UNIX™ TIME-SHARING SYSTEM:

UNIX PROGRAMMER'’S MANUAL

Seventh Edition, Volume 24

January, 1979

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

Copyright 1979, Bell Telephone Laboratories, [Incorporated.
Holders of a UNIX™ software license are permitted to copy this
document, or any portion of it, as necessary for-licensed use of
the software, provided this copyright notice and statement of
permission are inciuded.

UNIX Programmer’s Manual
Volume 2 — Supplementary Documents

Séventh Edition
January 10, 1979

This volume contains ddcumems which supplement the informationA contained in Volume
1 of The uvnixt Programmer’s Manual. The documents here are grouped roughly into the areas
of basics, editing, language tools, document preparation, and system maintenance. Further
general information may be found in the Bell System Technical Journal special issue on UNIX,
July-August, 1978.

Many of the documents cited within this volume as Bell Laboratories internal memoranda
or Computing Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating sys-
tems like GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

General Works -
1. Tth Edition UNIX -~ Summary.
A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.
The original UNIX paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners — Second Edition. B. W. Kernighan.
An introduction to the most basic use of the system.

4. A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.
An easy way to get started with the editor.

S. Advanced Editing on UNIX. B. W. Kernighan.
The next step.

6. An Introduction to the UNIX Shell. S. R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.

\/ 7. Learn — Computer Aided Instruction on UNIX. M. E. Lesk and B. W. Kernighan.

Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software.

‘Document Preparation

8. Typing Documents on the UNIX System. M. E. Lesk.
Describes the basic use of the formatting tools. Also describes **—ms'’, a standard-
ized package of formatting requests that can be used to lay out most documents
(including those in this volume).

TUNIX is a Trademark of Beil Laboratories.

A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry

9. }
Describes EQN, an easy-to-learn language for doing high-quality
mathematical typesetting. ,

10. TBL - A Program to Format Tables. M. E. Lesk.

A program to permit easy specification of t.abular material for
typesetting. Again, easy to learn and use.

11. Some Applications of Inverted Indexes on the UND(System. M. E. Lesk. ,
Describes, among other things, the program REFER which fills in
bibliographic citations from a data base automatically.

12. NROFF/TROFF User's Manual. J. F. Ossanna.

'The basic formatting program.

13. A TROFF Tutorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such
things. ,

Programming ‘

14. The C Programming Language - Reference Manual. D. M. Ritchie.

/" 15.
V16,
v 1.

18,

Official statement of the syntax and semantics of C. Should be sup-
plemented by The C Programming Language, B. W. Kernighan and D.
M. Ritchie, Prentice-Hall, 1978, which contains a tutorial introduction
and many examples.

Lint, A C Program Checker. S. C.Johnson.
Checks C programs for syntax errors, type violations, portability
problems, and a variety of probable errors.

Make - A Program for Maintaining Computer Programs. S. I. Feldman.
Indespensable tool for making sure that large programs are properly
compiled with minimal effort.

UNIX Programming. B. W. Kermghan and D. M. Ritchie.
Describes the programmming interface to the operating system and
the standard 1/0 library.

A Tutorial Inntroduction fo ADB. J. F. Maranzano and S. R. Bourne.
How to use the ADB Debugger.
Supporting Tools and Languages

/20

21.

22.

19. YACC: Yet Another Compiler-Compiler. S. C. Johnson.

Converts a BNF specification of a language and semantic actions writ-
ten in C into a compiler of the language. :

LEX - A lexical Analyzer Generator. M. E. Lesk and E. Schmidt.
~ Creates a recognizer for a set of regular expressions; each regular
expression can be followed by arbitrary C code which will be executed
when the regular expression is found.

A Portable Fortran 77 Compiler. S. I. Feldman and P. J. Weinberger.
- The first Fortran 77 compiler, and still one of the best. NOTE: This
document has been moved to Yolume 2c of the UNIX Programmer's
Manual.

Ratfor - A Preprocessor for a Rational Fortran. B. W. Kernighan.
Converts a Fortran with C-like control structures and cosmetics into
real, ugly Fortran.

The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor. Cobol, and
in its own right.

v 2
v 2.

26.
27.

28.

“3.

SED — A Non-interactive Text Editor. L. E. McMahon.
A variant of the editor for processing large inputs.
AWK — A Pattern Scanning and Processing Language. A. V. Aho, B. W Kernighan and

P. J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

DC — An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.

A super HP caiculator, if you don’t need floating point.

BC — An Arbitrary Precision Desk-Calculator Language. L. L. Cherry and R. H. Morris.
A front end for DC that provides infix notation, control flow, and built-in functions.

UNIX Assembler Reference Manual. D. M. Ritchie.
The ultimate dead language.

Implementation, Maintenance, and Miscellaneous

29.

30.

31.

32.

3.

34.

3s.

36.

37.

38.

Setting Up UNIX — Seventh Edition. C. B. Haley and D. M. Ritchie.
How to configure and get your system running.

Regenerating System Software. C. B. Haley and D. M. Ritchie.
What do do when you have to change things.

UNIX Implementation. K. Thompson.
How the system actually works inside.

The UNIX 1/0 System. D. M. Ritchie.
How the 1/0 system really works.

A Tour Through the UNIX C Compiler. D. M. Ritchie.
How the PDP-11 compiler works inside.

A Tour Through the Portable C Compiler. S. C. Johnson.
How the portabie C compiler works inside.

A Dial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.
Describes UUCP, a program for communicating files between UNIX systems.

UUCP Implementation Description. D. A. Nowitz.
How UUCP works, and how to administer it.
On the Security of UNIX. D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.

Password Security: A Case History. R. H. Morris and K. Thompson.
How the bad guys used to be abie to break the password algorithm, and why they
can't now, at least not so easily.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the /earn program for interpret-
ing CAI scripts on the UNIXT operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the egn program for mathematical typing,
the ‘““—ms’’ package of formatting macros, and an introduction to the C pro-
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc-
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

+UNIX is a Trademark of Bell Laboratories.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E., Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXT facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts, and (2) the lesson scripts themselves. At present there are six scripts:

— basic file handling commands

- the UNIX text editor ed

- advanced file handling

— the-eqn language for typing mathematics

— the **—ms’’ macro package for document formatting

- the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow-
ing:

(@) students are forced to perform the exercises that .re in fact the basis of training in

any case;

(b) students receive immediate feedback and confirmation of progress;
(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them,

(e) the lessons may be improved individually and the improvements are immediately
available to new users; .

(f) since the student has access to a computer for the CAl script there is a place to do
exercises;

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAl is used without a ‘‘counselor’’ or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAI has been used for
many years in a variety of educational areas.!-2.3 The use of a computer to teach itself, how-
ever, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is a Trademark of Beil Laboratories.

-2.

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer. but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation; they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right. rein-
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say »
How many files are there in the current directory? Type “‘answer N'', where N is the number
of files.
The student is expected to respond (perhaps after experimenting) with
answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of
the input or output are monitored. and the student types ready when the task is done. Figure !
shows a sample dialog that illustrates the last of these, using two lessons about the cat (con-
catenate, i.e.. print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les-
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
“speed’” rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully; it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly ‘‘under-
stands’’ what he or she is doing: accordingly, the current learn scripts only measure perfor-
mance, not comprehension. ‘If the student can perform a given. task, that is deemed to be
““learning.’"¢

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure; the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently smalil pieces. Anything not absorbed in a single chunk is just subdi-
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

-3.

Figure 1: Sample dialog from basic files script
(Student responses in italics; 'S’ is the prompt)

A file can be printed on your terminal
by using the "cat” command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food” in this directory. List it
by saying "cat food™;, then type “ready”.
S cat food

this is the file

named food.
S ready

Good. Lesson 3.3a (1)

Of course. you can print any file with "cat”.
In particular, it is common to first use

"s" to find the name of a file and then “cat”
to print it. Note the difference between

"s", which tells you the name of the file,
and "cat”, which tells you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready”.
$ cat President

cat: can't open President

$ ready

Sorry, that’s not right. Do you want to try again? yes

Try the problem again.

Sis

.ocopy

X1

roosevelit

$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat” command can also print several files

at once. In fact, it is named "cat” as an abbreviation
for "concatenate”....

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone, (The lessons of Fig-
ure 1 are from the third track.) The multipie tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up

-4-

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis-
cussed.in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong: in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a ‘‘no’’ answer to the ‘Do you want to try again?”’
question in Figure 1 will pass to the next lesson. It is still true that /earn will not tell the stu-
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu-
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort ‘‘you can’t cross a ditch in two jumps.”
Since writing CAI scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives.to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts. ' -

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
- little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. .Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis-
tance, however, need not be highly skilled.

-5

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the /s, car, mv, rm, ¢p and diff commands. [t also deals with
the abbreviation characters *, ?, and [] in file names. It does not cover pipes or I/0 redirec-
tion, nor does it present the many options on the /s command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks.
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc-
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.5 All editor features except encryption, mark names and
‘> in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. [t is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description- in the reference manual is
2,572 words long. The ed tutorialé is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort. ’

The advanced file handling script deals with /s options, 1/0 diversion, pipes, and support-
ing programs like pr, we, rail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro-
vides much less of a full three-track sequence than they do. On the other hand, since it is per-
ceived as ‘‘advanced,” it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high l2vel of performance.

A fourth script covers the egn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics. for instance the DASI 300 and similar Diablo-
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The =—ms script for formatting macros is a short one-track only script. The macro pack-
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con-
verted to follow the order of presentation in The C Programming Language,” but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introduction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc-

_tional materials, it should provide a useful supplement to existing tutorials and reference manu-
als.

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 fes-
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
every one failed. There have been 86 distinct users of the files script. and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some-
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ-
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les-
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least 2 minute. Thus, as a rough approx-
imation, a UNIX system could support ten students working simuitaneously with some spare
capacity. :

§. The Script Interpreter.

, The learn program itself merely interprets scripts. It provides facilities for the script writer

to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by Jearn is shown .in Figure 2. There is one parent directory
(named /ib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named /og), and one in which user sub-
directories are created (named play). The subject directory contains master copies of all les-
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson » is
called Ln. :

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept eisewhere.

The script writer must provide certain basic items in each lesson:
(1) the text of the lesson;
(2) the set-up commands to be executed before the user gets control;
(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and
(5) alist of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

Figure 2: Directory structure for learn

lib
play
student !
files for studentl...
student2
files for student2...
files
LO.1a lessons for files course
LO.1b
editor

(other courses)

log

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.; (2) text to be printed or put in a file; (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user's work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; thxs is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,
#print }
causes printing of any text that follows, up to the next line that begins with a sharp.
#print file
prints the contents of file; it is the same as car file but has less overhead. Both forms of #print

have the added property that if a lesson is failed, the #print will not be executed the second
time through; this avoids annoying the student by repeating the preamble to a lesson.

#create filename
creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user ‘
gives control to the student; each line he or she types is passed to the shell for execution. The

#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes mlerpretauon of the script.

© #copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets
the script writer interrogate the student's responses upon regaining control.

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat”
to print it. Note the difference between
"1s", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready”.
#create rooseveit

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail =3 .ocopy >X1
#cmp X1 roosevelt

#log
#next
3.2b2
#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student’s actual input.
#pipe ‘
#unpipe
Normally the student input and the script commands are fed to the UNIX command interpreter
(the ‘‘shell”) one line at a time. This won't do if, for exampie, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyour is also desired the copyour brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.
#cmp filel file2
is an in-line implementation of cmp, which compares two files for identity.
#march stuff
The last line of the student’s input is compared to swuff, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #march lines; this provides a convenient mechanism for handling

multiple *‘right’’ answers. Any text up to a # on subsequent lines after a successful #maich is
printed; this is illustrated in Figure 4, another sample lesson. .

#bad stuff

This is similar to #march. except that it corresponds to specific failure answers: this can be
used to produce hints for particular wrong answers that have been anticipated by the script

Figure 4: Another Sample Lesson

#print

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match mS

#match .m$S

"m3" is easier.

#log

#next

63.1d 10

writer.

#succeed
#1ail

0 . . . \ -
print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘‘commands’ yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student’s work can begin. This can be
done either by the built-in commands above, such as #march and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:
#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

#log

by itself writes the logging information‘ in the logging directory within the learn hierarchy, and
is the normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main-
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim-
ited to 10 and the minimum to 0. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu-
dent fails, a false status is returned and the program reverts to the previous lesson and tries

-10 -

another alternative. If it can not find another alternative, it skips forward a lesson. The stu-
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu-
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #nex: line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of
response, .or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious aiready, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itseif. Although some parts of learn might be transferable to.
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro-
gram, and made more use of the facilities of the UNIX system itself. For example, file com-
parison was done by creating a ¢cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les-
son was to extract the archive into the working directory (typically 4-8 files), then #print the
lesson text.

The combination of such things made /earn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #creare can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula-
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com-
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of ‘‘substitutable argument” is hard to grasp, and requires help.
(d) They enjoy the system for the most part. Motivation matters a great deal, however.

[t takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

<11 -

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini-
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the betier the result. For example. if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.*

One disadvantage of training with /earn is that students come to depend completely on the
CAI system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them; the scripts ought to be altered 1o recommend suit-
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student’s
viewpoint, the most serious is that lessons still crop up which simply can’t be passed. Some-
times this is due to poor explanations, but just as often it is some error in the lesson itself — a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer’'s. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les-
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) — it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some seripts, notably eqn, are intrinsically slow. egn, for
example, must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental — some commands are sufficiently global in their effect
that /earn currently does not allow them to be executed at all. The most obvious is ¢d, which
changes to another directory. The prospect of a student who is learning about directories inad-
vertently moving to some random directory and removing files has deterred us from even writ-
ing lessons on cd, but ultimately lessons or such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox,
and M. J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

* We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficuities with such probiems.

-12-

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1.

D. L. Bitzer and D. Skaperdas, ‘‘The Economics of a Large Scale Computer Based Educa-
tion System: Plato IV,” pp. 17-29 in Compurer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

D. C. Gray, J. P. Huiskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
“COALA - A Minicomputer CAI System,”” [EEE Trans. Education E-20(1), pp.73-77
(Feb. 1977).

P. Suppes, ““On Using Computers to Individualize Instruction,’” pp. 11-24 in The Com-
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

B. F. Skinner, “Why We Need Teaching Machines,” Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

K. Thompson and D. M. Ritchie, Unrx Programmer’s Manual, Bell Laboratories (1978).
See section ed (I).

B. W. Kernighan, 4 tutorial introduction to the UNIX tex: editor, Bell Laboratories internal
memorandum (1974).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Limt is a command which examines C source programs, detecting a
number of bugs and obscurities. It enforces the type rules of C more strictly
than the C compilers. It may also be used to enforce a number of portability
restrictions invoived in moving programs between different machines and/or
operating systems. Another option detects a number of wasteful, or error
prone, coastructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them
for consistency.

The separation of function between lint and the C compilers has both his-
torical and practical rationale. The compilers turn C programs into executable
files rapidly and efficiently. This is possible in part because the compilers do
not do sophisticated type checking, especially between separately compiled pro-
grams. Lint takes a more giobal, leisurely view of the program, looking much
more carefully at the compatibilities.

This document discusses the use of lins, gives an overview of the imple-
mentation, and gives some hints on the writing of machine independent C
code. :

July 26, 1978

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction and Usage

Suppose there are two C! source files, filel.c and file2.c, which are ordinarily compiled and
loaded together. Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi-
cal reasons) enforce them. The command

lint —p filelc file2.c

will produce, in addition to the above messages, additional messages which relate to the porta-
bility of the programs to other operating systems and machines. Replacing the —p by —=h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying —hp gets the whole works.

The next several sections.describe the major messages; the document closes with sections
discussing the implementation -and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

A Word About Philosophy

Many of the facts which l/int needs may be impossible to discover. For example, whether
a given function in a program ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous ‘‘halting problem,’ kncwi to be recur-
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called; this is not neces-
sarily so, but in practice is quite reasonable.)

Lint tries to give information with a high degree of relevance. Messages of the form ‘o
might be a bug’ are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi-
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages
which lint produces.

Unused Variables and Functions .

As sets of programs evoive and develop, previously used variables and arguments to func-
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary, and yet not be removed from the source. These ‘‘errors of commis-
sion” rarely cause working programs to fail, but they are a source of inefficiency, and make
programs harder to understand and change. Moreover, information about such unused vari-
ables and functions can occasionally serve to discover bugs; if a function does a necessary job,
and is never called, something is wrong!

«2.

Lint complains about variables and functions which are defined but not otherwise men-
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced; thus the statement

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they
can be discovered by adding the —x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar inter-
faces; frequently, some of the arguments may be unused in many of the calls. The —v option
is available to suppress the printing of complaints about unused arguments. When =v is in
effect, no messages are produced about unused arguments except for tHose arguments which
are unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undeﬁned variables is more dis-
tracting than helpful. This is when lint is applied to some, but not all, files out of a coliection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The —u flag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult
to do well; many algorithms take a good deal of time and space, and still produce messages
about perfectly valid programs. Lint detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable constitutes a ‘‘use,” since the
actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true flow of control need not be discovered. It does
mean that /int can complain about some programs which are legal, but these programs would
probably be considered bad on stylistic grounds (e.g. might contain at least two goto’s).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of
bugs.

Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will
complain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect-
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach-
able code which linr does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachabie statement is not usually complained about by /int; a break state-
ment that cannot be reached causes no message. Programs generated by yacc,? and &specxally
lex,3 may have literally hundreds of unreachable break statements. The —O flag in the C

-3.

compiler will often eliminate the resulting object code inefficiency. Thus, these unreached
statements are of little importance, there is typically nothing the user can do about them, and
the resulting messages would clutter up the linr output. If these messages are desired, /int can
be invoked with the —b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly
use function ‘“‘values’’ which have never been returned. Lint addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both
return(expr); '
and
retumn ;
statements is cause for alarm; lint will give the message
function name contains return(e) and return

The most serious difficuity with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f(a)l ‘
if (a) return (3);
’g();,

Notice that, if a tests false, f wili call gand then return with no defined return value; this will
trigger a complaint from line. If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also
accounts for a substantial {raction of the *‘noise’’ messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is
sometimes, or always, unused. When the value is always unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a coupie of
occasions in ‘“‘working’’ programs; the desired function value just happened to have been com-
puted in the function return register!

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The addi-
tional checking is in four major areas: across certain binary operators and implied assignments,
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (?:), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly, except that arrays of x’s can, of
course, be intermixed with pointers to x’s.

The type checking rules also require that, in structure references, the left operand of the
—> be a pointer to structure, the left operand of the . be a structure, and the right operand of

.

-4.

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions. '

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in

“type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are =, ini-
tialization, = =_ == and function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p=1;
where pis a character pointer. Lint will quite rightly complain. Now, consider the assignment
p = (char *)1;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The —c¢ flag controls the
printing of comments about casts. When —c is in effect, casts are treated as though they were
assignments subject to complaint, otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-11, characters are signed quantities, with a range from —128 to 127. On
most of the other C implementations, characters take on only positive values. Thus, linr will
flag certain comparisons and assignments as being illegal or nonportable. For example, the
fragment ’

char ¢;

if((c -;etchar()) <0)..

works on the PDP-11, but will fail on machines where characters always take on positive
values. The real solution is to declare ¢ an integer, since gerchar is actually returning integer
values. In any case, lint will say ‘‘nonportable character comparison’”,

A similar issue arises with bitfields; when assignments of constant values are made to
bitfields, the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con-
sider that a two bit field declared of type int cannot hold the value 3, the problem disappears if
the bitfield is declared to have type unsigned.

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. This may
happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
resuits may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the —a flag.

Strange Constructions
Several perfectly legal, but somewhat strange, constructions are flagged by lint; the mes-

sages hopefully encourage better code quality, clearer style. and may even point out bugs. The
—h flag is used to enable these checks. For example, in the statement

P+t
the « does nothing; this provokes the message ‘‘null effect” from /int The program fragment

unsigned x ;

iflx<0)..
is clearly somewhat strange; the test will never succeed. Similarly, the test

if(x>0)..
is equivalent to

if(x!'=0)
which may not be the intended action. Limt will say ‘‘degenerate unsigned comparison’’ in
these cases. If one says

if(11=0) ...
lint will report ‘‘constant in conditional context’’, since the comparison of 1 with 0 gives a con-
stant resuit. :

Another construction detected by lint involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statements

if(x&077 ==10) ...
or

x<<2 + 40
probably do not do what was intended. The best solution is to pareathesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the <=h flag is in force lint complains about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is con-
sidered by many (including the author) to be bad style, usually unnecessary, and frequently a
bug.

Ancient History

There are several forms of older syntax which are being officially discouraged. These fall
into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, ==, ...) could cause ambiguous
expressions, such as

a =-—1,;

which could be taken as either
a=-—1;

or
a = —]1;

The situation is especially perplexing if this kind of ambiguity arises as the resuit of a macro
substitution. The newer, and preferred operators (=, —=_ etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned

operators.
A similar issue arises with initialization. The older language allowed

int x 1;

to initialize xto 1. This also caused syntactic difficuities: for example,
int x (—-1);

looks somewhat like the beginning of a function declaration:
int x (y){...

and the compiler must read a fair ways past x in order to sure what the declaration really is..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x = -=1;
This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others,
due entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even ward boun-
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message ‘‘possible
pointer alignment problem’’ results from this situation whenever either the —p or —h flags are
in effect. ‘ :

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine dependent. For example, on machines (like the PDP-11) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-left; on
machines with a stack running forward, left-to-right seems most attractive. Function calls
embedded as arguments of other functions may or may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign-
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in fact, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For
example, the statement

ali] = bli++];
will draw the complaint:
warning: / evaluation order undefined

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable
C Compiler® 3 which is the basis of the IBM 370, Honeywelil 6000, and Interdata 8/32 C com-
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main-
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

-7

which is passed to a code generator, as the other compilers do, lint produces an intermediate file
which consists of lines of ascii text. Each line contains an external variable name, an encoding
of the context in which it was seen (use, definition, declaration, etc.), a type specifier, and a

“source file name and line number. The information about variables local to a function or file is
collected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about exter-
nal names is collected onto an intermediate file. After all the source files and library descrip-
tions have been collected, the intermediate file is sorted to bring ail information collected about
a given external name together. The second, rather small, program then reads the lines from
the intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint.

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host
operating system. This means that the implementation of C tends to follow local conventions
rather than adhere strictly to UNIXt system conventions. Despite these differences, many C
programs have been successfully moved to GCOS and the various IBM installations with little
effort. This section describes some of the differences between the lmplemematxons, and
discusses the lint features which encourage portability. '

Uninitialized external variables are treated dxﬁ'erently in different implementations of C.
Suppose two files both contain a declaration without initialization, such as

inta,

outside of any function. The UNIX loader will resoive these declarations, and cause only a sin-
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is
not feasible (for various stupid reasons!) so each such declaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint is invoked with the —p flag, it will
detect such multiple definitions.

A related difficulty comes from the amount of information retained about external names
during the loading process. On the UNIX system, externally known names have seven
significant characters, with the upper/lower case distinction kept. On the IBM systems, there
are eight significant characters, but the case distinction is lost. On GCOS, there are only six
characters, of a single case. This leads: to situations where programs run on the UNIX system,
but encounter loader problems on the IBM or GCOS systems. Lint —p causes all external sym-
bols to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX
system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on
GCOS. Moreover, character strings go from high to low bit positions (“‘left to right”’) on
GCOS and IBM, and low to high (‘‘right to left’) on the PDP-11. This means that code
attempting to construct strings out of character constants, or attempting to use characters as
indices into arrays, must be looked at with great suspicion. Lintis of little help here, except to
flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected.
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits). The muain problems are likely to arise in shifting or masking. C now supports a bit-field
facility, which can be used to write much of this code in a reasonably portable way. Frequently,
portability of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing

TUNIX is a Trademark of Bell Laboratories.

