v Sponsored by
Advanced Research Projects Agency
ARPA Order No. 2494

Stanford Artificial Intelligence Laboratory | April 1974
Memo AIM-226 oo

Computer Science Department
Report STAN-CS-74-407

FAIL

by

F. H. G. Wright II
R. E. Gorin

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

Abstract

This is a reference manual for FAIL, a fast, one-pass assembler for PDP-10 and PDP-6 machine
language. FAIL statements, pseudo-operations, macros, and conditional assembly features are
described. Although FAIL uses substantially more main memory than MAGRO-10, it assembles
typical programs about five times faster. FAIL assembles the entire Stanford time-sharing
operating system (two million characters) in less than four minutes of CPU time on a KA-10
processor. FAIL permits an ALGOL-style block structure which provides a way of localizing the
usage of some symbols to certain parts of the program, such that the same symbol name can be
used to mean different things in different blocks.

This manual was supported by the Advanced Research Projects Agency of the Department of Defense
under Contract No. DAHC15-73-C-0435. The views and conclusions contained in this document should
not be interpreted as nccessarily representing the official policies, either expressed or implied, of the
Advanced Rescarch Projects Agency or the U.S. Government.

This manual supersedes SAILON-26.

Available from the National Technical Information Service, Springfield, Virginia 22151,

Acknowledgments

The original version of FAIL and the original manual (SAILON-26) were written by Phil Petit in
1967. Various additions and modifications were subsequently contributed by William Weiher,
Fred Wright, Ralph Gorin, and others. This manual was prepared using PUB, the document
compiler created by Larry Tesler, using the Xerox Graphics Printer, with fonts by Brian Harvey.
Brian McCune and Les Earnest reviewed the manuscript and made helpful suggestions. Cover
picture: United Press International.

FAIL

Section
1. Introduction

2. Basic Syntax

2.1 Statements
Instruction Statement .

2.1.1

22 1O PO PO
o o fo

2.16
2.1.7

2.1L11
2.1.1.2
2.1.1.3
C 2.1.14
2.1.1.5

Table of Contents

Opcode Field . .
Accumulator (AC) Fteld
Indirect (@) Field
Address Field .

Index Field

Halfword Statement

Full-Word Expression

Truncated Expression .
Input-Output Instruction Statement .

2.1.5.1

Device Selection Field .

Comment Field
Statement Termination

2.2 Expressions

2.3 Atoms
2.3.1

2.3.2

233

234

2.3.5

Identifiers .

V alues

Constants .

2.3.3.1
2.3.3.2
2.3.3.3
2.3.34
2.3.3.5
Symbols
2.3.4.1
2.3.4.2
2.34.3
2.34.4
2.3.4.5
2.346
2.3.4.7
2.34.8

Simple Numbers
Decimal Numbers .
Floating-Point Numbers
Ascii Constants

Sixbit Constants

Labels .

Parameters (Assignment Statements)
Variables e
Predefined Symbols

Half-Killed Symbols

Block Structure

Linkage with Separately Assembled Programs

Symbols and Arrows

Complex Atoms

2.3.5.1
2.3.5.2

Atomic Statements
Literals .

Page

OO OO Ot O s Wb D 000NN N

[0)]

ii

3. Pseudo-Ops

Table of Contents

3.1 Destination of Assembled Code

311
3.1.2
313
314
3.5
3.16
3.1.7

LOC, RELOC, and ORG
SET and USE . . .
PHASE and DEPHASE .
HISEG .

TWOSEG

LIT

VAR

3.2 Symbol Modifiers

321
322
323
324
325
328
327
328
329

OPDEF . . .
BEGIN and BEND
GLOBAL . .
INTERNAL and ENTRY
EXTERNAL . . .
LINK and LINKEND .
.LOAD and .LIBRARY .
PURGE

XPUNGE

3910 SUPPRESS and ASUPPRESS .
3.9.11 UNIVERSAL and SEARCH

3.3 Entering Data

331
3.32
333
3.34
3.35
3.36
3.3.7

DEC and OCT

BYTE.

POINT

XWD .

IOWD . .

ASCII, ASCIZ, ASCID and SIXBIT
RADIX50 .

3.4 Reserving Space for Data

34.1
3.4.2

BLOCK .
INTEGER and ARRAY

3.5 Assembler Control Statements

3.5.1
3.5.2
3.5.3
3.54
3.5.5

TITLE . .
END and PRCEND
COMMENT .
RADIX .
INSERT .

3.6 Listing Control Statements

36.1
36.2
36.3
364
36.5

TITLE and SUBTTL . .
LIST, XLIST, and XLIST! .
LALL and XALL

NOLIT

NOSYM

FAIL

22

22
22

23
24
24
25
25

26
26
26
26
27

27
28
28
29
29
29

30
30
30
31
31
31
32
32

33
33
33

34
34
34
34
35
35

36
36
36
36
36
37

FAIL

366
36.7
36.8

Table of Contents

CREF and XCREF
PAGE. .
PRINTX .

4. Macro Operations

4.1 Macros

Macro Bodies .

Concatenation

Arguments in Macro Deﬁnmons
Macro Calls .- ..

Arguments in Macro Calls

'How Much is Eaten by a Macro Call

Complex Example

String FOR .
Character FOR
Arithmetic FOR

4.3 REPEAT

4.4 Conditional Assembly

4.4.1
442
4.4.3

Appendices

Numeric IFs
Text IFs .
Symbol IFs

A Command Language

H o O «w

Index

Relocatable and Undefined Values
Predefined Opcodes
Stanford Character Set

Summary of Character Interpretations

iii

87
87
37

38

38
38
39
39
40
40
41
42

43
43
44
14
45
46
46
46
47
48
48
50
51
56
57

59

FAIL Introduction 1

1. Introduction

FAIL is an assembly program for PDP-6 and PDP-10 machine language. FAIL operates in one
pass, which means that it reads the input file only once; the linking loader program (LOADER or
LINK-10) completes any aspects of ‘the assembly which could not be done by FAIL. The
efficiencies which have been employed in its coding make FAIL five times faster than
MACRO-10, the DEC assembler.

FAIL processes source program statements by translating mnemonic operation codes into the
binary codes needed in machine instructions, relating symbols to numeric values, and assigning
relocatable or absolute core addresses for program instructions and data. The assembler can
prepare a listing of the program which includes a representation of the assembled code. Also, the
assembler notifies the user of any errors detected during the assembly.

FAIL has a powerful macro processor which allows the programmer to create new language
elements to perform special functions for each programming job.

FAIL permits an ALGOL-style block structure which provides a way of localizing the usage of
symbols to particular parts of the program, called blocks. Block structure allows the same symbol
name to be given different meanings in different blocks.

The reader of this manual should be familiar with the PDP-10 instruction set, which is described
in both DECsystem-10 System Reference Manual and PDP-10 and PDP-6 Instruction Sets
(SAILON-TI).

Other documents of interest:

Frost, M. UUO Manual, SAILON-55.3, December 1973
Petit, P. RAID, SAILON-58, September 1969
Harvey, B. Monitor Command Manual, SAILON-54.3, December 1973

The following are available in the DECsystem-10 Software N otebooks:

Cross-Reference Listing: CREF, June 1973 ‘

DDT-10 Programmer’s Reference Manual, June 1973

Linking Loader Programmer’s Reference Manual, August 1971
LINK-10 Programmer’s Reference Manual, May 1973
MACRO-10 Assembler Programmer’s Reference Manual, June 1972
DECsystem-10 Operating System Commands, February 1974
DECsystem-10 Monitor Calls, June 1973

2 Basic Syntax FAIL

2. Basic Syntax

This section describes the basic components of a typical FAIL source program. It covers the
normal mode of turning each source statement into a binary word. Pseudo-operations and macro
features are explained in later sections.

This section is organized in a fop-down manner: the complex constructs, statements, are described
first, followed by a description of the language elements from which statements are built, etc.

Statements are the elements of the language that generate machine code and other binary data. A
statement is generally free format, consisting of several fields, each of which is an expression.
Expressions are composed of atoms and operators. The operators signify typical arithmetic and
boolean operations, such as addition or logical OR. Atoms are either constants, symbols, or
complex atoms. :

2.1 Statements

Statements are the syntactic units which actually produce code. The statements that are described
in this section usually generate one word of code. A null statement, which consists of no
expressions, generates no code. A typical statement consists of one or more expressions separated
by spaces, commas, or parentheses.

There are five kinds of statements: instruction statements, full-word expressions, truncated
expressions, halfword statements, and input-output statements. The most common of these is the
instruction statement. Also, there are pseudo-operations (called pseudo-ops), which are described
in section 3, page 22. A pseudo-op may direct FAIL to perform an assembler control
function or to assemble data in a particular format.

The examples that are given below are intended to be as general as possible. In most cases, many
of the indicated fields may be omitted.

2.1.1 Instruction Statement

OPCOBE AC, @ADDRESS (INDEX) ; COMMENT

An instruction statement is used to assemble one machine instruction. The typical format is
shown above; the parts will be explained later. Any portion of the instruction statement may be
omitted. The comment field is not really part of the instruction statement, but may be included on
the same line for clarity and conciseness. The parts may appear in any order, except that the
opcode field, if present, must be the first expression. Also, each part must be syntactically
identifiable. The form above is hallowed by years of use; departure from it will render a
program less intelligible to other readers.

FAIL Basic Syntax]

If the opcode field is omitted, all other fields will be recognized and handled normally, unless the
address expression is the first field seen, in which case the statement is treated as a full-word
expression.

2.1.1.1 Opcode Field

If the first atom appearing in the statement (excluding labels and assignment statements) is an
identifier, it will be looked up in the opcode table to see if it is an opcode, in which case the
opcode alone will be returned as the first expression, overriding any significance it may have as a
symbol. An opcode (short for operation code) may be a machine instruction mnemonic, a UUO
mnemonic, a pseudo-op, or a user-defined opcode (see OPDEF in section 3.2.1, page 26). An
opcode, if it appears, must be the first thing in the statement (except for labels or assignment
statements).

If an opcode is a pseudo-op mnemonic, FAIL will process that particular pseudo-op as
appropriate. The syntax of pseudo-ops differs from that of normal statements.

If an opcode is a machine instruction, UUO mnemonic, or user opcode, its value is placed in the
binary word being assembled. These opcodes are treated as having full-word values, but in most
cases only the opcode field (bits 0-8) is non-zero. A few machine instructions, and many UUO
mnemonics, specify values for other fields as well. The values of the other fields (except the
address field, if non-zero) can be modified by subsequent operands.

Whenever an opcode is recognized, it is immediately processed without regard for any arithmetic
operator that might follow. Although FAIL tries to allow a symbol and opcode with the same
name to co-exist, it cannot resolve the ambiguity in all circumstances; it is a good idea to avoid
conflicts as much as possible. FAIL will not recognize an identifier as an opcode if the identifier is
followed by any one of the characters colon (:), left-arrow (), up-arrow (?), tilde (~), or number
sign (#).

2.1.1.2 Accumulator (AC) Field

If an expression appears in a statement followed by exactly one comma, its value will be placed in
the accumulator field of the current word (bits 9-12), possibly replacing the accumulator field
indicated by an opcode. This expression must be defined, available, and absolute (some of these
terms are defined in section 2.3.2, page 8). For the sake of brevity, "accumulator” is often
written as "AC". i

2.1.1.3 Indirect (@)\Field

If one or more at-sign characters (@) appear as part of a statement, the indirect bit (bit 13) will be
turned on in the word being assembled. The at-sigh may appear anywhere in the statement as
long as it is not embedded inside symbols or expressions. The character open single quote (*)
may be used as an alternative to at-sign.

4 Basic Syntax FAIL
2.1.1.4 Address Field

If in a statement an expression appears which is neither enclosed in parentheses nor followed by a
comma, it is considered to be an address expression unless it is the first expression (including the
opcode) in the statement. Address expressions are truncated to 18 bits and placed in the address
field (bits 18-35) of the word being assembled.

Only one address field may be assembled per statement; an attempt to assemble more than one is
an error. This error sometimes occurs because an undefined opcode is used, which is treated as an
expression in case it is really an undefined symbol. This error can also occur when an opcode
includes an address field and the user attempts to supply another address field.

2.1.1.5 Index Field

If an expression is enclosed in parentheses in a statement, the right half of its value will be ORed
into the left half of the current word. Also, if no address field has appeared yet, the left half of its
value will be ORed into the right half of the current word. The expression must be defined,
available, and absolute. This construct is most commonly used for specifying the index field (bits
14-17). '

Sometimes, this construct is used for putting left-half quantities in address fields, or as a general
halfword-swapping operation. Often when this is done, the expression in parentheses must be
enclosed in brokets (< and >) to force its evaluation as an atomic statement; see section 2.3.5.1,
page 20. If the left half of the expression is non-zero, the word will be flagged as containing an
address field, making another address field illegal.

Examples:
MOVEI 2,-1(B) ;assembles 281106 777777
MOVSI 1, (<JRST>) ;assembles 205040 254000

2.1.2 Halfword Statement

EXPR, , @ADDRESS (INDEX) | ;s COMMENT

If an expression is followed by comma-comma (,,), it will be placed in the left halfword of the
current location, and FAIL will continue to process an address field, index field, and indirect field.
This is more convenient than the XWD pseudo-op for assembling halfwords since it allows the
entire effective address to be specified in the usual way. The only restriction is to beware of
possible interpretation of the first symbol as an opcode. If the expression followed by the comma-
comma is not the first thing assembled in the word, the warning message /llegal ,, will be printed,
although the statement will assemble correctly. This prevents confusion if an extra comma is
typed after an accumulator field.

FAIL Basic Syntax

(523

2.1.3 Full-Word Expression
EXPR s COMMENT

When the first expression in a statement is not preceded by a comma and is not an opcode, FAIL
assumes that the expression is a full-word expression. The entire 36-bit value of the expression is
placed in the current word. The full-word expression is the only ordinary statement (i.e., not a
pseudo-op) that assembles a single expression with a full 36-bit value. Full-woid expressiuns are
treated as address fields for purpases of the multiple address field error.

If a full-word expression contains any undefined symbols, unavailable symbols, or strange
relocation constants, the entire word will be updated with the value of the expression when it
becomes known. This will obliterate any index, indirect, or accumulator field appearing after the
expression on the line. If the expression actually has only an 18-bit value, this can be fixed by
prefixing the expression with a comma (i.e, by using a truncated expression). If a full-word value
is actually needed and the problem is not just one of availability (curable by the use of GLOBAL
or down-arrow (V); see section 2.3.4.6, page 16), it may be necessary to use an explicit expression
to set the accumulator, index, and indirect fields.

2.1.4 Truncated Expression
,EXPR ,} ; COMMENT

If a comma appears before any expression in a statement, it flags the current word as containing
data in order to force a subsequent expression to be treated as an address field even when it is the
only expression in the statement. This can be used to form an 18-bit truncated expression. Note
that a statement consisting of a single comma will assemble a zero word.

2.1.5 Input-Output Instruction Statement

OPCODE DEV, @ADDRESS (INDEX) ; COMMENT

An input-output instruction statement is used to assemble one hardware I/O instruction. Most
parts are the same as in an instruction statement, except that a device selection field appears
instead of an accumulator field. Also, the opcode portion must be one of the PDP-10 Aardware
input-output instructions (e.g, DATAO). Note that hardware I/O instructions are not related to
operating system UUOs.

2.1.5.1 Device Selection Field

The same syntax and restrictions that apply to an accumulator field apply also to the device
selection field. The value of the device selection field is placed in bits 3-9 of the current word.
This value is often called the device code.

6 Basic Syntax FAIL

2.1.6 Comment Field

When FAIL’s statement processor encounters a carriage return or semicolon (;), all characters up
to the next line feed or form feed are completely ignored except for listing and certain macro
processor functions (see section 4.1, page 38). Upon reaching the line feed or form feed, the
comment is terminated. Usually, this is used to insert a relevant comment at the end of a line of

code.
2.1.7 Statement Termination

A statement is terminated by a comment or by any of the characters line feed, double-arrow (),
right bracket (1), or right broket (>) when not processing a comment. When a statement is
terminated, the value of the current word (if any) is returned. A statement returns no value at all
if no expressions appear in it or if it is a pseudo-op which assembles no code. Terminating a
statement with one of the bracket characters often has special significance, as in atomic statements
or literals. Double-arrow can be used for assembling more than one statement on a line, but will
not terminate a comment.

