P-CODE INTERMEDIATE ASSEMBLER LANGUAGE
(PAIL-4)

Erik J. Gilbert and David W. Wall

TECHNICAL NOTE NO. 148

March 1978

COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

The authors wish to acknowledge crucial support for this work which has been
received from the Department of the Navy via Office of Naval Research Order
Numbers N0OO14-76-F-0023, N0OO014-77-F-0023, and NOOO14-78-F-0023 to the Uni-
versity of California Lawrence Livermore Laboratory (which is operated for the
U.S. Department of Energy under Contract No. W-7405-Eng-48), from the Compu-
tations Group of the Stanford Linear Accelerator Center (supported by the
U.S. Department of Energy under Contract No. EY-76-C-03-0515), and from the
Stanford Artificial Intelligence Laboratory (which receives support from the
Defense Advanced Research Projects Agency and the National Science Foundation).
The authors also wish to acknowledge the fellowship support of their graduate
studies which was extended by the National Science Foundation during the aca-
demic year. This work has been performed under Contract No. LLL P09083403,
Principal Investigator, Professor Gio Wiederhold.

P-CODE INTERMEDIATE ASSEMBLER LANGUAGE
(PAIL-4)

Erik J. Gilbert and David W. Wall

TECHNICAL NOTE NO. 148

March 1978
COMPUTER SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT

The syntax and semantics of P-Code, the intermediate language
used in the current S-1 programming system is described.

INDEX TERMS: Intermediate language, P-Code, Semantics, S-1

P-Code Intermediate Assembler Language Page 1

O. Table of Contents

Ppage section

1 I. Introduction

1 A. Purpose

2 B. Acknowledgement

2 II. Architecture of the Stack Computer

2 A, Static environment

3 B. Dynamic environment

7 III. Detailed Language Description

7 A, Syntax diagrams

10 B. Instruction and standard procedure summary
14 C. Detailed instruction descriptions

24 D. Detailed standard procedure descriptions

I. Introduction
A. Purpose

This document describes the intermediate code produced by the PASCAL compiler
currently in use at SLAC. This intermediate code is called P-Code. It runs on a hypothetical
machine called the Stack Computer (SC). The purpose behind compiling into this
intermediate form is to make the PASCAL compiler more portable from one system to
another; one need only rewrite the P-Code translator or interpreter to bring up the entire
PASCAL compiler,

The purpose of this document is to describe the syntax and semantics of P-Code
assembler language text as it is output by the PASCAL compiler, so that the PASCAL
implementor may use this description to construct an interpreter or translator for a
particular system. The existence of P-Code assembler language assumes the existence of an
underlying machine (the Stack Computer). In order to most clearly define the P-Code
assembler language it is necessary to make occasional references to the detailed structure
of this underlying machine. However, it should be noted that the interface being defined
by this document is that of the source level P-Code, NOT the underlying Stack Computer.
Hence, for instance, an actual implementation of an interpreter for P-Code may vary
significantly in detailed structure from the SC referred to herein.

Unfortunately, the definition of the interface between the PASCAL compiler and a
P-Code interpreter or translator is not entirely clean and clear-cut. For instance, the code

P-Code Intermediate Assembler Language Page 2

for the PASCAL compiler contains a number of P-Code implementation-dependent
parameters. Therefore, the reader is warned that this document is not an absolutely
complete definition of the interface, since for picking out certain fine details it will
undoubtedly be necessary to refer to the source code for the PASCAL compiler, the P-Code
interpreter, etc.

B. Acknowledgement

The authors wish to acknowledge crucial support for this work which has been
received from the Department of the Navy via Office of Naval Research Order Numbers
N00014-76-F-0023, N00014-77-F-0023, and N00014-78-F-0023 to the University of
California Lawrence Livermore Laboratory (which is operated for the U. S. Department of
Energy under Contract No. W-7405-Eng-48), from the Computations Group of the
Stanford Linear Accelerator Center (supported by the U, S. Department of Energy under
Contract No. EY-76-C-03-0515), and from the Stanford Artificial Intelligence Laboratory
(which receives support from the Defense Advanced Research Projects Agency and the
National Science Foundation). The authors also wish to acknowledge the fellowship
support of their graduate studies which was extended by the National Science Foundation
during the academic year.

Portions of the second section of this document were taken with some modification
from "The PASCAL (P) Compiler Implementation Notes" by Nori, Ammann, Jensen, and
Nageli. That text has proven invaluable in the preparation of this document, and the
reader seeking additional information (especially historical) should consult that text.

II. Architecture of the Stack Computer
A. Static environment

The Stack Computer consists of four registers and a memory. The registers are:
1) PC: the program counter;
2) SP: the stack pointer;
3) MP: the mark pointer;
4) NP: the new pointer.

The PC has the usual meaning. The meaning of SP, MP, and NP will become apparent
when we describe the dynamic environment. The memory can be thought of as two linear
arrays of storage units (words): one of these parts of memory is referred to as the code
store, labelled CODE; the other part is referred to as the data store, labelled STORE. Their
functions are obvious. Note that PC is always an index into CODE, and that SP, MP, and NP
are always indices into STORE. Note also that the CODE array is read-only whereas the

P-Code Inter mediate Assembler Language Page 3

STORE array is read/write.

Each element of CODE is an instruction with four fields: the OP field, the T field, the P
field, and the Q field. The actual lengths of these fields are implementation~-dependent
with the restrictions that the OP field should be at least 7 bits long, the T field should be at
least 4 bits, the P field should be at least 4 bits, and the Q field should be at least large
enough to hold any index into CODE or STORE. The OP field specifies the particular
operation to be performed. The T field specifies the type(s) of one or more explicit or
implicit operands. The P field (usually) specifies the lexical level of declaration of a
variable being accessed. The meaning of the Q field is highly instruction-dependent, but it
usually contains an offset or an item count of some kind,

Each element of STORE has two fields: the type field and the data field. The type field
tells the datatype of the data field, e.g. INTEGER, REAL, BOOLEAN, SET, etc. The data field
can have any value legal for the type specified.

B. Dynamic environment

At P-Code run time, STORE is subdivided into two parts: one part contains constants of
various kinds, whereas the other caters to the varying demands of data store, as required
by the execution of PASCAL programs., This is depicted below.