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

x &= ~ 077,

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-11, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-11 hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro-
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities has been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, lint has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than /int. There may be valid rea-
sons for ‘‘illegal’ type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com-
municating with lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob-
lems. ’ ' B

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don’t work.

The first directive is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lin, this can be asserted by the
directive .

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, the directive

/* NOSTRICT */
can be used; the situation reverts to the previous defauit after the next expression. The —v
flag can be turned on for one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by the
directive '

/* VARARGS */

- preceding the function definition. In some cuses, it is desirable to check the first several argu-
ments, and leave the later arguments unchecked. This can be done by following™ the
VARARGS keyword immediateiy with a digit giving the number of arguments which should be
checked; thus,

/* VARARGS2 ¥/ ’
will cause the first two arguments to be checked, the others unchecked. Finally, the directive
/* LINTLIBRARY */

at the head of a file identifies this file as a lnbrary declaration file; this topic is worth a section by
itself, :

" Library Declaration Files
Lint accepts certain library directives, such as

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and
ARGSUSED directives can be used to specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file, but are not used on a source file,
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the
source files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which con-
tains descriptions of the programs which are normally loaded when a C program is run. When
the -p flag is in effect, another file is checked containing descriptions of the standard I/0 library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters
of programming style, and partially because users usually don’t notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if /int incorrectly complains about some-
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirablie, but what checking is appropriate, and how to carry it out, is still to be deter-
mined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for
a special version of the preprocessor to be constructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The centrai problem with lint is the packaging of the information which it collects. There
are many options which serve only to turn off, or slightly modify, certain features. There are

-10 -

pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one.
The compiler concentrates on quickly and accurately turning the program text into bits which
can be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen-
trate at one stage of the programming process solely on the aigorithms, data structures, and
correctness of the program, and then later retrofit, with the md of lint, the desirable properties
of universality and portability.

- 11«

References

1. B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

2. _ S. C. Johnson, ‘‘Yacc — Yet Another Compiler-Compiler,”” Comp. Sci. Tech. Rep. No.

: 32, Bell Laboratories, Murray Hill, New Jersey (July 1975).

3., M. E. Lesk, ““Lex — A Lexical Analyzer Generator,”* Comp. Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, ‘“UNIX Time-Sharing System: Portability of C Programs
and the UNIX System,” Bell Sys. Tech. J. 57(6) pp. 2021-2048 (1978).

5. 8. C. Johnson, “A Portabie Compiler: Theory and Practice,” Proc Sth ACM Symp. on

Principles of Programming Languages, (January 1978).

-12-

Appendix: Current Lint Options A

The command currently has the form

lint [=options] files... library-descriptors...

The options are
Perform heuristic checks
Perform portability checks
Don’t report unused arguments
Don’t report unused or undefined externais
Report unreachable break statements.
Report unused external declarations
Report assignments of long to int or shorter.
Complain about questionable casts
No library checking is done
Same as b (for historical reasons)

“ I3 6 P M T s <€ 9

Make — A Program for Maintaining Computer Programs

S. 1. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
Make provides a simple mechanism for maintaining up-to-date versions of pro-
grams that result from many operations on a number of files. It is possible to
tell Make the sequence of commands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a-change is made in any part of the program, the Make command
will create the proper files simply, correctly, and with a minimum amount of
effort. '

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The description file really defines the graph of dependencies; Make does
a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for converient administration.

August 15, 1978

Make — A Program for Maintaining Computer Programs

S. 1. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

It is common practice to divide large programs into smailer, more manageable pteces
The pieces may require quite different treatments: some may need to be run through a macro
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc[l]
or Lex{2]). The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files: depend on
which others, which files have been modified recently, and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session, one
may easily lose track of which files have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will resuit in a2 program that will not
work, and a bug that can be very hard to track down. On the other hand, recompiling every-
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file, the simple command :

make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last ‘*make’’. In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the maake command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think = edit — make — test ...

Make is most useful for medium-sized programming projects; it does not solve the prob-
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features

The basic operation of make is to update a target file by ensuring that all of the files on
which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To illustrate, let us consider a simple example: A program named prog is made by compil-
ing and loading three C-language files x.c, y.¢, and =¢ with the /S library. By convention, the
output of the C compilations will be found in files named x.o, v.0, and zo. Assume that the
files x.c and y.c share some declarations in a file named defs, but that z.c does not. That is, x.c

and v.c have the line

#include "defs"
The following text describes the relationships and operations:

prog : x.0 y.0 2.0
¢c X.0 Y0 z0 —IS —o prog

X.0 y.0: defs
If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied description file (as
above), file names and ‘‘last-modified’’ times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ‘‘.0" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.0 and y.o depend on the file defs. From the file system, make discov-
ers that there are three ‘‘.¢" files corresponding to the needed *‘.0" files, and uses built-in
information on how to generate an object from a source file (i.e., issue a ‘‘cc —¢”* command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make's innate knowledge:

prog : Xx.0 y.0 2.0
¢ X.0 y.0 z0o —IS —o prog

X.0 : x.c defs

¢ —C X.C
y.0: y.c defs
»; cc =c y.c
z0: 2c
¢ =¢ z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited. x.c and y.c
(but not z.¢) would be recompiled, and then prog would be created from the new **.0" files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog. : .

If no target name is given on the make command line, the first target mentioned in the
description is created: otherwise the specified targets are made. The command /

make x.0

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions: otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and substitute macros.
Thus, an entry ‘‘save’ might be included to copy a certain set of files. or an entry ‘‘cleanup”

-3.

might be used to throw away unnesded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and listings.

AMake has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name by a doilar sign: macro names longer
than one character must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:

S(CFLAGS)

The last two invocations are identical. SS is a doilar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: S+, $@, S?, and S<. They will be discussed later. The following fragment
shows the use:

OBJECTS = x.0y.0 2.0
LIBES = —=IS
prog: S(OBJECTS)
cc S(OBJECTS) S(LIBES) —o prog

The command

make

loads the three object files with the /S library. The commaund

make "LIBES= —|| —|S"

loads them with both the Lex (**=1I") and the Standard (‘*—IS"") libraries, since macro
definitions on the command line override definitions in the description. (It is necessary to
quote arguments with embedded blanks in UNiXt commands.)

The following sections detail the form of description files and the command line, and dis-
cuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency
information, and executable commands. There is also a comment convention: all characters
after a-shurp (#) are ignored, as is the sharp itse!f. Blank lines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
the last character of a line is a backslash, the backslash, newline, and following blanks and tabs
are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters foilowing the equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

tUNIX is a Trademark of Bell Laboratories.

2 = xyz
abc = —|l —=ly —IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the nuil string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

target! [target2 . ..] :[:] [dependentl . ..] [; commands] [# .. .]
{(tab) commands] [#. .] :

[tems inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters **+"* and **?"* are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi-
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a com-
mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com-
mand line is printed and then passed to 2 separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the **—i"" flags has been specified on the make command line, if
the fake target name *‘.IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX commands return meaningless status).
Because each command line is passed (o a separate invocation of the Shell, care must be taken
with certain commands (e.g., ¢d and Shell control commands) that have meaning only within a
single Shell process: the results are forgotien before the next line is executed.

Before issuing any commaund, certain macros are set. S@ is set 10 the name of the file to0
be “*made’. $? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below), $< is the name of the related file
that caused the action, and S+ is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ‘. DEFAULT"" are used. If there is no such name, make
prints a2 message and stops.

Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description
file names. and target file names.

make [flags] [macro definitions] [targets]

.5.

The following summary of the operation of the command explains how these arguments are
interpreted. .

First. all macro definition arguments (arguments with embedded equal signs) are anaivzed
and the assignments made. Commaund-line macros override corresponding definitions found in
the description files.

Next. the flag arguments are examined. The permissible flags are

—i lIgnore error codes returned by invoked commands. This mode is entered if the fake tar-
get name “*.IGNORE™ appears in the description file.

-s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name “*.SILENT" appears in the description file.
—r Do not use the built-in rules.

—n No execute mode. Print commands, but do not execute them. Even lines beginning with
an @’ sign are printed.

-t Touch the target files (causing them to be up to date) rather than issue the usual com-
mands.

—q Question. The make command returns a zero or non-zero status code dependmg on
whether the target ﬁle is or is not up to date.

—p Print out the complete set of macro definitions and target descriptions

—d Debug mode. Print out detailed information on files and times examined.

—f Description file name. The next argument is assumed to be the name of a description
file. A file name of ‘="' denotes the standard input. If there are no "*—f"" arguments,
the file named makefile or Makefile in the current directory is read. The contents of the
description files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they
are done in left to right order. If there are no such arguments, the first name in the description
files that does not begin with a period is **made”".

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to
supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

.0 Object file

.c C source file

.0 Efl source file

.r Ratfor source file

S Fortran source file

.5 Assembier source file

XY Yacc-C source grammar

wr Yacc-Ratfor source grammar
.ye Yacc-Efl source grammar

A Lex source grammar

The following diagram summarizes the defauit transformation paths. If there are two paths
connecting a pair of suffixes. the longer one is used only if the intermediate file exists or is
named in the description. ~

Pl S

L .5y oyr

N .I .yr . ye

If the file x.0 were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x./, that grammar would be run through Lex before compil-
ing the result. However, if there were no x.c but there were an x./, make would discard the
intermediate C-language file and use the direct link in the graph above. _

It is possibie to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the ‘“‘newcc’ command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS = -0"
causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain
the make command itself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

-7

Description file for the Make command

P = und =3 |opr —=r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o

LIBES= —iS
LINT = lint =p
CFLAGS = -0

make: S(OBJECTS)
cc S(CFLAGS) S(OBJECTS) S(LIBES) =0 make
size make

S(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: S(FILES) # print recently changed files
pr S?|SP
touch print

test:
make —dp|grep =v TIME >1lzap
/usr/bin/make —dp | grep —v TIME >2zap
diff 1zap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
S(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a S(FILES)

Make usually prints out each command before issuing it. The following output resuits from
typing the simple command

make

in a directory containing only the source and description file:

cc —¢ version.c

¢ —¢ main.c

¢c =—c¢ doname.c

¢C —c misc.c

cc —c files.c

cc —c¢ dosys.c

yacc gram.y

myv y.tab.c gram.c

¢c —c gram.c

cc version.o main.o doname.o misc.o files.o dosys.o gram.o —IS —o make
13188 +3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits

.8-

results from the *‘size make'" command. the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The *‘print”
entry prints only the files that have been changed since the last ‘‘make print’’ command. A
zero-length file prine is maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the files changed since print was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P = opr —sp”
or
make print "P= cat >zap"

Suggestions and Warnings

The most common difficuities arise from make’s specific meaning of dependency. If file
x.c has a *“‘#include "defs"" line, then the object file x.0 depends on defs; the source file x.c
does not. (If defs is changed. it is not necessary to do anything to the file x.c, while it is neces-
sary to recreate x.0.)

To discover what make would do, the **—n"" option is very useful. The command

make —=n

orders make to print out the commands it would issue without actually taking the time to exe-
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the **—t'* (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, make updates the modification times on the affected file.
Thus, the command

make —ts

(**touch silently'’) causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of make and destroys all memory of the
previous relationships.

The debugging flag (‘*—d'*) causes make to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

Ack'nowledgments

1 would like to thank S. C. Johnson for suggesting this approach to program maintenance
control. 1 would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development of make.

References

1. S. C. Johnson, **Yace — Yet Another Compiler-Compiler’*, Bell Laboratories Computing
Science Technical Report #32, July 1978.

2. M. E. Lesk, **Lex = A Lexical Analyzer Generator’’, Computing Science Technica
Report #39, October 1975. ‘

-9.

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the **—r"" flag is used. this table is not
used.

The list of suffixes is actually the dependency list for the name ‘‘.SUFFIXES'". make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a **./"
file 10 a **.0" file is thus *‘.r.0”". If the rule is present and no explicit command sequence has
been given in the user’s description files, the command sequence for the rule *.r.0"" is used. If
a command is generated by using one of these suffixing rules. the macro S+ is given the value
of the stem (everything but the suffix) of the name of the file to be made. and the macro $< is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for **.SUFFIXES™ in his own description file;
the dependents will be added to the usual list. A **.SUFFIXES' line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed).

The following is an excerpt from the default rules file:

SUFFIXES: 0oc.er.f.y.yr.ye.ls
YACC=yacc
YACCR=yacc —r
YACCE=yacc —e
YFLAGS =
LEX =lex
LFLAGS=
CCm=cc
AS=3s ~
CFLAGS =
RC=ec
RFLAGS =
EC=ec
EFLAGS =
FFLAGS =
..0:
S(CC) S(CFLAGS) —c¢ 38<
.e.0.r.o.fo:
S(EC) S(RFLAGS) S(EFLAGS) S(FFLAGS) —c S$<

5.0
S(AS) —o 3@ S<

y.o:
S(YACC) S(YFLAGS) S<
'$(CC) S(CFLAGS) —c y.tab.c
rm y.tab.c
mv y.tab.o S@

y.c:

S(YACC) S(YFLAGS) S<
mv y.tab.c S@

UNIX Programming — Second Edition

Brian W. Kernighan
~ Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIXt system. The -
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard 1/0 library. The topics discussed include

® handling command arguments
o rudimentary 1/0; the standard input and output
® the standard 1/0 library; file system access
® low-level 1/0: open, read, write, close, seek
® processes: exec, fork, pipes
® signals - interrupts, etc. ‘
There is also an appendix which describes the standard 1/0 library in detail.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating system
in a non-trivial way. This includes programs that use files by name, that use pipes. that invoke
other commands as they run, or that attempt to catch interrupts and other signals during execu-
tion.

The document collects material which is scattered throughout several sections of The UNIX
Programmer’s Manual (1] for Version 7 UNIX. There is no attempt to be compiete; only gen-
erally useful material is dealt with. It is assumed that you will be programming in C, so you
must be able to read the language roughly up to the level of The C Programming Language (2].
Some of the material in sections 2 through 4 is based on topics covered more carefully there.
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made
available to the function main as an argument count axgc and an array argv of pointers to
character strings that contain thé arguments. By convention, argv[0] is the command name
itself, so argc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.)

main(arge, argv) /* echo arguments #/
int arzge;
char rargv(];
{
int i;

for (L = 1; i < arge; i++)
printf ("%s%xc", argv(i], (i<azxge-1) ? ’ ' : ’'\n’);
}

argv is a pointer to an array whose individual elements are pointers to arrays of characters;
each is terminated by \0, so they can be treated as strings. The program starts by printing
argv (1] and loops until it has printed them all.

The argument count and the arguments are parameters t0 main. [f you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The ‘‘Standard Input’ and *‘Standard Output”

The simplest input mechanism is to read the ‘“‘standard input,” which is generally the
user’s terminal. The function getchar returns the next input character each time it is called.
A file may be substituted for the terminal by using the < convention: if prog uses getchar,

then the command line
prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog | prog
provides the standard input for prog from the standard output of otherprog.

getchar returns the vaiue EOF when it encounters the end of file (or an error) on what-
ever you are reading. The value of EOF is normally defined to be -1, but it is unwise to take
any advantage of .that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character ¢ on the “standard output,” which is also by
default the terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >out£iie

writes the standard output on ocutfile instead of the terminal. outfile is created if it
doesn’t exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

prog | otherprog
puts the standard output of prog into the standard input of otherprog.

The function print£, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order; the output
will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same
mechanism as getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs 1/0 with
getchar, putchar, scanf, and printf may be entirely adequate, and it is aimost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For exampie, the following program strips out
all ascii control characters from its input (except for newline and tab).

#include <stdio.h>

main() /% cecstrip: strip non-graphic characters »/
{ .

int ¢;

while ((c = getchar()) != EOF)

if ((c>= 7 ' 86 ¢ € 0177) ||l ¢ == ’\t’ || ¢ == ‘\n’)
putchar(c);

exit(0);

}

The line
#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usrfinciude/stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:
cat filel file2 ... | cestrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary to make the program work properly, but it assures that any caller of the

.3.

program will see a normal termination status (conventionally 0) from the program when it com-
pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD [/0 LIBRARY

The *‘Standard 1/0 Library' is a collection of routines intended to provide efficient and
portable [/O services for most C programs. The standard 1/0 library is available on each sys-
tem that supports C, so programs that confine their sysiem interactions to its facilities can be
transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard 1/0 library. The appendix con-
tains a more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard out-
put. which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

we x.c y.c

prints the number of lines, words and characters in x. ¢ and y. ¢ and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the
file system names to the 1/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the stan-
dard library function fopen. fopen takes an external name (like x.¢ or y.c), does some
housekeeping and negotiation with the operating system, and returns an mtemal name which
must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, cailed a file pointer, t0 a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being-read or written, and the like. Users don't need to know the
details, because part of the standard /O definitions obtained by including stdio.h is a struc-
ture definition called PFILE. The only declaration needed for a file pointer is exemplified by

FILE »fp, *fopen();

This says that £p is a pointer 10 a FILE, and fopen returns a pointer to a FILE. (FILE isa
type name, like int, not a structure tag.

The actual cail to fopen in a program is
£fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argu-
ment is the mode, also as a character string, which indicates how you intend to use the file.
The only allowable modes are read ("z"), write (“w"), or append ("a").

if a file that you open for writing or appending does not exist, it is created (if possible).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don’t have permission). If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putec are the simplest. getc returns the next character from
a file; it needs the file pointer to tell it what file. Thus

¢ = getc(£fp)

places in ¢ the next character from the file referred to by £p; it returns EOF when it reaches
end of file. putc is the inverse of gete:

putci{c, £p)
puts the character ¢ on the file £p and returns ¢. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are pro-
vided for them. These files are the standard input, the standard output, and the standard error
output; the corresponding file pointers are called stdin, stdout, and stderr. Normally
these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin, stdout and stderr are pre-defined in the 1/O library as the standard
input, output and error files; they may be used anywhere an object of type FILE # can be.
They are constants, however, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design is
one that has been found convenient for many programs: if there are command-line arguments.
they are processed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

#include <stdio.n>

main(azrge, argv) /% we: count lines, words, chars #/
int arge;
char »argvi{l;
(
int ¢, i, inword;
FILE »£fp, #fopen(); :
long linect, wordct, charct;
long tlinect = 0, twordet = 0, tcharct = 0;

= 1;
= gtdin;
(

go"

if (arge > 1 && (fp=fopen(argv(i], "r")) == NULL) ({
fprintf (stderr, "wc: can’t open %s\n", argv(il);
continue;
)
linect = wordct = charct = inword = 0;
while ((¢c = getc(fp)) != EOF) |
charct++;
if (c == ’'\n’)
linect++;.
if (c == ' 7 || ¢ == ’\t’ || ¢ == ’\n’)
inword = 0;
else if (inword == 0) |
inword = 1; '
wordct++;
)
}
printf ("%71d %714 %714, linect, wordct, charct);
printf(axge > 1 ? " %s\n” : "\a", argv(i]);
fclose (£fp);
tlinect += linect;
twordct += wordcet;
tcharct += charct;
) while (++i < arge);
if (arge > 2)
printf ("%71d %714 %714 total\n", tlinect, twordct, tcharct);
exit(0);
)

The function £printf is identical to printé£, save that the first argument is a file pointer that
specifies the file to be written.

The function fclose is the inverse of fopen: it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul-
taneously, it’s a good idea to free things when they are no longer needed. There is also another
reason to call £close on an output file — it flushes the buffer in which putc is collecting out-
put. (fclose is called automatically for each open file when a program terminates normally.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output
written on stderr appears on the user’s terminal even if the standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can’t be accessed
for some reason, the message finds its way to the user’s terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate
program execution. The argument of exit is available to whatever process called it (see Sec-
tion 6), so the success or failure of the program can be tested by another program that uses this
one as a sub-process. By convention, a return value of 0 signails that all is well; non-zero
values signal abnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exit causes immediate termination without any
buffer flushing; it may be called directly if desired.

3.3. Miscellaneous 1/0 Functions

The standard 1/0 library provides several other 1/0 functions besides those we have illus-
trated above. '

Normally output with pute. etc., is buffered (except to stderr); to force it out immedi-
ately, use ££lush(£p).

fscanf is identical 10 scanf, except that its first argument is a file pointer (as with
£printf) that specifies the file from which the input comes: it returns EOF at end of file.

The functions sscanf and sprintf are identical to £scanf and £print£, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprint¢f.

fgets (buf, size, f£p) copies the next line from £p, up to and including a newline,
into buf; at most size-1 characters are copied; it returns NULL at end of file.
fputs (buf, £p) writes the string in buf onto file £p.

The function ungetc(c, £p) ‘‘pushes back’ the character ¢ onto the input stream £p; a
subsequent call to gete, £scanft, etc., will encounter ¢. Only one character of pushback per
file is permitted.

4. LOW-LEVEL /O

This section describes the bottom level of I/0 on the UNIX system. The lowest level of
170 in UNIX provides no buffering or any other services; it is in fact a direct entry into the
operating system. You are entirely on your own, but on the other hand, you have the most
control over what happens. And since the calls and usage are quite simple, this isn’t as bad as
it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files,
because all peripheral devices, even the user’s terminal. are files in the file system. This means
that a single, homogeneous interface handles all communication between a program and peri-
pheral devices.

-6-

In the most general case. before reading or writing a file, it is necessary to inform the sys-
tem of your intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a
file, it may also be necessary to create it. The system checks vour right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a file descriptor. Whenever 1/0 is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S,...) and
WRITE(6....) in Fortran.) All information about an open file is maintained by the system; the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer.is a pointer to a structure that contains,
" among other things, the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the *‘sheil’’) runs a program, it
opens three files, with file descriptors 0, 1, and 2, called the standard input, the standard out-
put, and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal 1/0
without worrying about opening the files.

If 170 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor-
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read = read(fd, buf, n);

n_written = write(£d, buf, n);

" Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and -1 indicates an error of some sort. For writing, the returned value is
the number of bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1, which means one character at a time (*‘unbuffered’’), and 512, which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient, but even
character at a time [/0 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

-7-

#define BUFSIZE $12 /= best sizeyfor POP-11 UNIX »/

main() /* copy input to output =/
{

char buf (BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit(0);
]

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines
like getchar, putchar, etc. For example, here is a version of getchar which does
. unbuffered input.

#define CMASK 0377 /#» for making char‘’s > 0 =/

getchar() /+ unbuffered single character input =/
{
char ¢;

return((read (0, &c, 1) > 0) ? ¢ & CMASX : EOF);
}

¢ must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the PDP-11 but not necessarily for
other machines.) .

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

#define CMASK 0377 /» for making char’s > 0 »/
#define BUFSIZE 512

getchar() /» buffered version »/
{
static char puf (BUFSIZE];
static char *bufp = buf;
static int n=20;

if (n == 0) (/+ buffer is empty =/
n = read(0, buf, BUFSIZE);
bufp = buf;
}
return((--n >= 0) ? »bufp++ & CMASK : EOF);

4.3. Open, Creat, Close, Unlink

Other than the defauit standard input, output and error files. you must explicitly open files
in order to read or write them. There are two system entry points for this, open and creat
(sicl.

open is rather like the fopen discussed in the previous section, except that instead of
returning a file pointer, it returns a file descriptor, which is just an int.

int £4;

£4 = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided
to create new files, or to re-write old ones.