2.2 Expressions

Expressions are built from atoms connected by operators which allow the specification of values
based upon arithmetic and logical functions of several values. These expressions follow essentially
the same rules as conventional programming languages. Each operand in an expression may be
an atom, an atomic statement, or an expression in parentheses, preceded by any number of unary
operators. If parentheses are used, the expression inside the parentheses is evaluated before
performing any operations using that operand. If a unary operator appears, its function will be
evaluated before any operations using that operand (but after the expression in parentheses, if
parentheses are used). Multiple unary operators are evaluated from right to left, so --1 is
processed as -(-1). Finally, these operands can be connected with binary infix operators whose
order of evaluation is determined by their assigned precedence levels (highest first) and is left-to-
right for operators of the same level. An expression may, of course, consist of a single operand
(i.e., atom) with no operators at all.

Surrounding an entire expression with parentheses sometimes signifies an index field (see section
2.1.1.5, page 4). All arithmetic is integer or boolean; no type conversion is done for floating-point
operands.

FAIL Basic Syntax ' 7

The following is a list of the available operators and their precedence levels:

Symbol Meaning Precedence Level
binary operators

Addition
Subtraction
Multiplication
Division :
Logical AND
Logical AND
Logical OR
Logical OR
Exclusive OR
Exclusive OR
Logical Left-Shift

@IVIEC —->QN%XI1 +
FLWWWWRWWWNN =

unary operators

- Negation (two's complement) 5
Logical NOT (one’s complement) 5

If an expression contains any undefined values, its own value is undefined. If an expression is
used in a context where undefined values are legal, FAIL retains a structure describing the
evaluation needed, called a Polish fixup for its similarity to Polish arithmetic notation, in order to
complete the evaluation when the unknowns become defined. As soon as all values in the
expression are defined, a fixup will be output (to the loader) to correct the value (or the value will
be corrected directly in the case of a literal). If the expression is not completely defined by the end
of the assembly (due to external references or errors), the Polish structure is sent to the loader for
evaluation at load time. In other words, the right thing usually happens with a partially
undefined expression as long as it is legal in the context where it is used.

Expressions may also begin with any number of labels or assignment statements, which have no
effect on the value of the expression.

Examples
FODe2 ivalue of FOO shifted left 2 bits
(BAR-1)e-2 svalue of BAR-1 shifted right 2 bits
(A+2}) xB
- (A+2) x-B ;same value as above
<A+2>%B sanother way (The symbol A must
sbe defined and available. See
sAtomic Statements, section 2.3.5.1, page 28)
=60%=60
IIA"_48
[9]-1 jeven literals can appear in expressions

FOO:BAR<1 105 s the value of this expression is 185
; (labels and assignment statements have no
seffect on the value of the expression)

8 Basic Syntax FAIL

2.3 Atoms

An atom is the most basic syntactic element. An atom is either a symbol or a constant. There are
also complex atoms which are not really atoms at all, but which can be used in the same way as
atoms in forming expressions. Every atom represents a value.

2.3.1 Identifiers

Identifiers are very basic syntactic elements. They have many different uses, all of which involve
referring to something by a convenient symbolic name. The uses of identifiers will be covered as
the various applications arise. Identifiers may be defined either by the programmer or by FAIL.

The characters legal in an identifier are letters, digits, and the four characters dollar sign (8),
percent sign (%), point (.), and underbar (). An identifier is any non-null string of characters
from this set, delimited by characters not from this set, except that the first character of an
identifier must not be a digit. Only the first six characters of an identifier are significant, and
upper and lower case letters are treated as equivalent. Thus "FOOBAR" and "foobarbletch” are

equivalent identifiers. Also, “_" is considered equivalent to "." so, for example, "A_7" and "A.7"
are equivalent identifiers.

Certain identifiers have special meaning in FAIL, and cannot be used except with their own
special meanings. Some of these reserved identifiers are IFAVL, IFDEF, IFDIF, IFE, IFG, IFGE,
IFIDN, IFL, IFLE, IFMAC, IFN, IFNAVL, IFNDEF, IFNMAC, IFNOP, IFOP, IOWD,
.FNAMI, .FNAMZ2, ".", and "8.".

2.3.2 Values

Most of the normal assembly process consists of translating text strings into their corresponding
binary values. The main transformation happens when the atomic elements are converted to their
binary representations; these are combined by binary operations into more complex constructs.

Often the final 36-bit value of an atom depends upon information not available at the time the
atom is seen. This value may become known when a later part of the program is assembled, or it
may not be known until the program is actually loaded. Consequently, up until the final loading
of a program into a core image, its representation must be a slightly expanded form of simple
binary so that the steps necessary to complete the calculation of all binary values can be
adequately described. Partially defined values are commonly used in writing FAIL programs;
several mechanisms exist to enable FAIL (and the loader) to handle such values correctly. The
full impact of forward references and relocatable values is discussed in appendix B, page 50.

Some of the different kinds of values that often occur in FAIL are distinguished by particular
names: relocatable, absolute, defined, undefined, available, and unavailable. The definitions that
follow involve symbols and block structure to some extent. Refer to section 2.3.4, page 11, and
section 2.3.4.6, page 15, for further elucidation.

FAIL Basic Syntax 9

A value that depends on where the program is when it is loaded in core is called relocatable.
Relocatable values occur most frequently when some location in the program or in the data is
referred to. Values that do not depend on where the program is located are called absolute or
unrelocatable. An example of an absolute value is a constant. Another example of an
unrelocatable value is the length of a table (that is, the difference between two relocatable values).

A symbo!l is an identifier that has a value. A symbol is defined when a value is assigned to it. A
symbol can be referenced before it is defined, that is, when the value of the symbol is undefined.
FAIL makes sure that the right thing happens when the value becomes defined as long as an
undefined value is legal in the particular context where it is used.

A symbol that is defined is said to be available (after the point of definition) in the block where it
is defined. When another (lower) block is entered, such a symbol becomes unavailable unless the
programmer has taken steps to force the availability of that symbol in lower blocks.

2.3.3 Constants

Constants are the simplest forms of atoms; their values do not depend on context or previous
operations (with the exception of the radix for interpretation of numbers). Constants are absolute,
i.e, independent of where the program is loaded. A constant may be one of several types of
numerical or text constants. In addition to the atomic constants described here, there are various
data entry pseudo-ops described in section 3.3, page 30.

2.3.3.1 Simple Numbers

A simple number consists of a string of digits, optionally followed by the letter "B” and one or two
additional digits which represent a scale factor. The digit string is interpreted as a number in the
current radix. Since the radix is initialized to 8, simple numbers are usually interpreted as octa!
by default. In this case, the accumulation is done by logical shifting, so the number is considered
unsigned. If the radix is anything other than 8, the accumulation is done by multiplication, and
the sign bit cannot be set (but a negative number can be entered as an expression). The current
radix can be set with the RADIX pseudo-op (see section 3.5.4, page 35).

The one- or two-digit argument following the "B", interpreted in decimal, specifies the low-order
bit position of the number in the word. The number is shifted left logically a number of bit
positions equal to 35 (decimal) minus‘the argument.

Examples:

1743

2

254B8

1B33 jequivalent to &4
22B18

10B37 ;equivalent to 2

10 Basic Syntax FAIL
2.3.3.2 Decimal Numbers

Decimal numbers provide a way of entering decimal information regardless of the current radix.
A decimal number is a simple number preceded by an equal sign (=). Since decimal numbers are
handled identically to simple numbers except for the radix, the "B" shifting operation may also be
used with decimal numbers.) :

Examples:

=100
=63
=18B27

2.3.3.3 Floating-Point Numbers

Numbers may also be entered in standard floating-point notation, in which case they will be
converted to PDP-10 single-precision fioating-point format. Floating-point numbers are always
interpreted in decimal regardless of the current radix. Note that any arithmetic performed by
FAIL on numbers is always integer arithmetic, even if the operands are floating-point numbers.

A floating-point number consists of two strings of digits, separated by a decimal point and followed
by an optional scale factor. The digit strings before and after the decimal point represent the
integer and fraction parts of the floating-point number, respectively. The scale factor is the letter
"E", an optional minus sign, and one or two digits. The number following the "E" specifies a
power of ten by which the number will be multiplied.

Although the fraction part of the number may be omitted, it is probably better to include the
redundant B to avoid a possible future conflict that could arise if FAIL were modified to allow a
decimal point following a digit string to signify a decimal number.

Examples: .
18.7E1 jgquivalent to 187.8

9.973 !

8.13 .

19. sbetter to write this as 19.8
1.86EB5

31.4159E-1

69E1 ipresently equivalent to 698.8

2.3.3.4 Ascii Constants

Constants may also be specified as the ascii value of a character or string of characters. The ascii
value of a character is its 7-bit code in the Stanford Character Set, a modified form of the
USASCII code (see appendix D, page 56). An ascii constant is written as a string of characters
not containing a double quote ("), enclosed with double quotes, e.g, "Foo". If the string is null,

FAIL " Basic Syntax 11

ie, "", the resulting value will be zero. If the string contains exactly one character the resulting
value will be the ascii value of that character. If the string contains more than one character,
each additional character will shift the total left 7 bits and add its own value, much as an octal
number is accumulated. This results in packing characters into right-justified 7-bit bytes. Only
the low-order 36 bits of the total are used, so if more than 5 characters appear in the string, only
- the last 5 characters and the low-order bit of the sixth-from-last character will affect the value.

This right-justified form is not the standard way of packing text for addressing with byte
instructions, but is intended mainly for small immediate operands, etc. Text pseudo-ops (described
in section 3.3.6, page 32) are used to store text in the usual left-justified format in multiple
words.

Examples:
nAN 1101 octal
" TC " H 27583
"foobar" + 337576130362

2.3.3.5 Sixbit Constants

Another character code that is frequently used is sixbit. It is a modified version of ascii code
which uses only 6, instead of 7, bits in order to pack 6 characters into a word rather than 5.

The basic ascii to sixbit transformation consists of subtracting 40 (octal) from the ascii code,
which maps ascii 40-137 (all the printing characters of 64-character ASCII) into the desired 0-77.
Since the 140-177 range consists mostly of lower-case versions of the 100-137 characters, a better
transformation also maps this range to 40-77. The method used by FAIL is to copy the 100 bit
into the 40 bit and set the 100 bit to 0. The inverse transformation is accomplished by adding 40
to each sixbit character.

Sixbit constants can be specified in FAIL in the same way as ascii constants, except that close
single quotes (apostrophes) (*) should be used instead of double quotes. Naturally, if more than
one character appears in the string, the shifting will be 6 bits at a time instead of 7, and the last 6
characters of the string will always be completely significant. Again, a pseudo-op is available (see
section 3.3.6, page 32) to pack longer strings into multiple words.

Examples:
'a’ 34l
‘Dsk 3 446353000008
'gronker’ 1625756534562

2.3.4 Symbols

Symbols are one of the most important features provided by an assembler. One capability
provided by symbols is the ability to abbreviate a complex expression with a single identifier.

12 Basic Syntax FAIL

Another is to represent an assembly parameter, so that its value can be changed at the symbol
definition only, without having to modify the places where the parameter is used. A third use is
to represent values which are difficult for the programmer to calculate, such as values dependent
upon exactly where certain parts of the program are stored.

A symbol is an identifier which at some point in the program (or possibly in an external program)
is assigned a value which will be associated with that identifier whenever it is used in a context
where symbols are recognized (see section 2.1.1.1, page 3, and section 4.1.4, page 40, for
discussion of possible conflicts with opcodes or macros). The point at which a value is assigned to
a symbol is said to be the point where it is defined.

In most circumstances, a symbol may be used to stand for a value either before or after it is
defined. A symbol is said to be referenced when it is used to stand for a value. If this reference
occurs earlier in the source file(s) than the definition, it is said to be a forward reference; if the
reference follows the definition, it is said to be a backward reference. Backward references can be
handled fairly easily, by merely replacing the symbol by its known value. However, forward
references create some complication since FAIL does not know the value of the symbol until later
in the file.

Two-pass assemblers avoid the forward reference problem by assembling the program twice. On
the first pass the assembler calculates the value for each symbol; on the second pass these known
values are used when the corresponding symbols are referenced. This method probably has the
smaller storage requirements, but it requires more cpu time since the entire source file is scanned
twice.

FAIL uses the one-pass approach to save execution time (at the expense of increasing the storage
requirements). In this method, each forward reference assembles an incomplete word, but
sufficient information is included in the binary file to enable the loader to complete the assembly.
Part of the necessary mechanism exists in the loader anyway in order to handle externally defined
symbols, which must be treated as forward references even by a two-pass assembler. Information
placed in the binary file to update the value of an incompletely assembled word is referred to as a

fixup.

Because of the problem of forward references in a one-pass assembler, the meaning of "defined” as
used in this manual is not "defined somewhere within the program”, but rather "defined in the
program before the place being considered”. In this sense a symbol is not considered to be
"defined" at the time of a forward reference, even if it is defined later in the program.

A symbol may be defined in one of four ways. It may be defined as a label, as a parameter, or as
a variable, or it may be a predefined symbol. These types of symbols are discussed in the
following subsections.

2.3.4.1 Labels

Labels are the most common type of symbol. They are used as symbolic references to locations in
the program. Labels help to keep such references independent of the exact placement of those
parts of the program in the core image. The value of a label is calculated automatically by FAIL,

FAIL Basic Syntax 13

so that the programmer need not keep careful account of the exact numeric locations of all parts
of his program.

A label is defined by simply writing an identifier followed by a colon (:) at the beginning of any
expression being scanned. This will normally define the symbol as equal to the location counter,
i.e, the location where the next word will be assembled. However, in some circumstances
involving the use of literals (section 2.3.5.2, page 20) or the PHASE pseudo-op (section 3.1.3,
page 23), the value of the label may differ from the location counter. The value assigned to a
label is usually relocatable because the location counter is initialized to relocatable zero, but it may
be absolute.

Although labels may occur at the beginning of any expression, they almost always occur at the
beginning of a line. This convention improves the readability of programs by keeping labels in a
place where they are easily recognized.

In order to detect possible conflicts in label usage, FAIL does not allow any label to be defined
more than once. (However, FAIL block structure allows a label to be redefined in different blocks;
see section 2.3.4.6, page 15.) Once a symbol has been defined as a label, it cannot be redefined; a
symbol cannot be defined as a label if it has any previous definition. An attempt to do either of
these things will result in a multiple definition error message, and the new definition will not take
effect.

Examples:
LOOP: JRST LOOP spoints to itself
FOO: s labels the location of the next instruction

2.3.4.2 Parameters (Assignment Statements)

A parameter is a symbol that is given an arbitrary 38-bit value by an assignment statement.
Actually, the final value is 36 bits, but since either 18-bit halfword may be relocatable two more
bits are included in the representation of the value. The basic format of an assignment statement
is an identifier followed by a left-arrow («) followed by an expression. The 38-bit value of the
expression, which must be defined, will be given to the specified symbol. An equal sign (=) may
also be used as an alternative to left-arrow to allow partial compatibility with other assemblers,
but if the first atom after the = begins with another = to indicate a decimal number, at least one
space should separate the two to distinguish them from ==, which has a different function (see
section 2.3.4.5, page 15).

As with labels, any number of assignment statements may appear at the beginning of any
expression, but they are normally written as separate statements for.improved readability. In its
full generality, an assignment statement may define more than one symbol by beginning with
several symbol names, each followed by a left-arrow, and finally followed by the expression, whose
value will be given to all symbols mentioned.

Unlike labels, parameters may be redefined as often as desired. Once a parameter has been
defined, each reference to it will use the value in effect at the time of that reference (i.e., as of the

14 Basic Syntax FAIL

last assignment). The value appearing in the symbol table in the binary output file will be the last
value assigned. The value used for forward references (i.e., before the first definition) will be that
of the first assignment. Note that this is an incompatibility with two-pass assemblers, which would
instead use the last value assigned during pass one.

Examples:
FOOe105
BAR«=69
BLETCH«BARF «L0SS«FO0+BAR%3
garp= =97 inote space between = is necessary

2.3.4.3 Variables

Variables are symbols whose values are the addresses of cells automatically allocated by FAIL for
data storage. A variable is usually created by immediately following a symbol reference with a
number sign (#). The symbol, which must not be previously defined, is declared to be a variable
and will have its location assigned when the location of the variables area is known (see section
3.1.7, page 25). The symbol is not defined at this point; it cannot be used in contexts which
do not allow forward references. However, it can be used as any other forward-referenced symbol;
the number sign need not be used with more than one occurrence of the symbol. Similar effects
can also be obtained with the INTEGER and ARRAY pseudo-ops (see section 3.4.2, page 33).

Examples:

SETZM FOO#
MOVEI A,BAR#-1

2.3.4.4 Predefined Symbols

Predefined symbols are available for use in all circumstances where symbols are recognized.

