Items to Strings representing
the names of these Items (and back). This feature is not available
unless *REQUIRFA®., See Cvis, 12-84 and following for details.

Group 2 -- Space requirements -- STRING_SPACE, SYSTEM_PDL, etc.

3-57. The inclusion of the specification ®REQUIRE 1000
STRING_SPACE™ will ensure that at least 1000 words of storage will be
available for storing Strings when the program is run. Similar
provisions are made for various push-down sStacks used by the
execution-time routines and the conpiled code. If a parameter is
specified twice, or if separately compiled procedures are loaded (see
Separately Compiled Frocedures, 16-7), the sum of all such
specifications will be used. These parameters could also be typed to
the 1loaded program Jjust before execution (see STORAGE-ALLOCATION,
14-22), but it is often more convenient to specify differences fron
the standard sizes in the source program. Use these specifications
only if messages from the running program indicate that the standard
allocations are not sufficient. "REQUIRE 30 NBW_ITEMS™ specifies
that 30 is a reasonable estimate of the number of items which will be
created dynamically using the NEW construct.

Group 3 -- Other files -- LOAD_MODULE, LIBRARY

3-58. The inclusion. of the specification S
REQUIRE ®“PROCS1™ LOAD_MODULE, “HELIBI[1,3]* LIBRARY; would inform the
Loader: that the file PROCS1.REL must be 1loaded and the library
HELIB.REL[1,3)] searched whenever the program containing the
specification is loaded. The parameter for both features should be a
string constant of one of the above forms. The device DSK, and file
extension LREL are the only values permitted for these entries, ang
are therefore assumed.

3-59, LOAD_MODULES (.REL files to be 1loaded) may themselves
contain requests for other LOAD_MODULES and LIBRARYs, LIBRARYs may
only contain reguests for other LIBRARYs, Duplicate specifications

are 1in general merged into single requests (if a file is requested
twice, it will be loaded only once), ‘

3-60. SAIT automatically places a request for the litrary
®SYS:LIBSAI™ 1in each main progranm. This 1library contains the
execution-time routines.

25 SAIL MANUAL

3-61. You have probably noticed that a great deal of prior
knowledge 1is required fcr proper understanding of this section. For
more information about PNAMES see Cvis, 12-84 and following. Storage
allocation is discussed in STORAGE ALLOCATION, 14-22 below. The form
and use of ,REL files and libraries are described in (Decrefl and

{Weiher]

26 SAIL MANUAL

SECTION 4

ASSIGNMENT STATEMENTS

SYNTAX
3-1.

<assignment_statement>

<assignment>
' <swap_statement>

o

s o
LI T

<algebraic_assignment>
<item_assignment>
<set_assignmentd>

<assignment_statement>

e s
s ss e
(L T}

(1]
(1]
1]

<algebraic_variabled> «
<algebraic_expression>

<algebraic_assignment>

<itemvar_variabled> =
<construction_item_expression>

<item_assignment>

[
as
i

<set_variable> <«
<construction_set_expression>

<set_assignment>

.
il

<swap_statement> 22= <variable> & <variable>

<byte_statement>

..
li

‘DPB (<algebraic_expression> ,
<algebraic_expression>)
IDPB (<algebraic_expression> ,
<algehraic_variable>)

IBP (<algebraic_variable>)

*"
W

(2]

(13
(1]
#

RESTRICTION

y-2, If the operator is the SWAP operator, the expression (of
wvhatever kind) on the right hand side must be a simple or subscripted
- variable, or DATUM(<item_primary>). The SWAP . operater may not be
used in an assignment expression (see Assignment Expressions, 9-4).
It is valid only at statement level.

SEMANTICS:

4-3, The assignment statement causes the value represented by an .
expression to be assigned to the variabhle appearing to the left of
the assignment symbol. You will see later (see Assignment
Fxpressions, 9-4) that one value may be assigned to two or more
variables through the use of two or more assignment symbols., The

27 SATL MANUAL

operation of the assignment. statement proceeds in the following
order:

a) The subscript expressions of the left part variable (if
any) are evaluated from left to right (see Rxpression
‘Evaluation Rules, 9-14),

b) The expression is evaluated.

c) The value of the expression is assigned to the left part
variable, with subscript expressions, if any, having values
as determined in step a. ‘ :

4-u4, This ordering of operations may usually be disregarded.
However it becomes important when expression assignments (Assignment
Expressions, 9-4) or function calls with reference parameters appear
anywhere in the statement. For example, in the statements

I+3;
AlI) «34(T«1);

Al3] will receive the value 4 using the above algorithm. Tf no
subscript calculations were performed until after the expression
evaluation, A[1] would become 4., Be careful.

4-5, As the syntax implies, if the left part variable is of type
Ttemvar the value to be assigned must be a construction TItern
expression., Similarly for sets,

4-6, However, any algebraic expression (REAL, INTEGER (BOOLEAN),
- or STRING) may be assigned to any variable of algebraic type. The
resultant type will be that of the 1left 'part variable. - The
conversion rules for assignments involving mixed types are mildly
amusing, They are identical to the conversion rules for combining
mixed types in algebraic expressions (see Arithmetic Type
Conversions, 9-21, String-Arithmetic Conversions, 9-26 helow).

Datum Assignments

4-7, The algebraic or Set value associated with an Item is changed
using an assignment statement in which the left part is a the word
DATUM operating onrn an Item Primary. This is valid syntactically
because the syntax for <variable> (see Vvariables, 11-2) includes this
DATUM construct, The expression is checked for validity and proper
type conversions are made before this kind of store occurs. One
hazard is' that there are times when the compiler cannot verify that
an Item assigned to an Itemvar has a datum whose type matches that
expected by the itemvar. Incorrect conversions might well be made in
this case, : '

28 ' SAIL MANUAL

Swap Assignment

b-8a, The SWAP operator causes the value of the variable on the
left hand side to be swarped with the value of the variable on the
right hand side. Algebraic type conversions are made, if necessary;
any other type conversions are, as usual, invalid. Remember, the
SWAP operator may not be used in assignment expressions.

Examples
u’g.

X+T«~A+P; Comment if A, B and X are Real, I Integer,
the Real value of the sum is truncated,
converted to an Integer, and stored in I.
The truncated value is then converted to
a Real number and stored in X.

BEGIN REAYT, ITEMVAR X;

X«<LOP(SET3);

DATUM(X) « 5; Comment a <conversion to 5,0 will be made
before the store 1is done, but there is no guarantee
that the Ttem obtained by LOP(SET3) was not declared,
for exanmple, as INTEGER ITREM A;

END;

Byte statements
a"‘]o:

4-10, The statements DPB, IDPB and 1IBP are provided for
manipulating bytes of information. These operations correspond
exactly to the PDP-1C machine instructions for manipulating bytes.
The formats are as followus:.

1) »pPB (byte, byte_pointer) _
The *“byte™ is deposited accoriding to the byte_pointer. The
POINT procedure may be used for generating byte pointers
(see Point, 12-119),.

2) IDBP (byte, byte_pointer)
The “byte™ is deposited, and the bype_pointer incremented,
For this reason, the byte_pointer may not be an expression,
but must be a variable.

3) IBP (byte_pointer)
The byte_pointer is incremented. The same rules apply as
in IDPB.

29 SAIL MANUAL

SECTION 5

EXECUTION CONTROL STATEMENTS

'SYNTAX
5"1¢

<conditional_statement> ::= <if_statement>
' ::= <if_statement> ELSE <statement>

<if_statemen£> t:= IF <boolean_expression> THEN <statement>

<go_to_statement> GO TO <label_identifijier>
' GOTO <label_identifier>

GO0 <label_identifer>

e 0
9 69 s
wuu

<label_identifier>

[
e
"

<identifier>

<for_statement>

[1]
(1]
it

FOR <a1qebra1c variable> « <for list> DO
<statement>
NEEDNEXT <for_statement>

.
.
i

<for_list> <for_list_clement>

<for_list> , <for_list_elemnent>

e o8

T
i

<for_list_element> <algebraic_expression>
<algehraic_expression> STEP
<algebraic_expression> UNTIL
<algebraic_expression>
::= <algebraic_expression> STEP
<algebraic_expression> WHILE
<boolean_expression>

i

[T Y
" 08

<while_statement> WHILE <hoolean_expression> DO <statement>

NEEDNEXT <while_statement>

e o
e o8
n

<do_statement> DO <statement> UNTIL <boolean_expression>

NEEDNEXT <do_statement>

e e
o1

"

<case_statement> | 1:= <case_statement_head> <compound_tail>
Kcase_statement_head> t:= CASE <alqebraic_expressidn> OF BEGIN

30 ‘ SATL MANUAL

<return_statement> s:= RETURN
::= RETURN (<expression>)
<done_statement> s:= DONE
<next_statement> s2= NEXT
SEMANTICS

Conditional Statements

5-2, These statements provide a means whereby the execution of a
statement, or a series of statements, is dependent on the 1logical
value produced by a Boolean expression,

5-3. A Boolean expression is an algebraic expression whose use
implies that it is to be tested as a loqical (truth) value, The
rules for determining this value are given in Simple Expressions, 9-9
and following.

If Statement

5-4, The statement following the opeator THEN (the “THEN part‘) is
executed 1if the 1logical value of the Boolean expression is TRUE,
otherwise, that statement is ignored.

If ... Flse Statement

5-5. If the Boolean expresion is true, the “THEN part™ is executed
and the statement following the operator ELSE (the “ELSE part®) is
ignored. If the Boolean expresion is FALSE, the ™“ELSE part* is
executed and the “THEN part™ is ignored. '

Ambiguity in Conditional Statements
5-6. The syntax dgiven here for conditional statements does not
fully explain the correspondences between THEN-ELSE pairs when

conditional statements are nested. An ELSE will be understocod to
match the immediately preceding unmatched THEN.

£} SATL MANUAL

Example
5"70
COMMENT DECIDE WHETHER TO GO TO WORK;

IF NOT WEEKEND THEN

IF GIANTS_ON_TV THEN BEGIN
PHONE_EXCUSE(™GRANDMOTHER DIED™);
ENJOY (GAME);
SUFFFR (CONSCTENCE_PANGS)

FND

ELSE IF PFEALLY_SICK THEN BEGIN
PHONE_EXCUSE(®“REALLY SICK™);
ENJOY{(0);
SUFFER (AGONY)

END

FLSE GO TO WORK;

Go To Statements

5-8. Each of the three forms of the Go To,statément means the same
thing -- an unconditional transfer is to be made to the “target®
statement labeled by the 1label identifier. The following rules
pertain to labels: '

1) All label identifiers used in a program must be declared. The
declaration of a latel must be local to the block immediately
surrounding the statement it identifies, Note that compound
statements (BEGIN-END pairs containing no declarations) are
‘not blocks. Therefore the block

BEGIN “B1™
INTEGER I,J; LABEL L1;
IF BE3 THEN BEGIN “C1™
L1: e
END ®C1*;
GO TO 11
END ®“B1™

is legal.

2) No Go To Statement may specify a transfer from a statement S1
outside a given block to a target statement S2 inside that
block. This 1is automatic from rule 1, since the label
identifying S2 1is not available to S1. Again the rule does

not apply to compound statements, as the above exanmple
demonstrates. ‘

32 , SATL MANUAL

3) No Go To statement may specify a transfer from a statement
within a procedure to a statement outside that procedure (you
can’t jump out of procedures).

4) No Go To statement may specify a transfer into a FOREACH
statement, a block with array declarations, or complicated For
loops (those with For Lists or which contain a - NEXT
statement).

5-9, Labels will seldom be needed for debugging purposes. The
- block name feature (see DEBUGGING, 15-9) and the 1listing feature
wvhich associates with each source 1line the octal address of its
corresponding = object - code (see Listing Features, 14-13) should
provide enouqh informaticn to find things easily.

5~-10. Many program lcops <coded with labels can be alternatively
expressed as For or While loops. This often results in a source
program whose organization is somewhat more transparent, and an
object program which is nore efficient,

For Statements

5-11. For and While statements (see also FOREACH Statement, 7-14)
provide methods for forming 1loops in a program. They allow the
repetitive execution of a statement zero or more times, These

statements will be described by means of SAIL programs which are
functionally equivalent but which demonstrate hetter the actual order
of processing, Refer to these equations for any questions you might
have about what gets evaluated when, and. how many times each part is
evaluated,

5-12, Let VBL be any algebraic variable, AB1, ... , AE8 any
algebraic expressions, BE a. Boolean expresion, TEMP a temporary
location, S a statement, Then the following SAIL statements are
equivalent: :

Using For Statements --
FOR VBL - AE1, AE2, AE3 STEP AFU4 UNTIL AES,
AF6 STEP AE7 WHILE BE, AE8 DO S;
Equivalent formulation without For Statements -~
VBL-AE1;
Sz
VBL«-AE2;
S;:

33 SAIL MANUAL

Comment STEP-UNTIL loop;

VBL+AE3;

LOOP1: :
IF (VBL-AE5) * SIGN(AE4) £ 0 THEN
BEGIN

S :

VBL«VBL+AE4;
GO TO LOOP1

END;

Comment STEP-WHILE loop;

VBL-AE6;
LooP2:

IF BE THEN BEGIN
S; ¢
VBL<VBL+AE7;
GO TO LOOP2

END;

VBL+AES8;

S

If AE4 (AE7) is a variable, changing its value within the 1loop will
cause the nev value to be used for the next iteration. If AE4 (AE7)
is a constant or an expression requiring evaluation of some operator,
the value used for the step element will remain constant throughout
the execution of the For Statement., If AES5 is an expression, it will
be re-evaluated before each iteration.,

5-13. Now consider the For Statement:
FOR VBL<-AE1 STEP CONST UNTIL AR2 DO S

where const is a positive constant. The conmpiler will simplify this
case to: ' o

VBLeAE1;
LOOP3: '
IF VBL < AE2 THEN BEGIN
S;
VBL-VBL+CONST;
GO TO LOOP3
END;

If CONST is negative, the line at LOOP3 would be:
LOooOP3:

IF VBL 2 AE2 THEN BFEGIN

34 SATIL MANUAL

5-14, The value of VBI when execution of the loop is terminated,
whether it be by exhaustion of the for list or by execution of a DONE
or GO TO statement (see Done Statement, 5-23,G0 To Statements, 5-8),
is the value 1last assigned to it using the algorithm above. This
value is therefore always well-defined.

5-15. The statement S may contain assignment statements or
procedure calls which change the value of VBL. Such a statement
behaves the same way it would if inserted at the corresponding point
in the equivalent loop describhed above, :
While Statement
5-16. The statement

WHILE BE DO S;

is equivalent to the statements:

LOoOP:
IF BE THEN BEGTIN
NH
GO TO LOOP:
END;

Do Statement
5-17. The statement
DO S UNTIL BE;
is equivalent to the sequence:
LOQP:
S;
IF NOT BE THEN GO TOC LOQOP;
Case Statements
5-18, The statement
CASE AE OF BEGIN
S0: S1; S224.. Sn
END

. is functionally equivalent to the statements:

35 SATL MANUAL

TEMP<+ARE;

IF - TEMP = 0 THEN SO
FLSE IF TEMP = 1 THEN S1
ELSE IF TEMP = 2 THEN S2
ELSE IF TEMP = n THEN Sn

ELSE ERROR;

For applications of this type the CASE statement form will give
significantly more. efficient code than the equivalent If statements.
Notice that dummy statements may be inserted for those cases which
will not occur or for which no entries are necessary. For exanmple,

CASE AF OF BEGIN
S0:; 7 ¢ S3; 7 :; S6; END

provides for no actions when AE is 1,2,4,5, or 7. Wwhen AE is 0, 3,
or 6 the corresponding statement will be executed.

Return Statement

5-19. This statement is invalid if it appears outside a procedure
declaration, It provides for an early return from a procedure
execution to the statement calling the procedure. I€f no return
statement is executed, the procedure will return after the last
statement representing the procedure body is executed (see Procedure
Declarations, 3-37). ’

5-20. An untyped procedure (see Procedure Statements, 6-2) may not
return a value, The return statement for this kind of procedure
consists merely of the word RETURN., If an argument is given, it will
cause the compiler to issue an error nmessage,

5-21. A typed procedure (see Function B Designators, 9-43) nust
return a value as it executes a return statement., If no argument is
present an error message Wwill be given. If the procedure has an
algebraic type, any algebraic expression may be returned as its
value; type conversion will be performed in a manner described by
Arithmetic Type Conversions, 9-21 and String~-Arithmetic Conversions,
9-26 below. If the procedure is of type SET or ITEM, the argument
must be an expression of type SET or ITEM.

5-22. If no RETURN statement is executed in a typed procedure, the
value returned is undefined (it could be anything -- try it, it’s
fun).

Done Statement

5-23. The statement containing only the word DONE may be used to
terminate the execution of a FOR, WHILE, or FOREACH loop explicitly.

.36 v SAIL MANUAL

Tts operation can most easily be seen by means of an example, The
statement '

FOR I«1 STEP 1 UNTIL n DO BEGIN
S3
IF BE THEN DONE;

LN B

END
is equivalent to the statement

FOR I«1 STEP 1 UNTIL n DO BEGIN
S3
IF BE THEN GO TO EXIT;
END;
EXITs

Tn either case the value of T is well-defined after the statement has
been executed (see For Statements, 5-14),.

5-24., The DONE statement will only cause an escape from the
innermost loop in which it appears.

Next Statement

5-25. A Next statement is. valid only in a For Statement, While
Statement, Do Statement, or Foreach Statement (see For Statements,
5-11, etc., FOREACH Statement, 7-14). Processing of the loop
statement is temporarily suspended. When the NEXT statement appears
in a For or Foreach loop, the next value (set of items) is obtained
from the For List (Associative Context) and assigned to the
controlled variable (bound variables). The termination test is then
made.” If the termination condition is satisfied, control 1is passed
to the statement following the For Statement or Foreach statement.
If not, control is returned to the inner statement following the NEXT
statement, In While and Do 1loops, the termination condition is
tested, If it 1is satisfied, execution of the loop terminates.
Otherwise it z1esumes at the statement within the loop following the
NEXT statement,

5-26., The reserved word NFEDWEXT must preceed FOREACH, FOR WHILE,
or DO in any loop using the NEXT statement.,

37 SATL MANUAL

Example
5'270

NEEDNEXT WHILE NOT EOF DO BEGIN
S«INPUT(1,1);
NEXT: Comment check EOF and terminate if TRUE;

T«INPUT(1,3);
PROCESS_INPUT(S,T):;
END;

38 , SAIL MANUAL

SECTION 6

PROCEDURE STATEMENTS

SYNTAX
6—1u

<procedure_statement> <procedure_identifier>
<procedure_identifier> {

<actual_parameter_1list>)

[}

[T Y]

<actual_parameter_list> <actual_paraneter>
<actual_parameter_list> ,

<actual_parameter>

L]

<expression>
<array_identifier>
<procedure_identifier>

<actual_parameter>

T
e ss 2
LI

SEMANTICS

6-2. A procedure staterpent is used to invoke the execution of an
untyped procedure (see Procedure Declarations, 3-37). It may also be
used to supply parameters to the procedure. '

6~-3. No value may be returned from a procedure called by a
procedure statement, since there is no specification in the statement
telling how to wuse the value. The compiler determines how a
procedure may be used by noticing if a type was specified in the
procedure declaration. After execution of the procedure, control
returns to the statement immediately following the procedure
statenent, However, SAIL does allow you to use typed procedures as
procedure statements., The value returned €from the procedure is
simply discarded. \

Actual Parameters

6-U. The actual parameters supplied to a procedure must in general
ma tch the formal parameters described in the procedure declaration.
As usual, the exception 1is algebraic expressions; the transfer
functions described in Arithmetic Type <Conversiomns, 9-21 and
string-Arithmetic Conversions, 9-26 will be applied to convert the
type of any algebraic expression passed by VALUE to the algebraic
type required by the procedure.

Call by Value

6-5. If an actuval parameter is passed by VALUE, only the value of
the expression is qgiven to the procedure. This value may be changed

39 SATIL MANUAL

or examined by the procedure, but this will in no way affect any of
the variables used to evaluate the actual parameters. Any algebraic
expression, any Item or Set expression may be passed by value.
Neither arrays nor procedures may be passed by value. See the
default declarations for parameters in {PRCD1}, '

Call by Reference

6-6. If an actual parameter is passed by REFERENCE, its address is
passed to the procedure. All accesses to the value of the parameter
made by the vprocedure are made indirectly through this address.
Therefore any change the procedure makes in a reference parareter
will change the value of the variable which was used as an actual
parameter, This is sometimes useful. However if it is not intended,
use of this feature can also be somewhat confusing as well as
moderately inefficient. Reference parameters should be used only
where needed. : '

6-7. Variables, constants, procedures, arrays, and most
expressions may he passed by reference. Neither Items mnor String
- expressions (or String constants) may be reference parameters.

6-8. If an expression is passed by reference, its value is first
placed in a temporary location; a constant passed by reference 1is
stored 1in a unigue location. The address of this location is passed
to the procedure. Therefore, any values changed by the procedure via
reference parameters of this form will be inaccesible to the user
after the procedure call. If - the called program is an assenmbly
language routine which saves the parameter address, it is dangerous
to pass expressions to it, since this address will be used by the
compiler for other temporary purposes. A warning message will be
printed when exgressions are called by reference.

6~-9. The type of each actual parameter passed by reference must be
identical to that of its corresponding formal parameter. An
exception is made for Fortran calls (see Fortran Procedures, 6-12).
If an algebraic type mismatch occurs the compiler will create a
temporary variable containing the converted value and pass the
address of this temporary as the parameter. A warning message will
be printed, : _

Procedures as Actual Parameters

6-10. If an actual parameter to a procedure PC is the name of a
procedure 'PR with no arguments, one of three things might happen:

1) If the corresponding formal parameter requires a value of a
type matching that of PR (in the loose sense given above in
Actual Parameters, 6-4), the procedure is evaluated and its
value is sent to the procedure PC.

40 SATL MANUAL

2) If the formal parameter of PC requires a reference
procedure of identical type, the address of PR is passed to
PC as the actual parameter.

3) Tf the formal parameter requires a reference variable, the
procedure 1is evalvated, its result stored, and its address
passed (as with expressions in the previous paraqraph) as
the parameter.

6~11. If a procedure name followed by actual parameters appears as
an actunal parameter it is evaluated (see Function Designators, 9-43).
Then 1if the corresponding formal parameter requires a value, the
result of this evaluation is passed as the actual parameter., If the
formal® parameter requires a reference to a value, it is called as a
reference expression.

Fortran Procedures

h=-12. If the procedure being called is a Fortran procedure, all
actual parameters must be of type INTEGER (BOOLEAN) or REAL. All
such parameters are passed by reference, since Fortran will only
accept that kind of call. For convenience, any constant or
expression used as an actual parameter to a Fortran procedure is
stored 1in a temporary cell vhose address is given as the reference
actual parameter.

6-13, It was explained in Procedure Declarations, 3-37 that formal
paraneters need not be described for Yortran procedures. This allows
a program to call a Portran procedure with varying numbers of
arguments, a feature which exists in DEC Fortran. No type conversion
will be performed for such parameters, of course. If type conversion
is desired, the formal parameter declarations should be included in
the Fortran procedure declaration; SAJL will use them 1if they are
present,

6-14, To pass an array to Fortran, mention the address of its
first element (e.qg. AL0Y, or BI1,1]). '

Implementation Details

6-15. See the paragraphs concerning procedures in the section on
implementation (PROCEDURE IMPLEMENTATION, 17-46) for descriptions of
the calling sequences and basic layout of SAIL procedures. See also
Separately Compiled Procedures, 16~7 for more information about these
useful constructs. '

41 SAIL MANUAL

Examples:

6-16. To call an untyped procedure:

BEGIN
PBOC(I*J,A[O] oL)'7

LI)

END;

To call a procedure of type Integer with one Integer argument:

- T+<PROC(PROC(TI));

42 - SAIL HMANUAL

SECTION 7

LEA? STATEMENTS

SYNTAX
7‘1.
<set_statement>

<associative_statement>
<loop_statenent>

<leap_statement>

8 e B
% 98 43
noHou

<set_assignment>

POT <construction_item_expression> IN
<set_variable>

REMOVE <retrieval_item_expression> FRON
<set_variable>

<set_statement>

‘lh

*»"»
8
i

<associative_statement> <item_assignment> .
DELETE (<retrieval_item_expressiond)
MAKE <construction_triple>

FRASE <retrieval_triple>

Howouwh

s0 °0 0 4
6 20 40 s N

il

FOREACH <binding_1list>
<associative_context> DO <statementd>
NEEDNEXT <loop_statementd>

<loop_statement>

8

(1]
"

<id_list> |
<id_list> SUCH THAT

<binding_list>

[T 1]
0 &
|

<elément>,
<associative_context> AND <element>

<associative_context>

LI 1]
3 e

Wi

<element>

(1]
(1]
i

<retrieval_associative_expression> IN
<retrieval_set_expression>

<retrieval_tripled>

(<boolean_expression>)

s &8
s o3

]

<o_triple>

(1]

<o_derived_set> EQV
<n_associative_expression>

SEMANTICS

"LEAP Introduction

7-2. The basic ALGOL facility in SAIL has been extended with

syntactic constructs and semantic interpretations to reference an
associative data store, This extension was developed by J. Feldman

and P, Rovner and is described in [Feldman). The LEAP facilities in
SAIL differ slightly from those published in the CACM article. In
the discussion of the use of the associative facilities, reasonably

43 SATIL MANUAL

simple examples are given for each construct. These exanmples and
associated discussions should emphasize the differences between the
SATL implementation and the constructs published in the CACM article.

7-3. The LEAP constructs all involve manipulations of one tasic
entity, the iter. An item is a conceptual entity which is
represented at execution time by a unigque number. Associated with

each item in the universe is a DATIMN. The DATUM of an iten may be an
algebraic quantity, an array of such quantities, or a SET. The DATUX
assignmant statement (see Datum Assignments, #4-7) is used to store
the value of an exrression into the DATUM of an item. The DATUM of a
declared ARRAY ITEM is loaded autoratically when the block in which
the ARRAY ITEM is declared is entered. The DATUN of an item may also
be referenced during evaluation of expressions (see Datums, 11-6).
Exanples:

INTEGER ITRM father,joe;

TNTEGER ARRAY ITEM ages [1:20);

INTEGER a,b,c;

DATUM (father) < 21 ;
DATUM (ages) [b) « b / 33 ;
c « DATDM (joe) - 12 ;

The DATUM operator is intended to 1link the powerful associative
processing routines developed for mapipulation of items with the
algebraic facilities of ALGOL. This link is made as efficient as
possible -- only two machine instructions are required to access the
DATUM of an item.