The stack grows from O upwards and consists of all

« 0 directly addressable data according to the data
stack declarations.
« SP
¢ Storage overflow occurs if SP and NP meet. The
2 heap grows downwards from the point where the
« NP constants begin; its growth is dictated by use of the
heap standard procedure NEW,
large integers T
reals
sets
constants
boundary pairs
strings
N

The following points are worth noting regarding the dynamic use of elements of
STORE: the compiler's use of the heap resembles a second stack and so a very simple heap

P-Code Intermediate Assembler Language Page 4

mechanism suffices. However, an implementor desiring more flexibility could implement
a more complex free-storage handling mechanism. Though it should be clear from the
picture, please note that SP points to the top of the stack and NP points to the top of the
heap. Please also note that this usage of the word "heap" is quite different from the sorting
data structure of the same name used by Knuth and others.

The stack has further internal structure; this structure allows a correspondence
between the dynamic evaluation of a PASCAL program and its static text in that necessary
links are maintained, dynamically, so that the accessible objects are those dictated by static
program text (except for parameters - of course). To amplify, the stack consists of a
sequence of "data segments," each of them "belonging" to an activation of a procedure or a
function (except the first data segment, which starts at location 0, and which belongs to
the outermost block, viz., the program block).

Most dynamically allocated storage entities (particularly program variables) are
accessed using this internal structure of the stack. Each such entity is statically associated
with a particular block of program text, which is in turn statically nested inside other
blocks. Thus, with each such entity may be associated a "static level number," i.e. the
nesting level of the block in which it is declared. Since the program can at one time access
variables declared in at most one block having a particular static level number, the
specification at instruction execution time of a level number together with a data segment
displacement uniquely identifies each such dynamic entity.

Thus, the STORE addressing mechanism of P-Code instructions is defined in terms of
this data segment structure. A piece of the dynamic stack can be addressed directly in
terms of its absolute address, but it is often addressed by a pair of numbers (P,Q) as follows:
P is the static level number of the entity being accessed, and Q is the displacement into the
data segment (which is dynamically defined by P) of the actual data of the entity. Static
level numbers of storage begin at 1 for data entities in the outermost static level, and
increase by 1 for each nested procedure. This corresponds to the indexing of the procedure
nesting levels used by the ENT instruction; the main program has level 1 and the level
increases by 1 for each nesting. This has the effect that variables declared in a given
procedure have a static level number equal to the nesting level number of that procedure.
From all this it follows that the Stack Computer stack implementation must be defined

such that all dynamic entities may be accessed in this way.

Since any given target machine may use a somewhat different addressing structure
from that used by the hypothetical Stack Computer, one should be careful to ensure that
P-Code addresses actually point to the relevant data object, and not to a hypothetical base
address, e.g. virtual zero-origin addressing of arrays. This may mean that a P-Code
program will have apparently unnecessary address adjustments (e.g. INCs and DECs) which
a good translator will then optimize out.

P-Code Intermediate Assembler Language Page 5

The outermost data segment (containing entities with static level 1) contains a few
specially distinguished elements, used for communication with the outside world. The
addresses of these elements are called "file addresses," since they are used by the emitted
P-Code to identify the different files used. Each element is a storage unit of type
character, and is used as the PASCAL-defined associated buffer variable for the
corresponding file. Since the elements are in the outermost data segment, the static level
number of any address pair used to reference them is 1. The displacements are assigned by
the PASCAL compiler starting from the value of the PASCAL compiler CONST parameter
"FIRSTFILBUF." At present, six files are predefined, so user defined files are assigned
starting at FIRSTFILBUF+6. The predefined files are as follows:

"file address" displacement file name
FIRSTFILBUF INPUT
FIRSTFILBUF+1 OUTPUT
FIRSTFILBUF+2 PRD
FIRSTFILBUF+3 PRR
FIRSTFILBUF+4 QRD
FIRSTFILBUF+5 QRR

A data segment consists of the following sequence of information: a "mark-stack"
part; a "parameter" section if there are any parameters to the procedure or function to
which the data segment belongs; a "local data" section if there are any local variables
declared within the procedure or function to which the data segment belongs; and finally,
any temporary elements which may be required in the program evaluation process. The
register MP always points to the mark-stack part of the most recently allocated data
segment in the stack.

The mark-stack part consists of several consecutive fields containing information
necessary to maintain the dynamic environment and to allow the old dynamic environxﬁent
to be restored upon return from this one. This information may vary from implementation
to implementation, but is likely to contain such items as the return address, static and
dynamic links, a function return value, etc. An initial mark-stack part is set up by
executing an MST instruction. An implementor of a P-Code translator or interpreter must
decide on a precise format for the mark-stack part and implement the MST instruction
accordingly.

The parameter section consists of two parts, both of which may be empty. The first
part consists of elements which are either: (a) pointers (indices into STORE) in case the
corresponding parameters are of type "call-by-reference" or of type "call-by-value" but the
size of the parameter is larger than the size of a scalar or set; or (b) the parameter is
"call-by-value" and the value itself is passed as it requires less than or equal to the amount

P-Code Intermediate Assembler Language Page 6

of space occupied by a scalar or set. The second part pertains only to call-by-value
parameters whose size is greater than the amount of space occupied by a scalar or set, In
such a case, for each of such parameters, space is allocated as required by their respective

sizes.

In order to effect a procedure/function call, a mark-stack instruction (MST) is
executed with a parameter which allows the links to be filled. Then follows a series of
expression evaluations to fill in the first part of the parameter section. After this a
call-user-procedure instruction (CUP) or a call-standard-procedure instruction (CSP) is
executed with appropriate parameters. The reserving of space for the second part of the
parameter section as well as the local data is done by the ENT instruction, the first to be
executed in the procedure body. The copying of large call-by-value parameters into the
second part of the parameter section is done by instructions immediately after the ENT
instruction.

