
UNIX™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'S MANUAL

Seventh Edition. Volume 2A

January, 1979

Bell Telephone Laboratories. Incorporated
Murray Hill, New Jersey

Copyright 191'9" Bell Telepho,ne Laboratories. fncot1)orated.
Holders of a UNIX ™ software license are permi ned to c:opy this'
document" or any portion of it" as' necessary fo:t-ficensed: use" of
the software. pr'ovided tbis copyright, notice atld, sta(,ement of
permission are'induded.

UNIX Programmer's Manual

Volume 2 - Supplementary Documents

Seventh Edition

January 10, 1979

This volume contains documents which supplement the information contained in Volume
1 of The usut Programmer's ManuaL The documents here are grouped roughly into the areas
of basics. editing, language tools, document preparation. and system maintenance. Further
general information may be found in the Bell System Technical Journal special issue on UNIX,
July-August, 1978.

Many of the documents cited within this volume as Bell Laboratories internal memoranda
or Computing Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating sys
tems like GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

General Works

1. 7th Edition UNIX - Summary.
A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.
The original UNIX paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners - Second Edition. B. W. Kernighan.
An introduction to the most basic use of the system.

4. A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.
An easy way to get swted with the editor.

S. Advanced Editing on UNIX. B. W. Kernighan.
The next step.

6. An Introduction to the UNIX Shell. S. R. Bourne.
An introduction to the capabilities of the command interpreter, the shell .

..; 7. Learn - Computer Aided Instruction on UNIX. M. E. Lesk and B. W. Kernighan.
Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software .

. Document Preparation

8. Typing Documents on the UNIX. System. M. E. Lesk.
Describes the basic use of the formatting tools. Also describes u-ms", a standard
ized package of formatting requests that can be used to layout most documents
(including those in this volume).

tUNIX is a Trademark of Bell Laboralories.

9. A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry
Describes EQN. an easy-to-Iearn language for doing high-quality
mathematical typesetting.

10. TBL - A Program to Format Tables. M. E. Lesk.
A program to permit easy specification of tabula.r· material for
typesetting. Again, easy to learn and use.

11. Some Applications of Inverted Indexes on the UNIX System. M. E. Lesk.
Describes. among other things, the program REFER which tnls in
bibliographic citations from a data base automatically.

12. NROFF/TROFF User's Manual. J. F. Ossanna .
. The basic formatting program.

13. A TROFF Tutorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such
things.

14. The C Programming Language - Reference Manual. D. M. Ritchie.
Official statement of the syntax and semantics of C. Should be sup
plemented by ThB C Progra.mming Language. B. W. Kernighan and D.
M. Ritchie, Prentice-Hall. 1978. which contains a tutorial introduction
and many examples.

/' 15. Lint. A C Program Checker. S. C. Johnson.
Checks C programs for syntax errors, type violations, portability
problems, and a variety of probable errors.

V1S. Make - A Program for Maintaining Computer Programs. S. I. Feldman.
Indespensable tool for making sure that large programs are properly
compiled with minimal effort.

j 17. UNIX Programming. B. W. Kernighan and D. M. Ritchie.
Describes the programmming interface to the operating system and
the standard I/O library. ..

lB. A Tutorial Inntroduction fo ADB. J.F. Maranzano and S. R. Bourne.
How to use the ADB Debugger.

Supporting Tools and Languages

(19.

20.

21.

22.

23.

YACC: Yet Another Compiler-Compiler. S. C. Johnson.
Converts a BNF specification of a language and semantic actions writ
ten in C into a compiler of the language.

LEX - A lexical Analyzer Generator. M. E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions; each regular
expression can be followed by arbitrary C code which 'will be executed
when the regular expression is found.

A Portable Fortran 77 Compiler. S. 1. Feldman and P. J. Weinberger.
The first Fortran 77 compiler. and still one of the best. NOTE: This
document has been moved to Volume 2c of the UNIX Programmer's
Manual.

Ratfor - A Preprocessor for a Rational Fortran. B. W. Kernighan.
. Converts a Fortran with C-like control structures and cosmetics into

real. ugly Fortran.

The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor. Cobol. and
in its own right.

../ 24.

~ 25.

"'- 3 -

SED - A Non-interactive Text Editor. L. E. McMahon.
A variant of the editor for processing large inputs.

AWK - A Pattern Scanning and Processing Language. A. V. Aho, B. W. Kernighan and
P. J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

26. DC - An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.
A super HP calculator, if you don't need floating point.

27. BC - An Arbitrary Precision Desk-Calculator Language. L. L. Cherry and R. H. Morris.
A front end for DC that provides infix notation, control now, and built-in functions.

28. UNIX Assembler Reference Manual. D. M. Ritchie.
The ultimate dead language.

Implementation. Maintenance, and Misc:ellaneous

29. Setting Up UNIX - Seventh Edition. C. B. Haley and D. M. Ritchie.
How to configure and get your system running.

30. Regenerating System Software. C. B. Haley and D. M. Ritchie.
Whal do do when you have to change things.

31. UNIX Implementation. . K. Thompson.
How the system actually works inside.

32. The UNIX 110 System. D. M. Ritchie.
How the 110 system really works.

33. A Tour Through the UNIX C Compiler. D. M. Ritchie.
How the PDP-II compiler works inside.

34. A Tour Through the Portable C Compiler. S. C. Johnson.
How the portable C compiler works inside.

35. A Dial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.
Describes UUCP t a program for communicating files between UNIX systems.

36. UUCP Implementation Description. D. A. Nowitz.
How UUCP works., and how to administer iL

37. On the Security of UNIX. D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.

38. Password Security: A Case History. R. H. Morris and K. Thompson.
How the bad guys used to be able to break the password algorithm, and why they
can't now, alleast not so easily.

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret
ing CAl scripts on the U~lxt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the eqn program for mathematical typing,
the H -ms" package of formatting macros, and an introduction to the C pro
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark o(Bell Laboratories.

LEARN - Computer~Aided Instruction on UNIX
(Second Edition)

Brian ~V. Kernighan

il-lichael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIxt facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands
the UNIX text editor ed

advanced file handling
the "eqn language for typing mathematics
the U-mS" macro package for document formatting
the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow ...

(a)

(b)

(c)

. (d)

(e)

(f)

students are forced to perform the exercises that ;.re in fact the basis of training in
any case~

students receive immediate feedback and confirmation of progress~
students may progress at their own rate;
no schedule requirements are imposed; students may study at any time convenient
for them;
the lessons may be improved individually and the improvements are immediately
available to new users;
since the student has access to a computer for the CAl script there is a place to do
exercises;

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this. of course, is the absence of anyone to whom the student may direct questions,
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas)· 2. 3 The use of a computer to teach itself, how
ever, offers unique advantages. The skills develop,ed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is a Trademark of BeU Laboratories.

·2-

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer. but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First~ the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation~ they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right~ rein
forcing the desired Dehavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the current directory? Type '"answer N", where N is the number
offiles.

The student is expected to respond (perhaps after experimenting) with

answer 17
or whatever. Surprisingly often. however. the idea of a substitutable argument (i.e .• replacing
N by 17) is difficult for non-programmer students. so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student. appropriate parts of
the input or output are monitored. and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these. using two lessons about the cat (con
catenate. i.e .• print> command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les
son number that has just been completed. permitting the student to restart the script after that
lesson. If the answer is wrong. the student is offered a chance to repeat the lesson. The
Hspeed" rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully; it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "under
stands" what he or she is doing; accordingly, the current learn scripts only measure perfor
mance. not comprehension. If the student can perform a given. task. that is deemed to be
•• learning. "4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts. however, these scripts provide few facilities
for dealing with wrong answers. In practice. if most of the answers are not right the script is a
failure~ the universal solution to student error is to provide anew. easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi-
~~d .

To avoid boring the faster students. however. an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

• 3 •

Figure 1: Sample dialog from basic files script

(Student responses in ita1ics~ lS" is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example~ there isa file named
"food" in this directory. List it
by saying "cat food"~ then type ·ready".
S cat food

this is the file
named food.

S ready

Good. Lesson 3.3a (1)

Of course. you can print any tile with "cal".
In particular" it is common to first use
"15" to find the name of a file and then "cat"
to print it. Note the difference between
"15". which tells you the name of the file.
and "cat", which tells you, the contents.
One file in the current directory is named for
a President. Print the file. then type "ready".
S cat President
cat: can" t open President
S ready

Sorry" that's not right. Do you want to try apin? yes
Try the problem again.
SI.s
.ocopy
Xl
roosevelt
S cat roosevelt

this file is named roosevelt
and contains three lines of
text.

S ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. (n fact. it is named "cat" as an abbreviation
for "concatenate"

long. Typically, for example. the fast track might present an idea and ask for a variation oli the
example shown; the normal track will first ask the student to repeat the example that was
shown before .attempting a variation. The third and slowest track. which is often three or four
times the length of the fast track. is intended to be adequate for anyone, (The lessons of Fig
ure 1 are from the third track.> The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons~ this makes it profitable for a shaky user to back up

- 4 -

and try again. and many students have done so.

The tracks are not completely distinct. however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences. as dis
cussed. in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases. the fast track is produced merely by skipping lessons from
the slower track. In others. there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on ~xperience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless i·t received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the reton "you can't cross a ditch in two jumps."
Since writing CAl scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives. to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scri pts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. ,Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itselO. In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis
tance, however, need not be highly skilled.

- 5 •

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is. car. mv, rm, cp and diff commands. It also deals with
the abbreviation characters •. ?, and [] in file names. It does not cover pipes or 110 redirec
tion. nor does it present the many options on the Is command.

This script contains 31 lessons in the fast track~ two are intended as prerequisite checks.
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.S All editor features except encryption, mark names and
.~' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description- in the reference manual is
2,572 words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is
7.407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort. .

The advanced file handling script deals with Is options, 110 diversion, pipes, and support
ing programs like pr. we, tail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro
vides much less of a full three-track sequence than they do. On the other hand, since it is per
ceived as uadvanced,'" it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high l~vel of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics. for instance the DASI 300 and similar Di~blo ..
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro pack
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore. the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con
verted to follow the order of presentation in The C Programming Language.' but this job is not
complete. The C script was never intended to teach C~ rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter. there will be a r~latively complete introduction to
UNIX available via learn. Although we make no pretense that Jearn will replace other instruc-

_ tional materials, it should provide a useful supplement to existing tutorials and reference manu
als.

- 6 -

4. Experience with Students.
Learn has been installed on many different UNIX systems. Most of the usage is on the

first two scripts. so these are more thoroughly debugged and polished. As a (random) sample
of user experience. the learn program has been used at Bell Labs at Indian Hill for 10.500 les
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor. and
1400 in advanced files. The passing rate is about 80010, that is, about 4 lessons are passed for
everyone failed. There have been 86 distinct users of the files script. and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn t the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed .. however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ
ical for non-programmers; a UNIX expen can do the scripts at approximately 30 seconds per les
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx
imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

5. The Script Interpreter.
The learn program itself merely interprets scripts. It provides facilities for the script writer

to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts. may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named lib) containing the script dala. Within this directory are subdirectories. one for each
subject in which a course is available. one for logging (named log), and one in which user sub
directories are created (named play). The subject directory contains master copies of all les
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically~ the file that con tains lesson n is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate· upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session~ any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process~

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right~ and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

lib

• 7 •

Figure 2: Directory structure for learn

play

files

editor

(other courses)

log

student 1

student2

LO.la
LO.lb

files for student 1. ..

files for student2 ...

lessons for files course

The basic sequence of events is as follows. First, learn creates the· working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.; (2) text to be printed or put in a file~ (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes. no,
ready, or answer. At this point, the user's work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure I: this is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.
. #prinl file

prints the contents of file; it is the same as cat file but has less overhead. Both forms of #prinr
have the added property that if a lesson is failed, the #print will not be executed the second
time through; this avoids annoying the student by repeatina the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types' one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets
the script writer interrogate the student '5 responses upon regaining control.

#copyout
#uncopyout

·8·

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"ls II , which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#User
#Uncopyout
tail - 3 .ocopy > Xl
#cmp X 1 roosevelt
#101
#next
3.2b 2

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student's actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter
(the Hshell") one line at a time. This won't do if, for example. a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyout is also desired the copyout brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp file J file]

is an in-line implementation of cmp. which compares two files for identity.

#match stuff

The last line of the student's input is compared to Stl(tf, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #match lines; this provides a convenient mechanism for handling
multiple "right" answers. Any text up to a # on subsequent lines after a successful #match is
printed; this is illustrated in Figure 4. another sample lesson. '

#bad Stl(f!

This is similar to #match. except that it corresponds to specific failure answers: this can be
used to produce hints for particular wrong answers that have been anticipated by the script

- 9 -

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin

writer.

#succeed
#/ail

#User
#Uncopyin
#match mS
#match .mS
"mS" is easier.
#Iog
#next
63.1d 10

,
print a message upon success or. failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #match and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:

#Iogjile

writes the date, lesson, user name and speed rating, and a success/failure indication on jile.
The command

#Iog

by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form. .

next
is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main
tained for each session with a student~ the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim
ited to 10 and the minimum to O. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu
dent fails, a false status is returned and the program reverts to the previous lesson and tries

- 10 -

another alternative. If it can not find another alternative. it skips forward a lesson. The stu
dent can terminate a session at any time by typing bye. which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, .or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to.
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro
gram, and made more use of the facilities of the UNIX system itself. For example, file com
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document~ even #print had to be followed by a file name. Thus the initialization for each les
son was to extract the archive into the working directory (typically 4-8 files), then #print the
lesson text.

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #create can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non
programmers who have used learn:
(a) A novice must have assistance with the mechanics of communicating with the computer

to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card. .

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

- 11 -

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however. is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the com'puter should be relatively easy ones. Also. both training and ini
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example. if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening. it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a prog~m waiting for the user, and a broken machine.·

One disadvantage of training with learn is that students come to depend completely on the
CAl system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them; the scripts ought to be altered to recommend suit
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some
times this is due to poor explanations, but just as often it is some error in the lesson itself - a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers .. but the script writer's. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some seripts, notably eqn, are intrinsically slow. eqn, for
example .. must do a lot of work even to print its introductions, let alone check the student
responses, but delay is· perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems have steadily been improved .. to the point where most students
should not notice difficulties. Of course., it will always be possible to break learn maliciously.,
but this is not likely to be a problem.

One area is more fundamental - some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd. which
changes to another directory. The prospect of a student who is learning about directories inad
vertently moving to some random directory and removing files has deterred us from even writ
ing lessons on cd, but ultimately lessons or. such topics probably should be added.

7. Acknowledgments
We are grateful to all those who have tried learn. for we have benefited greatly from their

suggestions and criticisms. In particular. M. E. Bittrich, 1. L. Blue, S. I. Fetdman, P. A. Fox.
and M. 1. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

• We have even known an expen programmer to decide the computer was broken when he hOld simply left
his terminal in local mode. Novices have greal difficulties with such problems.

- 12 -

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1. D. L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educa
tion System: Plato IV," pp. 17-29 in Computer Assisted Instruction, Testing and GUidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

2. D. C. Gray, J. P. Hulskamp, 1. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
"COALA - A Minicomputer CAl System,'" IEEE Trans. Education E-20(1), pp. 73-77
(Feb. 1977).

3. P. Suppes, "On Using Computers to Individualize Instruction,''' pp. 11-24 in The Com
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

4. B. F. Skinner, "Why We Need Teaching Machines," HaT'll. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology. ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

5. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories (978).
See section ed (I).

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

7. B: W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Engle
wood Cliffs~ New Jersey (1978).

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTlUCT

Lint is a command which examines C source programs, detecting a
number of bugs and obscurities. It enforces the type rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions involved in moving programs between different machines andJ or
operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them
r or consistency. .

The separation of function between lint and the C compilers has both his
torical and practical rationale. The compilers tum C programs into executable
files rapidly and etBc:iently. This is possible in part because the compilers do
not do sophisticated type checking, especially between separately compiled pro
grams. Lint takes a more global, leisurely view of the program, looking much
more carefully at the compatibilities.

This dOcument discusses the use of lint, gives an overview of the imp Ie·
mentation, and gives some hints on the writing of machine independent C
code.

July 26, 1978

Introduction and Usale

Lint, a C Program Checker

s. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Suppose there are two C1 source files, filel.c and file2.~ which are ordinarily compiled and
loaded together. Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi
cal reasons) enforce them. The command

lint -p file Lc file2.c

will produce, in addition to the above messages, additional messages which relate to the porta·
bility of the programs to other operating systems and machines. Replacing the ~ p by - h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying - hp . gets the whole works.

The next several sections describe the major messages; the document closes with sections
discussing the implementation ·and giving suggestions for writing ponable C. An appendix
gives a summary of the lint options.

A Word About Philosophy
Many of the facts which lint needs may be impossible to· discover. For example, whether

a given function in a program ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous Hhaiting problem.." knC'Wla to be recur
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called; this is not neces
sarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form "xxx
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint produces.

Unused Variables and Functions
As sets of programs evolve and develop, previously used variables and arguments to func

tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These "errors of commis
sion" rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari
ables and functions can occasionally serve to discover bugs; if a function does a necessary job~
and is never called, something is wrong!

- 2 -

Lint complains about variables and functions which are defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin ();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases" these unused external dec;larations might be of some interest; they
can be discovered by adding the - x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter
faces; frequently, some of the arguments may be unused in many of the calls. The -y option
is available to suppress the printing of complaints about unused arguments. When -y is in
effect, no messages are produced about unused arguments except for tHose arguments which
are unused and also declared as register arguments; this can ·be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more dis
tracting than helpful. This is when lint is applied to some" but not all, files out of a collection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The -u flag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult
to do well; many algorithms take a good deal of time and space, and still produce messages
about perfectly valid programs. Lint detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input· file than the first assignment to
the variable. It assumes that taking the address of a variable constitutes a "use, tt since the
actual use may occur at any later time, in a data dependent fashion.

The restriction to the physic:ai appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true flow of control need not be discovered. It does
mean that lint can complain about some programs which are legal, but these programs would
probably be considered bad on stylistic grounds (e.g. might contain at least two 10to'S).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly t however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of ineftic:iencies, and may also be symptomatic of
bugs.

now of Control

Lint attempts to detect unreachable ponions of the programs which it processes. It will
complain about unlabeled statements immediately following loto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usually complained about by lint: a hreak state
ment that cannot be reached causes no message. Programs generated by yac~ 2 and especially
lex.. 3 may have literally hundreds of unreachable break statements. The -0 nag in the C

- J •

compiler will often eliminate the resulting object code inefficiency. Thus~ these unreached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are desired, lint can
be invoked with the - b option.

Function Values
Sometimes functions return values which are never used~ sometimes programs incorrectly

use function uvalues" which have never been returned. Lint addresses this problem in a
number of ways.

Loc::ally, within a function definition, the appearance of both

return (apr);

and

return ;

statements is cause for alarm; lint will give the message

function name contains return (e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) (
if (a) return (J);
I 0; ~
}

Notice that, if a tests false, fwill call g and then return with no defined return value; this will
trigger a complaint from lint If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial frclction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in "working" programs; the desired function value just happened to have been com
puted in the function return register!

Type CheckiDI
Lint enforces the type checking rules of C more strictly than the compilers do. The addi

tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional ('l:), and relational opercltors have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, lonl, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of xs can, of
course, be intermixed with pointers to xs.

The type checking rules also require that, in structure references, the left operand of the.
- > be a pointer to structure, the left operand of the. be a structure, and the right operand of

·4·

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types 80at and
double may be freely matched. as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in

. type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are -, ini·
tialization, - -, ! -, and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p - I ;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p - (char .) I ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such cqde should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assipunents subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Noaportable Character Use

On the PDP·II, characters are'signed quantities, with a range from -128 to 127. On
mast of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or nonportable. For example, the
fragment .

char c;

if((c - getchar(» < 0)

works on the PDP·II, but will fail on machines where characters always take on positive
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. In any case, lint will say "'nonportable character comparison".

A similar issue arises with bitftelds; when assignments of constant values are made to
bitftelds, the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con
sider that a two bit field declared of type lnt cannot hold the value 3, the problem disappears if
the bitfteld is declared to have type unsigned.

AssilDments of lonls to ints

Bugs may arise from the assignment of lonl to an lnt, which loses accuracy. This may
happen in programs which have been incompletely converted to use typeciefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning 10DIS to ints., the detection of these assignments is enabled by the -a flag.

• s-

Stranae Co.nstructions

Several perfectly legal~ but somewhat strange, co.ns·tructionsareflagged .by .tint: the mes
sages hopefully encourage better code quality ,clearer style_and may ev'en point out bugs. The
-b flag is used to enable these checks. For example, in the statement

.p++ ;

the • does nothing; this provokes the message u.nuU effect" from lint. The program fragment

unsigned x;
if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly. the test

ire x > 0) ...

is equivalent to

if(x !- 0)

which may not be tbe intended action. Lint will say Udegenerate unsigned comparison" in
these cases. If one says

il(1 ! - 0) .•••

lint will report "constant in conditional context" ,since the ,comparison of 1 with o gives a con
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to ~ftnd. For example, the . statements

if(x&017 -- 0) ...

or

x«2 +·40

probably do not do what was intended. The best solution is to parenthesize such expressions.
and lint encourages this by an appropriate message.

Finally. when the - h flag is in force lint complains about variables which are redeclued in
inner blQcks in a way that conflicts with their use in outer blocks. This is legal, but is con
sidered by many (including the author) to be bad style, usually unnecessary t and .frequently a
bug.

Ancient History

There are several forms of older syntaX which are beinaofficially discouraged. These fall
into two classes, assignmen.t operators and initialization.

The older forms of assignment operators (e.g., - +, - -, ...) could cause ambiguous
expressions, such as

a --1;

which could be taken as either

a -- 1;
or

a - -1;

The situation is especially perplexing if this kind of 'ambiguity arises as the res,uit ola macro
substitution. The newer, and preferred operators (+ -, - -, 'etc.) have no such ,ambiguities.
To spur the abandonment of the older forms, lint com,plains about these old fashio.ned

-6-

operators.
A similar issue arises with initialization. The older language· allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (-1);

looks somewhat like the beginninl of a function declaration:

int x (y)(•..

and the compiler must read a fair ways past x in order to sure what the declaration really is ..
Ap, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x - -I;

This is free of any possible syntactic ambiguity.

Pointer Allpment
Certain pointer assignments may be reasonable on some machines, and illegal on others,

due entirely to alignment restrictions. For example, on the PDP· I I, it is reasonable to assign
inteaer pointers to double pointers, since double precision values may begin on any integer
bQundary. On the Honeywell 6000, double precision values must begin on even word boun
darles; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message "possible
pG)inter alignment problem tt results from this situation whenever either the - p or - b flags are
in effect. .

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subexpressions may be

highly machine dependent. For example, on machines (like the PDP·tt) in which the stack
runs backwards, function arguments will probably be best evaluated from right.to·teft; on
machines with a stack running forward, left-ta-right seems most attractive. Function calls
embedded as arguments of other functions mayor may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machhle not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

al;] - b(;++] ;

will draw the complaint:

waming: ; evaluation order undefined

Implementation
Lint consists of two programs and a driver. The first program is a version of the Portable

C Compiler4, 5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

• 7 -

which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding
of the context in which it was seen (use. definition, declaration, etc'), a type specifier, and a
source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected.· The information about exter
nal names is collected onto an intermediate file. After all the source files and library descrip
tions have been collected, the intermediate file is sorted to bring all information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The ariver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability
C on the Honeywell and IBM systems is used, in part, to write system code for the host

operating system. This means that the implementation of C tends to follow local conventions
rather than adhere strictly to UNIXt system conventions. Despite these differences, many C
programs have been successfully moved to GCOS and the various IBM installations with little
efron. This section describes some of the differences between the implementations, and
discusses the lint features which encourage portability.

Uninitialized external variables are treated differently in different implementations of C.
Suppose two files both contain a declaration without initialization, such as

int a;

outside of any function. The UNIX loader will resolve these declarations, and cause only a sin
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is
not feasible (for various stupid r~asons!) so each such declaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint is invoked with the -p flag, it will
detect such multiple definitions.

