STANFORD ARTIFICTAL INTELLIGENCE PROJECT
OPERATING NOTE No. 57

SATIL

by

Dan Swinehart
and
Bob Sproull

STANFORD ARTIFICIAL INTELLIGENCE PROJECT November, 1969
OPERATING NOTE No, 57

SALL
by
Dan Swlnehart
and
Bob Sproul|

ABSTRACT: SAIL Is a high~|evel| programming system for the
PDP-13 computer, It includes an extended ALGOL compiier
and a companlon set of executlon=time routlines, The

" reasonably standard ALGOL 68 compliler |s extended to
provide facllities for describing manipulations of an
associative data structure, This structure contains
Information about ITEMS, stored as unordered collections
of ltems (sets) or as ordered triples of Items
(assoclatlions), The algebralc capabilltlies of the
language are |inked to the assoclative capablilities by
means of the DATUM operator, whlich can assoclate wlth any
ITEM an algebralc datum,

The work reported here was supported In part by the Advanced Research
Projects Agency of the Department of Defense under Contract SD=-183.

SAILON NO, 57
TABLE OF CONTENTS

CONTENT

SECTION 1-=INTRODUCTION

SECTION 2-=-PROGRAMS, BLOCKS, STATEMENTS
SYNTAYX
EXAMPLES
SEMANTICS
Declaratlions
Statements
Block Names
Entry Specificatlons

SECTION 3-~DECLARATIONS
SYNTAX
RESTRICTIONS
EXAMPLES
SEMANTICS
Scope of declarations
Type Declarations
Numerlc Declarations
String Declaratlions
Item Declarations
[tems
Item Gepesis
Datums
Itemvar Declarations
Set Declarations
Array Declarations
Preload Speciflicatlions
Procedure Decjaratlions
Formal| Parameters
Forward Procedure Declarations
Recursive Procedures
External Procedures
Parametric Procedures
Defaults In Procedure Declarations
Restrictions on Procedure Declaratlions
Define Specification
Reaulrements

SECTION 4~-ASSIGNMENT STATEMENTS

SATL

PARAGRAPH

SAILON NO, 57 SATL
SYNTAX 4« 1
RESTRICTION 4o 2
SEMANTICS 4« 3

Datum Assignments 4= 7
Swap Asslgnment 4« 8

SECTION 5--EXECUTION CONTROL STATEMENTS
SYNTAX 5« 1
SEMANTICS 5« 2

Conditlional Statements 5« 2
If Statement 5« 4
If ,.,. Else Statement 5« 5
Amblgulty In Conditlonal Statements S5« 6

Go To Statements 5= 8

For Statements 5«11

While Statement 5«16

Do Statement 5=17

Case Statements 5«18

Return Statement 5«19

Done Statement 5w23

Next Statement 5=25

SECTION 6=-PROCEDURE STATEMENTS
SYNTAX 6= 1
SEMANTICS 6= 2

Actua| Parameters 6= 4

Call by Vajue 6= 5

Call by Reference b= 6

Procsdures as Actua| Parameters 6=10

Fortran Procedures 6-12

Implementation Detalils 6~15

Examples: 6=-16

SECTION 7=« FEAP STATEMENTS
SYNTAX 7= 1
SEMANTICS 7= 2

LEAP Introduction 7= 2

General Restrictlons 7«7

Construction « Retrjeva| Distinction 7~ 8

PUT and REMOVE 7= 9

DELETE 7=19

MAKE 7-11

ERASE 7-13

FOREACH Statement 7-14
Restrictions and Caveats 7-21

SECTION 8--ALGEBRAIC EXPRESSIONS
SYNTAX 8-
SEMANTICS 8-

SAILON NO, 57 SATL

Condltlonal Expressions 8- 2
Example 8- 3
Assignment Expressions 8- 4
Example 8- 5
Case Expresslions 8~ 6
Example 8- 8
Simple Expresslions 8~ O
The Boolean Expression Anomaly 8«10
Precedence of Algebraic Operators 8=14
Algebralc Expressions 8~-16
DisJunctive Expressions 8«19
Relatlional Expresslons 8§-20
Arithmetic Type Conversions 8-22
String=Arithmetic Converslons 8«27
Adding Expresslons 8-29
Terms 8-32
Concatenatlion Operator 8«37
Factors 8-38
Primaries 8=39
Variables and constants 8=~442
Substrings 8=-41
Functlion Deslignators 8=42
Length 8~45
lLop 8=46
cvn 8=47
Lnot 8-48
Abs 8=49
Unary Minus) 8=52
Boolean Primarles 8=51

SECTION 9--SET AND ASSOCIATIVE EXPRESSIONS

SYNTAX S~ 1

SEMANTICS 9« 2
Set Expressions 9= 2
Set Primarles 9~ 3
Item Constructs 9« 4
Item selectors 9~ 5
NEW ltems 9= 6
ANY Construct : 9« 7
Cvl . 9~ 8
LEAP Booleans 9~ 9

SECTION 1p--BASIC CONSTRUCTS

SYNTAX 12~ 1

SEMANTICS v 12=- 2
Variables 10- 2
Datums 1¢- 6
Identifliers 10= 7

sal] Reserved Words 12-10

SAILON NC, 57

Sall Predeclared Identiflers

Arithmetic Constants
String Constants
Exemples

Comments

SECTION 11--EXECUTION TIME ROUTINES
GENERAL

Scope
Notatione| Conventions
Example

[/p RoUTINES

Open

Close, Closin, Closo
Getchan

Release

Lookup, Enter
Rename

Breakset

Setbreak

Stdbrk

" Input

Scan

Out

Linout

Wordin

Arryln

Wordout

Arryout

Mtape

Usetl, Useto
Realln, Intln
Realscan,; Intscan
Teletype 1/0 Functions

STRING MANIPULATION ROUTINES

Length
Equ

TYPE CQNVERSIQN RQUTINES

Setformat
Getformat
Cvs

Cvos

Cvis

Cvsi

Cve, Cvf, Cvg
Cvstr
Cvxstr
Cvd

Cvo

SAIL

12=-11
12-13
12~-16
10-19
12-21

11-
11-
11-
11-
11-
11-
11-12
11-12
11-14
11-18
11-22
11-23
11~36
11-38
11-41
11-44
11-46
11-47
11-49
11-51
11-54
11-56
11~58
11-60
1162
11-67
11-69
11=71
11-71
11-73
11-75
11-75
11-78
11-82
11-82
11~84
11-36
11-88
1193
11-95
11-97
11-99

(0NN ¢ NV NN N g o

SAILON NO, 57

Cvasc
Cvsix
Cvfll
ARRAY MANIPULATION ROUTINES
Arrinfo
Areblt
Arrtran
LIBERATION-FROM~-SAIL ROUTINES
Code
Call
Usererr

SECTION 12--USE OF DEFINE
Defining Macros
String Constants in Macro Bodles
Using Macros
Macro Parameters
Exampile
Actua| Parameter Expanslion
Examples

SECTION 13~-~COMPILER OPERATION
COMMAND FORMAT
Semantics
Rpg Mode
Switches
Debuggling modes
ERROR MESSAGES
STORAGE ALLOCATION

SECTION 14--PROGRAM OPERATION
LOADING AND STARTING SAIL PROGRAMS
Loadling

Space Allocation, Normal Operation

ERROR MESSAGES
DEBUGGING
Symbols
Blocks
Sal|~Generated Symbols
Warnings
Hanging Store
Long Names

SECTION 15--PROGRAM STRUCTURE
THE SAIL CORrRE IMAGE (REQUIRED)
Maln Program

Storage Allocatlon, Raslic Utiiitles

Other Execution-TIme Routines
OPTIONAL ADDITIONS

SAIL

11-101
11-103
11-105
11-107
11-107
11-129
11-111
11~113
11-113
11-115
11-117

[y
U
]

NO BN

SAILON NO, 57

Separately Complled Procedures
‘Fortran Procedures

Assembly Lanyuage Procedures
Others

SECTION 16~=IMPLEMENTATION INFORMATION
STORAGE LAYOUT
User Table
Storage A|jlocgtlion Routines
Corget
Correl
Corline
Canineg
STRINGS
string Descriptors
String Operations
Cat
Substr
Geteh
Putch
String Space
" Parameters Used by String Operations
String Garbage Collection
String=0Oriented Machline Language Routines
ARRAY IMPLEMENTATION
Form
Explanation
Array Allocatlion
Dynamic Arrays
Bulilt=In Arrays
Array Access Code
PROCEDURE IMPLEMENTATION
Procedure Body
Discusslon) ‘
Procedure Calllng Sequences
Discussion

SECTION 17~-=APPENDIX =~ USEFUL SUMMARIES
ARITHMETIC TYpE-CONVERSION TABLE
SAIL RESERVED WORDS
SAIL PREDECLARED IDENTIFIERS
CHARACTER-IDENTIFIER EQUIVALENCES
PARAMETERS TO THE OPEN FUNCTION
BREAKSET MODES
MTAPE COMMANDS
COMMAND SWITCHES
DEBUGGING MODES
VALID RESPONSES TO ERROR MESSAGES

SAIL

15- 7
S 15-11
15-12
15-13

16- 1
16- 1
16- 5
16~ 6
16-12
16-11
16-12
16-14
16-14
16-19
16=20
16-21
16=25
16=26
16-27
16=29
16-30
16-31
16~33
16+33
16+34
16-35
16-35
16-38
16-42
16-46
16-47
16-48
16-49
16-50

17~
17~
17~
17~
17~
17~
17~
17~
17~
17-10

VOO NONVI D GWIN

SAILON NO, 57 SAIL
SECTION 18--BIBLIOGRAPHY

SAILON NO, 57 SAIL
SECTION 1
INTRODUCTION

1=-1, SAIL is a hlah-level oprogramming system for the PDP-10
computer, It Includes an extended ALGOL complier and a companion set
of execution-time routines, The reasonably standard ALGOL 64
compller s extended to provide facilitles for describling
manipulations of an assocliatlve data structure, Thls structure
contains information about ITEMS, stored as unordered collections of
lters (sets) or as ordered triples of Items (associations), The

alaebraic capabl|ities of the language are Ilinked to the assoclative
canablllties by means of the DATUM operator, which can associate with
any ITEM an alaebralc datum,

1-2, Several forerunners (namely tne GOGOL compllers developed at
the Stanford Artifigcial Intelllgence Project) have contributed to the
general appearance of the non-assocliative portlons of the SAIL
langua®e, The assoclative data structure 1is a slightly reworked
verslon of the LEAP Janguage, whlich was designed by J. Feldman and

P, Rovner, and Implemented on Lincoin Laboratory’s TX=2, This
language Is described In some detall In an article entit|led "An
Algol=Based Assoclative Language" In the August, 1969 Issue of the
ACM Cemmunlcations (Feldman], The |[mplementation was modifled to

tolerate the non-paging environment of the PDP-14,

1-3, SAIL In a sense has something for everyone, For those Wwho
think im ALGOL, SAIL has ALGOL, For those who want the most from the
PDP-1@ and the time-sharing system, SAIL allows flexiblie |inking to

hand=-coded machlne J|anguage programs, For those who have complex
Input/output requlirements, the language provides complete access to
the 1/0 facllities of the PDP-1Q system. For those who asplire to
speed, SAIL generates falrly good code, The user should, however, be
warned that SAIL falls several man-decades short of the extenslive
testing and optimization efforts contalned In the historles of most
commerciel! compilers,

D, Swinehart
R, Sproull
November, 1969

SAILON NG, 57

SYNTAX

2"1 .
<programr>
<block>
<block_head>

<compound_tall>

{statement>

<compound_statement>

SAIL
SECTION 2

PROGRAMS, BLOCKS, STATEMENTS

v we

*e ee ow

se se se

es oo

®e ®e e% s se Gw 66 86 TS se e b 6 s 9 eV B =2 e

oe e

ve se oo
n o H

e oo oo se 8 es s e se e

vs e o2 ve s 52 ee as e

se

se oo
fon

<bjlock>
<entry_speciflication> <block>

<block_head> ; <compound_tall|>

BEGIN <declaration>
BEGIN <block_name> <declaratlon>
<block_head> ; <declaration>

<{statement> END
{statement> END <block_name>
{statement> ; <compound_tall|>

<block>

{compound_statement>
<asslgnment>
<conditlonal_statement>
<If_statement>
<go_to_statement>
<for_statement>
<whlle_statement>
<do_statement>
{case_statement>
<return_statement)>
<done_statement>
<next_statement>
<leap_statement>
<procedure_statement>
<define_specification>
<string_constant> <{statement>
<label_ldentifler> i <{statementd
<empty>

BEGIN <eompound_tall>)
BEGIN <bjlock_named> <compound_tal|>

2=1

SAILON NO, 57 SAIL 22

<block_name> ti= <string_constant>
<entry_specl!fication> ti= ENTRY <jd_|ist>
EXAMPLES

2=2,

Glvens

S Is a statement,

Sc Is a Compound Statement,
D is a Declaration,

B Is a Block,

Then!
(Se) BEGIN S3 S; S; ... 3 S END
(Se) BEGIN "SORT"™ S; S; ... S END
(B) BEGIN D; D3 D3 ,.. 35 S S; S; ... : S END
(B) BEGIN "ENTER NEW INFO» D3 D o4 3 5 +.. 38 END
are syntactically valid SAIL constructs,
SEMANTICS

Decliaratlons

2=-3, SAIL programs are organized In the traditlonal bilogk
structure of ALGOL~60,

?2=4, Declaratlions serve to defline the data types ana dimensions of
simple and subscripted (array) varlables (arlithmetic variables,
strings, sets, and ltems), They are also used to descrihe procedures
(subroutines) and name oprogram |abels, The DEFINE construct (see
DECLARATIONS, 3-1, USE ©OF DEFINE, 12-0) may also appear In
declaratlons,

2=5, Any identifler referred to In a program must be desgribed In
some declaration, An ldentifler may on|y be referenced by statements
within the scope (see Scope of declarations, 3-8) of its declaration.

SAILON nNO, 57 SAIL 2=3

Statements

2=6, As In ALGOL, the statement 1Is the fundamental wunit of
operation In the SAIL tanguage, Since a statement within a block or
compound statement may |tse|f be a bjock or compound statement, the
concept of statement must be understood recursively.

2=7, This definltion of a block as a statement has virtues other
than 1Its syntactic niceness, In many ways a block behaves as a
single complex statement; most Importantiy, no transfers (Jumps) may
be made from outside a block to any statement wlthin [t except the
first, Thls assures proper allocation and Initlallzation of the data
space for the block,

2-8, The block representing the nrogram 1Is known as the
"outer block"”, All blocks Internal to this one will bhe referred to
as "lnner blocks",

Block Names

2=9, The block mname construct s wused to describhe the block
structure of a SAIL program to a symbollc debuggling routine (see
DEBYGGING, 14-8), The name of the outer block becomes the title of
the blnary output flle (not necesarlly the flle name), In addition,
I1f a block name |s used fo|lowlng an END, the compiler compares It
with the bloeck name which followed the corresponding BEGIN, A
mismateh Is reported to the user as evidence of a missing (extra)
REGIN or END somewhere.

2-10, The <string_constant)> <statement> construct is equivalent In
action to the <statement> alonre; that Is, the string constant serves
only as a comment,

Entry Speclflcations

2=11, See Separately Compiled Procedures, 15-7,

SATLON NO, 57

SYNTAX
3-1,

<id_IllIst>

{declaration>

{type>

<algebralc_type>

<{leap_type>

% ws 89 es ea oo se

e ®® o8 ev se se es s

se ®® ss we

se ws

e e oo ee ee es se e

se eo» oo oe e e oo
f®Houn uun uan

ee ee

wnuu

uun

SAIL
SECTION 3

DECLARATIONS

<ldentifler>
<ldentifier> , <id_list>

{type_declaration>
<array_declaration>
<preload_speclification>
{label_declaration>
<procedure_declaration>
<define_speclificatlion>
{reaqulrement>

{algebralc_type>
{leap_type>
<a|gebrajc_type> <leap_type>

<al|gebralc_type> ARRAY <leap_type>

SET

SET <leap_type>

SET ARRAY <leap_type>
Ctype_qualifler> <type>

REAL
INTEGER
BOOLEAN
STRING

ITEM
[TEMVAR

SAILON NO, 57 SAIL " 32

EXTERNAL
INTERNAL
SAFE
FORWARD
RECURSIVE
FORTRAN
GLOBAL

<type_quaijlfier>

®® se 20 0 =% s8¢ e
e se ea we oo e e
0o n u o

..
e
n

<type_declaratlion> {type> <ld_1ist>

{type> ARRAY <array_|list>

ey

{array_ceclaration>

array_IIst> array_segment>

<array_IlIst> , <array_segment>

e we
oe se
L1 1]

<array_segment> <td_IllIst> [<bound_palr_Il1ist>]

<pbound_pair_|ist> <bound_palr>

<bound_palr_IlIst> <bound_palr>

s e

ee oe
N I i

.o
e
]

<bound_pair> <lower_bound> ¢ <upper_bound>

<lower_bound> = <algehralc_expression>

-
.
]

{unper_bound> = <algebralc_expression>

<preload_specification> :1:= PRELOAD_WITH <preload_Ilist>

<preload_ejlement>
<preload_Il1st> , <preload_element>

<preload_|Ist> 1

i n

vs
.o

{eonstant>
(constant) <constant>

<preload_element>

e e
ee se
1Hnon

Kprocedyre_declapration> ::= PRCCEDURE <identlfier> <procedyre_head>
<procedure_body>
1= (type> PROCEDURE <ldentifier>
<procedure_head> <procedure_nody>

<empty>
(<forma|_param_dec!>)

<procedure_head>

“a se
i

SAILON NO, 57
<{procedure_hody>

<formal|_param_dec|>

<forral_parameter_||st>

<formal_type>

<simp|er_fofma|_type>

<defline_specification>

{definlition_Ilist>

<definltlion>

<deflne_identifier>

<{deflne_body>
<requlrement>

<requlre_IlIist>

<require_element>

{snace_spec>

.» an e oo

s ee se

*e oe s

e e

..

.o

.o

oo @n wa s es

ee oo

s e
Hn

s ee ve

s se e

e se .

e e ne

se oo .o

e sa se

e se o® oo s

i un

SAIL

<empty>
i <statement>

<forma|_parameter |lst>
<forma|_parameter_|Ist> ;
<formal_param_dec|>

<formal|_type> <id IIst>

<simpler_forma|_type>
REFERENCE <simpler_formal_type>
VALUE <simpler_formal_typed

<type>
<type> ARRAY
<type> PROCEDURE

DEFINE <definlition_J1ist>

<definltion>
Kdefinition> , <definitlon_|Istd>

<define_lidentiflier> = <define_pody>
<ldentifler>
{ldentifler> (<id_IlIst>)

{string_constant>
REQUIRE <reaqulre_1lIlst>

{require_element>
<requlire_list> , <require_elementd>
PNAMES

<arlthmetic_constant> {space_sSpec>
<string_constant> <relflie_spec>

STRING_SPACE
SYSTEM_PDL
STRING_PDL
ARRAY _PDL
NEW_ITEMS

SAILON NC, 57 SAIL 3-4

<relflle_spec> ti= LOAD_MODULE
tt= LIBRARY
RESTRICTIONS
3-2, For simpllcity, the type_qualifiers are |isted In only one
syntactlie <c|ass, Ajthough their uses are always valid when placed

according to the above gyntax, mogt of them only have meaning when
appllied to partiecular subsets of these productions:

SAFE Is only meaningful In array declarations

INTERNAL/EXTERNAL have no meanling In formal parameter
declarations

FORWAPD, RECURSIVE, and FORTRAN have meaning only In procedure
type specliflcations,

ITEM ARRAYS do not exist (use ITEMVAR arrays),

3=3, For array declarations In the outer ©block substitute
<constant> for <algebralc_expression> In the productions for
<iower_bound> and <upper_bouna>,

3-4, A label must be declared In the Innermost block in which the
statement belng labeled apnears,

3-5, The syntax for procedure declarations requires semantic
eampel | lshment (see Procedure Declarations, 3=«37) In order to make
total sense, In particular, a procedure body may be empty only In a
restrliectea class of declarations,

SAILON NO, 57 SAIL 3=5

EXAMPLES
3=6, Let 1,J,KsL,X,Y, and P be Identifiers, S a statement:

(<type_declaration>) INTEGER 1,J,K
EXTERNAL REAL X,Y
ITEM 1
SET P
[TEMVAR X
REAL ITEM Y
INTEGER ARRAY ITEM J
INTERNAL STRING K

(<array_declaration>) INTEGER ARRAY X[R:1p,0:101
REAL ARRAY Y[X:P(L)); Comment |!legal
In outer block
STRING ARRAY IC@:IF BIG THEN 32 ELSE 31
ITEMVAR ARRAY K[@:5,1:L1
REAL ARRAY ITEMVAR ARRAY P[@:415]

(<label_declaration)>) LABEL L,X,Y

(<procedure declaration>) PROCEDURE P; S
‘ PROCEDURE P(INTEGER I,J:
REFERENCE REAL X; REAL Y) ; S
INTEGER PROCEDURE P (REAL PROCEDURE L3
STRING 1,J; INTEGER ARRAY K); S
EXTERNAL PROCEDURE P(REAL X)
FORWARD INTEGER PROCEDURE X(CINTEGER 1)
FORTRAN REAL PROCEDURE SIN

(<defline_specification>) DEFINE CRLF = »CRQLF"™,
' TTY=nin,
TYPE(MSG)="0UT(TTY,MSGRCRLF)"

SAILON NC, 57 SAIL 3-6

3-7, Note that these sample declarations are all gliven Wwithout the
semicolons which would norma|ly separate them from the surroundling
declaratlions and statements, Here |Is a sample block to brlng it all
tonether (agaln, let S be any statement, D any declaration:, and other
identiflers as above:

BEGIN "SAMPLE BLOCKnw
INTEGER 1,J,K:
REAL X,Y;
STRING A;
INTEGER PROCEDURE P(REFERENCE REAL X; REAL Y);
BREGIN
Ds D; D5 ,,, S5 ... 5 S
END "P™; ‘

REAL ARRAY DIPHTHONGS[S:1%,1:1061;

S; S; S; S
END "SAMPLE BLOCK"

SEMANTICS
Scope of declarations

3-8, Every block automatically Introduces a new leve | of
nomenclature, Any ldentifier declared In a block’s hegd Is sald to
be | OCAL to that block, This means that:

a, The entlty represented by this Ildentifier Inside the block
has no exlistence outside the block.

b, Any entity represented by the same identifier outside the
block Is completely Inaccessiple (unjess it has been passed
as a parameter) inside the block,

3-9, An ldentlfier occurrlng within an Inner blpck and not
declared within that block will be nonlocal (GLOBAL) to [t; that s,
the Identifier will represent the same entity inside the blosk and In

the hlock or blocks within whieh It Is nested, up to and Iingcluding
the tevel In whigh the ldentifler |s declared,

SAILON NO, 57 SAIL 3=7

3-1¢, The Scope of an entlty |Is the set of blocks In which the
entity Is represented, using the above rules, by Its ident!fier, An
entity ray not be referenced by any statement outside its Scops,

Tyne Declarations

3-11, SAIL reserves elther one or two 36-hit words for each
Identiflier appearing in a type declaration (exception == no space |Is
reserved for Items =-=- see Item Declarations, 3-1g8), The use of these
cells falls Into two classes == values and descriptors =~= depending
on the type preceding the Identifler, If an identifier represents a
REAL or INTEGER (BOOLEAN) varlable or an ITEMVAR, Its value |s stored
directly In the reserved cell, For strings (2 words, see String
Declaratlions, 3-15) and sets (1 word, see Set Declarations, 3-24)
Internal descrlptors are placed In the reserved cells which allow the
running program to access these entities, These differences are not
reflected In the SAIL syntax, The user may treat entitles of both
kinds as if thelr values were directly accessible 1In the reserved
locatlions, For this reason we wl|| henceforth refer synonymously to
a simple ldentifier (one declared In a type declaration) and the
simple varlable [t represents, as a "variable",

3-12, Items do not antirely conform to the structure described
above, Please suppress any enpuzzjement concerning the rojes of
items and Itemvars until after you have read the paragraph on I[tem
Declarations, 3~-18,

Numerlec Declarations

3«13, Identiflers which appear In type declaratlons wWith types
REAL or INTEGER g¢an subsequently be wused to refer to numerie
variables, An Integer variable may take on values from =2t35 +to
2+3%5=-1, A Rea| varlable may take on positive and negatlve values
from about 17+-38 to 10+38 with a precision of 27 bits, REAL and
INTEGER varlab|es (and constants) may be used In the same arithmetllec
exnressjions; type conversions are carried out automatica|ly (see
Arithmetic Type Conversions, 8-22 pelow) when necessary.

SAILON NO, 57 SAIL 3-8

3-14, The BOOLEAN type Is current|y identical to INTEGER, As You
wil| see, BOOLEAN and algebrale expressions are really equlvalent
syntactically, The syntactic context In which they appear determines
thalr meanina, . Algorlthms for determining the Boolean and algebrale
Inteterpretations of these expressions wil]l be given below. The
declarator BOOLEAN is Inecluded for program clarlty.,

String Declarations

315, A varlable defined in a String declaratlon is a two=-word
descriptor contalning the information necessary to represent a SAJL
character string,

3-16, A String may be thought of as a varlable~]ength,
one=dimensional array of 7=bjt ASCIl! <c¢haracters, 1Its descriptor
contalns a character count and a bvte pointer to the first <character
(sse STRINGS, 16-14), Strings originate as constants at compile time
(String Constants; 17-=16), as the result of a String INPUT operation
from some device (see Input, 11«41), or from the concatenatlion or
decomposlition of already exlsting strings (see Congatenatlion
Operator, 8«37 and Substrings, 8~41),

3517. Wwhen strings apnear |In arithmetlc operatlions or Vigce=verSa,
a somewhat arbltrary conversion |s performed to obtain the proper
tyoe (by arbitrary we do not mean to [mply randOm ~- See

String~Arithmetic Conversions, 8=27), For thls reason arlthmetic and
String wvarlables are referred to as "algebraic varlables" and thejr

corresponding expresslons are called "algebraic axpressions®,
(Suggestions for a better term will be glven a high priority), No
otner dlrect, or *“forced”", conversions (except for I[Integer/Real

conversions) are present in the language.

SAILON NC, 57 SALL 3=-9

Item Declaratlions

Prerequlsite

3-18, Please make no attempt to understand the sectlons of this
manual| describlng the assoclative capabllitles of the SAIL |anguage
until you have read the article describlng |Its baslic flaver In

[Feldmanl, If you do not have access to a copy of the CACM, reprints
are avallable from the authors, The structure and operatlons of the
assoclative portlions of LEAP and SAIL are so nearly identical that 1t
seered foollsh to repeat them compjetely here, However, a ful]
description of the syntax and a brlef discussion of each construct Is
given here,

lters

3-19, The "Assoglative memory" of the SAIL system Is constructed
from a universe of |tems and a unfverse of assoclations among these
lters, An ltem Is an entlity which |Is represented inside the machine
by Its Internal name and Is otherwlise uninterpreted. [tems may be

complned to form "assoclatlions" which express facts (see Tripies,
7=6), They may also be c¢ollected into wunordered sats (Set
Declarations, 3=24),

Iter Genesls

3-20, The universe of |tems |s divided Into three c¢liasses

differlno In the way an Item enters It:!

1) A declared Item results from each declaration of an

ldentifler to be of type ITEM, The declaration causes a
single internal ngme to be created for the Item. Declared
ftems do not obey the usual rujes In recursive functions,
In particular, ltems behave as |f they were declared In the
outer block, Although they may referred to by name only
within the scope of thelr declarations (see Scope of
declarations, 3~8), they may be accessed from outslide the
scope If they have been Included In (and not removed from)
any asspoclations or sets, or assigped to Itemvars whigh are
stll! accessiple, They are not deleted at bhlock=exlt, It
might be helpful to think of declared Items as the
assoclative analogue of algebralec constants,

SAILON NO, 57 ‘ SATL 3=102

2) A created ltem results from the execution of a NEW expreslion
(ses NEW Items, 9~6), Any created Item may be de|eted from
the unlverse of ltems (see DELETE, 7-18), Agaln, usual
block structure rules do not apply to any Items,

3) An association Item results from the -execution of a
bracketed c¢onstruction triple (Construction =~ Retrleval
Distinetlon, 7-8), These may also be expllicitly, but never
automatically, deleted.