The MST, CUP, CSP, ENT, and RET instructions must be implemented so as to keep the
addressing structure of the stack consistent with the assumptions made by the P-Code
emitted by the PASCAL compiler., Specifically, the parameters to a called procedure or
function must, after execution of the ENT which comes first in the called code, be located
at the proper displacements into the current data segment. These displacements are
assigned starting from the value of the PASCAL compiler CONST parameter "LCAFTMST,"
the number of storage units which are ekxpected to be added to the stack by the MST
instruction. Also, for a function (which returns a value), the compiler emits code to store
the value at displacement "FNCRSLT" (another CONST parameter) prior to the RET
instruction, The implementor must ensure that upon return the stack is restored to its
original state before the call, plus the function value pushed onto the top of the stack.

“Lif had picked up a brick from the heap and put it in place on the stack and smiled in

embarrassment.”
- Ursula K. LeGuin, "Things"

P-Code Intermediate Assembler Language Page 7

ITII. Detailed Language Description

A. Syntax diagrams

Assembly program:

——L-» 2?:?23;gt —-»‘ eol I—]—-»Q—-»[STPj—»[eol]-——»

Assembly statement:

—r! proc id -—»[<ENT.]—» type ——-»@—-—» integer —»O—o label —]

[—09—-—> proc id -—-»9—» integer ——»Q—» integer —]

[—-»Q—a integer —
-] label ————-» >

—| DEF. |——| integer

—»[-SST..]—r tupe —-»O-——» proc id —»@—» integer —]

L__.@__, integer —o@——» integer —ﬁ
[——»O—» integer -——»O—» integer >

—-»[-MST.j—-» integer -—»Q-—-» integer —4@—-—» integer |——————»

H@——-» _assembly)
instruction

P-Code Intermediate Assembler Language

Label:

Page 8

___,____._, integer

Assembly instruction:

opcode

—! class 1

opcode
—| class 2 -—-v@—’ integer

opcode
—| class 3 -—»9—» integer —»@—-»

integer

opcade
—| class & --»Q—» label

opcode
—>! class 5 —»@ type

—»B-—-» integer

opcode

—] class 6 |—»|.|—| type

opcode
—>! class 7 -—’E]—’ type -—-»E]—'

opcode
—>| class 8 ——»E]—-» type —»@—-’

integer

integer

-—oE]—-» integer

—>! procedure call instruction

—| instruction for loading constants

P-Code Intermediate Assembler Language

Procedure call instruction:

standard

proc

Page 9O

id

(esp J—0—

(FF)—0-—

Instruction for loading constants:

——»———-)[Z]-—»E]—-v i

—

h—-»——-»@—o—-»

~—»! LCA- '—-—-» string
opcode class 1 = { ABI,
FLO, FLT,
NOT, 000,
SQR, suc,
opcode class 2 = { BGN, IXA,

Lo—

integer

—(]—

integer

type ——»O——» integer —-»@-—-» proc id
nteger —
not
—'~EJ—'@—[_J (]
——+[:)-—-»[:}-——’ real
-—*—»O-——» integer >
integer —v@—-v integer

INN,
0RO,
TOF,

LAD,

INT, 10R,
PRE, RST,

TON, TRC, UNI)

LGC, nov,

NEW 1}

ABR, ADI, ADR, AND, CHR, DIF, DVI, DVR, EOF,
MoD, MPI, MPR, NGI, NGCR,
SAv, s8I, SBR, SGS, SQI,

P-Code Intermediate Assembler Language Page 10

{ LDA }

opcode class 3

{ FJP, UJP, XJP }

opcode class 4

{ EQU, GEQ, GRT, LEQ, LES, NEQ)

opcode class 5

i

opcode class b { PAR, RET, STO }

It

o
m
O

opcode class 7 INC, IND, LDO, SRO }

]

(@}
L
~

opcode class 8 LODO, STR }

type = (A, B, C, 0, H, I, M, N, P, Q, R, 5, X

standard proc id = { ATN, CLK, COS, EIO, ELN, EOF, EXP, GET, LOG, NEW,
PUT, RDC, RDI, RDR, ROS, RES, REW, RLN, RST, SAV,
SIN, SIO, SQT, WLN, WRB, WRC, WRI, WRR, WRS, XIT }

proc id = identifier

integer, string, real, and identifier as defined in PASCAL syntax.

B. Instruction and standard procedure summary
Alphabetic List of Instructions:

The stack contents are described in terms of the type of the value on the stack. Please
note that this "type" is neither the same as the "types" used in PASCAL source code, nor the
same as whatever concept of "type" the eventual target machine may implement. The
P-Code emitted by the PASCAL compiler is "aware" of precisely the following set of types:
{int,char,real,bool,set,adr}, where "int" means an integer (which may be a quarter-word,
half-word, single-word, or double-word), and "real" may be a single-word or a
double-word.

Another comment is needed on the handling of multiple size representations for types
integer and real. In PASCAL, arithmetic on subrange types may legally yield a result
outside the subrange. Thus, the P-Code implementation must be such that arithmetic on
quarter-word or half-word integers may yield as large a result as a single-word integer.
This does not necessarily imply that such arithmetic will always yield a single-word

P-Code Intermediate Assembler Language Page 11

result, but rather that it might yield up to a single-word result in order to avoid overflow.
The general principle here is that the Stack Computer may make implicit conversions
between subrange types and different sizes of types.

Notes:

. = the remainder of the stack, untouched by this instruction.
CTI = compile time instruction, hence no use of stack.
ICRBSA = int,char,real,bool,set, or adr, depending on type param.
ICBA = int,char,bool, or adr, depending on type param.
ICB = int,char, or bool, depending on type param.