A related difficulty comes from the amount of information retained about external names
during the loading process. On the UNIX system, externally known names have seven
significant characters, with the upper/lower case distinction kept. On the IBM systems, there
are eight significant characters, but the case distinction is lost. On GCOS, there are only six
characters, of a single case. This leads to situations where programs run on the UNIX'system;
but encounter loader problems on the IBM or GeOS systems. Lint - p causes all external sym
bols to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX
system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on
GCOS. Moreover, charclcter strings go from high to low bit positions (Uleft to right") on
GCOS and IBM, and low to high (uright to left") on the PDP-II. This means that code
attempting to construct strings out of charclcter constants, or attempting to use charclcters as
indices into arrays, must be looked at with great suspicion. Lint is of little help here, except to
flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected ..
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits). The main problems are likely to arise in shifting or masking. C now supports a bit-field
facility, which can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

tUNIX is a Trademark of BeB Laboratories.

• 8 •

x &- 0177700 ~

to clear the low order six bits of x. This suffices on the PDp·lt. but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

x &- - 077;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-II, and logical shift on most other
machines. To obtain a logical shift on all machines,' the left operand can be typed unsigned.
Characters are considered signed integers on the PDP·ll, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDp·It hardware
which has infiltrated itself into the C language. If ~ere were a good way to discover the pro
grams which would be affected, C could be cbanged; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

ShutttDI· Lint Up
There are occasions when the programmer is smarter than lint There may be valid rea

SOD.4J for "iUepl" type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind spOts, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com·
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor' syntax suffers from similar prob-
~~ ,

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directiveS are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint, this can be asserted by the
directive

,- NOTREACHED-'

at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking
for the next expression, the directive

,- NOSTRICT -,

can be used; the situation reverts to the previous default after the next expression. The - y

flag can be turned on for one function by the directive

,- ARGSUSED -,

Complaints about variable number of arguments in calls to a function can be turned off by the
directive

·9·

Ie VARARGS ·1

preceding the function definition. In some cases, it is desirable to check the first several argu
ments. and leave the later arguments unchecked. This can be done by following" the
VARARGS keyword immediately with l digit giving the number of arguments which should be
checked~ thus,

Ie VARARGS2 -I

will cause the first two arguments to be checked., the others unchecked. Finally, the directive

Ie LINTLIBRAR Y -I

at the head of a file identifies this tile as a library declaration file; this topic is wonh a section by
itself.

. Library Declaration Files
Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This is done by acc~ssing library
description files whose names are constructed from the library directives. These files all begin
with the directive '

Ie LINTLIBRARY -I

which is followed by a series of dummy function definitions. The critical parts of these
de:finitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The V ARARGS and
ARQ~SUSED directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source file,
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard librcltY file, which con
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard 1/0 library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

BUls, etc.
Lint was a difficult program to write, partially because it is closely connected with matters

of programming style, and partially be~ause users usually don't notice bugs which cause lint to
miss errors which it should have c-~ught. (By contrast., if lint incorrectly complains about some
thing that is correct, the programmer repons that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirable, but what checking is appropriate, and how to carry it out, is still to be deter
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, . macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
ue many options which serve only to tum off, or slightly modify, cenain features. There are

- 10-

pressures to add even more of these options.

In 'conclusion. it appears that the general notion of having two programs is a good one.
The compiler concentrates on quickly and accurately turning the program text into bits which
can be run; lint concentrcltes on issues of ponability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties
of universality and portability.

• 11 ."

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle
wood CUfs, New Jersey (1978).

2. . S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No.
32, BeU Laboratories, Murray Hill, New Jersey (July 1975),

3. M. E. Lesk, ULex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, "UNIX TIme-Sharing System: Portability of C Programs
and the UNIX System," Bell Sys. Tech. J. 57(6) pp. 2021·2048 (978).

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th AC}J Symp. on
Principles 0/ Programming Languages, (January 1978).

• 12·

Appeadix: Cunent Lint Options
The command currently has the form

lint [-options] files ... library-descriptors ...

The options are
b Perform heuristic checks
p Perform portability checks
y Don't report unused arauments
a Don't report unused or undefined externals
b Repert unreachable break statements.
x Report unused external declarations
• Report assignments of loal to int or shorter.
c Complain about questionable casts

a No library checking is done
s Same as b (for historical reasons)

Make - A Program for Maintaining Computer Programs

s. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project" it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
Make provides a simple mechanism for maintaining up-to-date versions of pro
grams that result from many operations on a number of files. I t is possible to
tell Make the sequence of commands that create certain files, and the Jist of
files that require other files to be current before the operations can be done.
Whenever a· change is made in any part of the program, the Mak~ command
will create the proper files simply" correctly" and with a minimum amount of
effort. .

The basic operation of Make is to find the name of a needed target in the
description" ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The deScription file really defines the graph of dependencies~ Mak~ does
a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

August IS, 1978

Make - A Program for :\Iaintaining Computer Programs

Introduction

S. /. FrIdman

Bell Laboratories
Murray Hill. New Jersey 07974

It is common practice to divide large programs into smaller. more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a macro
processor. some may need to be processed by a sophisticated program generator (e.g .• Yacc[l]
or Lex(2». The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately. it is very easy for a programmer to forget which files' depend on
which· others. which files have been modified recently. and the e:tactsequence of operations
needed to make or exercise a new version of the program. After a long editing session. one
may easily lose track of which files have been changed and which object modules are still valid.
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will resuit in a program that will not
work. and a bug that can be very hard to track down. On the other hand. recompiling every
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file. the simple command

make

is frequently sufficient to update the interesting files. regardless of the number that have been
edited since the last Hmake". In most cases .. the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes'

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the prob
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix. but a version runs on GCOS.

Basic Features
The basic operation of make is to update a target file by ensuring that all of the files on

which it depends exist and· are up to date. then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To illustrate. let us consider a simple example: A p.rogram named prog is made by compil
ing and loading three C-Ianguage files x.r. y.,'. and :.,. with the IS library. By convention. the
output of the C compHations will be found in files named x.o. y.o. and :.0. Assume that the
files x.c and y.c share some declarations in a file named dels. but that :.,. does not. That is. x."

- 2 -

and y." have the line

#include "defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -15 -0 prog

x.o y.o: defs

If this information were stored in a file named make./ile. the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files X.c, y.c, zoc, or dels .

. ~ake operates using three sources of information: a user-supplied description file (as
above). file names and Hlast-modified" times from the file system. and built-in rules to bridge
some of the gaps. In our example. the first line says that prog depends on three H .0" files.
Once these object files are current. the second line describes how to load them to create prog.
The third line says that x.O and y.o depend on the file defs. From the file system. make discov
ers tha·t there are three H .c" files corresponding to the needed U .0" files. and uses built-in
information on how to generate an object from a source file (i.e .• issue a "cc -co. command).

The following long-winded description file is equivalent to the one above. but takes no
advantage of make's innate knowledge:

prol: x.o y.o LO
cc x.o y.o ~o ::-15 -0 prOI

x.o : x.c defs
cc -c x.c

y.o : y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made. all of
the files would be current, and the command

make

would just announce this fact and stop. If, however. the d({s file had been edited .. x.C and y.c
(but not z.d would be recompiled. and then prog would be created from the new ".0'" files. If
only the file y.c had changed. only it would be recompiled. but it would still be necessary to
reload prog.

If no target name is given on the mak~ command line. the first target mentioned in the
description is created; otherwise the specified targets are made. The command /

make x.o

would recompile x.O if x.c or d~{s had changed.
If the file exists after the commands are executed .. its time of last modification is used in

further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of mQk~'s ability to generate files and substitute macros.
Thus. an entry "save" might be included to copy a certain set of files. or an entry "cleanup"

- 3 -

might be used to throwaway unneeded intermediate files. In other cases one may maint~in a
zero-length file purely to keep trJck of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and listings.

A/akl.' has a simple macro mechanism for substituting in dependency lines and command
strings. ~Iacros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name by a dollar sign: macro names longer
than one ch~racter must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:

S(CFlAGS)
S2
Sexy)
SZ
S(Z)

The last two invocations are identical. SS is a dollar sign. All of these macros are assigned
values during input. as shown below. Four special macros change values during the execution
of the command: S-. S@. S? and S<. They will be discussed later. The following fragment
shows the use:

OBJECTS - x.O y.O z.o
LIBES - -IS
prog: S(OBJECTS)

cc S(OBJECTS) S(LIBES) -0 prog

The command

make

louds the three object files with the IS library. The command

make "lIBES =- -II -IS"

loads them with both the Lex (~~ -II") and the Standard (u -IS") libraries. since macro
definitions on the command line override definitions in the description. (It;s necessary to
quote arguments with embedded blanks in UNIXt commands.)

The following sections detail the form of description files and the command line. and dis
cuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency
information. and executable commands. There is also a comment convention: all characters
after· a-sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long. it can be continued using a backslash. If
the last character of a line is a backslash. the backslash, newline, and following blanks and tabs
are replaced by a single blank. .

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign CIeading blanks and tabs
are stripped.) The following are valid macro definitions:

tUNIX is a Trademark of Bell Laboratories.

2 - xyz
abc - -ll -Iy -IS
LIBES -

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

targetl ltarget2 .. .J :[:] [dependentl .. .1 [; commands] [# ...]
[(tab) commands] [# .. .1

hems inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters H." and H?" are expandedJ A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.
1. For the usual single-colon case, at most one of these dependency lines' may have a com

mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case .. a command sequence may be associated with each dependency
line; if the target is out oJ date with any of the files on a particular line. the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.
If a target must be created. the sequence of commands is executed. Normally, each com

mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign). !Wak~ normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the ~~ - r' flags has been specified on the nrQk~ command line, if
the fake target name U .IGNOREH appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g ... ,·dand Shell control commands) that have meaning only 'within a
single Shell process; the results are forgotten before the next line is executed.

Before issuing any command. certain macros are set. S@ is set to the name of the file to
be ·~made". S? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see beloW), $< is the name of the related file
that caused the action, and S- is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ~\DEFAULT'" are used. If there is no such name, make
prints a message and stops.

Command Usage
The mak~ command takes four kinds of arguments: macro definitions .. flags, description

file names. and target file names.

make [flags] [macro definitions] [targets]

·5-

The following summary of the operation of the command explains how these arguments are
interpreted. _

First, all macro definition Jrguments (arguments with embedded equal signs) Jre analyzed
and the assignments made. Command-line macros override corresponding definitions found in
the description files.

Next, the flag arguments are examined. The permissible flags are
- i Ignore error codes returned by invoked commands. This mode is entered if the fake tar·

get name --.IGNORE" appears in the description file.
-s Silent mode. Do not print command lines before executing. This mode is also entered if

the fake target name .•. SILENT" appears in the description file.
- r Do not use the built-in rules.
- n No execute mode. Print commands~ but do not execute them. Even lines beginning with

an .. @ H sign are pri n ted.

- t Touch the target files (causing them to be up to date) rather than issue the usual com
mands.

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions
-d Debug mode. Print out detailed information on files and times examined.
- f Description file name. The next argument is assumed to be the name of a description

tHe. A file name of -- -" denotes the standard input. If there are no H - fH arguments.
the file named make'lilcJ or ,\1ake'/ilc) in the current directory is read. The contents of the
description files override the built·in rules if" they are present>.
Finally. the remaining arguments are assumed to be the names of targets to be made; they

are done in left to right order. If there ilre no such arguments. the first name in the description
files that does not begin with a period is "made".

Implicit Rules
The makC' program uses a table of interesting suffixes and a set of transformation rules to

supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.> The default suffix list is:

.0

.C·

.C'

.r

.f

.S
•• Y

.yr

.ye

.1

Object file
C source file
Efl source fi Ie
Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

- 6 -

~o~
., .r.e . ./ .s .y .yr .ye .1 .d

~ \ \
.y.1 .y' .ye

If the file x.o were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x.l, that grammar would be run through Lex before compil
ing the result. However. if there were no x.c but there were an x.l. make would discard the
intermediate C-Ianguage file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default. or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS. CC, RC" EC. Y ACC. Y ACCR, Y ACCE, and LEX. The command

make CC - newcc

wiJI cause the ~'newcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS. EFLAGS, YFLAGS. and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS--o"

causes the optimizing C compiler to be used.

Example
As an example of the use of- mak~. we will present the description file used to maintain

the makc- 'command itself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

.7.

Description file ror the Make command
P - und -31 opr -r2 # send to GCOS to be printed
FILES - ~takefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS - version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES- -IS
LINT - lint - p
CFLAGS - -0
make: S(OBJECTS)

cc S(CFLAGS) S<OBJECTS) S(LIBES) -0 make
size make

S(OBJECTS): defs
gram.o: lex.c
cleanup:

-rm ·.0 grarn.c
-du

install:
@size make /usr/bin/make
cp make lusr/bin/make ; rm make

print: S(FILES) # print recently changed files
Pi'S? I SP

test:
touch print

make -dp I grep ~v TIME> 1 zap
/usr/bin/make -dp I grep -v TIME >2zap
diff 1 zap 2zap
rm lzap 2zap

lint: dosys.c doname.c fil~s.c main.c misc.c version.c gram.c

arch:

S(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

at uv /sys/source/s2/make.a S(FILES)

Mak(' usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory cont~ining only the source and description file:

cc -c version.e
cc -c main.c
ce -e doname.e
ee -c misc.e
ee -e files.e
cc -e dosys.c
yace gram.y
mv y.tab.c gram.c
ee -c gram.c
ec version.o main.o donarne.o misc.o files.o dosys.o gram.o -IS -0 make
13188+3348+3044 - 19580b - 046174b

Although none of the source files or grammars were mentioned by name in the description file.
make found them using its suffix rules and issued the needed commands. The string of digits

- 8 -

results from the "size make" command; the printing of the command line itself was ,uppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command. so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The print"
entry prints only the files that have been changed since the last ~·make print'· command. A
zero-length file prim is maintained to keep track of the time of the printing; the S? macro in the
command line then picks up only the 'names of the files changed since print was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P - opr -spit
or

make print "P- cat >zap"

SUllestions and Warnings
The most common difficulties arise from make's specific meaning of dependency. If file

x.c has a u#include "defs"" line, then the object file x.o depends on deft; the source file x.c
does not. (If de.fs is changed. it is not necessary to do anything to the file X.c, while it is neces
sary to recreate x.o.)

To discover what make would do, the H-n" option is very useful. The command

make -n

orders make to print out the commands it would issue without actually taking the time to exe
cute them. If a change to a file is absolutely certain to be benign (e.g .• adding a new definition
to an include file), the U - tn (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, mak~ updates the modification times on the affected file.
Thus. the command "'

make -ts

(·'touch silently"') causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of mak~ and destroys all memory of the
previous relationships.

The debuggfng flag (U -d") causes mak~ to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

Acknowledlments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development of mak~.

References

1. S. C. Johnson, ··Yacc - Yet Another Compiler-Compiler", Bell Laboratories Computing
Science Technical Report #32, July 1978.

2. M. E. Lesk, HLex - A Lexical Analyzer Generator", Computing Science Technical
Report #39, October 1975.

• 9 •

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the .• - roo flag is used. this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES": make
looks for a file with any of the suffixes on the list. If such a file exists. and if there is a
transformation rule for that combination. make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a H .r"
file to a .. . 0" file is thus ··.r.o". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule H.r.o" is used. If
a command is generated by using one of these suffixing rules. the macro S· is given the value
of the stem (everything but the suffix) of the name of the file to be made. and the macro S < is
the name of the dependent that caused the action.

The order of the suffix list is significant. since it is scanned from left to right. and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended. the user can just add an entry for H.SUFFIXES" in his own description file~
the dependents will be added to the usual list. A ··.SUFFIXES" line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .C .e .r .f .y .yr .ye .1 .s
YACC-yacc
YACCR-yacc -r
YACCE-yacc -e
YFLAGS-
LEX-lex
LFLAGS-
CC-cc
AS-as -
CFLAGS-
RC-ec
RFLAGS-
EC-ec
EFLAGS-
FFLAGS-
.c.O:

S(CC) S(CFLAGS) -c S <
.e.o .r.o .f.o :

.s.o:

.y.o :

.y.c:

S(EC) S(RFLAGS) S(EFlAGS) S(FFlAGS) -c S <

SeAS) -0 S@ S<

S(Y ACC) S(YFLAGS) S <
S(CC) S(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o S@

S(Y ACC) S(YFLAGS) S <
mv y.tab.c S@

UNIX Programming - Second Edition

Brian W. Kernighan

- Dennis M. Ritchie

Bell Laboratories
Mumy Hill, New Jersey 07974

ABSTlUCT

This paper is an introduction to programming on the UNlxt system. The
emphasis is on how to write programs that interface to the operating system.
either directly or through the standard 110 library. The topics discussed include

• handling command arguments
• rudimentary 110; the standard input and output

• the standard 110 library; tile system access

• low-level 110: open .. read.. write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.
There is also an appendix which describes the standard 110 library in detail.

November 12, 1978

tUNIX isa Trademark of Bell Labonlories.

UNIX Programming - Second Edition

1. INTROOUCTION

Brian W. Kernighan

Dennis ~'d. Ritchie

Bell Laboratories
Murray Hill. New Jersey 07974

This paper describes how to write programs that interface with· the UNIX operating system
in a non-trivial way. This includes programs that use files by name .. that use pipes. that invoke
other commands as they run. or that attempt to catch interrupts and other signals during execu
tion.

The document collects material which is scattered throughout several sections of The UNIX
Programmer's Manual [11 for Version 7 UNIX. There is no attempt to be complete~ only gen
erally useful material is dealt with. It is assumed that you will be programming in C. so you
must be able to read the language roughly up to the level of The C Programming Language [2].
Some of the material in sections 2 through 4 is based on topics covered more carefully there.
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

2.1. Prolram ArBuments
When a C program is run as a command. the arguments on the command line are made

available to the function main as an argument count arqc and an array arqv of pointers to
character strings that contain the arguments. By convention. arqv [0] is the command name
itself. so arqc: is always greater than O.

The following program illustrates the mechanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.)

main (art;c, arqv)
int art;c;
char *arqv[];
(

int i;

1* echo arquments *1

for (i • 1; i < argc; i++)
printf(",,-,,<:", argv[i], (i<art;c-1) ? I I : '\n /);

arqv is a pointer to an array whose individual elements are pointers to arrays of characters;
each is terminated by \0. so they can be treated as strings. The program starts by printing
arqv [1] and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them. you must copy them to external variables.

2.2. The "Standard Input" and "Standard Ou'tput"
The simplest input mechanism is to read the "standard input," which is generally the

user's terminal. The function qetchar returns the next input character each time it is called.
A file may be substituted for the terminal by using the < convention: if proq uses g'etc:har.

·2-

then the command line

proq <file

causes proq to read file instead of the terminal. proq itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherproq I proq

provides the standard input for proq from the standard output of other])roq •.
qe·tchar returns the value EOP when it encounters the end of file (or an error) on what

ever you are reading. The value of SOP is normally defined to be -1, but it is unwise to take
any advantage of ~ that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program. and need not be of any concern.

Similarly, putchar (c) puts the character c on the "standard output." which is also by
default the terminal. The output can be captured on a file by using >: if proq uses putchar,

proq >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn·t exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

proq I otherproq

puts the standard output of proq into the standard input of otherproq •
The function printf, which formats output in various ways, uses the same mechanism as

putchar does, so calls to print! and putchar may be intermixed in any order. the output
will appear in the order of the calls. .

Similarly, the function scan! provides for formatted input conversion: it will read the
standard input and break it up into strinas, numbers, etc., as desired. scan! uses the same
mechanism as qetchar, so calls'to them may also be intermixed.

Many programs read only one input and write one output; for such programs 110 with
qetchar. putchar, scanf, and printf may be entirely adequate. and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input or the next. For example, the following program strips out
all ascii control characters from iu input (except for newline and tab).

linclude <stdio.h>

maine)
(

1* ccstrip: strip non-qrapbic characters *1

int c;
while «c - qetchar(» 1- EOP)

if «c >- ' , && C < 0177) II c .. '\t' II c -- '\D')
putchar(c);

exit(O);

The line

'include <stdio.h>

should appear-at the beginning of each source file. It causes the C compiler to read a file
Uusrlincludelstdio.h) of standard routines and symbols that includes the definition of EOI'.

If it is necessary to treat multiple files. you can Use cat to collect the files for you:

cat file1 file2 ••• I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exi t at the
end is not necessary to make the program work properly, but it assures that any caller of the

- 3 -

program will see a normal termination status (conventionally 0) from the program when it com
pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD I/O LIBRARY

The HStandard 110 Library" is a collection of routines intended to provide efficient and
portable I/O services for most C programs. The standard 110 library is available on each sys
tem that supports C. so programs that confine their system interactions to its facilities can be
transported from one system to another essentially without change.

In this section. we will discuss the basics of the standard I/O library. The appendix con
tains a more complete description of its capabilities.

3 • 1. File Access
The programs written so far have all read the standard input and written the standard o~t

put. which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we. which
counts the lines. words and characters in a set of files. For instance. the command

we x.c y.c·

prints the number of lines. words and characters in x. c and y. c and the totals.

The question is how to arrange for the named files to be read - that is, how to connect the
file system names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the stan
dard library function fopen. fopen takes an external name (like x. c or y. c), does some
housekeeping and negotiation with the operating system, and returns an internal name which
must be used ·in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file. such as the location of a buffer, the current character position in the
buffer, whether the file is being--read or written, and the like. Users don't need to know the
details. because part of the standard I/O definitions obtained by including stdio. h is a struc
ture definition called FILE. The only declaration needed for a file pointer is exemplified by

FILE *fp. *fopen()i

This says that f1' is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a
type name, like in t. not a structure tag.

The actual call to fo1'en in a program is

fp • f'open (nam., mode);

The first argument of fopen is the name of the file, as a character string. The second argu
ment is the mode, also as a character string, which indicates how you intend to use the file.
The only allowable modes are read (" r"), wri te ("w ..), or append (" a ,,) .

If a file that you open for writing or appending does not exist. it is created (if possible).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not exist is an error. and there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in stdio. b).

The next thing needed is ~ way to read or write the file once it is open. There are several
possibilities. of which qetc and pu tc are the simplest. qetc returns the next character from
a file; it needs the file pointer to tell it what file. Thus

c • qetc(fp)

places in e the next character from the file referred to by fp~ it returns EOF when it reaches
end of file. pute is the inverse of qete:

·4·

putc(c, fp)

puts the character c on the file f~ and returns c. qetc and ~utc return Eor on error.
When a program is started. three files are opened automatically t and file pointers are pro

vided for them. These files are the standard input. the standard output, and the standard error
output; the corresponding file pointers are called stdin. stdout. and stderr. Normally
these are aU connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin, stdout and stderr are pre-defined in the I/O library as the standard
input. output and error files: they may be used anywhere an object of type FILE * can be.
They are constants. however. not variables. so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments.
they are processed in order. If there are no arguments. the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

linclude <stdio.h>

main (arqc, arqv)
int arqc;

1* wc: count lines, words, chars *1

char *arqv[];
(

int c, i, inward;
FILE *fp, *fopen();
10ft9 linect, wordct, charct;
laD; tlinect - 0, twordct - 0, tcharct - 0;

i - 1;
fp - stdin;
dol

if (arqc > !l ~~ (fp-fopen(arqv[i], "r"»- NULL) (

fJ)rintf(stderr, "wc: can't open ".\n", arqv[i]);
continue;

linect - wordct - charct - inward - 0;
while «c - qetc(fp» 1- EOP) (

charct++;
if (c - '\n')

l.inect++ ;.
if (c - ' , I I c - '\ t' I I c - '\n')

inward - 0;
else if (inward - 0) (

inward - 1;
wordct++;

printf(",,71d ,,71d ,,71d", linect, wordct, charct);
J)rintf(arqc > 1 ? " "s\n" : "\n", arqv[i]);
fclos. (fp);
tlinect +- linect;
twordct +- wordct;
tcharct +- charct;

) while (++i < arqc);
if (arqc > 2)

printf(",,71d ,,7ld ,,71d total\n", tlinect, twordct, tcharct);
exit(O);

The function f~rintf is identical to ~rintft save thal the first argument is a file pointer'that
specifies the file to be written.

- s •

The function fclose is the inverse of fope~ it breaks the connection between the file
pointer and the external name that was established by fopen~ freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul
taneously. it's a good idea to free things when they are no longer needed. There is also another
reason to call fclose on an output file - it flushes the buffer in which putc is collecting out
put. (fclose is called automatically for each open file when a program terminates normally.)