Daturs

3-21, An Item of type 1) or 2) may have an assoclated value
(Datum) of algebralic or SET type which can be used or altered |ike
anv other varlable, This Datum may represent a simple or array

variable of any type except ITEM or ITEMVAR, Datums may be referred
to by wuse of . the DATUM operator (Datums, 10-6, Datum Assignments,
S 4=-7),

[temvar Declarations

3-22, An Jtemvar |s a variable whose value is an Item (|t Is a
reference to an Item), Just as the statements "Xe3; AeX" and "Ae3"
are squUlvalent with respect to Ay the statements "X«EDCE; A¢X"™ and
"A+EDGE" are equlvajent wlth respect to A, if X and A are |temvars,
EDGE an ltem, The use of an ltemvar Is equivalent to the use of the
Iter to whigh It refers, The difference Is, of course that the
Itervars may reference dlifferent items at different times,

3-23, Just as algebraic variables may be bound as loop varlables
In FOR statements, ltemvars observe a speclal binding in the FOREACH
statement, Thls veryvy Important construct 1Is described 1Iin FOREACH
Statement, 7-14 below,

Set Declaratlons

I=24, Because the answers to many assoclative questions are
many=valued (all the sons of Harry, for example), sets of [tems are
provided, A SAIL Set Is an unordered co|lection of items contalining
at rost one occurrence of any single Jtem, The more common Set

operations are avallable for convenient manipulation of sets,

SAILON NO, 57 SATL 3=11

Array Declarations

3-25, In general, any data type which is applicable to a simple
varlable may be applled In an array declaratlon to an array of
variables, Note, however, the restrictlion (see RESTRICTIONS, 3=2)
orohiblting ITEM ARRAY X as a |egal declaration (ITEMS are
"constants”"), although ITEMVAR arrays are allowed. The entity
renresented by the name of an array, quallfled with subseript
expresslons to |locate a particular element (e.g, A[LI,J]) behaves In
every Way llke a simple varlable, Therefore, in the futyre we shal|
refer to both simple variables and single elements of arrays
(subscrinted varlebles) as "variahles", The formal Syntax for
<varlable> can be found In Varlables, 18-2,

3-26, Each subscript for an array which iIs not qualified by the
SAFE attribute wl|l be checked to ensure that |t falls withlin the
lower and uUpper bhounds given for the dimension 1t specifles, An
overflow triggers an error messaye and Job abortion, The SAFE

declaration Inhihits this checkling, resulting in faster, smaller, and
bolder code, :

3-27, Arrays are stored by rows, That Is, if A[I,J) Is stored iIn
locatlion 14000, then ALI,J+1] Is stored in locatlion 18301,

3-28, There Is no (Imit to the number of dimenslons ajlowed for an
array, However, the efficlency of array references tendg to decreage
for larae dimenslions, Avold large dimensionality I[f It Is not

nhecessary,

3-29, The item Instances stored 1In an Itemvar array may have
datums which are themselves algebralc or Set arrays, This provides a
good deal of power, since an array of algebralc values c¢an be
dynamically assoclated with any Item,

3-30, Arrays declared In the outer block must have constant
bounds, since no variahle may yet have been assigned a value, A
certaln degree of extra efficlency Is possible In accessing these
arrays, since they may he asslgned abso|ute core J|ocations by the
compller, elliminating some of the address arlthmetic, Constant
bounds always add a |ittie efflclency, even in [nner blogks,

SAILON NO, 57 SAIL 3=12

3-31, For more detalls concerning the Interna! structure of arrays
see DEBUGGING, 14-8, Separately Complled Procedures, 15~7 and ARRAY
IMPLEMENTATION, 16-33,

Preload Speclflcatlions

3-32, Any arlthmetic or String array whlich |s declared 1In the
outer block may be "pre-ioaded” with constant information by
preceding Its declaratlion wlith a <preload specificatlond, This
specliflication glves the values which are to be placed In consecutlve
core |ocatlions within ail arrays declared Immedlately following the
<preload_specification>, "Immediately", In thls case, means al|
ldentiflers up to and Including one whigh I's followed by
bound_palir_JlIlst brackets (e,g, In REAL ARRAY X,Y,Z2[@:1¢1,WL1:5]; ==
preloads X,Y, and Z; not W), It |Is the wuser’s responsibility to
guarantee that the proper values will be obtalined under the subscript
mapping, '

3-33, The orlginal values of pre=~|loaded arrays will not be |ost by
restarting the program (most arrays are cleared When thelr
declarations are processed), but they wl|ll not pe re~lnltiallzed
elther, The valjues can he changed by asslanment statements,

3-34, For 8tring arrays, the original pre~ioadea vajlues remain If
not changed by assignment statements, In gdeneral, however, String
array elements whose values have been changed durlng program
executlons will be set to null strinas when the program Is restarted,

3=35, Algebralc type conversions wll| be performed at compljle-time
to provide values of the bproper types to pre-ioaded arrays, The
compller wll! not allow you to flll an array beyond I|ts meager
canacity to be fllled, You may, however, provide a number of
elements |ess than the total slze of the array; remaining ejements
Wwill be set to zero or the nuil string,

SAILON NO, 57 SATL 3=13
Examele
3=-36,

PRELOAD_WITH (5) @, 3, 4, (4) 6, 2;
INTEGER ARRAY TABL[1:4,1:3)3

The flrst flve elements of TABL will be initiallzed to @
(parentheslized number is used as a repeat argument), The next two
ejerents wlll be 3 and 4, followed by four 6’s and a 2, The array
will |look like this:
1 2 3
1 g @ ¢
2 2 B 3
3 4 6 6
4 6 6 2

Procedure Declarations

3=37, 1f a procedure Is typed., It may return a value (Seg Return
Statement, 5-19) of the speclfied type. If formal parameters are
speciflied, they must be supplied with actual parameters in a one to
one correspondence when they are called (See Function Designators,
8-42 and Procedure Statements, 6-2),

Formal Parameters

3-38, Formal narameters, when specified, provide information to
the body (executaphie portlon) of the procedure about the kinds of
values which wlil be provided as actual parameters In tha call, The

tyre and complexlty (simple or array) are speciflised here, In
additlon, the forma! parameter Indlcates whether the value (VALUE) or

adriress (REFERENCE) of the actual! parameter wlil be supplied, I1f the
adrdress |s supplied, the variable whose I|dentifer 1Is given as an
actual parameter may bhe changed by the procedure. This |Is not the

case |f the value Is glven,

SAILON NO, 57 SALL 3~14

3I=-45, To pass a PROCEDURE by vaiue or an ITEM by reference has no
reaclly determined meaning. ARRAYSs passed by value (requlring a
complete copy oparation) have not yet been Implemented, Therefore

these cases are noted as errors by the compjler,

3-40, The »proper use of actual parameters s further dlssussed In
the paragraphs on Procedure Statements, 6-2 and Function Desjgnators,
B=4y, : :

Forward Procedure Declaratlons

3-41, A procedure’s type and parameters must be descrlbed pbefore
the procedure may be calied, Normally this 1Is accomplished by
entering the procedure declaration In the head of some block
containing the call, 1If, however, It s necessary to have two
procedures, declared in some block head, which are both accessible to
statements In the compound tall of that block and to each other, the
FORWARD eonstruct permlits the definition of the parameter Information
for one of these procadures In advance of its declaration, The
nrocedure body must be empty In a forward procedure declaration,
When the hody of the procedure descrlbed in the forward declaration
is actually declared, the types of the procedure and of its
parareters must he [dentical In both declarations, The declarations
must anpear at the same level (within the same block head).,

SAILON NN, 57 ' SAIL 3=15

Exarnle
3-42,

BEGIN "NEED FORWARD™
FORWARD INTEGER PROCEDJRE T1(INTEGER T); COMMENT PARAMS DESCRIBED;

INTEGER PROCEUURE T2(INTEGER J):
RETURN (T1(J)+3); COMMENT CALL T1 ;

INTEGER PROCEDURE T1 (INTFEGER I); COMMENT ACTUALLY DEFINE Ti1;
RETURN (IF I=15 THEN I ELSE T2(I=1)); COMMENT CALLS T2;

KeT1(L)Y; o0 3 LeT2(KYS 4
END "NEED FORWARD";

Notice that the forward declaration Is required only bhecayse BOTH
nrocedures are called In the body of the block. If only T1 were
called from statements within the bliock, this example g¢gould be
Irnlementea as:?

BEGIN "NO FORWARD"
INTEGER PROCEDURE T1(INTEGER 1):
BEGIN :
INTEGER PROCEDURE T2(¢(J):
RETURN (T1(J)+3);

RETURN(IF I=15 THEN I ELSE T2(I~-1));
END "T1";

KeT1 (L)

END "NO FORWARD";

Recurslive Procedures

3~43, 1f a2 orocedure is to be entered recurslively, %the compller
must be Instructed to oprovide code for saving lts local varlables
wher the procedure is called and restoring them when it returns, Use
the type-quallfier RECURSIVE In the declaration of any recurslive
prncedure,

et
-

CN NO, 57 ' SAIL 3-16

Ik

3=~44, The compller c¢an nproduce much more efficient ¢ode for
non-recursive procedures than for recursive ones, We feel that this
gain In efficiency merits the necessity for declaring procedqures to
be recursive,

Je45, If a oprocedure whieh has not been declared regursive |s
called recursively, all its local varliables (and temporary storage
locations assligned by the compiier) will behave as If they were
global to tne procedure == no values wi|! bs saved, Otherwise no]|

effects should be opserved,

Externa| Procedures

I-45, A file complied by SAIL represents elther a "maln" program
or a collection of Independent procedures to be called hy the mailn
nrogram, The method for preparing such a ecollection of procedyrses Is
described In Separateiy Compiled Procedures, 15=7, The EXTERNAL and
FORTRAN type~auallflers allow description of the types of these
nrncedures and thelr parameters, An EXTERNAL or FORTRAN oprocedurs
declaretion, ilke the FORWARD declaration, does not Include a
procedure body, 8Both declaratlons Instead result In requests to the
loadsr to provide the addresses of these procedures to all statements
which call them, Thls means that an EXTERNAL Procedure declaration
(or the declaration of any External identifier) may be placed within
anv block head, therepy controlling the scope of this External
ldentiflar within this program,

347, Any SAIL procedure which Is referenced via these external
declaratlions must bpe an INTERNAL procedure, That s, the
tyne-qual!ifler INTERNAL must appear in the actual| declaration of the
prngedure, Again, see Separately Compljed Procedures, 15-7,

Je48, The type=aual!fier FORTRAN Is used to describe the type and
name of an external procedure whilch |Is to be called using a DEC
Fertran callling seauence. All parameters to Fortran procedures are
by reference, In fact, the procedure head part of the declaration
nead not pe Ineluded unless the types expected by the anrocedure
differ from thnse provided by the actual parameters~-the numper of
narareters sunplled, ana their types, are presumed correct, Fortran
nrocedures are automatically Extermal Procedures, See Restrictions
on Procedure Declarations, 3-53, Procedure Statements, 6=2, Functlon
Designators, 8~42 for more Informatlon about Fortran procedures,

SAILON NO, 57 SATL 3~-17

Exarple:

3-49,
FORTRAN PROGEQURE MpX:
YeMAX(X,2)3

Parametric Procedures

3=50@, The =calilng conventlons for procedures with procedures as
araurents, and for the executlon of these parametric progedures, are
described in Procedure Statements, -2 and Function Designators,
8=42, Any procedure PP which Is to be used as a parameter to another
procedure CP must not have any procedure or array parameters, or any
parameters called by value, In other words, PP may only have simple
reference parameters, The number of parameters suppllied In g call on

PP within cP, and thelr types, wlll be presumed correct,
Examrple
3-510

PROCEDURE CP (INTEGER PROCEDURE FP);
BEGIN INTEGER A,I; REAL X;

A=FP(I,X); COMMENT 1 AND X PASSED BY REFERENCE,
NO TYPE CONVERSION:
END "CP";

INTEGER PROCEDURE PP (REFERENCE INTEGER J; REFERENCE REAL Y);
BEGIN

LR I]

END "PPw;

CP(PP)3

SAILCN NO, 57 SAIL 3=18

Defaults in Procedure Declaratlions

3-52, If no VALUE or REFERENCE aquallficatlon appears In the

description, the fol|owing qualliflications are gssumed:

VALUE Varlables «=- simple INTEGER, STRING, ITEM, ITEMVAR

declarations.

REFERENCE Arrays and Procedures,

Restrictions om Procedure Declaratlons

3=53,

1) The scope of a formal parameter for a procedure P doss not
Include statements within any procedure Q declared wlithin P, In
other words, Q may refer onjy to Its own formal! parameters, It

may, however, refer to varlables which are |ocal to Some global

nrocedure, Here |s an example:

PROCEDURE PLCINTEGER I);
BEGIN INTEGER Jj
PROCEDURE P2(INTEGER K);
BEGIN
INTEGER L3
Lel; COMMENT THIS IS WRONG == WON’T WORK;
LeJ} COMMENT THIS IS ALL RIGHT:
LeK; COMMENT CLEARLY ALL RIGHT;

2) Thers Is no such thing as an ITEM procedure (use [TMVAR),

3) Fortran procedures <can not handle String, Set, or Item
parameters, Nor can a Fortran procedure return any of these
types as a result,

4) GO To Statements anpearing in a procedure body may not name

statements outside that procedure body asS targets,

5) Labels may never be passed as arguments to procedures,

SATLCN NOC, 57 SAIL 3=19

Define Sneciflcatlion

3-54, See the sectlon on USE OF DEFINE, 12~ for a complete
discussien,

Reoulrerents

3-55, Thse wuser may, using the REQUIRE construct, specify to the
compilier condlitlons whigh are requlred to be trye of the
execUtlon=time environment of his programs, The reaulrements fail
Iinto three classificatlions, descrihed as follows:

Group 1 =~- PNAMES

3=-56, If the speciflcatlon "REQUIRE PNAMES" appears In a program,
the compller Is |[nstructed to save the external representations
(print names) of al| declared Item Jjdentiflers, The functions CVIS
and CVST inay be used to convert from Items to Strings representing
the names of these Items (and back), This feature iIs not avallable
unless "REQUJIREd". Sea Cvis, 11-g4 and following for detalls,

Group 2 == Space requirements ~- STRING_SPACE, SYSTEM_PDL, etc,

3=57, The Incluslon of the speclficatlion "REQUIRE 1009
STRING_SPACE"™ wil| ensures that at least 13pP0 words of storage will be
avallable for storing Strings when the program is run, Similar
provisions are made for varlous push-down stacks used by the
executlon=-time routlines and the compiled code, If a parameter |s
speclfled twlce, or If separately complled procedures are loaded (see
Separately Complled Procedures, 15-7), the sum of al| such
spec!flications will be used. These parameters could also be typed to
the loaded oproaram Jjust before execution (see STORAGF ALLOCATION,
13-22), but It Is often more convenlent to speclfy differences from
the standard sizes |n the source program. Use these speclifications
only |f messages from the running program indicate that the standard
allocations are not sufficlent, "REQUIRE 32 NEW_ITEMS" speclfles
that 32 |Is a reasonahle 2stimate of the number of Items which wlll be
created dynamically usling the NEW construct,

SAILON NO, 57 SAIL 3e20

Group 3 == Other flies == LOAD_MODULE, LIBRARY

3-58, The Inciusion of the - speclflication

REQUIRE "PROCS1" LOAD_MODULE, "HELIB[1,31" LIBRARY: would Inform the
Loander that the flle PROCS1,REL must be loaded and the |lbrary
HELIR,REL[1,3] searched whenever the program contalning the
speciflcation Is loaded, The parameter for both features Shoul|d be a
string constant of one of the above forms, The device DSK, and fl]e
extenslon L,REL are the on|y values perm!tted for these entrles, and
are therefore assumad, \ '

356, LOAD_MODULES (,REL flles to be |oaded) may themselves

contaln reguests for other LOAD_MODULES and LIBRARYs. LIBRARYs may
only contaln requests for other LIBRARYs, Dup|lcate speclfications
are In general merged into single requests (If a file IS requested
twice, It will bs loaded only once), ‘
3=60, SAIL automatlcally places a request for the Iibrary
"LIBSAIC1,33" |In each maln program, This |ibrary contains the

executlon=time routines,

3«61, You have nprobably noticed that a great deal of oprior
knowledge 1Is requlred for proper understanding of this section, For
more Information about PNAMES see Cvls, 11~g4 and following, Storage
allocatlion I8 discussed in STORAGE ALLOCATION, 13~22 below. The form
and use of ,REL flles and llbrarles are descrlbed 1In "The Stanford
A-] Project Monitor Manual|" [Moorer] and (Welherl],

SAILON NO, 57 SALL 4<1
SECTION 4
ASSIGNMENT STATEMENTS

SYNTAX

4-1

{asslagnment_statement>
{swap_statement>

<gsslgnrent>

"o«

s as
se oo

{set_asslignment>

e
.o

<ltem_asslignment>

.o
1"

<a|gebralc_variable> «
{algebralc_expression>

<algebralc_assignment> :

.
..
3]

<ltemvar_variable> «

<itemr_assignment>
<constructlon_item_expression>

..
[}]

<set_variable> «
<constructlion_set_exnression>

.o

<set_asslignment>

{swap_statement> tt= <yarlable> ¢ <yarliahle>
RESTRICTION
4-2, If the operator |Is », the expression (of whatever klnd) on

the right hand slde must he a simnle or subscripted variablje, or
DATUM(<Item_primary>), The « operator may not be wused In an
assianment expression (see Asslignment Expressions, g=~4), 1t Is valld
only at statement level,

SAILON NO, 57 SAIL 4=2

SEMANTICS

43, The asslgnment statement causes the value represented by an
expression to be assigned to the varlable appearing to the Jeft of
the asslanment symbol, You wlll see Jater (see Asslgnment
Expressions, 8=4) that one value may be assigned to two or more
varliables throuah the use of two or more assignment symbols, The
aperation of the assignment statement procseds In the following
crders

a) The subscrlpt expressions of the Jeft part varlable (If
any) are evajuated from |eft to right,

b) The expresslion Is evaluated,

c) The value of the expression [s assigned to the !eft part
varltable, with subseript expresslions, If any, having values
as determined In step a.

4-4, This ordering of operatlions may vusually be dlsregarded.
However |t becomes Important when expression assignments (Assjgnment
Expressions, 8~4) or functlion calis with reference parameters anpear
anywhere In the statement, For example, In the statements

1«3;

ACL)e3+(1e1);
AC3] wlll recelve the value 4 uslng the above algorithm, If no
subscrlipt calculations were performed wuntll after the expresslion

evaluatlien, A[1] would become 4, Be careful,

4=5, As the syntax implies, if the left part variable ls of type
Itervar the value to be asslaned must be a construction Item
exoression, Simllariy for sets,

4=5, However, any algebralc expression (REAL, INTEGER (BOOLEAN),
or STRING) may be asslgned to any variable of algebraic type, The
resultant type wWil| pe that of the |eft part variable, The
conversion rules for asslignments Invoiving mixed types are mljdly
arusing, They are Identlical to the conversion rules for complning
mixed types In algebrale expresslons (see Arithmetic Type
Converslons, 8-22, String=Arithmet!ic Conversions, 8«27 below),

\

SAILON NO, 57 SATL 4+3

Datum Assignments

47, The algebrale or Set vajue associated wlith an Item is changed
using an asslgnment statement In which the |eft part is a the word
DATUM operating on an Item Primary, This Is vaiid syntacticalliy
because® the syntax for <varlable> (see Varlables, 1¢-2) Includes this
DATUM construet, The expressjon |s checked for valldity and proper
tyoe conversions are made before this kind of store occurs, One
hazard |s that there are times when the compiler cannot Verlfy that
an [tem assigned to an Itemvar has a datum whose type matches that
expected by the Itemvar, Incorrect conversions might wel| be made In
this case,

Swap Ass|ignment

4-8, The « operator causes the value of the varlable an the |eft
heng Ide to be gwapped wlth the value of the variable on the righg
hand s?de, Alaebrajic type converslions are made, If necessary:; any
other type conversions are, as wusual, invalld, Remembper, the «

operator may not be used In assignment expressions,

Examples
4-9,

XeleA+B; Comment |f A, B and X are Real, I Integer,
the Real] value of the sum |s truncated,
converted to amn Integer, and stored In I,
The truncated value Is then converted to
a2 Rea| number and stored In X,

BEGIN REAL ITEMVAR X3
XeLOP(SET3); \
DATUM(X) « 5; Comment a <converslon to 5,0 wlll be made
before the store s done, but there Is no guarantee
that the ltem obtained by LOP(SET3) was not declared,
for example, as INTEGER ITEM A:
END3J

SAILON NO, 57

SAIL 5-1
SECTION 5

EXECUTION CONTROL STATEMENTS

SYNTAX
5'1'

{condltlonal_statement>

<if_statement>

<go_to_statement>

{label_ldentifler>

(for_statement>

<for_llistd>

<for_Illst_elementd>

{while_statement)

ees o

.e

e o8 e aw e »e Py e ®e ve

.o

e es ve
noun

e se oa ee .

*e se

<lf_statement>
<lf_statement> ELSE <statement)>

IF <boolean_expression> THEN <statement>

GO TO <label_ldentifler>
GOTO <|abel_ldentifler>
GO <label_ldentifer>

<ldentifler>

FOR <algebralc_varlable> « <for_|1st> DO
{statement)>
NEEDNEXT <for_statement>

<for_IlIist_slement>
<for_IlIst> , <for_|Ist_element>

<algebralc_expression>

<algebrajc_expresslon> STEP
<algebraic_expresslion> UNTIL
<algebralc_expression>

<e|gebrajc_expresslion> STEP
<algebraic_expression> WHILE
<boolean_expresslion>

WHILE <boolean_expression> DO <statement)
NEEDNEXT <whlle_statement>

SAILON NO, 57 SAIL 5=2

<do_statement> D0 <statement> UNTIL <boolean_expresslion>

NEEDNEXT <do_statement>

e oo
se oo

ae
e

{case_statement> <case_statement_head> {compound_tall>

<case_statement_head> 1:= CASE <algebralc_expression> OF PEGIN

RETURN
RETURN (<expression>)

<return_statement>

e we
" u

*e oo

{done_statement> 3= DONE

<next_statement> 1= NEXT

SEMANTICS

Conditlional Statements

5«2, These statements provide a means whereby the execution of a

statement, or a serles of stgtements, Is dependent on the |ogical
value produced by a Boclean expressjon,

5-3, A Boolean expression |Is an algebralc expression whose Uuse
Iimplles that It |s to be tested as a logical (truth) value, The
rules for determining this value are glven In Simple Expressions, 8=9
and followlng,

If Statement

5=~4, The statement following the opeator THEN (the "THEN part") Is
executed |f the 10gical value of the Boolean expressign Is TRUE;
otherwise, that statement Is lanorad,

If ... Else Statement

5-5, If the Boolean expreslion is true, the "THEN part®" |s executed
and the statement followling the operator ELSE (the "ELSE opart") |Is
lgnored, If the Boojean expresion s FALSE, the "ELSE part" Is
executed and the "THEN part” s lgnored,

SAILON NO, 57 SAIL 5=3

Ambligulty In Condltlional Statements

5-6, The syntax glven here for conditional statements does not
fully explaln the <corregpondenceg between THEN-ELSE pairg when
condltlional statements are nested, An ELSE will be wunderstood to

match the Immediately preceding unmatched THEN,

Example
5«7,
COMMENT DECIDE WHETHER TO GO TO WORK:

IF ~WEEKEND THEN

IF GIANTS_ON_TV THEN BEGIN
PHONE _EXCUSE ("GRANDMOTHER DIED");
ENJOY (GAME) ;
SUFFER(CONSCIENCE _PANGS)

END

ELSE IF REALLY_SICK THEN BEGIN
PHONE _EXCUSE ("REALLY SICK");
ENJOY (D) 3
SUFFER(AGONY)

END ‘

ELSE GO_TO_WORK;

SAILON NO, 57 SAIL 5=4

Go To Statements

5«8,

Each of the three forms of the Go To statement means the same

thing == an uncondlitional transfer |Is to be made to the "target"
statement labeled by the |abel Identiflier, The followlng rules
pertaln to labels!

)

2)

3)

5«9,
blog
whic
corr
prov

All Jabel ldentiflers used In a program must be declared, The
declaration of g lagbel must be local! to the block Immediately
surrounding the statement It Identifies, Note that compound
statements (BEGIN-END palrs containing no declarations) are
not blocks, Therefore the block

BEGIN "B1"
INTEGER I,J; LABEL L1;

IF RE3 THEN BEGIN "C1"

END "Clu;

]

GO T0 L1
END "B1v

ls legal,

No Go To Statement may specify a transfer from a statement S1
outside a alven block to a target statement s2 Inslide that
block. This Is automatie from rule 1, since the label
Identifying S2 Is not avallable to S1, Agaln the ruje does
not apply to compound statements, as the above example
demonstrates,

No Go To statement may Specify a transfer from a statement
wlithln a procedure to a statement outside that procedure (you
can’t Jump out of procedures).

Labels will selgom be needed for debugglng purposes, The
k name feature (see DEBUGGING, 14=-8) and the |isting feature
h assoclates with egeh source |ine the octal address of Its

esponding obJect code (see Llisting Features, 13~13) should
Ide enough information to find things easlly,

SATLON NO, 57 SAIL 5«5

5«10, Many program loops coded with |abels can be alternatively
expressed as For or While loops, Thls often resulits In a source
program whose organ|zation |s somewhat more transparent, and an
objeet program which s more efficlent,

For Statements

5=-11. For and While statements (see also FOREACH Statement,
7-14) provide methods for forming loops in a program, TheyY allow
the repetitive executlon of a statement zero or more times. These
statements will be described by means of SAIL programs whlch are
functiornally equlvalent but which demonstrate better the actual
order of processing, Refer to these eguations for any aquestlons
you mlght have about what gets evajuated when, and how many times
each part |Is evaluateaq,

5-12, Let VBL be any algebralc variable, AE1, ,,. » AE8 any
alaoebraic expressions, BE a Boolean expresion, TEMP a temporary
location, S a statement, Then the following SAIL statements are
egqulvalent:?

Using For Statements =«

FOR VBL « AE1, AE2, AE3 STEP AE4 UNTIL AES,
AE6 STEP AE7 WHILE BE, AE8 DO S;

Equivalent formulation without For Statements =-=-

VBLe«AEL;
Si
VBLe«AEZS
Si

SATLON NO, 57 SATL 5<6

Comment STEP-UNTIL |oop:
VBL«AEZ;
LOOPL: :
IF vBL= (SIGN(AE4)#AES) < 2 THEN
BEGIN
S;
VBLe«VBL+AE4;
GO TO LOOP1
END;

Comment STEP=WHILE |oop;

VBLe«AE6 S
LOOP2: :
IF BE THEN BEGIN
. S
VBLe«VBL+AET7;
60 TO LOOP2
END;
VBL«AES;
S
If AE4 (AE7) Is a varlable, chanaglng Its value within the |oop
wlll cause the new value to be used for the next iteration, If
AE4 (AE7) Is a constant or an expression requlirling evaluation of
someg operator, the valus used for the step element wl|| remaln
constant throughout the execution of the For Statement, If AES Is
an exprassion, It will be re-evaluated before each iteration,
5=13, Now conslder the For Statement:

FOR VBLe«AE1 STEP CONST UNTIL AE2 DO S;

where const |s a positive constant, The compliler will Simplify
this case to!

VBL+~AEL;
LOOP3!
IF VBL € AE2 THEN BEGIN
S;
VBL«VBL+CONST;
GO TO LOOP3
END;

SAILON NO, 57 SAIL S=7
If CONST is negatlive, the line at LOOP3 would be:!

LOOP3?
IF vBL 2 AE2 THEN BEGIN

5«14, The value of VBL when execution of the |oop Is
terminated, whether It be by exnaustion of the for |Iist or by
execUtlion of a DONE or GO TO statement (see Done Statement,
523,60 To Statements, 5-8), |s the vajue Jlast assigned to It
using the algorlthm above. This value |s therefore always
wel|-defined,

5-15, The statement S may contaln assignment statements or
procedure calls which change the value of VBL, Such a statement
behaves the same way It would |If Inserted at the correspondling
nclnt In the eaquivalent loop described above,

While Statement

5-16. The statement

WHILE BE DO S3
Ils eaqulvalent to the statements:

LOOP:
IF BE THEN BEGIN
S5
GO TO LOOP
END;

SAILON NO, 57 ' SAIL 5=8

Do Statement
5«17, The statement
DO S UNTIL BE:;
is eaulvalent to the sequence!
LOOP:

Si :
IF -BE THEN GO TO LOOP;

Case Statements
5«18&, The statement
CASE AE OF BEGIN

s@; S1: S2:,.. Sn
END

Is functlonally equlivalent to the statements:

TEMP+AE;
IF TEMP = g THEN Sp
ELSE IF TEMP = 1 THEN S1
ELSE IF TEMP = 2 THEN S?2
ELSE IF TEMP = n THEN Sn
ELSE ERROR:
For appllications of this type the CASE statement form wl|| glve
slaniflcantly more efflclent code than the equivalent If
statements, Notlece that dummy statements may be inserted for
those cases which wil| not occur oaor for which no entrles are

necessary, For example,
CASE AE OF BEGIN
SB5 5 5 S35 i 5 S63 END

nrovides for no actions when AE is 1,2,4,5, or 7, When AE |s 3,
3, or 6 the corresponding statement wil| be executed,

SAILON NO, 57 SAIL 5«9

Return Statement

5-19, This statement 1Is Invalld |f |t appears outside a
procedure declaratjon. It provides for an earjy retyrn from a
procedure executlon to the statement callling the procedure, If no
return statement Is executed, the proecedure will return after the
last statement representina the procedure body Is executed (see
Procedure Declarations, 3-37),

5=20, An untyped procedure (see Procedure Statements, 6-2) may
not return a value, The return statement for this kind of
procedure consists merely of the word RETURN, If an argument Is
alven, 1t wlll cause the compllier to Issue an error message,

5-21, A typed procedure (see Functlion Designators, 8«42) must
return & value as [t executes a return statement, If no argument
s present an error message wil| be glven, If the nprocedure has
an algebraic type, any algebralc expression may be returned as |ts
value; type conversion wl|!l pe parformed In a manner desgriped by
Arithmetic Type Converslions, Be22 and String~Arithmetic
Conversions, 8-27 below, If the procedure Is of type SET or ITEM,
the aroument must be an expressjon of type SET or ITEM,

5-22, If no RETURN statement Is executed In a typea procedurs,
the value returned |s undefined (it could be anything -=- try 1%,
It’s fun),

Done Statement

5=23, The statement contalning only the word DONE may be used
to terminate the executlon of a FOR, WHILE, or FOREACH |oo0p
exnlleltly, Its operation can most easi|y be seen by means of an

example, The statement

SAILON NO, 57 SAIL 5=10

FOR Ie1 STEP 1 UNTIL n DO BEGIN
S

IF BE THEN DONE;

END
Is equlivalent to the statement

FOR Ie1 STEP 1 UNTIL n DO BEGIN
Si

IF BE THEN GO TO EXIT;

END;
EXIT:

In elther case the vajue of | Is well=defined after the statement
has been exeecuted (see For Statements, 5-14),

5=24, The DONE statement wlll only cause an escape from the
innermost loop In yhich It appears,

Next Statement

5-25, A Next statement Is valld only In a For Statement, Whille
Statement, Do Statement, or Foreach Statement (see For Statements,
5-11, ete.,» FOREACH Statement, 7-14), processing of the Jloop
statement |s temporarlily suspended, When the NEXT statement

appears In a For or Foreach loop» the next vajue (set of Items) Is
obtained from the For List (Associatlve Context) and asslgned to
the controlled variable (pbound varlableg), The termination test
s then made, If the termination condition Is satisfied, contro]
s passed to the statement foillowing the For Statement or Foreach
statement, If not, control 1Is returned to the inner statement
followlng the NEXT statement, In While and Do loops, the
termination econdltion Is tested, If |t Is satisfled, execution of
the loop termirates, Otherwise It resumes at the statement withlin
the loop following the NEXT statement.

5«26, The reserved word NEEDNEXT must preceed FOR, WHILE, or DO
In any loop using the NEXT statement,

SAILON NOQ, 57 SATL 5-11

“xamp|e
5-27.

NEEDNEXT WHILE -~EOQOF DO BEGIN
SelINPUT(1,1)
NEXT: Comment check EOF and terminate if TRUE;
TeINPUT(1,3)
PROCESS_INPUT(S,T);
END3

SAILON NO, 57 SATL 6-1
SECTION 6
PROCEDURE STATEMENTS

SYNTAX
6" .

<procedure_statement) 11z (progedure_identifler>
it= <procedure_ldentifliar> (
Cactual_parameter_Ilist>)
<actual_parameter_ 1! |st> <actual _parameter>
{actua|_parameter_ |ist) ,
<actual_parameter>

or oo
se es
o n

<expression>
<array_ldentifler>
<procedure_Ildentifier>

<actual_parameter>

o oo oo
e oo s
“u uu

SEMANTICS

62, A procedure statement |s used to invoke the execution of
an untyped oprocedure (see Procedure Declarations, 3-37), It may
also be used to supply parameters to the procedure,

63, No value may be returned from a procedure called by a
procedure statement, since there [s no specification 1In the
statsment telllng how to use the value, The compller determines
how 8 procedure may be used by notlgclng if a type was speclifled In
the procedure declaration, After execution of the oprocedyre,
control returns to the statement Immedlately followling the
procedure Statement,

Actual Parameters

64, The actua! parameters supplled ¢to a procedure must In
general mateh the formal parameters described In the procedure
deciaration, As usual, the exception |Is algebralc expressions;
the transfer functions described In Arithmetic Type Converslons,
8«22 and String=Arithmetic Converslions, B8~-27 will be appllied to
convert the type of any algebralc expression nassed by VALUE to
the algebraic type reguired by the procedurs.