Mnem Param. Stack before Stack after

top-2 top-l top top-2 top-1 top
ABI int int
ABR . real real
ADI int int int
ADR real real real
AND . bool bool bool
BGN value *CTIx *CTIx
CHK t,1b,ub int int
CHR e int e char
csep stdprocid (see individual standard procedure descriptions)
cup t,nprmf1,procid (see detailed description of CUP instruction)
DEC t,decamt ICBA . ICBA
DEF label DEF value *CTIx *CTIx
DIF set set set
DVI cos int int N int
DVR cee real real e real
ENT t,lev,dslen,etc.(see detailed description of ENT instruction)
EOF (not generated, generates CSP EOF instead)
EQU t v M,strlen ces ICRBSA ICRBSA e bool
FJpP label bool -
FLO e int any Ce real any
FLT Cen int . real
GEQ t v M,strlen . ICRBSA ICRBSA . bool
GRT t v M,strlen ICRBSA ICRBSA . bool
INC t,incamt ICBA - ICBA
IND t,index adr ICRBSA

INN
INT
IOR
IXA
LAB
LAO
LCA
LDA
LDC

< € < £ <

P-Code Intermediate Assembler Language

xmult

label LAB
levoneadr
string
lev,reladr
I,ivalue
C,'char'’
R,rvalue

N

B,bvalue
S,(i1,12,13,14)
t, levoneadr
t v M,strlen
t v M,strlen
codeloc
t,lev,reladr

nunits

t v M,strlen
nunits

int set bool
set set set
bool bool bool
adr ICB adr
*CTIx *CTIx
adr
adr
adr
int
char
real
adr(nil)
bool
set
e ICRBSA
ICRBSA ICRBSA bool
ICRBSA ICRBSA bool
*CTIx *CTIx
ICRBSA
int int int
adr adr
int int int
ces real real oo real
lev,fpsiz,rpsiz (see detailed description of MST instruction)
.o ICRBSA ICRBSA ces bool
adr
int int
real real
booi pooi
int boo}
ICB int
ICRBSA ICRBSA

t, levoneadr

(not generated, generates DEC 1 instead)

(see detailed description of RET instruction)

int
real

adr
adr
int
real
ICB
int
real
ICRBSA

int
real
set
int
real

Page 12

SST
STO
STP
STR
Suc
TOF
TON
TRC
uap
UNI
XJp

P-Code Intermediate Assembler Language

t,procid, lev,i2,i3,i4,i5

t e adr

t,lev,reladr ce
(not generated,

label

label ' e

*CTIx

ICRBSA

*CTIx

ICRBSA

generates INC 1 instead)

real .o
set e
int

Alphabetic List of Standard Procedures/Functions:

Notes:

ATN
CLK
cos
EIO
ELN
EOF
EXP
GET
LOG
NEW
PAK
PUT
RDB
RDC
RDI
RDBR

arctan function

clock function

cosine function

end I/0 group

EOLN test function
EOF test function
exponential function
get next textfile char
natural log function

(not generated, generates NEW instruction instead)

the remainder of the stack, untouched by this instruction.

Stack before

top

real
int
. real
adr
adr
‘e adr
real
adr
real

Page 13

Stack after

top-2 top-1
bool
e bool

(not generated, intended for PACK procedure - unimplemented)

put next textfile char
read bool from file
read char from file
read int from file
read real from file

adr

adr adr

adr adr

co adr adr
. adr adr

top

real
int
real
undef
undef
real

adr
real

adr
adr
adr
adr
adr

RDS
RES
REW
RLN
RST
SAV
SIN
SI0
SQT
TRP
WLN
WRB
WRC
WRI
WRO
WRR
WRS
XIT

C.

P-Code Intermediate Assembler Language Page 14

read string from file adr adr int adr
RESET file ve adr e adr
REWRITE file . adr e adr
READLN file ces adr cee adr

(not generated, generates RST instruction instead)
(not generated, generates SAV instruction instead)

sine function . . real oo real
start I/0 group .o adr e adr
square root function v real “e real
TRAP to external adr v int adr

WRITELN file cee adr ce adr
write bool to file v adr bool int ‘o adr
write char to file e adr char int N adr
write int to file ces adr int int «v. . adr
(not generated, intended function unknown)

write real to file cen adr real int e adr
write string to file adr adr int int e adr
stop program w/rtn code . int

Detailed instruction descriptions

In the descriptions below, the notation "<int>" means any integer type, namely

"Q,H,I,D" indicating quarter-, half-, single-, and double-word integers. The notation
"{real>" correspondingly means "R,X" indicating single- and double-word reals.

ABI

ABR

ADI

ADR

AND

Evaluates the absolute value of the integer on top of the stack, pops that integer, and
pushes the absolute value.

Evaluates the absolute value of the real on top of the stack, pops that real, and
pushes the absolute value.

Evaluates the sum of the top two integers on the stack, pops those two integers, and
pushes the sum.

Evaluates the sum of the top two reals on the stack, pops those two reals, and pushes
the sum.

Evaluates the logical AND of the top two booleans on the stack, pops those two
booleans, and pushes the logical AND.

BGN

CHK

CHR

CSpP

CUP

DEC

DEF

DIF

P-Code Intermediate Assembler Language Page 15

(Compile-time instruction) Specifies translator options. If the instruction
parameter is 1, translates the P-Code into a 370/assembler source text; otherwise
translates it into an object module suitable for loading.

The first parameter in the instruction is a type from the set {A,C,<int>,J,S,P},
indicating that the top item on the stack is an address, character, integer, index (also
an integer), an ordinal number for an element of a set, or parameter to a procedure
call. The second and third parameters are the lower and upper bounds which are
legal for the item on top of the stack; in the case of sets these bounds are determined
by the maximum number of elements that can appear in a set. In the case of
addresses, the lower bound may be either O or -1; if -1 it means that the nil address
is also allowed. The top item is tested against these bounds. If it is not between
them, an error condition is raised; otherwise nothing happens.

Converts the ordinal integer on top of the stack into a character, pops that integer,
and pushes the character equivalent,

Calls the standard procedure specified in the instruction, saving the return address.
The exact behavior of the stack depends on which procedure is called; see the
descriptions of the standard procedures.

Calls a specified user procedure. The first parameter in the instruction is a type
from the set {P,A,B,C,(int),(real)}, indicating that the procedure is untyped (i.e. of
type "procedure") or of type address, boolean, character, integer, or real. The second
parameter contains some coded information: it is twice the number of parameters
for the procedure called plus a bit which is 1 if and only if a floating point save area
is required. The third parameter is the name of the user procedure being called.

The first parameter in the instruction is a type from the set {A,B,C,<int>},
indicating that the top item on the stack is to be treated as an address, boolean,
character, integer, or index (alsc an integer), The second parameter is an integer
decrement amount. This instruction examines the top item on the stack and
replaces it by the item of the same type whose ordinal number is less than the
ordinal number of the original top item by exactly the decrement amount. Loosely,
this instruction decrements the top of the stack by an amount given as the second
parameter in the instruction.