T-4, Ttems or information about items may be stored in a variety
of ways, The sinple ‘entity ITEM does not itself occupy storage.
Instead, 1instances of ITEMS are stored in ITRMVARS, SETS, or
associations. The simplest of these forms is the ITEMVAR: an iten
may be “stored™ in an ITEMVAR., Evaluation of that ITEMVAR will then
yield the item stored into it, TITEMVARS are thus roughly analagous
to simple arithmetic variables., SAIL also allows arrays of ITEMVARs,
with the obvious interpretation.. A typical declaration would be
“ITEMVAR ARRAY x[1:22,0:1]%, or “INTEGER ITEMVAR ARRAY y{1:201™.

7-5. Instances of itens may also be stored as unordered
collections, or SETS, Facilities are provided for conmon set
operations {see Set Expressions, 10-2), The SAIL systen uses one
word of storage for each item in a set, A set will contain at most
one instance of a specific item: if an instance of item X is already
in set S, then any subseguent attempts to put an instance of X in S
will have no effect. This is in keeping with the standard
mathematical notion of set,

7-6. The third, and perhaps most inportant, form of storage of
item instances 1is the association, or triple., Ordered triples of
item instances may be written into or retrieved from a special store,
the associative store, The method of storage of these triples is
designed to facilitate fast and flexible retrieval. SAIL |uses

44 SATL MANUAL

approximately two words of storage for each triple in the associative
store, There is at most one copy of a triple in the store at any
time. Once a triple has been stored in the associative memory, its
conmponent itaem instances may not bhe changed., Tn the examples which
follow, a triple is reprasented bhy:

A XO®R O FEQV V

where A, 0O, and V are items or itemvars., A, 0, and V are mnemonics
for the three components of a triple: attribute, object, and value.
The exact syntactic rules for describing triples are discussed in
SEMANTICS, 13-2,

General Restrictions

7-7. The irmplementation of the associative store and other forms
of item storaqge imposes several limitaticns on the LEAP capability.
The maximum number of items (as represented by their unigue numbers)
is 4090, This arises from an overwhelming desire to store a triple
in one word of storage, and hence the requirement that an item number
bhe describable in 12 bits.

Construction - Retrieval Distinction

7-8, There are two basic operations which are performed on the
three types of itenm stores -- construction of a new element in that
store, and rstrieval of some existing element in the store. TFor sone
purposes, it 1s necessary to distinguish the operations Dbeing
performed, This distinction manages to find its way to the syntax.
In the discussion of associative expressions (Item Coanstructs, 10-4),
the syntactic forms <coustruction_item_primary> and
<retrieval_item_primary> are discussed. The ascent from primary
level to associative expressions preserves these distinctions., Thus,
one spaaks of a <construction_itenm_expression>, or of a
<retrieval_1item_expressiond>. Often the BNF productions speak of
<n_jtem_cxprassions>, his is merely a shorthand to denote that two
separate seots of. productions exist, one in which o nmeans
“*construction™, and one in which ©v means “retrieval™.

PUT and RENOVE

7-9. The verbs PUT and REMOVE are provided for easily altering
sets, After initialization, all sets are eapty. They may be altered
either by PUTting 1item instances 1into them or by explicit set
assignment statements. The PUT statement is executed as follows: the
construction item expression is evaluated, and must vyield a single
item. An instance of this iten is then record=d in the set specified
by the set:variable., RFEMOVE operates in an analagons fashion, If an
instance of the item to be REMOVEd does not occur in the set, an
error message issues forth,

45 SATL MANUAL

PELETE

7-10. DELETE releases an item from the universe of current items.
Some small amount of storage is reclaimed in this process, as well as
the unique number associated with the item DELETFd. Since there is
an upper limit on the number of items, the DELETE statement can be
used to free item numbers for other uses, The DNELETE statement in no
way alters the instances of the DFLETEd item which are present in
sets or associations. The user should be sure that there are no
instances of the DELETEd item occurring in sets, itemvars or
associations, Attempts to reference a DELETFd item in any way will
result in confusion.

MRKE

7-11. Associations may be added to the associative memory with the
MAKE statement. If the association already exists in the store, no
alterations are made, The argument to the MAKE statement is a
cons*ruction triple; that 1is, a triple conmposed of construction
associative exrressions, Fvery construct in these expressions is
interpreted in a construction sense. The component associative

expressions in this triple are evaluated left to riqht. Sone
constructs in these expressions (e.g. sce NEW Items, 10-6 or in the
case of Dbracketed triples) require that new unique item numbers be
created. Examples:

MAKE item?1 XOR item2 EQV item3
MAKE item1 YOR itemvar?l EQV NEW
MAKE item?1 XOR {item2 XOR itemvarl FQV iten3] EQV itemvar_arrayl23]

7-12. The last example involves the use of a BRACKETED TRIPLE.
The bracketed triple “[item2 XOR itemvar?l EQV item]™ which is used as
an associative expression is inserted in the associative store, A
newv unique item number 1is generated, which &refers to that
association, Various functions (ISTRIPLE, FIRST, SECOND, THIRD -~
see Ttem Selectors, 10-5) may use an instance of this new itenm as
their argument. Consider the following statements:

MAKF number XOR [part XOR hand EQV finger] EQV new (5);
FOREACH X,y SUCH THAT number XOR x EQV y AND '
(ISTRIPLE (x) AND FIRST (x) = part) DO
count < count + DATUM (y) ;

ERASE
7-13, The ERASE statewment is provided to undo the damage done by
the MMAKE statement. The same general class of arguments nust be

provided. ERASE requires a retrieval triple as 1its argument, thus
eliminating such questionable constructs as NEW from said triples.
However, the construct ANY may appear in a triple specification to
FRASE., This allows a whole slew of appropriate associations to be
erased in one statement, (Restriction: ERASE ANY XOR ANY EQV ANY is
considered bad form, and is as a direct result, forbidden). Sample
FRASE statenents are:

46 SATL MANUAL

ERASE item1 XOR item2 EQOV item3

ERAS®E item1 XOR itemvarl1 EQV item2

FRAST itemvar1l XOR ANY EQV iteml
RESTRICTION -- MAKE and FRASE will take only item expressions .as
arquments, and will not take set expressions.

FOREACH Statement

7-14. Flexible searching and retrieval are the main motivations
for using the set and associative stores., The FOREACH statement
provides this retrieval facility. The TFOREACH statement is
essentially a looping statement: the <statement> after the DO is
executed for each group of item instances in the store which
satisfies the FOREACH specification., 1If there are no such groups
present in the store, the body of the statement is never executed.
The <binding_list> specifies the itemvars which will contain results
of the search, For instance, the simple construct
FORFACH x SOUCH THAT x IN set1 DO procedure(x) causes the body of the
statement to be executed once for each item instance in the set set?l.
During execution of the body of the statement, the itemvar x
evaluates to the item retrieved from the set setl. Consider,
however, the FORFACH Statement

FORRACH x SUCH THAT x IN setl AND x IN set2 DO statement

This specification may appear ambiguous, and indeed it is, unless we
define the concept of BINDING the itemvars 1in a TFOREACH
specification., Tn an associative context, an itemvar which appears
in the <binding_list> is said to be FREE until a search specification
has determined the first requirement on the value of the itemvar (in
a left-to-right scan of the <associative_context>), After the first
requirement, it is said to be BOUND. Thus the <element> in the above
example which reads ™“x IN setl1™ specifies a search in which x is
free. The fact that x is free implies the searching operation. In
the second element, ™x IN set2™, x is bound. Thus no search is
conducted here, Instead, the question “Does an instance of the ‘iten
I am considering for x appear in the set set2?™ is evaluated. The
ansver must be TRUE in order that the statement be executed with x
evaluating to that iten, In summary, then, the FOREACH statement
above specifies one search { x 1IN set?!) and one additional
requirement (x IN set2).

7-15. An element of a FOREACH specification may also be a
parenthesized boolean expression. It is of course requisite that all
itemvars appearing in the boolean expression must be bound, i.e. no
searching of the associative store will be accomplished during the
evaluation of the ltoolean expression, Exanple:

FORFEACH x STICH THAT x IN set1 AND (DATUM (x) < 21) DO ...k
Only members of set1 with DATUMs less than 21 will be selected by
this specification. In the example above (FORRACH Statement, 7-14),
the second <element> could also have been written in its boolean
form: (x IN set2).

47 SAIL MANUAL

7-16. The most powerful <elementd> construct is a retrieval triple.
Such specifications make searches (for any FREE itemvars) or
verifications (in the case of completely BOUND elements) in the store
of associations., For example:

1. FOREACH x SUCH THAT a XOR o EQV x DO PUT x IN people_set;
2. FOREACH x SUCH THAT a XOR,0 EQV x AND b XOR g EQV x DO ...

The aim of statement 1 is clear -- a search is conducted through the
associative store for all associations with attribute “a™ and object
*o". If k such associations ‘are discovered, then the body of the
statement is executed k times, with x taking on successive values
each time. The second example is similar, but places an additional
constraint on the values of x which should be returned. Since the
second element (b XOR g FRQV x) is completely BOUND, no search is
conducted, but a test is made to verify that the association b XOR
EQV x’ 1is 1in the store, where x’ is some item retrieved during the
search for a XOR o EQV x.

7-17. In general, an <associative context> is satisfied by sonme
assignment of item instances to the itemvars in the <binding list> if
all of the <element>s are satisfied under that assignment. a

<boolean expression> 1is satisfied if it evaluates to TRUF. A
<retrieval triple> containing no <set expression> is satisfied by an
assignment 1if the association it specifies is in the universe of
associations. A <retrieval triple> containing a <set expression> (or
ANY) 1is satisfied if there are, in the universe of associations, any
of the associations formed by substituting elements of the set f(or
arbitrary items) in the position occupied by the <set expression>,

7-18, With this <concept of SATISFIERS, we proceed to the nmore

general case with more than one itemvar cited in the binding 1list.
Suppose there are n such itemvars, Then the <statement> is executed
once for each permutation of the universe of items among the n
itemvars which SATISFY the associative context. During the execution
of the <statement>, the n itemvars will evaluate to the particular
permutation which SATISFIED the associative context,

7-19. The above description for several itemvars is sound but
slightly misleading. The SAIL iomplementation. makes no effort to
avoid duplicating a particular permutation of values which satisfies
the associative context. Thus the <statement> will be executed one
OR MORE times for every permutation which satisfies the associative
context, (5ee Restrictions and Caveats, 7-21).

7-290. Examples of FORFACH statements with several free itenmvars
specified are:

1. ~ FORFACH x,y,z SUCH THAT father XCR x EQV y AND

father XOR y EQV z DC ...
2, FOREACH x,z SUCH THAT father XOR (father XOR x) EQV =z DO ...
3. FOREACH %,y SUCH THAT x IN set AND father XOR x EQV y DO ...
4. FOREACH x,y SUCH THAT father XOR x EQV y AND x IN set DO ...

48 SATYL MANUAL

As it happens, 1 and 2 are equivalent. The corpiler actually reduces
2 to 1 by including a dunmy itemvar to be analaqous to the use of “y"“
in the first example. Examples 3 and 4 are precisely equivalent,
that is, the statement will be executed with x and y evaluating to
all the ordered pairs of items which satisfy the (clearly equivalent)
requirements. There is, however, a considerable difference 1in the
execution efficiency of these two exanples, ‘Example 3 is more
efficient since the ™set"® is probably quite small, and since the
search of the associative memory with only one free itemvar in the
search specification is rather fast. The second example, however,
makes a search through the associative memory for all the (x,y) pairs
and then discards those pairs for which an instance of x does not
occur in the “set™, Listed below in order of decreasing efficiency
are the various bkasic forms of <element>s that are legal. The effect
of a statement such as. 2 ahove should be calculated by reducing it to
the form of 1, 1In the 1list below, x, vy, and 2z represent free
itemvars, whereas A, 0O, and V represent either bound itemvars or
fixed itenms,

A XOR O EQV V Verification that the triple
is in the store,

A IN S Verification that item A is in set S.

x TN S All items x in the set S,

A XOR O EQV x Only the value is free.

X XOR y EQV V Attribute and obiject are free.

A XOR x PFQV V Only the obiject is free.

X XOR 0O ROV V Cnly the attribute is free.

A XOR x EQV y Object and value are free,

x XOR O EQV-y Attribute and value are free,

x X0’ y LEOQV = FROHIBITED
Pestrict ions and Caveats
7-21. i. The SAIL inplementation differs in fundamental ways from
the implementation described by Feldman and Rovner in the CACM
article, Their PFOREACH statement builds: a record of all the

permutations which satisfy the associative context, being careful to
include only one copy of each such permutation. Then the <statement>
is executed once for each permutation that was stored during the
retrieval operation, ' The SATL implementation uses the associative
‘context as a generator of satisfiers. Thus one group of satisfiers
is founl, <statement> is executed for those satisfiers, then another
found, etc. until all gqgroups of satisfiers have been found. The
implications of this method are startling:

1. There is absolutely no way to guarantee that a particular group
of satisfiers 1is not repeated. There are methods of coding around
this problem. The user can stuff itemvar arrays with results of a
FOREACH and avoid duplications. In many search specifications the
nature of the searches (e.g. sets, where only one copy of an iten
instance can occur in the set) avoids duplicate satisfiers.

2. Operations within <statement> which change the associative data
store may affect the subsequent satisfier groups retrieved. WNote the
difficulty in the following: '

FOREACH x,y | link XOR x EQV y DO MAKE 1link XOR X EQV newlink

49 SATL MANUAL

There is another difficulty with ERASE or REMOVE operations inside a
FOREACH statcment, The SAIL implementation saves pointers into the
data structure during the execution of the <statement)>, If
operations within that statement cause these pointers to beconme
invalid, wild effects will occur. Care has heen taken, however, to
make sure that some simple things work correctly: '

FOREACH x
link XOR x EQV node DO ERASE link XOR x EQV NODE ;

FOREACH x - S
x IN setl AND x IN set2 DO REMOVE x FROM setd ;
+eess and many more.

7-22. During and after the execution of a FOREACH statement, the
values of ' the bound itemvars are 1in general well-defined. They
evaluate to the permutation which last satisfied the FOREACH context.
If a GO TO is exacuted within the <statement>, the values are correct
in that they correspond to the group of satisfiers for which the
<statement> was being executed. The only case in which the itenvars
are undefined is when the search specified has been exhausted and the
‘associative context contains a boolean expression., The explanation
of this restriction is guite simple -- prior to the evaluation of a
‘boolean expression, the core locaticns reserved for the itemvars in
the <binding_list> are stuffed with the current satisfiers so that
the evaluation of the bcolean expression may reference them.

7-23. Expression case statements, conditional expressions, and
procedure calls are all valid within an associative context
specification, ©provided that all itemvars used in these constructs
are BOIUND, v

50 | SATL MANUAL

SECTION 8

ASSEMBLY LANGUAGE STATEMENTS

SYNTAX
8‘10

<code_block> <code_head> ; <code_tail>

(13
"
i

<code_head> <code_begin>
<code_begin> <block_name>

<code_head> ; <declaration>

[T I Y B Y)
% S8 e
ouou

START_CODE
QUICK_CODE

<code_begin>

hon

" s
e e

<code_tail> <instruction> END
instruction> END <block_name>

<instruction> ; <code_tail>

8 o8 a8
e B0
Wi u

<instruction> s2= <addresses>

13= <opcoded>

::= <opcoded> <addressesd>
<addresses> <address>

Lac_field> ,
<ac_field> , <address>

e 8¢ (13
o

" s e

- <ac_field>

(13
(1]
f

= <constant_expression>

<address> <indexed_address>

@ <indexed_address>

e ¥
Wil

e 0

<indexed_address> <simple_address>

<simple_address> (<index_field)>

s b

hon

<identifier>
<constant_expression>
<literal> '

<simple_address>

o s e
" e e
Woou

<literal>

[<constant_expression>]

<index_field>

..
o
i

<constant_expression>

<opcode> ::= <constant_expression>
1= <PDP-10_opcode>
SEMANTICS
8-2. Within a START_CODE (QUICEK_CODE) block, statements are

processed by a small and weak, but hopefully adeguate, assembly

51 SAIL MANUAL

languaqge translator. Each “instruction™ places one instruction word
into the output file.

8~-3, If the <address> in an instruction 1is a constant, it is
assumed to be an immediate or data operand, and is not relocated. If
the <address> 'is an identifier, the machine address (relative to the
start of the compilation) is used, and will be relocated to the
proper value by the Loader. 1If a literal is used, the address of the
compiled constant will be placed in the instruction. Any reference
to Strings will result in the address of the second descriptor. word
(byte pointer) to be placed in the instruction.

8-4. The indirect, index, and AC fields have the same syntax and
perform the same functions as they do in the FAIL or MACRO lanquages.

8-5, The Opcode may be a constant provided by the user, or one of
the standard (non 1/0) PDP-10 operation codes, expressed
symbolically. Tf a constant, it should take the form of a complete
PDP-10 instruction, expressed in octal radix (e.g. DEFINE TTYUUOQO =
*r51000000000™;). Any bits appearing in fields other than the
opcode field (first 9 bits) will be OR’ed with the bits supplied by
other fields of instructions in which this opcode appears.

Distinctions Between START_CODE and QUICK_CODE

8-6. Before - your instructions are parsed in a block starting with
START_CODE, instructions are executed to leave all accumulators fron
0 through ‘15 available for your use., In this case, you may use a
JRST to transfer control out of the code_block, as long as you do not
leave a procedure, a block with array declarations, a Foreach loop, a
loop with a For list, or a loop which uses the NEXT construct. 1In a
QUICK_CODE block, mno accumulator-saving instructions are issued.
Ac’s ’13 through 715 only are free. 1In addition, some recently used
"variables may be given the wrong values 1if used as address’
identifiers (their current values are contained in Ac’s 0-712); and
control should not leave the code_block except by “falling through®™.

8-7. All integer constants will be expressed in decimal radix
unless the octal representation is explicitly used. '

52 - SAIL MANUAL

SECTION 9

ALGEBRAIC EXPRESSIONS

SYNTAX
9‘1-

<expression>

moHou

6 48 03 4
s 28 43 o

<conditional_expression>

it

L 1]

]

<assignment_expression>

<case_expression>

40
se

<expression_list>

[T 1]
0 e
nou

<simple_expression>

5 83 as & 0
8 se sa b0 8y

{{ I T A TR 1

<boolean_expression>

L X}
e

<string_expression>
<algebraic_expressiOn>
<disiunctiﬁe,expcession>

<negated_expression> :

<relational_expression>

<simple_expression>

<conditicnal_expression>
<assignment_expression>
<case_expression> :

IF <boolean_expression> THEN <expression>
ELSE <expression>

<assignment_statement>

CASF <algebraic_expression> OF (
<expression_list>)

<expression>
<expression_list> , <expression>

<algebraic_expression®
<boolean_expression>
<string_expression>
<set_expression>
<associative_expression>

<expression>

<algebraic_expression>

<disjuntive_expression>
<algebraic_expression> OR
<disjupctive_exrression>

<negated_expression>
<disjunctive_expression> AND
<negated_expression>

= Nof<relaticnal_expression>

<relaticnal_expression>

algebraié_relational>
leap_relational>

AN

53 SATIL MANUAL

<adding_expression> ,

<relaticnal_expression>
<relational_operator>
<adding_expression>

<algebraic_relational>

]

" 0

v
]

<retrieval_item_expression> IN
<retrieval_set_expression>
:= <retrieval_item_expression>
<relational_operator>
<retrieval_item_expression>
1= <retrieval_set_expression>
<relational_operator>
<retrieval_set_expression>
= <retrieval_triple> ‘

<leap_relational>

&

(1]

[T

e
..
i

<relational_operator>

8 03 48 9 e o8

8 48 98 ve e se
W

Bivinh it VA

<term>
<adding_expression> <add_operator> <term>

<adding_expression>

" s
e o8

]

+
LAND
LOR
EQV
XOR

<adding_operator>

85 e8 8 S8 4 s

(I TR

B8 as #8485 2% e

<term> <factor>

<term> <mult_operator> <factor>

" e
]

e &

*
/
%
LSH
ROT
MOD
DIV
&

<mult_operator>

Wit i

s 88 B8 & E9 s 8 s
8 9E 23 8¢ ak e ¥s &3

<factor> <primary>

<primary> t <primary>

Wou

s 2
*8 o0

<algebraic_variable>

- <primary>

LNOT <primary>

ABS <primary>

<algebraic_expression> [<substring_spec>
]

INF

<constant>

<function_designator>

(<algebraic_expression>)

<primary>

s ¢4 s 40 g
s 80 e e
LI I T 1

0 se 48 e
o

¥ 48 80 B

54 SATL MANUAL

LENGTH (<retrieval_set_expression>)
LENGTH (<string_expression>)

CVN (<item_primary>)

L.OP (<string_variabhle>)

LDB (<arithmetic_expression>)

ILDB (<arithmetic_variable>)
ISTRIPLE (<item_expression>)

20 35 48 od S0 W0 s
s 63 23 as 3 %6 we
(1T I |

<substring_spec>

*»n
(1]
i

= <alqgebraic_expression> TO

<algebraic_expression>
:= <algebraic_expression> FOR
<algebraic_expression>

£3]

<function_designator> <procedure_identifier>
<procedure_identifier> (

<actual_parameter_list>)

[T 1]
s o6

]

<actual_parameter_list> <actual_parameter>
"<actual_parameter_list> ,

<actual_paraneter>

a6 e
H#

(11

<actual_paremeter> <expression>
<array_identifier>

<procedure_identifier>

[T TN
e 4% ee
IS T

]

<algebraic_variable> 2:= <variable>

<string_variable> ::= <variable>

SEMANTICS

Conditional Fxpressions

9-2, A conditional expression returns one of two possible values

depending on the logical truth value of the Boolean expression. For
the rules on evaluation of this truth value see Simple FExpressions,
9-9 and following. If the Boolean expression (BE) is true, the value
of the coniditional expression 1is the value of the expression
following the delimiter THEN, If BY is false, the other value is
used, Tf both exrressions are of an algebraic type, the precise type
of the entire conditicnal expression 1is that of the ®“THEN part®™,
Otherwise, both expressions nust be of precisely the same type (Set,
Item, etc.). Unlike the nested Tf statement problem, there can bhe no
ambiguity for conditional expressions, since there is an FELSE part in
every such expression.

Example
9-3,
FOURTHDOWN (YARDSTOGO, YARDLINE, TF YARDLINE < 70 THEN POUNT

BLSE TF YARDLINE < 90 THEN FIRLDGOAL
ELSE RUNFORIT)

[O3]
(%3]

SAIL MANDAL

Assignment Expressions

9-4, The somewhat weird syntax for an assignment expression (it is
equivalent - to that for an assignment sStatement) is nonetheless
accurate: the two functicn identically as far as the new value of the
left part variable is concerned. 4he difference is that the value of
this left part variable is also retained as the value of the entire
expression, Assuming that the assignment itself is legal (following
~ the rules given in Assignment Statements, 4-3 abhove), the type of the
expression 1is that of the left part variable. This variable may now
participate in any surrounding expressions as if it had been given
its nev valua in a separate statement on the previous line., Only the
+« operator is valid in assignment expressions., The SWAP operator is
valid only at statement level, '

Example
9_50

IF (I«I+1) < 37 THEN I«(0 ELSE T«I+1;

Case Fxpressions

9-6. The expression

CASE AE OF (0, E1, F2, ... , En) is equivalent to

IF AF=0 THTN RO
ELSE IF AE=1 THEN E1
ELSE IF AE=2 THEN F2
ELSE IF AT¥=n THEN En

ELSE ERROR

9-7, The type of the entire expression is therefore that of EQ.
If any of the expressions E1 ... En cannot be fit into this mold an
error message is issued by the compiler.

Example

9-8o

OUT(TTY,CASE ERRNO OF(“BAD DIRECTORY™,
“IMPROPER DATA MODEW™,
“UNKNOWN I/0 FRROR™,

“COMPUTER TN BAD MOOD™));

56 SAIL MANUAL

Simple Expressions

9-9, Simple expressions are simple only in that they are not
conditional, case, or assignment expressions. There are in fact some
exciting complexities to be discussed with respect to simple
expressions., Set, Item, and Associative expressions are discussed in
the next section. Before continuing with a description of algebraic
expressions in the following paragraphs, an explanation of what is
meant by a Boolean expression is in order.,

The Boolean Expression Anomaly

9-10. You will notice that in the syntax a Boolean expression is
said to be equivalent to an expression. 1In actuality, the expression
may NOT be an associative one. This is siwmply a way of expressing
syntactically that there are automatically invoked rules, 1) for
obtaining a logical truth value from an expression which does not
contain any logical operators or logical connectives, and 2) for
obtaining an algebraic (Integer) value from one which does. The
rules are very simple:

Integer, Real, or String to *"Boolean™

9-11. The 1logical truth value of an expression “X’ which is of
type Integer, Real, or String is the same as the truth value of the
expression ‘X#07, A String expression will be converted to an
Integer one (see String-Arithmetic Conversions, 9-26) before the
comparison 1is made. This need not be done for a Real expression, of
course, since the Integer and Real representations for ({ are the
same. This means you can write expressions of the form

IF T+3 THEN E1 ELSE E2 when you really mean
IF I+3*+0 THEN E1 ELSE E2

One application of this rule can be found in several of the execution
time routines (ENTER, LOOKUP, etc.) where an error flag 1is returned
which " is =zero (FALSE) if the operation was successful and non-zero
(TRUT) if an error occurred. This flag may be tested as a Boolean
variable (IF FLAG THEN TERROR(“LOOKUP FAILED®)) or to determine
exactly what went wrong by examining its actual value,

“Boolean™ to Tnteger

9-12. The truth value of an expression containing logical
operators and/or connectives may be determined by rules given below
(see Algebraic FExpressions, 9-15, [IDSJCT], Logical Expressions,
9-29), 1If'this value is needed to determine which part to execute in
a conditional statement, while statement, or c¢oecnditional expression
no actual numerical value need be created for the expression -- the
tests which determine the truth value lead directly to the correct
program branch,. However, if this expression is combined with other
algebraic expressions using some numeric operator, or if it is
assigned to an algebraic variable, some actual value must be returned
for the expression. If the expression is false, a zero is returned.