SAILON NO, 57 SAIL 6-2

Call by Vvaluys

6=5, I1f an actua| parameter iIs passed by VALUE, oniy the valus
of the aexpression |s given to the procedure., This value may be
changed or examined by the procedure, dout this wi|]| in no way

affect any ©f the wvariables used to evaluate the actual
parareters, Any algebralc expresslion, any ltem or Set expression
may be passed by value, Nelther arrays nor procedures may be
rassed by value, See the defaul|t declarations for parameters |In
Procedure Declarations, 3~37,

Call by Reference

6=-6, 1f an actua| parameter Is passed by REFERENCE, Its address
s passed to the procedure, All accesses to the value of the
narameter made by the procedure are made Indirect|y through thlis
address, Therefore any change the procedure makes In a reference
parareter wlii change the value of the varlable which was used as
an actual parameter, This |s sometimes useful, However If [t Is
not intended, wuse of this feature can aiso be somewhat confusing
as well as moderate|y Ineffliclent, Reference parameters should be
used only where needed,

657, Varliables, constants, procedures, arrays,» and most
exnresslons may be passed by reference, Nelther Items nor String
expressions (or String constants) may be reference parameters,

6-8, If an eXpression Is passed bhy reference, Its value I|s
first placed In a temporary location; a constant passed by
referengce 1Is stored In a urique location, The address of thls

locatlor Is passed to the ©procedure, Therefore, any vajlues
changed by the procedure via reference parameters of this form
will be Inaccesible to the user after the procedure call, If the

called program |s an assembly language routine which saves the
parareter sddress, |t Is dangerous to pass expressions to It,
since this address wlil bpe used by the compller for other
temporary purposes, A warning message wlll be printed when
exnpressions are called by reference,

SAILON NO, 57 SAIL 6-3

6=9, The type of each actual parameter passed by reference must
he ldentical to that of Its corresponding formal parameter, An
exception Is made for Fortran calls (see Fortran Procedures,
6-12), If an alagebralc type mlsmatch occurs the compiler wil|
create a temporary variable <contalning the converted vajue and
nass the address of thls temporary as the parameter, A warnling
message will be printed,

Procedures as Actual Parameters

A1l If an actual pnarameter to a procedure PC Is the name of a
nrocedure PR with no arguments, one of three things might happen:

1) If the corresponding formal parameter requires a value of a
type matchling that of PR (In the loose sense given apove In
Actua| Parameters, 6=4), the procedure is evaluated and its
value is sent to the procedure PC,

2) 1f the formal parameter of PC requlres a reference
procedure of ldentical type, the address of PR is passed to
PC as the actual parameter,

3) 1f the formal| parameter requlres a reference varlable, the
procedure Is evaluated, its result stored, and its address
passad (as wWlth expresslions In the previous paragraph) as
the parameter,

6-11, I1f a procedure name fo|lowed by actual parameters appears
as an actual parameter it Is evaluated (see Functlon ODeslgnators,
8«42}), Then |If the <corresponding formai parameter requires a
vaius, the result of this wevaluatlon Is passed as the actual
parameter, If the formal parameter requires a reference to a
value, It is callec as a reference expresslon,

Fortran Procedures

6=12, If the procedure belng called Is a Fortran procedure, all
actual parameters must be of type INTEGER (BOOLEAN) or REAL, Al]
such perameters are passed by reference, since Fortran wlll only
accept that kinmd of call. For convenlence, any constant or

expression used asS an actual parameter to a Fortran procedure |Is
stored In a temporary cel| whose address |s given as the reference
actual parameter,

SAILON NO, 57 SAIL 6=4

613, It was expfained In Procedure Declarations, 3«37 that
formal parameters need not be desecrlibed for Fortran procedures,
This allows a program to call a Fortran procedure with varylng
numpbers of arguments, a feature whlch exlists In DEC Fortran, No
tyne converslon wili be performed for Such parameters, of course,
If type <conversion Is deslred, the forma| parameter declarations
should be ineluded in the Fortran procedure declaration; sSAIL will
Uuse them If they are present.

=14, To pass an array to Fortran, mention the address of Its
first element (e,9., A[CBJ, or Br1,11).

Implementation Detajls

6~15, See the parmgraphs concerning procedures In the sectlion
on Implementation (PROCEDURE IMPLEMENTATION, 16=~46) for
descriptions of the calllng seauences and basic layout of SAIL
procedures, See also Separately Complled Procedures, 15«7 for
nore Informatlion about these useful constructs,

Examples:!
6~16, To eall an untyped procedure?

BEGIN

PROC(I+J,ALQ], L)

END
To call a procedure of type Integer with one Integer argument:

[«PROC(PROC(1));

SAILON NN, 57

SYNTAX

71,

<leap_statement)

<set,statomént>

<assoclative_statement>

<loop_Statement>

<ninding_t1st)

<assoclative_context>

<elemrent>

<\ tripie>

se e on ae

.o

e oo oo ve .o

.o s ea se s os ..

e oo

e

se oo oo
" nnun

we %a ee ee

oo
"

se oo

.o 2 oo oo
H 9 " on

se ee

SAlL 7-1

SECTION 7

LEAP STATEMENTS

(1 1]

" u

{set_statement)
<(assoclatlive_statement)
{loop_statement>

<set_assianment>

PUT <constructlon_ltem_expression> IN
{set_varlable>

REMOVE <retrleva|_Item_expression> FROM
<set_variable>

<ltem_asslignment>

DELETE <retrleval_ltem_expression>
MAKE <construction_triple>

ERASE <retrieval_triple>

FOREACH <bindling_I1Ist>
<assoclative_context> D0 <statement)
NEEDNEXT <|oop_statement>

l1st> |

<l
<ld_!1st> SUCH THAT

d.
d.
<element>

Cassoclative_context> AND <element>
¢associative_context> A <e|ement>

<retrleval|_associative_expression> IN
<retrleval_set_expression>

{retrieval_triple>

(<boolean_expression>)

<{_derlved_set> =
<(_assoclative_expression>

SAILON NO, 57 SAIL 7=2

SEMANTICS
LEAP Introduetion

7=2, The basic ALGOL faclllty In SAIL has been extendsd wlth
syntactie censtructs and semantic Interpretations to reference an
assoclative data store, This extension was developed by J,
Feldman and P, Rovner and |s described In [Feldmanl, The LEAP
faclillties In SAIL differ siightly from those published In the
CACM article, In the dlscussion of the use of the associatlive
facililties, reasonrably simple examples are glven for each
construct, These examples and associated discussions should
emphas!ze the differences hetween the SAIL Implementation and the
constructs published In the CACM article, ‘

7=3, The LEAP constructs all involve manipulations of one baslc
entlty: the |tem, An ltem Is a conceptual entity whigh s
represented at execution time by a unlaque numper, Assoclated with
each Item In the unjverse Is a DATUM. The DATUM of an Item may be
an algepralc aguantlity, an array of such quantitlies, or a SET, The
DATUM asslgnment statement (see Datum Assignments, 4~7) |s used to
store the value of an expression [nto the DATUM of an [tem, The
DATUM of a declared ARRAY ITEM Is loaded automatically when the
nlock In whieh the ARRAY ITEM Is declared is entered, The DATUM
of an ltem may alSo be referenced during evaluatlon of expressions
(see Datums, 1@8=-6), Examples! '

INTEGER ITEM father, joe;
INTEGER ARRAY ITEM ages [1:221;

DATUM (father) « 21
DATUM (ages) [bl « b / 33 3
c « DATUM (Joe) = 12 ;

The DATUM operator |Is intended to |ink the powerful associative
proceSsing routines developed for manipulation of Jtems wlith the
alaebralec faclllitles of ALGOL, This Iink Is made as efficlent as
possible == only two machline instructions are required to0o access
the DATUM of an [tem,

SAILON NO, 57 SATL 7=3

74, Items or |Information about Items may be stored In a
variety of ways, The simple entlty ITEM does not It Itself occupy
storage, Instead, instances of ITEMS are stored in ITEMVARS,
SETS, or associatlions, The simplest of these forms |s the
ITEMVAR: an |Item may be "stored" In an ITEMVAR, Evajuation of
that ITEMVAR will then yleld the (tem stored 1Into |It, [TEMVARS
are thuys rouahly analagous to simple arithmetle variables, SAIL
also allows arrays of ITEMVARs, with the obvious Interpretatlion,
A typlcal declaratlion would be "ITEMVAR ARRAY x[1:22,2!11", or
"INTEGER ITEMVAR ARRAY yl(1:281n,

7«5, Instances of |Items may also be stored as unordered
collectlons, or SETS, Faclllties are provided for common set
operations (see Set Expressions, 9=2), The SAIL system uses one
word of storage for each ltem In a set, A set wl]l contaln at

most one Instance of a specific lItem: |f an instance of l|tem X Is
already 1In set S, then any subsequent attempts to put an Instance
of X In S will have no effeact, Thls 1Is iIn keeping wlth the
standard mathematical notlon of set,

76, The third, and perhaps most important, form of storage of
lter Instances Is the assoeclatlion, or triple, Ordered triples of
iter Instances may be written Into or retrieved from a speclal
store, the assoclative store, The method of storage of these
triples |Is designed to facllltate fast and flexible retrieval,
SAIL uses approx!mately two words of storage for each triple In
the assoclative store, There Is at most one copy of a triple In
the store at any time, Once a triple has been stored In the
assoclative memory, its component Item Iinstances may not be
changed, 1In the examples which follow, a triple |Is represented
by:

A oD

m

)

where A, 0, and V are |Items or |temvars, A, 0, and V are
mnemonles for the three components of a triple: attribute, obJect,
and value, The exact syntactlc rules for describing triples are
discussed In SEMANTICS, 9-2,

SAILON NO, 57 SAIL 7=4

General Restrictlons

757. The Implementation of the assoclative store amd other
forms of |[tem storage Imposes severa] |imitations on the LEAP
canabliity, The maximum number of Items (as represented by thelr

unique numbers) IS 4A93, This arlises from an overwheiming desire
to store a triple In one word of storage, and hence the
requirement that an |tem number be describable In 12 bits,

Construction = Retrijeva] Distingtion

7=8, There are two baslc operations whieh are performed on the
three types of Item stores =- constructlion of a new glement In
that store, and retrleval of some existing element In the store,
For some purposes, It Is necessary to distinguish the operations
beina performed, Thls distinctlon manages to find Its way to the

syntax, In the dliscussion of assocliative expressions (Item
Constructs, 9=4), the syntactliec forms <constructlon_item_primary>
and <retrleval_item_primary> are discussed, The ascent from
primary level to assoclative gXxpressions preserves these
distinetions, Thus, one speaks of a
<constructlion_ltem_expression>, or of a
<retrleval_ltem_eXpression>, Often the BNF productions Speak of

<\ ltem_expressionsy, Thils Is merely a shorthand to denote that
two -separate sets of productions exist, one In whiegh X\ means
"constructlon®, and one In which)\ means "retrievalm,

PUT and REMOVE

7«9, The verbs PUT and REMOVE are provided for easily altering
sets, After Initjallzation, all sets are empty, They may be
altered either by PUTting Item Instances into them or by explliclt
set assignment sStatements, The PUT statement |[|s executed as
follows: the construction Item expression Is evaluated, and must
vield a singie Item, An Instance of this Item Is then recorged In
the set speclifled by the set varlabple, REMOVE operates n an
analagous fashion, If an Instance of the Item to be REMOVEd does
not ocecur In the Set, an error message I[ssues forth,

SATLON NO, 57 SATL 7-5

DELETE

7-18, DELETE releases an item from the unlverse of current
fters, Some smal| amount of storage |S reclalmed In th|s pProcess,
as well as the unlaque number assoclated wlth the Item OELETEd,
Since there s an upper IIimlt on the number of Items, the DELETE
statement can be used to fres Item numpbers for other wuses, The
DELETE statement In no way alters the instances of the DELETEd
Iter whieh are present [n sets or assoclations, The wuser should
be sure that there are no Instances of the DELETEd ltem occurrling
In sets, |Itemvars or assoclatlons, Attempts to reference a
DELETEd ttem In any way wlil resuit In confusion,

MAKE

7-11, Asseclations may be added to the assoclative memory wlith
the MAKE statement, If the assoclation already exists |In the
store, no alteratijons are made, The argument to the MAKE
statement Is a construection triple; that is, a triple composed of
construction assoclatlive expressions, Every construct In these
expressions Is Interpreted Iin a construction sense, The component
assoclatlive expressionms In thls triple are evaluated |eft to
rlaht, Some construets In these expressions (e,9, NEW, ©See NEW
ltems, 9-6 or In the case of bracketed triples) reaquire that new
unique |tem numbers be creatad, Examples:

MAKE (teml e Jtem2 = |tem3
MAKE Iteml e |temvari = NEN_
MAKE jtemle[|tem2e|temvarl=]tem3]l=itemvararrayl(22]

7=12. The last example Invo|ves the use of a BRACKETED TRIPLE,
The bracketed triple "[ltem2 ® ltemvarl = Item]" which Is used as
an assoclative expression Is Iinserted In the assoclative store, A
new unlaoue Iltem number |Is generated, which refers to that
assoclation, Varlous functions (ISTRIPLE, FIRST, SECOND., THIRD
-- see [Item Selectors, 9-5) may use an Instance of this new [tem
as thelr argument, Conslder the following statemsents:

MAKE number ®© [part ® hand = fingerl = new (5);
FOREACH x,y SUCH THAT number ® x = y AND
(ISTRIPLE (x) AND FIRST (x) = part) DO
count « count + DATUM (y)

SAILON NO, 57 SAIL 7-6

ERASE

7=13., The ERASE statement [s provided to undo the damaQe done
by the MAKE statement, The same genera| class of arguments must
hbe provided, ERASE requires a retrleva| triple as |ts argument,
thus e|iminating such questjonadble constructs as NEW from sajd
triples, However, the construct ANY may appear In a triple
speclflcation to ERASE, This ajlows a whole Slew of approprlate
assoclatlons te be arased in one statement, (Restrictlon! ERASE
ANY @ ANY = ANY 1g congldered bad form, and Ilg ag a direct result,
forbidden), Sample ERASE statements are:

ERASE Itemi ® |tem2 E [tem3
ERASE |temi o [temvarl = Item2
ERASE ltemvarl e ANY = |tennl

SAILON NO, 57 SAIL 7=7

FOREACH Statement

7-14, Flexihle searching and retrlieval are the maln motl!vations
for using the set and assoclatlve stores, The FOREACH statement
oprovides thls retrieval fagllity, The FOREACH statement |Is

essentially a Ilooping statement: the <{statement> after the DO Is
executed for each group of Item Instances 1In the sStore which
satisfles the FNREACH speciflecation, If there are no such groups
present In the store, the body of the statement is never exeguted,
The <binding_lIist> specifises the [temvars which wl|| contaln
results of the search, For Instance, the simple c¢onstruct
FOREACH x SUCH THAT x IN setl DO procedure(x) causes the pody of
the statement to be executed onge for each Item Instance |In the
set seti, Durlng execution of the hody of the statement, the
ftervar x avaluates to the Item retrieved from the set seti,
Conslder, however, the FOREACH Statement

FOREACH x SUCH THAT x IN seti AND x IN set2 DO statement

This speclfication may appear ambiguous, and indeed It [s,» unless
we deflpe the concepot of RBINDING the ltemvars 1In a FOREACH
gpeclflcatlon, ln an aggoclative context, an itemvar which
appears In the <blinding_IIst> Is sald to be FREE wuntil! a search
specliflication has determined the first requirement on the value of
the ltemvar tin a left-to=rlght scan of the
<assoclatlive_context>), After the flrst requirement, [t Is sald
to be BOUND, Thus the <element> In the above example whlich reads
"x IN setl" specl!fles a search In whiech x |s free, The fact that
x |s frea Implles the searching operatlon., In the second element,
"x IN set2", x Is bound. Thus no search |s conducted here,
Instead, the questlion "Does an Instance of the |tem [am
considering for x appear In the set set2?" |s evaluated, The
answer nrust be TRUE !n order that the statement be executed with x
evaluating to that |tem, In summary, then, the FOREACH statament
above speclfles one search (x IN seti) and one addlitional
reaqulremrent (x IN set2),

SATLON NO, 57 | SAIL 78

7-15, An @element of a FOREACH specificatlon may also be a
parenthesized boolean expression, It Is of course requlsite that
all ftemvars appearing 1In the boolean expresslon must be hound,
l.e, no searchling of the associative store wil| be accomp|ished

during the evaluation of the boolean expression, FExample!

FOREACH x SUCH THAT x IN seti AND ¢ DATUM (x) < 21) DO ,,

Oniy members of setl with DATUMs less than 21 will be selected by
this specification, Im the wexample above (FOREACH Statement,
7-14), the second <Kelementd> could also have been written jn Its
poolean form! ¢ x IN set2),

7-16, The most powerful <element> construect Is a retrieval
triple, Such speclflcatlans make searches (for any FREE [temvars)
or verlflications (In the case of completely BOUND elements) {n the
store of assoclatlions, For example:

FOREACH x SUCH THAT a e o

1, x 00 PUT x IN set
2., FOREACH x SUCH THAT a ® o

x AND b ¢ g = x DO ,,,

[1EIR11]

The alm of statement 1 Is clear == a search Is conducted through
the assoclatlive store for all assoclations with attrlibute "a" and
opject v"o", 1f k such assoclatlons are discovered, then the body
of the statement [s executed k times, wlith x taking on successlive
values each time, The second example Is simllar, but places an
additlonal constralnt on the values of x whlch should be returned,
Since the second element (b e g = x) !s completely BOUND, no
search Is conducted, but =a test Is made to verlfy that the
assoclatlon. b e g = x’ Is In the store, where x’ is some Item
retrlieved durlng the search for a ¢ o £ x,

7=17, In general, anm <assoclative context> Is satisfied by some
assignment of |tem Instances to the [temvars in the <binglng |Ist>
If all of the <slement>s are satisfied under that assignment, A
<hoolean expresslion> |Is satisfied |If |t evaluates tn TRUE, A
<retrleval triple> contalning no <set expression> Is satlsfied by
ar assliagnmagnt [|f the assoclation It 8speclifies Is In the Un|verse
of associatlons, A (retrleval tripled> contalnling a ¢set
exnresslon> (or ANY) |s satisfled If there are, In the universe of
assoclatlons, any of the assoclatlons formed by substituting
elerents of the Set (or arbitrary Items) In the position occunied
by the <(set expression>,

SAILON NG, 57 SAIL 7=9

7«18, With this concept of SATISFIERS, we proceed to the more
general case wlith more than one Itemvar clited in the binding I1st,
Sunppose there are a such Itemvars, Then the <(statement> |Is

executed once for each permutation of the unlverse of |tems among
the o ltemvars which SATISFY the assoclative context, Durlng the
execution of the <statementd>, the o |temvars wlil| evaluate to the
particular permutation which SATISFIED the associative context,

7-19, The above descriptlion for severa| |temvars Is sound but
slightly misleading, The SAIL Implementation makes no effort to
avold duplieating a partlicular permutation of values whilch
sat!sfles the assoclative context, Thus the <(statement> wll| be
executed one OR MORE times for every permutation which satisfies
the assoclative context, (See Restrlctlons and Caveats, 7=-21),

SaILON NO, 57 SAIL 7=10

7=20, Examples of FOREACH statements wlth severa| free
I'tervars speaecifled ares '

1, FOREACH x,y,z SUCH THAT fatherexzy AND fathereyzz DO ,,,
2., FOREACH x,z SUCH THAT fathere (father o x) = z DO ,,,

3., FOREACH x,¥y SUCH THAT x IN set AND father x = y DO ,,,
4, FOREACH x»y SUCH THAT father ¢ x £ y and x IN set DO ,..

As It happens, 1 and 2 are -eaulvalent, The compller actually
reduces 2 to 1 by Incjuding :a dummy |temvar to be analagous to the
use of "y" |n the first example, Examp|es 3 and 4 are preclsely
egulvalent, that |[s, the sstatement wi|l be executed with x and vy
evaluating to all the ordered palirs of {items which satlisfy the
(clearly agulvalent) requlrements, There I's, however, a
conslderable difference In the executlon efficliency of these two
examples, Exampile 3 |s more efflcient since the "set" |s probably
quite small, and Slnce the 'search of the associative memory with
only one free [temvar |In the search specliflcatlon Is rather fast,
The sSecond example, however, makes a search through the
assocliative memory for all the (x,y) palrs and then discards those
pairs for whlch an Instance of x does not occur in the "segt",
Listed below 1In order of decreasing effliclency are the varlous
baslec forms of <elementd>s that .are |egal, The effect of a
statement such as 2 above should be calculated by redugling It to
the form of 1, In the |Ist below, x, Yy, and 2z represent free
ltemvars, whereasS 4, 0, and V represent ejther bound ltemvars or
flxed ltems,

A e 0=V Varlflcatlion that the triple

, Is in the store.
Verlfleation that [tem A Is In set §,
Al1 Ttems X In the set §,
Only the value s free,
Attribute and object are free,
Only the object Is free,
Only the attribute Is free,
ObJect and value are free,
Attripute and value are free,
PRCHIBITED

=z Z

L OXOXEO

X. X > X P X P> X >
® 060600 008 i i—
HIRIIRII N IR I IR
Nk << Xx

SAILON NO, 57 SAIL 7-11

Restrietions and Caveats

7«21, The SAIL Implementation differs In fundamenta! ways from
the |mplementation described by Feldman and Rovner |n the CACM
article, Thelr FOREACH statement bullds a record of aj| the

permutations which satisfy the associative context, beilmng careful
to Inclyde only one copy of each sueh permutatlion. Then the
{statement> |Is executed once for each permutation that was stored
during the retrlaval operation, The SAIL Implementation uses the
assoclatlve context as a generator of satisfiers, Thus one group
of satisflers 1Is found, <statement> Is wexecuted for those
satisflars, then another found, etc, untll all gqroups of
satisflers have been found, The Implications of this method are
startllng: .

1, There Is agbsolutely no way to guarantee that a partlicular
aroup of satisfliers |s not repeated, There are methods of coding
around thls problem, TYThe user can sStuff Itemvar arrays wlth
results of a FOREACH and aveld duplications, In many search
specl!flegations the nature of the searches (e,g. sSets, where only
one copy of an |tem Instance can occur In the set) avoids
dupllcate satisflers,)

2, Operatlons within <statement> whioch c¢change the assoclative
data store may affect the subsequent satlisfler groups retrleved,
Note the dlffleulty in the followling:

FOREACH x,y | link ® x = y DO MAKE |ink ® x = newllnk

722, Durling and after the executlon of a FOREACH statement,
the vajues of the bound |temvars are In general we|l|=-defined,
They evaluate to the psrmutation which |ast satisfled the FOREACH
context, If a Gp T0 Is wexecuted within the <statementy, the
values are correct In that they <correspond to the group of
satisflers for which the <statement> was belng executed, The only
case In which the Itemvars are undefined 1Iis when the search
speclfled has been exhausted and the assoclative context contalns
a hoolean expression, The explanation of this restriction |Is
quite simple == prior to the evaluatlion of a boolean expression,
the core locatlons reservea for the Itemvars in the <binding_IIst>
are stuffed with the current satisflers so that the evajuation of
the boolean express|on may reference them,

7-23, Expression case statements, conditional expressions, and
procedure calls are all valld within an assoclative context
speclflicatlon, provided that all |temvars used in these gonstructs

are BOUND,

SATLON NO, 57 SAIL B3=-1
SECTION 8

ALGEBRAIC EXPRESSIONS

SYNTAX
8=1,

{simple_expression>
Ccondltlional_expresslion>
assignment_expression>
{case_expreassion>

{expression>

es es se we
ee ve w= oo
o0 unu

IF <boolean_expression> THEN <expresslion>
ELSE <expresslion>

<condltlonal_expressiond

<ass|gnment_statement>

Cassignrent_expression>

.o
.o
3]

CASE <algepralc_expression> OF (
{gxpression_IlIist>)

{casa_expression>

{expression>
Cexpresslion_ilst> , <expresslion>

<expression_I|Iist>

*e ee

<algebraic_expresslon>
<boo|ean_expression>
{string_expression>
{set_expression>
<assoclatlve_expression>

{simple_expression>

es s m=e oo s
e o0 20 se ee
H # H uu

<boolean_expresslion> : <al|gebralc_expresslion>

-
"

<string_expression> : <algebralc_expresslon>

<dlsjuntive_expression>
<al|gebralic_expression> v
{dlsJunctive_expression>

{algebralc_expresslion>

e se

e oo
"

<relational|_expresslon>
<disjunctive_expression> A
<reljatlonal_expression>

{(disJunctive_expressjon>

e oo
e se

un

SAILON NO, 57 SAIL 8=2

{relational_exoraession> <algebraic_relational>

<leap_relational>

se we
«s oe

<algebralc_relatlional> t+3 <adgdlng_expression>
tt1= {relational_expression>
<relatlional_operatecr>
<adding_expresslon>

-e
1]

<i{eap_relationald Cretrleval_item_expression> €
<retrieval_set_expression>

{retrleval_set_expression>
<relational_operator>
<retrieva|_set_expression>

{retrieval_triple>

-e
-
1]

.
.
u

<relatlional_operator> HREE R ¢
: itz >
1tz =
iz g
HEE I
11z 2
<adding_expression> <term>

*n oo
e ea

<adding_expression> <{add_operator> <term>

addlng_operator> +
LAND
LOR
£Qv
XOR

2s ee oo °8 we ao

e® ee ae o se ew
nua nnaun

{factor>
<term> <mult_operator> <{factor>

<tern>

.. oe

*

/

“ :
LSH
ROT
‘MOD
DIv
&

<mult_operator>

e @8 Be e 09 VT A% e
te am ee ®e se we se e

Mt unuumn

<primary>
<primary> ¢ <primary>

<factor)

ae on
e me

SAILON NG, 57 SAIL E=3

<primary> <algebralc_variable>

- <primary>

~ <primary>

LNOT <primary>

ABS <primary> ‘
<string_variable> [<substring_spec> 1
{constant> 4
{functlon_deslignator>

(<algebralc_expression>)

LENGTH (<retrieval|_set_expression>)
LENGTH (<string_expression>)

CVN (<ltem_primary>)

LOP (<string_variabie>)

ISTRIPLE (<|tem_expression))

ea ®a se e 0 96 4t 20 s ew 86 ee se s

es e% e ee %o ea e¢ e as we % e ss ee
$#o1 ot ou NN

..
.o
L]

<substring_spec> <algebraic_expression> TO
<algebralic_expression>

<alogebralc_expresslion> TO =

<algebrajc_expression> FOR

<algebralc_expression>

*e o»
s se

<functlion_deslicnator> <procedure_identifler>
<procedure_identl|fler> (

<actual_parameter_Ilist>)

.e oo
. ae

e

-
nn

{actual_parameter>
<actua|_parameter_|Ist> ,
actual_parameter>

{actual_parameter_Iist>

o n

<expresslion>
{array_ldentifier>
<procedure_ldentifler>

<actual_paremeter>

e se ow

o e

{algebralc_varlable> = (variable>

{varlable>

<string_variable>

..
L1]

SAILON NO, 57 U SAIL Be4

SEMANTICS

Congltlonal Expressions

B2, A condlitional expression returns one of two pPossible
values depending on the |oglcal truth value of the Boo}lean
exnpression, For the rules on evaluation of thls truth va|ue see

Simple Expresslons, 8=9 and following, If the Boolean expression
(BE) Is true, the value of the conditional expresslion Is the value
of the exprassion followlng the delimiter THEN, If BE Is false,
the other value |s used, If both expresslions are of an algebralc
tyne, the precise type of the entire c¢onditional expression Is
that of the "THEN part", Otherwlise, poth expressions must pe of
precisely the same type (Set, Item, etc,). Unllke the nested If
statement problem, ‘there can be no ambigulty for conditional
expressions, since there Is an ELSE part In every such expression,

Examrple
8=3,

FOURTHDOWN(YARDSTOGO, YARDLINE,IF YAROLINE < 78 THEN PUNT
ELSE IF YARDLINE < 9@ THEN FIELDGOAL
ELSE RUNFORIT)

Assignment Expressions

8-4, The somewhat weird syntax for an assignment expression (|t
ls equivalent to that for an assignment statement) |s nonetheless
accurate! the two functlon ldentically as far as the new value of
the left part variable Is concerned, The difference Is that the
value of this left part variable is also retained as the value of
the entire expression, Assuming that the assignment Itself Is
leaal (following the rujes given In Asslgnment Statements, 4-3
above), the type of the expression 1Is that of the left part
variable, This variable may now particlpate in any surrounding
expressjons as |f it had been glven [ts new value In 4 segarate
statement on the previous |ine, Only the « operator is wvalld In
assignment expresslions, The # operator is valid only at statement
level,

SAILON NO, 57 SAIL 8=5

Examrnle
8«5,

IF (lel+1) < 30 THEN 1«3 ELSE I«l+1;

Case Expressions

8=5, The expresslon

CASE AE OF (E®@, E1, E2, +4» » En) Is equivalent to

IF AE=g THEN Eg
ELSE IF AE=1 THEN F1i
ELSE IF AE=2 THEN F2
ELSE IF AE=n THEN En

ELSE ERROR

8~7, The type of the entlre expresslion |s therefore that of E®,
If any of the expressions E1 ,,, En cannot be fit Into this mold
an error messade |s Issued by the complier,

Example

8«8,

QUT(TTY,CASE ERRNO OF("BAD DIRECTORY",
*IMPROPER DATA MODE"™,
"UNKNOWN 170 ERROR",

"COMPUTER IN BAD MOQD")):

SAILUN NO, 57 SAIL 8~6

Simple Expressions

8~9, Simple expressions are simple only In that they are not
conaitional, <case, or assignment expressions. There are in fact
some exgltinyg complexlities to be discussed with respect to simple
expressions, Set, [tem, and Associative expressions are discussed
In the next section, Before continuling with a description of
aloehrale expresslions In the follow!ng paragraphs, an explanation
of what Is meant by a Boolean exprassion Is in order, '

The Boolean Expression Anomaly

Be1p, You wlil notlce that In the syntax a Boolean expPresslon
Is sald to be equlivalent to an algebralc expression, This Is
simply & way of expressing syntactically that there are
autoratically Invoked rules, 1) for obtainlng a logical truth
value from an expression whleh does not contain any loglcal
operators or logical <connectives, and 2) for obtalning an
aloebrale (Integer) value from one which does, The rules are very
simple:?

Intecer, Real, or String to "Boolean"”

811, The loglcal truth value of an expresslon ‘X’ which Is of
type Integer, Real, or String Is the same as the truth valye of
the expresslion ‘X#0‘, A String expression will be converted to an

Intecer one (see String~Arithmetic Converslons, 8-27) before the
comparison 1s made, This need not be done for a Real expression,
of course, slnce the Integer and Real representations for ¢ are
the same, This means you can wrlte expressions of the form ~

IF 1+3 THEN E1 ELSE E2 when you really mean
[F 1+3#0 THEN E1 ELSE E2

One applicatien of this rule can be found In several of the
executlon time routines (ENTER, LOOKUP, ete.) where an error flag
Is returned which Is zero (FALSE) If the operation was successful
and non=zero (TRUE) I!f an error occurred. This flag may be f{ested
as a Boolean varlable (IF FLAG THEN ERROR("LOOKUP FAILED")) or to
determine exactly what went wrong by examining |ts actual Vvalue,

SAIL:ON NO, 57 SALL =7

"B8nanlean" to Integer

8~12, The truth valjue of an expression contalning Jlogical
operators and/or connectlives may be determined by rules glven
below (see Algebralc Expressions, 8~16, Disjunctive Expressions,
8-19, Loglecal Exoressjons, 8~30), If this value is needed to
determine wnlich part to execute In a condltional| statement, whlille
statement, or conditlional expression no actual numerlica| value
need be ereated for the expresslion -~ the tests whlch determline
the truth value lead directiy to the correct program branch,
However, If this expression 1Is combined with other ajlgeralc
expressions usling some numerlc operator, or if it is assligned to
an atgebralc varlable, some actual value must be returned for the
expression, 1f *the wexpresslion Is false, a zero s returned, A
non=-zero vValue indicates that the exnresslion is true, The actual
value returned for true expresslions may differ from time to time,
but It Is quaranteed non~zero,

8"13.

Precndence of Algehralc Operators

8-14, The binary operators In SAIL generally follow "normal"
precedeance rules. That Is, exponentiatlions are performed pefore
multipllications or divisions, which in turn are performed bpefore
addltions and subtractlons, ete, The loglcal connectives A and Vv,
wher they occur, are performed |Jast (A before V), The wexact
precedence of operators 1Is described Iin the syntax above, The
order of operatlion can be changed by Including parentheses at
approprliate points (see Primarles, 8-39),.

