SRR ARRACK AR AR AR AR AHA KK AR KKK A KK
AR A A RO HORRK KRR KR A AR KKK KKK KKK A K

SRR SRR KKK KKK AHOKAKK KRR KKK K
RAAH AR AR AR RO K KKK IR AR KKK KKK AR KK

KKK

Namne kokok

' KKK

Project: 1 Programmer: MWK Hokk

. HK¥K

File Name: TUTOR.DOCIDOC, AIL] HOKK

HRXK

File Last Weitten: 19:30 13 Jul 1973 xxx

HKXK

Time: 19:43 Date: 15 Jul 1973 sekx

XKk

Stanford University koK

¥ Artificial Intelligence Project kK

Computer Science Department KKK

4o Stanford, California KK

* XKAEK
o

LEAP TUTORIAL

By Jim Low

LEAP TUTORIAL July 1, 1973

I. INTRODUCTION

SATL containe an associative data system called LEAP. It is patterned
after the LEAP system implemented at LINCOLN LABORATORY by ROVNER and
FELOMAN. Features contained in our LEAP but not in the Lincoln LEAP
include a data-iyps called list, and - "matching" procedures to be
described belou,

This document is intended to serve as a companion volume to the SAIL
manual and hopefully will be easier to understand than the manual as
here we can afford expound more on the various constructs and we also
have the space to include more examples.

Other documents which may be of interest to the LEAP user include
LEAP WRUILEP, JRLY, which is @ general guide to the leap runtime
environment; LEAP.TXTILEP,JRL], which is a detailed guide to the LEAP
paris of the SAIL compiler and the SAIL runtime system; and of course
the SAIL manual,

LEAP TUTORIAL July 1, 1973

P TTENS

ihe basic entities which LEAP manipulates are called "items". An item
e aimilar in many respects to a LISP atom. [t optionally has a
printname and a datum. A datum is a scalar or an array of any SAIL
data-lype other than types "item" and "itemvar"., An itemvar is simply
a ovariable uthose values are items.

A an example of an item we may consider the following declaration.
REAL TTEM RITEM;

Thia declares an item named RITEM whose datum is a scalar real
variablo.

Iln addition to declarations of items at compile-time, we may
duynamically create new items by calling the function NEW. This
function may either have no arguments, (in which case the created
item has no datum); or it may have a single argument which is either
an expression or an array. This argument is copied and the copy
hecomes Lhe value of the datum of the new item. We may of course
laler change the value of the datum or an element of the datum (if
the datum s an array) by using standard algolic assignments. The
data-type of the datum of the new item is the data-type of the
argument to NEW. Thus NEW(1) would create a new integer item whose
datum was initially given the value 1.

Ttems may be assigned to itemvars by standard SAIL assignment
statements and assignment expressions.

itmvre itmexpr;
Items themselves are considered to be constants and thus may not

appear on the left hand side of an assignment statement or
expression,

LEAP TUTORIAL July 1, 1973

T1T. DATUNMS

hesociated with moet items are datums which may be treated as
standard SATL variables. To refer to the datum of an item we use the
operator DATUM, :

Example:

INTEGER ITEM 113
INTEGER T3

L1: DATUM(IT) 53

L2: [« DATUM(IT) +13

At L1 the datum of the item II is given the value "S". At L2, the
value of the datum of I is wused in an arithmetic assignment
alatement which would cause the variable I to receive the value b.

Natum takes as its argument a typed item expression: Typed item
oxpressions include:

1. Typed items and itemvars (declared with their type followed
by 1TEM as in:

NTEGER TTEM JJs

TEGER ARRAY TTEM X[1:51;3

JTEGER TTEMVAR ARRAY Y I[1:61;
NTEGER ARRAY ITEMVAR ARRAY ZI[1:5];
NTEGER ARRAY TTEMVAR (i

If
I
I
|
I

MNote the distinctions between the later four declarations.
¥ is declared to be a single item whose datum is an integer
arvay containing five elements. Y is declared to be an array
of five itemvars, each of which is claimed to contain an
i tem whose datum is a scalar integer, Z is declared to be an
array of five itemvars whose values are claimed to be items
Hith datums which are integer arrays. Q is an itemvar which
supposedly contains an item whose datum in an integer array.
A= s shoun above, ne do not specify the dimensions of the
the array which is the datum of an array itemvar. Thus for
exanple, each element of Z could contain items whose datums
vere arrays of different dimensions, However for array items
e wust declare the dimension because otherwise the campiler
would not know how much space to allocate for the array. MWe
place the dimensions of the array following the item name.
Thie is somewhat confusing as it appear that we have an

LEAP TUTORIAL July 1, 1973

array of items rather than a single item whose datum is an
array. OSAIL has eolved this problem in a very arbitrary way
by outlaning declarations of arrays of items. Une can get
the effect of arrays of items by declaring itemvar arrays
and then assigning "NEW" items to the individual elements.