57 - SAIT MANUAL

A non-zero value indicates that the expression is true. The actual
value returned for true expr9551ons may differ from time to time, but
it is guaranteed non-zero.

Precedence of Algebraic Operators

9-13. The binary operators in SAIL generally follow “normal™
precedence rules, That 1is, exponentiations are performed before
multiplications or divisions, which 1in turn are performed before
additions and subtractions, etc. The logical connectives A and v,
when they occur, are performed last (A Dbefore v). The exact
precedence of operators is described in the syntax above. The order
of operation can be changed by including parentheses at appropriate
points (see Primaries, 9-38).

9-14, In an expression where several operators of the same
precedence occur at the same level, the operdations are performed fror
left to right, See Algebraic Expressions, 9 15, [DSJNCT] for special

evaluation rules for logical connectives,

Expression Evaluation Rules

9-14, SAIL does not evaluate expressions in a strictly
left-to-right fashion. If we are not constrained to a left-to-right
evaluation, {(as is ALGOL 60), we <can in. some <cases produce
considerably better code than a strict left-to-right scheme could
achieve, Intuitively, the essential features (and pitfalls) of this
evaluation rule can be illustrated by a simple example:

REAL PROCEDURE halve (REFERENCE REAL whole);
RETURN (whole-whole/2):

b« 2.6 ;
¢ = b + halve (b) ;

The last assignment statement is evaluated as follows: first call
halve, with a reference to b as its argqument; upon return, add b to
the procedure call résult; then store the result (which is 2.6) in c.
If we were doing a strict left-to-right evaluation, the value of b
would have to be saved before the procedure halve was called. The
evaluation scheme can be stated quite simply: no code is generated
for the operation represented by a BNF productiocn until the reduction
of that BNP production takes place. The evaluation rules can also be
stated a little more elegantly, by defining. a function EVAL whose
value is a BREFERENCE to some computed value. EVAL (variable) is a
reference to that variable, EVAL (thing1 operation thing2) is
DO-OPERATION (operation, EVAL(thing1), EVAL(thing2)), where
DO-OPERATION returns a reference to the resulting value. Here
thing1, operation, and thing2 are ahstract entities, merely intended
to suggest the various concrete syntactic constructs.,

58 ' SATL MANUAL

Algebraic Expressions

9-15. If an algebraic expression has as its major connective the
logical connective OR, the expression has the logical value TRUE
(arithmetic value some non-zero integer) if either of its conjuncts
(the expressions surrounding the OK) is true; FALSE othervwise,

9-16, A OR B does NOT produce the bit-wise Or of A and B if they
are algebraic expressions., Truth values combined by numeric
operators will in general be meaningless {(use the operators LOR and
LAND for bit operations).

9-17. The user should be warned that in an expression containing
logical connectives, only enough of the expression is evaluated (fronm
left to right) to uniquely determine its truth value. Thus in the
expression

(J<3 OR (K<EK+1) > 0),

K will not be incremented 1if J 1is less than 3 since the entire
expression is already known to bhe true. Conversely in the expression

(X >0 AND SORT(X)>2) (see [DSJINCTI),

there is never any danger of attempting to exiract the square root of
a negative X, since the failure of the first test testifies to the
falsity of the entire exrression -~ the SQRT routine is not even
called in this case.

Disjunctive Expressions

9-18, If a disjunctive expression has as its major connective the
logical connective AND, "the expression has the logical value TRUE if
both of its disjuncts are TRUE; FALSE otherwise., Again, if the first
"disjunct is FALSFE a logical value of FALSE is obtained for the entire
expression without further evaluation.

Relational Expressions

9-19, Tf any of the bhinary relational operators is encountered,
code is produced to convert any String argquments to Integer numbhers.
Then type- conversion 1is done as it 1is for + operations (see
Arithmetic Type Conversions, 9-21), The values thus obtained are
compared for the indicated condition. A Boolean value TRUE or FALSFE
is returned as the value of the expression. 0f course, if this
expression is used in subsequent arithmetic operations, a conversion
to integer (see ™Boolean™ to Integer, 9-12 above) is performed to
obtain an Integer value. ‘

9-20, Leap relational operators are discussed in depth in a later
section.

59 SATL MANUAL

Arithmetic Type Conversions

9-21, The binary arithmetic, logical, and String operations which
follow will accept combinations of arquments of any algebraic types.
The type of the result of such an operation is sometimes dependent on
the type of its arquments and sometimes fixed, An argument may be
converted to a different algebraic type before the operation is
performed, The following table describes the results of the
arithmetic and logical operations given various combinations of Real
and Integer inruts, ARG1 and ARG2 represent the types of the actual
arguments. ARG1+ and ARG2* represent the types of the arquments
after any necessary conversions have heen made.

9-22,
OPERATION ARG1 ARG2 ARG1* ARG2%* RESULT
+ - INT TINT INT INT INT#*
* 1 % REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAT REAL RFAL REAL
LAND LOR INT INT INT INT INT
EOV XOR REAL INT REAL INT REAL
INT REAL INT REAL INT
REAL REAL REAL REAL REAL
LSH ROT INT INT INT INT INT
REAT, INT REAL INT REAL
TNT REAL INT INT INT
REAL REAL REAL INT REAL
TINT INT REAL RTAL REAL
REAL INT REAL RTAL REAL
INT REAL REAL RTFAL REAL
REAL REAL REAL REAL REAL
MOD DIV TNT INT MONT INT INT
RFAL INT INT INT INT
INT "REAL INT INT INT
REAL, REAL INT INT INT

* Unless ARG?2 is <) for the operator ¢

9-23. An Integer is converted to a Real number in such a way that
if this Real number is converted back to an Tnteger, the same Integer
value will result, This is true unless the absolute value of the
number is greater than 134217728, Scme low-order significance will
be lost for integers greater than this magnitude.

9-24, A Real number is converted to an Integer using the following
formulas
Integer <« STGN{(Real)#*[largest inteqger I such that I<ABS(Real)l].

/0 SATL MANUAL

This function will produce invalid results for Real numbers with a
magnitude greater than 134217728. '

9-25, If a String is presented as an argument to any of these
operations, it is «converted +to an Integer, If an Integer or Real
argument is presented to the concatenation operator (&), it is
converted to a one-character string. Here are the rules:

String-Arithmetic Conversions

9-26, If a String 1is ©presented as an argument to an arithmetic
operator, as a (value) parameter to a procedure which expects a Real
or Integer value, or as an.-expression to be stored by an assignment
statement into a Real or 1Integer variable, an 1Integer value is
created for it as follows: ‘ :

If the string is the null string (length=0), a 0 is returned as
its “Integer value’. Otherwise a word which has its lefthand 29 bits
0, the rightmost 7 bits containing the first character of the String,
is returned as its ‘Integer value’. For instance, the String “ABCDE"
has as 1its “Inteqger value’ 7101, the octal representation of the
letter *A’, This Integer will then be converted to a Real number, if
necessary.

9-27. If an Integer or Real number is presented where a String is
expected, a one character String will be created whose character
consists of bits 29-35 (the rightmost seven bits) of the numeric
value., A Real number is not converted to an Integer before the
conversion., For instance, the expression

"STRING™§ 715 & 712

will result in a String which is 8 characters long. The last two
characters are the ASCII codes for carriage return and 1line feed,
respectively,

Adding Expressions

9-28, All the operators grouped in the semantic class
<add_operator> all operate at the same precedence level. The user
must sometimes provide parentheses in order to make the meaning of
such expressions absolutely unambiguous. The + and - operators will
do integer addition (subtraction) if both arguments are integers {(or
converted to integers from strings); otherwise, rounded Real addition
or subtraction, after necessary conversions, is done.

9-29. LAND, LOR, XOR, and EQV carry out bit-wise And, Or,
Exclusive Or, and Eguivalence operaticns on their arguments., No type
conversions are done for these functions. The logical connectives AND
and OR do not have this effect--they simply cause tests and jumps to
be compiled. The type of the result is that of the first operand.

61 SATL MANUAL

This alloﬁs expressions c¢f the form X LAND “*777777777, +where X 1is
Real, if they are really desired.

9-30. Currently the values of the various overflow flags produced
by these operators (and those which follow) are not available to the
user, : :

. Terms
Arithmetic Multiplicative Operators

9-31. The operation * (multiplication), like + and -, represents
Integer multiplication only if both arquments are integers; Real
otherwise, Integer multiplication uses the TMUL machine instruction
-- no double-length result is available,

9-32, The / operator (division) always does rounded Real division,
after converting any Integer arquments to Real.

9-33, The % operator has the same type table as +, -, and *. It
performs whatever division is appropriate. .

9-34, LSH and ROT provide logical shift operations on their first
arguments, If the value of the second arqument is positive, a shift
or rotation of that many bits to the left is performed. If it is
negativa, a riqght-shift or rotate is done, To obtain an arithmetic
shift (ASH) operation, multiply or divide by the appropriate power of
2; the compiler will change this operation to a shift operation.

9-35, DIV and MOD force both argquments to be integers Lbefore
dividing., X MOD Y is the remainder after X DIV Y is performed
(X MOD Y = X - (X DIV Y)*Y); \

Concatenation Operator

9-136. This operator produces a result of type String. It is the
String with 1length the sum of the 1lengths of its arguments,
containing all the characters of the second string concatenated to
the end of all the characters of the first. The operands will first
be converted to strings if necessary as described in
String-Arithmetic Conversions, 9-26 above. The normal use of the &
operator 1is to collect 1lines of text, from several other string
sources, which will subsequently be sent to. an output device.
Numbers can be converted to strings representing their external forns
(and vice-versa) through explicit calls on execution time routines
like CVS and CVD (see Execution Routines, 12-1 below).

62 SAIL MANUAL

Factors

9-37, A . factor is either a primary or a primary raised to a power
represented by another primary. As usual, evaluation is from left to
right, so that AtBtC is evaluated as (AtB)*C. 1In the factor XtY, a
suitable number of multiplications and additions 1is performed to
produce an “exact™ answer if Y is a positive inteqger. Otherwise a
routine is called to approximate ANTILOG(Y LOG X). The result has
the type of X in the former case. It is always of type Real in the
latter.

Primaries

9-138, A primary represents an arithmetic or String value which
alwvays acts as a unit in any binary operation. It is either an
expression surrounded bty parenthesies which indicate that all
internal operations shculd be performed before combining it with
other things, or one of myriad other constructs which will be
considered separately.

Variables and Constants
9-39. These are clearly primary obijects. They are values

contained in specific core locations, or in parameter stacks, or in
the case of some numeric constants, they are immediate operands.

Substrings
9-40, A String variable name which is qualified by a substring
specification represents a part of the named string. STIX FOR Y1

represents the Xth through the (X + Y - 1)th characters of the String
ST. STIX TO Y] represents the Xth through Yth characters of ST. If
at any time an attempt is made to compute a substring with a negative
length, or with X<1, or with length L such that X+L-1 > LENGTH(ST),
the jJob will be terminated with an error message. STI[X FOR 0) is the
null String (length = 0, no characters). '

Special Length Operator (INF)
9-41, This special primary construct 1is valid only within
substring brackets., It is an algebraic value representing the length
of the most-immediate string under consideration.
Examples:
9““2.

Al4 to INF] throws out the first 3 characters of A.

Al3 for BI{INF-1 for 1]] uses the next to the last character

of string B as the number of characters

for the N substring operation,

»63 SAIL MANURAL

Function Designators

9-43, A function designator defines a single value., This value is

produced by the execution of a typed user procedure or of a typed
execution~time routine (Execution Routines, 12-1). For a function

designator to be an algebraic primary, its procedure must be declared
to have an algetraic type. Untyped procedures may ' only be called
from procedure statements (see Procedure Statements, 6-2). The value
obtained from a user-defined procedure is that provided by a Return
Statement within that procedure, Tf the procedure does not execute a
Return-Statement, the value might be anything at all. A Return
Statement 1in a typed procedure must mention a value (see Return
Statement, 5-19),

9-u44, The rules for supplying actval parameters in a function
designator are identical to those for supplying parameters in a
procedure statement (see Procedure Statements, 6-2), '

9-45, Several of the constructs given here as primaries have the
form of function desigrators. However, the operations necessary to
obtain the values of these constructs are generally compiled directly
into the program. Descriptions of these functions follow:

Length

9-u6, LENGTH is always an 1integer-valued function. If its
arqument is a set expression, the result is the number of Items in
the set, If the arqument is a String, its length is the number of

characters in the string. The length of an algebraic expression is
always 1 (see String-Arithmetic Conversions, 9-26).

Lop

9-47.. The LOP operator avpplied to a String variable removes the
first character from the String and returns it in the form given in
String-Arithmetic Conversions, 9-26 above. The String no longer
contains this character, LOP applied to a null String has a <zero
value, If the arqument is a Set expression the result is an item.
This case is described below (Item Constructs, 10-4),

Cvn

9-u8. CVN has. as its value the TInteger which 1is the internal
representation of its Item argument, This <function is thighly
implementation-dependent, and should only be used by people who are
willing to follow the compiler writers around a lot. 1Its inverse
function is CVI, described in Item Constructs, 10-4 below.

64 | SATL MANUAL

Inot

9-49. The unary operator Lnot produces the bitwise complement of
its (algebraic) argument. No type conversions (except strings to
integers) are performed ¢n the argument. The type of the result
(meaningful or not) is the type of the arqument.

Abs

9-50, The unary operator ABS 1is valid only for algebraic
quantities. It returns the absolute value of its argument.

Unary Minus

9-51. -X is equivalent to (0-X). No type conversions are
performed.,

Boolean Primaries

9-52. The unary Boolean operator NOT applied to an argument BE has
the value TRUE if BE is false, and FALSE if BE is true, Notice that
NOT A is not the bitwise complement of A, if A is an algebraic value,
If used as an algebraic value, NOT A is simply 0 if A#0 (see
“Roolean™ to Integer, 9-12), some non-zero Integer otherwise.
ISTRIPLE

9"" 53 .

9~-53, Istriple (IE) is TRUE if IE is an Item which describes a
bracketed triple., It is FALSE otherwise. If IE is not an Iten
expression, the compiler will complain bitterly.

ISTRIPLE ([A YOR B EQV V]) is true.

ISTRIPLE (<declared item>) is false.

LDB and ILDB

9-54, LDB and ILDB are SAIL constructs used to invoke the PDP-10
byte loading instructions. The arguments to these functions are
expressions which are interpreted as byte pointers. In the case of
ILDB, you are required to use an algebraic variable as arqument, so
that the ‘byte vpointer (i.e. that algebraic variable) may be
incremented.

65 - SATL MANUATL

SECTTION 10

SET AND ASSOCTIATIVE EXPRESSIONS

SYNTAX
10"1 .
<set_expression>

<n_set_expressiond>
<o _set_term>
<o_set_factor)>

<o_set_primary>

<n_item_expr_list>

<o_derived_set>

<associative_operator>

<associative_expression>
<o_associative_expr>
<o_item_expression>

<construction_item_prim>

<retrieval_item_prim>

"
L1

LA 1]
[T T}

e

s 83 88 e 30
e .., 28 80 b¢
Wit

e

(2]
(1]

0 e 86
*e sa o0

(1]
(2]

LT 1)

LI Y

s et s
LU TIYS

e ¢ 6 o8

8 as ¥ 0

e o

"

" e

TR
o

]

L]

iou

no

wuwu i

W oH]

woon

I

<o_set_expression>

<a_set_term>
<o_set_expression> V <n_set_term>

<o_set_factor>
<o_set_term> N <o_set_factor>

<u_set;primary>
<o_set_factor> - <o_set_prinary>

PHI

<set_variable>
{o_item_expr_list}

(<o_set_expressiond>)
<o_derived_set>

<o_item_expression>
<o_item_expr_list> , Ko_item_expression>

<o_associative_expr>
<associative_operator>
<0_associative_expr>

XOR

A Y

*

<o_assoclative_expr>

<o_jtem_expression>
<a_sget_expression>

<o_item_prinmary> .

<selector> (<o_iten_primary>)

{ <o_item_primary> XOR <o_item_primary>
EQV <o_item_primary>]

<item_primary>

NEW

NEW (<algebraic_expression>)
NEW (<array_name>)

<item_primary>
ANY '

66 SAIL HMANUAL

<item_identifier>
<itemvar_variable>

CVI (<algebraic_expression>)
coP (<set_variable>)

LOP (<set_variable>)

<item_primary>

8 80 80 aé s
8 3% se as s

LU T I B

<o_triple>

m
s
i

<a_derived_set> TQV
<o_associative_expression>

<selector> s:= FIRST

s2= SECOND

s2= THIRD
<itemvar_variable> ::= <variable>
<set_variable> ::= <variable>

<leap_ralational>

(2]
0
i

<retrieval_associative_expression> IN
<retrieval _set_expression>

- {retrieval_associative_expression>
<relational_operator>
<retrieval_associatve_expression>

<retrieval_triple>

s
'y
]

.
s
h

SEMANTICS
Set Expressions

10-2, Three rather standard operators are inmplemented for use
with sets, These are union (V), intersection (n), and subtraction
{-)., These operators have the standard mathematical interpretations.
The only possible confusion pertains to subtraction: if we perfornm
the set operation setl - set2, and if there is an instance of an iten
x 1in set2 but not in setl1, the subtraction proceeds and no error
message is given.

Set Primaries

10-3. In addition to the <set_variable>, there are three set
primaries: the empty set PHI, a set composed of a list of itenm
expressions, and derived sets, The erxpty set 1is the set with a
LENGTH of 0, 7Tts use is unrestricted. A set primary which results
from a list- of item expressions 1is put together as each iten
expression 1is evaluated, Derived sets are really sets of answers to
questions which search the associative memory. .The conventions are:

a XOR b == all x such that a XOR b EQV x
a ‘b -- all x such that a XOR x EQV b
a * h -~ {a YOR. DY) U (a *)

67 _ SATIL MANUAL

Examples of set primaries:

PHI
{ item1 , item2 , itemprocedurel }
(item1 XOR itemvar?)

Ttem Constructs

10-4, There are several SAIL functions which yield items when
evaluated, This 1is actually a rather ambiguous statenment, since
items as such have no real existence as entities to pass arocund in
the breeze. But, of course, their unique identifier numbers may be
passed about freely and indeed are, since the identifier number is
sufficient to specify an itenm. As explained earlier, an itenmvar
evaluates to the item last “stored™ in that itemvar. There are two
functions provided for removing item instances from sets., The first
of these is COP, which evaluates the <set_expression> argument and
returns an 1instance of the first item in the set. The ™first™ iten
in a set is not well defined, since the sets are unordered. The
value of the <set_expression> is unchanged. The function LOP is
similar to COP in that its value is an instance of the first item in
the set argument, but the item returned will be removed from the set
if LOP is used. The set argqument to LOP must be a <variable> for the
simple reason that the set descriptor must be changed to reflect the
reroved item.

Item Selectors

10-5. The operators FIRST, SECOND, and THIRD are provided for
decomposing bracketed triples (see Bracketed Triples, 7-12. The
<item_primary> argument is assumed to be an instance of an item which
~was created for the bracketed association when the MAKE was executed.
Examples:

FIRST ({a XOR o FEQV v]) evaluates to a.

SECOND (la XOR o ROV v]) evaluates to o.

THIRD ({a XOR o EQV v]) evaluates to v,

NEW Items
10-6, The function NEW calls upon the associative store to
refurbish a dusty old DELETEd item or to generate a new one. These

new items-become a part of the universe of existing items, and may be
accessed and handled in precisely the same fashion as declared items.
If NEW is used in an item expression, that expression is then
constrained to be a construction item expression. NEW may also take
an argument, In ‘this <case, the datum of the created item is
preloaded with the value passed as argument, If this argument is
algebraic (real or integer), then the datum will be of the same type.
No type conversions are done when passing the algebraic argument.
NEW will also accept an array name as argument., In this case, the
created item will be of the type array. In fact, the array cited as
arqgument will be copied into the newly created array. The new array
will have the same bounds and nunber of dimensions as the array cited

68 SAIL MANUAL

as argqument. This array will not disappear even if the outer block
is exited.

NEW_ITEM Declaration

10-6, The SAIL runtime routines allocate several tables based on
the number of items in the world. The maximum size of these tables
is 4096, In order to conserve storage, the size of these tables nmay
be specified by the user. The compiler accounts for all the declared
items -- it remains the user’s responsibility to estimate how many
generated (NFW) items he will require. This specification is made
with the REQUIRE verb:

REQUTIRE 200C NEW_TTEMS;:

ANY Construct

10-7. Some assocliative searches may need only partial
specification -- particular portions of a foreach specification may
be unimportant. The ANY construct is used to specify exactly which
parts of the specificaticn are “don’t care™’s., Examples are:

FOREACH x SOCH THAT fatbher XOR x EQV ANY DO PUT x IN sons;
fathers « (father XOR ANY) ;
ANY 1is NOT an item. It is merely a syntactic arrangement to specify
the “don’t care®™ condition., Thus foo « ANY is illegal

CVI

10-8, The function CVI is provided for those people who insist on
having the world at their disposal., The argument is an integer and
the result is an instance of the item which uses that integer as its
unique identifier. Absolutely no error checking is done., CVI is for
daring men. -

LEAP Booleans

10-9. Several boolean primaries are implemented for comparing sets
and items. In the following discussion, “ix™ means item expression,
and “se™ means set expression. These are:

1. Set Menmbership, The boolean ™ix IN se™ evaluates the set
expression, and returns TRUE if the item value specified by the itenm
expression-is a member of the set,

2. Association Existence, The boolean ™ ix XOR ix EQV ix “ returns
_TRUE 1f the association exists in the associative store. Examples:

IF father XOR x EQV joe THEN ...
IF father XOR joe EQV ANY THEN MAKE type XOR joe EQV legitimate

3. Relations. The wuse of +the third kind of boolean is more
restricted than the syntax implies. Only the following relations are
valid: '

69 SATL MANUAL

e e
LR
U

sel
sel

sel
se
sel
sel

[V ARV AR AN

<

iA

[N

)

se?

se?
se?
se?
se?2

obvious
obvious
true if
true if
if seil
obvious
obvious

interpretation

interpretation

se1 is a proper subset of se2
sel1 is identical to se2 or

is a proper subset of se2
interpretation

interpretation

equivalent to se2 < sel
equivalent to se2 € sel

70

SATL MANUAL

SECTION 11

BASIC CONSTRUCTS

SYNTAX
11—10

<identifier>

<identifier> [<subscript_list>]

DATUM (<item_identifier>)

DATUM (<item_identifier>) [
<subscript_list>] ‘

<va:iable>

3 e 48 o8
48 b ¥ e

Hnwunu

<élqebraic_expression> _
<subscript_list> , <algebraic_expression>

<subscript_list>

[TIEET]

[TENTY
]

STMANTICS
Variables

11-2. If a variable is simply an identifier, it represents a
single value of the type given in its declaration.

11-3. If it 1is an identifier qualified by a subscript list it
represents an element from the array bearing the name of the
identifier. ‘

11-4, The array should contain as many dimensions as there are
elements in the subscript list, AlXI] represents the I+1th element of
the vector A (if the vector has a lower bound of $). BIT,J] is the
element from the I+1th row and J+1th column of the two-dimensional
array B. To exrplain the indexing scheme precisely, all arrays behave
as if each dimension had its origin at 0, with (integral) indices
extending infinitely far in either direction. However, only the part
of an array between (and including) the lower and upper bounds given
in the declaration are available for use {(and in fact, these are the
only parts allocated)., TIf the array is . not declared SAFE, each
subscript 1is tested against the bounds for its dimension. If it is
"outside its range, a fatal message is printed identifying the array
and subscript position at fault, SAFE arrays are not bounds-checked.
Users must take the consequences of the journeys of errant subscripts
for SAFE arrays. . The bounds checking causes at least three extra
machine instructions (two of which are always executed for valid
subscripts) to be added for each subscript in each array reference.
The algebraic expressions for lower and upper bounds in array
declarations, and for subscripts in subscripted variables, are always
converted to Inteqer values (see Arithmetic Type Conversions, 9-21)
before use,

71 SATL MANUAL

11-5. For more irnformation ‘about the implementation of SAIL
arrays, sec ARPRAY IMPLEMENTATION, 17-33.

Datums
11-6. If the Item argument of DATUM has an algebraic datum, this
value 1is returned, Othervwise the result is representative of sone

other data type and the value returned will have very little nmeaning
as an algebraic value; it will probably be some internal pointer or
something, This is mentioned here because there are times when the
compiler will mnot be able to tell that such a type mismatch has
occurred. Then it will be up to the user to 1interpret the strange
results. If a Set is desired here, of course, the result is a Set
primary and may be used as such.

Jdentifiers

11-7. You will notice that no syntax was included for the
non-terminal symbols <identifier> or <constant>, It is far easier to
explain these constructs in an informal manner.

11-8. A SAIL letter is any of the upper or lower case letters A
through Z, or the underline character (_). Lower case letters are
mapped into the correspondinqg upper case letters for purposes of
symbol table comparisons (SCHLUFF is the same symbol as Schluff)., 2
diqgit is any of the characters 0 through 9, An identifier is a
string of characters consisting of a letter followed by any number of
letters and digits (try us -- most text editors will give up Dbefore
SATL will). There must be a character which is neither a letter nor
a digit (nor either of the chavacters ™,™ or »%®) both before and
after every identifier. 7In other words, if YOU can’t determine where
one identifier ends and another begins in a program vyou have never
seen before, well, neither can SAIL. :

11-9, . There is @a set of 1identificers which are sed as SAIL
delimiters (in the Algol sense -- that is, BEGIN is treated by Algol
as if it were a single character. Such an approach is not practical,
so a reserved identifier is used). These identifiers are called
Reserved Words and may not be used for any purpose other than those
given explicitly in the syntax. Another set of identifiers bhave
preset declarations -- these are the execution time functions. These
latter identifiers may be redefined by the user; they behave as if
they were declared in a block surrounding the outer block., A 1list of
reserved and predeclared identifiers follows:

72 | SATL MANUAL

Sail Reserved Words
11‘100

ABS AND ANY ARRAY ARRAY_PDL BEGIN BOOLEAN CASE COMMENT COMPLEX COP
CVI CVN DATUM DEFINE DELETE DO DONE ELSE END ENTRY EQV ERASE EXTERNAL
FALSE FIRST FOR FOREACH FORTRAN FORWAED FROM GLOBAL GO GOTO IF 1IN
INTEGER INTEBRNAL ISTRIPLE ITEM ITEMVAR LABEL LAND LENGTH LIBRARY
LOAD_MODULE LNOT 1OP LOR LSH MAKE MOD NEEDNEXT NEXT NEW NEW_ITEMS NOT
NULL OF OR OWN PHI PNAMES PRELOAD_WITH PROCEDURE PUT REAL RECURSIVE
REFERENCE REMOVE REQUIRE RETURN ROT SAFE SECOND SET STEP STRING
STRING_PDL STRING_SPACE SUCH SYSTEM_PDL THAT THEN THIRD TO TRIPLE
TRUE UNTIL VALUE WHILE XCR

Sail Predeclared Tdentifiers
1-11.

