SRR AR K A KKK KA KA A KK HOKAOKHKKKAAK A A AR AR A K
SOKAKKFKAKHAKK KRR KA KK AAAOR KKK KAKKK KA KAIOKK KA KK AAK

AR
b
A
A
KN
HORK
HAK
FORK
HOAOK
AR
HKAK
AAOK
HKH
MoK
HAK
KA

Names

Project: 1

Programmer: MWK

File Name: LEAP.WRUIDOC,AIL]

Filte Last Written:

Time: 19:39

21:88 3 Jul 1873
Date: 15 Jul 1973

Stanford University
Artificial Intelligence Project
Computer Science Department

Stanford,

California

SRR R KKK KKK KK KKK KKK ARKAK A A
SRR AR AR KA KA AAAKAK KKK AR KKK AHRAKK KKK

KKK

KKK
KKK
Hokk
KoKk
KoKk
bt %
KooK
KX
KKK
KK
KKK
*kok
kK
Rk
b
KKK
KKK

15 Jut 1972 19:34 LEAP.WRU [DOC, AIL] PAGE 2-1
A USCRS GUIDE TO THE LEAP RUNTIME ROUTINES AND STRUCTURES

by K. Pingle
Modified FALL 1972 to reflect changes by Jim Low

WARNING: This document is rated X and is only for the use of adults
with very strong stomachs., It is provided for people uwho
have to debug leap programs so they have some idea of what
is boing done to them and the data structures they might
want to look at, The facts provided here are NOT sufficient
lo allow hackers to wodify things from their programs. The
information provided may change, or become incorrect, at
any time.

1. THE USER TABLE

When initialized, SAIL creates a user table 1in your core
image with information for the runtime routines, This table, whose address
is contained in the cell named GOGTAB, is normally placed in an AC(C’15) when
feap is called and indexed into. The global model’s table is always in a
fixed location starting at GLUSER. If you are inside LEAP, or have just left
it, a pointer to the user table is in AC ’15., If it is, or was, a global
mocle| operation (see bits in section 2), a painter to GLUSER is in AC 7. -
Belou is a list of the more interesting entries in the user table. Be warned
that the index may change at any time, Those entries with xkx following the
index also have meaning in the global user table

INDEX (octal) NAME DESCRIPTION
HokHok RHAKK RARHRIRRRIORRRRRRRRARRAARRRRAKARRKARIK KK AR KK

%) Huol This is the return address for the last call
of LEAP, uhich was cleverly removed from the
stack so you couldn’t find it.

302 POL JOWD SIZE,BASE -~ the initial system pdl
303 SPOL [0WD SIZE,BASE - the intial string pdl
305 sk MAXITM The current top item number (low number for

glohal items)

306 skoxk OLDITM A linked list of deleted items of the form
XWD item #,painter to next word of list

267 kokk INFOTAB Points to a table with information on each item.
v A more complete description will be given later.

15 Jul 1873 19:88 LEAP.WRU[DOC, AIL] PAGE 3-1

3108 ok DATAB Points to a table with the datums of each item,
indexed by item number. The entry for an item
contains a numerical value, array descriptor,

a pointer to a set, or zero if there is no datum,
A pointer to the table can also be found in cell
DATHM in your core image. GDATM contains the
pointer for glohal datums,

311 wewx HASTAB Pointer to a 512 word long hash table for associa-
tions, More will be said about it later,

A2 wokk FPL One word free list with right half of each
cell pointing at the next one. FPl is of the
form XWD end of list,start of list, Used for
sets and various other one word free cells,

213 sk FP2 Pointer to two word free list for associations.
The right half of the first word of each pair
points to the first word of the next pair,

315 HASHP XWD list of freé string descriptors,,pointer to
printname hash table. More about this later.
316 MKBP Address of make - breakpoint procedure or @
if none.
317 ERBP Address of ERASE - breakpoint procedure or B if none
223 LEABDT A 8B uword long array search control block, or

SCB, used for retrieving associations by the
derived set, association existance test,
bracketed triple item retrieval, and erase
operations. The SCB will be described later.