(Compile-time instruction) Defines the meaning of the label on this instruction to
be the value of the integer parameter.

Evaluates the set difference given by subtracting the set on top of the stack from
the set which is second on the stack, pops those two sets, and pushes the set

DVI

DVR

ENT

EOF

EQU

P-Code Intermediate Assembler Language Page 16

difference.

Evaluates the quotient without remainder (DIV) given by dividing the integer
which is second on the stack by the integer on top of the stack, pops those two
integers, and pushes the quotient,.

Evaluates the floating-point quotient given by dividing the real which is second on
the stack by the real which is on top of the stack, pops those two reals, and pushes
the quotient.

This is the first instruction executed by any program or procedure. Its exact effect
depends on the implementation of the Stack Computer, but its general purpose is to
record the information necessary to restore the static environment of the calling
routine upon return, and to set up the new static environment for the
freshly-invoked procedure. This may include recording static pointers, allocating
data areas, updating displays, and so forth. The ENT must be preceded by a proc id
which uniquely identifies the procedure or program and which is the label used by
CUPs to refer to their destination. The ENT is followed by seven parameters (see
syntax diagram). The first parameter is a type from the set {P,A,B,C,<int>,<real>},
indicating that the entered procedure is untyped (i.e. of type "procedure") or of type
address, boolean, character, integer, or real. The second parameter is the static level
number of the procedure (starting at 1 for the main program). The third parameter
is a label whose value is the length of the data area, including any save areas
allocated by the MST instruction, for this procedure. The fourth parameter is a
prefix of the original PASCAL procedure name. The fifth parameter is a one if a
general purpose register save area is required, otherwise zero. The sixth parameter
is a one if a floating point register save area is required (assuming this is a real
valued function), otherwise zero. The seventh parameter is one to indicate that
debugging is in effect if the QRD file is being processed, otherwise zero.

This instruction is never generated, but its function is to check for end-of-file for
the input file whose address is on top of the stack. For a detailed description see the
standard procedure ECOF.

The first parameter in the instruction is a type from the set
{A<int>,C,<real>,B,S,M}, meaning respectively that the top two elements on the
stack are addresses, integers, characters, reals, booleans, sets, or the addresses of
multiple-unit arrays or records. If the first parameter is M, there will be a second
parameter - an integer - which tells how many storage units the structures occupy.
This instruction compares the two addresses, integers, characters, reals, booleans,
sets, or entire multiple-unit structures for equality, pops the top two elements from
the stack, and pushes the boolean TRUE if the items were equal and FALSE

FJp

FLO

FLT

GEQ

GRT

INC

IND

P-Code Intermediate Assembler Language Page 17

otherwise.

Jumps to the address given in the instruction if the boolean on top of the stack is
false; whether true or false, the boolean is popped. The stack must be empty after
this instruction is executed.

Converts the integer which is second on the stack to a real value, and replaces the
integer by the real, leaving undisturbed the value on top of the stack.

Converts the integer on top of the stack to a real value, and replaces the integer by
the real.

The parameters in this instruction are the same as for the EQU instruction. The
items are compared and popped from the stack. If the item which is second on the
stack is greater than or equal to the item on top of the stack, the boolean TRUE is
pushed; otherwise the boolean FALSE is pushed. Note that in the case of sets, >=
refers to the superset operation, and that in the case of multiple unit structures, the
structures compared are addressed by the top two elements of the stack but are not
themselves on the stack.

The parameters in this instruction are the same as in the EQU instruction, except
that the type may not be S (set). The items are compared and popped from the stack.
If the item which is second on the stack is greater than the item on top of the stack,
the boolean value TRUE is pushed on the stack; otherwise FALSE is pushed. Note
that in the case of multiple-unit structures, the structures compared are addressed
by the top two elements on the stack, but are not themselves on the stack.

The first parameter in the instruction is a type from the set {A,B,C,<int>},
indicating that the top item on the stack is to be treated as an address, boolean,
character, integer, or index (also an integer). The second parameter is an integer
increment amount. This instruction examines the top item on the stack and replaces
it by the item of the same type whose ordinal number is greater than the ordinal
number of the original top item by exactly the decrement amount. Loosely, this
instruction increments the top of the stack by an amount given as the second
parameter in the instruction.

The first parameter in the instruction is a type from the set {A,B,C,<int><real>,s};
the second parameter is an integer index. The top of the stack contains an address.
This instruction gets the item whose address is the sum of the address on the stack
Plus the index in the instruction. The type of this item is given by the type in the
instruction. The address is popped from the stack, and the new item is pushed onto
the stack.

INN

INT

IOR

IXA

LAB

LAO

LCA

LDA

LDC

P-Code Intermediate Assembler Language Page 18

Checks to see if the ordinal integer which is second from the top of the stack is in
the set on top of the stack, Pops the integer and the set, and pushes the boolean
TRUE if the integer is a member of the set and FALSE otherwise.

Evaluates the set intersection of the set on the top of the stack and the set which is
second on the stack, pops those two sets, and pushes the intersection.

Evaluates the logical inclusive OR of the two booleans on top of the stack, pops those
two booleans, and pushes the inclusive OR.

The integer parameter in this instruction is a number of storage units required by
an instance of a given data type. The index on top of the stack is multiplied by the
storage size in the instruction and added to the address which is second on the stack,
to give a new address. The base address and index are popped, and the new address is
pushed onto the stack.

(Compile-time instruction) Defines the meaning of the label on this instruction to
be the current value of the location counter. The stack must be empty when this
instruction is seen.

Pushes an address onto the stack. The instruction has as a parameter an integer
offset into the data area of static level number 1. The address pushed is the address
of the location at that offset in the global (i.e, static level 1) data area.

Pushes the address of the string given in the instruction onto the stack. The string
itself will be in the constant area.

The first parameter in the instruction is a static level number; the second parameter
is an offset in the most recently activated data area for that static level. Calculates
the absolute address of the location thus specified and pushes that address onto the
stack. Warning: Because the addressing structure of the target machine may be
slightly different from that of the Stack Computer, a P-Code program should never
LDA an address in the first parameter area unless that address is intended for use
outside the local scope, i.e. as a reference parameter to a called procedure.