Two predefined symbols, point (.) and dollar-point (8.) refer to the location counter, which is the
location where the next complete word will be stored. In the absence of special circumstances, "."
and "$." have the same value; "." is the one usually used. These values are usually relocatable
but may be absolute; see section 3.1.1, page 22.

The reason for having two of these symbols is that some features of FAIL create complications
affecting the location counter; see the discussion of literals (section 2.3.5.2, page 20) and the
PHASE pseudo-op (section 3.1.3, page 23).

Examples:

JRST .-1
JUMPN T,8.43

FAIL Basic Syntax 15

The predefined symbols, .FNAML and .FNAMZ refer to the name of the current source file. The
value of .FNAMI1 is the 36-bit binary representation of the source file name; . FNAM2 has the
value of the source file extension (or second file name),

2.3.4.5 Half-Killed Symbols

Symbols are included in -the binary output file to aid debugging and to allow the loader to link
several programs together. The debuggers (RAID and DDT) have symbolic disassemblers which
take binary words and interpret their fields to display mnemonic opcodes, addresses, accumulator
names, etc. Sometimes, the user wants to prevent particular symbol names from being displayed
by the symbolic disassembler. Symbols that have been marked to prevent their display are called
half-killed. Half-killing a symbol is useful for parameters which might incorrectly be displayed as
core addresses or accumulator names. Half-killing is also handy for labels in code that is relocated
at runtime. The debuggers do recognize half-killed symbols when they are input.

FAIL treats half-killed symbols precisely the same as other symbols, except, when the symbol is
written in the binary output file, a bit is set to inform the debugger that the symbol is half-killed.

In FAIL, half-killing a symbol is accomplished by doubling the defining character (e.g., ::, ««, or
==). In the case of ==, the two equal signs must not be separated by any spaces, because this is
how the ambiguity is resolved with respect to the other use of equal sign to indicate decimal
numbers. A parameter will be half-killed if any one of its definitions specifies half-killing.

Examples:
ERRFLG«+1080 s the usual way of writing it
I0OFLG « « 2000 s this can have spaces anyuhere
BUFSIZ == 100 tbut this can't (188 is octal)
BUFSIZ = = 100 ;since this means decimal, not half-killed
BUFSIZ === 100 t+this is unambiguous (188 is decimal)
BUFSIZ == = 108 1 (188 is decimal)
LOOP:: SKIPN A, (B) 1a half-killed label

2.3.4.6 Block Structure

Block structure is very basic to the usage of symbols. This section may be skipped if the reader
does not plan to use block structure. The one thing to remember is that in the absence of block
structure any symbol which is defined is also available.

FAIL block structure provides a way of localizing the usage of symbols to particular parts of the
program, called blocks. Block structure allows the same symbol name to be given different
meanings in different blocks. The block structure used in FAIL is similar to that of ALGOL, but
is somewhat less restrictive.

A program is considered to be a block whose name is the same as the program name (set by the
TITLE statement; see section 3.5.1, page 34). Each block may contain any number of inner

16 Basic Syntax FAIL

blocks, but the depth of nesting may not exceed 17 (decimal). A definition of a symbol, a user-
defined opcode (see section 3.2.1, page 26), or a macro (see section 4, page 38) applies
only within the scope of the outermost block in which it is defined. The scope of a block includes
the scope of each block it contains, unless the symbol (etc.) in question is defined again in an inner
block, in which case the more local definition takes precedence within the scope of that block. A
block is delimited by a BEGIN statement and a BEND statement (see section 3.2.2, page 26).

Features exist in FAIL for controlling the block level of symbols. If a symbol, when defined as a
label or parameter, is preceded by an up-arrow (%), it will be treated as if it were defined in the
next-outer block. If a double up-arrow (1) is used, the symbol will be treated as though it were
defined in the outermost block of the program. These features are most commonly used for such
things as making subroutine entry points available to outer blocks when the subroutines
themselves are contained in blocks. In simple cases, this could be done by beginning the block
after the entry label(s) or even after some of the code, but this makes reading the routine more
difficult and hence the up-arrow construct is preferred. Tilde (~) may be used instead of up-
arrow.

Here are some examples of symbol usage, with and without block structure. Both examples
generate the same code:

FOO1: JRST FOO1 FOOl: JRST FOO1
JRST FO02 JRST FO0Z2
JRST FOO3 JRST FOO3
JRST FOOS JRST FOOS
BEGIN :
FO02: JRST FOO1 F0022: JRST FOO1
+F003: JRST FO02 FOO3: JRST F0022
JRST FOO3 JRST FOO3
BEGIN
JRST FOO1 JRST FOO13
MFOO05: JRST FOO2Z ‘ FOO5: JRST F0022
JRST FOO3 JRST FOO3
FOOl: JRST FOO04 FO013: JRST FOO4
BEND
MF004: JRST FOO4 FOO4: JRST FOO4
BEND
FO02: JRST FOO4 FO02: JRST FOO4

A complication arises with FAIL block structure due to the absence of the ALGOL requirement
that all identifiers be declared at block entry time. FAIL allows forward references, yet does not
require any declaration of symbols other than their defining occurrences. Hence, FAIL cannot
decide whether to use an existing outer-block version of a symbol or to make a forward reference
to a more local definition that may occur later.

To resolve this ambiguity, FAIL always considers a symbol reference to be a forward reference
when the symbol has not been defined in the current block, even if it has been defined in some
outer block. If no other definition is given by the time the block ends, then the outer-block
definition is used to resolve the forward reference. While in the inner block in this situation, the
auter-block symbol is still said to be defined, but it is also said to be unavailable. Thus block
structure forces many references to be forward references, even when they would not otherwise be

such.

FAIL Basic Syntax 17

Macros and user-defined opcodes cannot be forward-referenced. Such symbols are always
available; references to them will use their outer-block definitions.

Examples:’

FOO: MOVSI 1,-62 1FOO is defined as a label
BAR: CAME 2,2Z0T(1) 1so is BAR
ADBUN 1,BAR 1BAR is referenced

BEGIN +FOO and BAR are defined, but now unavailable
LOSS: MOVEI 1,8 ;LOSS is defined
JRST LOSS 1a backward reference to L0OSS
JRST FOO i1this is treated as a forward reference
FOO: HRRM 6,L0SS 150 it can reference this definition
BAZ: JRST BAR s1this is treated as a forward reference
JRST FOQ _sthis refers to this block’s FOO
BEND 1 The outer-block definition of BAR becomes

;available at this BEND. A fixup is emitted
sto fix the reference to BAR at BAZ

Many contexts do not accept forward references (e.g., accumulator and index fields). In these
contexts unavailable symbols cannot be used, even if they are defined. Therefore, FAIL provides
two mechanisms for forcing defined symbols to be available to lower blocks. One is the down-
arrow mechanism, which is used at the defining occurrence of the symbol, and the other is the
GLOBAL pseudo-op (see section 3.2.3, page 26), which is used in the referencing block.

The down-arrow mechanism is the more commonly used method, since this problem is most often
associated with particular symbols (accumulator names, assembly parameters, etc.). Preceding the
symbol name in a label or assignment statement with a down-arrow (V) causes that symbol to
remain available whenever inner blocks are entered. Usually it is dangerous to redefine such
symbols locally, since any forward references will have incorrectly referred to the outer-block
definition. Consequently a warning message is printed in this case, but if no forward references
are made to the local version, it will assemble correctly. However, if the redefinition of a down-
arrowed parameter is effective at its original block level (possibly via T or 11), FAIL will change
the original definition without complaint. This allows redefinition of global parameters from
inner blocks. A question mark (?) may be used instead of down-arrow.

18 Basic Syntax FAIL

Examples:
JAel ssome accumultator (AC) definitions
Be2
VFOOee=63 yand a parameter
BEGIN :
ADD B, A sthis is illegal because AC
isymbols must be available
MOVE A,B ;but this is legal since A is available
sby ¢
AeS ;this will produce a message and is too
;late to affect the instruction above
Beb ithis is legal and will fix up the MOVE
;to be MOVE 1,6
MOVE A,B swhereas this will be MOVE 5,6
M00e«<105 ithis is legal since it is "aimed" at the
:FOO in the outer block
BEND

There are further details in section 3.2.2, page 26, and section 3.2.3, page 26, about the
block structure pseudo-ops BEGIN, BEND, and GLOBAL.

2.3.4.7 Linkage with Separately Assembled Programs

It is sometimes desirable to have a program which is assembled in several parts, either to save
reassembling the entire program for each change or because the program is written in a mixture
of languages. Even with a single assembly it is usually necessary to use some of the job data area
symbols, and sometimes symbols from the debuggers (RAID or DDT), all of which are reached
through the linking loader. In this context, the word program refers to the result of one assembly
or compilation, and thus a core image may contain several programs.

To allow reasonable communication between these programs, the loader allows symbol definitions
to be passed between programs. For this purpose, symbols are divided into two classes, local
symbols and global symbols. (There is no relation between the GLOBAL pseudo-op and the
global symbols discussed here.)

Symbols are normally considered local, which means that they will not be available outside their
own program and may be defined in more than one program without conflict. Global symbols,
however, are available to all programs and hence must not have conflicting definitions within the
set of programs to be loaded. The easiest way to declare a symbol to be global is to follow some
occurrence of the symbol by an up-arrow. This flags the symbol as a global without specifying
whether it is defined in this program or another program, since FAIL will have figured that out
by the end of the assembly. Undefined globals (external symbols) will have appropriate fixup
information passed to the loader for resolution when the defining programs are loaded. Globals
may also be declared with the EXTERNAL (section 3.2.5, page 27) and INTERNAL (section
324, page 27) pseudo-ops.

FAIL Basic Syntax 19

Declaring a symbol global forces its scope to the outermost block in the same way as does a double
up-arrow. Therefore, if a symbol is defined and declared global in an inner block, there must not
be a conflicting definition in an outer block. »

One other related feature is the library mechanism. A library is a file that contains a set of utility
programs. Each program in the library may be loaded independent of the others, depending on
whether it is required by the programs that have been loaded thus far. To implement this, there
is associated with each program in the library (in one or more entry blocks) a list of certain global
entry points defined in that program. In most cases these are the names of the routines contained
in the program. When the loader is in library search mode, it loads only those programs for which
at least one of the entry points corresponds to an existing unsatisfied global request (external
symbol). Only those programs actually needed are loaded from the library; the rest are ignored.
The ENTRY pseudo-op (section 3.2.4, page 27) is used to declare symbols to be entry points
which will be available to a library search.

2.3.4.8 Symbols and Arrows

This is a brief restatement of the ways that identifiers are used as symbols in conjunction with
arrows.

Examples:
1SYM: 1SYM is available at the next-outer block
BOLe«10 +BOL is half killed and available at the
soutermost block
11Z0T= =63 1Z0T is available at the outermost block
VA7 sA is global and available to lower blocks
FOO%: 1FO0 is global and defined here (internal),

ravailable at the outermost block
PUSHJ P,BAZ* 1BAZ is global, may be external, available at the
soutermost block

2.3.5 Complex Atoms

Two constructs exist which assemble one or more statements in much the same way as FAIL’s
normal top-level statement processor, but then return as an atom the value associated with the
statement(s) assembled, rather than outputting the binary data. Both of these constructs involve
the use of opening and closing characters to delimit the text. For an atomic statement, broken
brackets, called brokets (< and >), are the delimiters. For literals, the delimiters are square brackets
(L and 1).

When the opening character is recognized, FAIL saves its present state and enters an auxiliary
statement-assembly loop, continuing to assemble statements until a statement is encountered which
terminates with the closing character. The closing character is located as a statement delimiter, not
by keeping a count of the opening and closing characters. Thus if the delimiter character appears
in a text constant, it will not be counted toward the match; also, attempting to use a comment (see

20 Basic Syntax FAIL

section 2.1.6, page 6) in the final statement of the sequence will prevent recognition of the closing
delimiter. Note that this method of counting brokets is different from the macro processor, which
counts brokets rigidly, independent of context. Nesting of complex atoms is handled by the
recursive nature of FAIL'’s statement processor.

2.3.5.1 Atomic Statements

When it is useful to have the value of an entire statement treated as an atom, enclose that
statement in brokets. Some number of statements will be assembled as described above, and the
value of the first word assembled will be returned as the value of the atom, just as if the
corresponding number had been typed. The values of any additional words assembled up to the
closing broket will be ignored, although their side effects (if certain pseudo-ops are used) may
remain. For example, if one of the multiple-word text pseudo-ops is used inside brokets, only the
first text word will be returned, and the rest will be dispatched to the great bit bucket in the sky.
This type of atom is constrained by FAIL to be handled as a number, so all symbols used in this
context must be defined and available.

Examples:
<JRST> sequivalent to 2540008000000
<JRST 185 1254080000185 will be the value
JRST BAR sand this statement won't do anything except
ipossibly produce an error message if BAR
;isn’t defined and available >

> sthis broket will end it, not the one above

2.3.5.2 Literals

\

Although the PDP-10 instruction set allows a large percentage of constants to be specified as
immediate operands, it is still frequently necessary to reference constants stored elsewhere in
memory. Instead of explicitly setting up these constants and referencing them by labels, it is
possible to reference these constants as literals. The basic function of literals is to allow the
programmer to write the value of the desired constant directly (i.e, literally), while the assembler
automatically allocates a memory location for it, stores the value in it, and supplies the address of
the cell for the reference. Also, an operation called constants optimization occurs, which consists of
comparing (the binary value of) each literal with previous literals to see if the required constant
has already been allocated, in which case the existing cell will be used rather than allocating
another. This avoids multiple copies of a given constant.

To use a literal, put a statement of the desired value in square brackets and use it as an atom.
The value (of the literal) will be the address of the literal in memory, which is treated like an
undefined symbol since the actual location will not be assigned until later (usually the end of the
program; also, see section 3.1.6, page 25). Literals can be used only where forward references
are legal.

FAIL Basic Syntax 21

Because of the constants optimization, it is often dangerous (and considered poor form) to write a
program which changes the contents of a literal. Such a change affects all parts of the program
attempting to use that constant, which is not usually the desired effect.

A literal may contain more than one word if desired. The syntax of literals is basically the same
as that of atomic statements, except that all words assembled are used. Multiple-word literals are
most commonly used to store long text strings, but may be used to store sequences of instructions.
There is no rigid limit on the maximum size of a literal, but large literals do consume assembler
core fairly rapidly.

For purposes of assembling code in literals, it should be noted that the predefined symbol "."
retains its value during the assembly of a literal, rather than referring to the current location
within the literal. Thus it refers to the location where the reference to the outermost literal is
being made. The current location within the (current) literal can be referred to by using the
symbol "$." (but this may not do the right thing if the PHASE pseudo-op is in use).

Naturally, labels may appear inside literals, but if they do they will be assigned the value of the
current location within the literal, rather than the value outside. (Labels that appear inside
literals are called literal-labels.) This is the only time that FOO: and FOOe. assign different values
to FOO. The location of a literal is unknown at the time it is processed; hence, labels that are
defined within literals (and "$." when used inside literals) are undefined symbols. For example, it
is illegal to say FOO«$. inside a literal because assignment statements do not accept undefined
values. Note also that constants optimization will still occur with labeled literals, and this may
result in several labels having the same value, if appropriate.

Examples:
PUSH P, [51 ;no PUSHI, so a literal is handy
OUTSTR [ASC1Z /FOOBAR/) sa tuo-Word text constant
JRST [MOVEI C,12 isome code in a literal
PUSHJ P, WRCH
suB P, I1,,1] 1a nested |iteral
JRST .+1] . sreturns to the next instruction
soutside the literal
PUSHJ P, [YTST: CAIE C,"Y" sa subroutine in a literal
CAIN C,"y" ; (very rarely done actually)
A0S (P)
POPJ P,]

PUSHJ P,YTST scalling the above subroutine

29 Pseudo-Ops FAIL

3. Pseudo-Ops

Most statements are translated into operations for the computer to perform when the program is
executed. Pseudo-ops (short for pseudo-operations), on the other hand, signify operations to be
performed at assembly time. Some of these operations affect the behavior of the assembler in
particular ways; others serve as convenient methods of entering data in commonly used formats.

3.1 Destination of Assembled Code

The assembler uses a location counter to keep track of the location where the code it is assembling
will go. This counter is initialized to relocatable 8 at the start of the assembly; it is incremented
by 1 for each instruction assembled. The value in the location counter is the location where the
next word assembled will go.