324 FRLOC Points to the current SCB (for the FOREACH
statement we are currently executing) or zero
if we are not in a FOREACH, The left half
points to a variable named SCB... of the
procedure in which the FOREACH resides. SCB...
is used as a flag to the block exit routine
{BEXIT) which signals whether a FOREACH wil
have to be exited before a GO TO out of the
block is done., FRLOC is onty valid if there
are no processes. [f there are processes the
information normally in FRLOC is contained
in the process variable CURSCB.

225 SCBCHN Points to a list of abandoned SCB's.

15 Jul 1973 1%:33 LEAP,WRUDOC, AIL] PAGE 4-1
2. LEAP CALLS

Except for CVIS, CVSI, NEW.PNAME, DEL.PNAME, IFGLOBAL,
TYPEIT, LISTX, SUCCEED, FAIL, v
all calls to leap are MOVE 5,control_word, followed by PUSHJ 17,LEAP.
The right half of the control word contains the dispatch number of
the routine to be executed. The left half may contain one or more of
the following bits. Ignore any other bits - leap does.

4OPABE This is a bracked triple search in a foreach specification
{i.e., in the 'such that’ clause)

200088 This is a GLOBAL model operation.
2P0P8 This is a set operation in a foreach specification.

4080,48,4 Attribute/Object/Value (of AeO=V) has been bound locally
in a foreach specification. The argument here is the index
into a table in the SCB containing the bound value.

290,20,2 Attribute/Object/Value is being bound by this search in a
foreach specification. The result, if the search succeeds,
will be put in the SCB.

Some special routines such as NEW, and others use the left half for
other information. The exact usage of the left half will be included
in the routine descriptions.

_ Below are the (octal) dispatch numbers, all 140 of them, and
vhat they mean, Urless otherwise noted all routines return to the location
follouwing the PUSHJ *17,LEAP.

The contents of AlDs upon exit from leap is given. This is subject to
change at any time,

NUMBER LABEL DESCRIPTION
RAKAOEK RORAOOK ORRRAORAORRIRRRACRRRARRRIMKIRK AR AR RARORAOR KRR ARRKAROR KA ROK

8 FOREC The associative searches for the foreach
specification. A, 0, and V are in the stack in that
order at entry. Parts of the triple not globally
bounded are represented by table indicies. ANY is
represented by a zero. An example of a foreach
atatement compilation is given later. 1f the search
fails, control is passed internally (inside the
procedure) to the FOREC search immediately preceding
this one in the foreach statement., If this is the
first one, control goes to the fail exit (see routine
12). 1% it succeeds, it Wwill return normaily with
the current bindings in the SCB in use. Currently
AC 14 will point to this SCB on exit. To determine which
search LEAP is actually going to perform, check for
the BINDING bits in the left half of the control word
and the presence of ANY(’8) in the stack.

15 Jdui 1972 19:33 LEAP,WRU [DOC, AIL] PAGE 4-2

?6?z=? As this search is not yet implemented

this will only give an error message
1-7 RESERVED for future use,
18 180-11 are the set éearches in a foreach specification.
The item, or index, and set pointer are in the stack.
AcS
1] ?¢S
2 FORGD Start a foreach statment. Call+2 is @ JRST which is

exacuted when the foreach fails. The next cell
{ecal 143) is the number of unhound variables and it
is followed by one cell for . each unbound variable
containing the itemvar's address. It returns

Hith a pointer to the SCB in AC 14,

13 FRPOP Put the current bindings from FOREC into core for the
user at the end of the searches, or before a hoolean
in the foreach specification. Unbound variables will
get random values.

14 DOAG This call is at the end of a foreach statement and
returns control internally to FOREC for the next
group of bindings. This also saves the current values
of the foreach locals, so that they may be restored
to the last successful binding if future searches fail.

15 FRFALSE Called by the FALSE result of a boolean expression
in a foreach specification. It is identical to
routine 14 except that the current values of the
locals are not saved.

16 MAKE Make an association. A, 0, and V are in the stack
uhen called, On exit, AC 11l points to the two word
block containing the association.

17 BMAKE Make a bracketed triple. A, 0, V are in the stack.
It returns the item it has associated With the triple
on the top of the stack.