£d = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, creat will truncate it to zero length; it is not an error to creat a file that
already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode
argument. In the UNIX file system, there are nine bits of protection information associated
with a file, controlling read, write and execute permission for the owner of the file, for the
owner’s group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For exampile, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility ¢p, a program which copies one
file to another. (The main simplification is that our version copies only one file, and does not
permit the second argument to be a directory.)

#define NULL O
#define BUFSIZE 512
#define PMODE 0644 /+ RW for owner, R for group, others »/

main(arge, argv) /% cp: copy £1 to £2 «/
int arge;
char sargv(];
{ ‘
int £1, £2, n;
char buf (BUFSIZE];

if (axgc I= 3)
error ("Usage: cp from to", NULL);

if ((£1 = open{argv(i], 0)) == =1)
error(®cp: can’t open %s8", argv(il);

if ((£2 = creat(argv(2], PMODE)) == -1)
error(“cp: can’'t create %s", argv(2]);

while ((n = read(£1, buf, BUFSIZE)) > 0)
if (write(£2, buf, n) I= n)
exror (“cp: write error*, NULL);
exit(0);
)
error(sl, s2) /+ print error message and die »/
char w»s1, #32;
{
printf(s1, s2);
printf(“\n");
exit(1);

.9.

As we said earlier, there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly. any program which intends to process many files
must be prepared to re-use file descriptors. The routine close breaks the connection between
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter-
mination of a program via exit or return from the main program closes all open files.

The function unlink (filename) removes the file £ilename from the file system.

4.4. Random Access — Seek and Lseek

File I/0 is normally sequential: each read or write takes place at a position in the file
right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system call 1seek provides a way to move around in a file without actu-
ally reading or writing: :

lseek (fd, offset, origin);

forces the current position in the file whose descriptor is £4 to move to position offset,
which is taken relative to the location specified by origin. Subsequent reading or writing will
begin at that position. offset is a long; £4 and origin are int's. origin can be 0, 1,
or 2 to specify that offset is to be measured from the beginning, from the current position,
or from the end of the file respectively. For example, to append to a file, seek to the end
before writing:

lseek(fd, 0L, 2);
To get back to the beginning (*‘rewind”’),
lseek(£d, OL, 0);

Notice the 0L argument; it could aiso be written as (long) 0.

With 1seek, it is possible to treat files more or less like large arrays, at the price of slower
~access. For example, the following simple function reads any number of bytes from any arbi-
trary place in a file, -

get(£fd, pos, buf, n) /+ read n bytes from position pos »/
int £4, n;
long pos;
char »buf;
{
lseek(£fd, pos, 0); /* get to pos #»/
return(read(£d, ‘buf, n));
}

In pre-version 7 UNIX, the basic entry point to the 1/0 system is called seek. seek is
identical to 1seek, except that its of£set argument is an int rather than a long. Accord-
ingly, since PDP-11 integers have only 16 bits, the offset specified for seek is limited to
65,535; for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, 1,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one
which selects the block, then one which has origin equal to 1 and moves to the desired byte
within the block. ;

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of —1.
Sometimes it is nice to know what sort of error occurred: for this purpose all these routines,
when appropriate, leave an error number in the external ceil errno. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer’s
Manual, so your program can, for example, determine if an attempt to open a file failed

-10 -

because it did not exist or because the user lacked permission to read it. Perhaps more com-
monly, you may want to print out the reason for failure. The routine perror will print a mes-
sage associated with the value of errno; more generally, sys_errno is an array of character
-strings which can be indexed by errno and printed by your program.

5. PROCESSES

It is often easier to use a program written by someone eise than to invent one’s own. This
section describes how to execute a program from within another.

5.1. The ‘‘System’’ Function

The easiest way to execute a program from another is to use the standard library routine
system. system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

main()
{

system("date");

/* rest of processing =/
)

If the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful.

Remember than getc and putc normally buffer their input; terminal 1/0 will not be prop-
erly synchronized unless this buffenng is defeated. For output, use ££1lush; for mput, see
setbuf in the appendix.

5.2. Low-Level Process Creation — Execl and Execv

If you're not using the standard library, or if you need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan-
dard library’s system routine is based on.

The most basic operation is to execute another program without returning, by using the rou-
tine execl. To print the date as the last action of a running program, use

execl (“/bin/date”, "date”, NULL);

The first argument t0 execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can’t be found or is not executable. If you don’t
know where date is located, say

execl("/bin/date”, "date", NULL);
execl ("/usr/bin/date", "date”, NULL);
fprintf (stderz, "Someone stole ’‘date’\n");

A variant of execl called execv is useful when you don’t know in advance how many
arguments there are going to be. The call is

<11 -

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl. £ilename is the file in which
the program is found, and argp (0] is the name of the program. (Thxs arrangement is identi-
cal to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command .is
located. Nor do you get the expansion of metacharacters like <, >, », ?, and (] in the argu-
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commandline that contains the complete command as it would have been
typed at the terminal, then say

eiicl("/bin/sh", “sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con-
structing the right information in commandline.

5.3. Control of Processes — Fork and Wait

So far what we’ve talked about isn’t really ail that useful by itself. Now we will show how
to regain control after running a program with execl or execv. Since these routines simply
overiay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overiaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the “‘process id.”” In one of these processes (the ‘“‘child’’),
proc_id is zero. In the other (the ‘‘parent’), proe_id is non-zero; it is the process number
of the child. Thus the basic way to call, and return from, another program is

if (fork() == 0)
execl("/bin/sh”, "sh", "-c", cmd, NULL); /# in child #»/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child, the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If
there is any error, fork returns =1). .

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wait:

int status;

if (fork() == Q)
execl(...);
wait (&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork. or
the possibility that there might be more than one child running simultaneously. (The wait
returns the process id of the terminated child. if you want to check it against the value returned
by fork.) Finally, this fragment doesn’t deal with any funny behavior on the part of the child
(which is reported in status). Still, these three lines are the heart of the standard library’s
system routine, which we’ll show in a moment.

The status returned by wait encodes in its low-order eight bits the system'’s idea of the
child’s termination status: it is 0 for normal termination and non-zero to indicate various kinds
of problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to

-12-

return meaningful status.

When a program is called by the shell. the three file descriptors 0, 1, and 2 are set up point-
ing at the right files, and all other possible file descriptors are availabie for use. When this pro-
gram calls another one. correct etiquette suggests making sure the same conditions hold. Nei-
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor-
mation that has been read by the caller.

S.4. Pipes

A pipe is an 1/0 channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn-
chronizing the two processes. Most pipes are created by the shell, as in

1s | pr

which connects the standard output of 1s to the standard input of pr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

int £4(2];

stat = pipe(£d);
if (stat == -1)
/* there was an exror ... #*/

£d is an array of two file descriptors, where £4(0] is the read side of the pipe and £4(1] is
for writing. These may be used in read, write and close calls just like any other file
descriptors. ; Coe ‘

If a process reads a pipe which is empty, it will wait until data arrives: if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed. a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode). which creates a process cmd (just as system does), and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command: subsequent write calls using the file descrip-
tor fout will send their data to that process through the pipe.

, popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other side
of the pipe. then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary 10 make end-of-file tests
work properly. For example, if a child that intends to read fails to close the write end of the
pipe. it will never see the end of the pipe file, just because there is one writer potentially active.

-13-

#include <stdio.h>

#define READ 0

4define WRITE 1
#define tst(a, b) (mcdde == READ ? (b) : (a))
static - int popen_pid;

popen (cmd, mode)
char =cmd;
int mode;
{
int pl2};

if (pipe(p) < 0)

return (NULL) ;
if ((popen_pid = fork()) == 0) (

close(tst(p(WRITE], p(READ]));

close(tst(0, 1));

dup (tst (p[READ], p(WRITE]));

close(tst (p(READ], p(WRITE]));

execl ("/bin/sh", "sh", "-¢", cmd, 0);

~exit(1); /+ disaster has occurred if we get here »/

)
if (popen_pid == -1)
return (NULL) ;
close(tst(p(READ], p(WRITE]));
return(tst(p(WRITE], p(READ]));
}

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe. leaving the read side open. The lines

close(tst(0, 1}));
dup (tst(p(READ], p(WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the chiid.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an aiready open file descriptor. File descriptors are assigned in increasing order
and the first availabie one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
“input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait for the termination of the child process. First, the return vaiue from pclose indicates
whether the process succeeded. Equaily important when a process creates several children is

_that only a bounded number of unwaited-for children can exist, even if some of them have ter-
minated; performing the wait lays the child to rest. Thus:

-14-

#include <signal.h>

pclose(£qd) /= close pipe £4 »/
int £4;
(.
register r, (shstat) (), (wistat)(), (wqstat)();
int status;
extern int popen_pid;

close(£4);
istat = signal (SIGINT, SIG_IGN);
qstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGHUP, SIG_IGN);
while ((r = wait(astatus)) != popen_pid && r != =1);
if (r == =1)
status = -1;

'signal (SIGINT, istat);
signal (SIGQUIT, gqstat);
signal (SIGHUP, hstat);
return(status);

)

The calls 10 signal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid; it reaily should be an array indexed by file descrip-
tor. A popen function, with slightly different arguments and return value is available as part
of the standard 1/0 library discussed below. As currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned wnth how to deal gracefully with signals from the outside world -
(like interrupts), and with program faults. Since there’s nothing very useful that can be done
from within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we’ll discuss only the outside-worid signals: interrupt, which
is sent when the DEL character is typed; quit, generated by the FS character; hangup, caused by
hanging up the phone; and terminare, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter-
minal; unless other arrangements have been made, the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal.h gives names for the various arguments, and should always be inciuded
when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);
causes interrupts to be ignored, while
signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn’t seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to

- 15«

allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:

#include <signal.h>

main ()
{
int onintr();

if (signal (SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/#» Process ... »/

exit(0);
)

onintr()

{
unlink(tempfile);
exit(1);

}

~ Why the test and the double call to signal? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter-
rupts intended for foreground processes. If this program began by announcing that all inter-
rupts were to be sent to the onintzr routine regardless, that would undo the shell’s effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that signal returns the previous state of a particular signal. If signals were already being .
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setimp.h>
jmp_buf sibuf;

main()
{
int (wistat) (), oninetr();

istat = signal (SIGINT, SIG_IGN); /* save original status =/
setimp(sjbuf); /+ save current stack position »/

if (istat != SIG_IGN)

' signal (SIGINT, onintz);

/* main processing loop »/

-16 -

onintr()
{
printf ("\nInterrupt\n");
longjmp (sjbuf); /* return to saved state #/
} .

The include file setjmp.h declares the type jmp_buf an object in which the state can be
saved. sjbuf is such an object; it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which
can print a message, set flags, or whatever. longjmp takes as argument an object stored into
by setimp, and restores control to the location after the call to setjmp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of cailing exit or longjmp, execution will contmue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that ‘‘execution resumes at the exact point it
was interrupted,’” the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
‘‘errors’ which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait, and pause.) A program whose onintr program just sets intflag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() == EOF)
if (intflaqg)
/+* EOF caused by interrupt #*/
else
/* true end-of-file w»/

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like **!” in the editor) whereby other programs can be executed Then the code should look
something like this:

if (fork() == Q)

execl(...);
signal (SIGINT, SIG_IGN); /+ ignore interrupts »/
wait(astatus); /+ until the child is done =/
signal (SIGINT, onintr); /+ restore interrupts =/

Why is this? Again, it’s not obvious but not really difficuit. Suppose the program you cail
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop. and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate. since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard [/0 library function system:

-17-

#include <sigral.h>

syStem(s) /# run command string s #*/
char »s;
{

int status, pid, w;

register int (w»istat) (), (»gstat)();

if ((pid = fork()) == 0) (
execl (" /bin/sh”, "sh", "-c", 8, 0);
exit(127);

}

istat = signal (SIGINT, SIG_IGN);

qgstat = signal (SIGQUIT, SIG_IGN);

while ((w = wait(astatus)) != pid && w != =1)

’
if (w == 1)
gtatus = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gqstat);
return(status);
}

As an aside on declarations, the function signal obviously has a rather strange second
. argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for the PDP-11; the definitions should be sufficiently ugly and nonportable to
encourage use of the include file.

#define SIG_DFL (int (#)())0
#define SIG_IGN (iat (») ())1

References

(1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer’s Manual, Bell Laboratories,
1978.

2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.

(3] B. W. Kernighan, **UNIX for Beginners — Second Edition.”" Bell Laboratories, 1978.

-18 -

Appendix — The Standard I/0 Library

D. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974
The standard 1/0 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita-
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-11 running a version of UNIX.

1. General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

BOF is actually —1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams. -

BUPSIZ is a number (viz. 512) of the size suitable for an 1/0 buffer supplied by the user.
See setbuf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeciare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out-
put flushing where appropriate. The names stdin. stdout, and stderr are in effect con-
stants and may not be assigned to.

2. Calls

FILE »fopen(filename, type) char »filename, *type;
opens the file and, if needed, allocates a buffer for it. f£ilename is a character string
specifying the name. type is a character string (not a single character). It may be "z*,
nywh or "a" to indicate intent to read, write, or append. The value returned is a file
pointer. If it is NULL the attempt to open failed.

FILE »freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;

-19.

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise ioptz. which will now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc{ioptr) FILE rioptr;
returns the next character from the stream named by icptr. which is a pointer to a file
such as returned by fopen. or the name stdin. The integer EOF is returned on end-of-
file or when an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE w»ioptr;
putc writes the character ¢ on the output stream named by icpt:, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value,
but EOF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buﬂ‘er allocated
by the 1/0 system is freed. £close is automatic on normal termination of the program.

£f£flush(ioptr) FILE *ioptr;.
Any buffered information on the (output) stream named by ioptx is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however,
stderz always starts off unbuffered and remains so unless setbuf is used, or unless it is
reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which talls ££1ush for each output file. To terminate without flush-
ing, use _exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE w»ioptr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar();
is identical to getc (stdin).

putchar(e);
is identical to putc (¢, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n~-1 characters from the stream ioptr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument, or NULL if error or end-of-file
occurred.

fputs(s, ioptr) char *s; FILE *ioptr; .
writes the nuil-terminated string (character array) s on the stream ioptx. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;

-20-

The argument character ¢ is pushed back on the input stream named by ioptr. Only one
character may be pushed back.

printf(format, a1, ...) char #format;

fprintf(ioptr, format, a1, ...) FILE #ioptr; char *format;

sprintf(s, format, al, ...)char *sg, *format;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section print£(3) of the UNIX Programmer’s Manual.

scanf (format, a1, ...) char *»format;

fscanf (ioptr, format, a1, ...) FILE *ioptr; char *format;

sscanf (s, format, al, ...) char »s, *format;
scanf reads from the standard input. f£scanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string format, and a set of arguments, each of which must be a
pointer, indicating where the converted input shouid be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is
returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fread(ptr, sizeof(»ptr), nitems, ioptr) FILE wioptr;

reads nitems of data beginning at ptr from file ioptxr. No advance notification that binary
1/0 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(*ptr) , nitems, ioptr) FILE #ioptr;
Like fread, but in the other direction. ,

rewind (ioptr) FILE #*ioptr;
rewinds the stream named by ioptr. [t is not very useful except on input, since a rewound
output file is still open only for output.

system(string) char *string;
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE wioptr;

returns the next word from the input stream named by ioptz. EOF is returned on end-of-file
or error, but since this a perfectly good integer £eof and ferror should be used. A ‘‘word”
is 16 bits on the PDP-11.

putw(w, ioptr) FILE #ioptr;
writes the integer w on the named output stream.

setbuf (ioptr, buf) FILE »ioptr; char +*buf;

setbuf may be used after a stream has been opened but before I/0 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf [BUFSIZ];

fileno(ioptr) FILE w»ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;

The location of the next byte in the stream named by ioptzr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file: if ptrname is
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When

<21 -

this routine is used on non-UNIX systems, the offset must be a value returned from £tell and
the ptrname must be 0).

long ftell(ioptr) FILE #*ioptr;

The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to £seeXk. so as to position the file to the same place it was when
£ftell was called.)

getpw(uid, buf) char =buf;)
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned. :

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur-
pose. NULL is returned if no space is available.

char *calloc(num, size);

allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned :f no space is
available .

cfree(ptr) char »ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloe.

The following are macros whose definitions may be obtained by including <ctype.h>.
isalpha (¢) returns non-zero if the argument is alphabetic.

isupper (¢) returns non-zero if the argument is upper-case alphabetic.

islower (c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, verticai tab, form feed, space.

ispunct(ec) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint (c) returns non-zero if the argument is printable — a letter, digit, or punctuation
character.

iscntrl (c) returns non-zero if the argument is a control character.

isascii (¢) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
toupper (¢) returns the upper-case character corresponding to the lower-case letter ¢,
tolower (c) returns the lower-case character corresponding to the upper-case letter ¢.

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

 ABSTRACT

Computer program input generally has some structure; in fact, every com-
puter program that does input can be thought of as defining an “input language”
which it accepts. An input language may be as complex as a programming
language, or as simple as a scquence of numbers. Unfortunately, usual input facili-
tics arc limited, difficult to use, and often are lax about checking their inputs for
validity.

Yacc provides a general tool for describing the input to a computer program.
The Yacc uscr specifics the structures of his input, together with code to be
invoked as cach such structure is recognized. Yacc turns such a specification into
a subroutinc that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of control in the uscr’s application handled by
this subroutine. '

The input subroutine produced by Yacc calls a uscr-supplicd routine to
return the next basic input item. Thus, the user can specify his input in terms of
individual input characters, or in terms of higher level constructs such as names
and numbers. ‘The user-supplied routine may also handle idiomatic features such
as comment and continuation conventions, which typically defy casy grammatical
specification. S

Yacc is writien in portable C. The class of specifications accepted is a very
general onc: LLALR(D) grammars with disambiguating rulcs. _)

In addition to compilers for C, APL., Pascal, RATFOR, ctc., Yacc has also
been used for less conventional languages, including a phototypesetter language,
several desk calculator languages, a document retricval system, and a Fortran
dcbugging system,

July 31, 1978

Computer Languages Compilers Formal Language Theory

Yacc: Yet Another Compiler-Compiler

Stephen C. Johnson

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program, The
Yacc user prepares a specification of the input process; this includes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do the
basic input. Yacc then gencrates a function to control .the input.process. . This function, called a
parser, calls the user-supplicd low-level input routine (the lexical analyzer) to pick up the basic
items (called rokens) from the input strcam. These tokens are organized according to the input
structure rules, called grammar rules ; when one of these rules has been recognized, then user code
supplicd for this rule, an action, is invoked; actions have the ability to return valucs and make usc
of the values of other actions.

Yacc is written in a portable dialect of C! and the actions, and output subroutine, are in C as
well. Morcover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structurc and gives it a name. For example, onc grammar rule might be

datc : month_namc day °,” year ;

Here, date, month_name, day, and year represent structures of interest in the input proccss;
presumably, month_name, day, and year arc defined elsewhere. 'The comma . is enclosed in sin-
gle quotces; this implics that the comma is to appcar literally in the input. The colon and scmicolon
merely serve as punctuation in the rule, and have no significance in controlling the input. Thus,
with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carricd out by the lIexical analyzer. "This user rou-
tinc reads the input stream, rccognizing the lower level structures, and communicates these tokens
to the parser. IFor historical rcasons, a structure recognized by the lexical analyzer is called a termi-
nal symbol, while the structure rccognized by the parscer is called a nonterminal symbol. 'To avoid
confusion, terminal symbols will usually be referred to as fokens.

There is considerable lceway in deciding whether to recognize structurcs using the lexical
analyzer or grammar rules. For cxample, the rules

month_nam¢ : ’J a’'n”

month_name : F"’¢"’b" ;

month_name : ‘D" ¢" ¢’

-e

might be used in the above example. The lIexical analyzer would only need to recognize individual
lctters, and month_name would be a nonterminal symbol. Such low-lcvel rules tend to waste time.
and space, and may complicate the specification beyond Yacc's ability to deal with it. Usually, the
lexical analyzer would recognize the month names, and return an indication that a month_name
was scen; in this case, month_name would be a’token.

-7 -

66 9

Litcral characters such as

must also be passed through the lexical analyzer, and arc also
considered tokens. ‘

Specification files are very ﬂcxnblc It is realively casy to add to thc above example the rule
date :-month /" day /° ycar ;
allowing '
77471776
as a synonym for
July 4, 1776

In most cases, this ncw rule could be “slipped in” to a working system with minimat cffort, and lit-
. tlc ‘danger of disrupting existing mput :

The mput being read may not conf‘olm to thc spccxﬁcauons T hcsc mput crrors are detected
as carly as is theorctically possible with a left-to-right scan; thus, not only is the chance of reading
and computing with bad input data substantially rcduced, but the bad data can usually be quickly
found. Error handling, provided as part of the input specifications, permits the reentry of bad data,
or the continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a sct of specifications. For example,
the specifications may be sclf contradictory, or thcy may require a more powerful recognition
mechanism than that available to Yacc. The former cases represent design crrors; the latter cases
can often be corrected by making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While Yacc cannot handle all possible specifications, its power compares favorably
with similar systems; morcover, the constructions which are difficult for Yacc to handle arc also frc-
quently difficult for human beings to handle. Some users have reported that the discipline of for-
mulating valid Yacc specifications for their input revealed errors of conception or design carly in
the program dcvelopment. :

The theory underlying Yacc has been described elsewhere.2.3-4 Yacc has been cextensively
used in numerous practical applications, including /int,> the Portable C Compiler,® and a system for
typesetting mathematics.”

‘T'he next several sections describe the basic process of preparing a Yace specification; Sccuon
1 describes the preparation of grammar rules, Sceticn 2 the preparation of the user supplicd actions
associated with these rules, and Scction 3 the preparation of lexical analyzers. Scction 4 describes
the operation of the parser. Scction S discusses various reasons why Yace may be unable to pro-
duce a parser from a specification, and what to do about it. Scction 6 describes a simple mechan-
ism for handling opcrator precedences in arithmetic expressions. Scction 7 discusses crror detection
and recovery. Section 8 discusses the operating -cnvironment and special features of the parsers
Yacc produces. Scction 9 gives somc suggestions which should improve the style and cfficiency of
the specifications. Scction 10 discusscs some advanced topics, and Scection 11 gives acknowledge-
ments. Appendix A has a brief cxample, and Appendix B gives a summary of the Yacc input syn-
tax. Appendix C gives an cxample using some of the more advanced features of Yacc, and, finally,
Appendix 1D describes mechanisms and syntax no longer actively supported, but provided for his-
torical continuity with older versions of” Yacc,

1: Basic Specifications

Namcs refer to cither tokens or nonterminal symbols. Yacc requircs token names to be
declared as such. In addition, for rcasons discussed in Scction 3, it is often desirable to include the
lexical analyzer as part of the specification file; it may be uscful to include other programs as well,
Thus, cvery specification file consists of three scctions: the declarations, (grammar) rules, and pro-
grams. ‘'I'hc scctions arc scparated by double percent “%%” marks. (I'he percent “%” is generally
used in Yacc specifications as an cscape character.)

-3-

In other words, a full spcciﬁcati'on file looks like

declarations
%%

rulcs

%%
programs

The declaration section may be empty. Morcover, if the programs scction is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlincs are ignored except that they may not appear in names or multi-
character reserved symbols. Comments may appcar wherever a name is Iegal; they are enclosed in
/% ...*/,asin C and PL/I.)

