V-System 5.0 Reference Manual

\
—~

Fric J. Berglund, Per Bothner, Kenneth P. Brooks, David R. Cheriton,
Stephen E. Deering, J. Craig Dunwooedy, Ross S. Finlayson, David R. Kacelbling,
Kcith A. Lantz, Timothy P. Mann, Robert J. Nagler, William 1. Nowicki,
Paul J. Roy, Marvin M. Theimer, Willy E. Zwaencpocl

Computer Systems Laboratory
Departments of Computer Science and Electrical Engincering .
' Stanford University ‘

18 October 1984

Copyright © FEric J. Berglund, Per Bothner, Kenneth P. Brooks, David R. Cheriton,
Stephen K. Decring, J. Craig Dunwoody, Ross S. Finlayson, David R, Kaclbling,
Keith A, Lantz, Timothy P. Mann, Robert J. Nagler, William 1. Nowicki,

 Paud J. Roy, Marvin M. Theimer, Willy E. Zwacnepocl

This research was supported by the Defense Advanced Rescarch Projects Agency under contracts
M1DA903-80-C-0102 and N00039-83-K-0431.

TABLE OF CONTENTS

Table of Contents

1. Introduction

1.1. The User Model

1.2. The System Model
1.2.1. The Distributed Kernel
1.2.2. Servers

1.3. The Application Model

1.4. Qutline

Part 1. Commands

2. Using the V Executive

2.1. Introduction
2.2. Running the V Exccutive _
2.3. Contexts and the Local Name Server
2.3.1. Changing the Current Context
2.3.2. Getting Context Names
2.3.3. Defining and Undcfining Names
2.4. Scssions
24.1. Login
2.4.2. Logout
2.4.3. Accessing Files Without a Scssion
2.5. Remote Program Exccution on a Session Scrver
2.6. Remote Execution on a Designated V Host
2.7 Exccutive Facilitics for Command Specification and Modification
2.7.1. Linc Editing I<acilitics
2.7.2. Command History References
©2.7.3. Command Aliases
© 2.7.4. 170 Redirection and Pipes
2.7.5. Concurrent Commands
- 2.7.6. Exccution of Commands on Another Host

3. The View Manager
3.1. VGT'S Conventions
3.2. View Manager Mcnus
3.3. Paged Output Mode
3.4. Mouse liscape Sequences
3.5. Mousc Emulation via the Keyboard

4. Command Summary

4.1. Workstation Commands

4.2. Commands on Scssion Hosts
5. Executive Control Commands

V-SYSTEM 5.0 REFFERENCE MANUAL

LWWNNDN - -

VwOowwVvwowow-a=2 N O

It ' TABLL OF CONTENTS

6. The V Debugger ' 29
6.1. Synopsis) 29
6.2. Description)) : 29

6.2.1. lnvoking the Dcbugger With a Program ' 29
6.2.2. Postimortem [Debugger 29
6.2.3. Common Usage - 29
6.3. Commands 30
6.3.1. Definitions 30
6.3.2. Execution Control Commands . 30
6.3.3. Display Commands _ 31
6.3.4. Replacement and Scarch Commands 3
6.3.5. Help Commands) 33
6.4, Bugs : . 33

7. Ved: A Text Editor 35
7.1. Starting up 35
7.2. Motion , 35
7.3. Paging and Scrolling 36
7.4. Simplc Editing . 36
7.5. File Access i ' 37
7.6. The Mouse . _ 38

7.6.1. Editing With the Mouse 38

7.6.2. Fixed Mcenu : . 38
7.7. Searching and Replacing 38
7.8. The Right Hand and the Left 39
7.9. Mark and Region 40
7.10. Windows and Buffers : 40
7.11. Crash Recovery) 41
7.12. Hints on Usage ' ' 42

8. Draw: A DrawingEditor 43
8.1. Conceptual Modet : 43
8.2. Screen [Layout ' : 43
8.3. Command Input ' ' 44
8.4. Control Points and Sticky Points 44
8.5. Mousc Buttons 45
8.6. Sclecting Objccts ‘ 46
8.7. Action Commands 46
8.8. Object T'ypes . 47
8.9. Default-setting Commands 43
8.10. Permanent Menu Commands ‘ 49

9. bits: a bitmap and font editor . 51
9.1. Comumand Ilnput ' 51
9.2, Rasters 51
9.3. Changing Raster Size . 51
9.4. Bitmap 170 St
9.5. Painting 52
9.6. Inverting a Raster . - 52
9.7. Raster Operations (BitBlt) 52
9.8. Reflection and Rotation 52

V-SYSTEM 5.0 REFURENCE MANUAL

TABLE OF CONTENTS I

9.9. [Replace in table] . : 52
9.10. Making a Copy of the Screen : 52
9.11. Fonts _ 52
9.11.1. Displaying Fonts 53

9.11.2. Font parameters) . 53

~ 9.12. Samplc Texts v . 53
9.13. Printing a Raster - . _ ‘ 53
9.14. Bugs and Problems. 54
10. Amaze 55
11. Fscheck: File System Checking Program ‘ ' 59
11.1. Invocation ’ 59
11.2. Comunands 59
11.3. Initializing a ncw disk subsystem 60
11.3.1. Creating a new filc system . 60

11.4. Checking file system integrity . . 61
12. Standalone Commands :) 63
12.1. Vipad : 63
12.1.1. 3 Mbit Ethernet 63

12.1.2. Excelan Ethernet | ' 64

12.1.3. 3Com Ethernet 65

12.2. Postmortem . 66
12.3. Ipwatch . . 66
12.4. Diskdiag 66
12.5. Offlgad and Offload38 , _ 67
Part Il. Program Environment ' 69
13. Program Environment Overview _ . 7T
13.1. Groups of Functions ‘ 72
13.2. Header Files .) . 72
14. Program Construction and Execution : 75
14.1. Writing the C Program : ' 75
14.2. Compiling and Linking : 75
14.3. Program Eixccution 75
14.3.1. Exccution With the Exccutive 76

14.3.2. Bare Kernel Mode 76

14.4. I'he "T'cam Root Message 76
14.5. The Per-Process Arca) ' 77
15. The V-System Configuration Database . 79
15.1. Introduction . 79
15.2. Configuration Database 79
15.3. Implementation : ‘ 80
16. Input and Qutput . ‘ 83
16.1. Standard C 170 Routines ‘ . 83
16.2. V 1/0 Conventions ' : ' 83
16.3. V 170 Routines ' . 84
16.3.1. Opening Files 84