20 ERASE FErase an assocaition. A, 0, V are in
the stack when called. The search routines are used,

21-27 RESERVED for future use.
38 ISTRIPLE ISTRIPLE test., The item is in the stack when called.
Answer returned in AC 1. (-1 TRUE, B FALSE).
a1 SELECTOR 31-33 select a part of a bracketed triple. The item
associated with the triple is in the stack.
FIRST

32 SECOND

an

47

Y4

o]
a8

oy
w

b Juld

1973

CORPOP

LO1

(.02

o3

DELETE
NEW

NEWART

NEMARY

FOON

PUTIN

RENMOV

HE

STIN

19:39 LEAP.WRU[DOC, ATL]

THIRD

PAGE 4-3

inverse of routine 12. Not currently used in

comnpi led code,

35-37 generate derived sets inside foreach specifica-
tions. The tuo items are in the stack. It leaves
the a dummy item containing the next element of the

set at the top of the stack. (Ae0)
{A’V)
{0=Y)
49-42 generate normal derived set. Same arguments as
25-37. All leave a temporary set descriptor on top
of the stack, {(AeQ)
(A"V)
(0=V)

Delete the item in the stack.

A new item with no datum is put on the top of the

stack. Left half of control word contains type code of

new item (1) and global bit if a global NEW.

A new item With the arithmetic value in the stack as

itz is put on the top of the stack. The type code of the

nel item is contained in the left half of the control
tord. Left half contains global bit (*200000). if a
(lobal NEW. NOTE if a new string item then the value

is on top of the string stack not the arithmetic stack.

A new item with a copy of the array uhose descriptor
is in the stack as its datum is put on the top of the

stack. Type code and global bit in left half of control

uord,

Release the current foreach statement for DONE or GO
TO jumping out of foreach,

PUT the item in the stack into the set pointed to by
AC 14 on entry and exit.

FEMOVE the item in the stack from the set pointed ta
hy AC 14 on entry and exit.

For making up sets from lists of items {A,B,C,0}.
The next item to insert is on the top of the stack.
The set being built is next in the stack and is

left on the top of the stack.

Test if the item on the top of the stack is in the set or

which is next

in the stack.

list

15

{57

53

4

74

101

Jul 1973 19:33 ‘ LEAP.WRU [DOC, AIL] PAGE 4-4

B2

)
k)

COUNT Returns in AC 1 the length of the set or list on the top of
the stack. (Often compiled in-iine).

UNIT Returns on top of stack the first item of the set or list on
the top of the stack at entry (COP)

UNTON The union of the two sets in the stack is left on the
top of the stack.

INTER The intersection of the two sets in the stack is
feft on the top of the stack.

SURTRA Set subtraction left on top of the stack. The subtra--
hend is on top of stack at entry, other set below it.

STORITH Store. the set or item on the top of the stack in the
cell pdinted to by ac 14, which has a -1 in the left
half if storing a set. If the thing is an item you
should never get this call since the compiler now
generates a 'POP’ in line. If it stored a set, it
reclaimed the old set, if any,

Same as 6l but also leaves the thing on the top of the
stack., :

RESERVED for future use.
POPSET Same as 61 but puts a set in ACL.

GETEST £5-72 are set relationals. Both sets are in the stack
A<B

A>B
A=B
A=B

ISIT Test for the existance of an association
using the search routines. The three items are in
the stack,

RESERVED for future use,

BRITH Retrieve a bracketed triple, given A, O, V
in the stack and put its item on the top of the stack.

184112 BESERVED for future use

11

”y
s}

[THRY [nitialize the array item on the top of the stack
unless the global bit is set, Then, if bit 1l is

15 Jdul

115

116

117

128

1973

I THMYR

STLOP

BNDOTRP

SETCOP

SETRCL

19:33 LEAP.MRU[D@C,AIL] PAGE 4-5

also on in the control word it is a global array
item; otherwise it is just a global array with
nothing in the stack. '

Initialize a compiled in array item.You shouldn’t see this
as all array items are now dynamically allocated,

Apply LOP to the set or list in AC 14 and put the item on the
top of the stack.

Associative boolean of form BIND x oBIND y = BIND z
where any of the BINDs may be omitted.