2. Typed itemvar function calls:
STRING 1TEMVAR PROCEDURE SNEW(STRING X) 3
RETURN (NEW (X})
Thus we may talk of DATUM(SNEW ("anystring"))
9

3. Assignment expressions whose left hand side is a typed
i temvar,

The type of the datum variable is the type of its item expression.
Thue, the datum of an integer item expression is treated as an
integer variable, the datum of a real array item expression is
treated as a real array and so forth. ‘

NOTE: no check is actually made that the item is of the claimed tupe.
Thus, for example disastrous things may happen if one uses DATUM on a
gfring temvar in uwhich an integer item has been stored. Therefore
{he user should he careful about storing typed items into different
tupe itemvars, When in doubt about the actual type an item expression
he should use the function TYPEIT to verify that the item is of the
required type. TYPEIT is a predeclared integer function,

INTEGER PROCEDURE TYPEIT(ITEMVAR X);

LEAP TUTORIAL July 1, 1873

The vatues returned by TYPEIT ares

g - deleted or never allocated 1 - item has no datum.
2 o~ bracketed triple(ho datum) 3 - string item
4 - real iten 5 - integer item
5 o~ oet o item 7 - list item
3 - procedure item 9 - process item
18 - event-type item 11 - context item
12 — refitm itlem 16 - string array item
17 — real array item 18 - integer array item
19 - set array item 280 - list array item
24 - context array item 25 - invalid typeflerror in LEAP)

Thosa codes not mentioned (13-15,21-23) are also invalid and should
bhe considered erroneous.

LEAP TUTORIAL July 1, 1873

V. GETS

A et e an unordered collection of unigue items. All set variables
are initialized to PHI, the empty set consisting of no items. Set
variables receive values by assignment or by placing individual items
in them by PUT statements.

SET FERPRESSTUNG:

Jo Oxplicit Set - A sequence of item expressions which make up
Mhe set surrounded by set hrackets.
£, G
a) titeml, iten2, iten3}
Iy fitemZ, iteml, item3}
ey ditens, item?, item?2, i tem3)

Note: Since sets are unordered and a given item may appear at
moct once within a. set, set expressions a,b,and ¢ above all
represent the same set.

20 PHL - the empty set. The set consisting of no elements at
Aall s the enpty set which may he written as either
it or PHI

3. Set Union - written SETL U SET2.
The resultant set contains all items which are elements of
either SET1 or SETZ or both,
.G,

fiteml, item2? U {item2,item3} = {iteml,itemZ,item3}

%, Set Intersection - written SETL n SET2
© The resuttant set contains all items which are elements of
hoth SETL and SETZ.
E.G.
titeml, item2, item3t n {iteml, item2,item4} = f{iteml,item2}

PUT and

LLEAP TUTORIAL July 1, 1973

. Set Subtraction - written SETL - SETZ2

The resultant set contains all items which are elements of
SETL but not elements of SET2,

L. G,

fitenl, iten2, item3} - {item2,itemé4, itemS} = {iteml, item3}

REMOVE

To place a single item into a set variable we may use the PUT
statement:

PUT itemexpr IN setvar;
This has the identical effect as{
setvar « setvar U [itemexpr};
Houever, as the assignment causes the set to be copied, and
the PUT doesn’t the PUT statement will take less time and

space Lo execute,

To remove 7 single item from a set variable We may use the
REMOVEE statement

REMOVE itemexpr FROM setvar;
This has the same effect as:
setvar « setvar - {itemexpr};

Again, as the REMOVE statement avoids copying the set, it is
more efficient than the equivalent assignment statement.

SIET DBooleans

I

sel membership
itemexpr ¢ setexpr

TRUE only if the item is an element of the set.

LEAP TUTORTAL July 1, 18973

Set cqual ity

setexprl = setexpr?
TRUE only if each item in setexprl is in setexprZ and vice
VErQad.