V-SYSTEM 5.0 REFERENCE MANUAL

v TABLE OF CONTENTS

16.3.2. Closing Files ‘ 35

16.3.3. Byte Mode Operations 86
16.3.4. Block Modc Operations 87
16.3.5. Server-Spccific Operations 88
16.3.6. Miscellancous 1/0O Functions 90
" 17.Numeric and Mathematical Functions 93
-17.1. Numeric Functions 93
17.2. Mathematical Functions : 93
18. MemoryManagement 95
19. Processes and Interprocess. Communication 7
19.1. Kernel Operations 97
19.2. Othcer Functions 104
20. Naming)) 105
21. Program Execution Functions . 107
21.1. Program Exccution 107
21.2. Other Functions : 109
22. Control of Executives 111
23. Service Registration and Selection Functions 113
23.1. Registration Facilitics : 113
23.2. Selection Facilities 113
24, Graphics Functions 115
24.1. Terminology 1S
24.2. SDF Primitive Types 116
24.3. SDI7 Manipulation Procedures : 117
244.VGTs and Views 119
24.5. Graphical and Character Input 120
24.6. Defining and Using Fonts 121
24.7. Using the VG'T'S 121
24.7.1. Cooking Your Pads’ ' 122
24.7.2. Other Interface Routines 122
24.3. xample Program 124
25, Fields: Using a Pad as a Menu 127
25.1. Formats | : 127
25.2. The Ficld Table as a Mcnu: Selecting an Action 128
25.3. Displaying Ficlds 128
25.4. Uscr Input to Fields 129
25.5. An Example ~ . o 129
25.6. Limitations 130
26. SUN PROM MonitorEmulator Traps 131
27. Miscellaneous Functions : 133
27.1. Time Manipulation Functions - ' 133
27.2. Strings 133
27.2.1. Unix String Functions 133

27.2.2. Verex String Functions 134°

27.3. Other Functions . 135

V-SYSTEM 5.0 REFERENCE MANUAL

TABLE OF CONTENTS

Part lll. Servers

28. Servers Overview

28.1. Message Format Conventions
28.2. Standard System Request Codes
28.3. Standard System.Reply Codes

29. The V-System |/0 Protocol

29.1. CREATE INSTANCE

29.2. QUERY.INSTANCE

29.3. RELEASE INSTANCE

29.4. READ INSTANCE

29.5. WRITE INSTANCE

29.6. SET INSTANCE OWNER

29.7. SET BREAK PROCESS

29.8. SET PROMPT

29.9. QUERY FILE and NQUERY FILE
29.10. MODIFY FI1LE and NMODIFY FILE

30. The V-System Naming Protocol

30.1. Character String Names
30.2. Contexts and Context [ds
30.3. Weil-Known Context Ids
30.4. Name Request Format
30.5. Name Parsing and Forwarding
30.6. Standard CSNH Server Requests
30.6.1. GEU CONTEXT ID
30.6.2. GET CONTEX'T NAME
30.6.3. GET FILE NAME
30.6.4. ADD CONTEXT NAME |
30.6.5. DELETE CONTEXT NAME
30.7. Context Dircctorics and Object Descriptors
30.7.1. READ DESCRIPTOR and NREAD DESCRIPTOR
30.7.2. WRITE DESCRIPT'OR and NWRITE DESCRIPTOR
31. Device Server

31.1. Bthernet
31.2. Muuse: The Graphics Pointing Device
31.3. Scrial Line
31.4. Console
3L.S. Null Devices
32. Exception Server
33. Pipe Server
34. Internet Server

34.1. Running the Internct Server
34.2. Accessing the Internct Server
34.3. DARPA Internet Protocol (1P)
34.4. DARPA Transmission Control Protocol lCP)
34.5. Xerox PUP Protocol
34.6. Adding New Protocols
34.6.1. External Client Interface

V-SYSTEM 5.0 REFERENCE MANUAL

137

139

139

139

139
143

145
146
147
147
148
149
149
149
150
150
153

153
153
154
154
155
155
155
156
156
157
157
158
159
159
161

161
162
162
163
163
165
167
169

169
169
170
170
171
171
172

VI

34.6.2. Internal Protocol Interface
34.6.2.1. A Bricf Overview Of The Internet Server’s Structure
34.6.2.2. The Packet Buffer Module
34.6.2.3. Process Interactions
34.6.2.4. Protocol-Independent [nterface Routines and Dita Structures
34.6.2.5. Protocol-Specific Interface Routines and Data Structures
35. V Storage Server

35.1. Running the V storage server

35.2. Accessing the V storage server

35.3. Creating a context for the V storage server
36. Unix Server

36.1. Sessions

36.2. File Access

36.3. Program Exccution

36.4. File Descriptors

36.5. Server Name Lookup
37. Service Server

37.1. Overview

37.2. Registering an Object

37.3. Listing Registered Objects

37.4. Retricving Sets of Registered Objccts
38. Exec Server
39. Terminal Agents

39.1. limplcmentation of Terminal Agents
40. Virtual Graphics Terminal Server

40.1. Current VG'TS Versions

40.2. VGT'S Philosophy

40.3. VG'I's, Views, and Instances

40.4. Pad Escape Scquences

40.5. VG'I'S Message Interface

40.6. Internal Organization

40.6.1. Exccutive Interface
40.6.2. Framc Buffer Interface

41. Simple Terminal Server

41.1. Input Fditing Facilitics

41.2. Hardwarc Environment
42. Context Prefix Server

42.1. Name Syntax

42.2. Additivnal Fcaturcs
43. Team Server

43.1, Overview

43.2, Tcam lLoading

43.3. Tcam Termination

434, Status of Running T'cams
43.5. Remote Exccution |

V-SYSTEM 5.0 REFERENCE MANUAL

TABLE OF CONTENTS

172
173
173
174
176
177

181

181
181
182

183

183
183
134
185
185
187

187
187
188
188
189
191
191
193

193
193
193
194
195
196
197
197
199

199
200
203
203
204
205
205
205
205
205
o~ 206

TABLE OF CONTENTS . Vit

Part IV. Kernel : ‘ 207
44, Kernel Overview 209
44.1. Process and Memory Management 209
44.2. Interprocess Communication 210
44.3. Naming 210
44.4, Time Management 210
44.5. Device Management) 210
44.6, Initialization ' 210
44.7, Distributed Opcration 211
44.8. Application-Level Model ‘ : 211
45. Kernel Operations . 213
46. Exceptions and Kernel Exception Handling . .215
47. Performance . 217
47.1. Space Requirements ' 217
47.2, Kernel Operation Times 217
47.3. Intcrrupt Disablc Time ‘ 218
48. Kernel Internal Structure 219
48.1. Teams . 219
48.2. Processes . 219
48.3. Kernel Synchronization 219
48.4. Intcrrupt Routines 220
43.5. Kernel Traps 220
48.6. Kernel Process 220
48.7. Device Server Process : 220
48.8. Process Switching ' ' 220
48.9. Processor Allocation , 221
48.10. Process Creation and Destruction 221
48.11. Mcssage Primitives 221
48.12. Time Primitives - : 221
48.13. Distributed Operation 222
49. Kernel Modification and Maintenance 223
49.1. Kernel Configuration Parameters 22)
49.2. Adding New Device Support 223
49.3. Adding Kernel Operations ‘ ’ 223
Part V. Appendices 225
Appendix A. C Programming Style o 227
A.1. General Format 227
A.2. Names e 227
A.3. Comments . ' 228
A.4. Indenting 226
A.5. File Contents . 225
A.6. Parcnthescs . 231
A.7. Mcssages 231