3 .2. Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output
written on stderr appears on the user's terminal even if the standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed
for some reason, the message finds its way to the user's terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate
program execution. The argument of exit is available to whatever process called it (see Sec
tion 6), so the success or failure of the program can be tested by another program that uses this
one as a sub-process. By convention, a return value of 0 signals that all is well~ non-zero
values signal abnormal situations.

exi t itself calls fclose for each open output file. to flush out any buffered output. then
calls a routine named _exit. The function _exit causes immediate termination without any
butTer flushing; it may be caUed directly if desired.

3 • 3. Miscellaneous 1/0 Functions
The standard 110 library provides several other 110 functions besides those we have illus

trated aoove.
Normally output with putc. etc.~ is butTered (except to stderr); to force it out immedi

ately, use ff 1 us-h (fp) .

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprintf) that specifies the file from which the input comes: it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf. except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for ssoanf and into it for sprintf.

fgets (buf.. size.. fp) copies the next line from fp. up to and including a newline.
into buf; at most size-1 characters are copied: it returns NULL at end of file.
fputs (buf.. fp) writes the string in buf onto file fp.

The function unqetc (0.. fp) "pushes back" the character 0 onto the input stream fp; a
subsequent call to getc. fscanf~ etc., will encounter c. Only one character of pushback per
file is permitted.

4. LOW·LEVEL 1/0
This section describes the bottom level of 110 on the UNIX system. The lowest level of

110 in UNIX provides no buffering or any other services; it is in fact a direct entry into the
operating system. You are entirely on your own~ but on the other hand, you have the most
control over what happens. And since the calls and usage are quite simple. this isn't as bad as
it sounds.

4.1. File Descriptors
In the UNIX operating system~ all input and output is done by reading or writing files.

because all peripheral devices. even the user's terminal. are files in the file system. This means
that a single~ homogeneous interface handles all communication between a program and peri
pheral devices.

·6·

In the most general case. before reading or writing a file. it is necessary to inform the sys
tem of your intent to do so. a process called Hopening" the file. If you are going to write on a
file. it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?>' and if all is well, returns a small positive integer
called a file descriptOr. Whenever I/O is to be done on the file. the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S) and
WRITE(6 ... J in Fortran.> All information about an open file is maintained by the system; the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer. is a pointer to a structure that contains,
among other things. the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements
exist to make this convenient. When the command interpreter {the "shell") runs a program, it
opens three files. with file descriptors O. 1. and 2. called the standard input. the standard out
put. and the standard error output. All of these are normally connected to the terminal. so if a
program reads file descriptor 0 and writes file descriptors 1 and 2'1 it can do terminal I/O
without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

proq <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor
mally file descriptor 2 remains attached to the terminal. so error messages can go there. In all
cases. the file assignments are changed by the shell. not by the program. The program does not
need to know where its input comes from nor where its output goes, so long u it uses file 0 for
input and 1 and 2 for output.

4. 2 • Read and Write
All input and output is done by two functions called read and write. For both. the first

argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argurpent is the number of bytes to be transferred. The
calls are

D_read - read(fd, buf, n)i

D_written • write(fd, buf, n)i

. Each call returns a byte count which is the number of bytes actually transferred. On reading.
the number of bytes returned may be less than the number asked for. because fewer than n
bytes remained to be read. (When the file is a terminal. rea.d normally reads only up to the
next newline. which is generally less than what was requested.) A retum value of zero bytes
implies end of file. and -1 indicates an error of some sort. For writing, the returned value is
the number of bytes actually written~ it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1. which means one character at a time (Uunbuffered"), and 512. which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient. but even
character at a time 110 is not inordinately expensive.

Putting these facts together. we can write a simple program to copy its input to its outpuL
This program will copy anything to anything. since the input and output can be redirected to
any file or device.

• 7 •

tdefine BUFSI%E 512 1* best size for PDP-11 UNIX *1

main ()
(

1* copy input to out~ut *1

char buf[BUFSIZE]i
int ni

while «n • read(O, buf, BUrSIZE» > 0)
write (1 , but, n)i

exit(O);

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to 'be written by wri te~ the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines
like qetchar, putchar, etc. For example, here is a version of qetchar which does

, unbuffered input.

Idefine CMASX 0377 /* for makinq char's> 0 */

qetchar() /* unbuffered sinqle character input */
(

char c;

return ((read (0 I &C, 1) > 0) ? c & CMASX : EOr);

C m&lIt be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377' to ensure that it is positive~ otherwise' sign extension may
make it negative. (The constant 0377 is appropriate for the POP·11 but not necessarily for
other machines.)

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

Ide,fine eMASl(0377 /* for malcinq char's > 0 */ '
Idefine BUFSIZE 512

qetchar() /* buffered version */
(

static char
static char
static int

buf(BUFSIZE]i
*buf}:) - buf;
n - 0;

if (n - 0) 1* buffer :i.s empty */
n - read(O, buf, BUFSIZE);
buf]) - but;

return ((--n >- 0) ? *buf])++ & CMASlC EOr) ;

4 • 3. Open, Creat, Close, Unlink
Other than the default standard input, output and error files. you must explicitly open files

in order to read or write them. There are two system entry points for this. open and creat
(sic).

open is rather like the fopen discussed in the previous section. except that instead of
returning a file pointer. it returns a file descriptor~ which is just an into

- 8 -

int fel;

fel - open(name, rwmode);

As with fopen. the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read~ 1 for write. and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid
tile descri ptor.

It is an error to try to open a file that does not exist. The entry point c:rea t is provided
to create new files. or to re-write old ones.

~ - creat (name, pmoc1.);

returns a file descriptor if it was able to create the· file called name, and -1 if not. If the tile
already exists. c:reat will truncate it to zero length; it is not an error to c:reat a file that
already exists.

If the tile is brand new, c:reat creates it with the protection mode specified by the pmode
aflument. In the UNIX file system. there are nine bits of protection information associated
with a file, controlling read. write and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate. here is a simplified version of the UNIX'utility cp, a program which copies one
tile to another. (The main simplification is that our version copies only one file. and does not
permit the second allument to be a directory.)

Idefine NULL 0
"e,fine aUFSIZZ 51 2
Idefine PMODE 06~4 I * ltV for owner, R for group, others * I

.. in (arqc , arCJV')
int argc;

i. cp: copy f1 to f2 *1

char *U'CJV [] ;
{

int f1, f2, n;
cbar bul[BUFSIZE];

if (uqc I- 3)
erZ'Or ("UsaC)_ : CJ) from to", NULL);

if «f1 - open(arqv[1], 0» -- -1)
erZ'Or("cp: can't open •• ", arqv(1]);

if «f2 - creat(arqv[2], PMODE» .. -1)
errol' ("cp: can't create •• ", argv[2]);

while «n- read(f1, buf, BUPSlZE» > 0)
if (writ.(f2, bul, n) I- n)

error ("C)): wri te . enor", HOLL);
exit(O);

error(s1, s2) 1* print error messaC)_ and 4ie *1
char *s1, *a2;
(

printf(s1, a2);
printf("'nlt

);

exit(1);

- 9 -

As we said earlier. there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly. any program which intends to process many files
must be prepared to re·use file descriptors. The routine close breaks the connection between
a file descriptor and an open file. and frees the file descriptor for use with some other file. Ter·
mination of a program via exi t or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the tile system.

4 • 4 • Random Access - Seek and Lseek
File I/O is normally sequential: each read or write takes place at a position in the file

right after the previous one. When necessary. however. a file can be read or written in any
arbitrary order. The system call lseek provides a way to move around in a file without actu
ally reading or writing:

ls •• k(fd, offset, oriqin)i

forces the current position in the file whose descriptor is fd to move to position offset.
which is taken relative to the location specified by oriqin. Subsequent reading or writing will
begin at that position. offset is a lonq; fd and oriqin are int's. oriq.in can be O. 1.
or 2 to specify that offset is to be measured from the beginning, from the current position.
or from the end of the file respectively. For example. to append to a file. seek to the end
before writing:

ls.ek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (lonq) O.

With lseek. it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi~
trary place in a file.

qetCfd, pos, bul, n) 1* read n Dytes trom pOsition pos *1
int td, n;
lonq pos;
char -bul;
(

lse.k(fd, pos, 0); 1* qet to pos *1
re,turn(reacUfd, 'bul, n»;

In pre-version 7 UNIX, the basic entry point to the 110 system is called seek. seek is
identical to lseele. except that its offset argument is an int rather than a lonq. Accord
ingly, since PDp· I I integers have only 16 bits. the offset specified for seek is limited to
65,535; for this reason, oriqin values of 3, 4, 5 cause seek to multiply the given offset by
512 (the number of bytes in one physical block) and then interpret oriqin as if it were 0, I,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one
which selects the block, then one which has oriqin equal to 1 and moves to the desired byte
within the block.

4 • s. Error Processing
The routines discussed in this section. and in fact all the routines which are direct entries

into the system can incur errors. Usually they indicate an error by returning a value of -1.
Sometimes it is nice to know what sort of error occurred: for this purpose aU these routines.
when appropriate, leave· an error number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to Section II of the (JNIX Programmer's
ManUQ~ so your program can. for example, determine if an attempt to open ,a file failed

- 10 -

because it did not exist or because the user lacked permission to read it. Perhaps more com
monly. you may want to print out the reason for failure. The routine perror will print a mes
sage associated with the value of errno~ more generally. sys_errno is an array of character

. strings which can be indexed by errno and printed by your program.

s. PROCESSES
It is often easier to use a program written by someone else than to invent one's own. This

section describes how to execute a program from within another.

5.1. The "System" FuoctioD
The easiest way to execute a program from another is to use the standard library routine

system. system takes one argument. a command strinl exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

_in ()
(

ayste.<"d.at."'i
1* r.st of ~roee •• in9 *1

If the command string has to be built from pieces, the in-memory formatting capabilities of
8printf may be useful.

Remember than gete and pute normally buffer their input; terminal 110 will not be prop
erly synchronized unless this buffering is defeated. For output .. use fflush; ror input.. see
•• ;tbuf in the appendix.

5 • 2 • Low-Level Process CreatioD - Execl aDd Execv
If you're ·not usini the standard library, or if you need finer control over what happens, you

will have to construct calls to other programs usina the more· primitive routines that the stan
dard library's system routine is based on.

The most basic operation is to execute another program without returning, by usinlthe rou
tine execl. To print the date as the last action of a runninl program, use

.eel ("/bin/date", "date", NOLL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the prOlram name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments. they are struna out after this; the end of the list is marked by a
NULL arlument.

The .. xecl call overlays the existinl program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a prOlram might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can't be found or is not executable. If you don't
know where date is located, say

exec;l(lt/bin/d.ate", "cate", NOLL);
exeel("/usr/bin/cate", "d.ate", NULL);
fprintf(stcerr, "Someone stole 'c1.te'\n"'i

A variant of exec: 1 called exec:v is useful when you don't know in advance how many
arguments there are goinl to be. The call is

- 11 -

execv(filename, arqp);

where arqp is an array of pointers to the arguments; the last pointer in the array must be
NULL so exec:v can tell where the list ends. As with execl. filename is the file in which
the program is found .. and argo;:> (01 is the name of the program. (This arrangement is identi
cal to the arqv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <.. >, *, ? and [] in the argu
ment list. If you want these .. use exec 1 to invoke the shell sh. which then does all the work.
Construct a string commandline that contains the complete command as it would have been
typed at the terminal. then say

exec 1 (tt/bin/sh lt , "sh" , "-cit, c:ommandline, NOLL);

The shell is assumed to be at a fixed place. /bin/sll. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con
structing the right information in commandline.

5.3. Control of Processes - Fork and Wait
So far what we've talked about isn't really all that useful by itself. Now we will show how

to regain control after running a program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overlaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine caUed fork:

proc_id • fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the "process id." In one of these processes {the "child">,
proc_id is zero. In the other (the "'parent"), proc_id is non-zero; it is the process number
of the child. Thus the basic way to call. and return from. another program is

if (foz-kc) •• 0)
execl("/binish", '·sh" , "_C", c:md, N'Ot.I.); 1* in child *1

And in fact. e·xcept for handling errors, this is sufficient. The fork makes two copies of the
program. In the child .. the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent .. fork returns non-zero so it skips the execl. (If
there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the. function wait:

int status;

if (fork() •• 0)
execl(•••)i

wait(&statusl;

This still doesn't handle any abnormal conditions. such as a failure of the execl or fork. or
the possibility that there might be more than one child running sinlultaneously. (The wait
returns the process id of the terminated child. if you want to check it against the value returned
by fork.) Finally, this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status). StilI. these three tines are the heart of the standard library's
system routine. which we'11 show in a moment.

The status returned by wait encodes in its tow-order eight bits the system's idea or the
child's termination status; it is 0 for normal termination and non-zero to indicate various kinds
of problems. The next higher eight bits are taken from the argument of the call to exi t which
caused a normal termination of the child process. It is good coding practice for aU programs to

- 12 •

return meaningful status.

When a program is called by the shell. the three file descriptors O. 1. and 2 are set up point
ing at the right files. and all other possible file descriptors are available for use. When this pro
gram calls another one. correct etiquette suggests making sure the same conditions hold. Nei
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child. the parent must flush its buffers before the
exec 1. Conversely. if a caller buffers an input stream. the called program will lose any infor
mation that has been read by the caller.

5.4. Pipes
A pipe is an 110 channel intended for use between two cooperating processes: one process

writes into the pipe. while the other reads. The system looks after buffering the data and syn
chronizing the two processes. Most pipes are created by the shell, as in

1. I pr

which connects the standard output of 18 to the standard input of pro Sometimes. however OJ it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned~ the actual usage is like this:

int fd[2];

•. tat • pip. (fc!) ;
if (stat - -1)

/. there was an error •••• /

fd is an array of two file descriptors, where fd (0] is the read side of the pipe and fd (1] is
for writing. These may be used ill rea.d, write and. close calls just like any. other file
descriptors.

If a process reads a pipe which is empty. it will wait until data arrives: if a process writes
into a pipe which is too full. it will wait until the pipe empties somewhat. If the write side of
the pipe is closed. a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd , mode). which creates a process em (just as system does). and returns a file
descriptor that will either read or write that process, Kcording to mode. That is.. the call

fout • popen ("pr", WRITE);

creates a process that executes the pr command: subsequent write calls using the file descrip
tor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call: it then forks to create two
copies of itself. The child decides whether it is supposed to read or write. closes the other side
of the pipe. then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example.. if a child that intends to read fails to close the write end of the
pipe. it will never see the end of the pipe file. just because there is one writer potentially active.

• 13 •

tinclude <std~o.h>

#define READ 0
WRIt'!: 1 #define

#define
seatic

ts~(a, b) (mdde •• READ ? (b)
int popen,JJid;

popen{cmd, mode)
char *cmd;
int mode;
(

int p[2];

if (pipe(p) < 0)
return(NULL);

if «popen,.pid • fork () •• 0) (
close (tst(p[WRlTE) , p(READ));
clos.(tst(O, 1»;

(a»

dup(tst(p[READ), p(WRlTE]»;
close(tst(p(READ], p(WRlTE}»;
execl("/bin/shlt , "sh" , "-cit, cmd, 0);
_exit(1); 1* disaster has occurred if we qet here *1

I
if (popen_pid •• -1)

return (NULL) ;
close(tst(p(REAlJ], p(WRlTE));
return(tstCp(WRlTE1, p[READ));

The sequence of closes in the child is a bit tricky. Suppose that the task is to create 'a child
process that will read data from the parent. Then the first close closes the write side of the
pipe. leaving the read side open. The lines

closeCtst(O, 1»;
dup(tst(p[READ], p[WRlTE]»;

are the convenHonal way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor O. that is. the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned. so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe' becomes the standard
input. (Yes. this is a bit tricky. but it's a standard idiom.) Finally. the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done .. for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait for the termination of the child process. First. the return value from pclos'e indicates
whether the process succeeded. Equally impOrtant when a process creates several children is
that. only a bounded number of unwaited-for children can exist. even if some of them have ter
minated: perfo.rming the wai t lays 'the child to rest. Thus:

- 14 -

.include <siqnal.h>

pclose(fd)
int f4;

1* close pipe fd *1

(

register r, (*hstat) (), (*istat) (), (wqstat) ();
int status;
exteJ:n int popen-pid;

clos.(f4);
istat - siqnal(SIGINT, SIG_IGN);
qatat - signal(SIGgUIT, SIG_IGN);
batat - siqnal(SIGHDP, SIG_IGN);
while «r - wait(,atatua» I- poP.ft-pid " r I- -1);
if (r - -1)

status -'-1;
siqnal(SIGINT, istat);
siqnal (SIGQOIT, qstat);
siqnal(SIGHOP, hstat);
return (status);

The calls to siqnal make sure that no intenupts, etc., interfere with the waiting process~ this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen-J)id: it really should be an array indexed by file descrip
tor. A J)open function. with slishtly different arguments and return value is available as part
of the standard I/O library discussed below. As currently written, it shares the same limitation.

6. SIGNALS - INTERRUPTS AND ALL THAT
This section is concerned with how to deal gracefully with signals from the outside world .

(like intenupts), and with program faults. Since there's nothing very useful that can be done
from within C about program faults" which arise mainly from illegal memory references or from
execution of peculiar instructions, we'l1 discuss only the outside-world signals: interrupt, which
is sent when the DEL character is typed; qUit, generated by the FS character~ hangup, caused by
hanging up the phone; and terminate, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were staned from the corresponding ter
minal; unless other arrangements have been made, the signal terminates the process. In the
quit case" a core image file is written for debuging purposes.

The routine which aiters the default action is called siqnal. It has two arguments: the
first specifies the signal. and the second specifies how to treat it. The first argument is just a
number code. but the second is the address is either a function" or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file siqnal. h gives names for the various arguments, and should always be included
when signals are used. Thus

.include <signal.b>

signal (SIGINT, SIG_IGN);

causes interrupts to be ignored .. while

siqnal(SIGINT, SIG_OFL);

restores the default action of process termination. In all cases" s iqnal returns the previous
value of the signal. The second argument to s iqnal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to

- IS -

allow the program to clean up unfinished business before terminating. for example to delete a
temporary file:

'include <signal.h>

main ()
(

int onintr () i

if (signal (SIGINT, SIG_IGN) I- SIG_IGN)
signal(SIGINT, onintr)i

1* Process ••• *1

exit(O);

onintr()
(

unlink(tempfile);
exit(1);

Why the test and the double call to s19'1'1a1? Recall that signals like interrupt are sent to
dU processes started from a particular terminal. Accordingly. when a program is to be run non
interactively (started by,), the shell turns off interrupts for it so it won't be stopped by inter
rupts intended for forearound prOcesses. If this program began by announcing that all inter
rupts were to be sent to the onintr routine regardless. that would undo the shell's effort to
protect it when run in the background.

The solulion. shown above. is to test the state of interrupt handling. and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that siq.nal returns the previoUs state of a particular signal. If signals were already being.
ignored. the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
req.uest to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

tinclude <signal.h>
'include <setjmp.h>
jmp_buf sjbuf;

main()
(

int (*iatat) (), onintr () ;

istat - siqnal(SIGINT, SIG_IGN); 1* save original status *1
.etjmp(sjbuf)i 1* save current stack position *1
if (istat !- SIG_IGN)

signal (SIGINT, onintr);

1* main processinq loop *1

onintr()
(

printf(l\nInterrupt\n");

- 16 -

lonqjmp(sjbuf); 1* return to saved state *1

The include file setjmp. h declares the type jmp_buf an object in which the state can be
saved. sjbuf is such an object; it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs" a call is forced to the onintr routine" which
can print a message" set flags, or whatever. lonqjmp takes as argument an object stored into
by setjmp, and restores control to the location after the call to setjmp" so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrup,t occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point" for
e'xample in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling exit or lonqjmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that uexecution resumes at the exact point it
was interrupted" n the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait, and pause.) A program whose onintr program just sets intflaq"
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar () - EOI')
if (intflag)

1* EOI' caused by interrupt *1
else

1* true end-of-file *1

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts" and also includes a method
(like U!" in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (forlc() •• 0)

execl(•••);
siqnal(SIGINT, SIG_IGN); 1* ignore interrupts *1
wait(&status); 1* until the child is done *1
siqnal(SIGINT, onintr); 1* restore interrupts *1

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram .. it will get the signal and return to
its main loop. and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate. since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function system;

- 17 -

#include <siqr.al.h>

syAtem(s) 1* run command strinq s *1
char *s;
(

int status, pid, W;
reqister int (*istat) (), (~stat) ();

if «pid • fork(» .. 0)

)

execl ("/bin/shtl
, '·sh", •• -c lt I s,. 0) i

_exit (127) i

istat • signal(SIGIN'l', SIG_IGN);
qstat • siqnal(SIGQOIT, SIG_IGN);
while «w • wait(&status» I. pid && w I. -1)

if (w •• -1)
status • -1;

siqnal(SIGINT, 1stat);
signal (SIGQUIT, qstat);
return(status)i

As an. aside on declarations. the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no ·possible actual functions. For the enthusiast., here is how they
are defined for the PDP-II; the definitions should be suffici~ntly ugly and nonportable to
encourage use of the include file.

.define SIG_DFL
'del-ine SIG_IGN

References

(int (*) (» 0
(i.nt (*) ()) 1

(1) K. L. Thompson and D. M. Ritchie. The UNIX Programme,'s ManuaL Bell Laboratories.,
1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall. Inc • .,
1978.

[3] B. W. Kernighan. UUNIX for Beginners - Second Edition." Bell Laboratories. 1978.

- 18 -

Appendix - The Standard 110 Library

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard 110 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-II running a version of UNIX·.

1. General Usage

Each program using the library must have the line

'include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
speeialUbrary argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

st4in The name of the sl;andard input file

stdout The name of the standard output file

.tel.·rr The name of the standard error file

BOP is actually -1, and is the value returned by the read routines on end-or-tile or errOf.

NOLL is a notation fOf the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

SUPStZ is a number (viz. S12) of the size suitable for an 110 buffer supplied by the user.
See setbuf, below.

qe·tc, qetchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions; thUS, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out
put flushing where appropriate. The names stdin. stdout, and stderr are in effect con
stants and may not be assigned to.