8-15, In an expression where several operators of the same
precedence occur at the same |evel, the operations are performed
frorm left to rlght, See Algebraic Expresslions, 8~16, Dlslunctive
Exnressions, B8=1% for soeclal evaluation rules for loglcal
connectlives,

SAILON NO, 57 SAIL 8=8

Alcsesnrale Expressions

8~16, If an algebraic expression has as its major connectlve
the 1o0%ical! connective "v'", the expression has the loglgcal value
TRUE (arithmetlc value some non-zero integer) If eithner of Its
conjuncts (the expresslions surrouncding the "vm) s true’ FALSE
otherwlse,

8~17., AvB does NUT produce the bltewise Or of A ang B if they
are aldebralc expresslons, Truth values combined by numerlc
operators wltl in gaeneral be meanlingless (use the operators LOR

and LAND for bit operations),

B=18, The user should be Wwarned that in an gXpression
containing Jogleal connectives, only enough of the expression Is
evaluated (from left Tto riaht) to uniquely determine 1{ts truth
valute, Thus In the expression

(JK3 v (KeK+1) >),

K wlll not be incremented If J Is less than 3 since the entire
exnressjon Is already known to be true, Conversely |[n the
exnraession

(X 20 A SQRT(X)>2) (see Disjunctive Expressions, 8-19),

thers |s never any danger cof attempting to extract the square root
of a negative X, since the fallure of the first test testifies to
the falslty of +the entire expression -- the SQRT routine 1s not
even called in this case,

RDisjunetlve Expressions

819, If a disjunctive expression has as Its major connective
the Jloglcal nonnecgtive "A'", the expression has the loglcal value
TRUE if both of Its disjuncts are TRUES FALSE otherwise, Adain,
If the flrst dlsjunct Is FALSE a logical value of FALSE Is
obtained for the entire expression without further evaluatlion,

SAILON NO, 57 SAIL 8«9

Kel#tiora}l Expresslions

B=20, If any of the blnary relaticnal operators Is encountered,
code Is opnroduced to convert any String arguments to Integer
nunbars, Then type converslon |s done as It is for + operatlons
(see Arithmetic Type Conversions, 8«22), The values thus obtalned
are compared for the Iindlcated condition, A Boolean value TRUE or
FALSE Is returned as the value of the expression, Of course, If
this expression is used In subsequent arithmetic operatlons, a
conversion to Integer (see "Boolean" to Integer, 8-12 above) Is
performed to obtaln an Integer value,

8-21, Leap relational onerators are discussed In depth In a
later sectlion,

Arithmetic Type Conversions

8~2c, The binary arlthmetlic, loglcal, and String operatlions
which follow wlll acecept combinations of arguments of any
alaerrale types, The type of the result of such an operation Is
sometimes dependent on the type of Its arguments and sometlimes
fixed, An argument may be converted to a different algebralc type
before the operation |s performed, The following table desgribes
the results of the arithmetic and loglca! operatlions gliven varlous
comtinations of Real and Integer inputs, ARG1 and ARG2 represent
the types of the actual arguments, ARG1# and ARG2# represent the
types of the arguments after any necessary converslions have been
mare,

SAILON NO, 57 SAlL 8-10

B=23,
OPERATION ARGL ARG2 ARGi# ARG2# RESULT
. - | INT INT INT INT INT#
£ 1 v REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REaL REAL REAL REAL
LAND LOR ~INT INT INT INT INT
EQV XUR REAL INT REAL INT REAL
INT REAL INT REAL INT
REAL REAL REAL ~ REAL REAL
LSH ROT INT INT INT INT INT
REAL INT REAL INT REAL
INT REAL INT. INT INT
REAL REAL REAL INT REAL
/ INT INT REAL REAL REAL
REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL
MOL DIV COINT INT INT INT INT
’ REAL INT INT INT INT
INT REAL INT INT INT
REAL REAL INT INT INT

® Unleés ARGZ,is <¢ for the operator *

B=~24, An Integer Is converted to a Real number In Such a way
that If this Real number is converted pack to an Integer, the same
Inteaer value wil| result, Thls Is true uniess the absolute value
of the number |s greater than 134217728, Some |owwoOpder
sianiflcance wll|l be Jost for Integers greater than this
maarltude,

8-28, A Real number 1Is converted to an Integer using the
following formulal
Irteger « SIGN(Real)®#{largest integer | such that I<ABS(Rea])},

This funection wil| produce invalld results for Real numbers with a
maanltude areater thanp 134217728,

SAILON NO, 57 SATL =11

8=2¢, If a String is presented as an argument to any of these
operations, It Is converted to an Integer, If an Integer or Real|
arqgurent Is presented to the concatenatlon operator (&), It Is
converted to a one-character string, Here are the ruiles:

String=~Aritnmetic Conversions

8e27, If a String |Is presented as an argument to an arlthmetic
operator, as a (value) parameter to a procedure which exXxpects a
Real or Integer value, or as an expression to be stored by an
assignment statement (nto a Real or Integer varliable, an Integer
value Is created for |t as follows:

If the string is the null string (length=0), a @ 1Is returned
as Its ‘Integer value’, Otherwise g word whigch has its lefthand
29 plts &, the rightmost 7 plits contalning the first charactar of
the String, |s returned Is Its ‘Integer value’. For instance, the
Strirg "ABCDE" has as Its ‘Integer value’ ‘191, the octal
representation of the Jletter ‘A’, Thlis 1Integer wilil then be
converted to a Rea! number, 1f necessary,

Be?H, [f an Integer or Rea| number !s presented where a String
ls expected, a one character String wll| be created whose
character consists of bits 29«35 (the rlghtmost seven blits) of the
numerle valjue, A Real number s not converted to an Integer
before the converslon, For Instance, the expresslon

"STRING"& 15 & ‘12

wlill result In a String which is 8 characters long, The Jast two
characters are the ASCI! codes for carriage return and |ine feed,
respectively,

Addling Expressions

8=26, All the operators grouped In the semantlic class
<adc_gperator> all| gperate at the same precedepce level, The user
must sometimes provide parentheses |In order to make the meaning of
such expressions absolutely wunamblguous, The + and =~ operators
wilt do Integer addltion (subtractlon) If both arguments are
Inteners (or converted to Integers from strings); otherwlse,
rourded Rea| addlitlon or subtraction, after necessary conversions,
Ils aone,

SAILON NO, 57 SAIL 8=12

8«30, LAND, LOR, XOR, and EQV carry out blit=-wise And, Or,
Excluslive Or, and Equlivalence operations on thelr arguments, No
tyne conversions are done for these functlons, The loglcal

connectives A and vV do not have thls effect ~=- they simply cause
tests and Jumps to pe ecomplled, The typs of the result is that of
the flrst operand, Thls allows expressions of the form X LAND
‘977777977 where X Is Real, |f they are really desired,

8=31, Current|y the values of the various overflow flags
produced by these operators <(and those which follow) are not
avallable to the user,

Ternms

Arithmetic Multipllcative Operators

8=32, . The op8ratlion] {(multiplication), like + and =,
represents [nteger multlipliication only |If both arguments are
Inteaers; Real otherwlse, Integer multiplication uses the IMUL

machine Instruction ~= no doublie~length result |Is avallable,

833, The / operator (division) always does rounded Real
division, after converting any Integer arguments to Real,

834, The % operator has the same type table as +, =, and ¢,
It performs whatever dlivision |Is appropriate,

8=35, LSH and ROT provide logical shift operations on thelr
flrst arguments, [f the value of the Second argument Is posltive,
a shift or rotgtion of that many blts to the |eft |s performed,
If It |Is negative, a rlight=shift or rotate Is done, To obtaln an
arithmetic shift (ASH) operation, multiply or divide by the
approprlate power Of 23 the complier will change this operation to
a shift operation,

8=36, DIV and MOD force both arguments to be Integers hefore
dividing, X MOD Y Is the remalnder after X DIV Y Is performed
(X MOD Y = X = (X DIV Y)a»Y);

SAILON NO, 57 SAIL 8=13

Concatenation Operator

Be37, This operator produces a result of type String, 1t Is
the String wlith Jength the sum of the |engths of Its arquments,
containing all the characters of the second string concatenated to
the end of all the characters of the flrst, The operands wlll
first be converted to strings |f necessary as descrlibed In
String=Arithmetle Converslions, 8-27 above., The normal yse of the
& operator Is to collaet {Ilnes of text, from several other string
sources, which Wil subseauentiy be sent to an output devlice,
Numbers can be converted to strings representing thelr external
forrs (and vice=versa) through expliclt calls on executlon time
routines !lke CVS and CVD (see Executlion Routines, 11~-1 below),

Factors

8-38&, A factor Is elther a primary or a primary raised to a
power represented by another primary, As usual, evaluatjon Is
fror left to rlght, so that At+B+C |s evaluated as (A*B)+C, In the
factor XtY, a sultable number of multiplications and additions Is
performed to produce an "exact" answer If Y is a positive Integer,
Otherwlse a routine |[s called to approximate ANTILOG(Y LOG X),
The result has the type of X In tne former case, It is always of
type Real In the latter,

Prirarles

8w3Yy, A primary represents an arithmetlic or String value whlcgh
always gcts as a unit In any blnary operation, It s elther an
expression surrounded by parentheslies which Indicate that all
Internal operations should be performed before combining It with
other things, or one of myrlad other constructs which will be
consl!dered separate|y,

Variables and Constants

8=4y¢, These are clearly primary obJects, They are values
contalned In specifle core |ocatlons, or In parameter stacks, or
In the case of some numerlec constants, they are [mmedlate
operands,

SAILNN NO, 57 ' SAIL 8-14

Substrinas

8=41, A String varlable name which |s qualified by a substring
speciflcation reoresents a part of the named string, STCX FOR Y3
renresents the Xth through the (X ¢ Y = 1)th characters of the
String ST, STIX TO Y] represents the Xth through Yth characters
of ST, STCX TO «] represents the Xth through LENGTH(X)th
characters of ST, If at any time an attempt is made to gcompute a
substring with a negatlive length, or with X<i, or with Jlength L
such that X+L=1 > LENGTH(ST), the Job w|l| be terminated with an
error message, STCX FOR 2] Is the null String (length = 2, no
characters),.

Functlon Desligrnators

8=-42, A functlon designator defines a single value, Thls value
Is produced by the execution of a typed user procedure or of a
tyned executlon=time routine (Execution Routines, 11~1), For a
function deslignator to pe an algebralc primary, Its procedure must
be declared to have an algebralec type, untyped procedures may
only be called from procedure statements (see Progedure
Statements, 6~2), The value obtalined from a user=def Ined
procedure Is that provided by a Return Statement within that
procedure, If the procedure does not execute a Return Statement,
the value might be anythling at all, A Return Statement |In a typed
procedure must mention a value (see Return Statement, 5~19),

Bwd3, The rules for supplylng actual parameters in a functlion
designator are Identlical to those for supplylng parameters In a
procedure statement (see Procedure Statements, 6-2),

8e44, Several| of the sonstructs glven here as primaries have
the form of function designators, However, the operations
necessary to obtaln the values of these constructs are gensrally
complled . directly Into the nprogram, Descriptions of these
functions follow:

SATLON NO, 57 SAIL 8«15

Length

8«45, LENGTH Is alwayes an Integer~valued function, If Its
aragurent |s a set expresslion, the result is the number of Iltems In
the set, If the argument Is a string, Its length is the numper of
characters In the string, The fength of an algebralc expression
ls always 1 (see Strina=Arithmetic Conversions, 8=27),

Lop

B=46, The LOP operator applled to a String variable removes the
first character from the String and returns it In the form glven
In String=Arithmetic Converslons, 8«27 above, The Strimg no
longer contalins this character, LOP applled to a null String has
a zero value, If the argument Is a Set expression the result |Is
an Item, This case |s described below (Item Coenstructs, 9-=4),

Cvn

8=47, CYN has as |Its value the Integer which Is the Internal
rerresentation of Its ltem argument, This function Is highly
Implementation-dependent, and should only be used by neaple who
are willlng to follow the compller wrliters around a |ot, Its

Inverse functien |s Cv!, descriped In ltem Constructs, 9~4 below,

lLnot

Be48, The unary operator Lnot produces the bltwise ¢gomplement
of its (algebralec) argument, No type conversions (except strings
to Integers) are performed on the argument, The type of the
result (meaningful| or not) I|Is the type of the argument.

Abs
8=49, The unary opsrator ABS Is valld only for algebralc
auantities, [t returns the absolute vajue of Its argument.

Unary Minus

B=50, «X |Is eaquivalent to (@-X), No type converslons are
performed,

SAILON NO, 57 SAIL. 8=16

Boolean Primaries

Be51, The unary Boolean operator =~ appljed to an argument BE
has the value TRUE |f BE |s false, and FALSE If BE Is true,
Notice that =A I|s not the pbitwise complement of A, if A s an
ajaebralc value, 1f used as an algebraic value, =~A Is simply 0 If
Az (see '"Boolean" to Integer, 8~12), some non~zero Integer
otherwlise,

852, Istripie (IE) 4s TRUE If IE |s an Item which describes a
bracketed triple, It Is FALgE otherwise, If IE Is not an Itenm
eaxpression, the compller will complain bitterly,

ISTRIPLE (LAeBZv]) Is true,

ISTRIPLE (<declared ltem>) Is falsse,

SAILON NO, 57 SATL 9~-1
SECTION 9
SET AND ASSOCIATIVE EXPRESSIONS

SYNTAX

9-1 .

-
)
i

<{set_expression> <{N_set_sexpression>

<h_set_term>
<h_set_expresslion> v <x_set_term>

<\ set_expression>

e e
o en
" "

<\ set_term> <(_set_factor>

<A_set_term> n <\ _set_factor>

oa o
os o
u n

<\ set_factor> <A_set_pnrimary>

<Ov_set_factor> = <_set_primary>

se se
" n

e o

PHI

<(sgt_variable>
(N_ltem_expr_|Iist}

(<N_set_expression>)
{_derived_set>

<\ set_primary>

s es es se e
se eo se oo oo
" nau

"

<varlable>

{set_varlable>

o

<N_ltem_expression>

<A item_expr_|Iist> .
<h_ltem_expr_IIist> , <_item_expression>

ae
*e oo
1"t o1

<{_associatlive_expr>
<assoclative_operator>
<_assocliatlive _expr>

<)\ derlved_set>

<assoclative_operator>

on @0 oo
ee se es
n un

<_assoclatlive_expr>

.o

<assoclative_expresslon> :

<X_ltem_expression>
<_set_expresslon>

<\ assoclative_expr)>

e ae

SAILON NO, 57 SAIL 9=2

<\ ltem_expression> <h_ltem_primary>
<selector> (<X_Item_primary>)
[<O_ltem_primary> ® <_item_primary> =

<h_ltem_primary> 1

e es ew
ee oo ae
it uwu

{ltem_primary>

NEW

NEW (<algebralc_expression))
NEW (<array_name>)

<constructlon_Iltem_primd

ss se 4 ee
v sv o= ae
"nonnon

{ltem_primary>

<retrleval_Iltem_prim>
: ANY

e S&
. ee

<item_primary> <ltem_identifler>
<ltemvar_variable>

CV] ¢ <algebralc_expression>)
COP (<set_varlable>)

LOP (<set_varlable>)

se 66 es s e
ee ee eo se ee
o U n

X_triple> 1tz <N\ _derived_set> =
<N_assoclative_expression>
<selector> ti= FIRST
1t= SECOND
tiz THIRD

e
1]

<ltervar_varlable> <varlable>

.o

.e
.-
"

{set_varlable> <varlable>

..
ae
L]

Cretrieval_associative_expression) IN
<retrleval_set_expression>
<retrleval_associative_expression>
<rejatlonal_operator> .
<retrleval_associatve_expression>
<retriesval_triple>

<lean_relational>

e
"

.o
.o
"

SATLOGN NO, 57 SAIL 9=3

SEMANTICS

Seat Expressions

9«2, Three rather standard operators are Implemented for use
with sets, These are unlon (u), Intersection (n), and subtraction
(=), These operators have the standard mathemat|cal
interpretations, The only posslible confuslon pertalns to
subtractlion: If we perform the set operation setl ~ set2, and If

there |s an Instance of an Item x In set2 but not In seti, the
subtractlon proceeds and no error message Is glven,

Set Primarles

9=-3, In addition to the <set_varlable>, there are three set
prirarlies: the empty set PHI, a set composed of a |Ist ,f Jtem
exnresslons, and derlved sets, The empty set Is the set with a
LENGTH of 2, Its use 1Is wunrestricted. A set primery which
results from a |lst of Item expressions Is put together as each
ltem expression S evaluated, Derlved sets are really Sets of
answers to gquestlons which search the assoclative memory, The
conventions are!

\

a ¢ b == ga||] x such that a ® b = x
e ‘b = al|] x such that a ® X T b
a * b ~= (a ® b) ¥V (a ' b)

Exarples of set primarlies:

PHI
{ Itemt , ltem2 , Itemprocedurel }
{ltemli o |temvari)

SAILON NO, 57 ' SAIL 9=~4

Iter Constructs

9«4, There are several! SAIL functions which yleid Items when
evaluated, This |s actuslly a rather amblguous statement, slnce
Items as such have no real| ex|istence as entlities to pass around In
the breeze, But, of gourse, thelr unique identifier numbers may
be passed about freely and Indeed are, since the Identifler number
le sufflclent to specify an |tem, As explalned earller, an
ltermvar evaluates to the Item last "stored" |In that Itemvar,
There are two functions provided for removing ltem Instances from

sets, The flrst of these |Is CorP, which evaluates the
<set_expresslon> argument and returns an Instance of the flrst
Iter In the set, The "flrst” ltem |rn a set is not wel| deflined,

since the sSets are unordered., The value of the <set_expression>
Is unchanged, The function LOP Is similar to COP In that |Its
vglue 1s an Instance of the first Item In the set argument, but
the Item returned wii| be removed from the set If (OP |Is wused,
The set graument to (OP must be a <varlable> for the simple reason
that the set descriptor must pe changed to reflect the removed
ftem,

Iter Selectors

9-5, The operators FIRST, SECOND, and THIRD are provided for
decomposing bracketed triples (see Bracketed Triples, 7-12, The
<iterm_primary> argument |Is assumed to be an Instance of an [tem
which was created for the bracketed assoclation when the MAKE was
executed, Examples:

FIRST ([a®pZv]) evajuates to a.
SECOND ([aeo=v]) evaluates to o,
THIRD ([(a®p=vl) evazluates to v,

SATLON NO, 57 SAIL 9=5

NEW [tems

9«6, The functlon NEW <calls wupon the associative Store to
refurblsh a dusty o|d DELETEd Item or to dgenerate a new ons,
These new tems bgcOme a part of the unliverse of existing ‘[tems,
and ray be accessed and handied in precise|y the same fashjon as

declared |Items, If NEW 1Is wused In an Item expression, that
expression |s then constralned to be a construction ltem
expresslion, NEW may also take an argument., In this case., the
datum of the created |[tem Is preloaded with the value passed as
araqurent, If thlils argument |Is algebralc (real or Integer), then
the datum wiliil be of the same type, No type conversions are done
when passing the algebralc argument, NEW wll] also accept an
array name as argument, In thls case, the created item will| be of
the type array, In fact, the array clted as arqument wil| be
conled Into the newiy created array, The new array wlil} have the
same bounds and number of dlimensions as the array clted as
araument, Thls array will not dlsappear unti| the OUTER block Is
exlted,

ANY Construct

9=~7, Some assoclative searches may need only partial
speciflcation == particular portlions of a foreach specification
may be unimportant, The ANY construct Is used to specl|fy exactly
which parts of the speciflcation are "don’t care"’s, Examples
are!

FOREACH x SUCH THAT father e x = ANY DO PUT x IN sons

Cvl

9=-8, The fumction CVl Is provided for those people who Insist
on havimna the world at thelr disposal, The argument Is an Integer
and the result Is an Instance of the |tem which uses that integer
as Its unlque Ident!flaer, Absolutely no error checking |s done,
Cvl |s for darling man,

SAILON NO, 57 ' SAIL 9«6

LEAP Booleans

9«9, Several bhoolean primarles are Implemented for c¢Omparing
sets and [tems, In the followlng discussion, "Ix" means [tem
exnressjon, and "Se" means set expresslon, These are:

1, Set Membership, The boolean "Ix IN se" wevaluates the set
expression, and returns TRUE If the |tem value specified py the
ltem expression Is g memher of the sat,

2, Assoclatlon Exlstence, The boojean " Ix e Ix = ix " raturns
TRUE P f the assoclatlon wexlsts |In the assoclative store,
Exarples:

IF father ® x Joe THEN .,,
IF father ® Jos = ANY THEN MAKE type ® joe = legltimate

i

3, Relatlons, The use of the thlrd kind of boolean Is more
restricted than the syntax impjles, Only the following rejatlons
are valld:

Ix = |x -=- obvious Interpretation
Ix # Ix -~ obvious Interpretation
sel < se? -= true If sel |s a proper subset of se2
sel < se? -- true If sel I|s ldentical to se2 or
If sel |s a proper subset of se2
sel = se? -- obvious Interpretation
sel 7 se? -~ obvious Interpretation
sel > se? -~ gqulvalent to se2 < sel
sel 2 se?2 -= gqulvalent to se2 £ sel

SAILON NO, 57 SAIL 1-1
SECTION 19
BASIC CONSTRUCTS

SYNTAX
19"1 [}

<ident!fler>

<ldentifler> [<subscript_list> 1

DATUM (<ltem_Ildentifler>)

DATUM (<Item_Iidentifler>) [
<subscript_|Ist>]

<varlable>

ee ee os oo
®8 oo s ee

N o n

<algebralc_expresslon>

{subscript_IlIst> ‘ ‘
{subscript_IlIist> , <algebralc_expression>

s e
*e se
Hn

SEMANTICS
Variables

12-2, 1f a varlable [s simply an ldentifler, |t represents a
single value of the type glven In Its declaration,

10-3, If 1t Is an Identifler quallified by a supscript |Ist |t
represents an element from the array bearing the name of the
ldentifier,

SATLON NO, 57 SATL 1p=2

12-4, The array should contaln as many dimensjons as there are
elerents In the subscript Iist, A[f]] represents the [+1th e|ement
of the vector A (If the vector has a lower bound of 2). Bf!,J] Is
the element from the [+1th row and J+1th c¢olumn of the
two-dimensional array B, To explaln the Indexing scheme
nreclsely, all arrays behave as |f each dimension had Its orlgln
at 2, with (iInteagaral) Indices extending Infinitely far In elther
direction, However, cniy the part of an array between (and
Inctudling) the lower and upper bounds glven in the declaration are
avallable for wuse (and 1In fact, these are the only parts
allocated), If the array Is not declared SAFE, each subscript Is
tested agalinst the poungs for Its dimension, If it |Is outsjde Its
range, a fatel message |s printed Identifying the array and
subscript position at fault, SAFE arrays are not bpounds~checked,
Users must take the consequences of the journeys of grrant
subscripts fer SAFE arrays, The bounds checking causes atl |gast
three extra machline instructions (two of which are always 8xecuted
for valld subscripts) to be added for each subscript In each array
reference, The algebralc expressions for lower and upper pounds
In array declarations, and for sUbscripts In subScripted
variables, =are always converted to Integer values (see Arlthmetlc
Type Converslions, 8-22) before use,

i¢-5, For more Information about the implementation of SAIL
arrayS, see ARRAY IMPLEMENTATION, 16-33,

Datums

17=6, If the Item argument of DATUM has an algebralc datum,
this value |s returned, Otherwise the result Is representative of
some Other data type and the value returned will have very ||ttle
meaning as an algebralc value; It wil| probably be some Internal
polnter or somsthing, This |Is mentioned here because there are
times when the compiler will not be able to tel| that such a type
mismateh has occurred, ~Then |t wWl|l be up to the user to

interpret the strange results, If a Set Is deslired hers, of
course, the result |s a Set primary and may be used as such,

Identifilers
1¢7, You wlll notlce that no syntax was Included for the

non=terminal symbols <ldentifler> or <constant>, 1t is far easler
to explain these constructs In an Informal manner,

SAILON NO, 57 SAIL 10-3

10-~8, A SAIL letter |8 any of the upper or lower case |etters A
through #Z, or the underiine character (_), Lower case letters are
mapped Into the corresponding upper case |etters for purposes of
symbo!| table comparisons (SCHLUFF Is the same symbo| as Sch|uff),
A diglt Is any of the characters @ through 9, An Identifler s a
string of characters consisting of a |etter followed by any number
of letters and dlglts (try us =<« most text edlitors wi|| give up
pefore SAIL will), There must be a character which Is nelther a
fetter nor a digit (nor elther of the characters ”," or "§n) poth
before and after every Identifler, In other words, I1f YOU can’t
determine where one |(dentifler ends and another beglns in a
nrogram you have never seen hefore, wel], neither can SAlL,

19-9, There Is a set of identiflers whlch are used as SAIL
delimiters (In the Algol sense == that |s, BEGIN Is treated by
Algol as If It were a Singie character, Such an approach |Is not
nractlcal, so a reserved ldentifler |s used), These ldentif[ers
are called Reserved Words and may not be wused for any purpose
other than those glven expllelitly In the syntax, Another set of
ldentiflers have preset declarations -~ these are the sexecutlon
time functlions, These l|atter (dentifiers may be redefimed by the
user; they behave as |f they were declared |In a block surrounding
the outer bloeck, A |lst of reserved and predeclared ldentiflers
folliows:

Sall Reserved Words
1@'1@.

ABS AND ANY ARRAY ARRAY_PDL BEGIN BOOLEAN CASE COMMENT COMPLEX CGP
CVI CVYN DATUM DEFINE DELETE DO DONE ELSE END ENTRY EQV ERASE
EXTERNAL FALSE FIRST FOR FOREACH FORTRAN FORWARD FROM GLOBAL GO
GOTO IF IN INTEGER INTERNAL ISTRIPLE ITEM ITEMVAR LABEL LAND
LENGTH LIBRARY LOAD_MODULE LNOT LOP LOR LSH MAKE MOD NEEDNEXT NEXT
NEW NEW_ITEMS NOT NULL OF OR OwWN PHI PNAMES PRELOAD_WITH PROCEDURE
PUT REAL RECURSIVE REFERENCE REMOVE REQUIRE RETURN ROT SAFE SECOND
SET STEP STRING STRING_PDL STRING_SPACE SUCH SYSTEM_PDL THAT THEN
THIRD TO TRIPLE TRUE UNTIL VALUE WHILE XOR

SATLON NO, 57 SAIL 18-4

Sai| Predeclared ldentiflers
1@"11'

ARRBLT ARRINFO ARRTRAN ARRYIN ARRYOUT BREAKSET CALL CLOSE CLOSIN
CLOSOUT CLRBUF CODE CVASC CVD CVE CVF CVFIL CvG CVIS CvD CVOS CVS
CVSI CVSIX CVSTR CVXSTR ENTER EQU GETCHAN GETFORMAT INCHRW]NCHRL
INCHRS INCHSL INCHWL INSTR INSTRL INSTRS INPUT INTIN LENGTH LINOUT
LOOKUP MTAPE OPEN OUT OUTCHR OUTSTR REALIN RELEASE RENAME SCAN
SETBREAK SETFORMAT STRBRK TTYIN TTYINL TTYINS WORDIN WORDOUT
USERERR USETI USETO

ip=-12, Some of the reserved words are equlivalent to certain
speclal characters, These equlvalences are!

CHARACTER RESERVED WORD (s)

AND
EQyv
NOT
OR
XO0R
INF
IN
SUCH THAT

— M ¢t & < 3 U >

Arithmetic Constants

12-13, |
12369 Is on Integer with declimal value 12369
*12357 1s an Integsr constant with octa| vajue 12357
‘123, 1g a Rea| congtant With floating point value 123,92
123,80 |s a Real constant with floating point value 123,90
+524 1s a Real constant with floating point value 2,524
5,3e¢4 |s a Rea| constant with floating point value 537200,0
5,3420=3 is a Real constant wlth value 2,005342

SAILON NO, 57 : SAlL 18-~5

10-14, If a . or a @ appsars In a numeric constant, the type
of the constant Is returned as Real (even If It has an I[ntegral
value), Otherwise |t Is an Integer, Type converslons are made at
complle time to make the type of a constant commensurate wlith that
reaulred by a glven operatijon, Expressions involving only
constants are evajuated by the compller and the resultant values
are substituted for the expressions,

18~15, The reserved word TRUE |s equivalent to the Integer
(Boolean) constant «13 FALSE |s equivalent to the constant o,

String Constants

10-16, A String constant Is a string of ASCI! characters (any
which you can get into a text file) delimited at each and by the
character ", If the " character Is desired In the string, finsert
two " characters (after the Inltlal delimiting " character, of
course), '

1p=17, A String constant behaves |lke any other (algebrale)

primary, !t Is orlglnally of type String, but may be converted to
Integer by extracting tne flprst character I|f necessary (see
string=Arithmet!lc Conversjons, 8-27),

1p~-18, The reserved word NULL represents a String constant
contalning no characters (|ength=0),

Exarples
10-19, The left hand column In the table that follows glves the
reaqulred input format to optaln the strings gliven In the
right=hand column? :

INPUT RESULTY LENGTH
"THIS IS A STRING" THIS IS A STRING 16
"WHAT DOES ®"FERNDOK"" MEAN?" WHAT DOES "FERNDOK" MEAN? 2°
"THIS 1S HOW YOU TYPE A wnn THIS IS HOW YOU TYPE A v 24
nnTHIS IS A QUOTED STRING""» nTHIS IS A QUOTED STRING"® 25
" m

NULL 2

.

" SAILON NO, 57 ' SATL 19«6

1p-20, The scanning algorithm [Is altered somewhat if the String
ls belng used as a macro body deflnitlon (see USE OF DEFINE,
12-0),

Comments

192-21, If the scanner detects the |dentifler COMMENT, all
characters up to and Including the next semlgolon (}) wlil] te
lgnored, A comment may appear anywhere as Jong as the word
COMMENT Is properly dellmited (not In a String constant, of
course); .

1p-22, A string constant eppearing Just before a statement also
has the effect of a comment,

SAILON NO, 57 SATL 11-1
SECTION 11
EXECUTION TIME ROUTINES

GENERAL

Scope

11~1, A large set of ere-declared, bullt-|n procedures and
functlons have been complied Into a llbrary permanentiy resldent
on the system dlsk area (LIBSA],RELC1,31). The llbrary also
contalins programs for managing storage allocation and

Initializatlion, and for certajn String funetions, 1f a yser calls
one of these procedures a request Is automatically made to the
loader to Include the procedure, and any other routines It might
need,» In the core Image, These rout|nes provide input/output
(170) faclillitles, arlthmetic~String converslon facl|itles,
array=handiing procedures and miscel|janeous other Inpteresting
functions,

11-~2, The remalnder of this sectlon describes the calllng
sequences and functions of these routlines.,

Notational Conventions
11-3, A shortehand |s used In these descriptlons for specifying
the types (if any) of the execution-time routines and of thelr

parareters, Before the description of each routine there |Is a
sample call of the form

VALUE « FUNCTION (ARG1, ARG2, .,,., ARGn)

If VALUE |s omltted, the procedure IS an untyped one, and may only
be called at statement |eve| (Procedure Statements, 6-2),

SAILON NO, B7 SAIL 11=-2
11-4, The tvypes of VALUE and the arguments may be determined
using the followling scheme:

1) If " characters surround the sample Identlifler (which |Is

usually mnemoniec In nature) a String argument |s expected,

Otherwlse the argument 1Is |[nteger or Real, 1If it

I's

Imoortant whieh of the types Integer or Real| must be

nresented, |t wil|l pbe made clear |n the description of

the

function, Otherwlse the compllier assumes [nteger arguments

(for those functlons which are predeclared), The user

may

pass Real arguments to these routines (WORDOUT, for example)

by re=declaring them In the blocks In which the
arguments are deslred.

