AUGUST 1976




Stanford Artificial Intelligence Laboratory August 1976
Memo AIM-289 ‘

Computer Science Department
Report No. STAN-CS-76-574

SAIL
edited by

John F. Reiéer

ABSTRACT

Sail is a high-level programming language for the PDP-10 computer. It includes an
extended ALGOL 60 compiler and a companion set of execution-time routines. In
addition to ALGOL, the language features: (1) flexible linking to hand-coded machine
language algorithms, (2) complete access to the PDP-10 /0 facilities, (3) a complete
system of compile-time arithmetic and logic as well as a flexible macro system, (4) a
high-level debugger, (5) records and references, (6) sets and lists, (7) an associative
data structure, (8) independent processes (9) procedure varaiables, (10) user
modifiable error handling, (11) backtracking, and (12) interrupt facilities.

This manual describes the Sail language and the execution-time routines for the typical
Sail user: a non-novice programmer with some knowledge of ALGOL. It lies
somewhere between being a tutorial and a reference manual.

This manual was supported by the Advanced Resaarch Projects Agency under Contract MDA 803-76-C-0206.

The views and conclusions contained in this document are those of the author(s) and should not be interpreted as necessarily
representing the official policies, sither expressed or implied, of Stanford University, ARPA, or the United States Government.

We thank Bernard A. Goldhirsch and the institute for Advancomont of Sailing for their kind pormuuon to use the cover design of
the August 1876 issue of SAIL magazine.

Reproduced in the US.A. Available from the National Technical Information Service, Springfield, Virginia 22161.






SAIL
PREFACE

HISTORY OF THE LANGUAGE

The GOGOL I compiler, developed principally
by Dan Swinehart at the Stanford Artificial
Intelligence Project, was the basis for the non-
LEAP portions of SAIL. Robert Sproull joined
Swinehart in incorporating the features of LEAP
The first version of the language was released
in November, 1969. SAll's intermediate
development was the responsibility of Russell
Taylor, Jim Low, and Hanan Samet, who
introduced processes, procedure variables,
interrupts, contexts, matching procedures, a
new macro system, and other features. Most
- recently John Reiser, Robert Smith, and Russsll
Taylor maintained and extended SAIL. They
added a high-level debugger, conversion to
TENEX, a print statement, and records and
references. ‘

LEARNING ABOUT SAIL

A novice programmer (or one who is unfamiliar
with ALGOL) should start with the Sail Tutorial
[SmithN]. An experienced programmer with a
knowledge of ALGOL should be able to use this
Sail manual at once. Begin with Appendix A,
Characters; in this manual the symbol "_"
designates the character with code ’030. For
the first reading, a light skim of sections 1, 2, 3,
4, and 8, followed by a careful perusal of
subsection 21.1 should be adequate to
familiarize the new user with the differences
between ALGOL and SAIL and allow him to start
writing programs in SAIL. The other sections of
this manual are relatively self contained, and
can be read when one wants to know about the
features they describe. The exceptions to this
rule are sections 12, 13, and 14. These
describe the basics of the LEAP and are
essential for understanding of the following
sections.

Special effort has gone into making the index
more comprehensive than in previous versions
of this manual. Please use it.

CHANGES IN THE LANGUAGE :

There are no known incompatibilities at the
SAIL source level with the language described
in [vanLehn]). PRINT, BAIL, operation under
TENEX, and records are major additions to the
language. Significant revisions to [vanLehn] or

PREFACE

points deserving emphasis are marked by
vertical bars in the margin. This paragraph is
s0 marked, as an example.

OPERATING SYSTEMS

Sail runs under several operating systems. In
this manual distinction is drawn between the
operating system at the Stanford Artificial
Intelligence Laboratory (SUAI), the TOPS-10
operating system from Digital Equipment
Corporation, the TENEX operating system from
Bolt Beranek and Newman, and the TYMSHARE
operating system. The major distinction is
between TENEX and non-TENEX systems,
although the differences between SUAIl and
TOPS-10 are also significant. The TOPS-20
operating system from Digital Equipment
Corporation is the same as TENEX as far as Sail
is concerned. TENEX users should substitute
"<SAIL>" for "SYS:" wherever the latter appears
in a file name (except when talking to the
LOADER).

UNIMPLEMENTED CONSTRUCTS

The following items are described in the manual
as if they existed. As the manual goes to
press, they are not implemented.

1. NEW (<context_variable>). Creates a new
item which has a datum that is a context.

2. Using a <context_variable> instead of a list
of - variables in any of the REMEMBER,
FORGET or RESTORE statements.

3. Using o in the expression n of REMOVE n
FROM list.

4. ANYeANY=ANY searches in Leap (searches
where no constraints at all are placed on
the triple returned.)

B. CHECKED itemvars (the dynamic
comparison of the datum type of an item
to the datum type of the CHECKED itemvar
to which the item is being assigned.) It is
currently the wuser’s responsibility to
insure that the type of the item agrees
with the type of the itemvar whenever
DATUM is used.

ACKNOWLEDGEMENTS

Les Earnest and Robert Smith assisted the
editor in PUB wizardry and reading drafts.

iii






SAIL

TABLE OF CONTENTS

SECTION '

1

PROGRAMS AND BLOCKS

1 Syntax
2 Semantics

ALGOL DECLARATIONS

Syntax

Restrictions

Examples

Semantics

Separately Compiled Procedures

OITDWN —

ALGOL STATEMENTS

1 Syntax
2 Semantics

ALGOL EXPRESSIONS

1 Syntax
2 Type Conversion
3 Semantics

ASSEMBLY LANGUAGE STATEMENTS

1 Syntax
2 Semantics

INPUT/OUTPUT ROUTINES

Execution-time Routines in General
/0 Channels and Files

Break Characters

I/0 Routines

TTY and PTY Routines

Example of TOPS-10 I/0

U DWN —

PAGE

NOIOT &S W

14
15

22
23
24

29
29

33
33
36
39
43
45

10

11

12

OOONOOADWN —

TABLE .OF CONTENTS

7 EXECUTION TIME ROUTINES

Type Conversion Routines
String Manipulation Routines
Liberation-from-Sail Routines
Byte Manipulation Routines
Other Useful Routines
Numerical Routines

G D WN

PRINT

1  Syntax
2 Semantics

MACROS AND CONDITIONAL COMPILATION

Syntax

Delimiters

Macros

Macros with Parameters
Conditional Compilation

Miscellaneous Features
Hints

ONOOIDHWN —

RECORD STRUCTURES

Introduction

Declaration Syntax

Declaration Semantics
Allocation

Fields

Garbage Collection

Internal Representations
Handler Procedures

More about Garbage Collection

TENEX ROUTINES

Introduction

TOPS-10 Style Input/Output
TENEX Style Input/Output
Terminal Handling

Utility TENEX System Calls

Ol b WM

LEAP DATA TYPES

1 Introduction
2 Syntax
3 Semantics

Type Determination at Compile Time

46

48
50

51

53
53

69
69
70
76
80



TABLE OF CONTENTS

13 LEAP STATEMENTS

" Syntax
Restrictions
Semantics
Searching the Associative Store

HWN —

14 LEAP EXPRESSIONS

1 - Syntax
2 Semantics

15 BACKTRACKING

1 Introduction
2 Syntax
3 Semantics

16 PROCESSES

1 Introduction

2 Syntax

3 Semantics

4 Process Runtimes

17 EVENTS

1 Syntax

2 Introduction

3 Sail-defined Cause and Interrogate
4 User-defined Cause and Interrogate

18 PROCEDURE VARIABLES

1 Syntax
2 Semantics

19 INTERRUPTS

Introduction
Interrupt Routines
Immediate Interrupts
Clock Interrupts
Deferred Interrupts

O DWN

vi

88
89
89
91

97
98

101
101
101

104
104
104
107

110
110
110
112

114
114

117
117
119
120
121

SAIL

20 LEAP RUNTIMES

1 Types and Type Conversion 1238
2 Make and Erase Breakpoints 124
3 Pname Runtimes 124
4  Other Useful Runtimes 125
5 Runtimes for User Cause and Interrogate

Procedures 126

21 BASIC CONSTRUCTS

1 Syntax 128
2 Semantics 128
22 USING SAIL
1 For TOPS-10 Beginners 131
2 For TENEX Beginners 131
3 The Complete use of Sail 132
4 Compiling Sail Programs 132
5 Loading Sail Programs 136
6 Starting Sail Programs 137
7 Storage Reallocation with REEnter 137

23 DEBUGGING SAIL PROGRAMS

1 Error Messages 138
2 Debugging -140
3 BAILL 141
APPENDICES
A Characters 150
B Sail Reserved Words 151
C Sail Predeclared Identifiers 152
D Indices for Interrupts 153
E Bit Names for Process Constructs 154
F Statement Counter System 156
G Array Implementation 187
H String Implementation 158
| Save/Continue 159
J Procedure Implementation 160
REFERENCES _ 163
INDEX 165



SAIL
SECTION 1
PROGRAMS AND BLOCKS
1.1 Syntax
<program>

= <block>

<block>
u= <block_head> ; <compound_tail>

. <block_head>

= BEGIN <declaration>

= BEGIN <block_name> <declaration>
1= <plock_head> ; <declaration>

<compound_tail>
u= <statement> END
= <statement> END <block_name>
.= <statement> ; <compound_tail>

<compound_statement>
«= BEGIN <compound_tail>
u= BEGIN <block_name> <compound_tail>

<gtatement>
1= <block>
u= <compound_statement>
u= <require_specification>
u= <assignment>
1= <swap_statement>
© u= <conditional_statement>
= <jf_gtatement>
u= <go_to_statement>
u= <for_statement>
= <while_statement>
= <do_statement>
u= <case_statement>
u= <print_statement>
u= <return_statement>
u= <done_statement>
= <next_statement>
1= <continue_statement>
u= <procedure_statement>
u= <safety_statement>
u= <backtracking_statement>
= <code_block>
u= <leap_statement>

PROGRAMS AND BLOCKS

u= <process_statement>

um <gvent_statement>

u= <gtring_constant> <statement>
u= <label_identifier> : <statement>
u= <empty>

1.2 Semantics

DECLARATIONS
Sail programs are organized in the traditional
block structure of ALGOL-60 [Nauer).

Declarations serve to define the data types and
dimensions of simple and subscripted (array)
variables (arithmetic variables, strings, sets,
lists, record pointers, and items). They are also
used to describe procedures (subroutines) and
record classes, and to name program labels.

Any identifier referred to in a program must be
described in some declaration. An identifier
may only be referenced by statements within
the scope (see page 5) of its declaration.

STATEMENTS

As in ALGOL, the statement is the fundamental
unit of operation in the Sail language. Since a
statement within a block or compound
statement may itself be a block or compound
statement, the concept of statement must be
understood recursively.

The block representing the program is known
as the "outer block". All blocks internal to this
one will be referred to as “"inner blocks",

BLOCK NAMES

The block name construct is used to describe
the block structure of a Sail program to a
symbolic debugging routine (see page 140).
The name of the outer block becomes the title
of the binary output file (not necessarily the
file name). In addition, if a block name is used
following an END then the compiler compares it
with the block name which followed the
corresponding BEGIN. A mismatch is reported
to the user as evidence of a missing (extra)
BEGIN or END somewhere.

The <string_constant> <statement> construct is
equivalent in action to the <statement> alone;
that is, the string constant serves only as a
comment.



PROGRAMS AND BLOCKS

EXAMPLES

Given:
S is a statement, .
Sc is  Compound Statement,
D is a Declaration,
B is a Block.
Then:
(S¢) BEGINS;S;S;..; SEND
(Sc) ~ BEGIN "SORT" S; S; .. ;S END "SORT"
(B) BEGINDiD;Di..i8SiSi..:iSEND

(B)  BEGIN "ENTER NEW INFO"D; D ..;
S; .. S END

are syntactically valid Sail constructs.

SAIL



SAIL
SECTION 2
ALGOL DECLARATIONS
2.1 Syntax
<id_list>

u= <identifier>
u= <identifier> , <id_list>

<declaration>
u= <type_declaration>
u= <array_declaration>
«m <preload_specification>
u= <label_declaration>
u= <procedure_declaration>
u= <synonym_declaration>
u= <require_specification>
-u= <context_declaration>
u= <leap_declaration>
u= <record_class_declaration>
u= <protect_acs declaration>
u= <cleanup_declaration>
= <type_qualifier> <declaration>

<simple_type>
:= BOOLEAN
u= INTEGER
u= REAL
1= RECORD_POINTER ( <classid_list> )
u= STRING

<type_qualifier>
w= EXTERNAL
1= FORTRAN
= FORWARD
u= INTERNAL
1= OWN
«= RECURSIVE
u= SAFE
1= SHORT
= SIMPLE

<type_declaration>
um <simple_type> <id_list>
u= <type_qualifier> <type_declaration>

ALGOL DECLARATIONS

<array_declaration>
u= <simple_type> ARRAY <array_list>
u= <type_qualifier> <array declaration>

<array_list>
u= <array_segment>
u= <array_list> , <array_segment>

<array_segment>
u= <id_list> [ <bound_pair_list> ]

<bound_pair_list>
u= <pound_pair> ,
u= <pound_pair_list> , <bound_pair>

<bound_pair>
u= <lower_bound> : <upper_bound>

<lower_bound>
u= <algebraic_expression>

<upper_bound>
u= <algebraic_expression>

<preload_specification>
1= PRELOAD_WITH <preload_list>
| u= PRESET_WITH <preload_list>

<preload_list>
u= <preload_element>
u= <preload_list> , <preload_element>

<preload_element>
= <expression>
u= [expression] <expression>

<label_declaration>
u= LABEL <id_list>

<procedure_declaration>
u= PROCEDURE <identifier>
<procedure_head>
<procedure_body>

u= <simple_type> PROCEDURE <identifier>
<procedure_head> <procedure_body>

u= <type_qualifier>
<procedure_declaration>



ALGOL DECLARATIONS

<procedure_head>
u= <empty>
u= ( <formal_param_decl> )

<procedure_body>
u= <empty>
u=; <statement>

<formal_param_decl> .
um <formal_parameter_list> .
u= <formal_parameter_list>;

<formal_param_decl>

<formal_parameter_list>
u= <formal_type> <id_list>
u= <formal_type> <id_list>
( <default_value> )

<formal_type>
u= <simple_formal_type>
1= REFERENCE <simple_formal_type>
= VALUE <simple_formal_type>

<simple_formal_type>
u= <simple_type>
u= <simple_type> ARRAY
== <simple_type> PROCEDURE

<synonym_declaration>
u= LET <synonym_list>

<synonym_list>
u= <synonym>
u= <gynonym_list> , <synonym>

<synonym>
u= <identifier> = <reserved_word>

<cleanup_declaration>
1= CLEANUP <procedure_identifier_list>

<require_specification>
um= REQUIRE <require_list>

<require_list>
um <require_element>
= <require_list> , <require_element>

SAIL

<require_element>

| um <constant_expression> <require_spec>
u= <procedure_name> INITIALIZATION
u= <procedure_name> INITIALIZATION

| [ <phase> ]

<require_spec>

1= STRING_SPACE
u= SYSTEM_PDL
u= STRING_PDL

| um [TEM_START
sm NEW_ITEMS
«= PNAMES
u= LOAD_MODULE
u= LIBRARY
u= SOURCE_FILE
u= SEGMENT_FILE
u= SEGMENT_NAME

I u= POLLING_INTERVAL
u= POLLING__POINTS
u= VERSION
u= ERROR_MODES
w= DELIMITERS
«= NULL_DELIMITERS
u= REPLACE_DELIMITERS
u= UNSTACK_DELIMITERS
«= BUCKETS
u= MESSAGE

| u= COMPILER_SWITCHES

2.2 Restrictions

For simplicity, the type_qualifiers are listed in
only one syntactic class. Although their uses
are always valid when placed according to the
above syntax, most of them only have meaning
when applied to particular subsets of these
productions: : :

SAFE is only meaningful in array
declarations. '

INTERNAL/EXTERNAL  have  no
meaning in  formal parameter
declarations.

SIMPLE, FORWARD, RECURSIVE, and
FORTRAN have meaning only in
proqedure type specifications.

SHORT has meaning only when
applied to INTEGER or REAL entities.



SAIL

For array declarations in the outer block
substitute <constant_expression> for
<algebraic_expression> in the productions for
<lower_bound> and <upper_bound>.

A label must be declared in the innermost block
in which the statement being labeled appears

{more information, page 16). The syntax for °

procedure declarations - requires semantic
embellishment (see page 7) in order to make
total "sense. In particular, a procedure body
may be empty only in a restricted class of
declarations.

2.3 Examples

Let I, J, K, L, X, Y, and P be identifiers, and let §
be a statement.

(<type_declaration>)

INTEGER |, J, K
EXTERNAL REAL X, Y
INTERNAL STRING K

(<array_declaration>)
INTEGER ARRAY X [0:10, 0:10]

REAL ARRAY Y [X:P(L)}; Comment illegal
in outer block unless P is a macro

STRING ARRAY | [0:IF BIG THEN 30 ELSE 3]}

(<label_declaration>)
LABEL L, X, Y

{<procedure declaration>)
PROCEDURE P; S
PROCEDURE P (INTEGER |, J;
REFERENCE REAL X; REAL Y) S
INTEGER PROCEDURE P (REAL PROCEDURE L;
STRING |, J; INTEGER ARRAY K); S
EXTERNAL PROCEDURE P (REAL X)
FORWARD INTEGER PROCEDURE X (INTEGER I)

Note that these sample declarations are all
given without the semicolons which would
normally separate them from the surrounding
declarations and statements. Here is a sample
block to bring it all together (again, let S be
any statement, D any declaration, and other
identifiers as above):

ALGOL DECLARATIONS

BEGIN "SAMPLE BLOCK"
INTEGER |, J, K;
REAL X, Y

STRING A;
INTEGER PROCEDURE P (REFERENCE REAL X);

BEGIN "P"
D;DiDi..Si..;S
END "P*;

REAL ARRAY DIPHTHONGS [0:10, 1:100];

$ S8 S S
END "SAMPLE BLOCK"

2.4 Semantics

SCOPE OF DECLARATIONS

Every block automatically introduces a new
level of nomenclature. Any identifier declared
in a block’s head is said to be LOCAL to that
block. This means that:

a. The entity represented by this
identifier inside the block has no
existence outside the block.

b.  Any entity represented by the same
identifier outside the block s
completely inaccessible (unless it
has been passed as a parameter)
inside the block.

An identifier occurring within an inner block
and not declared within that block will be
nonlocal (global) to it; that is, the identifier will
represent the same entity inside the block and
in the block or blocks within which it is nested,
up to and including the level in which the
identifier is declared.

The Scope of an entity is the set of blocks in
which the entity is represented, using the
above rules, by its identifier. An entity may
not be referenced by any statement outside its
scope.

TYPE QUALIFIERS

An array, variable, or procedure declared OWN
will behave as if it were declared globally to
the current procedure; the OWN type qualifier
on a variable, etc. declared in a block not
nested inside a procedure declaration will have
no effect. This means that in a second call of a
procedure with OWN locals (or a recursive call)



ALGOL DECLARATIONS

the OWN variables will not be reinitialized; they
will have the values that they had when the
first call of the
Furthermore, OWN arrays, etc. will not be
deallocated upon exiting the procedure in which
they are declared.

INTERNAL and EXTERNAL procedures, variables,
etc. let one link programs that are loaded
together but were compiled separately. See
page 12 for more information.

RECURSIVE, SHORT, FORTRAN, FORWARD,
SIMPLE, and SAFE will be explained when the
data types they modify are discussed.

NUMERIC DECLARATIONS

Identifiers which appear in type declarations
with types REAL or INTEGER can subsequently
be used to refer to numeric variables. An
Integer variable may take on values from
-2135 to 2135-1 (-2126 to 2726-1 for SHORT
INTEGERS). A Real variable may take on
positive and negative values from about 107-38
to 10788 with a precision of 27 bits (same
range for SHORT REALs as for SHORT
INTEGERs). REAL and INTEGER variables (and
constants) may be used in the same arithmetic
expressions; type conversions are carried out
automatically (see page 23) when necessary.

The advantage of SHORT reals and integers is
that the conversion from integer to real is sped
by a factor of 8 if either the integer or the real
is SHORT. See page 23 for more information.

The BOOLEAN type is identical to INTEGER.
BOOLEAN and algebraic expressions are really
equivalent syntactically. The syntactic context
in which they appear determines their meaning.
Non-zero integers correspond to TRUE and 0
corresponds to FALSE. The declarator
BOOLEAN is included for program clarity.

STRING DECLARATIONS

A variable defined in a String declaration is a
two-word descriptor containing the information
necessary to represent a Sail character string.

A String may be thought of as a variable-
length, one-dimensional array of 7-bit ASCIl
characters. Its descriptor contains a character
count and a byte pointer to the first character
(see page 158). Strings originate as constants
at compile time (page 130), as the result of a
String INPUT operation from some device (see

procedure finished.

SAIL

page 39), or from the concatenation or
decomposition of already existing strings (see
page 27).

When strings appear in arithmetic operations
or vice-versa, a somewhat arbitrary conversion
is performed to obtain the proper type (by
arbitrary we do not mean to imply random --
see page 23). For this reason arithmetic,

| String, and Record_pointer variables are

referred to as "algebraic variables" and their
corresponding expressions are called "algebraic
expressions” (to differentiate them them from
the variables and expressions of LEAP -- see
page 83).

ARRAY DECLARATIONS

In general, any data type which is applicable to
a simple variable may be applied in an Array
declaration to an array of variables. The entity
represented by the name of an Array, qualified
with subscript expressions to - locate a
particular element (e.g. A[l, J]) behaves in every
way like a simple variable. Therefore, in the
future we shall refer to both simple variables
and single elements of Arrays (subscripted
variables) as "variables”. The formal syntax for
<variable> can be found on page 128.

For an.Array which is not qualified by the
SAFE attribute, nor had a NOW_SAFE statement
done on it (Now_Safe - see page 21), each
subscript will be checked to ensure that it falls
within the lower and upper bounds given for
the dimension it specifies. Subscripts outside
the bounds trigger an error message and job
abortion. The SAFE declaration inhibits this
checking, resulting in faster, smaller, and
bolder code.

Arrays which are allocated at compile time
(OWN arrays and arrays in the outer block) are
restricted to 5 or fewer dimensions., There is
no limit to the number of dimensions allowed
for an Array which is dynamically allocated.
However, the efficiency of Array references
tends to decrease for large dimensions. Avoid
large dimensionality.

OWN Arrays are available in part. They must
be declared with constant bounds, since fixed
storage is allocated. They are NOT initialized
when the program is started or restarted
(except in preloaded Arrays, see page 7). A
certain degree of extra efficiency is possible in
accessing these Arrays, since they may be



SAIL

assigned absolute core locations by the
compiler, eliminating some of the address
arithmetic. Constant bounds always add a little
efficiency, even in inner blocks. Arrays
declared in the outer block must have constant
bounds, since no variable may yet have been
assigned a value. They are thus automatically
made OWN. For more details concerning the
internal structure of Arrays see page 140 and
page 157.

PRELOAD SPECIFICATIONS

Any OWN arithmetic or String Array may be
“pre-loaded"” at compile time with constant
information by preceding its declaration with a
<preload_specification>. This  specification
gives the values which are to be placed in
consecutive core locations of the  Arrays
declared immediately following the
<preload_specification>. ‘“Immediately", in this
case, means all identifiers up to and including
one which is followed by bound_pair_list
brackets (e.g. in REAL ARRAY X, Y, Z[0:10)],
W[1:5); -- preloads X, Y, and Z; not W). It is the
user’s responsibility to guarantee that the
proper values will be obtained under the
subscript mapping, namely: arrays are stored
by rows; if A[l, J] is stored in location 10000,
then A[l, J+1] is stored in location 10001.

The current values of non-String pre-loaded
Arrays will not be lost by restarting the
program; they will not be re-initialized or re-
preloaded. For preloaded String Arrays, the
non-constant elements are set to NULL by a
restart.

Algebraic type conversions will be performed
at compile-time to provide values of the proper
types to pre-loaded Arrays. All expressions in
these  specifications must be constant
expressions -- that is, they must contain only
constants and algebraic operators. The
compiler will not allow you to fill an Array
beyond its capacity. You may, however,
provide a number of elements less than the
total size of the Array; remaining elements will
be set to zero or to the null string.

Example:

PRELOAD_WITH [5] 0, 3, 4, [4] 6, 2;
INTEGER ARRAY TABL [1:4, 1:3};

The first five elements of TABL will be
initialized to O (bracketed number is used as a

ALGOL DECLARATIONS

repeat argument). The next two elements will
be 3 and 4, followed by four 6’s and a 2. The
array will look like this:

(second subscript)

(first
subscript)

N 00|
[ BN~ -3 [N )

3
8
3
6
2

S WN -

PRESET_WITH is just like PRELOAD_WITH except
that an array which is PRESET is placed in the
upper segment of a /H compilation. This allows
constant arrays to be in the shared portion of
the code.

PROCEDURE DECLARATIONS

If a Procedure is typed then it may return a
value (see page 18) of the specified type. If
formal parameters are specified then they must
be supplied with actual parameters in a one to
one correspondence when they are called (see
page 28 and page 19).

FORMAL PARAMETERS

Formal parameters, when specified, provide
information to the body (executable portion) of
the Procedure about the kinds of values which
will be provided as actual parameters in the
call. The type and complexity (simple or Array)
are specified here. In addition, the formal
parameter indicates whether the value (VALUE)
or address (REFERENCE) of the actual
parameter will be supplied. If the address is
supplied then the variable whose identifier is
given as an actual parameter may be changed
by the Procedure. This is not the case if the
value is given.

To pass a PROCEDURE by value has no readily
determined meaning. ARRAYs passed by value
(requiring a complete copy operation) are not
implemented. Therefore these cases are noted
as errors by the compiler.

The proper use of actual parameters is further
discussed on page 19 and page 28.

DEFAULT PARAMETER VALUES

Default values for trailing parameters may be
specified by enclosing the desired value in
parentheses following the parameter
declaration.

PROCEDURE FOO (REAL X; INTEGER | (2);
STRING S ("FOO"); REAL Y (3.14158) );



ALGOL DECLARATIONS

If a defaulted parameter is left out of a
procedure call then the compiler fills in the
default automatically. The following all compile
the same code:

FOO (A+B);
FOO (AB, 2, "FOO");
FOO (AsB, 2, "FOO", 3.14159)

Only VALUE parameters may be defaulted, and
the default values must be constant
expressions. A parameter may not be left out
of the middle of the parameter list; ie,
FOO (A+B, , "BAR") wont work. Finally, it
should be noted that the compiled code
assumes that all parameters are actually
present in the call, so be careful about odd
START_CODE or INTERNAL-EXTERNAL linkages.
However, APPLY will fill in default values if not
enough actual parameters are supplied in an
interpreted call.

FORWARD PROCEDURE DECLARATIONS
A Procedure’s type and parameters must be
described before the Procedure may be called.

Normally this is accomplished by specifying the

procedure declaration in the head of some
block containing the call. If, however, it is
necessary to have two Procedures, declared in
some block head, which are both accessible to
statements in the compound tail of that block
and to each other, then the FORWARD construct
permits the definition of the parameter
information for one of these Procedures in
advance of its declaration. The Procedure
body must be empty in a forward procedure
declaration. When the body of the Procedure
described in the forward declaration is actually
declared, the types of the Procedure and of its
parameters must be identical in both
declarations. The declarations must appear at
the same level (within the same block head).
Exampie:

BEGIN "NEED FORWARD"
FORWARD INTEGER PROCEDURE T1 (INTEGER I);

COMMENT PARAMS DESCRIBED;
INTEGER PROCEDURE T2 (INTEGER J):
RETURN (T1 (J)+3); COMMENT CALL T1;
INTEGER PROCEDURE T1 (INTEGER I}
COMMENT ACTUALLY DEFINE T1;
RETURN (IF 1«15 THEN | ELSE T2 (I-1)}
COMMENT CALLS T2;

KeTl (L) .. i LeT2 (K)i ..
END “NEED FORWARD";

SAIL

Notice that the forward declaration is required
only because BOTH Procedures are called in the
body of the block. These procedures should
also be declared RECURSIVE if recursive
entrance is likely. If only T1 were called from
statements within the block then this example
could be implemented as:

BEGIN "NO FORWARD"

RECURSIVE INTEGER PROCEDURE T1 (INTEGER I);
BEGIN

INTEGER PROCEDURE T2 (J);

RETURN (T1 ())+3);
RETURNC IF I=15 THEN |
ELSE T2 (I-1))

END "T1%

KeTt (L;
END "NO FORWARD";

RECURSIVE PROCEDURES

if a Procedure is to be entered recursively then
the compiler must be instructed to provide code
for allocating new local variables when the
Procedure is called and deallocating them when
it returns. Use the type-qualifier RECURSIVE in
the declaration of any recursive Procedure.

The compiler can produce much more efficient
code for non-recursive Procedures than for
recursive ones. We feel that this gain in
efficiency merits the necessity for declaring
Procedures to be recursive.

If a Procedure which has not been declared
recursive is called recursively then all its local
variables (and temporary storage locations
assigned by the compiler) will behave as if they
were global to the Procedure -- they will not
be reinitialized, and when the recursive call is
complete, the locals of the calling procedure
will reflect the changes made to them during
the recursive call. Otherwise, no ill effects
should be observed.

SIMPLE PROCEDURES

Standard procedures contain a short prologue
that sets up some links on the stack and a
descriptor that is used by the storage allocation
system, the GOTQO solver, and some other
routines. For most procedures, this overhead is
insignificant. However, for small procedures
that just do a few simple statements and exit,
this overhead is excessive and unneeded. To



—_—2.

—y 4

SAIL

skip the prologue, just include SIMPLE in the
attribute list for the procedure. RESTRICTIONS:

1. Sifnple procedures may not be
Recursive and may not be SPROUTed
or APPLYed.

ARRAY locals must be OWN. (ﬁu& sy
oo

3. Set and List locals must be OW
- (Sets and list are part of Leap, page
83).

Procedures declared local to a
simple procedure must also be of of

" type SIMPLE, and may not reference
any of the parameters of the outer
simple procedure.

5. One may not GO TO a statement
outside the body of the simple
procedure.

6. RECORD_POINTERs may not be
declared or passed as arguments to
other procedures, and the code must
not cause the compiler to create
RECORD_POINTER temporaries.

EXTERNAL PROCEDURES

A file compiled by Sail represents either a
"main" program or a collection of independent
procedures to be called by the main program.
The method for preparing such a collection of
Procedures is described in page 12. The
EXTERNAL and FORTRAN type-qualifiers allow
description of the types of these Procedures
and their parameters. An EXTERNAL or
FORTRAN procedure declaration, like the
FORWARD declaration, does not include a
procedure body. Both declarations instead
result in requests to the loader to provide the
addresses of these Procedures to all statements
which call them. This means that an EXTERNAL

" Procedure declaration (or the declaration of any

External identifier) may be placed within any
block head, thereby controlling the scope of
this External identifier within this program.

Any Sail Procedure which is referenced via
these external declarations must be an
INTERNAL Procedure. That is, the type-qualifier
INTERNAL must appear in the actual declaration
of the Procedure. Again, see page 12.

The type-qualifier FORTRAN is used to describe

)

ALGOL DECLARATIONS

the type and name of an external Procedure
which is to be called using a Fortran calling
sequence, Either the old F40 or the new .
FORTRAN-10  calling sequence can be
generated, depending on the /A switch (page
134). All parameters to Fortran Procedures are
by reference. In fact, the procedure head part
of the declaration need not be included unless

the types expected by the Procedure differ
from those provided by the actual parameters--
the number of parameters supplied, and their

types, are presumed correct. Fortran
Procedures are automatically External
Procedures. See page 10, page 19, page

28 for more information about Fortran

Procedures. Example:

FORTRAN PROCEDURE FPF;
YFPF (X, 2);

PARAMETRIC PROCEDURES

The calling conventions for Procedures with
Procedures as arguments, and for the execution
of these parametric Procedures, are described

‘on page 19 and page 28. Any Procedure PP

which is to be used as a parameter to another
Procedure CP must not have any Procedure or
array parameters, or any parameters called by
value. In other words, PP may only have simple
reference  parameters. The number of
parameters supplied in a call on PP within CP,
and their types, will be presumed correct, and
should not be specified in the procedure head.
Example:

PROCEDURE CP (INTEGER PROCEDURE FP);
BEGIN INTEGER A, I; REAL X;

A«FP (I, X); COMMENT | AND X PASSED BY
REFERENCE, NO TYPE CONVERSION; '
END "CP";

INTEGER PROCEDURE PP (REFERENCE INTEGER J;
REFERENCE REAL Y
BEGIN ..
END "PP";

cP (PP

DEFAULTS IN PROCEDURE DECLARATIONS

If no VALUE or REFERENCE qualification appears
in the description then the following
qualifications are assumed:

VALUE Integer, String, Real, Record_pointer,
Set, List variables.
REFERENCE Arrays, Contexts and Procedures.



ALGOL DECLARATIONS

RESTRICTIONS ON PROCEDURE DECLARATIONS

1) Fortran Procedures cannot handle
String parameters. Nor can a
Fortran Procedure return a string as
a result.

2) Labels may never be passed as
arguments to Procedures.

3)  Procedures may not have the type
"CONTEXT".

4) Arrays and Context parameters must
always be passed by reference.

ALLOCATION AND DEALLOCATION

All  simple variables (integer, real, string,
boolean, record pointer) are allocated at
compile time. Non-own simple variables that
are local to a recursive procedure are an
exception to this and are allocated (on the
stack) upon instantiation of the procedure; they
are deallocated when the instantiation is
terminated. Simple variables which are
declared but not subsequently referenced are
not allocated at all.

All outer-block and OWN arrays are allocated at
compile time. All other arrays are allocated
when the block of their definition is entered,
and dealiocated when it is exited.

INITIALIZATION AND REINITIALIZATION

Upon allocation, everything is initialized to 0 or
the NULL string (except preloaded arrays, which
are initialized to their the values of their
PRELOAD). Nothing is reinitialized unless the
program is restarted by typing TC and REEnter.
This lack of reinitialization is noticeable when
one enters a block for the second time, and that
block is not the body of a recursive procedure.
For example,

STRING PROCEDURE READIN;

BEGIN
INTEGER CHANNEL, BRTAB;
IF BRTAB=O THEN BRTAB « INIT (CHANNEL);
RETURN (INPUT (CHANNEL, BRTAB));

END;

will return a string from an input operation with

every call. However, on the first call, it will do
some initialization of the 1/O channel because

1o

SAIL

BRTAB is O then, whereas it is not for any of
the other calls. If READIN were a recursive
procedure then CHANNEL and BRTAB would be
allocated and hence initialized with every call.

When one REEnters a program, some things are
reinitialized and some are not. Namely, strings
and non-preloaded arrays will be reinitialized,
but simple variables will not. Preloaded arrays
will not be re-preloaded.

SYNONYMS

The Sail Synonym ("LET") permits one to
declare any identifier to act as a reserved
word. The effect of the reserved word is not
changed; it may be used as well as the new
identifier. Synonyms follow the same scope
rules that identifiers used for variables, arrays,
etc. do.

Since Sail permits one to declare almost any
reserved word to be an identifier for
variables, procedures, etc. (see  about
restrictions on  identifiers, page 129),
synonyms are used to keep the effect of the
reserved word available. For example,

LET BEG » BEGIN;
PROCEDURE BEGIN;

IF OK THEN BEGIN;

CLEANUP DECLARATIONS

The CLEANUP declaration requires a list of
procedure names following the "CLEANUP"
token, Each procedure specified must be
SIMPLE and have no formal parameters. The
specified procedures will be called at the exit
of the block that the CLEANUP declaration
occurs in. They will be called in the order of

" their appearance on the list, and before any of

the variables of the block are deallocated.
NOTE: If the block is part of a process (see
about processes, page 104) that is being
terminated then the cleanup procedures will be
called before the terminate is completed.

Cleanup procedures are normally used in
connection with processes to "cleanup” a block
by terminating the processes dependent on that



. SAlL

block (it is an error to leave active a process
that depends on an exited block).

REQUIREMENTS

The user may, using the REQUIRE construct,
specify to the compiler conditions which are
required to be true of the .execution-time
environment of his programs. All requirements
are legal at either declaration or statement
level. The requirements fall into three
classifications, described as follows:

Group 1 -- Space requirements --
STRING_SPACE, SYSTEM_PODL, etc.

The inclusion of the specification “"REQUIRE
1000 STRING_SPACE" will ensure that at least
1000 words of storage will be available for
storing (the text characters of) Strings when
the program is run. Similar provisions are made
for various push-down stacks used by the
execution-time routines and the compiled code.
Iif a parameter is specified twice, or if
separately compiled procedures are loaded (see
page 12) then the sum of all such
specifications will be used. These parameters
could also be typed to the loaded program just
before execution (see page 137), but it is often
more convenient to specify differences from
the standard sizes in the source program. Use
these specifications only if messages from the
running. program indicate that the standard
allocations are not sufficient.

Group 2 -- Other files -- LOAD_MODULE,
LIBRARY, SOURCE_FILE, etc.

The inclusion of the specification REQUIRE
"PROCS1" LOAD_MODULE, "HELIB[1,3]" LIBRARY;
would inform the Loader that the file
PROCSI.REL must be loaded and the library
HELIB.REL[1,3] searched whenever the program
containing the specification is loaded. The
parameter for both features should be a string
constant of one of the above forms. The file
extension .REL is the only value permitted, and
is therefore assumed; the device, name, and ppn
may be specified. TENEX users should note
that the LOADER restricts LOAD_MODULE and
LIBRARY file names to 6 characters in the main
name and 3 characters in the extension,

LOAD_MODULES (.REL files to be loaded) may
themselves contain requests for other
LOAD_MODULES and LIBRARYs. LIBRARYs may
J only contain requests for other LIBRARYs. The

ALGOL DECLARATIONS

LOADER may do strange things with files
requested twice.

Sail automatically places a request for the
library SYS:LIBSAn (<SAIL>LIBSAn on TENEX)
[HLBSAn for [H compilations] in each main
program, where n is the version number of the
current Sail library of runtime routines.

The inclusion of REQUIRE “PREAMB.SA!"
SOURCE_FILE  will cause the compiler to save
the state of the current input file, then begin
scanning from PREAMB. When PREAMB is
exhausted, Sail will resume scanning the original
file on the line directly following the REQUIRE.
Commonly-used declarations, particularly
EXTERNAL declarations for libraries, are often
put in a separate file which is then REQUIREd.

Restrictions: A SOURCE_FILE request raust be
followed by a semicolon (only one per
REQUIREment), and must be the last text on the
line in which it appears. SOURCE_FILE
switching must not be specified from within a
DEFINE body (see page 57). . SOURCE_FILEs
may be nested to a depth of about 10 levels.

The SEGMENT _NAME, SEGMENT_FILE
specifications are currently applicable only to
the SUAI "global model" users of Sail. They
allow specification of the name of a special
non-sharable "HISEG", and the name of the file
used to create this HISEG. These specifications
may, like the space REQUIREments, be
overridden by wusing the system REENTER
command (see page 137).

Group 3 -- other - INITIALIZATION, VERSION

Before the execution of a program, Sail runs
through an initialization routine. The user can
specify things that he wants done at
] initialization time by declaring an outer-block
Procedure without arguments, then saying

REQUIRE procedure_name INITIALIZATION.

Require~-initialization procedures are run just
before the first executable statement in the
outer block of the program. They are run in
order of ascending phase number, and within
each phase in the order the compiler saw the
REQUIREs. There are currently three user
phases, numbered 0, 1, and 2. Phase 1 is the
default if no phase is specified. WARNING: you
should not Require initialization of a procedure
which is declared inside another procedure.

11



ALGOL DECLARATIONS

REQUIRE n VERSION (n a non-zero integer) will
flag the resultant .REL file as version n. When
a program loaded from several such RELfiles is
started, the Sail allocation code will verify that
all specified versions are equal. A non-fatal
error message is generated if any disagree. As
much as will fit of the version number is also
stored in Ih{(.JBVER), where .JBVER is location
*137.

For other requirements, check the index under
the specific condition being Required.

COMMENT: You have probably noticed that a
great deal of prior knowledge is required for
proper understanding of this section. For more
information about storage allocation, see page
137 below. The form and use of .REL files and
libraries are described in [TopHand].

25 Separately Compiled Procedures

When a program becomes extremely large it
becomes useful to break it up into several files
which can be compiled separately. This can be
done in Sail by preparing one file as a main
program, and one or more other files as
programs each of which contains one or more
procedures to be called by the main program.
The main program rmust contain EXTERNAL
declarations for each of the procedures
declared in the other files. (EXTERNAL
declarations have no procedure body.) The
non-main program files must have the following
characteristics:

1) All procedures to be called from the
main program (or procedures in other
files) must be qualified with the
INTERNAL attribute when they are
declared. External procedure

3)

4)

5)

SAIL

The reserved word ENTRY, followed by
a semi-colon, must be the first item in
the program (preceding even the

- BEGIN for its outer block). No starting

address will be issued for a program
containing an Entry Specification.
Since no starting address is present
for this file, entry to code within it
may only be to the procedures it
contains. The statements in the outer
block, if any, can never be executed.

Should you desire your separatedly
compiled procedures to be collected
into a user library, include a list of
their identifiers between the ENTRY
and the semi-colon of the Entry
Specification of the program containing
those procedure declarations. The
format of libraries is described in
[TopHand]. The identifier(s) appearing
in the entry list may be any valid
identifiers, but usually they will be the
names of the procedures contained in
the file. No checking is done to see if
entry identifiers are ever really
declared in the body of the program.

Any variables (simple or array) which
appear in the outer block of a
Separately Compiled Procedure
program will be global to the
procedures in this program, but not
available to the main program (unless
they are themselves connected to the
main program by Internal/External
declarations -- see below). Non-LEAP
arrays in these outer blocks will
always be zero when the program is
first loaded, but will never be cleared
as others are by restarting your
program (see reinitialization, page 10).

2)

12

declarations with headings identical to
those of the actual declarations must
appear in all those programs which call
these procedures.

These internal procedures must be
uniquely identifiable by the first six
characters of their identifiers. In
general, any two internal procedure
names (or any other Internal variables
in the same core image) with the same
first six characters will cause incorrect
linkages when the programs are
loaded.

Any variable, procedure or label may contain
the attribute INTERNAL or EXTERNAL in its
declaration (ITEMS may not -- items are part of
leap, page 83). The INTERNAL attribute does
not affect the storage assignment of the entity
it represents, nor does it have any effect on
the behavior of the entity (or the scope of its
identifier) in the file wherein it appears.
However, its address and (the first six
characters of) its name are made available to
the loader for satisfying External requests.
| GOTO an external label is for wizards only.



SAIL

No space is ever allocated for an External
declaration. Instead, a list of references to
each External identifier is made by the
compiler. This list is passed to the loader along
with the first six characters of the identifier
name, (if there are no references then Sail
ignhores the External declaration.) When a
matching Internal name is found during loading,
the loader places the associated address in
each of the instructions mentioned on the list.
No program inefficiency at all results from
External/internal linkages (belay that --
references to External arrays are sometimes
less efficient).

The entity finally represented by an External
identifier is only accessible within the scope of
the External declaration.

FORTRAN PROCEDBURES

For a program written in either F40 or
FORTRAN-10 to run in the Sail environment,
the following restrictions must be observed:

1) It must be a SUBROUTINE or
FUNCTION, not a main program.

2) It must not execute any FORTRAN
1/0 calls. The UUQ structures of the
two languages are not compatible.

3) It must be declared as a Fortran
Procedure (see page 20) in the Sail
program which calls it.

The type bits required in the argument
addresses for Fortran arguments are passed
correctly to these routines.

The Sail compiler will not produce a procedure
to be called from FORTRAN.

ASSEMBLY LANGUAGE PROCEDURES
The following rules should be observed:

1) The ENTRY, INTERNAL, and
EXTERNAL pseudo-ops should be
used to obtain linkages for
procedure names and ‘"global"
identifiers; remember that only six
characters are " used for these
linkage names,

2) Accumulators F (currently °12), P
(currently ’17) and SP (’16) should
be preserved over function calls. P

3)

ALGOL DECLARATIONS

may be used as a push-down
pointer for arithmetic values and
return addresses. SP is the string
stack pointer. String results are
returned on this stack. Arithmetic
results are returned in AC 1.

Those who wish to provide their
own UUQ handlers or to increase
their core size should read the code.

There are no other known processors which
will produce Sail-compatible programs.

13



ALGOL STATEMENTS

SECTION 3
ALGOL STATEMENTS

3.1 Syntax

. <assignment_statement>
u= <algebraic_variable> «
" <algebraic_expression>

<swap_statement>
u= <variable> e <variable>
1= <variable> SWAP <variable>

<conditional_statement>
u= <if_statement> _
u= <if_statement> ELSE <statement>

<if _statement>
u= |F <boolean_expression> THEN
<statement>

<go_to_statement> :
1= GO TO <label_identifier>
u= GOTO <label_identifier>
ii= GO <label_identifier>

<label_identifier>
1= <identifier>

<for_statement>
1= FOR <algebraic_variable> « <for_list>
DO <statement>
= NEEDNEXT <for_statement>

<for_list>
u= <for_list_element>
u= <for_list> , <for_list_element>

<for_list_element>

u= <algebraic_expression>

1= <algebraic_expression> STEP
<algebraic_expression> UNTIL
<algebraic_expression>

u= <algebraic_expression> STEP
<algebraic_expression> WHILE
<boolean_expression>

14

SAIL

<while_statement>
u= WHILE <boolean_expression> DO

<statement>
«= NEEDNEXT <while_statement>

<do_statement>
u= DO <statement> UNTIL
<boolean_expression>

<case_statement>
u= <case_statement_head>
<statement_list>
<case_statement_tail>
u= <case_statement_head>
<numbered_state_list>
<case_statement_tail>

<case_statement_head>
u= CASE <algebraic_expression> OF BEGIN
1= CASE <algebraic_expression> OF BEGIN
<block_name>

<case_statement_tail>
um END
u= END <block_name>

<statement_list>
u= <gtatement>
u= <statement_list> ; <statement>

<numbered_state_list>
um [ <integer_constant> ] <statement>
u= [ <integer_constant> ]
<numbered_state_list>
u= <pumbered_state_list> ;
[ <integer_constant> ] <statement>

<return_statement>
u= RETURN
= RETURN ( <expression> )

<done_statement>
«= DONE
u= DONE <block_name>

<next_statement>
um NEXT
um NEXT <block_name>



SAIL

<continue_statement>
1= CONTINUE
.uum CONTINUE <block_name>

<procedure_statement>
w= <procedure_call>

<procedure_call>
‘u= <procedure_identifier>
u= <procedure_identifier> (
<actual_parameter_list> )

<actual_parameter_list>
u= <actual_parameter>
u= <actual_parameter_list>,
<actual_parameter>

<actual_parameter>
1= <expression>
u= <array_identifier>
1= <procedure_identifier>

<safety_statement>
1= NOW_SAFE <id_list>
1= NOW_UNSAFE <id_list>

3.2 Semantics

ASSIGNMENT STATEMENTS

The assignment statement causes the value
represented by an expression to be assigned to
the wvariable appearing to the left of the
assignment symbol. You will see later (page
25) that one value may be assigned to two or
more variables through the use of two or more
assighment symbols. The operation of the
assignment statement proceeds in the following
order:

a) The subscript expressions of the
left part variable (if any - Sail
defines '"variable" to include both
array elements and simple variables)
are evaluated from left to right (see
Expression Evaluation Rules, page
25).

b) The expression is evaluated.

ALGOL STATEMENTS

¢} The value of the expression is
assigned to the left part variable,
with subscript expressions, if any,
having values as determined in step
a.

This ordering of operations may usually be
disregarded. However it becomes important.
when expression assignments (page 25) or
function calls with reference parameters appear
anywhere in the statement. For example, in the
statements:

Ke3;
A[K]e3+(Ke1)

A[3] will receive the value 4 using the above
algorithm. A[1] will not change,

Any algebraic expression (REAL, INTEGER
(BOOLEAN), or STRING) may be assigned to any
variable of algebraic type. The resultant type
will be that of the left part variable. The
conversion rules for assignments involving
mixed types are identical to-the conversion
rules for combining mixed types in algebraic
expressions {(see page 23).

SWAP ASSIGNMENT

The « operator causes the value of the variable
on the left hand side to be exchanged with the
value of the variable on the right hand side.
Arithmetic (REAL®INTEGER) type conversions
are made, if necessary; any other type
conversions are invalid. Note that the o
operator may not be used in assignment
expressions.

CONDITIONAL STATEMENTS

These statements provide a means whereby the
execution of a statement, or a series of
statements, is dependent on the logical value
produced by a Boolean expression.

A Boolean expression is an algebraic expression
whose use implies that it is to be tested as a
fogical (truth) value. If the wvalue of the
expression is O or NULL then the expression is
a FALSE boolean expression, otherwise it is
TRUE. See about type conversion, page 23.

IF STATEMENT - The statement following the
operator THEN (the "THEN part") is executed if
the logical value of the Boolean expression is
TRUE; otherwise, that statement is ignored.

15



ALGOL STATEMENTS

IF .. ELSE STATEMENT - If the Boolean
expression is true, the "THEN part" is executed
and the statement following the operator ELSE
(the "ELSE part") is ignored. If the Boolean
expression is FALSE, the "ELSE part" is
executed and the "THEN part” is ignored.

AMBIGUITY IN CONDITIONAL STATEMENTS

The syntax given here for conditional
statements does not fully explain the
correspondences between THEN-ELSE pairs
when conditional statements are nested. An
ELSE will be understood to match the
immediately  preceding  unmatched  THEN.
Example:

COMMENT DECIDE WHETHER TO GO TO WORK;

IF ~WEEKEND THEN

IF GIANTS_ON_TV THEN BEGIN
PHONE_EXCUSE ("GRANDMOTHER DIED");
ENJOY (GAME);
SUFFER (CONSCIENCE_PANGS)

END

ELSE IF REALLY_SICK THEN BEGIN
PHONE_EXCUSE ("REALLY SICK");
ENJOY (0);
SUFFER (AGONY)

END

ELSE GO TO WORK;

GO TO STATEMENTS

Each of the three forms of the Go To statement
(GO, GOTO, GO TO) means the same thing -- an
unconditional transfer is to be made to the
“target" statement labeled by the label
identifier. The following rules pertain to labels:

1) All label identifiers used in a program
must be declared. .

2) The declaration of a label must be local
to the block immediately surrounding the
statement it identifies (see exception
below). Note that compound statements
(BEGIN-END pairs containing no
declarations) are not blocks. Therefore
the block

16

SAIL
BEGIN "B1"
INTEGER |, J; LABEL Lt;
IF BESITHEN BEGIN "C1"
L
END C1;

GO TO L1
END "B1"

is legal.

3) Rule 2 can be violated if the inner
block(s) have no array declarations. E.g.:

Legal lilegal

BEGIN "B1" BEGIN "B1"

INTEGER ,-J; INTEGER |, J;

LABEL LL; LABEL L1;

" BEGIN "B2" " BEGIN "B2"
REAL X; REAL ARRAY X [1:10};
[l:... .l...l:.;.
END nazn; END "82”;

GO TO LY, GOTO LI

END "B1" END "B1"

4) No Go To statement may specify a
transfer into a FOREACH statement
(FOREACH statements are part of LEAP --
page 83), or into complicated For loops
(those with For Lists or which contain a
NEXT statement).

Labels will seldom be needed for debugging
purposes. The block name feature (see page
140) and the listing feature which associates
with each source line the octal address of its
corresponding object code (see page 134)
should provide enough information to find
things easily.

Many program loops coded with labels can be
alternatively expressed as For or While loops,
augmented by DONE, NEXT, and CONTINUE
statements. This often results in a source
program whose organization is somewhat more
transparent, and an object program which is
more efficient.



SAIL

FOR STATEMENTS

For, Do and While statements provide methods
for forming loops in a program. They allow the
repetitive execution of a statement zero or
more times. These statements will be described
by means of Saill programs which are
functionally equivalent but which demonstrate
better the actual order of processing. Refer to
these equations for any questions you might
have about what gets evaluated when, and how
many times each part is evaluated.

Let VBL be any algebraic variable, AEl, .. ,
AE8 any algebraic expressions, BE a Boolean
expression, TEMP a temporary location, § a
statement. Then the following Sail statements
are equivalent.

Using For Statements:

FOR VBL « AE1, AE2, AE3 STEP
AE4 UNTIL AES, AE6 STEP AE7 WHILE
BE, AEE DO §;

Equivalent formulation without For Statements:

VBL«AE;
S;
VBL<AE2;
S;

VBLAES; Comment STEP-UNTIL loop;
LOOP1: IF (VBL-AES) * SIGN(AE4) < O THEN
BEGIN :
S;
VBL<VBL+AE4;
GO TO LOOP!
END;

VBL«AE6; Comment STEP-WHILE loop;
LOOP2: IF BE THEN BEGIN
Si
VBL«VBL+AE?;
GO TO LOOP2
END; ‘

VBL«AES; _

If AE4 (AE7) is an unsubscripted variable then
changing its value within the loop will cause the
new value to be used for the next iteration. If
AE4 (AE7) is a constant or an expression

requiring evaluation of some operator then the

ALGOL STATEMENTS

value used for the step element will remain
constant throughout the execution of the For
Statement. If AES is an expression then it will
be evaluated before each iteration, so watch
this possible source of inefficiency.

Now consider the For Statement:
FOR VBL<AE1 STEP CONST UNTIL AE2 DO S;

where const is a positive constant. The
compiler will simplify this case to:

VBLAEL;
LOOP3: IF VBL s AE2 THEN BEGIN
S;
VBL«VBL+CONST;
GO TO LOOP3
END;

If CONST is negative then the line at LOOP3
would be:

LOOP3: IF VBL 2 AE2 THEN BEGIN

The value of VBL when execution of the loop is
terminated, whether it be by exhaustion of the
For list or by execution of a DONE, NEXT or GO
TO statement (see page 18, page 19, page
16), is the value last assigned to it using the
algorithm above, This value is therefore always
well-defined.

The statement S may contain assignment
statements or procedure calls which change the
value of VBL. Such a statement behaves the
same way it would if inserted at the
corresponding point in the equivalent loop
described above.

WHILE STATEMENT
The statement:

WHILE BE DO S;
is equivalent to the statements:
" LOOP: IF BE THEN BEGIN

GO TO LoOP
END;

17



ALGOL STATEMENTS

DO STATEMENT
The statement:

DO S UNTIL BE;

is equivalent to the sequence:

LOOP: S;
IF -BE THEN GO TO LOOP;

CASE STATEMENTS
The statement:

CASE AE OF BEGIN S0; §1;82..Sn END
is functionally equivalent to the statements:

TEMP«AE;

IF TEMP<O THEN ERROR
ELSE IF TEMP « O THEN SO
ELSE IF TEMP « 1 THEN S1
ELSE IF TEMP = 2 THEN S2

ELSE IF TEMP « n THEN Sn
ELSE ERROR;

For applications of this type the . CASE
statement form will give significantly more
efficient code than the equivalent If statements,
Notice that dummy statements may be inserted
for those cases which will not occur or for
which no entries are necessary. For example,

CASE AE OF BEGIN $0;;:S3:;::56; END

provides for no actions when AE is 1, 2, 4, 5, or
7. When AE is 0, 3, or 6 the corresponding
statement will be executed. However, slightly
more efficient code may be generated with a
second type of Case statement that numbers
each of its statement with [n] where n is an

integer constant. The above example using this-

type of Case statement is then:
CASE AE OF BEGIN [3] $3; [0] SO; [6] S6 END;

All the statements must be numbered, and the
numbers must all be non-negative integer
constant expressions, although they may be in
any order.

Multiple case numbers may precede each
statement; the statement is executed for any
one of the numbers specified. The following
two CASE statements are equivalent:

18

SAIL

CASE AE OF BEGIN [4] [1] $41; [2] [3) S23 END;
CASE AE OF BEGIN [1] S41; [2) $23;
[3) $23; [4) S41 END;

Block names (i.e. any string constant) may be
used after the BEGIN and END of a Case
statement with the same effect as block names
on blocks or compound staterments. (See about -
block names on page 1).

RETURN STATEMENT

This statement is invalid if it appears outside a
procedure declasation. It provides for an early
return from a Procedure execution to the
statement calling the Procedure. If no return
statement is executed then the Procedure will
return after the last statement representing
the procedure body is executed (see page 7).

An untyped Procedure (see page 19) may not
return a value. The return statement for this
kind of Procedure consists merely of the word
RETURN. If an argument is given then it will
cause the compiler to issue an error message.

A typed Procedure (see page 28) must return
a value as it executes a return statement. If no
argument is present an error message will be
given. If the Procedure has an algebraic type
then any algebraic expression may be returned
as its value; type conversion will be performed
in a manner described on page 23.

If no RETURN statement is executed in a typed
Procedure then the value returned is undefined.

DONE STATEMENT

The statement containing only the word DONE
may be used to terminate the execution of a
FOR, WHILE, or DO (also FOREACH - see page
92) loop explicitly. Its operation can most
easily be seen by means of an example. The
statement

FOR l1 STEP 1 UNTIL n DO BEGIN
S;

IF BE THEN DONE;
END

is aquivalent to the statement



SAIL

FOR le1 STEP 1 UNTIL n DO BEGIN
S;

IF BE THEN GO TO EXIT;

END;
EXIT:

In either case the value of | is well-defined
after the statement has been executed (see
page 17).

The DONE statement will only cause an escape
from the innermost loop in which it appears,
unless a block name follows "DONE". The block
name must be the name of a block or compound
statement (a "Loop Biock") which is the object
statement of some FOR, WHILE, or DO statement
in which the current one is nested. The effect
is to terminate all loops out to (and including)
the Loop Block, continuing with the statement
following this outermost loop. For example:

WHILE TRUE DO BEGIN "B1"
IF OK THEN DO BEGIN "B2"

FOR le1 STEP 1 UNTIL K DO
IF A[1]»FLAGWORD THEN DONE “B1";

END "B2" UNTIL COWS_COME_HOME;
END "B1"; _
Here the block named "B1" is the "loop block",

NEXT STATEMENT

A Next statement is valid only in a For
Statement or a While Statement (or Foreach -
see page 92). Processing of the loop
statement is temporarily suspended. When the
NEXT statement appears in a For loop, the next
value is obtained from the For List and
assigned to the controlled variable, The
termination test is then made. If the
termination condition is satisfied then control is
passed to the statement following the For
Statement. If not, control is returned to the
inner statement following the NEXT statement.
In While and Do loops, the termination condition
is tested. If it is satisfied, execution of the loop
terminates. Otherwise it resumes at the
statement within the loop following the NEXT
statement.

ALGOL STATEMENTS

Unless a block name follows NEXT, the
innermost loop containing the NEXT statement is
used as the “Loop Block" (see page 18). The
terminating condition for the loop block is
checked. [f the condition is met then all inner
loops are terminated (in DONE fashion) as well.
If continuation is indicated then no inner-loop
FOR-variable or WHILE-condition will have been
affected by the NEXT code.

The reserved word NEEDNEXT must precede
FOR or WHILE in the "Loop Block", and must not
appear between this block and the NEXT
statement. Example:

NEEDNEXT WHILE -EOF DO BEGIN
S«INPUT(1,1);
NEXT;
Comment check EOF and terminate if TRUE;
TeINPUT(1,3);
PROCESS_INPUT(S,T);
END;

CONTINUE STATEMENT

The Continue statement is valid in only those
contexts valid for the DONE statement (see
page 18); the "Loop Block" is determined in the
same way (i.e, implicitly or by specifying a
block name). All loops out to the Loop Block
are terminated as if DONE had been requested.
Control is transferred to a point inside the loop
containing the Loop Block, but after all
statements in the loop. Example:

FOR l«1 STEP 1 UNTIL N DO BEGIN
CONTINUE;
END
is semantically equivalent to:

FOR le1 STEP 1 UNTIL N DO BEGIN
LABEL CONT;

GO TO CONT;

CONT:
END

PROCEDURE STATEMENTS

A Procedure statement is used to invoke the
execution of a Procedure (see page 7). After
execution of the Procedure, control returns to
the statement immediately following the

18



ALGOL STATEMENTS

Procedure statement. Sail does allow you to
use typed Procedures as procedure statements.
The value returned from the Procedure is
simply discarded.

The actual parameters supplied to a Procedure
must match the formal parameters described in
the procedure declaration, modulo Sail type
conversion. Thus one may supply an integer
expression to a real formal, and type
conversion will be performed as on page 23.

If an actual parameter is passed by VALUE then
only the value of the expression is given to the
Procedure. This value may be changed or
examined by the Procedure, but this will in no
way affect any of the wvariables used to
evaluate the actual parameters. Any algebraic
expression may be passed by value.  Neither
Arrays nor Procedures may be passed by value
(use ARRBLT, page 51, to copy arrays). See
the default declarations for parameters in page
9.

If an actual parameter is passed by REFERENCE
then its address is passed to the Procedure.
All accesses to the value of the parameter
made by the Procedure are made indirectly
through this address. Therefore any change
the Procedure makes in a reference parameter
will change the value of the variable which was
used as an actual parameter. This is sometimes
useful. However, if it is not intended, use of
this feature can also be somewhat confusing as
well as moderately inefficient. Reference
parameters should be used only where needed.

Variables, constants, Procedures, Arrays, and
most expressions may be passed by reference.
No String expressions (or String constants) may
be reference parameters.

If an expression is passed by reference then
its value is first placed in a temporary location;
a constant passed by reference is stored in a
unique location. The address of this location is
passed to the Procedure. Therefore, any
values changed by the Procedure via reference
parameters of this form will be inaccessible to
the user after the Procedure call. If the called
program is an assembly language routine which
saves the parameter address, it is dangerous to
pass expressions to it, since this address will
be used by the compiler for other temporary
purposes. A warning message will be printed
when expressions are called by reference.

20

SAIL

The type of each actual parameter passed by
reference must match that of its corresponding
formal parameter, modulo Sail type conversion.
The exception is reference string formals, which
must have string variables (or string array
elements) passed to them. If an algebraic type
mismatch occurs the compiler will create a
temporary variable containing the converted .
value and pass the address of this temporary
as the parameter, and a warning message will
be printed. An.exception is made for Fortran
calls (see page 20).

PROCEDURES AS ACTUAL PARAMETERS
If an actual parameter to a Procedure PC is the
name of a Procedure PR with no arguments
then one of three things might happen:

1) If the corresponding  formal .
parameter requires a value of a
type matching that of PR (in the
loose sense given above in page
20), the Procedure is evaluated
and its wvalue is sent to the
Procedure PC. ~

2) If the formal parameter of PC
requires a reference Procedure of
identical type, the address of PR is
passed to PC as the actual
parameter,

3) If the formal parameter requires a
reference variable, the Procedure is
evaluated, its result stored, and its
address passed (as with expressions
in the previous paragraph) as the
parameter.

If a Procedure name followed by actual
parameters appears as an actual parameter it is
evaluated (see functions, page 28). Then if
the corresponding formal parameter requires a
value, the result of this evaluation is passed as
the actual parameter. If the formal parameter
requires a reference to a value, it is called as a
reference expression.