3.1.1 LOC, RELOC, and ORG

The contents of the location counter can be changed with the LOC, RELOC, and ORG
statements. '

The LOC pseudo-op takes one argument, an expression, which must be defined and available.
The effect of LOC is to put the value of the expression into the location counter and to set the
relocation of the counter to absolute, regardless of the relocation of the argument.

The RELOC statement has the same effect as the LOC statement except that the relocation is set
to relocatable, regardless of the relocation of the argument.

The ORG statement has the same effect as the LOC and RELOC statements except that the
relocation is set to the relocation of the argument.

Whenever LOC, RELOC or ORG is used, the current value (and relocation) of the location
counter is saved (there is only one such saved location counter, not one for each pseudo-op). A
LOC, RELOG, or ORG statement with no argument will cause the saved value and relocation to
be swapped with the current value (and relocation) of the location counter.

3.1.2 SET and USE

It is possible to have multiple location counters and to switch back and forth among them. Only
the currently active location counter is incremented. Location counters may be given any names
which fit the syntax of identifiers. There is no relationship between location counters and labels
with the same name.

FAIL Pseudo-Ops ' 23

The SET pseudo-op is used to initialize a location counter. It takes two arguments separated by a
comma. The first is the name of the location counter; the second is the value to which the counter
will be set. SET has the same effect as ORG except that it changes the indicated location counter
and has no effect on the current location counter unless it is the same as the indicated one. SET
is usually used to create a new location counter.

The USE pseudo-op is used to change location counters. It takes one argument, the name of the
location counter to change to. USE causes the current location counter value to be saved away
and the value of the indicated counter to be used. If a subsequent USE indicates the location
counter which was saved away, the value it had when it was saved away will become the current
value. If the indicated location counter has not appeared in a SET before its appearance in a
USE (i.e, if it has no value), it will be given the value of the current location counter. The
location counter which the assembler starts with has a blank name (i.e,, a null argument indicates
this first one).

In the example below, a close single quote (apostrophe) (*) is used to denote that the value it
follows is relocatable. This is the convention that FAIL uses when making a listing of the
assembled code.

Example:

Location : Instructions
g’ . JRST FOO
1’ JRST BAZ
2’ SET GARP, 37
2' USE GARP
37 . JRST FOO
40 USE
2’ JRST FOO

3.1.3 PHASE and DEPHASE

It is sometimes desired to assemble code in one place which will later be moved by the program
itself to another place. In this case, it is desired that labels be defined as referring to locations in
the place where the code will be moved, rather than where the assembler will put it. To
accomplish this, the PHASE pseudo-op is used. PHASE has one argument, the location to which
the next word assembled will be moved by the program. For instance, if, while the location
counter is at 74, a PHASE 32 appears and a label appears on the next line, the label will be given
the value 32, but the code on that line will be placed in location 74. Under these circumstances,
the "." symbol will have the value 32, but the "$." symbol will have the value 74. The PHASE
pseudo-op remains in effect until cancelled by a DEPHASE pseudo-op (no argument).

If a RELOC, LOC, or ORG pseudo-op (see section 3.1.1, page 22) appears while PHASE is in
effect, the following considerations apply. If the relocation of the location counter remains
unchanged by the RELOC (or LOC or ORG), then the value of the ‘phase will be offset by the
same amount as the location counter changes. That is, the value of "." and "$." will be changed

by the same amount. If the relocation of the location counter changes and the relocation of the

24 Pseudo-Ops FAIL

phase was the same as the relocation of the (old) location counter, then the relocation of the phase
will be changed and the phase will be offset by the same amount as the location counter changes.
Otherwise, the error message /ndeterminate Phase due to RELOC will occur and FAIL will
dephase.

3.1.4 HISEG

This statement outputs information directing the loader to load the program into the high
segment. It should appear before any code is assembled. ‘

3.1.5 TWOSEG

This statement directs FAIL and the loader to assemble and load a two-segment program. This
complicates the relocation process because the loader must maintain two relocation constants, one
for each segment. Since only one bit of relocation information is available for each value in the
relocatable binary file, a kludge is used to decide which relocation to apply to each relocatable
value. To do this, the loader compares the unrelocated value to a quantity known as the Aigh-
segment origin, which is the first address used for the high segment within that program. Any
value greater than or equal to this quantity will be considered a high-segment address, while any
value less than this quantity will be considered a low-segment address. When the value in
question is a location specifier, the choice of relocation will determine which segment the code is
actually loaded into.

Unfortunately, there is a possible bug in this relocation method. It is possible to have an
expression which evaluates, through normal relocation arithmetic, to a relocatable quantity whose
unrelocated value does not correspond to the segment the relocation was originally derived from.
For example, if FOO is a label at high segment location 120, it will probably have a value of
relocatable 400120. The expression FOO-488888 would be calculated by FAIL to have the value
relocatable 120. This value would be passed directly to the loader since Polish appears
unnecessary. However, the loader would apply the low-segment relocation to this value and
probably have incorrect results. At present, the best way to get around this is to say
FOOx1-4808080, which will force the Polish to be passed to the loader.

The high-segment origin is specified by an optional argument to the TWOSEG pseudo-op, or set
to the default of 400000 in its absence. In this case a RELOC 4020808 followed by a RELOC B will
initialize the dual location counter to assemble into the low segment and to switch segments
whenever a RELOC statement with no argument is encountered (see section 3.1.1, page 22). Like
HISEG, TWOSEG should be used before any code is assembled.

FAIL Pseudo-Ops 25

Example:
TITLE EXAMPLE
POLEN««108
Pel7

TWOSEG 408088 ;initialize to two segments

RELOC 9 sinitialize dual location counters 4

RELOC 400008 inow assemble code in the high segment
START: TDZA 1,1

MOVNI 1,1

MOVEM 1,RPGSW#

CALLIT @

MOVE P, [IOWD POLEN,PDLIST]
‘ RELOC ;set the relocation to low segment
PDLIST: BLOCK PDLEN ;jdefine space for data storage

RELOC iset location counter to the high segment

PUSHJ P,CORINI ;code is assembled in the high segment
; the rest of the program goes here

. RELOC sback to the low segment
VAR ;do variables in the low segment
RELOC sto the high segment
LIT sand literals here
END START
3.1.6 LIT

The LIT statement causes all previously defined literals to be placed where the LIT statement
occurs. The LIT statement must not appear inside a literal. If a two segment sharable program is
being assembled, LIT should appear in the upper segment.

3.1.7 VAR

The V AR statement causes all variables which appeared with a # in this block (or a sub-block of
this one) to be placed where the VAR appears. VAR must not appear inside a literal. If a two
segment sharable program is being assembled, VAR should appear in the lower segment.

26 Pseudo-Ops FAIL
3.2 Symbol Modifiers

The pseudo-ops in this section perform several functions, all relating to the definition or
availability of symbols, or affecting the linkage of this program to others.

3.2.1 OPDEF

The OPDEF statement has the following form:

OPDEF symbhol [valuel

OPDEF inserts the symbol into FAIL'’s opcode table with the indicated value. The symbol, which
is a user-defined opcode, may then be used as any other opcode. The value part of the OPDEF
must be defined and available. User-defined opcodes are sometimes called opdefs because of the
pseudo-op by which they are defined.

3.2.2 BEGIN and BEND

The BEGIN statement is used to start a block. The block it starts will end at the corresponding
BEND statement. The BEGIN may be followed by an identifier that will be used as the name of
that block. DDT and RAID recognize block names. If no identifier appears, the assembler will
create one of the form A.08088, where the 888 will be replaced by the block number of this block in
octal. (The block number is initialized to zero and incremented for each BEGIN.) There is no
relationship between labels and blocks with the same name. All text following the identifier is
ignored until the next line feed or double-arrow.

BEND may be followed by an identifier which, if present, is compared to the block name of the
block being ended; if they don’t match, FAIL prints an error message. ‘

FAIL does not require block names to be unique; however, the loader and the debuggers
sometimes depend on unique block names, so the user would be wise to avoid conflicts.

For a discussion of block structure, see section 2.3.4.6, page 15,
3.2.3 GLOBAL

The GLOBAL pseudo-op should be followed by a list of symbols separated by commas. Each
symbol should be defined in an outer block. The effect of GLOBAL is to find the nearest outer
block in which that symbol is defined and to make the definition in that block immediately
available in the block in which the GLOBAL appears. GLOBAL does not affect the definition of
the symbol in any intervening blocks.

FAIL . Pseudo-Ops 27

If a symbol has been declared GLOBAL in a block and later is redefined in that block, the
redefinition affects the definition in the outer block where GLOBAL found the original definition.
Doing this causes strange effects if the definition was not in the next-outer block; it should not be
done without some careful thought.

The GLOBAL pseudo-op has no relation to the concept of global symbols.
3.2.4 INTERNAL and ENTRY

These statements declare certain locally defined symbols to be internal symbols. Internal symbols
are those which are made available to other programs by the loader. INTERNAL (or ENTRY)
should be followed by a list of symbols separated by commas. These symbols need not be defined
before the INTERNAL (or ENTRY) statement appears, but they must be defined by the end of
the program.

ENTRY emits special library entry blocks to the loader; see section 2.3.4.7, page 19. ENTRY
statements must appear before any other statements that emit code, except that it is specifically
legal to precede ENTRY statements by a TITLE statement.

3.2.5 EXTERNAL

The EXTERNAL statement declares that certain symbols are external symbols. An external
symbol is a symbol that is declared internal in some other program. EXTERNAL is followed by a
list of symbols separated by commas. The loader will fix up any references to an external symbol
when the program in which it is deﬁn,'ed is loaded.

Symbols must not be defined at the time they are declared with an EXTERNAL statement. If an
external symbol is subsequently defined, it is automatically converted to an internal symbol.

If any occurrence of a symbol is immediately followed by an up-arrow (%), that symbol is made
external if it is not yet defined, or internal if it is defined. If an external symbol is subsequently
defined, it will be made internal.

3.2.6 LINK and LINKEND

LINK and LINKEND are used to establish a single-linked list among several separately
assembled programs. Each linked list is identified by a link number in the range 1-20 (octal).
The formats are

LINK number, location

LINKEND number, location

28 Pseudo-Ops FAIL

The number is the link number; the location is the address where the link information will be
stored. The effect is to allow 20 lists to be threaded through several separately assembled
programs.

The loader initializes each link (and linkend) to zero. LINK N,FOQ causes the loader to store in
FOO the current value of link N. Then link N is set to (point at) FOO. LINKEND N,BAZ causes
the the loader to store the address BAZ as the linkend for link N. When the loader finishes
loading all programs, the final value of each link will be stored in the corresponding linkend
address, only if that address is non-zero. The LINKEND feature allows the head of the list to be
in a known place, rather than in the last place LINKed.

3.2.7 .LOAD and .LIBRARY

The LOAD pseudo-op causes the loader to load a specific REL file as a consequence of loading the
program in which this pseudo-op occurs. The format is

.LOAD DEY:FILE (PRJ,PRGI]

The DEV: field is optional (the default is DSK:); it specifies the device where the REL file can be
found. The [PRJ,PRG] field is optional; it has the usual meaning. The file named must have the
extension REL (this is a loader restriction).

In non-Stanford FAIL installations, the file name is scanned in accordance with the convention
that prevails at that site.

The LIBRARY pseudo-op is similar to .LOAD, except that instead of loading the file, the loader
will search the named file as a library.

3.2.8 PURGE

The PURGE pseudo-op takes a list of symbols, separated by commas, as its argument. Each of
the symbols named will be purged, i, removed from FAIL’s symbol table. A purged symbol can
be an opcode, macro, label or other symbol. For PURGE to be legal, the symbol must be defined
and available when the PURGE occurs. Some symbols, such as variable names literal-labels, and
global symbols, cannot be purged. Purged symbols are not passed to the loader or debugger.

PURGE searches the symbol table for opcodes first, then macro names, and finally labels (and
parameters). This means that if a symbol has a definition as both an opcode and a label, purging
that symbol will delete the opcode, and a second purge of that symbol will delete the label
definition.

If the identifier name of some purged symbol is used after the purge, FAIL makes a new and
totally different symbol, which has no relation to the purged symbol. The CREF program will
also consider such a symbol to be different from the purged symbol.

FAIL ‘ Pseudo-Ops o : 29

Caution: if an opcode, pseudo-op, or other predefined symbol is purged, it will remain unavailable
to subsequent assemblies performed by the FAIL core-image from which it was purged. Also, it is
unwise to purge a macro while it is being expanded.

3.29 XPUNGE

XPUNGE is used to delete all local symbols from one block. XPUNGE takes effect only at the
next BEND (or END or PRGEND) statement following the XPUNGE. At that BEND, most
local symbols will not be emitted to the loader. This decreases the size of the REL file and makes
loading it faster. Block names, internal and external symbols, variables, and literal-labels will be
passed to the loader.

3.2.10 SUPPRESS and ASUPPRESS

When a parameter file (ie, a file that contains assembly parameters for use in several assemblies)
is used in assemblies, many symbols get defined but are never used. Unused defined symbols take
up space in the binary file. Unused symbols may be removed from symbol tables by means of the
SUPPRESS or ASUPPRESS pseudo-ops. These pseudo-ops control a suppress bit associated
with each symbol; if the suppress bit is on and the symbol is not referenced, the symbol will not be
output to the binary file.

SUPPRESS takes a list of symbols, separated by commas, as its argument. The suppress bit is
turned on for each symbol named. A symbol may be an opdef, a parameter, or a label. The
symbol should be defined before the SUPPRESS statement occurs.

ASUPPRESS turns on the suppress bit for every user-defined symbol and opcode that exists in
the symbol table at the time the ASUPPRESS occurs.

Variables, literal-labels, internals, and entry point symbols are never suppressed. Externals that
are not referenced can be suppressed.

If ASUPPRESS appears in a universal program (see section 3.2.11, page 29), then all symbols
in the universal symbol table will have the suppress bit set when they are used in a subsequent
SEARCH.

v

3.2.11 UNIVERSAL and SEARCH

The UNIVERSAL pseudo-op has the same syntax as TITLE (see section 3.5.1, page 34). In
addition to the functions of TITLE,,UNIVERSAL declares the symbols defined in this program
to be universal symbols. Universal symbols are symbols which can be accessed by other programs
that are assembled after the universal symbols have defined. That is, UNIVERSAL causes
symbols to be retained by FAIL after it finishes assembling the universal file. When subsequent
files are assembled (using this copy'of FAIL, which has the universal symbols), the universal

30 Pseudo-Ops FAIL

symbols can be accessed as any other local symbols. The program name set by UNIVERSAL is
used to name the universal symbol table created to contain the universal symbols defined by this
program. Only outer block symbols (and macros and opdefs) are retained in the universal symbol
table. Variables, literal-labels, and internal symbols are not retained.

Universal files are intended for making definitions, not for assembling code. The usual use for a
universal file is to define opcodes, macros and parameters for subsequent assemblies. It is not wise
to include relocatable symbols in the universal file. The exception is that a universal file may
declare a symbol to be external; that declaration can be used by subsequent assemblies that search

this universal symbol table.

SEARCH controls access to the universal symbols. SEARCH takes a list of arguments, each of
which is the name of a universal symbol table. For each universal table named, all the symbols in
that table are added to the end of the main symbol (or macro or opcode) table. Then, when the
symbol table is searched, if there is no other definition of the symbol, the universal definition will
be found. Universal symbols are considered to be defined at the outer block. If such symbols are
to be made available to inner blocks, they must be defined with a down-arrow, or declared

GLOBAL.

3.3 Entering Data

3.3.1 DEC and OCT

The DEC and OCT statements both take a string of arguments, each a number, separated by
commas. The radix is temporarily set for this one statement to 10 for DEC or to 8 for OCT.

The numbers are placed in successive locations.

Examples:
DEC 5,9,40396 ;assembles three words
0CT 5,11, 10688 ;assembles the same three words
3.3.2 BYTE

The BYTE statement is used to enter bytes of data. Arguments in parentheses indicate the byte
size to be used until the next such argument. The first argument of a BYTE statement must be a
byte size argument. Other arguments are the byte values. An argument may be any expression
that is defined, available, and absolute. Arguments in parentheses (byte size) are interpreted in
decimal (base 10) and other arguments in the prevailing radix. Bytes are deposited with the byte
instructions, so if a byte will not fit in the current word, it will be put in the left part of the next
word. Unused parts of words are filled with zeros. Byte size arguments are not surrounded by
commas, but other arguments are separated by commas. For instance, the statement

FAIL Pseudo-Ops 31

BYTE (7) 3,5(11)6
will put two 7-bit bytes (3 and 5) and an 11-bit byte (6) in a word, left justified.

Two successive delimiters, i.e, two commas or a comma and patrenthesis, indicate a null argument,
which is the same as a zero.