ARRBLT ARBINFO ARRTRAN ARRYIN ARRYOUT BREAKSET CALL CLOSE CLOSIN
CLOSOUT CLRBUF CODE CVASC CVD CVE CVF CVFIL CVG CVIS CVO CVO0S CVS
CVSI CVSIX CVSTR CVXSTR ENTER EQU GETCHAN GETFORMAT INCHRW INCHRL
INCHRS INCHSL INCHWL TINSTR INSTRL INSTRS INPUT INTIN LENGTH LINOUT
LOOKUP HTAPE OPEN OUT OUTCHR OUTSTR REALIN RELEASE RENAME SCAN
SETBREAK SETFORMAT STRBRBK TTYIN TTYINL TTYINS WORDIK WORDOUT USERERR
USETI USETO

11-12. Some of the reserved words are eguivalent to certain
special characters. These equivalences are: ‘

CHARACTER RESERVED WORD (s)
A AND
= EQV
- NOT
v OR
® . {circle-cross) XOR
fod (infinity) INF
€ (epsilon) IN
| (vertical bar) SUCH THAT

Arithmetic Constants

11-13,
12369 is an Integer with decimal value 12369
712357 is an Integer constant with octal value 12357
123. 1is a Real constant with flcating point value 123.0
0123.0 is a Real constant with floating point value 123.0
.524 is a Real constant with floating point value 0.524
5.3@4 is a Real constant with floating point value 53000.0
5.342Q0-3 is a Real constant with value 0.005342

73 ‘ SATL MANUAL

11-14, The character ’ (right quote) precedes a string of digits
to be converted into an OCTAL number.

11-15. If a . or a @ appears in a numeric constant, the type of
the constant is returned as Real (even if it has an integral value).
Otherwise it is an integer, Type conversions are -made at compile
time to make the type of a constant commensurate with that required
by a given operation, - Expressions involving only constants are
evaluated by the compiler and the resultant values are substituted
for the expressions.

11-16. The reserved word TRUE is equivalent to the Integer
(Boolean) constant -1; FALSE is equivalent to the coanstant 0.

String Constants

11-17, A String constant is a string of ASCII characters (any
~which you can get into a text file) delimited at each end. by the
character ®*, If the ™ character is desired in the string, insert two
® characters (after the initial delimiting * character, of course).

11-18. A String constant behaves 1like any other (aigebraic)
primary. It is originally of type String, but may be converted to
Integer by extracting the first character if necessary (see
String-Arithmetic Conversions, 9-26). ~

11-19, The reserved word NULL represents a String constant
containing no characters (length=0).

Examples

11-20, The left hand column in the table that follows gives the
required input format to obtain the strings given in the right-hand
colunn: : ;

INPUT RESULT LENGTH
“THIS IS A STRIRG™ THIS IS A STRING ' 16
“HHAT DOES ““FERNDOK™™ MEAN?" WHAT DOES “FERNDOK™ MEAN? 25
“THIS IS HOW YOU TYPE A “%». THIS IS HOW YOU TYPE A * 24
®®®THIS IS A QUOTED STRING**™ ™“THIS IS A QUOTED STRING* 25
nea ’) ‘ . 0
NULL _ Co 0
11-21. The scanning algorithm is altered somewhat if the String is

being used as a macro body definition (see USE QOF DEFINE, 13-0).

I SATL MANUAL

" Comments

11-22. If the scanner detects the identifier COMMENT, all
characters up to and including the next semicolon (;) will be
ignored. A comment may appear anywhere as long as the word COMMENT
~is properly delimited (not in a String constant, of course);

11-23, A string constant appearing just before a statement also
has the effect cf a comment,

75 SATL MANODAL

SECTION 12

EXECUTION TIME ROUTINES -

GENERAL
Scope

12-1. A large set of pre—declared, built-in procedures and
functions have been compiled into a library permanently resident on
the system disk area (SYS:LIBSAI.REL). The 1library also contains
programs for managing storage allocation and initialization, and for
certain String functions If a user calls one of these procedures a
request is .automatically made to the loader to include the procedure,
and any other routines it might need, in the core image. These
routines provide input/output (I1/0) facilities, Arithmetic~String
conversion facilities, array-handling procedures and miscellaneous
other interesting functions.

12-2, The remainder of this section describes the calling
sequences and functions of these routines.

Notational Conventions

12-3, A short-hand is used in these descriptions for specifying
the types (if any) of the execution-time —routines and of their
parameters., Before the description of each routine there is a sample
call of the form

VALDE <« FUNCTION (ARG1, ARG2, ... ARGn)

If VALDE is omitted, the procedure is an untyped one, and may only be
called at statement level (Procedure Statements, 6-2). '

12-u4, The types of VALUE and the arguments may be determxned using
the follow1ng schene: '
1) If * characters surround the sample identifier (which is
usually mnemonic in nature) a String argument is expected.
Otherwise the argument is 1Integer or Real. If it is
"important which of the types 1Integer or Real nmust be
presented, it will be made clear in the description of the
function. Otherwise the compller assumes Integer arquments
(for those functions which are predeclared). The user may
pass Real arquments to these routines (WORDOUT, for example)
by re-declaring them in the blocks in which the Real
arguments are desired. ’

2) If the @ character precedes the sample identifier, the
argument will be called by reference., Otherwise it is a
value parameter. :

!

76 SATIL MANUAL

Example

12-5.

“RESULT™ <« SCAN (@“SOURCE"‘, BREAK_TABLE, @BRCHAR)
is a predeclared procedure with the implicit declaration:

EXTERNAYL STRING PROCEDURE SCAN (REFERENCE STRING SOURCE;
INTEGER BREAK_TABLE;
REFERENCE INTEGER BRCHAR);

I/0 ROUTINES
Open

Form:

12-6. OPEN(CHANNEL, *DEVICE™,MODE, NUMBER_OF_INPUT_BUFFERS,
NUMBER_OF_OUTPUT_BUFFERS,Q COUNT,@BRCHAR,@EOF);

Function:

12-7. SAIL input/output operates at a very low level in the
following sense: the operations necessary to obtain devices, open and
close files, etc., are almost directly analogous to the system calls
used in assembly langquage. OPEN is used to associate a channel
number (0 to 717) with a device, to determine the data mode of the
I7/0 to occur on this channel (character mode, binary mode, dump node,
etc.), to specify storage requirements for the data buffers used in
the operations, and to provide the system with information to be used
for input operations. ‘

CHANNEL is a user-provided channel number which will' be used in
subsequent I/0 operations to identify the device, CHANNEL
may range from 0 to 15 (’17)., If some file is already open
on this channel, a RELEASE will be performed for that
channel before the OPEN is executed.

DEVICE must be a String (i.e. ™“ITY"™, “DATA™) which is recognizable
by the system as a physical or logical device nanme,

MODE is the data mode for the I/0 operation. MODE 0 will always
work for characters (see Input, 12-40 and Out, 12-45).
Modes 8 (710) and 15 (’17) are applicable for binary and
dump-mode operations using the functions WORDIN, WORDOUT,
ARRYIN, or ARRYOUT (see Wordin, 12-48 and following). For
other data modes, see [DECREF]. :

77 SAIL MANUAL

NUMBER_OF{INPUT/CUTPUT}_BUFFFERS specifies the number of huffers to be
reserved for the I/0 operations (see [DECREF] for details).
At least one buffer must be specified for input if any
input is to be done in modes other than “17; similarly for
output. If ‘'data is only going one direction, the other
buffer specification should be 0. Two buffers give
reasonable performance for most devices (1 is sufficient
for a TTY, more are required for DSK if rapid operatxon is
desired).

12-8., The remaining arguments are applicable only for INPUT
(string input)., They will be ignored for any other operations
(although their values may be changed by the Open function).

COUNT designates a variable which will contain the maximum number
of characters to be read from “DEVICE™ in a given TINPUT
call (see Input, 12-40, Breakset, 12-22). Fewer characters
may be read if a break character is encountered or if an
end of file is detected. The count should be a variable or
constant (not an expression), since its address is stored,
and the temporary storage for an expres#ion may be re-used.

§

BRCHAR designates a variable into which the break character (see
INPUT and BREAKSET again) will be stored. This variable
can be ‘tested to determine which of many possible
characters terminated the read operation. :

EOF designates a variable to be used for two purposes:

1) If EOF is O when OPEN is called, a SAIL error message
will bhe invoked if the device is not available or the
channel is already open. The user will be given the
options of retrying or terminating the operation. If
EOF is non-zero when OPEN is called, it will be set to 0
if the OPEN is successful. Otherwise it will not be
changed. In this case (EOF non-zero on entry) control
will be returned to the user, This flag may then be
tested. ’

2) EOF will be made non-zero (TRUE) if an end of file
condition 1is detected during any SAIL input operation.
It will be 0 (FALSE) on return to the user otherwise.
Subsequent inputs after an EOF return will return
non-zero values in EOF and a null String result for
INPUT. For ARRYIN , a 0 is returned as the value of the
call after end of file is detected.

78 ~ SAIL MANUAL

Assembly lLanguage Approximation to OPEN

12-9.

, INIT CHANNEL ,MODE
SIXBIT /DEVICE/
XWD CHED,IHED .
JRST <handle error condition>

JUMPE <NUMBER_OF_OUTPUT_BUFFERS>,GETIN

<allocate buffer space>

OUTBUF CHANNEL, NUMBER_OF_OUTPUT_BUFFERS
GETIN: JUMPE <NUMBER_CF_INPUT_BUFFERS>,DONE

<allocate bhuffer space>

INBOF CHANNEL,NUMBER_OF_INPUT_BUFFERS
DONE <mark channel open -- internal bookkeeping>

<return>

OHED: BLOCK 3
IHFD: BLOCK 3

Close, Closin, Closo

Form:

12-10.

CLOSE (CHANNEL)
CLOSIN (CHANNEL)
CLOSO (CHANNEL)

Function:

12-10. The input (CLOSIN) or output (CLOSO) side of the specified
channel is closed: all output is forced out (CLOSO); the current file
name is forgotten, However the device is still active; no OPEN need
be done again before the next input/output operation . No INPUT, OUT,
etc. may be given to a directory device until an ENTER, LOOKOP, or
RENAME has been issued for the channel.

12-11. CLOSE is equivalent to the execution of both CLOSIN and
CLOSO for the channel.

Getchan
Form:
12-12. ‘YVALUE <« GETCHAN:;
Function:
12-13., The number of some channel not currently open is returned.

-1 is returned if all channels are busy.

79 SAIL MANUAL

Release

Form:

12-14, . RELEASE (CHANNEL);

Function:

12-15. If an OPEN has been executed for this channel, a CLOSE is
now executed for it., The device is dissociated from the channel and
returned to the resource pool (unless it has been assigned by the
monitor ASSIGN command). No I/0 operation may refer 'to this channel
until another OPEN denoting it has been executed.

12-16. Release 1is always valid., If the channel mentioned is not
curreantly open, the command is simply ignored.

Lookup, Enter

Form:

12"17: .
LOOKUP (CHANNFEL , “FILE™ ,@?FLAG):
ENTER (CHANNEL , “FILE™ ,@)FLAG);

Function:

12-18, Before input or output operations may be performed for a
directory device (DRCtape or DSK) a file name must be associated with
the channel on which the device has been opened (see Open, 12-6).
LOOKUP names a file which is to be read, ENTER names a file which is
to be created or extended (see [DECREF]). Both operations are valid
even 'if no filename is really necessary. It is recommended that an
ENTER be performed after every OPEN of an output device so that
output not normally directed to the DSK can be directed there for
later processing if desired. The format for a file name string is

NAME ,
NAME.EXT ,
NAMEIP,PN] , : _
or . NAME.EXTIP,PN] (see [DECREF] for the meaning of these things
if you do not immediately understand).

All characters are converted to SIXBIT by moving the 7100 bit to the
740 bit. SAIL is not as choosy about the characters it allows as PIP
and other processors are. Any character which is not ™,™, *,®, ™%, .
or ™™ will te converted and passed on. Up to 6 characters from
NAME, 3 from EXT, P, or PN will be converted -- the rest are ignored.

80 : SAIL MANUAL

12-19. If the LOOKUP or ENTER operation fails {(see {DECREF]) then
variable TFLAG may be examined to determine the cause. The left half
of FLAG will be set to 777777 (Flag has the 1logical value TRUE).
The right half will contain the code returned by the system giving
the cause of the failure.

12-20. If the LOOKUP or ENTER succeeds, FLAG will be set to =zero
(FALSE).
Renane
Form:
12-21. RENAHE (CHANNEL , “FILE-SPEC™ , PROTECTION ,@ FLAG);

Function:

12-22, The file open on CHANNEL 'is renamed to FILE_SPEC (a NULL
file-name will delete the file) with read/write protection as
specified in PROTECTION (nine bits, described in the time-sharing
manual)., PLAG is set as in LOOKUP and ENTER.

Breakset
Form:
12-22. BREAKSET(TABLE, “BREAK_CHARS™ , MODE);
Function:
12-23. Character input/output is done using the String features of

SAIL.: In fact, I/0 is the chief justification for the existence of
strings in the language,

String input presents a problem not present in String output.
Thke length of an output String can be used to determine the numbher of
characters written, However it 1is often ‘awkward to require an
absolute count for input. Quite often one would like to terminate
input, or “break™, when one of a specified -set of characters is
encountared” in the input strean. In SAIL, this capability is
implemented by means of the BREAKSET, INPUT, TTYIN, and SCAN
functions,

12-24, The value of TABLE may range from 1 to 18, Thus up to 18
different sets of break specifications may exist at once. Which set
will be used is determined by the TABLE parameter in an INPUT or SCAN
function call.

81 SAIL MANUAL

12-25, The function of a given BREMSET command depends on the
MODE, an integer which is interpreted as a right-justified ASCIX
character whose value is intended to be vaguely mnemonic. BREAKSET
comnmands can be partitioned into 3 groups according to mode: "

GROUP 1 -- Break character specifications

12—260

MODE FUNCTION

bt -(by Inclusion) The characters in the BREAK_CHARS String

comprise the set of characters which will terminate an
INPUT (or SCAN). ‘

b & (by eXclusion) Only those characters (of the possible 128
ASCIY characters) which are NOT contained in the String
BREAK_CHARS will terminate an input when using this
table.,

nOw (Omit) The characters in “BREAK_CHARS™ will be omitted
(deleted) from the input string. . ‘

12-27. Any “I* or “X* command completely specifies the break
character set for its table (i.e., the table is reset before these
characters are stored in it),. Neither will destroy the omitted
character set currently specified for this table. Any “O0* conmand
completely specifies the set of omitted characters, without altering
the break characters for the table in question. If a character is a
break-character, any role it might play as an omitted character is
sacrificed.

12-28, The second group of MODEs determines the disposition of
break characters in ‘the input stream. The “BREAK_CHARS™ argument is
ignored in these commands, and may in fact be NULL:

GROUP 2 —-- Break character disposition
MODE FONCTICN
wsw (Skip -- default mode) After execution of an *S* command

the break character will not appear either in the
resultant String or in subsequent INPUTs or SCANs-~- the
character is ‘“skipped™. Its value may be determined

82 SAIL MANUAL

after the INPUT by examination of = the break character
variable (see Open, 12-6). '

b N (Append) The break character (if there is one -~ see
Open, 12-6 and Input, 12-40) is appended, or
concatenated to the end of the input string. It will
not arppear again in subsequent inputs,

“R* (Retain) The break character does not appear in the
~ resultant INPUT or SCAN String, but will be the first
character processed in the next operation referring to

this input source (file or SCAN String).

12-30. For disk and tape files using the standard editor format,
line numbers present a special problem. A 1line number is a word
containing 5 ASCII characters representing the number in bits 0-34,
with a “1* in bit 35. No other words in the file contain 17s in bit
35. . Since String manipulations provide no way for distinguishing
line numbers from other characters, there must be a way to warnm the
user that 1line numbers are present, or to allow him to ignore then
entirely. '

12-31. The third group of MODEs determines the disposition of
these line numbers. Again, the “BREAK_CHARS™ argument is ignored:

Group 3 —-- Line number disposition

12’320

MODE FUNCTION

“pr (Pass -- default) Line numbers are treated as any other
characters., Their identity is lost; they simply appear

. in the result string.

ot \ A (No numbers) No line number <(or . the TAB which always
follows it in standard files) will appear in the result
string. They are simply discarded.

A (Line no. break) The result String will be terminated

early if a line number is encountered. The characters
comprising the line number and the associated TAB will
appear as the next 6 characters read or scanned from
this character source, The wuser’s "break character
variable (see Open, 12-6 and Input, 12-40) will be set
to -1 to indicate a line number break.

83 o SATL MANUAL

“E™ (Lee Erman’s very own mrode) The result String is
terminated on a line number as with “L“, but neither the
line number nor the TAB following it will appear in
subsequent inputs. The 1line number word, negated, is
returned in the user’s (integer) BRCHAR variable.

p (Display) If the TTY is a DPY, each line number from any
input file will be displayed (along with a page number)
on the right-hand side of the screen. This mode really
applies to all input operations after the “D™ operand
‘appears in any Breakset call. There is no way to turn
it off.

12-33. Once a break table is set up, it may be referenced in an
INPUT, TTYIN or SCAN call to control the scanning operation.

Exanmple:

12-34, To delimit a ™“word™, a program might wish to input
characters until a blank, a TAB, a line feed, a comma, or a semicolon
is encountered, ignoring line numbers. Assume also that carriage
returns are to be ignored, and that the break character is to be
retained in the character source for the next scanning operation:

BREAKSET (DELIMS,™ “STABSLF,*I™); Comment break on any of these;
BREAKSET(DELIMS,’15 “C“)~i?omm9nt 1gnore carriage return;
BREAKSET (DELIMS, NULL,™N™); Comment ignore line numbers;

BREAKSET (DELIMS, NULL,“R‘), Comment save break char for next time:

Setbreak

Formy¢
12""3 5-9

SETBREAK (TABLE + “BREAK_CHARS™ , “OMIT_CHARS™ , “MODES™)

Function:

12-36. ‘SETBREAK is logically equivalent to the SAIL statement:

BEGIN “SETBRFEAK™
INTEGER I;
IF LENGTH(OMIT_CHARS) > {0 THEN
BREAKSET(TABLE,OMIT_CHARS,™O0™);
FOR I-1 STEP 1 UNTIL LENGTH(&ODES) Do
BREARSET (TABLE, BREAK_CHARS, MODESII FOR 13)
END ‘SETBRFAK‘

84 . SAIL MANUAL

Stdbrk

Formz

12-37. STDBRK (CHANNEL);

Fanction:

12-38. FTighteen breakset tables have been selected as

representative of the more common input scanning operations. The
function STDBRK initializes the breakset tables by opening the file
SYS3sBKTBL,BKT on CHANNEL and reading in these tables. The user may
then reset those tables which he does not like to something he does
like.

12-39. The eighteen tables are described here by giving the
SETBREAKs which would be required for the user to initialize them:

DELIMS « 715 & 712 & 40 & 711 & *14;

Comment carriage return, line feed, space, tab, form feed;
LETTS « “ABC ... Zabc ... zZ_™; '
DIGS =~ “0123456789%;

SAILID « LETTSEDIGS;

SETBREAK (1, 712, 715, “INS®™);
SETBREAR (2, 712, NULL, “INA™);
SETBREAK (3, DELIMS, NULL, “XNR™);
SETBREAK (4, SAILID, NULL, “INS™);
SETBREAK (5, SATLID, NULL, “INR™);
SETBRFAK (6, LETITS, NULL, “XNR®™);
SETBREAK (7, DIGS, NULL, “XNR™);
SETBREAK (8, DIGS, NULL, “INS™);

SETBREAK (9, DIGS, NULL, “INR™);
SETBREAK (10, DIGSS®+-@.%, NULL, “XNR™);
SETBREAK (11, DIGSE™+-@.*%, NULL, “INS™);
SETBREAK (12, DIGSE™+-@,*, NULL, “INR™);
SETBREAK (13-18, NULL, NULL, NULL);

Input
Form:
12—&0. YRESULT™ < INPUT(CHANNEL, BREAK_TABLE); .
Function:
12-41, A string of characters is obtained for the file open on

CHANNEL, and 1is returned as the result. The INPUT operation is
controlled by BREAK_TABLE (see Breakset, 12-22) and the reference
variables BRCHAR, FEOF, and COUNT which are provided by the user in

B5 SATL MANUAL

the OPEN function for tais channel (see Open, 12-6). Input nmay

terminated in several ways.

obtained by examining BRCHAR and EOF:

FOF BRCHAR

-1 0

End of file occurred while reading. The result is
a String containing all non-omitted characters
which remained in the file when INPUT was called.

No break characters were encountered.: The result
is a String of length equal to the current COUNT
specifications for the CHANNEL (see Open, 12-6).

A line number was encountered and the break table
specified that someone wanted to know. The result
String contains all <characters up to the 1line
number, If mode “L™ was specified in the Breakset
setting up this table, bit 35 is turned off in the
line number word so:. that it will be input next
time, -1 is placed in BRCHAR. If mode “E™ was
specified, the 1line number will not appear in the
next input String, but its negated ASCII value,
complete with Jlow-order 1line number bit, will be
found in BRCHAR,

A break character was encountered. The break
character is stored in BRCHAR (an INTEGER reference
variable, see Open, 12-6) as a right-justified
7-bit ASCII value, It may also be tacked on to the
end of the result String or saved for next tinme,
depending on +the BREAKSET node (see Breakset,
12-22).,

he

The exact reason for termination can be

12-42, If break table 0 is specified, the only criteria for

termination

somewhat faster operating in this mode.

are end of file or COUNT exhaustion. The routine is

Scan
Forms
12-43, “RESULT™ - SCAN (@)“SOURCE‘ s BREAK_TABLE ,@’BRCHBR)
Function:
12-44, SCAN functions identically to INPUT with the following

exceptions:

86 , SAIL MANUAL

1. The source is not a data file but the .String SOURCE, called
by reference, The String SOURCE is truncated from the left
to produce the same effect as one would obtain if SOURCE were
a data file. The disposition of the break character is the
same as it is for INPUT.

2. BRCHAR is directly specified as a parameter. INPUT gets its
break character variable from a table set up by Open, 12-6,

3. Line number considerations are irrelevant.
Oout

Form:

12-45, OUT(CHANNEL, “"STRING™)

Function:

12-45, STRING is output to the file open on CHANNEL. If the
device is a TTY, the String will be typed immediately. Buffered mode
text output is employed for this operation. The data mode specified
in the OPEN for this channel must be 0 or 1. ‘

Linout
Form:
12-46, LINOUT {(CHANNEL , NUMBER);
Function:
12-47, ABS(NUMBER) mod 100,000 is converted to a 5 character ASCII

string., These characters are placed in a single word in the output
file designated by CHANNEL with the low-order bit (line-number bit)
turned on. A tab is inserted after the line number. Mode O or 1
must have been specified in the OPEN (Open, 12-6) for the results to
be anywhere near satisfactory.

Wordin

Form:
12-u48., VALUE <« WORDIN (CHANNEL)

87 SAYL MANUAL

Function:

12-49, The next word from the file open on CHANNEL is returned. A
0 is returned, and END_FILE_FLAG (see Open, 12-6) set, when end of
file is encountered. This operation is performed in buffered mode or
dunp mode, depending on the mode specification in the OPEN,

Arryin
Forms
12-50. ARRYIN (CHANNEL ,@7L0C s HOW_MANY)3
Function:
12-51. HOW_MANY words are read from the device and file open on

CHANNEL, and deposited 1in memory starting at . location LocC.
Buf fered-mode input 1is done if MODE (see Open, 12-6) is ’10 or ”14,
Dump-mode input is done if MODE is 716 or 717. . Other modes are
illegal. ,

12-52. If an end of file condition occurs before HOW_MANY words
are read, the EOF variable (see Open, 12-6) is set to 777777 in its
left half, Its right half contains the number of words actually
read. EOF will be 0 if the full request is satisfied.

Wordout
Form:
12-53, WORDOUT (CHANWEL , VALUE);
Function:
12-54, VALUT is placed in the output buffer for . CHANNEL. An

OUTPUT 1is done when the buffer is full or when a CLOSE or RELEASE is
executed for this channel, Dunmp mode output will be done if dump
mode is specified in the OPEN (see Open, 12-6).

Arryout

Form:
12-55. ARRYOUT (CHANNEL ,(@ LOC , HOW_MANY);

88 SATL MANUAL

Function:

12-56. HOW_MANY words are written £from memory, starting at
location LOC, onto the device and file open on channel CHANNEL. The
valid modes are again 710, ‘14, ’16, and “17. The EOF variable is,
of course, unaffected.