FORTRAN PROCEDURES

If the Procedure being called is a Fortran
Procedure, all actual parameters must be of
type INTEGER (BOOLEAN) or REAL. All such
parameters are passed by reference, since
Fortran will only accept that kind of call. For
convenience, any constant or expression used
as an actual parameter to a Fortran Procedure



SAIL

is stored in a temporary cell whose address is
given as the reference actual parameter.

it was explained in page 7 that formal
parameters need not be described for Fortran
Procedures. This allows a program to call a
Fortran Procedure with varying numbers of
arguments, No type conversion will be
performed for such parameters, of course. If
type conversion is desired, the formal
parameter declarations should be included in
the Fortran procedure declaration; Sail will use
them if they are present.

To pass an Array to Fortran, mention the
address of its first element (e.g. A[0), or
B[1, 1.

NOW_SAFE and NOW_UNSAFE

The NOW_SAFE and NOW_UNSAFE statements
both take a list of Array names (names only -
no indices) following them. From a NOW_SAFE
until the end of the program or the next
NOW_UNSAFE, the specified arrays will not
have bounds checking code emitted for them. If
an array has had a NOW_SAFE done on it, or
has been declared SAFE, NOW_UNSAFE wili
cause bounds checking code to be emitted until
the array is made safe again (if ever). Note
that NOW_SAFE and NOW_UNSAFE are compile
time statements. "“IF BE THEN NOW_SAFE .."
will not work.

ALGOL STATEMENTS

21



ALGOL EXPRESSIONS

SECTION 4
ALGOL EXPRESSIONS

4.1 Syntax

<expression>
u= <simple_expression>
1= <conditional_expression>
u= <assignment_expression>
u= <case_expression>

<conditional_expression>
«= |F <boolean_expression> THEN
<expression> ELSE <expression>

<assignment_expression>
u= <variable> « <expression>

<case_expression>
um= CASE <algebraic_expression> OF (
<expression_list> )

<expression_list>
= <gxpression>
1= <expression_list> , <expression>

<simple_expression>
u= <algebraic_expression>
u= <leap_expression>

<boolean_expression>
u= <expression>

<algebraic_expression>
u= <disjunctive_expression>
u= <algebraic_expression> v
<disjunctive_expression>
1= <algebraic_expression> OR
<disjunctive_expression>

<disjunctive_expression>
u= <negated_expression>
u= <disjunctive_expression> A
<negated_expression>
1= <disjunctive_expression> AND
<negated_expression>

22

<negated_expression>
um ~ <relational_expression>
u= NOT <relational_expression>
u= <relational_expression>

<relational_expression>
u= <algebraic_relational>
u= <leap_relational>

<algebraic_relational>
1= <bounded_expression>
um <relational_expression>
<relational_operator>
<bounded_expression>

<relational_operator>
um <
= >
-
=2
um g
= LEQ
u= GEQ
= NEQ

<bounded_expression>
u= <adding_expression>
u= <bounded_expression> MAX
<adding_expression>
u= <bounded_expression> MIN
<adding_expression>

<adding_expression>
= <term>

SAIL

u= <adding_expression> <add_operator>

<term>

<adding_operator>
HL I
= LAND
«= LOR
u= EQV
u= XOR

<term>
u= <factor>
u= <term> <mult_operator> <factor>



SAIL

<mult_operator>

= X

um /

um %

w= LSH

u= ASH

u= ROT

= MOD

u= DIV

um &

<factor>
i= <primary>
um <primary> T <primary>

<primary>
u= <algebraic_variable>
1= - <primary>
u= LNOT <primary>
= ABS <primary>
u= <string_expression> [ <substring_spec>

= 00

u= INF

u= <constant>

-u= <function_designator>

1= LOCATION ( <loc_specifier>)
um ( <algebraic_expression> )

<string_expression>
1= <algebraic_expression>

<substring_spec>
u= <algebraic_expression> TO
<algebraic_expression>
u= <algebraic_expression> FOR
<algebraic_expression>

<function_designator>
«w= <procedure_call>

<loc_specifier>
1= <variable>
u= <array_identifier>
u= <procedure_identifier>
u= <label_identifier>

<algebraic_variable>
1= <variable>

ALGOL EXPRESSIONS

4.2 Type Conversion

Sail automatically converts between the data
types Integer, Real, String and Boolean. The
following table illustrates by description and
example these conversions. The data type
boolean is identical to integer under the
mapping TRUE¥O and FALSE=O0. :

F |To
r
o | INTEGER REAL STRING
m_|
1] | Lett justify | Make a string
N | and raise to | of 1 character
T | appropriate | with the low
E| | power. | 7 bits for its
G | | 134521.345e3 | ASCII code.
E| | -678+-6.78@2 | 48 » "B"
R_| | J
| | !
R | Take greatest | | Convert to in-
E | integer. | | teger, then to
R | 1.34582 + 134 | | string.
L | -6.7lel » -68 | | 4.8e1 » "8"
] 2.3e-2 + 8 | | 4.839el » "8"
—I | |
| The RSCII code| Convert to in-|
S | for the first | teger then |
T | character of | to real. |
R | string. ] ]
1] “OSUH"» 48 | "eSul"+ 4.8el |
N | NULL 4+ 8 | NULL » 8 |
6.} | I

NOTES: The NULL string is converted to 0, but 0
is converted to the one character string with
the ASCIl code of 0. If an integer requires more
than 27 bits of precision (2727 = 134217728)
then some low order significance will be lost in
the conversion to real; otherwise, conversion to
real and then back to integer will result in the
same integer value. If a real number has
magnitude greater than 2135 - 218
(=34359738112) then conversion to integer will
produce an invalid result. UUOFIX does no
error checking for this case; KIFIX and FIXR will
set Overflow and Trap 1.

The default instruction compiled for a real to
integer conversion is a UUO which computes
FLOOR (x), the greatest integer function. This
can be changed with the /A switch (page 134)
to one of several other instructions. For real
to integer conversion the choices are
UUOFiX(opcode 003), KIFIX(122) and FiXR(126)

23



ALGOL EXPRESSIONS

the effect of each is shown in the following
table.

UUOFIX KIFIX FIXR

real
1.4 1 1 1
1.5 1 1 2
1.6 1 1 2
~1.4 -2 -1 -1
-1.5 -2 -1 -1
-1.6 -2 -1 -2

UUOFIX is the default. In mathematical terms,
UUOFIX (x)=FLOOR (x)=[x] where [x] is the
traditional notation for the greatest integer less
than or equal to x. This UUQ requires execution
of 18.125 instructions (32 memory references)
on the average. Many FORTRANs use the
function implemented by KIFIX;
KIFIX (x)=SIGN (x)*FLOOR (ABS (x)). Many
ALGOLs use FIXR; FIXR (x)=FLOOR (x+0.5). Note
that FIXR (-1.5) is not equal to -FIXR (1.5).

For integer to real conversion the choices are
UUOFLOAT(002) and FLTR(127). FLTR rounds
while UUOFLOAT (the default) truncates. It only
makes a difference when the magnitude of the
integer being converted is greater than
134217728. In such cases it is always true that
UUOFLOAT (i)si  and FLTR (i)2i.  UUOFLOAT
merely truncates after normalization, while
FLTR adds +0.5 Isb and then truncates. Most
users will never see the difference. UUOFLOAT
takes 18.625 instructions (32 memory
references) on the average.

[For integer to real conversion involving a
SHORT quantity, FSC ac,233 is used. At SUAI
real to integer conversion involving a SHORT
quantity uses KAFIX ac,233000; as this manual
went to press KAFIX was simulated by the
system and was very expensive.]

The binary arithmetic, logical, and String
operations which follow will accept
combinations of arguments of any algebraic
types. The type of the result of such an
operation is sometimes dependent on the type
of its arguments and sometimes fixed. An
argument may be converted to a different
algebraic type before the operation s
performed. The following table describes the
results of the arithmetic and logical operations
given various combinations of Real and Integer
inputs. ARGl and ARG2 represent the types of
the actual arguments. ARGI® and ARG2’
represent the types of the arguments after any
necessary conversions have been made.

24

SAIL

Beware: automatic type conversion can be a
curse as well as a blessing. Study the
conversion rules carefully; note that Sail has
three division operators, %, DIV, and /.

OPERATION ARGI ARG2 ARGI' ARG2' RESULT

.- INT INT INT INT INT*
¥17 “ REAL INT REAL REAL REAL
MAX MIN INT REAL REAL REAL REAL

- REAL REAL REAL REAL REAL

LAND LOR  INT INT INT INT INT

EQV XOR REAL INT REAL INT REAL
INT REAL INT REAL INT
REAL REAL REAL REAL REAL

LSHROT ~ INT  INT  INT  INT  INT
| Ask REAL INT  REAL INT  REAL
INT  REAL INT  INT  INT
REAL REAL REAL INT  REAL

/ INT INT REAL REAL REAL
REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL

MOD BIv INT INT INT INT INT
REAL INT INT INT INT
INT REAL INT INT INT
REAL REAL INT INT INT

% For the operator T, ARG2’ and RESULT are
REAL wunless ARG2 is a positive integer
constant.{

4.3 Semantics

CONDITIONAL EXPRESSIONS

A conditional expression returns one of two
possible values depending on the logical truth
value of the Boolean expression. If the Boolean
expression (BE) is true, the value of the
conditional expression is the value of the
expression following the delimiter THEN. [f BE
is false, the other value is used. If both
expressions are of an algebraic type, the
precise type of the entire conditional
expression is that of the "THEN part”. In
particular, the "ELSE part” will be converted to
the type of the "THEN part" before being
returned as the value of the conditional
expression. Reread and understand the last
sentence.



SAIL

Unlike the nested If statement problem, there
can be no ambiguity for conditional expressions,
since there is an ELSE part in every such
expression. Example:

FOURTHDOWN (YARDSTOGO,YARDLINE,
IF YARDLINE < 70 THEN PUNT ELSE
IF YARDLINE < 80 THEN FIELDGOAL ELSE
RUNFORIT)

ASSIGNMENT EXPESSIONS

The somewhat weird syntax for an assignment
expression (it is equivalent to that for an
assignment statement) is nonetheless accurate:
the two function identically as far as the new
value of the left part variable is concerned.
The difference is that the value of this left part
variable is also retained as the value of the
entire  expression. Assuming  that the
assignhment itself is legal (following the rules
given in page 15 above), the type of the
expression is that of the left part variable.
This variable may now participate "in any
surrounding expressions as if it had been given
its new value in a separate statement on the
previous line. Only the « operator is valid in
assignment expressions. The ¢ operator is
valid only at statement level. Example:

IF (KeK+1) < 30 THEN KeO ELSE KeKel;

CASE EXPRESSIONS
The expression

CASE AE OF (EO, E1, E2, .., En)

is equivalent to:

IF AE=O THEN EO
ELSE IF AE=1 THEN E1
ELSE IF AE=2 THEN E2

ELSE IF AExn THEN En
ELSE ERROR

The type of the entire expression is therefore
that of EO. If any of the expressions E1 .. En
cannot be fit into this mold an error message is
issued by the compiler. Case expressions differ
from Case statements in that one may not use
the [n) construct to number the expressions.
Example: :

ALGOL EXPRESSIONS

OUT (TTY, CASE ERRNO OF (“BAD DIRECTORY",
“IMPROPER DATA MODE",
“UNKNOWN 1/0 ERROR",

"COMPUTER IN BAD MOOD"));

SIMPLE EXPRESSIONS

Simple expressions are simple only in that they
are not conditional, case, or assignment
expressions. There are in fact some exciting
complexities to be discussed with respect to
simple expressions.

PRECEDENCE OF ALGEBRAIC OPERATORS

The binary operators in Sail generally follow
“normal”  precedence rules. That is,
exponentiations are performed before
multiplications or divisions, which in turn are
performed before additions and subtractions,
etc. The bounding operators MAX and MIN are
performed after these operations. The logical
connectives A and v, when they occur, are
performed last (A before v). The order of
operation can be changed by including
parentheses at appropriate points.

In an expression where several operators of
the same precedence occur at the same level,
the operations are performed from left to right.
See page 26 for special evaluation rules for
logical connectives.

TABLE OF PRECEDENCE

T
% / 7 & MOD DIV LSH ROT ASH

+-® & LAND LOR

MAX MIN

=¥ <S> 2 LEQ GEQ NEQ
A AND

v OR

EXPRESSION EVALUATION RULES

Sail does not evaluate expressions in a strictly
left-to-right fashion. If we are not constrained
to a left-to-right evaluation, (as is ALGOL 60),
we can in some cases produce considerably
better code than a strict left-to-right scheme
could achieve. Intuitively, the essential features
(and pitfalls) of this evaluation rule can be
illustrated by a simple example:

be26;
cebe(beb/2)

The second statement is executed as follows:

25



ALGOL EXPRESSIONS

divide b by 2 and assign this value (1.3) to b.
Add this value to b and assign the sum to c.
Thus ¢ gets 2.6. If the expressions were
evaluated in a strictly left-to-right manner, ¢
would get 2.6 + 1.3.

The evaluation scheme can be stated quite
simply: code is generated for the operation
represented by a BNF production when the
reduction of that BNF production takes place.
That is, b + (b « b/2) isn’t reduced until after
(b « b/2) is reduced, so the smaller expression
gets done first.

"V" (OR)
If an algebraic expression has as its major
connective the logical connective "v", the
expression has the logical value TRUE
(arithmetic value some non-zero integer) if
either of its conjuncts (the expressions
surrounding the "v") is true; FALSE otherwise.
The reserved word OR is equivalent to the
symbol "v". AvB does NOT produce the bit-
wise Or of A and B if they are algebraic
expressions. Truth values combined by numeric
operators will in general be meaningless (use
the operators LOR and LAND for bit operations).

The wuser should be warned that in an
expression containing logical connectives, only
enough of the expression is evaluated (from left
to right) to uniquely determine its truth value.
Thus in the expression

(J<3 v (KeKe1) > 0),

K will not be incremented if J is less than 3
since the entire expression is already known to
be true. Conversely in the expression

(X 20 A SQRT(X)>2)

there is never any danger of attempting to
extract the square root of a negative X, since
the failure of the first test testifies to the
falsity of the entire expression -- the SQRT
routine is not even called in this case.

uAu (AND)
. if a disjunctive expression has as its major
connective the logical connective “A", the
expression has the logical value TRUE if both of
its disjuncts are TRUE; FALSE otherwise. Again,
if the first disjunct is FALSE a logical value of
FALSE is obtained for the entire expression
without further evaluation. The reserved word
AND is equivalent to "A".

26

SAIL

ll‘ll (NOT)

The unary Boolean operator -~ applied to an
argument BE (a relational expression, see
Syntax) has the value TRUE if BE is false, and
FALSE if BE is true. Notice that -A is not the
bitwise complement of A, if A is an algebraic
value. If used as an algebraic value, -A is
simply O if A¥O and some non-zero Integer.
otherwise. The reserved word NOT s

equivalent to "4

"OO=4" (RELATIONS)

If any of the binary relational operators is
encountered, code is produced to convert any
String arguments to Integer numbers. Then
type conversion is done as it is for the +
operations (see page 23). The values thus
obtained are compared for the indicated
condition. A Boolean value TRUE or FALSE is
returned as the value of the expression. Of
course, if this expression is used in subsequent
arithmetic operations, a conversion to integer is
performed to obtain an integer value. The
reserved words LEQ, GEQ, NEQ are equivalent
to "<", "2", "¢¥" respectively.

The syntax E1 RELOP1 E2 RELOP2 E3 where E1,
E2, and E3 are expressions and RELOPI,
RELOP2 are relational operators, is specially
interpreted as (E1 RELOP! (T«E2)) A (T RELOP2
E3). The compiler can sometimes produce
better code when the special syntax is used.
Thus a bounds check may be written IF L<I<U
THEN .. . RELOPl and RELOP2 may be any
relational operators, and need not be in
transitive order. The following are equivalent:

IFA<X>BTHEN .. and
IF X > (A MAX B) THEN ..

MAX MIN

A MAX B (where A and B are appropriate
expressions -- see the Syntax) has the value of
the larger of A and B (in the algebraic sense).
Type conversions are performed as if the
operator were ‘+. ‘0 MAX X MIN 10* is X if
0sX<10, 0 if X<0, 10 if X>10.

"+=" (ADDITION AND SUBTRACTION)

The + and - operators will do integer addition
(subtraction) if both arguments are integers (or
converted to integers from strings); otherwise,
rounded Real addition or subtraction, after
necessary conversions, is done.



SAIL

LAND LOR XOR EQV LNOT

LAND, LOR, XOR, and EQV carry out bit-wise
And, Or, Exclusive Or, and Equivalence
operations on their arguments. No type
conversions are done for these functions. The
logical connectives A and v do not have this
effect -- they simply cause tests and jumps to
be compiled. The type of the result is that of
the first operand. This allows expressions of
the form X LAND 777777777, where X is Real,
if they are really desired.

The unary operator LNOT produces the bitwise
complement of its (algebraic) argument. No
type conversions (except strings to' integers)
are performed on the argument. The type of
the result (meaningful or not) is the type of th
argument. .

"% /7" (MULTIPLICATION AND DIVISION)
The operation * (multiplication), like + and -,
represents Integer multiplication only if both
arguments are integers; Real otherwise. Integer
multiplication uses the IMUL machine instruction
-- no double-length result is available.

The [/ operator (division) always does rounded
Real division, after converting any Integer
arguments to Real,

The % (division) operator has the same type
table as +, -, and % It performs whatever
division is appropriate.

DIV MOD

DIV and MOD force both arguments to be
integers before dividing. X MODY is the
remainder after X DIV Y is performed:

XMODY « X-(XDIV VY)Y,

ASH LSH ROT

LSH and ROT provide logical shift operations on
their first arguments. If the value of the
second argument is positive, a shift or rotation
of that many bits to the left is performed.. If it
is negative, a right-shift or rotate is done. ASH
does an arithmetic shift. Assume that A is an
Jinteger. If N is positive then the expression A
ASH N is equal to A * 2N, If N is negative then
A ASH N is equal to FLOOR (A / 21(~N)).

"&" (CONCATENATION)

This operator produces a result of type String.
It is the String with length the sum of the
lengths of its arguments, containing all the

ALGOL EXPRESSIONS

characters of the second string concatenated to
the end of all the characters of the first. The
operands will first be converted to strings if
necessary as described in page 23 above.
Numbers - can be converted to strings
representing their external forms (and vice-
versa) through- explicit calls on execution time
routines like CVS and CVD (see page 46
below). NOTE: Concatenation of constant
strings will be done at compile time where
possible. For example, if SS is a string variable,
S$S&'12&’15  will result in two runtime
concatenations, while SS&(°12&’15) will result in
one compile time concatenation and one runtime
concatenation. :

"t (EXPONENTIATION)

A factor is either a primary or a primary raised
to a power represented by another primary.
As usual, evaluation is from left to right, so that
ATBTC is evaluated as (ATB)TC. In the factor
X1Y, a suitable number of multiplications and
additions is performed to produce an "exact"
answer if Y is a positive integer. Otherwise a
routine is called to- approximate
ANTILOG (Y LOG X). The result has the type of
X in the former case. It is always of type Real
in the latter.

SUBSTRINGS

A String primary which is qualified by a
substring specification represents a part of the
specified string. The characters of a string STR
are numbered 1, 2, 3, ., LENGTH (STR).
ST[X FOR Y] represents the substring which is
Y characters long and begins with character X.
ST[X TO Y] represents the Xth through Yth
characters of ST.

Consider the ST[X TO Y] case. This is evaluated

_SKIP_«FALSE; XTeX; YTeY;
IF YT > LENGTH (ST) THEN BEGIN
YTeLENGTH (ST); righthalf (_SKIP_)«TRUE END;
IFYT < O THEN COMMENT result will be NULL;
BEGIN YT«0; righthaif (_SKIP_)«TRUE END;
IF XT < 1 THEN
BEGIN XT « 1; lefthalf (_SKIP_)eTRUE END;
IF XT > YT THEN COMMENT result wifl be NULL;
BEGIN XT « YTe+1; lefthalf (_SKIP_)«TRUE END;
<return the XTth through YTth characters of ST»>

LENGTH returns the number of characters in a
string (see page 48). The ST[X FOR Y]
operation is converted to the ST[X TO Y] case
before the substring operation is performed.

27



ALGOL EXPRESSIONS

The variable _SKIP_ can bé examined to
determine if the substring indices were "out of
v bounds".

“o0" (SPECIAL LENGTH OPERATOR)

This special primary construct is valid only
within substring brackets. It is an algebraic
value representing the length of the most
immediate string under consideration. The
reserved word INF is equivalent to "oo"
Example:

A[o-2 to o] vyields the last 3
characters of A.

A[3 for Bfco-1 for 1]} uses the next to
the last character of string
B as the number of"
characters for the A
substring operation.

FUNCTION DESIGNATORS

A function designator defines a single value.
This value is produced by the execution of a
typed user Procedure or of a typed execution-
time routine (See chapters 6 and 7 for
execution-time routines). For a function
designator to be an algebraic primary, ils
Procedure must be declared to have an
algebraic type. Untyped Procedures may only
be called as Procedure statements (see page
19). The value obtained from a user-defined
Procedure is that provided by a Return
Statement within that Procedure.

The rules for supplying actual parameters in a
function designator are identical to those for
supplying parameters in a procedure statement
(see page 19).

UNARY OPERATORS

The unary operator ABS is valid .only for
algebraic quantities. It returns the absolute
value of its argument.

-X is equivalent to (0-X). No type conversions
are performed.

| -X is the logical negation of X,

MEMORY AND LOCATION

One’s core image can be considered a giant one
dimensional array, which may be accessed with
the MEMORY construct. You had better be a
good sport, or know what you are doing.

MEMORY [ <integer expression> }

28

SAIL

One can store and retrieve from the elements
of MEMORY just as with any other array.
However, with MEMORY, one can control how
the compiler interprets the type of the
accessed element by including type declarator
reserved words after the <integer expression>,
For example:

..« MEMORY[X, INTEGER]
MEMORY[X, REAL] « ..
.« MEMORY[X, ITEM]
COMMENT items and sets are part of Leap;
MEMORY[X, SET] « .. .
..« MEMORY[X, INTEGER ITEMVAR]

Note that one can not specify the contents of
memory to be an Array or a String.

LOCATION is a predeclared Sail routine that
returns the index in MEMORY of the Sail
construct furnished it. The following is a list of
constructs it can handle and what LOCATION will
return. :

CONSTRUCT x LOCATION (x) RETURNS
variable address of the variable

string variable -1,address of word2

address of a word containing

the the address of the first
data word of the array

array name

array element address of that element

procedure name address of the procedure’s
entry code

labels address of the label
Simple example:

REAL X;

MEMORY [LOCATION (X), REAL] « 2.0;

PRINT (X); COMMENT " 2000000 ™

MEMORY [LOCATION (X)] « 2.0; PRINT (X);
COMMENT " .0000000@-38", MEMORY is INTEGER
unless otherwise specified;

MEMORY [LOCATION (X), INTEGER)] « 2.0;

PRINT (X); COMMENT same as above;



SAIL

SECTION 5
ASSEMBLY LANGUAGE STATEMENTS

5.1 Syntax

<codé_block> :
u= <code_head> <code_tail>

<code_head>
u= <code_begin>
u= <code_begin> <block_name>
u= <code_head> <declaration> ;

<code_begin>
= START_CODE
== QUICK_CODE

<code_tail>
u= <instruction> END
u= <instruction> END <block_name>
u= <instruction> ; <code_tail>

<instruction>
u= <addresses>
u= <opcode>
1= <opcode> <addresses>

<addresses>
u= <address>
u=m <ac_field> ,
u= <ac_field> , <address>

<ac_field>
= <constant_expression>

<address>
1= <indexed_address>
u= @ <indexed_address>

<indexed_address>
“u= <gimple_address>
u= <simple_address> ( <index_field> )

ASSEMBLY LANGUAGE STATEMENTS

<simple_address>
u= <identifier>
u= <static_array_name> [
<constant_subscript_list> ]
u= <constant_expression>
u= <literal>

, <literal>

um [ <constant_expression> ]

<index_field>
u= <constant_expression>

<opcode>
u= <constant_expression>
u= <PDP-10_opcode>

5.2 Semantics

Within a START_CODE (QUICK_CODE) block,
statements are processed by a small and weak,
but hopefully adequate, assembly language
translator. Each ‘“instruction” places one
instruction word into the output file. An
instruction consists of

<label>:<opcode> <ac_field>, @<simple__addr> (<index>)

or some subset thereof (see syntax). Each
instruction must be followed by a semi-colon.

DECLARATIONS IN CODE BLOCKS

A code_block behaves like any other block with
respect to block structure. Therefore, all
declarations are valid, and the names given in
these declarations will be available only to the
instructions in the code_block. All labels must
be declared as usual. Labels in code_blocks
may refer to instructions which will be
executed, or to those which are not really
instructions, but data to be manipulated by
these instructions (these latter words must be
bypassed in the code by jump instructions).
The user may find it easier to declare variables
or SAFE arrays as data areas rather than using
labels and null statements. As noted below,
identifiers of simple variables are addresses of
core locations. Identifiers of arrays are
addresses of the first word of the array header
(see the appendix on array implementation).

29



ASSEMBLY LANGUAGE STATEMENTS

PROTECT ACS DECLARATION
PROTECT_ACS <ac #>, .., <ac #>;

where <ac #> is an integer constant between 0
and ’17, is a declaration. its effect is to cause
Sail not to use the named accumulators in the
code it emits for the block in which the
declaration occurred (only AFTER the
declaration). The most common use is with the
ACCESS construct (see below); if one is using
accumulators 2, 3, and 4 in a code block, then
one should declare PROTECT_ACS 2, 3, 4 if one
is going to use ACCESS. This way, the code
emitted by Sail for doing the ACCESS will not
use accumulators 2, 3, or 4.  WARNING: this
does not prevent you from clobbering such ACs
with procedure calls (your own procedures or
Sail’s). However, most Sail runtimes save their
ACs and restore them after the call.

RESTRICTION: Accumulators P (’17), SP (’16), F
(’l2) and 1 are used for, respectively, the
system push down pointer, the string push
down pointer, the display pointer, and returning
results from typed procedures and runtimes.
More about these acs on page 3l. The
protect mechanism will not override these
usages, so attempts to protect 1, ’12, ’16, or
*17 will be futile.

OPCODES .

The Opcode may be a constant provided by the
user, or one of the standard (non |/O) PDP-10
operation codes, expressed symbolically. If a
constant, it should take the form of a complete
PDP-10 instruction, expressed in octal radix
(e.g. DEFINE TTYUUO = ™51000000000"). Any
bits appearing in fields other than the opcode
field (first 9 bits) will be OR’ed with the bits
supplied by other fields of instructions in which
this opcode appears. In TOPS-10 Sail the
MUUOs (ENTER, LOOKUP, etc.) are available. In
TENEX Sail the JSYSes are available. Within a
code_block opcodes supersede all other
objects; a variable, macro, or procedure with
the same name as an opcode will be taken for
the opcode instead.

The indirect, index, and AC fields have the same
syntax and perform the same functions as they
do in the FAIL or MACRO languages.

THE <simple addr> FIELD

If the <address> in an instruction is a constant
(constant expression), it is assumed to be an
immediate or data operand, and is not relocated.

30

SAIL

If the <address> is an identifier, the machine
address (relative to the start of the compilation)
is used, and will be relocated to the proper
value by the Loader.

if the <address> is an identifier which has been
declared as a formal parameter to a procedure,
addressing arithmetic will be done automaticaily.
to get at the VALUE of the parameter. Hence if
the <address> is a formal reference parameter,
the instruction will be of the form OP AC,@ -
x(’12) where x depends on exactly where the
parameter is in the stack. If the formal was
from a simple procedure, then *17 will be used
as the index register rather than ’12. When
computing x Sail will assume that the stack
pointer has not changed since the last
procedure entry; if you use PUSH, POP, etc. in a
Simple Procedure then you rmust calculate x
yourself,

If a literal is used, the address of the compiled
constant will be placed in the instruction.

Any reference to Strings will . result in the
address of the second descriptor word (byte
pointer) to be placed in the instruction (see the
appendix on string implementation for an
explanation of string descriptors).

Accessing parameters of procedures global to
the current procedure is difficult. ACCESS
(<expr>) may be used to return the address of
such parameters. ACCESS will in fact do all of
the computing necessary to obtain the value of
the expression <expr>, then return the address
of that value (which might be a temporary).
Thus, MOVE AC, ACCESS(GP) will put the value
of the variable GP in AC, while MOVEI AC,
ACCESS(GP) will put the address of the variable
GP in AC. If the expression is an item
expression (see Leap), then the item’s number
will be stored in a temp, and that temp’s
address will be returned. The code emitted for
an Access uses any acs that Sail believes are
available, so one must include a PROTECT_ACS
declaration in a Code block that uses ACCESS if
you want to protect certain acs from being
raunged by the Access. WARNING: skipping
over an Access won’t do the right thing. For
exarnple,

SKIPE FLAG;
MOVE  *18,RCCESS (*777 LAND INTIN(CHAN));
MOVEI ’18,0;



SAIL

will cause the program to skip into the middle
of the code generated by the access if FLAG is
0.

START_CODE VERSUS QUICK_CODE

Before your instructions are parsed in a block
starting with START_CODE, instructions are
executed to leave all accumulators from O
J through 11 and '13 through ’15 available for
your use. In this case, you may use a JRST to
transfer control out of the code_block, as long
as you do not leave (1) a procedure, (2) a
block with array declarations, (3) a Foreach
loop, (4) a loop with a For list, or (5) a loop
which uses the NEXT construct. In a
QUICK_CODE block, no accumulator-saving
instructions are issued.” Ac’s '13 through °15
only are free. In addition, some recently used
variables may be given the wrong values if
used as address identifiers (their current values
may be contained in Ac’s 0-’11); and control
should not leave the code block except by
"falling through".

ACCUMULATOR USAGE IN CODE BLOCKS
Although we have said that accumulators are
“freed" for your use, this does not imply a
carte blanche. Usually this means the compiler
saves values currently stored in the ACs which
it wants to remember (the values of variables
mostly), and notes that when the code block is
finished, these ACs will have values in them
that it doesn’t care about. However, this is not
the case with the following accumulators, which
are not touched at all by the entrance and exit
of code blocks:
NAME NUMBER USAGE
P 17 The system push down list
pointer. All procedures are
called with a PUSHJ P, PROC
and exited (usually) with a
POPJ P. Use this as your PDL
pointer in the code block, but
~ be sure that its back to where
it was on entrance to the block
by the time you exit.

SP - ’16 The string push down stack
pointer. Used in all string
operations. For how to do
your own string mangling, read
the code.

This is used to maintain the

ASSEMBLY LANGUAGE STATEMENTS

“display" structure of
procedures. DO NOT HARM AC
F!! Disaster will result. A more
exact description of its usage
may be found in the appendix
on procedures and by reading
the code.

CALLING PROCEDURES FROM INSIDE CODE
BLOCKS

To call a procedure (say, PROT) from inside a
code block, use PUSHJP, PROT. If the
procedure requires parameters, PUSH P them in
order before you PUSHJ P (i.e. the first one
first, the second one next, etc.). If the formal is
a reference, push the address of the actual
onto the P stack. If the formal is a value string,
push onto the SP stack the two words of the
string descriptor (see the appendix on string
implementation for an explanation of string
descriptors). If the formal is a reference string,
simply PUSH P the address of the second word
of the string descriptor. If the procedure is
typed, it will return is value in AC 1, except
that STRING procedures return their values as
the top element of the SP stack. More
information can be found in the appendnx on
procedure implementation. Example:

INTEGER K; STRING S, SS;

INTEGER PROCEDURE PROT (REAL T; REFERENCE
INTEGER TT; STRING TTT; REFERENCE
STRING TTTT)

BEGIN COMMENT BODY; END;

DEFINEP ='17,SP ='16

START_CODE
PUSH ~ P, [3.14159);
MOVEl 1, K;
PUSH P, I;
MOVEl 1,S;

COMMENT if Sail sllowed address
arithmetic in Start_code, you
could have said PUSH SP, S-1;

PUSH 8P, -1(1)

PUSH SR, S;
MOVE! 1, SS;
PUSH P, Ii
PUSHJ  P,PROT;
END;

gives the same effect as
PROT (3.14159, K, S, SS)

NOTE:  procedures  will change your

31



ASSEMBLY LANGUAGE STATEMENTS SAIL

accumulators unless the procedure takes special
pains to save and restore them.

BEWARE

The Sail <code block> assembler is not FAIL or
MACRO. Read the syntax! Address arithmetic is
not permitted. All integer constants are decimal
unless specified explicitly as octal (e.g., '120).
Each instruction is a separate <statement> and
must be separated from surrounding statements
by a semicolon. If you want comments then use
COMMENT just like anywhere else in Sail
QUICK_CODE is for wizards.

32



SAIL

SECTION 6
INPUT/OUTPUT ROUTINES

6.1 Execution-time Routines in General

INPUT/OUTPUT ROUTINES

assumes Integer
those functions which are
predeclared). The user may pass
Real arguments to these routines by
re-declaring them in the blocks in
which the Real arguments are
desifed.

arguments (for

2) If the @ character precedes the
SCOPE sample identifier, the argument will
A large set of predeclared, built-in procedures be called by reference. Otherwise it
and functions have been compiled into a library is a value parameter.
permanently resident on the system disk area
(SYS:LIBSAN.REL or <SAIL>LIBSAN.REL - n is the Example:

© current version number; HLBSAn for /Hrtewpile

compilations), and optionally into a special S4r* "RESULT" « SCAN (a"SOURCE", BREAK_TABLE, @BRCHAR)

sharable write-protected high segment. The
library also contains programs for managing
storage allocation and initialization, and for
certain String functions. If a user calls one of
these procedures, a request is automatically
made to the loader to include the procedure,
and any other routines it might need, in the
core image (or to link to the "high segment).
These routines ‘provide input/output (1/0)
facilities, Arithmetic-String conversion facilities,
array-handling procedures and miscellaneous
other interesting functions. The remainder of
this section and the next describes the calling
sequences and functions of these routines.

NOTATIONAL CONVENTIONS

A short-hand is used in these descriptions for
specifying the types (if any) of the execution-
time routines and of their parameters. Before
the description of each routine there is a
sample call of the form

VALUE « FUNCTION (ARG, ARG2, .. ARGn)

If VALUE is omitted, the procedure is an
untyped one, and may only be called at
statement level (page 19).

The types of VALUE and the arguments may be
determined using the following scheme:

1) If " characters surround the sample
identifier (which is usually mnemonic
in nature) a String argument is
expected. Otherwise the argument
is Integer or Real. If it is important
which of the types Integer or Real
must be presented, it will be made
clear in the description of the
function. Otherwise the compiler

is a predeclared procedure with the implicit
declaration:

EXTERNAL STRING PROCEDURE SCAN
(REFERENCE STRING SOURCE;
INTEGER BREAK_TABLE;
REFERENCE INTEGER BRCHAR);

-SKIP_

Some routines return secondary values by
storing them in _SKIP_, Declare EXTERNAL
INTEGER _SKIP_ if you want to examine these
values. In FAIL or DDT the spelling is ".SKIP.".

6.2 1/0 Channels and Files

OPEN

OPEN (CHANNEL, "DEVICE", MODE,
NUMBER_OF _INPUT_BUFFERS,
NUMBER_OF _OUTPUT_BUFFERS,
@COUNT, @BRCHAR, @EOF);

Sail input/output operates at a very low level
in the following sense: the operations
necessary to obtain devices, open and close
files, etc., are almost directly analogous to the
system calls used in assembly language. OPEN
is used to associate a channel number (0 to *17)
with a device, to determine the data mode of
the 1/0 to occur on this channel (character
mode, binary mode, dump mode, etc.), to
specify storage requirements for the data
buffers used in the operations, and to provide
the system with information to be used for

33



INPUT/QUTPUT ROUTINES

Iinput operations, See page 45 for an example

of TOPS-10 |/0 programming.

CHANNEL
which will be used in subsequent |/O .

is a user-provided channel number

operations to identify the device.
CHANNEL may range from 0 to 15
(’17). A RELEASE will be performed
before the OPEN is executed. :

- DEVICE must be a String (i.e. “TTY", "DSK")

which is recognizable by the system as
a physical or logical device name.

MODE is the data mode for the I/O operation.

MODE 0 will

- 36 ff. for

always work for
characters (see INPUT, page 39 and
OUT, page 40). Modes 8 (*10) and 15
("17) are applicable for binary and
dump-mode operations using the
functions WORDIN, WORDOUT, ARRYIN,
or ARRYOUT (see page 40 and
following). For other data modes, see
[SysCall). If any of bits 18-21 are on
in the MODE word, the I-0 routines will
not print error messages when data
errors occur which present the
corresponding bits as a response to
the GETSTS UUO. Instead, the GETSTS
bits will be reported to the user as
described under EQF below. If bit 23
is on, no error message will be printed
if an invalid file name specification is
presented to LOOKUP, ENTER, or
RENAME, a code identifying the
problem will be returned (see page
details). If you don
understand any of this, leave all non-
mode bits off in the MODE word.

NUMBER_OF _{INPUT /OUTPUT}_BUFFERS

34

specifies the number of buffers to be
reserved for the |/0O operations. At
least one buffer must be specified for
input if any input is to be done in
modes .other than ’17; similarly for
output. If data is only going one
direction, the other buffer specification
should be 0. Two buffers give
reasonable performance for most
devices (1 is sufficient for a TTY, more
are required for DSK if rapid operation
is desired). The left half of the
BUFFER  parameter, if non-zero,
specifies the buffer size (mod °7777)
for the 1/O buffers. Use this only if
you desire non-standard sizes.

SAIL

The remaining arguments are applicable only
for INPUT (String input). They will be ignhored
for any other operations (although their values
may be changed by the Open function).

COUNT  designates a variable which ‘will

“read if a

contain the maximum number of
tharacters to be read from "DEVICE" in.
a given INPUT call (see page 39,
page 36). Fewer characters may be
break character s
encountered or if an end of file is
detected. The count should be a
variable or constant (not  an
expression), since its address is stored,
and the temporary storage for an
expression may be re-used.

BRCHAR designates a variable into which the

EOF

1)

2)

break character (see INPUT and
BREAKSET again) will be stored. This
variable can be tested to determine
which of many possible characters
terminated the read operation.

designates a variable to be used for
two purposes:

Error handling when OPEN is called.
If the system call used by OPEN
succeeds then EOF is set to zero
and OPEN returns. If the system
call fails then OPEN looks at the
EOF variable; if it is nonzero then
OPEN returns. If EOF is zero then
the user is given the option of
retrying or continuing without the
device. If a retry is successful
then EQF is zeroed. If the user
proceeds (gives up) then EOF is set
to nonzero. The net effect is that
the program may interpret EOF=0
as a successful OPEN and EQF#0 as
an unsuccessful OPEN.

Error handling for subsequent 1/0
operations. EOF will be made non-
zero (TRUE) if an end of file
condition, or any error condition
among those enabled (see MODE,
above) is detected during any Sail
input foutput operation. It will be O
(FALSE) on return to the user
otherwise. Subsequent  inputs
after an EOF return will return
non-zero values in EOF and a null



SAIL

String result for INPUT. For
ARRYIN, a O is returned as the
value of the call after end of file is
detected. If EQF is TRUE after such
an operation, it will contain the
entire set (18 bits) of GETSTS
information in the left half. The
EQOF bit is *20000, and is the only
one you'll ever see if you haven't
specially enabled for others.

Here are the error bits for SUAl and TOPS-10;
TENEX Sail uses the ERSTR error number
instead.
400000 improper mode (a catchall)
200000 parity error
100000 data error
40000 record number out of bounds
20000 end of file {input only)

You-are always enabled for bit 20000 (EOF).
However, to be allowed to handle any of the
others, you must turn on the corresponding bit
in the right half of the MODE word. In addition,
the 10000 bit is used to enable user handling
of invalid file specifications to ENTER, LOOKUP,
and RENAME. *7500017 in the MODE parameter
would enable a dump mode file for user
handiing of ALL 1/O errors on the channel. If
you are not enabled for a given error, an error
message (which may or may not be fatal) will
be printed, and the error code word set as
indicated.. In addition, the number of words
actually transferred is stored in the right half
of the EOF variable for ARRYIN, ARRYOUT.

Assembly Language Approximation to OPEN:

INIT  CHRNNEL, MODE

SIXBIT /DEVICE/
XUD OHED, IHED

JRST <handie error condition>
JUMPE <NUMBER_OF _OUTPUT_BUFFERS>, GETIN

<allocate buffer space>
OUTBUF CHANNEL, NUMBER_OF_OUTPUT_BUFFERS
GETIN: JUMPE <NUMBER_OF _INPUT_BUFFERS>, DONE
<allocate buffer space>
INBUF CHANNEL, NUMBER_OF _INPUT_BUFFERS
DONE: «<mark channel opsn =~ internal bookkeeping>
<resturn>

OHED: BLOCK 3
IHED: BLOCK 3

INPUT/OUTPUT ROUTINES

CLOSE, CLOSIN, CLOSO ==

CLOSE (CHANNEL, BITS(0));
CLOSIN (CHANNEL, BITS(0))
CLOSO (CHANNEL, BITS(0))

The input (CLOSIN) or output (CLOSO) side of
the specified channel is closed: all output.is
forced out (CLOSQ); -the current file name is
forgotten. However the device is still active; no
OPEN need be done again before the next
LOOKUP/ENTER operation.  Always CLOSE
output files: Sail exit code will . deassign the
device, but does not force out any remaining
output; you must do a CLOSE when writing on a
disk file to have the new file {(or a newly edited
old file) entered on your User File Directory.
No INPUT, OUT, etc., may be given to a directory
device until an ENTER, LOOKUP, or RENAME has
been issued for the channel.

CLOSE is equivalent to the execution of both
CLOSIN and CLOSO for the channel. BITS
specifies the close inhibit bits, which default to
zero.tSee [SysCall] for the interpretation of
the bits.

GETCHAN

VALUE « GETCHAN
GETCHAN returns the number of some channel

which Sail believes is not currently open., The
value -1 is returned if all channeis are busy.

RELEASE

| RELEASE (CHANNEL, BITS(0))

If an OPEN has been executed for this channel,
a CLOSE is now executed for it. The device is
dissociated from the channel and returned to
the resource pool (unless it has been assigned
by the monitor ASSIGN command). No 1/0O
operation may refer to this channel until
another OPEN denoting it has been executed.
BITS specifies the CLOSE inhibit bits; see
[SysCali).

Release is always valid. If the channel
mentioned is not currently open, the command
is simply ignored.

35



INPUT/OUTPUT ROUTINES

LOOKUP, ENTER

LOOKUP (CHANNEL, "FILE", @FLAG);
ENTER (CHANNEL, “FILE", @FLAG)

Before input or output operations may be
performed for a directory device (DECtape or
DSK) a file name must be associated with the
channel on which the device has been opened
(see page 33). LOOKUP names a file which is to
be read. ENTER names a file which is to be
created or extended (see [SysCall]). It is
recommended that an ENTER be performed
after every OPEN of an output device so that
output not normally directed to the DSK can be
directed there for later processing if desired.
The format for a file name string is

"NAME", or
"NAME.EXT", or
"NAME[P,PN]", or
"NAME.EXT{P,PN]", or
"NAME.EXT[P,PN"

See [MonCom] for the meaning of these things
if you do not immediately understand.

Sail is not as choosy about the characters it
. allows as some processors are. Any character
which is not a comma, period, right square
bracket, or left square bracket will be passed
on. Up to 6 characters from NAME, 3 from EXT,
P, or PN will be used -- the rest are ignored.

If the LOOKUP or ENTER operation fails then
variable FLAG may be examined to determine
the cause. The left half of FLAG will be set to
*777777 (Flag has the logical value TRUE). The
right half will contain the code returned by the
system giving the cause of the failure. An
invalid file specification will return a code of
*10. In this case, if the appropriate bit (bit 23,
see OPEN) was OFF in the MODE parameter.of
the OPEN, an error message will be printed;

otherwise, the routine just returns without

performing the UUQ.

If the LOOKUP or ENTER succeeds, FLAG will be
set to zero (FALSE).

36

SAIL

RENAME

RENAME (CHANNEL, “"FILE-SPEC",
PROTECTION, @FLAG)

The file open on CHANNEL is renamed to
FILE_SPEC (a.NULL file-name will delete the file)
with read/write protection as specified in
PROTECTION (nine bits, described in [SysCall]).
FLAG is set as in LOOKUP and ENTER.

ERENAME

ERENAME (CHANNEL,"FILE-SPEC",
PROTECTION, DATE, TIME,
MODE, @FLAG)

(Not on TENEX.) This extended version of
RENAME allows complete specification of all the
data which may be changed by a RENAME.

6.3 Break Characters

BREAKSET
BREAKSET (TABLE, "BREAK_CHARS", MODE)

Character input/output is done using the String
features of Sail. In fact, I/O is the chief
justification for the existence of strings in the
language.

String input presents a problem not present in
String output. The length of an output String
can be used to determine the number of
characters written. However it is often
awkward to require an absolute count for input.
Quite often one would like to terminate input,
or "break", when one of a specified set of
characters is encountered in the input stream.
in Sail, this capability is implemented by means
of the BREAKSET, INPUT, TTYIN, and SCAN
functions. The value of TABLE may range from
-17 to 54, but tables -17 through -1 are
reserved for use by the runtime system. Thus
up to 54 different sets of user break
specifications may exist at once. Which set will
be used is determined by the TABLE parameter
Jin an INPUT or SCAN function call. Breaktables



SAIL

are dynamically allocated in blocks of 18 (1-18,
19-36, 37-54).

BREAKSET merely modifies the existing settings
in TABLE; use GETBREAK (which returns a
virgin table) if you want to achieve an absolute
known state. The function of a given
BREAKSET command depends on the MODE, an
integer which is interpreted as a right-justified
ASCIl character whose value is intended to be
vaguely mnemonic. BREAKSET commands can
be partitioned into 4 groups according to mode:

GROUP 0 -- Conversion specifications
MODE FUNCTION

K" (Konvert) The minuscule letters (a-2)
will be converted to majuscule (A-2)
before doing anything else.

"F" (Full character set) Undoes the
effect of "K". Mode "F" is the
default.

"z (Zero bytes) Believe the breaktable
when INPUT reads a zero byte.
INPUT  automatically omits zero
characters otherwise. Mode "Z" is
turned off by both mode "I" and
mode "X".

GROUP 1 -- Break character specifications
MODE  FUNCTION

" (by Inclusion) The characters in the
BREAK_CHARS String comprise the
set of characters which - will
terminate an INPUT (or SCAN).

X" (by eXclusion) Only those characters
(of the possible 128 ASCI
characters) which are NOT contained
in the String BREAK_CHARS will
terminate an input when using this
table.

Q" (Omit) The characters in
"BREAK_CHARS" will be omitted
(deleted) from the input string.

Any "I" or "X" command completely specifies the
break character set for its table (i.e., the table
is reset before these characters are stored In
it). Neither will destroy the omitted character

INPUT/OUTPUT ROUTINES

set currently specified for this table. Any "O"
command completely specifies the set of
omitted characters, without altering the break
characters for the table in question. If a
character is a break-character, any role it might
play as an omitted character is sacrificed.

The next group of MODEs determines the
disposition of break characters in the input
stream. The "BREAK_CHARS" argument is
ignored in these commands, and may in fact be
NULL:

GROUP 2 -~ Break character disposition
MODE FUNCTION

"g" (Skip -~ default mode) After
execution of an "S" command the
break character will not appear
either in the resultant String or in
subsequent INPUTs or SCANs-- the
character is "skipped". Its value
may be determined after the INPUT
by examination of -the break
character variable (see page 33).

“A" (Append) The break character (if
there is one -- see page 33 and
page 39) s appended, or
concatenated to the end of the input
string. It will not appear again in
subsequent inputs.

"R" (Retain) The break character does
not appear in the resuitant INPUT or
SCAN String, but will be the first
character processed in the next
operation referring to this input
source (file or SCAN String).

Text files containing line numbers present a
special problem. A line number is a word
containing 5 ASCIl characters representing the
number in bits 0-34, with a "1" in bit 35. No
other words in the file contain 1’s in bit 35.
Since String manipulations provide no way for
distinguishing line numbers from other
characters, there must be a way to warn the
user that line numbers are present, or to allow
him to ignore them entirely.

The next group of MODEs determines the

disposition of these line numbers. Again, the
"BREAK_CHARS" argument is ignored:

37



INPUT/OUTPUT ROUTINES

Group 3 -- Line number disposition
MODE FUNCTION

vp (Pass -- default) Line numbers are
treated as any other characters.
Their identity is lost; they simply
appear in the result string.

"N" (No numbers) No line number (or the
. TAB which always follows it in
standard files) will appear in the
result string. They are simply
discarded.

"L (Line no. break) The result String
will' be terminated early if a line
number is  encountered. The
characters comprising the line
number and the associated TAB will
appear as the next 6 characters
read or scanned from this character
source. The user’s break character
variable (see page 33 and page
39) will be set to -1 to indicate a
line number break.

“E" (Lee Erman’s very own mode) The
result String is terminated on a line
number as with "L", but neither the
line number nor the TAB following it
will appear in subsequent inputs.
The line number word, negated, is
returned in the user’s (integer)
BRCHAR variable.

]"0" (Display) obsolete

Once a break table is set up, it may be
referenced in an INPUT, TTYIN or SCAN call to
control the scanning aperation.

Example: To delimit a "word", a program might
wish to input characters until a blank, a TAB, a
line feed, a comma, or a semicolon is
encountered, ignoring line numbers. Assume
also that carriage returns are to be ignored,
and that the break character is to be retained
in the character source for the next scanning
operation:

38

SAIL

BREAKSET (DELIMS, ", ;"&TAB&LF, "I");
Commant bresk on any of thess;

BREAKSET (DELIMS, 15, "0")
Corament ignore carriage return;

BREAKSET (DELIMS, NULL, "N");
Comment ignore line numbers;

BREAKSET (DELIMS, NULL, "R")%
Comment save break char for next time;

Breaktable O is builtin as equivalent to
SETBREAK (0, NULL, NULL, "I"). This is break-
on-count for INPUT and returns the whole
string from SCAN.,

SETBREAK

SETBREAK (TABLE, "BREAK_CHARS",
"OMIT_CHARS", "MODES")

SETBREAK is logically equivalent to the Sail
statement:

BEGIN "SETBREAK"
INTEGER |;

IF LENGTH (OMIT_CHARS) > O THEN
BREAKSET (TABLE, OMIT_CHARS, "0");

FOR i« STEP 1 UNTIL LENGTH (MODES) DO
BREAKSET (TABLE, BREAK_CHARS, MODES[! FOR 1)) -

END "SETBREAK™

GETBREAK, RELBREAK =memee—er

TABLE « GETBREAK;
RELBREAK (TABLE)

GETBREAK finds an unreserved breaktable,
reserves it, sets it to a completely virgin state,
and returns the number of the table.
GETBREAK returns -18 if there are no free
tables. Breaktables are reserved by
GETBREAK, SETBREAK, BREAKSET, and STDBRK.
RELBREAK returns a table to the available list.




SAIL

STDBRK

A~

STDBRK (CHANNEL)

Eighteen breakset tables have been selected as
representative of the more common input
scanning operations. The function STDBRK
initializes the breakset tables by opening the
file SYS:BKTBL.BKT on CHANNEL and reading
in these tables. The user may then reset those
tables which he does not like to something he
does like.

The eighteen tables are described here by
giving the SETBREAKs which would be required
for the user to initialize them:

DELIMS «'15 &°12&'40 & '11 & '14;

Comment carriage return, line feed, space,
tab, form feed;

LETTS « "ABC .. Zabc .. z_";

DIGS « "0123456789";

SAILID « LETTS&DIGS;

SETBREAK ( 1,12, '15, "INS");
SETBREAK ( 2, '12, NULL, "INA");
SETBREAK ( 3, DELIMS, NULL, “XNR");
SETBREAK ( 4, SAILID, NULL, "INS");
SETBREAK ( 5, SAILID, NULL, "INR")
SETBREAK ( 6, LETTS, NULL, "XNR");
SETBREAK ( 7, DIGS, NULL, "XNR");
SETBREAK ( 8, DIGS, NULL, "INS");
SETBREAK ( 8, DIGS, NULL, "INR")
SETBREAK (10, DIGS&"+-@.", NULL, "XNR");
SETBREAK (11, DIGS&"«-2.", NULL, “INS");
SETBREAK (12, DiGS&"+-@.", NULL, "iNR");
SETBREAK (13-18, NULL, NULL, NULL);

6.4 1/0 Routines

Bl
"RESULT" « INPUT (CHANNEL, BREAK_TABLE)

A string of characters is obtained for the file
open on CHANNEL, and is returngd as the
result. The INPUT operation is controlled by
BREAK_TABLE (see page 36) and the reference
variables BRCHAR, EOF, and COUNT which are
provided by the user in the OPEN function for
] this channel (see page 33). Zero bytes are

TH: S STtV T q:.’)é

INPUT/OUTPUT ROUTINES

automatically omitted (text editor convention)

unless mode "Z" was specified for the

breaktable. Input may be terminated in several

ways. The exact reason for termination can be

obtained by examining BRCHAR and EOF:

EOF  BRCHAR

#0 0 End of file or an error (it

- enabled, see page 33) occurred
while reading. The result is a
String containing all  non-
omitted characters which

remained in the file when
INPUT was called.

0 0  No break characters were
encountered. The result is a
String of length equal to the
current COUNT specifications
for the CHANNEL (see page 33).

A line number was encountered
and the break table specified
that someone wanted to know.
The result String - contains all
‘characters up to the line
number. If mode "L" was
specified in the Breakset
setting up this table, bit 35 is
turned off in the line number
word so that it will be input
next time. -1 is placed in
BRCHAR. If mode "E" was
specified, the line number will
not appear in the next input
String, but its negated ASCII
value, complete with low-order
line number bit, will be found
in BRCHAR.

0 >0 A break character was
encountered. The break
character is stored in BRCHAR
(an INTEGER reference variable,
see page 33) as a right-
justified 7-bit ASCIl value. It
may also be tacked on to the
end of the result String or
saved for next time, depending
on the BREAKSET mode (see
page 36).

If break table 0 is specified, the only criteria

for termination are end of file or COUNT
exhaustion.

39



INPUT/OUTPUT ROUTINES

CAN

"RESULT" « SCAN (@"SOURCE",
BREAK_TABLE, @BRCHAR)

SCAN functions identically to INPUT with the
following exceptions:

1.  The source is not a data file but the
String SOURCE, called by reference.
- The String SOURCE is truncated
from the left to produce the same
effect as one would obtain if
SOURCE were a data file. The
disposition of the break character is

the same as it is for INPUT.

2. BRCHAR is directly specified as a
parameter. INPUT gets its break
character variable from a table set
up by page 33.

3. Line number considerations are
irrelevant.

SCANC —mm———

"RESULT" « SCANC ("SOURCE",
"BREAK", "OMIT", "MODE");

This routine is equivalent to the following Sail
code:

STRING PROCEDURE SCANC (STRING ARG, BRK,
OMIT, MODE);

BEGIN "SCANC" INTEGER TBL, BRCHAR: STRING RSLT;

TBL«GETBREAK; SETBREAK (TBL, BRK, OMIT, MODE);

RSLTSCAN (ARG, TBL, BRCHAR):

RELBREAK (TBL)

RETURN (RSLT) END "SCANC";

Note that the arguments are all ~ value
parameters, so that SCANC will be called at
compile time if the arguments are constants. It
is intended that SCANC be used with ASSIGNC
in macros and conditional compilation. For
scanning at execution time, it is much more
efficient to use SCAN directly.

40

SAIL

ouT
- TR alse

OUT (CHANNEL, "STRING")

STRING is output to the file open on CHANNEL.
If the device is a TTY, the String will be typed
immediately. Buffered mode text output is
employed for this operation. The data mode
specified in the OPEN for this channel must be
0 or 1.. The EOF variable will be set non-zero
as described in page 33 if an error is detected
and the program is enabled for it; O otherwise.

LINOUT
LINOUT (CHANNEL, NUMBER)

ABS (NUMBER) mod 100,000 is converted to a ©
character ASCli string. These characters are
placed in a single word in the output file
designated by CHANNEL with the low-order bit
(line-number bit) turned on. A tab is inserted
after the line number. Mode 0 or ! must have
been specified in the OPEN (page 33) for the
results to be anywhere near satisfactory. EOF
is set as in OUT.

SETPL

SETPL (CHANNEL, @LINNUM,
@PAGNUM, @SOSNUM)

This routine allows one to keep track of the
string input from CHANNEL. Whenever a 12 is
encountered, LINNUM is incremented. Whenever
a ’'l4 is encountered, PAGNUM is incremented
and LINNUM is zeroed. Whenever an SOS line
number is encountered it is placed into
SOSNUM.

WORDIN

VALUE « WORDIN (CHANNEL)

The next word from the file. open on CHANNEL
is returned. A zero is returned, and EOF (see
page 33, page 39) set, when end of file or
error is encountered. This operation s
performed in buffered mode or dump mode,
depending on the mode specification in the
OPEN.



SAIL

WARNING ABOUT DUMP MODE 10

Dump Mode (mode °'15, °16, or '17) is
sufficiently device and system dependent that
you should consult [SysCall] and be extremely
careful. :

ARRYIN

ARRYIN (CHANNEL, @LOC, HOW_MANY)

HOW_MANY words are read from the device and
file open on CHANNEL, and deposited in memory
starting at location LOC. Buffered-mode input
is done if MODE (see page 33) is 10 or 14,
Dump-mode input is done if MODE is *16 or °17.
Other modes are illegal. See the warning about
Dump Mode 10 above. |f an end of file or
enabled error condition occurs before
| HOW_MANY words are read in buffered mode
then the EOF variable (see page 33) is set to
the enabled bits in its left half, as usual. lIts
right half contains the number of words actually
read. EOF will be O if the full request is
satisfied. No indication of how many words
were actually read is -given if EOF is
encountered while reading a file in DUMP mode.

WORDOUT
WORDOUT (CHANNEL, VALUE)

VALUE is placed in the output buffer for
CHANNEL. An OUTPUT is done when the buffer
is full or when a CLOSE or RELEASE is executed
for this channel. Dump mode output will be
done if dump mode is specified in the OPEN (see
© page 33). EOF is set as in OUT. See the
warning about Dump Mode 10 above.

ARRYQUT
ARRYQOUT (CHANNEL, @LOC, HOW_MANY)

HOW_MANY words are written from memory,
starting at location LOC, onto the device and
file open on channel CHANNEL. The valid modes
are again 10, 'l14, 16, and ’17. The EOF
variable is se! as in ARRYIN, except that the
EOF bit itself will never occur.

INPUT/OUTPUT ROUTINES

INOUT

INOUT (INCHAN, OUTCHAN, HOWMANY)

INOUT reads HOWMANY words from channel
INCHAN and writes them out on channe!
OUTCHAN. Each channel must be open in a
mode between 8 and 12. On return, the EOF
variables for the two channels will be the same
as if ARRYIN & ARRYOUT had been used. If
HOWMANY is less than zero, then transfer of
data will cease only upon end of file or a
device error. INOUT is not available in TENEX
Sail.

GETSTS, SETSTS
SETSTS (CHAN, NEW_STATUS);

issues a SETSTS uuo on channel CHAN with the
status value NEW_STATUS.

STATUS « GETSTS (CHAN)

returns the results of a GETSTS uuo on channel
CHAN.

These functions do not exist in TENEX Sail.

instead, see GTSTS, GDSTS, STSTS, and SDSTS
for analogous features.

MTAPE

MTAPE (CHANNEL, MODE)

MTAPE is ignored unless the device associated
with CHANNEL is a magnetic tape drive. It
performs tape actions as follows:

MODE FUNCTION

"A" Advance past one tape mark (or file)
"B" Backspace past ane tape mark
“E" Write tape mark

“F Advance one record

" Set 'IBM compatible' mode

“R" Backspace one record

“s" Write 3 inches of blank tape
T Advance to logical end of tape
"y Rewind and unload

"W Rewind tape

NULL Wait until all activity ceases

41



INPUT/OQUTPUT ROUTINES

USETI, USETO

USET! (CHANNEL, VALUE);
USETO (CHANNEL, VALUE)

These routines are for random file access (see
[SysCall).

REALIN, INTIN s

VALUE « REALIN (CHANNEL);
VALUE « INTIN (CHANNEL)

Number input may be obtained using the
functions REALIN or INTIN, depending on
whether a Real number or an Integer is
required. Both functions use the same free
field scanner, and take as argument a channel
number.

Free field scanning works as follows:
characters are scanned one at a time from the
input channel, ignoring everything until a digit
or decimal point is encountered. Then a
number is scanned according to this syntax,
with zero bytes, line numbers, and carriage
returns (but not linefeeds) ignored:

<number>
u= <gign> <real number>

<real number>
1= <decimal number>
u=m <decimal number> <exponent>
u= <gxponent>

<decimal number>
u= <integer>
u= <integer> .
u= <integer> . <integer>
um , <integer>

<integer>
u= <digit>
u= <integer> <digit>

<exponent>
im @ <sign> <integer>
u= E <sign> <integer>

42

SAIL

<sign>
us o+
= -

u= <gmpty>

It the digit is not part of a number an error
message will be printed and the program will
halt. Typing a carriage return will cause the
input function to return zero.

On input, leading zeros are ignored. The ten
most significant digits are used to form the
number. A check for overflow and underflow is
made and an error message printed if this
occurs. When using INTIN any exponent is
removed by scaling the Integer number.
Rounding is used in this process. All numbers
are accurate to one half of the least significant
bit.

After scanning the number the last delimiter is
replaced on the input string and is returned as
the break character for the channel. If no
number is found, a zero is returned, and the
break variable is set to -1; If an end of file or
enabled error is sensed this is also returned in
the appropriate channel variable. The maximum
character count appearing in the OPEN call is
ignored.

REALSCAN, INTSCAN

VALUE « REALSCAN (@"NUMBER_STRING",
@BRCHARY);

VALUE « INTSCAN (@"NUMBER_STRING",
@BRCHAR)

These functions are identical in function to
REALIN and INTIN. Their inputs, however, are
obtained from their NUMBER_STRING arguments.
These routines replace NUMBER_STRING by a
string containing all characters left over after
the number has been removed from the front.

TMPIN, TMPOUT

"RESULT" « TMPIN ("FILE", @ERRFLAG);
TMPOUT ("FILE", "TEXT", @ERRFLAG)

These routines do input and output to tmpcor
files (simulated files kept in core storage--see
[SysCall]).



SAIL

TMPIN returns a string consisting of the entire
contents of the tmpcor file of the specified
name. Only the first three characters in the file
name are significant. If the input fails for some
reason (most likely: no tmpcor file with the
specified name) then ERRFLAG is set to true
and NULL is returned. Otherwise ERRFLAG is
set to false.