3.3.3 POINT

The POINT pseudo-op assembles a byte pointer in one word. The first argument should be an
expression and is interpreted in decimal. The expression must be defined and available. It
indicates the byte size, and its value is placed in the size field of the assembled word. The second
argument should contain one or more of an index field, an address field, and an at-sign. The
third field, if present, indicates the bit position of the low order bit of the byte, ie., its value is
subtracted from 35 (decimal) and placed in the position field. It is interpreted in decimal and
must be available. If the third argument is omitted (no comma should be present after the second
argument), the position field is set to 36 (decimal) so that the first time the pointer is incremented,
it will point to the first byte of the word.

334 XWD

The XWD statement takes two arguments, separated by a comma, and assembles a single word
with the value of the first argument in the left half and the value of the second argument in the
right half. Both arguments must be present.

3.3.5 IOWD !

IOWD is a permanently defined macro (see section 4, page 38). Its definition is

DEFINE 10WD (A,B)
< XWD -{A},B-1 >

IOWD takes two arguments and assembles a word in which the negative of the first argument
goes in the left halfword and one less than the value of the second argument goes in the right
halfword. This format (i.e., negative word count, and memory address minus 1) is often used in
communicating with the operating system to specify the address and length of a data block. Also,
IOWD may be used to initialize an accumulator for use as a push down pointer.

32 Pseudo-Ops FAIL
3.3.6 ASCII, ASCIZ, ASCID, and SIXBIT

There are four text statements: ASCII, ASCIZ, ASCID, and SIXBIT. Each takes as its argument
a string of characters starting and ending with, and not otherwise containing, some non-blank
character which serves as a delimiter. This delimiter should not be any one of the characters: left-
arrow (<), colon (:), up-arrow (1), tilde (~), or number sign (#).

ASCII puts the 7-bit representation of each successive character in the string (excluding the
delimiters) in successive words, 5 characters per word, until the string is exhausted. The low
order bit of each word and the left-over part of the last word are filled with zero.

ASCIZ is the same as ASCII except that if the last character is the bth of a word, a word of zero
is added at the end. This is to ensure that there is at least one 0 byte at the end.

ASCID works as ASCII except that the low order bit of each word generated is a 1. .ASCID
assembles data suitable for either the III or Data Disc display systems at Stanford. Also, the
ASCID format is used for line numbers in the SOS editor.

SIXBIT works as ASCII except that the characters are converted to the sixbit representation and
packed 6 to a word. The last word is filled out with zeros if necessary. Ascii characters are
converted to sixbit by replacing the 40 bit with the 100 bit and removing the 100 bit.

3.3.7 RADIX50

This pseudo-op takes two arguments, separated by a comma. The first argument is a number; the
second argument is an identifier. The value assembled by the RADIX 50 statement is the radix 50
representation of the identifier, with the number ORed into the high-order 6 bits. The 2 low-
order bits of the number are cleared before ORing.

Radix50 is the representation used for symbol names in the loader, DDT, and RAID. Radix50 is
used to condense 6-character symbols into 32 bits. Legal characters are reduced to a value in the
range 0-47 octal. The radix50 value is obtained by accumulating a total composed of each
character value times a weight. The weight is the power of 50 (octal) corresponding to the
character position. The weight of the rightmost non-blank character is 1; the second from the
right has weight 50; the third has weight 50450; etc. The correspondence between characters and
their radix50 value is given below:

'}
1-12
13-44
45

46

47

lank
-9
-Z

R N A 2

Ry OO

FAIL Pseudo-Ops 33

3.4 Reserving Space for Data

3.4.1 BLOCK

The BLOCK statement is used to reserve a storage area for data. The value of the argument is
added to the location counter, so subsequent statements will be assembled beyond the area
reserved by BLOCK. The argument must be defined and available. A warning will be given if
the argument is negative. The loader will initialize each word reserved by the BLOCK statement
to zero; however, well-written programs do their own initialization. Note that the BLOCK
pseudo-op has no relation to block structure.

BLOCK N and ORG . +N are equivalent.
3.4.2 INTEGER and ARRAY

INTEGER should be followed by a list of symbols, separated by commas. Each of these symbols
is then treated as a variable, i.e, as though it had appeared in the block where the INTEGER
appears, followed by a number sign.

The ARRAY statement takes a list of arguments separated by commas. Each argument is a
symbol followed by an expression in brackets. The effect is similar to INTEGER, except that the
expression (which ought to be defined and available) denotes the number of locations to be
reserved (as in BLOCK), with the symbol being the address of the first one. For example,

ARRAY FOOI[18],BAZ (28]

will reserve 10 words for FOO and 20 words for BAZ. The symbols FOO and BAZ are not
defined by this statement; they can only be used where forward references are legal.

34 Pseudo-Ops FAIL

3.5 Assembler Control Statements

3.5.1 TITLE

TITLE names the program and sets the heading for the pages of the listing. There should be
precisely one TITLE statement per program; it should appear before any statement that generates
code.

TITLE should be followed by a string of characters, the first part of which should be an
identifier. That identifier is used as the program name which DDT and RAID will recognize. It
is also used as the name of the outermost block.

The string of characters in the TITLE statement is printed as a part of the heading on all pages
subsequent to the one on which the TITLE statement appears; if TITLE appears on the first line
of a page, it also affects the heading on that page. The string used in the heading for TITLE is
terminated by the first carriage return or semicolon.

If no TITLE statement appears before the first symbols are emitted (generally, at the first BEND
or END), then FAIL will generate a title with program name ".MAIN". If a TITLE statement
appears after code has been emitted (except for entry blocks), the resulting binary file may be
unsuitable for use as part of a library file.

3.56.2 END and PRGEND

The END statement is the last statement of a program. It signals the assembler to stop
assembling; no text following it will be processed. If an argument is given, it is taken as the
starting address of the program. '

An END statement includes implicit VAR and LIT statements (see section 3.1.7, page 25, and
section 3.1.6, page 25). That is, all outstanding variables and literals are placed starting at the
current value of the location counter when the END is seen. Variables are put out first.

PRGEND is used in place of END when it is desired to assemble more than one program to
and/or from a single file. It behaves exactly like END, including taking an optional argument as
the starting address, and then restarts FAIL completely, except that I/O is undisturbed. It
therefore cannot appear in a macro expansion or similar situation. PRGEND is particularly
useful for directly assembling a library which consists of many small programs.

3.5.3 COMMENT

The first non-blank character following the COMMENT pseudo-op is taken as the delirniter. All
text from it to the line feed following the next occurrence of this delimiter is ignored by the

FAIL Pseudo-Ops 35

assembler, except that it is passed to the listing file. The delimiter should not be any one of the
characters left-arrow (<), colon (:), up-arrow (M), tilde (~), or number sign (#).

3.5.4 RADIX

The RADIX statement changes the prevailing radix until the next RADIX statement is
encountered. It has no effect on numbers preceded by an equal sign. The one argument of
RADIX is interpreted in the current radix unless it is preceded by a equal sign. Thus, the
statement RADIX 18 will have no effect (since 10 in the current radix equals the current radix).
The radix may be set to almost anything, but for radices above 10 (decimal) there are no digits to
represent 10, 11, etc. Zero is not permitted, and 1 should be avoided if one is going to use either
an arithmetic FOR macro or a macro argument with this radix.

3.5.5 .INSERT

The .INSERT pseudo-op causes FAIL to remember its position in the current input file and then
‘start reading (and assembling) another file. When the end of the inserted file is reached, FAIL
continues processing the original file from the point where it left off. The format is:

. INSERT DEV:FILE.EXTIPRJ,PRG]

The DEV: field is optional (the default is DSK:); it specifies the device where the inserted file can
be found. The [PRJ,PRG] field is optional; it has the usual meaning. In non-Stanford FAIL
installations, the file name is scanned in accordance with the convention that prevails at that site.

This pseudo-op will not work if it appears in the input stream from any device other than DSK,
since random access features are required to accomplish the repositioning of the file.

36 Pseudo-Ops FAIL
3.6 Listing Control Statements

These pseudo-ops affect the format of the assembly listing. Several descriptions below refer to
command line switches; appendix A, page 48, describes the command line format and the
different switches.

3.6.1 TITLE and SUBTTL

The TITLE statement can be used to set the heading that appears on the pages of the listing.
See section 3.5.1, page 34.

SUBTTL is followed by a string of characters which is used as a subheading on all subsequent
pages until another SUBTTL appears. If SUBTTL appears on the first line of a page, it will

affect the subheading of that page also. The string used in the heading for SUBTTL is
terminated by the first carriage return or semicolon.

3.6.2 LIST, XLIST, and XLISTI

The XLIST statement causes listing to stop until the next LIST statement. LIST causes listing to
resume if it has been stopped by an XLIST or XLISTI statement. Otherwise it is ignored. LIST
is the default.

The XLIST | statement has exactly the same effect as XLIST unless the /1 switch was used in the
command string, in which case it is ignored.

3.6.3 LALL and XALL

XALL causes the listing of the body of macros, REPEATS, and FORs to be suppressed during
macro expansion. LALL causes it to start up again. LALL is the default.

3.6.4 NOLIT

This statement causes the binary listing of code in literals to be suppressed. This has the same
effect as /L in the command string.

FAIL Pseudo-Ops 87
3.6.5 NOSYM

This statement disables the listing of the symbol table, counteracting /S in the command string.
3.6.6 CREF and XCREF

These turn on and off the emission of information to CREF, the Cross-Reference Listing program.
These pseudo-ops have no effect unless /C was used in the command string. CREF is the default.

3.6.7 PAGE

This pseudo-op has the same function as a form feed; it is inciuded for compatibility with
MACRO-10. A form feed is placed in the listing immediately following PAGE. The effect is to
skip to the top of the next page of the listing. Use of this pseudo-op will destroy the
correspondence between listing pages and source file pages, so its use is generally not
recommended.

3.6.8 PRINTX

This pseudo-op causes the line on which it appears to be printed on the user’s terminal. This is
sometimes useful for giving a progress report during long assemblies.

38 Macro Operations FAIL
4. Macro Operations

The FAIL macro processor provides features for modifying the input text stream in many ways,
such as the ability to abbreviate a frequently occurring sequence with a single identifier or to
iterate the input of a stream of text a number of times. In both cases, substitutions can be
specified which allow each different occurrence of the text to be somewhat modified. Provision for
making the assembly of a body of text conditional on any of a variety of circumstances is also
included.

4.1 Macros

Macros are named text strings which may have substitutable arguments. Macros may be used
whenever the same or similar pieces of text (code) occur in several places. A macro has a name
and a macro body, also, it may have a concatenation character and an argument list. The several
characteristics of a macro are specified by a DEFINE statement.

DEFINE and the macro name must appear on the same line. The macro name is an identifier; it
may be followed by an optional concatenation character, which must also be on the same line as
DEFINE. The formal arguments, if any, are enclosed in parentheses and separated by commas.
The argument list may occur on a subsequent line. The macro body, enclosed in braces ({ and }),
appears after the argument list in DEFINE.

In the macro processor, braces and brokets are equivalent, ie, "{" and "<" are equivalent, as are
"}" and ">". The equivalence between brokets and braces applies at all times within the macro
processor; the text and examples that follow use braces, but brokets can be used instead. The
macro processor counts braces independent of context; specifically, braces and brokets that appear
in comments, text constants, etc. are counted by the macro processor. In the discussion that
follows, "non-blank character” omits both blank and tab characters.

4.1.1 Macro Bodies

The macro body may be any string of characters, subject to the restriction that the right and left
braces must be balanced. The macro body itself is enclosed in braces and appears after the
argument list in a DEFINE statement. The macro body is stored in FAIL’s memory, associated
with the macro name. At any point following the DEFINE statement, the macro body will be
substituted for occurrences of the macro name.

FAIL Macro Operations 39
4.1.2 Concatenation

The concatenation character may be any non-blank character (excluding also carriage return, line
feed, and right brace) that appears in DEFINE after the macro name and before the argument list
and macro body. This character may then be used to delimit identifiers so that they will be
recognized as arguments. Appearances of this character will be deleted from the macro body
whenever they appear. This allows a macro argument to be part of an identifier, instead of an
entire identifier. See the example at the end of section 4.1.6, page 42.

4.1.3 Arguments in Macro Definitions

Arguments in macro definitions must,be identifiers. A list of them, enclosed in parentheses, may
appear after the macro name in the definition. If no list of arguments appears before the macro
body, it is assumed that there are no arguments.

Each instance of an identifier in the macro body which is the same as one of the arguments will
be replaced with the string of text corresponding to that argument when the macro is called.
Thus, if FUDLY is one of the arguments in the definition of a macro and the following text
appears in the body:

A+FUDLY B

then FUDLY will be recognized as an argument. But if the following appears:

A+FUDLYB

then, since FUDLYB is an identifier and is different from FUDLY, it will not be recognized as an
argument. To concatenate the "B" above with an actual argument, use a concatenation character.
For example, if the concatenation character is "$" and

A+FUDLY$B

appears in the macro body, then FUDLY will be recognized as an argument, and the "$" will
disappear when the macro is expanded.

Here is a sample macro definition:

DEFINE FOO (AC,ADDRS)
{MOVNI AC,3

IMUL AC, ADDRS

ADDI AC, 37

MOVEM AC,ADDRS+11}

If the text:

FOO (A,FARB+7)

appears in the program somewhere after the DEFINE above, it will expand into:

40 Macro Operations FAIL

MOVNI A,3

IMUL A,FARB+7
ADDI A,37

MOVEM A,FARB+7+1

4.1.4 Macro Calls

A macro name may appear anywhere and will be replaced by the macro body, as long as the name
appears as an identifier and is considered to be an identifier by the assembler. A macro name may
appear alone on a line or in the accumulator, index, or address field. If the macro name appears
in a context where it is not considered to be an identifier, the macro will not be expanded. For
example, macro names that appear in a comment or in the text argument of an ASCII statement
will not be expanded. Also, there are some other cases where a macro name will not be expanded:

the macro name in DEFINE,

the formal argument list in DEFINE and FOR,

the symbol name in OPDEF, PURGE, SUPPRESS and RADIX50,
the tested symbol in a symbol IF,

the block name in BEGIN and BEND,

the location counter name in USE and SET,

the universal symbol table name in SEARCH, and

the program name in TITLE and UNIVERSAL.

Macros may be used recursively. That is, a macro body may contain a macro call or macro
definition. However, if such macro calls are nested too deep, the macro push-down list may
overflow, resulting in an error message and termination of the assembly. If this occurs, the /P
switch should be used in the command string. Every occurrence of /P in the command string
causes the assembler to allocate an extra 200 (octal) words of memory for the macro push-down
list (see appendix A, page 48).

4.1.5 Arguments in Macro Calls

The list of arguments to a macro call may be enclosed in parentheses, or not. The arguments
themselves are separated by commas. For example, if FOO is the name of a macro that requires
two arguments, FOO A,FARB+7 and FOO (A,FARB+7) have the same effect.

If the argument list is enclosed in parentheses, then the first argument begins with the first
character after the "(", even if it is blank. Subsequent arguments begin with the first character
after the comma that terminates the previous argument. Arguments do not include the comma or
")" used to terminate them. Arguments are scanned until the matching ") " is seen.

If the argument list is not enclosed in parentheses, the first argument begins with the first non-
blank character after the macro name. Subsequent arguments begin with the first character after
the comma that terminated the previous argument. Arguments do not include the comma or other

FAIL Macro Operations 41

character used to terminate them. Arguments are scanned until any one of right bracket, right
broket, right brace, semicolon, or carriage return is seen.

Two commas in a row with nothing in between signify a null argument, ie. an argument that
consists of no characters. If more arguments are called for than are supplied, the last ones are
considered to be null. If more arguments are supplied than are called for, the extras are ignored
by the macro processor; see section 4.16, page 41.

Unless the first character of an argument is "{", the argument terminates at the first comma, right
parenthesis, right brace (or broket), right bracket, or carriage return. If the first character of an
argument is " {" (or "<"), then all characters included between the matching braces are taken as the
argument. This allows the argument to contain commas, parentheses, etc. which would not be
legal otherwise, but the braces must be kept balanced. In addition, all characters between the "} "
that closes the argument and the next argument terminator are ignored. This allows the
continuation of a list of arguments from one line to the next (i.e, enclose the last argument on the

line in braces and put the comma for it at the start of the next line).

If the first character of an argument is a backslash (\) or right-arrow (-), then the next thing after
the backslash (or right-arrow) is considered to be an expression (and it better be defined). The
expression is evaluated and the value is converted to a string of ascii digits in the current radix
(the radix ought not be 1). This string of digits is taken as the argument.” All characters from the
end of the expression to the next argument termination character (comma, etc.) are ignored.