2. Calls

PILE *fopen(filename, type) char *filename, *type;
opens the tile and. if needed, allocates a buffer for it. filename is a character string
specifying the name. type is a character string (not a single character). It may be "r",
"w", or .. a II to indicate intent to read. write, or append .. The value returned is a tile
pointer. If it is NOLL the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptri

• 19 "

The stream named by ioptr is closed~ if necessary, and then reopened as if by fopen. If
the attempt to open fails. NU1.L is returned. otherwise ioptr. which will now refer to the
new file. Often the reopened stream is stain or stdout.

int qetc(ioptr) FILt *ioptr;
returns the next character from the stream named by ioptr. which is a pointer to a file
such as returned by fopen. or the name stdin. The integer EOF is returned on end-of
file or when an error occurs. The null character \0 is a legal character.

int fqetcCioptr) FILE *ioptr;
acts like qetc but is a genuine function. not a macro. so it can be pointed to, passed as an
argument. etc.

putc'(c, ioptr) FILE *ioptr;
putc writes the character c on the output stream named by ioptr. which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as v~lue.
but EOI' is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function~ not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the I/O system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by ioptr is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however.
std'.err always starts off unbuffered and remains so unless setbuf is used, or unless it is
reol'ened ..

ex! t (e.rrcod.e) ;
termin'ates the process and returns its argument as status to the parent. This is a special
version of the routine which calls fflush for each output file. To terminate without flush
ing, use _exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-or-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

g'etchar();
is identical to g'etc (stdin) .

putchar(c);
is identical to putc (c:, staout).

char .fg'ets(s, n, ioptr) char *5; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character painter s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument. or NULL if error or end-of-file
occurred.

fputs(s, ioptr) char .s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ung'etc(c, ioptr) FILE *ioptr;

·20·

The argument character c is pushed back on the input stream named by ioptr. Only one
character may be pushed back.

printf(format, a1, ...) char *formati
fprintf(ioptr, format, a1, ...) FILE *ioptri char *formati
sprintf(s, format, a1, .•.)char *s, *format;

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section printf(3) of the UNIX Programmer's ManuaL

scanf(format, a1, •••) char *format;
fscanf(ioptr, format, a1, •••) FILE -ioptri char *formati
sscanf(s, format, a1, .••) char *s, *formati

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters., interprets
them according to a format., and stores the results in its arguments. Each routine expects
as arguments a control string format. and a set of arguments, each 0/ which must be a
pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, Eor is
returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fTead(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptri
reads nitems of data beginning at ptr from file ioptr. No advance notification that binary
110 is being done is required~ when. for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen cal~.
fwrite(ptr, sizeof(*ptr), nitelllS, ioptr) FILE *ioptri
Like frea~ but in the other direction.

rewind (ioptr) FILE *ioptri
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system (strinq) char *strinqi
The strinq is executed by the shell as if typed at the terminal.

qetw(ioptr) FILE *ioptri
returns the next word from the input stream named by ioptr. EOI' is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A "word"
is 16 bits on the PDP·ll.

putw(w, ioptr) PILE *ioptri
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptri char *bufi
setbuf may be used after a stream has been . opened but before 110 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf [BOFSIZ] ;

fileno(ioptr) FILE *ioptri
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptri lonq ·offseti
The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file~ if ptrname is
1. the offset is measured from the current read or write pointer, if ptrname is 2.. the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When

- 21 -

this routine is used on non-UNIX systems~ the offset must be a value returned from ftell and
the ptrname must be 0).

lonq ftell(ioptr) FILE *ioptri
The byte offset. measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for, (On non·l:NIX systems the value of this
call is useful only for handing to fseek. so as to position the file to the same place it was when
ftell was called.)

qetpw(uid, buf) char *buf;
The password file is searched for the given integer user 10. If an appropriate line is found~ 'it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user 10 then 1 is returned.

char *mal1oc (num) i
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur
pose. NULL is returned if no space is available.

char *calloc(num, size);
allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available.

cfree(ptr) char *ptri
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloc.
The· following are macros whose definitions may be obtained by including. <ctype • h>.

i.alpha (c) returns non-zero if the argument is alphabetic.
i .• upper (c) returns non-zero if the argument is upper-case alphabetic.
islowe:r (c) returns non-zero if the argument is lower-case alphabetic.
isdiqi.t (c) returns non-zero if the argument is a digit.

isspace (c) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab, form reed, space.

ispunct (,c) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

i .• alnum (c) returns non-zero if the argument is a letter or a digit.
i,sprint (c) returns non-zero if the argument is printable - a letter, digit, or punctuation
character.
iscntrl (c)· retums non-zero if the argument is a control character.
i.sascii (c) returns non-zero if the argument is an ascii character, i.e., tess than octal 0200.

touJ)per (c) returns the upper-case character corresponding to the lower-case letter c •
tolower (c) returns the lower-case character corresponding to the upper-case letter c.

Yaee: Yet Another Compiler-Compiler

Stephen C. Johnson

ABSTRACT

Computer program input generally has some structure; in fact, every com
puter program that does input can be thought of as defining an "input language"
which it accept"). An input language may be as complex as a progrmnming
language. or as simple as a sequence of numbers. Unfortunately, usual input facili
ties are limited. difficult to use, and often arc lax about checking their inputs for
validity.

Yacc provides a general tool for describing the input to a computer program.
The Yacc user specifics the structures of his input, together with code to be
invoked as each such structure is recognized. Yacc turns such a specification into
a subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of control in the user's application handled by
this subroutine. .

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, th~ user can specify his input in terms of
individual input characters. or in tenns of higher level constructs such (\s names
and numbers. The user-supplied routine may also handle idiomatic features such
as comment and continuation conventions, which typically defy easy grammatical
specification. .

Yacc is written iri portable C. The class of specifications accepted is a very
general one: LA I.R(1) grammars with disambiguating rules.

In addition to compilers f()r C, API., Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter language,
several desk calculator languages, a document retrieval system, and a Fortran
debugging system.

July 31, 1978

Computer Languages Compilers Formal Language Theory

y acc: Yet Another Compiler-Compiler

Slephen C. Johnson

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program. The
Yacc user prepares a specification of the input process; this inc1udes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do the
basic input Yacc then generates a function to c.ontrol ,.the input.proce~s. " This functiQ!1, .called a
parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up the basic
items (caBed lokens) from the input stream. These tokens are organized according to the input
structure rules, called grammar rules; when one of these rules has been recognized, then user code
supplied for this rule, an aClion, is invoked; actions have the ability to return values and make use
of the values of other actions.

Yacc is written in a portable dialect of Cl and the actions, and output subroutine, are in C as
well. Mo("(!over, many of the syntactic conventions of Yacc follow C.

T'he heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day': year ;

Here, dale, ;nollllename, day, and year represent structures of interest in the input process;
presumably, mOlllh_,wme, day, and year are defined elsewhere. The comma "," is enclosed in sin
gle quotes; this implies that the comma is to appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule, and have no significance in controlling the input. Thus,
wit.h proper del1nitions, the input

July 4, 1776

might be matched by the above rule.
An important part of the input process is carried out by the lexical analyzer. This user rou

tine reads the input stream, recognizing the lower level structures, and communicates these tokens
to the parser. For historical reasons, a structure recognized by the lexical analyzer is called a lenni
nal symbol, while the structure recognized by the parser is called a nonlerminal symbol. To avoid
confusion, terminal symbols will usually be referred to as lokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name '1' 'a' 'n'
month_name 'F' 'c' 'b'

month_name : '0' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize individual
letters, and 1II0111/Cllamc would be a nonterminal symbol. Such low-level rules tend to waste time.
and space. and may complicate the specification beyond Yacc's ability to deal with it. . Usually, the
lexical analyzer would recognize the month names, and return an i.ndication that a mOlillename
was seen; in this case, mOil/leI/Gille would be a·token. .

- 2 -

Literal characters such as "," must also be passed through the lexical analyzer, and are also
considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date :, month ' r day , r year ;

allowing

7/4/1776

as a synonym for

July 4. 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort, and lit
tle danger of disrupting existing input.

,. """ 0··. .,., .,.' . ,...."". .'" .• 7 • t

, . , ;nie 'in'jnlt being l:e,ld may Jl()t c()nform' to the' specifications. These input errors are detected
as early as is theoretically pos.')ible with a left-to-right scan; thus, not only is tlle chance of reading
and computing with bad input data substantially rc~duced, bllt the bad data can usual1y be quickly
found. Error handling, provided as part of the input specifications, permit') the reentry of bad data,
or the continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example,
the specifications may be self contradictory, or they may require a more powerful recognition
mechanism than that available to Yacc. The fonner cases represent design errors; the latter cases
can often be corrected by making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While Yacc cannot handle all possible specifications, its power compares favorably
with simi1ar systems; moreover, the constl1lctions which are difficult for Yacc to handle are also fre
quently difficult for human beings to handle. Some users have repolted that the discipline of for
mulating valid Yacc specifications for their input revealed errors of conception or design early in
the program dc'veh>pment

The theory underlying Yacc has been described elsewhere.2•3•4 Yacc has been extensively
used in numerous practical applications, including filll,5 the Portable C Compi1er.6 and a system thr
typesetting mathematics'?

The next several sections describe the basic process of preparing a Yacc specification: Section
I describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions
associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes
the operation of the parser. Section 5 discusses various reasons why Yacc may be unable to pro
duce a parser from a specification, and what to do about it. Section 6 describes a simple mechan,
ism for handling operator precedences in arithmetic expressions. Section 7 discusses error detection
and recovery. Section 8 discllsses the operating ,environment and special features of the parsers
Yacc produces. Section 9 gives some suggestions which should improve the style and efTIciency of
the specifications. Section 10 discusses some advanced topics, and Section 11 gives acknowledgc
menL~. Appendix A has a brief example, and Appendix B gives a sumlnary of the Yacc input syn·
tax. Appendix C gives an example using some of the more tldvanced features of Yacc, and, finally,
Appendix I) describes mechanisms and syntax no longer actively supported, but provided tl)r his
torical continuity with older versions of Yacc.

1: n~lsie Spccificntions

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include the
lexical analy~er as part of the specification file; it may be useful to include, other programs as well.
Thus, every specification file consists of three sections: the declarations, (grammar) rules, and pro
grams. The sections arc separated by double percent H%%" marks. (The percent "%" is generally
used in Yacc specifications as an escape character.)

- 3 •.

In other words, a full specification file looks like

dec1aratlons
%%
rules
%%
programs

The dec1aration section may be empty. Moreover, if the programs section is omitted, the
second %% ·mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi
character reserved symbols. Comments may appear whcrever a name is lcgal; thcy are enc10sed in
1* ... *1, as in C and PL/I. .

The rules section is made up of onc or more grammar rules. A gramJnar rule has the form:

A : BODY;

A represents a nontclminal name, and BODY represent') a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore "_",
and non-initial digits. Upper and lower case letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes '''H. As in C, the backslash "\"is an
escape character within literals, and all the C escapes are recognized. Thus

'\n' newline
'\r' return
'\" single quote .. .'''
'\ \' backslash "\"
'\f tab
'\b' backspace
'\f' f(mn feed
'\xxx' "xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in grammar
rules.

(f there are several grammar rules with the same left hand side, the vertical bar "'" can be
used to avoid rewriting the left hand side. In addition~ the semicolon at the end. of a rule can be
dropped before a vertical bar. Thus the grammar rules

A neD
A E F
A G ;

can be given to Yacc as

A nco
E F
G

It is not necessary that all grammar rules with the same lcft side appear together in the grammar
rules section, although it makes the input much m()1'e readable, and easier to change.

- 4 -

If a nontenninal symbol matches the empty string, this can be indicated in the obvious way:

empty:

Names representing tokens must be declared; this is most simply done by writing

%tokell namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol. Every nOlltermi
nal symbol must appear on the left side of at least one rule.

Of an the nontcrminal symbols, one, ca11ed the slart symbol, has particular importancc. The
parser is designed to recognize the start symbol~ thus, this symbol represent<; the largest, most gen
eral structure described by the grammar rules. By default. the start symbol is taken to be the left
hand side of the first grammar rule in the rules secti~m. It is possible, and in fact desirable, to
declare the start symbol explicitly in the dcclarati<>ns"scctl()ll using the %start Keyw{)rd:

%start symbol

The end of the input to the parser is signaled by a special token, called the elU/marker. If the
tokens up to, but not including, the endmarker form a structure which matches the start symbol, the
parser function returns to its caller after the endmarker is seen~ it accepts the input. If the end
marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate;
see section 3, below. Usually the endmarker represents some reasonably obvious 110 status, such
as "end-of-file" or "end-of-record".

2: Actions
With each grammar rule, the user may associate actions to be performed each time the rulc is

recognized in the input process. These actions may return values, and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if
desired. ;

An action is an arbitrary C statement, and as slIch can do input and Olltput, call subprograms,
and aHcrexternal vectors and variables. An action is specified by one or more statements, enclosed
in curly braces "{" and "}". For example, .

and

A '(' B 'y

XXX:

{ hello{ 1, "abc"); }

yyy ZZZ
{ printf("a messagc\n");

flag = 25; }

are grammar I1Iles with actions.

To fllcilitate easy communication between t.he actions and the parser, the action statementc; arc
altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this context.

To return a value, the action l10nnally sets the pseudo-variable •• $$" to some valuc. For
example, an action that does nothing but return the valuc 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use'
the pseudo-variables $1, $2, ... , which refcr to the values returned by the components of the right
side of a rule, rcading from ·lcft to right. Thus,,if the nile is

- 5 -

ABC D ;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr : '(' ')' expr ;

The value returned by this rule is usually the value of the expr in parentheses. This can be indi~
cated by

expr : . 'r expr 'r { $$ = $2; }

By default, the value of a rule is the value of the first clement in it ($1). '~'hus, grammar rules
of the form

. "': . -: .: .:. :A: '~ :. ';', B:· ;; .

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their niles. Sometimes, it is desir
able to get control before a rule is fully parsed. Yacc pennits an action to be written in the middle
of a rule as well as at the end. This rule is assumed to return a value, accessible through the usual
mechanism by the actions to the right of it. 1n turn, it may access the values returned by the sym
bols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y = $3; }

the effect is to set x to 1, and y to the value returned by C.

Actions that do not tenninate a rule are actl.lally handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. 'The interior
action is the action triggered on' by recognizing this added rule. Yacc actually treats the above
example as if it had been written: '

$ACr

A

'. ,

1* empty *1
{ $$ = I; }

n $ACr c
{ x = $2; y = $3; }

In many app1ications, output is not done directly by the actions; rather, a data stnlcture, such
as a parse tree, is constructed in memory, and transformations are applied to it before output is
generated. Parse trees are particularly easy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C function node, written so that the call

node(t, nl, n2)

creates a node with label 1_, and descendants n1 and 112, and returns the index of the newly created
node. Then parse tree can be built by supplying actions such as:

cxpr. : expr -+' expr
{ $$ = node('+', $l, $3); }

in the specification.

The user may define other vari.ables to be used by the Hctions. Declarations and definitions
can appear in the declarations section, enclosed in the marks "%{" and U%}". These declarations

- 6 - .

and definitions have global scope, so they are known to the action statements and the lexical
analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, aJI the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis
The user must supply a lexical analyzer to read the input stream and communicate tokens

(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token rcad. If
there is a value associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order. for commun
ication between them to take place. The numbers may be chosen by Yace, or chosen by the user.
In either case, the .. # define" mechanism of C is used to allow the lexical analyzer to return these
numbers symbolically. For example, suppose that the t.oken name DIGIT has been defined in the
declarations section of the Yacc specification. file. The relevant portion of the lexical analyzer
might look like:

yylexO{
extern int yylval;
int c;

c= getcharO;

switch(c) {

case '0':
case 'I':

case '9':
yylval = c- '0';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the numerical value of
the digit. Provided that the lexical analyzer code is placed in the programs section of the
specification file, the identifier DIG IT will be defined as the token number associated with the
token DIO IT.

This mechanism leads to dear, easily modified lexical analyzers; the only pitfilll is the need to
avoid using any token names in the grammar that are reserved or significant in C or the parser; for
example. the lise of token names if or while will almost certainly calise severe difficulties when the
lexical analyzer is compiled. The token name error is reserved for error handling, and should not
be used naivety (sec Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the lIser. . In the
default sitw,tion, the numbers are chosen by Yacc. The denmlt token number for a literal character
is the numerical· vallie of the character in the local character set. Other names are assigned token
numbers starting at 257.

- 7 -

To assign a token number to a token (including literals), the first appearance of the token
name Of literal ill the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name Of literal. Names and literals not defined
by this mechanism retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user;. thus, all lexical analyzers should be prepared to return 0
or negative as a token number upon reaching the end of their input. -

A very useful tool for constructing lexical analyzers is the Lex program developed by Mike
Lesk.8 These lexical analyzers are designed to work in close hmmony with Yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex can
be easily used to produce quite complicated lexical analyzers. but there remain some languages
(such as FORTRAN) which do not fit any theoretical framework, and whose lexical analyzers must
be crafted by hand.

r :l' _.: .. " ~~

4: How the Purser Works

Yacc turns the specification file into a C program. which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex, and
will not be disclissed here (sec the references for more information). The parser itc;elf, however, is
relatively simple. and understanding how it works, while not strictly necessary. will nevertheless
make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc c()nsist~ of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input to~en (called the lookahead token). The
current stale is always the one on the top of the stack. The states of the finite state machine are
given small integer labels; initially. the machine is in state 0, the stack contains only state 0, and no
lookaheild token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:

l. Based on its current state, the parser decides whether it needs a look ahead token to decide
what action should be done; if it needs one. and does not have one, it calls yylex to obtain
the next token.

2. Using the current state. a'nd the look ahead token if needed, the parser decides on it.,· next
action. and carries it out. This may result in sUites being pushed onto the stack. or popped
off of the sUlck, and in the lookahead Loken being processed or left alone.

The shift action is the most common action the parser ulkes. Whenever a shift action is
taken, there is always a look ahead token. For example. in state 56 there may be an action:

IF . shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the
stack. and stlte 34 becomes the current stale (on the top of the st~Ick). The lookahead token is
cleared.

The reduce action keeps the sUlck from growing without bounds. Reduce actions are
appropriate when the par~er has seen the right hand side of a grammar rule. and is prepared to
announce that it has seen ~m instance of the rule, replacing the right hand side by the lell hand
side. It may be necessary to consult the look ahead token to decide whether to reduce, but lIsually
it is not; in fact, the default action (represented by a •• :~) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given
small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

- 8-

IF shift 34

refers to slale 34.

Suppo~e the rule being reduced is

A x y z ' ;

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on
the right hand side (three in this case). To reduce, first pop off the top three states from the stack
(In general, the number of states popped equals the number of symbols 'on the right side of the
1111 e). In effect, these states were the ones put on the stack while recognizing x, y, and z, and no
longer serve any useful purpose. After popping these states, a state is uncovered which was the
state the parser was in before beginning to process the rule. Using this uncovered state, and the
symbol on the left side of the rule, perform what is in effect a shift of 1\. A new state is obtained,

"plished on'to; the; stack, aIld parsing Cl)ntiriucs.' , There are significimt dilterences between the pro
cessing of the left hand symbol and an ordinary shift of a token, however, so this action is called a
golo action. In particular, the lookahead token is cleared by a shift, and is not affected by a goto.
In any case, the uncovered state contains an entry such as:

1\ goto 20

causing state 20 to be pushed onto the stack, and become the current state.'

In effect, the reduce action ··turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser then
behaves as if it had seen the left side at that time. If the right hand side of the rule is empty, no
states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In
addition to the' stack holding the states, another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a shift takes place, the external variable
yylval is copied onto the value stack. A fter the return from the user code, the reduction is carried
out. When the go10 action is done, the external variable yyval is copied onto the value stack. The
pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are concept.ually much simpler. The acc('pt actioli intlicates that
the entire input has heen seen and that it matches the specification. This aclion appears only when
the lookahead token is the endmarker, and indicates that the parser I)(IS successfully done its job.
The error action, on the other hand, represents a place where the parser can no longer continue
parsing according to the specification. The input tokens it has seen, together with the lookahead
token, cannot be followed by anything that would result in a legal input. The parser report4i an
error, and attempt') to recover the situation and resume parsing: the error recovery (as opposed to
the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place: DELL
. ,

When Yacc is invoked with the - v option, a file called y.oulput. is produced, with a human·
readable description of the parser. The y.oulpul file corresponding to the above grammar (with
some statistics suipped otT the end) is; .

state 0
$accept _rhyme $end·

DING shift 3
· error

rhyme goto.l
sound. goto 2

state 1
$accept: rhymc_$end

$end accept
· error

state 2
rhyme : sound_place

DELL shift 5
· error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
· error·

state 4
rhyme sound ·place_ (1)

· reduce 1

state 5
place: DELI,_ (3)

· reduce 3

state 6

- 9 -.-

sound DING DONG_ (2)

· reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules being
processed in each state. The _ character is used to indicate what has been seen, and what is yet to
come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input

Initially, the current state is state O. The parser needs to refer to the input in order to decid~
betwecn the actions available in state 0, so the first token, DING, is read, becoming the lookahead
token. 'fhe action in state 0 on D/ NG is is "shift 3", so state 3 is pushcd onto the stack, and the
look ahead token is cleared. State 3 becomes the cu"rrent state. The next token, DONG, is read, .

- 10-

becoming thc lookahead token. The action in state 3 on the token DONG is "shift 6", so state 6 is
pushed onto thc stack, and the lookahcad is cleared. The stack now contains 0, 3, and 6. In state
6, without even consulting the lookahead, the parser reduces by rule 2.

sound: DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state O. Consulting the dcscription of state 0, looking for a gota on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be rcad. The action is ·'shift 5", so state 5 is pushed
onto the stack, which now has 0, 2, and 5 on it, and the look ahead token is cleared. In state 5, the
only action is to reduce by rule 3. This has one symbol on thc right hand side, so one state,S, is
popped off,. and state 2 is uncovcred.' The goto instatc' 2' on'place~ the lcft·siac·ofrule 3,. is state 4.
Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. 'fhere are
two symbols on the right, so the top two states are popped off, uncovering state ° again. In state 0,
there is a goto on rhyme causing the parser to enter state l. In state 1. the input is read; the end
marker is ohtained, indicated by "$end" in the y.output file. The action in state 1 when the end
marker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELI. DULL, ctc. 1\ few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity .md Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example. the grammar nile .

expr: . expr . -' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put
two other' (~xpressions together with a minus sign between them. Unfortunately. this grammar rule
docs not completely speci(y the' way that all complex inputs should be structured. For example, if
the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - cxpr)

(The first is called left association. the second right association).

Yacc detects 'such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem lh<lt confronL~ the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input. hy applying
this rule; after applying the. rule; the input is reduced to expr(the left side of the rule). Thc parscr
would then read the final part of the input: '.

- 11-

- ~xpr

and again reduce. The effect of this is to take the left associative interpretation.

Altern~tively, when the parser has seen

cxpr - expr

it could defer the immediate application of the rule, and continue reading thc input until it had
seen

expr - expr - expr

It could thcn apply the rulc to the rightmost three symbols, reducing them to expr and leaving

cxpr - expr,

-':Now the rule 'c~m -'bci reduced once' 'ni:ore; the' effect" is' to t:1kc the ngh~ associative interpretation.
Thus, having rcad

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding betwccn
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/rcduce or reduce/reduce conflicts, Yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice. A rule describing which choice to
make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shifi(reduce conflict. the default is to do the shift.

2. In a reduce/reduce conllict, the default- is to reduce by the earlier grammar rule (in the input
sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, white
consistent, require a more complex parser than Yacc can construcl. The use of actions within rules
can also cause con Hicts, if the action must be done beHn-e the parser can be sure which rule is
being recognized. In these cases, the application of disambiguating rules is inappropriate, and leads
to an incorrect parser. For this reason, Yacc always reports the number of shift/reduce and
reduce/reduce contlicts resolved by Rule I and Rule 2.

In general, whenever it is possible to apply disambiguating rulcs to produce a correct parser,
it is also pos~ible to rewrite the grammar rules s(} that the same inputs are read but there are no
conflicts. For this reason, most previolls parser generators have considered conHicts to be fatal '
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces
slower parsers~ til us, Yacc will produce parsers even in the presence of contlicls.

As an example of the power of disambiguating rules, consider a fragment from a program·
ming language involving an "if-then-else" construction:

stat: IF'(' cond 'Y stat
I IF'(' cond ')' stat ELSE stat

In these rules, IF and ELSE arc tokens, conti is a nonterminal symbol describing conditional (log
ical) expressions, and slat is a nonterminal symbol describing statemenlc;. The first rule will be
called the simple-ifrule, and the secoJ:td the ifelse rule.

- 12-'

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways:

or

IF (C1) {
IF (C2) Sl'r
}

ELSE S2

IF (C1) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming languages having this construct
Each HI,SH is associated with the last preceding ··un-ELSE'd" IF. In th'is example, consider the
situation where the parser has seen

IF (Cl) IF (C2) Sl

and is looking at the l!.'/"S'E. It can immediately reduce by the simple-if rule to get

IF (C1) stat

and then read the remaining input,

EIJSE S2

and reduce

IF (CI) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input

On the other hand, the HLS'H may be shifted, 82 read, and then the right hand poitio'n of

IF (CI) IF (C2) S1 ELSE S2

can be reduced by the i f-c1se rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the'
input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The applica
tion of disambiguating rule 1 tel1s the parser to shift in this case, which leads to the desired group
ing. ' ; ",

This shift/reduce connict arises only when there is a particular current input symbo~, EI,St:'
and particular inputs already seen, such as '

'f

IF (Cl) IF (C2) S1 ','

In general, there may be many conflicts, and each one will be associated with an input symbol and'
a set of previously read inputs. The previously read inputs arc characterized by the state of the'
parser.