V-SYSTEM 5.0 REFERENCE MANUAL

Vil

Appendix B. Installation Notes

B.1. V-System Distribution
B.2. 63000 Tools
B.3. Making the V-System

Index

V-8YSTEM 5.0 REFERENCE MANUAL

TABLE OF CONTENTS

233

233
233
234

237

LIST OF TABLES X

Listof Ta b!«es

Table 47-1: SUN Workstation Kernel Memory Requirements 217
Table 47-2: SUN Workstation Times for Kernel Operations (in milliseconds) 217
Table 47-3: SUN Workstation Ethernct Output _ 218

‘

V-SYSTEM 5.0 REFERENCE MANUAL

INTRODUCTION ' 1

—_—

Introduction

The V-System is a message-based distributed operating system designed primarily for high-performance
workstations connected by local networks. It permits the workstation to be treated as multi-function
component of the distributed system, rather than solely as a intelligent terminal or personal computer.
Ultimately, it is intended to provide a gencral-purposc program exccution cnvironment similar to some
degree to UNIX. The programs are intended to interact with cach other, and with programs running on
traditional timesharing systems, to produce an integrated distributed system.

1.1. The User Madel

One of the most important functions for the workstation is to provide statc-of-the-art user interface support.
In particular, the workstation should function as a frons end to all available resources, whether local to the
workstation or remote. T'o do so, the V-System adheres to three fundamental principles:

1. The interface to application programs is (reasonably) independent of particular physical devices or
intervening networks.

2. The user is allowed to perform multiple tasks simultancously.

3. Response to user interaction is fast.
In addition, facilitics arc being developed to permit a consistent interaction discipline across applications.

When the user boots his workstation he may communicate with one of two cntitics: an executive or the view
manager. ‘The user cxecutes commands (application programs) from within an cxecutive, which is the
cquivalent of a UNIX shell or Tops-20 Exic. ‘The applications may run local to the workstation or remote.
They may be written with the particular workstation in mind, or run in “terminal cmulation™ mode. 'They
may require 1/0 modalitics other than traditional text, namcly, graphics.

Fach application may be associated with one or more separate, device-independent virtual graphics
terminals (YG'1). A VG'I' may be created by the user (via the view manager) or by the activity itsclt. liach
VGT may be used to cmulate either a page-mode VTI-100 terminal or a 2-dimensional raster graphics
terminal. '

When the user wishes to initiate a new application concurrent with cxisting applications, he must first create
a new VGT, with an associated cxccutive. ‘To do so, the user communicates with the view manager. ‘The
executive serves as a command interpreter from which the desired activity may be initiated. The user can
create a new exccutive, with VG'I, at any time, asynchronous to any cxisting activitics. When a particular
activity requires additional virtual terminals, it is free to create them. These VG'T's will be dealtocated when
the activity terminates, whercas VG'T's created by the user may only be deallocated by the user.

Virtual terminals arc mapped to the screen when and where the user desires. Each such mapping is termed
a view. When an activity creates a new VGT, it prompts the user to specify the default view. Thercafter, the
user may create as many additional views as he wishes. To some extent, he may manipulate views of the same
VG independent of all other views of that VGT, for cxample, pan or zoom. All VG management is
performed via the view manager.

V-8YSTEM 5.0 REFERENCE MANUAL

2 : INTRODUCTION

1.2. The System Model

The V-System adheres to the server model: The world consists of a collection of resvurces accessible by
clients' and managed by servers. A server defines the abstract representation of its resource(s) and the
operations on this representation. A resource may only be accessed or manipulated through its server.
Because servers arc constructed with well-defined interfaces, the implementation details of a resource are of
concern only to its server. Note that a scrver frequently acts as a client when it accesses resources managed by
other servers. Thus, client and server arc merely roles played by a process or module.

Clients and servers may be distributed throughout the (inter)network. By default, access to resources is
network transparent; a clicnt may access a remote resource with the same semantics as it accesses a local
resource. ‘The result is an environment in which clients may communicate with servers without regard for the
topology of the distributed system as a whole. However, we do not intend that a client cannot determine or
influence the location of a particular resource, rather that a transparent mechanism is available. Morcover, we
allow for clicnts and servers that were not written with nctwork-transparcat access in mind.

Logically, then, the V-System consists of a distributed kernel and a distributed sct of Server processes. A
standard program cnvironment is defined, the principal instance of which is the C program library. The C
library includes runtime support for standard C and UNix-like library functions to facilitate the porting of
existing C programs.

1.2.1. The Distributed Kernel

The distributed kernel provides network-transparent interprocess communication based on syachronous
message-passing. [t consists of the collection of kerncls resident on the participating machines. ‘The host
kemels may be implemented at a base levef (as on the SUN workstation) or a guest fevel (as under VAX/UNIX).
The host kernels are intcgrated via a low-overhead inter-kernel protocol that supports transparent interprocess
communication between machines.

1.2.2. Servers

Servers include:

virtual graphics terminal server
Provides all terminal management functions. One per workstation, -

Internet server Provides ARPA Internet IP/'TCP support.
pipe server Provides asynchronous, buffered communication facilitics similar to UNIX pipes.
leam scrver Providcs team creation, destruction, and management. Ongc per workstation.

exception server Ficlds process exceptions and dispatches them to registered handlers, such as debuggers.
One per workstation.

storage server Provides disk storage.
device serven(s) Interfaces to a specific physical device, such as the console, mouse, serial ling, or disk.

local name server Provides locally defined character string names for (possibly) remote resources. One per
workstation.

1A client is a program requesting access to a resource, typically on behalf of a human user.

V-SYSTEM 5.0 REFERENCE MANUAL

THE APPLICATION MODEL v 3

1.3. The Application Model

Using the kernel well requires understanding the model of processes and messages that the kernel provides,
and how they are intended to be used. Processes represent logical activities within the application. They are
intended to he sufficiently incxpensive to allow the use of multiple processes to achicve the desired Ievel of
concurrency. In particular, multiple processes may share the same address space or feum, to facilitate fine-
grain sharing of code and data. A tcam must be entirely contained on a single machine,

Processes can be dynamically created and destroyed. When a process is created, it is assigned a unique
process identifier that is used subsequently to specify that process.

Synchronous message-passing facilitates communication between processes that looks to the sender like a
procedure call. That is, the sender blocks until a reply to his request is received, Greater flexibility is
provided to the receiver to allow scheduling of requests. Messages are addressed to the process identifier of
the recipient; there is no concept of a mailbox or port distinct from a proccess.

Messages arc short and fixed-length. To facilitate transfer of large amounts of data, a scparate data transfer
facility is provided. Specifically, a process can pass, in a message, access to an arca in its tcam space. This
facility follows the procedure paradigm in being used primarily to access what arc logically “call-by-
reference™ parameters. Synchronization between the two processes involved in the data transfer is guaranteed
by virtue of the fact that the recipient will not reply to the sender (and hence awaken him) untit the transfer is
complete.