Copy the set in AC 14 for use as a value parameter to
a procedure, New set put into loc. pointed to hy AC 14,

Reclaim the set pointed to by AC 14 which was created by 117.

T dut 1973 19:39 LEAP.WRU [DOC, AIL] PAGE 5-1

121 CATLST concatenate the tist on the top of the stack to
(he tist below it on the stack. Return result on
top of stack.

Les PUTART searches the list pointed to by AC 14 for the item(l)
on the top of the stack and places the item(2) below it
on the stack inside the list after the first instance of
item(l} or at the end of the list if item(l) is not present.

123 PUTBLER searches the list pointed to by AC 14 for the item(l)
o the top of the stack and places the item(2) below it
on the stack inside the list before the first instance of
item(l} or at the head of the iist if item(l) is not present.

124 SELLET index on top of stack, list below index on stack., Fetches
the n th (index) element of the list and leaves it on the
stack, :

125 TSBLST preforms the sublist operation LISTII TO JI. J on top of stack
| helou that and list below I, Returns sublist on top of stack.

126 FSBLST same as 125 except preforms FOR sublisting operation.

127 SETLXT takes the list on the top of the stack and returns a set

containing the same elements on the top of stack.

RPLAC preforms LISTIN]« it, AC 14 points to LIST. it on top of

130
stack, N oimmediately below it,
131 RENMX performs REMOVE n FROM list., list pointed at by AC 14,

n on top of stack,

132 REMALL performs REMOVE ALL it FROM LIST. LIST pointed to by AC 14,
: it on top of stack.

133 PUTXA performs PUT it IN LIST AFTER n, LIST pointed to by AC 14,
n on top of stack, it immediately below n..

134 PUTXB same as l3é'except BEFORE.

135 LSTHMAK same as 52 except makes |ist

136 CALMP call a matching procedure., on stack is a zero followed by

parameters to matching procedure with the procedure descriptor
at the top of the stack.

137 STKAGVL stack a ? local. On top of stack is XWD routine_increment,,satis. no. S
1f satisfier unbound adds routine_increment to INDEX4 of SCB
which is used as added to dispatch in FOREC,

148 STK4LC stack a ? local as a matching procedure ? parameter.

15 Jul 1973 19:38 LEAP.WRUDOC, ATL] PAGE 6-1
2. AN EXAIMPLE OF A FOREACH COMPILATION

Below is the actual code generated (on JUNE 18,1373) by the
following statement:

FOREACH x,YlA@B?XA(DATUM(X)=1)AX®ANYEYA(ISTRIPLE(Y))A(X¢y) 00 ZeXs
The pit1e of the statement are enclosed in {} in the listing.

Notico that, in the comments below, when control is transfered to L2

or LG, it is transfered inside leap to the code called by those

calls, DBreakpoints at those locations would not win.

HOREALH X, Y|

f/\"“:v[-{ he)//\}

FUATUM(X) =1 Al

fXaANY=YAl

FOISTRIPLE OO) A

If gou want to know What leap is doing internally during all
this, read on, and on, and on.

15 Jul 1972 189:& LEAP.WRU{DOC, AILI PAGE 7-1

4, SETS and LISTS

Gats and lists are composed of one word blocks linked as follous:

NAME ¢ YWD number of elements, WO2 The set or list descriptor
WOZ2: XWD WD, WO3

WOa s XWD item number,WD4

W4 NN

e

XWO item number,WOn
WOne WO item number,

NAME: [Length |

4
| | item no. | . |
R P
| \
T
| v
N
cme——a| item no. | B | WDn

The vords come from the one word free list (FP1) and are
Feturned there when the set or is deleted. With sets, the items
are ordored by item number, With the lowest first., This means that
lhe earliest declared or created item will be first for local i tems
anel Lhe mast recent for glohal items, whose numbers start at 4996 and
come doun. The order for lists is completely program dependant.