TMPOUT writes its string argument into the
specified tmpcor file. The ERRFLAG has the
same function as in TMPIN; in case of error, the
tmpcor file is not written. Likely causes for
error are running out of tmpcor space
(currently, the sum of the sizes of all the
tmpcor files for a single job may not exceed
=256 words) or attempting to write a null
tmpcor file (i.e., calling TMPOUT with the string
argument NULL).

TMPIN executes a TMPCOR uuo with code 1, and
hence does not delete the specified tmpcor file.
The length of the returned string will always be
a multiple of five, since words rather than
characters are actually being transferred.
TMPOUT executes a TMPCOR uuo with code 3.
The last word of the string is padded with nulls
if necessary before the data transfer is done.

Neither function is available in TENEX Sail,

AUXCLR, AUXCLV

RSLT « AUXCLR (PORT, @ARG, FUNCTION);
RSLT « AUXCLV (PORT, ARG, FUNCTION)

(TYMSHARE only.) These functions pertorm
AUXCAL system calls; the only difference is
whether ARG is by reference or by value.
_SKIP_ is set.

CHNIOR, CHNIOV

RSLT « CHNIOR (CHAN, @ARG, FUNCTION);
RSLT « CHNIOV (CHAN, ARG, FUNCTION)

(TYMSHARE only.) These functions perform
CHANIO system calls; the only difference is
whether ARG is by reference or by value.
_SKIP_ is set.

INPUT/OUTPUT ROUTINES

65 TTY and PTY Routines

TELETYPE 1/O ROUTINES

Each of the 1/0 functions uses the TTCALL
UuUQ’s to do direct TTY I/0.

BACKUP
The system attempts to back up its
TTY input buffer pointer to the
beginning of the last "line", thus
allowing you to reread it. In
general this cannot possibly work,
so0 do not use BACKUP.

CLRBUF
Flushes the input buffer.

CHAR « INCHRS
Returns a negative value if no
characters have been typed;
otherwise it is INCHRW,

CHAR « INCHRW
Waits for a character to be typed
-and returns that character.

"§TR" « INCHSL (@FLAG)
Returns NULL with FLAG # O if no
lines have been typed. Otherwise
it sets FLAG -to O and performs
INCHWL.

"STR" « INCHWL

Waits for a line to be typed and
returns a string containing all
characters up to (but not including)
the activation character. The
activation character is put into
_SKIP_. If the activation character
is CR then the next character is
discarded (on the assumption that
it is LF).

“STR" « INSTR (BRCHAR)
Returns as a string all characters
up to, but not including, the first
instance of BRCHAR. The BRCHAR
instance is lost.

"STR" « INSTRL (BRCHAR)

Waits for a line to be typed, then
performs INSTR.

43



INPUT/OUTPUT ROUTINES

“STR" « INSTRS (®FLAG, BRCHAR)
Is INCHSL if no lines are waiting;
INSTRL otherwise.

IONEQU (CHAR)

- (TYMSHARE only.) The low-order &
bits of CHAR are sent to the TTY in
image mode.

OUTCHR (CHAR)
' Types its character argument
(right-justified in an integer
variable).

OUTSTR ("STR")
Types its string argument until the
end of the string or a null
character is reached.

"STR" « TTYIN (TABLE, @BRCHAR)

Uses the break table features
described in page 36 and page 39
to return a string and break
character. Mode "R" is illegal; line
number modes are irrelevant, The
input count (see page 33) is set at
100.

“STR" « TTYINL (TABLE, @BRCHAR)
Waits for a line to be typed, then
does TTYIN.

"STR" « TTYINS (TABLE, @ BRCHAR)
Sets BRCHAR to #0 and returns
NULL if no lines are waiting.
Otherwise it is TTYINL.

OLDVAL « TTYUP (NEWVAL)

Causes conversion of lower case
characters (a-z) to their upper
case equivalents for strings read
by any of the Sail teletype
routines that do not use break
tables. If NEWVAL is TRUE then
conversion will take place on all
subsequent inputs until
TTYUP(FALSE) is called. OLDVAL
will be set to the previous value of
the conversion flag. If TTYUP has
never been called, then no
conversions will take place, and the
first call to TTYUP will return
FALSE. In TENEX, TTYUP sets the
system parameter using the STPAR
jsys to convert to upper case.

44

SAIL

PSEUDO-TELETYPE FUNCTIONS =———

Pseudo-teletype functions are available at SUAI
only.

LODED ("STR™)
Loads the line editor with the
string argument. PTOSTR should
be used rather than LODED if
possible, since LODED works only
on a DD or {ll, while PTOSTR works
on all terminals.

“STR" « PTYALL (LINE)
Returns whatever is in the PTY’s
output buffer. No waiting is done.

CHAR « PTCHRS (LINE)
Reads a character from the PTY if
there is one, returns -1 if none.

CHAR « PTCHRW (LINE)
) Waits for a character from the PTY
and returns it.

PTOCHS (LINE, CHAR)
Tries to send a character to a PTY.
If the attempt was successful, the
global variable _SKIP_ is -1,
otherwise O.

PTOCHW (LINE, CHAR)
Sends a character to a PTY, waiting
if necessary.

NUMBER « PTOCNT (LINE)
Returns the number of free
characters in the PTY output
buffer.

NUMBER ¢« PTIFRE (LINE)
Returns the number of free
characters in the PTY input buffer.

PTOSTR (LINE, "STR™)
Sends the string to the PTY,
waiting if necessary. PTOSTR (O,
"STR") sends the string to your
TTY.

LINE « PTYGET
Gets a new pseudo-teletype line
number and returns it. The global
variable _SKIP_is -1 if the attempt
to get a PTY was successful, and 0
otherwise.



SAIL

CHARACTERISTICS « PTYGTL (LINE)
Returns line characteristics for the
PTY.

"STR" « PTYIN (LINE, BKTBL, @ BRCHAR)
Reads from the PTY (waiting if
necessary) according to break
table conventions. The break
character is stored in BRCHAR.

PTYREL (LINE)
Releases PTY identified by LINE.

PTYSTL (LINE, CHARACTERISTICS)
Sets line characteristics for the
PTY specified by LINE.

"STR" « PTYSTR (LINE, BRCHAR)

Reads characters from the PTY,
waiting if necessary,’ until a
character equal to BRCHAR is seen.
All but the break character is
returned as the string. If the
break character was ’15 (carriage
return), the following character is
snarfed (on the assumption that it
is a linefeed).

6.6 Example of TOPS-10 1/0

BEGIN "COPY"

COMMENT copies a text file, inserting a semicolon at the
beginning of each line, deleting SOS line numbers and
zero bytes, if any. Prints the page number as it goes;

REQUIRE "[J()" DELIMITERS;
DEFINE CRLFa[C15& 1 2)},LF="12), FF=["14);
INTEGER COLONTAB;

RECORD_CLASS $FILE (STRING DEVICE, NAME:
INTEGER CHANNEL, MODE, IBUF, OBUF,
COUNT, BRCHAR, EOF, LINNUM, PAGNUM, SOSNUM);

RECORD_POINTER(SFILE) PROCEDURE OPENUP
(STRING FILNAM; INTEGER MODE, IBUF, OBUF);
BEGIN "OPENUP"
STRING T; RECORD_POINTER (S$FILE) Q; INTEGER BRK;
Qe-NEW_RECORD, (SFILE); TeSCAN (FILNAM, COLONTAB, BRK):
$FILE:DEVICE[Q)e(IF BRKa"" THEN T ELSE “DSK");
$FILE:NAME[Q]«(IF BRK=":" THEN FILNAM ELSE T
$FILE:MODE[Q}«MODE; $FILEBUF[Q]eIBUF;
$FILE:OBUF[Q)«OBUF; OPEN (SFILE:CHANNEL([Q)«GETCHAN,
$FILE:DEVICE[Q), MODE, IBUF, OBUF, $FILE:COUNT[Q),
$FILE:BRCHAR([Q), $FILE:EOF[Q)e-1)

INPUT/OUTPUT ROUTINES

IF NOT($FILE:EQF[Q)) THEN BEGIN
SETPL ($FILE:CHANNEL[Q], $FILE:LINNUMIQ),
$FILE:PAGNUMIQ], $FILE:SOSNUM[QD:
IF IBUF THEN
LOOKUP ($FILE:CHANNEL[Q), $FILE:NAME([Q), $FILE:EOF[Q])
IF OBUF AND NOT (SFILE:EOF[Q]) THEN
ENTER (SFILE:CHANNEL[Q), $FILE:NAME[Q), $FILE:EOF[Q))
END;
SFILE:PAGNUM[Q]«1;
IF $FILE:EOF[Q) THEN RELEASE($FILE:CHANNEL[Q)):
RETURN(Q)
END “"OPENUP";
COMMENT Sail I/O should be rewritten to do this 1;

RECORD_POINTER ($FILE) PROCEDURE GETFILE
(STRING PROMPT; INTEGER MQDE, I, O);
BEGIN "GETFILE"
RECORD_POINTER ($FILE) F; INTEGER REASON;
WHILE TRUE DO BEGIN "try"
PRINT (PROMPT);
{F (REASON«SFILE:EOF [FOPENUP (INCHWL,
MODE, |, 0)))=0 THEN RETURN (F)
IF REASONs~1 THEN
PRINT ("Device ", $FILE:DEVICE[F], " not available.")
ELSE PRINT("Error, ", CASE (0 MAX REASON MIN 4) OF
("no such fila ", "illegal PPN ", "protection
"busy ", "7?" *) $FILE:NAME[F], CRLF);
END "try";
END “GETFILE";

RECORD_POINTER ($FILE) SRC, SNK;
INTEGER FFLFTAB;

SETBREAK (COLONTAB«GETBREAK, “:“, ", "ISN");
WHILE TRUE DO BEGIN "big loop"
STRING LINE;
SRCeGETFILE ("Copy from:", O, 5, 0);
SFILE:COUNT{SRC]«200;
SNK«GETFILE (" 10", 0, 0, 5)
SETBREAK (FFLFTAB<GETBREAK, FF&LF, ", “INA");

WHILE TRUE DO BEGIN "a line" '
LINE«INPUT (S$FILE:CHANNEL[SRC], FFLFTAB);
IF $FILE:EOF{SRC] THEN DONE;
IF $FILE:BRCHAR[SRC]=FF THEN BEGIN
PRINT (" *, $FILE:PAGNUM[SRC])
LINE«LINE&
INPUT (SFILE:CHANNEL[SRC), FFLFTAB) END;
CPRINT ($FILE:CHANNEL[SNK), "i", LINE)
END "a line";
RELEASE ($FILE:CHANNEL[SRC]):
RELEASE (SFILE:CHANNEL[SNK])
END "big loop™;
END "COPY"

45



EXECUTION TIME ROUTINES

SECTION 7
EXECUTION TIME ROUTINES

Please read Execution Time Routines in General,
page 33, if you are unfamiliar with the format
"~ used to describe runtime routines.

7.1 Type Conversion Routines

SETFORMAT

SETFORMAT (WIDTH, DIGITS)

This function allows specification of a minimum
width for strings created by the functions CVS,
CVO0S, CVE, CVF, and CVG (see page 46 and
following). If WIDTH is positive then enough

blanks will be inserted in front of the resultant.

string to make the result at least WIDTH
characters long. The sign, if any, will appear
after the blanks, If WIDTH is negative then
leading zeroes will be used in place of blanks.
The sign, of course, will appear before the
zeroes. The parameter WIDTH is initialized by
the system to zero.

In addition, the DIGITS parameter allows one to
specify the number of digits to appear
following the decimal point in strings created
by CVE, CVF, and CVG. This number is initially
7. See the writeups on these functions for
details.

NOTE: All type conversion routines, including
those that SETFORMAT applies to, are
performed at compile time if their arguments
are constants. However, Setformat does not
have its effect until execution time. Therefore,
CVS, CVOS, CVE, CVF, and CVG of constants will
have no leading zeros and 7 digits (if any)
following the decimal point.

GETFORMAT
GETFORMAT (@WIDTH, @DIGITS)

The WIDTH and DIGIT settings specified in the
last SETFORMAT call are returned in the
appropriate reference parameters.

46

SAIL

Cvs

"ASCII_STRING" « CVS (VALUE);

The decimal Integer representation of VALUE is
produced as an ASCIl String with leading zeroes
omitted (unless WIDTH has been set by
SETFORMAT to some negative value). "-" will be
concatenated to the String representing the
decimal absolute value of VALUE if VALUE is
negative.

CvD
VALUE « CVD ("ASCII_STRING")

ASCI_STRING should be a String of decimal
ASCH characters perhaps preceded by plus
andfor minus signs. Characters  with ASCII
values € SPACE (’40) are ignored preceding the
number. Any character not a digit will
terminate the conversion (with no error
indication). The result is a (signed) integer.

CVOos
"ASCII_STRING" « CVOS (VALUE)

The octal Integer representation of VALUE is
produced as an ASCIl String with leading zeroes
omitted (unless WIDTH has been set to some
negative vaiue by SETFORMAT. No "-" will be
used to indicate negative numbers. For
instance, -5 will be represented as
“777777777773".

Cvo
VALUE « CVO ("ASCI_STRING")
This function is the same as CVD except that

the input characters are deemed to represent
Octal values.



SAIL

CVE, CVF, CVG

"STRING" « CVE (VALUE)
"STRING" « CVF (VALUE);
"STRING" « CVG (VALUE)

. Real number output is facilitated by means of
one of three functions CVE, CVG, or CVF,
corresponding to the E, G, and F formats of
FORTRAN V. Each of these functions takes as
argument a real number and returns a string.
The format of the string is controlled by
another function SETFORMAT (WIDTH, DIGITS)
(see page 46) which is used to change WIDTH
from zero and DIGITS from 7, their initial values.
WIDTH specifies the minimum string length. If
WIDTH is positive leading blanks will be inserted
and if negative leading zeros will be inserted.

The following table indicates the strings
returned for some typical numbers. _ indicates
a space and it is assumed that WIDTH«10 and
DIGITS«3.

CVF CVE cve

.088  __.188e-3_ __.180e-3_

.881 __.100e-2_ . 1888-2_

.810  __.1008-1_ . 180@-1_

188 _.100__ _.180___
___1.808 __.100el__ _1.00___
__18.800 __.100e2__ _10.8___
__166.800 __.180e3__ _100.____
__1800.008 __.100e4__ _.180e4__
_18000.008 __.160e5__ __.188e5_
_166008.808 __.100e6_ . 100e6__
_1600008.008 __.180e7__ . 180e7__
-1000000.000 _-.180@7__ —-.180e7__

The first character ahead of the number is
either a blank or a minus sign. With WIDTH«-10

plus and minus 1 would print as:

CVF CVE CVG
_00g8l.008 _8.180e1__ _61.80____
-080001.088 -8.18021__ -81.80____

All numbers are accurate to one unit in the
eighth digit. If DIGITS is greater than 8, trailing
zeros are included; if less than eight, the
number is rounded.

EXECUTION TIME ROUTINES

CVASC, CVASTR, CVSTR
VALUE « CVASC ("STRING");

| "STRING" « CVASTR (VALUE);

"STRING" « CVSTR (VALUE)

These routines convert between a Sail String
and an integer containing 5 ASCIl characters
left justified in a 36-bit word; the extra bit is
made zero (CVASC) or ignored (CVASTR,
CVSTR). CVASC converts from String to ASCIL.
Both CVSTR and CVASTR convert from a word
of ASCIl to a string. CVSTR always returns a
string of length five, while CVASTR stops
converting at the first null (°0) character.

CVASTR (CVASC ("ABC")) is "ABC"
CVSTR (CVASC ("ABC")) is "ABC" & 0 & 0

CV6STR, CVSIX, CVXSTR

] "STRING" « CV6STR (VALUE);

VALUE « CVSIX ("STRING")
"STRING" « CVXSTR (VALUE)

The routines CV6STR, CVSIX, and CVXSTR are
the SIXBIT analogues of CVASTR, CVASC, and
CVSTR, respectively. The character codes are
converted, ASCIl in the String & SIXBIT in the
integer. CVXSTR always returns a string of
length six, while CV6STR stops converting upon
reaching a null character.

CVGSTR (CVSIX ("XYZ™) is "XYZ", not "XYZ .
CVESTR (CVSIX ("X Y Z") is "X", not "X ¥ 2" or "XYZ".

7.2 String Manipulation Routines

EQU

——
VALUE « EQU ("STRI1", "STR2")
The value of this function is TRUE if STRI and
STR2 are equal in length and have identically

the same characters in them (in the same
order). The value of EQU is FALSE otherwise.

47



EXECUTION TIME ROUTINES

LENGTH
I
VALUE « LENGTH ("STRING")

LENGTH is always an integer-valued function. [f
the argument is a String, its length is the
number of characters in the string. The length
of an algebraic expression is always 1 (see
page 23). LENGTH is usually compiled in line.

LoP
i ————

VALUE « LOP (@STRINGVAR)

The LOP operator applied to a String variable
removes the first character from the String and
returns it in the form given in page 23 above.
The String no longer contains this character.
LOP applied to a null String has a zero value.
- LOP is usually compiled in line. LOP may not
appear as a statement.

SUBSR, SUBST

"RSLT" « SUBSR ("STRING", LEN, FIRST);
"RSLT" « SUBST ("STRING", LAST, FIRST)

These routines are the ones used for
performing substring operations. SUBSR (STR,
LEN, FIRST) is STR[FIRST FOR LEN] and
SUBST (STR, LAST, FIRST) is STR[FIRST TO
LAST].

7.3 Liberation-from-Sail Routines

CODE

RESULT « CODE (INSTR, @ADDR) |

This function is equivalent to the FAIL
statements:

EXTERNAL .SKIP. ;DECLARE AS _SKIP_ IN SRIL

SETON .SKIP. jRSSUME SKIP
MOVE 8, INSTR

ADDT 8, €ADOR

XCT ]

SETZH .SKIP, ;DION’'T SKIP
RETURN Tt

48

SAIL

In other words, it executes the instruction
formed by adding the address of the ADDR
variable (passed by reference) to the number
INSTR. Before the operation is carried out, ACl
is loaded from a special cell (initially 0). ACl is
returned as the result, and aiso stored back
into the special cell after the instruction is
executed. The global variable _SKIP_ (.SKIP. in
DDT or FAIL) is FALSE (0) after the call if the
executed instruction did not skip; TRUE
(currently -1) if it did. Declare this variable as
EXTERNAL INTEGER _SKIP_ if you want to use
it, -

CALL
RESULT « CALL (VALUE, "FUNCTION")

This function is equivalent to the FAIL
statements:

EXTERNAL .SKIP.

SETOM .SKIP.

MOVE 1,VALUE

cAaLL 1, [SIXBIT /FUNCTION/])

SETZM .SKIP, ;DID NOT SKIP
RETURN (REGISTER 1)

TENEX users should see more on CALL, page
80.

CALLI

RESULT « CALLI (VALUE, FUNCTION)

(TYMSHARE only.) Like CALL, only CALLI

USERCON

USERCON (@INDEX, @VALUE, FLAG)

This function allows inspection and alteration of
the “User Table". The user table is always
loaded with your program and contains many
interesting variables. Declare an index you are
interested in as an External Integer (e.g,
EXTERNAL INTEGER REMCHR). This will, when
loaded, give an address which is secretly a
small Integer index into the User Table. When
passed by reference, this index is available to



SAIL

USERCON. The names and meanings of the
various User Table indices can be found in the
fite HEAD, wherever Sail compiler program text
files are sold. ‘

USERCON always returns the current value of
the appropriate User Table entry (the Giobal
Upper Segment Table is used if FLAG is
negative and your system knows about such
things). If FLAG is odd, the contents of VALUE
before the call replaces the old value in the
selected entry of the selected table.

By now the incredible danger of this feature
must be apparent to you. Be sure you
understand the ramifications of any changes
you make to any User Table value,

GOGTAB
Direct access to the user table can be gained
by declaring EXTERNAL INTEGER ARRAY
GOGTAB[0:n]; The clumsy USERCON linkage is
obsolete.

The symbolic names of all GOGTAB entries can
be obtained by requiring SYS:GOGTAB.DEF
(<SAIL>GOGTAB.DEF on TENEX) as a source file.
This file contains DEFINEs for all of the user
table entries.

USERERR
F

USERERR (VALUE, CODE, "MSG",
"RESPONSE"(NULL))

USERERR generates an error message. See
page 138 for a description of the error
message format. MSG is the error message that
is printed on the teletype or sent to the log
file. If CODE = 2, VALUE is printed in decimal
on the same line. Then on the next line the
“Last SAIL call" message may be typed which
indicates where in the user program the error
occurred. If CODE is | or 2, a "»>" will be typed
and execution will be allowed to continue. If it
is 0, a "?" is typed, and no continuation will be
permitted. The string RESPONSE, if included in
the USERERR call, will be scanned before the
input buffer is scanned. In fact, if the string
RESPONSE satisfies the error handler, the input
buffer will not be scanned at all. Examples:

EXECUTION TIME ROUTINES

USERERR (0, 1, "LINE TOO LONG"); Gives
error message and allows continuation.

USERERR (0, 1, NULL, "QLA"); Resets made
of error handler to Quiet, Logging, and
Automatic continuation. Then continues.

ERMSBF e
ERMSBF (NEWSIZE)

This routine insures that error messages of
NEWSIZE characters can be handled. The error
message buffer is initially 256 characters,
which is sufficient for any Sail-generated error.
USERERR can generate longer messages,
however.

EDFILE
EDFILE ("FILENAME", LINE, PAGE, BITS(0))

(Not on TENEX.) Exits to an editor. Which editor
is determined by the bits which are on in the
second parameter, LINE. If bit O or bit 1
(600000,,0 bits) is on, then LINE is assumed to
be ASCID and SOS is called. If neither of these
bits is on, then LINE is assumed to be of the
form attach count,sequential line number and E
is called. PAGE is the binary page number.
BITS defaults to zero and controls the editing
mode.

0 edit

1 no directory (as in /N)
2 readonly (as in /R)

4 creste (as in /C)

In addition, the accumulators are set up from
INIACS (see below) so that the E command «X
RUN will run the dump file from which the
current program was gotten. [Accumulators O
(file name), 1 (extension), and 6 (device) are
loaded from the corresponding values in
INIACS.]

INIACS

IThe contents of locations 0-’17 are saved in

49



EXECUTION TIME ROUTINES

block INIACS when the core image is started for
the first time. Declare INIACS as an external
integer and use START_CODE or
MEMORY[LOCATION(INIACS)+n] to reference this
block.

7.4 Byte Manipulation Routines

LDB, DPB, etc.

VALUE « LDB (BYTE_POINTER);
VALUE « ILDB (@ BYTE_POINTER);
DPB (BYTE, BYTE_POINTER);

IDPB (BYTE, @ BYTE_POINTER);
IBP (@ BYTE_POINTER)

- LDB, ILDB, DPB, IDPB, and IBP are Sail
constructs used to invoke the PDP-10 byte
loading instructions. The arguments to these
functions are expressions which are interpreted
as byte pointers and bytes. In the case of ILDB,
IDPB, and IBP, you are required to use an
algebraic variable as argument as the
byte_pointer, so that the byte pointer (i.e. that
algebraic variable) may be incremented.

POINT

VALUE « POINT (BYTE SIZE,
®EFFECTIVE ADDRESS LAST BIT NUMBER)

POINT returns a byte pointer (hence it is of

type integer). The three arguments correspond
exactly to the three arguments to the POINT
pseudo-op in FAIL.

7.5 Other Usgful Routines

CVFIL

VALUE « CVFIL ("FILE_SPEC", @EXTEN, @PPN)

FILE_SPEC has the same form as a file name
specification for LOOKUP or ENTER, The SIXBIT
for the file name is returned in VALUE., SIXBIT
values for the extension and project-

50

SAIL

programmer numbers are returned in the
respective  reference parameters. Any
unspecified portions of the FILE_SPEC will
result in zero values. The global variable
_SKIP_ will be O if no errors occurred, non-
zero if an invalid file name specification is
presented.

: FILEINFO
FILEINFO (@INFOARRAY)
FILEINFO fills the 6-word array INFOARRAY with

the following six words from the most recent
LOOKUP, ENTER, or RENAME:

FILENAME

EXT,(2)hidate2 (15)date]

{3)prot (4)Mode (1 1)time (12)lodate2
negative swapped word count

0 (unless opened in magic mode)

0 ‘

See [SysCaIl]§ TENEX users should use JFNS
instead.

ARRINFO -
VALUE « ARRINFO (ARRAY, PARAMETER)

ARRINFO (ARRAY, -1) is the number of
dimensions for the
array.  This number is
negative for String
arrays.

ARRINFO (ARRAY, 0) is the total size of the
array in words.

ARRINFO (ARRAY, 1) is the lower bound for
the first dimension.

ARRINFO (ARRAY, 2) is the upper bound for
the first dimension.

ARRINFO (ARRAY, 3) is the lower bound for
the second dimension.

ARRINFO (... etc.



SAIL

ARRBLT

ARRBLT (@DEST, @SOURCE, NUM)

NUM words are transferred (using BLT) from
consecutive locations starting at SOURCE to
consecutive locations starting at DEST. No
bounds checking is performed. This function
does not work well for String Arrays (nor set
nor list arrays).

ARRTRAN

ARRTRAN (DESTARR, SOURCEARR)

This  function copies information from
SOURCEARR to DESTARR. The transfer starts at
- the first data word of each array. The minimum
of the sizes of SOURCEARR and DESTARR is the
number of words transferred.

ARRCLR

ARRCLR (ARRAY, VALUE(0))

This routine stores VALUE into each element of
ARRAY. The most common use is with VALUE
omitted, which clears the array; i.e., arithmetic
arrays get filled with zeros, string arrays with
NULLs, itemvar arrays with ANYs,
record_pointer arrays with NULL_RECORD. One
may use ARRCLR with set and list arrays, but
the set and list space will be lost (i.e, un-
garbage-collectible). Do not supply anything
other than O (0, NULL, PHI, NIL, NULL_RECORD)
for VALUE when clearing a string, set, list, or
record_pointer array unless you know what
you are doing. Using a real value for an
itemvar array is apt to cause strange results.
(If you use an integer then ARRAY will be filled
with CVI (value).)

, IN_CONTEXT
VALUE « IN_CONTEXT (VARI, CONTXT)

IN_CONTEXT is a boolean which tells one if the
specified variable is in the specified context.
VARI may be any variable, array element, array
name, or Leap variable. If that wvariable,

EXECUTION TIME ROUTINES

element or array was REMEMBERed in that
context, IN_CONTEXT will return True.
IN_CONTEXT will also return true if VARI is an
array element and the whole array was
Remembered in that context (by using
REMEMBER <array_name>). On the other hand,
if VARl is an array name, then IN_CONTEXT will
return true only if one has Remembered. that
array with a REMEMBER <array_name>.

CHNCDB
VALUE « CHNCDB (CHANNEL)

(Not on TENEX.) This integer procedure returns
the address of the block of storage which Sail
uses to keep track of the specified channel. It
is provided for the benefit of assembly
language procedures that may want to do /O
inside some fast inner loop, but which may want
to live in a Sail core image & use the Sail OPEN,
etc.

7.6 Numerical Routines

These - numerical routines are new as
predeclared runtimes in Sail. The routines
themselves are quite standard.

The standard trigonometric functions. ASIN,
ACOS, ATAN and ATAN2 return results in
radians. The ATANZ2 call takes arc-tangent of
the quotient of its arguments; in this way, it
correctly preserves sign information.

REAL PROCEDURE SIN (REAL RADIANS);
REAL PROCEDURE COS (REAL RADIANS);
REAL PROCEDURE SIND (REAL DEGREES);
REAL PROCEDURE COSD (REAL DEGREES);

REAL PROCEDURE ASIN (REAL ARGUMENT);
REAL PROCEDURE ACOS (REAL ARGUMENT;
REAL PROCEDURE ATAN (REAL ARGUMENT);
REAL PROCEDURE ATAN2 (REAL NUM, DEN)

The hyperbolic trigonometric functions.
REAL PROCEDURE SINH (REAL ARGUMENT);
REAL PROCEDURE COSH (REAL ARGUMENT);
REAL PROCEDURE TANH (REAL ARGUMENT)

The square-root function:

51



EXECUTION TIME ROUTINES

REAL PROCEDURE SQRT (REAL ARGUMENT)

A pseudo-random number generator. The
argument specifies a new value for the seed (if
the argument is O, the old seed value is used.
Thus to get differing random numbers, this
argument .should be zero.) Results are
normalized to lie in the range [0,1].

REAL PROCEDURE RAN (INTEGER SEED)

Logarithm and exponentiation functioris. These
functions are the same ones used by the Sail
exponentiation operator. The base is e
(2.71828182845904), The logarithm to the
base 10 of e is 0.4342944819.

REAL PROCEDURE LOG (REAL ARGUMENT);
REAL PROCEDURE EXP (REAL ARGUMENT)

These functions may occasionally be asked to
compute numbers that lie outside the range of
legal floating-point numbers on the PDP-10. In
these cases, the routines issue sprightly error
messages that are continuable.

OVERFLOW

In order to better perform their tasks, these
routines enable the system interrupt facility for
floating-point overflow and underflow errors.
If an underflow is detected, the results are set
to O (a feat not done by the PDP-10 hardware,
alas). Be aware that such underflow fixups will
be done to every underflow that occurs in your
program., For further implementation details,
see the section below.

if you would like to be informed of any
numerical exceptions, you can call the runtime:

TRIGINI (LOCATION (simple-procedure-name))

Every floating-point exception that is not
expected by the interrupt handler (the
numerical routines use a special convention to
indicate that arithmetic exception was expected)
will cause the specified simple procedure to be
called. This procedure may look around the
world as described for ‘export’ interrupt
handlers, page 120. If no TRIGINI call is done,
the interrupt routine will simply dismiss
unexpected floating-point interrupts.

ENTRY POINTS

In order to avoid confusion (by the loader) with
older trig packages, the entry points of the Sail

52

SAIL

arithmetic routines all have a "$§" appended to
the end. Thus, SIN has the entry point SINS,
etc. WARNING: If a program plans to use the
Sail intrinsic numerical routines, it should NOT
include external declarations to them, since this
will probably cause the FORTRAN library
routines to be loaded.

OVERFLOW IMPLEMENTATION

This section may be skipped by all but those
interested in interfacing number crunching
assembly code (where overflow and underflow
are expected to be a problem) with Sail
routines.

The Sail arithmetic interrupt routines first
check to see if the interrupt was caused by
floating exponent underflow. If it was, then the
result is set to zero, be it in an accumulator,
memory, or both. Then if the arithmetic
instruction that caused the interrupt is followed
by a JFCL, the AC field of the JFCL is compared
with the PC flag bits to see if the JFCL tests
for any of the flags that are on. If it does,
those flags are cleared and  the program
proceeds at the effective address of the JFCL
(ie, the hardware is simulated in that case).
Note that no instructions may intervene
between the interrupt-causing instruction and
the JFCL or the interrupt routines will not see
the JFCL. They only look one instruction ahead.
Note that in any case, floating exponent
underflow always causes the result to be set to
zero. There is no way to disable that effect.



SAIL

SECTION 8
PRINT

8.1 Syntax

<print_statement>
1= PRINT ( <expression_list> )
1= CPRINT ( <integer_expression>,
<expression_list> )

8.2 Semantics

The new constructs PRINT and CPRINT are
conveniences for handling character output.
Code which formerly looked like

OUTSTR ("The values are “ & CVS () & “and " &
CVG (X) & " for item " & CVIS (iT, JUNK));

may now be written

PRINT ("The values are ", |, X, " for item ", IT);

The first expression in <expression_list> is
evaluated, formatted as a string, and routed to
the appropriate destination. Then the second
expression is evaluated, formatted, and
dispatched; etc. (If an expression is an
assignment expression or a procedure call then
side effects may occur.) ‘

DEFAULT FORMATS

String expressions are simply sent to the
output routine. Integer expressions are first
sent to CVS, and Real expressions are passed
to CVG; the current SETFORMAT parameters are
used. Item expressions use the print narme for
the item if one exists, otherwise I[TEM!nnnn,
where nnnn is the item number. Sets and lists
show their -item components separated by
commas. Sets are surrounded by single braces
and lists by double braces. PH and NIL are
printed for the empty set and empty list
respectively. Record pointers are formatted as
the name of the record class, followed by a "",
followed by the (decimal) address of the record.
NULLIRECORD is printed for the empty record.

If the default format is not satisfactory then the
user may give a function call as an argument.
For example,

PRINT

PRINT (CVOS (D)

will print | in octal, since CVOS is called first.
{The expression CVOS (I) is of course a String
expression.) Wizards may also change the
default formatting function for a given syntactic

type.

DESTINATIONS

CPRINT interprets <integer_expression> as a
Sail channel number and sends all output to
that channel. The following two statements are
functionally equivalent:

CPRINT (CHAN, "The values are ", I, " and ", X);
OUT (CHAN, "The values are "&CVS (D&" and "&CVG (X))

PRINT initially sends all output to the terminal
but can also direct output to a file or any
combination of terminal and/or file. The modes
of PRINT are (dynamically) established and
queried by SETPRINT and GETPRINT.

SETPRINT, GETPRINT

SETPRINT ("FILE_NAME", "MODE");
"MODE" « GETPRINT

Here MODE is a single character which
represents the destination of PRINT output.

MODE MEANING

T the Terminal gets all PRINT
output. If an output file is open
then close it. "T" is the mode in
which PRINT is initialized.

"F" File gets PRINT output. If no file
is open then open one as
described below.

"g" Both terminal and file get PRINT
output. If no file is open then
open one as described below.

“N" Neither the file nor the terminal
gets any output. If a file is open
then close it.

“g" Suppress all output, but open a
’ file if none is open.

53



PRINT

"o" a file is Open, but the terminal is
getting all output. If no file is
open then open one as described
below.

"c" the terminal gets output, but

ignore whether or not a file is
open and whether or not it is
getting output.

e * terminal does not get output.
lgnore whether or not a file is
open and whether or not flle is
getting any output.

The first 6 possibilities represent the logical
states of the PRINT system and are the
characters which GETPRINT can return. The "C"
and "I" modes turn terminal output on and off
without disturbing anything else. The PRINT
statement is initialized to mode "T" -- print to
Terminal. Modes "T", "F", and "B" are probably
the most useful. The other modes are included
for completeness and allow the user to switch
between various combinations dynamically.

If SETPRINT is called in such a way that a file
has to be opened -- e.g.,, mode "F" and no file is
open -- then FILE_NAME will be used as the
name of the output file. If FILE_NAME is NULL
then the filename will be obtained from the
terminal.

SETPRINT (NULL, "F"%
first types the message
File for PRINT output «

and uses the response as the name of a file to
open. On TENEX, GTJFN with recognition is
used; on TOPS-10 and its variants the filename
is read with INCHWL. The file opened by
SETPRINT will be closed when the program
terminates by falling through the bottom. It will
also be closed. if the user calls SETPRINT with
some mode that closes the file -- e.g., "T" will
close an output file if one is open.

SETPRINT and GETPRINT are related only to.

PRINT; they have no effect on CPRINT.
SIMPLE USE

Here are a few examples of common output
situations.

54

SAIL

1) PRINT to TERMINAL. Simply use PRINT; do
not bother with SETPRINT,

2) PRINT fo FILE. Call SETPRINT (NULL, "F")
and type the name of the output file when
it asks.

3) PRINT to FILE and TERMINAL. At the
beginning of the program tcall SETPRINT
(NULL, "B"); and type the name when asked.

4) PRINT to FILE always and sometimes also to
TERMINAL. Use SETPRINT (NULL, "B"); and
give the name of the file when it asks. This
sets output to both the terminal and the
file. Then to ignore the terminal (leaving
the file alone), call SETPRINT (NULL, "'} To
resume output at the terminal use SETPRINT
(NULL, "C"); This is useful for obtaining a
cleaned-up printout on the file with error
messages going to the terminal.

CAVEATS

Trying to exploit the normal Sail type
conversions will probably lead to trouble with
PRINT and CPRINT. Printing single ASCII
characters is a particular problem.

OUTSTR ('14);
prints a form-feed onto the terminal , but

PRINT C14)

prints "12". The reason, of course, is the
default formatting of integers by PRINT or
CPRINT. This problem is particularly severe
with macros that have been defined with an
integer to represent an ASCIl character. For
example,

DEFINE TAB="11"
PRINT (TAB);

will print "8". The solution is to define the
macro so that it expands to a STRING constant
rather than an integer. .

DEFINE TAB=c" "3 or
DEFINE TAB=c(i1 & NULL)=;

Also, remember that the first argument to
CPRINT is the channel number.



SAIL

FOR WIZARDS ONLY

All output going to either the PRINT or CPRINT
statements can be trapped by setting user
table entry $SPROU to the address of a SIMPLE
procedure that has one string and one integer
argument. : .

SIMPLE PROCEDURE MYPRINT
(INTEGER CHAN; STRING S);
BEGIN .. END; '

GOGTAB[$$PROU] « LOCATION (MYPRINT);

The CHAN argument is either the CHAN
argument for CPRINT, or -1 for PRINT. If this
trap is set then all output from PRINT and
CPRINT goes through the user routine and is
not printed unless the user invokes OUT or
OUTSTR from within the trap routine itself.

To trap the formatting function for any
syntactic type the wuser should set the
appropriate user table address to the location
of a function that returns a string and takes as
an argument the syntactic type in question. To
print integers in octal , preceded by ™", use

SIMPLE STRING PROCEDURE MYCVOS (INTEGER I}
RETURN (™" & CVOS ()

GOGTAB[$SFINT] « LOCATION (MYCVOS);

The names for the addresses‘ in the user table
_ associated with each formatting function are:

INDEX ‘TYPE

$SFINT INTEGER

$SFREL  REAL

S$SFITM  (TEM

$SFSET  SET

$SFLST  LIST

$SFSTR  STRING

$SFREC  RECORD_POINTER

To restore any .formatting function to the
default provided by the PRINT system, zero the
appropriate entry of the user table.

PRINT

55



MACROS AND CONDITIONAL COMPILATION

SECTION 9

MACROS AND CONDITIONAL COMPILATION,

9.1 Syntax

<define>
«= DEFINE <def_list>;
u= REDEFINE <def_list> ;
1= EVALDEFINE <def_list> ;
1= EVALREDEFINE <def_list>;

<def_list>
u= <def>
u= <def_list> , <def>

<def>

u= <identifier> = <macro_body>

u= <identifier> { <id_list> ) =
<macro_body>

= <identifier> <string_constant> =
<macro_body> :

u= <identifier> { <id_list> )
<string_constant> = <macro_body>

<macro_body>
um <delimited_string>
s= <constant_expression>
u= <macro_body> & <macro_body>

<macro_call> :
= <macro_identifier>
1= <macro_identifier>
( <macro_param_list> )
u= <macro_identifier> <string_constant>
( <macro_param_list> )

<macro_identifier>
«= <identifier>

<macro_param_list>
= <macro_param>
um <macro_param_list> , <macro_param>

<cond_comp_statement>
.= <conditional_c.c.s.>
u= <while_c.c.s.>

56

SAIL

u= <for_c.c.s.>
u= <for_list_c.c.s.>
= <case_C.c.5.>

<conditional _c.c.s.>

u= IFC <constant_expression> THENC
<anything> ENDC

u= [FC <constant_expression> THENC
<anything> ELSEC <anything> ENDC

um [FCR <constant_expression> THENC
<anything> ENDC

u= |FCR <constant_expression> THENC
<anything> ELSEC <anything> ENDC

<while_c.c.s.>
s= WHILEC <delimited_expr> DOC
<delimited_anything> ENDC

<for_c.c.s>
| u= FORC <identifier> «
<constant_expression> STEPC
<constant_expression> UNTILC
<constant_expression> DOC
<delimited_anything> ENDC

<for_list_c.c.s.>
u= FORLC <identifier> «
( <macro_param_list> ) DOC -
<delimited_anything> ENDC

<case_c.c.5.>
_ u= CASEC <constant_expression> OFC
<delimited_anything_list> ENDC

<delimited_anything_list>
1= <delimited_anything>
um <dslimited_anything_list>,
<delimited_anything>

<assignc>
i= ASSIGNC <identifier> = <macro_body> ;

<delimited_string>, <macro_param>,
<delimited_expr>, <anything> and
<delimited_anything> are explained in the
following text.



SAIL

9.2 Delimiters

There are two types of delimiters used by the
Sail macro scanner: macro body delimiters and
macro parameter delimiters. Their usage will
be precisely defined in the sections on Macro
Bodies and Parameters to Macros. Here we will
discuss their declaration and scope, which is
very important when using source files with
different delimiters (see page 11 to find out
about source files).

Sail initializes both left and right delimiters of
both body and parameter dslimiters to the
double quote ("). One may change delimiters by
saying

REQUIRE "ea<>" DELIMITERS.

In this. example, the left and right body
delimiters become "c" and "o while the left
and right parameter delimiters become "<" and
">". Require Delimiters may appear wherever a
statement or declaration is legal. One should
Require Delimiters whenever all but the most
simple macros are going to be used. The first
Require Delimiters will initialize the macro
facility; if this is not done, some of the following
conveniences will not exist and only very
simple macros like defining CRLF = "(1§ & *12.
)" may be done. '

Delimiters do not follow block structure. They
persist until changed. Furthermore, each time
new delimiters are Required, they are stacked
on a special "delimiters stack”. The old
delimiters may be revived by saying

REQUIRE UNSTACK_DELIMITERS

Thus, each source file with macros should begin
with a Require delimiters, and end with an
Unstack_delimiters. It is impossible to Unstack
off the bottom of the stack. The bottom
element of the stack is the double quote
delimiters that Sail initialized the program to. If
you Unstack from these, the Unstack will
become a no-op, and the double quote
delimiters remain the delimiters of your
program.

One may circumvent the delimiter stacking
feature by saying

REQUIRE "es<>" REPLACE_DELIMITERS

MACROS AND CONDITIONAL COMPILATION

instead of REQUIRE "eoa<>" DELIMITERS. This
doesn’t deactivate the stacking feature, it
merely changes the active delimiters without
stacking them.

To revert to the primitive, initial delimiter mode
where double quotes are the active delimiters,
one may say )

REQUIRE NULL DELIMITERS

Null delimiters are stacked in the delimiter stack
in the ordinary REQUIRE "co<>" DELIMITERS
way. In null delimiters mode, the double quote
character may be inciuded in the macro body or
macro parameter by using two double guotes:

DEFINE SOR « "OUTSTR(""SORRY"“);";

The Null Delimiters mode is essentially the
macro facility of ancient versions of Sail where
" was the only delimiter. Programs written
ancient in Sail versions will run in Null
Delimiters mode. Null delimiters mode has all
the rules and quirks of the . prehistoric Sail
macro system (the old Sail macro facility is
described in [Swinehart & Sproull], Section 13).
Compatibility with the ancient Sail is the only
reason for Null Delimiters.

9.3 Macros

We will delay the discussion of macros with
parameters until the next section. A macro
without parameters is declared by saying:

DEFINE <macro_name> = <macro_body> ;

where <macro_name> is some legal identifier
name (see page 129 for a definition of a legal
identifier name). <macro_body>s can be simply
a sequence of Ascii characters delimited by
macro body delimiters, or they can be quite
complex. Once the macro has been defined, the
macro body is substituted for every subsequent
appearance of the macro name. Macros may be
called in this way at any point in a Sail
program, except inside a Comment or a string
constant,

Macro declarations may also appear virtually
anywhere in a Sail program. When the word
DEFINE is scanned by Sail, the scanner traps to
a special production. The Define is parsed, and

57



MACROS AND CONDITIONAL COMPILATION

the scanner returns to its regular mode as if
there had been no define there at all. Thus
things like

|l « J + 5+ DEFINE CON = c'7772; K12i...

are perfectly acceptable. However, don’t put a
Define in a string constant or a Comment.

SCOPE

Macros obey block structure. Each DEFINE
serves both as a declaration and an assignment
of a macro body to the newly declared symbol.
Two DEFINEs of the same symbol in the at the
same lexical level will be flagged as an error.
However, it is possible to change the macro
body assigned to a macro name without
redeclaring the name by using saying REDEFINE
instead of DEFINE. For example,

BEGIN
BEGIN
BEFINE SQUAK = cOUTSTR("OUTER BLOCK"):a;

" BEGIN
REDEFINE SQUAK = cOUTSTR("INNER BLOCK");>;

END;

SQUAK COMMENT Here the program types
“INNER BLOCK";

END; COMMENT Here SQUAK is undefined.
If SQUAK were included hers, you'd
get the error message

"UNDEFINED IDENTIFIER:SQUAK";

END

REDEFINE of a name that has not been declared

in a DEFINE will act as a DEFINE. That is, it will

also declared the macro name as well as
assigning a body to it. :

MACRO BODIES
. A Macro Body may be

58

SAIL

1. A sequence of Ascii characters
preceded by a left macro body
delimiter and followed by a right
macro body delimiter.

2.  An integer expression that may be
evaluated at compile time.

3. A string expression that may be
evaluated at compile time.

4.  Concatenations of the above.

WARNING: Source file switching inside macros
will not work.

DELIMITED STRINGS

Any sequence of Ascii characters, including
may be used as a macro body if they are
properly delimited. The macro body scanner
keeps a count of the number of left and right
delimiters seen and will terminate its scan only
when it has seen the same number of each.
This lets the macro body delimiters "nest" so
that one may include DEFINEs inside a macro
body. For example,

DEFINE DEF =
cDEFINE SYM » cSYMBOLD; SYM> ;

One may temporarily override the active
delimiters by including a two character string
before the "=" of the Define statement. For
example:

DEFINE LES "&7" » & 0sX<BIGGEST A Y>X 7;

The first character of the two character string
becomes the left delimiter, and the second
becomes the right delimiter.

INTEGER COMPILE TIME EXPRESSIONS

Sail tries to do as much arithmetic as it can at
compile time. In particular, if you have an
arithmetic expression of constants, such as

91.504 «+ (3.1415,81(8-7))
7 "Sail can convert strings”

then the whole expression will be evaluated at
compile time and the resultant constant, in this
case 93.9263610, will be used in your code
instead of the constant expression. Runtime
tunctions of constants will be done at compile
time too, if possible. EQU and the conversion
routines (CVS, CVO, etc.) will work.



SAIL

When an integer compile time expression is
scanned as part of a macro body, it is
immediately evaluated, The integer constant
which results is converted to a character string,
and that character string used for the place in
the macro body of the integer expression.
Thus,

DEFINE TTYUUO = '51 LSH 27 ;

will cause 61 LSH 27 to be evaluated, and the
resuiting constant, 5502926848, will be
converted to the character string 5502926848,
and that character string assigned to the macro
name TTYUUO.

STRING COMPILE TIME EXPRESSIONS

If a compile time expression has the type string
(constant), the macro scanner will evaluate the
expression immediately. However, the string
constant that results will not be converted to
the character string that represents that
constant, but to the character string with the
same characters that the string constant had.
Thus, the way to use a macro for string
constants is to delimit the string constant like
this:

DEFINE STRINCON = c"Very long
complex string that is hard
to type more than once"> ;

However, the automatic conversion of string
constants to character strings is helpful and
indeed essential for automatic generation of
identifiers: ’

DEFINE N = I;
COMMENT we will use this like a variable;

DEFINE GENSYM « €
DEFINE SYM = cTEMP_> & CVS(N); .
COMMENT SYM is defined to be the character
string TEMP_» where & is an number;

REDEFINE N = N+1;
COMMENT This increments N;

SYM o;
COMMENT At the call of SYM, the character
string is read like program text. E.g..;

INTEGER GENSYM, GENSYM, GENSYM, GENSYM;
REAL GENSYM, GENSYM;
COMMENT We have generated 6 identifiers with
unique names, and declared 4 as integers,
2 as reals; :

MACROS AND CONDITIONAL COMPILATION

To convert a macro body to a string constant,
one may use CVMS. Similarly, a macro
parameter is converted to a string constant by
CVPS.

<string constant> « CVMS (<macro name>);
<string constant> « CVPS (<macro parameter name>)

A string that has the exact same characters as
the macro body will be returned. For example:

DEFINE A« cB & Co;
DEFINE ABC « CVMS (A) & ¢ & Do;
COMMENT ABC now stands for the text B & C & D;

HYBRID MACRO BODIES

When two delimited strings are concatenated,
the result is a longer delimited string. "&" in
compile time expression behaves the same way
it behaves in any expression. When a compile
time expression is concatenated to a delimited
character string in a macro body, the result is
exactly the result one would get if the delimited
character string were a string constant, except
that the result is a delimited character string.
For example: ‘

DEFINEN = I;

DEFINE M = 2;

DEFINE SYM = CVS(N*¥M + Nt2) & c-SQRT(N*M+1)>;
DEFINE SYM1 = 3-SQRT(N*M+1)>;

Here SYM is exactly the same as SYMI.

9.4 Macros with Parameters

One defines a macro with parameters by
specifying the formal parameters in a list
following the macro name:

DEFINE MAC (A, B) = cIF A THEN B ELSE ERRe1;n;

One calls a macro with parameters by including
a list of delimited character strings that will be
substituted for each occurrence of the
corresponding formal in the macro body. For
example,

59



MACROS AND CONDITIONAL COMPILATION

COMMENT we assume that "<" and ">" are the
parameter delimiters at this point;

MAC (<BYTES LAND (BITMASK « '2000)>, <
BEGIN

WWDAT « FETCH (BYTES, ENVIRON);
COLOR[WWDAT) « '2000;
END »)

expands to

IF BYTES LAND (BITMASK + '2000) THEN
BEGIN
WWDAT « FETCH (BYTES, ENVIRON);
COLOR[WWDAT] « '2000;
END
ELSE ERRe1;

Parameter delimiters nest. Furthermore, if no

delimiters are used about a parameter, nesting
counts are kept of "()", "[]", and "{}" character
pairs. The parameter scan will not terminate
unti! the nesting counts of each of the three
pairs is zero. One may temporarily override
the active parameter delimiters by including a
two character string ahead of the parameter
list in the macro call:

MAC "€3" (¢BYTES > '20003, ¢MATCH(BYTES)3)

Formal parameters may not appear in compile
time expressions that are used to-specify macro
bodies. This is quite natural: compile time
expressions must be evaluated as they are
scanned, but the value of a formal parameter
isn’t known until later., However, if the macro
body is a hybrid of expressions and delimited
character strings, then formal parameters may
appear in the delimited string parts.

When doing a CVMS on a macro with
parameters, use only the macro name in the
call; the parameters are unnecessary. The
string returned will have the two character
strings "A1", "A2", etc. (here X\ stands for the
Ascii character °’177) where the formal
parameters were in the macro body. A "Al"
will appear wherever the first formal parameter
of the formal parameter list appear in the
macro body, a "A2" will appear wherever the
second parameter  appeared, etc. The
unfortunate appearance of the Ascii character
*177 in CVMS-generated strings is a product of
the representation of macro bodies as strings
ending in ’177, 0 (which CVMS removes),

60

SAIL

having ’177, n for each appearance of the nth
formal parameter in the body.

9.5 Conditional Compilation

The compile time equivalents of the Sail IF,
WHILE, FOR and CASE statements are

IFC <CT expr> THENC <anything> ENDC

IFC <CT expr> THENC <anything> ELSEC
<anything> ENDC

WHILEC «<CT epr: DOC c<anything>s ENDC

FORC <CT variable> « <CT expr> STEPC <CT expr>
UNTILC <CT expr> DOC c<anything>> ENDC

FORLC <CT variable> « {(<macro params, ...,
<macro param>) DOC c<anything>> ENDC

CASEC <CT expr> OFC c<anything>3, c<anything>3,
.. , €<anything>> ENDC

where <CT expr> is any compile time
expression. <CT expr> could itself include IFCs,
FORCs or whatever. <CT variable> is a macro

-name such as N from a define such as DEFINE N

= MUMBLE; <macro param> is anything that is
delimited like a macro parameter. <anything>
can be anything one could want in his program
at that point, including Defines and other
conditional compilation statements. The usual
care must be taken with nested IFCs so that the
ELSECs match the desired THENCs. The "c" and
"o" characters above are to stand for the
current MACRO BODY DELIMITER pair.

The semantics are exactly those of the
corresponding runtime statements, with one
exception. When the list to a FORLC is null (i.e.
it looks like "( )" ), then the <anything> is
inserted.in the compilation once, with the <CT
variable> assighed to the null macro body.

Situations frequently occur where the faise
part of an IFC must have the macros in it
expanded in order to delimit the false part
correctly. For example,



SAIL

DEFINE DEBUG_SELECT =
cIFC DEBNUM = 2 THENC =;
DEFINE DEBUG_END =
cELSEC OUTSTR ("DEBUG POINT") ENDC>;

Debug_select
OUTSTR ("DEBUG POINT #" & CVS (DBN));
Debug_end

if DEBNUM is not 2, then the program must
expand the macro Debug_end in order to pick
up the ELSEC that terminates the false part of
the conditional. The expansion is only to pick
up such tokens -- the text of the false part is
not sent to the scanner as the true part is. In
order to avoid such expansion, one may use
IFCR (the R stands for "recursive") instead of
IFC. ‘

As  an added feature, when delimiters are
required about an <anything> in the above
(such constructs are named
<delimited_anything> in the BNF), one may
substitute a concatenation of constant
expressions and delimited strings. This is just
like a macro body, except the concatenation
MUST contain at least one delimited string,
thereby forcing the result of the concatenation
to be a delimited string, rather than a naked
expression. :

As a further added feature,

IFC <CT expr> THENC c<anything>s ELSEC
c<anything>> ENDC

may be substituted in FORCs, FORLCs, and
WHILECs for the <anything> following DOC.

NOTE: In a WHILEC, the expression must be
delimited with the appropriate ma¢ro body
delimiters (hence the construct
<delimited_expr> in the BNF).

9.6 Type Determination at Compile Time

To ascertain the type of an identifier at compile
time, one may wuse the integer function
DECLARATION (<identifier>). This returns an
integer with bits turned on to represent the
type of identifier. Exactly what the bits
represent is a dark secret and changes

MACROS AND CONDITIONAL COMPILATION

periodically anyway. The best way to decode
the integer returned by Declaration is to
compare it to the integer returned by
CHECK_TYPE (<a string of Sail declarators>), A
Sail declarator is any of the reserved words
used an a declaration. Furthermore, the
declarators must be listed in a legal order,
namely, an order that is legal in declarations
(i.e. ARRAY INTEGER won’t work). One may
include as arguments to CHECK_TYPE the
following special tokens:

TOKEN EFFECT

BUILT_IN The bit that is on when a
procedure is known to
preserve ACs 0-’11 (except
AClL if returning a value) is
returned. Sail does not
clear the ACs when

compiling a call on a
" BUILT_IN procedure.

The bit that is on when an
identifier is - an item or
itemvar with a declared
array datum is returned
(the discussion of Leap
starts on page 83).

| LEAP_ARRAY

RESERVED The bit that is on for a

reserved word is returned.
DEFINE The bit that indicates the
identifier is a macro name
is returned (note: a macro
name as the argument to
DECLARATION will not be
expanded).

The bit which says "this
procedure will be evaluated
at compile time if all its
arguments are constant
expressions” is returned.

CONOK

Examples:

DECLARATION (FOO) » CHECK_TYPE (INTEGER)
This is an exact comparse. Only if Foo is
an integer variable will equality hold.

DECLARATION (A) LAND CHECK_TYPE (ARRAY)

This is not an exact compara. If A is any
kind of an array, the LAND will be non-zera.

61



MACROS AND CONDITIONAL COMPILATION

DECLARATION (CVS) » CHECK_TYPE(EXTERNAL CONOK

OWN BUILT_IN FORWARD STRING PROCEDURE)
The equality holds. FORWARD so that you tan
redeclare it without complaints; OWN as a hack
which saves space in the compiler.

DECLARATION (BEG) LAND CHECK_TYPE (RESERVED)
This is non-zero only if one has said
LET BEG = BEGIN. DEFINE BEG = BEGIN
“will only turn the Define bit of BEG on.

NOTE: if the <identifier> of DECLARATION has
not yet been declared or was declared in an
inner block, then O is returned -- it is
undeclared so it has no type.

EXPR_TYPE returns the same bits that
DECLARATION does, except that the argument to
EXPR_TYPE may be an expression and not just
an identifier.

9.7 Miscellaneous Features

COMPILE TIME 1/0

Compile time input is handled by the REQUIRE
“<file_name>" SOURCE_FILE construct.
<tile_name> can be any legal file, including TTY:
and MTAQ: and of course disk files. (MTA does
not work for TENEX.) The file will be read until
the its end of file delimiter is scanned (<ctri>Z
for TTYs or <meta><ctri><lf> at SUAI), and its
text will replace the REQUIRE statement in the
main file.

Compile time output is limited to typing a
message on the user’s teletype. To do this say
REQUIRE <string_constant> MESSAGE, and the
<string_constant> will appear on your teletype
when the compilation hits that point in your file.

EVALDEFINE, EVALREDEFINE

The reserved word EVALDEFINE may be used in
place of the word DEFINE if one would like the
identifier that follows to be expanded. When
one follows a DEFINE with a macro .name, the
macro is not expanded, but rather the macro
name is declared at the current lexical level and
assigned the specified macro body.
EVALDEFINE gets you around that. Helps with
automatic  generation of macro  names.
EVALREDEFINE is also available.

62

SAIL

ASSIGNC
The following compile time construct makes
recursive macros easier.

" ASSIGNC <namel> = <macro_body>;

<namel> must be a formal to a macro, and
<macro_body> may be any macro body.
Thereafter, whenever <namel> is instantiated,
the body corresponding to <macro_body> is
used in the expansion rather than the text
passed to the formal at the macro call.

RESTRICTION: ASSIGNC may only appear in the
body of the macro that <namel> is a formal of.
If it appears anywhere else, the <namel> will
be expanded like any good formal, and that text
used in the ASSIGNC as <namel> Unless
you’re being very clever, this is probably not
what you want,

NOMAC
Preceding anything by the token NOMAC will
inhibit the expansion of that thing should that

thing turn out to be a macro.

COMPILER_BANNER

This is a predefined macro which expands to a
string constant containing the text of the two-
line banner which would appear at the top of
the current page ‘if a listing file were being
made. This string contains the date, time, name
and page of the source file, the value of all
compiler switches, the name of the outer block,
and the name of the current block. Thus you
can automatically include the date of
compilation in a program by  using
COMPILER_BANNER[n TO m] for appropriate n
and m. Try REQUIRE COMPILER_BANNER
MESSAGE; or look at a listing for the exact
format,

9.8 Hints

The following is a set of hints and aids in
debugging programs with macros. Unless
otherwise stated array brackets "[]" are the
macro body delimiters.

IFC and friends will not trigger at the point of
racro definition, in a macro actual parameter
list, or inside a string constant.



SAIL

DEFINE FOO = [IFC A THENC B ELSEC D ENDC});
which is not the same as
DEFINE FOO = IFC A THENC [B] ELSEC [D] ENDC;
* which is the same as ’
IFC A THENC DEFINE FOO = [B]
ELSEC DEFINE FOO = [D] ENDC;

DEFINE BAZ (A) « [OUTSTR ("A")i);
BAZ (IFC B THENC C ELSEC D ENDC)
will result in the following string typed

.on your terminal:
IFC B THENC C ELSEC D ENDC

STRING A;
A«"IFC WILL NOT TRIGGER HERE";

‘Macros will not be expanded in strings, but
macro formal parameters will be expanded
when they occur in strings within macro bodies
as seen in the second example above.

DEFINE FOO = [BAZ);
OUTSTR ("FOO")

which will type out the string FOO on your
terminal rather than BAZ.

Caution should be employed when using letters
(specifically €2) as delimiters. This may lead to
problems when defining macros within macros.

DEFINE MAC(A) "e2" = cREDEFINE FOO =cAo;o;

Inside the macro body of MAC, A will not be
recognized as a formal since the scanner has
scanned cA> as an identifier by virtue of o
being internally represented as letters so that
they could be defined to mean BEGIN and END
respectively (also < as COMMENT). More
justification for this feature is seen by the
following example:

DEFINE MAC(ABC) "AC" = A V«ABC; C;

We want ABC in the text to be the parameter
and not B if we were to ignore the macro
delimiters.

When scanning lists of actual parameters,
macros are not expanded.

DEFINE FOO = {A,B);
MAC (FOO) will not have the result MAC(A,B). However,
DEFINE FOO = [(A, B)):
followed by MAC FOO will have the same effect as
MAC (A, B).

MACROS AND CONDITIONAL COMPILATION

The same reasoning holds for parameter lists to
FORLC. o

DEFINE FOO = [A, B, CJ;
FORLC | « (FOO) DOC [OUTSTR ("i");) ENDC
will result in FOO typed out on your terminal.

DEFINE FOO « [(A, B, O));
FORLC | =« FOO DOC {OUTSTR ("I");] ENDC
will have the desired resuit ABC typed out.

In order to take advantage of the nestable
character feature in the parameters to a macro
call, one must be in REQUIRE DELIMITERS mode.
Otherwise scanning will break upon seeing a
comma or a right parenthesis.

BEGIN
DEFINE FOO(A) = "A";
INTEGER ARRAY ABC[1:10, 1:10};
FOO (ABC[1, 2))3;

END; :

This is identical to:

BEGIN
INTEGER ARRAY ABC[1:10, 1:10};
ABC[1¢3; Comment illegal;

END;

However, if the original program had included a
REQUIRE DELIMITERS statement prior to the
macro call, as below, then the desired effect
would have resulted - i.e.,, ABC[1, 2]«3 .

- BEGIN
REQUIRE "{}7$" DELIMITERS;
DEFINE FOO (A) = (A}
INTEGER ARRAY ABC[1:10, 1:10};
FOO (ABC[1, 2))3;
END;

63



RECORD STRUCTURES

SECTION 10
- RECORD STRUCTURES

10.1 Introduction

Record structures are new to Sail. They
provide a means by which a number of closely
related variables may be allocated and
manipulated as a unit, without the overhead or
limitations associated with using parallel
arrays and without the restriction that the
variables all be of the same data type. In the
current implementation, each record is an
instance of a user-defined record class, which
serves as a template describing the various
fields of - the record. Internally, records are
small blocks of storage which contain space for
the various fields and a pointer to a class
descriptor record. Fields are allocated one
per word and are accessed by constant
indexing off the record pointer. Deallocation is
performed automatically by a garbage collector
or manually through explicit calls to a
deallocation procedure.

10.2 Declaration Syntax

<record_class_declaration>
1= RECORD_CLASS <class_id> (
<field_declarations> )
= RECORD_CLASS <class_id> (
<field_declarations> ) [ <handler> ]

<record_pointer_declaration>
1= RECORD_POINTER ( <classid_list>
) <id_list>
u= RECORD_POINTER ( ANY_CLASS
) <id_list>

64

SAIL

10.3 Declaration Semantics

The <field_declarations> have the same form
as the <formal_param_decl> of a procedure,
except that the words VALUE and REFERENCE
should not be used, and default values are
ignored. Each record class declaration is
compiled into a record descriptor (which is a
record of constant record class SCLASS) and is
used by the runtime system for allocation,
deallocation, garbage coliection, etc. At runtime
record pointer variables contain either the
value NULL_RECORD (internally, zero) or else a
pointer to a record. The <classid list> is used
to make a compile-time check on assignments
and field references.. The pseudo-class
ANY_CLASS matches all classes, and effectively
disables this compile-time check.