. Set inequality

setexprl = setexpr?
TRUE if setexprl or setexprZ contains an item not found in
the other.
Equivalent to
~(setexprl=setexpr?)
Froper containment
setexprl < setexprd or setexpr? < setexprl
TRUE if every item in setexprl 1is also in setexpr?d, but
setexprl » setexpr? Equivalent to: ((setexprl n setexpr2) =
setexprl) A (setexprl = setexpr2) v
Containment
setexprl £ setexpr2 or setexpr2 2 setexprl

TRUE if every item in setexprl in also in setexprd.
Fquivalent to

(setexprl = setexpr2) v (setexprl < setexpr?)

LEAP TUTORIAL July 1, 1973

cor, LOP and LENGTH

1. COP (setexpr) - returns an item which is an element of the
snt. As sets are unordered you do not know which element of
the et will be returned 1t is useful most often when we knowu

the et has but a single element in which case it will return
that i ten,

2. LOP (setvar) - same as COP except argument must be a set
variable and the item returned is also removed from that set.
It is logically equivalent to the following procedure:

ITEMVAR PROCEDURE LOP (REFERENCE SET Y)
BEGIN TTEMVAR O

 « COP(Y),

REMOVE O FROM Y;

RETURN (Q)
N

LOF is often valuahle if we wish some operation to be
performed on each item of a set. Consider the example below
Mhere we Wish the datums of all integer items contained in a
set SETI to be incremented by one. Assume that we have
declared TITMVR to be an integer itemvar and TSET to be a set
variable thich we will use as temporaries,

TSET « SETI; "Copy set of interest into temporary"
WHILE (TSET = PHI) DO "loop while TSET has elements"
BEGIN TITMVR « LOP(TSET); "remove an element from TSET"
IF TYPEIT(IITMVR) = 5 THEN "check if really integer"
DATUM(IITMVR) « DATUM(IITMVR) + 1;
ENDs

NOTE: LOP is compiled into code other than a straightforward
procedure call and thus like many other functionals cannot
appear as a statement hut only as part of an expression. Thus
if wuwe just wanted to remove an arbitrary set element and
throuw if avay ue would have to say:

DY « LOP(SETVAR)

vhere OMY is an itemvar uwhose contents we do not care about,
rather than the simpler:

LOP (SETVAR) 4

LEAP TUTORIAL July 1, 1973

i}

3. LUNGTH (setexpr) - returns the number of items within a set.
Logically equivalent to following procedure:

INTEGFR PROCEDURE LENGTH(SET Y);
BEGIN "LENGTH!
INTEGER COUNT; ITEMVAR DUMMY;
COUNT « 83
WHILE (Y = PHI) DO
BEGIN
DUMMY « LOP(Y);"remove an element from the set"
COUNT « COUNT +1; "step count of elements"
END;
RETURN (COUNT) 4
END "LENGTH";

The actual implementation of LENGTH is much more efficient
han the above procedure {usually taking only two machine
instructions). The most efficient way of determining if a
given set is empty is to see if the LENGTH of that set is
zero, This is actually much faster that comparing the set and
' for equality. : '

10

LEAP TUTORIAL Juty 1, 1973

Vo LIST

€3]

A list is an ordered sequence of items (not necessarily distinct).
List variables are initialized to NIL the empty list containing no
items. List variables receive values by assignment or by placing
individual items in them by PUT statements.

LIST Expressions

1. Explicit List - written as the sequence of items (separated
by commas) all surrounded by list brackets "{{ }}", SKIP 1
A, 1 Tteml, item2, item3}}
.o {0 item?, iteml, item3 1!}
co {1 iten2, item2, iteml, item 3 }}

Note that since the order and numher of times each item
appears is important for each |lists, the expressions a, b,
and o above all represent different list expressions,

NOTE: we may represent NIL, the empty list, by {{ }}

N

Concatenation - written listl & 1ist2 This forms a new |ist
containing all the items in listl followed by all the items
in list2,

E. G,

{{iteml, item2, item3,}} & {{item3, itemd, itemS }}

{{iteml, item2, item3, item3, item4, itemB}}

fiteml, item2b} & {{item &4, itemd, itemb}}

Piteml, item2, itemd, itemé4, itemb}}
3. Guhlists - There are tuwo forms of sublist expressions
de listesque [0l TO 121 - the first integer expression (il)
stands for the position of the first element to be taken
and the second (i2) stands for the position of the last
alement to be taken.
. G.

{{itema, itenb, itemc, itemd}l (2 TO 31={{itemb, itemc}}

11

LEAP TUTORIAL July 1, 1973

{{itema, i temb, itemc, i temd}} {3 TO 31={{itemc}}

b listexpr (i1 FOR i2] - the first integer expression (il)
stands for the position of the first element to be taken
and the second (iZ2) stands for the number of elements to
be taken. E. G.