The rules section is made up of one or more grammar rules. A grammar rule has the form:
A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. 'T'he colon and the semicolon are Yacc punctuation.

“© 9

. Names may be of arbitrary length, and may be made up of lctters, dot “.”, underscore *_”,
and non-initial digits. Upper and lower casc letters are distinct. The names used in the body of a
grammar rulc may represent tokens or nonterminal symbols.)

“ 9

[XR44]

A Titeral consists of a character enclosed in single quotes “™”. As in C, the backslash “\" is an
escape character within literals, and all the C cscapes are recognized. Thus

"\n" ncwline
\r’return

"\ singlc quote
\\" backslash “\”

\t" tab

“\b" backspace

\f" form feed

“\xxx” “xxx™ in octal

%

For a number of technical rcasons, the NUI. character ("\0” or 0) should ncver be used in grammar
rulcs.

If there arc scveral grammar tules with the same left hand side, the vertical bar “|” can be
used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rulc can be

dropped before a vertical bar. 'Thus the grammar rules
A BCD ;
A EF ;
A G ; -

can be given to Yacc as

A BCD
| EF
| G

It is not nccessary that all grammar rules with the same left side appear together in the grammar
rules scction, although it makes the input much more readable, and casier to change. :

-4 -

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:
empty : '
Names representing tokens must be declared; this is most simply done by writing
%token namel name2 ... ‘

in the declarations section. (See Scctions 3 , S, and 6 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol, Every nontermi-
nal symbol must appcar on the left side of at least onc rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most gen-
cral structurc described by the grammar rules. By default, the start symbol is taken to be the left
hand side of the first grammar rulc in the rules scction. 1t is possible, and in fact desirable, to
declare the start symbol cxplicitly in the declarations section using the %start Keyword: — -~ :

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If the
tokens up to, but not including, the endmarker form a structurc which matches the start symbol, the
parscr function returns to its caller after the endmarker is scen; it accepts the input. If the end-
marker is scen in any other context, it is an crror.

It is the job of the user-supplicd lexical analyzer to return the endmarker when appropriate;
sce section 3, below. Usually the endmarker represents some rcasonably obvious 1/0 status, such
as “cnd-of-file” or “cnd-of-record”.

2: Actions ‘

With cach grammar rule, the user may associate actions to be performed cach time the rule is
recognized in the input process. ‘These actions may rcturn values, and may obtain the valucs
returned by previous actions. Morcover, the lexical analyzer can return values for tokens, if
desired.

An action is an arbitrary C statcment, and as such can do input and output, call subprograms,
and alter external vectors and variables. An action is specified by onc or more statements, enclosed
in curly braces “{” and “}”. For cxample,

A . »(’ B ;);
{ hello(1, "abc™); }
and

XXX YYY Z77
{ printf("a message\n");
flag = 25; }
arc grammar rules with actions.

To facilitate ¢asy communication between the actions and the parser, the action statcments arc
altered slightly. "The symbol “dollar sign™ “$™ is uscd as a signal to Yacc in this context.

To return a value, the action normally scts the pscudo-variable “$$” to some value. For
example, an action that docs nothing but rcturn the value 1 is

{$$=1;1}

To obtain the valucs returned by previous actions and the lexical analyzer, the action may use’
the pscudo-variables $1, $2, . . ., which refer to the values returned by the components of the right
side of a rule, rcading from left to right. Thus, jf the rule is

_ A BCD ;
for cxample, then $2 has the value returned by C, and $3 the value returned by D.
As a morc concrete example, consider the rule

expr : C expr)

The value returned by this rule is usually the valuc of the expr in parentheses. This can be indi-
cated by

expr : " expr) {8=92;1}

By default, the value of a rule is the valuc of the first clement in it (§1). 'Thus, grammar rules
of the form .
R ':,_.A... R "B: ‘;_.. B P T B A T A |
frequently nced not have an cxplicit action.

In the cxamples above, all the actions came at the end of their rules. Somctimes, it is desir-
able to get control before a rule is fully parsed. Yacc permits an action to be written in the middle
of a rule as well as at the end. ‘This rule is assumed to rcturn a value, accessible through the usual
mechanism by the actions to the right of it. In tumn, it may access the valucs rcturned by the sym-
bols to its left. Thus, in the rule

A B
{$$5=1;}

{ x=9%2; y=93 1}

C

the cffect is to set x to 1, and y to the value returned by C.
Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this namc to the cmpty string. The interior

action is the action triggered off by recognizing this added rule. Yacc actually treats the above
cxample as if it had been written: '

$ACT : /* cmpty */ -
{ $§=1;}

A B $ACTI C
{ x=82, y=9$3 }
In many applications, output is not done dircctly by the actions; rather, a data structure, such
as a parsc tree, is constructed in memory, and transformations arc applicd to it before output is

generated. Parse trees are particularly casy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C function node, written so that the call

node(1., nl, n2)

creates a node with label 1., and descendants nl and n2, and returns the index of the newly created
node. Then parse tree can be built by supplying actions such as:
expr. : expr 4+ expr
{ $8 = node("+, 81,$3); }
in the specification.

The user may dcfine other variables to be used by the actions. Declarations and dcfinitions
can appcar in the declarations section, enclosed in the marks “%{” and “%}”. These dcclarations

-6-

and dcfinitions have global scope, so they arc known to the action statemcnts and the lexical
analyzer. For example, '

%{ int variable = 0; %}

could be placed in the declarations scction, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in “*yy”; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Scction 10.

3: Lexical Analysis

The user must supply a lexical analyzer to rcad the input stream and communicate tokens
(with valucs, if desired) to the parser. The lexical analyzer is an intcger-valued function called
yylex. The function rcturns an integer, the token number, representing the kind of token read. If
there is a value associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order.for commun-
ication between them to take place. The numbers may be chosen by Yacc, or chosen by the user.
In cither casc, the “# dcfine” mechanism of C is used to altow the Iexical analyzer to return these
numbcrs symbolically. For example, supposc that the token name DIGIT has been defined in the
declarations scction of the Yacc specification file. 'The relevant portion of the lexical analyzer
might look like:

yylexOf
cxtern int yylval;

int c;
¢ = getchar();
switch(¢) §{

casc 0°:
casc ‘1"

Ca;S.C.'9'Z
yylval = ¢—"0";
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value cqual to the numcrical valuc of
the digit. Provided that the lexical analyzer code is placed in the programs scction of the
specification file, the identifier DIGIT will be defined as the token number associated with the
token DIGIT.

T'his mechanism Icads to clear, casily modificd lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant in C or thic parser; for
example, the use of token names if or while will almost certainly cause severe difficultics when the
lexical analyzer is compiled. The token name error is reserved for crror handling, and should not
be used naively (see Scction 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. ‘In the
default situation, the numbers arc chosen by Yacc. The default token number for a literal character
is the numerical valuc of the character in the local character set. Other names are assigned token
numbcrs starting at 257,

-7-

To assign a token number to a token (including literals), the first appearance of the token
name or litcral in the declarations section can be immediatcly followed by a nonnegative intcger.
This integer is taken to be the token number of the name or literal. Names and literals not defined
by this mechanism retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the cndmarker must have token number 0 or ncgative. This token
number cannot be redefined by the user;.thus, all lexical analyzers should be prepared to return 0
or negative as a token number upon reaching the end of their input.

A very uscful tool for constructing lexical analyzers is the Lex program developed by Mike
Lesk.8 These lexical analyzers arc designed to work in close harmony with Yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules. Tex can
be casily used to produce quite complicated lexical analyzers, but there remain some languages
(such as FORTRAN) which do not fit any thcorctical framework, and whose lcxical anatyzers must
be crafted by hand. ‘ '

- PR Tl o e o e
-l Fo el s e oW P -

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm usced to go from the specification to the parser is complex, and
will not be discussed here (see the references for more information). ‘The parser itself, however, is
relatively simple, and understanding how it works, while not strictly nccessary, will ncvertheless
make treatment of error recovery and ambiguitics much more comprchensible,

The parser produced by Yacc consists of a finitc statc machine with a stack. The parscr is
also capable of rcading and remembering the next input token (called the lookahead token). The
current state is always the onc on the top of the stack. The states of the finite statc machine are
given small integer labels; initially, the machince is in state 0, the stack contains only statc 0, and no
lookahead token has been read.

The machine has only four actions available to it, called shifi, reduce, accept, and error. A
move of the parser is done as follows:

1. Bascd on its current state, the parser decides whether it nceds a lookahead token to decide
what action should be donc; if it nceds one, and does not have ong, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahcad token if needed, the parser decides on its next
action, and carrics it out. This may rcsult in statcs being pushed onto the stack, or popped
off of the stack, and in the tookahcad token being processed or left alone.,

The shifi action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahcad token. For example, in state 56 there may be an action:

IF shift 34

which says, in statc 56, if the lookahead token is IF, the current state (56) is pushed down on the
stack, and statec 34 becomes the current state (on the top of the stack). The lookahcad token is
clcared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriatc when the parser has scen the right hand side of a grammar rule, and is prepared to
announce that it has scen an instance of the rule, replacing the right hand side by the left hand
side. It may be nccessary to consult the lookahead token to decide whether to reduce, but usually

% Y

it is not; in fact, the defauit action (represented by a “.”) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rulcs are also given
small intcger numbers, leading to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

AF shift 34

refers to state 34.
Suppose the rule being reduced is

A Xyz:;

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on
the right hand sidc (threc in this case). To reduce, first pop off the top three states from the stack
(In gencral, thc number of states popped cquals the number of symbols on the right side of the
rule). In cffect, these states were the ones put on the stack while recognizing x, y, and z, and no
longer scrve any useful purpose. After popping these states, a state is uncovered which was the
state the parser was in before beginning to process the rule. Using this uncovered state, and the
symbol on the left side of the rule, perform what is in cffect a shift of A. A new statc is obtaincd,
“‘pushed onto the stack, and parsing continués. - There are significant differences between the pro-
cessing of the left hand symbol and an ordinary shift of a token, however, so this action is called a
golo action. In particular, the lookahead token is clcared by a shift, and is not affected by a goto.
In any casc, the uncovered statc contains an cntry such as:

A goto 20

causing statc 20 to be pushed onto the stack, and become the current state,

In cffect, the reduce action “turns back the clock™ in the parse, popping the states off the
stack to go back to the statec where the right hand side of the rule was first seen. The parser then
behaves as if it had scen the left side at that time. If the right hand side of the rule is cmpty, no
states arc popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the trcatment of uscr-supplicd actions and values.
When a rule is reduced, the code supplicd with the rule is exccuted before the stack is adjusted. In
addition to the stack holding the states, another stack, running in parallel with it, holds the valucs
returned from the Iexical analyzer and the actions. When a shift takes place, the external variable
yylval is copicd onto the valuc stack. After the return from the user code, the reduction is carried
out. When the gofo action is donc, the external variable yyval is copicd onto the value stack. The
pscudo-variables $1, $2, ctc., refer to the value stack. ‘

The other two parser actions arc conceptually much simpler. 'The accept action indicates that
the entire input has been scen and that it matches the specification. ‘This action appears only when
the lookahcad token is the endmarker, and indicates that the parser has successfully done its job.
The error action, on the other hand, represents a place where the parser can no longer continue
parsing according to the specification. 'The input tokens it has seen, together with the lookahcad
token, cannot be followed by anything that would result in a legal input. The parser reports an
crror, and attempts to rccover the situation and resume parsing: the error recovery (as opposed to
the detection of.crror) will be covered in Section 7.

It is time for an cxample! Consider the specification

%token DING DONG DELL
%%

rhyme : sound place
sound : DING DONG

place: DELL

.
e

- When Yacc is invoked with the —v option, a file called yooutput_is produccd, with a human-
recadable description of the parser. The y.output file corresponding to the above grammar (with
some statistics stripped off the end) is; -

state 0
$accept : _rhyme $end"

DING shift 3
. crror

rhyme goto 1
sound. goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
thyme : sound_place

DELL shift §
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound -placc_ (1)

reduce 1

statc 5
place : DELI_ (3)

reduce 3

statc 6 :
sound : DING DONG_ (2)

reduce 2

Notice that, in addition to the actions for cach state, there is a description of the parsing rules being
processed in cach state. The _ character is used to indicate what has been seen, and what is yet to
come, in cach rule. Supposc the input is

DING DONG DELL

It is instructive to follow the steps of the parscr while processing this input.

Initially, the current state is state 0. 'The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token, DING, is read, becoming the lookahead
token. The action in statc 0 on DING is is “shift 3", so statc 3 is pushed onto the stack, and the
lookahead token is cleared. Statc 3 becomes the current statc. The next token, DONG, is read, .

-10 -

becoming the lookahead token. The action in statc 3 on the token DONG is “shift 67, so state 6 is
pushed onto the stack, and the lookahead is cleared, The stack now contains 0, 3, and 6. In state
6, without even consulting the lookahcad, the parser reduces by rule 2.

sound : DING DONG

This rulc has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL., must be read. The action is “shift 57, so state 5 is pushed
onto the stack, which now has 0, 2, and 5 on it, and the lookahcad token is cleared. In state 5, the
only action is to reducc by rule 3. This has onc symbol on the right hand side, so one state, 5, is:
popped off, and state 2 is uncovered.” The goto i statc’ 2 on-place;; the leftside. of rule 3; is state 4.
Now, the stack contains 0, 2, and 4. In statc 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering state 0 again. In state 0,
there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is read; the end-
marker is obtained, indicated by “$end” in the y.ouspur file. 'The action in statec 1 when the end-
marker is seen is to accept, successfully ending the parsc.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELI. DELL, etc. A few minutes
spend with this and other simple cxamples will probably be rcpand when problens arise in more
complicated contexts.

5. Ambiguity and Conflicts

A sct of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule .

expr : . ecxpr ‘=" expr

is a natural way of cxpressing the fact that onc way of forming an arithmetic expression is to put
two other expressions together with a minus sign between them. Unfortunately, this grammar rule
docs not completely specify the-way that all complex inputs should be structured. For example, if
the input is

CXpr — CXpr — cxpr
the rule allows this input to be structured as either
(cxpr — expr) — cexpr
or as v
expr — (expr — cxpr)
(The first is called left association, the sccond right association).

Yacce detects such ambiguitics when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

CXpr — expr — cxpr
When the parser has read the sccond cxpr, the input that it has seen:
expr — expr

matches the right side of the grammar rule above. The parscr could reduce the input by applying
this rule; after applying the. rule; the input is reduced to expr(the left side of the |u|c) The parser
would then read the final part of the input:

-11-

— expr
and agam reduce. The effect of this is to takc the left associative interpretation.
Alternatively, when the parser has scen

CXpr — expr

it could defer the immediatc application of the rule, and continue rcading the input until it had
seen

expr — expr — expr
It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving
expr — expr

““Now the rule can be reduced once more; the cffect’is to take the right assocnatnvc intcrpretation.
Thus, having rcad

cXpr — cxpr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. ‘T'his is called a shifi / reduce conflict. 1t may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there arc never any
“Shift/shift” conflicts.

When there are shift/reducc or reduce/reduce conflicts, Yacc still produces a parser. It does
this by sclecting onc of the valid steps wherever it has a choice. A rule describing which choice to
make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:
1. In ashift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default-is to reduce by the earlier grammar rule (in the input
scquence).

Rute 1 implics that reductions arc dcferred whenever there is a choice, in fwvor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in thls bltlld[l()n but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arisc because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than Yace can construct. The use of actions within rules
can also causc conflicts, if the action must be done before the parser can be sure which rule is
being recognized. In these cases, the application of disambiguating rules is inappropriate, and leads
to an incorrect parser. For this rcason, Yacc always rcports the number of shift/reduce and
reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser,
it is also possible to rewrite the grammar rules so that the same inputs arc rcad but there are no
conflicts. or this rcason, most previous parser gencrators have considered conflicts to be fatal -
errors. Qur cxpericnce has suggested that this rewriting is somewhat unnatural, and produces
slower parsers; thus, Yace will produce parsers even in the presence of conflicts.

As an cxample of the power of disambiguating rulcs, consider a fragment from a program-
ming language involving an “if-then-clsc” construction:

stat IF (" cond °) stat
| IF (" cond °)° stat ELSE stat

* In these rules, I and ELSFE are tokens, cond is a nonterminal symbol describing conditional (log-
ical) expressions, and star is a nonterminal symbol describing statements. The first rule will be
called the simple-if rule, and the sccond the ifelse rule.

-12-

These two rulcs form an ambigﬁous construction, since input of the form
IF (Cl1)IF (C2) Sl ELSE S2
can be structured according to thesc rules in two ways:

IF (Cl1) {
IF (C2)31 ar

}
ELSE S2
or

IF (C1){
IF (C2) S1
ELSE S2
} ‘

The sccond interpretation is the onc given in most programming languages having this construct.
Each ILSIE is associated with the last preceding “un-ZL.S£°d™ 117, In this cxample, consider the
situation where the parser has scen

IF (Cl)IF (C2) St
and is looking at the IXLSI. Itcan immcdiafcly reduce by the simple-if rule to get
IF (C1) stat
and then read the remaining input,
ELSE S2
and reduce “
IF (Cl1) stat ELSE 82
by the if-clsc rule. This leads to the first of the above groupings of the input. :
On the other hand, the KLSIS may be shifted, $2 rcad, and then the right hand portion of
IF (Cl) IF (C2) Sl ELSE 82 |
can be reduced by the if-clse rule to get
Ik (Cl) stat o
which can be reduced by the simple-if rule. This lcads to the sccond of the above groupings of the
input, which is usually desired.

Once again the parser can do two valid things — there is a shift/reducce conflict. The applica-
tion of disambiguating rule 1 tclls the parser to shift in this casc, which leads to the dcsnrcd group~
in

. This shift/reduce conflict ariscs only when there is a particular current input symbol I I,SIJ,-
and particular inputs alrcady scen, such as

IF (Cl)IF (C2) Sl

In general, there may be many conflicts, and cach onc will be associated with an input symbol and’
a sct of previously rcad inputs. The previously rcad inputs are characterized by the state of the
parser.

"The-conflict messages of Yacc are best understood by examining the verbose (—v) optlon out-
put file. For cxample, the output corresponding to the above conflict state might be: '

iR}

-13-

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ 18)
stat : 1F (cond) stat ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the statc and the input symbol. The ordinary state
description follows, giving the grammar rulcs active in the statc, and the parser actions. Recall that.
the underline marks the portion of the grammar.rules ‘which has been seen. Thus in the example, -
in state 23 thc parscr has scen input corresponding to.

IF (cond) stat

and the two grémmar rules shown are active at this time. The parser can do two possible things. - If
the input symbol is ELSI, it is possible to shift into statc 45. State 45 will have, as part of its
description, the line

stat : IF (cond) stat ELSE_stat

since the LLSI will have been shifted in this state. Back in statc 23, the alternative action,
described by *.”, is to be done if the input symbol is not mentioned explicitly in the above actions;
thus, in this casc, if the input symbol is not ELSI¢, the parser reduces by grammar rule 18:

stat ; IF °(C cond °)° stat

Once again, notice that thc numbers following “shift” commands refer to other states, while the
numbers following “reduce” commands refer to grammar rule numbers. In the y.output file, the
rule numbers arc printed after those rules which can be reduced. In most one states, there will be
at most reduce action possible in the state, and this will be the default command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the verbosce output to
decide whether the default actions arc appropriate. In really tough cases, the user might neéd to
know more about the behavior and construction of the parser than can be covered here. In this
casc, onc of the theoretical references® 34 might be consulted; the services of a local guru might
also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts arc not -
sufficient; this is in the parsing of arithmetic cxpressions. Most of the commonly used construc-
tions for arithimetic cxpressions can be naturally described by the notion of precedence levels for
opcrators, together with information about left or right associativity, It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers that are faster and
casicr to write than parscrs constructed from unambiguous grammars, The basic notion is to write
grammar- rules of the formi - '

expr @ cxpr OP cxpr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conllicts. As disambiguating rules, the user specifics the precedence, or binding strength, of
all the operators, and the associativity of the “binary operators. This information is sufficient to
allow Yacc to resolve the parsing conflicts in accordance with these rules, and construct a parser

-14 -

that realizes the desired precedences and associativities.

The precedences and associativitics are attached to tokens in the declarations section. This is
done by a scrics of lincs beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by
a list of tokens. All of the tokens on the same line are assumed to have the same precedence level

~ and associativity; the lincs are listed in order of increasing precedence or binding strength. Thus,

Pleft “+° ="
Poleft "** °/°

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left

- associative, and have lower precedence than star and slash, which are also left associative. The key-
word %right is used to describe right associative opcrators, and the keyword %nonassoc is used to
describe operators, like the operator .LLT. in Fortran, that may not associate with themsclves; thus,

veresey oA LT B, LT C EIRTUEEEUR P PR PR N O 3
is illegal in Fortran, and such an opcrator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right =
Pleft "+ —°
%left ‘*" °/°

’

%%

expr : expr ‘=
| expr “+° expr
| expr ‘—

| cxpr “*° cxpr
| “expr /° expr .
| NAME

might be used to structure the input
a=b=c#d—_e-—f*g

as follows: A
a=(b=(({cxd)—-c) —- (fg)))

When this mechanism is used, unary opecrators must, in general, be given a precedence. Somctimes
a unary operator and a binary opcrator have the same symbolic representation, but different pre-
cedences. An cxample is unary and binary “— ", unary minus may be given the same strength as
multiplication, or cven higher, while binary minus has a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular grammar rule. %prec
appcars immediately after the body of the grammar rule, before the action or closing semicolon,
and is followed by a token name or literal. 1t causes the precedence of the grammar rule to
become that of the following token name or literal. IFor example, to make unary minus have the
same precedence as multiplication the rules might resemble: :

-15-

%left "+ "—*
%left " °/’
%%
expr : expr "+ expr

| expr ‘—" expr

N expr ‘=’ expr

| expr '/° expr

| "~ expr %prec ‘*’
| NAME '

A token declared by %left, %right, and %nonassoc need not be, but may be declared by
%token as well.

The precedences and associativities arc used by Yacc to resolve parsing conﬂlcts they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativitics are recorded for those tokens and literals that have them.

2. A precedence and associativity is associated with cach grammar rule; it is the precedence and
associativity of the last token or litcral in the body of the rule. If the %prec construction is
uscd, it overrides this default. Some grammar rules may have no prcccdcncc and associativity
associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input
symbol or the grammar rule has no precedence and associativity, then the two disambiguating
rules given at the beginning of the section arc-used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of the
action (shift or reduce) associated with the higher precedence. If the precedences are the
same, then the associativity is used; left associative implics reduce, right associative implies
shift, and nonassociating implics crror.

Conflicts rcsolved by precedence are not counted in the number of‘ _shift/rcduce and
reduce/reduce. conflicts reported by Yace. This means that mistakes in the specification of pre-
cedences may disguise crrors in the input grammar; it is a good idca to be sparing with pre-
cedences, and usc them in an cssentially “cookbook™ fashion, until some cxpericnce has been
gained. The y.output file is very uscful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult arca, and many of the problems arc semantic oncs.
When an crror is found, for example, it may be necessary to reclaim parse tree storage, delete or
alter symbol table cntrics, and, typically, sct switches to avoid generating any further output.

It is scldom acceptable to stop all processing when an crror is found; it is more useful to con-
tinuc scanning the input to find further syntax crrors. This lcads to the problem of getting the
parser “restarted” after an crror. A gencral class of algorithms to do this involves discarding a
number of tokens from the input string, and attempting to adjust the parscr so that input can con-
tinue.