The kernel implements a low-level naming service that provides cfficient access to scrver processes. A
process can register its process identificr as corresponding to a particular logical process identifier. Clients can
subscquently query the kernel as to the process identificr corresponding o a specific logical process identifier.

Process scheduling is strictly priority-based. The effective priority of a process is the sum of its process
priority, which is defined and fixed when the process is created, and its team priority. "T'cam prioritics can be
dynamically varicd by a server process to provide time-sliced scheduling.

1.4. Outline

The remainder of this manual consists of five parts:

Part 1 Commands: describes the user interface and available application programs.

Part 2 Program Fnvironment: dcfines the V-System program cnvironment in terms of the
existing C program library.

Part 3 Servers: defines the standard 1/0 protocol and presents the server interfaces.

Part 4 Kernel: describes the distributed kernel.

Part 5 Appendices

Any part of the V-System may change without notice. Thercfore, this documentation should be regarded as
adyisory.

V-SYSTEM 5.0 REFERENCE MANUAL

4 ' INTRODUCTION

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

COMMANDS _ 5

| Part I:
Commands

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

6 USING THE V EXECUTIVE

V-SYSTEM 5.0 REFERENCE MANUAL : COMMANDS

USING THE V EXECUTIVE ' 7

—_
Using the V Executive

2.1.Int rodu;:tio:n

The V exccutive is the part of the V system that accepts user commands from the keyboard and causes them
to be exceuted. It corresponds to the Unix shell or Tops-20 Excc. There arc currently several versions of the
executive, including two called exec and vgtsexe .2 The two versions differ only in their handling of terminal
170. The exee program runs a single cxccutive, which uses the kernel console device, while the vgtsexee uses
the Sun Virtual Graphics Terminal Service to provide any number of simultancous exces. Although initially
the vgtsexce provides onc cxecutive, the user can create and dclete cexccutives using the Excc
Control command of the vicw manager, described in the next chapter.

‘The basic operation of the exccutive is to read command lincs and exccute commands. ‘The {irst field on a
command line is the command name; the rest are arguments to be passed to the command. Ficlds arc
separated by spaces. A command name can be a built-in exee command, the name of a file contiining a
program compiled to run under the V system, or the name of a program to be run on a server, such as Unix.
The exccutive provides a simple scarch path mechanism for commands. [t looks first for a V program in the
current context (i.e., directory), next in the current [bin] context, and finally in the [public] context. [f it still
cannot find it, it will try to exccute the command remotcly, on the scrver that is providing your current
context. g

The executive waits for cach command to cxit, unless the last field on the command line is the single
character & In this casc, the command runs in the background, while the cxccutive continucs to accept
commands from the keyboard, In the vgtsexee, there is a view manager option to terminate a program
running in the foreground, but the plain exce currently provides no way to do this. A program running in the
background may be terminated using the destroy command (see chapter 4). '

Other cxce features arc described in scction 2.7.

2.2. Running the V Executive

When you come up (o an idle Sun workstation, it may be in one of several states. IF the screen is blank, it is
probably running V, but idle. The VGIS blanks the screen on idle workstations after a few minutes of
inactivity. Move the mouse slightly or press any key on the keyboard to restore the display. A previous uscr
may have left one or morc of his sessions (sce below) active. The command

Togout
will terminate them all and get you off to a fresh start,

If the workstation is running some other progr&xm, dead, powered down, or the like, it will be necessary to
reboot it, as described in the following paragraphs.

There are scveral brands of Sun workstation in existence, and booting procedures vary depending on the
brand. The two major kinds are those made by Cadlinc, which arc black, and those made by Sun
Microsystems (SM1), which arc white. Many other computers based on the same 68000 CPU board may also
run the V System, but details may be dilferent. ‘

ZSCQ section SERVERLEXIEC for a description of the serverexee, which is used only on dedicated server machines,

V-SYSTUM 5.0 REFERUNCTE MANUAL COMMANDS

8 USING THE V EXECUTIVE

A Cadlinc workstation in a random statc can be reset to thc PROM monitor by typing
<CTRLXSIHITT<BREAKD, pressing the reset button, or (in desperation) power-cycling the workstation. [t is best
to try pressing the comma key on a Cadlinc’s numeric keypad before resetting it. [f the V kernel is active at
that point, this key instructs it to turn off the mouse, necessary for proper operation of the PROM monitor.
Otherwise, you may have to power cycle the workstation or keyboard to regain control,

On the SMI workstation, hold down ERASE Eot: (White Keyboard) or SE1-Up (Black keyboard) and hit the
“A" key. There is no reset button on SMI workstations, and the SMI mouse does not necd to be shut offF,

Suns that have an ordinary terminal as their console can usually be brought into the PROM monitor by
hitting the terminal’s BREAK key. Sometimes therc is a reset button or switch attached.

It is always nceessary to resct the workstation by pressing the reset button or using the Sun monitor's k1
command bcfore running the V kernel. On SMI Suns, the k1 command destroys the type font used by the
PROM monitor to draw characters on the display, but this is restored by the.next b command. You can also
usc k2 on SMI Suns, which repeats the power-on diagnostics and thus takes much fonger than k1, but docs
not destroy the font.

To run the V exccutive on a Sun workstation, reset the workstation and type the command

nv)
to the Sun monitor. (Use b instcad of n on SMI Suns.) If your Sun has a frame buffer, this cominand loads

the vgtsexee, or a small version of the vgtsexee if you have 256 Kbytes of memory or less. I you have no
framc buffer, the n V command loads the plain cxec. You can force the plain cxee to be loaded by typing

nvw
to the monitor.

Both V and VV are special versions of the Vload program, “hardwired™ to load a particular command. Sce
chapter 12,

2.3. Contexts‘and the Local Name Server

A context in the V system is a gencralization of the directories provided by other systems such as Unix.
Each process (and thus cach exceutive) has its own current context. A filename is normally interpreted in the
current context, unless it begins with a squarc bracket (([7). Any filename that beging with a square bracket is
sent to the local name server, which interprets the part of the name in brackets, then forwards the request ofT
to the specificd context. For examnple,

[diablo]/usr/files
means the name /usr/filaes is to be interpreted in the context named [diablo]. ‘

The local name server predefines several context names, and others are defined by the login program and
the exceutive. Users can define their own local names using the define and undefine commands. "The
command

listdir [context]
lists the local context names currently defined.

2.3.1. Changing the Current Context

The cd (change dircctory) command can be used to change the current context for an exee. The command
format is '

cd puthname

V-SYSTEM 5.0 REFFEREFNCE MANUAL, - COMMANDS

CHANGING THE CURRENT CONTEXT ‘ 9

The pathname is interpreted in the (previous) current context. If the pathname is omitted, [home] is assumed
(sce section 2.4.1). When an excc is created, its current context is sct to the current value of [home].