Mtape
Form:
12-57. MTAPE (CHANNEL , MODE);
Function:
12-58. MTAPE is ignored unless the device associated with CHANNEL

is a magnetic tape drive, It performs tape actions as follows:

MODE FUNCTION

wAN Advance past one tape mark (or file)
g™ Backspace past one tape mark

“E® Write tape mark

“F* Advance one record

“R™ _ Backspace one record

wg™ write 3 inches of blank tape

o Advance to logical end of tape

U™ Rewind and unload

R Rewind tape

Useti, Useto

Form:
12-59c
USETI (CHANNEL , VALUE);
USETO (CHANNEL , VALUE);

Function:

12-60. The corresponding system function 1is carried out (see
[DECREF] V). '

89 SATL MANUAL

Realin, Tntin

Form:

12‘610
VALUE « REALIN (CHANNEL)3
VALUE - INTIN (CHANNEL);

Function:

12-62, Number input may be obtained using the functions REALIN or
INTIN, depending on whether a Real number or an Integer is required.
Both functions use the same free field scanner, and take as argument
a channel npumber, ‘

12-63, Free field scanning works as follows: characters are
scanned one at a time from the input channel, Nulls, 1line
numbers,and carriage returns are ignored. When a digit is scanned it
is assumed that this is a number and the following syntax is used:

<number> 12= <sign><real number>
<real number> 2z= <decimal number>|<decimal number><exponent>]
<exponent>

i

<decimal number> :: <integer>|<integer>.|<integer>.<integer>|

.<integer>

(1]
(1]
1]

<integer> <digit>|<integer><digit>

(1)
(1]
I

<exponen t> @<sign><integer>

<digit> 1= 01112]131415161718}9
<sign> 3= +|-|<empty>
12-64, If the digit is not part of a number an error message will

be printed and the program will halt., Typing a carriage return will
cause the input function to return zero. On input, leading zeros are
ignored. The ten most significant digits are used to form the
number. A check for overflow and underflow is made and an error
message printed if this occurs., When using INTIN any exponent is
removed by scaling the Integer number. Rounding is used in this
process, All numbers are accurate to one half of the least
siginificant bit,

12-65. After scanning the number the last delimiter is replaced on
the input string and is returned as the break character for the

90 SATL MANUAL o

channel. If no number is found, a zero is returned, and the break
variable is set to -1; If an end of file is sensed this 1is also
returned in the appropiate channel variable., The maximum character
count appearing in the OPEN call is ignored.

Realscan, TIntscan

b

Form:
12-66.

VALUE - REALSCAN (@ “NUMBER_STRING* , @ BRCHAR) ; VALUE « TINTSCAN (
@“NUMBER_STRING® , @BRCHAR); |

Function:

12-67. These functions are identical in function to REALIN and
INTIN, Their inputs, however, are obtained from their NUMBER_STRING
arguments. These rocutines replace NUMBEB_STRING by a. string

containing all characters left over after the number has been removed
from the front,

Teletype I/0 Functions

Form:

12-68.

CHAR « INCHRW;
CHAR < TINCHRS;
“STR™ <« INCHWL;

“STR™ « INCHSL (@FLAG);
®STR™ < INSTR (BRCHAR);
“STR™ « INSTRL (BRCHAR);
“STR™ < TINSTRS (@ FLAG , BRCHAR);
“STR® « TTYIN (TABLE , @BRCHAR);
“STR™ « TTYINL (TABLE , @ BRCHAR);
MSTR™ -« TTYINS (TABLE , @ BRCHAR);

OUTCHR (CHAR);

OUTSTR { “STR™);

CLRBUF;

BACKUP;

LODED (“STR™); (Only available at Stanford)

Function:

12-69. Each of .the I/0 functions uses the TTCALL UUO’s to do
direct TTY I/0.

INCHRW waits for a character to be typed and returns that
character.

91 SAIL MANUAL

INCHRS

INCHVWL

INCHSL

INSTR

INSTRL
INSTRS

TTYIN

TTYINL

TTYINS
OUTCHR

OUTSTR
CLRBUF
BACKUP

LODED

Form:

12-70.

returns -1 if no characters have been typed; otherwise it
is TNCHRW.

waits for a line, terminated by a carriaqe—return and
line feed (CR-LF) to be typed. It returns as a string
all characters up to (not including) the CR., The LF is
lost. ' ,

returns NULL with FLAG = -1 if no lines have been typed,
Otherwise it sets FLAG to 0 and performs INCHWL.

returns as a string all characters up to, but not
including, the first instance of BRCHAR. The BRCHAR
instance is lost.

waits for a line to be typed, then performs INSTR,

is INCHSL if no lines are waiting; INSTRL otherwise.

uses the break table features described in {BRKS} and
Input, 12-40 to return a string and break character.
Mode “R™ is illegal; line number modes are irrelevant.
The input count (see Open, 12-6) is set at 100.

waits for a line to be typed, then does TTYIN.

sets BRCHAR to -1 and returns NULL if no lines are
waiting., Otherwise it is TTYINL.

types 1its character arqument (right-justified in an
integer variable).

types its string arqument.
flushes the input buffer.
backs up the scan (wvhen started by a system command).

loads the line editor with the string argument.

(This feature is only available at Stanford)

Pseudo-teletype functions
(These only exist at Stanford)

12"'70 .

line « PTYGET ;

PTYREL (line):;

characteristics « PTGETL (line);
PTSETL (line , characteristics);
number « PTIFRE (line);

number « PTOCNT (line);

92 SATL MANUAL

char « PTCHRW (line)
char « PTCHRS (line)
PTOCHS (line , char)
PTOCHW (’)

PTOSTR (line , ™*str™);

string « PTYALL (line);

string « PTYSTR (line , brchar);

string bktbl , @brchar);

line char

-
4
-
’
-
’
-
(4
)

PTYIN (line,

Function:

12"70.

PTYGET gets a new pseudo-teletype line number and returns it.
The global variable ,SKIP. 1is -1 if the attempt to get a
PTY was successful, and 0 otherwise,

PTYREL releases PTY identified by “line™,

PTGETL returns line characteristics for the PTY.

PTSETL sets line characteristics for thm PTY specified by
“*line™,

PTIFRE returns the number of free characters in the PTY input
buffer.

PTOCNT returns the number of free characters in the PTY output
buf fer.

PTCHRY waits for a character from the PTY and returns it.

PTCHRS reads a character from the PTY if there is one, returns
-1 if none.

PTOCHS tries to send a character to a PTY, If the attempt was
successful, the global variable .SKIP, is -1, otherwise
0.

PTOCHW = sends a character to a PTY, waiting if necessary.
PTOSTR sends the string to the PTY, waiting if necessary.

PTYALL returns wvhatever is in the PTY’s output buffer. No
waiting is done.

PTYSTR reads characters from the PTY, waiting 1if necessary,
’ until a character equal to “*char™ is seen. All but the
break character is returned as the string. If the break
character was ‘15 (carriage return), the following
line-feed is snarfed.

PTYIN reads from the PTY (waiting if necessary) according to
break table conventions. = The break character is stored
in *brchar®™.

93 SATIL MANUAL

STRING MANIPULATION ROUTINES

Length
Form:
12-71. VALUE <« LENGTH (“STRING™):;
Function:
12-72. The number of 7-bit characters in STRING is returned. This

function is normally compiled into SAIL programs. The function is
provided for other programs if they need it,

Equ
Form:
12-73, VALUE -« EQU (“STR1™, ™STR2");
Function:
12-74, The value of this function is TROE if STR1 and STR2 are

equal in length and have identically the same characters im them (in
the same order). The value of EQU is FALSE otherwise.

TYPE CONVERSION ROUTINES

Setformat
Forms
12-75. SETFORMAT (WIDTH , DIGITS) ;.
Function:
12-76. This function allows specification of a minimum width for

strings created by the functions CVS, CV0S, CVE, CVF, and CVG (see
Cvs, 12-80 and following). If this number (WIDTH) 1is positive,
enough blanks will be inserted in front of the resultant string to
make the entire results at least WIDTH characters long. The sign, if
any, will appear after the blanks. If WIDTH is negative, leading
zeroes will bhe used in place of blanks, The sign, of course, will:
appear before the =zeroes, This parameter 1is initialized by the
system to 0.

94 SAIL MANUAL

12-77. In addition, the DIGITS parameter allows one to specify the
number of digits to appear following the decimal point in strings
created by CVE, CVF, and CVG. This number is initially 7. See the
writeups on the functions Cve, Cvf, Cvg, 12-88 and following for
details,

Getformat
Form:
12-78. GETFORMAT (@ WIDTH ¢« @DIGITS)
Function:
12-79, The WIDTH and DIGIT settings specified in the last

SETFORMAT call are returned in the appropriate reference parameters.

Cvs
Form:
12-840, “ASCII_STRING™ - CVS (VALUE };
Function:
12-81., The decimal Integer representation of VALUE is produced as
an ASCII String with leading zeroces cmitted (unless WIDTH has been
set by Setformat, 12-75 to some negative value), “-® will be

concatenated to the String representing the decimal absolute value of
VALOE if VALUE is negative.

Cvos
Form:
12-82, ®ASCIT_STRING™ « CVOS (VALUE);
Function:
12-83, The octal Integer representation of VALUE is produced as an

ASCII String with leading zeroes omitted (unless WIDTH has been set
to some negative value by Setformat, 12-75). No “*-™ will be used to
indicate negative numbers. For instance, -5 will be represented as
“TT7777777773>,

95 SAIL MANUAL

Cvis

Form:

12-84. “STRING® « CVIS (ITEM ,(@ FLAG) ;

Function:

12-85. The print name of ITEM is returned as a string. An TItem’s
print name is the identifier nsed to declare it. Print names are not
provided for Itemvars. FLAG is set to FALSE (0) if the appropriate
string is found. Otherwise it is set to TRUE (-1), and you should
not place great faith in the string result, PNAMES have ¢to be
REQUIREd. (see 3-56)

Cvsi
Form:
12-86, ITEM « CVST (“PNAME* ,@FLAG) ;
Function:
12-87. The Item whose identifier is the same as the string

arqument PNAME 1is returned and FLAG set to FALSE if such an Iten
exists., Othervise, something very random is returned, and FLAG 1is
set to TRUFR. PNAMES have to be REQUIRFd. (see 3-56)

Cve, Cvf, Cvg

Form:

12-88.
®STRING®™ « CVE (VALUE); “STRING™ < CVFP (VALUE); “STRING™ < CVG (
VALUE); '

Function:

12=89, Real number output is facilitated by means of one of three
functions CVE,CVG, or CVF, corresponding to the E,G, and F formats of
FORTRAN 1V, Fach of these functions takes as arqument a real number
and returns.a strirg. The format of the string is controlled by
another function SETFORMAT (WIDTH,DIGITS) (see Setformat, 12-75)
which is used to change WIDTH from zerc and DIGITS from 7, their
initial values. WIDTH specifies the minimum string length. If WIDTRH
is positive leading blanks will be inserted and if negative 1leading
zeros will be inserted. '

96 SATL MANUAL

12"900
typical numbers.
and DIGITS<3.

— v . ape o wo

———— o

—--1020.000
_-1000.000

_10000.000
_100000.000
_1000000.000
-1000000.000

12-91, The
or a minus sign.

CVF
_00001.000
-00001.000

12-92,
If DIGITS is
than eight,

Form:

first

greater
the number is rounded.

CVE
—— 100@"3__
-+ 1000-2_
—— 100@"'1_
——s100____
——e100@1__
—e 100@2__
e 100@3__
. 100eu__
——s 100@5__
-+ 100€6__
- 100@7__
_~.10007__

The following table indicates the strings returned for some
~ indicates a space and. it is assumed that WIDTH«10

CVG
—— 100@‘3__
——+100@-2_
——»+100@-1
-=»100
~-1.00__.__
--10.0
100, .

——+100@4__

-~

s o o vy

—_.10005__
__.10006__
S _.100@7__
_=.10007__

character ahead of the number is either a tlank

Cvstr

trailing zeros are included;

#ith WIDTHe-10 plus and minus 1 would print as:
CVE CcvVG
_0.100@1__ _01.00____
-0.100e1__ -01.00____
211 numbers are accurate to cne unit in the eighth digit.
than 8, if less

12-93, “STRING® < CVSTR (VALUE) 3

Function:

12-94, VALUE is treated as a S5-character left-justified word full
of ASCII, the result is a S5-character long String containing these
characters. The low order bit of VALUE is ignored.

Cvxstr
Form:
12-95, ®STRING® « CVXSTR (VALUE) ;

97 SAIL MANUAL

Function:

12-96. VALUE is treated as a 6-character left-justified word £full
of SIXBIT. The result is a 6-character long String containing these
characters, converted to ASCII.

Ccvd
Form:
12-97, VALUE <« CVD (“ASCII_STRING™);
Function:
12-98., ASCII_STRING should be a String of decimal ASCII characters

perhaps preceded by plus and/or minus signs. Characters with ASCII
values € SPACE (’40) are ignored preceding the number., Any character
not a digit will terminate the conversion (with no error indication).
The result is the internal (signed) 36-bit binary representation of
the number. :

Cvo
Forms
12-99, VALUE « CVO (“ASCII_STRING™);
Function:
12-100. This function is the same as CVD except that the input

- characters are deemed to represent Octal values.,

Cvasc
Form:
12-101. VALUE « CVASC (®STRING™);
Function:
12-102.- This is the inverse function for CVSTR. Up to five ASCII

characters - will be fetched from the beginning of STRING and placed
left-justified in VALUE. TIf the String is less than five characters
long, the right characters will be padded with null {(0) characters.

98 SATL MANUAL

Cvsix

Form:

12-103. VALUE - CVSIX (“STRING"™);

Function:

12-104, ~ The 1inverse for CVXSTR, this function works the same as
CVASC except that up to six SIXBIT characters are placed in VALUE,
The characters from STRING are converted fron ASCII to SIXBIT before
depositing them in VALUE,

cvfil
Forms
12-105, VALUE « CVPIL (“FILE_SPEC™ ,@.E.XT.E;‘I +@PPN) ;
Fanction:
12-106. FILE_SPEC has the same form as a file name specification

for LOOKUP or ENTER. The SIXBIT for the file name is returned in
VALUE. The STYBIT value for the extension is returned in EXTEN.
The value of the PPN (CMU or DEC, at CMU) is returned in PPN, Any
unspecified portions of the FILF_SPFC will result in zero values.

ABRRAY MANIPULATION ROUTINES
Arrinfo

Form:

12-107. VALUE « ARRINFO (ARRAY , PARAMETER);

Function:
12-108.

ARRINFO(ARRAY,-1) returns the number of dimensions for the array.
This number is negative for String arrays.

ARRINFO(ARRAY,O) returns the total size cof the array in wvords.

ARRINFO(ARRAY, 1) returns the 1lower bound for the first
dimension.

99 SATL MANUAL

ARRINFO(ARRAY,2) returns the upper bound for the first

dimension.
ARRINFO({ARRAY, 3) returns the lower bound for the second
dimension. :
ARRINFO(...) etc.
Arrblt
Forms
12-109. ARRBLT (@ DESTINATION , @SOURCE s NOM);
Function:
12-110. NUM words are transferred from consecutive locations

starting at SOURCE to consecutive locations starting at DESTINATION.
No bounds checking is performed,

Arrtran
Formz
12-111., ARRTRAN (DESTINATION-ARRAY, SOURCE-ARRAY);
Function:
12-112. This function copies information from SOURCE-ARRAY to
DESTINATION-ARRAY. The transfer starts at the first data word of each
array. The minimum of the sizes of DESTINATION-ARRAY and

SONRCE~ARRAY is the number of words transferred.

LIBERATION-FROM-SATIL ROUTINES

Code
Forms:
12-113. RESULT « CODE (INSTR , @ADDR)
Function:
12-114, This function is equivalent to the FAIL statements:

100 ' SATL MANUAL

EXTERNAL .SKIP. ;DECLARE AS _SKIP_ IN SAIL

SETOM .SKIP, ;ASSUME SKIP
MOVE 0,INSTR

ADDI 0,0ADDR

XCT 0

SETZM .SKIP, :DIDN’T SKIP

RETORN (1)

In other words, it executes the instruction formed by adding the
address of the ADDR variable (passed by reference) to the number
INSTR, Before the operation 1is carried out, AC1 is loaded from a
special cell (initially 0). AC1 is returned as the result, and also
stored back into the special cell after the instruction is executed.
The global variable _SKIP_ (.SKIP, in DDT or FAIL) 1is FALSE (0)
after the «call if the executed instruction did not skip; TRUE
(currently -1) if it did. Declare this variable as
EXTERNAL INTEGER _SKIP_ if you want to use it.

Call
Form:
12-115. RESULT - CALL (VALUE , “FUNCTION™);
Function:
12-116, This function is equivalent to the FAIL statements:
EXTERNAL .SKIP,
SETOM . SKIP,
MOVE 1, VALUE
CALL 1, [SIXBIT /FUNCTION/] .
SETZM . SKIP, ;DID NOT SKIP

RETURN (REGISTER 1)

The .SKIP. variable (_SKIP_ in SAIL) is set as described in the
previous paragqgraph (CODE). : '

Usererr
Form:
12-117. USERERR (VALUE , CODE , “MSG™);
Function
12-118, MSG is printed on the teletype. If CODE = 2, VALUE is

printed in decimal on the same line. Then on the next line the

101 : SATIL MANDAL

“"LAST SAIL CALL™ message is typed which indicates where in the user
program the error occurred. A “?™ or “=™ character is typed and the
user may type a standard reply (see FRROR MESSAGES, 14-19), If CODE
is 1 or 2, a ™“+* will be typed and execution will be allowed to
continue, If it is 0, a *?™ is typed, and no <continuation will be
permitted.

Point
Fornm:
12-119, VALUE <« POINT (BYTE SIZF ,@ EFFECTIVE ADDRESS , LAST BIT
NUMBER) .
Function:
12-120. POINT returns a byte pointer. (hence it is of type

integer). The three arguments are enough to specify the three fields
of a PDP-10, If the LAST BIT NUMBER is -1, POIRT creates a byte
pointer which, when used with an ILDB, will pick up the first byte
from the word at EFFECTIVE ADDRESS., Otherwise, the three arqguments
to POINT are exactly analagous to the three arquments to POINT in

102 SAIL MANDAL

' SECTION 13
USE OF DEFINE

The SAIL DEFINE feature provides a 1limited macro capability with
parameter substitution. The formal syntax for DEFINE declarations is
given in DECLARATIONS, 3-1. Use of these macros is described below.

Defining Macros
13-1. #h2n a macro of the form
DEFINE MAC(X,Y) = “FOR Y«1 STEP 1 OUNTIL X DO™

is seen by the compiler (either at declaration level or statement
level), it first associates with the “formal parameters™ sequential
indices (X=1, Y=2). Then it reads the String constant representing
the macro body into String space, substituting for each occurrence of
a formal parameter the character ‘177 followed by the character
representing the index of this formal parameter, These special
characters will be used to locate the actual parameters when the
macro is expanded. The nmodified macro body is stored under the nanme
of the macro, where it lies dormant until someone mentions it again.

13-2, In what follows, the character ! will represent the
character (7177) used to identify parameter locations. The number
following it will always be the parameter index. The above macro is
stored as:

FOR !2+1 STEP 1 UNTIL !1 DO

13-3. A macro may be re-defined (at statement level) as many times
as desired. The new macro body replaces the old one. Macro names
follow Dblock structure, so for a macro with the same name as some
other mcro to be a redefinition, it must appear at the same block
level as that other definition,

String Constants in Macro Bodies

13-4, String constants may be represented in macro bodies, but two
quote characters (*) must be inserted for each one which would be
necessary if the String constant appeared outside the macro body
(which after all is itself a String constant, hence the problemnm).

Using Macros

13-5. ‘When a macro name (ignore for the moment the possibility of
parameters) is detected in a file, the body of that macro is
retrieved and becomes the input to the SAIL scanner until the String
is exhausted; the scanner then returns to the source file for its
input. The macro name itself never nmakes it out of the scanner. 1If,

103 SATL MANUAL

while a macro body is providing input, another macro name is
encountered, the original macro body is put aside until this new
macro is exhausted. Nesting may occur to any level; however, it will
be necessary to increase the size of the compiler’s DEFINE push down
stack 1if nesting gets extremely deep (see the D switch in Switches,
14-13). ~ ' ‘ ‘ ’

Macro Parameters

13~6. If a macro body has been defined with formal rarameters, the
compller will look for actual parameters to satisfy them when a macro
is expanded., Actual parameters follow the macro name, are surrounded
by parenthpscs and separated by conmnmas.

13-7. A macro parameter is scanned as a String constant. However,
for convenience, the following special rules apply to the scanning of
a macro actual parameter:

1) A1l blank characters after the left parenthesis are ignored.

2) 1If the first non-blank character is not the ™ character, the
parameter String will be terminated by a comma or a right
parenthesis, which will ncot appear in the parameter., If the
®* character 1is found after the first one, it is treated as
any other text character. '

3) If the first non-blank character is the ™ character, the
parameter 1is scanned using the normal rules for String
constants, '

Example
13-8.

MAC{(®TI™“,"I") is equivalent to MAC(I,J):
MAC(®J+3™ , “X5%™™A STRING™*™™)
is equivalent to MAC(J+3,XE%A STRING™);

but MAC(™“®A STRING™™“,“PROC(I,J)™)

may not be abbreviated, because the meaning of the ™ character would
otherwise be ambiquous in the first arqument, and the commas and
parentheses need protection in the second.

Actual Parameter Expansion

13-9, The actual parameter strings are stored in an ordered 1list
just before the input stream is switched to the macro body. When one
of the !number pairs appears, the input stream 1is switched to the
(number) th actual parameter, Other macros (with or without
parameters) may appear in these actual parameters without confusing
the scanner (sic).

104 : SAIL MANUAL

13-10. For an actual parameter to be recognized eventually as a
String constant, enough * characters must surround it to allow one to
survive on each end when it passes through the scanner for the last
time, To be sure, the implementation of this feature is so wvondrous
that even the authors must resort to trial and error methods when
complicated things are done\enod\attempted.

Examples

13"11-

DEFINE TTY="1", SRC=™2", BRK_ON_LFD="2%;

Comment for constant parameters for which
it is desirable to include symbolic nanmes,
this is more efficient than assigning the
parameter values to variables;

DEFINE TYPE(MSG)= “QUT(TTY,NMSG)™;
Comment note inclusion of TTY macro in the
body of the TYPE macro;

DEFINE TYPEC {MSG)="0UT(TTY,""MSG*™)*;
Comment arqument always to be made into
a String constant;

DEFINE DEBUGGING = ™TRUE™, INP1(VBL,WHERE)=
“BEGIN
VBL<INPUT(SRC, BREAK_ON_LFD);
"IF DEBUGGING THEN
TYPR(N®"S®“TNPUT TO VBL AT WHERE IS®“““EVBL™%):
END™; Comment (probably);

Using these definitions,
TNP1(STR,INITTAL READ) expands to:
BEGIN
STR«<INPUT(2,2);
IF TRUE THEN

OUT(1,*INPUT TO STR AT INITIAL READ IS “£STR);
END;

105 SATIL MANUAL

SECTION 14

COMPILER OPERATION

COMMAND FORMAT
Syntax

’5*1.

s
"
1]

<command_line> <binary_name> <115t1ng,namm> -
<source_list>
<file_spec> @

<file_spec> EXC

W

LI 2]
e

<file_spec>
<empty>

<binary_name>

28 b

o

e e

<listing_name> , <file_spec>

<empty>

“ o
ton

<source_list> <file_spec>

<source_list> , <file_spec>

o s

i

&8 e

<file_spec> <file_name> <file_ext> <proj_prog>
<device_name> <file_spec> <switches>

<device_name> <switches>

"N S s
s 68 e
o

(1]
|

<file_nanme> = <legal_sixbit_id>

<file_ext> s:2= , <legal_sixbit_id>
1:= <empty>
<proj_prog> :3= [<legal_octal_id> , <legal_octal_id> 1
se= [<legqal_CMU_id>]
2:= <empty>
<device_name> k 1:= <legal_sixbit_id>
<switches> { <unslashed_switch_list>)’

<slashed_switch_list>
<empty>

owi

e 06 e
s 00 3

<unslashed_switch_list> <syitch_spec>

<unslashed_switch_list> <switch_spec>

o s

<slashed_switch_list> / <switch_spec>

<slashed_switch_list> / <switch_spec>

s ¢
[T 1]

<switch_spec> <valid_switch_nanme>

<signed_integer> <valid_switch_name>

s 03
[T}
tu

106 SATL NANUAL

<valid_switch_namne> :2=C
2= D
::= F
2= L
2= M
2s= P
2= Q
2= R
2= 5

Semantics

14-2, A1l this is by way of saying that SAIL accepts commands in

essentially the same format accepted by DEC processors such as MACRO
and FORTRAN. The binary file name is the name of the output device
and file on which the ready to load object program will be written.
The listing file, if included, will contain a copy of the source
files with a header at the top of each page and an octal progranm
counter entry at the head of each line (see listing Features, 14-13).
The 1listing file pame 1is often omitted (no listing created). The
source file list specifies a set of user-prepared files which, when
concatenated, form a valid SAIL program (one outer block).

14-3, legal _sixbit_identifier is a name which is acceptable to the
time sharing system as a valid file name, device name, extension,
etc. when 1its first six (device, file) or three (extension,
progect-programrer number) are converted from ASCII to SIXBIT. For
more information about file and device names, see [DECREF]. :

14-4, If file_ext 1is omitted from the binary_name, the extension
for the output file will be .REL. The default extension for the
listing file is .LST. SAIL will first try to find source files under
the names given. If this fails, and the extension is omitted, the
same file with a .SAI extension will be tried.

14-5, ¢ If device_name is omitted, DSK: is assumed, If proj;prog is
omitted, the proiject-proqrammer number for the job is assumed.

14-6. Switches are parameters which affect the operation of the
compiler. A list of switches may appear after any file name. The
parameters specified are changed immediately after the file name
associated with them is processed. The meanings of the switches are
given below.

14-7, The binary, 1listing and (first) source file names are
processed before compilation -- subsequent source names (and their
switches) are processed whenever an end-of-file condition is detected
in the current source file. Source files which appear after the one
containing the outer block’s END delimiter are ignored.

107 SATL MANUAL

14-8, Each new line in the command file (or entered from the
teletype) specifies a separate program compilation. Any number of
programs can be compiled by the same SAIL core image,

14-9. The file_spec@ command causes the compiler to open the
specified file as the command file., Subsequent commands will come
from this file., If any of these <cocmmands 1is’ file_spec@,- another
switch will occur,

14-19, The file_spec! command will cause the specified file to be
run as the next processor. This program will be started in “RPG
(CCL?) mode™. That is, it will look on the disk for 'its commmands
if its standard command file is there -- otherwise, command control
will revert to the TTY. The default option for this extension |is
+SAV. The default device is SY¥S:,

14-11, For information about logging in, running jobs, and so on,
see [DECREF].