The conflict messages 0 f Yacc are best understood by cxami n i ng the verbose (- v) option out·-
put file. For example, the output corresponding to the above conflict state might be: ,I

- 13-

23: shift/reduce, conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) staC (18)
stat IF (cond) staCELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state:
description i(}lIows, giving the grammar rules active in the state, and the parser actions. Recall that.
the underl ine marks the portion of the grammar .. rules 'w.hich has been s~C~) .. , Thus in tI1c ~xample,
in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible things .. If
the input symbol is ELSE, it is possible to shift into state 45. State 45 wi1l have, as Palt of its
description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by·'.", is to be done if the input symbol is not mentioned explicitly in the above actions;,
thus, in this case, if the input symbol is not E/,SE, the parser reduces by grammar rule 18:

stat : IF 'r cond 'r stat

Once again. notice that the numbers following "shift" commands refer to other states, while the
numbers folt'owing ··reduce" commands refer to grammar rule numbers. In the y.oUlpul file, the
rule numbers arc printed after those rules which can be reduced. In most one states, there will be
at most reduce action possible in the state. and this will be the default command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the verbose output to
decide whether the default actions are appropriate. In really tough cases, the user might need to
know more about the behavior and construction of the parser than can be covered here. In this
case. one of the theoretical rcfcrences2.3.4 might be consulted; the services or a local guru might
also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicl~ are not
sufficient; this is in the parsing of arithmetic cxpres.~ions. Most of the commonly used construc
tions for arit.hmetic expressions can be naturally described by the notion of precedence levels for
operators,' together with information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers that are fitsler und
easier to write than parsers constructed n·om unambiguous grammars. The basic notion is to write
grammar rules of the Forni .

expr : expr OP expr

and

expr : UNARY expr

for atl binary and unary operators desired. This creates a very ambiguous grammar, with muny
parsing conllicts. /\s disambiguating rules. the user specifics the precedence, or binding strength, of
all the operators, and the associativity of the ·binary operators. This information is sufficient to
allow Yacc to resolve the parsing contlicts in accordance with these rules, and construct a parser

- 14 -

that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is
done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by
a list of tokens. All of the tokens on the same line are assumed to have the same precedence level

- and associativity; the lines are listed in order of increasing precedence or binding strength. Thus,

%left ~ + ~ ~ - ~

%left #*# # /#

describes the precedence and associativity of the four arithmetic operators.- Plus and minus are left.
. associative, and have lower precedence than star and slash, which are also left associative. The key
word %right is used to describe right associative operators, and the keyword %nonassoc is used to
describe operators, like the operator .LT. in Fortran, that may not associate with themselves; thus,

~ .. : '':-:: --::A; .LT.·,B, ~L1'. ,C. " " '. '" " '-. ". '. " " ", . , ." • t·1

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right ~= #

%left .. + # # - ~

%left ~*~ ~/'

%%

expr expr = expr
1 expr '+ ' expr
1 expr expr
1 expr '*' expr
I' expr '/~ expr
1 NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a = (b'= ((c*d)-e) - (f*g»)

When this mechanism is lIsed, unary operators must, in general, be given a precedence. Sometimes
a unary operator and a binary operator have the same symbolic representation, but different pre
cedences. An example is unary and binary . - ': unary minus may be given the same strength as
multiplication, or even higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular grammar rule. %prcc
appcars immediately ancr the body or t.he grammar rulc, berore the action or closing semicolon,
and is ()lIowed by a tokcn namc or literal. It causes the precedence of the grammar rule to
become that of the following token name or lileral. For example, to make unary minus have the
same precedence as multiplication the rules might i'esemble:

%left ' +' , - II

%left '.' 'I'

%%

expr expr
I expr

. I expr

' +' expr
.- expr
'*' expr

I expr ' /, expr

I expr %prec
I NAME

- 15 -'

'*'

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities arc used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have them.

2. 1\ precedence and associativity is associated with each grammar rule; it is the precedence and
associativity of the last token or literal in the body of the rule. If the %prec constmction is
used, it overrides this default. Some grammar rules may have no precedence and associativity
associated with them.

3. When there is a reduce/reduce conflict. or there is a shift/reduce conflict and either the input
symbol or the grammar rule has no precedence and associativity, then the two disambigllating
nIles given at the beginning of the section arc used, and the conflicts arc reported.

4. If there is a shift/reduce conflict, and both the grammar nile and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of the .
action (shift or reduce) associated with tI,le higher precedence. If the precedences are the
same, then the associativity is used; left associative implies reduce, right ass(>ciative implies
shift. and nonassociating implies error.

Conflict~ resolved by preceeence arc not counted in the number of. shift/reduce and
reduce/reduce conflicts reported' by Yacc. This means that mistakes in the specificatioll of prc
cedences . may disguise errors in the input grammar; it is a good idea to be sparing with prc
cedences, and usc them in an essentially "cookbook" fashion, until some experience has been
gained. The y.oUlpUI file is very useful in deciding whether the parser is actually doing what was
intended. .

7: Error Hnndling
Error handling is an extremely difficult area, and many of the problems arc semantic ones.

When an error is fi>llnd, l(>r example. it may be necessary to reclaim parse tree storage, delete or
alter symbol table entries, and, typically. set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more uscflll to con
tinue scanning the input to find further syntax errors. This leads to the problem of getting the
parser "restarted" after an error. A general clas..'i of algorithms tt) do this involves discarding a
number of tokens from the input string, and attempting to adjust the parser so that input can con~
tinue.

To altow the user some control over this process, Yacc provides a simple, but reasonably gen
eral, feature. The token name "error" is reserved for error handling. This name can be used in
grammar rules; in effect, it suggest') places where errors arc expected, and recovery might take
place. The pai-scr· pops it'> stack until it entcrs a state where the token "error" is legal. It then
behaves as if the token "error" were the current look ahead token, and perfOllTIS the. action encoun
tered. The lookahead token is then reset to the token that caused the error. If no special error"

- 16 -

rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains
in error state until three tokens have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat: error

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in
which the error was seen. More precisely, the parser will scan ahead, looking for three tokens that
might legally follow a statement, and start processing at the first of these; if the beginnings of state
ments are not sufficiently distinctive, it may make a false start in the middle of a statement, and end
up reporting a second error where there is in fact no error.

Actions may be used with these. speciaLerroI· q:tlcs.;/ Th.9s~ fJclions l!li~~! a~tempt t~.r~il1itialize
tables, reclaim symbol table space, etc.

Error rules such as the above arc very general, but difficult to control. Somewhat easier are
rules such as

stat :

Here, when there is an error, the parser attempts to skip over the statement, but will do so by skip
ping to the next ';'. All tokens after the error and before the next ';' cannot be shifted, and are
discarded. ·When the ';' is seen, this rule will be reduced, and any "cleanup" action associated with
it performed.

Another form of error rule arises in interactive applications, where it may be desirable to per
mit a line to be reentered after an error. A possible error rule might be

input: error '\n' { printf("Reenter last line: "); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three input
tokens before it admit~ that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens, and gives no mes
sage; this is clearly lInacceptabl~. For this reason, there is a mechanism that can be used to .force
Hle parser to believe that an error has been fulJy recovered from. The statement·

~yerrok ;

in an action resets the parser to its normal mode. The last example is better written

input: error '\n'
{ yyerrok;

printf("Reenter last line: "); }
input

{ $$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input token
at which the error was disc()vered. Sometimes, this is inappropriate: for example, an error recovery

- action might take upon iL~elf the job of finding the correct place to resume input. In this case, the
previous lookahead token must be c1eal'ed. The SGltement

yyc1earin ;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated rcsynchronil.ation routine, supplied by the user, that attempted to advance the input to
the beginning or the next v~llid statement. After this routine was caned, the next token returned by
yylex would presumably be the first token in a legal statement; the old, illegal token must be dis
carded, and the error slate reset. . This could be done by a rule like

stat error
{ resynchO;

yyerrok;
yyclearin; }

- 17 -

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of
the parser from many errors; moreover, the user can get control to deal with the error actions
required by other portions of the program.

8: The Yacc Environment
When the user inputs a specification to Yacc. the output is a file of C programs, called y./ab.e

on most systems (due to loc~ll me system convention~, the names may differ from installation to
installation). The function produced by Yacc is" callcd"'yyparse'; "it is an integer" valuoo function.
When it is called, it in turn repeatedly ca11s yylex, the lexical analyzer supplied by the user (see
Section 3) to obGlin input tokens, Eventually, either an error is detected, in which case Of no error
recovery is possible) yyparse returns the value 1, or the lexical analyzer returns the endmark.er
token and the parser accepts. In this case, yyparse returns the value O.

The user must provide a certain amount of environment fiH' this parser in order to obtain a
working program. For example. as with every C program, a program cal1ed main must be defined,
that eventually cal1s yyparse. In addition, a routine called yyerror prints a message when a syntax
error is detected.

T'hese two routines must be supplied in one fonn or another by the user. To ease the initial
effort of using Yacc, a library has been provided with defilUlt versions of main and yyerror. The
name of this library is system dependent; on many systems the library is accessed by a -Iy argu
ment to the loader. To show the triviality of these default programs, the source is given below:

and

mainO{
return(yyparse());
}

include <stdio.h>

yyerror(s) char *s; {
fprintft stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string "'syntax error".
The average application will want to do better than this. Ordinarily, the program should keep track
of the input line number, and print it along with t.he message when a syntax error is detected. The
external integer variable y),char contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since t.he main program is
probably supplied by th<.' user (to read arguments, etc.) the Yace library is useful only in small pro
ject'), or in the earliest sUlges of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value, the
parser will output a verbose description of its actions. including a discussion of which input sym
bols have been read. and what the parser actions arc. Depending on the operating environment, it
may be possible to set this variable by using a debugging system.

9: Hints for Preparing Specifications

This section contains' miscellaneous hints on preparing emdent, easy to change, and clear
specifications. The individual subsections arc more or less ilidependent

- 18-

Input Style
It is difficult to provide rules with substantial actions and still have a readable specification

file. 'Ine following style hints owe much to Brian Kernighan. '

a. Use all capital letters for token names, all lower case letters for nonterminal names. This rule
comes under the heading of ""knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without an
automatic need to change the other. '

c. Put all mles with the samc left hand side together. Put the left hand side in only once, and
let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on
a separate line. This allows new rules to be easily added.

: Co: ,- ~n~ert,n~lc: bpdies by, two ~ab stops. and a~tion, bodies by, three ta~~toRs.
The example in Appendix A is written following this style. as are the examples in the text of

this paper (where space pennits). The user must make up his own mind about these stylistic ques
tions; the central problem, however, is to make the rules visible through the morass of action code.

Left l~ccursion
The algorithm used by the Yacc parser encourages so caned '"left recursive" grammar rules:

rules of the form

name: name rescoCrule ;

These rules frequently arise when writing specifications of sequences and lists:

list item
list .. item ,

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule will
be reduced t()r the second and a11 slIcceeding items.

With right recursive rules, such as

seq
I

item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously. an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use le(l recursion wherever reasonable.

It is worth considering whether a sequence with zero clements has any mea~ling, and if so,
consider writing the sequence specification with an empty rule: '

seq' /* empty */
seq iteln

Once again. the first rule would always be reduced exactly once, before the first item was read, and
then the second rule would be reduced once (hI' each item read. Pennitting empty sequences often
leads to increased generality. However, conflicts might arise if Yacc is asked to decide which
empty sequence it has seen, when it hasn't'seen enough'to know!

- 19-"

Lexical Tic-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to
delete blanks normally. but not within quoted strings. Or names might be entered into a symbol
table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declarations,
followed by 0 or more statements. Consider:

%{
int dOag;.

%}
other declarations ...

%%

prog decls stats

decls : 1* empty *1
{ dflag = 1; } "

decls declaration

stats 1* empty *1
{ dflag = 0; }

stats statement

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except fiJr the
first token ill the first statemellt; This token must be seen by the parser before it cim tell that the
declaration section has ended and the statement') have begun. In many cases, this single token
exception does not affect the lexical·scan. .

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless, it
represent~ a way of doing some things that are diflicult, if not impossible, to do otherwise.

Ucscrvcd Words

Some programming languages pelmit the user to usc words like "if", which arc normally
reserved, as label or variable names, provided that such usc docs not conflict with the legal usc of
these names in the programming language. This is extremely hard to do in the framework of Yacc;
it is ditncult to pass infOimation to the lexical analyzer telling it "this instance of 'if is a keyword,
and that instance is a variable". The user can make a stab at it, using the mechanism described in
the last subsection, but it is dHlicult.

A number of ways of making this easier arc under advisement. Until then, it is better that the
keywords be reserved; that is, be forbidden for use as variable names. There arc powerful stylistic
reasons for preferring this, anyway.

10: Advanced TOI)ics
This section discusses a number of advanced features of Yacc.

- 20-

Simu lating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror . is
called. and error recovery takes place. These mechanisms can be used to simulate parscrs with
multiple cndmarkers or context-sensitive syntax checking.

Accessing Values in ~:nclosing Rules.
An action may refer to values returned by actions to the left of the current rulc. The

mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this
case the digit may be 0 or negative. Consider

sent adj noun verb adj noun

adj

noun:

{ look at the sentence ": l' :r

THE {
YOUNG {

$$ = THE; }
$$ = YOUNG; }

DOG
{

CRONE
{

$$ = DOG; }

if($0 = = YOUNG)(
printf("what?\n");
}

$$ = CRONE;
}

1n the action following the word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about what might precede
the symbol nOWl in the input. There is also a distinctly unstructured tlavor about this. Neverthe
less, at times this mechanism will save a great deal of trouble, especially when a few combinations
are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By dcfimlt. the values returned by actions and the lexical analyzer are integers. Yacc can also
support values of other types, including structures. In addition, Yacc keeps track of the types, and
inserts appropriate union mcmber names so that the reSUlting parser will be strictly type checked.
The Yacc value stack (see Section 4) is declared to be a unioll of the various types of values
desired. The user declares thc union, and associates union member names to each token and non
terminal symbol having a· value. When the value is rclcrenced through a $$ or $n construction,
Yacc will automatically insert the appropriate union name, so that no unwanted con·versions will
take place. In addition, type checking commands Stich as /,inI 5 will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining
the union; this must be done by the user since other programs. notably the lexical analyzer, must
know about the union member names. Second, there is a way of associating a union member name·
with tokens and nonterminals. Finally, there is a mechanism for describing the type .of those few
values where Yacc can not easily determine the type.

To declare the union, the user includes in· the declaration section:

- 21-

%un~on {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type equal
to this union. If Yacc was invoked with the - d option, the union declaration is copied onto the
y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef used to define
the variable YYSTYPE to represent this union. Thus, the header file might also have said: .

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.
, .: ' : .: Once YYSTYPE is defined, the im'ioil incrribe'l' naines must be as~~iated with the various ter

minal and nonterminal names. The construction

(name)

is used to indicate a union member name. [f this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is as.')ociated with the tokens listed. Thus, saying

%left <optype) • +' . - .
wm cause any reference to' values returned by these two tokens to be tagged with the union
member name oplype. Another keyword, %typc, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type (nodetype) expr stat .

There remain a couple of cases where these mechanisms are insufficient. [f there is an action
within a rule, the value returned by this action has no a priori type. Similarly, reference to left
context values (such as $0 - see the previous subsection) leaves Yacc with no easy way of know
ing the type. In this case, a type can be imposed on the reference by inserting a union member
name, between < and >, immediately aller the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ flm($<iiltval>2. $<other>O); }

, .

This syntax has little to recommend it, but the situation arises rarely.
/\ sample specification is given in Appendix C. The facilities in this subsection are not trig

gered until they are used: in particular, the use of %type will turn on these mechanisms. When
they are used, there is a fairly strict level of checking. For example, use of $n or $$ to refer to
something with no defined type is diagnosed. I f these facilities arc not triggered. the Yacc value
stack is used to hold in/'s, as was true historically.

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond my
inclination. and frequently beyond my ability, in their endless search for "one more feature". Their
irritating unwillingness to learn how to do things my way has usually led to my doing things their
way: most of the time, they have been right. B. W. Kenlighan. P. J. Plauger, S. I. Feldman, C.
Imagna, M. E. Lesk. and A. Snyder will recognize some of their ideas in the current version of
Yacc. C. B.' Haley contributed to the error recovery algorithm. D. M. Ritchie, B. W. Kernighan,
and M. O. Harris helped translate this document into English. Al Aho also deserves special credit
for bringing the mountain to Mohammed, and other &1vors.

·22·'

Ucfcrcnccs

l. B. W. Kernighan and O. M. Ritchie, The C Programming Language. Prentice-Hall, Engle
wood Cliffs, New Jersey, 1978.

2. A. V. Aho and S. C. Johnsol1, "LR Parsing," Compo Surveys, vol. 6, no. 2, pp. 99-124, June
1974.

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous Gram
mars," Comm .. Assoc.' Compo Mach., vol. 18, no. 8, pp. 441-452, August 1975.

4. A. V. Aho and J. D. Ullman, Principles o/Compiler Design. Addison-Wesley, Reading, Mass.,
1977.

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65, 1978. updated
version TM 78-1273-3

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Princi
ples 0/ Programmillg Languages, pp. 97-104, January 1978.

7. B. W. Kernighan and L. L. Cherry, <LA System for Typesetting Mathematics," Comm. Assoc.
Camp. Afach., vol. 18, pp. 151-157, Bel1 Laboratories, Murray Hill, New Jersey, March 1975.

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey, October 1975.

- 23 -

Appendix A: A Simple J.:xample

'I'his exarriple gives the complete Yacc specification for a small desk calculator; the desk cal
culator has 26 registers, labeled "a" through ·'z", and accept') arithmetic expressions made up of the
operators +, -, *, I, % (mod operator), & (bitwise and), I (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is not printed; otherwise it is. As in C, an
integer that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing
how precedences and ambiguities arc used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much simpler than for most applications,
and the output is produced immediately. line by line. Note the way that decimal and octal integers
are read in by the grammar rules; This job is probably better done by the lexical analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%stmt list

%token .DIG IT LETTER

%left r
%left '&'
%left ' +'
%left '*' , r '%'
%left UMINUS 1* supplies precedence for lInary minus *1

%% 1*

list ..

stat

cxpr

beginning of rules

1* empty *1
list stat '\n'
list error '\n'

{

expr
{

I.ETTER =
t

'(' cxpr ')'
{

expr ' +' expr
{

cxpr expr
{ .

expr '.' expr
{

section *1

yycrrok; }

printl("%d\n", $1); }
expr
regs[$l] = $3; }

$$ = $2; }

$$ = $1 + $3; }

$$ = $1 -. $3; }

"$$ = $1 * $3; }

- 24-

expr 'j' expr
{ $$ $1 I $3; }

expr '%' cxpr
{ $$ = $1 % $3; }

expr '&' cxpr
{ $$ = $1 & $3; }

expr '1' expr
{ $$ = $1 1 $3; }

, - ,
expr %prec UMINUS

{ $$ = - $2; }
LE1TER

{ $$ = regs[$1]; }
numb~r

........ N '._ . , ~ . .
number: DIGIT

{ $$ = $1; base = ($1 = = 0) ? 8 10;}
number DIGIT

{ $$ = base * $1 + $2; }

%% 1* start of programs *1

yylexO { 1* lexical analysis routine *1
1* returns LETTER for a lower case letter, yylval = 0 through 25 *1
1* return DIGIT for a digit. yylval = 0 through 9 *1
1* ~11 other characters are returned immediately *1

int c;

while((c = getcharO) = = ") {/* skip blanks *1 }

1* c is now nonblank *1

itt islower(C)) {

yylval = c - a;
return (I J~TTER);
}

it(isdigit(c)) {
. . yylval = c - '0':

return(DIGIT);
}

return(c);
}

- 25 -"

Appendix B: Yucc Input Syntax
This Appendix has a description "of the Yacc input syntax, as a Yacc specification. Context

'dcpendencies, etc., arc not considcred. Ironically, the Yacc input specification language is most
naturally sp'ccified as an LR(2) grammar: the sticky part comes when an identifier is seen in a ntl~,
immediately following an action. If this identifier is followed by a colon, it is the start of the next
rule: otherwise it is a continuation of the current rule. which just happens to have an action embed
dcd in it. As implemente9, the lexical analyzer, looks ahead after secing an identifier, and decide
whether the next token (skipping blanks. newtines, comments, etc.) is a colon. If so. it returns the
token C_IDENTIFIER. Otherwise, it returns IDEN'fIFIER. Literals (quoted strings) are also
returned as IDENTIFIERS, but ncver as part of C_IDENTIFIERs. .

%token
%token
%token

1* grammar for thc input to Yacc *1

1* basic entities *1
IDENTIFIER 1* includes identifiers and literals *1
C_IDENTIFIER 1* identifier (but not literal) fol1owed by colon
NUMBER 1* [0-9]+ *1

1* reserved words: %type = > TYPE, %left = > LEF1', etc. *1

%tokcn LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK 1* the %% mark *1
%token LCU RL 1* the %{ mark *1
%tokcn RCURL 1* the %} mark *1

1* ascii character Hterals stand for themselves *1

%stalt spec

%%

spec

tail

defs

def

fword

defs MARK rules tail

MA R K {" III this action, eat up the rest of the file }
1* cmpty: the" second MARK is optional *1

1* cmpty *1
defs def

START I DENT) FIER
UNION { Copy union definition to output l
LCURL { Copy C code to output file } RCURL
ndcfs rword tag nlist

TOKEN
I.-EFr

. RIGHT
NONASSOC

tag

nlist

nmno

rules

rule

rbody

act

prec

- 26 -

TYPE

1* empty: union tag is optional *1
'(' IDENTIFIER ')'

run no
nlist nmno
nlist 't' nmno

IDENTIFIER 1* NOTE: literal megat with %type *1
IDENTIFIER NUMBER •. /.>}< . NOTE: . illegal wJt~. ~type *1

1* rules section *1

C_IDENTIFIER rbody prcc
nIles lule

C_IDENTIFIER rbody prcc
T rbody prcc

1* empty *1
rbody IDENTIFIER
rbody act

'r { Copy action. translate $$, etc. } 'r

1* empty *1
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

- 21: -

Appendix C: An Advanced Example
This Appendix gives an example of a grammar using some of the advanced features discussed

in Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator
that docs floating point interval arithmetic. The calculator understands floating point constants, the
arithmetic operations +, -, *, /, unary -, and = (assignment), and has 26 floating point vari
ables, "a" through "z". Moreover, it also understands intervals, written

(x,y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z" that
may also be used. The usage is similar to that in Appendix A; assignments return no value, and
print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals arc
.: r~p~e~el1:te~~y, a.: stp.lctur.~, .consisting of .the left. and, (ight endpoint v~lyef' s~ored as double's. This

structure is given a type name, INTERVAL, by using lypedeJ. The Yacc value stack can also con
tain floating point scalars, and integers (used to index into the arrays holding the variable values).
Notice ·that this entire strategy depends strongly on being able to assign structures and unions in C.
]n fact, many of the actions call funclions that return structures as well.

It is also worth noting the usc of YYERROR to handle error conditions: division by an inter
val containing 0, and an interval presented in the wrong order. In effect, the error recovery
mechanism of Yacc is used to throwaway the rest of the offending linc .

. In addition to the mixing of types on the valuc stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intennediate expres
sions. Note that a scalar can be automatical1y promoted to an interval if the context demands an
interval value. This causes a large number of conflicts when the grammar is run through Yacc: 18
Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4;)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this
fbet is not known until the .• ," is read;. by this time, 2.5 is finished. and the parser cannot go back
and change its mind. More generally, it might be necessary to look ahead an arbilrary number of
tokens to decide. whether to convert a scalar to an inlcrval. This problcm is evaded by having two
rules for each binary interval valued operator: one when the left operand is a scalar, and one when
the left operand is an interval. In the second case, the right operand must be an interval, so the
conversion will be applied automatical1y. Despite this evasion. there arc still many cases where the
conversion may be applied or not. leading to the above conflicL'). They arc resolved by listing the
rules that yield scalars first in the specification fi1e~ in this way, the conflicts will be resolved in the
direction of keeping scalar valued expressions scalar valued until they arc forced to becotne' inter-
vals. .

I

This way or handling multiple types is very instructive, but not very general. If lhere were
many kinds of expression types, instead of' just lwo, the number of rules needed would increase
dramatically, and the conflicls even more dramatically. ThllS, while this example is instructive, it is
better practice in a more normal programming language environment to keep the type inf()rmatioll
as part of the value, and not as part of the grammar.

Final1y, a word about the lexical analysis. The only unusual feature is the treatment of float
ing point co~stanl'). The C library routine a/of is used to do the actual conversion from a character
string to a double precision value. I f the lexical analyzer detects an error, it responds by returning
a token that is illegal in the grammar, provoking a synlax error in the parser, and thence error
recovery.