There are tuo kinds of sets, permanent and temporary. The
former are created by "PUT X IN SETL" or by assigning a set to a set

15 Jul 1973 19:38 LEAP.WRUDOC, AIL] PAGE 7-2

variable., They stick around until deleted by the program by storing
DT o another set into the variable., PHI, the null set, causes a
sero to be stored into the set variable. Temporary sets are created
by all other set operations and are indicated by a negative count in

the first word., For example, if you have the statement:
10 X (AnBY U AL, AZE THEN +ous

then ANB generates a temporary set, {Al,A2] generates a second one,
the union generates a third and deletes the first two, and the
inclusion test deletes the third one. 1f the statement is inside a
loop, this happens every times You should assign the set expression
to & variable, if possible, to make it permanent. Sets passed by
value to subroutines are copied, only if they are permanent, and the
copy, which looks like a permanent set, is deleted upon exit from the
procedurc. Temporary sets should be pointed to only by accumulators
and the stacks; they should never be stored in variables.

There are similarly two kinds of lists, permanent and temporary
uhich behave much as the corresponding kind of set.

15 Jdul 18973 13:39 LEAP.WRU(DOC, AIL] PAGE 8-1
b ASSOCTATIONS

Describing the way associations are stored can be done only
With some difficuliy, We will start with some definitions to save me
ueiting (remember these for section 6 alsol. WOl is the first word
of & tuo word association block, WD2 is the second word., LH is the
leil half of the word specified. RH is the right half. A, O, and A

refer to the three jtems of an association (A20=V).

To atart the description we look at INFOTAB (from Section 1),
am rray which has an entry for each item, poth local and globhal
Cloms in the case of a louer segment, indexed by the item number.
The LH of each entry contains the start of the value list VL1, wuhich
linke together all associations with this item as v, It points to
LNl of the association. In fact, all pointers to associations point
to WOL. The BH of each entry contains a 12 bit filed for PROPS, and
a4 6 hit field for the type whose value is :
peturnad by TYPEIT. Tuo byte pointers exist called PROPS and INFTB
Lhich correspond to these fields. Simply load AC 3 with the item number
and the dooa LDB ac, INFTB and ac will now magically contain the type
code. There are tuo sinilar byte pointers GPROPS and GINFTB for the
global model,

Aasociations are stored as two word blocks in a bucket hash table.
T got the table index of the bucket we perform an operation called hashing.
There are many ways of doing this but here ue hash A and O by
chifting A left one bit, exclusive ORing O into it, and ANDing the
poeul t owith a mask to truncate the result to the size of the table.
The contents of this bucket is a pointer to the first of a list
of things which hash to the sawme value (known as the conflict list).

We may have several associations Wwith the same A and O,
but different Y's (theie is of course only a single copy of any assaciation
a0 ue nevor have the case of tuo associations in the store containing
tho exact same A, 0, and V). This is called multiple hits.

Firet let us consider the easy case where there are no multiple
lits and there are no two associations which hash to the same bucket.

(4] .18 35
SR kR R A AR ARRR IR AR KR KK HORKAOK K
* * % TYPE 1
VL POINTER * 1%} %
B X *
st R R AR RK K RSO ARAOR AR R AOR AR AR KR AR K
w X * X
* A 3 0 * vV P 3
* * b 3 X
:éﬂ*>kﬁf:%:***ﬁ:************************)k***
0 12 24 35

The association fits in one word since the maximum item
number is tuelve bits long. The VL pointer points to the next
association on the value list for V or is zero if this is the last
onc.

15 Jul 1973 19:39 LEAP.WRU[DOC, AILD PAGE 3-1

If there are multiple hits, then the entry on the conflict
list looks like this:

@ 18 35

SRR SRR A A R KR KRR R KKK K KA KR KR AR K
* * x TYPE 2
MH POINTER * %) *
* ES kS
SRR S SRR R SRR KK KRR R SR KA SRR KKK R SOK ROk
¥ * * *
* A * 0 * g *
B3 * X L3
SRR ROR A KRR A RS RKORK KKK AR K AOK
a 12 24 35

The zero in the V part of WD2 indicates multiple hits [MHI.
Thie block is not an association, it is the header block for a list
0f associations with this A and 0. The LH of WDl points to the first
Aaseociation on the list, all of which [type 31 are the same as type 1
except that the RH of WDL points to the next association on the MH
lict, or is zcro for the last one. The blocks for associations on the
Ml list are taken from the two word free storage list (FPZ) and are
Felurned thare if the association is erased.