Rpg Mode

14-12, The COMPILE, DEBUG, LOAD, and EXECUTE set of systen
commands may be used to compile and run SAIL programs. . See [DECREF]
for details. A typical command String to the system (which will
prepare conmands of the form described above and pass them to SAIL
(after starting it) might be:

DEBUG ./SATL BECOG(°2L5HRR)=BEG+PROCS+RECOG/LIST,CHDSCN[1235,“56]

This command will cause the following commands to be placed in a file
on your area by the name of QQSAIL.RPG:

RECOG.REL,RECOG.LST(-2L5MRR)«BEG,PROCS,RECOG
CMDSCN, REL-CMDSCNI[1234,456]
LOADER! (at CMU: ATILOAD!)

The /SAIL entry may be omitted if all files have a .SAI extension,
The loader will load the files with DDT or RAID and then start the
specified debuqgging progran.

Switches

14-13, The following table describes the SAIL parameter switches.
If the switch letter is preceded in the table by the D character, a
decimal number is expected as an argument, 0 is the default value.
The character 0 indicates that an octal number is expected for this
switch. Otherwise the argument is ignored.

108 SAIL MANUAL

ARG

SWITCH

C

D

FUNCTION
Create a cross-reference file (CREF)., (See [DECREF])

For every occurrence of this switch in the command
line, the amount of space for the push down stack used
in expanding macros (see USE OF DEFINE, 13-0) is
doubled. Use this switch if the compiler indicates to
you that this stack has overflowed. This shouldn’t
happen unless you nest DFFINE calls extremely deeply.
is an integer contaning mode bits for listing control
Program counter is printed on the listing.
Line numbers are printed on the listing.
Macro names and parameters appear vwhere they are
called. :
10 Macro expansions are listed,
20 Macro expansions are listed, surrounded by < and >

EN =20

In compiling a SAIL vprogram, an internal variable
called PCNT (for program counter) is incremented (by
one) for each word of code generated. This value,
initially 0, represents the address of a word of code
in the running program, relative to the load point for
this program. The current octal value of PCNT plus the
value of another internal variable called LSTOFFSET, is
printed at the Dbeginrning of each output line in a
listing file. Tor the first program compiled by a
given SATL core image, this value is initially 0. Tf
the L switch occurs in the ccmmand and the value 0O 1is
non-neqgative, 0 replaces the current value of
LST0FFSET. If O is -1, the current size of DDT is put
into LSTOFFSET. If 0 is -2, the current size of RAID
is used. In “RPG mode™ the final value of PCNT is
added to LSTOFFSET after each compilation. Thus by
deleting all LREL files produced 'by SAIL, and by
compiling all SAYL programs vwhich are to be loaded
together with one RPG command which includes the 1L
switch, you can obtain listing files such that éach of
these octal numbers represents the actual starting core
address of the code produced by the line it precedes.
At the time of this writing, RPG would not accept minus
signs in switches to be sent to processors. Keep
trying.

D is a number from 1 to 6, This parameter puts the
compiler 1in one of several debugging modes. This
switch is most useful to compiler fixers, but some of
the mnodes are of general interest, The functions
represented by each of these modes are described in
Debugging modes, 14-14 below.

Fach occurrence of this switch doubles the size of the
system push down 1list, Tt has never been known to
overflowv.

109 . SATL HANUAL

0 Each occurrence doubles the size of the String push

down 1list, No trouble has been encountered here,
either.

R Each occurrence doubles the size of the compiler’s
parsing and semantic stacks., A long conditional

statement of the form (IF ... THEN ... ELSE IF ...
THEN ... ELSE IF ...) has been known to cause these
stacks to overflow their normally allocated sizes.

D S The size of String space is Set to D words. String
space usage is a function of the number of identifiers,
especially macros, declared by the user., 1In the rare
case of String space exhaustion, 5000 'is a good first
number to try. :

Debugging modes

W-14, Certain versions of the SAIL compiler have a debugging
facility built into the inner loop of the parser, It is willing to
display information about the current state of the compilation at
strategic times. This routine <can be in one of several modes. A
debugging mode is initially specified using the M switch described
above. It can be changed by the user as the compilation progresses.
The modes and their functions are as follows: »

1) Just before each code-generator is called, its name 1is
displayed on the TTY along with the top few elements of the
parse and semantic stacks. If the TTY is a DPY, one also gets
the current input line with an arrow underneath indicating the
next element to be scanned. If you do not know what to 1look
for in the stack, don’t use this mode. Compilation may be
continued by typing the character *p™,

2) ©No information is displayed in this mode. However line breaks
and asynchronous breaks (see below) can still occur.

3) Just before each parse production is compared to the ©parse
stack, the name of the production and the other information
mentioned above 1is presented. Proceed by typing “PT.
Compilation takes forever in this mode.

4) This mode does not cancel any of modes 1, 2,or 3. However, it
puts the debugging routines 1in a mode wherein they will not
wait for a user go-ahead before proceeding from the displays
described for these modes, Line and asynchronous breaks are
still enabled in this mode, and may be used to regain control
of things.,

5) This mode has no very useful application if the TTY is really a
TTY. However if it is secretly a DPY, the current input line
is continuously presented along with an arrow showing the
compiler’s progress through it. No user go-ahead is necessary
after each presentation. All other modes are cancelled. Line
and asynchronous breaks are enabled.

110 SAIL MANUAL

6) This is the default mode. No information 1is displayed. The
debugging routines are completely detached from the compilation
loop. Line and asynchronous breaks are disabled. The only way
to get any of the information described above is to start over.

14-15, If you have the compiler in a position where it is willing
to listen to a “P™ to continue, you may also type some other things.
The most interesting one is the “L™ ccmmand. Typing “L™, followed by
a space, followed by a page number (decimal), followed by a space,
followed by a 5 character line nuwmber, followed by yet another space,
causes the compiler to remembher this page and line number, and to
stop with a Line Break message and the information described above
just after the specified line has been read. At this point you may
change mnodes (see below) or not, as you prefer, and type “P* to
continue. This command is really not too useful unless you are a
conpiler fixer.

14-16, To change wmodes while compiling, type any number of
parameter-M pairs to the debugging interpreter before typing ™“P* to
go on.

14-17, To get the compiler’s attention when it is operating in
one of the modes 2, 4, or 5, simply type a carriage return. Very
shortly the compiler will display an Asynchronous Break message, the
print line, and some stack elements. Then you may change modes, set
a 1line break, or simply proceed. This is often useful simply to
convince yourself that your program is still heing compiled if vyou
are Ttunning in mode 2, If you are operating in mode 6, the compiler
will not listen to your plea. Start the compiler in mode 2 if you
want this feature, but be warned that things will slow down
considerably (10 per-cent ?).

14~18, Here is an example of a compile string which a usér who
just has to try every bell and whistle available to him might type tc
compile a file pamed NULL:

COMPILE /LIST /SAIL NULL(RR-2LIM4NM5000S)

The switch information contained 1in parentheses will be sent
unchanged to SAIL. Note the convention which allows one set of
parentheses enclosing a nyriad of switches to replace a “/™ character
inserted Dbefore each one. This string tells the compiler to compile
NULL using parse and semantic stacks four times larger than usual
(RR). A 1listing file is to be made which assumes that RAID will be
loaded and NULL will be loaded right after RAID (-2L). The user
wants to see the stack and input 1line just before every code
generating routine is called (1M), but he does not want the compiler
to stop after each display (4M). His program is big enough to need
5000 words of String space (500083).

111 SATL MANUAL

ERROR MESSAGES

14-19. If the compiler detects a syntax or semantic error while
compiling a program it will provide the user with the following
information: ‘

1) The error message. These are Fnglish phrases or sentences
which attempt to diagnose the problem. If a message is
vaque it is because no specific test for the error has been
made and a catchall routine detected it, If the message
begins with the word *“DRYROT™ it means that there is a bug
in the compiler which some strangeness in your program was
able to tickle, See a system programmer about this,

2) The current input line. Page and line number, along with
the text of the 1line being scanned, are typed, If the
console device is a TTY, a line feed will occur at the point
in the line just following the last program element scanned.
If the device is a DPY, the line will bhe displayed with a
vertical arrow below the scan position. The absence of a
position indicator means that a macro (DEFINE) body is being
expanded.

3) “CALLED FROM xxxxx*. This is a message of value to compiler
de buggers only.

4) A question mark or right-arrow (-).

1M-29, Respond to the question mark in any of the fcllowing ways:

CR 'Try to continue compilation, A message will be printed and
the sequence reentered if recovery is impossible (if a “?™
was typed instead of a “=%).

LF Continue and don’t stop from now on. The program will not
stop if it can help it. Messages will fly by (at an
unreadable rate on DPYs) until the compilation 1is complete
or an error occurs from which no recovery is possible. 1In
the latter case the question sequence is reentered.

S Restart., Sometimes useful if you are debugging the compiler
(or if you were compiling the wrong file), The program is
restarted, accepting compilation commands from the TTY.

X Exit. All files are closed in their <current state, The
program exits to the systenmn.

L Look at stack. This enters a part of the debugging routine
(see: Debugging modes, 14-14 above) to allow examination of
the parse and semantic stacks., The compiler will 1lead you
by the hand through these procedures,

E Fdit. This command must be followed by a carriage return,
or a space, a filepame (in standard format, assumes DSK) and
a carriage return. If the filename is missing, the SOS

112 SAIL MANUAL

editor (see {Savitzkyl) is started, given instructions to
ed it the current source file and to move the editing pointer
to the current page and 1line number., If a file name is
present, that file is edited starting at the beginning.

D Enter DDT or RAID if one is 1loaded, Otherwise, type ™“NO
DDT* and re-question.
W-21, Any other character will cause the error routines to spew

forth a summary of this table and re-enter the question sequence.

STORAGE ALLOCATION

4-22, The compiler dynamically allocates working storage for its
push down lists, symbol tables, string spaces, etc, It normally runs
with a standard allocation adegquate for most programs, Switch

settings given above may be used to change these allocations. If
desired, these allocations may also be changed by typing #C, followed
by REE (reenter). The compiler will ask you if you want to allocate.
Type Y to allocate, ¥ to use the standard allocation, and any other
character to use the standard allocaticns and print out what they

are, All entries will bhe ©prompted. Numbers should be decimal.
Typing alt-mode instead of CR will cause standard allocation to be
used for the remaining values, The compiler will then start,

awaiting command input from the teletype.

113 , SAIL MANUAL

SECTION 15

PROGRANM OPERATION

LOADING AND STARTING SAIL PROGRAMS
Loading -

15-1. Load the main program, any separately compiled procedure
files (see Separately Compiled Procedures, 16-7), any assenmbly
language (see PROCEDURE IMPLEMENTATION, 17-46) or Fortran procedures,
and DDT or RAID if desired. This is all automatic if you use the
LOAD or DFEBUG or EXECUTE system commands (see [DECREF]). Any of the
SAJL execution time routines requested by your program will be
searched out and lcaded automatically from SYS:LIBSAI.REL.

At CMU, the <correct loader to use is SYS:AILOAD.SAV. CCL will
auntomatically use that loader if any of the source files have SAT (or
FAI) extensions or if /SAIL is specified. The correct DDT to use
is SYS:AIDDT.REL. (ATLOAD automatically gets that DDT when it is
given a /D or /T switch.)

Starting the Program -- Normal Operation

15-2. For most applications, SAIL programs can by started using
the START, RUN, or EXECUTE system commands , or by using the %G
command of DDT (RAID). The SAIL storage areas will be initialized.
This means that all knowledge of I/0 activity, associative data
structures, strings, etc. from any previous activation of the
program will be lost, All strings (except constants) will be
cleared to NULL, All ccmpiled-in arrays which were not PRELOADed
will be cleared to 0, NULL, or PHI, whichever is appropriate, Then
execution will begin with the first statement in the outer. block of
your main program. As each block is entered, its arrays will be
cleared as they are allocated. VYariables are not cleared. The
program will exit when it leaves this outer block.

Starting the Program in “RPG (CCL)™ Mode

15-13. SAIL programs may be started at one of two consecutive
locations: at the address contained in the cell JOBSA in the job data
area, or at the address dust following that one. The global variable
RPGSW is set to 0 in the former case, -1 in the latter. Aside from
this, there is no difference between the two methods. This cell may
be examined by declaring RPGSW as an EXTERNAL INTEGER.

Starting the Program with Allocation Modifications

15-4. If the default (or REQUIREd) storage allocations for such
things as the push down stacks or string space are insufficient, the
program may be started using the REENTER system command. You may
then answer questions as described in STORMAGE ALLOCATION, 14~22, You
can find out what the standard allocations are by typing a space

114 SAIL MANUAL

after the system types ALLOC? at you. Arrays, lLeap spaces and 1I/O
buffers are allocated dyncamically, obtaining more storage from thé
operating system if necessary. See Storage Allocation Routines, 17-5
and following for ways of cooperating with SATIL with respect to
storagqe allocation if you write machine language subroutines.

ERROR MESSAGES

15-5. Error messages have nearly the same format as those from the
compiler (ERROR MESSAGES, 14-19). They indicate that

1) an array subscript has overflowed;
2) a case index is out of range;

3) a stack has overflowed while allocating space for a
recursive procedure; or '

4) one of the execution time routines has detected an error.

15-6. The ™CALLED FROM™ address identifies, in the first 3 cases,
the location in the user program where the error occurred ; the “LAST
SAIL CALT AT™ address gives the location of the faulty call on the
SAIL routine for type 4 messages,

15-7. A1l the replies to error messages described 3in FERROR
MESSAGES, 14-19 are valid except the ™L™ option. If no file name is
typed with the “E™ option, the editor re-opens the last file
mentioned in the EDIT system command.

15-8, The function USERERR may be used to activate the SAIL error
message mechanism, See Usererr, 12-117 for details.

DEBUGGING

15-9. The code output for SAIL programs is designed to be fairly
easy to understand when examined using the DDT debugging language or
Stanford’s display oriented RAID ©progran. A knowledge of the
debugger you have chosen is required before this section will be
comprehensible,

Symbols

15-10. ‘Only those symbols which have been declared INTERNAL (see
Separately Compiled Procedures, 16-7) and those declared in the
currently open “program™ are available at a given time. The name of
a SAIL program as far as DDT or RAID (henceforth DDRAID) is concerned
is the name of the outer block of that program. If no name is given
for this block, the name M., will be the default.

115 SAIL MANUAL

15-11. Only the first six non-blank characters of a block name or
identifier will be used in forming a DDRAID symbol. If two
identifiers in the same block have the same first six characters the
program using them will not get confused, but the user might when
trying to locate these identifiers.

15-12. To obtain symbols for the execution time routines, load
SYS:RUNTIM,REL with vyour other files, The routines will be loaded
from this file, which includes symbols, instead of from the LIBSAI
library, which does not. Your program will be several thousand words
longer when this file is used.

Blocks

15-13. - All block names and identifiers used as variables,
procedures or labels in a given (main or separate procedure) program
are available for typout when that program is “open™ (NAMES: has been
typed). To refer to a symbol, type BLOCK_NAMEESYMBOL/ (; for RAID).
The block name may be omitted if you have “opened™ the block with
BLOCK_NAMESE. The symbol table 1is block-structured only to the
extent that block names have appeared in the source progran. For
instance, in the progranm

AEGIN “NAME1®
INTEGER I,J;
BEGIN

INTEGER I,K;
END;

*

FND “NAMET™

the symbols J, K,' and both symbols I are considered by DDRAID to
belong in the same - block. Therefore confusion c¢an result with

respect to I, This approach was taken to avoid the necessity of
generating meaningless block names for DDRAID when none were given in
the source progranm, A compound statement will be considered by

DDRAID to be a block if it has a name.

Sail-Generated Symbols

15-14, Some extra symbols are generated by SAIL and will show up
when you are using DDRAID. They are:

ACS The accumulators P (system push down 1list pointer), SP

(string . push dcwn pointer), and TEMP (commonly used
temporary) are given symbolic names. Currently »p=717,

Sp=’16, TEMP=’14,

oPS The op codes for the UUOs ERR., ERROR,, FIX, FLOAT, PDLOV,
and ARERR (subscript overflow UU0O) are included to make
these easy to detect in the code,

116 SATL MANUAL

ARRAYS For each array declared in the outer block (built-in
arrays), the fixed address of its first element is given a
synbolic name. This name 1is constructed from the
characters of the array name (up to the first 5) followed
by a period. For instance, the first element of array CHT
is CHT.; the first element of PDQARR is PDQAR.; The last
semicolon was really a period. This dotted symbol points
to the second word of the first descriptor for String
Arrays (see STRINGS, 17-14, ARRAY IMPLEMENTATION, 17-33).

BLOCKS The first word of the first executable statement of every
block or compound statement which has been given a name is
given a label created in the same way as those for arrays
above, This label <cannot be gone to in the source
program. Tt causes no progran inefficiency. This labhel
points at the first word of the compound tail -—- not the
first word of code generated for the block (skips any
procedure or array declaration code).

START The first word of code generated for any given program 1is
given the name “S.™,

Warnings
Hanging Store

15~15. Quite often an assignment statement results only in the
loading of a PDP-10 accurulator. This AC will not be stored into the
core location 1identified with the name of the variable until it is
necessary., Confusion can result if you set a breakpoint somewhere,
then examine the <core variables of interest without checking the
immediately surrounding ccde to be sure none of the interesting
variables are still in ACs.

Long Names
15-16. Since only the first 6 characters of an identifier are
available, it is wise to declare symbols which will be examined by

DDRAID in such a way that these six characters will uniquely identify
thenm,

117 SATL MANUAL

SECTION 16

PROGRAM STRUCTURE

THE SAIL CORE TIMAGE (REQUIRED)

16-1. The following things must be present in a core image
containing SAIL-compiled files: '

Main Progranm

16-2. A SAIL “main program™, or an assembly language program which
looks an awful lot like a SAIL main program, must be present if any
SAIL-compiled files are. A SAIL source program which has no

entry-specification as its first element satisfies this requirenment.
The first statement executed after storage allocation is complete
will be its first statement. There should be no more than one wain
program per core image.

16-3, The salient characteristics of a main program are:

1) Its .REL file has a starting address block (the loader will
tell the time sharing system to start the program at this
address).

2) Its first task is to determine whether the program was
started in BPG mode. If so, the global variable RPGSHW is
set to TRUE; otherwise FALSE. '

3) Its next task 1is to «call the storage allocator with
JSR SAILOR,

4) It should then proceed with the main control of the program.,
4) Tt should execute a POPJ 17,0 when it is all done,

5) It may not execute any UIl0Os except SAYL UUOs (nor alter
permanently thke UUO locations 40 and 41) without great
caution,

Storage Allocation, Basic Utilities

16-4, There is a set of routines which must always be loaded to
establish the operating environment for SAIL progranms, These
routines allocate storage, set up push down pointers, and initialize
some of SAIL’s internal tables, Other routines included in this
package are a String gqarbage <collector (see STRINGS, 17-14) and
several basic routines which many others call upon.

118 SAIL MANUAL

16-5. These programs will be loaded automatically from LIBSAT.REL
if the JSR SAILOR instruction, where SAILOR is an external request,
is present in the main program (this'is automatic for SAIL-conmpiled
main programs).

Other Execution-Time Routines

16-6. A1l 1/0, String-handling, etc. 1is done by routines which
understand about SAIL. Programs requiring these services should
probably use these routines, SAIL-compiled files automatically

request these blessed routines from LIBSAI.REL.

OPTIONAL ADDITIONS
Separately Compiled Procedures

16-7. When a program becomes extremely large it becomes useful tc
break the program up into several files which c¢an be compiled
separately. This can be done in SAIL by preparing one file as a main
program, and one or more other files as programs each of which
contains one or more procedures to be called by the main program.
Such a file must have the following characteristics:

1) An entry specification (see Entry Specifications, 2-1) nust
be the first item in the program (preceding even the BEGIN
for its outer block), The list of identifiers will be used
to form an Entry Block for the loader. Therefore the file
may be placed in a user library if desired. The format of
libraries 1is described in [Weiher]. The identifier(s)
appearing in the entry list may be any valid identifiers,
but usually they will be the names of the procedures
contained in the file. No starting address will be 1issued
for a program containing an FEntry Specification. No
checking is done to see if entry identifiers are ever really
declared in the body of the progran.

2) Since no starting address is present for this file, entry to
code within it may only be to the procedures it contains;
the statements 1in the outer block, if any, can never be
executed, All procedures to be called frcom the. main program
(or procedures in other files) must be qualified with the
INTERNAL attribute when they are declared. External
procedure declarations with headings identical to those of
the actual declarations must appear in all those prograns
which call these procedures. ‘

3) These internal procedures must be uniquely identifiable by
the first six characters of their identifiers. In general,
any two internal procedure mnames (or any other TInternal
variables 1in the same core image) with the same first six
characters will cause incorrect linkages when the ©prograns
are loaded.

4) Any variables (simple or array) which appear 1in the outer
block of a Separately Compiled Procedure program will be

119 SAIL MANUAL

global to the procedures in this program, but not available
to the main program (unless they are connected by
Internal/External declarations -- see below). Arithmetic
arrays in these outer blocks will always be zero when the
program is first loaded, but will never be cleared as others
are (see Starting the Program -- Normal Operatxon, 15-2) -~
String arrays are always cleared.

5) Any variable, procedure or label may contain the attribute
INTERNAL or EXTERNAL in its declaration (ITEMS may not).

16-8. The INTERNAL attribute does not affect the storage
assignment of the entity it represents, nor does it have any effect
on the behavior of the entity (or the scope of its identifier) in the
file wherein it appears. However, its address and (the first six
characters of) its name are made available to the loader for
satisfying External requests.

16-9., No space is ever allocated for an External declaration.
Instead, a list of references to each External identifier is made by
the compiler. This list is passed to the loader along with the first
six characters of the didentifier name. When an Internal name
matching it is found during loading, its associated address is placed
in each of the instructions mentioned on the list. No program
inefficiency at all results from External/Internal 1lirkages (belay

that -- references to External arrays are somnetimes more
inefficient). ’
16-10. The entity finally represented by an External identifier is

only accessible within the scope of the External declaration.
Transfers to external labels are always allowed, but if things wvork
correctly when this is done it is only by sheer luck that they do.

Fortran Procedures

16-11. For a program written in DEC FORTRAN IV to run in the SAIL
environment, the following restrictions must be observed:

1) It must be a SUBROUTINE or FUNCTION, not a main progranm.

2) It must not execute any FORTRAN I/0 calls., The UUO
structures of the two languages are not conmpatable,

3) It must be declared as a Fortran Procedure (see Fortran
- Procedures, 6-12) in the SAIL program which calls it.

The type Dbits required in the argument addresses for Fortran
arguments are passed correctly to these routines,

The SAIL compiler will not produce a procedhre to be called fronm
FORTRAN, ‘

120 SAIL MANUAL

Assembly Language Procedures

16-12, The implementation section contains the following
paragraphs to aid in writing assembly . lanquage procedures: User
Table, 17-1, STRINGS, 17-14, ARRAY IMPLEMENTATION, 17-33, Storage
Allocation Routines, 17-5, and PROCEDURE IMPLEMENTATION, 17-U6. In
addition, the following rules should be observed:

1) The ENTRY, INTERNAL, and EXTERNAL pseudo-ops should be used
to obtain linkages for procedure names and “global®
identifiers (remember that only six characters are used for
these linkage names.

2) Accumulators P (currently “17) and SP (’16) should be
preserved over function calls., P may be used as a push-down
pointer for arithmetic values and return addresses, Sp is
the string stack pointer, String results are returned on
this stack. Arithmetic results are returned im AC 1 (see
PROCEDURE TMPLEMENTATION, 17-46).

3) The 00O locations 40 and 41 should be preserved.

4) JOBPF nust be set by the user to some free buffer area
before OUTBUY or INBUF UUOs are executed. JOBFF is
periodically set by SAIL to an invalid address.

5) The CORE UUO may be used to increase memory size, but never
to decrease it. Never attempt to use directly any of the
memory space currently assigned to the Job (except that
explicitly provided 1in the rountine)., PRelease all memory
obtained ir this way before returning to SAIL routines. See
Storage Allocaticn Routines, 17-5 for instructions on
obtaining core from the SAIL memory allocators (a much
safer, and sometimes faster way).

Others

16-13, There are no other known processors which will produce
SAIL-compatible pregrams. In particular, the LISP 1.6 system, by its
very nature, contains storage allocation conflicts which are
difficult to resolve., If a great need for this kind of compatibility
develops it can be provided.

121 SAIL MANUAL

SECTION 17

IMPLEMENTATION INFORMATION

STORAGE LAYOUT
Iser Table

17-1. All working storaqge areas for a SAIL-generated program and
its execution-time routines are dynamically allocated -- some Just
once when the program is first started, some as more space is needed.

17-2. The firs area allocated 1is a several hundred word table
which contains information about the remaining storage areas and
qlobal variables for the execution-time routines. A single internal
variable, GOGTAB, will always contaip a pointer to this table. The
execution-time routines make all accesses to storage through this
table or through user-supplied addresses. They would therefore be
totally re-entrant if the GOGTAB variable were allowed to vary over
several users.

17-3. A FAIL source file containing symbolic indices for the user
tabl=a, as well as some useful FKACROs, OPDEFs, and accumulator
definitions is available to provide accessability to this table for
assembly lanquage routines., This file may be concatenated to a FAIL
program before assenbly. '

17-4, Most execution-time routines load the address contained in
GOGTAB 1into the accumulator USER (currently ‘15) in order to index
the user table. Thus in what follows, symbolic index XX into this
table will be listed as XX(USER).

Storage Allocation Routines

17-5. SATL makes all requests for storage through the routines
CORGET, CORREL, CORINC, and CANINC., These routines are described in
the following paragraphs. The AC’s THTS and SIZ are currently set to
2 and 3, respectively, All core routines are called with PUOSHJ
17,routine. ‘

. Corget

17-6, Corget is called with the desired size of a block of storage
in register SIZ. It returns the address of the new block in THIS.
No other accuwmulators are altered. ©Normally the function skips on
return, It does not skip if insufficient core is available to gqrant
the request, The address returned is that of the first free data
word (DATA below),.

122 SATL MANUAL

17-7. A SAIL core block has the following form:

HEAD: -LAST,,»NEXT ;when not in use (free list links)
SIZE : END-HEAD+1, negated when block is in use
DATA: BLOCK SIZE-3 ;available to user -- sometimes a few more

: words than requested will be contained
H in the blceck '

END: USEBIT, ,~HEAD ;USEBIT is 400000 if block is in use; else 0

The first time CORGET is called, GOGTAB is 0. CORGET notices this

and performs the following special actions:

1) Prepares to allocate storage just past the' program and
symbols (left half of JOBSA contains the relevant address).