{{itema, itemb,itemc,itemd}} [2 FOR 31={{itemb,itemc, itemd}}
[{itema, itenb, itemc, itemd}} [3 FOR 11={{itemc}}

{{itema, itemb, itemc, itemd}} [3 FOR B)={{ }1= NIL

LIST Selectors

't is often useful fo think of a list as an untyped itemvar array
Hith a single dimengion with lower bound 1 and upper bound variable.

1.

N

Expression selector

listexpr [il)] -~ returns the item which is the il element of
the list, If |1 is less than B or greater than the number of
clements of the list an error is signaled.

L. G.

{{itema, itemb, itemcll [1] itema

itemc

i

{{itemb, itemc, itemd}} I[2]

Note the difference between |listexprlill and listexpr[il FOR
11, The former returns an item and the later returns a list
containing a single 1tem,

. Replacement selector

listvar[il) « itemexpr;

This removes the il element of the list and replaces it with
the itemexpr 11 must be between 1 and the number of elements
in the list + 1,

. G.

LISTI « {{ITEM1}};
LISTI (L] « ITEMZ; "NOW LISTI
LISTLI2] « ITEM3; "NOW LISTI

= {{[TEM2}}"
LISTI1) « LISTLI21; "NOW LIS%l

{1
{{ITEMZ, ITEM3} "
= {{ITEM3, ITEM3}}"

12

LEAP TUTORIAL July 1, 1973

VIL ASSOCTATIONS

The associative pouwer of LEAP comes from the use of associations,
dleo called triples or associative triples. A triple is a 3-tuple of
iteme, Me write a triple as:

AsD=VY

phere A, 0, and Voare items or item expressions, We call the first
component of the triple (A above) the "attribute"; the second
component {0 above), the "object"; and the third component (V abovel,
the "value". Triples are kept in the "associative store", Triples are
incerted into the associative atore by MAKE statements and removed
from the associative store by ERASE statements,

HAKE

A TIAKE statenent is of the form:
MAKE itmexpr1®itmexpr2 =i temexprd;

If the triple already exists in the associative store, the statement
does nothing, otherwise the triple is inserted into the store.

[-RASLE

To remove 4 triple from the associative store wWe execute an ERASE
astalenent:

CRASE itmexprleitmexpr2s itemexpr3s

1f the triple is not in the associative store, the statement does
nothing, otherwise the triple is removed from the associative store.
e often nish to erase all the triples which have specific items as 1
or 2 of their components hut We don't care about the remaining
components. To do this we may use the token ANY to stand for the
unspeci fied components,

13

.LEAP TUTORIAL July 1, 1973

E; G. to ecrase all associations with item2 as their object we could

tieas

ERASE ANYeitem2=ANY;

to erase all associations with iteml as their attribute and item2 as
their object e nwould use:

ERASE itemlsitem? = ANY;
ANY may be used in 8, 1, 2, or all 3 positions in the triple. Thus,
ERASE ANYeANY=ANY;

would get rid of all associations in the UNIVERSE.

14

LEAP TUTORIAL July 1, 1973
AGSOCTATIVE DBOOLEANS

e may determine if a given triple exists by using the boolean

expressiont
itmexpl o itmexp2 = itmexpd

uhich witl evaluate to TRUE if the triple containing the items exists
in the associative store. As with ERASE 1 or 2 of the components may

e ANY. Thus,

ANY o ANY = iteml

uill yield the value TRUE if any triple in the associative store
contains iteml as its value component.

DERIVED SETS

In order to use the associative nature of triples we must have ways
of finding triples which have certain specified components. One way
is to use derived sets. The other, FOREACH statements, will be
discussed later,

There are three forms of derived sets now implemented: the (')
derived set, the (o) derived set, and the (=) derived set.

itmexpl ' itmexp2
produces the set of all items X, such that
itmexpl e X = itmexp2
ie a triple currently in the associative store.
itmexpl e itmexp2
produces the set of all items Y such that,
itmexpl o itmexp2 = Y
ie a triple in the associalive store.
itmexpl = itmexp2

15

LEAP TUTORIAL - Jduly 1, 1973

procduces the set of all items Y such that.
Y o itmexpl = itmexp2
is oo triple in the associative store

e or both of the item expressions may be the token ANY. Again this
means thal ue do not care about the value of that component. Thus,

itmexpl o ANY
il gearch the associative store for all associations which have

i tmexpl as dheir attribute component, and will return the set of
value components of such associations.