If +there are conflicts, the RH of WDl each element of th
conflict list, which is a block of either type 1 or 2, points to the
nest association on the conflict list [CL1, which may be of either type I
or 2, depending on whether or not there are multiple hits for that A
and 0. The conflict list continues through the RH of WDl of all
ancociations uhich hash to this index, with a zero for the last one,
This structure is expanded and collapsed as necessary when
dssociations are made and erased, Note that uhen a multiple hit list
conlains only tuo associations.and one is then erased, uWe do not
Grase the multiple hit list header but wait until there are no
acsociations with that A, O pair. :

15 Jul 1973 19:38 LEAP.WRUIDOC, ATL] PAGE 18-1

For those wuwho prefer pictures with lots of spaghetti, this
meas can be representod by the picture below, showing the multiple
hit list LML) and the conflict list [CL} for this hash table entry,
and part of one of the value lists [VL] linking into it.

INFOTAB table+Vl)
" VL
Y A
N)

hash table N i

+index: SA1-01-V1 =-Cl~= A2-02-8 --L-» A3-03-8 --CL-» A4-04-V1

I\ \ \ 1
¥ ML ML i)
\ \ \ ()
¥ A2-02-V2 A3-03-V3)
b ¢ ¥ : t
¥ ML ML t
& { ¢ A
VL AZ-02-V5 A3-03-V7 VL
& v T
J ML SNININIFINININININIVIN 1] NI S S S
¥ \ 0
y A2-02-V1
¥)

NSRRI V) NN

If you do not understand the above description and picture,
you are welcome to read the code,

Before leaving this facinating subject, there is one more
complication, which I left until last so [would not have to include
it in the above picture.

When a bracketed triple is created, a normal association s
made and linked into the hash table. The high order bit of the LH of
D1 is complemented from ite normal value (it is now 1 for a lower
segnent association and B for an global association) to indicate a
bracketed triple. The next thing in
fhe value list through the association is a one (1) word block With
the value list pointer in the LH and the RH containing the item
representing the bracketed triple. The RH of the item’s entry in
UATAB points 1o the original association block.

To do fast associative searches, two more hash tables are
neaded, one hashing 0 and V, with an attribute list (corresponding to
the value list for this hash table), and the other hashing A and V,
bith an object list. Then, given two items, hashing into the proper
lable gives all possible third items, and, given one item, the list
for that item given all possible pairs of items in the current
acoociations. Since we only have one table and list, mainly to save
core, some searches are slower than others, as hinted at in section
. The associative searches are done like thist

Aal)e? hash A and 0 to get a triple, or a set of them (the multi-
ple hit list).
Asll=V hash A and O to get V, searching the multiple hit list if

1% Jul 1973 19:39 LEAP. WRUIDOC, AIL] PAGE 18-2
nocessary. There is only one possible match.

Pel=V and Ae?=V search Vs value list for all instances of the
given A or O,

2:72=V Vs value list is the set of associations requested.

v0l)? and Ae?=? Try using all possible A’s{0’s)and then use the
AeDi:? search for each possihle A (0).

15 Jul 1972 18:39 LEAP.WRU[DOC, AIL] PAGE 11-1
6. FOREACH STATEMENTS

FNoreach statements use the structures described in the last
fuo sections and retrieve from them items which fit the conditions of
the foreach specification. This section describes the foreach search
control blocks (SCRs) which enable the leap routines to keep track of
tho ctatus of each search for when it is necessary to continue it.
Luch foreach statement generates a new SCB when first called and
relogses i0 uhen the statement is exited. Each SCB is 87 words long
and containg the followings

LI push doun pointer to the top of the stack for this block, which
starts at WOLG., The POL initially points to WD17.

LNz it you load AC 3 with the index of an unbound variable and
execute W2, you get the current satisfier in AC 1 from the
table at WDB. '

WL Same as WOZ except satisfier appears in ACZ.

Bigtt OPB Y WD4 stores the item in AC X in the table as the satisfier
for the variable uhose index is in AC 3.