2) Allocates the user table; puts pointer in GOGTAB.

3) Forms remaining free storage from the end of the user table
to contents (JOBREL) [C{(JOBREL)] into a single free SAIL
block. Puts -HEAD in LO(USER), FRE(USER). Puts C{(JOBREL)#1
in TOP(USER).)

4) Performs the requested CORGET operation.

17-8., FRE(USER) is the header of a 1linked free storage 1list,
Blocks are obtained frcom this list and the list is updated. CORREL
releases blocks onto this list., TIf no currently free block will
satisfy a CORGET request, the CORE UUO is executed to get more fron
the time sharing system.

]

17-9. Users are free to use the COBGET function if they will be
careful of the +two header words and the single trailer word
associated with each block. Release. these blocks as soon as possible
to prevent undue checker-boarding of free storage.

Correl

17-190. Correl is called with the address obtained in the
corresponding Cecrget call (the DATA address) in register THIS, The
block is returned to the free storage list, If either of the two
neighboring blocks is already free, the adjacent free blocks are
merged with the one being released to form a bigger one. If the
block being released is uppermost in core, and if it -occupies more
than about 2K, the core size of the program is contracted using the
CORE UU00. About 2K of free storage is left in this case. No ACs are
altered by CORREL. ,

Corinc
17-11, Corinc is called with the DATA address of a SAIL block in
THTS and a desired increment in SIZ. If there 1is a free block

directly above the THIS block with at least SIZ free words, or if the

123 SATL MANUAL

THIS block occupies the highest addresses of any block in use, the
request is granted, the block is extended by SIZ words and the
function executes a skip~-return, Otherwise no skip occurs and no
action is taken. No ACs will be altered.

Caninc

17-12. Caninc performs the same tests as Corinc and skips under
" the same conditions. It also uses the same calling sequence, If it
does not skip, it rTeturns with SIZ altered to show the number of
words by which the DATA block can be increased. It is 0 if no
increase 1is ©possible. This function never affects current core
allocation. '

17-13. These functions are not available to SAIL ptogfams since
core can be obtained by array declarations (which in turn use these
functions). ‘ .

STRINGS
Sstring Descriptors

17-14, A SAIL String has two distinct parts: the descriptor and
the text, The descriptor is unique and has the following format:

WORD1: STRINGNO,,LENGTH
WORD2: BYTP '

1) STRINGNO. This entry is 0 if the String is a constant (the
descriptor will not be altered, and the String text is not
in String space, 1is therefore not subject to garbage
collection). Every time a String is created via the
concatenation operator, or Input function, or an
Integer-String tyre conversion, it receives a new STRINGNO. .
Bach new String receives a number one greater than the last,
starting at 1 when the program is initialized. All strings
formed as substrings of a given String have the String
number of the original {(major) string. These numbers aid in
increasing String garbage collection efficiency.

2) LENGTH. This number is zero for any null String; otherwvise
it is the number of text characters.

3) BYTP. 1If count is O, this byte pointer is never checked (it
need not even be a valid byte pointer), Otherwise, an ILDB
machine instruction pointed at the BYTP word will retrieve
the first text character of the String. The text for a
String may begin at any point in a word. The characters are
stored as LENGTH contiguous characters.

124 SAIL MANUAL

17-15. A SAIL String variable contains the two word descriptor for
that variable. The identifier naming it points to WORD1 of that
descriptor. If a String is declared INTERNAL, a symbol is formed to
reference WORD2 by taking all characters from the original name (up
to 5) and concatenating a “.“ (ONTSTRING’s second word would be
labeled OUTST.). :

17-16., When a String is passed by reference to a procedure, the
address of HORD?2 is placed in the P-stack (see PROCEDURE
IMPLEMENTATION, 17-46)., Por VALUE Strings both descriptor words are
pushed onto the SP stack. '

17-17. A String array is a block of 2-word String descriptors.
The array descriptor (see ARRAY TMPLEMENTATION, 17-33) points at the
second word of the first descriptor in the array.

17-18. Information is generated by the compiler to allow the
locations of all non-constant strings to be found for purposes of
garbage-collection and initialization (see PROCEDURE IMPLEMENTATION,
17-46) ., All string variables and arrays are cleared to NULL whenever
a SAIL program is started.

String Operations

17-19. The four basic String operations are concatenation (CAT),
substrings (SUBSTR), String-integer (GETCH), and Integer-string
(puTCH), Other functions producing or operating upon strings are

described in Execution Routines, 12-1. :

Cat

17-20, CAT forms a new String from two other strings (constants or
otherwise)., The calling sequence is:

PUSH SP,WORD11 ;WORD1, FIRST ARGUMENT
PUSH SP,WORD12 ;WORD2, FIRST ARGUMENT
PUSH SP,WORD21 ;ETC.

PUSH SP,HORD22

PUSHJ P,CAT

The result 1is found as a new two-word descriptor on top of the SP
(currently AC ’16) stack. If either arqument is the null String, the
result is the other argument. If the first arqument occupies the
space directly preceding the first free character in String space,
only the second argument is copied. Otherwise, both arguments are
copied (in order) into free space to form the result. A new String
number 1is created for this result. The LENGTH field is the sum of
the LENGTHs of the two arguments.

125 SATL MANUAL

Substr
17-21, SUBSTR returns a descriptor representing a part of its
input argument. SUBSTR is really three routines, called as follows:

PUSH SP,WORD1
PUSH SP,WORD2

SUBST SUBSR ’ SUBSI
PUSH P,LASDX PUSH P,NUMCHR PUSH P,FIRSDX
PUSH P,FTRSDX PUSH P,PIRSDX

PUSHJ P,SUBS{T/R/T}

LASDX is the number of the last character to be included (starting
with 1). FIRSDX is the number of the first character to be included.
NUMCHR is the number of characters to be included.

17-22. The rTesult is always a two-word descriptor in the SP stack
describing the substring.

SURST is used for the construct STI(X for YJ.
SUBSR is used for STIX to Y].
 SUBSI is used for STIX to INF].

17-23. An error message is printed if the iequest can not be
satisfied. This will result in job abortion.

17-24, The String number of the output is the same as the String
‘number of the input,

Getch

17-25, Call with
PUSH SP,WORD1
PUSH SP,WORD2

PUSHJ P,GETCH .
The first character if the String is returned in AC 1 unless the
String 1is NULL; zero is returned in this case. The SP stack is
adjusted to remove the parameter. An error message will be printed
if some part of the requested substring does not exist, _

Putch

17-26. Call with
PUISH P,VALUE
PUSHJ P,POTCH

126 .SAIL MANUAL

The rTesult 1is a String descriptor with count of 1 on top of the SP
stack. The P stack is adjusted to remove the parameter. and return
address. The String nunber is new, The low order 7 bits of VALUE

form the single character in the string. '

String Space

17-27. The normal or user-specified (see STORAGE ALLOCATION,
14-22) numba2r of words required for strings is used to obtain a
single SAIL block (see Storage Allocation Routines, 17-5) when the
program is started. The limits of this area are placed in ST(USER)
and STTOP(USER). Other parameters are set up as described below.

17-28. String text characters are placed contiguously in this area
as strings are created. When not enough storage remains for a
contemnplated String, the garbage c¢ollector. (see String Garbage
Collection, 17-30) 1is <called to obtain more (by compacting the
current space, if possible). If this fails, the program will restart
and request more reasonable allocation.

Parameters Used by String Operations

17-29.

ST(USER) Bottom {(low address) of String space

STTOP(USER) (Top+1) of String space

TOPBYTE(USER) Byte pointer such that IDPR TOPBYTE(USER) will
store into next character

REMCHR (USER) Negated number of free characters remaining

TOPSTR(UUSER) WORD1 for last created String (doesn’t 1include

substring operations), CAT uses this word to
decide whether its first arqument needs to be
moved {(see Cat, 17-20).

String Garbage Collection

17-30. The String garbage collector (STRNGC) is called whenever
the (estimated or actual) size of a soon-to-be-created String is
larger than ~REMCHR(USER). By various devious means it finds all

active (non-constant) String descriptors, sorting them 1in ascending
address sequence by using the byte pointers, associating all
substrings of a given active String {(major String) ...ouch. Then it
compacts String space by moving the text for all major strings to
lower memory locations occupied by text no longer reachable from any
descriptor. Finally it updates all String descriptors and the
parameters described above., TIf there is still not enough room, it
prints a frustrated message and restarts the program with the
allocation sequence normally obtained by typing the REEnter systen
conmand (see STORAGE ALLOCATION, 14-22).

127 SAIL MANUAL

String-Oriented Machine Lanquage Routines

17"31 L3

If you must write a routine which operates on strings,

please observe the following conventions:

1)

2)

17-32.

See PROCEDURE TIMPLEMENTATION, 17-U46 for conventions
concerning input parameters and value returning.

If you merely need to read a String, no particular care is
required (don”t change the descriptor of a reference String
parameter by performing careless ILDBs).

If you need to create a new String, these are also

applicable: ‘

)

4)

9)

6)

7

8)

9)

Estimate the number of characters 1if it 1is not known
exactly. This estimate must be an upper bound; an
unrealistically large estimate will cause the garbaqe
collector to work more often than necessary. DPlace the
estimate in reagister A (1),

BExecute the following code hefore doing any
String-munching:

MOVE USER,GOGTAB ; ESTABLISH ADDRESSABILITY
ADDH A,REMCHR(USER) ;UPDATE REMAINING COUNT
SKIPLE EREMCHR{(USER) ;TEST IMPENDING OVERFLOW
PUSHJ P,STRNGC ;COLLECT, WILL NOT BETURN IF
‘ ; NEW REMCHR+C(A)D>C.

TOPBYTE (USER) should be your WORD2 result. Save it now.

Do repeated IDPBs to TOPBYTR(USER) to store your string.
This keeps TOPBYTE accurate, Count characters if your
estimate was only an estimate.

Create WORD1 of your result, The left half 1is the left
half of TOPSTR(USER) incremented by one. The right half is
the length of your new string, This word is not only WORD?
of your result, but also should be placed in TOPSTR(USER).

Subtract (estimate - actual length) from REMCHR(USER) to
keep it honest, This should make REMCHR if anything more
negative.

Return String results on the top of the SP stack. If a
result 1is to go in a reference parameter (see PROCEDURE
IMPLEMENTATION, 17-46) remember that the address you have
is that of the WORD2 (byte pointer) word of the descriptor.

128 SAIL MANUAL

ARRAY IMPLEMENTATION
Form
17-33. Let STRINGAR be 1 (TRUE) if the array in question is a

String array, 0 (FALSE) otherwise., Then a SAIL array of n dimensions
has the following format:

HEAD: -DATAWD :+ MEARS “POINTS AT™
HEAD~END-1
ARRHED: BASE_WORD ;SEE BELOW

LO¥ER_BD(n)
UPPER_BD(n)
MULT(n)
LOWER_BL(1)
UPPER_EBD(1)
MULT (1)
NUM_DIMS,,TOTAL_SIZE
DATAWD: BLOCK TOTAL_SIZE
<sometimes a few extra words>

END: 420020, ,~HEAD

Explanation

17-34,

HEAD The first two words of each array, and the 1last, are

control words for the Storage Allocation Routines,
17-5. These words are always present for an array.
The array access code does not refer to then.

ARRHED Fach array is preceded by a block of 3#n+2 control
words. The BASE_WORD entry is explained later.

NUM_DIMS This is the dimensionality of the array. If STRINGAR,
this value is negated before storage in the left half.

TOTAL_SIZE The total number of accessible elements (double if
STRINGAR) in the array. '

BOUNDS ‘ The lower bound and upper bound for each dimension are
stored in this table, the left-hand index values
occupying the higher addresses (closest to the array
data). If they are constants, the compiler will
remember them too and try for bhetter code (i.e.
immediate operands). ‘

MULT This number, for dimension m, is the product of the
total number of elements of dimensions m+1 through n.
MULT for the last dimension is always 1.

129 SAIL MANUAL

BASE_WORD This is
DATAWD - the sum of (STRINGAR+1)*LOWER_BD(m)*MULT(m)

for‘all m from 1 to n. The formula for calculating
the address of AlT,J,K] is:

address(AlI1,J,K]) =
address(DATAWD) +
(I-LOWER_BD(1))xMULT(1) +
(J-LOWER_BD(2))*MULT(2) +
(K-L.OWER_BD(3))

This expands to

address(A{1,J,K]) =
address{(DATAWD) +
I*MULT(1) + JxMULT(2) + K
- (LOWER_BD{1)*xMULT(1) + LOWER~BD(2)#MULT(2)
+ LOWER_BD(3))
which is

BASE_WORD + I+MULT(1) + J*MULT(2) + K.

By pre-calculating the effects of the lower bounds,
several instructions are saved for each array
reference.

Array Allocation

Dynamic Arrays

17-35. When an array is declared in any block other than the outer
one, the compiler generates code to <call the function ARMAK with
parameters describing the array. This routine calls CORGET (see

Storage Allocation Boutines, 17-5) to obtain enough storage, then
sets up the «control table and clears the data area to zeroes., . The
ARRHED address is saved in an array push-down list whose 'pointer is
ARRPDP(USER). The address of DATAWD+1 is returned for String arrays:;
the address of DATAWD is returned for all others, The conpiler
generates code to store this address in the core cell bearing the
name of the array variable.

17-36. When all declarations for a block. containing array
declarations have been processed, the compiler issues a call to ARMRK
which marks the array push-down stack (with a -1, as a mnatter of
fact). On block exit (or when a GO TO transfers out of the block),
the routine ARREL is called to remove this mark and return all arrays
back to the previous mark to the SAIL free storage list,

17-37. The String garbage collector uses the array pdsh~down staék
to find dynamic String arrays which need attention.

130 SATL MANUAL

Built-In Arrays

17-38. Outer-block arrays have constant bounds. The conmpiler
simply emits a Jrst instruction, then compiles the control table into
the block head of the object program., It leaves room for the array,
then issues the END word., The Jist instruction then finds its honme
in some code to clear the array to zeroes. :

17-39. The core location bearing the name of the array has the
address of DATAWD (DATAWD+1 if STRINGAR) compiled into it. This
address is given the dotted name described in DEBUGGING, 15-9.

17-40. For built-in String arrays, a String 1link block (see
PROCEDURE IMPLEMENTATION, 17-46) is issued following the space
allocated for the array. The String garbage collector (see String
Garbage Collection, 17-30) gains access to this array through this
static link.

17-41, It can be seen from all this that all dynamic and built-in
arrays are cleared when the blocks in which they are declared are
entered. Since the outer block of a separately compiled procedure
file (see Separately Compiled Procedures, 16-7) is never entered, its
built-in arrays, although available for use, are never cleared. The
loader clears them once as it loads.

Array Access Code

17-42, In the vworst case (no fixed bounds; bounds checking, not
built-in) the statement K<«AI[I,J) will be compiled as:

MOVE 1,A ;+FIRST DATA WORD
MOVE 2,1 s FIRST SUBSCRIPT
CAML 2,-8€1) ;IF <LOWER BOUND OR
CAMLE 2,-3(1 ; >UPPER BOUND THEN
ARERR 1, [ASCIZ /A/Z) ; FERRCR IN INDEX 1
IMUL 2,-2¢(1) sT*NMULT(1) '
MOVE 3,d ;sCHECK DIMENSION 2
CAML 3,-7(1)

CAMLE 3,-6(1)
ARERR 2,{ASCIZ /A/]

ADD 3,2 ;7 NO MOULT FOR LAST, COLLECT OFFSET
ADD 3,-10(1) ; t+ BASE_WORD
MOVE 4,(3) ;DATA FROM A(I,J]

MOVEM 4,K

131 SATL MANUAL

17-413, If A is, however, declared in the outer block as SAFF
INTEGER ARRAY A[1:10,1:5], the code for AII,J) is

MOVE 1,1
IMULT 1,5 s I*MULT(Y)
ADD 1,4J ;COLLFCT OFFSET
MOVE 2,A.-5(1) ;CONSTANT PART OF ADDRESS COMPILED IN
MOVEM 2,K
17-44, AlI,3] would be compiled as
MOVE 1,1
IMULI 1,5
MOVE . 2,A.-2(1)
MOVEM 2,K
and J«Al(2,3] would be
MOVE 3,a.+7
MOVEN 3,d
17-45, Various configurations of array declarations and accesses

result in code which ranges between these degrees of efficiency.

PROCEDURE IMPLEMENTATION

17"“60

Procedure Body

17-47, To describe the main characteristics of SAIL procedures, a
set of sample procedures are displayed here along with the code they
produce. Some of the entries are discussed in more detail below,
The notation [n] 1is placed din the comment field of the assembly
instruction to refer to these discussions:

INTEGER PROCEDURE P1(INTEGER I,J; STRING A); ‘
P12 A0S BP1PAC ;[1] INCREMENT PROC ACTIVE COUNTER

BEGIN
INTEGFR Q; STRING A,B;
INTEGER ARRAY XI[0:5];

PUSH p,(0]
- PUSH p,15]

PUSH p,[1]

PUSHJ P,ABRMAK ;ALLOCATE AND CLEAR
MOVENM 1,X 7 STORE POINTER

PUSHJ P,ARMRK ;END CF ARRAYS FOR BLOCK
<code for procedure>

132 SAIL MANUAL

RETURN(Q) ;

MOVE 1,0 ;[2) RESULT IN 1
PUSHJ P,ARREL ;[3] RELEASE ARRAYS FOR BLOCK
JRBRST P1EXIT ;EXIT PROCEDURE

<more code for procedure>

END “P1*
PUSHJ P,ARREL ;IF FALLS THROUGH, RELEASE ARRAYS
P1EXIT: SOS P1PAC ;ONE TIME LESS ACTIVE
SUB sp, [XwD 2,2] ; REMOVE STRING PARAMETER
SUB P,{XWD 3,3] ;4] NON-STRINGS, RETURN ADDR
JRST @3(p) s RETURN
Q: 0 ; ROOM FOR VARIABLE
Xz 0 ;ARBRAY POINTER
" TEMPO7: O ;[5] TEMPORARY STORAGE
Az BLOCK 2 ; THO WORDS FOR EACH STRING
B: BLOCK 2
Pi1PAC: O ;[6] PROCEDURE-ACTIVE COUNT
XWD 2,A sSTRING COUNT,~FIRST
LNKWD: 0 . ;[7] LINK PASSES THROUGH HERE
LINK 1,LNKWD ;[7] CAUSES LOADER LINKAGE

PROCEDURE P2(INTEGER I,J; STRING 1A);
BEGIN
INTEGER ARRAY X[0.10]'

* a0

BEGIN
INTEGER ARRAY Y([0:10);
RETURN;

PUSHJ P,ARREL
PUSHJ P,ARREL
JRST P2EXIT

END;

END™P2%;

STRING PROCEDURE P3(STRING A, B),
BEGIN STRING C;

LI)

RETURN(C) ;

SUB sP, [XWD 4,41
PUSH spg,C
PUSH sp,C+1
JRST P3EXIT
133

;RELEASE ARRAYS FOR ALL
7 BLOCKS IN PROCEDURE

;RENOVE PARAMS

; RETURN STRING RESULT

SATL MANUAL

RETURN(B);

SUB SP, [XWD 4,4]
PUSH SP,3(SP) ; PIRST WORD OF B
PUSH SP,3(sP) ; SECOND WORD OF B
JRST P3EXIT . GO RETURN

RETURN(CE®STR™); COMMENT ASSUME CAT ALREADY DONE;
SUB SP, [XWD 6,6] ; RENOVE PARAMS, TEMP RESLT
PUSH SP,5(sP) ; TEMP RESLT
PUSH SP,5(SP) 72D WORD
JRST P3EXTT

END “P3%;
P3EXIT: SOS P3PAC

SUB SP, [XWD 4,4) ;NOT THIS TIME, BUT WOULD
POSH sP,10) ;BE INCLUDED IF NO RETURNS
PUSH sP, [0] ;DONE ABOVE (RETURN NULL STRING)

RECURSIVE INTEGER PROCEDUBE PH(STRING A,B; INTEGER I1,J);

PUTEXT: AOS PU4PAC
BEGIN
STRING C,D; INTEGER K,L;
END “pi™;
P4UEXTIT: SOS PUPAC ,
SUR SP, [XWD =8,=8] ; [B]TAKE OFF LOCALS,PARAMS
HRRI TEMP,C ;18]
HRLI TEMP,5 (SP) ;18]
BLT TEMD, D41 ; (8] RESTORE LOCAL STRINGS
suB P,[XWD 6,6] ; (8] SAME FOR P-SIDE
HRRI TEMP ,K ; (ALSO RETURN ADDR REMOVED)
HRLT TEMP, 4 (P) .
BLT TEMP,TEMPO3 ;MUST EVEN SAVE TEMPS
JRST @3(p) ; RETURN
Pl 3 ADD P,{X¥D 3,3) ; LEAVE ROOM FOR LOCALS
SKIPL P ; CHECK PUSH-DOWN OVERFLOW
PDLOVY P, _ ; [91UU0 TO SIMULATE PDL OV
HRRI TEMP,~2(P) ; [91SAVE LOCALS
HRLI TEMDP, TEMPO3 ; AND TEMPS
BLT TEMP, (P)
<similarly for SP (string stack)>
JRST PYTEXT ;G0 DO PROCEDURE

<variables and such>

RECURSIVE STRING PROCEDURE P5(STRING A,B);
BEGIN
STRING C,D;

RETURN(C) ;

134 SATL MANUAL

PUSHI P,P5POP ; [10JREMOVE STRING LOCALS,PARAMS

PUSH Sp,C sSTRING RESULT

PUSH SP,C+1

PUSHJ P,ARRTL ;ENOUGH TIMES TIF ANY ARRAYS
JRST PSEXIT

RETORN(B);
PUSHJ F,P5P0OP

PUSH SsP,3(sP) .
PUSH SpP,3(sP) ;sRETURN PARAMETER
JRST P5EXIT
RETURN(AS®STR™);
POP sp,1 :{11]1ASSUME CAT ALREADY DONE
POP sp,0 :
PUSHJ P,P5P0OP
PUSH sp,0 ;{T1IRETURN VALDE
PUSH sp,1
JRST PSEXIT
END “P5*;

PS5EXIT: 5UB P,IXWD 2,21 ;0OR WHATEVER, SEE ABOVE
ves ;s RESTORE LOCALS, ADJUST
JRST @R(P) ;s RETURN

PS: <as above>

P5POP: SUB Sp, [XWD =8,=81 ;(10] REMOVE STRING LOCALS,PARAMS

) HREI TEMP,C :
HRLI TEMP,5(SP)
BLT TEMP,D+1
rTOPJ P, s RETORN

The main program has the following format:

S.: SKIPA ; NOT STARTED IN RPG MODE
SETOM RPGSW s STARTED IN RPG MODE -~ RPGSW A GLOBAL
JSR SAILOR ;INIT -- RETURNS BY PUSHJ P,@SAILOR

Comment ® The main program looks like a non-recursive procedure
from here on, except for built-in arrays @&

POPJ P, s RETURN TO INIT, WHO EXITS
<global variables, linkages>

<non-String constants>

XWD 0, ,=8 sTYPICAL STRING CONSTANT
POINT Tos¥1

ASCII /CONSTANT/

<more String constants>

END S. 7 STARTING ADDRESS FOR MAIN PROGRAM

135 SAIL MARNUAL

Di scussion

17"“8.

1]

(2]

{41

(51

(6]

{71

(8}

There is for each procedure a word (PAC for Procedure Active
Count) which is incremented on procedure entry and decremented
on exit., At one time, the String garbage collector used this
word, Tt mwmay again some time in the future., At present the
counter is useful for determining the depth of recursion (from
pDDT) .

Non-String procedures return their results in 1; Fortran
returns things in 0; String results are returned on the SP
stack. ‘

An ARRFL call is issued for each block (containing arrays)
which must he 1left 1in order to exit. All arrays for these
blocks are released at this tine. The same sort of thing
happens when a Go To statement leaves one or more blocks.

Since the return address is on the top of the P-stack, with
parameters buried beneath, a subtract and an indirect jumg
replace the POPJ, Procedures always adiust the stack before
returning. '

String temporaries are kept 1in the SP stack. Others
occassionally occupy core locations, These are grouped with
the non-String variables to make saving and restoring easy in
recursive procedures,

This is the Procedure Active Ccunt word (see [1]). It 1is
placed in a fixed location with respect to the String-1link
block {(below). The String gartage collector could, if it
wished, see this count,

A linked list, with its head in a reserved cell in the user
table (see User Table, 17-1) gives the String garbage collector
access to all String variables declared for each procedure; and
to all built-in String arrays. Fach entry on the list contains
three words: a PAC counter (currently ignored), a word giving
the 1location and extent of the String descriptors being
described, and the pointer (LNEKWD) to the next .entry. A O
entry ends the 1list. ‘The LINK pseudo-op (or the equivalent
code issued by SAIL) instructs the loader to create this list,
The LINKEND pseudo-op 1is issued in the SAILOR routine to
collect the address of the first list element, This 1is then
transferred to the user table. See [Weiher]l for details
concerning the LINK block type.

When'a recursive procedure is called, all values for variables
declared 1in blocks internal to this procedure are saved in the
appropriate stack. These are added “on top of"™ the parameters
and return address for the procedure. At procedure exit the
stack pointer is adjusted to point below the first paranmeter.
Then the proper BLT word is set up to restore all these locals
from the stack. After the BLT is executed, that stack is ready
for procedure exit.

136 SATL MANUAL

{91 Since SAIL is a one-pass compiler, it does not know how many
locals a rrocedure has until all blocks for that procedure have

been processed. Therefore the entry code for recursive
procedures 1is added last, followed by a jump to the procedure
text,

[1C) When a String procedure returns a value, the String parameters
and locals must be removed from the stack before the value
(result) can be pushed on, Since the total number of String
locals 1is not vyet known, a routine like P5POP is called to
remove the unwanted values first, Recursive String procedures
must contain Return Statements (see Return Statement, 5-19);
otherwise improper code will result.

[11] Once P5POP or its equivalent has been executed, the previous
top of stack location is not known; the temp value is therefore
removed first and restored after the call.