2) If the @ character precedes the sample Identifler,

argument wll| be called by reference, Otherwlse It

value parameter,

Example

11’50

"RESULT"™ « SCAN (@"SOURCE", BREAK_TABLE, @BRCHAR)
ls a predeclared procedure with the Implicit declaration!
EXTERNAL STRING PROCEDURE SCAN (REFERENCE STRING SOURCE;

INTEGER BREAK_TABLE;
REFERENCE INTEGER BRCHAR);

I/0 ROUTINES

Qpen

Form:

11-6, OPEN(CHANNEL,"DEVICE",MODE,NUMBER_OF _INPUT_BUFFERS,
NUMBER _OF _OUTPUT_BUFFERS,@COUNT,®BRCHAR,®EQF);

Real

the
Is a

SAILON NO, 57 SAIL 11-3

Fumction:!

11=-7, SAIL Input/output operates at a very low |eve|] Tn the
followinog sense: the operatlions necessary to obtain devices, open and
ciosea flles, etc,» are almost direct transiations Into a functional
notation of the system ca|ls used In assembly language. OPEN |s used
to assoclate a channe| number (2 to ’'17) wlth a device, to determine
the datm mode of the 1/0 to occur on thls channe| (character modes,
binaty mode, dump mode, ete.,), to speclfy storage reaquirements for
the data buffers used In the operatlions, and to provide the system
with Information to be used for |nput opserations,

CHANNEL Is a ussr~provided channe! number which will be used In
subsequent 1/0 operations to identify the device, CHANNEL
may range from @ to 15 (’17), Needless to say, on|y oOne
device may be active on a glven channe| at one time,

DEVICE must be a String (l.e, "TTY", "DATA") which Is recognlzable
by the system gas a physlical or loglca! device name, The
TTY wil| be opened on|y once, The effect of subsequent
OPENsS (on different channels) 1Is to equate all channels
mentloned py the user to that mentioned In the flest OQPEN
for the TTY, Be sure to reiease this first channe| |ast,

MODE Ils the data mode for the 1,0 operation, MODE @ wl|| always
work for characters (see Input, 11-41 and OQut, 11=46),
Modes 8 (‘12) and 15 (’'17) are applicable for binary and
dump~mode operations using the functions WORDIN, WORDOUT,
ARRYIN, or ARRYOUT (see Wordin, 11-490 and follawling), For
other data modes, see [Moorer].

NUMBER_QOF {INPUT/OUTPUT) _BUFFERS speclfles the number of puffers to be
reserved for the 1/0 operatlions (see [Moorer] for detalls),.
At least one buffer must be speclifled for Input If any
Input Is to be done In modes other than ‘17; simljarly for
output, If data Is only golng one direction, the other
buffer speciflication should be @, Two buffers glve
reasonable performance for most devices (1 |s sufficlent
for a TTY, more are reaulred for DSK If rapid operatlon Is
desired),

SAILON NO, 57 SAIL 11-4

11-8, The remalning arguments are applicable only for [INPUT
(String Input), They will be lgnored for any other operations
(although thelr values may be changed by the Open function),

COUNT desianates a varlable which wil| contaln the max!mum number
of characters to be read from "DEVICE" In a 9lven INPUT
call (see Input, 11~41, Breakset, 11-23), Fewer characters
may be read If a break character |s encountered or |f an
end of flle |s detected, The count should be g varlable or
constant (not an expression), slnce its address |s stored,
and the temporary storage for an expression may he re~used,

BRCHAR designates a varlable Into which the break character (See
INPUT and BREAKSET agalin) wi|l be stored, Thls varlabje
can be tested to determine whigch of many possibile
characters termlnated the read operation,

EOF desiaonates a variable to be used for two purposes:

1) If EOF Is ¢ when OPEN |s called, a SAIL werror message
will pe Invoked if the device Is not avallahle or the
channe! !s already open, The user wll]l be gliven the
options of retrying or terminating the operatlion, If
EQF 1s non~zero when OPEN |s called, It will be set to @
If the OPEN s successful, Otherwise It will not be
changed, In this case (EOF non-zero on entry) contro}|
will be returned to the user, Thls flag may then he
tested,

2) EOF wlll| pe made non~zero (TRUE) [f an end of fille
condltiorn |s detected durlng any SAIL Input operation,
It will be @ (FALSE) on return to the user otherwlse,
Subsequent Inputs after an EOF return Wwl|l vreturn
non-zero values In EOF and a nu|l String resujt for
INPUT, For ARRYIN , a # |s returned as the vajue of the
call after eng of flle Is detected.

SAILON NO, 57 SAIL 11-5

Assembly Language Approximation to OPEN

1i1-9,

INIT cHANNEL, MODE

sIXslT /DEVICE/

XWD OHED, IHED

JRST <hand|s error condltliond>

JUMPE <NUMBER_OF _QUTPUT _BUFFERS>,GETIN

<allocate hyffar space>

OUTBUF CHANNEL ,NUMBER_OF _OUTPUT_BUFFERS
GETIN: JUMPE <NUMBER_OF _INPUT_BUFFERS>,DONE

: <allocate byffer space>

INBUF CHANNEL ,NUMBER_OF _INPUT_BUFFERS
DONE: <{mark c¢panne| open =- ;nternal bookkeepjng>

<potupnd

OHED: BLOCK 3
IHED: BLOCk 3

Close._Closlna_Closo

Form:

11-10,

CLOSE (CHANNEL)

CLOSIN (CHANNEL)
CLOSO (CHANNEL)

Functlon:

11~14, The Input (CLOSIN) or output (CLOSO) side of the specifled
channe!l |s closed! all output Is forced out (CLOSQ); the current flje
name |s forgotten, However the device Is sti|l| active’ no OPEN need

be done agaln before the next Input/output operation, No INPUT, OUT,
etc, may be glven to a directory device unti| an ENTER, LOOKUP, or
RENAME has been |ssued for the channs|,

11~114, CLOSE. is equlivalent to the executlon of both CLOSIN and
CLOSO for the channel,

SAILON NO, 57 SAIL 11-6

Getehen
Form:
11=-12, VALUE « GETCHAN;
Function:
11-13, The number of some channe| not current|y open |Is returned,

=1 Is returned Is al|| channels are busy,

Release
Forms
11-14, RELEASE (CHANNEL)3
Fumctlion:t
11-15, If an OPEN has been executed for this channel|, a CLOSE |s

now executed for |t, The deviece Is dissoclated from the channe| and
returned to the resource pool (uniess It has been ass|/gned by the
monjtor ASSIGN command), No 1/0 operation may refer to thls channe]
until another OPEN denoting it has been executsd,

11=~-16, 1f you have opened more than one channe| for the device
"TTY", be sure to perform RELEASE’s for these channels In the Inverse
order from that In whigch they were opsned (see Upen, 11«6),

11-17, Relsase s always valid, If the channe! mentioned Is not
current)y open, the command Is simply Ilgnored,

SAILON NC, 57 SATL 11-7

Lookypa_Enter

Form:

11-18]
LOGKUP (CHANNEL , "FILE"™ , @FLAG);
ENTER (cHANNEL , "FILE"™ , @FLAG)}

Function:

11~19, Before Input or output operations may be performed for a
directory device (DECtape or DSK) a file name must be assoclated with
the channe! on which the device has been opened (see Open, 11-6),
LOOKUP names a flle which is to be read, ENTER names a flle which Is
to be created or extended (see [Mooraerl), Both operations are valld
even If no fllename Is really necessary, It Is recommended that an
ENTER he performed after every OPEN of an output device so that
output not normally directed to the DSK can be directed there for
later processing |f desired, The format for a file name string Is

NAME ,
NAME ,EXT ,
NAMECP,PN] , :
or NAME ,EXTLP,PN] (see [Moorer] for the meaning of these things
|f you do not Immedlately understand),

All eharacters are converted to SIXBIT by subtracting octal ‘428 from
them, Lower case letters are first gonverted to upper case, SAIL Is
not as choosy about the characters It ajjows as PIP apnd other

pProceggoOrg Aare, Any character whilch Ig not ",", ",", "C", or "J"
wii|l be converted and passed on, Up to 6 <characters from NAME, 3
from EXT, P, or PN wiil be converted =~=- the rest are ignored,

11-20, If the LOOKUP or ENTER operation fails (see [Moorer]) then
varleble FLAG may be examined to determine the cause, The |eft half
of FLAG wl|lI be set to ‘777777 (Flag has the |oglca| vajue TRUE),

The right half wll!l contaln the code returned by the system glving
the cause of the fal|lure, : ‘

11-21, If the LOOKUP or ENTER succeeds, FLAG will be Set to zero
(FALSE),

SAILON NO, 57 ‘ , SAIL 11-8

Rename

Form:

11-22, RENAME (CHANNEL » "FILE~SPEC" , PROTECTION , @FLAG)

Function:t
11-23, The flle open on CHANNEL Is renamed to FILE_SPEC (a NULL
file=nare wlll dejlete the flle) wlth read/write protection as

spec!fled in PROTECTION (nine blits, described In the tlime=sharling
manuall), FLAG Is sat as In LOOKUP and ENTER.

Breaksetl

Form®

11-23, BREAKSET(TABLE, "BREAK_CHARS" , MODE);

Function:

11-24, Character |nput/output Is done using the String features of
SAIL, In fact, 1/0 is the chief Jjustiflcation for the exlstence of
strings In the languags, ,

String Input presents a problem not present In String output,
The |ength of an output String can be used to determine the number of
characters written, However |t |Is often awkward %0 requlire an
absolute count for |nmput, Qulite often one would Ilike to terminate
Input, or "break", when one of a speclfied set of characters |s
encountered In the Input stream, In SAIL, this capablilty s
Implemented by means of the BREAKSET, INPUT, TTYIN, and SCAN
functions, ‘

11-25, The value of TABLE may range from 1 to 18, Thus up to 18
different sets of preak speclifications may exist at once, Wwhlch set
will be used is determined by the TABLE parameter In an INPUT or SCAN
function call,

SAILON NO, 57 SAIL 11 =9

t
11-26, The function of a given BREAKSET command depends on the
MODE, ar Integer which |Is interpreted as a rlightejustified ASCII
character whose value Is Intended to be vaguely mnemonlc, BREAKSET
commands can be partitioned Into 3 groups according to mode:

GROUP 1 -~ Bresk character speclflications

11"‘27.

MODE FUNCTION

"y (by Inclusion) The characters In the BREAK_CHARS String
comprise the set of characters which wiil termlnate an
INPUT (or SCAN),

ny (by eXeclusjon) Only those characters (of the possible 128
ASCI1 characters) whleh are NOT contalned Iin the String
BREAK_CHARS wl|| terminate an Input when wusing this
table,

nQe (Omit) The c¢characters In "BREAK_CHARS" wli|l be omltted
(deleted) from the Input string,

11-28, Any "I" or wX" command completely specifles the break

character set for Its tablie (l,e,, the table is reset before_ these

charactars are stored In [t), Nelther will destroyv the omlttaed

character set currently specifled for this table, Any "0O" command
compietely spec!flies the set of omitted characters, without ajtering
the hreak characters for the table in auestion, [f a character |Is a
breakecharacter, any role It might play as an omitted character Is
sacrificed, ‘

11-29, The second group of MQODEs determines the dlsposition of
break characters In the Input stream, The "BREAK_CHARS" argument |s
lgmored in these commands, and may In fact be NULL:?

SAILON NO, 57 SAIL 11-19

GROUP 2 =~~ Break character disposition

11-32,

MODE FUNCTION

"gn (Skip == defaylt mode) After execuytion of an "S" command
the break character will not appear elither [n the
resultant String or In subsequent INPUTs or SCANS-=- the
character |Is "skipped", Its value may be determined
after the INPUT by examlination of the break charagter
varlable (see Open, 11i~6),

MAN (Apperd) The break character (if there Is one =« s6e
Open, 11-6 and Input, 11~-41) Is appended, or
concatenated to the end of the Iinput string, It will
not appear agaln In subsequent inputs,

"RY (Retaln) The bfeak character does not appear in the
resultant INPUT or SCAN String, but will be the flirst
character processed In the next operation referring to
thls Input source (flle or SCAN String),

11-31. For dlsk and tape flles using the standard edltor format,

{Ine nurbers present a speclal problem, A Iine number Is a word

containing 5 ASCI] characters representing the number in plts 2-34,
with a "1" |n blt 35, No other words In the file contaln 1‘s In bit
35, Since String manlipulations provide no way for distimguishing
l1ne numbers from other characters, there must be a way to warn the

user that Iine numbers are nresent, or to allow him to Ignore them
entirely,
1132, The third group of MODEs determines the disposition of

these |ine numbers, Agaln, the "BREAK_CHARS" argument Is lgnored:

SAILON NO, 57 SAIL 11-11

Group 3 =~ LLlne numper dlisposition

- 11=-33,

MODE FUNCTION

"pe (Pass =- default) Line numbers are treated as any other
characters, Thelr ldentity Is losts they simply appear
in the resuit string,

NN (No numbers) No |lne number (or the TAB whi¢ch always
follows |t In standard fjles) w!ll appear in the result
string. They are simply dlscarded.

nn (Line no, break) The resujt String wlll be terminated
early If a Ilne number |s encountered, The characters
comprising the |Ine number and the assoclated TAB wlil|
appear as the next 6 characters read or scanned from
thlis <character source, The wuser’s break character
varlable (see Open, 11-6 and Input, 11-41) wll! be set
to -1 to indlicate a line number break,

g (lee Erman‘’s very own mode) The result String |Is
terminated on a |irne number as wlith »L», put nelther the
|lme number nor the TAB following 1t wi|l appear In
subsequent Inputs, The |lne numper word, negated, Is
returned In the user’s (lnteger) BRCHAR variable,

"o (Dlsplay) If the TTY Is a DFY, each |ine number from any
Input flle will be displayed (along with a page number)
on the right-hand side of the screen, This mode really
appllies to all input operations after the "D" operand
appeers In any Breakset call, There Is no way to turn
It off,

11-~34, Once a break table Is set up, |t may be referenced In an
INPUT, TTYIN or SCAN call to control the scanning operatfon,

SAILON NO. 57 | SAIL 1112

Example:

11-35, To delimit a "word" a program might wish to Input
characters uptlil a blapnk, a TAB, a |Ine feed, a comma, or a semlicolon
ls encountered, ignoring |!lne numbers, Assume also that carrlage

returns are to be Ignored, and that the break character |s to be
retalned In the character source for the next scanning operation!

BREAKSET(DELIMS," ,;"8TAB&LF,"I"); Comment break on any of these!
BREAKSET(DELIMS,’15,"0"); Comment Ignore carrlage returns
BREAKSET(DELIMS,NULL,"N"); Comment lgnore |Ine numbers}
BREAKSET(DELIMS,NULL,"R"); Comment save break char for next time;

Setbreak

Form!
11-35,

SETBREAK (TABLE , "BREAK_CHARS" , "OMIT_CHARS" » "MODES")

Function:
11-37. SETBREAK is loglcally equivalent to the SAIL statement:
BEGIN "SETBREAK"

INTEGER 13

IF LENGTH(OMIT_CHARS) > @ THEN
BREAKSET(TABLE.OMLT_CHARS,"O"):

FOR I«1 STEP 1 UNTIL LENGTH(MODES) DO
BREAKSET(TABLE,BREAK_CHARS,MODESCI FOR 11)

END "SETRREAK"

SAILON NO, 57 SAIL 11-13

Sidbrk
Form:
11-38, STOBRK (CHANNEL)3
Functlion:
11-39, Eighteen breakset tables have been selected as

representative of the more c¢ommon Input scanning operations, The
function STOBRK Inltiallzes the breakset tables by opening the flje
BKTBL,BKTC1,2] on CHANNEL and reading In these tables. The user may
then reset those tahbies which he does not |lke to something he does
ke,

11-40, The elghteen tables are described here by giving the
SETBREAKs whigh would be requlired for the user to initiallze them:

DELIMS « 715 &.712 & ‘40 & ‘11 & '14;

Corrent carrlage return, |ine feed, space, tab, form feed:
LETTS « "ABC [2abc LI) Z_”’

DIGS « "p123456789";

SAILID « LETTS&DI1GS;

SETBREAK (1, '12, ‘15, "INS")}
SETBREAK (¢ 2, ‘12, NULL, "INA");
SETBREAK (3, DELIMS, NULL, "XNR");
SETBREAK (4, SAILID, NULL, "INS");
SETBREAK (5, SAILID, NULL, "INR")3
SETBREAK (6, LETTS, NULL, "XNR")3
SETSREAK (7, DIGS, NULL, "XNR");
SETBREAK (8, DIGS, NULL, "INS");

SETBREAK (¢ 9, DIGS, NULL, "INR");
SETBREAK (19, DIGS&"+-a@,", NULL, "XNR"
SETBREAK (11, DIGS&n+-@,", NULL, "INS®
SETBREAK (12, DIGS&"+=a,", NULL, "INR"
SETEPEAK (13~-18, NULL, NULL, NULL)

e we we

SAILCN NO, 57 ‘ ; ' , SAIL 11-14

looul
Form:
11-41., "RESULT" « INPUT(CHANNEL, BREAK_TABLE);
Functlion:
11=42, A string of characters Is obtained for the flle open on

CHANNEL, and 1Is returned as the result, The INPUT operation is
controlled by BREAK_TABLE (see Breakset, 11-23) and the reference
varlables BRCHAR, EOF, and COUNT which are provided by the user In
the OPEN functlion for thls channel (see Open, 11-6), Input may be
terminated In several ways, The exact reason for termination can be
obtained by examining BRCHAR and EOF:

SAILGN NO, 57

EQOF BRCHAR

-1 2

SAIL 11-15

End of file occurred while reading, The result s
a String contalning all non-omitted characters
whlch remalmned In the fl|e when INPUT was called,

No break characters were encountered, The result
Is a String of length equal to the current COUNT

speclflcations for the CHANNEL (see Open, 11-6),

A |ine number was encountered and the break table
specifled that someone wanted to know. The pesult
String contalns all <characters up to the |line
number, If mode "L" was speclfled Iin the Breakset
setting up this table, pit 35 Is turned off In the
l1ne number word so that It will be Input next
time, =1 Is placed In BRCHAR, If mode "E" was
speclifled, the |lne number will not appear in the
next Input String, but Its negated value, <complete
with |ow=order |Iine number bit, will pbe found In
BRCHAR,

A break character was encountersd, The break
character Is stored In BRCHAR (an INTEGER reference
varlagble, see Open, 11-6) as a rlght-justified
7-bit ASCII value., 1t may also be tacked on to the
end of the result String or saved for next time,
depending on the BREAKSET mode (see Breakset,

11-23),

11-43, 1f break table # |s specified, the only crltertla

terminatlion

are end of file or COyNT exhaustlon, The routlne

somewhat faster operating In this mode,

Form:

2¢an

11-44, "RESULT" « SCAN (®@"SQURCE" , BREAK_TABLE , @BRCHAR)

for
Is

SAILON NO, 57 SAIL 11-16

Functlon:

11-45, SCAN functlons ldentically to INPUT with the followlng
exceptlions: :

1, The source IS not a data flle but the String SOURCE, c¢alled
by reference, The String SOURCE s truncated from the left
to produce the same effect as one would obtaln |f SOURCE were
a data fiie, The disposition of the break character |Is the
same as |t Is for INPUT,

2, BRCHAR |s directiy specified as a parameter, INPUT gets |ts
break character varlable from a table set up by Open, 11-6.

3, Line number considerations are Irrelevant,
Qut
Form:
11~46, OUT(CHANNEL,"STRING™)
Functlon:
11=-46, STRING |s output to the file open on CHANNEL, 1f the
device Is a TTY, the string wil| be typed Immediately, Buffered mode

text output |s employed for thls operation, The data mode specifled
In the OPEN for thlg channel must be @ or 1,

Llpous

Form?

11-47, LINOUT (CHMANNEL , NUMBER)}

SAILON NO, 57 SAIL 11-17

Functliont

11-48, ABS(NUMBER) mod 100,000 is converted to a 5 character ASCII
string, These characters are placed Iin a single word in *the output
file designated by CHANNEL with the low=order blt (line~number bit)
turned on, A tab Is Inserted after the |ine number, Mode @ or 1
must have been specifled In the OPEN (Open, 11-6) for the results to
be anywhere near satlisfactory,

Wordlin
Form:
11-49, VALUE « WORDIN (CHANNEL)
Function:?
11-52, The mnext word from the flle open on CHANNEL Is returned, A

@ 1s returned, and END_FILE_FLAG (see Open, 11-6) set, when end of
flle Is encountered, Thls operation Is performed In puffered mode or
dump mode, dependlng on the mode speciflication In the OPEN,

Arcylo
Form:
11-51, ARRYIN (CHANNEL , @®LOC , HOW_MANY)3
Fumction:t |
11-52, HOW_MANY words ~are read from the device and flle open on
CHANNEL, and deposited In memory starting at logcation LocC.

Buffered~mode Input |s done |f MODE (see Open, 11-6) I|s ‘1¢ or ‘14.
Dump~mode Input IS done If MODE |s ‘16 or 17, Other modes are

lilegal,

11-53, If an end of flle gondition occurs before HOW_MANY words
are read, the EQF varjable (see Open, 11-6) Is set to ’777777 In Its
left half, 1ts rlght half contalins the number of words actually

read. EOF wlll pe @ If the ful| request is satlisfled.

SAILON NO, 57 | SAIL 11~18

Wordout
Form: ‘
11+-54, WORDOUT (CHANNEL , VALUE)3
Function:
11-55, VALUE Is placed In the output buffer for CHANNEL, An
OUTPUT Is done when the buffer Is full or when a CLOSE or RELEASE Is
executed for this channel, Dump mode output will be done [f dump

mode is speclfled In the QOPEN (see Qpen, 11=6),

Arryoul
Form:
11-5¢, ARRYOUT (CHANNEL , @LOC , HOW_MANY);
Function:
11-57, HOW_MANY words are wrltten from memory, starting at
locatlon LOC, onto the device and file open on channe| CHANNEL, The

valld modes are agaln ‘10, ‘14, ‘16, and ‘17, The EOF variable Is,
of course, unaffected, »

Miape

Form:

11-58, MTAPE (CHANNEL , MODE)

SAILON NO, 57 SATL 11-19

Functlion:

11-59, MTAPE |s lgnored un|ess the device assoclated wlth CHANNEL
Ils a magretlc tape drive, It performs tape actlons as follows!

MODE FUNCTION

mAY Advance paest one tape mark (or flle)
"g" Backspace past one tape mark

A A , Advance one record

"RN Backspace one record

LAY Rewlnd tape

nge Wrlite tape mark

nyn Rewlnd and un|oad

Usetl. Useto

Form:

11-60,
USETI (CHANNEL , VALUE)3
USETO (CHANNEL , VALUE)3

Functlion:

11-61, The corresponding system function 1Is carrled out (See
{Moorerl), '

Reallpn._Intln

Form:

11«62,
VALUE « REALIN (CHANNEL);
VALUE « INTIN (CHANNEL)3

SAILON NO, 57 SAIL 11~-22

Function:

11~-63, Number Input may be obtained using the fumctions REALIN or
INTIN, depending on whether a Real number or an Integer Is requlred,
Both functlons use the same free fleld scanner, and take as argument
a channel number,

11-64, Free fleld scanning works as follows: characters are
scanned one at a time from the |Input channel. Nuils, 1Ilne
numpers,and carrlage returns gre lignored, when a digit Is scanned |t
l's assumed that thls is a number and the following syntax |s uged:

<number> HEE <slgn><rea! number>
{real| number> R <decima| number>|<decimal number><exponent>|
\ <exponent>

<decimal number> <integer>|<|ntegerd>,|<integer>.<integer>|

,Integer>
<integer> LI <digit>|<integer><dlgit>
<gxponent> HHE @<sign><linteger>
<diglt> tis= B1112]314151617/819
<slgn> tiz +|-1<empty>
11-65, 1f the diglt Is not part of a number an error meéssage wl||
be printed and the program wil! halt, Typing a carrlage return wlll

cause the input function to return zero, On Iinput, leading zeros are
lgnored, The temn most significant digits are used to form the
numcer, A check for overflow and underflow |Is made and an error
message printed If this ocecurs, When using INTIN .any eXponent |Is
removed by scallng the Integer number, Rounding Is used In this
process, All numpers are accurate to one half of the |east
slginiflcant blt,

SAILON NO, 57 SAIL 11-21

11-66, After scanning the number the last delimiter Is replaced on
the Input string and Is returned as the break character for ths
channel, If no number Is found, a zero |s returned, and the break

variable s set to =13 If an end of flje |s sensed this |s also
returned In the approplate channe| variable, The maximum character
count appearling Iin the OPEN call |s lgnored,

Realscan._lptscan

Form:

11-67,
VALUE « REALSCAN (@"NUMBER_STRING"™ , @BRCHAR) 3 VALUE « INTSCAN (
@"NUMBER STRING" , oBRCHAR)3

Functlon:

11-68, These functlons ares identical In function to REALIN and
INTIN, Thelr Inputs, however, are obtalned from thelr NUMBER_STRING
argurents, These routines replace NUMBER_STRING py a string

contaglning all chargrters |eft over after the number has been removed
from the front,

Teletype 1/Q0 _Functliaons

Form:

11’69 ’
CHAR * INCHRW;
cHAR & INCHRS;

NSTRM - INCHNL’

"gTR"™ « INCHSL (@FLAG)3 -

"STR" « INSTR (BRCHAR)3

"STR" « INSTRL (BRCHAR)3

"STR" « INSTRS (@FLAG , BRCHAR)i
"STR" « TTYIN (TABLE , @BRCHAR);

"STR™ « TTYINL (TABLE , @BRCHAR)3
"STR" « TTYINS (TABLE , @BRCHAR)i
GUTCHR (CHAR)3

QUTSTR ("“STR")3

CLREUF

SAILON NO, 57 | L SAIL 1122

Function:

11-72, Each of the 1/0 functions wuses the TTCALL UUO’s to do
dirfeect TTY 1/0, o , ‘ ') .

INCHRHW walts for a eharacter to be typed and returns that
cha,actep. '

INCHRS returns =1 if no characters have been typed; otherwise It
~Is INCHRH, |

INCHWL walts for a |Iine, terminated by a carrlage-~return and
fine feed (CR=LF) to be typed, It returns as a string
all characters up to (not including) the CR, The LF s
lost, ,

INCHSL returns NULL with FLAG = =1 |f no |lnes have been typed,
Otherwise |t sets FLAG to @ and performs INCHHWL,

INSTR returns as a string all characters up to, but not
Including, the flrst |Instance of BRCHAR, The BRCHAR
Instance Is lost, . : .

INSTRL walts for a Ilne to be typed, then performs INSTR,

INSTRS Is INCHSL If no Ilnes are waiting; INSTRL otherwlse,

TTYIN uses the break table features described In (BRKS) and
Input, 11-41 to return a string and break ¢haracter,
Mode "R" Is 1llegal; |ine numper modes are Irrejevant,

The Input count (see Open, 11~6) |s set at 124,
TTYINL walts for a line to be typed, then does TTYIN.

TTYINS sets BRCHAR to =1 and returns NULL [If no |lnes are
walting, Otherwise |t is TTYINL, :

OUTCHR types Its character argument (rightejustifisd 1|In an
Integer varlable), '

OUTSTR types |ts string argument,

CLRBUF flushes the Input buffer,

SAILON NO, 57 SAIL 11=-23

STRING MANIPULATION ROUTINES

Lepgth
Form:
11-71, VALUE « LENGTH ¢ "STRING")3
Functiont
11~-72, The number of 7=blt characters In STRING Is returned, This

function 1Is normally compiled Into SAlL proarams, The functlion is
orovided for other nrograms If they need It,

Eau
Form:
11-73., VALUE « EQU ("STR1i", "STR2")
Functlon:
11-74, The value of this functlion Is TRUE |If STR1 and STR2 are

equal! 1In length and have ldentically the same characters In them (in
the same order), The value of EQU Is FALSE otherwlse,

TYPE CONVERSION ROUTINES
Setformat

Form:

11-75, SETFORMAT (WIDTH , DIGITS)

SAILON NO, 57 SAlL 11-24

Function:

11-76, This functlon allows specification of a minimum width for
strings created by the functions CvS, Cv0S, CVE, CVF, and CVG (see
Cvs, 11-80 and following), If this number (WIDTH) s poslitive,

enough blanks wll] be Inserted In front of the resultant string to
make the entire resuits at least WIDTH characters long. The slgn, |If
any, Wwilll appear after the blanks, If WIDTH Is negative, leading
zeroes wl|!l be used In place of blanks, The sign, of course, wl]|]
appear before the zeroces, This parameter 1Is initiallzed by the

system to @,

1177, In addition, the DIGITS parameter a|lows one to Speclfy the
number of diglts to appear following the decimal polnt In strings
created by CVE, CVF, and CVG, This number Is initlally 7, See the
wrlteups on the functlons Cve, Cvf, Cvg, 11~88 and following for
detalls,

Getformat .
Form:
11-78, GETFORMAT (eWIDTH , @DIGITS) 3
Function:
11-79, The WIDTH and DIGIT settings specifled In the last

SETFORMAT call are returned in the approprliate reference parameters,
Gys

Form:

11-80, "ASCII_STRING" « CVS (VALUE);

SAILON NO, 57 SAIL 11-25

Function:

11~-81, The decimal Integer representation of VALUE |s produced as
an ASCII String with |eading zeroces omltted (unless WIDTH has been
set by Setformat, 11«75 <to some negative value). """ will be

concatenated to the String representing the declimal abso|ute value of
VALUE 1f VALUE Is negatlive,

Cvos
Form:
11-82, "ASCII_STRING" « CVOS (VALUE)
Functlion:
11-83, The octa! Integer representation of VALUE Is produged as an
ASCI] String with leadlng zeroes omitted (unless WIDTH has been set
to some negatl!ve value by Setformat, 11-75). No "=" will be used to
Indicate negative numbers, For Instance, =5 will be represented as
w777777777773,

Cyls
Form:
11-84, "STRING" « CVIS (ITEM , @FLAG) ;
Function?
11-85, The print name of JTEM |s returned as a string, An Item’s

print name Is the ldentifier used to declare It, Print names are not
provided for Itemvars, FLAG Is set to FALSE (@) If the appropriate
string Is found, Otherwise it Is set to TRUE (~1), and You should
not place areat falth In the string result,

SAILON NO, 57 SAIL 11-26

Cysl
11-86, ITEM « CVSI ("PNAME" , @FLAG) }
Functiont
11-87, The ltem whose Identifier |Is the same as the string

argument PNAME Is returned and FLAG set to FALSE if such anm ltem
exlists, Otherwise, something very random Is returned, and FLAG Is
set to TRUE, ’

Cye, Cvi. Cvg

Form?

11-88, S e e
"STRING" « CVE (VALUE)35 "STRING™ ¢ CVF (VALUE)3 "STRING" « cVG (¢
VALUE)3 o ' ' ' .