,.

%{

include. <stdio.h>
include <ctype.h>

typedef struct interval {.
double 10, hi;
} INTERVAL;

INTERV AL vrnulO, vdivO;

double atoft);

double dreg[26];
INTERVAL vreg[26];

%}

%start Jines

%union {
int ivaI;
double dval;
INTER VAL vval;
}

·28·:

i'

%token <ivaI> DREG VREG 1* indices into dreg, vreg arrays *1

%token <dval> CONST 1* floating point constant *1

%type <dval> dexp. 1* expression: *1. .
• .. I I I

%type <vval> vexp 1* interval expression *1

!,* prCcedel~ce inrormation about the operators *1

%left ' +' , -'
%lcft '*' 'J'
%left UM IN US

:".1).
1* precedence for unary mUllIs *1

%%

lines :
I

line

1* empty *1
lines line

dexp '\n'
{ printf(

. vexp '\n'.
"%15.81\n", $1); }

. . { printf{ "(% I5.8f , %15.8f)\n", $1.10, $l.hi); }
DREG ' =' dexp '\n'

{. dreg[$l] = $3; }
VREG '=' vexp '\n'

- 29-

{ vreg[$l] = $3; }
error '\n'

{ yyerrok;}

dexp: CONST
I . DREG

{ $$ = dreg[$l); }
dcxp ., +' dexp

{ $$ = $1 + $3; }
dexp , -' dexp

{ $$ = $1 - $3; }
dexp '*' dexp

{ $$ = $1 * ~$3; } .
dcxp 'I' dexp

{ $$ = $1 / $3; }
.'-~ dexp %prcc UMINUS

{ $$ = - $2; }
'(' dexp ')'

{ $$ = $2; }

vexp : dexp
{ $$.hi = $$.10 = $1; }

'(' dexp ',' dexp ')'
{
$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi){
. prinlf{ "interval out of order\n");

YYERROR;·
}

}
VREG

{ $$ = vrcg[$1]; }
vexp '+' vexp

{ $$.hi = $l.hi + $3.hi;
$$.10 = $1.10 + $3.10; }

dexp , +' vexp
{ $$.hi = $1 + $3.hi;

$$.10 = $1 + $3.10; }
, ,

vexp - vexp
{ $$.hi = $t.hi - $3.10;

$$.10 = $1.10 - $3.hi; }
dcxp

, - ,
vexp

{ $$.hi = $1 - $3.10;
$$.10 = $1 - $3.hi; }

vexp '*' vexp
{ $$ = vmul{ $1.10, $1.hi, $3);.}

dexp '*' vexp
{ $$ = vmul{ $1, $1, $3); }

vcxp '1' vexp.
{ if(dcheck($3)) YYERROR;

$$ = v<;liv($1.10, $l.hi, $3); }

%%

- 30-

dexp # 1# vexp
{ if(dcheck($3)) YYERROR;

$$ = vdiv($1, $1, $3); }
- # vexp %prec UMINUS

{ $$.hi = - $2.10; $$.10 = - $2.hi; }
#r vexp #Y

{ $$ = $2; }

define BSZ 50 I * buffer size for floating point numbers *1

.'-; ~: -: ,-1*: lexical-~ analysis· *1, -.. '. ,. "." ~ ' .. - ".
". ~-. • t-1.

yylexO{
register c;

while((c = getcharO) = = # #){ 1* skip over blanks *1 }

if(isupper(c)){
yylva1.ival = C'- #A#;
retum(VREG);
}

if(islower(c)){
yylval.ival = c - #a#;
return(DREG);
} . -

if(isdigit(c) II c = = #/){
1* gobble up digits, points, exponents *1

char buflBSZ+ 1], *cp = buf;
int dot = 0, exp = 0;-

fOl{ ; (cp-buO<BSZ ; + +cp,c=gelchal{)){

*cp = c;
if(isdigit(c)) continue;
if(c = = #. #){

if(dot + + II exp) return(
continuc;
}

if(c = =#e#){

). . , 1* will. cause syntax error *1

if(cxp+ +) return('c'); 1* will cause syntax error *1
continue;
}

1* end of number *1
break;
}

*cp = '\0#;
if((cp- buO >= USZ) pliiltf("constant too long: truncatcd\n");

- 31 .'

else ungctc{ c, stdin); /* push back last char read */
yylval.dval = atof('buf);
return{ CONST);
}

return{ c);
}

INTER VAL hilo(a, b, C, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v; ,

if{ "a>b) { v.hi = a; , v.1o = b; }
else { v.hi = b; v.lo = a; }

if{ c>d) { ,
if(c>v.hi) v.hi = c;
if(d<v.1o) v.lo = d;
}

else {
if(d>v.hi) v.hi = d;
if(c<v.1o) v.lo = c;
}

return{ v);
}

INTERV AL vrnuI(a, b, v) double a, b; INTER V AL v; {
return(hilo(a*v.hi, a*v.1o, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi >= O. && v.lo <= O.){

printf("divisor interval contains O.\n");
return(1);

. J
rcturn(0);
}

INTERVAL vdiv{ a, b, v) double a, b; INTERVAL v; {
rcturn{ hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

- 32 -

Appendix D: Old Features Supported but not Encouraged
This Appendix mentions synonyms and features which are supported for historical continuity,

but, for various reasons, are not encouraged.
l. Literals may also be delimited by double quot~s """.
2. Literals may be more than one character long. If all the characters are alphabetic, numeric,

or _, the type number of the literal is defincd, just as if the literal did not have the quotes
around it. Otherwise, it is difficult to find the value for such literals.
The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it sug
gests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as
%%, \left the same as %left, etc.

4. There are a number of other syponyms; _.' .:1' _.; ' ... _

%< is the same as %left
%> is the same as %right
%binary and %2 arc thc same as %nonassoc
%0 and %term arc the same as %token
% = is the same as %prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement
6. C ~odc bctwccn %{ and %} lIscd to be pennittcd at the hcad of the rules section,. as well as in

the declaration section.

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

ABSTRACT

Lex helps write programs whose control now is directed by instances of regular expressions in
thcinput stream. It is well suited for editor-script type transfomlations and for segmenting input in
preparation for a parsing routine.

Lex source is a table of regular expres.<;ions and corresponding program fragments. The tablc is

translated to a program which reads an input stream. copying it" to an output stream and partiLioning

~le input into shings which match the given expressions. As each ~l.Ich string is recognized the

corresponding program fragment is executed. The recognition of the expres.<;ions is perfonncd by a

detclministic finite automaton generated by Lex. The program fragments written by the user are 'cxe

cuted in the order in which the corresponding regular expres.'iions occur in the input ~tream.

The lex ical analysis programs written with Lex accept ambiguous specifications and choose the

longest match possible at each input point. If necessary. suhstantial lookahead is performed on the

input. but the input stream will be backed up to the end of the current partition, so that the uscr has

general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor. a language which can be translated automati- .

cally to portable Fortran. It is available on the PDP-1 L UNIX. Honeywell GCOS, and IBM OS sys-

terns. This manual, however, will only discuss generating analyzers in C on the UNIX system, which is

the only supported foml of Lex under UNIX Version 7. Lex is designed to simplify interfacing with

Yacc. lor Ulose with access to this compiler-compiler system.

July 21, 1975

Table of Contents

1. Introduction. 1

2. Lex Source. 3

3. Lex Regular Expressions. 3

4. Lex Actions. 5

5. Ambiguous Source Rules. 7

6.' Lex'S6urceDefiilitioils. S·

7. Usage. S

S. Lex and Yacc. 9

9. Examples. 10

10. Left Context Sensitivity. 11

11. Character Set. 12

12. Summary of Source Fomlat. 12

13. Caveats and Bugs. 13

14. Acknowledgments. 13

15. References.

1. Introduction.

Lex is a program generator designed for lex

ical processing of character input streams. It

accepts a high-level, problem oriented specification

for character string matching, and produces a pro

gf'dm in a general purpose language which recog

nizes regular expressions. The regular expressions

arc specified by the user in the sou rce

specifications 'given to Lex. The Lex written code

recognizes these expressions in an input stream

and partitions the input stream into strings match

ing the expressions. At the boundaries between

strings program sections provided by the user are

13

executed. The Lex source file associates the regu

lar expressions and the progmm fragments. As

each expression appears in the input to the pro

grdm written by Lex, the corresponding fragment

is executed.

The user supplies the additional code

beyond expression matching needed to complete

his tasks, possibly including code' written by other

generators. The program that recognizes the

expressions is generated in the general purpose

programming language employed for the user's

program fragments. Thus, a high level expression

language is provided to write the string expressions

LEX-2

to be matched while the user's freedom to write

actions is unimpaired. This avoids forcing the user

who wishes to use a string manipulation language

for input analysis to write processing programs in

the same and often inappropriate string handling

language.

Lex. is not a complete language, but rather a

generator representing a new language feature

which can be added to different programming

languages, called "host languages." Just as general

purpose languages can produce code to run on

different computer hardware, Lex can write code

in different host languages. The host language is

used for the output code generated by Lex and

also for the program fragments added by the user.

Compatible fun-time libraries for the different host

languages are also provided. This makes Lex

adaptable to different environments mld different

users. Each application may be directed to the

combination of hardware and host language

appropriate to the task, the user's background, and

the properties of local implementations. At

present, the only supported host language is C,

although Fortran (in the form of Ratfor [2] has

been available in the past. Lex itself exists on

UNIX, GCOS, and OS/370; but the code gen

erated by Lex may be taken ~U1ywhere the

appropriate ~mpilers exist

Lex turns the . user's expressions and actions

(called source in this memo) into the host general-

purpose language; the generated program is named

!ylex. The yylex program will recognize expres

sions in a stream (called input in this memo) and

perform the specified actions for each expression

as it is detected. See Figure 1.

Source -+ I Lex I -+ yylex

Input -+ yylex -+ ~lItput

An overview of Lex

Figure 1

For a trivial example, consider a program to

delete from the input all blanks or tabs at the ends

of lines.

%%

[\t]+$

is all that is required. The program contains a %%

delimiter to mark the beginning of the rules, and

one rule. This rule contains a regular expression

which matches one or more instances of the char

acters blank or tab (written \t for visibility, in

accordance with the C language convention) just

prior to the end of a line. The brackets indicate

the character class made of blank and tab: the +

. indicates "one or more ; and the $ indicates

"end of line," as in QED. No action is specified,

so the progmm generated by Lex (yylex) will

ignore these characters. Everything else will 00

copied. To change any remaining. string of blanks

or tabs to a single blank, add another rule:

%%

[\t]+$

[\t]+ prinU(" ");

LEX-3

lexical grammar

rules rules

.J. .J.

Lex Yacc

.J. .J.

Input ~ I yylex I ~ I yyparse I ~ Parsed input

The finite automaton generated for this sOurce will

scan for both rules at once, observing at the tenni

nation of the string of blanks or tabs whether or

not there is a newline character, and exe~uting th.e

desired nale action. The first rule matches all

strings of blanks or tabs at the end of lines, and

the second rule all remaining strings of blanks or

... _ ... ; -... ~;; :~. "

tabs.

Lex can be used alone for simple. transfor

mations, or for analysis and statistics gathering on

a lexical level. Lex can also be lIsed with a parser

generator toperfo~ the lexical analysis phase; it

is particularly easy to interface Lex and Yacc [3].

Lex programs recognize only regu.lar expressions;

Yacc writes parsers that acccpt a large class of con

text free gramm<tl'S, but require a lower level

analyzer to recognize input tokens. Thus, a combi

nation of Lex and Yace is often appropriate.

When used as a preprocessor for a later parser

generator, Lex is used to partition the input

stream, and the parser generator Hssigns structure

to the resulting pieces. The flow of control in such

a case (which might be the first half of a compiler,

for example) is shown in Figure 2. Additional

programs, written by other gel1erators or by hand, .

can be added easily to programs written by Lex.

Lex with Yacc

Figure 2

Yacc users will realize that the name yy/ex is what

Yacc expects its lexical analyzer to be named, so

that the use of this name by Lex simplifies inter

facing.

Lex generates a deterministic finite automa-

ton from the regular expressions in the source [4].

The automaton is interpreted, rather than com

piled, in order to save space. The result is still a

fast analyzer. In particular, the time taken by a

Lex program to recognize and partition an input

stream is proportional to the length of the input

The number of Lex rules or the complexity of the

rules is not important in dctcrlnining speed, unless

niles which include forward context require a

significant amount of rescanning. What does

increase with the number and complexity of rules

is the size of the finite automaton, and tllcrefore·

t11e size of the pro~ram generated by Lex.

LEX-4

In the program written by Lex, the user's

fragments (representing the actions to' be per

formed as each regular expression is found) are

gathered as cases of a switch. The automaton

interpreter directs the control flow. Opportunity is

provided for the user to insert either declarations

or additional statements in the routine containing

" ,~e : a~tiqn~,pr. t9 ,fjdd' sU,broutines, o~~ide ' this

action routine.

Lex is not limited to source which can be

interpreted on the basis of one character look

ahead. For example, if there ~re two rules, one

looking for ab and another for abcdefg, and the

input stream is abcdeJh. Lex will recognize ab and

leave the input pointer just before cd. • • Such

backup is more costly than the processing of

simpler languages.

l Lex Source.

The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are

often omitted. The second %% is optional, but

the first is required to mark the beginning of the

rules. The absolute minimum Lex program is thus

%%

(no definitions, no rules) which translates into a

program which copies the input to the output

unchanged.

In the outline of Lex programs shown

above, the rules represent the user's control deci

sions: they are a table, in which the left column

contains regular expressions (see section 3) and

. " . the" right column' c~ntains actions. program frag

ments to be executed when the expressions' are

recognized. Thus an individual rule might appear

integer printf("found keyword (NT");

to look for the string integer in the input stream

and print the message "found keyword INT"

whenever it appears. In ~is example the host pro

cedural language is C and the C library function

print! is used to print the string. The end of the

expression is indicated by the first blank or tab

character. If the Hction is mer~lya single C

expres.o;;ion, it can just be given on the right side of

the line; if it is compound, or wkes more than a

line, it should be enclosed in braces. As a slightly

more useful example, suppose it is desired to

change a number of words from British to Ameri

can spelling. Lex rules such as

colour prinUtttcolortt);

mechanise printt(ttmechanizett);

petrol printt(ttgastt);

would be a. start. These rules are not quite

enough, since the word petroleum would become

gaseum; a way of dealing with this will be

LEX-5

described later.

3. Lex Regular Expressions.

The definitions of regular expressions are

very similar to those in QED [5]. A regular

expression specifies a set of strings to be matched.

It contains text characters (which match· the

corresponding characters in the' strings being com

pared) and operator characters (which specify

repetitions, choices, and other features). The

letters of the alphabet and the digits are always

text characters; thus the regular expression

integer

matches the string integer wherever it appears and

the expression

a57D

looks for the string a57D.

Operators. The operator chilracters are

"\[]t-?*+I()$/{}%<>

and if they arc to be used as text characters, an

escape should be used. The quotation mark

operator (") indicates that whatever is contained

between a pair of quotes is to be taken as text

characters. Thus

xyz" + +tt

matches the string xyz+ + when it appears. Note

that a part of a string may be quoted. It is harm

less but unnecessary to quote an ordinary text

character; the expression

"xyz+ +tt

is the same as the one above. Thus by quoting

every non-alphanumeric character being used as a

text character, the user can avoid remembering the

list above of current operator characters. and is

safe should further extensions to Lex lengthen the

list

An operator character may also be turned

into a text character by preceding it with \ as in

xyz\+\+

which is another, less readable, equivalent of the

above expressions. Another use of the quoting

mechanism is to get a blank into an expression;

normally, as explained above, blanks or tabs end a

rule. Any blank character not contained with.in []

(see below) must be quoted. Several nonnal C

escapes with \ are recognized: \n is newline. \t is

tab. and \b is backspace. To enter \ itsel f, use \ \.

Since newline is illegal in an expression, \n must

be lIsed: it is not required to escape tab and back

space. Every character but blank, tab, newline and

the list above is always a text character.

Character classes. Classes of characters can

be specificd lIsing the operator pair []. The (on

stmclion [abc] matches a single character, which

may be a, b, 'or c. Within square bmckets, most

operator meanings are ignored. Only three charac

ters are special: these are \ - and t . .The -

character indicates rnnges. For example,

[a-zO-9<>J

indicates the character class containing all the'

LEX-6

lower case letters, the digits, the angle brackets,

and underline. Ranges may be given in either

order. Using - between any pair of characters

which are not both upper case letters, both lower

case letters, or both digits is implementation

dependent and will get a warning message. (E.g.,

[0 - z] in ASCn is many more characters than it is

in EBCDIC). If it is desired to include t.p.e chara~

ter - in a character class, it should be first or last;

thus

[- +0-9]

matches all the digits and the two signs.

In character classes, the t operator must

appear as the first chamcter after the left bracket;

it indicates that the resulting string is to be com

plemented with respect to the computer character

set. Thus

[tabc]

matches all characters except a, b, or c, induding

ul1 special or control characters; or

[ta-zA-Z]

is any character which is not a letter. The \ char

acter provides the usual escapes within character

class brackets.

Arbitrary character. To match almost any

chamcter, the operator character

is the class of all characters except newline.

Escaping into octal is possible although non-.

portable:

... ,.

[\40- \176]

matches all printable characters in the ASCII char

acter set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indi

cates an optional element of an expression. Thus

ab?c

matches either ac or abc.

. ' '?Repealed expressions. RepetitiORS of classes

are indicated by the operators * and + .

is any number of consecutive a characters, includ

ing zero; while

a+

is one or more instances of a. For example,

[a-z]+

is aU strings of lower case letters. And

[A - Za -z][A - Za -zO-9]*

indicates all alphanumeric strings with a leading

alphabetic character. This is a typical expression

for recognizing identifiers in computer languages.

Alternation and Grouping. The operator I

indicates alternation:

(abjcd)

matches either ab or eel Note t.hat parentheses arc

used for grouping, although they are· not necessary

on the outside level;

abjcd

would have sufficed. Parentheses can be used for

more complex expressions:

LEX~7

(ab I cd+)?(eO*

matches such strings as abelel, elelel,' cdel, or

cddd ; but not abc, abcd, or abcdel.

Context sensitivity. Lex will recognize a

small amount of surrounding context. The two

simplest operators for this are t and $. If the first

chamcter of an expression is t , the expression will

'. ": only: be matched at the beginning of a line (after' a

newline character, or at lhe beginning of the input

stream). This can never conflict with the other

meaning of t, complementation of character

classes, since that only applies ~ithin the [] opera

tors. If the very last character is $, the expression

will only be matched at the end of a line (when

immediately followed by newline). The latter

operator is a special case of the / operator chara<~

ter, which indicates trailing context. The expres

sion

ab/cd

m::ltches the string ab, but only if followed by cd.

Thus

ab$

is the same as .

ab/\n

Left context is handled in Lex by start conditions

as explained in section 10. [f a rule is only to be

executed when lhe Lex automaton interpreter is in

start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we

considered "being at lhe beginning of a line" to be

start condition ONE. then the t operator would

be equivalent to

(ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators

{} specify either repetitions (if they enclose

. " numbers) or definiti~t1. expansion (if they enclose a

name). For example

{digit} .

looks for a predefined string named digit and

inserts it at that point in the expression. The

definitions are given in the first part of the Lex

input, before the rules. In contrast,

a{ l,S}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the

separator for Lex source segments ..

4. Lex Actions.

When an expression written as above is

matched, Lex executes the corresponding action.

This section describes some features of Lex which

aid in writing actions. Note that there is a default

action, which consists or copying the input to the

output. This is performed on all strings not other

wise matched. Thus the Lex user who wishes to

absorb the entire inpltt, without producing any

output, must provide rules to match everything.

When Lex is being used with Yacc, this is the nor-

mal situation. One may consider that actions are

what is done instead of copying the input to the

output; thus, in general, a rule which merely

copies can be omitted. Also, a character combina

tion which is omitted from the rules and which

appears as input is likely to be printed on the out

put, thus calling attention to the gap in the rules.

LEX-8

One of the simplest things that can be done

is to ignore the input. Specifying a C null state

ment, : as an action causes this result. A frequent

rule is

[\t\n]

which causes the three spacing characters (blank,

tab, and newline) to be ignored.

Another easy way to avoid writing actions is

the action character I, which indicates that the

action for this rule is the action for the next rule.

The previous example could also hav~ been writ

tcn

"\n"

with the same result, although in different style.

The quotes "rouno \n Hnd \t are not required.

In more complex actions, the user will often

want to know the actual text that matched some

expression like [a- zJ+. Lex leaves this text in

an external churacter array named yytext. Thus,

to print the name found, a rule like

[a- z]+ printf("%s", yytext);

will print the string in yytext. The C function

print! accepts a format argument and data to be

printed; in this case, the format is "print string" (%

indicating data conversion, and s indicating string

type), and the data are the characters in yytext.

So this just places the matched string on the out

put. This action is so common that it may be writ

ten as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action

is just to print the characters found, one might ask

why give a rule, like this one, which merely

specifies the default action? Such rules are often

required to avoid matching some other rule which

is not desired. For example, if there is a rule

which matches read it will normally !"latch the

instances of read contained in bread or readjust;

to avoid this, a IlIle of the· thrm [a- zJ+ is

needed. This is explained further betow.

Sometimes it is more convenient to know

the end of what has been found: hence Lex also

provides a count yy/eng of the number o~ charac

ters matched. To count lx)th the number of words

and the number of characters in words in the

input, the user might write

[a - zA - Z]+ {words+ +; chars + = yyleng;}

which accumulates in chars the number of charac

ters in the words recognized. The last character in

the string matched can be accessed· by

LEX-9

yytex~yyleng -1]

Occasionally, a Lex action may decide that a

rule has not recognized the correct span of charac

ters. Two routines are provided to aid with this

situation. First, yymore() can be called to indicate

that the next input expression recognized is to be

tacked on to the end of this input. Normally, the

next input string would ovelWrite the current entry

in yytext. Second, yyless {n} may be called to

indicate that not all the chamcters matched by the

currently sllccessful expression are wanted right

now. The argument n indicates the number of

characters in yytext to be retained. Further char

acters previollsly matched are returned to the

input. This provides the same sort of lookahead

offered by the / operator, but in a different form.

Example: Consider a language whieh

defines a string as a set of ch.nacters between qllo

lHtioll (") marks. and provides that to include a "

in a string it must be preceded by a \. The regular

expression which matches that is somewhat confus

ing, so that it might be preferable to write

\"[1''']* {

if(yytext[yyleng-l] = = \\')

yymoreO;' ,

else

... normal user processing

}

which will, when faced with a string such as.

"abc\"dej' first match the five characters "abc\;

then the call to yymore() will cause the next part

of the string, "def, to be tacked on the end. Note

. that the final quote terminating the string should

be picked up in the code labeled "normal proc~ss-

ing".

The function yyles!() might be used. to

reprocess text in various circumstances. Consider

.... ,~: the ,C ,problem of di~ting\tishing the ajl1biguity of

"= -a". Suppose it is desired to treat this as

•• = - an but print a message. A rule might be ,

= -[a-zA-Z] {

printf(ttOperator (= -) ambiguous\n");

yyless(yyleng-l);

... action for = - ...

}

which prints a message, returns the letter after the

operator to the input stream, and treats the open!

tor as .. = - ", Alternatively it might be desired to

treat this as"= -a", To do this, just return the

minus sign as well as the letter to the input:

= -[a-zA-Z] {

printf("Operator (= -) ambiguous\n");

yyless(yyleng - 2);

... aclion for = ...

}

will perform the other interpretation. Note that

the expressions for the two cases might more easily

be written

=-/[A-Za-z] ,

in the first case and

LEX-10

=/-[A-Za-z]

in the second; no backup would be required in the

rule action. It is not necessary to recognize the

whole identifier to observe the ambiguity. The

possibility of" = - 3", however, makes

= -/[t \t\n]

a still better rule.

' .. ': . -: .: In;addition to:, theSe routines, Lex also "per

mits access to the I/O routines it uses. They are:

1)

2)

3)

inpulO which returns the next input charac

ter;

output{c) which writes the character c on

the output; and

unput{c) pushes the character c back onto

the input stream to be read later by inpulO.