4.1.6 How Much is Eaten by a Macro Call

When a macro call appears, some of the text following the macro name is considered to be part of
the call. Any text that is not part of the macro call will be assembled as usual. For instance, if

DEFINE FOO (A) {A + 7/8}
has appeared, then when

MOVEI A,FO0 (3) (6) ;comment
appears, it will be assembled as

MOVE! A,3 + 7/6 (B) ;comment

Thus, the text FOO (3) is considered to be part of the macro call and is "eaten".

The following rules govern how much text gets eaten in a macro call. If the macro was defined as
having no.arguments, then only the macro name and any following spaces (or tabs) are eaten. If
the macro was defined as having arguments and the first non-blank character after the macro
name is a left parenthesis, then everything from the macro name to the right parenthesis which
closes the argument list, inclusive, is eaten. If the macro was defined as having arguments and the
first non-blank character is not a left parenthesis, then everything from the macro name to the
comma or carriage return which terminates the last macro argument used is eaten. Thus, if

$

42 Macro Operations FAIL

parentheses are not used and too few arguments are supplied, everything from the macro name to
the carriage return will be eaten. If parentheses are not used and the macro was defined as
having arguments and enough or too many arguments are supplied, then everything from the
macro name to the comma (or carriage return) which terminates the last argument used will be
eaten.

Example:

DEFINE FOO $ (A,B) {A8B}

MOVEI FOO 1,2, ,37(6) itl expand to:

T
+MOVEI 12 ,37(6)
+"FOO 1,2," has bsen eaten

4.1.7 Complex Example

This example is given without a full explanation. It shows an example of an information
carrying macro. The macro BAR is expanded (by being redefined) every time that ADD1 is used.
The \BAR in the definition of ADDI is necessary to cause the evaluation of BAR as an expression
(which causes a macro expansion to occur).

Example:

DEFINE BAR (8,1}
DEFINE FOO (A,B,C) (DEFINE BAR {8,<B

DEFINE ADD1 (X) (FOO(\BAR,X)}
DEFINE SEC (A,B) {B}

Cs}}

1BAR = B,
ADD1 (X1)

+BAR = B, <

H X1>
ADD1 (X2)

1BAR = B,<

: X1

: X2>
ADD1 (X3}

+BAR = B,<

: X1

H X2

H X3>
SEC (\BAR) s THIS GENIi:.RATES THE FOLLOWING:

s X

: X2
: X3

FAIL Macro Operations 43
4.2 FOR

There are three types of FORs; all have the same general form. Each consists of the word FOR,
an optional concatenation character, a range specifier, and a FOR-body. The FOR statement
expands into the text of its FOR-body, possibly with substitutions, repeated once for each element
in the range of the FOR. FOR replaces the IRP and IRPC pseudo-ops found in MACRO-10.

The optional concatenation character is specified by following the word FOR with an at-sign
followed immediately by the concatenation character. If a FOR is used inside a macro and
concatenation of FOR arguments is desired, it is necessary to have a concatenation character
specified for the FOR which is different from the one for the macro.

The range specifier is different for each type of FOR and will be explained below. The FOR
statement may have one or two formal arguments which are specified in the range specification.

The FOR-body has the same form as a macro body; the text is enclosed in braces, and braces must
be balanced.

4.2.1 String FOR

The range specification consists of one or two formal argument identifiers, followed by either the
identifier "IN" or the containment character (c), followed by an argument list. The argument list
has the same syntax as a macro call argument list (see section 4.1.5, page 40), but the list must be
in parentheses. The effect is that the body of the FOR is assembled once for each element in the
argument list, and that element is substituted for the first (or only) formal argument each time.
The second formal argument, if present, will have the remainder of the argument list (starting
with the element following the one currently substituted for the first argument) substituted for it.

Examples:
Source Expansion
FOR A IN (QRN, {(<JRST 4,>)},STORP) MOVSI 13,QRN
{MOVSI 13,A PUSHJ P, GORP
PUSHJ P, GORP MOVSI 13, (<JRST 4,5)
} PUSHJ P, GORP
MOVSI 13,STORP
PUSHJ P, GORP
Source Expansion
FOR ZOT,FUB ¢ (A,B,C,D) MOVEI A,137 ; B,C,D LEFT
{MOVEl ZOT7,137 ; FUB LEFT MOVEI B,137 ; C,D LEFT
} MOVEI C,137 3 D LEFT
MOVEI D,137 ; LEFT

44 Macro Operations FAIL
4.2.2 Character FOR

The range specifier consists of one or two formal arguments followed by either the letter "E" or the
character epsilon (¢), followed by a string of characters enclosed in braces. The only restriction on
_ the string of characters is that the braces must balance. The body of the FOR is assembled once
for each character in the list, with that character substituted for the first formal argument each
time and the rest of the string substituted for the second formal argument, if any.

Examples:
Source ' Expansion
FOR ZOT,FUB ¢ {ABCD} MOVEI A,137 ; BCD LEFT
{MOVEI Z0T,137 ; FUB LEFT . MOVET B,137 ; CD LEFT
} MOVEI C,137 ¢ D LEFT
' MOVEI D,137 5 LEFT
Source Expansion
FOR @% QRN E {AZ105} ZORPA«B
{ZORP$0ORN«9 ZORPZ<B
} : ZORP1«8
ZORPQ«8
ZORP5+8

4.2.3 Arithmetic FOR

This type of FOR is similar to the ALGOL FOR statement. The range specifier consists of one
or two formal arguments followed by a left-arrow, followed by two or three expressions, separated
by commas. The expressions are like the two or three arguments of a FORTRAN DO statement.
The value of the first is the starting value, the value of the second is the ending value, and the
value of the third is the increment. If the third expression is not present, 1 is used as the
increment. '

The body of the FOR is assembled repeatedly, first for the starting value, then for the starting
value plus the increment, etc. until it has been assembled once for each such value which is less
than or equal to the ending value (greater than or equal if the increment is negative). If the
starting value is already greater than the ending value (less than, for negative increment), the
FOR body is not assembled at all. For each repetition, the current value is converted to ascii
digits in the current radix, and that string is substituted for the formal argument(s) (both
arguments have the same value). Note that all expressions must be defined, available, and
absolute.

FAIL

Examples (assume RADIX =8):

Source

FOR 1143, 25, 7
{XWD FOO, I
}

Source

FOR e$ Z0Te«11,4,-1
{ZOTQ$Z0T : Z0T +3
} .

4.3 REPEAT

Macro Operations

45

Expansion

XWD FOO, 4
XWD FOO, 13
XWD FOO0,22

Expansion

Z0TQ11 ¢ 11 +3
Z07Q18 : 18 +3
Z0TQ7 : 7 43
Z0T06 : 6 +3
Z0TQ5 : 5 43
Z0TQ4 : 4 +3

The REPEAT statement is included for compatibility with MACRO-10. The format is

REPEAT exp, {text}

The expression exp is evaluated, and the text is assembled that number of times, with a carriage
return and line feed inserted at its end each time. The text is like a macro body: braces must

balance.

For example, the statement:
REPEAT 3, {8}

will expand to:

g
2]
(%]

46 Macro Operations FAIL

4.4 Conditional Assembly

The conditional assembly opcodes (the IFs) are like macros: they will be recognized wherever they
appear, as long as the assembler sees them as identifiers. Thus, an IF need not be the first thing
on a line. Attempts to use IFs as symbols will produce erroneous resuits.

4.4.1 Numeric IFs

There are six numeric IFs:

IFE exp, {text} assembles text if exp=0
IFN exp, {text] assembles text if exp=8
IFG exp, {textl] assembles text if exp>80
IFL exp, {text} assembles text if exp<®
IFGE exp, {text} assembles text if expz8
IFLE exp, {text} assembles text if exps@

The expression exp is evaluated. If its value bears the indicated relation to zero, the text is
assembled once; otherwise it is not assembled. The text, which is called the IF-body, is like a
macro body: braces must balance.

Examples:
IFE 3, {Z0T} assembles nothing
IFGE 15, {JRST START] assembles JRST START
PUSHJ P, IFN PARM, {BAZ;}FOO assembles PUSHJ P,BAZ;FOO if PARM=@
PUSHJ P, IFN PARM, {BAZ;}FOO assembles PUSHJ P,F00 if PARM=@

4.4.2 Text IFs

There are two text IFs. They are IFIDN and IFDIF, which stand for "if identical” and "if
different”, respectively. The format is

IFIDN {text 11 {text 2} {text 3}

The texts can be any string of characters in which the braces balance. For IFIDN, if the two
strings text 1 and text 2 are identical in each and every character, the string text 3 will be
assembled, otherwise it will not. For IFDIF, if text 1 and text 2 are different, text 3 will be
assembled, otherwise it will not.

FAIL Macro Operations 47
4.4.3 Symbol IFs

There are eight symbol IFs. Théy are IFDEF, IFNDEF, IFAVL, IFNAVL, IFOP, IFNOP,
IFMAGC, and IFNMAC. A typical example is

IFDEF symbol, {text!}

If the indicated condition is true for the symbol, the text is assembled; otherwise it is not. These
conditionals come in pairs; if one of a pair is true, the other is false.

IFDEF is true if the symbol is defined in this block or in an outer block. Defined symbols may be
either opcodes, macro names, labels, or parameters. IFDEF will be true if the symbol could be
used on a line by itself (ignoring possible future definitions).

IFAVL is true if the symbol is available. That is, IFAVL is true if the symbol is defined as an
opcode or macro or if it has been defined in this block, declared global in this block and defined
in an outer block, or defined in an outer block with a down-arrow.

IFOP is true if the symbol is defined as an opcode.

IFMAC is true if the symbol is defined as a macro (including the IFs, IOWD, and the predefined
symbols .FNAM1, .FNAM2, "$." and ".").

48 Appendix A FAIL

Command Language

The basic format of a FAIL command is
binary-file, listing-fileesource-file-l, ... ,source-file-n
File specifications consist of

device: file

If device: is missing, DSK: is assumed. Either (or both) output file(s) may be omitted. If the
listing-file is included, a comma must precede it. Source-file names are separated by
commas. The device name for source files is sticky, so to change devices the device name must be
explicit, even if it is DSK:. Multiple source files are concatenated as one assembly. If the last
source-file name on a line ends with a comma (and carriage return-line feed) then the next line
is taken as a continuation of this command.

If no file extension is given for the binary and list files, REL and LST are assumed, respectively (in
the non-Stanford FAIL, CRF is the default extension for the list file). If no extension is given for
the source file(s), FAI is tried first; failing that, a blank extension is tried.

Switches should follow file names and may be either of the slash type or parentheses type (eg.,
"/x" or "(x)").

Device switches (must follow the name of the affected file):

nA advance magnetic tape n files

nB backspace magnetic tape n files

T skip to logical end of magnetic tape
W rewind magnetic tape

pA zero DECtape directory

Assembler switches (may appear after any file name):

make a cross-reference (CREF) listing
don’t pause after errors (inverse of R)
ignore XLIST1 pseudo-op
turn on cross-reference listing output
turn off cross-reference listing output
don't list titeral values with text
don't list assembly errors on TTY
pause after each assembly error
list symbol table
under | ine macrg expansions on listing

v sat the number of lines/page in listing to n
don’t list macro expansions

X3 CWHIDZr XR—T0O

The P switch is used to allocate extra space for the macro push-down list (PDL), which is
normally 200 (octal) locations long. If recursive macros are used, more space may be needed. The
macro PDL will be expanded by 200 words for every occurrence of the P switch in the command
string. A numeric argument may given with the P switch to specify a multiple of 200 words by
‘which to expand the PDL.

FAIL Appendix A 49

Sometimes, assembly parameters are specified from the user terminal, rather than being included
in the source program. Suppose the line SEGSWe«1 needs to be included in the assembly of the file
BAZ. The following command sequence would do that (and make a cross-reference listing of

BAZ):

BAZ,BAZ/CeTTY: ,DSK:BAZ
SEGSWe«1 -
(V4

The text is typed to FAIL and terminated with control-Z (42) (at Stanford displays, control-meta-
line feed is used instead of control-Z). Using RPG (known elsewhere as COMPIL), the command
sequence would be

COMPILE/CREF TTY:F+DSK:BAZ
SEGSWee1
12

The file name F is needed to satisfy the RPG syntax; the device name DSK: is needed to switch
the default input device to DSK.

If the command FILEe is seen, the named file will be read and interpreted as containing a series
of commands of the usual form.

The command FILE! causes FAIL to exit and run the named program. The default device for
this command is SYS:.

To provide some compatability with RPG-style commands, FAIL accepts "=" for "<" in the
command line. Also, either “+" or “;" may be used instead of "," to separate source-file names.

50 Appendix B FAIL
Relocatable and Undefined Values

FAIL binary programs are usually required to be relocatable, ie., loadable anywhere in a core
image. Many values depend upon the absolute location of a program within its core image, e.g.,
the target address of a branch instruction. The final determination of these values must be made
by the loader.

The problem of relocation can usually be reduced to a question of whether or not to augment a
value by the relocation constant, which is simply the location at which the loader decides to begin
loading this program. The mechanism for handling this involves associating with each value a
relocation factor, which is (at load time) to be multiplied by the relocation constant and added to
the value. For the simple relocation mechanism to work, the relocation factor must be a constant
and either 0 or 1. Since 36 bits may contain two 18-bit addresses, a relocation factor is provided
for each halfword. Thus, a value which is completely determined except for simple relocation can
be expressed in 38 bits. A value in which at least one relocation factor is non-zero is said to be
relocatable; one in which both are zero is said to be unrelocatable or absolute.

There is a more general, less efficient mechanism for delaying calculations until load time. This is
used in more complex cases where the simple relocation scheme is inadequate. Whenever a value
cannot be calculated immediately and cannot be handled by the relocation mechanism because it
requires some other type of deferred calculation, the value is said to be undefined. Undefined
values are represented by relatively’ complex structures which are retained in FAIL for final
evaluation or, if necessary, passed to the loader for evaluation. Undefined values are illegal in
those contexts which require the value to be immediately known, including some situations where
the relocation factor mechanism is legal. The legality of undefined or relocatable values is
indicated in the discussion of each possible usage.

FAIL Appendix C 51
Predefined Opcodes

The standard machine instruction mnemonics of the PDP-10 (KA-10) are defined in FAIL.

When the Stanford version of FAIL is started, it obtains from the system the definitions for all
system UUOs and CALLIs that are available at the time of the assembly.

The table that follows includes all the pseudo-ops, machine instruction mnemonics, special
symbols, and UUO mnemonics currently available at Stanford. The indication SAIL is used to
indicate UUOs and machine instructions available only at Stanford. The indication UUO is used
to mark system calls that are also available on a DEC system. Hardware I/O instructions are
indicated by 1/0; these instructions are not available to normal user programs. Machine
instruction mnemonics for the KI-10 processor are available as a conditional assembly feature in
FAIL; these are flagged with the indication KI. The entry for each pseudo-op includes the page
number where that pseudo-op is explained.

Note that there are sometimes subtle differences between DEC system UUOs and Stanford UUOQs;
consult the appropriate reference manual. Also note that some DEC mnemonics conflict with
those used at Stanford.

52

$.