Pushes a constant onto the stack. The first parameter in the instruction is a type
from the set {I,C,RN,B,S}, indicating that the constant to be loaded is integer,
character, real, the nil pointer, boolean, or set. If the type is I, C, or R, the second
parameter is a constant of that type, just as expressed in PASCAL, If the typeis N,
there is no second parameter; the nil pointer is simply pushed. If the type is B, the
second parameter is the integer O or 1, representing the booleans FALSE and TRUE.

LDO

LEQ

LES

LOC

LOD

MOD

P-Code Intermediate Assembler Language Page 19

If the type is S, the second parameter is a list of four integers, separated by commas
and surrounded by parentheses, whose low order 16 bits can be concatenated to
produce the 64-bit representation of the set to be loaded.

Pushes the value of a location in the data area of the outermost static level. The
first parameter in the instruction is a type from the set {A,B,C,<int>,<real>,S},
indicating that the item to be loaded is an address, boolean, character, integer, real,
or set, The second parameter is the offset of the desired location in the data area of

the outermost static level.

The parameters in this instruction are the same as for the EQU instruction. The
items are compared and popped from the stack. If the item which is second on the
stack is less than or equal to the item on top of the stack, the boolean TRUE is
pushed; otherwise the boolean FALSE is pushed. Note that in the case of sets, <=
refers to the subset operation, and that in the case of multiple unit structures, the
structures compared are addressed by the top two elements of the stack but are not
themselves on the stack.

The parameters in this instruction are the same as in the EQU instruction, except
that the type may not be S (set). The items are compared and popped from the stack.
If the item which is second on the stack is less than the item on top of the stack, the
boolean value TRUE is pushed on the stack; otherwise FALSE is rushed. Note that in
the case of multiple-unit structures, the structures compared are addressed by the
top two elements on the stack, but are not themselves on the stack.

(Compile-time instruction) This instruction appears at regular intervals in the
P-Code text to allow identification of code locations. The single integer parameter
is the value of the location counter at the time the instruction is encountered. It
could theoretically be used actually to set the value of the location counter, but
implementations so far do not do this.

Pushes the value of a location in an arbitrary static level. The first parameter in the
instruction is a type from the set {A,B,C,<int><real>,S}, indicating that the location
to be loaded contains an address, boolean, character, integer, real, or set. The second
parameter is a static level number; the third parameter is an offset in the data area
for that static level.

Evaluates the remainder after integer division produced by dividing the integer
which is second on the stack by the integer on top of the stack, pops those two
integers, and pushes the remainder.

MOV The parameter in the instruction is a number of storage units, Copies a block of that

MPI

MPR

MST

NEQ

NEW

NGI

NGR

NOT

P-Code Intermediate Assembler Language Page 20

many values starting at the address on top of the stack to a block of that many
storage units starting at the address which is second on the stack. The stack must be
empty after this instruction is executed.

Multiplies the two integers on top of the stack, pops those integers, and pushes the
integer product onto the stack.

Multiplies the two reals on top of the stack, pops those reals, and pushes the real
product.

This instruction is executed preparatory to loading the parameters on the stack for a
user procedure call, The MST instruction is followed by code to evaluate and stack
the parameters, if any, which is in turned followed by a CUP instruction. Its exact
effect depends on the implementation of the Stack Computer, but its general purpose
is to record the information necessary to restore the dynamic environment of the
calling routine upon return. This may include recording dynamic pointers,
allocating save areas, and so forth. The first parameter tells the level of the called
procedure. The second parameter is the size in storage units of the first part of the
parameter section for the callee. The third parameter is the regparm area size for
the callee, and should be the same value as is specified in the SST instruction for the
callee. See the SST instruction for details.

The parameters in this instruction are the same as for the EQU instruction. The
items are compared and popped from the stack. If the item which is second on the
stack is not equal to the item on top of the stack, the boolean TRUE is pushed;
otherwise the boolean FALSE is pushed. Note that in the case of multiple unit
structures, the structures compared are addressed by the top two elements of the
stack but are not themselves on the stack.

The parameter in the instruction is a number of storage units. Allocates that many
new units on the heap, stores NP, which contains the new address of the top of the
heap, into the location whose address is on the top of the stack, and pops that address
from the stack. The stack must be empty after executing this statement.

Calculates the negative (additive inverse) of the integer on top of the stack, pops
that integer, and pushes the integer negative,

Calculates the negative (additive inverse) of the real on top of the stack, pops that
real, and pushes the real negative,

Calculates the logical NOT of the boolean value on top of the stack, pops that
boolean, and pushes the logical NOT.

ODD

ORD

PAR

PRE

RET

RST

SAV

SBI

SBR

SGS

P-Code Intermediate Assembler Language Page 21

Determines whether the integer on top of the stack is odd or even, pops that integer,
and pushes the boolean value TRUE if it was odd and FALSE if it was even.

Determines the ordinal value of the character, boolean, or integer value on top of
the stack, pops the stack, and pushes this ordinal integer,

Notes that the value on top of the stack is about to be passed as a parameter to a
procedure. The only argument to PAR is the type of the formal parameter to which
it is being passed.

This instruction is never generated, but its function is to replace the scalar value on
top of the stack by its immediate predecessor. The compiler generates a DEC 1
instruction instead.

This instruction returns control to the procedure which called the current one. Its
exact effect will depend on the implementation of the Stack Computer, but is likely
to include resetting of static and dynamic pointers and displays, deallocation of data
and save areas, and of course the physical jump back to the calling point. It has a
single parameter which is a type from the set {P,A,B,C,Kint> <real>,S}, indicating
that the procedure is untyped (i.e. of type "procedure") or is returning a function
value of type address, boolean, character, integer, real, or set.

Deallocates all locations on the heap which appear on top of the location whose
address is on top of the stack by setting NP (the "new" pointer) to that address, and
pops that address from the stack. The stack must be empty after executing this
statement.

Stores NP, which contains the address of the top element in the heap, at the location
whose address is on top of the stack, and then pops that address from the stack. The
stack must be empty after executing this statement.

Evaluates the integer given by subtracting the integer on top of the stack from the
integer which is second on the stack, pops those two integers, and pushes the
integer difference onto the stack.