2.3.2. Getting Context Names

The context or pwd command will print a name for a context. It tries to find the most informative of the .
pussible ways of naming the context. The command format is

context pathname

If the pathname is omitted, the command prints a name for the current context. This is the most common
usc.

2.3.3. Defining and Undefining Names
The command
define namel namel ... nameN oldname
or
dafine wumel namel ... nameN =1p logiculpid

defines local names [namel] through [nameN] o refer to the same context as the current value of oldname or,
if the "-Ip" option is used, to refer to the context corresponding to the supplied logical pid. (System logical
pids arc defined in <Venviron.h>.) Brackets arc optional on namel through nameN, while oldhame is
interpreted in the current context unless surrounded by brackets. Any previous meanings for namel through
nameN are lost.

The command
undefine namel name? ... nameN

removes any cxisting local definitions of [name!] through [nameN]. Brackets arc optional on these names.

2.4. Sessions

The V system uscs the concept of a session to provide a relatively sccure form of file access over a local
network, To gain access to files on a host maching, it is necessary to ¢reate a session on that maching, by
providing a valid user name and password 0 a server process running on the host. "The session created has
that user's filc access permissions, so the existence of a V server on a machine docs not add any additional
complications to security or create any new sccurity holes. Both the server process and the session it creates
appear as ordinary V processes which can send and receive messages using Lhe distributed V kernel
interprocess communication protocol.

2.4.1. Login
The login command is used to creale sessions. 'T'he command format is
login hostname sessionname

where both the host name and scssion name are optional. 1f the host name is omitted, the login program will
prompt for it. If the scssion name is omitted, it defaults to be the same as the host name.

The login program always prompts for a user name and password. The password is not cchoed when typed.
An crror message will be printed if the session cannot be created, or the user had an incorrect name or
password.

The login program rcgisters the user’s home dircctory on the newly created scssion with the local name

V-SYSTTM 5.0 REFERENCTE MANUAL COMMANDS

10 USING 111 V EXECUTIVE

server. Thus after a
login diablo

command, the name
[diablo]papers/naming.mss

refers to the file papers/naming.mss under the user’s home directory on the host named diablo.

The login program defines the local name [home] as an alias for the user’s home directory on the last session
created, and the local name [bin] as an alias for the V public directory on the host providing that session, if it
maintains one.

After the login command is run, the excc automatically changes its current context to the new value of
[home]. Remember that this docs nor change the current context for any other process, including any of the
other cxecs that may be running on the workstation.

2.4.2. Logout
The logout command is used to terminate sessions. The command format is
logout sessionname ...

where the session names are optional. If one or more names arc given, cach of the named sessions is
terminated. If no names are given, all scssions known to the local name server are terminated. After it
finishes, the logout command prints a count of the number of sessions logged out. [If a session name was
given and no such session was found, an crror message is printed.

L.ogging out a scssion can causc the current contexts of onc or more processes on the workstation, the name
[home}, and/or the name [bin] to become invalid. Exceutives try to recover from this situation, but other
programs may not be ablc to. Do not log out a session if some program on your workstation is still using it.

2.4.3. Accessing Files Without a Session

For convenience, the V servers provide a way of accessing a certain limited sct of files without first creating
a scssion. Any of the programs kept in the standard V public dircctory may be run without creating a session,
‘The name [public] is predefined by the-local namie server to refer to this service. :

On a workstation with no sessions in existence, the names [home] and [bin] are normally both defined to
cqual [public]. The current dircctory of the first exee created when V is booted is also set to {public].

The name [public] has the special property that it is mapped to a logical process id (and well-known context
id) instead of a specific server process. - Each time the name is used, it is automatically mapped to a currently
existing scrver, the one which responds first to the name server’s GetPid request. Other names which are
defined to equal [public], as mentioned above, get its current value when they are defined; they do not cause a
GetPid on cach usc.

2.5. Remote Program Execution on a Session Server

If the excecutive fils to find an appropriate load file for a command, it will attempt to exccute the command
on the server providing its current context by invoking the fexecute program. ‘Thus, for example, when a V
scrver on Unix is providing the current context, all the standard Unix commands like finger, ma/ce, or s are
available. The output of the Unix command is printed on the standard output file.

You can aiso supply input to remote commands. The character echoing and line editing on this mput arc
done on the workstation, not by the scssion server machine. You can type

control-+ ¢ [return]

V-SYSTTEM 5.0 REFERENCE MANUAL COMMANDS

REMOTUE PROGRAM LXECUTION ON A SIESSION SERVLR _ 11

to send an ¢nd of file to the remote command, or
control-t e [return]

to cause the remote command to exit. Type contro1-+ twice to send a single control=+ character to the
remote command.

Since both the input and output arc done through pipes, and input is a line at a time, many Unix programs
which c¢xpect to be run on tty devices (such as emacs, telnet, more, ctc.) do not work in this mode, Such
programs can only be run by logging in to the Unix machine, perhaps using onc of the V telnet programs to
conncct to it (sec chapter 4).

The V servers do not provide cxccution of Unix commands without a session. If the exccutive tries to
exccute a Unix command in the [public] context, the V server returns an “lllcgal request” error.

2.6. Remote Execution on a Designated V Host

A command can also be cexccuted remotely by cxplicitly designating another host, 'This is done by
specifying the process id of the team scrver for the host on which the command is to be run. (Syntax details
are deseribed in 2.7.6.) Remote exccution of this type is transparent to the user in that [0 is still directed to
the local host,

2.7. Executive Facilities for Command Specification and Modification

The executive provides various facilitics for specifying and cditing command lines and for redefining
various aspects of command exccution. ‘The syntax and semantics of cach is described below.,

2.7.1. Line Editing Facilities

Command lincs can be cdited with Emacs-stylc line-cditing keys. More specifically, the following cditing
commands arc available, CURL.-x mecans striking the Control key and the x key simultancousty; ESC-x
mcans striking the Escape kcy and then the x key.

CIRI.7a Move cursor to beginning of the command ling.

CIRI-b Move cursor back one character.

CIRl.~c Kills the Break Process, usually the command running in the current exceutive.

CrRl.-d Delete character under the cursor.

CIRl.¢ Move cursor to the end of the command line,

CTRIL.-f Move cursor forward one character.

CIRL-g Abort the command. The line editor will pass the command ling, followed by a CTRI.-g, to
the client program, which is respousible for detecting the CURL-g and reacting to it.

CTRL-h Delete the character before the cursor. Equivalent to the DEL key.

CTRL-k Delete the command line from the cursor to the cnd of the line.

CTRL-t Transpose the two characters preceding the cursor,

CIRL-u Delete the command line up to the cursor.

CIRL-w Delete-from the cursor to tl}c beginning of the current word.

V-SYSTEM 5.0 REFURENCE MANUAL - ‘ COMMANDS

12 | l USING THE V EXECUTIVE

CTRL-z Causes an End of File indication to be sent to the application rcading the line, This will
terminate the Exccutive ?f 1o application is running,.