Functlont

11-89, Real number output Is faclllitated by means of one of three
functlions CVE,CVG, or CVF, corresponding to the E,G, and F formats of
FORTRAN IV, Each of these functlions takes as argument a real number
and returns a string, The format of the string |Is controlled by
another functlon SETFORMAT (WIDTH,DIGITS) (see Setformat, 11~75)
which Is used to change WIDTH from zero and DIGITS from 7, thelr
initlal values, WIDTH speclfles the minimum string length, 1f WIDTH
Is positive leading blanks wi|l be Inserted and If negative leading
Zeros wWill be |Inserted,

SAILON NO, 57

SAIL 11-27

11-92, The followlna table Indlicates the strings returned for some
tynical numbers, _ Indlcates a space and |t Is assumed that WIDTH*10
and DIGITS+3,
CVF CVE CVG
______ , 000 __,100e.3_ __.100e=3_
...... 201 __1l20e-2_ __s100e=~2_
______ 210 __1100@-1_ _100@=1_
______ w100 __Jice___._ W10 ____
_____ 1,000 __.l00e1__ 1 S
. _1p.,000 C 17802 __ 18,9 ___
__ 100,009 -_.10pe3__ _.1e0, ___
__1000,000 __.,108e4__ __.100e4__
_100820,000 __J1pp65 __ __.108e5__
_1p0000,020 __.Jlp0e6_ _ _.100e6__
_1vnooca20,000 10907 __ 10067 __
-1002300,000 “-,10207__ -, 100e7__
11-91, The flirst character ahead of the number |s elther a blank
or a minus sign, With WIDTH*=10 plus and minus 1 would prilnt as:!
CVF CVE CVG
_Pogal1,000 _D.,12ge1__ 81,00 ____
-87001,000 -2,10001__ -p1,00 ___
11-92. All numbers are accurate to one unit in the elghth dligit,
1f DIGITS |Is oreater than 8, tralllng zeros are Includeds 1f less
than elght, the numper |s rounded,
Cysir
Form:
11-903, "STRING" « CVSTR (VALUE)

SAILON NO, 57 SAIL 11-28

Functlion:

11-94, VALUE Is treated as a S-character left-justifled word fujl
of ASCII, the result |s a S=gharacter long String contalning these
characters, The low order blt of VALUE I|s lgnored,

Cyxsir
Form:
11-95, WSTRING" « CVXSTR (VALUE) ;
Function:
11-9¢, VALUE Is treated as a é-character left~justified word full

of SIXBIT, The result Is a é~character long String contalning these
characters, converted to ASCI], -

Cyd
Form:
11-97, VALUE « CyD ("ASCII_STRING")
Functlon:
11-98, ASCII_STRING should be a String of decimal ASCII! characters

perhaps preceded by plus and/or minus signs, Characters wlth ASCI]I
values < SPACE (’48) are lgnored preceding the number, Any character
not a diglt will terminate the conversion (with no error Indication),
The result Is the Internal (slgned) 36=blt binary representation of
the number,

€vo

Form:

11~99, VALUE « CVO (¢ "ASCIJ_STRING");

SAILON NO, 57 SAIL 11-29

Function:t .

11-100, This function |Is ¢the same as CVD except that the Input
characters are deemed to represent Octal va|ues,

Cvasec
Form:
11~-101, VALUE « CVASC (¢ "STRING")
Functlent
11=-102, This |s the Inverse functlon for CVSTR, Up to five ASCII
characters wlll be fetched from the beglnning of STRING and placed
left-Jjustiflied In VALUE, If the String is |ess than five characters
fong, the rlight characters wi|l be padded wl!th null (@) characters.
Gyslx
Form:
11-103, VALUE « CVSIX ("STRING");
Functlon:?
11-104, The |Inverse for CVYXSTR, fhls function works the same as

CVASC except that up to six SIXBIT characters are placed In VALUE,
The characters from STRING are converted from ASCII to SIXBI!T pefore
depositing them In VALUE,

Cyfll

Form:

11-1025, VALUE « CVFIL ¢ "FILE_SPEC" , @EXTEN , @PPN) i

SAILON NO, 57 ; SAIL 11-39

Function:
11~-106, FILE_SPEC has the same form as a flle name speciflicatlion
for LOUOKUP or ENTER, The SIXBIT for the file name |s returned In

VALUE, SIXBIT vajues for the extension and proJect=programmer
numbers are returned In the respective reference parameters, Any
unspecliflied portlons of the FILE_SPEC wll| result In zero values,

ARRAY MANIPULATION ROUTINES

arclnfo
Form:
11-127, VALUE « ARRINFO (ARRAY , PARAMETER)3
Functlont
11~128,

ARRINFO(ARRAY,=1) returns the number of dimenslions for the array,
This number |s negative for String arrays,

ARRINFO(ARRAY,2) returns the total| slze of the array In words,

ARRINFO(ARRAY, 1) returns the lower bound for the first
dimension.,
ARRINFO(ARRAY,2) returns the upper bound for the flest

dimension.

ARRINFO(ARRAY, 3) returns the |lower bound for the second
dimenslion,

Arcblt

Form:

11-129, ARRBLT (®L0C1i , @LOC2 , NUM)

SAILON NO, 57 SATL 11-31

Functlion:

11=-114, NUM words are transferred from consecutive |ocations
starting at LOC2 to consecutive |ocations starting at LOC1,

Arcirap
Form:
11-111, ARRTRAN (ARRAY1, ARRAYZ2)i
Function:
11~112, This function coples |nformation from ARRAY2 to ARRAY1,
The transfer starts at the first data word of each array, The

minimum of the sjizes of ARRAYL and ARRAY2 |s the number of words
transferred,

LIBERATION=FROM=SAIL ROUTINES

Cade

Form:

11-113, RESULT « CODE (¢ INSTR , @ADDR)

SAILON NO, 57 SAIL 11-32

Funmnction:
11~114, This function is equlvalent to the FAIL statements:
EXTERNAL ,SKIP, sDECLARE AS _SKIP_ IN SAIL
SETOM JSKIP, $ ASSUME SKIP
MOVE - @, INSTR
ADDI @,@ADDR
XCT @
SETZM JSKIP, sDIDN'T SKIP
RETURN (1)

In other words, |t executes the Instruction formed by adding the
address of the ADDR- vagrlable (passed by reference) 10 the number
INSTR, Before the operatlon is carried out, ACl 1Is loaded from a
speclal cell (Initjally), AC1 Is returned as the resylt, and also
stored back Into the speclal ce|l after the Instruction Is executed,

The global varlable _SKIP_ (,SKIP, In DDT or FAIL) Is FALSE ()
after the call |f the executed Instruction dld not skip; TRUE
(currently =-1) i f It did, Declare this varjable as

EXTERNAL INTEGER _SKIP_ [f you want to use |t,

Call

Form:

11-115, RESULT « CALL (VALUE , "FUNCTION")3

Function:

11-116, This function Is eguivalent to the FAIL statements:

EXTERNAL ,SKIP, '
SETOM JSKIP,

MOVE 1,VALUE

CALL 1,[SIXBIT /FUNCTION/]

SETZM +SKIP, $DID NOT SKIP

RETURN (REGISTER 1)

The ,SKIP, varlable (_SKIP_ In SAIL) |s set as described In the
previous paragraph (CODE),

SAILON NO, 57 , SAIL 11=-33

Usererr
Form?:
11-117, USERERR (¢ VALUE , CODE , "MSG" });
Funetion
11-118, MSG Is oprinted on the teletype, [If CODE = 2, VALUE Is
printed In declmal on the same jine, Then on the next |line the

"LAST SAIL CALL" message Is typed which Indicates where In the user
program the error ocecurred, A "2?" or "«" character Is typed and the
user may type a standard reply (see ERROR MESSAGES, 13-19), I1f CODE
s 1 or 2, a "#" wi|| be typed and execution wllil be aj|owed to
continue, If It 1s B, a "?" Is typed, and no continuation will be
permitted,

SAILON NO, 57 SATL 12-1
SECTION 12
USE OF DEFINE

The SAIL DEFINE feature provides a |Imited macro capabliity wlith
parameter substitution, The formal| syntax for DEFINE declarations Is
given In DECLARATIONS, 3=1, Use of these macros |s described below,

Defining Macros
12«1, When a macro of the form
DEFINE MAC(X,Y) = "FOR Y«1 STEP 1 UNTIL Xx DO"

ls seen by the compiler (elther at declaration level or statement
level), |t first assoclates with the "formal parameters" sequentlial
Iindlces (x=1, Y=2), Then It reads the String constant representing
the racro body Into String space, substituting for each occurrence of
a formal parameter the ‘character '177 followed by the character
representing the |[ndex of thls formal! parameter, These speclal
characters wll| be used to locate the actual parameters when the
macro Is expanded, The modifled macro body Is stored under the name
of the mecro, where It |les dormant until someone mentions It agalin,

12~-2, In what follows, the character =~ wll| represent the
character (’177) wused to identify parameter |ocatlons, The number
followlng 1t will always be the parameter Index, The above macgro Is

stored as:?

FOR -~2«1 STEP 1 UNTIL -1 0O

12-3, A macro may be re~deflined (at statement level) as many times
as deslred, The new macro body repiaces the old one, Macro names
follow block structure, so for a macro with the same name as soOme
other macro to be a redefinition, It must appear at the Ssame bjlock
level as that other deflinlitlion,

String Constants In Maero Bodles

12-4, String constants may be represented In macro bodles, but two
quote characters (") must be Inserted for each one whlgh would be
necessary |f the String constant appeared outslide the macro body
(which after all Is Itself a Strlng constant, hence the problem),

SAILON NO, 57 SAIL 12-2

Using Macros

12-5, When a macro name (ignore for the moment the possiplilty of
parameters) (s detected In a fllie, the body of that macro Is
retrleved and becomes the input to the SAIL scanner unti) the String
ls exhausted; the secanner then returns to the source flle for Its
Input, The macro name |tself never makes |t out of the scanner, If,
while a maero body s providing Input, another macro name IS
encountered, the origlinal macro body Is put aside wuntl]| tnls new
macro |s exhausted, Nesting may occur to any level; however, [t wil]
be necessary to Increase the slze of the compller’s DEFINE push down
stack |f nesting gets extremely deep (see the D switech In Swlteches,
13-13),

Macro Parameters

12-6, I1f a macro body has been deflined with formal parameters, the
compller will look for actual parameters to satlisfy them when a macro
|s expanded, Actual parameters fol|low the macro name, are surrounded
by parentheses and separated by commas,

12-7, A macro parameter Is scanned as a String constant, However,
for convenlence, the following speclal rules apply to the Scanning of
a macro actual parameter: '

1) All blank characters after the |eft parenthesis are lgnored,

2) I1f the flrst nen~blank character Is not the " character, the
parameter String will be terminated by a comma or a right
parenthesls, which will not appear In the parameter, If the
" character |s found after the first one, It Is treated as
any other text character.

3) If the flrst noneblank character Is the " charagter, the
parameter |Ss scanned wusing the normal rules for String
constants,

SAILON NO, 57 SATL 12-3

Exarnple
12"8}

MAC("I","J") |s equivalent to MAC(!,J);
HAC("J*sn , "X&""A STRING""")
Is eaqulivalent to MAC(J*3,X&"A STRING");

but MAC("""A STRINGn"» ,"PROC(I,J)™)

may not be abbreviated, because the meaning of the " character would
otherw!i!se be amblguous In the flrst argument, and the commas and
parentheses need protectior In the second,

Actual Parameter Expanslion

129, The actual parameter strings are stored |In an ordered |lst
Just before the Input stream |s swltched to the macro body. When one
of the ~number palrs appears, the Input stream |s switeghed to the
(number)th actual parameter, Other macros (with or wlthout
parareters) may appear |n these actual parameters wlthout confusling
the scanner (sig),

12=190, For an actual parameter to he recognized eventually as a
String constant, enough " characters must surround It to allow one to
survive on each end when It passes through the scanner for the last
time, To be sure, the Implementation of this feature Is so wondrous
that even the authors must resort to trial and error methods when
complicated things are donelenod\attempted, :

SAILON NO, 57

Examples

12'1;0

DEFINE TTY=wym, SRCzv2", BRK_ON_LFDz"2";

Comment for constant parameters for whigh
1t Is desjrable to include symbollc names,
this Is more efflicient than assigning the
parameter values to varlables)

DEFINE TYPE(MSG)= "QUT(TTY,MSG)";
Comment note Inclusion of TTY macro In the
body of the TYPE macro;

DEFINE TYPEC(MSG)S"QUT(TTY,""MSG ™))"}
Comment argument always to he made Into
a String constant;

DEFINE DEBUGGING = nTRUE"™, INP1(VBL,WHERE)=
"BEGIN
VBL«INPUT(SRC,BREAK_ON_LFD):
IF DEBUGGING THEN ,
TYPE(wwnnnn INPUT TO VBL AT WHERE JSnnnegyBLw");
END"3; Comment (probably):

Using these definltjons,
INPL(STR,INITIAL READ) expands to?
BEGIN

STReINPUT(2,2);
IF TRUE THEN

OUT(1,"INPUT TO STR AT INITIAL READ IS "&STR);

END;

SAIL

SAILCN NO, 57

COMMAND FORMAT
Syntax
13=~1,

<command_|Ine>

<blnary_name>
<iisting_name>
<(source_I|Ist>
<file_spec>
<file_name>
<flle_extd>
<proJj_prog>

{device_name>

{swltches>

<unsl|ashed_switch_|Ist>

{slasheg_swltch_I||st>

SATL 13-1
SECTION 13
COMPILER OPERATION

‘= <blinary_name> <llsting_named> «
<source_IlIist>

2 <flle_spec> @

= {flle_spec> EXC

.e

e se

'tz (flle_spec>

Cempty>
its , flle_spec>
itz {empty>
i1z {flle_spec>
ii2 <source_|Ist> , <flle_spec>
112 {flle_name> <flle_ext> <KproJ_pProg>
t1t=2 <device_name> <flle_spec> <gwlteches>
1tz {device_name> {swltches>
ti=2 <legal_sSixblit_1ld>
1tz , <Clegal_sixblit_td>
113 Cempty>
118 [Clegal_sixblt_id> , <lega|_sixblt_1d> I
113 <empty>

tte Clegal_sixbit_[d>

(<uns|ashed_switch_{Ist>)
<s|ashed_switch_JlIst)>
Cempty>

-s =s w=
e os oo
u"amn

<switch_spec> _ :
<unsiashed_switch |ist> <switch_spec>

e se

112 / (swltch_spec>
1is <s|ashed_switch_Ii1st> / <swltch_spec>

SAILON NO, 57 | SAIL 13-2

<swltch_spec> tiz Cvalld_swliteh_named
iz (signed_|Integer> <valld_switch_name>
<valld_switch_name> tiz D
' HER SN
1tz M
i1s P
HER |
11z R
IREI)

Semantlics

13=-2, All this Is by way of saylng that SAIL accepts commands In
essentlially the same format accepted oy DEC processors such as MACRO
and FORTRAN, The binary flle name |s the name of the output device
and flle on which the ready to load obJect program wil] be written,
The |isting flle, |f iIncluded, will contaln a copy of the source
flles wlith a header at the top of each page and an octal program
counter entry at the head of each IIine (see Listing Features, 13=13).
The Ilsting flle name |s often omitted (no |Isting created), The
source flle |Ist specifles a set of user~prepared flles whlgh, when
concatenated, form a valld SAJL program (one ocuter block),

13=3, legal sixbit_ldentifler |s a name which Is acceptable to the
time sSharing system as g valid flle name, device name, extension,
etec, when |ts first six (device, flle) or ¢three (extension,
progect=programmer number) are converted from ASCII to SIXBIT, For
more Information about flle and device names, see [Moorer],

13-4, It flle_ext |s omitted from the binary_name, the sxtenslon
for the output flle will be ,REL, The default extensfon for the
l1stino flle is ,LST, SAIL wll| first try to find source fl|es under
the names glven, If this fai|s, and tne extension |Is omltted, the
same flle with a ,SAl extension wil| be trled,

. ¢

13=5, If device_name |s omjtted, DSK:i |s assumed, If proj_prog Is
omitted, the proJect=programmer numper for the job Is assumed,

SAILON NO, 57 SATL 13=-3

13=6, Swltches are parameters whieh affect the operation of the
complier, A llst of switches may appear after any file name, The
parameters specl!flied are changed Immedlately after the flle name
assoclated with them |s processed, The meanings of the swltches are
glver below,

13-7, The blnary, listing and (flrst) source flle names are
nrocessed before compllation =« supsequent source names (and thelr
switches) are processed whenever an endeofeflle condlition |ls detected
In the current source fijle, Source flles which appear after the one
contalning the outer bloeck’s END de|limiter are lanored,

13-8, Each new {Ime In the command file (or wentered from the
teletype) speclifles a separate program compilation, Any number of
programs canh be complled by the same SA]L oore Image,

13-9, The flle_spec® command causes the compller to open the
specifled flile as the command flis, Subsequent commands wl|| cOme
from this file, If any of these commands |s flle_spec®, another

switeh will occur,

13-10, The flle_spec! command wll| cause the speclfled file to be
run as the next procsssor, Thls program wlll be started |In "RPG
mode", That is, |t wlil look on the disk for |ts commmands If Its

standard command flje |s there «- otherwlise, c¢ommand contro| wil|
revert to the TTY, The default ontion for this flle name Is ,DMP,
The default projecteprogrammer number Is [1,3], The default device,

of course, Is DSK,

13-11, For Information about |ogging In, running jobs, and so on,
see [Moorerl],

SAILON NO, 57 ' SAIL 13-4

Rpg Modse

13-12, The COMPILE, DEBUG, LOAD, and EXECUTE set of system
commands may be used to complle and run SAIL programs. See (Moorer]
for detalls, A typnical command String to the system (which wlli
nréepare commands of the form described above and pass them to SAIL
(after starting tt) might be:

DEBUG /SAIL RECOG(~2L5MRR)=zBEG+PROCS+RECOG/LIST,CMDSCNLYL,DCS]

This command will cause the foliowing commands to be placed n a flje
on your area by the nams of QQSAIL,RPG:

RECOG,REL,RECOG,LST(=2L5MRR)«BEG,PROCS,RECOG
CMDSCN,REL~CMDSCNCL.,DCS)
LOADER!

The /SAIL entry may be omitted iIf al| flles have a .SAl extenslion,
The loader wlll |oad the flles with DDT or RAID and then start the
spec!fled debugging program,

SAILON NO, 57

Switeches

13'13. The
If the swlitch

SATL 13-5

followlng table describes the SAIL parameter switches,
letter |8 preceded In the table by the D c¢haracter, a

decimal number I|s expected a$ an argument, @ Is the default value,
The character O Indicates that an octal number Is expected for this
switeh, Otherwise thes grgument Is lgnored,

ARG SWITCH

0
0 L
D M

FUNCT]ON

For eveary occurrence of this switeh In the c¢ommand
line, the amount of space for the push down' stack used
In expanding macros (see USE OF DEFINE, 12«8) Is
doubled, Use this switch If the compller Indlicates to
you that this stack has overflowed, Thls shouldn’t
happen unless you nest DEFINE calls extremely deeply.

In complliing a SAIL program, an I[nternal varlable
called PCNT (for oprogram counter) is ingremented (py
one) for each word of code generated, This value,
Inttlally @, represents the address of a word of code
In the running program, relative to the load polnt for
this program, The current octal value of PCNT pjus the
value of another Internal variable called LSTOFFSET, Is
printed at the beglinning of each output |lne In a
i1sting f1le, For the first program compllead by a
glven SAIL <core Image, this value |s initially g, 1If
the L swlteh occurs In the command and the vajye (O |Is
non=nggative, 0 replaces the current vajue of
LSTOFFSETY, 1f O s =1, the current slze of DDT Is oput
Into LSTOFFSET, If O Is »2, the current slze of RAID
Is used, In "RPG mode" the final value of PCNT |Is
added to LSTOFFSET after each complilation, Thus by
deleting all ,REL flles produced by SAIL, and by
compliina all SAIL programs whlich are to pe |oaded
together wlith one RPG command which includes the L
switeh, you can obtain listing flles such that each of
these octal numbers renresents the actual starting core
address of the code produced by the |ine It precedes,
At thg time of this wrliting, RPG would not accept minus
signs In switgches to be sent to processors, Keep
tryling,

D Is a number from 1 to 6, This parameter puts the
complier In one of several debugging modes, Thils
switch |s most useful to compliler fixers, put some of
the modes are of ganeral Interest, The functlions

SAILON NO, 57 SAIL 136

represented by each of these modes are desgribhed In
Debugging modes, 13-14 below,

P Each peccurrence of this swlitch doubles the slze of the
system push down |]st, It has never been known to
overflow,

Q Each occurrence doubles the size of the String push
down ||st, No trouble has been encountered here,
alther, ‘

R Each occurrence doubles the slze of the compller’s

: parsing and semantic stacks, A long condltlional
statemen‘t of the form (IF e THEN] ELSE IF * g

THEN ,,., ELSE IF ,,,) has been known to cause these
stacks to overflow thelr normally allocated slzes,

D S The s|ze of String space |s Set to D words, String
space usage Is a functlon of the number of Identiflers,
especlally macros, declared by the user, In the rarse
case of String space exhaustion, 5898 Is a good first
number to try,

Debuggling modes

13-14, Certaln versions of the SAJL complier have a debugging
faclllty bullt 1Intoe the Inner |oop of the parser, It Is willlng to
display Information about the current state of the compllation at

strategle times, This routine can be In one of several modes, A
‘debuagling mode Is Initlally specifled using the M switgch described
above, It can be changed by the user as the compilation progresses,

The modes and thelr functlons are as follows:

1) Just before each code-generator |s called, I[ts name |s
displayed on the 7t7Y along with the top few elements of the
parse and semantic stacks, If the TTY Is a DPY, one alSo gets
the current Input Ilne with an arrow underneath Indicating the
next element to be Secanrned, If You do not know what to |00k
for |In the stack, don’t use this mode, Compllation may be
continued by typing the character "P",

2) No Information |s dispiayed In th]ls mode, However |lne breaks
and asynchronous breaks (see be|ow) can stl|l ocecur,

3) Just pefore each parse production |8 compared to the parse
stack, the name of the production and the other Information
mentloned above Is presented, Proceed by typing npw,
Compllation takes forever [n this mode,

SAILON NC, 57 ~ SAIL 13-7

4) Thlis mode does not cancel any of modes 1, 2,or 3. However, It
puts the debuggling routines In a mode wherein thay wi|l not
walt for a user go-ahead before proceeding from the dlsplays
described for these modes, Line and asynchronous breaks are

"stii! enabled In thie mode, and may be used to regaln gontrol
of things,

5) Thls mode has no very useful appllication |[f the TTY Is really a
TTY, However |f It Is secretiy a DPY, the current Input Iline
Is contlinuous|y presented along with an arrow showing the
compllerts progress through |t, No user go~ahead |3 negessary
after each presentation, Al|l other modes are cancelled, Line
and asynchronous breaks are enabled,

6) This |s the default mode, WNo Information 1|8 displayed, The
debuggling routines are completely detached from the compliation
loop, Line and asynehronous breaks are disabled. The only way
to get any of the Information desgribed above Is te Start over,

13-15, If you have the compller In a position where [t is willing
to |Isten to a "P" to gontlnue, you may also type some other things,
The most Interesting onme Is the "L" command, Typling "L", followed by
a space, followed by a page number (decimal), followed by a sSpace,
followead by a 5 character |Ine number, followed by yet another space,
causes the complier to remember this page and |Ine numper, and to
stop with a Line Rreak message and the Information descriped above
Just after the specifled |Ine has been read, At this point you may
ehangs modes (see bejlow) or not, as you prefer, and type "P" to
continue, This command I|s really not too useful unjess You are a
complier flixer,

13-16, To ochangs modes while compliing, type any number of
parametereM palrs to the debuggling Interpreter before typlng “P" to
g0 on,

13=-17, To gqget the compiler’s attention when [t is operating In

one of the modes 2, 4, or 5, simply type a <carrliage return, very
shortly the complier will display an Asynehronous Break message, the

print |ine, and some stack elements, Then you may change modes, Set
a I(ine Dbreak, or simply proceed, This Is often useful simply to

convinee yoursel|f that your program Is sti|| being complled 1f vou
are running In mode 2, If vyou are operating In mode 6, the compller
will not |l1sten to your plea, Start the complier In mode 2 [f VYou
want ¢this feature, but be warned that things wl|| s|low down

consliderably (10%7),

SAILON NO, 57 SATL 13-8

13-18, Here 1s an example of a complle string which a user Who
Just has to try every bel| and whistle avallable to him mlight type to
compile a flie named NULL:?

COMPILE /LIST /SAIL NULL(RR=2L1M4M52008S)

The switch Information contalned In parentheses wi|l be sent
unchanged to SAIL, Note the convention which allows one set of
parentheses enclosing a myriad of swlitches to replace a "/" character
Inserted before each one, Thls string te|ls the compl|er to compile
NULL using parse and semantlic stacks four times larger than usual

(RR), A |lsting f1le Is to be made whlch assumes that RAID will be
loaged and NULL wll| be loaded rlght after RAID (=2L), The user
wants to see the stack and Input |ine Just before every code

generating routine |s called (1M), but he does not want the compller
to stop after each display (4M), HIs program Is blg enough to need
5png words of String space (5808S), :

ERROR MESSAGES

13-19, If the compller detects a syntax or semantic error whlije
complling a program |t will provide the user wlith the followlng
Information:

1) The error message, Thase are Engl|ish phrases or sentences
which attempt to dlagnose the problem, If a message |s
vague |t |s because no speclfle test for the srror has been
made and a eatechall routline detected It, If the messags
bealns with the word "DRYROT" |t means that there [s a bug
In the compller whigh some strangeness In your program was
able to tlckle, See a system programmer about this,

2) The current !nput |Ine. Page and |inme number, along wlth
the text of the Ilne belna scanned, are typed, If the
console device |9 a TTY, a Ilne feed wi|i occur at the polint
in the Iine Just fojlowing the Jjast program element scanned,
If the device |s a DPY, the Iine wiil|l be dlisplayed wlth a
vertical arrow below the scan position, The absence of a
position Indlecator means that a macro (DEFINE) body Is being
expanded, ‘

"CALLED FROM xxxxx", Thls Is a message of value to compller
debuggers aonly,

W
~r

4) A aqusestion mark or rlght=arrow (=),

SAILON NO, 57 SAIL 13-9

13-20, Respond to the gquest!on mark |In any of the following ways:

CR ‘Try to continue compilation, A message wl!ll be printed and
the sequence reentered |f recovery |s Impossible (lf a "2»
was typed [nstead of a "="),

LF Continue and don’t stop from now on, The program wl|| not
stop it It can help 1It, Messages wlill fly by (at an
unreadable rate on DPYs) unti| the compliation Is complete
or an error oceurs from whigch no recovery Is possible, In
the latter case the auest|on sequence Is reentered,

S Restart, Sometimes useful if you are debugging the complier
tor |f you were complilng the wrong flle), The program Is
restarted, accepting compllation commands from the TTY,

X Exlit, Al] flles are closed in thelr current state, The
program ex|ts to the system,

L Look at stack, Thls -enters a part of the debugging routine
(see DNebuaging modes, 13=14 above) to allow examinatjon of
the parse and semagntic stacks, The compiler will lead you
by the hand through these procedures,

E Edlit, Thls command must be followed by a carrliage return,
or a space, a fliename (!n standard format, assumes NSK) and
a carrliage return, If the .f|lename |Is missing, the §OS
editor (see [Savitzkyj) |Is started, given instructions to
agl!t the currgnt source filg ang to move the eqiting polnter
to the current pace and |lne number, If a flje name IS
present, that flle |Is edlted starting at the pbeginning,

D Enter DDT or RAID If one is |ocaded, Otherwjser t¥Ype "NO
ODT" and re=question,

13=21, Any other character wWil| cause the error routines to spew
forth a sumpary of this table and re=enter the questlon seduence.

SATLON NO, 57 CSAIL 13-1p

STORAGE ALLOCATION

13-22, The compl|er dynamically allocates working storage for Its
push down |Ists, symbol tables, string spaces, etc, [t normal|y runs
with a standard allocation adequate for most programs, switeh
settings given above may be used to change these allocations, If
desired, these allocatlons may also be changed by typing *C, foll|owed
by REE (reenter), The compllier will ask you |f you want to allocate,
Type Y to allocate, N to use the standard allocation, and any other
character to use the standard allocations and print out what they

are, All entrles wil| be nprompted, Numbers should be decimal,
Tvoing altemode Instead of CR wl|| cause standard allocatfon to be
usec¢ for the remalning values, The compliier wlll then start,

awaiting command Input from the teletype,

SAILCN NO, 57 SAIL 14-1
SECTION 14
PROGRAM OPERATION

LOADING AND STARTING SAIL PROGRAMS
Load!ng

14-1, Load the main program, any Separatel|y compl|ed proceduie
flies (mee Separately Complied Procedures, 15-7), any assembiy
language (see PROCEDURE IMPLEMENTATION, 16-=46) or Fortran procedures,
and DOT or RAID If deslired, This Is al| automatic 1If you use the
LOAD or DEBUG or EXECUTE system commands (see [Moorerl), Any of the
SAIL execution time routines requested by your program will be
searched out and |oaded automatically from LIBSAI,RELL1,31],

Space Ajjlocation, Norma} Operation

14-2, If you can run wlith standard space allocatlon, simply start

your program, Flrst the SAIL storage areas will be Initlalized, All
strings (except constants) wil| be cleared to NULL, All complled~in
arrays wll! be clearsd, Then executlon wil|l begin with the first
statement In the outer block of your main program. AS aach block Is
entered, |ts arrays wlll be cleared as they are allocated, Vvariables
are not <cleared, The oprogram wl|| exlt when It leaves this outer
- block,
14-3, If more push down stack sSpace (string, system, array) or

string space |8 needed, type REE to the mon|itor and answer allocatlion
questlions as descriped In STORAGE ALLOCATION, 13=-22, You ¢an find
out what the standarg allocatlons are by typlng a space after the
system types ALLOC? at you, Arrays, Leap spaces and 170 buffers are
allocated dynecamically, obtaining more storage from the operating
system |f necessary, See Storage Aljocation Routines, 16«5 and
followlina for ways of cooperating with SAIL wlth respect to storage
allocation |f you write machine |language subroutlines,

SAILON NO, 57 | SAIL 14.2

ERROR MESSAGES

14-4; Error meSsages have nearly the same format as those from tho
eompllier (ERRQR MESSAGES, 13-19), They Indlcate that

1) an array subscript has overflowed;
2) a case index |s out of range)

3) a stack has overflowed whlle allocating space for a
recursive procedure; or

4) one of the executtoh time routines has detected an error,

14-5, The "CALLED FROM" addrass |dentifies, In the flpst 3 cases,

the |ocatjon |n the user program where the error occurred } the "LAST
SAIL CALL AT" address gives the |ocatlon of the faulty cal|l on the

SAIL routine for type 4 messages.