By deFault these routines are provided as macro

definitions, but the user can override them and

supply private versions. These' routines define the

relationship between external files and internal

characters, and must all be retained or modified

consistently. They may be redefined, to cause

input or output to be transmitted to or from

strange places, including other programs or inter

nal memory; but the character set used must be

consistent in all routines: a value of zero returned

by input must mean end of file; and the relation

ship between unpul and input must be retained or

the Lex lookahead will not work. Lex does not

look ahead at all if it does not have to •. but every

rule ending in + * ? or $ or containing / implies

lookahead. Lookahead is also necessary to match

an expression that is a prefix of another expression.

See below for a discussion of the character set

used by Lex. The standard Lex library imposes a

100 character limit on backup.

Another Lex library routine that the llser

. '. will sometimes' wan&. tt> redefine is yywrap{) which

is caBed whenever Lex reaches an end-of-file: If

yywrap returns a 1, Lex continues with the normal

wrapup on end of input. Sometimes, however. it

is convenient to arrange for more input to arrive

from a new source. In this case, the user should

provide a yywrap which arranges for new input

and returns O. This instmcts Lex to continue pro

cessing. The default yywrap always returns 1.

This routine is also a convenient place to

print tables. summaries, etc. at the end of a pro

gram. Note that it is not possible to write a nor

mal rule which recognizes end-of-file; the only

access to this condition is through yywrap. In fact.

unless a private ~ersion of inputO is supplied a file

containing nulls cannot be handled, since a value

of 0 returned by input is taken to be end-of-file.

5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.

When more than one. expression can match the

current input. Lex chooses as follows:

1) The longest match is preferred.

LEx-ll

2) Among rules which matched the same

number of characters, the· rule given first is

preferred.

Thus, suppose the rules

integer keyword action ... ;

[a-z]+ identifier action ... ;

to be giv~n in that order. If the input is integers,

it is taken as an identifier, because [a-zJ+

matches 8 characters while integer matches only 7.

If the input is integer, both rules match 7 charac

ters, and the keyword rule is selected because it

was given first. Anything shorter (e.g. int) will not

match the expression integer and so the identifier

interpretation is used.

The principle of preferring the longest

match makes rules containing expressions like .*

dangerous. For example,

might seem a good way of recognizing a string in

single quotes. But it is an invitation for the pro

gram to read fiu ahead, looking for a d~stant single

quote. Presented with the input .

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better

rule is of the form

'[t\n]*'

which, on the above input, will stop after '.first'.

The consequences of errors like this are mitigated

by the fact that the . operator will not match new

line. Thus expressions like .* stop on the current

line. Don't try to defeat this with expressions like

[. \nJ + or equivalents; the Lex generated program

will try to read the entire input file, causing inter

nal buffer overflows.

Note that Lex is nonnalJy partitioning the

input stream, not searching for all possible matches

of each expression. This means that each charac

ter is accounted for once and only once. For

example, suppose it is desired to count occurrences

of both she and he in an input text. Some Lex

rules to do this might be

she s+ +;

he h+ +;.

\n

• j

where the last two rules ignore everything besides

he and she. Remember that: does not include

newline. Since she includes he, Lex will l1o~mally

not recognize the instances of he included in she,

since once it has passed a she those characters are

gone.

Sometimes the user would like to override

this choice. The action REJECT means "go do

the next alternative." It causes whatever rule was

second choice after the current rule to be exe

cuted. The position of the input pointer .. is

adjusted accordingly. Suppose the user really

wants to count the included instances .of he:

LEX-12

she {s+ +; REJECT;}

he {h + +; REJECT;}

\n

.'

these rules are one way of changing the previous

example to do just that. After counting each

expression, it is rejected; whenever appropriate,

the other expression will then be counte~. In th~s

example, of course, the user could note that she

includes he but not vice versa, and omit the

REJECT action on he: in other cases, however, it

would not be possible a priori to tell which input

cha mcters were in both classes.

Consider the two rules

a(bc] + { ... : REJECT;}

a[cd] + { ... : REJECT;}

If the input is ab, only the first rule matches, and

on ad only the second matches. The input string

accb matches the first rule for fourch:.tracters and

then the second rule for three characters. In con-

trast. the input aced agrees with the second rule

for four characters and then the first rule for three.

In general. REJECT is useful whenever the

purpose of Lex is not to pnrtition the input stream

but to detect all examples of some items in the

input, and the instances of these items may overlap

or include each other. Suppose a digram table of

the input is desired: normally the digrams overlap,

that is the word the is considered to contain both '

til and he. Assuming a two-dimensional array

named digram to be incremented. the appropriate

source is

%%

[a - z][a - z] {digram[yytext[O)][yytex~1]]+ +; .REJECT;

\n

where the REJECT is necessary to pick up a tetter

pair beginning at every character, rather than at

.,.' every oth.er character.
• •.•. ... '. ." !Io'. _._ ~,

6, Lex Source Definitions.

Remember the format of the Lex source:

{ definitions}

%%

{rules}

%%

{user routines}

So far only the rules have been described. The

user needs additional options. though, to define

variables for use in his program and for use by

Lex. These can go either in the definitions section

or in the rules section.

Remember that Lex is turning the rules into

a program. Any source not intercepted by Lex is

copied int() the generated program. There are

three chlsscs of such thjng.~,

1) Any line which is not part of a Lex rule or

action which begins with a blank or tab is

copied into the Lex generated program.'

Such soul'c~ input prior to the first %% dcl-

imiter will be external to any function in the

LEX~13

code; if it appears immediately after the first

%%, it appears in an appropriate' place for

declarations in the function written by Lex

which contains the actions. This material

must look like program fragments, and

should precede the first Lex rule.

As a side effect of the above. lines which

associated with the name. The name and transla

tion must be separated by at least one blank or

tab, and the name must begin with a letter. The

translation can then be called out by the {name}

syntax in a rule. Using {D} for the digits and {E}

for an exponent field, for example, might abbrevi

ate rules to recognize numbel'S:

"' begin with· a blank or' tab, 'and 'which ton,- "', " ' . .D '. ~ t ,{ . [O-9}

2)

tain a comment, are passed through to the

generated progrmn. This can be used to

include comments in either the Lex source

or the generated code~ The comments

should foHow the host language convention.

Anything included between lines containing

only %{ ,and %} is copied out as above.

The delimiters are discarded. This format

permits entering text like' preprocessor state

ments that must begin in column 1. or copy

ing lines that do not look like programs.

3) Anything after the third %% delimiter,

regardless of formats, etc .• is copied out after

the Lex output.

Definitions intended for Lex are given

before the first %% delimiter. Any line in this sec

tion not contained between %{ and %}, and begin

ing in column 1, is assumed to define Lex substitu

tion strings. rhe format of such Jines is

nam(! translation

and it causes the string given (IS a translation to be

E

%%

{D}+

{D}+ {D}*({E})?

{D}*·· ... {D} + ({E})?

{D}+{E}

[DEde][- +]?{D} +

printt("integer");

Note the first two rules for real numbers; both

require a decimal point and contain an optional

exponent field. but the first requires at least one

digit before the decimctl point and the second

requires"Clt least one digit alter the decinml point.

To correctly handle the problem posed by a For

tran expression such as 35. EQ.I , which does not

contain a real number, a context-sensitive rule

such as

[O-9]+/ EQ prinU("integer");

could he used in addition to the, normal rule for

integers.

The definitions section may also contain

other commands, including the selection of a host

language. a character set table. a list of st.art condi

tions, or adjustments to the default size of arrays

LEX-14

within Lex itself for larger source programs. These

possibilities are discussed below· under "Summary

of Source Format," section 12.

7. Usage.

There are two steps in compiling a Lex

source program. First, the Lex source must be

turned intO a generated program in the host gen-

eral purpose language. Then this program must be

compiled and loaded, usual1y with a library of Lex

subroutines. The generated prograni is on a file

named lex.yy.c. The 110 library is defined ·iil

terms of the C standard library [6].

The C programs generated by Lex are

slightly different on OS/370. because the OS com-

piler is less powerful than the UNIX or GCOS

compilers, and docs less at compile time. C pro-

grams generated on GCOS and· UNIX are the

same.

UNIX. The library is ~lccesscd by the

loader flag -II. So an appropriate set of com-

mands is

lex source cc lex.yy.c -II
The resulting program is placed on the usual file

tLOlIt for later execution. To usc Lex with Vacc

see below. Although the defauH Lex 110 routines

usc the C standard library, the Lex automata

themselves do not do so; if private versions of

input. output and unplit are given, the library can

be avoided.

8. Lex and Yacc.

If you want to use Lex with Yace, note that

what Lex writes is a program named yylexO. the

name required by Yacc for its analyzer. Normally.

the default main program on the Lex library calls

this routine, but if Yace is loaded, and it~ ·main

program is used, Yace will call yylexO. In this

case each Lex 111le should end with

return(token);

where the appropriate token value is returned. An

easy way to get access to Yacc's names for tokens

is to compile the Lex output file as part of the

Yacc output file by placing the line .

include "lex.yy.c"

in the last section of Yacc input. Supposing the

grammar to be named "good" and the lexiCal rules

to be named "better" the UNIX .. command

sequence can just be:

yacc good

lex better

ce y.tab.c -ly -II

The Yacc libntry (-ly) should. be loaded before

the Lex library. to obtain a main program which

invokes the Yacc parser. The generations of Lex

and Yacc progmms can be done in either order.

9. Examples.

As a trivial problem, consider copying an

input file while adding 3 to every positive number

divisible by 7. Here. is a suitable .Lex source pro-

LEX-IS

gram

%%

int k;

[0-.9]+ {

k = atoi(yytext);

if(k%7 = = 0)

prinU("%dtt
• k + 3);

else

printf{"%dtt .k);

}

to do just that. The ntle [0 - 9] + recognizes

strings of digits; aloi converts the digits to binary

and stores the result in k. The operator %

(remainder) is used to check whether k is divisible

by 7; if it is, it is incremented by 3 as it is written

out. It m,~y . be objected that this program wilt

alter such input items as 49.63 or X7. Further

more, it increments the absolute value of all nega

tive numbers divisible by 7. To avoid lhis, just

add a few ·more rules arrer the active one, as here:

%%

int k;

-1[0-9]+ {

rules. and not changed. The if-else has been

replaced by a C conditional expression to save

space; the form a?b:c means "if a then b else c tt.

For an example of statistics gathering, here

is a program which histograms the lengths of

words, where a word is defined as a string. of

letters.

'" : . ~:r ,,; __ .. ' ''. in t l~ngs(J O()]; .

%%

[a-z]+ lengs[yyleng]+ +;

\n

%ro
yywrapO

{

int i;

printf("Lenglh No. words\n");

for(i=O; i<lOO; i+ +)

if (1engs[i] > 0)

printf("%5d% 1 Od\n" ,i.lengs[i);

return(1);

}

This program accumulates the hislogrnm. while

k = atoi(yytext); producing no output. At the end of the input it

printt("%d", k%7 = = O? k +3 : Mnts the table. The final statement relurn(J),·

}

-1[0-9.]+ ECHO;

[A-Za-z][A-Za-zO-9]+ ECHO;

Numerical strings containing a ". to or preceded by

a letter wilt be picked up by one of the last two

indicates that Lex is to perform wrapup. If yywrap

returns zero (false) it implies that further input is

available and the program is to continue reading

and processing. To provide a yywrap that never

returns true causes an infinite loop.

LEX--: 16

As a larger example, here are some parts of

a program written by N. L. Schryer to convert

double precision Fortran to single precision For-

tran. Because Fortran does not distinguish upper

and lower case letters, this routine begins by
o ""

defining a set of classes including both cases of

each letter:

.': .. : - -: ".. .. : ~ oft .~ 0 ,[~]

b [bB]

c [cC]

z [zZ]

An additional class recognizes white space:

W [\t]*

low some mles to change dou ble precision con-

slants to ordinary floating constants.

[0-9)+ {WHd}{W}[+ -]?{W}[O-9]+

[0-9]+ {W}"."{W}{d}{W}[+ -]?{W}[0-9]+

"."{W}[O-9)+{W}{d}{W}[+ -]?{W}[0-9]+ {

/* convert constants */

fo:r(p = yytext; *p ! = 0; p + +)

{ 0

if(*p = = 'd'lI *p = = '0')

*p=+ 'e'- 'd';

ECHO;

}

After the floating point constant is recognized, it is

scanned by the for loop to find the letter d or D.

The first rule changes "double precision" to "real", The program than adds 'e' -'d. which converts it

or "DOUBLE PRECISION" to "REAL". to the next letter of the alphabet. The modified

{dHoHuHbHIHeHWHp}{rl{el{cHiHsHi}{oHn} { constant. now single-precision, is written out again.

printl(yytext[O]= ='d'? "real" : "REAL"); There follow a series of nmnes which mllst be

} respelled to remove their initial d. By using the

Care is taken thl"()ughout this program to preserve array yytext the same action sullices for all the

the case (upper or lower) of the original program. names (only a sample of a . rather long list is given

The conditional operator is used to select the

proper form of the keyword. The next rule copies

continuation card indications to avoid confusing

tJlem with constants:

t" "[t 0] ECHO;

In the regular expression, the quotes surround the

blanks. It is interpreted as "beginning of line, then

five blanks. then anything but blank or zero."

Note the two different meanings of t. There fol-

here).

{dHsHiHn}

{dHcHoHs}

{ d } { s} { q } { r} { t}

{d}{a}{t}{a}~n}

t.

{dHt1{l}{o}{a}{t} .. printl("%s'''yytext+ 1);

Another list of nanies must have initial d changed

to initial a:

LEX-17

{d}{IHo}{g}

{d}{I}{0}{g}10

{d}{m}{i}{n}l

{d}{m}{a}{x}l {

flO] ", , yytextL = + a - d;

ECHO;

}

And one routine must have initial d changed to
.,:

initial r:

{d}1{m}{a}{c}{h} {yytexl[O] = + 'f' - 'd':

To avoid such names as dsinx being detected as

instances of dSin, some final rules pick up longer

words as identifiers and copy some surviving char-

acters:

[A - Za - z][A - Za - zO"": 9]*

[0-9]+

\n

ECHO;
. ·1

Note that this program is not complete; it does not

deal with the spacing problems in Fortran or with

the use of keywords as identifiers.

10. Left Context Sensitivity.

Sometimes it is desirable to have sever~l sets

of lexical rules to be applied at diJT~rent times in·

the input. For example, a compiler preprocessor . . '" ~ ;

might distin.guish preprocessor statements and ~

analyze them differently from ordinary statements.

This requires sensitivity to prior context, and there

are several ways of handling such problems. The.

l' operator, for example, is a prior context opera-

tor, recognizing immediately preceding left context

just as $ recognizes immediately following right

context. Adjacent left . context could be extended,

to produce a facility similar to that for adjacent

right ;context, but it is·· unlikely'. to be as useful,

since often the relevant left context appeared some

time cartier, such as at the beginning of a line.

This section describes three means of deal-

ing with different environments: a simple' use of

flags, when only a few rules change from one

environment to another, the use of start conditions

on rules, and the possibility of making multiple

lexical analyzers all run together. In each case,

there are rules which recognize the need to change

the environment in which the following. input text

is analyzed, and set some parameter 'lo reflect the

change: This may be a flag explicitly tested by the·

user's action· code; stich a flag is the 'simplest way

qf dealing with ~he problem, since Lex is not
. .;, : :~\: . ·td~~'.

involved at all. It may be mor~ convenient, how-

ever, to have Lex remember the flags as initial
.'"

conditions on Ole rules. Any rule may be associ
.1\

aled with a start condition. It witt only be recog-

nized when Lex is in that start condition. The
.. . i\

current s~1rt condition may be changed. at any

time. Finally, jf the sets of rules for the different
,'s

environments are very dissimilar, clarity may .,e.

best achieved by writing several distinct lexical.

. ,

LEX-IS

analyzers, and switching from one to another as

desired.

Consider the following problem: copy the

input to the output, changing the word magic to

first on every line which began with the letter a,

changing magic to second on every line which

began with the letter b, and changing magic to

third on every line which began with the letter c.

All other words and all other lines are left.

unchanged.

These rules are so simple that the easiest

way to do this job is with a flag:

int flag;

%%

ta {flag = 'a': ECHO:}

tb {flag, = 'b'; ECHO:}

tc {flag = 'c'; ECHO:}

\n {flag = 0; ECHO;}.

magic {

switch (flag)

{

case 'a': printf("first"); break;

case 'b': printf("secondto
); break;

case 'c'~ printf("third"); break;

default: ECHO; break;

}

}

should be adequate.

To handle the same problem with start con- .

ditions, each start condition must be introduced to

Lex in the definitions section with a line reading

%Start narnel narne2 ...

where the conditions may be named in any or~er.

The word Start may be abbreviated to s or. S.

!he conditions may be referenced at the head of a

rule with the <> brackets: ,j

.. _ ~_ _.'. " .'. _..: <namel>expression
~ .-.!" -J . '. ~ .. ~. ..._ ... , " •

is a rule which is only recognized when· Lex is in

the start condition namel. To enter a start condi-

tion, execute the action statement

BEGIN namel;

which changes the start condition to namel. To

resume the normal state,

BEGIN 0;

resets the initial condition of the Lex automaton

interpreter. A rule may be active in several start

conditions:

<name 1 ,namc2,namc3>

is a legal prefix. Any rule not beginning with the

<> prefix operator is always active.

The same example as before can be wrillen:

%START AA BB CC

%%

ta {ECHO; BEGIN AA;}

tb {ECHO: BEGIN BB;}

tc {ECHO; BEGIN CC;}

\n {ECHO; BEGIN O;}'

<AA>magic prinU(:,first");

<BB>magic prinU("secondlt
);

LEX~19

(CC)magic printf(ttthirdtt);

where the logic is exactly the same as in the previ

ous method of handling the problem, but Lex does

the work rather than the user's code.

11. Character Set.

The programs generated by Lex handle

character 1/0 only through the routines input, out-

26 Zz

27 .\n

28 +

29

30 0

31 1

"':-.. '": . "': '.: ' -.: ": ;.~ " " " ... ",: ~ . ,.,.".oo... " ~ • - ;,"

put, and unput. Thus the character representation

provided in these routines is accepted by Lex and

employed to return values in yytext For internal

use a character is represented as a small integer

which, if the standard library is used, has a value

equal to the integer value of the bit pattern

representing the character on the host computer.

Normally, the Jetter· a is represented as the same

form as the character constant 'a'. If this interpre

tation is changed, by providing 110 routines which

translate the characters. Lex must be told about it,

by giving a translation table. This bible must be .in

the definitions section, and must be bracketed by

lines containing only "%T". The table contains

lines of the ronn .

{integer} {character string}

which indicate the value associated with euch char-

acter. Thus the next example

%T

1 Aa

2 Bb

Sample character table.·

maps the lower and upper case letters together into

the integers 1 through 26, newline into 27. + and

- into 28 and 29, ·and the digits into 30 through

39. Note the escape for newline. If a table is sup-

plied, every character that is to appear either in

the nales or in any valid input must .be included in

the table. No character may be assigned the

number 0, and no character may be assigned a

bigger number thanlhe size of the hardware char-

acter set.

12. Sum.mary of Source Format.

. The general form of a Lex source file is:

{definitions}

%%

. {rules}

{user subroutines}

The definitions section contains a combination of

LEX-20

1)

2)

3)

4)

5)

6)

Definitions, in the fonn "name space trans

lation".

Included code, in the form "space code".

Included code. in the form

%{

code

%}

Start conditions. given in the fonn

%S· namel name2 ...

Character set tables, in the form

%T

number space character-string

%T

Changes to internal array sizt-'S. in the form

%x nnn

where nnn is a decimal integer representing

an array size and x selects the p'arameter as

follows:

Letter Parameter

p positions

n states

e tree nodes

a transitions

k packed chamcter classes

0 output array size

Lines in the rules section have the form "expres

sion action" wh~re the action may be continued

on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following

. operators:

x

"x"

\x

[xy]

[x-z]

[tx]

tx

<y>x

x$

the character "x"

an "x". even if x is an operator.

an "x", even if x is an operator.

the character x or y.

the characters x. y or z.

any character but x.

any character but newlin~.

an x at the beginning of a line.

an x when Lex is in start condition y.

an x at the end of a line ..

x? an optional x.

x*

x+

xly

(x)

x/y

{xx}

0,1.2 •... instances of x.

1.2,3 •... instances of x.

an x or a y.

an x.

an x but only if followed by y.

the translation of xx from the definitions section.

x{m,n} m through n occurrences of x

13. Cave~lts and Bugs.

There are pathological expressions which

produce exponential growth of the tables when

converted to deterministic machines; fortunately,

they are rare.

REJECT does not rescan the input; instead

it remembers the results of the previous scan. This

means that if a rule with trailing context is found,

.and REJECT executed, the user must not have

LEX-21

used unput to change the characters forthcoming

from the input stream. This is the only restriction

on the user's ability to manipulate the not-yet

processed input

1.4. Acknowledgments.

6.

Thompson, QED Text Editor, Computing

Science Technical Report No.5, 1972, Belt

Laboratories, Murray Hill, NJ 07974.

D. M. Ritchie, private communication. -See

also M. E. Lesk, The Portable C Library.

As should be obvious from the above, the Computing Science Technical Report No.

outside of Lex is patterned on Yacc and the inside 31, Bell Laboratories, Murray Hill, NJ

on Aho's string matching routines. Therefore,' ... -..,; -. ~ ~." JrL974

both S. C. Johnson and A. V. Aho are really origi-

nators of much of Lex, as well as debuggers of it

Many thanks are due to both.

The code of the current version of Lex was

designed, written. and debugged by Eric Schmidt

15. References.

1. B. W. Kernighan and D. M. Ritchie, The C

Programming Language, Prentice-.Hall, N.

J. (1978).

2. B. W. Kernighan. Raifor: A Preprocessor

for a Rational Fortran. Sofiw<lre ~ Practice

and Experience,S. pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler

Compiler. Computing Science T~chnical

Report No. 32. 1975. Bell LulxlnltOries,

Murray Hill, NI 07974.

4. A. V. Aho and M. I. Corasick, Efficient

String Matching: An Aid to Bibliographic

Search. Comm. ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.

SED - A Non-interactive Text Editor

Lee h~ AI eM ahon

Context search
Editing

ABSTRACT

Sed is a non-interacti vc context edit(;I~' th~(runs em" the UNlxt 'operating Sys';'
tern. Sed is designed to be especially useful in three cases:

1) To edit files too large fhr comfortable interactive editing;
2) . 1'0 edit any size me when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perfonn multiple 'global' editing functions efficiently in one pass

through the input

This memorandum constitutes a manual for users of sed.

August 15. 1978

t UNIX is a trademark of Bell Laboratorics.

Introduction

SED - A Non .. interactive Text Editor

Lee E. McMahon'

Context search
Editing

Sed is a non-interactive context editor designed to be especially useful in three case~:

. . . .' 1): '1''0 edit files too . large for corrifort<ibte 'interactive editing; • t. t

2) To edit any size file when the sequence of editing commands is too complicated to be
comfortably typed in interactive mode;

3) To perfbrm multiple 'global' editing functions efficiently in one pass through the input

Since only a few lines of the input reside in core at one time, and no temporary files are used, the
effective size of file that can be edited is limited only by tile requirement that the input and output
fit simultaneously into available secondary storage.

Complicated editing sCIipts can be created separately and given to sed as a command file. For
complcx edits, this saves considerable typing, and its attendant errors. Sed running from a com
mand file is much more efficient than any interactive editor known to the author, even if that editor
can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of tlw line-at-a-time operation), and lack of immediate verification that a command has
done what was intended.

Sed is a lineal descendant of the UNIX editor, ed Because of the differences between interactive
and non-interactive operation, considerable changes have been made between ed and sed; even
confirmed users of ed will frequently be surprised (and prohably chagrined), if they rashly use sed
without reading Sections 2 and 3 of this documcnt. The most striking family resemb.lance between
the two editors is in the class of patterns ('regular expressions') they recognize~ the code for tnCltch
ing palterns is copied almost verbatim from the code for cd. and the description of regular expres
sions in Section 2 is copied almost verbatim from the UN IX Programmer's Manual[l]. (Both code
and description were written by Dennis M. Ritchie.)

1. Ovcrall OI)Cration
Sed by default copies the standard input to the standard output, perhaps perfOiming one or more
editing commands on each line before writing it to the output. This behavior may be modified by
flags on the command line; see Section 1.1 below.