To allow the uscr some control over this process, Yace provides a simple, but recasonably gen-
cral, feature. 'The token name “crror” is reserved for error handling. This name can be used in
grammar rules; in cffect, it suggests places where crrors arc expected, and recovery might take
place. 'The parser pops its stack until it enters a statc where the token “error” is legal. It then
behaves as if the token “crror” were the current lookahead token, and performs the action encoun-
tered. ‘The lookahcad token is then reset to the token that caused the crror. If no special error

-16 -

rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an crror, remains
in error state until thrce tokens have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and the input token is quictly deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in
which the error was seen. More preciscly, the parscr will scan ahead, looking for three tokens that
might legally follow a statement, and start processing at the first of these; if the beginnings of state-
ments are not sufficiently distinctive, it may make a false start in the middle of a statement, and end
up reporting a second error where there is in fact no error.

Actions may be used with these special erroy-rules., These actions might attempt to reinitialize -
tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are
rules such as

o,

stat crror

Here, when there is an crror, the parser attempts to skip over the statement, but will do so by skip-
ping to the next *;". All tokens after the crror and before the next ;" cannot be shifted, and are
discarded. When the *;” is scen, this rule will be reduced, and any “cleanup” action associated with
it performed.

Another form of crror rule ariscs in intcractive applications, where it may be desirable to per-
mit a lin¢ to be reentered after an error. A possible crror rule might be

input : error . \n" { printf("Rcenter last line: "); } input

{ §$ =$%41}

There is onc potential difficulty with this approach; the parser must correctly process three input
tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an crror in the first two tokens, the parser deletes the offending tokens, and gives no mes-
sage; this is clearly unacceptable. For this rcason, there is a mechanism that can be used to force
the parser to believe that an crror has been fully recovered from. The statement

yycrrok ;
in an action rescts the parser to its normal mode. The last example is better written

input: crror "\n’
{ yyerrok;
printf{ "Reenter last line: "); }
input

{ $ =84}

As mentioned above, the token seen immediately after the “crror” symbol is the input token
at which the error was discovered. Somctimes, this is inappropriate; for example, an ¢rror recovery
action might take upon itself the job of finding the correct place to resume input. In this case, the
previous lookahcad token must be cleared. 'T'he statement

yyclearin ;

in an action will have this effect. For cxample, suppose the action after crror were to call some
sophisticated resynchronization routine, supplicd by the uscr, that attempted to advance the input to
the beginning of the next valid statement. After this routine was calted, the next token returned by -
yylex would presumably be the first token in a legal statement; the old, illegal token must be dis-
carded, and the crror state resct.” ‘This could be done by a rule like

-17-

stat error
{ resynch();
yyerrok ;
yyclearin ; }

.
*

These mechanisms are admittedly crude, but do allow for a simple, fairly cffective recovery of
the parser from many crrors; moreover, the user can get control to deal with the error actions
required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called y.zab.c
on most systems (duc to local filc system conventions, the names may differ from installation to
installation). ‘The function produced by Yacc is called “‘yyparse’; it is an integer valued function.
When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the user (sce
Scction 3) to obtain input tokens. Eventually, cither an error is detected, in which case (if no error
rccovery is possible) yyparse returns the value 1, or the lexical analyzer returns the endmarker
token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain a
working program. For cxample, as with every C program, a program called main must be defined,
that cventually calls yyparse. In addition, a routinc called yyerror prints a message when a syntax
crror is detected.

These two routines must be supplied in one form or another by the user. To case the initial
cffort of using Yacc, a library has been provided with default versions of main and yyerror. The
name of this library is system dcpendent; on many systems the library is accessed by a —ly argu-
ment to the loader. To show the triviality of these default programs, the source is given below:

main(){
return(yyparse());
}

and
includce <stdio.h>

yyerror(s) char *s; {
fprintf{ stderr, "%s\n", s);

The argument to yyerror is a string containing an crror message, usually the string *“‘syntax error”.
The average application will want to do better than this. Ordinarily, the program should keep track
of the input linc numbcer, and print it along with the message when a syntax crror is detected. The
cxternal integer variable yychar contains the lookahcad token number at the time the crror was
detected; this may be of some interest in giving better diagnostics. Since the main program is
probably supplicd by the user (to rcad arguments, ctc.) the Yacc library is uscful only in small pro-
jects, or in the carlicst stages of larger ones.

The external integer variable yydebug is normally sct to 0. If it is sct to a nonzero value, the
parser will output a verbose description of its actions, including a discussion of which input sym-
bols have been read, and what the parser actions are. Depending on the operating cnvironment, it
may bc possible to sct this variable by using a debugging system.

9. Hints for Preparing Specifications

* This section contains’ misccllancous hints on preparing cfficient, casy to change, and clear
specifications. The individual subscctions arc more or less independent,

-18 -

Input Style
It is difficult to provide rules with substantial actions and still have a readable specification

file. The following stylc hints owe much to Brian Kernighan.

a. Usc all capital letters for token names, all lower casc letters for nonterminal names. This rule
comes under the heading of “knowing who to blame when things go wrong.”

b. Put grammar rules and actions on scparate lincs. This allows cither to be changed without an
automatic need to change the other. '

¢. Put all rules with the same left hand side together. Put the left hand side in only once, and
let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on
a scparate linc. This allows new rules to be casily added.

.-e, -~ Indent.rule bodies by two. tab stops, and action bodics by. three tab stops.

The cxample in Appendix A is written following this style, as arc the examples in the text of
this paper (where space permits). The user must make up his own mind about these stylistic ques-
tions; the central problem, however, is to make the rules visible through the morass of action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called “left recursive” grammar rules:
rules of the form

name : name rest_of rule ;
These rules frequently arise when writing specifications of scquences and lists:

list item
| list °," item

and
seq item
| seq item
In cach of these cases, the ﬁm(rule w1|| be reduced for the first item only, and the scwnd rule will
be reduced for the sccond and all succeeding items.
With right recursive rulces, such as

scq item
| item seq
the parser would be a bit bigger, and the items would be scen, and reduced, from right to left.

More seriously, an internal stack in the parser would be in danger of overflowing if a very long
scquence were read. Thus, the user should use Ieft recursion wherever reasonable,

It is worth considering whether a sequence with zero clements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

scq /* cmpty */
| scq item

»

~ Once again, the first rule would always be reduced exactly once, before the first item was read, and
then the second rule would be reduced once for cach item read. Permitting empty sequences often
leads to incrcased gencrality. However, conflicts might arise if Yacc is asked to dccide which
cmpty scquence it has scen, when it hasn’t seen enough to know!

-19-

Lexical Tic-ins _
Some lexical decisions depend on context. For example, the lexical analyzer might want to

delete blanks normally, but not within quoted strings. Or names might be entered into a symbol
table in declarations, but not in cxpressions.

One way of handling this situation is to crcatc a global flag that is examincd by the lcxncal
analyzer, and sct by actions. IFor example, supposc a program consists of 0 or more declarations,
followed by 0 or more statements. Consider:

%{
' int dflag;
%}
. other dcclarations ...

%%

prog : decls stats

decls : /* empty */
| decls declaration

stats : /* empty */
{ dflag = 0; }
| stats statement

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
Sirst token in the first statement: 'This token must be scen by the parser before it can tell that the
declaration scction has cnded and the statements have begun. In many cascs, this singlc token
exception does not affect the Iexical scan.)

This kind of “backdoor™ approach can be claborated to a noxious degree. chcr(hclcss it
represents a way of doing some things that arc difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like “if”, which arc normally
reserved, as label or variable names, provided that such usc docs not conflict with the legal usc of
these names in the programming language. This is extremely hard to do in the framework of Yacc;
it is difficult to pass information to the lexical analyzer telling it “this instance of ‘i’ is a keyword,
and that instancc is a variable™. 'The user can make a stab at it, using the mechanism described in
the last subscction, but it is difficult.

A number of ways of making this casicr arc under advisement. Until then, it is better that the
keywords be reserved ; that is, be forbidden for use as variable names. There are powerful stylistic
rcasons for preferring this, anyway. -

10: Advanced Topics
This scctlon discusses a number of advanccd features of Yacc.

-20-

Simulating Krror and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR
causcs the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error rccovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to valucs rcturned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this
casc the digit may be 0 or ncgative. Consider

sent adj noun verb adj noun
{ look at the sentence .« .} v -

adj : THE { $$=THE; }
| YOUNG { $$= YOUNG; }

noun : DOG
| CRONE
{ il $0 == YOUNG }{
printf{ “what?\n");

}
$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was not
YOUNG. Obviously, this is only possible when a great deal is known about what might precede
the symbol noun in the input. Therce is also a distinctly unstructured flavor about this. Neverthe-
less, at times this mechanism will save a great deal of trouble, especially when a few combinations
arc to be cxcluded from an otherwise regular structure,

Support for Arbitrary Value Types

By default, the values returned by actions and the Iexical analyzer arc integers. Yacc can also
support valucs of other types, including structurcs. In addition, Yacc keeps track of the types, and
inserts appropriate union member names so that the resulting parser will be strictly type checked.
The Yace value stack (sec Section 4) is declared to be a union of the various types of values
desired. ‘The user declares the union, and associates union member names to cach token and non-
terminal symbol having a. value. When the value is referenced through a $$ or $n construction,
Yacc will automatically inscrt the appropriatc union name, so that no unwanted conversions will
take place. In addition, type checking commands such as ZintS will be far more silent,

There arc three mechanisms used to provide for this typing. First, there is a way of dcfining
the union; this must be donc by the uscr since other programs, notably the lexical analyzer, must
know about the union member names. Sccond, there is a way of associating a union member name.
with tokens and nonterminals. Finaltly, there is a mechanism for describing the type of those few
valucs where Yace can not casily determine the type.

To declare the union, the user includes in'the declaration section:

-21-

%union {
' body of union ...

}

This declares the Yacc value stack, and the cxternal variables yylval and yyval, to have type equal
to this union. If Yacc was invoked with the —d option, the union declaration is copied onto the
y.2ab.h file. Alternatively, the union may be declared in a header file, and a typedef used to define
the variable YYSTYPE to represent this union. Thus, the header file might also have said:

typcdef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations scction, by usc of %{ and %}.
"2 Once YYSTYPE is defined, the union member names must be assoéiated with the various ter-
minal and nonterminal names. The construction
< name >

is used to indicatc a union member name. If this follows onc of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus, saying

%left <optype> "+ "=

will causc any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associatc union member
names with nonterminals. Thus, onc might say

%type <nodctype> cxpr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the valuc returned by this action has no a priori typc. Similarly, reference to left
context values (such as $0 — sce the previous subscction) Ieaves Yace with no casy way of know-
ing the typc. In this case, a type can be imposcd on the reference by inserting a union member
namc, between € and >, immediately after the first §. An example of this usage is

rule : aaa { intvaD$ = 3; } bbb
{ fun($<intval>2, $<other>0); }

This syntax has little to recommend it, but the situation ariscs rarcly,

A sample specification is given in Appendix C. The facilities in this subscction are not trig-
gered until they arc used: in particular, the use of %type will turn on these mechanisms. When
they are uscd, there is a fairly strict level of checking, For cxample, usc of $n or $$ to refer to
somecthing with no defined type is diagnosed. If these facilitics are not triggered, the Yacce value
stack is used to hold int’s, as was truc historically.

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond my
inclination, and frequently beyond my ability, in their endless scarch for “one more feature”. Their
irritating unwillingness to Icarn how to do things iy way has usually led to my doing things their
way: most of the time, they have been right. B. W. Kernighan, P. J. Plauger, S. 1. Feldman, C.
Imagna, M. E. Lesk, and A. Snyder will recognize some of their idecas in the current version of
Yacc. C. B.-Haley contributed to the crror recovery algorithm. 1. M. Ritchic, B. W. Kernighan,
~and M. O. Harris helped translate this document into English. Al Aho also descrves special credit
for-bringing the mountain to Mohammed, and other favors.

-22-

Refercnces

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1978.

2. A. V. Aho and S, C. Johnson, “LLR Parsing,” Comp. Surveys, vol. 6, no. 2, pp. 99-124, June
1974. _ A

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, “Deterministic Parsing of Ambiguous Gram-
mars,” Comm. Assoc. Comp. Mach., vol. 18, no. 8, pp. 441-452, August 1975.

4. A.V.Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Recading, Mass.,
1977.

5. S. C. Johnson, “Lint, a C Program Chccker,” Comp. Sci. Tech. Rep. No. 65, 1978. updated
version T™ 78-1273-3

6. S. C. Johnson, “A Portable Compiler: Theory and Practice,” Proc. Sth ACM Symp. on Princi-
ples of Programming Languages, pp. 97-104, January 1978. .

7. B. W. Kernighan and L. L.. Cherry, “A System for Typesctting Mathcematics,” Comm. Assoc.
Comp. Mach., vol. 18, pp. 151-157, Betl Laboratorics, Murray Hill, New Jersey, March 1975.

8. M. E. Lesk, “lex — A Lexical Analyzer Generator,” Comp. Sci. Tech. Rep. No. 39, Bell

Laboratorics, Murray Hill, New Jersey, October 1975.

-23 -

Appendix A: A Simple Example
This example gives the complete Yacc specification for a small desk calculator; the desk cal-

culator has 26 registers, labeled “a” through “z”, and accepts arithmetic expressions made up of the
operators +, —, *, /, % (mod operator), & (bitwise and), | (bitwisc or), and assignment. If an
cxpression at the top Ievel is an assignment, the value is not printed; otherwise it is. As in C, an

intcger that begins with 0 (zcro) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing
how precedences and ambiguitics are used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phasc is much simpler than for most applications,
and the output is produced immediately, line by line. Note the way that decimal and octal integers
are rcad in by the grammar rules; This job is probably better done by the lexical analyzer.

%{
include <stdio.h>
includc <ctype.h>

int regs[26];
int base;

%}

%start list

%token -DIGIT LETTER

%left |

%left &°

Poleft "+ "—°

%lcﬂ 0*’ D/I l%l .

%icft UMINUS /* supplics precedence for unary minus */

%% /+ beginning of rules scction */

list v /* cmpty */
| list stat "\n’
| list crror "\n’
{ yyerrok; }
stat : cxpr
{ printl{ "%d\n", $1); }

| LEITER "=" cxpr
{._ regs{$1] = $3; }

expr ‘(" expr)
{ $$ = $2; }
| expr “+° expr
{ $$ = $1 + $3; }

| expr ‘=" expr

-

$$ $1 —.$3; }
$$ = $1 = 8$3; }

| cxpr "+ cxpr

-~

-24 -

| expr /" cxpr
: { $$ = $1 7 $3; }

| expr ‘%" cxpr
{ $8 = $1 % $3; }

| expr ‘&’ expr
{ $$ = $1 & $3; }

| expr ‘|" expr
{ $$ = $1 | $3; }
| ‘—" expr - %prec UMINUS

{ $$ = — $2; }
| LETTER
{ $8 = regs[$1]; }
| number
number : DIGIT

{ $$ = $1; base = ($1==0)? 8 : 10; }
| number DIGIT
{ $$ = base*$1 + $2; }

[}

%% /* start of programis */

yylex() { /* lexical analysis routine */ '
/+ rcturns LETTER for a lower casc letter, yylval = 0 through 25 */
/* rcturn DIGIT for a digit, yylval = 0 through 9 */
/* qll other characters are returned immediately */

int c;
while({c=getchar()) == * ") {/+ skip blanks */ }
/* ¢ is now nonblank =*/

if(istower(¢)) {
yylval = c — "%
return (LETTER)

}

i isdigit(¢)) {
yylval = ¢ — 0%
return(DIGIT),

.,

return{ ¢);

}

-25-

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context
‘dependencies, etc., are not considered. Ironically, the Yacc input specification language is most
naturally specified as an 1.R(2) grammar; the sticky part comes when an identifier is seen in a rule,
immediately following an action. If this identificr is followed by a colon, it is the start of the next
rule; otherwise it is a continuation of the current rule, which just happens to have an action cmbed-
- ded in it. As implemented, the lexical analyzer looks ahcad after sceing an identifier, and decide
whether the next token (skipping blanks, ncwlines, comments, ctc.) is a colon. [f so, it returns the -
token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also
returned as IDENTIFIERS, but never as part of C_IDENTIFIERs. ‘

/% grammar for the input to Yacc */

/* basic cntities */
%token IDENTIFIER /* includes identificrs and litcrals */ . :
%token C_IDENTIFIER /* identificr (but not litcral) followed by colon */
%token NUMBER : /% [0-9]+ */ :

/* reserved words: %type => TYPE, %left => LEFT, etc. */
%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION -
%token MARK /* the %% mark */
%token [.CURL /* the %{ mark */
%token RCURL /* the %} mark =/

/* ascii character literals stand for themselves */

%start spec
%%
spec : defs MARK rules tail
tail : MARK { In this action, eal up the rest of the file }
| /* cmpty: the sccond MARK is optional */
defs : /* empty */
| defs def
def : START IDENTIFIER '
| UNION { Copy union definition to output ¥
| LCURL { Copy C code to output file } RCURL
| ndefs rword tag nlist
rword :° TOKEN
| . LEFT

| " RIGHT
| NONASSOC

tag

nlist

nmno

rules

rule

rbody

act

prec

/* rules

TYPE

-26-

/* cmpty: union tag is optional */

" IDENTIFIER %’

nmno

nlist nmno
nlist °,” nmno

IDENTIFIER
IDENTIFIER NUMBER

section */

/* NOTE: literal illegal with %type */
--/* NOTE: illegal with %type */ _ .

C_IDENTIFIER rbody prec

rules rule

C_IDENTIFIER rbody prec

I rbody prec

/* cmpty */
rbody IDENTIFIER
rbody act

4 { Copy action, translate 33, etc. } '}

/% cmpty */

PREC IDENTIFIER
PREC IDENTHIER act
. prec

.

-2’]:.

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed
in Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands floating point constants, the
arithmetic ()pcrations +, —, *, /, unary —, and = (assignment), and has 26 floating point vari-
ables, “a” through “z”. Morcover, it also understands intervals, written

(x y)

where x is less than or equal to y. Therc are 26 interval valucd variables “A” through “Z” that
may also be used. The usage is similar to that in Appendix A; assighments return no value, and
print nothing, whilc expressions print the (floating or interval) value.

This cxample explores a number of intcresting features of Yacc and C. Intervals are
..Tepresented by a structure, consisting of the left and right endpoint valuc§ stored as double’s. This
structure is given a type name, INTERVAL, by using typedef. The Yace value stack can also con-
tain floating point scalars, and integers (used to index into the arrays holding the variable valucs).
Notice that this entire strategy depends strongly on being able to assign structurcs and unions in C.
In fact, many of the actions call functions that rcturn structures as well. :

It is also worth noting the use of YYERROR to handle error conditions: division by an inter-
val containing 0, and an intcrval presented in the wrong order. In cffect, the error recovery
mecchanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to kecp track of the type (c.g. scalar or interval) of intermediate expres-
sions. Note that a scalar can be automatically promoted to an interval if the contéxt demands an
interval value. This causcs a large number of conflicts when the grammar is run through Yacc: 18
Shift/Reduce and 26 Reduce/Reduce. The problem can be scen by looking at the two input lines:

254 (35-4.)
and
25+ (35,4:)

Notice that the 2.5 is to be used in an interval valued expression in the second cxample, but this
fact is not known until the " is rcad; by this time, 2.5 is finished, and the parser cannot go back
and change its mind. More gcncmlly, it might be neeessary to look ahcad an arbitrary number of
tokens to decide whether to convert a scalar to an interval. 'This problem is cvaded by having two
rules for cach binary interval valued operator: onc when the left operand is a scalar, and on¢ when
the left operand is an interval. In the second case, the right operand must be an interval, so the
conversion will be applied automatically. Despite this cvasion, there are still many cases where the
conversion may be applied or not, leading to the above conflicts. They are resolved by listing the
rules that yicld scalars first in the specification file; in this way, the conflicts will be resolved in the
dircction of keeping scalar valucd expressions scalar valucd until they arc forced to become inter-
vals.

This way of handling multiple types is very instructive, but not very general. 1If there were
many kinds of expression types, instead of just two, the number of rules needed would increase
dramatically, and the conflicts ecven more dramatically. ‘Thus, while this example is instructive, it is
better practice in a more normal programining language cnvuonmcnt to keep the type information
as part of the valuc, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual featurc is the treatment of float-
ing point constants. The C library routine afof is used to do the actual conversion from a character
string to a double precision value. If the lexical analyzer detects an error, it responds by returning
" a token that is illcgal in the grammar, provoking a syntax crror in the parser, and thence error
rccovery.

-28 -

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {.
double 1o, hi;
} INTERVAL;
INTERVAL vmul(), vdivQ;
double zitof(); ; '

double dreg[26]; .
INTERVAL vreg{ 26 ;

%}

%start lines

%union {

) int ival; '
double dval;
INTERVAL vval;
} .

%token <ival> DREG VREG /* indices into drcg, vreg arrays */

%token <dval> CONST /* floating point constant */
%type <dval> dexp. /* cxgrcséionf AP
%type <wvald vexp /* interval cxpression */

/* precedence information about the operators */

Pleft “+* -7 - o Y B
%lcﬂ :*: '/- ‘ . I ’ .”'")'\- (I 1
%lcft UMINUS /* precedence for unary minus */

%%

lincs : /* cmpty */
| lincs line

.
’

line : dexp “\n’
{ printl("%15.8M\n", $1); }
| vexp "\n" ' '
RS § printf{ "(%15.8f , %15.8f)\n", $l.lo, $1.hi); }
| DREG ‘=" dexp \n’
{ dreg[$1] = $3; }
| VREG "= vexp "\n’

vexp

-29 -

{ ovreg[$l] = 83; }
error "\n’
{ yyerrok; }

CONST

'DREG

$$ = dreg[$1); }
dexp “+° dexp

{ 8% =981+ $3; }
dexp ‘-’ dexp :

{ 8 =986 - $3; }
dexp “*° dexp :

{ $8 = 8$1 .83 } .
dexp °/° dexp

{ 88 =817/81
"~ dexp %prec UMINUS

{ 8 = -9$2;}
C doxp Y ‘
{ 8% = $2;}

dexp

{ $$.hi = $$1o = $1; }
.(. dcxp ;,; dcxp »).