16

LEAP TUTORIAL July 1, 1973

UXAMPLE -UERIVED SETS

Lol us reproasent a fanily tree using associations. We will have the
chocbared item PARENT and the sets MALE and FEMALE, as well as |tems
reprcosenting moabers of the family: JOE, TIM, TED, JOYCE, JANET,
ATCLE . and HARRIET,

The familial relationships are represented by a the following tree.

TOM ALICE JOE JAN
I I l I
I |
Joyce TED TIM
I I
l
HARRIET

Thas, the parents of HARRIET are JOYCE and TIM; the parents of JOYCE
and TED are TOM and ALICE and so forth.

Mo can represent this tree by making the following associations:

[MAK
A

£ PARENT e HARRIET = JOYCE;
MAKE PARENT e HARRIET =

TIMs

MAKE PARENT o JOYCE = TOM;
IMAKE PARENT e JOYCE =

MAKE PARENT « TED = ALICE;

MAKE PARENT « TED = TOM;
MAKE PARENT e TIM = JOE;
NAKE PARENT « TIM = JAN;

To keep track of the sexes of the various people wWe have.the two sets
HALE and FEMALE,

MALE « {TIM, TED, TOM, JOE} ;
FEMALE « {JAN,JOYCE,ALICE!D s

NOTE: The ahove 1e merely one possible way we might represent the
family tree.” For exanple instead of the MALE and FEMALE sets, we

17

LEAP TUTORIAL July 1, 1873

might have associations of the form: SEX e person = MALE, where MALE
is now an item. One of the interesting difficulties in using LEAP is
deciding hou to represent a given system of data as LEAP will often
allow many different ways of representing the same information. Some
of the fradeoffs betueen the different representations wWill be
discussed later.

Mo to use the structure we have built., Let us'eag that we wished to
find the parents of Harriet, We may easily do this by use of a
derived set.

HARRIET_PARENTS « PARENTS o HARRIET;
thar e HARRIET _PARENTS has been declared to he a set variable.

To find Harriet’s brothers is a little more complicated.
"find one parent"
FPARENT _ITMVR « COF(PARENTS e HARRIET);

n

set of brothers,sisters"
SIBLING_SET « PARENT * PARENT_ITMVR;

"hrother

is a male sibling"
BROTHER_SET «

SIBLING_SET n MALES;-

The above exanple illustrates the use of associations as binary
relations belusen items, in this case the relation "parent of". Often
e dish to associate several different pieces of data with an item.
To do this ue may declare Ttems which will be used to name the data
and thon allocate items which will contain the corresponding data for -~
el i ten, For exanple we may Wmish to record such various attributes
al & person such as deight, height, nickname. To do this we will have
items WEIGHT, HEIGHT, and NICKNAME which will be used to name the
attributes. He will allocate items whose datums are the corresponding
values, LG,

MAKE WEIGHT e JOE = NEW(1B5);
MAKE HEIGHT o JOE = NEW (70);
MAKE NICKNAME e JOE = NEW("JOEY");

Ihao ta find the value of an attribute such as weight we wWould use
the expraoassion:

DATUMUINT_ITMVR « COP(KEIGHT&JOE))
Reamember that the assignment of the item to the integer itmvr is
requiroed so that the compiler can tell what the data type of the
datum is,

18

LEAP TUTORIAL July 1, 1973

W using these operations and set variables we have sufficient pouer
to do any search on the associative data base. However one soon
vealizes thal they are very inconvenient to use in all but the most
sinple cases, Therofore another technique is provided called FOREACH
statements, '

A FOREACH statement is similar to a FOR statement in that it causes
Lhe iteration of a given SAIL statement to be performed uwith a
control variable receiving various values for each iteration. These
vilues arc obtained by searching the associative data base or
enumerating the members of a set of items.

The most simple FOREACH statement has a single "local" itemvar and a
single "associative context". A local itemvar serves the same purpose
as the loop variable in a FOR statement. With each iteration it will
Feceive an item value and a SAIL statement will be executed. A simple
exanple of a FOR statement is:

FOREACH X | BROTHEReBOYl= X DO
<gtmi>

This statement is equivalent to the following:

listxe BROTHER=BOY;
FOR j « 1 step 1 until LENGTH(LISTX) DO
BEGIN Xelistx[jl;
<stnt>
END;

19

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