For instance,

RECORD_CLASS VECTOR (REAL X, Y, 2);
RECORD_CLASS CELL '
(RECORD_POINTER (ANY_CLASS) CAR, CDR);
RECORD_CLASS TABLEAU
(REAL ARRAY A, B, C; INTEGER N, M);
RECORD_CLASS FOO (LIST L; ITEMVAR A);

RECORD_POINTER (VECTOR) V1 ,V2;
RECORD_POINTER (VECTOR, TABLEAU) T1,T2;
RECORD_POINTER (ANY_CLASS) R;

RECORD_POINTER (FOO, BAR) FBI, FB2;
RECORD_POINTER (FOO) FB3;
RECORD_POINTER (CELL) C;
RECORD__POINTER (ANY_CLASS) RP;

COMMENT the following are all ok syntactically;
C « NEW_RECORD (CELL)

RP e« C:

FB2 « NEW_RECORD (FOO)

FB1 « FB3;

FB3 « RP; COMMENT This is probably a runtime bug
since RP will contain a cell record. Sail
won't catch it, however;

CELL:CAR[RP] « FBI;

CELL:CAR[RP] « FBI;

COMMENT The compiler will complain about these: ;
FBI « C;
FB3 « NEW_RECORD (CELLY

RP « CELL:CAR[FB3);

NO runtime class information is kept with the
record pointer variables, and no runtime class



Tre viecardls
dhemedvrs
o nat™ hane
) stl,

" Record

SAIL

checks are made on record assignment or field
access. Record pointer variables are allocated
quantities, and should not appear inside SIMPLE
procedures. They resemble lists in that they
are not given any special value upon block
entry and they are set to a null value
(NULL_RECORD) when the block in which they
are declared is exited. (This is so that any
records referred to only in that block can be
reclaimed by the garbage collector.)

ointers are regular Sail data types,
just like integers or strings; record pointer
procedures, arrays, and items all work in the
normal way. As indicated earlier, the constant
NULL_RECORD produces a null reference.

10.4 Allocation

Records are allocated by
NEW_RECORD (<classid>)

which returns a new record of the specified
class. All fields of the new record are set to
the null or zero value for that field; ie., real
and integer fields will be set to 0, itemvar fields
to ANY, lists to NIL, etc. Note that entry into a
block with local record pointer variables does
NOT cause records to be allocated and assigned
to those variables.

105 Fields
Record fields are referenced by
<classid> ! <fieldid> [ <record pointer expression> ]

and may be used wherever an array element
may be used. For example

RECORD_POINTER (VECTOR) V;
RECORD_POINTER (CELL) C;
RECORD_POINTER (FOOQ) F;

VECTOR:X[V] « VECTOR:Y[V}
CELL:CAR[C « NEW_RECORD (CELL)) « V;
VECTOR:Z[V] « VECTOR:X[CELL:CAR[C]};
SUBLIS « FOO:L[F][1 TO 3}

If the <record pointer expression> gives a null

RECORD STRUCTURES

record, then a runtime error message will be
generated. This is the only runtime check that
is made at present. lLe., no runtime checks are
made to verify that the <classid> in the field
statement matches the class of the record
whose field is being extracted.

An array field may be used as an array name,
as in

RECORD_POINTER (TABLEAU) T:
TABLEAUA[T](LJ] « 2.5;

provided that a valid array descriptor has been
stored into the field. Unfortunately, Sail does
not provide any clean way to do this. One
unclean way is

EXTERNAL INTEGER PROCEDURE ARMAK
(INTEGER LB, UB, «DIMS);

COMMENT returns address of first data word of new
array. For String arrays set #DIMS to -1,,n.
For higher dimensions declare with more LB, UB pairs;

EXTERNAL PROCEDURE ARYEL (INTEGER ARR);
COMMENT dealiocates an array. ARR is the address of
the first data word;

RECORD_CLASS FUBAR (INTEGER ARRAY A);
RECORD_POINTER (FUBAR) FB;

MEMORY[LOCATION (FUBAR:A[FB)])] « ARMAK (1, 100, 1);
ARYEL (MEMORY[LOCATION (FUBAR:A[FB] 1)

(Warning: the above advice is primarily
intended for hackers. No promises are made
that it will always work, although this particular
trick is unlikely to be made obsolete in the
forseeable future.)

10.6 Garbage Collection

The Sail record service routines allocate
records as small blocks from larger buffers of
free storage obtained from the normal Sail free
storage system. (The format of these records
will be discussed in a later section.) From time
to time a garbage collector is called to reclaim
the storage for records which are no longer
accessible by the user’s program (i.e., no
variables or accessible records point to them).

65



RECORD STRUCTURES

The garbage collector may be called explicitly
from Sail programs as external procedure
SRECGC, and automatic invocation of the
garbage collection may be inhibited by setting
user table entry RGCOFF to TRUE. (in this case,
Sail will just keep allocating more space, with
nothing being reclaimed until RGCOFF is set
back to FALSE or SRECGC is called explicitly).
In addition, Sail provides a number of hooks
that allow a user to control the automatic
invocation of the garbage collector. These are
discussed later.

10.7 Internal Representations

Each record has the following form:

-1: «<ptrs to ring of all records of class>
0: <garbage coilector ptr>,<ptr to class descriptor>
+1: <first field>

n: <last field>

Record pointer variables point at word O
of such records. A String field contains the
address of word2 of a string descriptor, like
the string was a REFERENCE parameter to a
procedure. The string descriptors are also
dynamically allocated.

The predefined record class SCLASS defines all
record classes, and is itself a record of class
SCLASS.

RECORD_CLASS $CLASS
(INTEGER RECRNG, HNDLER, RECSIZ;

INTEGER ARRAY TYPARR; STRING ARRAY TXTARR);

RECRNG is a ring (bidirectional linked list) of
all records of the particular class.

HNDLER is a pointer to the handler procedure
for the class (default SRECS).

RECSIZ is the number of fields in the ¢lass.

TYPARR is an array of field descriptors for
each field of the class.

TXTARR is an array of field names for the

class.

The normal value for the handier procedure is

66

SAIL

SRECS, which is the standard procedure for
such functions as allocation, deallocation, etc.

TYPARR and TXTARR are indexed [O:RECSIZ].
TXTARR[O] is the name of the record class.
TYPARR[0O] contains type bits for the record
class.

Example:
RECORD_CLASS FOO (LIST L; ITEMVAR A);

The record class descriptor for FOO contain:

FOO-1: «<ptrs for ring of all records of §CLASS>

FOO:  <ptr to $CLASS>

FOO+1: «<ptrs for ring of all records of class FOO;
initialized to <F004+2,FO0+2> >,

F0O+2: <ptr to handler procedure $RECS>

F00+3: 2

FOO+4 «<ptr to TYPARR>

FOO+5: <ptr to TXTARR>

The fields of FOO are:

S$CLASS:RECRNG[FOO] = <initialized to null ring,

i.e, xwd(loc(FOO0)+2,loc(FO0)+2)>
$CLASS:HNDLER[FOO] = $RECS
$CLASS:RECSIZ[FOOQ) = 2
SCLASS:TXTARR[FOO] [0] = "FOO"
SCLASS:TXTARR[FOO] [1] = "L"
$CLASS:TXTARR[FOO] {2] = "A"
SCLASS:TYPARR[FOO] [0] = <bits for garbage collector>
$CLASS:TYPARR[FOO] (1] = <descriptor for LIST>
$CLASS:TYPARR[FOO] [2] = <descriptor for ITEMVAR>

10.8 Handler Procedures

Sail uses a single runtime routine SRECFN (OP,
REC) to handle such system functions as
allocation, deallocation, etc. The code compiled
for r « NEW_RECORD (foo) is

PUSH P, L1

PUSH P, [fo0l
PUSHJ  P,SRECFN

MOVEM  1,r

$RECFN performs some type checking and then
jumps to the handler procedure for the class.
The normal value for this handler procedure is
SRECS. It is possible to substitute another
handler procedure for a given class of records



SAIL

by including the procedure name in brackets
after the record class declaration. The handler
must have the form

RECORD,_POINTER (ANY_CLASS) PROCEDURE <procid>
(INTEGER OP; RECORD_POINTER (ANY_CLASS) R);

Here OP will be a small integer saying what is
to be done. The current assigmments for OP
are:

value meaning

invalid

0

1 allocate a new racord of record class R
2 not used

3 not used

4 - mark all fields of record R

5 delete all space for record R

At SUAI, macro definitions for these functions
may be found in the file SYS:RECORD.DEF, which
also includes EXTERNAL declarations for
SCLASS, $RECS, and SRECFN.

SRECS (1, R) allocates a record of the record
class specified by R, which must be a record of
class §CLASS. All fields (except string) are
initialized to zero. String fields are initialized
to a pointer to a string descriptor with length
zero (null string).

SRECS (4, R) is used by the garbage collector to
mark all record fields of R,

SRECS (5, R) deallocates record R, and
deallocates all string and array fields. of record
R. Care must be exercised to prevent multiple
pointers to string and array fields; i.e,, DO NOT
store the location of an array in fields of two
different records unless extreme caution is
taken to handle deletion. This can be
accomplished through user handler procedures
which 2ero array fields (without actually
deleting the -arrays) prior to the call on
SRECS (5, R).

NOTE: When an alternate handler procedure is
supplied it must perform all the necessary
functions. One good way to do this is to test
for those OPs performed by the alternate
handler and call SRECS for the others. If SRECS
is used to allocate space for the record then it

RECORD STRUCTURES

should also be used to release the space.
These points are illustrated by the following
example:

FORWARD RECORD_POQINTER (ANY_CLASS) PROCEDURE
FOOH (INTEGER OP;

RECORD_POINTER (ANY_CLASS) R);
RECORD_CLASS FOO (ITEMVAR V) [FOOH); .
RECORD_POINTER (ANY_CLASS) PROCEDURE FOOH

(INTEGER OP; RECORD_POINTER (ANY_CLASS) R);

BEGIN '
PRINT("CALLING FOOH. OP = ", OP);
IF OP = 1 THEN

BEGIN

RECORD_POINTER (FOO) F;

F « $RECS (1,R);

FOO:V[F]) « NEW;

RETURN (F);

END
ELSE IF OP « 5 THEN

DELETE (FOO:IV[R))
RETURN (SRECS (OP, R)):

END;

10.9 More about Garbage Collection

The information used by the system to decide
when to call $RECGC on its own is accessible
through the global array 8SPCAR. In general,
$SPCAR[n] points at & descriptor block used to
control the allocation of small blocks of n
;uords. This descriptor includes the following
ields: :

BLKSIZ number of words per block in this space

TRIGGER  a counter controlling time of garbage collection

TGRMIN  described balow '

TUNUSED number of unused blocks on the free list

TINUSE  total number of blocks in use for this space

CULPRIT  the number of times this space has caused
collection

The appropriate macro definitions for access to
these fields may be found in the source file
cSUAI>SYS:RECORD.DEF. The decision to invoke
the garbage collector is made as part of the
block allocation procedure, which works roughly
as follows:

67



RECORD STRUCTURES

INTEGER spc,size;

size « $CLASS:RECSIZ[classid)+2;

IF siza>16 THEN return a CORGET block; -

spc « $SPCAR[size);

L1:

IF (MEMORY[spc+TRIGGER]

« MEMORY[spc+TRIGGER)-1) <0
THEN BEGIN
IF ~MEMORY[GOGTAB+RGCOFF) THEN BEGIN

MEMORY(spc+CULPRIT) « MEMORY[spc+CULPRIT)+1;
SRECGC;
GO TO LY

END END;

<allocate the block from space spc,

update counters, etc.>

Once $RECGC has returned all unused records
to the free |lists associated with their
respective block sizes, it must adjust the
trigger levels in the various spaces. T¢ do this,
it first looks to see if the user has specified the
location of an adjustment procedure in
TGRADJUSER). If this cell is non-zero then
SRECGC calls that procedure (which must have
no parameters). Otherwise it calls a default
system procedure that works roughly like this:

<set all TRIGGER levels to -1>
FOR size « 3 STEP 1 UNTIL 16 DO BEGIN

spc « $SPCAR[size}; -

IF MEMORY[spc+TRIGGER]<O THEN BEGIN
tMEMORY[spc+TINUSE}+RGCRHO(USER);
teMAX(t, MEMORY[spc+ TUNUSED],

MEMORY[spc+TGRMIN));
END END;

RGCRHO(USER) is a real number currently
initialized by the system to 0.33. Thus the
behavior of Sail’s automatic garbage collection
system may be modified by

Setting RGCOFF(USER).

Supplying a procedure in TGRADJ(USER).

Modifying RGCRHO(USER).

Modifying the TGRMIN entries in the space descriptors.

One word of caution: User procedures that set
trigger levels must set the trigger level of the
space that caused garbage collection to some
positive value. If not then a runtime error
message will be generated.

Look at the file €SUAIDRECAUX.SAI[CSP,SYS),

68

SAIL

which contains a number of useful examples
and auxilliary functions.



SAIL

SECTION 11
TENEX ROUTINES

11.1 Introduction

This .section describes routines which interface
Sail with the TENEX operating system. Routines
for file input/output, terminal handling, and
miscellaneous system calls are described here.
For TENEX-specific details of other routines
(such as interrupts) consult the appropnate
chapter.

11.2 TOPS-10 Style Input/Output

“Standard" Sail programs written using TOPS-
. 10 1/0 routines such as OPEN, LOOKUP, etc., will
run under TENEX with little or no conversion
necessary. The TENEX Sail routines simulate
most of the effects of the TOPS-10 1/0 calls
without using the PA-1050 emulator,

In TENEX Sail the non-zero values of error flags
returned by routines such as LOOKUP are
ERSTR JSYS error numbers. The interpretation
of zero/nonzero is the same as with the TOPS-
10 1/0 routines, but the specific nonzero values
are probably different.

Here are the TOPS-10 /0O routines and the
differences, if any, under TENEX.

ARRYIN TENEX dump mode implies a single
DUMPI JSYS.

ARRYOUT similar to ARRYIN.

The close inhibit bits have no effect.

CLOSE

CLOSIN  same as CLOSE.
CLOSO  same as CLOSE.
ENTER  no differences.

GETCHAN In  TOPS-10, GETCHAN returns the
number of a channel for which no
OPEN is currently in effect. Thus
successive GETCHANs  without
intervening OPENs will return the

GETSTS
INOUT
INPUT

INTIN
LINOUT
LOOKUP
MTAPE

OPEN

ouT
REALIN
RELEASE
RENAME

SETPL

SETSTS
STDBRK
TMPIN
TMPOUT
USETI

TENEX ROUTINES

same channel number. In TENEX Sail,
GETCHAN returns the number of a

channel for which no OPEN or
GETCHAN is currently in effect; thus
successive GETCHANs will return
different channel numbers.

not available; see GDSTS, GTSTS.

not available.

assumes 200 characters maximum if
no length wvariable has been
associated with the channel.

no differences.

no differences.

no differences.

Options "* and NULL are not

available.

MODE is mostly ignbred (exception:
dump mode on a dectape ignores the
directory). The number of input and
output buffers serves only to indicate
whether reading or writing is desired.
no differences.

no differences.

The close inhibit bits have no effect.

Changing the protection does not
work. See GTFDB and CHFDB.

The routines CHARIN and SINI do not
update the variables associated with
the channel by SETPL.

not available; see SDSTS, STSTS.

no differences.

not available.

not available.

works only on those devices where
the SFPTR JSYS works. On a dectape
the MTOPR JSYS is used, and may not
produce the same results as on a
TOPS-10 system. USETI takes effect

69



TENEX ROUTINES

immediately (the nondeterminancy of
the standard TOPS-10 (not SUAD
USETI is not simulated). Equivalent to
SFPTR (chan, (N-1)¥'200)

USETO  same as USETI. TENEX has only one
file pointer, so in fact USETI and
USETO are EXACTLY the same
function, ’

WORDIN no differences.
WORDOUT no differences.

MAGTAPE 1/0

The user is warned that there are serious
limitations in TENEX regarding magtapes. While
TENEX is supposed to have device-independent
[/O, the magtape code in TENEX (as of v. 1-31)
is minimal, allowing only dump mode transfers.
Further, end of file markers must be written
explicitly, and it is sometimes necessary to do
an MTOPR operation O to reset the magtape
status bits,

TENEX Sail has been designed to handle some
of these things in a way that makes features
available on a standard TOPS-10 system
available in a transparent way. For example,
string input and output functions work, with Sail
assuming 128-word records on the tape.
ARRYIN and ARRYOUT cause the DUMPI and
DUMPO JSYSes to be executed for the specified
word counts. TENEX Sail does not actually open
tapes for write until a write operation is
requested. A CLOSF or CFILE on a tape will
write two EOF’S (MTAPE (ch, "E")) and
backspace over one of them, if and only if the
file has been opened. Do not rewind a tape
unless it has been closed. The user who wants
to write magtape code for operations other
than the above is hereby warned that the
TENEX magtape code is fraught with peril.
TENEX Sail certainly allows full access to TENEX
in this regard, however.

11.3 TENEX Style Input/Output

The following functions satisfy most Sail and
TENEX needs:

70

SAIL

ARRYIN Read in an array (36-bit words)
ARRYOUT Write an array

CFILE Release a file

CPRINT  Write a string

INPUT Read in a string

JFNS Read file name

OPENFILE Obtain a file

ouT Write a string

SETINPUT Set pafameters for input

OBTAINING ACCESS .
The main procedure for obtaining access to
files is OPENFILE. In terms of JSYSes, OPENFILE
does a GTJFN and OPENF. Additional routines
provide support to OPENFILE, including
SETINPUT, INDEXFILE, and CFILE.

DATA TRANSFER

The TENEX routines for transferring data are
generally the same as the TOPS-10 routines.
One improvement in TENEX Sail is that
characters and words can be mixed in reading
or writing to a file, provided the file is on the
disk. Such 1/0 is called "data mixed /0",

The following interpretation is given to data
mixed 1/O. There is one logical character
pointer into the file. When a character is read
or written the routines access the byte
designated by the pointer and then increment
the pointer. There is only one pointer for both
input and output. When a word is read or
written, the next full word in the file is
accessed. Accessing a word advances the
character pointer to the next full word in the
file, where five 7-bit ASCIl characters occupy
one 36-bit word. If a read passes the end of
the file then the EOF variable (specified by
SETINPUT or OPEN) and the external integer
_SKIP_ are set to -1. If a write passes the end

of file then the end of file is advanced.

RANDOM 1/0
The routines RCHPTR, SCHPTR, RWDPTR, and
SWDPTR give access to the file pointer. USETI
and USETO are equivalent to SWDPTR (chan,
(N-1)%'200);.



SAIL

ERROR HANDLING

When errors occur the runtime routines will
sometimes trap the errors themselves. This
practice is held to a minimum since the error
itself may be information that the user is
interested in seeing. Usually the routines (as
marked) put the TENEX error code in _SKIP_,
which may be examined by the program. The
TENEX error numbers do not always make good
sense, but for the cases that they do the ERSTR
routine will print out on the terminal the
message associated with a given error number.

DIRECT DSK OPERATIONS
The routines DSKIN and DSKOUT do direct DSK
operations in TENEX Sail, using the DSKOP JSYS.

These routines relate only to the IMSSS version

of TENEX-Sail.

ASND, RELD

SUCCESS « ASND (DEVICE_DESCRIPTOR);
SUCCESS « RELD (DEVICE_DESCRIPTOR)

DEVICE_DESCRIPTOR (in the TENEX sense) is
assigned to or deassigned from the job. If
DEVICE_DESCRIPTOR is -1 when calling RELD
then all devices assigned to the job are
deassigned. TENEX error codes are returned in
_SKIP_, which is zero if no errors occurred.

BKJFN

BKJFN (CHAN)

Does the BKJFN JSYS on CHAN. TENEX error
codes are returned in _SKIP_, which is zero if
no errors occurred. This function is escape
from Sail.

L ————
SUCCESS « CFILE (CHAN)

This routine closes the file (CLOSF) and
releases the CHAN (RLJFN). This is the ordinary
way to dispense with a file. CFILE returns
TRUE -if CHAN is legal and released; it returns
FALSE otherwise.

TENEX ROUTINES

CHARIN

CHAR « CHARIN (CHAN)

The next character from CHAN is returned. Zero
is returned if the file is at the end.

CHAROUT
CHAROUT (CHAN, CHAR)
The single character CHAR is written to CHAN.

CHFDB

CHFDB (CHAN, DISPLACEMENT,
MASK, CHANGED_BITS)

This routine performs the CHFDB JSYS on
CHAN, with DISPLACEMENT, MASK, and
CHANGED_BITS as described. in the JSYS
manual.

CLOSF

CLOSF (CHAN)

This routine does a CLOSF on CHAN. CHAN is
not released, If the device is a magtape open
for output then 2 file marks are written and a
backspace is performed. This writes a standard
end-of-file on the tape.

CVJFN

REAL_JFN « CVJFN (CHAN)
The full TENEX JFN (including flags in the left

half) corresponding to Sail channel CHAN is
returned. Only a hacker will ever need this.

DELF

DELF (CHAN)
The file on CHAN (which must NOT be open) is

71



TENEX ROUTINES

deleted. TENEX error codes are returned in
_SKIP_, which is zero if no errors occurred.

DELNF

DELETED « DELNF (CHAN, KEPT)

This routine deletes all but KEPT versions of
the file on CHAN, which must have had a CLOSF
done on it first, If KEPT=0 then all versions of
the file are deleted. If KEPT=1 then all versions
except the most recent are deleted. The
number of files actually deleted is returned as
the value of DELNF.

DEVST, STDEV

"DEVICE_NAME" « DEVST (DEVICE_DESIGNATOR);
DEVICE_DESIGNATOR « STDEV ("DEVICE_NAME")

These routines convert between string
DEVICE_NAMEs (such as "DTAO") and TENEX
DEVICE_DESIGNATORs. TENEX does not believe
that lower case letters are equivalent to upper
case letters in STDEV. TENEX error codes are
returned in _SKIP_, which is zero if no errors
occurred.

. DEVTYPE —

~ DEVICE_TYPE « DEVTYPE (CHAN)

The DVCHR JSYS is used to return the device
type of the device open on CHAN.

DSKIN, DSKOUT

DSKIN (MODULE, RECNO, COUNT, @LOC);
DSKOUT (MODULE, RECNO, COUNT, @LOC)

[IMSSS only.] These routines do direct DSK 1/0.
MODULEs 4-7 are legal for everyone; other
modules require enabled status. The routines
transfer COUNT (<°1000) words, starting at
location LOC in memory and at record RECNO in

MODULE. TENEX error codes are returned in.

_SKIP_, which is zero if no errors occurred.
WARNING: No bounds checking is performed to
see if the LOC is a legal Sail array.

72

SAIL

DVCHR

DEVICE_CHAR « DVCHR (CHAN, @AC1, @AC3)
The DEVCHR JSYS is performed. The flags from

AC2 are returned as the value of the call, and
AC1 and AC3 get the contents of ac’s | and 3.

ERSTR

ERSTR (ERRNO, FORK)

Using the ERSTR JSYS, this routine types on the
console the TENEX error string associated with
ERRNO for fork FORK (400000 for the current
fork). Parameters (in the sense of the ERSTR
JSYS) are expanded. Types ERSTR:
UNDEFINED ERROR NUMBER (and sets _SKIP_ to
-1} if something is wrong with ERRNO or FORK.

GDSTS, SDSTS

STATUS « GDSTS (CHAN, @WORD_COUNT);
SDSTS (CHAN, NEW_STATUS)

The status of the device on CHAN is returned
or changed. For GDSTS, @WORD_COUNT is set
to the contents of ACS3.

Remark: some magtape statuses (such as EOF)
are set by MTOPR and not by SDSTS.
Ordinarily the Sail runtime system takes care of
this, but it is worth mentioning since so many
users have run into this poorly documented fact
about TENEX.

GNJFN

MORE_FILES « GNJFN (CHAN)

Does the GNJFN JSYS. A -file that is open
cannot have GNJFN applied to it. INDEXFILE
should normally be used instead of GNJFN. An
exception is if files are being indexed without
actually being opened (i.e., without an OPENF
JSYS), which is-a sensible way of performing
operations such as counting the number of files
in a group.



SAIL

GTFDB
GTFDB (CHAN, @BUF)

The entire FDB of CHAN is read into the array
BUF. No bounds checking is performed, so BUF
should be at least "25 words.

GTJFN
CHAN « GTJFN ("NAME", FLAGS)

Does a GTJFN. If NAME is non-null then it is
used, otherwise the terminal is queried for a
filename. Any error code is returned in _SKIP_,
The Sail channel number obtained is returned
as the value of GTJFN.

The following values for FLAGS will be
translated by Sail before doing the JSYS:

valve translated to
0 '100001000000 (ordinary input)
} 600001000000 (ordinary output)

Other values are taken literally.

Ordinarily OPENFILE will be used rather than
GTJFN. The routines GTJFN, OPENF, GNJFN,
CLOSF, RLJFN, and DVCHR are all in the
category of being included only for
completeness; they are not necessary in most
programs.

GTJFNL

CHAN « GTJFNL ("ORIGSTR", FLAGS, JFN_JFN,
"DEV". ”DIR"' 'INAM"’ "EXT"’
"PROT", "ACCOUNT", DESIRED_JFN)

Does the long form of the GTJFN JSYS (and
does not do an OPENF). The arguments are put
into the accumulators and locations in the table
accepted by the long form of the GTJFN JSYS.
These arguments are given below, where "AC
X" means an accumulator and "E+X" means in
the Xth address of the table.

TENEX ROUTINES

Argument - Where placed What
"ORIGSTR"  AC 2 Partial or complete string
FLAGS - E«0 Flags to GTJFN

JFN_JFN Eel  xwd input JFN, output JFN
"DEV" E+2 device

“DIR" E+3 directory

"NAME" Eed name

"EXT" E+5  extension

"PROT" E+6 protection

"ACCOUNT" E+7 account
DESIRED_JFN E«’10  desired JFN if B11 on

GTSTS, STSTS

STATUS « GTSTS (CHAN);
STSTS (CHAN, NEW_STATUS)

These routines examine and change the file
status using the JSYSes. TENEX error codes
are returned in _SKIP_, which is zero if no
errors occurred.

WARNING: The results of GTSTS are not
necessarily appropriate for determining end-of-
file if the file is being page-mapped by Sail.
Look. at the EOF wvariable instead. See
SETINPUT.

- INDEXFILE

ANOTHER « INDEXFILE (CHAN)

If CHAN was opened with the "s" option by
OPENFILE then INDEXFILE will try to get the
next file in the "#" group. INDEXFILE returns
TRUE as long as another file can be found on
CHAN. Example:

JFN « OPENFILE ("<JONES>*SAl*", "RO%");
COMMENT Read all of Jones's Sail programs;
SETINPUT (JFN, 200, 0, EOF);

DO BEGIN “INDEX"
DO BEGIN "READ FILE"
STRING S;
S « INPUT (JFN, BREAK_TABLE);

COMMENT process ..;
END "READ FILE" UNTIL EOF;
END "INDEX" UNTIL NOT INDEXFILE (JFN)

73



TENEX ROUTINES

The "+" option takes the place of reading the
MFD and UFD on a TOPS-10 system. INDEXFILE
clears the EOF, LINNUM, SOSNUM, and PAGNUM
variables associated with CHAN if these have
been set by SETINPUT and SETPL.

JFNS

"NAME" « JFNS (CHAN, FLAGS)

The name of the file associated with CHAN is
returned. FLAGS are for accumulator 3 as

described in the JSYS manual. Zero is a
reasonable value for FLAGS.

JFNSL
"NAME" « JFNSL (CHAN, FLAGS, LHFLAGS)

(This routine corrects a deficiency in the JFNS
function.) The name of the file associated with
CHAN is returned, using FLAGS for accumulator
3 and putting LHFLAGS into the left half of
accumulator 2 as described in the JSYS manual.
If LHFLAGS is -1 then the value returned by
GTJFN is used. :

MTOPR

MTOPR (CHAN, FUNCTION, VALUE)

The MTOPR JSYS is executed with FUNCTION
placed into AC2 and VALUE into AC3. The
TOPS-10 style MTAPE function may be more
comfortable. [(Stupid!) IMSSS and SUMEX: skip
to end of tape does not work.)

OPENF
OPENF (CHAN, FLAGS)

Does the OPENF JSYS on CHAN with FLAGS as
the contents of accumulator 2, TENEX error
codes are returned in _SKIP_, which is zero if
no errors occurred. The following values for
FLAGS will be translated by Sail before setting
AC2:

74

SAIL

value translated to

0 070000200000 (input characters)
070000100000 (output characters)
'440000200000 (input words)

'440000100000 (output words)
'447400200000 (dump read)
447400100000 (dump write)

aH W N —

Values 6-10 are reserved for expansion; other
values are taken literally.

Best results are obtained by opening a TTY in
7-bit mode, the DSK or DTA in 36-bit mode, and
a magtape in 36-bit dump mode.

RN —

CHAN « OPENFILE ("NAME", "OPTIONS")

NAME is the name of the file to be opened. If it
is null then OPENFILE gets the filename from the
terminal using TENEX filename recognition.
CHAN, the value returned by OPENFILE, is a Sail
channel number. This is not necessarily the
same as the TENEX JFN (see CVJFN), All TENEX
Sail functions (except SETCHAN) require Sail
channel numbers for arguments. OPTIONS is
one or more characters specifying the kind of
access desired. The legal characters are

Read or write:

R read
W write
A append

Version nurabering, old-new:
0 old file
N  new file
T  temporary file
% index with INDEXFILE routine

Independent bits to be set:
C require confirmation
D ignore deleted bit
H  "thawed" access

Error handling:

E return errors to user in the external
integer _SKIP_, TENEX error codes are used.
{CHAN will be released in this case.)

if an error occurs and mode "E" was not
specified then OPENFILE gives an error message
and attempts to obtain a file name from the



SAIL

terminal. If an error occurs when "E" was
specified then OPENFILE will return -1 for CHAN
and the TENEX error code will be put into
_SKIP_.

Examples:

COMMENT get a filename from the terminal
and write the file;

BEGIN

INTEGER JFN;

OUTSTR (CRLF & “FILE NAME* ");

JFN « OPENFILE (NULL, "WC");
COMMENT write, confirm name;

CPRINT (JFN, "text

"%

CFILE (JFN) COMMENT close the file;
END; .
COMMENT read a known file;

BEGIN

STRING S;

INTEGER JFN, BRCHAR, EOF;
SETBREAK (1,12, '15&'14, “IN"); .
JFN « OPENFILE ("<JONES>SECRET.DATA", "RCO");
SETINPUT (JFN, 200, BRCHAR, EOF);
DO BEGIN
S « INPUT (JFN, 1)
END UNTIL EOF;
CFILE (JFN);
END;

Wizards: The OPENF is for 36-bit transfers;
except that TTY, LPT, and a device for which a
36-bit OPENF fails get 7-bit mode.

RCHPTR, SCHPTR

PTR « RCHPTR (CHAN)
SCHPTR (CHAN, NEWPTR)

The number of the byte which will be accessed
next by character 1/O is returned or set. The
first character of a file is character number 0.
If NEWPTR=-1 for SCHPTR then the pointer is
set to end of file.. Setting the pointer beyond
end of file will change The length of the file if it
is being written. TENEX error codes are
returned in _SKIP_, which is zero if no errors
occurred.

TENEX ROUTINES

RFBSZ
BYTE_SIZE « RFBSZ (CHAN)

The byte_size of the file open on CHAN is
returned. This function is escape from Sail.

RFPTR, SFPTR

PTR « RFPTR (CHAN);
SFPTR (CHAN, NEWPTR)

These routines perform JSYSes and are escape

from Sail. TENEX error codes are returned in
_SKIP_, which is zero if no errors occurred.

RLJFN

RLJFN (CHAN)
This routine does the RLJFN JSYS.

RNAMF
SUCCESS « RNAMF (EXISTINGCHAN, NEWCHAN)

The RNAMF JSYS is performed, renaming the
file on EXISTINGCHAN to the name of the
(vestigial) file on NEWCHAN. It is necessary
that CLOSF(EXISTINGCHAN) be done before
RNAMF and that OPENF be done afterwards.
The TOPS-10 style RENAME is sometimes more
convenient to use than RNAMF, since RENAME
performs the GTJFN and OPENFs necessary for
the renaming operation. However, the actual
JFN associated with CHAN is changed by
RENAME.

RWDPTR, SWDPTR

PTR « RWDPTR (CHAN);
SWOPTR (CHAN, NEWPTR)

The number of the word which will be accessed
next by word /0 is returned or set. The first
word of a file is word number 0. If NEWPTR=-1
for SWDPTR then the pointer is set to end of

75



TENEX ROUTINES

tile. Setting the pointer beyond end of file will
change the length of the file if it is being
written.

SETCHAN

CHAN « SETCHAN (REAL_JFN,
GTJFN_FLAGS, OPENF_FLAGS)

This function is liberation from Sail /0. It is
provided for doing Sail 1/0 on a JFN that is
obtained from some means other than the Sail
file-opening routines -- for example, a JFN
passed from a superior fork.

REAL_JFN is a 36-bit JFN (or JFN substitute,
such as a Teletype number), GTJFN_FLAGS and
OPENF_FLAGS are the flags that should be
recorded describing how the GTJFN and OPENF
were accomplished. REAL_JFN need not be
open. The value returned by SETCHAN is the
Sail channel number which should be used for
subsequent Sail [/O. SETCHAN is the only
function in TENEX Sail that takes an actual JFN
as an argument.

SETINPUT
RN
SETINPUT (CHAN, @COUNT, @BRCHAR, @EOF)

This function relates the COUNT, BRCHAR, and
EOF variables to channel CHAN in the same way
that OPEN does. The INPUT function (page 39)
uses 200 for the default value of COUNT if no
location has been associated with CHAN.,

All 1/O transfer routines also set _SKIP_ to
indicate end-of-file and /0 errors. For
example, on return from INPUT _SKIP_ will be
-1 it an end-of-file occurred, a TENEX error
number if an error occurred, and zero
otherwise.

SINI
“STRING" « SINI (CHAN, MAXLENGTH, BRCHAR)
A string of characters terminated by BRCHAR or

by reaching MAXLENGTH characters, whichever
happens first, is read from CHAN. SINI sets

76

SAIL

_SKIP_ to -1 if the string was terminated for
count; otherwise _SKIP_ will be set to BRCHAR.
To determine end-of-file, examine the EOF
variable for the channel (see SETINPUT).

SIZEF
SIZE « SIZEF (CHAN)
The size in pages of the file open on CHAN is

returned. TENEX error codes are returned in
_SKIP_, which is zero if no errors occurred,

UNDELETE

UNDELETE (CHAN)

The file open on CHAN is undeleted. TENEX
error codes are returned in _SKIP_, which is
zero if no errors occurred.

11.4 Terminal Handling

The simplest way to write strings on the
terminal is with PRINT. See page 53. The
simplest way to read strings from the terminal
is with INTTY. See page 79. The following
detailed discussion about terminal handling will
normally be of interest only to advanced
| programmers. The rest of this section is new.

THE TERMINAL AS A DEVICE

We first discuss some of the problems in using
the terminal as a device (i.e, when device
“TTY:" is opened by OPENFILE or a similar
function). Since Sail has various functions for
reading strings, reals, and integers from an
arbitrary device, this can be a useful feature.

TENEX provides quite general teletype service.
However, the lack of a default system line
editor creates some problems. Note the
proliferation of line editors in the many
commonly used TENEX programs. Some of them,
such as the INTERLISP editor, are carefully and
cleanly written. Most TENEX utility programs,
however, work quite poorly and inconsistently
with regard to the controlling terminal.

The TOPS-10 system has a simple line editor.



SAIL

On a standard Teletype device, the standard
TOPS-10 editor activates on a carriage return,
altmode, control-G, or control-Z. ASCIl DEL
(°177) deletes the previous character; control-U
deletes the current line; control-R retypes the
current line; and control-Z signifies end-of-file
when the terminal is INITted as a device. (The
SUAI display line editor also has character
insertion, deletion, searching, kill-to-character,
and settable activation characters.) The great

virtue of this is that programs can be written in -

a device-independent manner., When the
" terminal is accessed as a device the system
handles line editing.

Many TOPS-10 programs take advantage of this
device-independence, using the INPUT, REALIN
and INTIN functions to access the system line
editor. TENEX has had no system line editor;
while IMSSS and SUMEX have had a line editor
in their TENEX for some time, it is not in
general use.

Therefore, the features of a "system" line
editor have been put into the TENEX Sail
runtime system. Several schemes have been
implemented in TENEX Sail as of this writing.
When a channel is opened to the controlling
terminal, three kinds of line editing are
available: 1) a TOPS-10 style line editor, 2) a
TENEX-style line editor, and 3) no line editor at
all. The TOPS-10 style editor is the default
with a channel opened via OPEN; the
TENEX-style editor is the default when a TENEX
function (such as OPENFILE or GTJFN) is used to
obtain the channel. The function SETEDIT can
be used to change which convention is used.
More detailed description of these three kinds
of editing follows.

TOPS-10 Style Editor. The OPEN function to
the controlling terminal, usually "TTY" in the
second argument, gets the following editing
conventions for functions INPUT, INTIN and
REALIN:

*25 (control-U) deletes the entire line and
echoes control-G (BEL) CR LF to the
terminal.

32 (control-Z) means end-of-file, after all
previous input is read in.

*33 (ESC, altmode) activates and is sent to the
program as ’33. This is consistent with
current TOPS-10 practice. Over the

TENEX ROUTINES

years there have been several
altmodes: '33, ’175, and °'176. On
terminals that TENEX believes to be a
model 33 teletype, the characters 175
and ’176 are transliterated to 33 by
TENEX before the Sail runtime system
sees them.

37 (US, TENEX EOL), which is found in the
input buffer when CR is typed at the
terminal, is transliterated to a ’15 °12
(CRLF) sequence.

*177 (DEL, rubout) deletes the last character;
consecutive deleted characters are
echoed, surrounded by backslashes "\".
(At IMSSS and SUMEX the deleted
.characters are removed from the screen
with the DELCH JSYS, which is not
supported by BBN.)

The editor activates on line feed, altmode,
control-G, and control-Z.

All this means that programs written for the
TOPS-10 system, accessing the controlling
terminal with INPUT et al, should work with
regard to teletype input. The above is also a
description of the operation of INCHWL, except
that control-Z is simply a break character to
INCHWL.

TENEX-Style Editor. The OPENFILE, GTJFN, and
GTJFNL functions to the controlling terminal set
the TENEX Sail line editor to the following
conventions:

IMSSS and SUMEX. These sites use the PSTIN
JSYS for line editing in TENEX, with the
following conventions:

*12 (linefeed) allows input to continue on the
next line.

*22 (control-R) retypes the current line.

*27 {(control-W) deletes a "word" (up to.the
next space). This prints as "«e«&" on
the terminal.

*30 (control-X) deletes the entire line.

'32 (control-Z) signifies end of file.

37 (TENEX EOL) is transliterated to a ’15 ’12

sequence.

77



TENEX ROUTINES

177 (rubout) or ’1 (control-A) deletes the last
character, using the DELCH JSYS to
remove it from the display (if any).

The PSTIN JSYS transliterates 175 and 176 to
33. :

The editor activates on the characters defined
by the PSTIN JSYS (q.v.); these include
linefeed (12 after EOL), escape (’33),

- control-G, control-Z.

Sites other than IMSSS and SUMEX have the
following editing conventions when the channel
is opened with the TENEX routines OPENFILE,
GTJFN, etc.:

*22 (control-R) retypes the current contents
of the buffer.

*30 (control-X) deletes the entire line and

echoes CR LF to the terminal.
*32 (control-Z) signifies end-of-file.

'37 (TENEX EOL) is transliterated to a 15 °12
sequence.

’177 (rubout) or 1 (control-A) deletes the
last character. Consecutive deleted
characters are echoed surrounded by
backslashes.

The editor activates on line feed (’12), escape
(°33), control-G (7) and control-Z (’32).

This is also the action of the INTTY routine,
except that control-Z is simply a break
character to INTTY.

The third mode is the BBN standard mode. In
this mode all characters are simply passed
through. In particular, control-Z does ' not
signify end of file, typing a rubout gives a’177,
ESC gives a 33, CR gives a '37, etc. No editing
is done by the system. This is the mode in
which a terminal other than the controlling
terminal is accessed using any of the functions.

SETEDIT

"OLD_MODE" « SETEDIT (CHAN, "NEW_MODE")

if CHAN is not the controliing terminal then

78

SAIL

SETEDIT is a no-op. Otherwise, it sets the line
editing mode to NEW_MODE" and returns
OLD_MODE, both according to the following
code:

MODE  Meaning

‘0" TOPS-10 mode, as above

T TENEX mode, as above

"B" (BBN bag)Byte(ing) mode, no editing
Notes:

(1) MODE SETTINGS, SETEDIT does not change
or access the parameters set by such
functions as SFMOD, SFCOC, STPAR,
TTYUP, etc. Changes made with these
latter functions will affect editing.

(2) NON-CONTROLLING TERMINALS.,  Terminals
other than the controlling terminal will
have byte mode -- no editing.

(3) INCHWL no longer transliterates *33 to *175.
Previous  versions of - TENEX  Sail
transliterated "33 to ’175.

TERMINAL MODE FUNCTIONS

The routines in this section really refer to
terminals only in the "mini-system" version of
TENEX. The argument CHAN may be either a
Sail channel number associated with a terminal,
or a terminal specifier (such as 100 or ’101 for
the controlling terminal).

GTTYP, STTYP

TERMINAL_TYPE « GTTYP (CHAN, @BUFFERS);
STTYP (CHAN, AC2)

The indicated JSYS is performed. In GTTYP the

additional values returned from accumulator 2
are stored into reference parameter BUFFERS.

RFCOC, SFCOC

RFCOC (CHAN, @AC2, @AC3);
SFCOC (CHAN, AC2, AC3)

The indicated JSYS is performed.



SAIL

RFMOD, SFMOD

- MODE_WORD « RFMOD (CHAN);
SFMOD (CHAN, AC2)

A file’s mode word is queried or altered using
the JSYS. WARNING: some features, such as
upper case conversion, that are advertised by
BBN as being accomplished with the SFMOD
JSYS are actually accomplished with the STPAR
JSYS.

STPAR

STPAR (CHAN, AC2)
Does the STPAR JSYS, setting to AC2.

STI

STI (CHAN, CHAR)

Does the STl jsys (Simulate Terminal Input) to
channel CHAN (usually the controlling terminal),
inserting byte CHAR inta the input stream.

DATA TRANSFER

The usual Sail routines for teletype 1/0 (see
page 43) are available. In addition, PBIN,
PBOUT, and PSQUT have been added, although
they execute exactly the same code as INCHRW,
QUTCHR, and QUTSTR respectively.

INTTY

"STRING" « INTTY

INTTY does a TENEX-style input. (Note that
INCHWL does a TOPS-10 style input.)) Up to
200 characters are transfered. The activation
character is not appended to the string, but is
put into _SKIP_. The value -1 is placed into
_SKIP_ if the input is terminated for exceeding
the 200 character limit.

The normal activation characters are EOL, ESC,
control-Z, and control-G; however, see the
section regarding line editing in TENEX Sail. At
IMSSS and SUMEX this routine uses the PSTIN
JSYS with the standard system break
characters; no timing is available.

TENEX ROUTINES

PBTIN
CHAR « PBTIN (SECONDS)

[IMSSS only.] Executes the PBTIN JSYS with
timing of SECONDS.

SUPPRESSING OUTPUT

This new section is for advanced Sail users
only, and supposes a knowledge of the pseudo-
interrupt system; see the JSYS manual and the
interrupt section of this manual.

The TOPS-10 system allows the user to type a
control-0 and suspend program output to the
terminal until either another control-0 is typed
or program input is requested. (See [MonCom]
for a complete description.) TENEX does not
have this at the system level, but pseudo-
interrupts provide an alternative with which the
program can receive control and abort
processing as well as flush output.

TENEX Sail has complete access to the TENEX
pseudo-interrupt system. In order to facilitate
handling of control-O an EXTERNAL INTEGER
CTLOSW has been added to the TENEX .Sail
runtime system. If CTLOSW is TRUE then any
output to the controlling terminal (device "TTY")
is flushed by the following functions:

PBOUT

PSOUT .

OUT to a channe! open to "TTY", or 0’101
OUTCHR

OUTSTR

CTLOSW is likewise made FALSE when input is
requested by any of the following:

INCHRS INPUT INTIN TTYIN
INCHRW INSTR INTTY TTYINS
INCHSL INSTRL. - PBTIN TTYINL

INCHWL INSTRS - REALIN TTYUP
Note: functions SINI, CHARIN and CHARQUT are
not affected. CTLOSW may be accessed by
declaring it as an EXTERNAL INTEGER.

Here is an example of a control-O handler.

79



TENEX ROUTINES

ENTRY; BEGIN

REQUIRE "«<>«<>" DELIMITERS;

DEFINE 1=<COMMENT>;

! This program sets up a control=0 interrupt
using PSI channel 8, level 8.

}
EXTERNAL INTEGER CTLOSW,PSIACS;

SIMPLE PROCEDURE CTLO; BEGIN

INTEGER USERPC,PSL1,USERINST,RC1,SRVERDDR;

LABEL LERVE;

DEFINE PSOUT_JSYS=<’18408080888765,
SOUT_JSYSa<’1848000080853>;

SIMPLE INTEGER PROCEDURE DEV (INTEGER JFN);

START_COOE
HRRZ 2,JFN; ! THE JFN;
SET2 4y
HRROI  1,4; ! PUT STRING IN &;
MOVSI  3,°286608; | ONLY THE DEVICE;
JFNS; | GET THE STRING;
MOVEN 4,13 t CVASC("DEV");

END;

| this is Sail immediate interrupt level.

No dynamic strings are accessed.;

IF CTLOSH THEN
BEGIN
CTLOSH « FALSE; ! TOGGLE IT;
RETURN; I AND RETURN;
END;
START_CODE
MOVEI  1,’181;
CFOBF;
END;
BUTSTR("10
Il);
CTLOSH « TRUE; | NO MORE OUTPUT;

! get user PC and address into LEVTRB;

STRRT_COOE
MOVEI  1,'480008;
RIR;
HLR2 2,2; | LEVTRB RDDRESS;
MOVE 2,(2); | PC FOR LEVEL 1;
MOVEM  2,PSLl;
MOVE 2,(2)4 | USER PC;
MOVEM  2,USERPC;
END;

80

SAIL

| return if user mode;
IF (USERPC LAND ’816080000088) THEN RETURN;

I in monitor., Return if not in the middie
of & PSOUT or (SOUT to '181);
IF NOT (
(USERINST «~ MEMORYIUSERPC-11)=PSOUT_JSYS
OR (USERINST=SOUT_JSYS AND
((AC1 « MEMORY(LOCATION(PSIACS) + 11)
. = *1081 OR DEV(AC1)=CVASC("TTY"))))
THEN RETURN;

! modify return so that output stops;

SAVERDOR « (MEMORYIPSL1) LAND ’7777778306088)
+ LOCRTION(LERVE)

MEMORY[PSL1] SWAP SAVERDDR;

RETURN; | to Sail interrupt handler;

START_CODE LEAVE: JRST &SAVERDOR; ENO;
END;

INTERNAL PROCEDURE INITIALIZE;
BEGIN

PSINAP (8,CTLO,8,1);

ENABLE (8) ;

ATI(8,"0"~"180);

END;

REQUIRE INITIALIZE INITIRLIZATION;

END;

115 Utility TENEX System Calls

An effort has been made to provide calls that
read and write strings which may be
inconvenient to perform from START_CODE.
Note that the TENEX Sail compiler has the
TENEX JSYS mnemonics defined in START_CODE.
In  START_CODE these definitions take
precedence over the function calls of the same
name.

CALL
RESULT « CALL (AC_ARG, "FUNCTION")

A limited set of CALLs is simulated by TENEX
Sail. Those available are




SAIL

EXIT

DATE

DATSAV [IMSSS only.]
GETINF [IMSSS only.)

GETPPN

LOGOUT

MSTIME

PJOB

PUTINF [IMSSS only.)

RANDOM [IMSSS only.)
RUN

RUNTIM

TIMER

if any other FUNCTION is specified then a
continuable error message is given.

CNDIR

CNDIR (DIRNO, "PASSWORD")

Does the CNDIR jsys, connecting to DIRNO with
password "PASSWORD", If "PASSWORD" is null
then the user must have connect privileges.
TENEX error codes are returned in _SKIP_,
which is zero if no errors occurred.

DIRST, STDIR

"DIRECTORY" « DIRST (DIRNO);
DIRNO « STDIR ("DIRECTORY", DORECOGNITION)

These routines convert between TENEX
directory numbers and strings. TENEX error
codes are returned in _SKIP_, which is zero if
no errors occurred. For STDIR the error codes
in _SKIP_ are

1 string does not match
2 string is ambiguous.

Note that DIRECTORY must be in uppercase for
the STDIR JSYS.

GJINF

JOBNO « GJINF (@LOGDIR, @CONDIR, @ TTYNQ)

The job number is returned as the value of the

TENEX ROUTINES

call. Reference values are: the number of the
logged directory (LOGDIR), the connected
directory (CONDIR), and the TENEX Teletype
number (TTYNQ).

GTAD

OT « GTAD

The current date and time (in  TENEX
representation) is returned.

IDTIM, ODTIM

DT « IDTIM ("DATIME");
"DATIME" « ODTIM (DT, FORMAT)

These routines convert between TENEX internal
representation DT and string representation
DATIME. If DT is -1 in ODTIM then the current -
date and time is used. If FORMAT is -1 then the
format used is "TUESDAY, APRIL 16, 1974
16:33:32", For IDTIM, TENEX error codes are
returned in _SKIP_, which is zero if no errors
occurred. WARNING: the IDTIM JSYS is nearly
an inverse to the ODTIM JSYS; however, the
format returned by ODTIM with FORMAT=~1 will
NOT be recognized by IDTIM unless the day
("TUESDAY, ") is first removed. Blame BBN.

PMAP
PMAP (AC1, AC2, AC3)

Does the PMAP JSYS, using the accumulators
for the arguments.

ROSEG

RDSEG (@SEGPAGES, @BUFPAGES)

This function returns the pages which are
specially used by the Sail runtime system. The
starting and ending pages of the runtime
segment are returned in the left and right
halves, respectively, of SEGPAGES. The first
and last pages used for bufferring are returned
in the left and right halves of BUFPAGES. This
function is escape from Sail.

81



TENEX ROUTINES

Memory map, in general:
pages contents

(Compile time)
O-n impure data
400-450 compiler code
600-604 START_CODE table, if needed
640-670 runtime system

770-m uboT

(Run time)
0-n impure data -
400-m code and pure data

600-637  1/0O buffers
640-677 runtime system
770-p upboT

RUNPRG

RUNPRG ("PROGRAM", INCREMENT, NEWFORK)

This does two entirely different things
depending on the value of NEWFORK. If
NEWFORK is true then a new fork is created,
capabilities are transmitted, and PROGRAM is
run in the new fork (with the current fork
suspended by a WFORK). INCREMENT is added
to the entry wvector location. If NEWFORK is
false then the current fork is replaced with

PROGRAM. In this case RUNPRG is like the.

TOPS-10 RUN UUQ; if the INCREMENT is 1 then
the program is started at the CCL address. If
RUNPRG returns at all then there was a
problem with the file. Remember to say .SAV
as the PROGRAM extension.

RUNTIM

RUNNING « RUNTM (FORK, @CONSOLE)
The running time in milliseconds for FORK is

returned and the console connect time is
returned in CONSOLE.

82

SAIL



SAIL

SECTION 12
LEAP DATA TYPES

12.1 Introduction

in addition to the standard algol-like statements
and expressions, Sail contains an associative
data store and auxiliary facilities called LEAP.
Sail’s  version of LEAP is based on the
associative components of the LEAP language
- implemented by J. Feldman and P. Rovner as
described in [Feldman].

An associative store allows the retrieval of data
based on the partial specification of that data.
LEAP stores associative data in the form of
ASSOCIATIONS, which are ordered three-tuples
of ITEMS. Associations are frequently called
TRIPLES. Associations are placed in the
associative store by MAKE statements and
removed from the store by ERASE statements.
The associative searches allow us to specify
items and their position in the triple and then
have the LEAP interpreter search for triples in
the associative store which have the same items
in the same positions. The interpreter will
extract the items from such triples, which
correspond to the positions left unspecified in
the original search request. For example say
we had triples representing the binary relation
Father_of, and we had "made" associations of
the form

Father_of ® John = Tom
Father_of ® Tom = Harry,
Father_of ® Jerry & Tom,

where Father_of, John, Tom, Harry, and Jerry
are names of items. We could then perform
searches to find the sons of Tom by specifying
to the leap search routines that we wanted to
find triples whose first component was
Father_of and whose third component was Tom.
Associative  searches  inherently  produce
multiple values (i.e., both Jerry and John are
sons of Tom). To deal with muitiple values,
Leap has SETs and LISTs of items.

ltems are constants. They may be created by
declaration or by the function NEW. Iltems may
have a single algebraic variable, set, list or
array associated with them which is accessible

LEAP DATA TYPES

by use of the DATUM construct. Declared items
have names which may be used to identify them

in expressions, etc. The simple variable whose
value is an item is called an ITEMVAR.

12.2 Syntax

The following syntax is meant to REPLACE not
supplement the syntax of algebraic declarations,
except where noted.

<declaration>

u= <type_declaration>
u= <array_declaration>
u= <preload_specification>
u= <label_declaration>
u= <procedure_declaration>
u= <synonym_declaration>
u= <require_specification>
u= <context_declaration>

| u= <record_class_declaration>
u= <protect_acs declaration>
= <cleanup_declaration>
u= <type_qualifier> <declaration>
u= <sprout_default_declaration>

<simple_type>
u= BOOLEAN
u= INTEGER
u= LIST
um REAL

| 1= RECORD_POINTER ( <classid_list> )

um SET
u= STRING

<itemvar_type>
u= [TEMVAR
u= <simple_type> ITEMVAR
u= <array_type> ARRAY ITEMVAR
1= CHECKED <itemvar_type>
| u= GLOBAL <itemvar_type>

<item_type>
u= |TEM
u= <simple_type> ITEM

<array_type>
u= <simple_type>
u= <itemvar_type>
um <item_type>

83



LEAP DATA TYPES

<type_declaration>

u= <simple_type> <identifier_list>

u= <itemvar_type> <identifier_list>

u= <itém_type> <identifier_list>
<array_type> ARRAY <array_list>
<array_type> ARRAY ITEM <array_list>
<type_qualifier> <type_declaration>

<array_list> -- as on page 3

<procedure_declaration>

1= PROCEDURE <identifier>
<procedure_head>
<procedure_body>

u= <procedure_type> PROCEDURE
<identifier>
<procedure_head> <procedure_body>

u= <type_gqualifier>
<procedure_declaration>

<procedure_type>
u= <simple_type>
u= <itemvar_type>
1= MATCHING <procedure_type>
u= MESSAGE <procedure_type>

<procedure_head> and <procedure_body> -- as
on page 4 except:

<simple_formal_type>
u= <simple_type>
1= <jtemvar_type>
u= ? <itemvar_type>
u= <simple_type> ARRAY
u= <itemvar_type> ARRAY
u= <simple_type> PROCEDURE
u= <itemvar_type> PROCEDURE

<preload_specification>, <synonym_declaration>,
<label_declaration>,

and <require_specification> as on page 3

<context_declaration> as on page 101

84

SAIL

12.3 Semantics

ITEM GENESIS

Although items are constants, they must be
created befcre they can be used. Items may
be created in three ways:

1) A Declared Item may created by
declaration of an identifier to be of
type ITEM.

2) An item may be created with the
NEW construct (see page 98).

3) A bracketed triple item is created
by the MAKEing of a bracketed
triple (see MAKE, page 90).

ltems of type 1 and 2 are the same except
those of type 1| may be referred to by the
identifier that is associated with them. For
example one may say .. ITEM DAD; ... XeDAD; ...
NOTE: DAD is the name of an item, not a
variable! Saying DADeX is just as illegal as
saying 15«X.

ltems of type 3 are different from those of
type 1| and 2. Discussion of them will be left
until the creation of associations with the MAKE
statement is discussed (page 90).

SCOPE OF ITEMS

lterns do not obey the traditional Algol scope
rules. All declared items are allocated in the
outer block. All other items are allocated
dynamically. All  items exist until a
DELETE (<item expression>) is done on them
(see page 90 for the details of DELETE), or
until the outer block is exited at the end of the
program. HOWEVER, the identifiers of declared
iterns (type 1 above) DO obey scope rules.
After exiting the block in which item X was
declared, it will be impossible to refer to X by
its declared name. However, X may have been
stored in an itemvar, associations, etc. and thus
still be retrieved and used.

Warning: items in recursive procedures behave
differently  from variables in recursive
procedures. At each recursive call of a
procedure, the local variables are reinstantiated
{unless they were declared OWN). litems are
constants. There is never more than one
instantiation of an item around at a time.



SAIL

DATUMS OF ITEMS

An item of type 1 or 2 may have an associated
variable, called its DATUM. The Datum of an
item is like any variable; it may be declared to
have any type that a variable may have, except
the type itemvar. Because an item may have
only one datum from its creation until its
death, we frequently will say the "type of an
item" referring to the type of the datum.
RESTRICTIONS: - It is currently impossible to
make either items or their datums either
Internal or External. However, the effect of
External items can be duplicated by
manipulating the order in which items are
declared (see page 87). OWN is not applicable
as items are constants, not variables. Items of
type ARRAY must be declared with constant
bounds since they are allocated upon entering
the outer block.

Example declarations of items with datums:

INTEGER ITEM FATHER_OF;

STRING ITEM FOO; ’

INTEGER ARRAY ITEM NAMES [1:4, 1:8); COMMENT note
the specification of the array's dimensions;

SHORT REAL ITEM POINT;

EXTERNAL ITEM BLAT; COMMENT illegal;
ITEMVAR (TEM BLAT; COMMENT illegal;
STRING ITEMVAR ITEM BLAT; COMMENT illegal;
~ REAL PROCEDURE ITEM BLAT; COMMENT illegal;
PROCEDURE ITEM BLAT; COMMENT illegal,
use ASSIGN;

The syntax for variable includes the Datum
construct. That is, if AGE is a declared an
Integér ltem, then DATUM (AGE) behaves
exactly like an Integer variable. If ARR is
declared as

STRING ARRAY ITEM ARR [2:4, 1:9+2]

then DATUM (ARR) is a string array with two
dimensions of the declared size. A new array
may hot be assigned to the Datum of ARR,
though of course the individual elements of the
array may be changed. Datums obey the same
type checking and type conversion rules that
the algebraic variables of Sail do. For example,
when a string is assigned to an integer datum,
the integer stored in the integer datum is the
ASCIl of the first character of the string.

LEAP DATA TYPES

ITEMVARS

An ltemvar is a variable whose value is an ltem.
Just as the statements “X&3; YeX" and "Ye3"
are equivalent with respect to Y, the statements
"XeDAD; YeX" and "Y«DAD" are equivalent with
respect to Y, if X and Y are itemvars, DAD an
item, The distinction between itemvars and
items is identical to the distinction between
integer variables and integers. An integer
variable may only contain an integer and a
variable declared ITEMVAR may only contain an
item. This may be confusing since historically,
integer variables have always been called
INTEGER rather than INTEGERVAR.

Properly  speaking, one should have
INTEGERVAR ARRAYs instead of INTEGER
ARRAYs. Originally, Sail only allowed ITEMVAR
ARRAYs, However, so many people found this
confusing that now one may say ITEM ARRAY,
and it will be interpreted to mean ITEMVAR
ARRAY. Similarly, an ltem procedure is exactly
the same as an ltemvar procedure.

An itemvar may contain items of any type.:
However, when one says DATUM (ITMVR) where
ITMVR is an itemvar, the compiler must know
the type of the datum of the item (i.e. the type
of the item) contained in the itemvar so that
the the correct conversions, etc. may be done.
Thus, one may declare itemvars to have the
same types that are legal for items. If one has
declared STRING ITEMVAR ITMVR, then the
compiler assumes that you have stored an
string item in ITMVR, and and will treat
DATUM (ITMVR) as a string variable.

An Itemvar may be declared CHECKED if the
user desires the type of itemvar checked
against the type of the datum of the item
expressions assigned to it. That is, only a
string item could be stored in a Checked
String Itemvar. If the itemvar is not declared
Checked, it may have an item of any type
assigned to it and their types need not match at
all. This can be very dangerous. For example,
an integer array item might be assigned to a
string itemvar. When the datum of this itemvar
is later assigned to an integer variable, say, Sail
will try to treat the array header as a string
pointer and get very confused. The runtime
routine TYPEIT, page 123, returns a code for
the type of its argument, and can be usefu! for
avoiding type matching errors with un-checked
itemvars. .

85



LEAP DATA TYPES

GLOBAL itemvars are a special kind for SUAI
global model users. Global model operation
allows several jobs to share a data segment,
and GLOBAL itemvars are used to build the data
structures in  this segment. MESSAGE
procedures are also related to global model
operations. These features have fallen into
disuse.

EXTERNAL, OWN and INTERNAL Itemvars are
legal. - SAFE applies to either the array of an
array itemvar, the array of an itemvar array, or
both arrays of an array itemvar array.

ltemvars obey traditional Algol block structure.
Upon exiting the block of their declaration, their
names are unavailable and their storage is
reallocated. However, the item stored in an
itemvar is not affected -- it continues to exist
until DELETEd or until the end of the program.

ltemvars are initialized to the special item ANY
at the beginning of one’s program.

SETS AND LISTS

Sets and Lists are collections of items. There
are two distinctions between Sets and Lists: a
list may contain multiple occurrences of any
- item while a set contains at most a single
instance of an item. Second, the order in which
items appear within a list is completely within
the control of the user program, while with a
set, the order is fixed by the internal
representation of the items. Lists and Sets do
not care what type if any the datums of their
members are,

List and Set Arrays, Itemvars, Items, and
Procedures are all legal, as well as External,

Own and Internal Sets and Lists. Like itemvars, -

the scope of Set and List variables is the block
they were declared in. Exiting that block does
not destroy the items stored in the departed
sets or lists.

ASSOCIATIONS

Perhaps the most important form of storage of
items is the Association, or TRIPLE. Triples of
items may be written into or retrieved from a
special store, the associative store. The
method of storage of these triples is designed
to facilitate fast and flexible retrieval. Sail uses
approximately two words of storage for each
triple in the associative store. There is at most
one copy of a triple in the store at any time.
Once a triple has been stored in the associative

86

SAIL

store, its component items can not be changed,
although an approximation to this can be
obtained by erasing the association then making
a new association with the altered components.
You will note there is no syntax for declaring a
triple. Triples can only be created with the
MAKE statement. In the examples which follow,
a triple is represented by : ‘

AeQ=V

where A, 0, and V represent the items stored in
the association. The associative store s
accessed by the FOREACH statement, derived
sets, and binding triples (see Searching the
Associative Store, page 91).