ESC-b Move cursor to the be}ginning of the current word.

ESC-d Declete from the cursor to the end of the current word.

ESC-f Move cursor past the end of the current word.

ESC-h Delete from the cursor to the beginning of the current word. Same as CIRL-w.

Printing characters are normally inserted at the cursor. Commands are submitted to the exceutive for
exccution by hitting carriage rcturn. This can be done regardless of where in the command line the cursor is.

2.7.2. Command History References

The cxccutive also maintains a history of the last 20 command lines that the user has typed in. These
command lincs may be referenced by typing the character | immediately followed by a prefix of the desired
command linc. Thus if the command linc

c¢p /ng/ng/V/cmds/exec/axec.c /tmp/exec.c
was typed in, then it can be referenced by typing (for examplc)
lep ’

If a non-unique prefix is specificd then the most recent command with that prefix is taken. Another special
form of reference is 1 1, which references the previous command line.

When a command line is referenced it is redisplayed for further line editing and verification. Thus in the
previous example typing

lep
will causc the cxccutive to display
cp /ng/ng/V/cmds/exec/exec.¢c /usr/sun/Vboot/exec.c

with the cursor sitting at the end of the line. "T'he user can then hit carriage return to reexecute the line or can
cdit it first to derive a new command. :

The command listory will cause the exccutive to list the command lines it has stored in its history record.
The most recently exceuted command will be at the bottom of the list. ‘

2.7.3. Command Aliases
Command namces can be aliascd by means of the alias command. Thus, for example, typing
alias e ved '

will causc the command name “¢” to be repiaced by “ved” in subsequent command lines. Note that aliasing
is done ondy for command names and not for comimand arguments. (Remember that the command name is
the first word of a command ling.)

Aliases specify a string for replacement of the alias word. Thus onc can create aliases such as
alias test /ng/mmt/test/testcopy -d '
Then typing somcthing like
test filel file2

will causc the command
/ng/mmt/test/testcopy ~d filel file2

V-SYSTEM 5.0 REVERUENCE MANUAL COMMANDS

COMMAND ALIASES 13

to be submitted to the exccutive {or execution.

A list of all defined aliases can be obtained by typing alias without any arguments. The command unalias is
used to remove an alias definition. Specifying a new alias definition for a command name simply replaces the
old one.

2.7.4.1/0 Redirection and Pipes
[/0 redirection and spccification of pipes between two (or more) commands is done using the same syntax
as is used by the Unix shells, Thus input can be redirected to come from a filc by specifying
cemd < file

and output can be redirccted to a file by specifying
cmd > file

or
cmd >> file .
T'he latter form specifics that the output should be appended to the file whercas the first form will overwrite

any data alrcady cxistent in the file. Error output'can be redirected by specitying >? or >>?. ‘T'he forms >&
and >>& redirect both standard output and standard crror to the same file,

A special form of redirection is available for bidirectional filcs, such as the scrial lines available on Suns.
Specifying
cmd <> file

causes the command’s input and output to be redirected to the same file. To be precise, the file is opened in
FCREATE modec, and standard output is redirccted to the instance thus created. Standard input is redirected
to come from an instance whose id is cqual to the output instance id plus L. This matches a convention used
by several V-System 170 servers. ‘The form <> & also redirects standard crror to the same instance as standard
output,

Pipcs can be sct up between several commands by separating them with a | on the command linc.. Thus,
for cxample, the command line

cmdl | cmd2 | cmd3 > log

will create two pipes and redirect 170 so that the output of cmd1 will be used as the input to cmd?2, the output
of cmd?2 will be used as the input to emd2, and the output of emd2 will be redirected into the lile 1og.

All the special characters described above must be surrounded by spaces for the exccutive to recognize
them. Redirection clauses must appcar after all arguments to be passed to the command.

2.7.5. Concurrent Commands

Commands can be specified as being concurrent by including an & at the end of the command line. This
causes the exccutive to return inumediately to the user for another command rather than waiting until the
current command completes. Also, while nonconcurrent (foreground) commands are terminated if their
executive is deleted, concurrent (background) commands will continue cven if the executive that initiated
them gocs away. : .

The & must be preceded by a space for the exccutive to recognize it

V-SYSTEM 5.0 REFTERENCE MANUAL COMMANDS

14 USING TIIE V EXECUTIVE

2.7.6. Execution of Commands on Another Host
Commands can be designated' to execute on another host by including
@ TeamServerPid

at the end of the command linc. (Note: an & can be specified in addition to this.) Herc TeamServerPid is the
hexadecimal process id of the tcam server residing on the remote host wherce the command is to be cxecuted.?

Remote exccution is transparent to the user in that the [/0 of the command is still directed to the local host
and will be displayed in the same manner as if the command were exccuting locally.

The @ sign must be surrounded by spaces for the exccutive to rccognize it. The remote execution clause, if
present, must follow all arguments to the command (but may be intermixed freely with redirection clauses).

3Usiug the hex pid is a temporary measure until some fonn of host name service is available,

V-SYSTEM 5.0 REFERENCE MANUALL - COMMANDS

THE VIEW MANAGER) 15

—_3—
The View Manager

The view manager provides an interface between the user and the VGTS. The programmer's interface to
the VGTS is described in the V-System Programming Environment Manual, and the internal structure of the
VGTS is described in the V-System Servers Manual, The program crcates SDFs and objects within them, and
associates these objects with Virtual Graphics Terminals (VGTs). Through the view manager, the user maps
these VGTs onto physical screens, and manipulates the resulting views. The VGT'S multiplexes both the
output devices (the screen) and the input devices (keyboard and mousc) among all the programs that use
them. The VGTS is no longer physically integrated with the exccutive, although the view manager docs
provide an interface to the exce server. The line-cditing functions described in scction 2.7.1 arc provided by
the VGTS, like any terminal agent.

3.1. VGTS Conventions

Virtual terminals appear as whitc overlapping rectangles on the screen, with a black border and a label near
the top edge. There is at most one virtual terminal (usually a pad, or text-only virtual terminal) that is getting
input from the keyboard, along with possibly other virtual terminals getting input from the mouse. This is
indicated by a flashing black box for a cursor in the text virtual terminal, and a black label on all the views
that are accepting mouse input. Note that all virtual terminals are always active in the sense that any
application may run or change the display in any virtual terminal at any time independent of this selection; it
only applics to input.

Clicking the left or middic button of the mousc in a non-selected virtual terminal will cause it to be selected
for input. Views of sclected pads will be brought to the top. The input pad can be changed by using control
up-arrow (octal 036) followed by a single command character. 'T'he only command characters interpreted by
the VG'T'S are 1-9 to select the given pad for input.