Evaluates the real given by subtracting the real on top of the stack from the real
which is second on the stack, pops those two reals, and pushes the real difference.

Creates a singleton set containing the ordinal integer on the top of the stack, pops
that ordinal integer, and pushes the singleton set.

SQI

SOQR

SRO

SST

STO

STP

STR

P-Code Intermediate Assembler Language Page 22

Calculates the square of the integer on top of the stack, pops that integer, and pushes
the integer square onto the stack.

Calculates the square of the real on top of the stack, pops that real, and pushes the
real square.

Pops a value from the stack into a location in the outermost static level. The first
parameter in the instruction is a type from the set {A,B,C,<int>,<real>,S}, indicating
that the value to be stored is an address, boolean, character, integer, real, or set. The
second parameter is an offset into the data area of the outermost static level. The
stack must be empty after this instruction is executed.

(Compile-time instruction) Specifies certain attributes of the procedure whose label
is the second parameter of the instruction. The first parameter is the type of the
procedure, selected from {P,A,B,C,<int>,<real),S}. The third parameter is the static
level of that procedure. The fourth parameter is the size in storage units of the first
part of the parameter section. The fifth parameter is the size in storage units of the
second part of the parameter section. The sixth parameter is the size in storage units
of the locally declared variable storage. The seventh parameter is the regparm area
size. This is the size of the initial portion of the first parameter section which is to
be kept in registers. It should be at least 0, no more than the constant value
MAXPAREG*WORDUNITS given in the P-Code translator, and no more than the size
of the first parameter section. In addition, it should stop on a parameter boundary -
i.e. the regparm area should not contain half of a double-word parameter. In
practice it is desirable to make this value as large as possible subject to these
constraints. Note - in no other context should the compiler worry about the fact
that registers are used for parameters (except in the MST instruction, which gives
this quantity in different contexts).

Stores the value on top of the stack into the address which is second on the stack,
and pops both from the stack. This instruction has as a parameter a type from the
set {A,B,Cint)><real>,S}, indicating that the value to be stored is an address,
boolean, character, integer, real, or set., The stack must be empty after this
instruction is executed.

(Compile-time instruction) Signals the end of the input program.

Pops the value on top of the stack into a location in an arbitrary static level. The
first parameter in this instruction is a type from the set {A,B,C,<int),real>,S},
indicating that the value to be stored is an address, boolean, character, integer, real,
or set, The second parameter is a static level number; the third parameter is an offset
into the data area of that static level, The stack must be empty after this instruction

SUC

TOF

TON

TRC

UJp

UNI

XJP

P-Code Intermediate Assembler Language Page 23

is executed.

This instruction is never generated, but its effect is to replace the scalar value on
top of the stack by its immediate successor. The compiler generates an INC 1
instruction instead.

In the interpreter, turns off the execution trace. In the P-Code translator, turns off
one of several kinds of traces based upon a keyword argument. These keyword
arguments are not an official part of P-Code, but rather an addition to support the
translator; they are described in "The SOPAIPILLA Maintenance Manual."

In the interpreter, turns on the execution trace. In the P-Code translator, provides
one of several kinds of traces based upon keyword arguments. These keyword
arguments are not an official part of P-Code, but rather an addition to support the
translator; they are described in "The SOPAIPILLA Maintenance Manual."

Calculates the value found by truncating the real number on top of the stack to an
integer value, pops that real, and pushes the integer truncation.

Jumps unconditionally to the label given in the instruction. The stack must be
empty after this instruction is executed.

Evaluates the set union of the two sets on top of the stack, pops those two sets, and
Pushes the union set,

This instruction performs a jump to a location indexed by the ordinal integer on top
of the stack. It is used to implement CASE statements. It has as a parameter a label
which is first of four lexicographically consecutive labels (e.g. L28,L29, L30, and
L31). These four labels have, respectively, the following values:

- The lowest legal value for the index on the stack,

- The highest legal value for the index on the stack,

- The code address of the branch table, and

- The default address to which it should jump if the index is not in the permissible

range.

The branch table is a table of UJP (unconditional jump) instructions. This
instruction first checks to see whether or not the index is in range; if not it jumps
to the default address. If it is in range, it subtracts the lowest legal value from the
ordinal integer and jumps to that displacement from the start of the branch table,
which is in turn a jump to the appropriate piece of code. In either case, the index is
popped from the stack. The stack must be empty after this instruction is executed.

D.

ATN

CLK

Ccos

EIO

ELN

EOF

EXP

GET

LOG

P-Code Intermediate Assembler Language Page 24

Detailed standard procedure descriptions

Evaluates the arctangent of the real on top of the stack, pops that real, and pushes
the result,

Uses the integer argument on top of the stack to select among types of clock
functions. At present, the only possible argument value is 1. When the argument is
1, the number of milliseconds of run time spent in the PASCAL program thus far is
computed. The argument is popped and replaced by pushing the result.

Evaluates the cosine of the real on top of the stack, pops that real, and pushes the
result.

Signals the end of a group of I/0 related instructions (which was started by a CSP
SIO instruction). EIO may be used to signal any events which are convenient to
place at the end of such a group of I/0 instructions, but in particular its function
includes popping a single value off the top of the stack. This value is usually the
“file address," which is pushed on the stack prior to the SIO and remains there
throughout the I/0 group.

Tests the EOLN condition for the file whose address is on top of the stack. The
address is popped, the boolean result is pushed, and then an undefined value is
pushed (so that the following CSP EIO instruction will have something to pop
without popping the result).

Tests the EOF condition for the file whose address is on top of the stack. The address
is popped, the boolean result is pushed, and then an undefined value is pushed (sc
that the following CSP EIO instruction will have something to pop without popping

the result).

Evaluates the exponential of the real on top of the stack, pops that real, and pushes
the result.

Performs a GET on the file whose address is on top of the stack, appropriately filling
the associated buffer with the gotten value. Leaves the file address on top of the
stack. The stack must contain only the file address after this call is completed.

Evaluates the natural logarithm of the real on top of the stack, pops that real, and
pushes the result.