{

$$.lo = $2;

$$.hi = $4;

i $8.00 > $$.hi)
printf{. "interval out of order\n");
YYERROR;

}

}
VREG
{ 88 = wreg[$1; 1}

vexp ‘47 vexp

{ $$.hi = $Lhi + $3.hi;
. $$.1o = S$llo + $3Jo; }
dexp “+° vexp
{ $$.hi = $1 + $3.hi;
$$do = $1 + $3do; }
vexp ‘=" vexp _
{ $$.hi = $Lhi — $llo;
© $8lo = S$Llo — $3hi; }
dexp "—° vexp
{ $8hi = $1 - $3lo;
$$1o = $1 — $3hi; }

vexp “*° vexp
{ $$ = vmul($l.lo, $Lhi, $3); }
dexp “*° vexp
{ 8% = vmul($1, $1, $3); }
vexp /" vexp .
{ if{ dcheck($3)) YYERROR;
$$ = vdiv($llo, $Lhi, $3); }

-30-

| dexp '/ vexp
: { if{ dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3); }
| ‘—* vexp %prec UMINUS
{ $$hi = —$2lo; $$lo = —$2hi; }
| ;(; vexp ;); .
{ $% = 982;}

%%

define BSZ 50 /* buffer size for floating point numbers */

cor-r 7% lexicalsanalysis: #/ . o v it oo
yylexOf
register c;
while((c=getchar()) == °°){ /* skip over blanks */ }
if(isupper(¢))
yylvalival = ¢ — "A’;

return(VREG);

}

if{ islower(¢))
yylvalival = ¢ — ‘a”;
return(DREG);
3

if{ isdigit ¢) || e=="")
/* gobble up digits, points, exponcnts */

char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp—buP<BSZ ; + +cp,c=getchar())

*p = C;

if(isdigit(¢)) continue;

iflc == "" |)
i dot++ | exp) return(°.”); /* will causc syntax crror */
continue; :

}
il c == "¢)|

if{ cxp++) return(‘e’) /* will causc syntax crror */
continue;

}

/* end of number */
break;
-}
*xp = \0% -
i (cp—buf) >= BSZ) printf{ "constant too long: truncatcd\n");

-31-

elsc ungetc(c, stdin);' /* push back last char read */
yylval.dval = atof{ buf);
return(CONST);

return(¢);

}

INTERVAL hilo(a, b, ¢, d) double a, b, ¢, d; {
/* return$ the smallest interval containing a, b, ¢, and d *»/
/* used by *, / routines */
INTERVAL v;

il'ab) { vhi = a; vlo = b; }
elsc { vhi = b; vilo = a; }

il >d) { -

i ¢>vhi) vhi = c;
it dvlo) vlo = d;
} .

else {
ifrf. d®v.hi) v.hi = d;
if{fl. vlo) vlo = ¢
}

return(v);

}

INTERVAL Vli'ml(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, bxvlo));

}

dcheck(v) INTERVAL v; {
iflt. vhi >= 0. && vlilo <= 0.){
print "divisor intcrval contains 0.\n");
return{ 1);

return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.o, b/v.hi, b/vio))
}

-32-

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity,
but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes

2. Literals may be more than one character long. If all the characters are alphabetic, numeric,
or _, the type number of the literal is defined, just as if the literal did not have the quotes
around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it sug-
gests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash “\” may be used. In particular, \\ is the same as
%%, \cft the same as %left, etc.

4. There are a number of other synonyms;

(13112
.

w el LT iy

%< is the same as %bleft

%> is the same as %right

%binary and %?2 arc the same as %nonassoc
%0 and %term arc the same as %token

%= is the same as %prec

5. Actions may also have the form

={...}
and the curly braces can be dropped if the action is a single C statcment.

6. C code between %{ and %} uscd to be permitted at the head of the rules section, as well as in
the declaration section. -

Lex — A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt

- o e

ABSTRACT

Lex helps write programs whose control flow is dirccted by instances of regular expressions in
the input stream. 1t is well suited for cditor-script type transformations and for segmenting input in
preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
transiated to a program which rcads an input stream, copying it to an output strcam and partitioning
the input into strings which match the given expressions. As each such string is recognized the
corresponding program fragment is executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by Lex. The program fragments written by the uscr are exe-

cuted in the order in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specilications and choose the
léng‘cst match possible at cach input point. If necessary. substantial lookahead is performed on the
input, but the input strcam will be backed up to the cnd of the current partition, so that the uscr has
géncral frecedom to manipulate it.

Lex can generate analyzers in cither C or Ratfor, a language which can be translated automati- .
cally to portable Fortran. It is available on thec PDP-11 UNIX, Honeywell GCOS, and IBM OS sys-
tems. This manual, howevcr, will only discuss generating analyzers in C on the UNIX sysiem, which is
the only supported form of Lex under UNIX Version 7. Lex is designed to simplify interfacing with

Yacc, for those with access to this compiler-compiler system,

July 21, 1975

1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambigudus Source Rules. 7
- 6." Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10
10. Left Context Scasitivity. 11
11. Character Set. 12

Table of Contents

12 .Summary of Sdurce Format. 12

13. Caveats and Bugs. 13
14. Acknowledgments. '13
15. References. 13

1. Introduction.

Lex is a program generator dcsigned‘for lex-
ical processing of character input streams. It
accepts a high-level, problem oriented specification
for character siring matching, and produces a pro-
gram in a general purpose language which recog-
nizes regular expressions. The regular cxpressions
are specified by the user in the source
specifications ‘given to Lex. The Lex written code
recognizes these expressions in an input stream
. and partitions. the input stream into strings match-

ing the expressions. At the boundaries between

strings program sections provided by the user are

executed. The Lex source file associates the regu-
lar expressions and the program fragments. As
each expression appears in the inpl;t to the pro-
gram wriltlen by Lex, the ;onesmnding fragment

is executed.

The user supplics the additional code
beyond expression matching needed (o complete
his tasks, pbssibly including code written by other
generators. The program that recognizes the
expressions is generalcd in the general purpose
programming languagé .cmployed for the user’s
program fragments.' Thus, a high level expression

language is provided to write the string expressions

LEX—2

to be matched while the user’s.freedorr.l to write
actions is unimpaifed. This avoids forcing the user
who wishes to use a string manipulation language
for input analysis to write processing programs in
the same and often inapprobriabe string handling

language.

Lex is not a complete language, but mlﬁer a
generator representing a new language feature
which can be added (o different programming
languages, called “host languages.” Just as general
purpose languages can produce code to run on
different computer hardware, Lex can write code
- in different host languages. The host language is
used for the output code generated by Lex and
also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also providéd; This makes Lex
adaptable to different environmen-ls and different
users. Each application may be directed o the
combinalién of hardware and host language
appropriate to the task, the user's background, and
the properties of local imple_mentations. At
present, the only supported host language is C,
although Fortran (in the form of Ratfor [2] has
been available in the past. Lex itself exists on
UNIX, GCOS, and OS/370; but the code gen-
erated by Lex may be taken anywhere the

appropriaté compilers exist.

Lex turns the user’s expressions and actions

(called source in this memo) into the host general-

- indicates “one or more ...

purpose language; the generated prdgram is named
yylex. The yylex program will recognize expfes-
sions in a stream (called input in this memo) and
perform the specified actions for each expression

as it is detected. See Figure 1.

Source —>| Lex ! —> yylex

Input — | yylex | — Output

An overview of Lex

Figure 1

For a trivial example, consider a program to
delete from the input all blanks or tabs at thQ ends
of lines. |

%%

[\g+8
is all that is required. The prograﬁl cou.lwins a %%
delimiter to mark the beginning of the rules, and
one rule. This rule contains a regular expression
which matches one or more instances of the char-
aclers blank or tab (written \t for visibility, in
accordance with the C language convention) just
prior o the end of a line. The brackets indicate
the character class made of blank and lab; the +
”; and the $ indicates
“end of line,” as in QED. No.action is specified,
so the program generated by Lex (yyléx) will
ignore these characters. Everything else will be

copied. To change any remaining_string of blanks

LEX—-3

or tabs to a single blank, add another rule:

%%

[\J+$

[N+ prinuf(" *);
The finite automaton generated for this source will
scan for both rules at once, observing at the termi-
nation of the string of blanks or tabs whether or
not there is a newline charactér, and executing the
desired rule action. The first rule matches all
strings of blanks or tabs at the end of lines, and
the second rule all remaining strings of blanks or

tabs.

Lex can be used alone for simple transfor-
mations, or for analysis and statistics gathering on
a lexical level. Lex can also be used with a parser
generator to perform the lexical analysis phase; it
is particularly easy (o interface Lex and Yacc [3].
Lex progr&ﬁns recognize only regular expressions;
Yacc writes parsers that accept a large class of con-
text free 'grammals, but require a lower lcvel
analyzer to recognize input tokens. Thus, a combi-
nation of Lex and Yacc is often appropriate.
When used as a preprocessor for a later parser
generator, Lex is used to partition thé input
stream, and the parser generator assigns struclure
to the resulting pieces. The flow of control in such
a case (which might be the first half of a compiler,

for example) is shown in Figure 2. Additional

programs, writicn by other generators or by hand, |

can be added easily to programs written by Lex.

lexical grammar
rules rules
4 $
| Lex | | Yacc |
¥ {

Input — l yylex | g | yyparse | —> Parsed input

Lex with Yacc

Figure 2

Yacc users will realize that the name yylex is what
Yacc expects its lexical analyzer to be named, so
that the use of this name by Lex simplifies inter-
facing.

Lex generates a deterministic finite aﬁtoma-
ton from the regular expressions in the source [4].
The automaton is interpreted, rather than com-
piled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a
Lex program to recognize and partition an input
stream is proportional to the length of the input.
The number of Lex rules or the complexity of the
rules is not important in dctcrinining speed, unless
rules which include forward context require a
significant amount of rescanning. What does
increase with the number and complexily of rules
is the size of the finite automaton, and therefore -

the size of the program generated by Lex.

LEX—4

In the program written by Lex, the user’s
fragmeﬁ(s (rei)resenting the actions to be per-
formed as each regular expression is found) are
gathered as cases of a switch. The automaton
interpreter directs the control flow. Opportunity is
provided for the usef to insert either declarations

or additional statements in the routine containing

..the .actions, or o add .subroutines outside - this . -

action routine.

Lex is not limited to source which can be
interpreted on the basis of one character look-
ahead. For example, if there are two rules, one
looking for ab and another for abcdefg, and the
input stream is abcdefh, Lex will recogrﬁze ab and
leave the input_pbipler just before cd. . . Such
backup is more costly than the prdcessing of

simpler languages.

2. Lex Source.

The general format of Lex source is:
{dcfinitions}
%%
{Arules}
%%
{user subroutines}
where the definitions and the user subroutines are
often omitlcci The second %% is optional, but
the first is required to mark the beginning of the
~ rules. The absolute minimum Lex program is thus

%%

(no definitions, no rules) which translates into a
program which copies the input to the output

unchanged.

In the outline of Lex programs shown
above, the rules represent the user’s control deci-
sions; they are a table, in which the left column

contains regular expressions (see section 3) and

*. the right column’® corains actions, program frag-

ments to be executed when the expressions are

recognized. Thus an individual rule might appear
integer - printf{("found keyword INT");

to look for the string integer in the input stream

and print the message “found _ keyword INT”

© whenever it appears. In this example the host pro-

cedural language is C and the C Iibrary function
printf is used to print the string. The end of the
expression is indicated by the first blank or tab
character. If the action is merely .a single C
expression, it can just be given on the right side of
the line; if it is compound, or wkes; more than a
line, it should be enclosed ~in braces. As a slightly
more useful example, suppose it is desired (o
change a number of words from British (o Ameri-
can spelling. Lex rules such as

colour printf("“color");

mechanise printf("mechanize");

petrol printf("gas");
would be a.start. ’fliese rules are not quite

enough, since the word petroleum would become

gaseum; a way of dealing with this will be

LEX—5

described later.

3. Lex Regular Expressions.

The definitions of regular expressions are
very similar to those in QED [5]. A regular
expression speéiﬁes a set of strings to be matched.
It contains text characters (which match- the
corresponding characters in the strings being com-
pared) and operator characters (which specify
repetitions, choices, and other features). The
. letters of the alphabel and the digits are always
text characters; thus the regular expression

integer
matches the string integer wherever it appears and
the expression
as7D

looks for the string aS7D.

Operators. The operator characters are
NIt =22+ 1O/ {35
and if they are to be used as text characters, an
escape should be used. The quotation mark
operator () indicates that whalever is contained
between a pair of quotes is to be taken as text
characters. Thus

xyz"+ +"

matches the string xyz+ + when it appears. Note.

that a part of a string may be quoted. It is harm-
less but unnecessary to quote an ordinary text
character; the expression

"xyz+ +"

is the same as the one abovg. Thus by quoting
every non-alphanumeric character being used as a
text character, the user can avoid remembering the
list above of current operator characters, and is
safe should further extensions to Lex lengthen the
list.

An operator character may also be turned
into a text character by preceding it with \ as in

xyz\+\+

which is another, less readable, equivalent of the
above expressions. Another use of the quoling
mechanism is to get a blank into an expression;
normally, as explained above, blanks or tabs end a
rule. Any blank character not contained within []
(see below) must be quoted. Several normal C -

escapes with \ are recognized: \n is newline, \t is

' tab, and \b is backspace. To enter \ itself, use \\.

Since newline is illegal in an expression, \n must
be used; it is not required Lo escape tab and back-
space. Every character but blank, tab, newline and

the list above is always a text character.

Character classes. Classes of characters can
be specified using the operator pair []. The con-
struction fabe] matches a single character, which
may be a, b, or c. Within square brackets, most
operator meanings are ignored. - Only three charac-
ters are special: these are \ — and *. The —
vcharacler indicates ranges. For example,

[a—20~9_]

indicates the character class containing all the -

LEX—6

lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either
order. Using — between any pair of characters
which are not both upper case letters, both lower
case letters, or both digits is implementation
dependent and will get a warning message. (E.g.,
[0—z] in ASCII is many more charactérs than it is
in EBCDIC). If it is desired to include the charac-
ter — in a character class, it should be first or last;
thus
[-+0-9]

matches all the digits and the two signs.

In character classes, the T operator must
appear as the first character after the left bracket;
it indicates that the resulling string is to be com-
plemented with respect to the computer character
set. Thus

[Tabc]
matches all characters except a, b, or ¢, including
all special or control characters; or
[ta—zA-Z]
is any character which is not a letter. The \ char-
acter provides the usual escapes within character

class brackelts.

Arbitrary character. To match almost any

character, the operator character

is the class of all characters except newline.

Escaping into octal is possible although non- .

portable:

[\0—\176]

matches all printable characters in the ASCII char-

“acter set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indi-

" cates an optional element of an expression. Thus

ab’c

matches either ac or abc.

" "< Repeated expressions. Repetitions of classes

are indicated by the operators * and +.
a*
is any number of consecutive a characters, includ-
ing zero; while
at+
is one or more instances of a. For example,
[a—z]+
is all strings of lower case letters. And
[A—Za—z]JA—Za—20—9}+
indicates all alphanumeric strings with a lcadiﬁg
alphabetic character. This is a typical expression

for recognizing identifiers in computer languages.

Alternation and Grouping. The operator |

indicates alternation:
' (abled)
malches cithcr ab or ed. Note that parentheses are
used for grouping, although they are not necessary
on the outside level;
ablcd

would have sufficed. Parentheses can be used for.

more complex cxpressions:

LEX—T7

(ab|cd+)2(ef)*
matches such strings as abefef, efefef, cdef, or

cddd ; but not abc, abed, or abedef.

Context sensitivity. Lex will recognize a
small amount of surrounding context. The two
simplest operators for this are * and $. If the first

character of an expression is T, the expression will

“:ohly be matched at the Beginning of a line (aftera . -

newline character, or at the beginning of the input
stream). This can never conflict with the other
meaning of *, complementation of character
classes, since that only applies within the [] opera-
tors. If the very last character is §, the expression
will only be matched at the end of a line (when
immediately fol]dwgd by newline). The latter
operator is a special case of the / opcrélor charac-
ter, which i‘ndicates trailing context. The expres-
sion

ab/cd
matches the string ab,' but only if followed by cd,
Thus

ab$

is the same as .

ab/\n
Lefl context is handled in Lex by start conditions
as explained in section 10. If a rule is only to be
executed when the Lex automaton interpreter is in
‘ start condition x, the rule should be prefixed by
w

using the angle bracket operator charactérs. If we

considered “being at the beginning of a line” to be
start condition ONE, then the * operator would
be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators

{} specify either repetitions (if they enclose

‘. numbers) or definition expansion'(if they enclose a

name). For example

{digit}
looks for a predefined string named digit and
inserts it at that point in the expression. The
definitions are given in the first part of the Lex
input, before the rules. In contrast,

a{1,5}
looks for 1 to § occurrences of a.

Finally, initial % is special, being the

separator for Lex source scgments. -

4. Lex Actions.

When an expression wrilten as above is
matched, Lex executes the corresponding action.
This section desc}ibes some features of Lex which
aid in writing actions. Note that there is a default
action, which consists ol copying the input to the
output. This is performed on all strings not other-
wise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any
output, must provide rules to match everything.

When Lex is being used with Yacc, this is the nor-

mal situation. One may considér that a;:ljons are
what is done instéad of copying the input to the
output; thus, in genera‘_l, a rtule which merely
copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which
appears as input is likely to be printed on the out-

put, thus calling attention to the gap in the rules.

One of the simplest things that can be done
is to ignore the input. Specifying a C null state-
ment, ; as an action causes this result. A frequent

rule is

[\t\n]
- which causes the three spacing characters (blank,

tab, and newline) to be ignored.

Another easy way to avoid writing actions is
the action character |, which indicates that the
action for this rule is the action for the next rule.
The previous example could also have been wril-
ten

"\t"
N\n”
with the same result, although in different style.

The quotes around \n and M are not required.

In more complex actions, the user will oflen
want o know the actual text that matched some
expression like fa—z]+ . Lex leaves this text in
an external character array named yytext. Thus,

to print the name found, a rule like

LEX—8

fa~z]+ printf("%s", yytext);

will print the string in yyrext. The C function
printf accepts a format argument and data to be
printed; in this case, the formal is “print string” (%
indicating data conversion, and s indicating string
type), and the data are the characters in yytext.
So this just places the matched string on the out-
put. This action is so common that it may be writ-
ten as ECHO:

[a—z]+‘ ECHO;

is the same as the aﬁove. Since the default action
is just to print the characters found, one might ask
why give a rule, like this one, which merely
specifies the default action? Such 1:ules are often
required to avoid matching some other rule which -
is not desired. For example, if there is a rule
which malches read it will normally maich the
instances of read contained in bréad or readjust‘;
to avoid this, a rule of the- I‘om; [a—2z]+ is

needed. This is explained further below.

Sometimes it is more convenient to know
the end of what has been found; hence Lex also
provides a count yyieng of the number of charac-
ters matched. To count both the number of words
and the number of characters in words in the
input, the user rﬁight write
[a—zA-Z]+ {words+ +; chars + = yyleng:}
which accumulates in chars the number of charac-

ters in the words recognized. The last character in

the string matched can be accessed by

LEX-9

yytextfyyleng —1]

Occasionally, a Lex action may decide that a
rule has not recognized the correct span of charac-
ters. Two routines are provided to aid with this
situation. First, yymore() can be called to indicate
that the next inbut expression recognized is to be
tacked on to the end of this input. Normally, the
next input string would overWﬁte the current entry
in yytext. Second, yyless (n) may be called to
indicate that not all the characters matched by the
currently successful expression are wanted right
now. The argument n indicates the number of
characters in yytext to be rctained. Further char-
acters pr_eviously matched are returned to the
input. This provides the same sort of lookahead

offered by th¢ / operator, but in a different form.

Example: Consider a language which
defines a string as a set of characlers between quo-
tation (") marks, and provides that to include a "
ina slring.it must be preceded by a \. The regular
expression which matches that is somewhat confus-
ing, so that it might be preferable to write

VIR { |
if (yytextyyleng—1] == "\\')
yymore(Q); °
else
... normal user processing
}
which will, when faced with a string such as .

"abe\"def™ first match the five characters "abc\;

then the call to yymore() will cause the next part

of the string, "def, to be tacked on the end. Note

“that the final quote terminating the string should

be picked up in the code labeled “normal process-
ing”.
The function yyles) might be used .to

reprocess text in various circumstances. Consider

- .. the . problem. of distingujshing the ambiguity of

‘e *

=—a". Suppose it is desired to treat this as

B

*=— a” but print a message. A rule might be .

=—[a—zA-2Z] {

printf("Operator (= —) ambiguous\n");

yyless(yyleng—1);
... action for =— ..,
}
which prints a message, returns the lvétter afler the

operator to the input stream, and treats the opera-

*”

tor as “=—"", Alternatively it might be desired to

»»

treat this as = —a”. To do this, just return the
minus sign as well as the letter 1o the input:

=-la—zA-Z] {

printf{"Operator (= —) ambiguous\n");

yyless(yyleng—2);
... action fof =
}
will perform the other in‘terpretatibn. Note that
the expressions for the two cases might more easily
be written
=~/[A-Za—1z].

ih the first case and

LEX—10

=/—[A~-Za—1]
in the second;'no backup would be required in the
rule action. It is not necessary to recognize the
whole identifier to observe the ambiguity. The
possibility of “= —3", however, makes
=—/[* \t\n]

a still better rule.

vt Incaddition 10+ these routines, Lex also per- - -

mits access to the I/0 routines it uses. They are:

1) input() which returns the next input charac-

ter;

2) output{c) which writes the character ¢ on

the output; and

3) unput(c) pushes the character ¢ back onto

the input $tredm o be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and
supply private versions. These routines define the
relationship between cxternal files and internal
characters, and must all be retained or modified
consistently. They may be redefined, o cause
input or output’ to be transmitted to or from
strange places, including other programs or inter-

nal memory; but the character set uscd must be

consistent in all routines; a value of zero returned

by input must mean end of file; and the relation-
ship between unput and input must be retained or
" the Lex lookahead will not work. Lex does not

look ahead at all if it does not have to, but every

rule ending in + * 2 or $ or containing / implies
lookahead. Lookahead is also necessary to match
an expression that is a prefix of another expression.
See below for a discussion of the character set
used by Lex. The standard Lex library imposes é

100 character limit on backup.

Another Lex library routine that the user

. will' sometimes’ wané to redefine is yywrap() which
is called whenever Lex reaches an end-of-file. If
yywrap returns a 1, Lex continues with the normal
wrapup on end of input. Sometimes, however, it
is convenient (o érrange_ for more input to arrive
from a new source. In this case, the user should
provide a yywrap which arranges for new input
and returns 0. This instructs Lex (o continue pro-

cessing. The default yywrap always returns 1.

This routine is also a convenient place to
print tables, summaries, etc. at the end of a pr;)-
gram. Nole that it is not possible tp wrile a nor-
mal rule which recognizes end-of-file; the only
access (o this condition is through yywrap. In fact,
unless a private version of input() is supplied a file
containing nulls cannot be handled, since a value

of 0 returned by input is taken to be cnd-of-file,
5. Ambiguous Source Rules.

Lex can handle ambiguous specifications.
When more than one. expression can match the

current input, Lex chooses as follows:

1) The longest match is preferred.

LEX—11

2) Among rules which matched the same
number of éharacters, the. rule giveri first is

preferred.

Thus, suppose the rules
integer keyworc'l action ...;
[a—z]+ identifier action ...;
to be given in that order. If the input is inteéers,
it is taken as an identifier, because [a—z/+
matches 8 characters while integer matches only 7.
If the input is integer, both rules match 7 charac-
ters, and the keyword rule is selected because i_t
was given first. Anything shorter (e.g. int) will not
" match the expression integer and so the identifier
interpretation is used.
The pl‘inciple of preferring lhe longest
match makes rules conlaining expressions like .*

dangerous, For example,

[
k

might seem a good way of rccognizing a string in
single quolcs. But it is an invitation for the pro-
gram to read far ahead, looking for a distant single
quote. Presented with the input
first’ quoted string here, ‘second’ here
the above expression will match
first’ quoted string here, ‘second’
which is probably not what was wanted. A better
rule is of the form
[*\al
vwhich', on the above input, will stop afler “first’.

The consequences of errors like this are mitigated

by the fact that the . operator will not match new-
line. Thus expressions like .* stop on the current
line. Don't try to defeat this with expressions like
[\n]+ or equivalents; the Lex generated program
will try to read the entire input file, causing inter-

nal buffer overflows.