PROCEDURES

lternvar, ltem, List, and Set procedures all exist.
ltemvar procedures may be CHECKED if one
desires the item RETURNed to have the same
type as the type of the Itemvar procedure.
Otherwise, the compiler only checks to see that
the value returned to an itemvar procedure is
an item. .

Every type except ltem may be used in formal
parameter declarations; items are constants yet
parameters always have something assigned to
them in the procedure call. Since you can’t
assign something to a constant, you can’t have
item pararmeters.

WARNING: when using Checked Reference
lteravar formals, no type checking is performed
as the actual is assigned to the formal at the
procedure call. However, type checking will
only be done during the procedure, and when
the formal is assigned to the actual upon the
{normal) exit of the procedure.

IMPLEMENTATION

Each ltem is represented by a unique integer in
the compiler. The numbers are assigned in the
order the items are declared, e.g. the first
declared item gets 1, the second gets 2, etc.
(Actually, Sail has already declared 8 items that
it needs, so user item numbers start with 9.
REQUIRE n ITEM_START changes the number at
which user items start (only useful for SUAI
global model users). Lexical nesting is not
observed; it is only the sequence in which the
declarations are scanned that determines their
numbers. The NEW function does not affect this
assignment of numbers. ltems created by the
New function are assigned the next available
number at the time of the execution of the New.



SAIL

Those who use separately compiled procedures
(see page 12) may wish to have declared items
common to both programs. However, Internal
and External items do not exist. The same
effect may be achieved by carefully declaring
the desired items in the same order in both
programs so that their numbers match, The
message “"Warning -- two programs with items
in them." will be issued at the begining of
execution, and may be ignored if you are
certain the items are declared in the same
relative positions. No checking of names, types,
arrays bounds, etc. is done, so be very careful.

ltems occupy no space (neither does the
constant integer 15). The numbers ascribed to
items are stored in Itemvars and Associations.
temvars are simply a word of storage. An
association is two  words of storage, one with
three 12 bit bytes, each containing the number
of one of the items of the association, and a
second word containing two pointers relating
the association to the associative search
structure. Since the number of an item must fit
in 12 bits, the number of items is limited to
about 4090.

. The number of an item may be retrieved from
the item as a integer with the predeclared
function CVN (<item_expression>). The item
represented by a certain integer may be
retrieved by the predeclared function
CVI (<algebraic_expression>). CVN and CVI
should only be used by those who know what
they’re doing and have kept themseives up to
date on changes in Leap.

LEAP DATA TYPES

87



LEAP STATEMENTS

SECTION 13
LEAP STATEMENTS

13.1 Syntax

<leap_statement>
u= <leap_assignment_statement>
u= <leap_swap_statement>
u= <set_statement>
u= <list_statement>
1= <associative_statement>
= <foreach_statement>
u= <suc_fail_statement>

<leap_assignment_statement>
u= <itemvar_variable> «
<item_expression>
u= <set_variable> « <set_expression>
u= <list_variable> « <list_expression>

<leap_swap_statement>
u= <itemvar_variable> &
<itemvar_variable>
u= <set_variable> & <set_variable>
u= <list_variable> & <list_variable>

<set_statement>
u= PUT <item_expression> IN
<set_variable>
.= REMOVE <item_expression> FROM
<set_variable>

<list_statement>

u= PUT <item_expression> IN
<list_variable>
<location_specification>

u= REMOVE <item_expression> FROM
<list_variable>

u= REMOVE ALL <item_expression> FROM
<list_variable>

<location_specification>
1= BEFORE <element_location>
u= AFTER <element_location>

88

SAIL

<element_location>
u= <jtem_expression>
u= <algebraic_expression>

<associative_statement>
u= DELETE ( <item_expression> )
= MAKE <triple>
u= ERASE <triple>

<triple>
uw <item_expression> © <item_expression>
s <item_expression>

<foreach_statement>
#= FOREACH <binding_list> SUCH THAT
<element_list> DO <statement>
«= NEEDNEXT <foreach_statement>

<binding_list>
u= <itemvar_variable>
um <binding_list> , <itemvar_variable>

<element_list>
um <glement>
u= <element_list> AND <element>

<element>
u= <item_expression> IN
<list_expression>
u= ( <boolean_expression> )
um <retrieval_triple>
u= <matching_procedure_call>

<retrieval_triple>
um <ret_trip_element> @
<ret_trip_element>
s <ret_trip_element>

<ret_trip_element>
u= <item_expression>
u= <derived_set>

<matching_procedure_call>
:= <procedure_call>



SAIL

<suc_fail_statement>
«= SUCCEED
. um FAIL

13.2 Restrictions

SUCCEED and FAIL statements must be lexically
nested inside a matching procedure to be legal.

13.3 Semantics

ASSIGNMENT STATEMENTS

Assignment statements in Leap are similar to
those in Algol. Itemvars, Set variables, and List
variables may be assigned item, set and list
expressions, respectively. Only one automatic
coercion is done: a set expression may be
assigned to a list variable. NOTE: lists may not
be assigned to set variables (use CVSET).

The type of an itemvar is checked against the
type of the item expression assigned to it if
and only if the itemvar is declared Checked. If
a typed item is assigned to an un-Checked
itemvar of different or no type, the datum is
not affected. Assign an integer item to a string
itemvar and the string itemvar will now contain
an item with an integer datum. Sail will not
know that you have in effect switched the type
of the datum and will get very confused if you
later try to use the datum of the itemvar; it will
treat the integer as a pointer to a two word
string descriptor in this case.

DATUM (X) is legal only when X is a typed item
expression, namely an item expression that the
compiler can discover the type of (not
COP (<set>) for example). See page 128 for the
BNF of typed item expressions. DATUM (X) is
syntactically a variable. It has the type of the
typed item expression, X. If X has an array
type, then DATUM (X) should be followed by
[<subscript_list>). Appropriate coercions will
be done (i.e., string to integer, integer to reai,
etc.) just as with regular variables in
expressions. NOTE: the user is responsible for
seeing that the datum of an item expression
really is the type that Datum thinks it is (i.e.,
Datum of a Real Itemvar that has had a string
item stored in it will give you garbage).

LEAP STATEMENTS

PROPS (X), where X is an item expression, is
legal regardless of the type of X. X may even
evaluate to a bracketed triple item, procedure
item, or event item. PROPS (X) is syntactically
an integer variable. It is limited to integers n
where 0 < n <4095. If negative (i.e. two’s
complement) integers or integers larger than
4095 are .assigned to a PROPS, only the right
12 bits are stored. The rest of the integer is
lost. '

PUT

Sets and lists are initially empty. One may put
items in them with the PUT statement. “PUT
<item expression> IN <set variable>" does

exactly what it says.

"PUT <item expression> IN <list wvariable>
BEFORE <algebraic expression>" evaluates the
item expression, evaluates the algebraic
expression and coerces it into an integer, say n,
then puts the item into the list at the nth
position, bumping the old nth item to the n+1th
position, and so on down the list. This
increases the length of the list by one. "PUT
item IN list AFTER n" places the item in the
n+lth position and bumps the old n+lth item
down to the n+2th position, and so on. If n <0
or n>(l +length-of-list), then an error
message is given. The special token "w" may
be used in the expression for n to stand for the
length of the list.

"PUT <item expression 1> IN <list variable>
BEFORE <item expression 2>" cause a search to
be made of the list for the item of <item
expression 2>, If it is found, the item of <item
expression 1> is placed in the list immediately
ahead of the item found by the search. "PUT
item IN list AFTER item" proceeds the same way,
but puts the first item in the list immediately
following the second item. If the second item is
not an element of the list, a BEFORE will put the
first item at the begining of the list, while an
AFTER will put it at the end of the list,

REMOVE .

To remove an item from a set or list, one may
use REMOVE. "REMOVE item FROM set" does
just what it says. If the item to be removed
from the set does not occur in the set, this
statement is a no-op.

"REMOVE n FROM list" removes the nth item

from the list. The old n+lth item becomes the
nth, and so forth. An error is indicated if n < 0

8sg



LEAP STATEMENTS

or n > length-of-list. As before, © should stand
for the length of the list. However,

"REMOVE item FROM list" removes the first
occurrence of the item from the list. If the item
is not found, this statement is a no-op.

"REMOVE ALL item FROM list" removes all
occurrences of the item from the list.

DELETE

ltems are represented by unique integer
numbers in Sail. Due to the overwhelming
desire to store an association in one word of
storage, these unique numbers are limited to 12
bits. Thus the total number of items is limited
to 4090. The DELETE statement allows one to
free numbers for reuse. If is also the only way
to get rid of an item short of exiting the
program. WARNING: The Delete statement in no
way alters the instances of the Deleted items
which are present in sets, lists, associations, or
itemvars. The user should be sure that there
are no instances of the Deleted item occurring
in itemvars, sets, lists or associations. Even
saying DELETE (ITMVR) where ITMVR is an
itemvar with an item to be deleted in it will not
remove the item from ITMVR; one must be
careful to change the contents of ITMVR before
using it again.

MAKE

The MAKE statement is the only way to create
Associations (Triples) and add them to the
associative store, If the association already
exists in the store, no alterations are made.
The argument to the Make statement is a triple
of item expressions:

MAKE item] @ item2 E item3
MAKE item1 @ itemvarl = NEW
MAKE itemvar_array[23] ® item] E itemvar2

The component item expressions are evaluated
left to right. The three items that the three
expressions evaluate to are then formed into an
association, and the association is hashed into
the associative store. The item expressions
must be constructive, that is, one may use the
NEW function but not the ANY or BINDIT items
(see NEW, page 98, ANY, page 99, and
BINDIT, page 99).

90

SAIL

BRACKETED TRIPLE ITEMS

Items may be created by declaration, by the
NEW function, or by using BRACKETED TRIPLEs
in Make statements. A Bracketed Triple item
may not have a datum, but may have a PROPS
or a PNAME (see page 124 for pnames, page 89
for props). Instead, a Bracketed Triple item has
an Association conriected to it. One creates a
Bracketed Triple item by executing a Make
statement:

MAKE item] ® [item2®@item3zitemdq] & item5

where the itemN are item expressions.
"litem2eitem3=itemd]" is the Bracketed Triple
item, and of course need not always be the
second component of the association. The
association connected to the Bracketed Triple
item is ‘item2 & item3 = item4"., The above
Make statement actually creates two triples and
one item. Namely, the associations

item] ® itemXX £ itemb
item2 @ item3 E itemq

and the item "“itemXX" which is a Bracketed
Triple itern and has the second association
connected to it. One can access a Bracket
Triple item, with the an associative search
called the Bracketed Triple item Retrieval:

itmvar « [itm2 ® itm3 E itm4);
COMMENT itmvar now contains itmXX;

The Bracket Triple construct may be used in
any expression. See page 92.

Having "itmXX", one may access the items of the
association connected to with the predeclared
functions FIRST, SECOND, and THIRD (see page
125 for more information on these runtime
functions): .

FIRST (itemXX) is item2
SECOND (itemXX) is item3
THIRD (itemXX) is item4

ERASE
The way to remove an association from the
associative store and destroy it is to ERASE it:

ERASE item1 ® item2 & item3

where the itemN are item expressions. The
item expressions must be retrieval item



SAIL

expressions; that is, one may use the ANY item
but not the NEW function or the BINDIT item
(see ANY, page 99, and NEW, page 98, and
BINDIT page 99). Using ANY as one, two, or
three of the item expressions allows -many
associations to be erased in one statement. |f
the association to be erased does not exist,
Erase is a no-op.

Whenever one Erases an association, none of
the ‘items of the association are deleted. In
particular, when one Erases an association
that has a Bracketed Triple item as one of its
components, the Bracketed Triple item is not
deleted. Furthermore, the association
connected to the Bracketed Triple item is not
automatically. erased by erasing an association
containing a Bracketed Triple item. The
following Erase erases only one association:

ERASE item] @ [item2®@item3Eitem4) & itemb

However, erasing the association connected to a
Bracketed Triple deletes the item. Deleting the
Bracketed Triple item DOES NOT erase the
association connected to it.

13.4 Searching the Associative Store

Flexible searching and retrieval are the main
motivations for using an associative store. It
follows that this is the most important section
of the Leap part of this manual. It is a rare
Leap program that does not use at least one of
the searches described below.

Four methods of searching the associative store
exist in Sail:

Binding Booleans

Derived Sets

Bracketed Triple item retrieval
Foreach Statements

The first three are properly part .of the
discussion of Leap Expressions in the next
chapter, but are included here for
completeness.

Throughout this section we will use the
following notation for an association:

AeQ=V

LEAP STATEMENTS

where A, O and V stand for the “attribute",
"object" and "value" items of an association,

The terms "bound" and "unbound" will find
heavy use in this section. Bound describes an
itemvar that has an item assigned to it.
Unbound describes an itemvar that, at this time
in the -execution of the program, has no item
bound to it. The object of searching the
associative store is usually to bind unbound
itemvars to specific, but unknown, items. If the
itemvar to be bound was declared Checked,
then type checking will be done, and the
appropriate error message will be issue if the
binding item does not have the same type as
the itemvar.

Throughout this section, references to item
expressions will always mean retrieval item
expressions, Do not use NEW in such
expressions,

A hashing algorithm is used in storing and
retrieving associations in Leap. The user can
increase the speed of associative searching or
decrease his core image by using the REQUIRE n
BUCKETS construct to control the size of 'his
associative search hash table to reflect the
number of associations he will be using. A hash
table will be allocated with (2Tm) hash codes -
where m is the smallest integer such that
(2Tm) 2 n.  Sail initializes the hash size to
’1000. -

BINDING BOOLEANS

A Binding Boolean searches the associative
store for a specified triple, returning true if
one can be found, and false otherwise. A
Binding Boolean is a triple:

itml @ itm2 E itm3

where "itmN" is one of three things: an item
expression, or the reserved word "BIND"
followed by an itemvar, or the token "?"
followed by an itemvar. An item expression as
a component of the Binding Boolean means that
component of the triple that the boolean finds
must be the item specified by the item
expression (unless the item expression
evaluates to the item ANY, which specifies that
any item is okay). If a "BIND" itemvar is the A,
O or V of the triple, then the Binding Boolean
will attempt to find an association which meets
the constraints imposed by the item expression
A, O or V components, and then binds to the

Sl



LEAP STATEMENTS

"BIND" itemvar the items occuring in the
corresponding positions of the association that
the Binding Boolean found. If no such
association can be found, then the Binding
Boolean returns FALSE and leaves the "BIND"
itemvars with their previous values. If "?"
precedes an itemvar, then the itemvar will
behave like a "BIND" itemvar if it is currently
contains BINDIT, but will behave like an item
expression if it is bound to some other item
than BINDIT. Example:

IF Father ® ?Son  ANY THEN PUT Son IN Sonset;
IF ~Father ® BIND Son & Bob THEN CHILDLESS (Bob):
ERCHEK « Father ® COP(Sonset) ® ANY;

DERIVED SETS

Derived Sets are quite simple: "Foo & Garp'
where Foo and Garp are item expressions, is
the set of all items X such that Foo ® Garp & X
exists. "Garp = Sister" is the set of all items X
such that X ® Garp = Sister exists.
"Foo * Sister" is the set of all items X such that
Foo @ X = Sister exists. Examples:

Dadset « Father ® ANY;
Danson « Father * Dan;
News « (Son E Dad) N attset;

ANY specifies "l don’t care" to the search.
BINDIT has no special meaning to the search,
and behaves like any other items. Since BINDIT
can never appear in an association, this means
the set returned will always be the empty set
PHI

BRACKETED TRIPLE ITEM RETRIEVAL

A Bracketed Triple item can be referenced by
specifying the association it is connected to.
For example,

Hmvar « [itm] @ itm2 B ANY]

PUT [ANY ® ANY & ANY] IN Bracset

IF Foo @ Garp £ [itm] @ itm2 & ANY] THEN ..
tmvar « [itm] ® [itm2 @ itm3 & itmd] & itm5)

where itmN is any item expression not
containing NEW or. BINDIT. ANY means you
don’t care what item occupies that component.
If the designated Bracketed Triple is not found
then BINDIT is returned and no error message is
given.

92

SAIL

THE FOREACH STATEMENT

This statement is the heart of Leap. It is similar
to the FOR statement of Algol in that a
statement is executed once for each binding of
a variable. In this semi-schematic example,

FOREACH X SUCH THAT <element> AND .. AND
<slementx DO <statement>;

the <statement> is executed once for each
binding of the itemvar X. The <element>s in the
element list (i.e. <element> AND...AND <element>)
determine the bindings of the itemvar, and
hence how many times the <staternent> is
executed. If the <element>s are such that there
is no binding possible for X, then the
<statement> is never executed. Like a Sail FOR
statement, one may use DONE, NEXT, and
CONTINUE within the <statement> As before,
when one uses a NEXT inside the loop, the
word NEEDNEXT must precede the FOREACH of
the Foreach that one wants checked and
possibly terminated. See pages 18, 19, and 19
for more information about Done, Next, and
Continue. :

Restriction: Jumping (i.e. with a GO TO) into a
Foreach is illegal. However, it is legal to jump
out of a Foreach, or to jump around within the
same Foreach.

Foreach statements differ from For vstatements
in that more than one itemvar may be included
to be given bindings:

FOREACH X, Y, Z SUCH THAT <elements....

X, Y, and Z are called Foreach itemvars, Just as
one must declare the integer | before using it in
the Sail For statement

FOR | « 1 STEP 2 UNTIL 21 DO...

so must one declare Foreach itemvars before
using them in Foreaches. Foreach itervars are
no more than normal itemvars receiving special
assignments; they may have any type. If a
Foreach itemvar that has been declared
Checked is assigned an item by the search that
has a different type than the Checked itemvar,
an error message will result.

Foreach itemvars differ from For variables in a
more radical way. It is possible to specify to



SAIL

the Foreach that a certain Foreach itemvar be a
variable to the search only on the condition
that that the itemvar contains the special item
BINDIT at the time the Foreach is called. One
precedes such itemvars with the "?" token. For
example:

FOREACH 7X, 7 Y, Z SUCH THAT <element>...

If X contains BINDIT but Y does not when this
Foreach starts execution, then the search will
be conducted exactly as if the statement

FOREACH X,Z SUCH THAT <elements>...

were the Foreach specified. The itemvar X will
then act just like an ordinary, non-foreach
itemvar that was bound previous to the
Foreach. All Foreach itemvars may be "?"
itemvars if this is desired.

There are four different types of <element>
that may be used in foreach element lists:

Set Membership
Boolean Expressions
Retrieval Triples
Matching Procedures

The order of the <element>s in the element list
is very important, as we shall see,

Terminology: we say that a certain binding of
the the Foreach itemvars ‘“satisfies" an
<element>. If that binding satisfies each
<element> of the element list, then we say it
"satisfies the associative context”. A fancy way
of refering to the element list is “associative
context”. We also refer to the collection of
bindings that satisfy the associative context as
the "satisfier group” of the Foreach. )

The execution of a Foreach proceeds as foilows.
After initialization, the Foreach proceeds with a
search specified by the first <element> of the
element list. If a binding can be found that
satisfies the first <element> the Foreach
proceeds forward to the new <element> of the
list and tries to satisfy it, and so on. When the
Foreach can not satisfy an <element>, it "backs
up" to the previous element and tries to get a
different binding. If it can't find satisfaction
there, it backs up again and tries again to get a
different binding. When a Foreach proceeds
forward off the end of the element list (i.e. the

LEAP STATEMENTS

associative context is satisfied) then the
<statement> is executed, and the Foreach backs
up to the last <element> of the element list.
When the Foreach backs up off the left end of
the element list, the Foreach is exited.

When a Foreach is exited by backing up off the
left, the Foreach itemvars are restored to the
last satisfier group bound to them, regardless
of what the <statement> may have done. If the
associative context was never satisfied, then
the Foreach itemvars have the values that they
had before the Foreach. When a Foreach is
exited with a GO TO, DONE, or RETURN, the
Foreach leave the itemvars with the bindings
they had at the GO TO, or whatever, including
any modifications that the <statement> may
have made to them.

THE LIST MEMBERSHIP <ELEMENT>

[In the following, one may also read "set" for
“list"; Sail automatically coerces set expressions
into list expressions.] This <element> does not
search the associative store to bind an itemvar,
but merely binds it with an item of a specified
list. In the Foreach,

FOREACH X | X IN L DO <statement>;

(here we have used the Sail synonym “|" for
"SUCH THAT"), the Foreach itemvar X is bound
successively to each element of the set L,
starting at the beginning of the list. If an item

. oceurs n times in L, then X will be bound to that

item n times in the course of the Foreach.
Thus, the number of satisfiers to the above
Foreach is LENGTH (L).

In the current implementation of Leap, there is
a difficulty that should be pointed out. If inside
the <statement>, one changes L by list
assignment, Removes, etc. in such a way as to
remove the next item of the list that the
Foreach itemvar would have been bound to,
Leap may go crazy. Foreach searches look
one ahead and save a pointer to the next items
to be bound to the Foreach itemvars. This
allows one to remove the items of the current
bindings of the Foreach itemvars from lists or
whatever, but makes other removals hazardous.
For example,

FOREACH X | X IN L DO REMOVE X FROM L;

will work, but

93



LEAP STATEMENTS

PUT V IN L BEFORE FOO;
FOREACH X | X INL DO REMOVE V FROM (;

will probably fail. No error checking is done.

Whenever the Foreach itemvar of a list
<element> has been bound previously, the list
element behaves like a boolean. It does not
rebind the itemvar but only checks to see that
it is in the list. For example,

FOREACH X | X IN L AND X IN LL DO «statement>;

X is bound by the <element> "X IN L"
<element> "X IN LL" is satisfied if the item
contained in the itemvar X is in the list LL.

If two different Foreach itemvars are used with
two different lists, i.e.

FOREACH X,Y | X INL AND Y IN LL
DO <statemant>;

then after execution of the <statement>, the
Foreach will go back the last <element> that
searches for bindings, in this case "Y IN LL" and
gets a new binding for Y. (it is only on failure
of this search that the Foreach goes back to
the first <element>, "X IN S", and gets a new
binding for X. Thus the <statement> will be
executed once for each possible XY pair. In
the Foreach, :

FOREACHX,Y | X INLANDY INL .;

X and Y will be bound to all possible pairs of
elements in L. This includes pairs with
duplicate elements, like (a,a).  Different
orderings of the same elements will NOT be
ignored. Thus, pairs like (ab) and (b,a) will
each be a satisfier group sometime during the
Foreach. Furthermore, if the list L contains
duplications of the same item, identical pairs
will occur in proportion to the number of
duplications. That is, regardless of the
duplications within the list, the number of
satisfier groups to the Foreach above s
LENGTH (L)T2.

THE BOOLEAN EXPRESSION <ELEMENT>

Any Sail boolean expression may be used as
an <element> in the Associative Context of a
Foreach if it is inclosed by parentheses. A
Boolean Expression <element> is satisfied if it is
TRUE. Note that the boolean expression must
have parentheses around it. '

94

SAIL

WARNING: Foreach itemvars can not be bound
by a Boolean Expression <element> Therefore,
all itemvars used in a Boolean Expression
<glement> must be bound by previous
<element>s in the element list. A Boolean
Expression <element> with unbound Foreach
itemvars in it causes an error message.

THE RETRIEVAL TRIPLE <ELEMENT>

To search the associative store with a Foreach,
one uses the Retrieval Triple <element> A
Retrieval Triple is satisfied if a binding of the
Foreach itemvars can be found such that the
triple is an extant association. If all of the
itemvars of the Retrieval Triple <element> were
bound previous to the execution of the
Retrieval Triple <element>, then the Triple does
no further binding; it is satisfied if the
specified triple is in the associative store. For
example,

FOREACH X | FATHER @ TOM = X AND
X IN PTA_SET DO <statement>;

FOREACH X { X IN PTA_SET AND .
FATHER ® TOM E X DO <statement>;

The two Foreaches have the same effect.
However, in the first case, X is bound by a
search of the associative store for any triple
that has FATHER as its attribute component, and
TOM as its object component.  When such a
triple is found, X is bound to the item that is
the value component. Then, if X is in the
PTA_SET, the Foreach lets the statement
execute. If X is not in PTA_SET, then the
Foreach backs up and tries to find another
triple with FATHER as its attribute and TOM as
its value. In the second Foreach, X is bound
with an item from PTA_SET, then the
associative store is checked to see that the
triple FATHER®TOM=x, where x is the binding of
X, is in the store. If it is, the <statement> is
executed, otherwise the Foreach backs up and
gets a different item from PTA_SET and binds
that to X. Assuming that Tom has only one
father, the first search is much faster.

Using ANY in a Retrieval Triple indicated that
you don’t care what item occupies that position.
For instance, in

FOREACH X | FATHER @ ANY & X DO <statement>;
X is bound successively to all fathers.

However, if the associative store included the
following three associations,



SAIL

FATHER ® KAREN = PAUL
FATHER @ LYNN = PAUL
FATHER @ TERRY & PAUL

then X would be bound to PAUL only once, not
thrice. BINDIT has no special meaning to the
search., Since BINDIT can never appear in an
association, a Retrieval Triple containing it will
cause the search to always fail.

Different kinds of associative searches proceed
with different efficiencies. Listed below in
order of decreasing efficiency are the various
forms of Retrieval Triple <element>s that are
legal. A, O, and V represent either bound
Foreach itemvars or items from explicit item
expressions in the triple. x, y, and z represent
unbound Foreach itemvars or the item ANY.
(note that x @ x =V is really x 0=V, and so
on). The two forms of the List Membership
<element> are included for comparison.

x IN L All items x in the list L.
A®O&Ex Only the value is free.
x®yaV Attribute and object are free.
AINL Verification that item A is in list L.
AOEYV Verification that the triple

is in the store.

A®xEV Only the object is free.

x@0O=V Only the attribute is free.
A®@xEy Object and value are frea.
x®08y Attribute and value are free.
X@yEZ Attribute, value and object are fres.

Note that MAKEing an association inside a
Foreach may or may not affect subsequent
bindings. For example, in

FOREACH XY | Link ® X £ Y DO
MAKE Link ® X & Newlink;

it is uncertain whether Y will ever receive
Newlink as its binding or not.

The A, O, and V used in a Retrieval Triple of a
Foreach may be a derived set expressions as
well as item expressions. For example,

FOREACH X, Y | Link ® (Father®Y) ¥ X DO ..;

ERASE in the <statement> of a Foreach that
binds any of its itemvars with Retrieval Triples
" may cause problems. This is similar to REMOVE
used in Foreaches with List Membership
<element>s controling some bindings. ERASE

LEAP STATEMENTS

can only be guaranteed to to work safely if the
association erased is the one we just got a
binding from, e.g.

FOREACHX |A®@ O® X DO ERASEA @ O E X;

or if the association erased could not possible
be used for a binding of a Foreach itemvar,
such as,

FOREACH X | Link @ X ® Node DO
ERASE Node ® X ® ANY;

Foreaches look one ahead to the next binding
of its itemvars, and leaves a pointer to those
associations. If you Erase any of those
associations, the Foreach gets lost in the
boondocks. No error checking is done.

However, as long as the associative store is not
changed during the execution of the Foreach, a
Retrieval Triple will not itself repeat a
particular set of bindings that it bound before.

THE MATCHING PROCEDURE <ELEMENT>

Matching Procedures are the most general
search mechanism in Leap. They also provide
a convenient method of writing coroutines.

A- MATCHING Procedure is very similar to a
boolean procedure (in fact outside of Foreach
associative contexts, it behaves like a boolean
procedure and may be called within
expressions, efc.). It must be declared type
MATCHING. It may not be declared SIMPLE. The
formal parameters of a Matching Procedure may
include zero or more "?" itemvars (pronounced
“question itemvars") which may have any datum
type but may not be VALUE or REFERENCE.
These parameters correspond roughly to either
call by value or call by reference, depending on
the actual parameter when the procedure is
called. When the actual parameter is an item
expression or a bound itemvar the parameter is
equivalent to a value parameter. However, if
the actual parameter is an unbound Foreach
itemvar, then the parameter is treated as a
reference parameter, and on entry is s
initialized to the special item BINDIT.

Matching Procedures are exited by SUCCEED
and FAIL statements instead of RETURN
statements. When wused outside of an
associative context, SUCCEED corresponds to
RETURN(TRUE) and FAIL corresponds to
RETURN(FALSE) [this is not strictly true when

95



LEAP STATEMENTS

the matching procedure is sprouted as a
process -- see page 106). Inside an associative
context, Succeed and Fail determine whether
the Foreach is to proceed to the next
<element> of the element list or to backup to
the previous <element> of the element list.
When the Foreach backs up into a Matching
Procedure, the procedure is not recalled, but
resumed at the statement following the last
Succeed executed. On the other hand, when a
Forea¢ch proceeds forward intec a Matching
Procedure, the procedure is called, not
resumed.

When a Matching Procedure is the last
<element> of the  associative context,
Succeeding will cause the <statement> to be
executed; the Foreach then backs up into
the Matching Procedure, and the Matching
Procedure is resumed at the statement
following the Succeed. When a Matching
Procedure is the first <element> of .an
associative context, Failing will exit the Foreach.

WARNING: Matching
implemented as processes and two calls of the
same matching procedure may share the same
memory unless the procedure is declared
RECURSIVE. See Memory Accessible to a
Process, page 105.

If a Matching Procedure is explicitly SPROUTed
as a process then the Matching Procedure can
be made running by a RESUME. In such a case
the item sent by RESUME is returned as the
value of the SUCCEED or FAIL statement which
suspended the Matching Procedure, just as
though SUCCEED or FAIL were an item
procedure. (In fact Succeed and Fail always
return an item value, but the value is ANY
except in this special case.) Being Resumed is
the only was in which a Matching Procedure can
be reactivated after a FAIL.

When a Matching Procedure is used exterior to
the associative context of a Foreach, one may
use "BIND" in the call preceding those actuals
which one wishes bound regardless of their
current binding. Preceding the actual .with "?"
will have the save effect as "BIND" if the
current value of the itemvar is BINDIT, and will
have no effect otherwise (the procedure will
not attempt to find it a binding).

That is all there is to Matching Procedures.
Their power lies in the using them cleverly.

96

procedures are-

SAIL

The following program illustrates techniques
one may use with matching procedures by
simulating the List Membership and Retrieval
Triple <element>s with matching procedures.

RECURSIVE MATCHING PROCEDURE INLIST
(2 ITEMVAR X; LIST L);
BEGIN "“INLIST"
COMMENT THIS PROCEDURE SIMULATES THE CONSTRUCT
X € L FOR ALL CASES EXCEPT THE SIMPLE
PREDICATE BINDITeL;
IF X ¢ BINDIT THEN
BEGIN WHILE LENGTH (L) DO IF X = LOP (L)
THEN BEGIN SUCCEED; DONE END;
FAIL
END;
WHILE LENGTH (L) DO BEGIN X«LOP (L)
SUCCEED END; '
END “INLIST";

MATCHING PROCEDURE TRIPLE (? ITEMVAR A, O, V);
BEGIN “TRIPLE" '
DEFINE BINDING (A)="(A=BINDIT)";
SET SETI; INTEGER INDX;
RECURSIVE PROCEDURE SUCC_SET (REFERENCE
' ITEMVAR X; SET S1);
WHILE LENGTH (S1) DO BEGIN X«LOP (S1);
SUCCEED END;

INDX « O;
IF BINDING (A) THEN INDX « 1;
IF BINDING (O) THEN INDX « INDX + 2;
i BINDING (V) THEN INDX « INDX + 4;
CASE INDX OF
BEGIN [0] "AsO=V" IF A@O=V THEN SUCCEED;
[1] "7@0=V" SUCC_SET (A, O=V);
[2] "A@?EV" SUCC_SET (0, A'V);
[3] "7@?8V" BEGIN SET! « ANY & V;
WHILE (LENGTH (SET1)) DO
BEGIN A « LOP (SET 1)
SUCC_SET (0, A'V) END END;
[4) "AeOE?" SUCC_SET (V, AsV);
(8] "7@0=?" BEGIN SET! « O & ANY;
WHILE (LENGTH (SET1)) DO
BEGIN A « LOP (SET1);
SUCC_SET (V, Ac0) END END;
[6] "A@?87" BEGIN SET! « A ' ANY;
WHILE (LENGTH (SET1)) DO
BEGIN O « LOP (SET1);
SUCC_SET (V, A®0) END END;
[7] "7
USERERR(O, 1, "ANY®ANY=ANY IS IN BAD TASTE")
END;
END “TRIPLE";



SAIL

SECTION 14
LEAP EXPRESSIONS

14.1 Syntax

<leap_expression>
= <item_expression>
um <get_expression>
u= <list_expression>

<item_expression>
um <item_primary>
um [ <item_primary> ® <item_primary> &
<item_primary> ]

<item_primary>
= NEW
1= NEW ( <algebraic_expression> )
2= NEW ( <set_expression> )
u= NEW ( <list_expression> )
u= NEW ( <array_name> )

© um ANY
«= BINDIT
= <item_identifier>
u= <jtemvar_variable>
u= <Jist_expression> [
<algebraic_expression> ]}

1= <itemvar_procedure_call>
u= <resume_construct>

u= <interrogate_construct>

<itemvar_procedure_call>
1= <procedure_call>

<list_expression>
u= <list_primary>
u= <list_expression> & <list_expression>

<list_primary>
w= NIL
um <list_variable>
um {{ <item_expr_list> }}
um= ( <list_expression>)
um= <list_primary> [ <substring_spec> ]
um <set_primary>

LEAP EXPRESSIONS

<item_expr_list>
u= <item_expression>
u= <item_expr_list> , <item_expression>

<set_expression>
u= <set_term>
u= <set_expression> U <set_term>

<set_term>
u= <set_factor>
um= <ggt_term> n <set_factor>

<set_factor>
u= <get_primary>
u= <set_factor> - <set_primary>

<set_primary>

u= PH
<set_variable>
{item_expr_list}
u= ( <set_expression> )
u= <derived_set>

]

<derived_set>
u= <item_expression> .
<associative_operator>
<item_expression>

<associative_operator>
n=Q
t

= E

<itemvar_variable>
u= <variable>

<set_variable>
u= <variable>

<list_variable>
u= <variable>

<leap_relational>
u= <item_expression> IN
<set_expression>
u= <item_expression> IN
<list_expression>

97



LEAP EXPRESSIONS

<item_expression>
<item_relational_operator>
<itera_expression>

<set_expression>
<set_relational_operator>
<set_expression>

<list_expression>
<list_relational_operator>
<list_expression>

<triple>

W

<item_relational_operator>

vrmm ==

;:= #

<set_relational_operator>

| S T R
IVIA V A X

<list_relational_operator>
::E =

HE

14.2 Semantics

ITEM EXPRESSIONS

Itemvars and itemvar arrays may be used in
item expressions just as algebraic variables and
algebraic arrays are used in algebraic
expressions. ltemvars and itemvar arrays are
initialized to the special Sail item ANY.

ltems may be retrieved from sets and lists with
the Sail functions COP and LOP. COP (<set
expression or list expression>) yields the item
which is the first element of the set or list that
the set or list expression evaluated to. LOP
also yields the first item of the set or list, but
removes that item from the set or list. Because
LOP changes the contents of the set or list that
is its argument, it can only accept set or list
variables, not expressions. See page 48.

List element designators may be used as

itemmvars in expressions, For example, if
RECORD is a list, and ITMVR an itemvar,

98

SAIL

RECORD([S] « ITMVR;
ITMVR « RECORD[co-1J;
RECORD([w] « RECORD[!};

are all legal. The special token """ means the
length of the list when used in this context.
The contents of the square brackets may be
any algebraic expression as long as it evaluates
to an integer n where 1 < n < LENGTH (list).

<list_expression> [<algebraic_expression>]
returns a particular element of a list, but may
not” appear on the left of an assignment
expression, because assignment must be to
variables.

NEW

The function NEW creates an item at execution
time. Since space must be allocated at loading
for various tables, one must indicate
approximately how may NEW items he will
create (the compiler counts the declared items
for you). Therefore, one should say "REQUIRE n
NEW_ITEMS" where n is some integer less than
4090 (the maximum number of items allowed in
Sail). n may be larger than the actual number
of New items created, but the excess will be
wasted space. If 0 < n <50, you get tables for
50 New items anyway. v

NEW may take an argument. In this case, the
datum of the created item is prelcaded with the
value passed as argument., If this argument is
algebraic, set or list, then the datum will be of
the same type. No type conversions are done
when passing the algebraic argument. NEW will
also accept an array name as argument. In this
case, the created item will be of the type array.
In fact, the array cited as argument will be
copied into the newly created array. The new
array will have the same bounds and number of
dimensions as the array cited as argument.
This array will not disappear even if the block
that the original array was declared in is exited.
It will only be deallocated if the item is deleted.

NEW in an item expression makes that item
expression a "constructive item expression".
Constructive item expressions are illegal in
some places, namely anywhere that attempts to
gets an item from an existing structure (i.e,,
ERASE, REMOVE, and Associative searches). It is
usually clear whether or not a constructive item
expression is illegal,



SAIL

ANY

Some associative searches may need only
partial specification. The ANY item is used to
specify exactly which parts of the specmcataon
are "don’t cares™s. Examples:

FOREACH X SUCH THAT Father @ X ® ANY DO ..
IF Father ® BIND X ® ANY THEN ..

ANY in an item expression makes that item
expression a "retrieval item expression”. This
is the opposite of a constructive item
expression, and is illegal anywhere the
statement is creating new structure, namely, a
MAKE statement. Thus, ANY is legal
everywhere items are, except a MAKE
statement.

BINDIT

Like ANY, BINDIT specifies no constraints on the
associative search. However, BINDIT has a
special meaning to some searches, namely the
Binding Boolean and Matching Procedures
(depending on how they're written). An
itemvar containing BINDIT will be bound by the
search to an item of the association that the
search found. For example:

X « BINDIT;
IF Father ® ? X % Bob
THEN PUT X IN Bobfatherset;

Like ANY, BINDIT is illegal in MAKE statements.
In certain associative searches, namely the
ERASE statement, the Bracketed Triple Item
retrieval expression, and the Retrieval Triple
<element> of a Foreach, inclusion of BINDIT will
cause the search to always fail, because BINDIT
can appear in no association.

TYPES AGAIN

The compiler can determine the type of items
when the item expression is a typed itemvar, a
typed itemvar procedure, a declared item with
a type, a typed itemvar array, or a NEW with
an argument. When the compiler can determine
the type of the item expression, then and only
then is it legal to use the Datum construct on
the item expression or to assign the item
expression to a Checked itemvar. For example,
the following are ILLEGAL:

DATUM (COP (<set>))
DATUM (RECORD[¢0)); COMMENT RECORD is a list;
CHEC « NEW; COMMENT CHEC is o Checked itemvar;

"~ LEAP EXPRESSIONS

SET AND LIST EXPRESSIONS

Three rather standard operations are
implemented for use with sets. These are union
(u), intersection (n), and subtraction (-). These
operators have the standard mathematical
interpretations. The only possible confusion
pertains to subtractions: if we perform the set
operation

set] - set2

and if there is an instance of an item x in set2
but not in setl, the subtraction proceeds and
no error message Is given.

If one considers a list to be a string of items,
then concatenation and taking sublists suggest
themselves as likely list operations. The syntax
and semantics for sublisting and list
concatenation are identical with those of
strings, with the natural exception that the
results are lists, and not strings. There is also
a difference in that if the indices to the
substringer do not make sense, an error -
message is generated rather than setting of the
_SKIP_ variable, Examples:

LISTVAR « LISTVAR[2 TO -1}
LISTVAR « LISTVAR[9 FOR 2%N};
LISTVAR « LISTVAR[1 FOR 2] & LISTVAR[3 10 ®];

One may generate sets with
{item1, item2, item3}

and may generate lists with
{{item1, item1, item2, item3}}.

Sets are initialized to the empty set, PHI. Lists
are initialized to the null list, NIL. Initialization
occurs at the beginning of the execution of the
program. Sets and list are reinitialized on
entering the blocks of their declaration only
when such blocks are in recursive procedures.

DERIVED SETS

Derived sets are really sets of answers to
questions which search the associative memory.
The conventions are:

a®b -- the set of all x such that a ® b % x
a¥b == the set of all x such that x ® a & b
a'b == the set of all x suchthat s @ x B b

99



LEAP EXPRESSIONS

BOOLEANS

Several boolean primaries are implemented for
comparing sets, lists, and items. In the following
discussion, "ix" means item expression, "se"
means set expressions, and "le" means list

expression. These are:

1) Set and List Membership. The
boolean "ix IN se" evaluates the set
or list expression, and returns TRUE

- if the item value specified by the
item expression is a member of the
set or list.

2) Association Existence. The binding
boolean “ix @ ix = ix", where the ix
are item expressions or itemvars
preceded by ? or BIND, returns
TRUE if a binding of the BIND
itemvars (and ? itemvars that
contained BINDIT) can be found such
that the association exists in the
associative store. See page 91 for
more  information on  binding
booleans.

3) Relations.

ix » ix obvious interpretation
ix & ix obvious interpretation
sel < se2 true if sel is 8 proper
subset of se2
sel S se2  true if sel is identical to
se2 or is a proper subset of se2
sel = se2 obvious interpretation
sel o se2  obvious interpretation
sel > se2  equivalent to se2 < sel
sel 2 se2  equivalent to se2 € sel

lel = le2 obvious interpretation
lel f le2 obvious interpretation
PNAMES

For those desire them, each item may have a
string, called its PNAME, linked with it. This is
completely independent of the Datum construct.
New items and Bracketed Triple items are
created with NULL strings as their Pnames. One
may delete an item’s Pname with the
DEL_PNAME function which takes an item
expression as its argument. One may give a
Pnameless item a Pname with the NEW_PNAME
procedure, which takes an item expression and
a string as its arguments. CVS! will give you
the Pname 'of an item, and CVIS with give you
the item with the specified Pname. No two
items may have the same Pname. Pnames do

100

SAIL

not follow Algol scope rules. See page 124 to
find out how to use the above four functions.

If you would like your declared items to have
Pnames that are the same as the identifier used
in their declaration, say "REQUIRE PNAMES" or
"REQUIRE n PNAMES" before their declaration at
the beginning of the program. The n is an
estimate of the number of dynamically created
items with pnames you will use -- this causes
tables for n pnames to be allocated at compile
time rather than runtime, thus making your
program more efficient.

PROPS

Any item may have a PROPS. This is an extra
12 bits of storage (frequently used for bits).
PROPS (X) where X is an item expression is
exactly an integer variable in its syntax. See
page 89 for further information on props.



SAIL

SECTION 15
BACKTRACKING

18.1 Introduction

Backup or backtracking iis the ability to "batk
up"” execution to a previous point. Sail
facilitates backtracking by allowing one to
REMEMBER, FORGET, or RESTORE variables in
the data type CONTEXT.

15.2 Syntax

<context_declaration>
wm CONTEXT <id_list>
u= CONTEXT ARRAY <array_list>
1= CONTEXT ITEM <id_list>
1= CONTEXT ITEMVAR <id_list>

<backtracking_statement>
u= <rem_keyword> <variable_list>
<rem_preposition> <context_variable>

<rem_keyword>
;.= REMEMBER
u= FORGET
1= RESTORE

<rem_preposition>

u= IN

= FROM

<variable_list>
um <vari_list>
u= ( <vari_list> )
= ALL
= <context_variable>

<vari_list>
= <vari>
um <vari_list> , <vari>

BACKTRACKING

<vari>
u= <variable>
u= <array_identifier>

<context_variable>
1= <variable>

<array_identifier>
u= <identifier>

<context_element>
u= <context_variable> : <variable>

15.3 Semantics

THE CONTEXT DATA TYPE

A context is essentially a storage place of
undefined capacity. When we REMEMBER a
variable in a context, we remember the name of

the variable along with its current value (if an

array, values). If we remember a value which
we have already remembered in the named
context, we destroy the old value we had
remembered and replace it with the current
value of the variable. Values can be given back

to variables with the RESTORE statement.

Context variables are just like any other
variables with respect to scope. Also, at
execution time, context variables are destroyed
when the block in which they were declared is
exited in order to reclaim their space. Context
arrays, items, and itemvars are legal (items and
itemvars are part of Leap). NEW( <context
variable> ) is legal (NEW is also part of Leap).

RESTRICTIONS:

1. Context procedures do not exist. Use
context itemvar procedures instead.

2. Context variables may only be passed
by reference to procedures (ie.,
contexts are not copied). ’

3. Contexts may not be declared "GLOBAL"
(shared between jobs - SUAI only).

4. +, % [/, and all other arithmetic
operators have no meaning when

101



BACKTRACKING

applied to Context variables. Therefore,
context variable ~expressions always
consist only of a context variable.

The empty context is NULL_CONTEXT. Context

variables are initialized to NULL_CONTEXT at_

program entry.

REMEMBER

To save the current values of variables, list
them, with or without surrounding parentheses,
in the remember statement. All of an array will
be remembered if subscripts of an array are
not used, otherwise, only the value indicated
will be remembered. If a variable has already
been remembered in context, its value is
replaced by the current value. If one wants to
update all the variables so far remembered in
this context, one may say

REMEMBER ALL IN <context>.
If you have several contexts active,
REMEMBER CNTXT1 IN CNTXT2

will note the variables Remembered in CNTXTI,
and automatically Remember their CURRENT
values in CNTXT2.

RESTORE

To restore the values of variables that were
saved in a context, list them (with or without
surrounding  parentheses) in a restore
statement. Restoring an array without using
subscripts causes as much of the array that
was remembered to be restored magically to
the right locations in the array. You can
remember a whole array, then restore all or
selected parts (e.g. RESTORE A[1, 2] FROM IX;).
If you remembered only A[l, 2], then restoring
A will only update A[l, 2). RESTORE ALL IN iX
will of course restore all the variables from IX.
RESTORE CNTXT1 FROM CNTXT2 will act like a
list of the variables in CNTXT1 was presented
to the Restore instead of the identifier CNTXT1.

Astute Leap users will have noted that the
syntax for variables includes Datum(typed
itemvar) and similar things. If one executes
REMEMBER DATUM (typed_item_expression_1)
IN CNTXT, then RESTORE DATUM
(<item_expression_2>) FROM CNTXT will give an
error message unless the
<typed_item_expression_2> returns the same
item as <typed_item_expression_1>.

102

SAIL

WARNING!!! Restoring variables that have been
destroyed by block exits will give you garbage.
For example, the following will blow up:

BEGIN "BLOWS UP"
CONTEXT J1;
INTEGER J;
BEGIN INTEGER ARRAY L[1:];
REMEMBER J, L IN J1;
END;
RESTORE ALL FROM J1;
END "BLOWS UP";

FORGET

The forget statement just deletes the variable
from the context without touching the current
variable’s value, Variables remembered in a
context should be forgotten before the block in
which the variables were declared is exited.
FORGET ALL FROM X1 and FORGET CNTXT1
FROM CNTXT2 work just as the similar Restore
statements work, only the wvariables are
Forgotten instead of Restored.

IN_.CONTEXT .
The runtime boolean IN_CONTEXT returns true
if the specified variable is in the specified
context. For details, see page 51.

CONTEXT ELEMENTS

Context elements provide a convenient method
of accessing a variable that is being
remembered in a context. Examples of context
elements:

CNTXT_VARI : SOME_VARI

DATUM (CNTXT_ITEM) : SOME_VARI
CNTXT_AR[2,3] : ARRY[4]

DATUM (CNTXT_VARI : ITMVR)
CNTXT_VARI : DATUM(ITMVR)

A context element is syntactically and
semantically equivalent to a variable of the
same type as the variable following the colon.
For the complete syntax of variables, see page
128. Assignments to context elements change
the Remembered value (i.e., X«5; REMEMBER X
IN C; C:Xe6; RESTORE X FROM C; will leave X
with the value 6).

As with the Restore statement, one may not use
Context Elements of variables destroyed by
block exits.

RESTRICTIONS: (1) One may not Remember
Context Elements. (2) Passing Context Elements



SAIL

by reference to procedures that change
contexts is dangerous. Namely, if the
procedure Forgets the element that was passed
to it by reference, then the user is left with a
dangling pointer. A more subtle variation of
this disaster occurs when the Context element
passed is an array element. If the procedure
Remembers the array that that array element
was a part of, the formal that had the array
element Context Element passed to it is left
with-a dangling pointer.

BACKTRACKING

103



PROCESSES

SECTION 16
PROCESSES

16.1 Introduction

A PROCESS is a procedure call that may be run
independently of the main program. Several
processes may "run" concurrently. When
dealing with a multi~process system, it is not
quite correct to speak of "the main program".
The main program is actually a process itself,
the main process.

This section will deal with the creation, control,
and destruction of processes, as well as define
the memory accessible to a process. The
following section will describe communication
between processes.

16.2 Syntax

<process_statement>
u= <sprout_statement>

<sprout_statement>

1= SPROUT ( <item_expression> ,
<procedure_call> ,
<algebraic_expression> )

u= SPROUT ( <item_expression> ,
<procedure_call> )

u= SPROUT ( <item_expression> ,
<apply_construct> )

<sprout_default_declaration>
1= SPROUT_DEFAULTS <integer_constant>

16.3 Semantics

STATUS OF A PROCESS

A process can be in one of four states:
terminated, suspended, ready, or running. A
terminated process can never be run again. A
suspended process can be run again, but it
must be explicitly told to run by some process

104

SAIL

that is running. Since Sail is currently
implemented on a single processor machine, one
cannot really execute two procedures
simultaneously. Sail uses a scheduler to swap
processes from ready to running status. A
running process is actually executing, while a
ready process is one which may be picked by
the scheduler to become the running process.
The user may retrieve the status of a process
with the execution time routine PSTATUS, page
109.

SPROUTING A PROCESS
One creates a process
statement:

with the SPROUT

SPROUT (<item>, <procedure call>, <options>)
SPROUT (<item>, <procedure call>)

<item> is a construction item expression (i.e. do
not use ANY or BINDIT). Such an item will be
called a process item. The item may be of any
type; however, its current datum will be writen
over by the SPROUT statement, and its type will
be changed to "process item" (see TYPEIT, page
123). RESTRICTION: A user must never modify
the datum of a process item.

<procedure call> is any procedure call on a
regular or recursive procedure, but not a
simple procedure. This procedure will be called
the process procedure for the new process.

<options> is an integer that may be used to
specify special options to the SPROUTer. If
<options> is left out, O will be used. The
different fields of the word are as follows:

BITS NAME DESCRIPTION

14-17 QUANTUM (X) Q «IF X=0 THEN 4 ELSE
2TX; The process will be
given a quantum of Q clock
ticks, indicating that if the
user is using CLKMOD to
handle clock interrupts, the
process should be run for at
most Q clock ticks, before
calling the scheduler. (see
about CLKMOD, page 120 for
details on making processes
“time share").

18-21 STRINGSTACK (X) S « IF X=0 THEN 16

ELSE X#32; The process will



SAIL

be given S words of string
stack.

22-27 PSTACK (X) Pe«lF X=0 THEN 32 ELSE
X+32; The process will be
given P words of arithmetic
stack.

28-31 PRIORITY (X) P « IF X=0 THEN 7 ELSE
X; The process will be given
a priority of P. 0 is the
highest priority, and
reserved for the Sail system.
15 is the lowest priority.
Priorities determine which
ready process the scheduler
will next pick to make
running.

32 SUSPHIM  If sel, suspend the newly
sprouted process.

33 ' Not used at present.

34 SUSPME  If set, suspend the process
in  which . this sprout
statement occurs.

35 RUNME If set, continue to run the
process in which this sprout

statement occurs.

The names are defined in the file
<SUAI>SYS:PROCES.DEF, which one may require
as a source file. Options words may be
assembled by simple addition, e.g. RUNME +
PRIORITY (3) + PSTACK (2).

DEFAULT STATUS: If none of bits 32, 34, or 35
are set, then the process in which the sprout
statement occurs will revert to ready status,
and the newly sprouted process will become
the running process.

The default values of QUANTUM, STRINGSTACK,
PSTACK, and PRIORITY are stored in the system
variables DEFQNT, DEFSSS, DEFPSS, and DEFPRI
respectively. These values may be changed.
The variables are declared EXTERNAL INTEGERSs
in cSUAI>SYS:PROCES.DEF.

SPROUT_DEFAULTS

If one of the "allocation” fields of the options
word passed to the SPROUT routine -- ie,
QUANTUM, STRINGSTACK, PSTACK, or PRIORITY
-- is zero, then SPROUT will look at the

. PROCESSES

corresponding field of the specified
<integer_constant> of the SPROUT_DEFAULTS
for the procedure being sprouted. If the field
is non-zero then that value will be used;
otherwise the current "system" default will be
used.

NOTE: SPROUT_DEFAULTS only applies to
“allocations", i.e., the process status control bits
(e.g. SUSPME) are not affected. Example:

RECURSIVE PROCEDURE FOO;

BEGIN

SPROUT_DEFAULTS STRINGSTACK (10);
INTEGER XXX;

END;

SPROUT (P1, FOO, STRINGSTACK (3));

SPROUT (P2, FOOQ);

COMMENT P1 will have a string stack of 3%¥32 words.
P2 will have a string stack of 10%¥32 words;

MEMORY ACCESSIBLE TO A PROCESS

A process has access to the same global
variables as would a “"normal" call of the
process procedure at the point of the SPROUT
statement. For example, suppose you Sprouted
a process in the first instantiation of a
recursive procedure and immediately suspended
it.  Then in another instantiation of the
procedure, you resumed the process. Since
each recursive instantiation of a procedure
creates and initializes new instances of its local
variables, the process uses the instances of the
recursive procedure’s locals that were current
at the time of the SPROUT, namely those of the
first instantiation.

Sail will give you an error message whenever
the global wvariables of a process are
deallocated but the process still exists. Usually,
this means that when the block in which the
process procedure was declared is exited, the
corresponding process must be terminated (one
can insure this by using a small Cleanup
procedure that will TERMINATE the fated
process or JOIN it to the current one -- see
about Cleanup, page 10, Terminate, page 107,
and Join, page 109). When the process
procedure has been declared inside a recursive
procedure, things become a bit more complex.
As mentioned above, the process takes its

105



PROCESSES

globals from the context of the Sprout:
statement. Therefore, it is only in the
instantiation of the recursive procedure that
executed the Sprout that trouble can occur.
For example,

RECURSIVE PROCEDURE TENLEVEL (INTEGER i)
BEGIN "TROUBLE"

PROCEDURE FOO;
; COMMENT does nothing;

IF 1=5 THEN SPROUT (NEW, FOO, SUSPHIM);

COMMENT sprouts FOO on the 5th
instantiation of TENLEVEL, then
immediately suspends it;

IF I<10 THEN TENLEVEL (ls1);
RETURN; :

COMMENT assuming TENLEVEL is called
with 1s0, it will do 10 instantiations,
then come back up;

END "TROUBLE";

TENLEVEL will nest 10 deep, then start
returning. This means "TROUBLE" will be exited
five times will no ill effects. However, when
Sail attempts to exit "TROUBLE" a sixth time, it
will be exiting a block in which a process was
sprouted and declared. It will generate the
error message, "Unterminated process
dependent on block exited".

The construct DEPENDENTS (<block_name>),
where <block_name> is a string constant,
produces a set of process items. The process
items are those of all the processes which
depend on the current instance of the named
block -- i.e. all processes whose process
procedures obtain their global variables from
that block (via the position of the process
procedure’s declaration, or occasionaly via the
jocation of the Sprout in a nest of recursive
procedure instantiations). This construct may
be used together with a CLEANUP procedure
(see page 10) to avoid having a block exit
before all procedures dependent on it have
been terminated.

if one Sprouts the same non-recursive
procedure more than once (with different
process items, of course), the local variables of
the procedure are not copied. In other words,

106

SAIL

"X5" in process A will store B in the same
location that "Xe10" in process B would store
10. If such sharing of memory is undesirable,
declare the process procedure RECURSIVE, and
then new instances of the local variables of the
procedure will be created with each Sprout
involving that procedure. Then "X" in process
A will refer to a different memory location than
"X" in process B.

SPROUT APPLY

The <procedure call> in a SPROUT statement
may be an APPLY construct. In this case
SPROUT will do the "right" thing about setting
up the static link for the APPLY. That is, "up-
level" references by the process will be made
to the same variable instances that would be
used if the APPLY did not occur in a SPROUT
statement, (See page 115.)

However, there is a glitch. The sprout
mechanism is not yet smart enough to find out
the block of the declaration of the procedure
used to define the procedure item. It would be
nice if it did, since then it could warn the user
when that block was exited and yet the process
was still alive, and thus potentially able to refer
to deallocated arrays, etc. What the sprout
does instead is assume the procedure was
declared in the outer block. This may be fixed
eventually, but in the meantime some extra care
should be taken when using apply in sprouts to
avoid exiting a block with dependents.
Similarly, be warned that the
"DEPENDENTS (<blockid>)" construct may not
give the "right” result for sprout applies.

SPROUTING MATCHING PROCEDURES

When a matching procedure is the object of a
Sprout statement, the FAIL and SUCCEED
statements are interpreted differently than
they would be were the matching procedure
called in a Foreach or as a regular procedure.
FAIL is equivalent to
RESUME (CALLER (MYPROC), CVi(0)). SUCCEED
is e(aqu)i;/alent to RESUME (CALLER (MYPROC),
CVI(-1)).

SCHEDULING
One may change the status of a process
between terminated, suspended and

ready/running with the TERMINATE, SUSPEND,
RESUME, and JOIN constructs discussed above,
and the CAUSE and INTERROGATE constructs
discussed in the next chapter. This section will



SAIL

describe how the the status of processes may
change between ready and running.

Whenever the currently running process
performs some action that causes its status to
change (to ready, terminated, or suspended)
without specifying which process is to be run
next, the Sail process scheduler will be invoked.
It chooses a process from the pool of ready
processes. The process it chooses will be made
the -next running process. The scheduling
algorithm is essentially round robin within
priority class. In other words, the scheduler
finds the highest priority class that has at least
one ready process in it. Each class has a list of
processes associated with it, and the scheduler
choses the first ready process on the list. This
process then becomes the running process and
is put on the end of the list. If no processes
have ready status, the scheduler looks to see if
the program is enabled for any interrupts (see
interrupts, page 117). If the program is
enabled for some kind of interrupt that might
stil happen (not arithmetic overflow, for
instance), then the scheduler puts the program
in interrupt wait. After the interrupt is
dismissed, the scheduler tries again to find a
ready process. If no interrupts that maystill
happen are enabled, and there are no roady
processes, the error message "No one to run" is
issued.

The rescheduling operation may be explicitly
invoked by calling the runtime routine URSCHD,

which has no parameters.

POLLING POINTS

Polliing points are located at "clean" or "safe"
points in the program; points where a process
may change from running to ready and back
with no bad effects. Polling points cause
conditional rescheduling. A polling point is an
efficient version of the statement:

IF INTRPT A -NOPOLL THEN
BEGIN INTRPT«0; URSCHD END;

INTRPT is an external integer that is used to
request rescheduling at the next polling point.
It is commonly set by the deferred interrupt
routine DFRINT (for all about deferred
interrupts, see page 121) and by the clock
interrupt routine CLKMOD (for how to 'make
processes time share, see page 120).. The user
may wuse INTRPT for his own purposes
(carefully, so as not to interfere with DFRINT or

- PROCESSES

CLKMOD) by including the declaration
"EXTERNAL INTEGER INTRPT", then assigning
INTRPT a non-zero value any time he desires
the next polling point to cause reschedulmg
NOPOLL is another external integer that is
provided to give the user a means of
dynamically inhibiting polling points. For
example, suppose one is time sharing usmg
CLKMOD. In one of the processes, a point is
reached where it becomes important that the
processes not be swapped out until a certain
tight loop is finished up. By assigning NOPOLL
(which was declared an EXTERNAL INTEGER) a
non-zero value, the polling points in the loop
are efficiently ignored. Zeroing NOPOLL
restores normal time sharing.

A single polling point can be inserted with the
statement POLL. The construct

REQUIRE n POLLING_INTERVAL

where n is a positive integer, causes polling
points to be inserted at safe points in the code,
namely: at the start of every statement
provided that at least n instructions have been
emitted since the last polling point, after every
label, and at the end of every léop. If n < 0
then no further polling points will be put out
until another Require n (n>0) Polling_Interval Is
seen.

16.4 Process Runtimes

— TERMINATE
TERMINATE (PROC_ITM)

The process for which PROC_ITM is the process
item is terminated. It is legal to terminate a
terminated process. A terminated process is
truly dead. The item may be used over for
anything you want, but after you have used it
for something else, you may not do a terminate
on it. Termination of a process causes all
blocks of the process to be exited.

107



PROCESSES

SUSPEND
ITM « SUSPEND (PROC_ITM)

The process for which PROC_ITM is the process
item is suspended. If the process being
suspended is not the currently running process
then the item returned is ANY. In cases such as

X « SUSPEND (MYPROC);

where the process suspends itself, it might
happen that this process is made running by a
RESUME from another process. If so, then X
receives the SEND_ITM that was an argument
to the RESUME.

One may suspend a suspended process.
Suspending a terminated process will cause an
error message. If the process being suspended
is the currently running process (ie. the
process suspends itself), then the scheduler will
be called to find another process to run. A
process may also be suspended as the result of
RESUME or JOIN.

RESUME

RET_ITM « RESUME (PROC_ITM,
SEND_ITM, OPTIONS(0))

RESUME provides a means for one process to
restore a suspended process to ready/running
status while at the same time communicating an
item to the awakened process. It may also
specify what its own status should be. it may
be used anywhere that an itemvar procedure is
syntactically correct. When a process which
has suspended itself by means of a RESUME is
subsequently awakened by another resume, the
- SEND_ITM of the awakening RESUME is used as

the RET_ITM of the RESUME that caused the
suspension. For example, suppose that process
A has suspended itself:

STARTINFO « RESUME (Z, NEED_TOOL);

If later a process B executes the statement
INFOFLAG « RESUME (A, HAMMER);

then B will suspend itself and A will become the

running process. A’s process information will
be updated to remember that it was awakened

108

SAIL

by B (so than the runtime routine CALLER can
work). Finally, A’s RESUME will return the
value HAMMER, which will be assigned to
STARTINFO. If A had been suspended by
SUSPEND or JOIN then the SEND_ITM of B’s
RESUME is ignored.

A process that has been suspende.d in any
manner will run from the point of suspension
onward when it is resumed.

OPTIONS is an integer used to change the effect

of the RESUME on the current process

(MYPRQOC) and the newly resumed process.

BITS NAME DESCRIPTION

33-32 READYME If 33-32 is 1, then the
current process will not be
suspended, but be made
ready.

KILLME It 33-32 is 2, then the
current process will be
terminated. .

IRUN if 33-32 is 3, then the
current process will not be
suspended, but be made
running. The newly
resumed process will be
made ready.

34 This should always be zero.

35 NOTNOW If set, this bit makes the
newly resumed process
ready instead of running. If
33-32 are not 3, then this
bit causes a rescheduling.

DEFAULT: If none of bits 35 to 32 are set, then
the current process will be suspended and the
newly resumed process will be made running.
At SUA! include a REQUIRE "SYS:PROCES.DEF"
SOURCE_FILE in your program to get the above
bit names defined. Options may then be
specified by simple addition, e.g. KILLME +
NOTNOW.