NEW

PAK

PUT

RDB

RDC

RDI

RDR

RDS

P-Code Intermediate Assembler Language Page 25

This "standard procedure" appears in the implemented P-Code interpreter, but calls
to it are never explicitly generated. Instead, the PASCAL compiler generates a NEW
instruction (which the PASCAL interpreter translates into a CSP NEW). The stack
must be empty after this call is completed. (See also the description of the NEW

instruction.)

This procedure is defined (only) in the PASCAL compiler, but calls to it are not yet
generated. Apparently it is intended for use by the PASCAL procedure PACK, which
is not yet implemented in the P-Code PASCAL compiler,

Performs a PUT on the file whose address is on top of the stack. The associated
buffer is then considered to have an undefined value. Leaves the file address on top
of the stack. The stack must contain only the file address after this call is

combpleted.

Reads a boolean value (represented externally by O for FALSE and 1 for TRUE) from
the file whose address is second from the top of the stack into the boolean variable
whose address is on top of the stack; note the automatic updating of the buffer
associated with the file. The address on top of the stack is popped off, leaving the
file address on top of the stack. The stack must contain only the file address after
this call is completed.

Reads a single character from the file whose address is second from the top of the
stack into the variable whose address is on top of the stack; note the automatic
updating of the buffer associated with the file, The address on top of the stack is
popped off, leaving the file address on top of the stack. The stack must contain only
the file address after this call is completed.

Reads an integer from the file whose address is second from the top of the stack into
the integer variable whose address is on top of the stack; note the automatic
updating of the buffer associated with the file. The address on top of the stack is
popped off, leaving the file address on top of the stack. The stack must contain only
the file address after this call is completed.

Reads a real from the file whose address is second from the top of the stack into the
real variable whose address is on top of the stack; note the automatic updating of
the buffer associated with the file. The address on top of the stack is popped off,
leaving the file address on top of the stack. The stack must contain only the file
address after this call is completed.

Reads a string from the file whose address is third from the top of the stack into the
area whose address is second from the top of the stack; note the automatic updating

RES

REW

RLN

RST

SAV

SIN

SIO

sQT

P-Code Intermediate Assembler Language Page 26

of the buffer associated with the file. The length of the string is given by the
integer on top of the stack. The integer and the address on top of the stack are
popped off, leaving the file address on top of the stack., The stack must contain only
the file address after this call is completed.

Performs the RESET operation for the file whose address is on top of the stack,
updating the associated buffer accordingly. Leaves the file address on top of the
stack. The stack must contain only the file address after this call is completed.

Performs the REWRITE operation for the file whose address is on top of the stack,
updating the associated buffer accordingly. Leaves the file address on top of the
stack. The stack must contain only the file address after this call is completed.

Performs the READLN operation for the file whose address is on top of the stack,
updating the associated buffer accordingly. Leaves the file address on top of the
stack. The stack must contain only the file address after this call is completed.

This "standard procedure" appears in the implemented P-Code interpreter, but calls
to it are never explicitly generated. Instead, the PASCAL compiler generates a RST
instruction (which the PASCAL interpreter translates into a CSP RST). The stack
must be empty after this call is completed. (See also the description of the RST
instruction.)

This "standard procedure" appears in the implemented P-Code interpreter, but calls
to it are never explicitly generated. Instead, the PASCAL compiler generates a SAV
instruction which the PASCAL interpreter translates into a CSP SAV). The stack
must be empty after this call is completed. (See also the description of the SAV
instruction.)

Evaluates the sine of the real on top of the stack, pops that real, and pushes the
result,

Signals the start of a group of I/0 related instructions (which will be ended by a CSP
EIO instruction). SIO may be used to signal any events which are convenient to
prlace at the start of such a group of I/0 instructions, but it is not required to
rerform any operation at all, When SIO is executed, the "file address" for the file to
which the I/0 group applies will be on top of the stack, and it should remain there
after the SIO.

Evaluates the square root of the real on top of the stack, pops that real, and pushes
the result.

TRP

WLN

WRB

WRC

WRI

WRO

WRR

WRS

P-Code Intermediate Assembler Language Page 27

Traps to a user defined external routine, passing on the parameters given as an
integer second from the top of the stack, and an address (of some variable) on the top
of the stack. The two arguments are popped off the stack. The stack must be empty

after this call is completed.

Performs the WRITELN operation for the file whose address is on top of the stack,
updating the associated buffer accordingly. Leaves the file address on top of the
stack. The stack must contain only the file address after this call is completed.

Writes a boolean value (represented externally by O for FALSE and 1 for TRUE) to
the file whose address is third from the top of the stack from the boolean value
which is second from the top of the stack. The width (in characters) of the field to
be written is in the integer on top of the stack. The boolean value and the integer
are popped, leaving the file address on top of the stack. The stack must contain only
the file address after this call is completed.

Writes a single character to the file whose address is third from the top of the stack
from the character value which is second from the top of the stack. The width (in
characters) of the field to be written is in the integer on top of the stack. The
character value and the integer are popped, leaving the file address on top of the
stack. The stack must contain only the file address after this call is completed.

Writes an integer to the file whose address is third from the top of the stack from
the integer which is second from the top of the stack. The width (in characters) of
the field to be'written is in the integer on top of the stack. Both integers are
popped, leaving the file address on top of the stack. The stack must contain only the
file address after this call is completed.

This procedure is defined (only) in the PASCAL compiler, but no calls to it are
generated. It is apparently intended for some I/O write purpose, but its exact
intended function is unknown.

Writes a real to the file whose address is third from the top of the stack from the
real which is second from the top of the stack. The width (in characters) of the
field to be written is in the integer on top of the stack. The real and the integer are
popped, leaving the file address on top of the stack. The stack must contain only the
Tile address after this call is completed.

Writes a string to the file whose address is fourth from the top of the stack from
the area whose address is third from the top of the stack. The length of the string is
given by the integer on top, whereas the actual width (in characters) of the field to
be written is in the integer second from the top of the stack. The string area address

XIT

P-Code Intermediate Assembler Language Page 28

and the two integers are popped, leaving the file address on top of the stack. The
stack must contain only the file address after this call is completed.

Terminates program execution, with a final "return code" given by the integer on
the top of the stack. The stack must be empty after this call is completed, at which
time it vanishes in a cloud of greasy black smoke.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