AIRIS minds fhe number of unbound variables as obtained from the
socond word after the call of leap routine 11,

WMOG-L01S & 19 word table of satisfiers. The LH of each word is the
current item. The RH is the address of the itemvar the satis- .
fier is bound to., These are filled by the search routines and
Aare atored in your program by routine 12,

LOLE . start of a tuo word dummy SCB entry below the start of the
stack, 1t containsg XWD 8,-1 uhich stops searches in this
hlock when the routines try to use it as an index into a
table of search routines,

MO/ the JEST for the failure exit for this foreach statement.

WOLE-LNSE The rest of the SCB is used as a pushdoun stack containing
one: & word 5CB entry for each active search for a triple or
cet inclusion specification in the associative context of this
foreach statement (i.e., one is set up by .the initial call,
for each foreach statement, of routines 8-18). The POL
pointer in WDl points to the end of the SCB entry currently
being used in a search.

The & word SCB entry looks like this:

0] satisiier index, if unbound, or item number for the value
of this association. :

Wo2 satisfier index or item number, for object of associaton

i f search routine 8-6, or the set descriptor for routines
7-10. ‘

WD3 index or item number for attribute of association, or for

15 Jul 1373 19:33 LEAP.WRU(DOC, AIL] PAGE 11-2

set test.

W04 compare mask for associative searches. It contains ones in
the parts of the word containing bound portions of the
triple and zeros in the remainder.

W05 ~1 if no search yet (LDG not set up), else 20

WDG pointer into set or associative structures (ML or VL lists)
there search is to continue. If it is zero search will
fail if called again. '

D7 control word from call to this search from program, so ue

can hranch back internally when a search fails. The left
half contains the bits and the right half contains the
search routine to he executed (actually a number B-18 which
corresponds to the leap routines with those numbers),

LIDE return address from the call to this search, for when ue

succeed,

WDB7 OF SCB -address of SCB... variable and the SCB of the dynamically
enclosing foreach.

1

15 Jul 1973 19:39 LEAP.LRUIDOC,AIL] PAGE 12-1
7. FRROR MESGAGES

Mozt of the leap runtime error messages are easy to
under-stand. However here is the explanation for all the ones at present
ANYHALY.

<INCORRECT TTEM # FOR GLOBAL DATUM> - you have attempted to take the
global datum of & non-global item

A EAR SHOULD HAVE BEEN INITIALIZEDs> - the LEAP runtime environment has
not been initialized properly., Theoretically you can only get this
message 1f you call LEAP directly from an assembly language program
or SAIL START_CODE.

AORYROT-LEAP: ROUTABLE> - the routine index you have given to LEAP is not
valid. This is usually caused by having an incompatibility betueen
the version of the compiler and the runtimes. Recompile, reload
and try again.

“ASSOCIATIVE SEARCH WITH NOTHING BOUND> - you have specified a search (or erase)
with none of the positions bound. As this particular search has
not yet been implemented, you lose.

<GLOBAL SFARCH WITH LOCAL ITEM> - one of the elements to a global search(or erase)
was a local item

<MAKE WITH UNBOUND ITEM» - an argument to a MAKE statement was either the item
BINDIT or the item ANY. As all itemvars are initialzed at load time with
ANY this is a common error.

~GLORAL MAKE WITH LOCAL ITEM> - one of the arguments to a global make statement
© was a local item

SORYROT == ERASEL>- While attempting to erase an association, it was noted
thal the association was not on the appropriate value list. Report this
to your local LEAP expert.

<DRYROT -BRACKET CONFUSION> - while erasing a bracketed triple association,
erase blew up. Report to LEAP expert. '

SNYROT ~- ERASEZ> - while erasing an association it was noted that the association
nwas not on the appropriate conflict list. v

SRYROT ~-- ERASEZ> - the association which was being erased was not on the appropriate
multiple hit list

SNOT A BRACKETED TRIPLE>- the argrument to FIRST, SECOND, or THIRD was not
a bracketed triple

	000
	02-01
	03-01
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	06-01
	07-01
	07-02
	08-01
	09-01
	10-01
	10-02
	11-01
	11-02
	12-01