Note that Lex is nommally partitioning the
input stream, not searching for all possible matches
of each expression. Thi_s means that each charac-
ter is accounted for once and only once. For
example, suppose it is desired Lo count occurrences

of both she and he in an input text. Some Lex

rules to do this might be
she s+ +.;
he h++;
\n |

where the last two rules ignore everything besides
he and she. Remember that does not include
newline. Since she includes he, Lex will normally
not recognize the instances of ke included in she,

since once it has passed a she those characters are

gone.

Sometimes the user would like to override
this choice. Thp action REJECT means *“go do
the next alternative.” It causes whatever rule was
second choice after the current rule to be exe-
cuted. ‘The position of the input pointer is
adjusted accordingly. Suppose the user really

wants to count the included instances of ke:

LEX—12

she {s+ +; REJECT;} named digram to be incremented, the appropriate
he | {h+ +; REJECT;} source is |
W | %%
: : [a—zlla—z] {digram[yytext[0]][yytext[1]]+ +; REJECT;
these rules are one way of changing the brevious \n 5
example to do just that. After counting each where the REJECT is necessary to pick up a letter
expression, it is rejected; whenever 4appropriate, pair beginning at every character, rather than at

the other expression will then be counted. In this _ every other character.

example, of course, the user could note that she
6. Lex Source Definitions.
includes he but not vice versa, and omit the

. . . Remember the format of the Lex source:
REJECT action on he; in other cases, however, it

X L L. {definitions}
would not be possible a priori to tell which input
. %%
characters were in both classes.
{rules}
Consider the two rules
’ %%

albc]+ { ...: REJECT;}
{user routines}
afed]+ { ...; REJECT;}
: So far only the rules have been described. The
If the input is ab, only the first rule matches, and
user nceds additional options, though, o define
on ad only the sccond matches. The input string .
variables for use in his program and for us¢ by
acch matches the first ruie for four characters and
. Lex. These can go either in the dcefinitions section
then the second rule for three characters. In con-
' or in the rules scction.
trast, the input accd agrees with the second rule .
for four characters and then the first rule for three. Remember that Lex is turning the rules into
a program. Any source not intercepted by Lex is
In general, REJECT is useful whenever the
, copicd inlo the gencrated program. There are
puipose of Lex is not to partition the input stream
_ three classes of such things.
but to detect all examples of some items in the

. . . 1 Any line which is not part of a Lex rule or
inpul, and the instances of these items may overlap) y P

action which begins with a blank or tab is
or include each other. Suppose a digram table of g

\ . ,) copied into the Lex generated program.:
the input is desired; normally the digrams overlap, P § prog

. . . Such source input prior to lhc~ first %% dcl-
that is the word the is considered to contain both . nput p . ?

, . imiter will be external to any function in the
th and he. Assuming a two-dimensional array

2

3)

LEX-13

code; if it appears immediately after the first
%%, it éppcars in an appropriate place for
declarations in the function written by Lex
which contains the actions. This material
must look like program fragments, and

should precede the first Lex rule.

As a side effect of the above, lines which

tain a comment, are passed through to the
generated program. This can be used to
include comments in either the Lex source
or the generated code, The comments

should follow the host language convention.

Anything included between lines containing
only %{ and %} is copied out as above.
The delimiters are discarded. This format
permits entering text like preprocessor state-
ments that must bégin in.column 1, or copy-

ing lines that do not look like programs.

Anything afler the third %% delimiter,
regardless of formats, elc., is copied out afier

the Lex output.

Definitions intended for Lex are given

before the first %% delimiter. Any line in this sec-

tion not contained between %{ and %}, and begin-

ing in column 1, is assumed to define Lex substitu-

tion strings. The format of such lines is

name translation .

and it causes the string given as a translation to be

“* begin with a blank or-tab, ‘and ‘which con-" * . .

associated with the name. The name and transla-
tion must be separated by at least one blank or
tab, and the name must begin with a letter. The
translation can then be called out by the {name}
syntax in a rule. Using {D} for the digits and {E}
for an exponent field, fér example, might abbrevi-

ate rules to recognize numbers:

D . - aqq 109

E [DEde][— +]?{D}+
%%

{D}+ print{("integer”);

{D}+""{DH({E}D? |
{Dp"."{D}+({ED? |
{D}+{E}

Note the first two rules for real numbers; both

~ require a decimal point and contain an optional

exponent ficld, but the first requirés at least one
digit before the decimal point a‘nd'the second
requires-at least one digit afler the decimal point.
To correctly handle the problem poéed by a For-
tran expression such as 35.£Q.J, which does not
contain a real number, a context-sensilive rule
such as
| [0-9]1+/""EQ print{("integer");

could be used in addition to the nprmal rule for

integers.

The definitions section may also contain
other commands, including the selection of a host
language, a character set table, a list of start condi-

tions, or adjustments to the default size of arrays

LEX —14

within Lex itself for larger source programs. These
possibilities are discussed below. under “Summary

of Source Format,” section 12.

7. Usage.

There are two steps in compiling a Lex
source program. First, ﬂ1e Lex source must be
turned into a generated program in the host gen-
eral purpose language. Then this program must be
compiled and loaded, usually with a library of Lex
subroutines. The generated program is on a file
named lex.yy.c. The 170 library is defined in

terms of the C standard library [6].

The C programs generated by Lex are
slightly different on OS/370, because the OS com-
piler is less powerful than the UNIX or GCOS
compilers, and does less at compile time. C pro-
grams generaled on GCOS and UNIX are the

same.

UNIX. The library is accessed by the
loader flag —/l. So an appropriate sct of com-
mands is ’

lex source cc lex.yy.c —Ii
The resulting program is placed on the usual file

a.out for later cxecution. To use Lex with Yacc

see below. Although the default Lex 170 routines

use the C standard library, the Lex automata

themselves do not do so; if private versions of
input, output and unput are given, the library can

be avoided.

8. Lex and Yacc.

If you want to use Lex with Yacc, note that

what Lex writes is a program named yylex(), the

- name required by Yacc for its analyzer. Normally,

the default main program on the Lex library calls
this routine, but if Yacc is loaded, and its main
program is used, Yacc will call yylex(). In this
case each Lex rule should end with
retum(token):

where the appropriate token value is returned. An
easy way lo get access to Yacc’s names for tokens
is to compile the Lex output file as part of the
Yacc output file by placing the line -

include "lex;yy.c"
in the last section of Yacc input. Supposing the -
grammar to be named “good™ and the lexical rules
to be named “better” the UNIX .command
sequence can just be: |

yace good

lex better

cc y.tlab.c —ly -1
The Yacc library (—1y) should be loaded before
the Lex library, to obtain a main program which
invokes the Yacc parser. The gcnémtions of Lex

and Yacc programs can be done in cither order.

9. Examples.

As a trivial problem, consider cop&ing an
input file while adding 3 lo every positive numbet

divisible by 7. Here.is a suitable Lex source pro-

LEX—15

gram
%%
int k;
-9+ {
k = atoi(yytext);
if k%7 == 0)
printf{("%d", k-i-3);
else
printR"%d",k);
}
to do just that. The rule [0--9}+ recognizes
strings of digits; atoi converts the digits to binary
and stores the result in k. The operator %
(remainder). is used o check whether k is divisible
by 7; if i'l is, it is incremented by 3 as it is written
out. It may be objected that this program will
alter such input it;ems as 49.63 or X7. Further-
more, it increments the absolute value of all nega-
tive numbers divisible by 7. To avoid this, just

add a few ‘more rules after the active one, as here:

%%
int k;
-N0-9]+ {
k = atoi(yytext); »
printl("%d", k%7 == 0?7 k+3:
}
-NM0-9.]+ ECHO;
[A-Za-zJ[A-Za-209]+ ECHO;

. 9

Numerical strings containing a *.” or preceded by

a letter will be picked up by onc of the last two

rules, and not changed. The if—else has been

replaced by a C conditional expression to save

_space; the form a?b:c means “if a then b else ¢”.

For an example of statistics gathering, here

s a program which histograms the lengths of

words, where a word is defined as a string of
letters.

S wee oaow int lengs[J00]; . .
%%
[a—z]+ lengslyyleng]+ +;
|

\n :

%%

yywrapQ)

{

int i;

printf("Length No. words\n");

for(i=0; iK100; i+ +)

if (lengsi] > 0)
printR("%5d%10d\n",i,lengs[i]);

return(1);

}
This program accumulates the histogram, while
producing no output. At the' eﬁd of the input it
&inls the table. The final statement return(l);
indicates that Lex is to perform wrabup. If yywrap
returns zero (false) it implies that further input is
available and the program is to continue reading’
and processing. To provide a yywrap thal never

returns true causes an infinite loop.

LEX—16

As a larger example, here are some parts of

a progi'am wﬁ'tten by N. L. Schryer 10 éonvert

double precision Fortran to single precision For-

tran. Because Fortran does not distinguish upper

and lower case letters, this routine begins by
o

defining a set of claéses including both cases of

each letter:

resererer ca. s pe AL e
b [bB]
¢ [cC]
z [zZ].

An additional class recognizes whitc space:
W [M+

The first rule changes “double precision™ to “real”,
or “DOUBLE Pi{ECISION" o “REAL".
{dHoHuHbHIHeHWHpHrHeHcHiHsHiHoHn} {

printi{yytextf0]= ="d"? "real" : "REAL");

}
Care is laken throughout this program o preserve
the case (lxﬁper or lower) of the original program.
The conditional opérator is used lo select the
prbper form of Lhe keyword. The next rule copies
continuation card indications to avoid confusing
them with constants:

R LN | ECHO:
In the regular expression, the quotes surround the
blanks. It is imerprctéd as “beginning of line, then
- five blanks, then anything but blank or zero.”

Note the two different meanings of T, There fol-

low some rules to change double precision con-
stants to ordinary floating constants.
[0-91+{WHdKWH+ -1{W}0o-91+ |
091+ {W}" " {WHdHWH+ - {W}H0-9]+
" {WHO 91+ {WHAHWH + —{W}{0-9]+

/* convert constantsl */

for(p=yytext; *p != 0; p+ +)

S S

if 0p == 'd'|| *p == D)
sp=+ ‘e'~ 'd’;

ECHO;

}
Afler the floating point constant is recognized, it is
scanned by the for loop to find lﬁe letter d or D.
The program than adds '¢'—'d’, which converts it
to the next letter of the alphabet. The modified
constant, now single-precision, is wrilten out again,
There follow a scrics of namcs yvhigh must be
respetled 0 remove their initial d. By using the
array yytext the same action suffices for all the

names (only a sample of a rather long list is given

here). i
{dHsHiHn} |
{dHcHols} |

{dHsHaHrH1} |
{dHaHtHa}{n} |

{dH 1o Ha {1} printl("%s",yytext+1);
Another list of nanics must have initial d changed

to initial a:

|
{

LEX-17

{d{I}oHe} |
{d}HIHoHg}O |
{dHmHiHo} |
{dH{mHa}x}l {

yytexf[O] =+"3a - 'd}

ECHO;
And one routine must have initial‘ d__ghanged to
initial 72 |
{d}1{m}{aH{cHh} {yytex0] =+ T — 'd"

. To avoid such names as dsinx being detected as

instances of dsin, some final rules pick up longer

words as identifiers and copy some surviving char-
aclers:

[A—Za—zJA—Za—20-9) |

0-9+]

\n | '

_ FCHO;

Note that this program is not complete; it does not
deal with the spacing _prot?lems in Foriran or with
the use of keywords as idcntiﬁers.'

10. Left Context Scnsitivil_y.

Sometimes it is desirable to have several sets

of lexical rules to be applied at different times in’

the input. For example, a compiler preprocessor
might distinguish preprocessor statements and
analyze them diffcrently from ordinary statements,

This requires sensitivity to prior context, and there

are several ways of handling such broblems. The.
1 operator, for example, is a prior context opera-
tor, recognizing immediately preceding left context
just as $ recognizes immediately following right
context. Adjacent left.context could be extended,
to produce a facility similar to that for adjacent
right ‘context, but it is-unlikely- to be as useful,
since often the relevant left context appeared some

time eatlier, such as at the beginning of a line.

This section describes three means of deal-
ing with different environments: a simple use of
flags, when only a few rules change from one
environment to another, the use of start conditions
on rules, and the possibility‘of making multiple
lexical analyzei's all run together. In each case, -
there are rules which recognize the need to change
the environment in which the follpwing. input text
is analyzed, and set some parameter to reflect the
change. This may be a flag cxﬁliciuy tested by the -
user’s action code; such a flag is tﬁ’c 'simplest way
of dealing with the problem, since Lex is not

DEDEMTERER MO

involved at all. It may be more convenient, how-
- T A ey

ever, o have Lex remember the flags ,as initial
conditions on the rules. Any rule may be associ-
oo e o G h

ated with a start condition. It will only be recog-

nized when Lex is in that start condition. The
. t s it
current start condition may be changed. at any

time. Finally, if the sets of rules for the di}fer?ni'

Y

environments are very dissimilar, clarity may be

best achieved by writing severat distinct lexical .

LEX—18

analyzers, and switching from one to another as

desired.

Consider the following problem: copy the

input to the output, changing the word magic to

first on every line which began with the letter a,

changing magic to second on every line which

began with the letter b, and changing magic to

third on every line which began with the letter c.

All other words and all other lines are left

unchanged.

These rules are so simple that the easiest

way to do this job is with a flag:

%% .
ta
*
*c
\n

magic

int flag;

{flag = ‘a’; ECHO:}

{flag = 'b’; ECHO;}

{flag = 'c’; ECHO;}

{flag = 0; ECHO;}

{

switch (flag)

{

case ‘a’: printf("first"); break; '
case 'b": printl("seodmd"); break;
case 'c’: printf("third"); break;
defaul: ECHO; break;

}

}

should be adequate.

To handle the same problem with start con- *

ditions, each start condition must be introduced to

Lex in the definitions section with a line reading‘
%Start namel name2 ...

where the conditions may be named in any order.

The word Start may be abbreviated to s or S.

’_I'he conditions may be referenced at the head of a

rule with the <> brackets: L

vy o .1 <namel>expression

is a rule which is only recognized when Lex is in
the start condition namel. To enter a start congﬁ-
tion, execute the action statement

BEGIN namel;
which cl_langes the start coﬁdition to namel. To
resume the normal state,

BEGIN 0;
resets the initial condition of the Lex automaton
interpreter. A rule may be active iﬁ several start
conditions: |
<namcl,namcz,nﬁme3>

is a legal prefix. Any rule not beginning with the

<> prefix operator is always active.

The same example as before can be written:

%START AA BB CC

%% |
a {ECHO; BEGIN AA;}
b {ECHO; BEGIN BB;}
. {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0}
. <AAdmagic - prinu(f'msi");

<BB>magic printf{("second");

LEX—-19

<CC>magic printf(" third");
where ﬁle logic is exactly the same as in the previ-
ous method of handling the problem, but Lex does

the work rather than the user’s code.

11. Character Set.

The programs generated by Lex handle

character 170 only through the routines input, out-

P TN LY LRREY

put, and unput. Thus the chafaétef r;epresen.tafio;l
provided in these routines is accepted by Lex and
employed to return values m yytext. For internal
use a character is represented as a small integer
which, if the standard library is used, has a value
equal to the integer value of the bit pattern
representing the character on the host computer.
Normally, the létter a is represented as the same
form as the character constant ‘a’. If this interpre-
tation is changed, by prqviding ‘I/O routines wh.ich
translate the characters, Lex must be told about it,
by giving a translation table. This table must be in
the definitions section, and must be brackcted by
lines containing only “%T”. The table contains
lines of the form
{in.leger} {character string}

which indicate the value associated with each char-

acter. Thus the next example

%T
1 Aa
2 Bb

e

26 Zz
27 .
28 +
29 -
30 0
1 1
G I
%T
Sample character table.:

maps the lower and upper case letters iogether into
the integers 1 through 26, newline into 27, + and
— into 28 and 29, and the digits into 30 through
39. Note the escape for newline. If a table is sup-
plied, every character that is to appear either in
the rules or in any valid input must be included in
the table, No character may be assigned the
number 0, and no character may be assigned a
bigger number than the size of the hardware char-

acter set.

12. Summary of Source Format.

~ The general form of a Lex source file is:
{dcfinitions}
%%
{rules}
%%
{user s.u'broutines}

The definitions section conlains a combination of

.1)

2)

3)

4)

5)

6)

LEX—20 C

Definilions, in the form “name space trans-
lation”,
Included code, in the form “space code”.

Included code, in the fgnn

%{

code

%}
Start conditions, given in the form

%S namel name2 ...
Character set tables, in the form
%T

number space character-string

%T
Changes tohintemal array sizes, in.the form
%x nnn
where nnn is a decim.al.intejger representing

an array size and x selects the parameter as

follows:

. Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the form “expres-

sion action” where the action may be continued

on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following

‘operators:

X the character "x"

"x" an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xv] the character x or y.

[x—2] the characters x, y or z.
[*x] any character but x.

any character but newliné.

x an x at the beginning of a line,
<y>x an x wheﬁ Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x. '
X* 0,1,2, ... instances of x.
© X+ 1,2,3, ... instances of X,
xly anxoray.
) an x. .
x/y an x but only if followc;i by y.
{xx} the translation of xx A-from.lhe definitions sgction.

x{m,n} m through n occurrences of x

13. Caveats and Bugs.

There are pathological .expressions which
produce exponential growth of the tables when
converted to deterministic machines; forlunately,

they are rare,

REJECT does not rescan the input; instead
it remembers the results of the previous scan This

means that if a rule with trailing context is fouhd,

and REJECT executed, the user must not have

LEX-21

used unput to change the characters forthcoming
from the input stream. This is the only restriction
on the user’s ability to manipulate the not-yet-

processed input.
14, Acknowledgments.

As should be obvious from the above, the

outside of Lex is patterned on Yacc and the inside

on Aho’s string matching routines. Therefore,

both S. C. Johnson and A. V. Aho are really origi-
nators of much of Lex, as well as debuggers of it.

Many thanks are due to both.

The code of the current version of Lex was

designed, written, and debugged by Eric Schmidt.

15. References.

1 B. W. Kernighan and D. M. Ritchie, The C
Programmz'r;g Language, Prentice-Hall, N.
J. (1978).

2. B. W. Kemighan, Ratfor: A Preprocessor

for a Rational Fortran, Sofiware — Practice

and Experience, 5, pp. 395-496 (1975).

3 S. C. Johnson, Yacc: Yet Another Compiler
Compiler, Computing Science Technical
Report No. 32, 1975, Beli Laboratories,

Murray Hill, NJ 07974,

4, A. V. Aho and M. J. Corasick, Efficient
String Maitching: An Aid to Bibliographic
Search, Comm. ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Rilchic and K. L.

- o

Thompson, QED Text Editor, Computing
Science Technical Report No. 5, 1972, Bell
Laboratories, Murray Hill, NJ 07974.

D. M. Ritchie, private communication. -See
also M. E. Lesk, The Portable C Library,
Computing Science Technical Report No.

31, Bell Laboratories, Murray Hill, NJ

L 4 m97-4>~

SED — A Non-interactive Text Editor

Lee E. McMahon

Context search
Editing

ABSTRACT

Sed is a non-interactive context cdmn that runs on the UNIX¥ ‘operating sys-'
tem. Sed is designed to be cspecially uscful in three cases:

1) To edit files too large for comfortable interactive cditing;

2) ‘To cdit any size filc when the sequence of cditing commands is too
complicated to be comfortably typed in interactive mode.

3) To perform multiple ‘global’ cditing functions cfficicntly in one pass
through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

F UNIX is a trademark of Bell Laboratorics.

SED — A Non-interactive Text Editor

Lee E. McMahon

Context search
Editing

Introduction .
Sed is a non-interactive context editor designed to be cspecially useful in three cases:
" “1)To edit files too large for comfortable interactive cditing; © * *
2) To cdit any sizc file when the sequence of editing commands is too complicated to be

comfortably typed in interactive mode;
3) To perform multiple ‘global’ editing functions cfficicntly in onc pass through the input.

Since only a few lines of the input reside in core at one time, and no temporary files are used, the
cffective size of file that can be cdited is limited only by the requirement that the input and output
fit simultancously into available sccondary storage.

Complicated cditing scripts can be crecated separately and given to sed as a command file. For
complex cdits, this saves considerable typing, and its attendant errors. Sed running from a com-
mand file is much more cfficient than any intcractive cditor known to the author, even if that editor
can be driven by a pre-written script.

The principal loss of functions compared to an interactive cditor arc lack of relative addressing
(because of the linc-at-a-time opcration), and lack of immediate verification that a command has
done what was intended. :

Sed is a lincal descendant of the UNIX cditor, ed Because of the differences between interactive
and non-intcractive opceration, considcrable changes have been made between ed and sed; cven
confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly usc sed
without reading Scctions 2 and 3 of this document. The most striking family resemblance between
the two cditors is in the class of patterns (‘regular expressions’) they recognize; the code for match-
ing patterns is copicd almost verbatim from the code for ed, and the description of regular expres-
sions in Scction 2 is copied almost verbatim from the UNIX Programmer’s Manual[1]. (Both code
and description were written by Dennis M. Ritchic.)

1. Overall Operation

Sed by default copics the standard input to the standard output, perhaps performing one or more.
" editing commands on cach linc before writing it to the output. This behavior may be modified by
flags on the command linc; sce Scction 1.1 below.

The general format of an cditing command is:
[address1,address2][function}[arguments]

Onc or both addresses may be omitted; the format of addresses is given in Scction 2. Any number
of blanks or tabs may scparate the addresses from the function. The function must be present; the
available commands are discussed in Scction 3. The arguments may be required or optional,
according to which function is given; again, they are discussed in Scction 3 under cach individual
function. -

Tab characters and spaces at the beginning of lines arc ignored.

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specnﬁed by p functions or p flags after s
functions (see Section 3.3);
-e: tells sed to take the next argument as an cdntmg command;
-f: tells sed to take the next argument as a file name; the file should contain editing com-
mands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the cditing commands
are compiled into a form which will be moderatcly efficient during the cxecution phasc (when the
commands are actually applied to lincs of the input filc). The commands arc compiled in the order
in which they are encountered; this is generally the order in which they will be attcmptcd at exccu-
tion time. - The commands are applied onc at a time; the input to cach command is thc output of
all preceding commands.

The default linear order of application of editing commands can be changcd by the ﬁow -of-control
commands, ¢ and b (sce Scction 3). Even when the order of application is changed by these com-
mands, it is still true that the input linc to any command is the output of any previously applied
command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line
of the input text, but more than onc line can be read into the pattern space by using the N com-
mand (Scction 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the cxamples all
assume the following input text:

In Xanadu did Kubla Khan

A statcly pleasurc dome decrec:
Where Alph, the sacred river, ran
Through caverns measurcless to man
Down to a sunless sca.

(In no casc is the output of the sed commands to be considered an improvement on Colcrldgc)

Example:
The command
2q
will quit after copying the first two lincs of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Sclecting lines for cediting

Lines in the input file(s) to which cditing commands are to be applicd can be sclcctcd by addresses.
Addresses may be cither line numbers or context addresscs, -

The applxcatnon of a group of commands can be controlled by one address (or address-pair) by
grouping the commdnds with curly braces (‘{ }')(Scc. 3.6.).

2.1. Line-number Addresses

A line number is a decimal integer. As each line is rcad from the input, a line-number counter is
incremented; a line-number address matches (selects) the input line which causes the internal
counter to equal the address line-number. The counter runs cumulatively through multiple input
files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/’). The regular expres-
sions recognized by sed are constructed as follows:

1) An ordinary character (not onc of thosc discussed below) is a regular expression, and
matchcs that character. ‘

2) A circumflex “** at the béginning of 4 reguldr expresston matches the null character at
the beginning of a line.