There arc a few conventions for using the mouse with the VGTS. A ‘C!u.k" consists of pressing any
number of buttons down and relcasing them at a certain point on the screen. While the buttons are down
there may be some kind of feedback, like an object which follows the cursor. "The click is usually only acted
upon when all the buttons are released, so if you decide you have made a mistake afler pressing the buttons
you can slide the mouse to some harmicss position before releasing the buttons. Holding all three buttons
down is also interpreted as a universal abort by most programs and the view manager. ‘The click cvent is sent
to the program associated with the view in which the event occurred (through its VGT),

When a V-System program requests the creation of a pad, the cursor will change to the word “Pad”™. At this
point, hold down any button, and an outline of the view which will be created will be tracked on the screen.
Pusition the view where desired, and let go of the button.

3.2. Vlew ManagerMenus

The vicw manager menus can always be invoked by moving thc cursor to the grey background arca or any
virtual terminal not getting input (cxccpt in the banner arca) and prcmng the Right button. The following
cominands arc available from the vicw manager menus:

Create View Creates another view of an existing VGT. Move the cursor to the desired pusition of any
onc of the four corners for the new viewport. Hold any button down, and move the cursor

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

16

Delete View

Move Viewport

Make Top

Makc Bottom

Exce Control

THE VIEW MANAGER

to the diagonally opposite corner. An outline of the new view will follow the cursor as it
moves with the button down. Lct the button up, and then point at the VGT that you
would like to see with the left or middle buttons, or hit the right button and sclect the VGT
from the menu. Normally only used with graphics VGTs.

Click one view which is removed from the screen. Wamint,: if you delete the last view of
a VGT, it does not destroy the VG'T or the process associated with it. You can still create
views of the VG'T' by using the right button menu in the Create View command.

Press any button to select a viewport to move. While the button is being held down, the
outline of the vicwport will move, following the cursor. [ift up the button at the desired
position. None of the other view paramcters are changed. A shorteut to - this function is
obtained by pressing the middle button while pointing to the banner of the desired
viewport. The viewport outline will follow the cursor until the middle button is released.

Brings the vicw to the top. potentially obscuring other views. A shortcut to this function is
obtained by pressing the left button while pointing to the banner of the desired viewport.

Brings Brings the view to the bottom, potentially making visible other views. A shortcut to
this function is obtained by pressing the right button while pointing to the banner of the
desired viewport.

Sclects a submenu to create another exceutive, destroy an executive (and the teams running
in it), kill a program, or control paged output mode. When you arc creating an cxecutive,
the outline of the new pad will follow the cursor as you hold the button down. Lift the
button up at the desired position, or press all three buttons to abort. A shorteut to the Fxee
Control menu is obtained by pressing both the middlc and right buttons while the cursor
points to the gray background or the display arca of a viewport not requesting mousc.
information. :

Graphics Commands

Center Window

Move Edges

Sclects another menu of commands that arc usually only applicd to graphics views. These
are described below:

Click the position that you want to become the center of the viewport. Docs not change
the position of the viewport on the screen, just the object within the view. Doing this to
pads is almost always a mistake,

Push any button down next W an edge or corner, move that cdge or corner to the new
position, and let the button up. The edge outline should follow the cursor as long as you
hold the button down. 1Joes not move the object being viewed relative to the screen.

Movc Edges + Object

Zoom

Similar to the previous command, but this one drags the undcerlying object around with the
moved cdge or corner, while the previous command keeps it stationary with respect to the
screen.

lnvokes a Zoom mode, indicated by a change in the cursor o the word “Zoom”. You can
get out of this mode in two dilTerent ways: 1rst, clicking the left or middle buttons when
the cursor is inside a view of a pad returns from the view manager and sclects that pad for
input. As a side cTfect that view is also brought to the top. Sccondly, you can click the
right mousc button. The cursor should change back to the normal arrow.

The left and middle buttons in Zoom mode zoom out and in respectively, That is, the left
button makes the object look smaller, and the middle button makes it look larger. You can
remember this because the “outer™ (feft) button zooms out, and the “inner” (middle)
button zooms in. A shortcut to this mode is available by clicking the middle and left

V-SYSTEM 5.0 REFFFERENCE MANUAL COMMANDS

VIEW MANAGER MENUS) 17

Expansion Depth

Redraw
Toggle Grid.

Debug

buttons at the same time while the cursor points to the gray background or the display area
of a viewport not sclected for input.

Click to detcrminc the view, then sclect the new expansion depth from the menu, Symbols
will not be expanded more than this many levels into the hicrarchy. [nstead they will be
drawn as outlines with text for their names if there is room. The default expansion depth is
infinity, so all levels will be normally expanded.

Redraws all the vicws on the screen; necessary only during debugging.

Click once to turn the grid on if it is off, or off it is on in the view you sclect. The grid dots
are every 16 screen pixels, and always line up with the origin.

Enables lots of cxtra printouts, for maintecnance use only. This command asks for
confirmation, to discourage its accidental invocation. [t will not turn on dcbugging unless
the responsc begins with the letter y.

A shortcut to the Graphics Commands menu is obtained by pressing both the left and right buttons while
the cursor points to the gray background or the display arca of a viewport which is not requesting mousc

information.

3.3. Paged Qutput Mode

When paged output modc is on, the terminal agent stops writing to a pad when the pad fills up with output.
The terminal agent then displays the message "'ype <space> for next page” and waits for the uscr to issue a
command which unbiocks the pad. This section describes the availablc commands.

Most commands are optionally preceded by an integer argument k. Defaults arc in brackets. Star(*)
indicates that the argument becomes the new default.

<{spacc>

7.
<CR>,KLF>
a.Q

]
S
f
F

Display the next & lines [current page sizc]

Display the next & lines [current page size]*

Display the next & lines [1] .
Throw awz& all output until the next time input is sent to the application program.
Skip forward 4 lines [1]

Skip forward to the last linc

Skip forward k pages [1]

Skip forward to the last page

<backspace>, DEI. Erasc the last character of the numeric argument

Repeat the previous command

It the user types a character which is not a valid command, the character is treated as a normal input
character, If line editing mode is on, the CI'RL-c and CTRL-z commands (scc scction 2.7.1) have their usual

cffect here.

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDS

18 ‘ THE VIEW MANAGER

3.4. MouseEscape Sequences

Inside a pad, when connccted to some host through a telnet program, the buttons have the following effect:

Left Button Sends the scquc'ncc escape M <x><y> which positions the Emacs cursor at the position of
the click.

Middlc Button Selects the clicked pad for input, and brings the view sclected to the top.
Right Button View manager menu, described in the previous section.

Left+Middle Buttons’
Sends the sequence escape M <x><y) null which sets the Emacs mark to the clicked
position.

Left+Right Buttons
Sends the scquence escape M <xXy> tW which deletes in Emacs from the mark to the
clicked position.

Middle+ Right Buttons
Sends the scquence escape M <xXp> 1Y which inserts the kill buffer at the clicked position
in Emacs.

The above escape scquences arc cnabled by turning on the ReportEscSaq bit.in the cooking mode of the
virtual terminal. Sece the VGTS chapter of the library manual for more details.