CALLER
PROCITEM « CALLER (PROCITEM2)



SAIL

CALLER returns the process item of the process
that most recently resumed the process
referred to PROCITEM2. PROCITEM2 must be
the process item of an unterminated process,
otherwise an error message will be issued. If
PROCITEM2’s process has never been called,
then the process item of the process that
sprouted PROCITEM2 is returned.

DDFINT

DDFINT

A polling point is SKIPE INTRPT; PUSHJ P,
DDFINT. DDFINT suspends the current process
(but leaves it ready to run), then calls the
scheduler; DDFINT is like SUSPEND (MYPROC,
IRUN+NOTNOW).

JOIN
JOIN (SET_OF _PROCESS_ITEMS)

The current process (the one with the JOIN
statement in it) is suspended until all of the
processes in the set are terminated. WARNING:
Be very careful; you can get into infinite wait
situations.

1. Do not join to the current process;
" since the current process is now
suspended, it will never terminate of

its own accord.

2. Do not suspend any of the joined
"processes unless you are assured
they will be resumed.

3. Do not do an interrogate-wait in any
of the processes unless you are

sure that the event it is waiting for
will be caused (page 110),

MYPROC
PROCITEM « MYPROC

MYPROC returns the process item of the
process that it is executed in. If it is executed
not inside a process, then MAINP! (the item for
the main process) is returned.

- PROCESSES

PRISET
PRISET (PROCITM, PRIORITY)

PRISET sets the priority of the process
specified by PROCITM (an item expression that
must evaluate to the process item of a non-
terminated process) to the priority specified by
the integer expression PRIORITY. Meaningful
priorities are the integer between 1, the
highest priority, to 15, the lowest priority.
Whenever a rescheduling is called for, the
scheduler finds the highest priority class that
has at least one ready process in it, and makes
the first process on that list the running
process. See about the scheduler, page 107.

PSTATUS

STATUS « PSTATUS (PROCITM)

PSTATUS returns an integer indicating the
status of the process specified by the item
expression PROCITM.

-1 running
0 suspended
1 ready
2 terminated

URSCHD

URSCHD

URSCHD is essentially the Sail Scheduler. When
one calls URSCHD, the scheduler finds the
highest priority class that has at least one
Ready process in it. Each class has a list of
processes associated with it, and the scheduler
choses the first ready process on the list. This
process then becomes the running process and
is put on the end of the list. If no processes
have ready status, the scheduler looks to see if
the program is enabled for any interrupts. If
the program is enabled for some kind of
interrupt that may still happen (not arithmetic
overflow, for instance), then the scheduler puts
the program into interrupt wait, After the
interrupt is dismissed, the scheduler tries again
to find a ready process. If no interrupts that
may still happen are enabled, and there are no
ready processes, the error message "No one to
run" is issued.

108



EVENTS

SECTION 17
EVENTS

17.1 Syntax

<evenf_statement>
u= <cause_statement>
u= <interrupt_statement>

<cause_statement>
1= CAUSE ( <item_expression> ,
<item_expression> ,
<algebraic_expression> )
«= CAUSE ( <item_expression> ,
<item_expression> )

<interrogate_construct>
u= INTERROGATE ( <item_expression> ,
<algebraic_expression> )
1= INTERROGATE ( <item_expression> )
«= INTERROGATE ( <list_expression> ,
<algebraic_expression> )
u= INTERROGATE ( <list_expression> )

17.2 Introduction

The Sail event mechanism is really a general
message processing system which provides a
means by which an occurrence in one process
can influence the flow of control in other
processes. The mechanism allows the user to
classify the messages, or "event notices", into
distinct. types ("event types") and specify how
each type is to be handled.

Any leap item may be used as an event notice.
An event type is an item which has been given
a special runtime data type and datum by
means of the runtime routine:

MKEVTT (et)
where et is any item expression (except ANY or

BINDIT). With each such event type Sail
associates:

110

SAIL

1. a "notice queue" of items which
have been "caused" for this event

type.

2. a "wait queue" of processes which
are waiting for an.event Qf this

type.

3. procedures for manipulating the
queues.

The principle actions associated with the event
system are the CAUSE statement and the
INTERROGATE  construct.  Ordinarily these
statements cause standard Sail runtime routines
to be invoked. However, the user may
substitute his own procedures for any event
type (see User Defined Cause and Interrogate
procedures, page 112). The Cause and
Interrogate statements are here described in
terms of the Sail system supplied procedures.

17.3 Sail-defined Cause and Interrogate
THE CAUSE STATEMENT

CAUSE (<event type>, <event notice>, <options>)
CAUSE (<event type>, <event notice> )

<event type> is an item expression, which must
yield an event type item. <event notice> is an
item expression, and can yield any legal item.
<options> is an integer expression. If <options>
is left out, O is used.

The Cause statement causes the wait queue of
<event type> to be examined. If it is non-
empty, then the system will give the <event
notice> to the first process waiting on the
queue (see about the WAIT bit in Interrogate,
below). Otherwise, <event notice> will be
placed at the end of the notice queue for
<gvent type>.

The effect of Cause may be modified by the
appropriate bits being set in the options word:



SAIL

BITS NAME DESCRIPTION

35 DONTSAVE Never put the <event item>
on the notice queue, If
there is no process on the
‘wait queue, this makes the
cause statement a no-op.

34 TELLALL Set the status of all
processes waiting for this
event to READY.

33 RESCHEDULE Reschedule as soon as
possible (i.e., immediately
after the cause procedure
has completed executed).

DEFAULT: If bits 35 to 33 are 0, then the either
a single process is awakened from the wait
queue, or the event is placed on the notice
queue. The process doing the Cause continues
to run. At SUAl, REQUIRE "SYS:PROCES.DEF"
SOURCE_FILE to get the above bit names
defined. Options can then be constructed with
simple addition, e.g. DONTSAVE + TELLALL.

THE INTERROGATE CONSTRUCT - SIMPLE FORM

<itemvar> « INTERROGATE (<event type>, <options>)
<itemvar> « INTERROGATE (<event type>)

<event type> is an item expression, which must
yield an event type item. <options> is an
integer expression. If <options> is left out, 0 is
used.

The notice queue of <event type> is examined.
If it is non-empty, then the first element is
removed and returned as the value of the
Interrogate. Otherwise, the special item BINDIT
is returned.

<options> modifies the effect of the interrogate
statement as follows:

BITS NAME DESCRIPTION

35 . RETAIN Leave the event notice on
the notice queue, but still
return the notice as the
value of the interrogate. If
the process goes into a
wait state as a result of
this interrogate, and is
subsequently awakened by
a Cause, then the

EVENTS

DONTSAVE bit in the Cause
statement will override the
RETAIN bit in the
Interrogate if both are on.

34 WAIT It the notice queue s
empty, then suspend the
process  executing the
interrogate and put its
process item on the wait
queue,

33 RESCHEDULE Reschedule as soon as
possible (i.e., immediately
after execution of the
interrogate procedure).

32 SAY_WHICH Creates the association
' EVENT_TYPE e <event
notice> = <event type>
where <event type> is the
type of the event returned.
Useful with the set form of
the Interrogate construct,
below.

DEFAULT: If bits 35 to 32 are 0, then the
interrogate removes an event from the event
queue, and returns it. If the event queue is
empty, BINDIT is returned and no waiting is
done; the process continues to run, At SUAI,
use a REQUIRE "SYS:PROCES.DEF" SOURCE_FILE
to get the names defined; use simple addition to
form options, e.g. RETAIN + WAIT.

THE INTERROGATE CONSTRUCT = SET FORM

<itemvar> « INTERROGATE (<event type set>) -
<itemvar> « INTERROGATE (<event type set>, <options>)

<event type set> is a set of event type items.
<options> is an integer expression. If it is left
out, O will be used.

The set form of interrogate allows the user to
examine a whole set of possible event types.
This form of interrogate will first look at the
notice queues, in turn, of each event type in
<event type set>. If one of these notice queues
is non-empty, then the first notice in that
queue will be remved and that notice will be
returned as the value of the Interrogate. If all
the notice queues are empty, and WAITing is
not specified in the options word, then BINDIT
will be returned. When the WAIT bit is set, the
process doing the interrogate gets put at the

111



EVENTS

end of the wait queues of each event type in
<event type set> Then, when a notice is finally
available, the process is removed from all of
the wait queues before returning the notice.
Note that the option SAY_WHICH provides a
means for determining which event type
produced the returned notice.

17.4 User-defined Cause and Interrogate

By executing the appropriate runtime routine,
the user can specify that some non-standard
action is to be associated with CAUSE or
INTERROGATE for a particular event type. Such
user specified cause or interrogate procedures
may then manipulate the event data structure
directly or by themselves invoking the
primitives used by the Sail Cause and
Interrogate constructs. User defined Cause and
Interrogate are not for novice programmers
(this is an understatement).

EVENT TYPE DATA STRUCTURE

The datum of an event type item points to a six
word block of memory. This block contains the
following information:

WORD NAME TYPEDESCRIPTION

0 NOTCQ LIST The list of all notices
pending for this event

type.

1 WAITQ LIST The list of all processes
currently waiting for a
notice of this type.

2 -— -— Procedure specifier for
the user specified cause
procedure (zero if
system procedure is to
be used).

3 -— -—- Procedure specifier for
the user specified
interrogate procedure
(zero if system

procedure is to be used).
4 USER1 INTEGER Reserved for user.
5 USER2 INTEGER Reserved for user.

The appropriate macro definitions for these

112

SAIL

names (e.g. WAITQ(et) = "MEMORY[
DATUM (et)+1, LIST J" ) are included in the file
cSUAIDSYS:PROCES.DEF.

USER CAUSE PROCEDURES

A procedure to be used as a Cause procedure
must have three formal value parameters
corresponding to the event type, event notice,
and options of the Cause. Such a procedure is
associated with an event type by means of the

runtime SETCP:

SETCP (<event type>, <procedure specifier>);

where <event type> must yield an event type
item and <procedure specifier> is either a
procedure name or DATUM (<procedure item>).
For example:

PROCEDURE CX (ITEMVAR ET, EN; INTEGER OPT);
BEGIN
PRINT ("Causing ", EN,

“ as an event of type ", ET);
CAUSE (ET, EN, OPT):
END;

SETCP (FOO, CX);

Now,
CAUSE (FOO, BAZ):

would cause CX (FOO, BAZ) to be called. This
procedure would print out "Causing BAZ as an
event of type FOO" and then call CAUSEL. The
runtime CAUSE! (ITEMVAR etype, enot; INTEGER
opt) is the Sail runtime routine that does all the
actual work of causing a particular notice, enot,
as an instance of event type etype. It is
essentially this procedure which is replaced by
a user specified cause procedure.

CAUSE! uses an important subroutine which is
also available to the user. The integer runtime
ANSWER (ITEMVAR ev_type, ev_not,

. process_item) is used to wake up a process

that has suspended itself with an interrogate.
If the process named by process_item s
suspended, it will be set to ready status and
be removed from any wait queues it may be on.
ANSWER will return as its value the options bits
from the interrogate that caused the process to
suspend itself. If the named process was not
suspended, then ANSWER returns an integer
word with bit 18 (the 400000 bit in the right
half = NOJOY in €SUAI>SYS:PROCES.DEF) set to



SAIL

1. The ev_type and ev_not must be included in
case the SAY_WHICH bit was on in the
interrogate which caused the suspension.
ANSWER has no effect on the notice queue of
ev_type.

Frequently one may wish to use a cause
procedure to re-direct some notices to other
event types. For instance:

PROCEDURE CXX (ITEMVAR ET, EN; INTEGER OPT);
BEGIN ITEMVAR OTH; LABEL C; )
IF radirecttest(ET, EN) THEN
FOREACH OTH | OTHER_CAUSE®ET-0TH DO
C:  CAUSE1 (ET, EN, OPT)
ELSE CAUSE1 (ET, EN, OPT);
END;

In order to avoid some interesting race
conditions, the implementation will not execute
the causes at C immediately. Rather, it will
save ET, EN and OPT, then, when the procedure
CXX is finally exited, any such deferred causes
will be executed in the order in which they
were requested.

USER INTERROGATE PROCEDURES

A user specified interrogate procedure must
have two  value formal parameters
corresponding to the two arguments to
INTERROGATE and should return an item as the
value. The statement

SETIP (<event type>, <procedure specifier>);

where <event type> is an event type item, and
<procedure specifier> is either a procedure
name or DATUM (<procedure item>), will make
the specified procedure become the new
interrogate procedure for <event type> For
instance:

ITEMVAR PROCEDURE IX (ITEMVAR ET; INTEGER OPT);
BEGIN ITEMVAR NOT|;
NOTI « ASKNTC (ET, OPT);
PRINT ("Notice ", NOTI, " returned
from interrogation of *, ET);
RETURN (NOTI);
-END;

SETIP (FOO, KX);

Now,
~ + INTERROGATE (FOO);

EVENTS

would cause NOTI to be set to the value of
ASKNTC (FOO, 0). Then the message "Notice
BAZ returned from interrogate of FOO" would
be printed and IX would return NOT! as its
value.

The runtime ASKNTC (ITEMVAR etype; INTEGER
opt) is the Sail system routine for handling the
interrogation of a single event type.
Essentially it is the procedure being replaced
by the user interrogate procedure.

In the case of multiple interrogations, Sail sets a
special bit (bit 19 = *200000 in the right half =
MULTIN in <cSUAI>SYS:PROCES.DEF) in the
options word before doing any of the
interrogates specified by the event type items
in the event type set. The effect of this bit,
which will also be set in the options word
passed to a user interrogate procedure, is to
cause ASKNTC always to return BINDIT instead
of ever waiting for an event notice. Then, if
ASKNTC returns BINDIT for all event types, Sail
will cause the interrogating process to Wait
until its request is satisfied. If multin is not set,
then ASKNTC will do the WAIT if it is told to.

113



PROCEDURE VARIABLES

SECTION 18
PROCEDURE VARIABLES

18.1 Syntax

<assigh_statement>
«= ASSIGN ( <item_expr>,
<procedure_name> )
u= ASSIGN ( <item_expr>,
DATUM ( <item_expr>))

<ref_item_construct>
u= REF_ITEM ( <expression> )
u= REF_ITEM ( VALUE <expression> )
u= REF_ITEM ( BIND <itemvar> )
u= REF_ITEM ( ? <itemvar> )

<apply_construct>
1= APPLY ( <procedure_name> )
1= APPLY ( <procedure_name> ,
<arg_list_specifier> )
1= APPLY ( DATUM ( <item>))
1= APPLY ( DATUM ( <item> ),
: <arg_list_specifier> )

<arg_list_specifier>
u= <list_expression>
i= ARG_LIST ( <expr_list> )

18.2 Semantics

ASSIGN

One may give an item a procedure "datum'
using the ASSIGN statement. ASSIGN accepts
as its first argument an item expression (do
not use ANY or BINDIT). To this is bound
the procedure identified by its name or to the
"datum” of another procedure item. The
procedure may be any type. However, the
value it returns will only be accessible if the
procedure is an itemvar or item procedure.
Apply assumes that whatever the procedure
left in AC 1, (the register used by all non-string
procedures to return a value) on exiting is an
item number. Warning: a procedure is no
ordinary datum. Using DATUM on a

114

SAIL

procedure item except in the above context
will not work. Use APPLY instead.

REF_ITEM

Reference iterns are created at run time by the
REF_ITEM construct and are used principally in
argument lists for the APPLY construct. The
datum of a reference item contains a pointer to
a data object, together with type information
about that object. To create a reference item
one executes

itm « REF_I;I'EM (<expression>)

A NEW item is created. If the expression is (a)
a simple variable or an array element, then the
address will be saved in the item’s datum. If
the expression is (b) a constant or "calculated"
expression, then Sail will dynamically allocate a
cell into which the value of the expression will
be saved, and the address of that cell will be
saved in the datum of the item. The item is
then noted as having the datum type
“reference” and returned as the value of the
REF_ITEM construct.  One can slightly modify
this procedure by using one of the following
variations.

itm « REF_ITEM (VALUE <expression>)

In this case, a temp cell will always be allocated.
Thus Xe3; Xl«REF_ITEM (VALUE X); X«4; would
cause the datum of Xl to point at a cell
containing 3.

itm « REF_ITEM (? itmvr)
itm « REF_ITEM (BIND itmvr)

where itmvr must be an itemvar or an element

of an itemvar array, will cause the reference
item’s datum to contain information that Apply
can use to obtain the effect of using "? itmvr"
or “BIND itmvr" as an actual parameter in a
procedure call.

ARG_LIST

The ARG_LIST construct assembles a list of
"temporary” reference items that will be
deleted by APPLY after the applied procedure
returns. Arguments to ARG_LIST may be
anything legal for REFITEM. Thus

APPLY (proc, ARG_LIST (foo, bar, VALUE baz})

is roughly equivalent to



SAIL

tmplst « {{REF_ITEM (foo), REF_ITEM (bar),
REF__ITEM (VALUE baz)}};

APPLY (proc, tmplst);

WHILE LENGTH (tmplst) DO DELETE (LOP (tmplst));

but is somewhat easier to type. Note that the
reference items created by ARG_LIST are just
like those created by REF_ITEM, except that
‘| they are marked so that APPLY will know to kill
them.

APPLY

APPLY uses the items in the
<arg_list_specifier>, together with the
environment information from the procedure
item (or from the current environment, if the
procedure is named explicitly) to make the
appropriate procedure call. <arg_list_specifier>
is an ordinary list expression, except that each
element of the list must be a reference item.
The elements of the list will be used as the
actuals in the procedure call. There must be at
least as many list elements as there are formals
in the procedure. The reference items must
refer to an object of the same type as the
corresponding formal parameter in the
procedure being called. (EXCEPTION: if the
formal parameter is an untyped itemvar or
untyped itemvar array, then the reference item
may refer to a typed itemvar or itemvar array,
respectively.) At present, type checking (but
not type coercion) is done. If the formal
parameter is a reference parameter, then a
reference to the object pointed to by the
reference item is passed. |f the formal
parameter is a value parameter, then the value
of the object pointed to by the reference item
is used. Similarly, "?" formals are handled
appropriately when the reference item contains
a "?" or "BIND" reference. If the procedure to
be called has no  parameters, the
<arg_list_specifier> may be left out.

Apply may be used wherever an itemvar
procedure call is permitted. The value returned
will be whatever value would normally be
returned by the the applied procedure, but
Apply will treat it as an item number. Care
should therefore be taken when using the
result of Apply when the procedure being
invoked is not itself an itemvar procedure, since
this may cause an invalid item number to be
used as a valid item (for instance, in a MAKE).
Recall that when a typed procedure (or an
Apply) is called at statement level, the value it

PROCEDURE VARIABLES

returns is ignored. Here is an example of the
use of APPLY.

BEGIN

LIST L;IINTEGER XX;

INTEGER ITEMVAR YYiITEMVAR 22Z;

REAL ARRAY AA[1:2);

PROCEDURE FOO (INTEGER X;
ITEMVAR Y,2; REAL ARRAY A);

BEGIN

Y « NEW (X);
Z « NEW (A)
A[X)e3;

END;

XXe0;

L « {{REF_ITEM (XX), REF_ITEM (YY),
REF_ITEM (2Z), REF_ITEM (AA)}};

XX « 2 AA[1]) « AA[2]) ¢ |;

APPLY (FOO, L)

COMMENT Y now contains an item whose
datum is 2, Z contains an item whose
datum is the array (1.0, 1.0),
A[1)=1.0, and A[2]=3.0;

END;

The variables accessed by a procedure called
with APPLY may not always be what you would
think they were. Temporary terminology: the
"environment" of a procedure is the collection
of variables, arrays and procedures
accessible to it. “"Environment" is not meant
to include the state of the associative store or
the universe of items. The environment of a
procedure item is the environment of the
ASSIGN, and that environment will be used
regardless of the position of the APPLY.
Since procedure items are untouched by
block exits, yet environments are, it is possible
to Apply a procedure item when its
environment is gone; Sail catches most of these
situations and gives an error message.
Consider the following example:

115



PROCEDURE VARIABLES

BEGIN
ITEM P; LABEL L;
RECURSIVE PROCEDURE FOO (INTEGER J):
BEGIN "FOO"
INTEGER §;
PROCEDURE BAZ;
PRINT ("J=", J, " =", I);
IF J=1 THEN
BEGIN
le2;
" ASSIGN (P, BAZ);
FOO (-1); -
END
ELSE APPLY (DATUM (P));
END "FOQ";
FOO (1)
L: APPLY (DATUM (P)); COMMENT will cause 2
runtime error -- see discussion below;
END

The effect of the program is to Assign Baz
to P on the first instantiation of Foo, then
Apply P on the second (recursive)
instantiation. However, the environment at
the time of the Assign includes {I=2, J=1} but
the environment at the time of the Apply
includes {I=0, J=-1} instead. At the time of
the Apply, Baz is executed with the
environment from the time of the Assign, and
will print out

Jul [=2

The Apply at L will cause a runtime error
message because the environment of the
Assign has been destroyed by the exiting of
Foo. :

116

SAIL



SAIL

SECTION 19
INTERRUPTS

19.1 Introduction

The interrupt facilities of Sail are based on the
interrupt facilities provided by the operating
system under which Sail is running. For
programs running at SUAI or on TENEX this
results in satisfactory interrupt operation.
TOPS-10 programs are at a distinct
disadvantage because the operating system
does not prevent interrupt handlers from being
interrupted themselves. At SUAl the Sail
system uses new-style interrupts [Frost)
programs may also enable for old-style
interrupts and the two will work together
provided that the same condition is not enabled
under both  kinds. On  TENEX the
pseudointerrupt (PSl) system is used; programs
may use the interrupt system independently of
Sail. Only interrupt functions pertaining to the
current fork are provided. TOPS-10 interrupts
are directly tied to the APRENB system; Sail and
non-Sail use do not mix.

Sail gives control to the user program as soon
as the operating system informs the Sail
interrupt handler. This can be dangerous
because the Sail runtime system may be in the
middle of core allocation or garbage collection.
Therefore Sail provides a special runtime
DFRINT which can receive control in the
restricted environment of an interrupt. DFRINT
records the fact that an interrupt happened and
that a particular user procedure is to be run at
the next polling point (page 107), when the
integrity of all runtime data structures is
(normally) assured. If the Sail interrupt handler
passes control to DFRINT then the user
procedure (which is run at the next polling
point) is called a ‘“deferred interrupt
procedure”, even though the only connection it
has with interrupts is the special status and
priority given to it by the Sail Process
machinery. If DFRINT is not used then the user
procedure to which the Sail interrupt handler
passes control is called an “immediate interrupt
procedure”. (This is orthogonal to the TENEX
distinction between immediate and deferred TTY
interrupts.)

INTERRUPTS

To use interrupts a program must first tell Sail
what procedure(s) to run when an interrupt
happens. The routines INTMAP and PSIMAP
perform this task. Deferred interrupts use the
Sail process machinery (page 104), so INTSET is
used to sprout the interrupt process. Then the
operating system must be told to activate (and
deactivate) interrupts for the desired
conditions. ENABLE and DISABLE are used by
the program to tell Sail, which tells the
operating system.

A good knowledge of the interrupt structure of
the operating system which you are trying to

use should be considered a prerequisite for this
chapter.

19.2 Interrupt Routines

ATl, DTl =

ATI (PSICHAN, CODE);
DTl (PSICHAN, CODE)

(TENEX only.) CODE is associated or dissociated
with PSICHAN, using the appropriate JSYS.
Executing ATl is an additional step (beyond
ENABLE) which is necessary to receive TENEX
TTY interrupts. _

DFRIIN

DFRIIN (AOBJN_PTR)

DFRIIN is the procedure used by DFRINT to
record the interrupt and the AOBIJN_PTR. Thus
DFRINT is {partially) equivalent to

SIMPLE PROCEDURE DFRINT; BEGIN
DFRIIN (<AOBJN_PTR specified
to INTMAP>) END;

To have more than one procedure run
(deferred) as the result of an interrupt, a
program may use DFRIIN to record the
AOBJIN_PTRs explicitly. Example:

117



INTERRUPTS

SIMPLE PROCEDURE ZORCH;
BEGIN
DFR1IN (<AOBJN pointer for FOO call>);
DFR1IN (<AOBJN pointer for BAZ cali>);
END;

INTMAP (INTTTY__INX, ZORCH, 0);
ENABLE (INTTTY_INX):

Both FOO and BAZ will be run (deferred) as the
result of INTTTY_INX interrupt.

DFRINT

DFRINT

DFRINT is a predeclared simple procedure which
handies the queueing of deferred interrupts.
Specify DFRINT to INTMAP for each interrupt
which will be run as a Sail deferred interrupt.
When run as the result of an interrupt, DFRINT
grabs the AOBJN_PTR pointer specified to
INTMAP (or PSIMAP) and copies the block along
with other useful information into the circular
deferred interrupt buffer. (See INTTBL.)
DFRINT then changes the status of the interrupt
process INTPRO from suspend to ready, and
turns on the global integer INTRPT.

DISABLE, ENABLE

DISABLE (INDEX);
ENABLE (INDEX)

Sail tells the operating system to ignore-
(DISABLE) or to send to the program (ENABLE) -

interrupts for the condition specified by INDEX,
INDEX is a bit number (0-35) which varies from
system to system; consult [SysCall). INDEX is
sometimes called a "PSI channel" on TENEX.

INTMAP
INTMAP (INDEX, PROC, AOBJN_PTR)
(TENEX users should see PSIMAP.) The routine

INTMAP specifies that the simple procedure
PROC is to be run whenever the Sail interrupt

118

SAIL

handler receives an interrupt corresponding to
the condition specified by INDEX. A separate
INTMAP must be executed for each interrupt
condition. If the same INDEX is specified on two
calls to INTMAP then the most recent call is the
one in effect. PROC must be a simple
procedure with no formal parameters. If PROC
is a user procedure then PROC is run as a Sail
immediate interrupt.

AQBJUN_PTR should be zero unless DFRINT is
specified for PROC. If PROC is DFRINT (and thus
will be a Sail deferred interrupt) then
AOBJN_PTR gives the length and location of a
block of memory describing a procedure call.
Such a block has the form

<number of words in the block>
<lst parameter to the procedure>
<second parameter to the procedure>

<last parameter to the procedure>
-1,<address of the procedure>

and an AOBJN_PTR to it has the form

-<number of words>,<starting address>.

Here is an example in which FOO (, J, K) is to
be called as a deferred interrupt.

PROCEDURE FOO (INTEGER.i, j, k) ..

SAFE INTEGER ARRAY FOOBLK [1:5);
ITEMVAR IPRO; COMMENT for process item of INTPRO;

FOOBLK [1] « 5;

FOOBLK [2) « |

FOOBLK [3] « 4

FOOBLK [4) « X;

FOOBLK [5] « (~1 LSH 18)+LOCATION (FOO);

INTSET (IPRO « NEW, 0); COMMENT sprout INTPRO;
INTMAP (INTTTI_INX, DFRINT,

(-5 LSH 18) +» LOCATION (FOOBLK[1]))
ENABLE(INTTTI_INX)

NOTE: The procedure (FOO in this case) must
not be declared inside any process except the
main program. Otherwise, its environment will
not be available when INTPRO runs. However,
there is a rather complex way to get around
this by using <environment>,PDA as the last
word of the calling block. See a Sail hacker if
you nmust do this and dont know what
<environment> or PDA mean.



SAIL

INTSET
INTSET (ITM, OPTIONS)

INTSET sprouts the interrupt process INTPRO
with process options OPTIONS; see page 104,
The default priority of INTPRO is zero; this is
the highest possible priority and no other
process may have priority zero. Thus INTPRO
is sure to be run first at any polling point. ITM
must be an item; it will become the process item
of INTPRO, the interrupt process. INTSET must
be called before any deferred interrupts are
used.

INTTBL

INTTBL (NEW_SIZE)

. The buffer used to queue deferred interrupts is
initially 128 locations long. The queue has not
been know to overflow except for programs
which do not POLL very often. INTTBL changes
the buffer size to NEW_SIZE. Do not call
INTTBL if there are any deferred interrupts
pending; wait until they have all been executed.

= PSIMAP e

PSIMAP (PSICHAN, PROC,
AOBJN_PTR, LEVEL)

(TENEX only.) This routine is the same as
INTMAP except that LEVEL may be specified.
ROUTINE is executed at interrupt level LEVEL.
(TENEX INTMAP is equivalent to PSIMAP (, , ,3).)
PROC and AOBJN_PTR have the same meaning
as for INTMAP. :

19.3 Immediate Interrupts

Do not access, create, or destroy strings,
records, arrays, sets, or lists. If these data
structures are needed then use deferred
interrupts.

To set up an immediate interrupt say

INTERRUPTS

INTMAP (<index>, <simple procedure name>, 0);
ENABLE (<index>)
or on TENEX,
PSIMAP («<PSichan>, <simple procedure name>, 0, <PSllav>);

ENABLE (<PSichan>)

where <index> is a code for the interrupt
condition. To turn off an interrupt use

DISABLE (<index>)

The system will not provide user interrupts for
the specified condition until another ENABLE
statement is executed.

IN SUAI Sail

A procedure specified by an INTMAP statement
will be executed at user interrupt level. A
program operating in this mode will not be
interrupted, but must finish whatever it is doing
within 8/60 ths of a second. It may not do any
UUOs that can cause it to be rescheduled. Also,
the accumulators will not be the same ones as
those that were in use by the regular program.
Certain locations are set up as follows:

ACs 1-6 Set up by the system as in
[Frost]. :

AC ’15 (USER) Address of the Sail user
table.

AC ’16 (SP) A temporary string push
down stack pointer (for the
foolhardy who chose to
disregard the warnings about
strings in immediate
interrupts).

AC '17 (P) A temporary push down
stack pointer.

XJBCNI  (declared in SYS:PROCES.DEF
as an external integer.) Bit
mask with a bit on
corresponding to the current -
condition.

XJBTPC (declared in SYS:PROCES.DEF
as an external integer.) Full
PC word of regular user level
program.

The interrupt will be dismissed and the user
program resumed when the interrupt procedure
is exited. For more information on interrupt
level programming consult [Frost], -

119



INTERRUPTS

IN TOPS~-10

The interrupt handler again will decode the
interrupt condition and call the appropriate
procedure. Since there is no "interrupt level”,
the interrupt procedure must not itself
generate any interrupt conditions, since this
will cause Sail to lose track of where in the
user program it was interrupted (trapped).

Also, the Sail interrupt module sets up some
temporary accumulators and JOBTPC:

AC ’10 index  of the
condition.

interrupt

AC °15 (USER) Address of the Sail user
table. ‘

AC ’16 (SP) A temporary string push
down list. Beware.

AC ’17 (P) A temporary push down
pointer. }

JOBTPC (an external integer) Full PC
word of regular user program.

The “real" acs -- ie, the values of all
accumulators at the time the trap occurred --
are stored in locations APRACS to APRACS+17.
Thus you can get at the value of accumulator x
by declaring APRACS as an external integer and
referring to MEMORY [LOCATION (APRACS)+x]}.
When the interrupt procedure is exited the acs
are restored from APRACS to APRACS+17 and
the Sail interrupt handler jumps to the location
stored in JOBTPC (which was set by the
operating system to the location at which the
trap occurred). Thus, if you want to transfer
control to some location in your user program,
a way to do it is to have an interrupt routine
like:

SIMPLE PROCEDURE IROUT;
BEGIN

EXTERNAL INTEGER JOBTPC;

JOBTPC«LOCATION (GTFOO);

COMMENT GTFOO is a non-simple procedure
that contains a GO TO FOO, whare FOO
is the location to which control
is to be passed. This allows the
"go 1o solver” to be called and clean
up any unwanted procedure activations.;

END;

120

SAIL

WARNING: this does not work very well if you
were interrupted at a bad time.

IN TENEX Sail

‘Sail initialization does a SIR, setting up the

tables to external integers LEVTAB and
CHNTAB, then an EIR to turn on the interrupt
system. PSIMAP fills the appropriate CHNTAB
location with XWD LEV,LEVROU, where LEVROU
is the address of the routine that handles the
interrupts for level LEV. LEVROU saves the
accumulators in blocks PS1ACS, PS2ACS, and
PS3ACS, which are external integers, for levels
1 through 3 respectively. Thus for a level 3
interrupt accumulator x can be accessed by
MEMORY [LOCATION (PS3ACS) + x]. The PC can
be obtained by reading the LEVTAB address -
with the RIR JSYS. Temporary stacks are set
up for both immediate and deferred interrupts.

See page 79 for an example of TENEX
immediate interrupts. The functions GTRPW,
RTIW, STIW provide for some of the information
set up in ACs under SUAI or TOPS-10.

GTRPW

STATUS « GTRPW (FORK);

The trap status of FORK is returned, using the
GTRPW JSYS.

RTIW, STIW

ACl « RTIW (PSICHAN, @AC2);
STIW (PSICHAN, AC2, AC3);

The indicated JSYS is performed.

19.4 Clock Interrupts

(This feature is currently available only in SUAI
Sail and TENEX Sail.) Clock interrupts are a kind
of immediate interrupt used to approximate time
sharing among processes. Every time the
scheduler decides to run a process it copies the
procedure’s time quantum (see all about
quantums of processes, page 104) into the Sail
user table location TIMER. Consider the
following procedure, which is roughly
equivalent to the one predeclared in Sail:



SAIL

SIMPLE PROCEDURE CLKMOD;
IF (TIMERTIMER-1) S O THEN INTRPT«-1;

To time share several ready processes one
should include polling points in the relevant
process procedures and should execute the
following statements: ‘

INTMAP (INTCLK_INX, CLKMOD, 0);
ENABLE (INTCLK_INX);

or on TENEX
PSIMAP (1, CLKMOD, 0, 3%
ENABLE (1)
PSIDISMS (1, 1000/60);

The macro SCHEDULE_ON_CLOCK_INTERRUPTS
defined in €SUAI>SYS:PROCES.DEF is equivalent
to these statements. When the time quantum of
a process is exceeded by the number of clock
ticks since it began to run, the integer INTRPT
is set, and this causes the next polling point in
the process to cause a rescheduling (see about
rescheduling and INTRPT on page 107). The
current running process will be made ready,
and the scheduling aigorithm chooses a ready
process to run,

In TENEX Sail clock interrupts are handled
differently. Since TENEX does not directly
provide for interrupting user processes on

clock ticks, an inferior fork is created which
periodically generates the interrupts.

PSIDISMS
PSIDISMS (PSICHAN, MSTIME)

An inferior fork is created which interrupts the
current fork every MSTIME milliseconds of real
time. The inferior is approximately

WAIT:  MOVE 1,nSTINE $HOH LONG
DIsSns 460 AWAY
MOVED 1,-1 sHANDLE TO SUPERIOR
HOVE 2,[bit mask) ;SELECTED CHANNEL
1ic 3CAUSE AN INTERRUPT
JRST WRIT 3 CONTINUE
PSIRUNTM

PSIRUNTM (PSICHAN, MSTIME)

INTERRUPTS

The current fork is interrupted every MSTIME
milliseconds of runtime. The inferior is
approximately

WAIT: MOVE  1,MSTIME  ;HOW LONG
DISHS
HOVED 1,-1 JSUPERIOR FORK
RUNTH JRUNTIME OF SUPERIOR
CAMGE . 1,NEXTTIME ;RERDY?
JRST WAIT sNO

ADD " 1,MSTIME )
MOVEM  1,NEXTTIME ;RECHRRGE

HOVEI  1,-1 s SUPERIOR
HOVE 2, lbit mask];SELECTED CHANNEL
11¢ ;CAUSE INTERRUPT
JRST  WRIT _
KPSITIME
KPSITIME (PSICHAN)

Discontinues clock interrupts on PSICHAN.

Several channels can be .interrupted by
PSIRUNTM or PSIDISMS, each with different
timing interval.

195 Deferred Interrupts

Deferred interrupts use the Sail Process
machinery (page 104) to synchronize the Sail
runtime system with the running of wuser
procedures in response to interrupts. The
routine INTSET sprouts the interrupt process
INTPRO, the process which eventually does the
calling of deferred interrupt procedures. This
process is special because it is (ordinarily)
guaranteed to be the first process run after a
rescheduling. (See page 107 and page 109 for
information on rescheduling.) When DFRINT
runs as the result of an interrupt, it copies the
calling block (specified to INTMAP with the
AOBJN_PTR) into the deferred interrupt buffer
and turns on the global integer INTRPT. At the
next polling point the process supervisor will
suspend the current process and run INTPRO.
INTPRO calls the procedures specified by the
calling blocks in the deferred interrupt buffer,
turns off INTRPT, and suspends itself. The
process scheduler then runs the process of
highest priority.

One very common use of deferred interrupts is

121



INTERRUPTS

to cause an event soon after some
asynchronous condition (say, TTY activation)
occurs. This effect may be obtained by the
following sequence: .

INTSET (IPRONEW, 0); COMMENT this will cause
the interrupt process to be sprouted and
assigned to IPRO. This process will execute
procedure INTPRO and will have priority zero
(the highest possible).;

INTMAP (<index>, DFRINT,

DFCPKT (0, <event type>, <svent notice>,
<cause options>)); )

;-INABLE (<index>);
In €¢SUAIDSYS:PROCES.DEF is the useful macro

DEFERRED_CAUSE_ON_INTERRUPT (<index>,
<event type», <notice>, <options>)

which may be used to replace the INTMAP
statement.

The following program illustrates how deferred
interrupts on TENEX can be accomplished.

BEGIN REQUIRE 1 NEW_ITEM;
ITEMVAR IPRO; COMMENT for process item;

PROCEDURE FOO (INTEGER |, J);
PRINT ("HI ", 4, " %, J);

INTEGER ARRAY FOOBLK[1:4};

FOOBLK[1]) « 4 COMMENT » words;
FOOBLK[2] « 12; COMMENT srguments;
FOOBLK[3] « 13;

FOOBLK[4] « -1 LSH 18 + LOCATION (FOO)

INTSET (IPRO « NEW, O%
PSIMAP (1, DFRINT,

-4 LSH 18 « LOCATION (FOOBLK[1]), 3%
ENABLE (1); ATI (1, "Q"-'100);

DO BEGIN OUTCHR ("."); POLL; END UNTIL FALSE;
END;

The program prints dots, interspersed with "Hi
12 13" for each control-Q typed on the console.
Whenever a control-Q is typed, DFRINT buffers
the request and makes INTPRO ready to run;
then DFRINT DEBRKs (in the sense of the DEBRK
JSYS) back to the interrupted code. At Sail

user level the POLL statement causes the-

122

SAIL

process scheduler to run INTPRO, where the
deferred interrupt calling block (which was
copied by DFRINT) is used to call FOO.

THE DEFERRED INTERRUPT PROCESS = INTPRO
INTPRO first restores the following information
which was stored by DFRINT at the time of the
interrupt. ‘

LOCATION  CONTENTS

USER The base of the user table
(GOGTAB).

AC 1 Status of spacewar buttons.

AC 2 Your job status word (JBTSTS).

See [Frost].

{JBCNI(USER) XJBCNI (i.e., JOBCNI) at time of
interrupt.

IUBTPC(USER) XJBTPC (i.e., JOBTPC) at time
of interrupt.

IRUNNR(USER)  item number of running
process at time of interrupt.

Then INTPRO calles the procedure described by
the calling block. When the procedure ‘is
finished, INTPRO looks to see if the deferred
interrupt buffer has any more entries left. If it
does, INTPRO handles them in the same manner.
Otherwise INTPRO suspends itself and the
highest priority ready process takes over.



SAIL

SECTION 20
LEAP RUNTIMES

We will follow the same conventions for
describing Leap execution time routines as
were used in describing the runtimes of the
Algol section of Sail (see page 33).

20.1 Types and Type Conversion

TYPEIT

CODE « TYPEIT (ITM);

The type of the datum linked to an item is
called the type of an item. An item without a
datum is called untyped. TYPEIT is an integer
function which returns an integer CODE for the
type of the item expression ITM that is its
argument. The codes are:

O - item deleted or never aliocated
1 - untyped

2 - Bracketed Triple item
3 - string

4 - resl

5 - integer

6 - set

7 - list

8 ~ procedure item

O - process item

10 - event item

11 - context item

12 - reference item

13 - record pointer

14 - label

15 - record class

23 - string array

24 - real array

25 - integer array

26 - set array

27 - list array

31 - context array

33 - record pointer array
37 - error (the runtime screwsd up)

The user is encouraged to use TYPEIT. It
requires the execution of only & few machine
instructions and can save considerable
debugging time.

LEAP RUNTIMES

CVSET

SET « CVSET (LIST)

CVSET returns a set given a list expression by
removing duplicate occurrences of items in the
list, and reordering the items into the order of
their internal integer representations.

CvLIsT

LIST « CVLIST (SET)

CVLIST returns a list given a set expression. It
executes no machine instructions, but merely
lets you get around Sail type checking at
compile time.

CVN and CVI

INTEGR « CVN (ITM);
ITM « CVI (INTEGR)

CVN returns the integer that is the internal
representation of the item that is the the value
of the item expression ITM. CVI returns the
item that .is represented by the integer
expression INTEGR that is its argument. Legal
item numbers are between (inclusively) 1 and
4095, but you'll get in trouble if you CVI when
no item has been created with that integer as
its representation.  Absolutely no error
checking is done. CVI is for daring men. See
about item implementation, page 86, for more
information about the internal representations
of items.

MKEVTT

MKEVTT (ITEM)

MKEVTT will convert its item argument to an
event type item. The old datum will be
overwritten. The type of the item will now be
"event type". Any item except an event type
item may be converted to an event type item
by MKEVTT.

123



LEAP RUNTIMES

20.2 Make and Erase Breakpoints

BRKERS, BRKMAK, BRKOFF =

BRKMAK (BREAKPT_PROC);
BRKERS (BREAKPT_PROC);
BRKOFF

In order to give the programmer some idea of
what is going on in the associative store, there
is a provision to interrupt each MAKE and
ERASE operation, and enter a breakpoint
procedure. The user can then do whatever he
wants with the three items of the association
being created or destroyed. ERASE Foo & ANY
= ANY will cause the breakpoint procedure to
be activated once for each association that
matches the pattern. MAKE itl ¢ it2 =[it3 ¢ it4
= itb] will cause the breakpoint procedure to be
activated twice.

The user’s breakpoint procedures must have
the form:

PROCEDURE Breakpt_proc (ITEMVAR a,0,v ) -

If the association being made or erased is
AeQOsV, then directly before doing the Make or
Erase, Breakpt_proc is called with the items A,
O, and V for the formals a, 0, and v.

To make the procedure Breakpt_proc into a
breakpoint procedure for MAKE, cali BRKMAK
with Breakpt_proc as a parameter. To make
the procedure Breakpt_proc into a breakpoint
procedure for ERASE, call BRKERS with
Breakpt_proc as its parameter. To turn off
both breakpoint procedures, call BRKOFF with
no parameters. '

NOTE: BRKMAK, BRKERS and BRKOFF are not
predeclared. The user must include the
declarations:

EXTERNAL PROCEDURE BRKERS (PROCEDURE BP);
EXTERNAL PROCEDURE BRKMAK (PROCEDURE BP);
EXTERNAL PROCEDURE BRKOFF

124

SAIL

20.3 Pname Runtimes

Cvis

"PNAME" « CVIS (ITEM, @FLAG)

The print name of ITEM is returned as a string.
ltems have print names only if one includes a
REQUIRE n PNAMES statement in his program,
where n is an estimate of the number of
pnames the program will use. An ltem’s print
name is the identifier used to declare it, or that
pname explicitly given it by the NEW_PNAME
function (see below). FLAG is set to False (0) if
the appropriate string is found. Otherwise it is

“set to TRUE (-1), and one should not put great

faith in the string resuit.

Cvsli
ITEM « CVSI ("PNAME", @FLAG)

The ltem whose pname is the same as the string
argument PNAME is returned and FLAG is set to
FALSE if such an ITEM exists. Otherwise,
something very random is returned, and FLAG is
set to TRUE.

DEL_PNAME

DEL_PNAME (ITEM)

This function deletes any string PNAME
associates with this ITEM.

NEW_PNAME
NEW_PNAME (ITEM, "STRING")

This function assigns to the Item the name
"STRING". Dont perform this twice for the
same Iltem without first deleting the previous
one. The corresponding name or ltem may be
retrieved using CVIS or CVSI (see above). The
NULL string is prohibited as the second
argument.



SAIL

20.4 Other Useful Runtimes

LISTX
VALUE « LISTX (LIST, ITEM, N)

The value of this integer function is O if the
ITEM (an item expression) does not occur in the
list at least N (an integer expression) different
times in the LIST (a list expression). Otherwise
LISTX is the index of the Nth occurrence of
ITEM in LIST. For example,

LISTX ({{Foo, Baz, Garp, Baz}}, Baz, 2) is 4.

FIRST, SECOND, THIRD e

ITEM « FIRST (BRAC_TRIP_ITEM)
ITEM « SECOND (BRAC_TRIP_ITEM);
ITEM « THIRD (BRAC_TRIP_ITEM)

The ltem which is the FIRST, SECOND, or THIRD
element of the association connected to a
bracketed triple item (BRAC_TRIP_ITEM) is
returned. If the item expression
BRAC_TRIP_ITEM does not evaluate to a
bracketed triple, an error messages issues
forth. .

ISTRIPLE

RSLT « ISTRIPLE (ITM)

If ITM is a bracketed triple item then ISTRIPLE
returns TRUE; otherwise it returns FALSE.
ISTRIPLE (ITM) is equivalent to (TYPEIT (ITM) =
2)0

LOP

ITEM « LOP (@SETVARIABLE);
ITEM « LOP (®LISTVARIABLE)

LOP will remove the first item of a set or list
from the set or list, and return that item as its
value. Note that the argument must be a
variable because the contents of the set or list
is changed. If one LOPs an empty set or a null
list, an error message will be issued.

LEAP RUNTIMES

coP

ITEM « COP (SETEXPR);
ITEM « COP (LISTEXPR)

COP will return the first item of the set or list
just as LOP (above) will. However, it will NOT
remove that item from the set or list. Since the
set or list will be unchanged, COP’s argument
may be a set or list expression. As with LOP,
an error message will be returned if one COPs
an empty set or a null list. :

LENGTH

VALUE « LENGTH (SETEXPR);
VALUE « LENGTH (LISTEXPR)

LENGTH will return the number of items in that
set or list that is its argument. LENGTH (S) = 0
is a much faster test for the null set orlist
that S = PHi or S = NIL.

SAMEIV
VALUE « SAMEIV (ITMVARI1, ITMVAR2)

SAMEIV is useful in Matching Procedures to
solve a particular problem that.arises when a
Matching Procedure has at least two ? itemvar
arguments. An example will demonstrate the
problem: '

FOREACH X | Matchingproc ( X, X ) DO ..;
FOREACH X, Y | Matchingproc ( X, Y ) DO ... ;

Clearly, the matching procedure with both -
arguments the same may want to do something

“different from the matching procedure with two

different Foreach itemvars as its arguments.
However, there is no way inside the body of
the matching procedure to differentiate the two
cases since in both cases both itemvar formals
have the value BINDIT. SAMEIV will return True
only in the first case, namely 1) both of its
arguments are ? itemvar formals to a matching
procedure, 2) both had the same Foreach
itemvar passed by reference to them. It will
return False under all other conditions,
including the case where the Foreach itemvar is
bound at the time of the call (so it is not passed
by reference, but its item value is passed by
value to both formals).

125



LEAP RUNTIMES

205 Runtimes for User Cause and
Interrogate Procedures

SETCP AND SETIP

SETCP (ETYPE, PROC_NAME);

SETCP (ETYPE, DATUM (PROC_ITEM))
SETIP (ETYPE, PROC_NAME);

SETIP (ETYPE, DATUM (PROC_ITEM))

SETCP and SETIP associate with the event type
specified by the item expression ETYPE a
procedure specified by its name or the datum
of a procedure item expression,

After the SETCP, whenever a Cause statement
of the specified event type is executed, the
procedure specified by PROC_NAME or
PROC_ITEM is called. The procedure must
have three formal parameters corresponding to
the event type, event notice, and options words
of the CAUSE statement. For example,

PROCEDURE CAUSEIT (ITEMVAR ETYP, ENOT;
INTEGER OP)

After SETIP, whenever an Interrogate statement
of the specified event type is executed, the
procedure specified by PROC_NAME or
PROC_ITEM is called. The procedure must have
two formal parameters corresponding to the
event type and options words of the
Interrogate statement and return an item. For
example,

ITEM PROCEDURE ASK_IT (ITEMVAR ETYP;
INTEGER OP)

it is an error if a Cause or Interrogate
statement tries to call a procedure whose
environment (static - as determined by position
of its declaration, and dynamic - as determined
by the execution of the SETCP or SETIP) has
been exited.

. See page 112 and page 113 for more

information on the use of SETCP and SETIP,
respectively. :

126

SAIL

CAUSEL1

ITMVAR « CAUSE! (ETYPE, ENOT, OPTIONS);
ITMVAR « CAUSE1 (ETYPE, ENOT);
ITMVAR « CAUSEL (ETYPE)

CAUSE1 is essentially the procedure executed
for CAUSE statements if no SETCP has been
done for the event type ETYPE. See the
description of the Sail defined Cause statement,
page 112, for further elucidation.

ASKNTC

ITMVR « ASKNTC (ETYPE ,OPTIONS);
ITMVR « ASKNTC (ETYPE)

ASKNTC is the procedure executed for
INTERROGATE statements if no SETIP has been
done for the event type ETYPE. See the
description of the Sail defined Interrogate
statement, page 113, for further elucidation.

ANSWER
BITS « ANSWER (ETYPE, ENOT, PROC_ITEM)

ANSWER will attempt to wake up from an
interrogate wait the process specified by the
item expression PROC_ITEM. If the process is
not in a suspended state, Answer will return an
integer with the bit 400000 in the right half
(NOJOY in cSUAIoSYS:PROCES.DEF) turned on.
If the process is suspended, it will be made
ready, and removed from any wait queues it
may be on. The bits corresponding to the
options word of the interrogate statement that
put it in a wait state will be returned.
Furthermore, if the SAY_WHICH bit was on, the
appropriate association, namely EVENT_TYPE @
ENOT s ETYPE, will be made. See page 112 for
more information on the use of ANSWER.

DFCPKT

AOBJUN_PTR « DFCPKT (@BLOCK, EVTYP,
EVNOT, OPTS)

This routine is a convenience for causing an
event as a deferred interrupt. If BLOCK is non-



SAIL

zero then it should be an array with at least
elements; if BLOCK is zero then a five-word
block is allocated. DFCPKT constructs a call for
CAUSE (EVTYP, EVNOT, OPTS) in this block and
returns an AOBJN pointer to it.

'LEAP RUNTIMES

127



BASIC CONSTRUCTS

SECTION 21
BASIC CONSTRUCTS

21.1 Syntax

<variable>

u= <identifier>

u= <identifier> [ <subscript_list> ]

u= DATUM ( <typed_item_expression> )

1= DATUM ( <typed_item_expression> ) [
<subscript_list> ]

1= PROPS ( <item_expression> )

u= <context_element>

um= <record_class> : <field> [
<record_pointer_expression> ]

<typed_item_expression>

u= <typed_itemvar>

u= <typed_item>

u= <typed_itemvar_procedure>

u= <typed_item_procedure>

um= <typed_itemvar_array>
[ <subscript_list> ]

u= <typed_item_array>
[ <subscript_list> ]

u= <itemvar> « <typed_item_expression>

u= |F <boolean_expression> THEN
<typed_item_expression> ELSE
<typed_item_expression>’

u= CASE <algebraic_expression> OF (
<typed_item_expression_list> )

<typed_item_expression_list>
u= <typed_item_expression>
u= <typed_item_expression_list> ,’
<type_item_expression>

<subscript_list>
u= <algebraic_expression>
u= <subscript_list> ,
<algebraic_expression>

128

SAIL

21.2 Semantics

VARIABLES

If a variable is simply an identifier, it
represents a single value of the type given in
its declaration. .

If it is an identifier qualified by a subscript list
it represents an element from the array bearing
the name of the identifier. However, an
identifier qualified by a subscript list containing
only a single subscript may be either an
element from a one dimensional array, or an
element of a list, Note that the token "oo" may
be used in the subscript expression of a list to
stand for the length of the list, e.g. LISTVAR[co-
2])«LISTVAR[c0-1].

The array should contain as many dimensions as
there are elements in the subscript fist. . A[l]
represents the I+1th element of the vector A (if
the vector has a lower bound of 0). B[l, J] is
the element from the I+1th row and J+ith
column of the two-dimensional array B. To
explain the indexing scheme precisely, all
arrays behave as if each dimension had its
origin at 0, with (integral) indices extending
infinitely far in either direction. However, only
the part of an array between (and including)

‘the lower and upper bounds given in the

declaration are available for use (and in fact,
these are the only parts allocated). If the array
is not declared SAFE, each subscript is tested
against the bounds for its dimension. If it is
outside its range, a fatal message is printed
identifying the array and subscript position at
fault. SAFE arrays are not bounds-checked.
Users must take the consequences of the
journeys of errant subscripts for SAFE arrays.
The bounds checking causes at least three
extra machine instructions (two of which are
always executed for valid subscripts) to .be
added for each subscript in each array
reference. The algebraic expressions for lower
and upper bounds in array declarations, and for
subscripts in subscripted .variables, are always
converted to Integer values (see page 23)
before use.

For more information about the implementation
of Sail arrays, see page 157,

DATUMS

DATUM (X) where X is a typed item expression,
will act exactly like a variable with the type of
the item expression. The programmer s



SAIL

- responsible for seeing that the type of the item
is that which the DATUM construct thinks it is.
For example, the Datum of a Real ltemvar will
always interpret the contents of the Datum
location as a floating point number even if the
program has assigned a string item to the Real
ltemvar,

PROPS

The PROPS of an item will always act as an
integer variable. Any algebraic value assigned
to a props will be coerced to an integer (see
about type conversions, page 23) then the low
order 12 bits will be stored in the props of the
item. Thus, the value returned from a props
will always be a non-negative integer less than
*7777 (4095 in decimal).

RECORD FIELDS

A field in a record is also a variable. The
variable is allocated and deallocated with the
other fields of the same record as the result of
calls to NEW_RECORD and the record garbage
collector. For more information see page 65.

IDENTIFIERS

You will notice that no syntax was included for
the non-terminal symbols <identifier> or
<constant>. It is far easier to explain these
constructs in an informal manner,

A Sail letter is any of the upper or lower case
letters A through Z, or the underline character
(_ or !, they are treated equivalently). Lower
case letters are mapped into the corresponding
upper case letters for purposes of symbol table
comparisons (SCHLUFF is the same symbol as
Schluff). A digit is any of the characters 0
through 9.

An identifier is a string of characters consisting
of a letter followed by virtually any number of
letters and digits There must be a character
which is neither a letter nor a digit (nor either
of the characters "." or "§") both before.and
after every identifier. In other words, if YOU
can't determine where one identifier ends and
another begins in a program you have never
seen before, well, neither can Sail.

There is a set of identifiers which are used as
Sail delimiters (in the Algol sense -- that is,
BEGIN is treated by Algol as if it were a single
character; such an approach is not practical, so
a reserved identifier is used). These identifiers
are called Reserved Words and may not be

BASIC CONSTRUCTS

used for any purpose other than those given
explicitly in the syntax, or in declarations
(DEFINES) which mask their reserved-word
status over the scope of the declarations. E.g.,
“INTEGER BEGIN" is allowed, but a Synonym (see
page 10) should have been provided for BEGIN
if any new blocks are desired within this one,
because BEGIN is ONLY an Integer in this block.
Another set of identifiers have preset
declarations -- these are the execution time
functions. These latter identifiers may also be
redefined by the user; they behave as if they
were declared in a block surrounding the outer
block. A list of reserved words and
predeclared identifiers may be found in the
appendices. It should be noted that due to the
stupidity of the parser, it is impossible to
declare certain reserved words to be
identifiers. For example, INTEGER REAL; will
give one the syntax error "Bogus token in
declaration".

Some of the reserved words are equivalent to
certain special characters (e.g. "|" for "SUCH
THAT"). A table of these equivalences may be
found in the appendices.

ARITHMETIC CONSTANTS

12368 Integer with decimal value 12369
*12357  Integer with octal value 12357

123. Real with floating point value 123.0
01230  Real with floating point value 123.0
524 Real with floating point value 0.524

5302 Real with floating point value 530.0
5.3426-3 Real with floating point value 0.005342

The character * (right quote) precedes a string
of digits to be converted into an OCTAL
number,

If a.or a@appears in a numeric constant, the
type of the constant is returned as Real (even
if it has an integral value). Otherwise it is an
integer. Type conversions are made at compile
time to make the type of a constant
commensurate with that required by a given
operation. Expressions involving only constants
are evaluated by the compiler and the resultant
values are substituted for the expressions.

The reserved word TRUE is equivalent to the

Integer (Boolean) constant -1; FALSE is
equivalent to the constant 0.

129



BASIC CONSTRUCTS

STRING CONSTANTS

A String constant is a string of ASCIl characters
(any which you can get into a text file)
delimited at each end by the character ". If the
" character is desired in the string, insert two "
characters (after the initial delimiting "
character, of course).

A String constant behaves like any other
(algebraic) primary. It is originally of type
String, but may be converted to Integer by
extracting the first character if necessary (see
page 23).

The reserved word NULL represents a String
constant containing no characters (length=0).

Examples: The left hand column in the table that
follows gives the required input

INPUT RESULT LENGTH
"R STRING" R STRING 8
"WHAT?S ""DOK"" MEAN?" WHAT’S "DOK" MEAN? 18
"'vQ QUOTED STRING""" "R QUOTED STRING" 17
nw a
NULL 8
COMMENTS :

If the scanner detects the identifier COMMENT,
all characters up to and including the next
semicolon (;) will be ignored. A comment may
appear anywhere as long as the word
COMMENT is properly delimited (not in a String
constant, of course);

A string constant appearing just before a
statement also has the effect of a comment.

130

SAIL



SAIL

SECTION 22
USING SAIL

22.1 For TOPS-10 Beginners

If you simply want your Sail program compiled,
loaded, and executed, do the following:

1. Create a file called "XXXXXX.SAI"
with your program in i, where
"XXXXXX" may be any name you
wish, .

2. Get your job to monitor level and
type "EXECUTE XXXXXX".

3. The system program (variously
called SNAIL, COMPILE, RPG) which
handles requests like EXECUTE will
then start Sail. Sail will say "Sail:
XXXXXX". When Sail hits a page
boundary in your file, it will type
"1" or whatever the number of the
page that it is starting to read.

4.  When the compilation is complets
Sail swaps to the loader, which will
say "LOADING".

5. When the loading is complete the
loader will type "LOADER nP CORE"
where n is your core size. The
loader then says "EXECUTION"

6. When execution is complete Sail will
type “"End of Sail execution” and
exit.

At any time during 3 through 6 above, you
could get an error message from Sail of the
form "DRYROT: <cryptic text>", or from the
system, such as "ILL MEM REF", "ILLEGAL UUQ"
etc. followed by some core locations. These
are Sail bugs. You will have to see a Sail
hacker about them, or attempt to avoid them by
rewriting the offending part of your program,
or try again tomorrow.

If you misspell the name of your file then SNAIL
will complain "File not found: YYYYYY" where
"YYYYYY" is your misspelling. Otherwise, the
error messages you receive during 3 above wili

USING SAIL

be compilation errors (bad syntax, type
mismatch, begin-end  mismatch, unknown

| identifiers, etc.). See page 138 about these.

If you get through compilation (step 3) with no
error messages, the loading of "'your program
will rarely fail. If it somehow does, it will tell

you. See a Sail hacker about these.

if you also get through loading (step 4) with no
errors, you aren’t yet safe. Sail will give you
error messages during the execution of your
program if you exceed the bounds of an array,
refer to a field of a null record, etc. See
section 1 about these too.

If you never get an error message, and yet you
don’t get the results you thought you'd get,
then you've probably made some mistakes in
your programming. Use BAIL (or RAID or DDT)
and section 2 to aid in debugging. It is
quite rare for Sail to have compiled runable but
incorrect code from a correct program. The
only way to ascertain whether this is the case
is to isolate the section of your program that is-
causing Sail to generate the bad code, and then
patiently step through it instruction by
instruction using RAID or DDT, and check to see
that everything it does makes sense.

22.2 For TENEX Beginners

If . you simply want your Sail program compiled,
loaded, and executed, do the following.

1. Create a file called "XXXXXX.SAI"
with your program in it, where
XXXXXX may be any name you wish.

2. Type "Sail", followed by a carriage
return, to the TENEX EXEC.

3. The EXEC will load and start Sail.
Sail will say "Tenex Sail 8.1 8-5-76
", Type "XXXXXX<cr>" (your file
name). Sail will create a file
XXXXXX.REL, and will type the page
number of the source file as it
begins to compile each page.

4.  When Sail finishes it will type “End
of compilation.". Return to the EXEC
and type "LOADER<cr>". The loader
will type %", Type

131



USING SAIL

"SYS:LOWTSA,DSK:XXXXXXS", where
$ is the altmode key. This loads
your program into core.

5. When the LOADER exits, the program is
loaded. You may now either SAVE the program,
for later use, or run it with the EXEC START
command.

22.3 The Complete use of Sail
The general sequence of events in using Sail is:
1. Start Sail.

2. Compile one or more files into one
or more binary files, with possibly a
listing file generated.

3. Load the binary file(s) with the
appropriate upper segment or with
the Sail runtime library, and
possibly with RAID or DDT.

4. - Start the program, possibly under
the control of BAIL, RAID or DDT.

5. Let the program finish, or stop it to
use a debugger or to reallocate
storage with the REENTER command.

Starting Sail is automatic with the SNAIL
commands described below. Otherwm, "R SAIL"
will do.

22.4 Compiling Sail Programs

When started explicitly by monitor command,
Sail will type back an "s" at you and wait for
you to type in a <command line> It will do the
compilation specified by that command line, then
ask for another, etc. .

If you use SNAIL then follow the SNAIL

command with a list of <command line>s

separated by commas. The compilation of each
<command line> will be done before the next
<command line> is read and processed. The
SNAIL commands are:

132

SAIL

EXecute compile, load, start
TRY compile, load with BAIL, start
DEBug compile, load with BAIL,

start BAIL
LOAd compile, load
PREPare compils, load with BAIL
COMpile compile

See [MonCom] for more information about the
use of SNAIL and the switches available to it.

COMMAND LINE SYNTAX
TOPS=10 COMMAND LINE SYNTAX

<command_line>
u= <binary_name> <listing_name> «
<source_list>
u= <file_spec> @
u= <file_spec> !