3) A dollar-sign ‘$’ at the end of a rcgular expression matches the null character at the end
of a linc.

4) The characters ‘\n” match an imbedded newline character, but not the newline at the
cnd of the pattern space.

5) A period *." matches any character except the terminal newline of the pattern space.

6) A regular expression followed by an asterisk “* matches any number (including 0) of
adjacent occurrences of the regular expression it follows.

7) A string of characters in square brackets ‘[]' matches any character in the string, and no

‘ others. I, however, the first character of the string is circumflex ‘1, the regular
expression matches any character except the characters in the string and the termi-
nal ncwline of the pattern space.

8) A concatenation of regular cxpressions is a regular expression which matches the con-
catenation of strings matched by the components of the regular expression.

9) A regular expression between the scquences “\(* and *\)’ is identical in cffect to the una-
dorned regular expression, but has sidc-cffects which are described under the s
command below and spccification 10) immediately below.

10) The expression ‘\d’ means the same string of characters matched by an cxpression
enclosed in “\(" and *\)" carlicr in thc samc pattern. Here d is'a single digit; the
string specified is that beginning with the dth occurrence of “\(' counting from the
left. For cxample, the expression “t\(*\)\1" matches a linc beginning with two
repeated occurrences of the same string,

11) The null regular cxpression standing alone (e.g., ‘//’) is cquivalent to the last regular
expression compiled. '

To usc onc of the special characters (* $. * []\ /) as a litcral (to match an occurrence of itself in
the input), precede the special character by a backslash “\’,

For a context address to ‘match’ the input requires that the whole pattern within the address match
some portion of the pattern space.

2.3. Number of Addresses - .

The commands in the next section can have 0, 1, or 2 addresses. Under cach command the max-
imum number of allowed addresses is given. For a command to have more addresses than the
maximum allowed is considered an error.

If a command has no addresscs, it is applicd to cvery line in the input.
If a command has one address, it is applicd to all lincs which match that address.

If a command has two addresses, it is applied to the first linc which matches the first address, and
to all subsequent lines until (and including) the first subscquent line which matches the second
address. Then an attempt is made on subscquent lines to again match the first address, and the

process is repeated.
Two addresses are separated by a comma.

Examples:
/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/tan/ matches no lines
/./ matches all lines
/N\./ matches line 5
/t*an/ matches lines 1,3, 4 (number = zero!)

AN@n\).*\1/ matches line 1

B:FUNCTIONS: ¢ 0 o e e o

All functions arc named by a single character. In the following summary, the maximum number of
allowable addresscs is given enclosed in parentheses, then the single character function name, possi-
blc arguments cnclosed in angles (< >), an cxpanded English translation of the single-character
name, and finally a description of what cach function doces. The angles around the arguments are
not part of the argument, and should not be typed in actual editing commands.

3.1. Whole-line Oriented Funptions
(2)d -- dclete lines

The d function deletes from the file (docs not write to the output) all those lines
matched by its address(es).

It also has the side effect that no further commands are attempted on the corpse of

. a deleted line; as soon as the d function is exccuted, a new linc is rcad from the

input, and the list of editing commands is re-started from the beginning on the
new line.

(2)n -- next line

(Da\

The a function reads the next line from the input, replacing the cuirent line. The
current linc is written to the output if it should be. The list of cditing commands
is continued following the # command.

<text> -- append lines

(DN

The a function causes the argument <text> to be written to the output after the line
matched by its address. 'The @ command is inherently multi-line; @ must appear at
the end of a ling, and <text> may contain any number of lines. To preserve the
onc-command-to-a-line fiction, the interior newlines must be hidden by a backslash
character (*\') immediately preceding the newline. The <text> argument is ter-
minated by the first unhidden newline (the first one not immediately preceded by
backslash).

Once an a function is successfully exccuted, <text> will be written to the output
rcgardicss of what latcr commands do to the linc which triggered it. 'The trigger-
ing linc may be delcted entirely; <text> will still be written to the output.

The <text> is not scanned for address matches, and no cditing commands are
attempted on it. 1t docs not cause any change in the linc-number counter.

<{textd -- insert lines

The i function bchaves identically to the a function, except that <tcxt> is written -

-5-

to the output before the matched line. All other comments about the a function
apply to the i function as well.

@)\

<text> -- change lines

The ¢ function dcletes the lines sclected by its address(cs), and replaces them with
the lines in <text>. Like a and ; ¢ must be followed by a newline hidden by a
backslash; and interior new lines in <text> must be hidden by backslashes.

The ¢ command may have two addresses, and therefore sclect a range of lines. If
it does, all the lines in the range arc deleted, but only onc copy of <text> is written
to the output, not one copy per line dclcted. As with a and i, <tcxt> is not scanncd
for address matches, and no cditing commands arc attempted on it. It does not

chdngc the lme number counter, g a
..... R

After a line has been deleted by a ¢ funcuon no further commands are attempted
on the corpse.

If text is appended after a linc by a or r functions, and the line is subscquently
changed, the text inserted by the ¢ function will be placed before the text of the a
or r functions. (The 7 function is described in Section 3.4.)

Note: Within the text put in the output by these functions, lcading blanks and tabs will disappear,
as always in sed commands. To get lcading blanks and tabs into the output, precede the first
desired blank or tab by a backslash; the backslash will not appear in the output.

Example:
The list of editing commands:

n
a\
XXXX
d

applicd to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX

Where Alph, the sacred river, ran
XXXX

Down to a sunless sca.

In this particular casc, the same cffect would be produced by cither of the two following command
lists:

n on
N c\
XXXX XXXX
d

3.2. Substitute Function _
One very important function changes parts of lines sclected by a context scarch within the line.

(2)s<patternd<replacement><flags> -- substitute

The s function rcplaces part of a line (sclected by <pattcrn>) with <replacementd.
It can best be read:

Substitute for <{pattern>, <rcplaccmentd
The <pattern> argument contains a pattern, cxactly like the patterns in addresses -

-6-

(sce 2.2 above). The only difference between <pattern> and a contéxt address is
that the context address must be delimited by slash (‘/°) characters; <pattcrn> may
be delimited by any character other than space or newline.

By default, only the first string matched by <pattern> is replaced, but sce the g flag
below.

The <rcplacement> argument begins immcdiately after the second delimiﬁng char-
acter of <pattern>, and must be followed immediatcly by another instance of the
delimiting character. (Thus there arc exactly lhree instances of the delimiting char-
acter.)

The <replacement> is not a pattern, and the characters which arc special in pat-
terns do not have special meaning in <rcplacement>. Instcad, other characters are
special:

& isreplaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth substring matched by
parts of <pattern> cnclosed in “\(C and “\)'. If ncsted substrings
occur in <{pattern>, the dth is determined by counting opening
delimiters (\().

As in patterns, special characters may be made literal by preced-
ing them with backslash (\").

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of <pat-
tern> in the line. After a successful substitution, the scan for the
next instance of <pattern> begins just after the end of the inserted -
characters; characters put into the line from <rcplaccment> are not .
rescanned.

p -- print the linc if a successful replacement was done. The p ﬂdg causcs
- the line to be written to the output if and only if a substitution
was actually made by the s function. Notice that if several s func-
tions. cach followed by a p flag, successfully substitutc in the same
input line, multiple copics of the line will be written to the out-
put: onc for cach successful substitution.

w <filename> -- write the line to a file if a successful replacement was
donc. The w flag causcs lincs which arc actually substituted by
the s function to be written to a file named by <filename>. If
{filename> exists before sed is run, it is overwritten; if not, it is
crcated.

A single space must scparatc w and <filenamed.

The possibilitics of multiple, somewhat different copics of one
input linc being written arc the same as for p.

A maximum of 10 diffcrent filc names may be mentioned after w
flags and w functions (scc below), combined.

Examples: _

The following command, applicd to our standard input,
s/to/by/w changes

produccs, on the standard output:

In Xanadu did Kubhla Khan

A statcly pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measurcless by man
Down by a sunlcss sea.

and, on the file ‘changes’

Through caverns measurcless by man
Down by a sunless sca.

If the nocopy option is in effect, the command:
s/[.: 1V *P&*/gp

produces:
A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustratc the cffect of the g flag, the command:
/X/s/an/AN/p

produces (assuming nocopy modc):
In XANadu did Kubhla Khan

and the command:
/X/s/an/AN/gp

produces:
In XANadu did Kubhla KhAN

3.3. Input-output Functions
Q2)p - print

The print function writes the addressed lincs to the standard output file. They are
written at the time the p function is encountered, regardless of what succeeding
cditing commands may do to the lincs.

(2)w <filename) - write on <filcname>

The write function writes the addressed lincs to the file namced by <filenamed>. If
the file previously cxisted, it is overwritten; if not, it is created. 'The lines are writ-
ten cxactly as they cxist when the writc function is encountered for cach line,
regardless of what subsequent cditing commands may do to them.

Exactly onc spacc must scparate the w and <filenamed.

A maximum of ten different files may be mentioned in write functions and w flags
after s functions, combined.

(Dr <filecnamed -- rcgd the contents of a file

"The read function reads the contents of <filecname, and appends them after the
linc matched by the address. 'The file is rcad and appended regardless of what
subsequent cditing commands do to the line which matched its address. If » and a
functions are exccuted on the same line, the text from the a functions and the r
functions is writtcn to the output in the order that the functions arc exccuted.

Exactly onc spacc must scparatc the r and <filcnamce). 1f a file mentioned by a r
function cannot be opened, it js considered a null file, not an error, and no diag-
nostic is given. '

-8-

NOTE: Since there is a limit to the number of files that can be opened simultancously, care should
be taken that no more than ten files be mentioned in w functions or flags; that number is reduced
by one if any r functions are present. (Only one read file is open at one time.)

Examples
Assume that the file ‘notel’ has the following contents:
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most cminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.
Then the following command:
/Kubla/r notel

..........

In Xanadu dld Kubla Khan
Note: Kubla Khan (morc properly Kublai Khan; 1216-1294) was the grandson
and most cminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measurcless to man

Down to a sunlcss sca.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing imbed-
ded newlines; they are intended principally to provide pattern matches across lines in the input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines arc scparated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern space.
If the pattern space becomes empty (the only newline was the teriminal newline),
rcad another line from the input. In any case, begin the list of cditing commands
again from its beginning. ;

(2)P -- Print first part of the pattern space
Print up to and including the first-newlinc in the pattern space.
The P and D functions are cquivalent to their lower-case counterparts if there arc no imbedded
ncwlines in the pattern space.

3.5. Hold and Get Functions
Four functions save and retricve part of the input for possible later use.

(2)h'-- hold pattern space

The A functions copics the contents of the pattern space mto a hold arca (dcstroy-
ing the previous contents of the hold arca).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents arc separated by a newline.

(2)g -- get contents of hold arca

The g function copics the contents of the hold arca into the pattern space (destroy-
ing the previous contents of the pattern space).

(2)G -- Get contents of hold arca

The G function appends the contents of the hold area to the contents of the pattern
space; the.former and new contents arc separated by a newline,

(2)x -- exchange

The exchange command mterchmgcs the contents of the pattern space and the
hold area.

Example.
The commands
~1h
1s/ did.*//
1x

G
s/\n/ :/

applicd to our standard cxample, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns mcasurcless to man :In Xanadu
Down to a sunless sca. :In Xanadu

3.6. Flow-of-Control IF'unctions

These functions do no cditing on the input lmcs but control the application of functlons to the
lines sclected by the address part.

) - Don't

The Don’t command causes the next command (written on the same line), to be
applied to all and only those input lines nof sclected by the adress part.

(2){ -- Grouping

The grouping command ‘{’ causcs the next sct of commands to be applied (or not
applicd) as a block to the input lines sclected by the addresses of the grouping
command. The first of the commands under control of the grouping may: appear
on the same line as the *{” or on the next line.

The group of commands is tcrminated by a matching ‘} smndmg on a linc by
itsclf.

Groups can be nested.
(0)<label> - place a label

The label function marks a place in the list of cditing commands which may be
referred to by b and ¢ functions. The <label> may be any scquence of eight or
fewer characters; if two different colon functions have identical labels, a complle
time diagnostic will be generated, and no exccution attempted.

(2)b<|abcl> -- branch to label
Thc branch function causes the scquencc of cditing commdnds being applicd to -

-10-

the current input line to be restarted immediately afier the place where a colon
~function with the same <label> was cncountered. Iff no colon function with the
same label can be found afier all the cditing commands have been compiled, a
compile time diagnostic is produced, and no exccution is attemptced.

A b function with no <label> is taken (o be a branch to the end.of the list of cdit-
ing commands; whatever should be donce with the current input line is done, and
another input line is read; the list of cditing commands is restarted from the bcgm-
ning on the new line.

(2)<label> - test substitutions

The ¢ function tests whether any successful substitutions have been made on the
current input line: if so, it branches to <label>; if not, it docs nothing. ‘The flag
which indicates that a succc,ssful subsutumm has bccn cxcculcd is 1csct by:

e P

1) rcadlng a new lnpul Imc or
2) exceuting a ¢ function.

3.7. Miscellancous Functions
(1)= -~ cquals

‘The = function writes to the standard output the line number of the line matched
v by its address.
(q -- quit
'The ¢ function causes the current line to be written to the output (if it should be),
' any appended or read text to be written, and exccution to be terminated.

Reference

[11 Ken Thompson and Deanis M. Ritchic, The UNIX Progranuner’s Manual. Bell Laboratorics,
1978.

Y

Awk — A Pattern Scann.ing and Processing Language
(Second Edition)

Alfred V. Aho
Brian W. Kernighan
Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those patlerns. 4wk makes certain data selec-
tion and transformation operations easy to express, for example, the awk pro-

: gram

length > 72
prints all input iines whose length exceeds 72 characters; the program
NF %2 ==
prints all lines with an even number of fields; and the program
{ $1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc-
tions as in patterns, as well as arithmetic and string expressions and assign-
ments, if-else, while, for statements, and mulitiple output streams.

This report contains a user’s guide, a discussion of the design and imple-
mentation of awk, and some timing statistics.

~September 1, 1978

1. Introduction

Awk is a programming language designed
to make many common information retrieval and
text manipulation tasks easy to state and to per-
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
maich any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

~ Readers familiar with the UNIXt program
grep! will recognize the approach, aithough in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

{print $3, $2)

prints the third and second columns of a table in
that order. The program '

$2 ~ /AIBIC/

prints all input lines with an A, B, or C in the
second field. The program

$1 t= prev | print; prev = $1}
prints all lines in which the first field is different
from the previous first field.

1.1. Usage
The command

awk program [files]

executes the awk commands in the string pro-
gram on the set of named files, or on the stan-
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

tUNIX is a Trademark of Bell Laboratories.

awk —t pfile [files]

1.2. Program Structure

An awk program is a sequence of state-
ments of the form:

pattern { action }
pattern { action }

"Each line of input is matched against each of the

patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat-
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat-
terns can be printed several times.) If there is no
pattern for an action, then the action is per-
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records’’ ter-
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into ‘‘fields.”” Fields are normally
separated by white space — blanks or tabs — but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument —Fc may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. ltems
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.
The predefined variables NF and NR can
be used; for example
{ print NR, NF, $0 }
prints each record preceded by the record
number and the number of fields.
Output may be diverted to multiple files;
the program
{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and
the second field on file foo2. The > > notation
can also be used:

print $1 > >"foo"

appends the output to” the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >82

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ..

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10id\n", $1, $2

prints $1 as a floating poinl number 8. digits
wide, with two after the decimal point, and $2 as
a 10-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2)

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con-
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN [FS = "}
. rest of program .

Or the input lines may be counted by
END |{ print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name *‘smith’’. If a line contains *‘smith™
as part of a larger word, it will also be printed, as
in

blacksmithing.

Awk regular expressions include the regu-
lar expression forms found in the UNIX text edi-
tor ed! and grep (without back-referencing). In
addition, awk allows parentheses for grouping, |
for alternatives, + for ‘‘one or more’’, and ? for
‘‘zero or one’’, all as in lex. Character classes
may be abbreviated: [a—zA—Z0—9] is the set
of all letters and digits. As an example, the awk
program .

/[Aa}ho I[Ww]einberger |[Kk]ernighan/

will print all lines which contain any of the
names ‘‘Aho,” ‘‘Weinberger' or ‘‘Kernighan,”
whether capitalized or not.

) Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

AVRAVZ)
which matches any string of characters enclosed
in slashes.
One can also specify that any field or vari-
able matches a regular expression (or does not

match it) with the operators ~ and !~. The
program

$1 ~ /ljJlohn/
prints all lines where the first field matches
*‘john” or ‘‘John.”” Notice that this will also

match ‘‘Johnson’’, *‘St. Johnsbury', and so on.
To restrict it to exactly [jJlohn, use

$1 ~ /°[jJlohn$/

The caret " refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres-
sion involving the usual relational operators <,
<=, == |=_ >« and >. Anexample is

$2 > $1 + 100

which selects lines where the second field is at

least 100 greater than the first field. Similarly,
NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$t >="g"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > §2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators || (or), &&
(and), and ! (not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with *'s”’,
but is not “‘smith’’. && and || guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The ‘‘pattern’’ that selects an action may
also consist of two patterns separated by a
comma, as in i

patt, pat2 {..})

In this case, the action is performed for each line
between an occurrence of pat! and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/
prints all lines between start and stop, while
NR == 100, NR == 200 { .. }

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements - terminated by newlines or semi-
colons. These action statements can be used to
do a variety of bookkeeping and string manipu-
lating tasks.

3.1. Builtrin Functions

Awk provides a ‘‘length’’ function to com-
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{print length, $0)

length by itself is a ‘‘pseudo-variable’ which
yields the length of the current record,
length(argument) is a function which yields the
length of its argument, as in the equivalent

lprint length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func-
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 Il length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. If n is omit-
ted, the substring goes to the end of s. The
function index(st, s2) returns the position
where the string 82 occurs in s1, or zero if it
does not.

The function sprintf(f, e1, €2, ..) produces
the value of the expressions e1, €2, etc., in the
printf format specified by f. Thus, for example,

x = sprintf("%8.2f %10ld", $1, $2)
sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign-
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x =1
x is clearly a number, while in
x = "smith”

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

X = "3" + "4"

assigns 7 to x. Strings which cannot be inter-

.

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

st += %1, 82 += %2}
END | print s1, s2 |

Arithmetic is done internally in floating
point. The arithmeltic operators are +, —, =, /,
and % (mod). The C increment + + and decre-
ment — — operators are also available, and so
are the assignment operators +=, —=_ «=
/=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables — they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:
{ 81 = $2 + $3; print $0.}

or assign a string to a field:

{ it ($3 > 1000)
$3 = "too big"
print
]

which replaces the third field by ‘‘too big" when
itis, and in any case prints the record.

Field references may be numerical expres-
sions, as in
{ print $i, $(i+1), $(i+n))

Whether a field is deemed numeric or string
depends.on context; in ambiguous cases like

it (81 == $2) ..

fields are treated as strings.

Each input line is split into fields automati-
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array([n].
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS is used as the
separator.

3.4. String Concatenation
Strings may be concatenated. For example
length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prints the two fields separated by ** is Vari-
ables and numeric expressions may also appear
in concatenations.

LR}

3.5. Arrays

Array elements are not declared. they
spring into existence by being mentioned. Sub-
scripts may have any non-null value, including
non-numeric strings. As an example of a con-
ventional numeric subscript, the statement

x{NR] = $0

assigns the’current input record to the NR-th ele-
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro-
gram

{ xINR] = $0 |
. ENDY{ ... program ... }

The first action merely records each input line in
the array x.

Array elements may be named by non-
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro-
gram

/apple/ { x["apple"]+ +)}
/orange/ { x["orange"]+ + |
END { print x["apple”], x["orange"] |

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i=1
while (i <= NF) {
print $i
++i

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state-
ment which is suited for accessing the elements
of an associative array:

for (i in array)
starement

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur-
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, <=, >, >=, == (*‘is equal 10), and
1= (*'not equal 10™"); regular expression matches
with the match operators ~ and !~ the logical
operators |1, &&, and !; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for, the con-
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan-
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro-
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim-
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general-
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed! provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

Lex3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of /lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli-
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con-
venient numeric processing, variables, more gen-
eral selection, and contro! flow in the actions. It
does not require compilation or a knowiedge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn’t do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ-
ing or debugging the code. We-have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa-
tions, while probably a bad idea for a general-
purpose programming language, is desirable in a
language that is meant to be used for tiny pro-
grams that may even be composed on the com-
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called ‘‘report generation' — processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim-
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro-
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc;4 the lexical analysis is done
by lex. the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed. the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table 1 below shows the execution (user

+ system) time on a PDP-11/70 of the UNIX
programs wc¢, grep, egrep, jgrep, sed, lex, and
awk on the following simple tasks:

1. count the number of lines.

2. print all lines containing *‘doug™".

3. print all lines containing ‘‘doug’, ‘‘ken”

or dmr*. .
4. print the third field of each line.

5. print the third and second fields of each
line, in that order.

6. append all lines containing ‘‘doug’,
“*ken’", and ‘“‘dmr” to files ‘*‘jdoug’,
*jken’’, and *“‘jdmr’’, respectively.

7. print each line prefixed by ‘‘line-

number : .
8. sum the fourth column of a table.
The program wc merely counts words, lines and
characters in its input, we have already men-
tioned the others. In all cases the input was a

file containing 10,000 lines as created by the

command /s —/; each line has the form
—rw—rw—rw— 1 ava 123 Oct 15 17:05

The total length of this input is 452,960 charac-
ters. Times for /ex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools wc, sed, or the programs
in the grep family, but is faster than the more
general tool /lex. In all cases, the tasks were
aboul as easy (0 express as awk programs as pro-
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

XXX

References

"~ Compiler-Compiler,’

K. Thompson and D. M. Ritchie, Unx
Programmer’s Manual, Bell Laboratories
(May 1975). Sixth Edition

B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

M. E. Lesk, “*Lex — A Lexical Analyzer
Generator,”” Comp. Sci. Tech. Rep. No.
39, Bell Laboratories, Murray Hill, New
Jersey (October 1975).

S. C. Johnson, **Yacc — Yel Another
* Comp. Sci. Tech.
Rep. No. 32, Bell Laboratlories, Murray
Hill, New Jersey (July 1975).

s adn

Program 1 2 3 4 5 6 7 8

we 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
Jerep 1.7 13.8 16.1
sed 10.2 11.6 158 | 29.0 | 30.5 16.1
lex 65.1 | 150.1 | 144.2 | 67.7 | 70.3 | 104.0 | 81.7 | 92.8
awk 15.0 25.6 299 | 33.3 | 389 464 | 714 | 31.1

Table 1. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are LEX:
shown below. The lex programs are generally
too long to show. 1. %l
int i;
AWK: %)
. %%
1. END {print NR
o l \n o it++;
‘2. /doug/ ST
9 %%
3. /kenldougldmr/ yywrap() |
oug printf("%d\n", i);
4. |print $3) }

2. %%

“+doug.+$ printf("%s\n", yytext);
6. /ken/ |print >"jken"] Co

/doug/ |print >"jdoug"} \no

/dmr/ {print >"jdmr"}

5. |print $3, $2}

7. lprint NR ": " $0)

8. {sum = sum + $4}

END (print sum)
SED:

1. %=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. /T (I I+ [1\ Je\) o/s/A\1 /D
5. /U s L1\ 1) LI 19\) o/s/A2 \1/p
6. /ken/w jken

/doug/w jdoug
/dmr/w jdmr