.FNAML
.FNAM2
. INSERT
.LIBRARY
.LOAD

ACCTIN
ACTCHR
ADD
ADDB
ADDI
ADOM
RDSHMAP
AND
ANDB
ANDCAR
ANDCRB
ANDCARI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBIM
ANDCHM
ANDCMB
ANDCMI
ANDCHM
ANDI
ANDM
AOBJN
AoBJP
AoJ
ROJA
ROJE
AO0JG
AOJGE
AOJL
AOJLE
ROJN
ROS
ROSA
AQSE
AOSG
ROSGE
ACSL
ROSLE
AOSN
APRENB
ARRAY
ASCID
RASCII
RSCIZ
ASH
ASHC

Predefined
Predef ined
Predefined
Predefined
Pseudo-0p
Pseudo-0p
Pseudo-0p

CALLI 4e8818)
CALLI 48818
270000, ,0
2730089, ,0
271898, ,8
272008, ,8
CALLI s4B0118
484008, ,0
487000, ,0
4100080,,8
413808,,8
411008,,8
4120800, ,0
4489000, ,0
443000,,0
441600, ,0
4420808, ,8
420000,,90
4230808, ,0
421008,,0
422008,,8
495000,,0
4086080, ,0
253000, ,0
252088, ,0
348080, ,0
344000,,0
3420080,,0
347008, ,8
345000,,8
341000,,0
343000,,0
346008,,8
350000,,0
354008, ,8
352608, ,8
357008, ,0
355080, ,8
351000, ,8
353008, ,8
3560080, ,0
CALLI 16
Pseudo-0Op
Pseudo-0p
Pssudo-0p
Pseudo-0p
240008, ,8
244000, ,0

ASUPPRESS Pseudo-0p

ATTSEG

BEEP
BEGIN
BEND
BLKI
BLKO
BLOCK

CALLI 480016

CALLT 488111
Pseudo-0p
Pseudo-0p
7080068, ,8
780108, ,8
Pseudo-0p

page
page
page
page
pags
page
page

SAIL
SAIL

SAIL

uuvo

page
page
page
page

page
SRIL

SRIL
page
page
1/0
1/0
page

14
14
15
15
35

28

29

26
26

33

BLT
BUFLEN
BYTE

cAl
CRIR
CARIE
CRIG
CRIGE
CAIL
CAILE
CAIN
CALL
CALLT®
CALLIT
CAN
CAMA
CANE
CAMG
CAMGE
CANML
CANMLE
CAMN
CHNSTS
CLKINT
CLOSE
CLRBFI
CLRBFO
COMMENT
CONI
CONO
CONS
CONSO
CONSZ
CORE
CORE2
CREF
CTLY

DATAI
DATAD
DATE
DAYCNT
DOCHAN
DOTGT
DOTIN
DDTOUT
DDTRL
DDUPG
DEBRERK
DEC
DEFINE
DEPHASE
DETSEG
DEVCHR
DEVNUN
DEVUSE
DFAD
DFDV
QFHP
DFN
DFSB
DIAL
DISMISS
oIV ¢

Appendix C

2510080,,8
CALLI 488042
Pseudo-0p

300000, ,0
304000, ,8
382090,,8
307080,,8
365008, ,9
361000, ,0
303000,,0
306000,,8
840000,,0
847800,,8
CALLI 460874
3100880,,80
314000, ,0
312089,,8
317809, ,8
315888, ,0
311808,,8
313000,,08
316009,,0
716009, ,8
717088,,8
070008, ,0
851448,,8
851588, ,8
Pseudo-0p
700248, ,0
780208, ,8
2578808, ,0
708340, ,8
788300, ,0
CALLI 11
CALLI 488015
Pseudo-0p
CALLI 488801

700048, ,8
7081489,,0
CALLT 14
CALLI 400108
CALLI 468867
CALLI 5
CALLT &
CALLT 3
CALLI 7
715148,,8
CALLI 406835
Pseudo-0p
Pseudo-0p
Pseudo-0p
CALLI 480817
CALLI &
CALLI 408104
CALLI 460051
118e00,,0
113000, ,0
112088,,8
131688, ,8
111e88,,8

i CALLI 460117
CALLI 4880824
234000,,0

SAIL
page

uvo
uvo
SAIL

SAIL
SAIL
uuo
uuo
uuo
page
170
1/0

38

34

37

30
23

DIVB
DIVI
DIV
DHOVE
DMOVEM
DMOVN
DMOVNM
DPB
DPYCLR
DPYOUT
DPYPOS
DPYSI2
DSKPPN
DSKTIN

EI0TH
END
ENTER
ENTRY
EQv
EQve
EQVI
EQvH
EXCH
EXIT
EXTERNAL

FRD
FADB
FADL
FADM
FADR
FRDRB
FRDRI
FADRL
FADRM
FBRERD
FBURIT
FBURT
Fov
FOVB
FOVL
FOVM
FOVR
FDVRB
FOVRI
FOVRL
FDVRM
FIX
FIX
FIXR
FLTR
Fhnp
FHPB
FMPL
FHPH
FHPR
FMPRB
FHMPRI
FHPRL
FHPRM
FOR
FSB
FSBB
FSBL

237888, ,8
235009, ,0
236008, ,8
120908, ,8
124000, ,0
1210089, ,8
125808, ,8
137808, ,0
701008, ,8
703000, ,0
702108, ,8
782148, ,8
CALLI 4008071
CALLI 400072

CALLI 488805
Pseudo-Op
@77p80,,8
Pseudo-0p
444000,,0
447008,,8
445000, ,8
446008, ,8
256080,,80
CALLI 12
Pseudo-0p

148899, ,8
143800, ,8
141008, ,8
142000,,8
144000, ,9
147808, ,0
145800, ,8
145000, ,0
146000, ,0
706908, ,8
CALLI 488057
787080, ,0
170008, ,8
173088, ,08
171089, ,8
172000, ,0
174808, ,8
177880, ,8
17508080, ,8
175088, ,8
176808, ,8
247809, ,8
122808, ,8
126000, ,8
127008, ,8
168688, ,8
163008, ,08
161008,,0
162080, ,0
164800, ,0
1679080, ,0
165898, ,8
165888, ,8
166000, ,8
Pseudo-0p
1508009, ,6
153888, ,06
151000,,8

FAIL

K1
K1
K1
KI

SAIL
SAIL
SAIL
SAIL
SAIL
SAIL

SAIL
page 34
uuo
pags 27

uuo
page 27

SAIL-
SAIL
SAIL

SAIL
KI
K1
KI

page 43

FAIL

FSBM
FSBR
FSBRB
FSBRI
FSBRL
FSBRM
FsC

GDPTIM
GETCHR
GETLIN
GETLN

GETNAM
GETPPN
GETPR2
GETPRV
GETSEG
GETSTS
GETTAB
GLOBAL

HALT
HISEG
HLL
HLLE
HLLET
HLLEM
HLLES
HLLI
HLLM
HLLO
HLLOI
HLLOM
HLLOS
HLLS
HLLZ
HLLZI
HLLZM
HLLZS
HLR
HLRE
HLREI
HLREM
HLRES
HLRI
HLRM
HLRO
HLROI
HLROM
HLROS
HLRS
HLRZ
HLRZI
HLRZM
HLRZS
HRL
HRLE
HRLET
HRLEM
HRLES
HRLI
HRLM
HRLO
HRLOI
HRLOM

152000, ,8
154000, ,0
157008, ,8
1558080, ,0
1558980, ,6
156609, ,0
1320898, ,0

CALLT 488865
CALLI 6
851300, ,0
CALLI 34
CALLT 408062
CALLT 24
CALLT 400053
CALLI 488115
CALLI 48
862808, ,08
CALLI 41
Pssudo-0p

254208,,8
Psaudo-0p
500888,,80
530080,,0
531060,,8
532000,,0
533009,,8
581088,,8
502000,,8
5200086, ,0
521080,,8
522000,,0
523p088,,8
583008,,0
518000,,0
5ilo0ee,,0
512600,,0
513008,,0
544080,,0
574008,,0
5750080,,0
576098,,8
577668,,8
545080, ,8
546000, ,8
564000,,0
5656680, ,0
5660080,,0
567000,,90
547008,,0
5540080,,0
585000,,0
556000,,8
557808,,8
5840089,,0
534800,,0
535008, ,8
536088,,8
537600, ,8
585000,,8
505008,,8
5240880,,0
525688,,08
526000,,8

SAIL
uuo
SAIL
uuo
SAlL
uuo
SAIL
SAIL
uuo
uuo
uuo
page 26

page 24

HRLOS
HRLS
HRLZ
HRLZI
HRLZM
HRLZS
HRR
HRRE
HRRE]
HRREM
HRRES
HRR1
HRRM
KRRO
HRRO1
HRROM
HRROS
HRRS
HRRZ
HRRZI
HRRZM
HRRZS

18P
101V
101VB
101V1
1011
10PB
IENBW
IFAVL
IFDEF
IFDIF
IFE
IFG
1FGE
IFIDN
IFL
IFLE
IFMAC
IFN
IFNAVL
IFNDEF
IFNMAC
IFNOP
1FoP
1L0B
IMSKCL
IMSKCR
INSKST
INSTH
1MuL
IMULB
MuL1
ImuLh
N
INBUF
INCHRS
INCHRH
INCHSL
INCHUL
INIT
INPUT
INSKIP
INTACH

Appendix C

527000,,8
507600, ,0
514000,,6
515000, ,0
516000, ,0
517006, ,0
546000, ,0
570008, ,0
571009, ,8
572009, ,0
573008, ,0
541000, ,0
542000,,8
560009, ,0
561600, ,8
562000, ,0
563000, ,0
543008, ,6
550000, ,0
551060, ,0
552008, ,0
553008, ,0

1330809,,8
230000, ,90
233600, ,0
231600, ,0
2320089, ,0
136008,,0
CALLI 480845
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditional
Conditienai
Conditional
Conditional
134809, ,0
722008, ,8
723240,,8
721808,,8
723840,,8
220000, ,8
223000, ,8
221000,,8
222000,,8
056008, ,0
864000,,0
851180,,8
051009, ,8
851240, ,8
851298, ,0
641008,,0
066008, ,8
851548, ,8
CALLI 4880627

SAIL
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

SAIL
SAIL
SAIL
SAIL

uuo
uuo
uuo
uuo
uuo
uuo
uuo
uuo
SAIL
SAIL

INTDEY
INTOMP
INTEGER
INTENB
INTENS
INTERNAL
INTGEN
INTIIP
INTIPI
INTIRQ
INTJEN
INTHSK
INTORM
INTUUO
INHRIT
10PDL.
10POP
10PUSH
I0R
I0RB
I0RI
T0RH
10HD
IHRIT
THKMSK

JBTSTS
JCRY
JCRY®
JCRYL
JEN
JFCL
JFFO
JFOV
JOBRD
Jov
JRA
JRST
JRSTF
JSA
Jsp
JSR
Jump
JUMPA
JUMPE
JUNMPG
JUMPGE
JUMPL
JUMPLE
JUMPN

LALL
LB
LEYPOS
LINK

L INKEND
LINKUP
LIOTH
LIST
LIT
Loc
LOCK
LOGIN
LoGouT
LOOKUP

723000, ,0
723140,,0
Pseudo-0p
CALLI 480025
CALLI 480030
Pseudo-0p
CALLI 480833
CALLI 488031
723288, ,8
CALLI 480832
7230080,,80
728080,,8
CALLT 408026
723800, ,0
851608,,8
726680, ,8
725808, ,0
724088, ,8
4340808,,8
43700¢,,8
435008, ,8
436000, ,0
Pseudo-0p
CALLI 4008848
723108,,0

CALLI 4808613
255380, ,8
2552880, ,0
255180, ,8
254588, ,8
255000, ,8
243008, ,0
255048, ,8
CALLI 480858
255400, ,8
267680, ,8
254090, ,0
254188, ,0
266000, ,0
265080, ,8
2648080, ,0
320099, ,8
324008, ,8
322088, ,8
3270680, ,0
325800, ,8
321608, ,0
3238080, ,0
326000, ,8

Pseudo-0p
135008,,8
702388, ,0
Pseudo-0p
Pseudo-Op
CARLLI 408023
CALLI 400006
Pseudo-0p
Pseudo-~0p
Psesudo-0p
CALLI 400076
CALLT 15
CALLI 17
876680, ,8

SAIL
SRIL
page
SAIL
SRIL
page
SAIL
SARIL
SAIL
SAIL
SAIL
SAIL
SAIL
SAIL
SRIL
SRIL
SAIL
SAIL

page
SAIL
SRIL

SRIL

SAIL

page

SAIL
page
page
SAIL
SAIL
page
page
page
SAIL
uuo

uuo

uuo

33

27

31

36

27
27

36
22

54 Appendix C - FAIL

LSH 2420800, ,0 PGIOT 715608, ,8 SAIL SETAB 427808,,8

LSHC 246000,,8 PGSEL 715¢80,,0 SAIL SETACT 851640,,0 SAIL
PHRSE Pseudo-0p page 23 SETRI 425800, ,0

MAIL 710008,,8 SAIL PJOB CALLT 38 uuo SETRM 4260080,,8

MAP 257008, ,0 K1 PNAHME CALLI 4868087 SAIL SETCA 4500608, ,8

MOVE 200008, ,0 POINT Pseudo-0p page 31 SETCAB 453000,,0

MOVE1 2e1008,,8 POINTS 712688,,8 SRIL SETCAI 451898,,0

MOVEM 282000,,8 PoP 262000, ,8 SETCAM 452800,,8

MOVES 283009, ,0 POPJ 263008, ,8 SETCH 468080, ,8

MovH 214080,,0 PORTAL 254848, ,8 K1 SETCMB 463080,,8

MOVHI 215000,,0 PPARCT 782848, ,0 SAIL SETCMI 461008,,8

Movhn 216080, ,8 PPHLD 7082348, ,0 SRIL SETCHMM 462608,,0

MOVMS 217088, ,0 PPINFO 782248,,8 SAIL SETCRD CALLI 4880673 SAIL

MOVN 210008, ,8 PPIOT 7820808, ,8 SAIL SETODT CALLI 2 uuo

MOVNI 211008,,80 PPREL 762200, ,0 SAIL SETLIN 851346,,0 SAIL

MOVNM 212080, ,0 PPSEL 702008, ,08 SAIL SETM 414000,,8

MOVNS 213800, ,8 PPSPY CRLLI 480187 SAIL - SETHMB 417009,,8

MOVs 284000,,08 PRGEND Pseudo-Op page 34 SETHMI 415800, ,8

Movs1 285009, ,0 PRINTX Pseudo-Op page 37 SETHM 416000,,8

MovsH 206000,,9 PTGETL 711548,,8 SAIL SETNAM CALLI 43 uuo

MOVSS 2870808, ,8 PTIFRE 711108,,8 SAIL SETNM2 CALLI 480836 SRIL

MSTIME CALLI 23 uuo PTJOBX 711708,,0 SAIL SETO 474908,,8

MTAPE 8728608, ,8 uuvo PTLORD 711648,,8 SRIL SETOB 477808,,8

MuUL 224008, ,0 PTOCNT 711l48,,8 SAIL SETOI 475089, ,0

MULB 227008, ,8 PTRDIS 711289,,0 SAIL SETONM 476880,,8

MULI 225008, ,8 PTROIW 711248,,0 SAIL SETPOV CALLI 32 uuo

MuULM 226000, ,0 PTRDS 711480,,0 SAIL SETPR2 CALLI 480852 SAIL
PTSETL 711608,,8 SAIL SETPRO CALLI 4808206 SAIL

NAMEIN CALLI 4808843 SAIL PTWRIS 711309,,8 SAIL SETPRV CALLI 480Q66 SRIL

NOLIT Pseudo-0p page 36 PTURIN 711348,,8 SARIL SETSTS 068000,,0 uuo

NOSYM Pseudo-0p page 37 PTWRS? 711448,,0 SRIL SETUWP CALLI 36 uuo
PTHRSS 711560,,8 SAIL SET2 400800,,0

ocT Pseudo-0p page 3@ PTYGET 711908,,0 SAIL SETZB 483080,,0

OPDEF Pseudo-0p page 26 PTYREL 7118é0,,8 SAIL SETZI 481000,,8

OPEN 858080, ,0 uuo PTYUUO 711609,,0 SARIL SETZM 4820880, ,8

OR 434000, ,0 PURGE Pseudo-0p page 28 SIXBIT Pseudo-0p page 32

ORB 437088, ,0 PUSH 261600,,8 SKIP 338008, ,0

ORCA 454008, ,8 PUSHJ 2608088,,0 SKIPA 334808,,0

ORCAB 457089, ,8 P2E 0000088, ,0 SKIPE 3328980,,0

ORCAI 455000, ,0 ' SKIPG 337¢080,,0

ORCAM 456000, ,8 RADIX Pseudo-0p page 35 SKIPGE 335608,,0

ORCB 470088, ,8 RADIXS8 Pseudo-Op page 32 SKIPL 331600,,80

ORCBB 4730808, ,8 REASST CALLI 21 uuo SKIPLE 333800,,0

ORCBI 471008,,8 RELEAS @71ee8,,0 tuo SKIPN 336000, ,0

ORCBM 472000,,0 RELOC Pseudo-0p page 22 SKPHIN 718266,,0 SARIL

ORCH 464000, ,0 REMAP CALLT 37 uuo SKPHE 718148,,8 SAlIL

ORCMB 467088,,0 RENAME 055888, ,0 uuo SKPSEN 718248,,8 SAIL

ORCHMI 485898, ,0 REPERT Pssudo-Op page 45 SLEEP CALLT 31 uuo

ORCHMM 466880, ,0 RESCAN @51400,,8 uuo SLEVEL CALLI 488844 SAIL

ORG Pseudo-0p page 22 RESET CALLI 8 uuo SNERKS CALLI .4060864 SAIL

ORI 435008, ,8 RLEVEL CALLI 488054 SAIL SNEAKH CALLI 480863 SAIL

ORM 436008,,8 ROT 241008,,8 s0J 3680600, ,8

ouT 857699, ,0 uuo ROTC 245009, ,0 soJA 3640808, ,80

QUTBUF 865008,,8 uuo RUN CALLT 35 uuo SOJE 362088, ,8

OUTCHR 851048,,8 uuo RUNMSK CALLI 480846 SAIL $0JG 367008, ,8

QUTFIV 851748,,0 SAIL RUNTIN CALLI 27 uuo S0JGE 365089, ,8

OUTPUT 0670688,,8 uuo SoJL 361880,,0

OUTSTR 051148,,0 uuo SEARCH Pssudo-Op page 29 SOJLE 363080, ,0
SEGNAM CALLI 488837 SAIL SOUN 366090, ,8