<binary_name>
u= <file_spec>
u= <empty>

<listing_name>
, <file_spec>
um <empty>

<source_list>
u= <file_spec>
um <gource_list> , <file_spec>

<file_spec>
u= <file_name> <file_ext> <proj_prog>
u= <device_name> <file_spec> <switches>
u= <device_name> <switches>

<file_name>
u= <legal_sixbit_id>

<file_ext>
=, <legal_sixbit_id>
u= <empty>

<proj_prog>
um [ <legal_sixbit_id> ,
<legal_sixbit_id> ]
um <ampty>



SAIL

<device_name>
u= <legal_sixbit_id>

<switches>
um ( <unslashed_switch_list> )
u= <slashed_switch_list>
1= <empty>

<unsiashed_switch_list>
= <gwitch_spec>
um <unslashed_switch_list> <switch_spec>

<slashed_switch_list>
um= [ <switch_spec>
1= <sglashed_switch_list> / <switch_spec>

<switch_spec>
w= <valid_switch_name>
u= <signed_integer> <valid_switch_name>

<valid_switch_name>
um A
u= B
= C
um D
u=F
e M
e K
s L
. um P
um Q
u= R
um §
sV
um W
um X

TENEX SAIL COMMAND LINE SYNTAX

<command_line>
= <file_list> CR
um <file_list> , CR
um <file_list> «
= <file_list>, «
um « <file_list>
sm ?

<file_list>

USING SAIL

um <file> , <file_list>

<gubcommand>
u= CR
um <control-R>
u= <control-L>
um [ <switch>

= ?

<switch>
um <number> <switch>
u= <TOPS-10 switch>
u= G
um |

u= T

COMMAND LINE SEMANTICS

All this is by way of saying that Sail accepts
commands in essentially the same format
accepted by other processors written for the
operating system on which you are running.
The binary file name is the name of the output

device and file on which the ready to load

object program will be written. The listing file,
if included, will contain a copy of the source
files with a header at the top of each page and
an octal program counter entry at the head of
each line (see page 134). The listing file name
is often omitted (no listing created). The source
file list specifies & set of user-prepared files
which, when concatenated, form a valid Sail
program (one outer block).

If file_ext is omitted from the binary_name then
the extension for the output file will be .REL.
The default extension for the listing file is .LST.
Sail will first try to find source files under the
names given. If this fails, and the extension is
omitted, the same file with a .SAl extension will
be tried. '

If device_name is omitted then DSK: is
assumed. If proj_prog is omitted, the project-
programmer number for the job is assumed.

Switches are parameters which affect the
operation of the compiler. A list of switches
may appear after any file name on TOPS-10;
use subcommand mode on- TENEX. The
parameters specified are changed immediately
sfter the fils name associated with them is
processed. The meanings of the switches are
given below, :

133



USING SAIL

The binary, listing and (first) source file names
are processed before compilation -~ subsequent
source names (and thelr switches) are
processed whenever an end-of-file condition is
detected in the current source file. Source files
which appear after the one containing the outer
block’s END delimiter are not ignored,  but
should contain only comments.

Each new line in the command file (or entered
from the teletype) specifies a separate program
compilation. Any number of programs can be
compiled by the same Sail core image.

The file_spec@ command causes the compiler to
open the specified file as the command file.
Subsequent commands will come from this file.
If any of these commands is file_spec®, another
switch will occur.

| The file_spec ! command will cause the
specified file to be run as the next processor.
This program will be started in "RPG modse".
That is, it will look on the disk for its
commmands if its standard command file is there
-- otherwise, command control will revert to
the TTY. The default option for this file name
is .DMP. The default device is SYS.

TENEX Sail command syntax is much like the
syntax of the TENEX ODIRECTORY command.
Filenames are obtained from the terminal using
recognition; .SAl, .REL, and .LST are the default
extensions. Command lines ending in comma or
comma backarrow enter subcommand mode.
Command lines ending in backarrow cause
termination of command scanning and start
compilation; the program will be loaded with
DDT and DDT will be started. A file name
appearing before a backarrow is taken as a
source file; the .REL file will have the same
(first) filename. A command line beginning with
backarrow causes no .REL file to be generated.
In subcommand mode the characters control-R
and control-L allow complete specification of
the binary and listing file names, respectively.

SWITCHES

The following table
parameter switches. If the switch letter is
preceded in the table by the D character, a
decimal number is expected as an argument. O
is the default value. The character Q indicates
that an octal number is expected for this
switch. Otherwise the argument is ignored.

134

describes the Sail.

SAIL

ARG SWITCH FUNCTION
0 A

0

D

The octal number O specifies bits
which determine the code compiled in
certain cases.

1 use KIFIX for real to integer conversion
2 use FIXR
iotherwise use UUOFIX
4 use FLTR for integer to real conversion
iotherwise use UUOFLOAT

. 10 vse ADJSP whenevar possible

otherwise use SUB, or ADD with
PDLOV detection

20 vse FORTRAN-10 calling sequence for calling
Fortran Procedures; else old F40 style

The compiler is initialized with JOA;
the compiled code will run on a KA10
using F40 calling sequence for
Fortran Procedures.

The octal number O specifies bits
which determine how much
information is produced for BAIL.

1 Program counter to source/listing directory.

2 Include information on all symbols. If not
selected then do not include non-internal
local variables.

4 SIMPLE procedures get proc. descriptors.

10 Don't automatically load SYS:BAIL.REL.

20 Make the Sail predeclared runtimes
known by requiring SYS:BAIPDn.REL.

This switch turns on CREFfing. The
listing file (which must exist) will be
in a format suitable for processing by
CREF, the program which will
generate a cross-reference listing of
your Sail program from your listing
files. '

If the decimal number D is zero or
does not appear then double the
amount of space for the push down
stack used in expanding macros (see
page 57). If D is not zero then set
the stack size to D, Use this switch if
the compiler indicates to you that this
stack has overflowed. This shouldn’t
happen unless you nest DEFINE calls
extremely deeply.

0 is an octal number which specifies
exactly what kind of listing format is



SAIL

generated. O contains information
about 7 separate listing features,
each of which is assigned a bit in O.

1 List the program counter (ses / L switch ).
2 List with line numbers from the source text.
4 List the macro names before expansion.
10 Expand macro texts in the listing fils.
20 Surround each listed macro expansion
with < and > .
40 Suspend listing.
100 No banner at the top of each page.
[This is a way to "permanently" expand
macros. A /110F listing is (aimost)
suitable as s Sail source file.)

The compiler is initialized with /7f
(i.e.,, list program counter, line
numbers, and macro names).

(TENEX only) Load after compilation,
exiting to the monitor.

(Default on TENEX) This switch is
used to make your program sharable.
When loaded, the code and constants
will be placed in the second (write-
protected) segment, while data areas
will be allocated in the lower, non-
shared segment. Programs compiled

~ with /H request SYS:HLBSAn as a

library (<SAIL>HLBSAn on TENEX).
The sharable library HLBSAn s
identical to LIBSAn, except that it
expects to run mostly in the upper
(shared) segment. Recall that n is the
current version number. At SUAI, use
the monitor command SETUWP to
write protect the upper segment.
Then SSAVE the core image.

(TENEX only) Do not compile two-
segment code.

The counter mechanism of Sail is
activated, enabling orie to determine
the frequency of execution of each
statement in your Sail program. See
Appendix F, the Statement Counter
System. This switch is ignored unless
a listing is specified with a /LIST.

In compiling a Sail program, an
interna! variable called PCNT (for

" program countsr) is incremented (by

D

USING SAIL

one) for each word of code
generated. This value, initially O,
represents the address of a word of
code in the running program, relative
to the load point for this program.
The current octal value of PCNT plus
the value of another internal variable
called LSTOFFSET, is printed at the
beginning of each output line in a
listing file. For the first program
compiled by a given Sail core image,
LSTOFFSET is initially 0. If the L
switch occurs in the command and the
value O is non-negative, O replaces
the current value of LSTOFFSET. If O
is -1, the current size of DDT is put
into LSTOFFSET. If O is -2, the
current size of RAID is used. In "RPG
mode" the final value of PCNT is
added to LSTOFFSET after each
compilation. Thus by deleting all .REL
files produced by Sail, and by
compiling all Sail programs which are
to be loaded together with one RPG
command which includes the L switch,
you can obtain listing files such that
sach of these octal numbers
represents the actual starting core
address of the code produced by the
line it precedes. At the time of this
writing, SNAIL would not accept minus
signs in switches to be sent to
processors. Keep trying..

Set the size of the system pushdown
list to D (decimal). If D is zero or
does not appear then double the
(current) size of the list. Thus
/3BP/P will first set the stack size to
35, then double it to 70. It has never
been known to overflow.

Set the size of the string pushdown
list to D (decimal). If D is zero or
does not appear then double the size
of the list. No trouble has been
encountered here, either,

Set the size of the compiler’s parsing
and semantic stacks to D (decimal). If
D is zero or does not appear then
double the size of the stacks. A long
conditional statement of the form (IF
.. THEN .. ELSE IF .. THEN

ELSE IF ) has been known to

135



USING SAIL

136

cause . these stacks to overflow their
normally allocated sizes.

The size of String space is Set to D
words. String space usage is a
function of the number of identifiers,
especially macros, declared by the
user. In the rare case of String
space exhaustion, 5000 is a good first
number to try.

(TENEX only) Load with DDT, exit to
DOT.

Always put loader link blocks and the
characters for constant strings into
the low segment, even if [H is
selected. This is intended for use in
overlay systems where code is
overlaid but data is not.

Generate additional suppressed DDT
symbols. These symbols are
designed to serve as comments to a
programmer Or processor rummaging
though the generated code. Symbols
generated by this switch all begin
with a percent sign (%), and many

" come in pairs. A X8 symbol paints to

7Z$ADCN
Z8LIT
78RLIT
78SCOD
7Z8STRC
7Z8VARS
7ZALSTO
78ARRY
7.8FORE
7$SUCC

the first word of an area and a %
symbol points to the first word
beyond the area. Thus the length of
an area is the difference of its %. and
%8 symbols. The symbols are:

7.ADCN address constants

2.LT literals

7Z.RLIT reference literals
72.5C0D START(or QUICK)_CODE
78STRC string variables

7.VARS simple variables

start to clear registers

first data word of a fixed array
FOREACH satisfier block
SUCCEED/FAIL return block

/W tends to increase the number of
DDT symbols by a factor of 2 or 3.

SAIL

X Enable compiler save/continue (page
159).

Here is an example of a compile string which a
user who just has to try every bell and
whistle available to him might type to compile
a file named NULL:

COMPILE /LIST /SAIL NULL(RR-2L5000S)

The  switch  information contained in
parentheses will be sent unchanged to Sail.
Note the convention which allows one set
of parentheses enclosing a myriad of switches
to replace a "/" character inserted before each
one. This string tells the compiler to compile
NULL using parse and semantic stacks four
times larger than usual (RR). A listing file is
to be made which assumes that RAID will be
loaded and NULL will be loaded right after
RAID (-2L). His program is big enough to
need 5000 words of String space (50009).
The statement REQUIRE “chars"
COMPILER_SWITCHES; can be used to change
the settings of the compiler switches. “chars"
must be a string constant which is a legitimate
switch string, containing none of the characters
u(/)n; e.g-,

REQUIRE "20F" COMPILER_SWITCHES;

The string of characters is merely passed to
the switch processor, and it may be possible to
cause all sorts of problems depending on the
switches you try to modify. Switches A, B, and
F are the only ones usually modified. The
switches which set stack sizes (D, P, Q, R) or
string space (S) should be avoided. Switches
which control the format of files (B, F) should
only be used if you have such a file open.

225 Loading Sail Programs

Load the main program, any separately
compiled procedure files (see page 12), any
assembly language (see page 13) or Fortran
procedures, and DDT or RAID if desired. This is
all automatic if you use the LOAD or DEBUG or
EXECUTE system commands (see [MonCom]).
Any of the Sail execution time routines
requested by your program will be searched
out and loaded automatically from
SYS:LIBSAN.REL (<SAIL>LIBSAn on TENEX). If



SAIL

the shared segment is available and desired,
type SYS:SAILOW (SYS:LOWTSA for TENEX) as
as your very first LOADER command (before /D
even). SUAI people can abbreviate SYS:SAILOW
as /Y. All this is done automatically by SNAIL at
SUAL Other loaders (e.g., LINK10) can also be
used.

22.6° Starting Sail Programs

For most applications, Sail programs can by
started using the START, RUN, EXECUTE, or TRY
system commands, or by using the §G command
of DDT (RAID). The Sail storage areas will be
initialized. This means that all knowledge of 1/0
activity, associative data structures, strings, etc.
from any previous activation of the program
will be lost. All strings (except constants) will
be cleared to NULL. All compiled-in arrays will
not be reinitialized (PRELOADed arrays are
preloaded at compile time - OWN arrays are
never initialized). Then execution will begin
with the first statement in the outer block of
. your main program. As each block is entered,
its arrays will be cleared as they are allocated.
Variables are not cleared. The program will
exit when it leaves this outer block.

STARTING THE PROGRAM IN "RPG" MODE

Sail programs may be started at one of two
consecutive locations: at the address contained
in the cell JOBSA in the job data area, or at the
address just following that one. The global
variable RPGSW is set to O in the former case,
~1 in the latter. Aside from this, there is no
difference between the two methods. This cell
may be examined by declaring RPGSW as an
EXTERNAL INTEGER.

22.7 Storage Reallocation with REEnter

The compiler dynamically allocates working
storage for its push down lists, symbol tables,
string spaces, etc. It normally runs with a
standard allocation adequate for most programs.
Switch settings given above may be used to
change these allocations. |If desired, these
sllocations may also be changed by typing 1C,
followed by REE (reenter). The compiler will
ask you if you want to allocate. Type Y to
allocate, N to use the standard allocation, and
any other character to use the standard

USING SAIL

allocations and print out what they are. All
entries will be prompted. Numbers should be
decimal. Typing alt-mode instead of CR will
cause standard allocation to be used for the
remaining values. The compiler will then start,
awaiting command input from the teletype.

For SUAI "Global Model" users, the REE
command will also delete any REQUIREd or
previously typed segment name information.

The initialization sequence will then ask for new
names.

137



DEBUGGING SAIL PROGRAMS

SECTION 23
DEBUGGING SAIL PROGRAMS

23.1 Error Messages

If the compiler detects a syntax or semantic
error while compiling a program it will provide

the user with the following information:

1)

2)

3)

Respond to the prompt in any of the following

ways:

The. error message. These are
English phrases or sentences which
attempt to diagnose the problem. If
a message is vague it is because no

_specific test for the error has been

made and a catchall routine detected
it. If the message begins with the
word "DRYROT" it means that there
is a bug in the compiler which some
strangeness in your program was
able to tickle. See a system
programmer about this.

The current input line. Page and
line number, along with the text of
the line being scanned, are typed.
A line feed will occur at the point in
the line just following the last
program element scanned. The
absence of a position indicator
means that a macro (DEFINE) body is
being expanded.

A question mark (?) or arrow (7).

<cr> Try to continue compilation. A

<|f>

138

message will be printed and the
sequence reentered if recovery is
impossible (if a "?" was typed
instead of an arrow).

Try to continue the compilation, but
don’t stop for user response after
future errors. le., automatic
continuation. Messages will fly by

(at an unreadable rate on DPYs)

until the compilation is complete or
an error occurs from which no
recovery is possible. In the latter
case the question sequence s
reentered.

SAIL

A same as <lf>

B  Enter BAIL if it is ioaded.
Cc same as <cr>

D  Enter DDT or RAID if one is loaded.
Otherwise, type "No DDT" and re-
question. Do not type D if you
really mean B,

E Edit. This command rmust be
followed by a carriage return, or a
space, a filename (in standard
format, assumes DSK) and a carriage
return. i the filename is missing,
the SOS editor (see [Savitzky]) is
started, given instructions to edit
the current source file and to move
the editing pointer to the current
page and line number. If a file name
is present, that file is edited starting
at the beginning. This feature is
available outside SUAI only if the
S0S editor is available, and is
modified to read a standard CCL file
for its input. If you change your
mind and do not wish to edit, typing
an altmode will get you back to the
question loop.

S  Restart. Sometimes useful if you
are debugging the compiler (or if
you were compiling the wrong file).
The program is restarted, accepting
compilation commands from the TTY.

T TV edit. Same as E except that E is
used at SUAI, TVEDIT at IMSSS and
SUMEX.

X Exit. All files are closed in their
current state. The program exits to
the system.

Any other character will cause the error
routines to spew forth a summary of this table
and re-enter the question sequence.

ERROR MODES

| For errors which occur during compilation, the

above procedure can be modified slightly by
setting various modes. One sets a mode by
including the appropriate letter before the
response. Any of the four modes may be reset
by including a minus sign (-) before them. E.g.



SAIL

"-Q". Error modes can also be set with REQUIRE
<string_const> ERROR_MODES. When the
compiler sees this it reads through the string
constant and sets the modes as it sees their
letters. These modes remain in effect until the
end of the compilation or until reset with a
response to an error message, or another
require error_modes.

The available modes are:

K KEEP type-ahead.  The error
handier flushes all typeahead except
a LF (linefeed). If KEEP mode is
ever implemented then the input
buffer will not be flushed.

L LOGGING. The first and second
items of the error message will be
sent to a file named <prognam>.LOG
where <prognam> is the name of the
file of the main program. If you
would rather have another name,
use F<file specification>, where
<file specification> must be a legal
file name and PPN. The default
extension is .LOG and the default
PPN is that of the job. The .LOG file
(or whatever it’s called) is closed
when one’s program finishes
compilation, or the compilation is
terminated with the S, X, E, or T
responses.

N NUMBERS. This mode causes the
message "Called from xxxx Last
SAIL call at yyyy" to be typed
before the question mark or arrow.
Useful to compiler debuggers and
hand coders.

Q QUIET. If the error is continuable,
none of the above will be typed.
However, you will always be notified
of a non-continuable error.

Note that setting a mode does nothing but set a
mode; it does not cause continuation.

STOPPING RUNAWAY COMPILATIONS '
Typing [ESC] | at SUAI or control-H .on TENEX
will immediately cause the Q and A modes to be
resei so that the next error will (a) be typed,
and (b) wait for a response rather than
continuing automatically.

DEBUGGING SAIL PROGRAMS

EXECUTION TIME ERROR MESSAGES

Error messages have nearly the same format as
those from the compiler (page 138). They
indicate that

1) an array subscript has overflowed;
2) a case index is out of range;

3) a stack has overflowed while
allocating space for a recursive
procedure; or

4) one of the execution time routines
has detected an error.

In Numbers mode, the "Called from" address
identifies, in the first 3 cases, the location in
the user program where the error occurred ;
the "Last SAIL call at"  address gives the
location of the faulty call on the Sail routine for
type 4 messages.

All the replies to error messages described in
page 138 are valid. If no file name is typed
with the "E" or "T" option, the editor re-opens
the last file mentioned in the EDIT system
command.

The function USERERR may be used to activate
the Sail error message mechanism. Facilities
are provided for changing the mode. See page
49 for details.

USER ERROR PROCEDURES

A user error procedure is a user procedure
that is run before or instead of the Sail error
handler every time an error occurs at
runtime. This includes all array errors, 10
errors, Leapish errors and all USERERRs. It
does not include system errors, such as lli Mem
Ref or Il UUO.

The procedure one uses for a wuser error
procedure must be of the following type:

SIMPLE INTEGER PROCEDURE proc
(INTEGER loc; STRING msg, rsp);

Only the names proc, loc, msg, and rsp may
vary from the example above, except that
one may declare the procedure INTERNAL if
one wishes to use it across files.

Whenever the external integer _ERRP_ is
loaded with LOCATION (proc), the error handier

139



DEBUGGING SAIL PROGRAMS

will call proc before it does anything else. It
will set loc to the core location of the call to
the error handler. Msg will be the message
that it would have printed. Rsp will be non-
NULL only if the error was from a USERERR
which had response string argument. Proc can
do anything that a simple procedure can do.
When it exits, it should return an integer
which tells the error handler if it should do
anything more. If the integer is 0, the error
handler will (1) print the message, (2) print
the location, and (3) query the tty and dispatch
on the response character (i.e., ask for a <cr>,
<|f>, etc.). If the right half of the integer is
non-zero, it is taken as the ascii for a character
to dispatch upon. The left half may have two
bits to control printing. If bit 17 in the integer
is on, message printing is inhibited. If bit 16 is
on, then the location printing is inhibited. For
example, "X"+(1 LSH 18) will cause the location
to be printed and the program exited. "C"+(3
LSH 18) will cause the error handler to continue
without printing anything.

Note that simple procedures can not do a
non-local GOTO. However, the effect of a
non-local GOTO can be achieved in a user
error procedure by loading the external integer
_ERRJ_ with the LOCATION of a label. The label
should be a on a call to a non-simple procedure
which does the desired GOTO. The error
handler . clears _ERRJ_ before calling the
procedure in _ERRP_. If _ERRJ_ is non-zero
when the user procedure returns, and
continuing was specified, then the error
handler’s exit consists of a simple transfer to
that location. Note that for this simple transfer
to work properly, the place where the error
occurred (or the call to USERERR) must be in
Jthe same static (lexical) scope as the label
whose LOCATION is in _ERRJ_, If this is really
important to you, see a Sail hacker. :

WARNING! Handling errors from strange places
like the string garbage collector and the core
management routines will get you into deep
trouble.

140

SAIL

23.2 Debugging

Sail has a high-level debugger called BAIL; see
the description beginning in  the next
subsection. This subsection gives necessary
information for those who wish to use DDT or
RAID. The code output for Sail programs is
designed to be fairly easy to understand when
examined using the DDT debugging language or
SUAPs display oriented RAID program. A
knowledge of the debugger you have chosen is
required before this section will be
comprehensible.

SYMBOLS

Only those symbols which have been declared
INTERNAL (see page 12) and those declared in
the currently open "program” are available at a
given time. The name of a Sail program as far
as DDT or RAID (henceforth DDRAID) is
concerned is the name of the outer block of
that program. If no name is given for this
block, the name M. will be the default.

Only the first six non-blank characters of a
block name or identifier will be used in forming
a DDRAID symbol. If two identifiers in the same
block have the same first six characters the
program using them will not get confused, but
the user might when trying to locate these
identifiers,

BLOCKS

All block names and identifiers wused as
variables, procedures or labels in a given (main
or separate procedure) program are available
for typeout when that program is "open"
(NAMES: has been typed). To refer to a symbol,
type BLOCK_NAME&SYMBOL/ (substitute ; for /
in RAID). The block name may be omitted if you
have "opened" the block with BLOCK_NAMES&.
The syrabol table is block-structured only to
the extent that block names have appeared in
the source program. For instance, in the
program

BEGIN "NAME1"
INTEGER |, J;

BEGIN
INTEGER I, K;

END;
END "NAME 1"



SAIL

the symbols J, K, and both symbois | are
considered by DDRAID to belong in the same
block. Therefore confusion can result. with
respect to I. This approach was taken to avoid
the necessity of generating meaningless block
names for DDRAID when none were given in the
source program. A compound statement will be
considered by DDRAID to be a block if it has a
name.

SAIL GENERATED SYMBOLS

Some extra symbols are generated by Sail and
will show up when you are using DDRAID. They
are:

ACS  The accumulators P (system push
down list pointer), and SP (string
push down pointer) are given
symbolic names. Currently P='17,
SP="16.

oPS The op codes for the UUQs FIX,
FLOAT, and ARERR (subscript
overflow UUQ) are included to
make these easy to detect in the
code.

ARRAYS For each array declared in the
outer block (built-in arrays), the
fixed address of its first element
is given a symbolic name. This
name is constructed from the
characters of the array name (up
to the first 5) followed by a
period. For instance, the first
element of array CHT is CHT,; the
first element of PDQARR is
PDQAR; The last semicolon was
really a period. This dotted
symbol points to the second word
of the first descriptor for String
Arrays (see page 158, page
157).

STRINGS For each string declared in the
outer block (built-in strings), the
- second word of the two word
string descriptor is given the
name of the string variable,
truncated to six letters. The first
word of the string descriptor is
given a name consisting of the
first five letters of the string’s
name followed by a period. For
example, if you declare a string
INSTRING, then the two word
descriptor:

DEBUGGING SAIL PROGRAMS

INSTR. :  <first word>
INSTRI : <second word>

More about string descrnptors on
page 158.

BLOCKS The first word of the first
executable statement of every
block or compound statement
which has been given a name is
given a label created in the same
way as those for arrays above.
This label cannot be gone to in
the source program. It causes no
program inefficiency. This label
points at the first word of the
compound tail -- not the first
word of code generated for the
block (skips any procedure or
array declaration code).

START The first word of code generated
for any given program is given

the name "S.".
PROCEDURES The word at
entry address -1 of an

INTERNAL procedure contains the
address of the procedure
descriptor. (This enables APPLY
of an EXTERNAL procedure to
work.) The first word of the
procedure descriptor is given a
name consisting of the first 5
characters of the procedure
name, followed by a dollar sign

(8.

WARNINGS

Since only the first 6 characters of an identifier
are available, it is wise to declare symbols
which will be examined by DDRAID in such a
way that these six characters will uniquely
identify them.

233 BAIL

BAIL [Reiser] is a high-level breakpoint package
for use with Sail programs. Communication
between the programmer and BAIL is in
character strings which are the names and
values of Sail objects. BAIL reads general
Sail expressions typed by the programmer,

141



DEBUGGING SAIL PROGRAMS

evaluates them in the context of the place in
the program where execution was suspended,
and prints the resulting value in an
appropriate format. The evaluation and
printing are performed just as if the
programmer had inserted an extra statement
into the original program at the point where
execution was suspended. BAIL also provides
a way to talk about the program, to

answer the questions "Where was execution

suspended?”, "By what chain of procedure
calls did execution proceed to that point?", and
"What is the text of the program?”

In order to perform these functions, BAIL must
have some information about the program
being debugged. The Sail compiler will
produce this information on a file with
extension .SM1 if the program is compiled with
an appropriate value supplied for the /B switch.
The .SM1 information consists of the name,
type, and accessing information for each
variable and procedure, the location of the
beginning and end of each statement, and a
description of the block structure.

The code for BAIL itself is loaded automatically
when the program is loaded. In order for the

added information and code to be of any use,-

it must be possible to give control to BAIL at
the appropriate time. An explicit call to BAIL
is possible by declaring EXTERNAL PROCEDURE
BAIL; in the program and using the procedure
call BAIL;. This works well if it can be
predicted in advance where BAlLing might be
helpful. Runtime errors, such as subscript
overflow or CASE index errors, are not as
predictable; but responding “B" to the Sail
error handler will activate BAIL. Interrupting
the program while it is running (to investigate
a possible infinite loop, for example) can be
achieved under the TENEX operating system by
typing control-B. On a DEC TOPS-10 operating
system, first return to monitor mode by typing
one or more control-C’s, then activate BAIL by
typing DD<cr>,

BAIL performs some initialization the first time
it is entered. The information in the .SMl
file(s) is collected and processed into a .BAI
file. This new file reflects all of the
information from the .SMl files of any
separately-compiled programs, and the
relocation performed by the loader. If the
core image was SAVEd or SSAVEd then in
subsequent runs BAIL will use the .BAl file and
bypass much of the initialization.

142

SAIL

BAIL prompts the programmer for input by
typing a number and a colon. The number
indicates how many times BAIL has been
entered but not yet exited, and thus is the
recursion depth inside BAIL. Input to BAIL can
be edited using the standard Sail input-editing
characters for the particular operating system
under which the program is running. [BAIL
requests input via INCHWL on DEC TOPS-10
systems and via INTTY on TENEX systems.]
Input is terminated whenever the editor
activates, string quotation marks balance,
and the last character is a semicolon;
otherwise input lines are concatenated into
one string before being processed further.

The programmer may ask BAIL to evaluate
any Sail expression or procedure call whose
evaluation would be legal at the point at which
execution of the program being debugged was
suspended (except that expressions involving
AND, OR, IF-THEN-ELSE, and CASE are not
allowed.) BAIL evaluates the expression, prints
the resulting value in an approprlate format,
and requests further input.

Declared inside BAIL are several procedures
whose values or side effects are useful in the
debugging process. These procedures handle
the insertion and deletion of breakpoints,
display the static and dynamic scope of the
current breakpoint, display selected statements
from the source program, allow escape to
an assembly- language debugging program,
and cause resumption of the suspended
main program.

COMPILE-TIME ACTION

The principal result of activating BAIL at
compile-time is the generation of a file of
information about the source program for use
by the run-time interpreter. This file has the
same name as the .REL file produced by the
compilation, except that the extension is .SMI.
If requested, BAIL will also generate some
additional code for SIMPLE procedures to
make them more palatable to the run-time
interpreter.

The action of BAIL at compile time is governed
by the value of the /B switch passed to the
compiler. If the value of this switch is zero
{the default if no value is specified) then
BAIL is completely inactive. Otherwise, the
low-order bits determine the actions which
BAIL performs. [The value of the /B
switch is interpreted as octal.]



SAIL

bit

- internals; e,
" variables are not recorded.

’10

20

- omitted. The

action if on

The .SM1 file will contain the program
counter to source/listing text directory.

The .SM1 file will contain symbol
information  for  all Sail  symbols
encountered in the source. If this bit is
off, then information is kept only for
procedures, parameters, blocks, and
non-internal local

SIMPLE procedures will get procedure
descriptors, and one additional instruction
(a JFCL 0) is inserted at the beginning
of SIMPLE procedures. Except for
these two changes, all properties of
SIMPLE procedures remain the same as
before. The procedure descriptor is
necessary if the procedure is to be
called interpretively or if the procedure
is to be TRACEd.

BAIL will not be automatically ioaded
and initialized, although all other actions
requested are performed. This is
primarily intended to make it easier to
debug new versions of BAIL
without interfering with SYS:BAIL.REL.
By using -this switch the decision to load
BAIL is delayed until load time.

A request to load SYS:BAIPDn.REL is
generated. This file contains requests to
load procedure descriptors for most of
the predeclared runtime routines, making
it possible to call them from BAIL. The
procedure descriptors  and their
symbols occupy about 12P. Subsets of
these procedure descriptors can be
loaded individually to reduce memory
space requirements, at the cost of not
being able to talk about the routines
subsets are BAICLC
(containing SQRT, EXP, LOG, SIN, COS,
RAN, CVO0S, CVSTR, CVXSTR), BAIlO1
{major input/output and string
procedures), BAIlIO2 {minor
input/output and string procedures),
BAIMSC (terminal functions  and
miscellaneous), and BAIPRC (process
and interrupt routines). To use these
subsets, request’ them explicitly (e.g.,
REQUIRE  "SYS:BAICLC" LOAD_MODULE;
or on TENEX, "<SAIL>BAICLC") and leave
the./20B bit off.

DEBUGGING SAIL PROGRAMS
The B switch must occur on the binary term,
not the listing or source term. Thus:

.R SAIL or
«PROG/27B«PROG

.COM PROG(278B,)

The program counter to source/listing index is
kept in terms of coordinates. The coordinate
counter is zerced at the beginning of the
compilation and is incremented by one for each
BEGIN, ELSE, and semicolon seen by the parser,
provided at least one word of code has been
compiled since the previous coordinate was
defined. Note that COMMENTs are seen only
by the scanner, not the parser, and that
DEFINEs and many declarations merely define
symbols and do not cause instructions to be
generated. For each coordinate  the
directory contains the coordinate number, the
value of the program counter, and a file
pointer to the appropriate place. The
appropriate place is the source file unless a
listing file is being produced and the CREF
switch is off, in which case it is the listing
file. [The listing file produced for CREF is
nearly unreadable.] On a non-CREF listing, the
program counter is replaced by the coordinate
number if bit 1 of the /B switch is on.

The symbol table information consists of the
block structure and the name, access
information, and type for each symbol.

If a BEGIN-END pair has declarations (i.e., is a
true block and not just a .compound statement)
but does not have a name, then BAIL will
invent one. The name is of the form Bnnnn
where nnnn is the decimal value of the current
coordinate.

RUN-TIME ACTION

The BAIL run-time interpreter is itself a Sail
program which resides on the system disk
area. This program is usually loaded
automatically, and does some initialization
when entered for the first time. The
initialization generates a .BAl file of
information collected from the .SM1 files
produced by separate compilations (if any).
The .SM1 files correspond to .REL files, and
the .BAl file corresponds to the .DMP or .SAV
file. Like RPG or CCL, BAIL will try to bypass
much of the initialization and use an existing
.BAI file if appropriate. During initialization
BAIL displays the names of the .SM1 files it
is processing. For each .SMl file which

143



DEBUGGING SAIL PROGRAMS

contains program counter /text index
information, BAIL displays the names of the
text files and determines whether the text files
are accessible.

The interpreter is activated by explicit call,
previously inserted breakpoints, or the Sail
error handler. For an explicit. call, say
EXTERNAL PROCEDURE BAIL; .. BAIL;.  From
the error handler, respond B. Breakpoints
will be described later in this section.

DEBUGGING REQUESTS

When entered, BAIL prints the debugging
recursion level followed by a colon, and awaits
a debugging request. BAIL accepts ALGOL and
LEAP expressions of the Sail language. The
following  exceptions should be noted.
Expressions involving control structure are not
allowed, hence BAIL will not recognize AND,
OR, IF-THEN-ELSE, or CASE. Bracketed triple
items are not allowed. The TO and FOR
substring and sublist operators have been
extended to operate as array subscript
ranges, FOR PRINT-OUT ONLY. If FOO is an
array, then FOO[3 TO 7] will act like FOO[3],
FOO[4), FOO[5], FOO[6], FOO[7}; but is easier to
type. This extension is for print-out only;
no general APL syntax or semantics are
provided.

BAIL evaluates symbolic names according to the
scope rules of ALGOL, extended to always
recognize names which are globally unique and
have a fixed memory location (everything
except parameters and recursive locals). For
any activation of BAIL, the initial scope is the
ALGOL scope of the statement from which BAIL
was activated. The procedure SETLEX (see
below) may be used to change the scope to
that of any one of the links in the dynamic
activation chain. See also the section below on
BLOCK STRUCTURE for a way to evade the
scope rules.

Several procedures are predeclared in the
outermost block to handle breakpoints and
display information. These are described
individually below.

144

SAIL

ARGS
"STR" « ARGS

The arguments to the procedure which was
most recently called.

BREAK

BREAK ("LOCATION", "CONDITION"(NULL),
"ACTION"(NULL), COUNT(0))

A breakpoint is inserted. The syntax for the
first argument is

<location>
um <label>
u= <procedure>
u= <block name>
um #<nnnn>
u= <block name> . <location>

<nnnn> :
u= <decimal coordinate number>

If the location is specified by the <block
name>.<location> construct then the blocks of
the core image are searched in ascending order
of address of BEGINs until the first <block
name> is matched. The search continues until
the second <block name> is matched, etc. The
breakpoint is inserted at the label, procedure,
or coordinate declared within the scope of the
last <block name>. This detailed specification is
not usually necessary. The action taken at a
breakpoint is

IF LENGTH (CONDITION) AND EVAL (CONDITION)
AND (COUNT « COUNT-1)<0 AND LENGTH(ACTION)

THEN EVAL(ACTION);
EVAL(TTY)

COORD
NUMBER « COORD ("LOCATION")

Returns the coordinate number of the location
given as its argument. LOCATION has the same
syntax as in BREAK.



SAIL

DOT
DOT
This procedure transfers control to an assembly

language debugging program (if one was
loaded). :

DEFINE

DEFINE (CHAR, "MACRQ")

Macros from the source file(s), are not
recognized at the present time. There are 26
character macros definable, from "A" to “Z".
DEFINE macros substitute the given ‘string for
each occurrence of <alt><char> which is not
part of a string constant. [f the operating
system can send characters of more than 7 bits
to INCHWL (INTTY under TENEX) then any
activation character with high order bits will
also activate the macro. Thus at SUAI <alt>P,
«P, and « 8P are all equivalent. In all cases the
character is converted to upper case before
doing anything else. The macros G, P, S, and X
are predefined to be " IGG;", " NGO;", " USTER;",
and " NGSTEP;" respectively.

HELP

HELP

A list of options, including short descriptions of
the procedures described in this section, is
printed. An input consisting of a question mark
followed by a carriage return is interpreted as
a call to HELP.

SETLEX
SETLEX (LEVEL)

Evaluating SETLEX(n) changes the static (lexical)
scope to the scope of the n-th entry in the
dynamic scope list. SETLEX(O) is the scope of
- the breakpoint; SETLEX(1) is the scope of
the most recent procedure call in the
dynamic scope, etc.

DEBUGGING SAIL PROGRAMS

SHOW
“STR" « SHOW (FIRST, LAST(0))

The text of the program from the source or
listing file. If last is less than first then set last
to last+first. Return coordinates first through
last. SHOW (8B, 3) gives coordinates 5, 6, 7, and
8; SHOW (5, 7) gives coordinates 5, 6, and 7;
SHOW (5) gives coordinate 5 only.

A plus sign ("+") following the coordinate
number indicates that the values of some
variables have been carried over in
accumulators from the previous coordinate.
Changing the value of variables might not be
successful in such a case, because BAIL will not
change any accumulator value directly.  The
MEMORY construct can be used to modify any
location in a core image, including the
accumulators.

TEXT

"STR" « TEXT

The current static and dynamic scopes, with
text from the source or listing file.

TRACE

TRACE ("PROCEDURE")

Special breakpoints are inserted at the
beginning and end of the procedure named. On
entry, the procedure name and arguments are
typed. On exit, the name and value returned (if
any) are typed.

TRAPS
"STR" « TRAPS

A list of the current breakpoints and traces.

145



DEBUGGING SAIL PROGRAMS

UNBREAK

UNBREAK ("LOCATION")

The breakpoint at the location specified is
removed.

UNTRACE

UNTRACE ("PROCEDURE")

The breakpoints inserted by TRACE are
removed.

GO

GO

An immediate exit from the current instantiation.

of BAIL is taken and execution of the program
is resumed. !GO is a reserved word (the only
one) in BAIL.

NGSTEP
NGSTEP

Temporary breakpoints are inserted at all of
the logical exits of the current statement, and
execution of the program is resumed. Logical
exits are the next statement and locations to
which the current statement can jump,
excluding any procedure calls. All of the
breakpoints which are inserted will be removed
as soon as one of them is encountered.

NSTEP

NSTEP

Temporary breakpoints are inserted at all
locations to which the current statement can

jump, including procedure calls, and execution
of the program is resumed.

146

SAIL

GOGTAB

EXTERNAL INTEGER ARRAY GOGTAB[O:n]

This array is the Sail user table, containing all
kinds of magical information. (The procedure
USERCON was formerly the only way to access
the user table.) If you are a hacker then pick up
a copy of SYS:GOGTAB.DEF (<SAIL>GOGTAB.DEF
on TENEX) and poke around. Do not change any
values unless you know what you are doing.

STRING TYPEOUT

Strings are usually typed so that the output
looks the same as the input, ie, a string is
typed with surrounding quotation marks and
doubled internal quotation marks. For SHOW,
ARGS, and TEXT this would ordinarily create
confusion, so they are handled specially. When
these procedures are evaluated they set a flag
which inhibits quotation mark fiddling, provided
that no further evaluation takes place before
the next typeout. Thus SHOW (5, 3); will be
typed plain, but STR « SHOW (5, 3); will have
quotation marks massaged. :

BLOCK STRUCTURE

Variables not in the current scope can be
referenced by using the same scheme used to
describe locations to BREAK. If you have
something of your own named SHOW then you
can access the BAIL SHOW function by using
SRUNS.SHOW (coord)..  Warning:  this mode
assumes that you know what you are doing.

BAIL and DDT

When BAIL is loaded by a non-TENEX system, it
sets .JBDDT to the address of one of its
routines. (If you load both BAIL and DDT then
the last module loaded wins.) Under TENEX,
BAIL sets .JBDDT at runtime, but only if it is
zero when BAIL looks. If BAIL is initialized in a
core image which does not have DDT or RAID
then things will be set up so that the monitor
command DDT gets you into BAIL in the right
way. That is, BAIL will be your DDT. To enter
BAIL from DDT (provided that the Sail
initialization sequence has already been
performed), use

pushi P,<program counter>$X
JRST BRILSX

For example, if .JBOPC contains the program
counter,



SAIL

PUSH P, .JBOPCSX
JRST BRILSX

The entry B. provides a path from DDT to BAIL
* which works whether or not the core image has
been initialized. One use of this feature is to
BREAK a procedure in an existing production
program without recompiling. For example,

@:  PROG compiled, loaded with BAIL and DDT, and SSAVEd
@GET PROG

eDD

B.$G

BAIL initialization

1 :BREAK("pvocoduro");
1:HGO;

$G

To enter DDT from BAIL, simply say DDT;. For
operation under TENEX, control-B is a pseudo-
interrupt character which gets you into BAIL.

WARNINGS

Since BAIL is itself a Sail procedure, entering
BAIL from the error handler or DDT after a
push-down overflow or a string garbage
collection error will get you into trouble.

SIMPLE procedures cause headaches for BAIL
because they do not keep a display pointer.
BAIL tries to do the right thing, but
occasionally it gets lost. BAIL will try to warn
you if it can. In general, looking at value string
parameters of SIMPLE procedures does not
work. ‘

HGOTO ("LOCATION")

(For wizards only.) The return address is set to
the location specified, and then a !GO is done.
Note that the location should be in the same
lexical scope as the most recent entry to BAIL,
or the program will probably get confused.

HUP (LEVEL)

(For wizards only.) This procedure trims the
runtime stack back to LEVEL, then reenters
BAIL. CLEANUPs and dealiccations are
performed for the procedures thus killed. Level
tas the same interpretation as in SETLEX, and
in addition must not designate a SIMPLE
procedure. Suppose you ask BAIL to evaluate a
procedure call, the procedure hits an error, and

DEBUGGING SAIL PROGRAMS

you want to get back to where you were
before the procedure was called. Then NUP will
do the trick if the value of level is correct,

HQUERY

(Declare as EXTERNAL STRING !"QUERY in your
program.) Whenever BAIL wants input, it checks
this string first, If it is not NULL then !NQUERY
is used instead of asking the operating system
for input from the terminal. (MQUERY is set to
NULL each time this is done.) Thus a program
can simulate the effect of typing to its own
input buffer by stuffing the text into !!'QUERY.
In particular, file input to BAIL and various
macro hacks can be effected by using
procedures which assign values to QUERY.

SETSCOPE
SETSCOPE (ITEMVAR PITEM)

If you have processes then SETSCOPE can be
used to peek around the world. Specifically,
the static and dynamic scopes are set to those
of the process for which PITEM is the process
item. This will allow access to variables and
traceback from TEXT, but care must be
exercised when calling procedures. A call to a
procedure which is not defined at the top level
will probably not work. Also, if the procedure
does not return successfully then your stacks
will be hopelessly confused.

Note on processes: BAIL runs in the process
which caused the break. Thus stack space must
be provided in each process. The minimum
amount is PSTACK(4)+STRINGSTACK(2).

RESOURCES USED

At compile time one channel, a small amount of
additional memory, and approximately 0.3
seconds of KA10 CPU time per page are used.
BAIL uses two channels at runtime and a third
during initialization. These channels are
obtained with GETCHAN. If the debugging
recursion level exceeds 3 or 4 then it will be
necessary to increase the pushdown stacks
(particularly STRING_PDL) appropriately. BAIL
uses 7 of the privileged breaktables, obtaining
them with GETBREAK. BAIL occupies 195
pages. Symbols require 5 words each with an
additional 2 words for each block; one word for
each 128 coordinates is also required. The disk
space required for .SMl1 and .BAl files is

147



DEBUGGING SAIL PROGRAMS o ‘ . SAIL

generally one half that required for the .REL

- files. 1:FOO[36);:
EXAMPLE SUBSCRIPTING ERROR.
INDEX VALUE MIN  MAX
@TYPE TEST1.SAl 1 35 0 15 : FOQ[35]
i <REISER>TEST1.SAL1 SAT 28-AUG-76 4:20PM  PAGE 1 1:BREAK ("ADD");
1:ADD (3, 4%
BEGIN "TEST"
EXTERNAL PROCEDURE BAIL; 2:ARGS;
INTEGER |, J, K; STRING A, B, C; REAL X, Y, Z; 3 4
INTEGER ARRAY FOO[0:15); STRING ARRAY STRARR[1:5, 2:6); 2:1160;
INTEGER PROCEDURE ADD (INTEGER |, J); BEGIN "ADD" HI. GLAD YOU STOPPED BY. 7
OUTSTR (" 1:1GO0;
Hl. GLAD YOU STOPPED BY."); RETURN (l«J) END "ADD"; TEXT
14 i
FOR 10 STEP 1 UNTIL 15 DO FOO[l}eksk; LEXICAL SCOPE, TOP DOWN:
FOR l«1 STEP 1 UNTIL 5 DO SRUNS
FOR Je«2 STEP 1 UNTIL 6 DO STRARR[l, J)J«-6448+l+J; TEST
led; Je6; Ke112; Xe3.14159265; Ye0; 223.; ADD
A«"BIG DEAL"; B«"QED"; C«"THE LAST PICASSO";
ROUTINE TEXT
BAIL; ADD (7, 45); USERERR (0, 1, "THIS IS A TEST"); ADD 4 INTEGER PROCEDURE ADD (INTEGER |, J):
END "TEST"; ] TEST «24  ADD (7, 45)%
1L
AT SETLEX(0);
@SAIL.SAV;10
TENEX SAIL 8.1 8-28-76 (? FOR HELP) 1:UNBREAK ("ADD");
+TEST ¢
/278 1:1GQ;
. ‘ Hi. GLAD YOU STOPPED BY.
TEST1.SALT 1 THIS IS A TEST
END OF COMPILATION. CALLED FROM 642124 LAST SAIL CALL AT 400303
LOADING B8 . :
. 1:TEXT;
LOADER 6+8K CORE
EXECUTION LEXICAL SCOPE, TOP DOWN:
G $RUNS
$
BAIL VER. 28-AUG-76 DYNAMIC SCOPE, MOST RECENT FIRST:
TESTISMI:2 ROUTINE TEXT
TEST1.8Al;1 SIMPLE. '642124 777 FILE NOT VIEWABLE
End of BAIL initialization. TEST 26  USERERR (0, 1, "THIS IS A TEST");
1:45, 7.089, "SOME RANDOM STRING"; AT SETLEX(O);
4% 7.089000 “"SOME RANDOM STRING" 1
12275, TRUE, FALSE, NULL;
188 -1 o ™ UNKNOWN ID: |
1:J, X, l46; i
6 3141593 46 1:SETLEX (1);
14, I<d; : )
46 0 : LEXICAL SCOPE, TOP DOWN:
1:45+(89.4-53.06); SRUNS$
1635300 TEST
1:ADD (3, 4);
1:;
Hl. GLAD YOU STOPPED BY. 7 64
1:FOO; 1:4G0;
<ARRAY>[ 0:15)
1:FOO[4); END OF SAIL EXECUTION.
16

1:STRARR([1 FOR 2, 4 TO 6);
LT M Nt T "o oy

148



SAIL

CURRENT STATUS

The state of the world is determined by
the values of the accumulators and’
the value of the Sail variable _SKIP_,

The run-time interpreter recognizes only
the first 15 characters of identifier
names; the rest are discarded without
comment. The characters which are
-legal in identifiers are

ABCOEFGHIJKLMNOPQRSTUVUHXYZ

abcdefghi Jk imnopgrs tuvkxyz

8123456789 ! _afnAcoVI+~#3\ |
Notable for its absence: period.

LOCATION of a procedure does not work.
PROPS is read-only.
Bracketed tripie items are not al|ov{ed.

A procedure call containing the name of a
parametric  procedure (functional
argument) is not handled properly.

Contexts are not recognized.

External linkage: If an identifier is never
referenced by code (i.e,, has an empty fixup
chain at the time fixups are put out to the
loader) then that identifier is not defined by
Sail. Thus variables which are never used do
not take up space and a request to the
loader is not made for EXTERNALS which are
not referenced. This feature of Sail. As a
result, the following DOES NOT WORK unless
special precautions are taken:

BEGIN
EXTERNAL PROCEDURE BAIL;
EXTERNAL PROCEDURE

PLOT (REAL X0, YO, X1, Y1);
REQUIRE "CALCOM" LIBRARY;

BAIL END

PLOT will not be defined by Sail, hence BAIL
will not know about it. However if there are
any references to PLOT (real or "dummy" calls)
then BAIL will know. The following trick can
also be used, assuming that CALCOM is a Sail-
compiled library: Compile CALCOM with /10B,
which says "make the .SM1 file but don't
automatically load SYS:BAIL.REL". Then the
above will win (due to BAIL recognizing

DEBUGGING SAIL PROGRAMS

things which are globally unique) and programs
which do not use BAIL will not have it loaded
just because the library was used. This same
problem occurs with EXTERNAL RECORD_CLASS
declarations. Use of the field index
information does not cause a reference to the
class name but NEW_RECORD does. Thus the
same /10B trick must be used if there are no
NEW_RECORD calls.

BAIL and other language processors: If CALCOM
in the paragraph above was compiled by some
processor other than Sail (e.g. FAIL, MACROQ,
BLISS, ..) then further steps must be taken if
BAIL is to know about the procedures
contained in the file. BAIL must have access
to a procedure descriptor in order to call any
procedure (cf. the /4B switch). Thus a user
who wishes to use assembly language
procedures  with  BAIL must provide
appropriate procedure descriptors. The file
cSUAISSAILPD.FAI[S,AIL] defines a FAIL macro
which  will generate a  Sail procedure
descriptor.  The procedure descriptors may
reside in a separate load module if desired;
but they must be in the core image when BAIL
is being used.

149



APPENDICES

APPENDIX A

Characters

CHARACTER  EQUIVALENT RESERVED WORD

AND
EQV
NOT
OR
XOR
INF

IN
SUCH THAT
NEQ
LEQ
GEQ
SETO
SETC
UNION
INTER
ASSOC
SWAP
!

A CrmIVIART ™ ge<dm>

T

Stanford (SUAI) Character Set

The Stanford ASCIl character set is displayed in
the following table. The three digit octal code
for a character is composed of the number at
the left of its row plus the digit at the top of
its column. For example, the code for “A™ is
100+1 or 101.

RSCIT 8 1 2 3
W

800 NUL ! «
818 A TRB LF
SIXBIT 020 « n
W 038

00 0840

16 850

20 060

30 070

40 188

58 110

60 120

78 130

148

158

160

178

L 3
o
(-]
~

-4
-n
Y

v
=2
WVBIALCT >

o
N 3

g
\
u
=
’
+
3
3
c
K
S
[
[+
K
3
{

XT T «aXTVIMO®OD~W

O B <O DO~ =

NI T NTCD-

—_ ;. —_0 AT OA &~

DEC I e — c::i mRe o RIVWO S
~L S aI<CZT NIV D ComEet ~
WEOW t TOO vNN < ¢t &3

F=4
-

The tables‘ below display the standard ASCIi
codes, and the SOS representation for entering
the full ASCIli character set from Teletypes or

150

SAIL

similar terminals with restricted character sets,
The obscure names for the ASCIl codes below

40 are listed just for confusion. Notes: “DEL™
(177) is the ASCli delete. “ESC™ (33) is their alt
mode. Codes 136 and 137 have two different
interpretations, as shown below. The S0S
representation' is so called because it s
provided by SOS, the Teletype editor. Certain
other programs also know about this
representation, but it is not built into Sail in
any way.

Standard RSCII
g 1 2 3 4 5 6 7
0068 NUL SOH STX ETX EOT ENQ ACK BEL
816 BS TRB LF VT FF CR SO0 SI

828 OLE OC1 DC2 DC3 DC4 NRK SYN ETB
838 CAN EM SUB ESC FS GS RS US

@48 sp + " ¥4 % I &
gs¢ ( ) % o+ , - /
ges 8 1 2 3 4 5 8 7
876 8 9 ;) < = > ?
188 e A B € D E F ©
118 H I J K L M N O
126 P @ R 8 T U Vv M
138 X Y 2 [ N ) At _«
148 * a b ¢ d e t g
1588 h 0 j kK Il m n o
168 p ¢ r s t U Vv W
176 x y =z { | } ~ DEL

S0S Representation of Standard ASCII
g 1 2 3 4 5 6 7

808 --- 21 2" 4 ?% % & ¥
8le ?C TRB LF VT FF CR ?2) 2
628 ?+ ?, ?- 2?2, ?/ 2?8 ?1 ?2
838 78 % %% ?= ?2< ?» ?7 7?8

848 SP 1 " & $ 4 &
056 ( ) % 4+, - . 7
g6e 8 1 2 3 4 5 6 7
876 &8 8 1 3 < = > 27
166 ¢ AR B C 0O E F G
16 H I J K L M N O
1260P 0@ R S T U VvV W
138 X Y 2 [ N )t .

148 20 7R 7B ?C D € ?F 1?6

188 7H 21 2J %K L M N 20

160 7P 20 R 28 2T 2 Vv 2

178 2 2Y 22 20 21 2 23 A\
The Sail compiler automatically transliterates "!"
to "_" before doing anything else (outside of
string constants, of course). It also believes
that BOTH °175 and 176 represent the right
brace character "}".



SAIL

APPENDIX B
Sail Reserved Words

ABS
ACCESS
AFTER

ALL
ALLGLOBAL
AND -
ANY_CLASS
APPLY
ARG_LIST
ARRAY
ASH
ASSIGN

. ASSIGNC
ASSOC
BBPP
BEFORE
BEGIN
BIiND
BOOLEAN
BUCKETS
BUILT_IN
CASE
CASEC
CAUSE
CHECK_TYPE
CLEANUP
COMMENT
COMPILER_SWITCHES
CONOK
CONTEXT
CONTINUE
cop
CPRINT
CvI

CVLIST
CVMS

CVN

CVPS
CVSET
DATUM
DECLARATION
DEFINE
DELETE
DELIMITERS
DEPENDENTS
blv

no

DoC

DONE

bpPB

ELSE
ELSEC

END

ENDC
ENTRY

EQV

ERASE
ERROR_MODES
EVALDEFINE
EVALREDEFINE
EXPR_TYPE
EXTERNAL
FAIL

FALSE
FIRST

FOR

FORC
FOREACH
FORGET
FORLC
FORTRAN
FORWARD
FROM

GEQ
GLOBAL

GO

GOTO

IBP

IDPB

IF

IFC

IFCR

iLDB

IN
IN_CONTEXT
INF
INITIALIZATION
INTEGER
INTER
INTERNAL
INTERROGATE
ISTRIPLE
ITEM
ITEM_START
ITEMVAR
KILL_SET
LABEL
LAND

LDB
LEAP_ARRAY
LENGTH
LEQ

LET
LIBRARY

LIST
LISTC

LISTO

LNOT
LOAD_MODULE
LOCATION

Lop

LOR

LSH

MAKE
MATCHING
MAX

MEMORY
MESSAGE

MIN

MOD
NEEDNEXT
NEQ

NEW
NEW_ITEMS
NEW_RECORD
NEXT

NIL

NOMAC

NOT
NOW_SAFE
NOW_UNSAFE
NULL
NULL_CONTEXT
NULL_DELIMITERS
NULL_RECORD
OF

OFC

OR

OWN

PHI

PNAMES

POLL
POLLING_INTERVAL
PRELOAD_WITH
PRESET_WITH
PRINT
PROCEDURE
PROCESSES
PROTECT_ACS
PUT
QUICK_CODE
REAL
RECORD_CLASS
RECORD_POINTER
RECURSIVE
REDEFINE
REF_ITEM
REFERENCE
REMEMBER
REMOVE

REPLACE_DELIMITERS

APPENDICES

REQUIRE
RESERVED

RESTORE
RETURN

ROT

SAFE

SAMEIV
SECOND
SEGMENT_FILE
SEGMENT_NAME
SET

SETC

SETCP

SETIP

SETO

SHORT

SIMPLE
SOURCE_FILE
SPROUT
SPROUT_DEFAULTS
START_CODE
STEP

STEPC

STRING
STRING_PDL
STRING_SPACE
SUCCEED
SUCH

SWAP
SYSTEM_PDL
THAT

THEN

THENC

THIRD

TO

TRUE

UNION
UNSTACK_DELIMITERS
UNTIL

UNTILC

VALUE
VERSION
WHILE

WHILEC

XOR

151



APPENDICES

APPENDIX C

Sail Predeclared ldentifiers

SPINT
SPITM
SPLST
SPREC
SPREL
SPRINT
SPSET
SPSTR
ACOS
ANSWER
ARRBLT
ARRCLR
ARRINFO
ARRTRAN
ARRYIN
ARRYOUT
ASIN
ASKNTC
ATAN
ATAN2
BBPP.
BINDIT
BREAKSET
CALL
CALLER
CAUSEL
CHNCDB
CLKMOD
CLOSE
CLOSIN
CLOSO
CLRBUF
CODE
COMPILER_
BANNER
COoS
COosD
COSH
CV6STR
CVASC
CVASTR
CvD
CVE
CVF
CVFIL
CVG
CVIS
CVO
CV0s
CVs
CVvsli
CVSiX

152

CVSTR
CVXSTR
DDFINT
DEL_PNAME
DFCPKT
DFR1IN
DFRINT
DISABLE
EOFILE
ENABLE
ENTER
EQU
ERMSBF
EVENT_TYPE
EXP
FILEINFO
GETBREAK
GETCHAN
GETFORMAT
GETPRINT
INCHRS
INCHRW
INCHSL
INCHWL
INPUT
INSTR
INSTRL
INSTRS
INTIN
INTMAP
INTPRO
INTSCAN
INTSET
INTTBL
JOIN
LINOUT
LISTX
LOG
LOOKUP
MAINPI
MAINPR
MKEVTT
MTAPE
MYPROC
NEW_PNAME
OPEN
ouT
OUTCHR
OUTSTR
POINT
PRISET
PSTATUS

RAN
REALIN
REALSCAN
RELEASE
RENAME
RESUME
SCAN
SCANC .
SETBREAK
SETFORMAT
SETPL
SETPRINT
SIN

SIND

SINH
SQRT
STDBRK
SUBSR
SUBST
SUSPEND
TANH
TERMINATE
TRIGINI
TTYIN
TTYINL
TTYINS
TTYUP
TYPEIT
URSCHD
USERCON
USERERR
USETI
USETO
WORDIN
WORDOUT

SUAI ONLY

GET_BIT PTCHRS
GET_DATA PTCHRW
GET_ENTRY  PTIFRE

GET_SET PTOCHS
IFGLOBAL PTOCHW
ISSUE PTOCNT
LODED PTOSTR

TOPS-10 ONLY

BACKUP INOUT
CHNCDB GETSTS
ERENAME SETSTS
CMU ONLY

ARDINIT DOTVEC
ARDSTR INITSEA
CHARSZ INVVEC
CHRMOD MOUSES
CLEAR MOUSEW

TYMSHARE ONLY

AUXCLR CALLI
AUXCLV CHNIOR
TENEX ONLY

ASND INDEXFILE
ATI INTTY
BKJFN JFNS
CFILE JFNSL
CHARIN KPSITIME
CHAROUT MTOPR
CHFDB ODTIM
CLOSF OPENF
CNDIR QPENFILE
CVJFN PBIN
DEVST PBOUT
DEVTYPE PMAP
DIRST PSIDISMS
OTI PSIMAP
DVCHR PSIRUNTM
ERSTR PSOUT
GDSTS RCHPTR
GJINF ROSEG
GNJFN RELD
GTAD RFBSZ
GTFDB RFCOC
GTJFN RFMOD
GTRPW RFPTR
GTSTS RLJFN
IDTIM RNAMF

PTYALL

PTYGET
PTYIN
PTYREL
PTYSTR
PUT_DATA
QUEUE

INTMOD
TMPIN
TMPOUT

SEAINIT
SEAREL
SETPNT
SVEC
VISVEC

CHNIOV
IONEOU

RTIW
RUNPRG
RUNTM
RWDPTR
SCHPTR
SDSTS
SETCHAN
SETEDIT
SETINPUT
SFCOC
SFMOD
SFPTR
SINI
SIZEF
STDEF
STDIR
STI

STIW
STPAR
STSTS
STTYP
SWDPTR
UNDELETE



APPENDIX D

Indices for Interrupts

SUAI INTERRUPT SYSTEM

SAIL
NAME

INTSWW_INX 0
INTSWD_INX 1
INTSHW_INX 2
INTSHD_INX 3
INTTTY_INX 4
INTPTO_INX 5
INTMAIL_INX 6
INTPTI_INX 8

NUMBER DESCRIPTION

You will receive an interrupt
when your job is about to
be swapped out.

You will receive an interrupt
when your job is swapped
back into core. If you'are
activated for interrupts for
swap out also, you will
receive these two interrupls
as a pair in the expected
order every time your job is
swapped.

You will receive an interrupt
when your job is about to
be shuffled.

You will receive an interrupt
when your job has been
shuffled.

You will receive an interrupt
every time your program
would be activated due to
the teletype if it were
waiting for the teletype. As
long as you do not ask for
more than there is in the
teletype buffer, you may
read from the teletype at
interrupt level. ‘

You will be interrupted
every time the PTY job goes
into a wait state waiting for
you to sent it characters.

Interrupts whenever
someone SENDs you mail
(see [Frost]). You may read
the letter at interrupt level.

You will be interrupted
every time any job on a PTY
you own send you a
character (or line).

INTPAR_INX 9
INTCLK_INX 10
INTINR_INX 11
INTINS_INX 12
INTIMS_INX 13
INTINP_INX 14
INTTTILINX 15
INTPOV_INX 19
INTILM_INX 22
INTNXM_INX 23
INTFOV_INX 29
INTOV_INX 32

| Bits 33 through 35 are
"SYS:PROCES.OEF"

REQUIRE

APPENDICES

interrupts  you on parity
errors in your core image.

You will be interrupted at
every clock tick (1/60th of a

second),

IMP interrupt by receiver.
IMP interrupt by sender.

IMP status change interrupt.
IMP input waiting.

You will be interrupted
whenever <esc> | is typed

on your teletype.

Interrupts you on push-down
overflow.

Interrupts  you on illegal
memory references, that is,
references  to memory
outside of your core image.

You will receive an interrupt

whenever your program
references non-existent
memory.

Interrupts you on floating
overflow.

Interrupts you on arithmetic
overflow.

left to the user.
SOURCE_FILE to

define the above names. NOTE: to program
yourself for more than one interrupt, you must
execute two separate INTMAP statements.

183



APPENDICES

TOPS-10 INTERRUPT SYSTEM

NAME NUMBER DESCRIPTION

INTPOV_APR 19 Interrupts you on push-down
stack overflow.

INTILM_APR 22 Interrupts you on illegal
memory references, that is,
references to memory
outside of your core image.

INTNXM_APR 23 You will receive an interrupt
whenever  your program
references non-existent
memory.

iNTFOV_APR 29 Interrupts you on floating
overflow.

INTOV_APR 32 Interrupts you on arithmetic
overflow.

TENEX PSI CHANNELS
CHANNEL  USE

0-5 terminal character

6 APR integer overflow,.no divide

7 APR floating overflow, exponent
underflow

8 unused

9 pushdown overflow

10 file EOF

11 file data error

12 file, unassigned

13 file, unassigned

14 time of day

15 illegal instruction

16 illegal memory read

17 illegal memory write

18 illegal memory execute

19 subsidiary fork termination, forced
freeze

20 machine size exceeded

21 SPACS trap to user

22 reference to non-existent page

23 unused

25-35 terminal character

154

SPROUT OPTIONS
BITS

SAIL

APPENDIX E

Bit Names for Process Constructs

NAME

DESCRIPTION

14-17 QUANTUM(X) Q « IF X=0 THEN 4 ELSE

18-21

2T™X; The process will be
given a quantum of Q
clock ticks, indicating that
if the wuser s using
CLKMOD to handle clock
interrupts, ‘the process
should be run for at most
Q clock ticks, before
calling the scheduler. (see
about CLKMQD, page 120
for details on making
processes "time share").