145, All the replles to error messalOes describsd [n ERROR
MESSAGES, 13~19 are valld except the "L" optlon, If no flle name |s
typea wlth the "E" obptlon, the editor rewopens the |ast file
mentloned In the EDI!T system command, '

14-7, The functlon USERERR may be used to actlvate the SAIL error
message mechanlsm, See Usererr, 11~117 for datalls,

DEBUGGING

14=-8, The eode output for SAIL programs |s designed to be falr|y
esasy to understand when examined using the DDT debugging language or
Stanford’s display oriented RAID program, A knowledge of the
debugger you have chosen I's required before this sectlon wlll be
comprehensible,

SAILON NO, 57 ' SAIL 14-3

Symbols

14-9, Only those symbols which have been declared INTERNAL (see
Separately Complied Procedures, 15=7) and those declared In the
currently open "program" are avallable at a given time, The name of
a SAIL program as far as DDT or RAID (henceforth DDRAID) Is concerned
Is the name of the outer block of that program, If no name |s given

for tnls bloek, the name M, Wl|| be the default,

14=-12, Only the flrst six noen=blank characters of a block name or
ldentifier wlill be wused 1In forming a DDRAID symbol, If tpo
Identiflers In the same block have the same flrst six characters the
program using them wll| not get confused, but the user mlght when

trying to locate these |dantiflers,

14-11, To obtaln symbols for the execution time routlnes, |oad
RUNTIM,RELCL1,3]7 wlith your other flles, The routines will be |oaded
fror this flle, which Includes symbols, instead of from the LIBSAI
library, which does mot, Your program wi|| be several thousand words
longer when this file Is used,

Blocks

14-12, All block names and ldentifiers used as varjabies,
procedures or labeis In a given (maln or separate procegure) program
are avallable for typout when that program is "open" (NAMES$: has been
tyned), To refer to a symbol, type BLOCK_NAME&SYMBOL/ (; for RAID).
The block name may be omltted |f you have "opened" the block wlth
BLOCK_NAMESS, The symbol table |s block-structured on|y to the
extert that block names have appeared In the source program, For
Instance, In the program

BEGIN "NAMEL"®
INTEGER 1,J;
éé(.;IN
INTEGER I,K; N
LI I]
END;

END "NAMEL"

SATLON NO, 57 | SAIL 14-4

the symbols J, K, and both symbols | are considered by DDRAID to
belong In the same block, Therefore confusion can result with
respect to I, This approach was taken to avold the necessity of
generating meaningiess block names for DDRAID when none wers glven in
the source program, A compound statement wll| be cons|dersd by
DDRAID to be a block If |t has a name,

Sall~Generated Symbols

14-13, Some extra symbols are generated by SAIL and wlll show wup
when you are using DORAID, They aref

ACS The accumulators P (system push down |Ist pointer), SP
(strlng push down pointer), and TEMP (commonly ysed
temporary) are glven symbojlc names, Current|y P=z'17,
SP='16, TEMP='14,

0PS The op codes for the UUOs ERR,, ERROR,, FIX, FLOAT, POLOV,
and ARERR (subscript overflow UUO) are Included to make
these aasy to detect Iin the code, ’

ARRAYS For each array declared 1In the outer block “(bu1|t-ln
arrays), the flxed address of lts first element Is given a
symbollec name, This name |Is c¢onstructed from . the
characters of tha array name (up to the first 5) followed
by a perlod, For Instance, the first element of array CHTY
Is CHT,: the flirst element of PDQARR |s PDQAR,; The |ast
semigcolon was really a perlod, Thls dotted symbol polnts
to the Second word of the first descriptor for String
Arrays (see STRINGS, 16-=14, ARRAY IMPLEMENTATION, 16«33),

BLOCKS The first word of the first executable statement of every
hlock or compound statement whlch has been glven a name Is
olven a lahel created In the same way as those for arrays
above, This 1label cannot be gone to In the soyrce
program, It causes no program |nefficlency, This label|
polnts at the flrst word of the compound tall == not the
flrst word of code generated for the block (sklips any
procedure or array doclaration cods),

START The flirst word of code generated for any glven program |s
given the name "S,",

SAILON NO, 57 SAIL 1445

Warninas

Hangina Store

14=-14, Quite often an assiganment statement results onjy In the
loacing of a PDP=10 accumulator, This AC will not be stored Into the
core locatlion |dent|fled with the name of the variable untl] It Is

necessary, Confuslon can result If you set a breakpoint somewhere,
then examlne the core varlables of Interest without checking the
Immediately surrounding ecode to be sure none of the Interesting
variables are stll!l In ACs,

Long Names

14-15, Since only the flrst 6 characters‘of an ldentifier are
avallable, it Is Wwise to declare symbols which wWl|l be examined by
DDRAID In such a Way that these six characters wi|!l uniquely lidentify

them.,

SAILON NO, 57 SATIL 15-1
SECTION 15
PROGRAM STRUCTURE

THE SAIL CORE IMAGE (REQUIRED)

15~1, The following things must be present I[n a core Image
contalning SAILegompljed flles?

Main Program

15-2, A SAIL "maln program"™, or an assembly |anguage program whigh
looks an awful ot |lke a SAI_L maln program, must be present J[f any
sAlL=-compiled flles are, A sAIL sourece program whieh has no
entry-speciflication as Its first element satisfies this requlirement,
The flrst statement executed after storage allocation |s complete
wlil| ne Its first statement, Tnere should be no more than one maln
program per core |mage, |

15~3, The sallent characteristics of a maln program are!
1) Its ,REL file has a starting address block (the loader wlll
tell the time shgring system to start the program at this
address),

2) 1lts flrst task i3 to determine whethef the progranm was
started |In RPG mode. If so, the global varlable RPGSW Is
set to TRUE: otherwlse FALSE,

3) Its next task |s to <call the storage allocator with
JSR SAILOR,

4) It should then proceed with the main control|l of the program,
4y 1%t should execute a POPJ 17,8 when |t Is all done,

5) 1t may not execute any UUOs except SAIL UUOs (nor alter
permanently the UUO Jocations 4@ and 41) without great
cautlon, «

SAILON NO, 57 SAIL 15«2

Storage Allocatlon, Basje Uti|ltles

15-4, There |Is a set of routines whlch must always be |ocaded to
establ||lsh the operating environment for SAIL programs, These
routines allocate storags, set up push down pointers, and Initiallze
some of SAIL’S Internal tables, Other routines Incjuded In this
package are a String garbage collector (see STRINGS, 16=14) and
several basle routines whieh many others call upon,

15-5, These programs wl|!l be loaded automatically from LIBSAl,REL
If the JSR SAILOR Instruetlion, where SAILOR Is an external request,
Is present In the maln proaram (thls |s automatic for SAlL=compiled
maln programs), ‘

Other Execution=TIme Routines

15=-6, All 1/0, String=hand|ling, etc., |is done by routlines whlch
Understand about gAlIL, Programs requlring these services should
propably use these routines, SAlL~complled flies automatically
request these b|essed routines from LIBSAI,REL,

OPTIONAL ADDITIONS
Separate|y Complled Procedures

15-7, When a program becomes extremely |arge |t becomes ysefu| to
break the program wup Into several flles which ecan be complled
separately, Thls can be done In SAIL by preparing one flje as a main
program, and one or more other fl|les as programs each of whicgh
contalns one or more procedures to be called by the maln program,
Such a flle must have the following charactaristics:

1) An entry speciflcation (see Entry Specificatlons, 2-1) must
be the flirst item In the program (preceding sven the BEGIN
for Its outer plogk), The ||st of identifiers wiil|l be used
to form an Entry Bloeck for the |oader, Therefore the flle
may be placed |n a user |ibrary If desired, The format of

librarles |s described In C(Welher], The ldentifier(s)
appearing In the entry |Ist may be any valld lIdentifjers,
but wusually ¢they wi|il| be the names of the drocodUres
contalmed In the flle, No starting address will be [ssued

for a program contalining an Entry Speciflicatlion, No
checking |s done to see |f entry ldentifiers are esver really
declared In the body of the program,

SAILON NO, 57 SAIL 1543

2) Since no starting address |s present for this file, entry to
code wlthin It may only be to the procedures |t contalns:;
the statements In the outer block, if any, can never be
executed, Al| procedures to be called from the maln program
(or procedures . In other fljles) must be aqualified with the

INTERNAL attribute when they are declared, External
procedure declarations wl!th headings Identical to those of

the actua| deciarations must appear In all those programs
which call these procedures, !

3) These Internal procedures must be uniquely lIdentifiable by
the flirst six characters of thelr Identifiers, In General,
ary two Internal procedure names (or any other Internal
variables In the same core Image) with the same flrst six
characters wljl| cause Incorrect |lnkages when the programs
are loaded, :

4) Any varlables (simple or array) which appear In the outer

blogck of a Separately Complled Procedure progdram wll| be

" global to the procedures In this program, but not available

to the maln program (unless they are connected by

Internal/External declarations ==~ see below), Arlthmetic

arrays In these outer blocks will| always be zero when the

program s first |oaded, but wlll| never be cleared a8 others

are (see Space Allocation, Normal Operation, 14-2) == String
arrays are always cleared,

5) Any varlable, procedure or |abel may contain the attribute
INTERNAL or EXTERNAL In Its declaration (ITEMS may not),

15-8, The INTERNAL attribute does not affect the storage
agglanment of the entity |t reppesents, no, does |t have any effect
on the behavlor of the entity (or the scope of Its identifler) In the
flie whereln It appears, However, Its address and (the flirst six
characters of) Its name are made avallable to the |oader for
satisfying External requests,

15-9, No space |s ever allocated for an External declaration,
Instead, a list of references to each External Identifler Is made by
the complier, This list Is passed to the |oader along wlith the first
six characters of the Identifier name, When an Internal name
matching It Is found durlng loadlng, its assoclated address |s placed
In eaeh of the Instructions mentioned on the |ist, No program
Inefflciency at all results from External/Internal |inkages (belay
that - references to External arrays are sometimes more
Inefflclent),

SAILON NO, 57 SAIL 15-4

15-10, The entlty finally represented by an External ldentifler Is
only eccesslblie withln the scope of the External declaration,
Transfers to external labels are always allowed, but if things work
correctly when thls |s done It Is only by sheer luck that they do,

Fortran Procedures

15-11, For a proaram written |n DEC FORTRAN IV to run In the SAIL
environment, the fojlowing restrictions must be observed!

1) It must be a SUBROUTIWNE or FUNCTION, not a main program,

2) 1t must not execute any FORTRAN I/0 calls. The UUO
structures of the two languadges are not compatable,

3) 1t must be declared as a Fortran Procedure (see Fortran
Procedures, 6=12) In the SAIL program which calls |t,

The type blts regulred im the argument addresses for Fortran
arguments are pasSed correctly to these routlnes,

The SAIL compiler wil]l not produce a procedure to be cajjed from
FORTRAN,

Asserbly Language Procedures

15~-12, The Implementation sectlon contalns the following
paraaraphs to ald In writing assembly |anguage procedures! USer
Table, 16=1, STRINGS, 15=-14, ARRAY [MPLEMENTATION, 16=33, Storage
Allocation Routines, 16«5, and PROCEDURE IMPLEMENTATION, 16=46, In
addition, the followlng rulses should be observed:

1) The ENTRY, INTERNAL, and EXTERNAL pseudo-ops shou|d be used
to obtain | Inkages for procedure names and "global"
Ildentifiers (remember that only Six characters are used for
these |Iinkage names,

2) Aceumulators P (currently *17) and SP (’16) should be
preserved over function calls, P may be used as a push~down
pointer for arlthmetlc values and return addresses, SP Is
the string stack pointer. String results are returned on
this stack, Arfthmetic results are returned In AC 1 (ss8e
PROCEDURE IMPLEMENTATION, 16=46),

3) The UUOD Jocations 40 and 41 should be preserved.

SAILON NO, 57 SAIL 15=-5

4) JOBFF must be set by the user to some free buffer area
bafore QUTBUF or INBUF UuUuOs are executed. JOBFF s
perlodically set by SAIL to an inval|ld address,

5) The CORE UUO may be used to increase memory slze, put never
to deerease 1t, Never attempt to use directly any of the
memory space currently assigned to the Job (exgcept that
explicltly bprovided 1In the routine), Release all]l memory
obtained In this way before returning to SAIL routines, See
Storage Allocation Routines, 16~5 for Instructlons on
obtalning core from the SAIL memory allocators (a much
safer, and sometimes faster way),

Others

15-13, There are no other known processors which wl|| produce
SAlL-corpatible programs, In particuiar, the LISP 1.6 system, by Its
very nature, contalns storage allocation conflicts which are

difflcult to resolve, If a great need for this kind of compatlibiliity
develops It can be providea.

SAILGCN NO, 57 SAIL 16-1
SECTION 16
IMPLEMENTATION INFORMATION

STORAGE LAYOUT
Usar Table

16~1, All working storage areas for a SAIL-~generated pProgram and
Its execution-time routines are dynamically allocated == some just
once when the program is flrst started, some as more space |Is needed,

16=2, The first area allocated Is a several nhundred word table
which contains Information about the remalning Storage areas and
global variables for the execution-time routines, A single internal
varlable, GOGTAB, wi|| always contaln a polnter to this table, The
executlonetime routines make all accesses to storage through this
table or through user-suppilied addresses, They would therefore bpe
totally re-~entrant |f the GOGTAB varlable were allowed to vary over
several users,

16~3, - A FAIL source flle contalning symbolic Indices for the user
table, as wel|l as some wuseful MACROs, OPDEFs, and accumulator
definltions Is avaljabie to provide accessabli|ity to this table for
asserbly language routines, This flle may be concatenated to a FAIL
program before assembly,

16«4, Most executlionetime routines load the address c¢ontalned in
GOGTAB Into the accumulator USER (currently *15) In order to Index
the user taple, Thus In what follows, symholiec Index XX Into this
table Wil! be Iisted as XX(USER),

Storage Allocation Routlines

16«5, SAIL makes all requests for storage through the routines
CORGET, CORREL, CORINC, and CANINC, These routines are described In
the followlng paragraphs, The AC’S THIs and slZ are current|y set to
2 and 3, respectlively, All core routines are called w|th PUSHJ
17,routine,

SAILON NO, 57 SAIL 16-2

Corget

16=-6, Corget is called with the deslred size of a block of storage
In reglster SIZ, It returns the address of the new blogk In THIS,
No other accumulators are altered, Normally the function skips on
return, [t does not skip If Insufficlent core |s availabl® to grant
the request, The address returned |Is that of the first free data
word (DATA below).

16-7, A SAIL core bloek has the following form:!
HEAD ~LAST, ,*NEXT ;when not in use (free |lst |Inks)
SIZE JEND~-HEAD+1, negated when block s in use
DATA: BRLOCK S12E~-3 javailable to user =~ sometimes a few more
; words than requested wll| be contalned
} in the block
END: USEBIT, ,-HEAD SUSEBIT Is 400200 |f block is in use; else @

The first time CORGET Is called, GOGTAB is @, CORGET notices this
and performs the fol|owling specija| actlons:?

1) Prepares to allocate storage Jjust past the program and
symbois (left half of JUBSA contalns the rejevant address),

2) Allocates the user table’ puts polinter in GOGTAB.

3) Forms remalning free storage from the end of the user table
to contents (JNBREL) [C(JOBREL)] Into a single free SAIL
block, Puts +HEAD in LO(USER), FRE(USER), Puts C(JOBREL)+1
In TOP(USER), '

4) Performs the requested CORGET operatlion,

~16-8, FRE(USER) |s the header of a |Iinked free storage 1list,
Blocks are ohtalned from this |Ist and the list |Is updated, CORREL
releases blocks onto this list, If no currently free block wll]
satisfy ‘a CORGET request, the CORE yuO |s executed to get more from
the time sharing System, ‘

16-9, Users are free to use the CORGET functlion If they wlll be
careful of the two header words and the single traller word
assocliated wlith sach block, Release these blocks as soon as possible
to prevent undue checker=boardlng of free storage,

SAILON NC, 57 SAIL 16-3

Correl

16=17. Correl I's called with the address obtalned 1In the
corrasponding Corget call (the DATA address) in reaister THIS, The
block Is returned to the free storage |Ist, [If elther of the two
nelghborling blocks Is already free, the adjacent free blocks are
merged with the one belna released to form a bigger one, If the
block belng reieased |s uppermost In core, and If it ogcupies more
tharn about 2K, the cnre slze of the program Is contracted using the
CCRE UUQ, About 2K of free storage |s |eft in this case, No ACs are
altered by CORREL.

Corinc
16=-11, Corine I!s called with the DATA address of a SAIL block In
THIS and a deslred increment |{n SIZ, If there 1is a free bjock

directly above the THIS hlock wlth at least SIZ free words, or If the
THIS block occuples the highest addresses of any block [In use, the
recuest 1Is granted, the 'block 1s extended by S1Z words and the
function executes a skipereturn, Otherwise no skip occurs and no

actlon [s takenm, No ACs wlll| be altered,

Canlnc

16~-12, Caning vperforms the same tests as Corinc and Skips under
the same conditions, It also uses the same calllng seaquencse, If it

does not skip, It returns wlth SIZ altered to show the number of
words by whlch the DATA block can be Increased, It s 2 1if no
Inecrease 1Is posSiple, This function never affects current core
alliocation,

16-13, These fungtions are not avallable to SAIL oprograms S8ince
core canh be obtalned by array declarations (which In turn use these
_functlons),

SAILCN NO, 57 SATL 16~-4

STRINGS
String Descriptors

16~14, A SAIL String has two distinect parts: the descriptor and
the text, The dascrintor Is unlaue and has the following format:

WORD1: STRINGNO, ,LENGTH
WORD2: BYTP

1) STRINGNO, This entry is @ |f the String Is a constant (the
descriptor wll| not be altered, and the String text is not
Iin Strilng space, Ils therefore not subJect to garbage
collection), Every time a String |Is c¢created via the
concatenation operator, or Input function, or an
Integer-String type conversion, It receives a new STRINGNO,
Each new String recelves a number one greater than the |ast,

" starting at { when tne program Is Initiallzed, All strings
formed as substrings of a glven String have the String of
the orliginal (major) string, These numbers afd 1In
Increasing String garbage collection efficlency,

2) LENGTH, This numper is zero for any null String; otherwise
it Is the numper of text cgharacters,

3) BYTP, 1If ecount Is @, thls byte polnter is never checked (It
need not even be a valld byte pointer, Otherwise, an [LDB
machine Instruction pointed at tne BYTP word wil|l retrieve
the first text character of the String, The teXxt for a
String may beglin at any polnt in a word, The characters are
stored as LENGTH contlguous characters,

16«15, A SAIL String varlable contalns the two word descriptor for
that varlable, The Ident!fler naming It polnts to WORD1 of that
descriptor, If a String Is declarea INTERNAL, a symbo| |8 formed to
reference WORD2 by takling al!l characters from the original name (up
to %) and concatenating a "," (OUTSTRING’S second woPd would be
jlabeled QUTST,), »

16-16, When a String Is passed by reference to a procedure, the
address of WORD? is placed In the P-stack (see PROCEDURE
IMPLEMENTATION, 16~46), For VALUE Strings both descriptor words are
pushaed onto the SP stack,

SATLON NO, 57 SATL 16-5

i6-17, A String array is a block of 2-word String descriptors,
The array descriptor (see ARRAY IMPLEMENTATION, 16-33) polints at the
sesord word of the first desoriptor In the array,

16~18, Information 1Is generated by the compiler to allow the
locations of all non-constant strings to be found for purposes of
garpage~-collection and Inltializatlion (see PROCEDURE IMPLEMENTATION,
16<46), All Strinc varlables and arrays are cleared to NULL whenever
a SAlIL program Is started,

String Operations

L]

16-19, The four baslc String operations are concatenation (CAT),
suhstrings (SUBSTR), Strina~Integer (GETCH), and Integer~string

(PutCHy, Other fumctlions producing or operating upon strings are
described In Execution Routines, 11-1, :

Cat
16~-22, CAT forms a new String from two other strings (constants or
otherwlse), The calling sequence Is!

PUSH SP,WORD11 s WORDL, FIRST ARGUMENT
PUSH SP, WORD12 s WORD2, FIRST ARGUMENT
PUSH SP,WORD21 JETC,

PUSH SP,WORD22
PUSHJ P,CAT

The result 1Is found as a new two-word descriptor on top of the SP
(current|y AC *16) stack, If elther argument Is the nul] String, the
result |Is the other argument, 1If the flirst argument occuples the
space directly preceding the first free character In gstring space,
only the second argument is copled, Otherwise, both arguments are
conied (In order) Into free space to form the result, A new String
number IS ereated for this raesult, The LENGTH fisld Is the sum of
the LENGTHs of the two arguments,

SAILON NO, 57 SAIL 166

Substr

16-21, SUBSTR returns a descriptor representing a part of Its
Inout argument, SUBSTR Is realjy three routines, cajied as fo||ows!

PUSH SP,WORD1
PUSH SP,WORD2

SUBST “SUBSR SuBsSl
PUSH P,LASDX PUSH P,»NUMCHR PUSH P,FIRSDX
PUSH P,FIRSDX PUSH P,FIRSDX

PUSHJ P,SUBS(T/R/I1}

LASDX Is the numper of the last character to be Included (starting
with 1), FIRSDX Is the numper of the flrst character to be [ncluded,
NUMCHR Is the number of characters to be Included,

16-22, The result Is always a two=-word descriptor In the SP stack
describing the substring,

SURST Is used for the construct ST[X for Y],
SUBSR Is used for STCX to YJ.
SUBSI 1s used for STLX to =],

l6-22, An error message |s printed |[|f the request can not be
satisfled, This Wwill result [In Job aboption,
1624, The String number of the output is the same as the String

numper of the Input,

~Geteh
16-25, Call wilth
PUSH SP,WORD1

PUSH SP,WORD2
PUSHJ PsGETCH

SATLON NO, 57 SAIL 16-7

The first character |f the Strina is returned In AC 1 unless the
Strirg |Is NULL; =zero |Is returned |n this case, The SP stack |s
adlusted to remove the parameter, An error message will be printed
{f some part of the requested substring does not ex|st.

Puteh

16~-26, Call with

PUSH P,VALUE
PUSHJ P,PUTCH

The result 1is a Strina descriptor with gount of 1 on top of the SP
stack, The FP stack is adjusted to remove the parameter and return
agaress, The String number IS new., The low order 7 bits of VALUE
form the single character In the string,

Strirg Space

16-27, The normal or user~specifled (see STORAGE .ALLOCATION,
13-22) number of words requlired for strings Is used ty obtain &
singlie SAIL block (see Storage Allocation Routines, 16«5) when the
program |s started, The |imlts of this area are placed In ST(USER)
and STTOP(USER), Other parameters are set up as described below,

16-28, String text characters are placed contiguously in thes area
as strings are created, When not enough storage remains for a
contemplated String, the ocarbage collector (see String Garbage
Colitectlion, 16-38) 1is calied to obtaln more (by compacting the
current space, |f possible), I!f thls faiis, the program wl}| restart
and reaquest more reasonable allocatlon,

SAILON NO, 57 | SAIL 168

Parareters Used by Strinag Qperations

16-29,

ST(USER) Bottom (low address) of String space

STTQP(USER) (Top+1l) of String space

TOPBYTE (USER) Byte pointer such that [IDPB TOPBYTE(USER) will
: Store Into next character

REMCHR (USER) Negated number of free characters remaining

TOPSTR(USER) WORD1 for last created String (doesn’t Include

supstring operations), CAT wuses this word to
declde whether its flrst argument needs to be
moved {(see Cat, 16=-28),

String Garbage Colleectlon

16=30, The String garbage collector (STRNGC) Is called Whenever

the (estimated or actual) slze of a soon-to-pe~created String s
larger than ~REMCHR(USER). By varlous devious means |t finds all

active (non=-constant) String descriptors, sorting them |[In asgending
address sequence by usling the byte pointers. assoclating all
sunstrings of a aglven actlve String (major Strina) ,,.ough, Then It
compacts String space by moving the text for all major strings to
lower memory locatlons occupled by text no jonger reachabhle from any
descriptor, Filnally |t wupdates all String descriptors and the
parareters described above, If there Is stli| not enough room, It
prints a frustrated messace and restarts the program with the
allocatlon sequence normally obtained by typing the REEnter system
command (see STORAGE ALLOCATION, 13-22),

String~0riented Machlne [anguage Routlines

16=-31, If vou must wrlte a routine whigh operates on strings,
please observe the followling convantlions:

1) See PROCEDURE IMPLEMENTATION, 16=-46 for conventlons
concerning input narameters and value returning.

]
~r

If you mere!y need to read a String, no particular care |Is
required (don’t change the descriptor of a reference String
parameter by performing careless [LDBs), :

SAILON NO, 57 SAIL 16-9

16-32, 1f you need to create a2 new String, these are also
applicable: '

4) Estimate the numpber of characters |f |t 1Is not known
exactly, This estimate must be an wupper bound; an
unreallstically large estimate wl|l cause the garbags
colleetor to work more often than necessary. Place the
estimate In reglster A (1),

4) Execute the followling code before doing any
String=munching!?

MOVE USER,GOGTAB ;ESTABLISH ADDRESSABILITY
ADDM A,REMCHR(USER) UPDATE REMAINING COUNT
SKIPLE REMCHR(USER) sTEST IMPENDING OVERFLOW
PUSHJ P, STRNGC iCOLLECT, WILL NOT RETURN IF

3 NEW REMCHR+C(A)>2,

5) TOPBYTE(USER) should be your WORD2 result, Save |t now,

6) Do repeated 1DPBs to TOPBYTE(USER) to store your string,
this keeps TOPBYTE accurate, Count characters if your
estimate was only an estimate,

7) Create WORD1 of your result, The left half (s the |eft
half of TOPSTR(USER) Iincremented by one. The right half Is
the length of your new string, This word |s not only WORD1
of your result, but also should be placed In TOPSTR(USER),

8) Subtract (estimate - actual length) from REMCHR(USER) to
keap It honest, This should make REMCHR 1f anything more
negatlive, :

9) Return String results on the top of the SP stack, If a
result Is to go In a reference parameter (see PROCEDURE
IMPLEMENTATION, 16=46) remember that the address you_ have
Is that of the WORD2 (byte polnter) word of the descriptor,

SAILON NO, 57 SALIL 16-13

ARRAY IMPLEMENTATION

Form

16-33, Let STRINGAR be 1 (TRUE) If the array In questlon Is a
String array, @ (FALSE) otherwlise, Then a SAIL array of n dimensions
has the followling format: o

HEAD: ~DATAWD 5+ MEANS "POINTS AT®
HEAD-END=-1
ARRHED: BASE_WORD 3 SEE BELOW

LOWER_BD(n)

UPPER_BD(n)

MULT(n)

LOWER_BD(1)

UPPER_BD(1)

MULT (1)

NUM_DIMS, ,TOTAL_SIZE
DATAWD?S BLOCK TOTAL_SIZE

<sometimes a few extra words>
END: 40292088, ,+HEAD

Explanatlion

16-34,

HEAD - The flrst two words of each array, and the |ast, are
contro| words for the Storage Allocation Routlnes,
16=5, These words are always present for an array.
The array access code.does not refer to them,

ARRHED Each array is preceeded by a block of 3I*n+2 control
words, The BASE_WORD entry Is explained later,

NUM_DIMS This Is the dimensionallty of the array, [f STRINGAR,

thlg value Is negated before storage In the |eft half,

TOTAL_SIZE The total number of éccesslble elements (double If
STRINGAR) In the array,

SATLON NO, 57 | | SAIL 16-11

BOUNDS The |ower bound and upper bound for each dimension are
stored In thils table, the |eft-hand |ndex values
occupying the higher addresses (closest to the array
data), 1f they are constants, the compljer will
remember them too and try for better code (Il,e.
immediate operands),

MULT This numper, for dimension m, Is the produgt of the
total number of elements of dimensions m+1 through n.
MULY for the last dimension |s always 1,

BASE _WORD This |s
" DATAWD - the sum of (STRINGAR+1)# OWER_BD(m)*MULT(m)

for a!J m from 1 to n, The formula for calculatling
the address of ALI,J,K] [s}

address(AL]l,J,K]) =
address(DATAWD) +
(I-LOWER_BD(1))#MULT(1) +
(J-LOWER_BD(2))#MULT(2) +
(K-LOWER_BD(3))

This expands to
address(all,J,K]) =
address(DATAWD) +

T#MULT (1) + J#MULT(2) + K
«(LOWER_BD(1)#MULT(1) + LOWER_BD(2)#MULT(2) + LOWER_BD(3)

which |s

BASE_WORD + I#MULT(1) + J#MULT(2) + K,

By pre~calculating the effects of the lower pounds,
several Instructions are saved for each array
reference,

SAILON NO, 57 SAIL 16-12

Array Alfocatlon
Dynamle Arrays

16-35, ‘Wwhen an array Is declared In any block other than the outer
one, the compller generates code to c¢al! the function ARMAK wlith
parameters describing the array, This routine calls CORGET (see
Storage Allocation Routines, 16-5) to obtain enough storage, then
sets up the <contro! table and clears the data area to zeroes, The
ARRHED address is saved In an array push-down |18t whose pointer Is
ARRPDP (USER), The addres of DATAWD+1 Is returned for Strlng arrayss
the address of DATAWD is returned for all others, The compller
generates code to store thls address In the core cel| bearlng the
name of the array varlable, ‘

16-36, When all declarations for a block contalnlng array
declarations have been processed, the compller Issues a cal| to ARMRK
which marks the array push-down stack (with a =1, "as a matter of
fact), On block exlt (or when a GO TO transfers out of the block),
the routine ARREL I!s called to remove this mark and return all arrays
back to the previous mark to the SAJL free storage |Ist,

16=-37, The String garbage collector uses the array push=down stack
to find dynamle String arrays which need attentlion,

Bullt=In Arrays

16-38, Outer=block arrays have <constant bounds, The compller
simply emlts a Jrst Instruction, then complies the control table into
the block head of the obJect program, It leaves room for the array,
then Issues the END word, The Jrst Instruction then finds |ts homs
in some code to clear the array to zeroes, :

‘16-39. The core jocation bearling the name of the array qhas the
address of DATAWD (DATAWD+1 |f STRINGAR) complled Into ft, This
address |s glven the dotted name described In DEBUGGING, 14-8,

16=-40, For bullt=in String arrays, a String Ilink Dbjock (See
PROCEDURE IMPLEMENTATION, 16=46) ls 1Iissued following the space
allocated for the array, The String garbage <collector (See String
Garbage Collection, 16=33) o9alns access to this array through this
statle |lInk,

SAILON NO, 57 SATL 16-13

16-41, It can be seen from a|| thils that all! dynamic and bullt-in
arrays are cleared when the blocks In which they are declared are
entered, Since the outer block of a separately compliled procedure
file (see Serarately Complled Procedures, 15-7) I|s never entered, lts
buliteln arrays, although avallakle for use, are never cleared, The
loader clears them once as It loads,

Array Access Code

16~42, in the worst case (no fixed bounds, bounds checking, not
puilt=ln) the statement KeA[I,J] wl|| pe complled as:

MOVE 1,A 3} +FIRST DATA WORD

MOVE 2,1 sFIRST SUBSCRIPT

CAML 2,-4(1) 3 1F <LOWER BOUND OR

CAMLE 2,~3(1) 3 >UPPER BOUND THEN
ARERR 1,0ASCIZ2 /A/2 i ERROR IN INDEX 1°
IMUL 2,-2(1) : PI#MULT(L)

MOVE 3,V }CHECK DIMENSION 2
CAML 3y=7(1)

CAMLE 3,-6(1)

ARERR 2,0ASCIZ2 /A7)

ADD 3,2 sNO MULT FOR LAST, COLLECT OFFSET
ADD 3,=10(1) i + BASE_WORD
MOVE 4,((3) ;DATA FROM ALl,J]

MOVEM 4,K

16=43, If A Is) however, declared 1In the outer block as SAFE
INTEGER ARRAY A[1!19,1:5), the code for A[l,J] Is

MOVE 1!

IMULI 1,5 ' 3 T«MULT (1)

ADD 1,J sCOLLECT OFFSET

MOVE 2,A,=5(1) ;CONSTANT PART OF ADDRESS COMPILED IN

MOVEM 2K

SAILON NO, 57 : SAIL 16~14

16-44, AC!,3) would be compljied as
MOVE 1,1
IMULT 1,5
MOVE 2:A,=2(1)
MOVEM 2,

and J*A[2,3] would be
MOVE 3,447

LI

MOVEM 3,J

- 16=45, Various conflourations of array declarations and agcesses
result In code which ranges between these degrees of efficlency,

PROCEDURE IMPLEMENTATION

16"’46 .