PAGE Pseudo-0p page 37 SEGNUM CALLI 468021 SAIL $0S 370600,,8

PEEK CALLI 33 uuo SEGSIZ CALLI 486822 SAIL S0sA 374000,,8

PGACT 715848, ,0 SAIL SEND 716000,,9 SAIL S0SE 372088, ,0

PGCLR 715108,,0 SAIL SET Pseudo-0p page 22 5056 3770880,,0

PGINFO 715288, ,0 SAIL SETA 424000, ,0 SOSGE 375008, ,90

FAIL

S0sL
SOSLE
SOSN
SPCHAR
SPCUGO
SPUBUT
SRCV
STATO
STATZ
suB
SuBB
SUBI
susH
SUBTTL
SUPPRESS
SHAP
SWITCH

TOC
TDCA
TDCE
TDCN
TON
TDNR
TONE
TONN
TDO
TDOR
TDOE
TDON
102
TDZR
TDZE
TDZN
TIMER
TITLE
TLC
TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLO
TLOA
TLOE
TLON
TLZ
TLZA
TLZE
TL2ZN
TMPCOR
TMPCRD
TRC
TRCA
TRCE
TRCN
TRN
TRNAR
TRNE
TRNN
TRO
TROR
TROE
TRON

3710086,,98
373000, ,0
376000,,8
8430080, ,0
CALLT 488083
CALLTI 400909
710109,,0
e61000,,8
863000, ,0
274008, ,0
2770808, ,8
2750069, ,8
276980,,8
Pseudo-0p
Pseudo-0p
CALLI 4080084
CALLT 28

650600, ,0
654088, ,0
652009,,8
656000,,0
610008, ,0
614008, ,8
612808,,8
616000,,8
670000,,8
674008,,0
672000,,0
676084, ,0
630000,,8
634008,,0
632008,,8
636800, ,8
CALLI 22
Pseudo-0p
6410089, ,8
645080,,8
643008, ,8
647008, ,8
601088, ,8
605000,,8
603000, ,8
687008,,0
661088,,0
665000, ,9
6630089, ,8
667000,,0
621088,,8
625000,,0
623808, ,8
627008, ,8
CALLI 44
CALLI 40806183
6540000,,0
644000,,0
642008,,9
646000,,8
6008008,,0
604008,,0
602080, ,0
6506600,,8
6608008,,90
664008, ,0
6620808, ,0
6668080, ,0

SRIL
SAIL
SAIL
SAIL
uuo
uuo

page 36
page 29
SAIL
uuo

uuo
page 34

uuo
SRIL

TR2
TR2R
TRZE
TR2N
TsC
TSCA
TSCE
TSCN
TSN
TSNR
TSNE
TSNN
TS0
TSOR
TSOE
TSON
152
TSZA
TSZE
TS2N
TTCALL
TTREAD
TTYIOS
TTYJOB
TTYMES
TTYSKP
TTYUUO
THOSEG

UFR
UFBCLR
UFBERR
UFBGET
UFBGIV
UFBPHY
UFBSKP
UGETF
UINBF

Appendix C

628008, , 8
6264000, ,0
522060, ,8
626000, ,8
651808, ,0
655000, ,8
653008, ,0
657000, ,0
611080, ,0
515000, ,0
613008, ,0
617008, ,0
671089, ,8
675000, ,8
673000, ,0
677008, ,0
631000, ,8
635099, ,0
633000, ,0
637000, ,0
851008, ,8
8517089, ,0

CALLI 488014
CALLT 488113
CALLI 488047
CALLI 400116

851609,,8
Pseudo-0p

130088, ,0

CALLI 480812
CRLLI 4000680
CALLI 400818
CALLI 48enil
CALLI 408855
CALLI 4e8856

073000, ,0
704600, ,0

UNIVERSAL Pseudo-0p

UNLOCK
UNPURE
UOUTBF
UPGIOT
UPGHMVE
UPGHVM
USE
USETI
USETO
USKIP
UTPCLR
uuosiIn
UNRIT

VAR
VOSMAP

WAIT
WRKEME
WHO
HRCV

XALL
XCREF
XCT
XGPUUO
XLIST

CALLI 488077
CALLI 400102

7058089, ,0
763008,,8
713088,,8
714880,,8
Pseudo-0p
874008,,8
875008, ,0

CALLI 488841

CALLT 13

CALLI 400186
CALLT 400834

Pseudo-0p

CALLI 408870

CALLI 18

CALLI 480061
CALLI 480112

710048, ,8

Pseudo-Op
Pseudo-Op
256608, ,8

CALLI 480875

Pseudo-0p

uvo

SRIL
SAIL
SAIL
SAIL
SAIL
uuo

page

SAIL
SAIL
SAIL
SAIL
SAIL
SAIL
uuo

SAIL
page
SAIL
SAIL
SAIL
SRIL
SAIL
SARIL
page
uuo

uuo

SAIL
uuo

SRIL
SRIL

page
SAIL

uuo

SAIL
SRIL
SAIL

page
page

SRIL
page

24

29

22

25

36
37

36

XLISTL
XOR
XORB
XORI
XORM
XPUNGE
XWD

Pseudo-0p
430000, ,0
4330089, ,8
431008, ,0
432000,,89
Pseudo-0p
Psaudo-0p

55

page 36

page 29
page 31

56 Appendix D FAIL
Stanford Character Set

The Stanford Character Set is displayed in the following table. The three-digit octal code for a
character is composed of the number at the left of its row plus the digit at the top of its column.
For example, the code for A is 100+1 or 101. .

g 1 2 3 4 5 6 7 '
PP NUL ¢V o £ A -~ € =«
P16 A TABLF VI FF CR «» 4
280 c o) n U Y 3 o =
g3 _- o ~ = 5 2z BV
p4g SP L " #H 8 % &
958 |) x o+, - /
pee 8 1 2 3 4 5 6 7
B78 8 3 : : < = > ?
188 e« A B C D E F G
118 H I J K L ™M N O
126 P O R S T U VvV U
138 X Y Z [\ 1 S
148 ¢ a b ¢ d e f g
158 h i j k | m n o
166 p q r s t U v oM
178 x y =z { | ALT } BS
NUL Nut |
TAB Horizontal Tab
LF Line Feed
VT Vertical Tab
FF Form Feed
CR Carriage Return
SsP Space
ALT Al tmode

BS Back Space

FAIL

Appendix E 57

Summary of Character Interpretations

The characters listed below have special meaning in the contexts indicated. These interpretations
do not apply when these characters appear in text strings or in comments.

600
601
082
803
084
885
886
007
oie
81l
812
813
814
815
816
817
020
821
822
023
0824
825
826
827
838
831
832
033
834
835
836
837
048
841
842
843
844
845
046
847
658
051
852
953
854
855
056
857
068
871
872
873
874
875

876
877

UL

N
4
o
g
A
<
n

A
AB
LF
VT
FF
CR

t BLWCcCDODUVUN oS

©

= =W M IVIANR

+ B A TR R

-

@ N

HOA v = D

NV

null
down-arrow
alpha

beta

logical and
logical not
epsilon

pi

lambda

tab

line feed
vertical tab
form feed
carriage return
infinity
partial
containment
Implication
set intersection
set union

for all

there exists
circle times
doub le-arrou
underbar
right-arrow
tilde

not equal
less or equal
greater or equal
aquivalence
fogical or
space
exclamation
double quote
number sign
dollar sign
percent
ampersand

close single quote

left parenthesis
right parenthesis
asterisk

plus

comma

minus

point

siash

digits

colon
semicolon
left broket
aqual

right broket
question mark

ignored on input
makes a symbol available in a lower block

bootean AND
bootean NOT
delimiter in FOR

same as spacs {848)
line dalimiter

line delimiter; causes new listing page
statement terminator

delimiter in FOR

arithmetic shift operator

statement terminator; remainder of line is interpretad as another statement
same as . (856) in identifiers

same as backslash (134)

same as up-arrow (136); illegal as the delimiter in ASCIZ, COMMENT, etc.
boolean XOR

same as not equal (833)
boolean OR

general delimiter

same as logical or (837)

delimits ascii constants

declares a variable; illegal as the delimiter in RSCIZ, COMMENT, etc.
may be used in identifiers

may be used in identifiers

same as logical and (884)

delimits sixbit constants

encloses macro arguments, expressions, and index fisids

see left parenthesis (850)

integer multiply

integer addition

general argument separator

integer subtraction or negation

may be used in identifiers, floating point numbers, or predefined symbol
integer division

used to form number, parts of identitiers

used to define labels; illegal as the delimiter in ASCIZ, COMMENT, etc.
forces remainder of line to be a comment

delimits complex atoms; same as left brace (173) to the macro processor
denotes decimal number; afternate to left-arrow (137) in assignment
statements

sea left broket (874)

same as down-arrow (881)

58

160
181
132
133
134
135
136

137

140
141
172
173
174
175
176
177

p-N)

- > = =N

O~ D— N
-
—

at-sign
upper case letters

left bracket
backslash
right bracket
up-arrou

feft-arron

open single quote
lower case letters

left brace
vertical bar
al tmode
right brace
backspace

Appendix E FAIL

sets indirect bit in instructions; precedes concatenation character in FOR
used for identiflers; B and E are special in numbers; E is special in FOR

delimits literals, value part of OPDEF, size in ARRAY, PPN in .LORD
evaluate a macro argument and converts the result to a digit string
see left bracket (133)

moves a symbol definition to an outer block; makes & symbol
EXTERNAL; illegal as the delimiter in ASCIZ, COMMENT, ete.
denotes assignment statement; arithmetic FOR; illegal as the delimiter in
RSCIZ, COMMENT, etc.

same as at-sign (180)

same as upper case lstters, except in text constants

INTERNAL or

delimits macro bodies, IF-bodies, FOR-bodies, macro arguments

same as right brace (176)
sea left brace (173)
illegal in Iinput

FAIL

$. 14, 21, 23

. 14,21, 23
FNAMI1 15
JFNAM?2 15
INSERT 35
.LIBRARY 28
.LOAD 28

absolute 9, 14, 50

AC 3

Accumulator Field 3

Address Field 4

apostrophe 11, 23

Arguments in Macro Calls 40
Arguments in Macro Definitions 39
Arithmetic FOR 44

ARRAY 33

ASCID 32

ASCII character set 56

Ascii Constants 10

ASCII pseudo-op 32

ASCIZ 32

Assembler Control Statements 34
assignment statement 13
ASUPPRESS 29

at-sign 3, 43

atomic statement 4, 6, 20

atoms 6, 8

available 9, 15, 17 '

backslash 41
backward reference 12
BEGIN 26

BEND 26

blank 38

block 9

block number 26
BLOCK pseudo-op 33
Block Structure 15
braces 38, 41, 44
brackets 19, 33, 41
brokets 4, 19, 20, 38, 41
BYTE 30

byte pointer 31

carriage return 6, 34, 36, 39, 41
Character FOR 44
character interpretations 57

Index

close single quote 11, 23
colon 3, 13, 15, 32, 35

59

comma 3, 5, 23, 26, 27, 30, 31, 32, 33, 38, 40,

44, 48
comma-comma 4
Command Language 48
comment 6
COMMENT pseudo-op 34
COMPIL 49
Complex Atoms 19
concatenation character 39, 43
Conditional Assembly 46
Constants 9
constants optimization 20
containment character 43
control-meta-line feed 49
control-Z 49
CREF |, 37, 48
CREF pseudo-op 37
Cross-Reference Listing 37, 48

DDT I, 15, 18, 26, 32, 34
DEC pseudo-op 30
Decimal Numbers 10
decimal point 10
DEFINE pseudo-op 38
defined 9, 12

DEPHASE 23
Destination of Assembled Code 22
device code b

Device Selection Field b
doltar sign 8

dollar-point 14, 21, 23
double quote 10
double-arrow 6
down-arrow 5, 17, 19, 47

END 34

Entering Data 30
ENTRY 19, 27

entry blocks 19, 27
entry point 19

epsilon 44

equal sign 10, 13, 15, 35
Expressions 6
EXTERNAL 18, 27
external symbols 18, 27

fixup 12

60 Index

Floating-Point Numbers 10
FOR 43

FOR-body 43

form feed 37

formal arguments 43
forward reference 12, 33
Full-Word Expression 5

GLOBAL pseudo-op 26
global symbols 18

Half-Killed Symbols 15

Halfword Statement 4

hardware input-output instruction 5
hardware instruction 3, 51

high segment 24

HISEG 24

Identifiers 8
IF-body 46

IFAVL 47

IFDEF 47

IFDIF 46

IFE 46

IFG 46

IFGE 46

IFIDN 46

IFL 46

IFLE 46

IFMAC 47

IFN 46

IFNAVL 47
IFNDEF 47
IFNMAC 47
IFNOP 47

IFOP 47

Index Field 4
indirect bit 3
Indirect Field 3
Input-Output Instruction Statement 5
Instruction Statement 2
INTEGER 33
INTERNAL 18, 27
internal symbols 27
IOWD 31

IRP 43

IRPC 43

Labels 12

FAIL

LALL 36

left-arrow 3, 13, 15, 19, 32, 35, 44

library 19

library search mode 19

line feed 6, 34, 39

LINK 27

Linkage with Separately Assembled
Programs 18

LINKEND 27

LIST 36

Listing Control Statements 36

LIT 25, 34

literal-label 21, 28, 29, 30

literals 19, 20, 25, 34

loader 1, 7, 8, 12, 18, 19, 24, 27, 28, 29, 32,
33, 50

LOC 22

local symbols 18

location counter 13, 14, 22

machine instruction 3, 51
Macro Bodies 38

Macro Calls 40

Macros 38

multiple definition 13
multiple location counters 22

NOLIT 36

NOSYM 37

null argument 41

null statement 2

number sign 3, 14, 25, 32, 33, 35
Numbers 9

Numeric IFs 46

OCT 30

octal 9

Opcode Field 3
OPDEF 26

opdefs 26

open single quote 3
operator 6

ORG 22

PAGE pseudo-op 37

parameter 13

parentheses 4, 6, 30, 38, 39, 40, 43, 48
percent sign 8

PHASE 23

FAIL

point 8, 14, 21, 23
POINT pseudo-op 31
Polish fixup 7
Predefined Opcodes 51
PRGEND 34
PRINTX 37
program 18
Pseudo-Ops 22
PURGE 28

question mark 17

RADIX 25

RADIX50 32

RAID 1, 15, 18, 26, 32, 34
range specifier 43
reference 12

RELOC 22

relocatable 9, 13, 14, 50
relocation constant 50
relocation factor 50
REPEAT 45

reserved identifiers 8
Reserving Space for Data 33
-right-arrow 41

RPG 49

SEARCH 29

segment 24

semicolon 6, 34, 36, 41
SET 22

Simple Numbers 9
sixbit 11, 32

Sixbit Constants 11
SIXBIT pseudo-op 32
slash 48

special characters 57
Stanford Character Set 56
starting address 34
Statement Termination 6
Statements 2

String FOR 43
SUBTTL 36
SUPPRESS 29
suppress bit 29
symbol 9

Symbol IFs 47
Symbol Modifiers 26
Symbols 11

Index

tab 38

Text IFs 46

text statements 32

tilde 3, 16, 32, 35
TITLE 34

Truncated Expression &
two-segment program 24
TWOSEG 24

unavailable 9, 16
undefined 9, 50
underbar 8
UNIVERSAL 29
universal program 29
universal symbols 29
unrelocatable 9, 50
up-arrow 3, 16, 18, 19, 27, 32, 35
USASCII 10

USE 22

user-defined opcode 26
UUO |, 3, 5, 51

Values 8
VAR 25, 34
Variables 14, 25, 33, 34

XALL %6
XCREF 37
XLIST 36
XLIST1 36
XPUNGE 29
XWD 31

61

	0001
	0002
	0003
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61