STRINGSTACK(X) S « IF X=0 THEN 16

ELSE - X%32; The process
will be given S words of
string stack.

22-27 PSTACK(X) P«IF X=0 THEN 32 ELSE

28-31 PRIORITY(X)
32 SUSPHIM

33

34 SUSPME

35 RUNME

X%32; The process will be
given P words of
arithmetic stack.

P « IF X=0 THEN 7 ELSE
X; The process will be
given a priority of P. O is
the highest priority, and
reserved for the Sail
system. 15 is the lowest
priority. - Priorities
determine which ready
process the scheduler wili
next pick to make running.

If set, suspend the newly
sprouted process.

Not used at present.

If set, suspend the
process in which this
sprout statement occurs.

If set, continue to run the
process in  which this
sprout statement occurs.



SAIL

RESUME OPTIONS

33-32 READYME If 33-32 is 1, then the
current process will not
be suspended, but be

made ready.

KILLME If 33-32 is 2, then the
current process will be
terminated.

 IRUN If 33-32 is 3, then the

current process will not
be suspended, but be
made running. The newly
resumed process will be
made ready.

34 This should always be
zero.

35 NOTNOW If set, this bit makes the
newly resumed process
ready instead of running,
If 33-32 are not 3, then
this bit causes a
rescheduling.

CAUSE OPTIONS

. 35 DONTSAVE Never put the <event
item> on the notice queue,
If there is no process on
the wait queue, this makes
the cause statement a no-

op.

34 TELLALL Wake all processes
waiting for this event,
Give them all this item.
The highest priority
process will be made
running, others will be
made ready.

33 RESCHEDULE Reschedule as soon as
possible (i.e,, immediately
after the cause procedure
has completed executed).

INTERROGATE OPTIONS

35 RETAIN Leave the event notice on
the notice queue, but still
return the notice as the
value of the interrogate.

34

33

32

WAIT

APPENDICES

If the process goes into a
wait state as a resuit of
this Interrogate, and is
subsequently awakened
by a Cause statement,
then the DONTSAVE bit in
the Cause statement will
over ride the RETAIN bit
in the Interrogate if both
are on.

If the notice queue is
empty, then suspend the
process executing the
interrogate and put its
process item on the wait
queue,

RESCHEDULE Reschedule as soon as

SAY_WHICH

possible (i.e., immediately
after execution of the
interrogate procedure).

Creates the association
EVENT_TYPE e <event
notice> = <event type>
where <event type> is the

" type  of the event

returned. Useful with the
set form of the
Interrogate construct.

155



wée M(‘:Nc
Mmf
phic !

APPENDICES

APPENDIX F

Statement Counter System

GENERAL DISCUSSION

The statement counter system allows you to
determine the number of times each statement
in your program was executed. Sail
accomplishes this by inserting an array of
counters and placing A0S instructions at
various points in the object program (such as in
loops and conditional  statements). Sail
automatically calls K_ZERQO to zero the counter
array before your program is entered and
K_QUT to write the array before exiting to the
system. |f your program does not exit by
falling out the bottom, or you are interested
only in counts during specific periods, then you
may declare K_OUT and K_ZERO as external
procedures and call them yourself.

Another program, called PROFIL, is used to
merge the listing file produced by the Sail
compiler with the file of counters produced by
the execution of your program. The output
of the PROFIL program is an indented listing
with execution counts in the right hand margin.

Since the AOS instructions access fixed
locations, and they are placed only where
needed to determine program flow, they
should not add much overhead to the
execution time. Although no large study has
been made, the counters seem to contribute
about 2% to the execution time of the
profile program, which has a fairly deeply
nested structure.

HOW TO GET COUNTERS

In order to use the counter system you must
generate a listing and also specify the /K
switch. Specifying /K automatically selects
/10F, since the PROFIL program needs this
listing format. The characters 002 and "003 in
the listing mark the location of counters.

At the end of each program (i.e. each separate
compilation) is the block of counters, preceded
by a small data block used by K_ZERO and
K_OUT. This block contains the number of
counters, the name of the list file, and a link
to other such blocks. The first counter
location is given the symbolic name .KOUNT,
which is accessible from DDT, but cannot
be referenced by the Sail program itself.

156

SAIL

K_OUT wuses GETCHAN to find a spare
channel, does a single dump mode output

which writes out all the counters for all the
programs loaded having counters, and then
releases the channel. The file which it
writes is xxx.KNT, where xxx is the name of the
list file of the first program loaded having
counters (usually the name of the Sail source
file). If there are no counters, K_OUT simply
returns.

PROFILE PROGRAM

The program PROFIL is used to produce the
program profile, i.e. the listing complete with
statement counts. it operates in the following
manner. First it reads in the file xxx.KNT
created by the execution of the user
program. This file contains the values of the
counters and the names of the list files of the
programs loaded which had counters. It then
reads the the list files and produces the
profile.

The format of the listing is such that only
statements executed the same number of times
are listed on a single line. In the case of
conditional statements, the statement s
continued on a new line after the word THEN.
Conditional expressions and case expression,
on the other hand, are still listed on a single
line. In order that you might know the
execution counts, they are inserted into the
text surrounded by two "brokets” (e.g. <<15>>).

PROFIL expects
form

a command string of the

<output>e<input> {switches}

where <input> is the name of the file containing
the counters; extension .KNT is assumed. If
the output device is the DSK, the output file will
have a default extension of .PFL. Although
the line spacing will probably be different
from the source, PROFIL makes an effort to
keep any page spacing that was in the source.
The switches allowed by PROFIL are



SAIL
/nB Indent n spaces for blocks (default 4)
/nC Indent n spaces for continvations (default 2)
/F Fill out every 4th line with “." (default ON)
/! lgnore comments, strip them from the listing

/nK Make counter array of size n (default 200)
/nt Maximum line length of n (default 120)

/N Suppress /F feature

/S Stop after this profile

/T TTY mode = /1C/2B/F/80L

SAMPLE RUN

Suppose that you have a Sail program named
FOO.SAl for which you desire a profile. The
following statements will give you one.

EX /LIST FOO(K) (or TRY or DEB or what have you)
... any input to FOO ...

EXIT

tC

.R PROFIL
+FOO«FOO/T/S

EXIT
tC

At this point, the file FOO.PFL contains. the
profile, suitable for typing on the TTY or
editing.

APPENDICES

APPENDIX G

Array Implementation

Let STRINGAR be 1 (TRUE) if the array in
question is a String array, O (FALSE) otherwise.
Then a Sail array of n dimensions has the
following format:
HEAD:  -DATAWD
HEAD-END-1
ARRHED: BASE_WORD
LOWER_BD(n)
UPPER_BD(n)
MULT(n)

LOWER_BD(1)

UPPER_BD(1)

MULT(1)

NUM_DIMS, TOTAL_SIZE
DATAWD: BLOCK TOTAL_SIZE

<somatimes a few extra words>
END:  400000,~HEAD

HEAD

i» MEANS "POINTS AT"

iSEE BELOW

The first two words of each array,
and the last, are control words for
the dynamic storage allocator.
These words are always present
for an array. The array access
code does not refer to them.
ARRHED Each array is preceded by a block
of 3xn+2 control words. The
BASE_WORD entry is explained
later.

NUM_DIMS This is the dimensionality of the
array. If STRINGAR, this value is
negated before storage in the left
half.

This is stored in the core location
bearing the name of the array (see
symbols, page 141). If it is a string
array, DATAWD+l1 is stored
instead.

DATAWD

TOTAL_SIZE The total number of accessible
elements (double if STRINGAR) in
the array.

BOUNDS The lower bound and upper bound

157



APPENDICES

for each dimension are stored in
this table, the left-hand index

values occupying the higher
addresses (closest to the array
data). If they are constants, the
compiler will remember them too
and try for better code (ie.
immediate operands).

MULT This number, for dimension m, is
the product of the total number of
elements of dimensions m+l
through n. MULT for the last
dimension is always 1.

BASE_WOQRD This is DATAWD minus the sum of
(STRINGAR+1) * LOWER_BD(m) =«
MULT(m) for all m from 1 to n. If
this is a string array then the left
half is -1.

The formula for calculating the address of
Al JK] is:

address(A[l,J,K]) =
address(DATAWD) +
(I-LOWER_BD(1))*MULT(1) »
(J-LOWER_BD(2))*MULT(2) +
(K-LOWER_BD(3))

This expands to

address(A[l,J,K]) =
address(DATAWD) «+
IkMULT(1) + JkMULT(2) + K
-(LOWER_BD(1)¥MULT(1) »
LOWER_BD(2)%MULT(2) +
LOWER_BD(3)

which is
BASE_WORD + I¥MULT(1) « J¥MULT(2) + K.

By pre-calculating the effects of the lower
bounds, several instructions are saved for each
array reference.

The LOADER gets confused if BASE_WORD does
not designate the same segment as DATAWD.
The difference between BASE_WORD and the
address of any location in the array should be
less than ’400000. Avoid constructs like
INTEGER ARRAY X[1000000:1000005]. Declare
large static arrays last.

158

SAIL

APPENDIX H

String Implementation

STRING DESCRIPTORS

A Sail String has two distinct parts: the
descriptor and the text. The descriptor is
unique and has the following format:

WORD1: CONST,LENGTH
WORD2: BYTP

1) CONST. This entry is 0 if the String is
a constant (the descriptor will not be
altered, and the String text is not in
String space, is therefore not subject
to garbage collection), and non-zero
otherwise.

2) LENGTH. This number is zero for any
null String; otherwise it is the number
of text characters.

3) BYTP. If LENGTH is O, this byte pointer
is never checked (it need not even be
a valid byte pointer. Otherwise, an
ILDB machine instruction pointed at the
BYTP word will retrieve the first text
character of the String. The text for a
String may begin at any point in a
word. The characters are stored as
LENGTH contiguous characters.

A Sail String variable contains the two word
descriptor for that wvariable. The identifier
naming it points to WORD1 of that descriptor. |f
a String is declared INTERNAL, a symbol is
formed to reference WORD2 by taking all
characters from the original name (up to %) and
concatenating a "." (QUTSTRING’s second word
would be labeled QUTST.).

When a String is passed by reference to a
procedure, the address of WORDZ is placed in
the P-stack (see page 160). For VALUE Strings
both descriptor words are pushed onto the SP
stack.

A String array is a block of 2-word String
descriptors. The array descriptor (see page
157) points at the second word of the first
descriptor in the array..

Information is generated by the compiler to



SAIL

allow the locations of all non-constant strings
to be found for purposes of garbage-collection
and initialization, All String variables and non-
preloaded arrays are cleared to NULL whenever
a Sail program is started or restarted. The
non-constant strings in Preloaded arrays are
also set to null by a restart. '

INEXHAUSTIBLE STRING SPACE

The string garbage collector expands string
space (using discontiguous blocks) whenever
necessary to satisfy the demand for places to
put strings.

Here are some points of interest:

1) The initial string space size is settable
via REQUIRE or the ALLOC sequence. Each
string-space increment will be the same
as the original size. The threshold (see
below) for expansion is 1/8 the string
space size (increment size). One can
modify these values with USERCON or by
storing directly into GOGTAB.

NAME VALUE
STINCR  LH: # chars in increment
RH: 4+ & words in increment

STREGD LH: # chars in threshold
RH: # words in threshold

2) (the threshold) Assume that the garbage
collector was called to make room for R
characters, and that after garbage
-collection M-1 discontiguous string spaces
are full, with the Mth having N free
characters. If N is less than or equal to
R+LH (STREQD) then expansion to M+l
string spaces takes place. In other words,
if STREQD is 1/8 the size of the current
space then that space will not be allowed
to become more than about 7/8 full. All
but the current space are allowed to
become as full as possible, however.

3) Wizards may cause the garbage collector
to keep some statistics by setting SGCTIME
to -1.

APPENDICES

APPENDIX |

" Save/Continue

[A (new) save/continue facility has been

implemented in the Sail compiler. This allows
compiling header files, saving the state of the
compiler, and resuming compilation at a later
time. The save/continue facility works with
files as the basic unit; compilation can be
interrupted only at the end of a file. The /X
(eXtend) switch controls the new feature. The
examples shown here are for TOPS-10.
Analogous commands work under TENEX, using
the TENEX RUN and SAVE commands. Example:

R SAIL
" «INTRMD.REL[PRJ,PRG]«A,B,C/X
ASAl | ete.

SAVE ME FOR USE AS XSAIL.
EXIT

SAVE XSAIL

JOB SAVED IN 25K

UPPER NQT SAVED!

RU XSAIL

+FINALD,EF

D.SAl

Copying DSK:INTRMD.REL{PRJ,PRG)
2 3 stc.

«C
The above is equivalent to

R SAIL
+FINALA,B,C,D,EF

On TENEX, the user will want to save all of
core when creating the XSAIL.SAV file.

Information is saved in XSAILSAV and in the
binary file from the first "compilation” (in this
case INTRMD.REL). When  compilation s
resumed, the final binary file is initialized
by copying the intermediate file.
Save/continue is not allowed if the file break
occurs  while scanning false conditional
compilation or actual parameters to a macro
call.

A hint on using this feature: If the source

159



APPENDICES

term of your command string consists of just
one file, and this one file does REQUIREs of

other source files, the following setup works
well.

Original file FOO.SAl:
BEGIN "FOQ"
REQUIRE "“[){]" DELIMITERS;
DEFINE 1«[COMMENT);
REQUIRE "BAZ.SAI" SOURCE_FILE;
REQUIRE "MUMBLE.SAI" SOURCE_FILE;

<rest of file»
END "FOO"

New file FOO.SAI:
IFCR NOT BECLARATION(GARPLY) THENC
BEGIN "FOO"
'REQUIRE "[][]1" DELIMITERS;
DEFINE GARPLY=TRUE;
DEFINE '=«[COMMENT};
REQUIRE "BAZ.SAI" SOURCE_FILE;
REQUIRE "MUMBLE.SAI" SOURCE_FILE;

ENDC;

<rest of file>
END "FOO"

New file FOO.HDR:
IFCR NOT DECLARATION(GARPLY) THENC
BEGIN "FOO"
REQUIRE "[J[]" DELIMITERS;
DEFINE GARPLY=TRUE;
DEFINE '«{COMMENT);
REQUIRE "BAZ.SAI" SOURCE_FILE;
REQUIRE "MUMBLE.SAI" SOURCE_FILE;
ENDC;

Initial compilation:
.R SAIL
+FOO.INT[PRJ,PRG]«-FOO.HDR/X

SAVE ME!
SAV XSAlL

Now the command string
FOOFOO

will work both in the case of .R SAIL and in the
case .RU XSAIL.

160

SAIL

APPENDIX J

Procedure Implementation

When a procedure is entered it places three
words of control information on the run time
(P) stack. This "mark stack control packet"
contains pointers to the control packets for
the procedure’s dynamic and static parents.
Register F (’12) is set to point at this area.
This pointer is then used to access procedure
parameters and other "in stack" objects, such
as the local variables of a recursive procedure.
Many of the run-time routines (including the
string garbage collector) use rF to find vital
information. Therefore, THE USER MUST NOT
HARM REGISTER *12. If you wish to refer in
assembly language to a procedure parameter,
the safest way is name it, and let Sail do the
address arithmetic. (Similarly one may use the
ACCESS construct).

STACK FRAME
Shown here is the stack frame of a recursive
procedure.

L
: parameter 1
T oot estraersoosrrensrvornres
I S
: parameter n
I S
: 3 ret. addr
Torsoansornsenssteanosonnanrens
rF a3 s dynamic |ink
1 sproc desc t static fink
: old value of rSP H

start of recursive locals

(oid rF)

(rF of static
parent)

:
H
H
H
H
:
H
:
$
H
]
H
s

R R RN R I |

R R I A et

end of recursive locals t+«(rP points

:
[ ]
Jeeoreesvansseasasensseesaearset here after
:
!

start of Working storage i entry to a
teseesriritaetstaarrssrsessasd  PECUrSive
:  procedure)

DR N N R RN ]

If a formal parameter is a value parameter then



SAIL

the actual parameter value is kept on the stack.
If a formal parameter is a reference parameter,
then the address of the actual parameter is put
on the stack. Non-own string locals (to
recursive  procedures) and string value
parameters are kept on the string (SP = '16)
stack. The stack frame for a non-recursive
procedure is the same except that there are no
local variables on the stack. The stack frame
for a SIMPLE procedure consists only of the
parameters and the return address.

ACCESSING THINGS ON THE STACK

SIMPLE procedures access their parameters
relative to the top-of-stack pointers SP(for
strings) and P (for everything else). Thus the
the k’th (of n) string value parameter would be
accessed by

oP RC,2xk~-2%n(SP) ; (SP=’16)

and the j’th (of m) “arithmetic" -- i.e.,, not value
string -- parameter would be accessed by

oP RC, j-n-1(P) ; (P=?17)

Non-SIMPLE procedures use rF (register '12) as
a base for addressing parameters and recursive
locals. Thus the j'th parameter would be
accessed by :

oP RC, j=m=2 (rF)
or, in the case of a string, by

spoints at top of

;string stack when
;proc Was entered

op ACY, 2%k -2xm (ACX)

MOVE RCX,2(rF)

Similarly, recursive locals are addressed using
positive displacements from rF.

An up-level reference to a procedure’s parent
is made by executing the instruction

HRRZ2 AC, 1(rF) ;now AC points at
ystack frame of parent

and then using AC in the place of rF in the
access sequences above, iterating the process
if need be to get at one’s grandparent, or some
more distant lexical ancestor.

NOTE: When Sail compiled code needs to make
such an up-level reference it keeps track of

APPENDICES

any intermediate registers (called “display"
registers) that may have been loaded. Thus, if
you use several up-level references together,
you only pay once for setting up the "display",
unless some intervening procedure call or the
like should cause Sail to forget whatever was in
its accumulators. Note here that if a display
register is thrown away, there is no attempt to
save its value. At some future date this may be
done. It was felt, however, that the minimal
(usually zero) gain in speed was just not worth
the extra hair that this would entail.

ACTIONS IN THE PROLOGUE FOR NON-SIMPLE
PROCEDURES

The algorithm given here is that for a recursive
procedure being declared inside another
procedure. The examples show how it is
simplified when possible.

1. Pick up proc descriptor address.
2. Push old rF onto the stack.

3. Calculate static link. (a). Must loop
back through the static links to grab
it. (b). once calculated put together
with the PDA and put it on the
stack.

4, Push current rSP onto the stack.

5. Increment stack past locals & check
for overflow.

6. Zero out whatever you have to.
7. Set rF to point at the MSCP.
EXAMPLES:

1. A non-recursive entry (note: in this section
only cases where F is needed are considered).

PUSH  P,rF
SKIPR  AC,rF

MOVE  RC,1(RC)
HLRZ  TEMP,1(RC)
CAIE  TEMP,PPDA

3SAVE DYNRMIC LINK

;60 UP STATIC LINK
;LOOK AT PDA IN STACK
;1S IT THE SAME RS PARENTS

JRST  .-3 sNO
HRLI  AC,POA ;PICK UP PROC DESC
PUSH  P,RC ;SAVE STATIC LINK

PUSH  P,SP

HRRZI  rF,-2(P) ;NEW RF

In the case that the procedure is declared in

161



APPENDICES

the outer block we don’t need to worry about
the static link and the prologue can 00k like

PUSH  P,rF ;SAVE DYNANMIC LINK

PUSH P, [XWD PDR,8]  ;STATIC LINK WORD

PUSH  P,SP ;SAVE STRING STACK

HRRZI  rF,~2(P) ;NEW F REGISTER

2. Recursive entry -- i.e one with locals in the
stack.

PUSH  P,rF ;SAVE DYNAMIC LINK

SKIPA  AC,rF
MOVE RC, 1 (RC)

HLRZ  TENP, (AC)
CRIE  TENP,PPDA

;60 UP STRTIC LINK
;LOOK AT PDR IN STACK
;1S IT THE SAME AS PRRENTS

JRST -3 +NO

HRLI AC,POA ;PI1CK UP PROC DESC

PUSH P,AC ;SAVE STATIC LINK

PUSH P,SP

HRLZI  TEMP,1(P) ;

HRR1 TEMP,2(P) ;

ADD P, (XWD locals, locals] jcreate space for
CRIL P,8 jarith locals

<trigger pdl ov error>
SETZM -1 (TENP) ;zero out locals

BLT TEMP, (P) s

HRLZI TEMP, 1 (SP)

HRRI TEMP,2(SP)

ADO SP, [XHD 2% string locals,2% string locals]
CAIL SP,8 scheck for pdl ov

<cause pdl ov error>
SETZM  -1(TENP)

BLT TEMP, (5P)

HRRZ1I rF,- locals-3(P)

;zero out string locals

The BLT of zeros is replaced by repeated
pushes of zero if there are only a few locals.
Again, the loop is replaced by a simple push if
the procedure is declared in the outer block.

ACTIONS AT THE EPILOGUE FOR NON-SIMPLE
PROCEDURES

1. If returning a value, set it into 1 or
onto right spot in the string
stack.

2. Do any deallocations that need to be
made.

4. Restore rfF.

5. Roll back stack.

SAIL

6. Return either via POPJ P, or by
JRST @mumble(P)

EXAMPLES:

1. No parameters.

<step 1>

<step 2>

MOVE rF, (rF)

SuB P, [XHD M+3,M+3) ;M= # LOCAL VARS
POPJ P,

2. n string parameters, m other parameters, K
string  locals on stack, j other locals on stack.

<step 1>

<step 2>

MOVE rF, (rF)

SuB SP, [XHD 2xk+2%n,2%K+2%n)

SuB P, [XHD j+m+3, j+m+3] ;POP STACK
JRST em+1(P)

SIMPLE procedures are similar, except that rF is
never changed.

PROCEDURE DESCRIPTORS

Procedure descriptors are used by the storage
allocation system, the interpretive caller, BAIL,
and various other parts of Sail. They are not
put out for SIMPLE procedures. The entries are
shown as they are at the present time. No
promise is made that they will not be different
tomorrow. If you do not understand this page,
do not worry too much about it.

—

link for pd list
entry address
wordl of string for proc name
word2 of string for proc name
type info for procedure,sprout defaults
o string params¥2,# arith params+]
+ ss displ, » as displ
lexic iev,~=local var info
display level,~»=proc param stuff
10: pda,,0
11 pent at end of mksemt,parent’s pda
12: pent at prdec,loc for jrst exit
I 13:  type info for first argument,,0 (or +-default value)

Nowp bwn - O}

type info for last argument,,0 (or s~default value)
Ivie  byte (d)type(Q)lexical-level(23)location



SAIL

The type codes in the lvi (local variable info)
block are as follows:

type = O
type = |
type » 2
type » 3
type = 4
type = 5
type = 6

type = 7

type = 10
type = 11
type = 12
type = 17

end of procedure area

arith array

string array

set or list

sat or list array

foreach search control block

list of all processes dependent on

this block.

context

a cleanup to be executed
record pointer

record pointer array

" block boundary. Location gives base

location of parents block’s information.

local variable info for each block is organized

as

info for var

info for var
17,lev,loc of parant block bbw

BBNEXEC

Feldman

Frost

Harvey

JSYS
vanLehn
MonCom

Nauer

OSCMA

Petit

APPENDICES

REFERENCES

Bolt Beranek and Newman,

TENEX Executive Manual,
Cambridge, Massachusetts,
April 1973.

JA. Feldman and P.D. Rovner,
An  Algol-Based Associative
Language, CACM 12, 8 (August
1969), 439-449.

JA. Feldman, JR. Low, D.C.
Swinehart, and R.H.  Taylor,
Recent Developments in SAIL,
AFIPS FJCC 1972, 1193-1202.

M. Frost, UUO Manual (Second
Edition), Stanford  Artificial
Intelligence Laboratory
Operating Note 55.4 (July
1975).

B. Harvey (M. Frost, ed.),
Monitor Coramand Manual,
Stanford Artificial Intelligence
Laboratory Operating Note 54.5
(January 1976).

Bolt, Beranek, and Newman,
TENEX JSYS Manual, Cambridge,
Massachusetts, September
1973.

K. vanLehn, SAIL, SAILON 57.3,
(June 1973).

[Harvey], [BBNEXEC], [OSCMA]

P. Nauer (ed.), Revised Report
on the Algorithmic Language
ALGOL-60, CACM 6 (1963) 1-
17.

decsystem10 Operating System
Commands Manual DEC-10-
OSCMA-~A-D, Digital Equipment
Corporation, Maynard,
Massachusetts, May 1974.

P. Petit (R. Finkel, ed.), RAID

Manual, SAILON 58.2, (March
1975).

163



REFERENCES

Reiser

Savitzky

SmithN

SmithR

J.F. Reiser, BAIL--A Debugger
for SAIL, Stanford Artificial
Intelligence Laboratory Memo
AIM-270, Computer Science
Department Report STAN-CS-
75-523, October 1975.

S.R. Savitzky (L. Earnest, ed.)
Son of Stopgap, SAILON 50.3,
March 1971.

N. Smith, Sail Tutorial, Stanford
Aritifical intelligence
Laboratory Memo  AIM-290,
Computer Science Department
Report STAN-CS-76-575,
August 1976,

R. Smith, TENEX SAIL, Institute
for Mathematical Studies in the
Social Sciences T.R, 248,
Stanford University, January
1975.

Swinehart & Sproull D.C. Swinehart and R.F.

SysCall
TopHand

164

Sproull, SAIL, SAILON 57.2,
(January 1971).

[Frost), [JSYS], [TopHand]

decsysteml10 Assembly
Language Handbook DEC-10-
NRZC-D, Digital Equipment
Corporation, Maynard,
Massachusetts, 1973.

SAIL



SAIL

INDEX

A (AND) 26
- (NOT) 26
o in substrings 28
. 00, in list REMOVEs 90
n (INTERSECTION) 99
v (UNION) 99
v (OR) 26
GO 146
NGSTEP 146
NSTEP 146
% (integer or real division) 27
& (CONCATENATION), of strings 27
&, of lists 99
-, of sets 99
/ (real division) 27
<><2=# (RELATIONS) 26
?, Foreach itemvars 93
?, in Binding Booleans 91
?, Matching procedure formals 95

n (intersection) 97
U (union) 97
& (EQV) 150

_ERRJ_ 140

_ERRP_ 139

-SKIP_ 27, 33, 48, 44, 48, 50, 70, 71, 72, 73,
74,75, 76, 79, 81, 149

§CLASS 66
SRECS 66
SRECFN 66
SRECGC 66
$SPCAR 67

ABS 28

ACCESS 30

ACOS 51

ADJSP 134

AFTER 88, 89

algebraic variables 6
<algebraic_expression> 22
ALL 88, 90

allocation of variables and arrays 10
AND 26, 88, 150

ANSWER 112, 126

ANY 99

ANY_CLASS 64

INDEX

ANY, in Binding Boolean 91
ANY, in Derived Sets 92
ANY, in Erase statement 91
ANY, in Foreach 94

APPLY 115
<apply_construct> 114
ARG_LIST 114
<arg_list_specifier> 114
ARGS 144

Array element designation 128
<array_declaration> 3
<array_list> 3

<array_type> 83

Arrays, allocation 10

Arrays, as parameters 7
Arrays, declaration 6

Arrays, initialization and reinitialization 10
Arrays, outer block 5, 7
Arrays, OWN 6

Arrays, PRELOADed 7

Arrays, SAFE declaration 6
Arrays, storage convention 7
ARRBLT 51

ARRCLR 51

ARRINFO 50

ARRTRAN 51

ARRYIN 41, 69

ARRYOUT 41, 69

ASCIl 150

ASH 27

ASIN B1

ASKNTC 113, 126

ASND 71

ASSIGN 114
<assign_statement> 114
ASSIGNC 62

<assignc> 56

assignment expressions 25
Assignment statement, semantics 15
<assignment_expression> 22
<assignment_statement> 14
ASSOC 150

ASSOCIATIONS 86
Associations, ERASE 90
Associations, implementation 87
Associations, introduction 83
Associations, MAKE 90
Associations, searching for 91
associative booleans 100
associative context 93
Associative search 91
Associative search, controling hash 91

- associative search, relative speeds 95

associative searches, introduction 83
associative store 83, 86
Associative store, searching 91

165



INDEX

<associative_statement> 88
ATAN 5l

ATAN2 51

ATI 117

attribute 91

AUXCLR 43

AUXCLV 43

<backtracking_statement> 101

Backtracking, introduction 101

BACKUP 43

BAIL 141

BEFORE 88, 89

BIND 91

Binding Boolean 91, 100

Binding Booleans, general considerations 91

<binding_list> 88

BINDIT 99

BINDIT, in Binding Boolean 92

BINDIT, in Derived Sets 92

BINDIT, in Foreach 95

BINDIT, in Foreaches 93

BINDIT, in Matching Procedures 95

BKJFN 71

Block names 1, 140

<block> 1

Boolean Expression <element> 94

<boolean_expression> 22

Boolean, declaration 6

bound 91

Bracketed Triple item 90

Bracketed Triple Item Retrieval 90

Bracketed Triple Iltem retrieval 92

Bracketed Triple item retrieval, general
considerations 91

Bracketed Triple items, ERASE 91

BREAK 144

BREAKSET 36

BRKERS 124

BRKMAK 124

BRKOFF 124

BUCKETS 91

BUILT_IN 61

Byte pointers, creation 50

CALL 48, 80

CALLER 108

CALLI 48

CASE expressions 25
CASE statement 18
<case_expression> 22
<case_statement> 14
CASEC 60

CAUSE 110
<cause_statement> 110
CAUSE, <options> 110, 155

166

CAUSE, user defined procedures for 112
CAUSEL 112,126

Causing events, introduction 110
CFILE 70,71

character codes 150

CHARIN 71,79

CHAROUT 71,79

CHECK_TYPE 61

CHECKED 85, 89

Checked, formal parameters 86
CHECKED, in associative searches 91
Checked, itemvar procedures 86
Checked, type checking 99
CHFDB 71

CHNCDB 51

CHNIOR 43

CHNIOV 43

CHNTAB 120

CLEANUP 10
<cleanup_declaration> 4
CLKMOD 120

CLOSE 35, 69

CLOSF 70,71

CLOSIN 35, 69

CLOSO 35, 69

CLRBUF 43

CNDIR 81

CODE 48

<code_block> 29

comraand line 133
<command_line> 132

Comment 1

COMMENTS 130

compile time expressions 58
COMPILER_BANNER 62
COMPILER_SWITCHES 136
<compound_statement> 1
concatenation of lists 99
<cond_comp_statement> 56
conditional compilation 60
Conditional Statements, ambiguity 16
<conditional _expression> 22
<conditional _statement> 14
CONOK 61

Constants, arithmetic 129
Constants, octal 129

Constants, real 129

Constants, string 130
constructive item expressions 938
CONTEXT 101

Context elements 102
<context_declaration> 101
<context_element> 101
CONTINUE statement 19
Conversions, algebraic 23
COORD 144

SAIL



SAIL

COP 98, 125
coroutining with RESUMEs 108
COS 51

COSD 51
COSH 51
CPRINT B3
CTLOSW 79
CV6STR 47
CVASC 47
CVASTR 47
CVvD 46

CVE 47

CVF 47

CVFIL 50
CVvG 47

Cvl -87, 123
CVIS 100, 124
CVJFN 71
CVLIST 1283
CVMS 59, 60
CVN 87,123
CVO 46
CvOosS 46
CVPS B9

CVS 46
CVSET 123
CVS! 100, 124
CVSIX 47.
CVSTR 47
CVXSTR 47

DATUM 85, 89, 128
DATUM, type checking 99
DDT 140, 145
deallocation of variables and arrays 10
DECLARATION (a function) 61
<declaration> 3, 83
default parameters 7
DEFINE 56, 57, 59, 61, 145
<define> 56

DEFPRI 105

DEFPSS 105

DEFQNT 105

DEFSSS 105

DEL_PNAME 100, 124
DELETE 88, 90

DELF 71

delimited strings 58
delimited_anything 61
delimited_expr 61
Delimiters 57

DELIMITERS 57
oCuivilTERS, NULL B7
Delimiters, null 57

DELNF 72

DEPENDENTS 106

INDEX

Derived sets 99
Derived Sets, general considerations 91
<derived_set> 97
DEVST 72
DEVTYPE 72
DFCPKT 126
DFRIIN 117
DFRINT 118

DIRST 81 :
DISABLE 118

Dlv 27

DO statement 18
<do_statement> 14
DOC 56

DONE statement 18
CONTSAVE 111, 155
DPB 50

DRYROT 131, 138
DSKIN 72

DSKOP 71

DSKOUT 72

DT 117

DVCHR 72

EDFILE 49

EIR 120

<element_list> 88
<element> 88
<element>, Foreach 93
ELSE 14, 22

ELSEC 56

ENABLE 118

ENDC 56

ENTER 36, 69

ENTRY specification 12
EQU 47

EQV 27, 150
ERASE . 90

ERASE, in a Foreach 95
ERENAME 36

ERMSBF 49

error messages 138
error procedures 139
ERROR_MODES 138
ERSTR 72

EVALDEFINE 62
EVALREDEFINE 62
event notices 110
Event type items, datums of 112
event types 110
<eveni_statement> 110
EVENT_TYPE 111, 155
Events, introduction 110
EXP B2

EXPR_TYPE 62
<expression> 22

167



INDEX

EXTERNAL declaration 4, 13
EXTERNAL procedures 9, 12

FAIL 89, 95, 106

FALSE, definition 129

FILEINFO B0

FIRST 90, 125

tix (convert real to integer) 23

FIXR 24, 134

float (convert integer to real) 24

FLTR 24, 134

FOR (substringer) 23, 27

FOR statement 17

<for_statement> 14

FORC 60

FOREACH 88

Foreach <element>, Boolean Expression 94
Foreach <element>, List membership 93
Foreach <element>, Retrieval Triple 94
Foreach <element>, Set membership 93
Foreach <element>s 93

Foreach itemvars 92

Foreach searches, relative speeds 95
<foreach_statement> 88

FOREACH, execution of 93

FOREACH, general considerations 91
FOREACH, increase speed of 91
FOREACH, main discussion of 92
Foreach, Matching Procedure <element> 95
Foreach, satisfiers 93

FORGET 101, 102

FORLC 60

formal parameters, Leap 86

formals 7

FORTRAN procedures 9, 13, 20
FORTRAN, actual parameters 10
FORWARD declaration 4

FORWARD procedures 8

FROM 88

GDSTS 72

generation of symbols using macros 59
Gensym 59

GEQ 150

GETBREAK 38

GETCHAN 35, 69

GETFORMAT 46

GETPRINT 53

GETSTS 41, 69

GJINF 81

GLOBAL 86

GNJFN 72

Go To Statements, restrictions 16
GO TO, into a Foreach 92
<go_to_statement> 14

GOGTAB 49, 146

168

GTAD 81
GTFDB 73
GTJFN 73
GTJFNL 73
GTRPW 120
GTSTS 73
GTTYP 78

handler procedures, Record_class 66
HELP 145

18P 50

<id_list> 3

identifiers 129

IDPB BO

IDTIM 81

IF expressions 24

IF statement 15

<if_statement> 14

IFC 60

IFCR 61

iLDB 50

iLL MEM REF 131

ILLEGAL UUO 131

IN 88, 89, 150

IN_CONTEXT 61

INCHRS 43, 79

INCHRW 43, 79

INCHSL 43, 79

INCHWL 48, 79

INDEXFILE 73

INF 150

INIACS 50

initialization 10

INITIALIZATION 11

inner block 1

INOUT 41, 69

INPUT 39, 69, 79

INSTR 43, 79

INSTRL 43,79

INSTRS 44, 79

INT.._APR 154

INT..._INX 183

integer constants 129

Integers, range 6

INTER 150

INTERNAL declaration 4, 12

INTERNAL procedures 9

INTERROGATE 111

<interrogate_construct> 110

INTERROGATE, <options> 111, 155

INTERROGATE, set form of 111

INTERROGATE, user defined procedures
for 113

Interrupt codes 153

INTIN 42, 69, 79

SAIL



SAIL

INTMAP 118

INTPRO 122

INTRPT 107, 121

INTSCAN 42

INTSET 119

INTTBL 119

INTTY 79

IRUN 108, 155

ISTRIPLE 125

ITEM 84

item booleans 100
<item_expression> 97
<item_primary> 97
ITEM_START 86
<item_type> 83

Item, <typed_item_expression> 128
ltems & ltemvars, distinction between 85
ltems, ANY 99

ltems, BINDIT 99

items, Bracketed Triple 90
items, creation of 84

ltems, Datums of 85

ltems, declared 84

ltems, DELETE 90

tems, implementation 86
items, internal & external 85
ltems, internal &external 87
ltems, introduction 83
ltems, NEW 98

ltems, Pnames 100

ltems, props of 100

ltems, scope 84

Items, type checking 99
Iltems, type of 85

items, with array datums 85
ITEMVAR 85
<itemvar_type> 83

itemvars & ltems, distinction between 85
ltemvars, CHECKED 85
Itemvars, implementation 87
temvars, initialization 86
ltemvars, scope 86
ltemvars, type checking 85, 89
Itemvars, types of 85

JFNS 74
JENSL 74
JOIN 109

K_OUT 156
K_ZERO 156
KAFIX 24

KiFiX 24, 134
KILLME 108, 155
KPSITIME 121

Label use 5
<label_declaration> 3
Labels, as actual parameters 10
Labels, restrictions 16
LAND 27

LDB 50

leap booleans 100
LEAP_ARRAY 61
<leap_expression> 97
<leap_relational> 97
<leap_statement> 88

Leap, introduction 83
LENGTH 48, 125

LEQ 150

LET 10

letters, legal Sail letters 129
LEVTAB 120

LIBRARY 11

Library, runtime 33

LINOUT 40,69

LIST 86

list booleans 100

list element designator 128
List element designators 98
list expressions 89 .
List membership <element> 93
<list_expression> 97
<list_statement> 88

list, sublists 99

Lists, automatic conversion 89
lists, concatenation 99

lists, initialization 99

Lists, PUT 89

Lists,REMOVE 88

LISTX 125

LNOT 27

LOAD_MODULE 11
LOCATION 28

LODED 44

LOG b2

Logical expressions 27
LOOKUP 38, 69

loop block 19

LOP 48, 98, 125

LOR 27

LSH 27

Macro bodies 58

Macro bodies, concatenation in 59
macro body delimiters 57

macro declarations 57

Macro declarations, scope 58
macro parameter delimiters 57
<macro_body> 56

<macro_call> 56

Macros with parameters 59

INDEX

169



INDEX SAIL

Macros without parameters 57 OWN 5
MAKE 88, 90
MAKE, in a Foreach 95 Parameters, default values 7
Matching Procedures 95 parametric procedures 9
Matching procedures, as processes 106 PBIN 79
Matching Procedures, sharing memory 96 PBOUT 79
MAX 26 - PBTIN 79
MEMORY 28 ' PHI 99
MESSAGE 62 PMAP 81
MESSAGE procedures 86 ‘ Pnames 100
MIN 26 _ PNAMES 100
MKEVTT 110,123 POINT 50
MOD 27 POLL 107
MTAPE 41, 69 Polling points 107
MTOPR 74 POLLING_INTERVAL 107
MULTIN 113 . <preload_specification> 3
MYPROC 109 ' PRELOADed arrays 7

. PRESET_WITH 7
NEEDNEXT 19 PRINT 53
NEQ 150 Printnames of items 100
NEW 97, 98 PRIORITY 105(X)
NEW_ITEMS 98 PRIORITY(X) 154
NEW_PNAME 100, 124 PRISET 109
NEW_RECORD 65 Procedure body, emptiness 5
NEXT statement 19 Procedure Calls, actual parameters 20
NIL 99 Procedure Calls, semantics 19
No one to run 107 <procedure_cail> 15
NOJOY 112 <procedure_declaration> 3, 84
NOMAC 62 - <procedure_head> 4
NOPOLL 107 <procedure_type> 84
NOT 26, 150 Procedures, as actual parameters 20
NOTCQ 112 Procedures, assembly language 13
notice queue 110 Procedures, declaration 7
NOTNOW 108, 155 Procedures, defaults in declarations 9
NOW_SAFE 21 procedures, Leap 86
NOW_UNSAFE 21 Procedures, parametric 9
NULL DELIMITERS 57 Procedures, restrictions 10
null delimiters mode 57 Procedures, restrictions on formal
NULL_CONTEXT 102 parameters 7
NULL_RECORD 64, 65 Procedures, separately compiled 12
NULL, definition 130 procedures, user error 139

process item 104

object 91 process procedure 104
ODTIM 81 Process procedures, Matching 106
OF 18, 22 Process procedures, recursive 106
OFC 56 <process_statement> 104
OPEN 33, 69 Processes, control of scheduling 106
OPENF 74 processes, creation of 104
OPENFILE 74 Processes, dependency of 105
operator precedence 25 ' Processes, inside recursive procedures 105
OR 26, 150 PROCESSES, introduction 104
OUT 40, 69, 79 Processes, resumption of 108
QUTCHR 44,79 Processes, sharable memory 106
outer block 1 Processes, status of 104
QUTSTR 44,79 Processes, suspension of 108
OVERFLOW b2 Processes, termination of 107

170



SAIL

Program name, for DDT 1
PROPS 89, 100, 128, 129
PROTECT_ACS 30
Pseudo-teletype functions 44
PSIDISMS 121

PSIMAP 119

PSIRUNTM 121

PSOUT 79

PSTACK 105(X)
PSTACK(X) 154
PSTATUS 109

PTY.. 44

PUT 88, 89

QUANTUM 104(X)
QUANTUM(X) 154
question itemvars 95
QUICK_CODE 29 ‘

RAID 140

RAN 52

RCHPTR 75

RDSEG 81

ready 104

READYME 108, 155

real constants 129
REALIN 42, 69, 79

Reals, range 6
REALSCAN 42
RECORD_CLASS 64
RECORD_POINTER 64
RECURSIVE declaration 4
RECURSIVE procedures 8
REDEFINE 58
Reentering programs 137
REF_ITEM 114
<ref_item_construct> 114
REFERENCE 7, 9, 20
Reference items 114
RELBREAK 38

RELD 71

RELEASE 35, 69
REMEMBER 101, 102
REMOVE 88, 89
REMOVE, in Foreach 93
RENAME 36, 69
REPLACE_DELIMITERS 57
REQUIRE 11

REQUIRE - indexed by last word of the require

statement 62
<require_specification> 4
REQUIRES, list of 4
RESCHEDULE 111, 155
rescheduling of processes 106
RESERVED 61
Restarting programs 137

RESTORE 101, 102
RESUME 108

RESUME, <options> 155
RESUME, <return item> 108
RETAIN 111, 155

retrieval item expression 99
Retrieval Triple <element> 88, 94
RETURN 28

RETURN statement 18
RFBSZ 75

RFCOC 78

RFMOD 79

RFPTR 75

RGCOFF 66

RLJFN 75

RNAMF 75

ROT 27

RPGSW 137

RTIW 120

RUNME 105, 154

running 104

RUNPRG 82

RUNTM 82

RWDPTR 75

SAFE declaration 4
<safety_statement> 15
SAMEIV 125

satisfier group 93
SAY_WHICH 111,112, 155
SCAN 40

SCANC 40

SCHEDULE_ON_CLOCK_INTERRUPTS 121

scheduling of processes 106
SCHPTR 75

scope, of variables B
SDSTS 72

SECOND 90, 125
SEGMENT_FILE 11
SEGMENT_NAME 11
SET 86

set booleans 100
Set expressions 99
Set membership <element> 93
<set_expression> 97
<set_statement> 88
SETBREAK 38

SETC 150

SETCHAN 76

SETCP 112, 126
SETEDIT 78
SETFORMAT 46
SETINPUT 76

SETIP 113, 126
SETLEX 145

SETO 150

INDEX

171



INDEX SAIL

SETPL 40, 69 STSTS 73
SETPRINT 53 STTYP 78
Sets, automatic coercion 89 SUBSR 48
Sets, Derived Sets 99 SUBST 48
Sets, initialization 99 <substring_spec> 23
Sets, PUT 89 Substrings 27
Sets, REMOVE 89 <suc_fail_statement> 89
SETSCOPE 147 SUCCEED 89, 95, 106
SETSTS 41, 69 SUCH THAT 88, 150
SFCOC 78 SUSPEND 108
SFMOD 79 suspended 104
SFPTR 75 SUSPHIM 105, 154
SHORT 3, 4, 6, 24 SUSPME 105, 154
SHOW 145 ' SWAP 150
SIMPLE declaration 4 - Swap statement 15
simple expressions 25 <swap_statement> 14
SIMPLE procedures 8 SWDPTR 75 :
<simple_formal_type> 84 switches, in command lines 13
<simple_type> 83 symbols, automatic generation of 59
SIN 51 <synonym_declaration> 4
SIND 51 SYSTEM_PDL 11l
SINH Bl
SINI 76, 79 TANH 51
SIR 120 TELLALL 111, 155
SIZEF 76 TERMINATE 107
SNAIL commands 132 terminated 104
SOS representation 150 TEXT 145
SOURCE_FILE 11, 62 THAT 88
SPROUT 104 THEN 14, 15, 22
SPROUT DEFAULTS 105 THENC 56
<sprout_default_declaration> 104 THIRD 90, 125
SPROUT_DEFAULTS 104 time sharing with processes 120
<sprout_statement> 104 TMPIN 42, 69
SPROUT, <options> 104, 154 TMPOUT 42, 69
SQRT 52 TO 23,27
Stanford character set 150 TRACE 145

~ START_CODE 29 TRAPS 145
START_CODE, calling procedures from 31 TRIGINI 52
<statement> 1 Triple, Binding Boolean 91
STDBRK 39, 69 <triple> 88
STDEV 72 TRIPLES 86
STDIR 81 Triples, introduction 83
STEP 14 TRUE, definition 129
STEPC 56 TTYIN 44,79
STI 79 TTYINL 44,79
STIW 120 TTYINS 44, 79
storage reallocation 137 TTYUP 44,79
STPAR 79 type checking, itemvars 85
String constant, as comment 1 type conversions, algebraic - 23
string constants 130 <type_qualifier> 3
String descriptors 158 ' typed_item_expression 128
STRING_PDL 11 <typed_item_expression> 128
STRING_SPACE 11 . TYPEIT 123
String, declaration 6
STRINGSTACK 104(X) unbound 91
STRINGSTACK(X) 154 UNBREAK 146

172



SAIL

UNDELETE 76
UNION 150
UNSTACK_DELIMITERS 57
UNTIL 14, 18
UNTILC 56
UNTRACE 146
URSCHD 107
USERL 112
USER2 112
USERCON 48
USERERR 49
USETI 42, 69
USETO 42,70
UUOFIX 24

VALUE 7,9, 20

value 91

<variable> 128
variables 128
Variables, allocation 10
variables, initialization 10
variables, scope 5
VERSION 11, 12

WAIT 111, 1565

wait queue 110
WAITQ 112

WHILE 14

WHILE statement 17
<while_statement> 14
WHILEC 60

WORDIN 40, 70
WORDOUT 41, 70

XOR 27, 150

INDEX

173






Name: Mark Brown
Project: 1° Programmer: MRB
File Néme: SAIL.XGP[DOG,AIL]
File Last Written: 14:40 8 Feb 1971
Time: 1:19 Date: 31 Jul 1977
Stanford University
Artificial Intelligence Laboratory

Computer Science Department
Stanford, California



Sail Addendum ‘ | ’ New Features

SECTION 1

New Features

This section describes changes and additions to Sail since the August 1976 manual, AIM-289.

1.1 - Double Precision

Double precision floating-point arithmetic is available. Use the <type_qualifier> LONG in
declarations. For example,

LONG REAL X, Y, Z;

LONG REAL ARRAY XA[0:N];

Currently LONG has meaning only when it appears as part of LONG REAL. (At some future time
LONG INTEGERs may also exist.)

The runtime routines LREALIN and LREALSCAN operate the same as REALIN and REALSCAN,
- except for returning LONG REAL values. The routine CVEL takes a- LONG REAL value and
returns a string representation like that of GVE, except that "@@" is used to signily LONG when
‘delimiting the exponent. Any of "@", "@@", "E", or "D" are acceptable exponent delimiters to
LREALIN and LREALSCAN. -

Variables which are declared LONG REAL are represented in KI1@ hardware f[ormat double
precision, take two consecutive words of storage, and provide 62 bits of precision (approximately
18 decimal digits) to represent the fraction part of a [loating-point number. Regular REAL
variables occupy a single word and have 27 bits (8 decimal digits) of precision. The exponent
range of both REAL and LONG REAL variables is from -128 to 127, where 27127 is approximately
10738,

LONG REAL is a dominant type in arithmetic operations +-%/%% MAX MIN and arithmetic
relationals <>=#¢<3. Il one operand is LONG REAL then both operands will be converted to
LONG REAL (il necessary) before performing the operation. An exponentiation involving a LONG
REAL raised to a positive integer constant is an exception to this rule. The type coercion path is
linear: STRING & INTEGER « REAL © LONG REAL. Conversion from REAL to LONG REAL is
performed by assigning the (only) word of the REAL to the most significant word of the LONG
REAL and setting the second (least significant) word of the LONG REAL to zero. Conversion
from LONG REAL to REAL is by UUO which rounds.

Arithmetic and assignment operations are compiled into DFAD, DFSB, DFMP, DFDV, DMOVE,
DMOVEM instructions. The Sail operations ASH, LSH, ROT, LAND, LOR, EQV, XOR are



Sail Addendum New Features

performed on both words (ASHC, LSHC, ROTC, 2 ANDs, 2 IORs, ete.), LOCATION of a LONG
REAL variable gives an address E such that DMOVE AGC,E fetches the appropriate words of
memory. When passed by value as an actual parameter to a procedure, both words are placed on
the P stack: PUSH P,X e PUSH P,X+1. LONG REAL fields in record classes are handled much
like STRING fields, except that the address in the record field points to the first word of a 2-
word block (rather than to the second word as in the case with STRINGs).

LONG REAL ARRAYs are stored as contiguous blocks of 2-word values. ARRTRAN done on two
LONG REAL arrays is a transparent operation, but for ARRYIN, ARRYOUT, or ARRBLT the
actual word count is specified; think about whether you should multiply by 2! At runtime the
. array descriptor for a LONG ARRAY has bit. 12 (40,0 bit) set in MULT(n), the multiplier for the
last dimension (which would otherwise be =1). Similarly, a LONG ARRAY is allocated by setting
bit 12 (40,,0) bit in the parameter which specilies the number of dimensions to ARMAK.

Runtime support for LEAP items with LONG REAL datums does not yet exist, although the
compiler does generate suitable code. Runtime support for double precision exponentiation is also
limited for the moment. Any exponentiation XTK where K is a positive integer constant is
compiled inline using the binary ("Russian peasant") method, regardless of the type of X. Other
exponentiations involving LONG REALs are merely translated into procedure calls on

LONG REAL PROCEDURE DPOW (INTEGER EXPONENT; LONG REAL BASE);
LONG REAL PROCEDURE DLOGS (LONG REAL EXPONENT, BASE);

depending on the type of the exponent. The Sail runtime system does not yet contain such
procedures, so you will have to roll your own.

1.2 - Declarations and Scope

Sail declarations must occur before use. For example, in the following program the argument to
PRINT is interpreted as the K on line 2, even though by the ALGOL60 notion of scope |t should
be interpreted as the K on line 5.

BEGIN "FOO" v

INTEGER K; COMMENT this is line 2;
BEGIN "RUB" '
PROCEDURE BAR; BEGIN PRINT(K) END;
INTEGER K;  COMMENT this is line 5;
<statements>
END "RUB"

END "FOO"



Sail Addendum _ : New Features
1.3 - T'wo-character Operators

The compiler now recognizes "¥x" for "t", "=" for "¢", "<=" for "<", and ">=" for "3>".

14 - Requires

REQUIRE OVERLAP_OK; will suppress the message which occurs at initialization when two
programs have declared items.

REQUIRE VERIFY_DATUMS; causes the compiler to generate three additional instructions for
each DATUM reference, to make sure (dynamically, at run time) that the type of the item in the
- DATUM construct is the same as the compiler expected. This is similar to (the unimplimented

effect of) declaring all itemvars CHECKED. It is planned that VERIFY_DATUMS will soon be a
bit in the /A switch and that the corresponding REQUIRE will disappear.

REQUIRE PROCESSES; insures that MAINPR, the main process, is initialized. You need not
‘specify this REQUIRE if you use APPLY or SPROUT, but if the only use of processes is via
INTSET then you must REQUIRE PROCESSES;.

- CASE statement

In an explicitly numbered CASE statement the word ELSE can appear where a bracketed case
number is normally used. The statement following the ELSE is a catch-all for any case number
not mentioned, including anything which would otherwise generate a CASE index error. For
example,

CASE X OF BEGIN [3] J3; ELSE Je4; [5] J&5 END
is another way of accomplishing

IF K=3 THEN J«3
ELSE IF K=5 THEN J&5
ELSE J«4

A CASE statement containing an ELSE case does not generate a call to the CSERR runtime
routine, and in addition the Jump table usually contains only max_case - min_case +1 words (rather
than max_case +1).



Sail Addendum ’ - New Features
16 - Circular RECORD_CLASSes

~ v
To define two record classes, both of which contain RECORD_POINTER fields refe.r/ng to the

other class, say

FORWARD RECORD_CLASS BAR (RECORD_POINTER (ANY_CLASS) Q2);
RECORD_CLASS FOO (RECORD_POINTER (BAR) QL);
RECORD_CLASS BAR (RECORD_POINTER (FOO) Q2);

In general, declare one class to be FORWARD and list its RECORD_POINTER fields as pointers
to ANY_CLASS. This breaks the circularity and allows maximum compile-time type checking.



Sail Addendum , Documentation Errors

SECTION 2

Documentation Errors

This is a list of known bugs in the August 19'76 Sail manual, AIM-289.

PAGE DESCRIPTION
abstr. "varaiables" is a misspelling [JFR 10-22-76]

~iiiL  no period after LEAP (line 6 ol? paragraph)  [LES 10-22-76]
‘162L  "i.e" in the line "2, Reéursi"/e entry" [JFR 10-23-76]

IR "Nauer" for "Naur" (also References) [JFR 11-2-76]
22L,26L "disjunct" - "conjunct" [JMC 11-12-76]

3L line 8 %its" 5 "ics" . [IMC 11-13-76]

162R  The word PDA+13 contains something other than indicated.
The parameter descriptor words actually start at PDA+'14,

but the way to find them is to follow the pointer in
the right hall of PDA+7. . [JFR 12-9-76]

9L Another restriction on SIMPLE procedures: They should not do
up-level addressing themselves (in addition to point 4.) unless
the user really understands what is going on with the stack.
It is possible to "screw up" without complaints from the compiler.
SIMPLE ought to mean."l know what 1.am doing, so let me do it.".
[JFR/DON 12-xx-176) ;

S6L  CRLF="(15 & ’12)", not 12 & ’15 f[JFR 1-15-71]
10R It should be made clear that LET A=B; works even if
A is a reserved word, In particular, LET DEFINE=REDEFINE;
Also note that B can be any reserved
word except COMMENT. [COMMENT ALWAYS means "ignore through
the next semicolon".]
4R POLLING_POINTS is not a valid <require_spec> [WFW 1-21-17]
S0R  In FILEINFO, hidate2 occupies 3 bits  [JFR 2-3-17]

1591 CHNGCDB and FILEINFO are defined everywhere except TENEX. [JFR 2-3-77]



TENEX SAIL - ' . . Page 2

2 Operation of TENEX SAIL

2.1 The Source Code

The intent of TENEX SAIL is to make basically no changes in the structure of the language.
Thus, all features are the same across systems. Source code differences are limited to:

(1) START!'CODE and QUICK!'CODE: the DEC uuo's (CALLIL, LOOKUP etc.) are not
available in TENEX SAIL. In their place are the JSYSes. Each TENEYX site can easily construct
its own JSYS table from the standard TENEX file <SUBSYS>STENEX.MAC (or .FAD using a
utility program MAKTAB.TNX. Details of this are (to be) in TELLEM, the implementer’s guide.

(2) REQUIRE SOURCE'FILE: the name of the SOURCE'FILE may be either a TENEX
file descriptor or a pseudo-DEC. descriptor, i.e, any of the following:

<SMITH>FO0C0000, BAZ; 3
FOOONO00.BAZ [SM, | TH)
FOODO000D.BAZ; 31SM, I TH)

If the sourcelfile is not found, the user can give the name from the terminal.

(2) REQUIRE LOAD'MODULE and REQUIRE LIBRARY specifications. Note that the
LOAD!MODULE and LIBRARY names must be passed to the loader, in compatibility format,
and hence the name field must be limited to six characters, and the extension field to 3. (The
extension is usually .REL.) '

For the directory (or PPN) field, most TENEYX sites have the strange BBN convention that
the PPN field is of the form

(8,DIRNOD)

where DIRNO is the number of the user's directory. Rather than perpetuate this error, TENEX
SAILL translates the directory (or PPN field) into the number to be passed to the loader. Hence,

<SMITH>RELFIL
RELFILISM, I TH)

are passed to the loader with the PPN field converted to the directory number,

A few sites (e.g., IMSSS) have used sixbit PPN's with their 10/50 emulator, so that DEC
cusps do a reasonable thing. For these sites, TENEX SAIL also does the right thing, under
conditional compilation of the sources. '

(4) The additional runtime routines described in this document are defined to the compiler
in TENEX SAIL. For those users desiring to write programs that conditionally compile according
to whether or not the site is a TENEX installation, some compile-time test such as

IFC NOT DECLARATION(GTJFN) THENC ....



Compiler Command Language Page 3

will work, since GTJFN is not defined in DEC SAIL.

2.2 Compiler Command Language

The command language 1o the compiler 1s the most different thing about TENEX SAIL. It
has been redesigned to look like a BBN style TENEX program.

When you say
@SAIL

it prints back
TENEX SAIL 8.1 1-18-75 (? for help)

*

The "8.1" is the version number and it is followed by the compiler creation date.
The asterisk is the top command level. Two asterisks are for subcommand level.

At any point that TENEX SAIL requests a command or subcommand, the following are
legal:

? - options available at this level
contro!-Q :

quit
controi-U

restart

A command is basically a list of files to be compiled as a concatenated source stream. File name
- recognition is available, and the default extension is SAL

Devices available are TTY:, DSK: and DT An.. Other devices do not currently work in the
- compiler (although they work in the runtime routines described later) Device names are NOT
"sticky”, as they are in DEC SAIL, and the default device is always DSI:. If the device is TTY:,
then a bare control-Z terminates input. Editing is available with control-X (delete the current line)
control-R (retype the current line) and either control-A or rubout {(delete a character),

The assumption is made that the user wants to compile his file(s) into a .REL file with the
same name as the first file. (Note that the standard DEC cusp specification

FOO~FOO

is usually redundant.) If the user begins his command with a left arrow, no binary file is made.
The name of the .REL file can be changed by a subcommand. Also, the listing file and the
switches are subcommands.



TENEX SAIL Operation of TENEX SAIL Page 4

- The following is a BNF definition of the command language, with the semantics foll&xwing
the semicolon. <FILE> 1s a TENEX file specification (done by GT JFN with recognition), and <cr>
is a carriage return. : :

<COMMAND>::=  <FILELISTs><crs icompile files in <FILELfST>
<COMMAND>::= <FILELIST>, <cr»> scompile, subcommand mode

<COMMAND>::= <FILELIST>e scompile, load with DDT
: o sif available
<COMMAND>::= <FILELIST>,« icompile, subcommand, load
swith ODT if available
<COMMAND>: : = «<FILELIST> tcompile, no .REL file
<FILELIST>::= <FILE>
= <FILE>,<FILELIST>

<FILELIST>:

After giving the command, if subcommand level was requested, the compiler prints

XK

to indicate subcommand level. The subcommand syntax is

<SUB>::= <cr»> : thare carriage return to
istart compilation
<SUB>: 3= <control-R> scontrol-R -- ,REL file.
: ispecification via GTJFN
<SUB>;:= <control-L»> +.LST specification to GTJFN
<SUB>:1= / <SWITCH> - isome swWitch

Valid suitches are:

load after compilation, exiting to the EXEC

load with 00T

double parse stack

cref listing (listing filename must be specified first!!)
double define pdl ~
doubble system pdl

double string pdl

sharable compilation (default on TENEX)

non-charable compilation

Kount feature

<NUM>B BAIL features

<NUM>S  string space

<NUM>F  listing format

R=IOQOUOOD~HO

[See Sec. 19.3 of [3] for a more detailed
description of these suitches.)

Additional debugging features for the compiler hacker are available as subcommands if the
compiler is a debugging version.



Loading SAIL Programs Page 5

2.3 Loading SAIL Programs

The loader interfaces are available at IMSSS, and dvaxlable at other TEN EX sites provided
the TMPCOR feature exists in the emulator.

To load a SAIL program, the main trick is to load the "SAILOW" file first. In TENEX, the
name of this file (to the loader) is "SYS:LOWTSA.REL", where "SYS:" is whatever directory the
emulator recognizes as such (this is now usually <SUBSYS>). Thus, the following are some

reasonable command strings to LOADER (where §" is an altmode):

SYS: LOWTSA,DSK: FOOS s load program FOO
SYS:LOWTSA, DSK:FOO, BAZS ; load programs FOO and BAZ

SYS:LOWTSA, /TDSK: FOO$ i load nith DOT

At sites where LINKI0 is available, (such as SUMEX and PARC) it is strongly
recommended to load with LINK 10. A sample command sequence would be:

eLINK1G -

*SYS: LOWTSA sload crucial file firstl!
*DSK: FOO iprogram foo

*/G _ sexit to the EXEC

LINK 10 is considerably faster than LOADER; further, BBN has apparently straightened out the
problems of the state of the core image at the end of the loading process in LINK 10 running on
version 1.31 of TENEX. In LOADER, there are several hassles pertaining to the state of the PSI
system and the emulator. Warning: LINKI10 may not work with some versions of DEC
FORTRAN if the SAIL program calls FORTRAN subroutines.

2.4 Editor Interfaces

Interfaces to all editors are in the IMSSS version only. "T" gets the "best” editor for
whatever terminal you are on, "E" gets STOPGAP. At IMSSS, the editor interfaces are currently
limited to 6-character names and 2-character extensions, with no version specification.

g

2.5 Co;npilér Error Handling

The error handler works as in DEC SAIL. Logging features are available, with the default
name FILE.LOG, where FILE is the (first) source name. In specifying the log file name from the
terminal, GT JFN is used with recognition.

The Stanford escape-1 interrupt (to reset the error handler) is implemented with a TENEX
pseudo-mtenupt on the character control-H. (Control-l would have been a bad choice since that
character is a TAB.) Typing a control-H resets the error handler when it has been put into auto-
continue mode.



	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	_Feb77addendum_00
	_Feb77addendum_01
	_Feb77addendum_02
	_Feb77addendum_03
	_Feb77addendum_04
	_Feb77addendum_05
	_tenex_02
	_tenex_03
	_tenex_04
	_tenex_05