Procedure Body

16-47, To describe the main characteristics of SAIL procedures, &
set of sample procedures are disSplaYed here along With the code they
proguce, Some of the entries are discussed In more detall below,

The notation [n] |I|s placed In the comment fleld of the assembly
Instruction to refer to these discusslons:

INTEGER PROCEDURE P1(INTEGER [,J3 STRING A); ‘
P1: AOS P1PAC $01] INCREMENT PROC ACTIVE COUNTER

BEGIN :

INTEGER @3 STRING A,B:

INTEGER ARRAY XCa: 53:
PUSH P,[0]
PUSH P, 51
PUSH P,C13]
PUSHJ P,ARMAK ;ALLOCATE AND CLEAR
MOVEM 1,X $STORE POINTER
PUSHJ P,ARMRK ;;END OF ARRAYS FOR BLOCK

SAILON NO, 57
{code for procedure>

RETURN(Q)

SAIL 16-15

MOVE 1,0 s (2] RESULT IN 1
PUSHJ P,ARREL 3(31 RELEASE ARRAYS FOR BLOCK
JRST PLEXIT 3EXIT PROCEDURE
<{mor8 code for orocedurs>
END #Piw
: PUSHJ P,ARREL 3IF FALLS THROUGH, RELEASE ARRAYS
P1EXIT: SOS PLPAC JONE TIME LESS ACTIVE
. SUB SP,[(XWD 2,23 ;REMOVE STRING PARAMETER
SUB P,IXWD 3,31 ;L4) NON=-STRINGS, RETURN ADDR
JRST e3(P) JRETURN
Q1 7 sROOM FOR VARIABLE
Xt] ; ARRAY POINTER
TEMPE7: ¢ 1L5] TEMPORARY STORAGE
At BLOCK 2 $ TWO WORDS FOR EACH STRING
B BLOCK 2)
PiPAC: @ (6] PROCEDURE~ACTIVE COUNT
XWD 2:A §STRING COUNT,«FIRST
LNKWD: ¢ $07] LINK PASSES THROUGH HERE
L INK 1,LNKWD 307) CAUSES LOADER LINKAGE

PROCEDURE P2(INTEGER [,J3 STRING
BEGIN]
INTEGER ARRAY X[8:181];

LI B

BEGIN
INTEGER ARRAY Y[2:103;
"RETURN:

PUSHJ P, ARREL
PUSHJ P,ARREL
CURST P2EXIT
END}
END"P2"}

STRING PROCEDURE P3I(STRING A.,B)}
BEGIN STRING C3

A);

iRELEASE ARRAYS FOR ALL
; BLOCKS IN PROCEDURE

SAILON NO, 57

RETURN(C)
suB
PUSH
‘PUSH
JRST

RETURN(B)
suB
PUSH
PUSH
JRST

SP,LXWD 4,4]
SP,C

SP,C+1
PIEXIT

SP,[XWD 4,41
SP,3(SP)
SP,3(SP)
PIEXIT

RETURN(C&"STR"); COMMENT ASSUME CAT

SUB

PUSH
PUSH
JRST

END "P3"; :
' P3EXIT: SOS
suB
PUSH
PUSH

SP,[XWD 6,61
SP,5(SP)
SP,5(SP)
P3EXIT

P3PAC
SP,CXWD 4,41
SP,[e]
SP,[al

SAIL 16«16

;REMOVE PARAMS

sRETURN STRING RESULT

iFIRST WORD OF B
;SECOND WORD OF B
G0 RETURN

ALREADY DONE;
;REMOVE PARAMS, TEMP RESLT
s TEMP RESLT
320 WORD

JNOT THIS TIME, BUT WOULD
3BE INCLUDED IF NO RETURNS
;DONE ABOVE (RETURN NULL STRING)

RECURSIVE INTEGER PROCEDURE P4(STRING A,B; INTEGER I,J)}

P4TEXT: AQS

BEGIN

P4PAC

STRING C,D; INTEGER K,L;

END "P4n;
P4EXIT: SOS
SUB
HRR]
HRL1
BLT

suB
HRR1
HRLI
BLT
JRST

P4: ADD
SKIPL
POLOV

P4PAC

SP,[XWD =8,=8] ;[8]ITAKE OFF LOCALS,PARAMS

TEMP,C
TEMP,5(SP)
TEMP,D+1

P)LXWD 6,61
TEMP,K
TEMP,4(P)
TEMP, TEMPR3
®3I(P)

P,[XWD 3,31
P
P

;8]
3 [8) ,
;1[8] RESTORE LOCAL STRINGS

;[8] SAME FOR P=S]DE
; (ALSO RETURN ADDR REMOVED)

sMUST EVEN SAVE TEMPS
s RETURN

sLEAVE ROOM FOR LOCALS
;CHECK PUSH=DOWN OVERFLOW
;[9JUUO TO SIMULATE POL OV

SAILON NO, 57

HRR1
HRL 1
BLT

<simljariy for SP

JRST

TEMP,=2(P)
TEMP, TEMPQ3
TEMP, (P)

P4TEXT

<varlables and such>

SAIL 16=-17

i C9JSAVE LOCALS
} AND TEMPS

(string stack)>

31GO DO PROCEDURE

RECURSIVE STRING PROCEDURE P5(STRING A,B);
BEGIN
STRING C,D;

LN

RETURN(C) .

RETURN(B)

PUSHJ
PUSH
PUSH
PUSHJ
JRST

PUSHJ

PUSH .

PUSH
JRST

RETURN(A&"STR");

AN B

END

upsn,
PSEXIT:

P53

PSPOP:

POP
POP
PUSHJ
PUSH
PUSH
JRST

suB

LI

JRST

P,P5POP ;C1@IREMOVE STRING LOCALS,PARAMS
sP,C 3STRING RESULT

SP,C+1

P,ARREL JENOUGH TIMES IF ANY ARRAYS

PSEXIT

P,PSPOP
SP, 3(SP)
SP,3(SP)
PSEXIT

JRETURN PARAMETER

SP,1 3L11JASSUME CAT ALREADY DONE

SP, 0
P,P5POP

SP, @ sCL1IRETURN VALUE

SP,1
PSEXIT

P,CXWD 2,2] 30R WHATEVER, SEE ABOVE
JRESTORE LOCALS, ADJUSTY
83(P) JRETURN

<as above>

LI IS)

SuB
HRR1
HRL |
BLT
POPJ

SP,[XWD =8,=81
TEMP,C
TEMP,5(SP)
TEMP,D+1

Py

;048] REMOVE STRING LOCALS,PARAMS

s RETURN

SAILON NO, 57 SAIL 16-18

The maln proaram has the following format:

S,t SKIPA 3JNOT STARTED IN RPG MODE
SETOM RPGSW }STARTED IN RPG MODE -~ RPGSW A GLOBAL
JSR. SAILOR INIT ==~ RETURNS BY PUSHJ P,@®SAILOR

Comment ® The malin program |ooks |lke a non~recursive procedure
from here cn, except for bullt=|n arrays e

POPJ P, JRETURN TO INIT, WHO EXITS
<global varjables, |Iinkages>

<non=String constants>

XWD @y),=8 ;TYPICAL STRING CONSTANT
POINT 7).#1

ASCI! /CONSTANT/

<more String constants>

END - S, 3STARTING ADDRESS FOR MAIN PROGRAM

SAILCN NO, 57 SAIL 16-19

Discusslion

16-48,

(11

€21

£33

There Is for each procedure a word (PAC for Procedure Actlve

Count) which Is Incremented on procedure entry and decremented
on ex|t, At one time, the String garbage collector wused this
word, It may agaln some time |n the future, At present the
gountor |s usgful for determining the depth of recursion (from
0Ty,

NoneString procedures return thelr results In 13 Fortran
returns things In @; String results are returned on the SP
stack,

An ARREL cal! Is Issued for each block (contalnming arrays)
which must pe I|eft In order to exit, Al| arrgys for these
blocks are released at this time, the same Sort of thing

~happens when a Go To statement |eaves one or more blocks,

(43

£5)

[6)

(73

Since the return address Is on the top of the P=-stack, with
parameters burled beneath, a subtract and an [ndirect jump
replace the POPJ, Procedures always adjust the stack before
returning,

strina temporaries are kept |{n the SP stagk. Others

oceasslonally occupy core locations, These are grouped wlth
the non=String varlables to make saving and restor|ng easy In
recursive procedures,

This |s the Praocedure Active Count word (see [11), It Is
placed In a fixed locatlon wlth respect to tha Stringe=|!ink
block (below), The String garbage <collector could, [f It
wished, see this count,

A linked |18t, with Jts head In a reserved cell |[n the wuser
table (see User Table, 16«1) glves the String garbage collector
access to all String varlables declared for each procedure} and
to all bulit=in String arrays, ctach entry on the |[st contalns

‘three words! a PAC counter (current|y lgnored), a word glving

the locatlon and extent of the String descriptors being
described, and the polnter (LNKWD) to the next entry, A @
entry ends the |lIst, The LINK pseudo=op (or the equlvalent
code Issued by SAIL) Instructs the loader to create this |Ist,
The LINKEND pseudo~op Is |ssued 1In the SAILOR routline to
collect the address of the flirst J|ist element, This |s then
transferred to the user table, See ([Welher] for detalls

SAILON NO, 57 . SAIL 16=20
concerning the LINK block type,

(81 When a recursive procedure |s called, all values for variables
declared In plocks Internal to this procedure are saved |n the
appropriate stack, These are added "on top of" the parameters
and return address for the procedure, At procedure exit the
stack pointer |s adjusted to point below the (first parameter,
Then the proper BLT word |s set up to restore al!| these |ocals
from the stack, After the BLT I|s executed, that stack |s ready
for procedure exit,

£93 Since SAIL |s a one=pass compller, |t does not know how many
~ locals a procedure has until| all plocks for that procedure have
been procesSsed, Therefore the entry code for recursive
procedures I|Is added last, followed by a Jump to the procedurs

text,

(18] When a String procedure returns a value, the String parameters
and |ocals must be removed from the stack before the value
(result) can be pushed on, Since the total number of String

locals Is not yet known, a routine |ike PS5POP s called to
remove the unwanted values flrst, Recursive String procedures
must contaln Return Statements (see Return Statement, 5-19)}
otherw|se Improper code wll| result,

{11]) Once PS5POP or jts equivalent has been executed, the previous
top of stack |oecatlion I8 not known; the temp value |8 therefore
removed first and restored after the call,

- Procedure CalllngiSiauancés

16=49, "Agaln a case study |s presented, A procedure with several
Internal procedures |s presented to demonstrate the ridlculous number
of possibliites, Only the relevant code Is descrlibed, Acoumulator
numbers In the code beliow are only examples =« other values are

possible, This Iist |s not completes to describe all cases here
would take more Space than a copy of the code In SAIL whlich handles
ther, Jtem and Set parameters behave Ilke Integer and Real

parameters as far as argument passing |Is concerned:

SAILON NO, 57

PROCEDURE SUPER(REFERENCE STRING RPSTR;

SAIL 16-21

INTEGER PINT; REFERENCE INTEGER RPINT;

REAL PROCEDURE PPAR;
STRING PSTR1,PSTR2);

BEGIN

INTEGER INT1,INT2; STRING STR1,STR2;

SAFE INTEGER ARRAY ARRC2:1@1:

REAL REL;
SAFE STRING ARRAY SARRL2:121:

INTEGER PROCEDURE INTP(INTEGER I,J)3,,,;
PROCEDURE RINTP(REFERENCE INTEGER I)s5,..:

PROCEDURE STRP(STRING Ay3)5.443

PROCECURE RSTRP(REFERENCE STRING A)s ..,

PROCEDURE PROCP(PROCEDURE PARAM):,,.:
PROCEDURE ARRP(STRING ARRAY X)j,.,}

INT1«PINT*2 + RPINT*2 = 3;
MOVE 1,-3(P)

IMUL 1,1

MOVE 2,@=2(P)

ADD 2,1

SUBI 2,3
REL«INTP(INTL,PINT);

PUSH P,2

PUSH Py=4(P)

MOVEM 2,INT2
PUSHJ P, INTP
FLOAT 1,1

RINTP(INT1) S
PUSH P,LINT1]
MOVEM 1,REL
PUSHJ P,RINTP

RINTP(PINT);
MOVE! 3,-3(P)
PUSH Py3
PUSHUJ P,RINTP

RINTP(RPINT)}
PUSH P,=2(P)
PUSHJ P,RINTP

INT2«INTP(INTL,ARRCPINT])
PUSH P,INTL
MOVE 4,=4(P)

JRELATIVE LOC OF PINT
;RPINT’s ADDRESS IS IN STACK
3 SUM

sRESULT LEFT IN 2

3 INTL STILL IN 2

s [1JADJUST FOR PREV PUSH
;[21STORE CURRENT ACS BEFORE CALL
;CALL PROCEDURE

;CONVERT TO REAL == REL IS IN 1

; ADDRESS OF INT1

sPREVIOUS RESULT

; ADDRESS OF PINT

;PASS ON ADDR OF RPINT

JPINT

S$ILON NO, 57

MOVE
ADD
PUSH
PUSHJ

RINTP(ARRLPINTI);
‘ MOVE
MOVE
ADD
PUSH
MOVEM
PUSHJ

STRP(STR1&"CON",PSTR1)}

PUSH
PUSH
PUSH
PUSH
PUSHJ
PUSH
PUSH
PUSHJ

RSTRP(STR1)}
 PUSH
PUSHU

RSTRP(RPSTR)
PUSH
PUSHJ

RSTRP(PSTR2);

: HRRO1
PUSH
PUSHJ

PROCP(RINTP)}
PUSH
PUSHJ

ARRP (SARR) }
“ PUSH
PUSHJ

5,ARR
4,=4(5)
P,(4)
P, INTP

6,PINT
7 +ARR
6,=4(7)
P,6
1,INT2
P,RINTP

SP,STR1
SP,STR1+1
SP,CONAD

SP,CONAD+1

P,CAT
SP,=4(SP)
SP,=4(SP)
P,STRP

P,[STR1+1)

P,RSTRP

P"4(P)
P,RSTRP

10, (SP)
P,10
P,RSTRP

P,CRINTP)
P,PROCP

P,ARRP

SAIL 16-22

:BASE ADDR OF ARR
IRESULT IN 1

s ADDRESS

;s ADDRESS OF DSCRPTR FOR "CON"

;LEAVE CONCATENATE IN STACK
;PUT STR1 ON TOP

}ALL REF PARAMS TO P=STACK

;PASS REFERENCE ALONG:

s [3IRH»2D WORD OF PSTR2

;PARAMETRIC PROCEDURE

3;THIS 1S EFFECTIVELY A REFEREN

SAILON NO, 57 SAIL 16-23

NDiscussion

16'5@.
Counts are malntalned of the current number of actual
parameters (during a procedure call) on each stack, These
counts must pe added to the parameter indices to access
parameters of the procedure doling the calliing,

£23 Wwhenever a SAlL procedure |s called, all accumulators except
sP (’16) and P (’17) are avallable for Its use,

(31 Some String operatlons requlire that the left half of
pointers to descriptors be negative, Theregfore any
operation which obtalns a String descriptor address does a
HRRO or HRRO! to accomplish thls, In thls case It is not
necessary, but It won’t hurt anything, String reference
parameters always polnt to the second word of the String In
auestion, :

SATLON NO, 57 SAIL 171
SECTION 17
APPENDIX == USEFUL SUMMARIES

ARITHMETIC TYPE-CONVERSION TABLE

17"1.
OPERATION ARGL ARG2 ARG1# ARG2# RESULT
+ - ~INT INT INT INT INT#
» o+ X REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL
LAND LOR INT INT INT INT INT
EQV XOR REAL INT REAL INT REAL
' INT REAL -INT REAL INT
REAL REAL REAL REAL REAL
LSH ROT INT INT INT INT INT
REAL INT REAL INT REAL
INT REAL INT INT INT
REAL REAL REAL INT REAL
/ INT INT REAL REAL REAL
REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL
MOD DIV INT INT INT INT INT

REAL INT INT INT INT
INT REAL INT INT INT
REAL REAL INT INT INT

Unless ARG2 Is <2 for the operator *

SAILON NO, 57 SATL 17=2

SAIL RESERVED WORDS
I7"2u

ABS AND ANY ARRAY ARRAY_PDL BEGIN BOOLEAN CASE COMMENT COMPLEX COP
CVI CVN DATUM DEFINE DELETE DO DONE ELSE END ENTRY EQV ERASE EXTERNAL
FALSE FIRST FOR FOREACH FORTRAN FORWARD FROM GLOBAL GO GOTO IF IN
INTEGER INTERNAL ISTRIPLE [JTEM [ITEMVAR LABEL LAND LENGTH LIBRARY
LOAD_MODULE LNOT LOP LOR LSH MAKE MOD NEEONEXT NEXT NEW NEW_ITEMS NOT
NULL OF _OR OWN PH] PNAMES PRELOAD_WITH PROCEDURE PUT REAL RECURSIVE
REFERENCE REMOVE REQUIRE RETURN ROT SAFE SECOND SET STEP STRING
STRING_PDL STRING_SPACE SUCH SYSTEM_PDL THAT THEN THIRD TO TRIPLE
TRUE UNTIL VALUE WHILE XOR

SAIL PREDECLARED IDENTIFIERS
17‘30

ARRBLT ARRINFO ARRTRAN ARRYIN ARRYOUT BREAKSET CALL CLOSE CLOSIN
CLOSOUT CLRBUF CODE CVASC CVD CVE CVF CVFIL CVG CVIS CVO CvOS CvVs
CVS! CVSIX CVSTR CVXSTR ENTER EQU GETCHAN GETFORMAT INCHRW INCHRL
INCHRS INCHSL INCHWL INSTR INSTRL INSTRS INPUT INTIN INTSCAN LENGTH
LINOUT LOOKUP MTAPE OPEN OUT OUTCHR QUTSTR REALIN REALSCAN RELEASE
. RENAME SCAN SETBREAK SETFORMAT STRBRK TTYIN TTYINL TTYINS WORDIN
WORDOUT USERERR USET! USETO

CHARACTEReIDENTIFIER EQUIVALENCES

17-4,

CHARACTER _ RESERVED WORD

AND
EQv
NOT
OR
XOR
INF
IN
SUCH THAT

—® 3 © < 3 1>

SAILON NO,

57 SAIL

PARAMETERS TO THE OPEN FUNCTION

17‘5 .

CHANNEL
DEVICE
MODE
INBUF'S
OUTBUFS
COUNT
BRCHAR
EOF

System Data Channe!, 08='17
string glving device name

dats mode

number of input buffers

number of output buffers

text Input count (refsrence)
break char variable (reference)

end=ofuflije flag (reference)

17=3

SAILON NO, 57 SAIL 17-4

BREAKSET MODES

17«6,

1 (Inclusion) string Is set of break chars

X v (eXcluslon) string of all non=break chars

0 (Omit) string of characters to be omitted from result

) (skip) break char appears only in BRCHAR variable

A (Append) break char Is last char of result string

R (Retaln) break char Is flrst char of next string

P 4 (Pass) llne numbers appear In input wfthout warning

N (No numbers) |lne numbers and the tabs that fo|low them
are removed,

L (LIne no break) |Ine numbers cause Input break, BRCHAR
Is negative, Next Input gets |Ine no characters,

E - (Erman) |ine numbers cause Input break, Negated |Ine no
returned In BRCHAR, LlIne no removed from jnput,

D (Dlsplay) after this appears, each |ine no Is |isted on

the display (If TTY Is a DPY) as It Is dealt wjith,

SAILON NO, 57 SAIL 17-5

MTAPE COMMANDS

17-7.,

MODE FUNCTION

AN Advance past one tape mark (or flle)
" Backspace past one tape mark

MEw Advance one record

"R Backspace one record

R Rewind tape

nEgw Write tape mark

URILL Rewlind angd unload

COMMAND SWITCHES

17-8,

D double slze of define pushdown stack

numl listing control == num>@ becomes |isting starting addr,
num=-1 starts |Isting after current DDT size, nums=2
starts |lsting after current RAID sjze,

numM inftial debugglng mode set to num

P double slze of System pushdown ||st

Q double size of string pushdown |Ist

R double Slze of parse pushdown |ist

nums set size of string space to num

SAILON NO, 57 SAIL 17=-6

DEBUGGING MODES

17-9,

1 display before executing each code generatlion routine

2 don’t display, but remealn enabled for asynchronous and
line breaks

3 display before each production Is compared

4 ' continue from type L and 3 modes automatically

5 Just display Input flle as |t goes past

6 disable debugging mechan!sm (started Iin this mode un|ess

an M switch appears),

VALID RESPCNSES TO ERROR MESSAGES

17-109.

CR (carriage return) try to continue

LF (llne feed) continue automatically -~ don‘t stop for
user go-ahead after each message

S restart

X exit == close all flles, return to monltor

L look at stacks ==~ of |nterest only to compllier flxers

E edit, Follow by CR to get file the compller Is working

on (or jast thing edlted, for runtime routines), Fo|low
with <name> CR to edit <name>,

D go to DDT or RAID

SAILON NO, 57

18“‘1'

REFERENCE

Feldman

Moorer

Welher

Savitzky

SATL 18-1
SECTION 18
BIBLIOGRAPHY

DESCRIPTION

Feldman, J,A, and Royner, P,D, An Aj|go|=-Based
Assoclative Language, Comm, ACM 12, 8 (Aug,
1969), 439-449,

Moorer, J,A, Stanford A~1 Project Monitor
Mapual, Sallons 54 and 55 (Sep, 1969),

Welher, W,F, Loader Input Format, Saljlon 46
(Oct, 1968),

savitzky, S,R, Son of Stopgap, Sallen 5@.1,
(Sep, 1969), a revislion of Stopogap, Sallonm 58,
by W,F, Welher,

SAILON NO, 57

INDEX

9’
9=
9-
9w
9
Ow
9.
9w
y =
9”

[]
3
F N

(X
6=
8-
8.
12~
X
8»
§=

<o
1
N

4o
B‘
8=

N e S - N R N i . Ll e e el el 3 SN A

16-35
3-25
16~33
11~-107
11~-109
11-107
11-111
11-51
11-56
15~12
4« 1
8- 1

<)_assocliat|ve_eaxpr>
<_derlved_set>
<A_ltem_expr_|Ist>
<_ltem_expression>
<_set_expression>
<_set_factor>

<_set primary>
<A_set_termd

<N_triple>

_triple>

Abs

<actuai_parameter>

<actua| _parameter_Iist>
<Cactual_parameter_Ilist>
<actual_paremster>

Actua| Parameter Expansjon
Actual! Parameters
<adding_expression>
<adding_operator>

Adding Expresslons
<algebraic_asslgnment>
<algebralc_expression>
<algebraic_relatlional>
<algebralc_type>
<algebralc_varlablie>
ALGEBRAIC EXPRESSIONS
Algebrale Expressions
Amblgulity In Conditional Statements
ANY Construct

APPENDIX == USEFUL SUMMARIES
Arithmetic Constants ,
Arithmetic Type Conversions
<array_declaration>
<array_|i8st>
<array_segment>

Array Allocation

Array Declarations

ARRAY IMPLEMENTATION

ARRAY MANIPULATION ROUTINES
Arrblt

Arrinfo

Arrtran

Arryln

Arryout

Assembly Language Procedures
<assignment>
<assignment_expression>

SAIL

18-2

SAILON NO, 57 SAIL 18-3

8~ 4 Assignment Expressions
4 ASSIGNMENT STATEMENTS
7= 1 <assoclat|ve_context>
9« 1 <assoclative_sexpression>
9= 1 <assoclative_operator>
7« 1 <associative_statement>
10 BASIC CONSTRUCTS
18 BIBLIOGRAPHY

13~ 1 <blnary_rame>

7= 1 <binding_|ist>

2- 1 <bloek>

2- 1 <block_head>

2= 1 <{bloek_name>

2« 9 Block Names

8« 1 <bocolean_expression>

8«51 Boojlean Primaries

3= 1 <bound_palr>

3= 1 <bound_palr_|Ist>
11-23 Breaksat
11-115 Call

6~ 6 Call by Reference

6~ 5 Call by value
16~12 Canine

8= 1 (cass_expression>

5= 1 <case_statement)

5« 1 <case_statement_head>
8~ 6 Case Expressions
- 5«18 Case Statements

11«10 Close, Closin, Closo
11-113 Code
13~ ¢ <command_|Ine>
13~ 1 COMMAND FORMAT
1821 Comments
13 COMPILER OPERATION
2- 1 <compound,statement>
2= 1 <compound_tal >
837 Concatenation Operator

8« 1 Cconditiona|_expressiond>

LD § <conditiona|_statement>

8= 2 Condlitional Expressions

5« 2 Condlitlonal Statements

9« 1 <construction_item_prim>

7- 8 Construction ~ Retrieval Distinction
16« § Corget

16-11 Corline

16-48 Corre|

11181 Cvasc

11-97 Cvd

11-88 Cve, Cvf, Cvg

SAILON NO, 57

11-105
9- 8
11-84
8=~47
11-99
11-82
11-82
11-86
11~-103
11-93
11~95
4 7
19~ 6
14- 8

- 13~14

3. 1
2~ 3
3
3- 1
3- 1
3- 1
354
12- 1
3- 1
3- 1
7-10
13~ 1
8= 1
B=19
5- 1
517
5w 1
523
7- 1

3=46

8«38
13« 1
13~ 1
13« 1

Cvfil

Cvl

Cvis

Cvn

Cvo

Cvos

Cvs

Cvs|

Cvsix

Cvstr -

Cvxstr

Datum Assignments
Datums

DEBUGGING

Debuggling modes
<declaration>
Declarations
DECLARATIONS
<define_body>
<defline_ldentifler>
<define_speciflication>
Define Specification
Defining Macros
{definition>
<definitlion_|Ist>
DELETE

<device_name>
<disJunctive_expression>
Disjunctive Expressions
{do_statement>

Do Statement
{done_statement>

Done Statement
<element>

<entry speciflecationd
Entry Specifications
tqu

ERASE

ERROR MESSAGES ,
EXECUTION CONTROL STATEMENTS
EXECUTION TIME ROUTINES
<expression>
<expression_||st>
External Procedures
<fagtor>

Factors

<flle_ext>

<flle_name>

<flle_spec>

SAlL

18-4

SAILON NO, 57

5~ 1
5- 1
5- 1
5-11
7-14

3~ 1

3~ 1
3= 1
3-38
6-12
15~11
3~41
8~ 1
8~42

<for_Il1st>
<for_Illst_ejement>
<for_statement>

‘For Statements

FOREACH Statement
<formal_param_dec|>
<forma|_parameter_|I|st>
<formal_type>

Formal| Parameters
Fortran Procedures
Fortran Procedures

Forward Procedure Declarations

<functlion_designator>
Functioen Designators
Getchan

Getformat
<go_to_statement>

Go To Statements

170 ROUTINES
<ld_list>

Identiflers ;
<|f_statement> ’
1f .o EiSe Statement
If Statement
IMPLEMENTATION INFORMATION
Input

INTRODUCTI]ON

<ltem_assignment>

<ltem_assignment>
Cltem_primary>
Item Constructs
Item Declarations
Jtem Selectors
Items .
<ltemvar_variable>
Itemvar Dec|arations
<labei_identifler>
<leap_reilational>
<{eap_relational>
<leap_statement>
<leap_type>

LEAP Boolieans

LEAP Introduction
LEAP STATEMENTS
Length

Length

LIBERATION-FROM=SAIL ROUTINES

Linout
Clisting_name>

SAIL

18-5

SAILON NO, 57 SAIL

8-~48
14- 1
i1-18
7= 1
8~46
3= 1
12~ 6
15~ 2
7-11
11-58
8~ 1
9- 6

5« 1

5«25
3-13
11~ 6
11-46
3-50
8~-14
3= 1
3= 1
3- 1
3=32
8§~39
8~ 1
3= 1
3- 1
3- 1
6~ 1
16~49
3=~37
1¢6-46
6
6-10
2- 1
14
15
2
13- 1
7- 9
11-62

11-67

3~43
8~ 1
8~ 1
8-20
11-14
3= 1
11-22

Lnot

LOADING AND STARTING SAIL PROGRAMS
Lookup, Enter
<loop_statement>

Lop ‘

<lower_bound>

Macro Parameters

Main Program

MAKE

Mtape

<{mult_operator>

NEW . Items

<next_statement>

Next Statement

Numerlc Decjarations

Open

Out ,
Parametric Procedures
Precedence of Algebrale Operators
<preload_element>
<preload_|Ist> ‘
<preload_spec|fication>
Preload Specificatlions
Primarles v
<primary>

<procedure_body>
<procedure_declaratlion>
<procedure_head>
{procedure_statement>
Procedure Callling Sequences
Procedure Declaratlions
PROCEDURE IMPLEMENTATION
PROCEDURE STATEMENTS
Procedures as Actual Parameters
{program>

PROGRAM OPERATION

PROGRAM STRUCTURE :
PROGRAMS, BLOCKS, STATEMENTS
<projJ_prog>

PUT and REMQVE

Realln, Intin

Realscan, Intsecan

Recursive Procedures
<relatlonal_expression>
<relational_operator>
Relational Expressions
Release

<relfile_spec>

Rename

18-~6

‘ SAILON NO, 57 o SAIL

. 3= 1
‘3~ 1
3= 1

- 355
9e 1

5. q

<require_element>
<require_|Iist>
<requirement>

‘Requirements
“Kretrleval_jtem_primd

<return_statement>
Return Statement

~ Rpg Mode
. Sal| Predeciared Identifiars
. Sall Reserved Words

Scan
Scope of declaratlions

<se|ector>
Separately Complled Procedures

<set_assignment)

<set_expression>

<set_statement>

<set _varlabje>

-
-
-
-

<set_varliabje>

"SET AND ASSOCIATIVE EXPRESSIONS

Set Declarations

Set Expressions

Set Primaries
Setbreak

Setformat
<simple_seXpression>
Simple Expressions
<simpler_formal_type>
<slashed_switch_|ist>
<source_|Ist>
<{space_spec>

Space Allocatlon, Norma| Operation
<statement>
Statements

Stdbrk

STORAGE ALLOCATION

Storage Allocation Routines
STORAGE LAYOQUT

String~Arithmetic Conversions

<string_sxpression>

String~0Orlented Machine Language Routines
<string_variable>

String Constants

String Declarations

String Descriptors

String Garbage Collectlion
STRING MANIPULATION ROUTINES

String Opsrations
String Space

18=~7

SAILON NO, 57

16-14
12~ 1
8- 1
'8-41
4. 1
4- 8
13- 1
13- 1
13-13
14- 9
11-69
8- 1
8+32
 8-10
15+ 1
3- 1
3- 1
3~ 1
11-75
311
8~58.
13- 1
3- 1
12
16- 1
11-117
1160
12- 5
13-~ 1
10~ 1
1g- 2
5- 1
5-16
11-49
11-54

STRINGS]
<subscript_|ist>
<substring_spec>
Substrings:
<swap_statement>
Swap Ass{gnment
<swltch_spec>
<switches>

- Swltohes

Symbols

Teletype 1/0 Funotlons
<term>.

Terms

The Boolean Exnresslon Anomaly‘
THE SAIL CORE IMAGE (REQUIRED)

<type>
<type_declaration>
<type_quallfier>

TYPE CONVERS!QN ROUTINES
Type Declarations

Unary Minus
<unsiashed_switch_I|st>
<upper_bound>

USE OF DEFINE

User Table

Userere

Uisetl, Useto

Using Macros

<valld_ swltch name>
<varlable>

Varlables
<whlle_statement>

While Statement

Wordln

Wordout

-

SAIL 18-8

TER MUSEUM Hi:

" R

|