The general format of an editing command is:

[address l,address2J[functionJ[tlrguments]

One or both addresses may be omitted: the format of addresses is given in Section 2. Any number
of blanks or tabs may separate the addresses (i'om the function. The function must be present; the
available commands are discussed in Section 3. The arguments may be required or optional,
according to which function is given: again, they are discussed in Section 3 under each individual.
function.

Tab characters and spaces at the beginning of lines are ignored.

- 2 -'

1.1. Command-line FblgS

Three flags are recognized on the command line:
en: tells sed not to copy all lines, but only those specified by p functions or p flags after s

functions (see Section 3.3);
-c: teBs sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing com-

mands, on,e to a tine.

1.2. Ordcr of Application of Editing Commands
Before any editing is done (in fact, before any input file is even opened), all the editing commands
are compiled into a form which will be moderately efficient during the execution phase (when the
commands are actual1y applied to lines of the input file). The commands arc compiled in the order
in which they are encountered; this is generally the order in which they will be attempted at execu
tion time. The commands are applied one at a time; the input to each command is the output of
all preceding commands. .

The default linear order of application of editing commands can be changed by the flow-of~c()ntrol
commands, t and b (see Section 3). Even when the order of application is changed by these com
mands, it is still true that the input line to any command is the output of any previously applied
command.

1.3. Pattcrn-space
The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line
of the input text, but more than one line can be read into the pattern space by using the N com
mand (Section 3.6.).

1.4. Examples
Examples are scattered throughout the text. Except where otherwise noted, the examples aU
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where I\lph, the sacred river. ran
Through caverns measureless to man
l)own to a su nless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Exmnple:
The command

2q

wilt quit after copying the first two lines of the input. The output will be:

InXalladu did Kubla Khan
1\ stately pleasure dome decree:

2. ADOnESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by addresses.
Addresses may be cither line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces e { } ')(Sec. 3.6.).

- 3 -

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter is
incremented; a line-number address matches (selects) the input line which causes the internal
counter to equal the address line-number. The counter runs cumulatively through multiple input
files; it is not reset when a new input file is opened
As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses
A context address is a pattern ('regular expression') enclosed in slashes ('I'). The regular expres
sions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression, and
matches that character.

2) /\ circumflex '1" at the beginning of a' tcgtilar"cxpressfon matches the null eharacter at
the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the end
of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period': matches any character except the telminal newline of the pattenl space.
6) A regular expression followed by an asterisk '*' matches any number (including 0) of

adjacent occurrences of the regular expression it follows.
7) /\ string of characters in square brackets '[r matches any character in the string, and no

: others. If. however. the first character of the string is circumflex '1", the regular
expression matches any character except the characters in the string and the termi
nal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matc~es the con
catenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\(' and '\)' is identical in effcct to the una
dorned regular expression, but has side-effects which are described under the s
command below and specification 10) immediately below.

10) The expression '\{r means the same string of characters matched by an expression
enclosed in '\(' and "\)' earlier in the same pattern. Here d is' a single digit; the
string specified is that beginning with the dth occurrence of '\(' counting from the
left. For example. the expression "1'\(.*\)\1' matches a line beginning with two
repeated occurrences of the same string.

It) The null regular expression standing alone (e.g., 'I I') is equivalent to the last regular
expression compiled. .

To use one of the special characters (1' $. * [] \ I) as a literal (to match an occurrence of itself in
the input). precede the special character by a backslash '\'.
For a context address to 'match' the input requires that the whole pattern within the address match
some portion of the pattern space. .

2.3. Number of Addresses· .
The commands in the next scction can have O. 1. or 2 addresses. Under each command the max
imum number of allowed addresses is given. For a command to have more addresses than the
maximum al10wed is considered an error.

If a command has no addresses. it is applied to every line in the input
If a command has one addres.~, it is applied to all lines which match that address.

If a command has two addres.'ies, it is applied to the first line which. matches the first address, and
to al1 subsequent lines until (and including) rhe first subs.eqllcnt line which matches thc second
address. Then an attempt is made on subsequent lines to again match the first address, and the

- 4.-

process is repeated.

Two addresses are separated by a comma.

Ex~'mples:

lanl
lan.*anl
l'tan!

matches tines 1, 3, 4 in our sample text
matches line 1
matches no lines.

1,/ matches all tines
1\,/ matches line 5
Ir*anl
I\(an \). *\11

matches lines 1,3, 4 {number = zero!}
matches line 1

-3;: FUNCTIONS, _., .-; --;

All functions are named by a single character. [n the fol1owing summary, tile maximum number of
allowable addresses is given enclosed in parentheses, then the single character function name, possi
ble arguments enclosed in angles « », an expanded English translation of the single-character
name, and finally a description of what each function does. The angles around the arguments arc
not part of the argument, and should not be typed in actual editing cOlnmands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those lines
matched by its address(es). .

It also has the side effect that no further commands are attempted on the corpse of
a deleted line; as soon as the d function is executed, a new line is read from the
input, and the list of editing comlnands is fe-started from the beginning on the
new line.

(2)n -- next line

(l)a\

The 11 function reads the next line from the input, replacing the current tine. The
current line is written to the output if it should be. The list of editing commands
is continued following the 11 command.

<text> -- append lines

(l}i\

The a function causes the argument <text) to be written to the output after the line
matched by its addres.'). The a command is inherently multi-line; a must appear at
the end of a Jine, and <text) may contain any number of lines. To preserve the
one-command-to-a-line fiction, the interior newlines must be hidden by a backslash
character C\') immcdiately preceding the newline. The <text) (lrgument is tcr
minated by the first unhidden newline (lhe first one not immcdiately preceded by
bac kslash).

Once an a function is successfully executed, <text) will be written to the output
regardless of what later commands do to the line which triggered it. The trigger
ing line may be deleted entirely; <text> wil1 still be written to the output

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line--number counter.

<text> -- insert lines

The i function behaves identically to the a function, except that <text> is written

(2)c\

- 5 -

to the output before the matched line. All other comments about the a function
apply to the i function as well.

<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them with
the lines in <text>. Like a and i. c must be followed by a newline hidden by a
backslash; and interior new lines in <text> must be hidden by backslashes. .

The c command may have two addresses, and therefore select a range of lines. If
it does, all the tines in the range arc deleted, but only one copy of <text> is written
to the output, not one copy per line deleted. As with a and i. <text> is not scanned
for address matches, and no editing commands are attempted on it. It docs not
change th~ line-numbe~ c.o~nt~r: . . .

. ,.. • '. '.' < ,. '. 7 t 'I.

After a line has been deleted by a c function, no further commands are attempted
on the corpse.

If text is appended after a line by a or r functions. and the line is subsequently
changed. the text inserted by the c function will be placed bejiJre the text of the a
or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions. leading blanks and tabs will disappear,
as always in sed commands: To get leading blanks and tabs into the output, precede the first
desired blank or tab by a backslash; the backslash will not appear in the output.

EX~lmple:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

]n Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Dt)wn to a sunless sea.

I n this particular case, the same effect would be produced by either of the two following command
lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern><replacement><flags> -- substitute

The s function r~places part of a line (selected by <pattern» with <replacement>.
] t can best be read:

Substitute for <pattern>, <replacement>

The' <pattern> argument contains a pattern, exactly like the patterns in addresses

Exmllplcs:

- 6 - .

(see 2.2 above). The only difference between <pattern> and a context address is
that the context address must be delimited by slash ('/') characters; <pattern) may
be delimited by any character other than space or newline.

By default, only the first string matched by <pattern> is replaced, but see the g flag
below.

The <replacement> argument begins immediately after the second delimiting char
acter of <pattern>, and must be followed immediately by another instance of the
delimiting character. (Thus there are exactly three instances of the delimiting char
acter.)

The <replacement> is not a pattern, and the characters which arc special in pat
terns do not have special meaning in <replacement>. Instead, other characters are
special:

& is replaced by the string matched by <pattern)

\d (where d is a single digit) is replaced by the dth substring matched by
partli of <pattern> enclosed in '\(' and '\)'. If nested substrings
occur in <pattern>. the dth is determined by counting opening
delimiters e\(').

As in patterns. special characters may be made literal by preced
ing them with backslash ("\').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of <pat
tern> in the line. After a sllccessful substitution. the scan for the
next instance of <pattern) begins just after the end of the inselted
characters; characters put into the line from <replacement> are not
rescanned.

p -- print the line if a sllccessful replacement was done. The p f1,lg causes
. the line to be written to the output if and only if a substitution

was actually made hy the s function. Notice that if several s func
tioilS. each f{)lIowed by a fJ flag. successfully substitute in the same
input line. multiple copies of the line will be written to the out
put: one for each successllil substitution.

w <filename) -- write the line to a file if a slIccessful replacement was
done. The w flag causes lines which are actually substituted by
lhe' s flmction to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten; if not, it is
created.

A single space must separate wand <filename>.

The possibilities of multiple. somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after w
flags and w functions (see below), combined.

The following command. applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the. file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;7:]/*P& * / gp

produces:

-7-

A stately pleasure dome decrye*P:* .
Where Alph*P,* the sacred rlver*P,* ran
Down to a sunless sea*P. *

Final1y, to illustrate the effect of the g flag, the command:

IX/s/anl AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IX/s/anl AN/gp

produces:

In XA N adu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print

The print function writes the addressed lines to the standard output file. They are
written at the time the p function is encountered, regardless of what succeeding
editing commands may do to the lines. .

(2)w (filename) -- write on (filename>

The write function writes the addressed lines to the file named by <filename>. If
the file previously existed. it is overwritten; if not, it is created. The lines are writ
ten exactly as they exist when the write function is encountered for each line,
regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand <filename>.

A maximum of ten different files may be mentioned in write functions and w flags
after s functions. combined.

(.1)r (filename> -- read the contents of a file

The read function reads the content~ of <filename>, and appends them after the
line matched by the address. The file is read and appended regardless of what
subsequent editing commands do to the line which matched its address. If r and a
functions are executed on the same line, the text from the a functions and the r
functions is written to the output in the order that the functions are executed.

Exactly one space must separate the r and <filename>.]f a file mentioned by a r
function cannot be opened, it js considered a null file, not an error, and no diag
nostic is given.

- 8 ,-

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care should
be takcn that no more than ten files be mentioned in w functions or flags; that number is reduced
by one if any r functions are present. (Only one read file is open at one time.)

Examples
Assume that the file 'notc!' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Gcnghiz (Chingiz) Khan. and founder of the
Mongol dynasty in China.

Then the following command:

IKublalr note1

.pr<;>9u~~~:: , , ; ,: ' . "
In Xanadu did Kubla Khan

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

1\ stately pleasure dome decree:
Where I\lph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions
Three functions, a11 spelled with capital letters, deal specially with pattern spaces containing imbed
ded newlines; they arc intended principally to provide pattern matches across lines in the input

(2)N --' Next line

The next input line is appended to the current line in the pattel1l space: the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)1) -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern space.
If the pallern space becomes empty (the only newline was the terminal newline),
read another line from the input. In any case, begin the list of editing commands
again from it') beginning. .

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattenl space.

The P and J) functions are equivalenl to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

3.5. Hold mul Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h' -- hold pattern space

The h functions copies the content\) of the pattern space into a hold area {destroy
ing the previous contents of the hold area}.

(2)1"1 -- Hold pattern space

The II function appends ,the contents of the pattern space to the contents of the
hold area; the fOlmer and new contents are separated by a newline.

- 9 - .

(2)g .. get contents of hold area

The g function copies the contents of the hold area into the pattern space (destroy
ing the previous contents of the pattern space).

(2)G .. Get contents of hold area

The G function appends the contents of the hold area to the contents of the pattern
space; the. former and new contents are separated by a newline.

(2)x .:.. exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example
The commands

Ih
lsI did.*11
Ix
G
s/\n/ :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where I\lph. the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-or-Control Functions
These functions do no editing .on the input tines, but control the app1ication of functions to the
lines selected by the address palt. '

(2)! .. Don't

The !JOIl't command causes the ncxt command (written on the same line). to be
applied to all and only those input lines lIol selected by the adress patt.

(2){ _. Grouping

The grouping comrnand • {' causes the next set of commands to be applied (or not
applied) as a hlock to the input lines selected by the addrcsses of the grouping
command. The first of the commands under control of the grouping may. appear
on lhe smne line as the 'r or on the next line.

rille group of commands is tcnninated by a matching 'J' standing on a line by
itself.

Groups can be nested.

(O):<label> -. place a label

The label function marks a place in the list of editing commands which may be
refcl1'cd to by b and I functions. The <label> may be any sequence of eight or
fewcr characters; if two different colon functions have identical labels, a compile
time diagnostic will he generated, and no execution attempted.

(2)b<labcl> .. branch to label
. .

The branch function causes the sequence of editing commands being applied to .

· 10-

the current input line to he restnrtcd immediately after the place where a colon
function with the same <label> was encountered. I r no colon function with the
same lahel can be found aOer all the editing c()mrnand~ have been compiled, a
compile time di(\gnoslic is produced, and no execution is nttempted.

A b fUl1ctio'n with no (label> is taken to be a branch to the end.of the list of edit
inn commands; whatever should be uOlle with Lhe current input line is done, nnd
another input line is read; (he list of ediling commands is restarted from the begin
ning on fhe new tine.

(2}t<I41bel> -- test substitutions

The I function testli whether all), successful substitutions have been made on the
current input line: if so, it branches to <Iahel>: if not, it docs nothing. The nag
which indicates that a successful substi~lItion has been executed is reset by:

.. ." .. .:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(1) = -- equals

'111e = function writes to the standard output the line number of the line matched
by its aduress.

(l)q -- quit

ncfl'rcncc

The q function causes the current line to be written to t.he output Of it should be),
any appended or read text to be written. and execlItion to be terminated.

[I] Ken Thompson and Dennis M. Ritchie. 711c UNIX Programmers ltlallual. Bell Laboratories,
1978.

Awk - A Pattern Scanning and Processing Language
(Second Edition)

Aljred V. Aho

Brian W. Kemighall

Peter J. ~Veinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those Ilatterns. A wk. makes certain data selec
tion "nd transformation operations easy to express~ for example, the awk. pro
gram

length> 72

prints all input lines whose length exceeds 72 characters~ the program

NF % 2 = = 0

prints all lines with an even number of fields~ and the program

($1 = 10g($1); print I

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean com binations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc
tions as in patterns, as well as arithmetic and string expressions and assign
ments, if-else, while, for statements, and multiple output streams.

This report contains a user's guide, a discussion of the design and imple
mentation of awk., and some timing statistics.

September 1, 1978

1. Introduction
Awk is a programming language designed

to make many common information retrieval and
text manipulation tasks easy to state and to per
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified~ this action will be performed on each
line that matches the pattern.

Readers familiar with the UNlxt program
grep I will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

{print $3, $2\

prints the third and second columns of a table in
that order. The program

$2 - fAISlef

prints all input lines with an A, 8, or C in the
second field. The program

$1 ! == prey {print; prey - $1 \

prints all lines in which the first field is different
from the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string pro
gram on the set of named files, or on the stan
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

tUNIX is a Trademark of Bell Laboralories.

awk - f pfile [files]

1.2. Program Structure

An awk program is a sequence of state
ments of the form:

pattern
pattern

action
action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat
terns can be printed several times.) If there is no
pattern for an action, then the action is per
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1 .3. Records and Fields

Awk input is divided into "records" ter
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record .is available in a variable
named NR.

Each input record is considered to be
divided into "fields." Fields are normally
separated by white space - blanks or tabs - but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument -Fe may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line· is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

(print I
prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used~ for example

(print NR, NF, $0)

prints each record preceded by the record
number and the number of fields.

Output may be diverted to multiple files~
the program

(print $1 > "faa 1"; print $2 > "fo02" I
writes the first field, $1, on the file fool, and
the second field on file fo02. The > > notation
can also be used:

print $1 > > "faa"

appends the output to· the file faa. (In each
case, the output files are created if necessary,)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only)~ for instance,

print I "mall bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, .. ,

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10Id\n", $1, $2

prints $1 as aOoating poinf number 8. digits
wide, with two after the decimal point, and $2 as
a IO-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2 .

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN (FS - ":" I
... rest of program ...

Or the input lines may be counted by

END (print NR I
If BEGIN is present, it must. be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

Ismithl

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name "smith ". If a line contains "smith"
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu
lar expression forms found in the UNIX text edi
tor ed l and grep (without back-referencing). In
addition, awk allows parentheses for grouping, I
for alternatives, + for "one or more", and? for
"zero or one", all as in lex. Character classes
may be abbreviated: [a - zA - ZO - 91 is the set
of all letters and digits. As an example, the awk
program,

I[Aa]ho I [Ww1einberger I [Kk1ernighanl

will print all lines which contain any of the
names "Aho," "Weinberger" or "Kernighan,"
whether capitalized or not.

Regular expressions (with the extensions
iisted above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

1\1.*\11

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari
able matches a regular expression (or does not
match it) with the operators - and 1-. The
program

$1 - lijJ]ohnl

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury", and so on.
To restrict it to exactly ijJ10hn, use

$1 - rijJ10hn$1

The caret ~ refers to the beginning of aline or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres
sion involving the usual relational operators <,
< ==," 1-, > """, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 == == a
prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 > == "s"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators II (or), &&
(and), and·! (not). For example,

$1 > == "s" && $1 < "t" && $1 1== "smith"

selects lines where the first field begins with "s",
but is not "smith". && and II guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
also consist of two patterns separated by a
comma, as in

patl. pat2 (...)

In this case, the action is performed for each line
between an occurrence of patl and the next
occurrence of pat2 (inclusive). For example,

Istartl. Istopl

prints all lines between start and stop, while

NR ==== 100, NR -- 200 (...)

does the action for lines 100 through 200 of the
input.

3. Actions

An aH'k action is a sequence of action
statements terminated by newlines or semi
colons. These action statements can be used to
do a variety of bookkeeping and string manipu
lating tasks.

3.1. Bullt .. ln Functions

Awk provides a "length" function to com
pute the length of a string of characters. This
program prints each record. preceded by its
length:

Iprint length, $0)

length by itself is a "pseudo-variable" which
yields the length of the current record~

length(argument) is a function which yields the
length of its argument, as in the equivalent

Iprint length($O), $01

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 II length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
I) and is at most n characters long. If n is omit
ted, the substring goes to the end of s. The
function index(s1, s2) returns the position
where the string s2 occurs in s 1, or zero if it
does not.

The function sprintf(f, e1, e2, ...) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

x == sprintf("%8.2f % 1 Old", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x == 1

x is clearly a number, while in

x == "smith"

it is clearly a string. Strings are converted to
numbers and vice versa wlienever context
demands it. For instance,

x - "3" + "4"

assigns 7 to x. Strings which cannot be inter-

preted as numbers in a numerical context will
generally have numeric value zero. but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero~ this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

I s1 +- $1; s2 +== $2 I
ENOl print s1, s2)

Arithmetic is done internally in floating
point. The arithmetic operators are +, -, ., I,
and % (mod). The C increment + + and decre
ment - - operators are also available, and so
are the assignment operators + ==, - ==, • ==,
1-, and % ==. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace tfte first field
with a sequence number like this:

($1 == NR; print)

or accumulate two fields into a third, like this:

I $1 == $2 + $3; print $0.1

or assign a string to a field:

{ if ($3 > 1000)
$3 == "too big"

print

which replaces the third field by "too big" when
it is, and in any case prints the record.

Field references may be numerical expres
sions, as in

I print $i, $(1 + 1), $(1 + n) I
Whether a field is deemed numeric or string
depends on context~ in ambiguous cases like

if ($1 ==== $2) ...

fields are treated as strings.

Each input line is split into fields automati
cally as necessary. It is also possible to split any
variable or string into fields:

n == split(s, array, sep)

splits the the string s into array[11 , array[n].
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator~ otherwise -FS is used as the
separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($l $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prints the two fields separated by .. is". Vari
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub
scripts may have any non-null value, including
non-numeric strings. As an example of a con
ventional numeric subscript, the statement

x[NR) = $0

assigns the! current input record to the NR-th ele
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro
gram

(x[NR) = $0 I
END { ... program ... I

The first action merely records each input line in
the array x.

Array elements may be named by non
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro
gram

lapplel {x["apple"] + + I
lorangel { x["orange"] + + I
END { print x["apple"], x["orange"]

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-ot-Control Statements

Awk provides the basic flow-of-control
statements it-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i = 1
while (j < == NF) {

print $i
++i

The for statement is also exactly that of C:

tor (j = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the tor state
ment which is suited for accessing the elements
of an associative array:

for (i in array)
slatemellf

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur
ing the loop.

The expression in the condition part of an
it, while or for can include relational operators
like <, < =, >, > =, = = ("is equal to"), and
! = ("not equal to"); regular expression matches
with the match operators - and !-; the logical
operators II, &&, and !; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or tor; the con
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Gre", the first and sim
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed I provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

Lex) provides general regular expression
recognition capabilities. and. by serving as a C
program generator. is essentially open-ended in
its capabilities. The use of lex, however.
requires a knowledge of C programming. and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli
cations.

A wk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con
venient numeric processing, variables, more gen
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines~ it is unique in this
respect.

A wk also tries to integrate strings and
numbers completely, by treating all quantities as
bblh string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk. went
into deciding what awk. should or should not do
(for instance, it doesn't do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ
ing or debugging the code. We· have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example. the
absence of declarations and implicit initializa
tions, while probably a bad idea for a general
purpose programming language, is desirable in a
language that is meant to be used for tiny pro
grams that may even be composed on the com
mand line.

In practice, awk. usage seems to fall into
two broad categories. One is what might be
called "report generation" - processing an input
to extract counts. sums. sub-totals. etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc~4 the lexical analysis is done
by lex~ the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An owk. program is
translated into a parse tree which is then directly
executed by a simple interpreter.

A K'k was designed for ease of use rather
than processing speed~ the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless. the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-I 1170 of the UNIX
programs K'C, grep, egrep, /grep, sed, lex, and
awk. on the following simple tasks:

I. count the number of lines.

2. print all lines containing "doug".

3. print all lines containing "doug", "ken"
or "dmr".

4. print the third field of each line.

S. print the third and second fields of each
line, in that order.

6. append all lines containing "doug",
"ken", and "dmr" to files "jdoug",
"jken", and "jdmr", respectively.

7. print each line prefixed by "Iine-
number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already men
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command Is -I; each line has the form

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 charac-
ters. Times for lex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools we, sed, or the programs
in the grep family, but is faster than the more
general tool lex. In all cases, the tasks were
about as easy to express as awk programs as pro
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

References

I. K. Thompson and D. M. Ritchie, Ufo;/),

Programmer's Manual, Bell Laboratories
(May 1975>' Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (I978).

3. M. E. Lesk, "Lex - A Lexical Analyzer
Generator," Comp.Sci. Tech. Rep. No.
39, Bell Laboratories, Murray Hill, New
Jersey (October 1975),

4. S. C. Johnson, "Yacc - Yet Another
Compiler-Compiler," Compo Sci. Tech.
Rep. No. 32, Bell Laboratories, Murray
Hill, New Jersey (July 1975),

• G:l1\

Program 2 3 4 5 6 7 8
we 8.6

grep 11.7 13.1
egrep 6.2 11.5 11.6
j'grep 7.7 13.8 16.1

sed 10.2 11.6 15.8 29.0 30.5 16.1
lex 65.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8

awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.1

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally
too long to show.

AWK:

1. END (print NRI

'2. Idougl

3. Ikenldougldmrl

4. (print $31

5. (print $3, $21

6. Ikenl (print >"jken")
Idougl (print >"jdoug"1
Idmrl (print >"jdmr"1

7. (print NR ": " $01

8. (sum == sum
END (print sum 1

SED:

1. $==

2. Idoug/p

3. Idoug/p
Idoug/d
Ike nIp
Iken/d
Idmr/p
Idmr/d

+ $41

4. Ir J- [J-r J- []-\([" J-\) .-/5/1\ 1 Ip

5. 1("]- []-\([- J*\) [J-\U-]*\) .*/511\2 \ 1 Ip

6. Iken/w jken
Idoug/w jdoug
Idmr/w jdmr

LEX:

1. %(
int i;
%1
%%
\n i++;

%%
yywrap() (

printf("%d\n", 0;

2. %%
".-doug.-$

\n

printt("%s\n", yytext);