Procedure Calling Sequences

17-49, Again a case study is presented., A procedure with several
internal procedures is presented to demonstrate the ridiculous number
of possibilites, Only the relevant code is described. Accumulator
numbers in the code below are only examples -- other values are
possible. This list is not complete; to describe all cases here
would take more space than a copy of the code in SAIL which handles
then, Item and Set parameters behave like Integer and Real
parameters as far as argurent passing is concerned:

PROCEDURE SUPER(REFERENCE STRING RPSTR;
INTEGER PINT; REFERENCE INTEGER RPINT;
REAL PROCEDURE PPAR;
STRING PSTR1,PSTR2);

BEGIN

INTEGER INT1,INTZ2; STRING STR1,STR2; REAL RFL;

SAFE TINTEGER ARRAY ARR[2:10]1; SAFE STRING ARRBRAY SARRI2:101];

INTEGER PROCEDURE TINTP{(INTEGER T,J);...;

PROCEDURE RINTP(REFERENCE TINTEGER I);...;

PROCEDURE STRP(STRING A,B);...:

PROCEDURE RSTRP(REFERENCE STRING Ad; ...

PROCEDURE PROCP(PROCEDURE PARAM);...;

PROCEDURE ARRP(STRING ARRAY X);..e3

INT1«<PINT$2 + RPINT®2 - 3;

MOVE 1,-3(P) ; RELATIVE LOC OF PINT

IMUL 1,1 '

MOVE 2,0-2(P) ;RPINT’s ADDRESS IS IN STACK
TMUL 2,2

ADD 2,1 R

SUBI 2,3 ;RESULT LEFT IN 2

137 SATIL MANUAL

REL«INTP (INT 1, PINT);

RINTP(INT1);

- RINTP(PINT);

BRINTP(RPINT) ;

INT2«INTP(INT1,ARRIPINTI);

RINTP (ARRIPINT]):

STRP(STR1E™CON™,PSTR1);

RSTRP(STR1) ;

RSTRP{(RPSTR) ;

PUSH P,2

PUSH P,~-4(P)
MOVEM 2,INT2
PUSHJ P,INTP
FLOAT 1,1

PUSH r,[INTT]
MOVEM 1,REL
PUSHJ P,RINTP
MOVEI 3,-3(P)
PUSH P,3

PUSHJ P,RINTP
PUSH p,-2(P)
PUSHJ P,RINTD
PUSH P,INT1
MOVE 4,-4(P)
MOVE 5,ARR

ADD 4,-4(5)
PUSH P, (W)
PUSHJ F,INTP
MOVE 6,PINT
MOVE 7 ,ARR

ADD 6,-4(7)
PUSH F,6

MOVEM 1,INT2
PUSHI P,RINTP
PUSH SP,STR1
PUSH SP,STR1+1
PUSH SP,CONAD
PUSH SP,CONAD#+1
PUSHI P,CAT
PUSH SP,-4 (SP)
PUSH SP,~4(SP)
PUSHJ P,STRP
PUSH P,I{STR1+1]
PUSHJ P,RSTRP
PUSH p,-4(P)
PUSHI P,RSTRP

138

sINTT STILL IN 2

; [11ADJUST FOR PREV PUSH

s [2]STORE CURRENT ACS BEFORE CALL
;CALL PROCEDURE

s CONVERT TO REAL -- REL IS IN 1

sADDRESS OF INT1

s PREVIOUS RESULT

s ADDRESS OF PINT

;PASS ON ADDR OF RPINT

;s PINT
; BASE ACDR OF ARR

; RESOLT IN 1

; ADDRESS

; ADDRESS OF DSCRPTR FOR “CON™

s LEAVE CONCATENATE IN STACK
;PUT STR1 ON TOP

sALL REF PARAMS TO P-STACK

;PASS REFERENCE ALONG;

SATL MANUAL

RSTRP(PSTR2) ;
HRROI 10, (sP) s [31RH-2D WORD OF PSTR2
PUSH P,10
PUSHJ B,RSTRP

PROCP(RINTP) ; |
PUSH P, (RINTP] ;PARAMETRIC PROCEDURE
PUSHJ P,PROCP

ARRP (SARR);
PUSH P,SARR ;THIS IS EFFECTIVELY A REFERENCE CALL
PUSHJ F,ARRP :

Discussion
[11 Counts are maintained of the current number of actual
parameters (during a procedure call) on each stack. These

counts mrust be added to the parameter indices to access
parameters of the procedure doing the calling.

(21 Whenever a SATL procédure is called, all accumulators except
SP (16) and P (“17) are available for its use.

[3] Some String operations require that the left half of
pointers to descriptors be negative, Therefore any
operation which obtains a String descriptor address does a
HRRO or HRROI to accomplish this. In this case it is not
necessary, but it won’t hurt anything. String reference
parameters always point to the second word of the String in
question.

139 SATL MANUAL

SECTION 18

APPENDTY —-- USEVUL SUMMARIES

ARTTHMETIC TYPE-CONVERSICN TABLE

18-1.
OPERATION ARG1 ARG2 ARG1* ARG2* RESULT
+ - INT INT INT INT INT#*
« + % ~ REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL
LAND LOR INT INT INT INT INT
FQV XOR REAL INT REAL INT REAL
INT REAL TNT REAL INT
REAL REAL REAL REM. REAL
LSH ROT INT INT INT INT INT
BREAL INT REAL = INT REAL
INT - REAL TINT INT INT
REAL REAL REAL INT REAL
INT INT REAL REAL REAL
REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL RFAL REAL
¥OD DIV INT INT INT INT INT
REAL INT INT INT INT
INT REAL INT . INT INT
REAL REAL INT INT INT

*# Unless ARG2 is <0 for the operator 1

SAIL RESERVED WORDS
18"20

ABS AND ANY ARRAY ARRAY_PDL BEGIN BOOLEAN CASE COMMENT COMPLEX COP
CVI CVN DATUM DEFINE DELETE DO DONE ELSE END ENTRY EQV ERASE EXTERNAL
FALSE FIRST PFPOR FOREACH FORTRAN FORWAED FROM GLOBAL GO GOTO IF 1IN
INTEGER INTERNAL TISTRIPLE TITEM ITEMVAR LABEL LAND LENGTH LIBRARY
LOAD_MODULE LNOT LOP LOR LSH MAKE MOD NEEDNEXT NEXT NEW NEW_ITEMS NOT
NULL OF OR OWN PHI PNAFKES PRELOAD_WITH PROCEDURE PUT REAL RECURSIVE
REFERENCE REMOVE RFQUIRE RETURN ROT SAFE SECOND SET STEP STRING
STRING_PDL STRING_SPACE SUCH SYSTEM_PDL THAT THEN THIRD TO TRIPLE
TRUE UNTIL VALUE WHILE XOR

140 SAIL MANUAL

SAIL PREDECLARED IDENTIFIERS
18'—3)

ARRBLT ARRINFO ARRTRAN ARRYIN ARRYOUT BREAKSET CALL CLOSE CLCSIN
CLOSOUT CLRBUF CODE CVASC CVd CVE CVF CVFIL CVG CVIS CVO CVOS CVS
CVSI CVSIX CVSTR CVXSTR ENTER FEQU GETCHAN GETFORMAT INCHRW INCHRL
INCHRS INCHSL INCHWL INSTR INSTRL TNSTRS INPUT INTIN INTSCAN LENGTH
LINOUT LOOKUY MTAPE OPEN CUT OUTCHR OUTSTR REALTN RBEALSCAN RELEASE
RENAME SCAN SETBREAK SETFORMAT STRBRK TTYIN TTYINL TTYINS WORDIN
WORDONT USERFTRR USETI USETO

CHARACTER~IDENTIFIER EQUIVALENCES

18-4,
CHARACTER RESERVED WORD

A AND

= EQV

- NOT

v OR

® {(circle-cross) XOR

oo (infinity) A INF

€ (epsilon) IN

] (vertical bar) SUCH THAT

PARAMETERS TO THF OPEN FUNCTION

18’5.

CHANNEL System Data Channel, 0-717

DEVICE string giving device name
MODE data node
INBUFS number of input buffers

QUTBUFS nunber of output buffers

COUNT text input count (reference)
BRCHAR break char variable (reference)
EOF end-of-file flag (reference)

141 SATL MANUAL

BREAKSET MODES

18-6.
I

X

(Inclusion) string is set of break chars
(eXclusion) string of all nqn~break chars

(Omit) string of characters to be omitted from result

(skip) break char appears only in BRCHAR variable
(Append) break char is last char of result string

(Retain) break char is first char of next string

(Pass) line nurbers appear in input without warning

{No numbers) line numbers and the tabs that follow then
are removed.,

(Line no break) line numbers cause input break. BRCHAR
is negative. Next input gets line no characters.

(Erman) line numbers cause input break. Negated line no
returned in BRCHAR. Line no removed from input.

(nisplay) after this appears, each line no is listed on:
the display (if TTY is a DPY) as it is dealt with.

MTAPE COMMANDS

18-7o

MODE

“A:“
»B*
w“pw
wgw
g
'\E\

‘U‘

FUNCTION

Advance past one tape mark (or file)
Backspace past one tape mark
Advance one record

Backspace one record

Rewind tape

Write tape mark

Rewind and unload

142 SAIL MANUAL

COMMAND SWITCHRES

182-8,
C

D
numF

nunml

numM
P

0]

R

nums
DEBUGGING
18‘90

1

2

create a cross-reference (CREF). (see [DECREF])

double size of define pushdown stack

listing control mode bits -- 1 prints program counter.

2 prints line numbers. # macro names and parameters.

19 macro expansions. 720 macro expansions enclosed in <>.
listing control -- num>0 becomes listing starting addr.
nun=-1 starts listing after current DDT size. num=-2
starts listing after current RAID size.

initial debugging mode set to nun

double size of system pushdeown list

double size of string pushdown list

double size of parse pushdown list

set size of string space to nunm

MODES

display before executing each code generation routine

don’t display, but remain enmabled for asynchronous and
line breaks

display before each production is compared
continue from type 1 and 3 modes automatically
just display input file as it goes past

disable debugqging mechanism {(started in this mode unless
an M switch aprears).

VALID RESPONSES TO ERROR MESSAGES

CR

LF

E

(carriage return) try to continue

(line feed) continue automatically -- don’t stop for
user go-ahead after each message

restart
exit -- close all files, return to monitor
.look at stacks -- of interest only to compiler fixers

edit. Follow by CR to get file the compiler is working
on (or last thing edited, for runtime routines), Follow
with <npame> CR to edit <name>,

go to DDT or RAID

143 SAIL MANUAL

19-1 .

REFFRENCE

Decref

Feldman

Moorer

Weiher

Savitzky

SECTTON 19

BIBLIOGRAPHY

DESCRIPTION

Digital Equipment Corporation, PDP-10 Reference
Handbook, Maynard, Mass. (1969) '

Feldman, J.A, and Rovner, P.D. An Algol~Based
Associative Language, Comm. AcCM 12, 8 (Aug.
1969), 439-449,

Moorer, J.A. Stanford A-I Project Monitor
Manual, Sailons 54 and 55 (Sep. 1969).

Keiher, %.F. Loader TInput Format, Sailon 46
(Oct. 1968) . ‘

Savitzky, S.R. son of Stopgap, Sailon 50.1,
(Sep. 1969), a rtevision of Stopgap, Sailon 50,
by W.F. Weiher.

144 SAIL MANUAL

10— 7

11- 13
9-21

<o_associative_expr>
<o_derived_set>
<n_jitem_expr_list>
<n_item_expression>
<ao_set_expression>
<o_set_factor>
<o_set_primary>
<o_set_term>

<o_triple>

<o_triple>

Abs

<ac_field>
<actual_parameter>
<actual_parameter_list>
<actual_parameter_list>
<actual_pareneter>

Actual Parameter Expansion
Actual Parameters
<adding_expression>
<adding_operator>

Adding Expressions
<address>

<addresses>
<algebraic_assignment>
<algebraic_expression>
<algebraic_relatiocnal>
<algebraic_variabled>
ALGERRATC EXPRESSIONS
Algebraic Expressions
<ALGEBRAIC_TYPE>

ANY Construct

APPENDIX -- USEFUL SOUMMARIES
Arithmetic Constants
Arithmetic Type Conversions
<array_declaration>
<array_list>
<array_segment>

Array Allocation

Array Declarations

ARRAY THPLEMENTATION

ARRAY MANTIPULATION ROUTINES
Arrays, outer block
Arrays, SAFFE declaration
Arrays, storage convention
Arrblt

Arrinfo

Arrtran

Arryin

Arryout

Assembly Language Procedures

ASSEMBLY LANGUAGE STATEMENTS
<assignment>
<a3519nmont-expre551on>
<assignment_statement)>
Assignment Expressions

145

SAIL MANUAL

4- 7 Assignment statement, DATUM

4- 3 Assiqnment statement, semantics
4- 8 Assignment statement, Swap

4 ASSIGNMENT STATEMENTS

7- 1 <associative_context>

- 1 <associative_expression>

10- 1 <associative_operator>

7~ 1 <assocliative_statement>

7-17 Associative context, satisfaction
11 BASTIC COCNSTRUCTS

19 ' BIBLTIOGRAPHY

14- 1 <hinary_name>

7- 1 <binding_list>

2- 1 <block>

2- 1 <block_hecad>

2- 1 <bhlock_name>

2- 9 Block Nanmes

3-20 Block structure, for itens
3-14 Boolean, declaration
9- 1 <boolean_expression>
10- 9 RBool«an constructs, for LEAP
9-10 Roolean Expressicn, anomaly
7-15 Boolean expressions, if FOREACH specifications
9-52 Boolean Primaries
3- 1 <bound_pair>
3- 1 <hound_pair_list>
7-11 Bracketed Triples
9-53 Bracketed triples, ISTRIPLE
10- 5 Bracketed triples, selectors
12-22 Breakset
4- 1 <byte_statenment>
12-129) Byte pointers, creation
4-19 Byte statements
12-115 Ccall
17-12 Caninc
9- 1 <case_expression>
5~ 1 <case_statement>
5- 1 <case_statement_head>
9- 6 Case Expressions
5-18 Case Statements
12-10 Close, Closin, Closo
12-113 Code
1 <code_begin>
1 <code_block>
8- 1 <code_head>
1 <code_tail>
1 <command_line>
1 COMMAND TFORMAT
2-10 Comment
11-22 Comments
14 COMPTLER OPERATION
2- 1 <compound_statement>
2- 1 <compound_tail>
9-36 Concatenation Operator
9- 1 <conditional_expression>
5= 1 <condi'tional_statement>
9~ 2 Conditicnal Expressions

146 SAIL MANUAL

5-23

Conditiopal Statements
Conditional Statements, ambiguity
Constants, arithmetic
Constants, octal
Constants, real
Constants, string
Construction, definition
<construction_item_prim>
Conversions, algetraic
Conversions, algebraic
Conversions, Boolean to Integer
Conversions, for preloaded arrays
Conversions, string
Conversions, strings
Conversions, to BOOLEAN
copr, of set

Corget

Corinc

Correl

Cvasc

Cvd

Cve, Cvit, Cvg

Cvfil

CvI

Cvis

Cvn

Cvo

Cvos

Cvys

Cvsi

Cvsix

Cvstr

Cvxstr

DATUM, use of

Datum Assignments

Datums

DERBUGGING

Debugging modes
<declaration>
Declarations
DECLARATITONS
<define_bhody>
<define_identifier>
<define_specification>
Define Specification
NDefining Macros
<definition>
<definition_list>

DELETE

«device_nane>

<disjunctive_expression>

Disjunctive Expressions

Distinctions Between START_CODE and QUICK_CODE
<do_statement>

Do Statenment

<done_statement>

Done Statement

147 SAIL MANUAL

4-10 DPB

7- 1 <element>

2- 1 <entry_specification>

2-11 Entry Specifications

12-73 _ Equ

7-13 "ERASE

7-13 ERAS¥, restriction

14-19 ERROR MESSAGES

5 EXECUTTION CONTROL STATEMENTS
12 EXECUTION TIME ROUTINES

9- 1 <expression>

9- 1 <expression_list>

9-14 Expression Evaluation Rules
3- 2 EXTERNAL declaration

3-46 External Procedures

9- 1 <factor>

9-37 Factors

11-16 ¥ALSE, definition

1M~ 1 <file_ext>

14- 1 <file_name>

mw- 1 <file_spec>

1C- % FIRST, of bracketed triple
5- 1 <for_list>

5- 1 <for_list_element>

5- 1 <for_statement>

5-11 For Statements

7-18 FOREACH specification, evaluation
7-14 FOREACH Statement

7-20 FORFEACH statement, efficiency considerations
7-19 FOREACH statement, harsh warning
7-21° FOREACH statement, restrictions and warnings
3- 1 <formal_param_decl>

3- 1 <formal_parameter_list>

3- 1 <formal_type>

3-38 Formal Parameters

3-53 FORTRAN, actual rarameters

3-48 FORTRAN, declaration

6-12 Fortran Procedures

16-11 Fortran Procedures

3~ 2 FORWARD declaration

3-41 Forward Procedure Declarations
9- 1 <function_designator>

9-43 Function Designators

11-11 Functions, predeclared

12-12 Getchan

12-78 Getformat

5- 1 <go_to_statement>

3-53 Go To, rTestriction

5- 8 Go To Statements

5- 8 Go To Statements, restrictions
12- 6 I/0 ROUTINES

4-10 IRP

3- 1 <id_list>

11~ 7 Identifiers

4-10 IDPB

5- 1 <if_statement>

5- 5 If ... Else Statement

148 SATL MANUAL

9-514

17
8- 1
8- 1
2- 8
12-40
8- 1
3-13
3- 2
3-17
10~ 2
1
9-53
3-53
4= 1
10~ 1
3- 2
10~ 4
3-18
3-20
10- 5
3-19
10- 6
7- 4
10- 1
3-22
3-23
7-16
7-18
7-22
7- 4
3- 1
5- 1
3- 4
3-53
9-54
7- 2
7- 7
9- 1
10- 1
7- 1
3- 1
10- 9
7
9-46
12-71
12-113
12- 1
12-46
14- 1
8~ 1
9-u49
15- 1
9-28
12-17

7- 1

If Statement

ILDR

IMPLEMENTATION INFORMATION
<index_field>
<indexed_address>

Inner block

Input

<instruction>

Inteqers, range

INTERNAL declaration

Internal procedures
Intersection, sets
INTRODUCTION

ISTRIPLE

ITEM, procedure
<item_assignment>
<iten_primary>

ITEM ARRAYS, nonexistence

Item Constructs

Item Declarations

Item Genesis

Item Selectors

Ttems

Items, dynamic NEW

ITEMS, storage of instances
<itenmvar_variabled>

Ttemvar Declarations

Itemvars, binding in FOREACH .
TTEMVARS, bhinding in FOREACH specifications
ITEMVARS, binding in FOREACH statements
ITEMVARS, in FORFACH statement
ITEMVARS, use

<label _declaration>
<label_identifier>

Label use

‘Labels, as actual parameters

LDB and TLDR

LEAP, introduction
LEAP, restrictions
<leap_relational>
<leap_relatiocnal>
<leap_statement>
<leap_type>

LEAP Booleans

LEAP STATEMENTS
Length

Length
LIBERATION-FROM-SAIL ROUTINES
Library, runtime
Linout
<listing_name>
<literal>

Lnot

LOADING AND STARTING SAIL PROGRAMS
Logical Expressions
Lookup, FEnter
<loop_statement>

149 SAIL

HANUAL

10- 4
3- 1
13- 6
16- 2
7-11
7-13
12-57
9- 1
9- 1
10- 6
10- 6
5- 1
5-25
11-19
3-13
8- 1
12- 6
12-45
2- 8
3-59
10- 3
12-119
9-13
3- 1
3- 1
3- 1
3-32
9-338
9- 1
3- 1
3- 1
3- 1
6~ 1
3- 5
17-49
6- 4
6- 2
3-37
17-46
6
6-10
3-52
3-50
3-53
2- 1
2- 9
15

16

2
14— 1
12-70
7- 9
12-61
3-13
12-66

Lop .

LOP, of set

<lower_bhound>

Macro Parameters

Main Proqgram

MAKE

MAKE, restriction

Mtape

<mult_operator>
<neqgated_expression>
NEW_TITEM Declaration

NEW Items

<next_statement>

Next Statement

NULL, definition

Nameric Declarations
<opcode>

Open

Out

Outer block

Parametric Procedures

PHY, the enpty set

Point

Precedence of Algebraic Operators
<preload_elementd>
<preload_list>
<preload_specification>
Preload Specifications
Primaries

<primary>

<procedure_hody>
<procedure_declaration>
<procedure_head>
<procedure_statement>
Procedure body, emptiness
Procedure Calling Sequences
Procedure Calls, actnal parameters
Procrdure Calls, semantics
Procedure Declarations
PROCEDURE IMPLEMENTATION
PROCTEDURE STATEMENTS
Procedures, as actual parameters

Procedures, defaults in declarations

Procedutres, parametric
Procedures, restrictions
<progqram>

Program name, for DDT
PROGRAM OPEFRATION

PROGRAM STRUCTURE

PROGRAMS, BLOCKS, STATEMENTS
<proj_prog>

Pseudo-teletype functions

PUT, use

Realin, Intin

Reals, range
Realscan, Intscan
RFCURSIVE declaration

150

SATL MANUAL

3-43 Recursive Procedures
3-38 REFERENCE

3-52 REFERENCE

6- 6 REFERENCE, actual parameters
9- 1 <relational_expression>
9- 1 <relational_operator>
9-19 Relational Expressions
12-14 Release

3- 1 <relfile_spec>

7- 9 REMOVE, use

12-21 Rename

10- 6 REQUIRE, new_itens

3- 1 <require_elenment>

3- 1 <require_list>

3-55 REQUIRE declaration

3- 1 <requirement>

3-55 Requiremaents

11-10 Reserved words, list of
7- 8 Retrieval, definition
10- 1 <retrieval_item_prim>
9-43 RETURY, value of function
5- 1 <return_statement>

5-19 Return Statement

14-12 Rpg Mode

11-11 Runtime routines, list of
3- 2 SAFE declaration
7-17 Satisfiers, of associative context

7-18 satisfiers, of associative context
12-43 Scan

3- 8 Scope of declarations

10—~ 5 SECOND, of bracketed triple
10- 1 <selactor>

16- 7 Separately Compiled Procedures
4- 1 <set_assignment>

10- 1 <set_expression>

7- 1 <set_statement>

10- 1 <set_variatle>

10 STT AND ASSOCTATIVE EXPRESSIONS
3-24 Set Declarations

10- 2 Set ETxpressions

10~ 3 Set Primaries

12-35 Setbreak

12-75 Setformat

10~ 3 Sets, derived from associations
7-14 SETS, in FOREACH specifications

T7- 5 S5ETS, use

8- 1 <simple_address>

9- 1 <simple_expression>
9- 9 Simple Expressions
-1 <simpler_formal_type>
14— 1 <slashed_switch_list>
M- 1 <source_list>

3- 1 <{space_spec>

9~-41 Special Tength Oyperator (INF)

15~ 2 Starting the Program -- Normal Operation

15~ 3 Starting the Program in “RPG™ Mode ‘
15- 4 Starting the Program with Allocation Modifications

151 SATL MANUAL

2- 1
2- 6
12-37
14-22
17- 5
17- 1

14-13
15-10
12-68
9- 1
9-31
16— 1
10~ 5
7-12
7-16
11-16
3- 1
3- 1
3- 1
12-75
3-11
9~-51

12-117
12-59
13- 5
14- 1
3-38
3-52
6- 5
111

<statement>

Statements

Stdbrk

STORAGE ALLOCATION

Storage Allocation Routines
STORAGE LAYOUT
String-Arithpetic Conversions
<string_expression>
String-Oriented Machine Langnage Routines
<strinqg_variable> '
String constant, as comment.
String Constants

String Declarations

String Descriptors

String Garbage Collection
STRING MANIPULATTICN ROUTINES
String Orperations

String Space

STRINGS

<subscript_list>
<substring_spec>

Substrings

Subtraction, sets
<svwap_statement>

Swap Assignment

Swap operator, restriction
<switch_spec>

<switches>

Switches

Symbols

Teletype I/0 Functions
<term>

Terms ‘

THE SAIT CORE TMAGE (REQUIRED)
THIRD, of hracketed triple
Triples, bracketed

Triples, in FOREACH specifications
TRUE, definition

<type>

<type_declaration>
<type_qualifier>

TYPE CONVERSTON EROUTINES
Type Declarations

Unary Minus

Union, sets
<unslashed_switch_list>
<upper_bound>

USE OF DEFINE

User Table

Jsererr

Iseti, Useto

Using Macros
<valid_switch_nanme>

VALUR

VALUE

VALUE, actual parameters
<variable>

152 SATL

MANUAL

3-11
11- 2
5- 1
5-16
12-48
12-53

Variables
Variables
<while_statement>
While Statement
Wordin

Wordout

153

SAIL MANUAL

SALL MANUAL UPDATE

June 30, 1970(A) (supercedes update of June 19):
The following reserved words have been added to correspond to
characters which do not appear in the standard 64 character ASCII,

SETO left curly bracket SETC rite curly bracket
(read these two as "set open' and "set close)

LEQ less than-equals GEQ greater-equals

NEQ not equals ASSOC left single quote

UNION set union(cup) ' - INTER set Intersection(hat)
SWAP double~headed arrow : .

These additions should be noted in sections 11-10, 11-12,
18-2, and 18-4 of the manual. ’ :

In addition, the character "i" (exclamatlon polnt) is now
translated Into the underline character (which also does not occur In
standard (limited) ASCIl). Thus, PRELOADIWITH is now equivalent to
the reserved word which Is un-typable. (This translation does not
effect strings, e.g. for output.) .

June 30, 1970(8B) ' :

The operator "{BP" currently requ!res 2 operands, the flirst
of which should be any simple variable, which is then ignored! The
simplest way to live with this hack Is to just use the byte pointer
twice; l.e. if you want to say "I1BP(PTR)", Just say "IBP(PTR,PTR)",

June 30, 1970(C): .

Warning: Do not use assignments to datums tmbedded in other
statements; there Is currently a bu;. (1f you don't know what a
datum is, then thls bug probably won 't blte you.)

June 30,'1970co>& S |
QUICKICODE Is not yet Implemented {(and may never be).
STARTICODE Is implemented. :

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	A-01