3.5. MouseEmulation via the Keyboard

For the benefit of hardware configurations without a working mouse, the VGTS can interpret certain
keyboard escape sequences as mouse input. ‘The VG'T'S will only intercept these cscape sequences if they are
sent as a rapid burst of characters, as is the case when they are sent by pressing a function key. If the escape
sequences are typed manually, the VGT'S will detect the space between characters and pass them through in
the normal fashion,

The following is a list of the cscape scquences used and the funcuon keys with which they are normally
associated on an ANSI (VT100-style) keyboard.

HSC [A (ANSI Down /\rrow)
Move the mousc cursor down.

ESC [B(ANSI Up Arrow)
Move the mouse cursor up.

ESC [C (ANSI Right Arrow)
Move the mouse cursor to the right,

ESC[D (ANSI 1.cft Arrow)
Move the mouse cursor to the left.

ESC O P (ANSI PF1)
Toggle the valuc of the left mouse button. The new value of the left mouse button is
displayed in the view manager window. :

ESC O Q (ANSI PF2)
Toggle the value of the middle mouse button. The new valuc of the middle mouse button
is displayed in the view manager window, '

ESC O R (ANSI PF3)

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

MOUSE EMULATION VIA TIIE KEYBOARD 19

Toggle the value of the right mouse button. The new value of the right mouse button is
displayed in the view manager window.

ESC O S (ANSI PF4)
Toggle mousc emulation mode. When mouse cmulation mode is OFF, all escape
sequences except for ESC O S (ANSI PF4) will be passed through as normal, allowing the
associated function keys to perform application-defined functions. 'The new state of mousc
emulation modc is displayed in the view manager window.

When the VGTS receives input from a "real” mouse, mouse emulation is permancently disabled. If your
mouse fails, you must usc the "newterm” command to create a new VGT'S in order to use mousc emulation.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

20

V-SYSTEM 5.0 REFERENCE MANUAL

COMMAND SUMMARY

COMMANDS

COMMAND SUMMARY . 21

—4 —
Command Summary

4.1. Workstation Commands

The following bricfly summarizcs the currently available commands for V.

amaze

biopsy

bits

boise

cd

checkers .

clear

A multi-person distributed game. Does not (yet) run under the vgts. See chapter 10.

Prints information about all the processes on the workstation, sorted by tcam. Several
options are recognized. The -1 option also includes the filename from which cach tcam was
loaded. (This gencraily makes the output longer than onc screenful) The -t option
followed by a pid or the suffix of a tecam’s filename will cause information to be printed
only about the team associated with the pid or filename. More than one pid or filename
can be specified - information for cach will be printed. To obtain detailed information
about one or more processes, invoke biopsy with just the pid(s) of the refevant process(cs).

A program for manipilluting bitmaps and foats, Sce chapter 9, and the online he1p file.
Prints files on the Boise laser printer.

Several switches are allowed, preceding the filenames:

-r Print rotated, that is, in landscape (horizontal) mode.
-n name Use name to label the output. [fthis option is not given, the “For user:™
ficld is left blank.

b banner Use banner in the “File:™ ficld instead of the filename.

-h hostname Host name to usc instead of *'V-System™.

-m mode Print mode. Possible modes are
0 Line printer (the default). For printing ordinary text
files.
1 DVI. For printing TeX output.
2 Press. Not implemented.
3 HP2680a. For files in FIP2680a “spool file™ format.
-w Filc is in the Sail (“WATI'TS™) character sct instead of standard ASCII.

(Linc printer mode only).
[f no filenames are given, boise reads its standard input.
Change dircctory: change the current context.

Lets you play a game of checkers against the workstation. This is also a good
demonstration of the vgts’ graphics capabilitics. Scc chapter 10.

Clears the pad.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

contcxt

cp

copydir

dale

date

define

dcbug
destroy

dopar

doseq

draw
ccho

fexecute

help

internctserver

iphost

iptelnct

iptn

V-SYSTEM 5.0 REFERENCE MANUAL

COMMAND SUMMARY

Prints an expanded name for the current context, or if a context name is given, for that
context. Also known as pwd (print working dircctory), by analogy with Unix.

Copy the first file to the second file.

Invoked as:
copydir fromdir todir

copics the fromdir dircctory subtree to (odir. lodir must previously cxist. New files are
created in a default mode, while the mode of existing files (being updated) is left alone.

Distributed version of yet Another Layout Editor is a VLSI layout editor that provides
graphics cditing of SILT chip descriptions. Documented in a Stanford CSI. Technical
Report.

Prints the date as maintained by the local workstation kernel, and as maintained by the
session host. The kernel-maintained time on a workstation is sct from a time server when
the cxce is started. The cornmand date -s sets the local time to the network time.

Defines one or more local names for a context. The first argument(s) are the new names to
be defined. The last argument is a context name, specitying the valuc to be given to the
[CW Namcs.

The V debugger. Sce chapter 6.

Takes the name of a tcam (or any suffix) as an argument, and sends a message to the tcam
server asking it to destroy that tcam. |f the argument begins with the characters 0x, it is
taken as a process id, and that process is destroyed. This is uscful for killing processes run
in the background.

A program similar to dosagq, cxcept that it allows the exccutions of its command argument
take place in parallel on different hosts. The program prompts for the names of hosts on
which to execute the command (for cach context). If**” is entered, then the service server
will sclect an "arbitrary” available host.

This program takes two string arguments: a list of context names, and a command to
exccute. ‘The command is exceuted in cach context in turn. dosaq is often usclul in
makefiles. domakae is & synonym for doseq.

An intcractive drawing program that runs under the VG1'S. Scc chapter 8.
Fchos its arguments.

Force a command to be exccuted on the server providing the current context, as described
in section 2.5.

A program which prints out a little bit of information about the V systcm. help ? printsa
list of topics on which help is available.

A version of the Internet Server, as described in the V-System Scrvers manual,

If given a single host namc as-an argument, iphost lists all 1P addresses corresponding to
that host. If no argument is given, the [P address of the local workstation is printed.

A multi-window TP/TCP telnet program using the VGTS. This program has a copy of the
VGTS linked into it, so it is only useful under the bare kernet or the S'T'S. Use ipar under -
the VGTS.

IP/1'CP-based telnct implementation. It can run under the STS, orin a VGTS window. A

COMMANDS

WORKSTATION COMMANDS A 23

listdir

login
logout

newicrm

pagemode

query

scrial

destination host name or address may be given as a command argument; if nonc is given,
iptn prompts for onc. A host name is a string of non-white-space characters starting with a
non-numeric character. A host address is a string of the form a.b.c.d, where a,b,c and d are
decimal integers. Both names and addresses may be followed by a dot and a decimal port
number (with no intervening spaces).

While connected to a remote host, iptn recognizes a set of commands prefixed by ctri-t.”
Ctril-t ? prints a list of all such commands,

After disconnecting from a remote host, iptn prompts for another host. To cxit iptn, enter
ctrl-c or ctrl-z in response to the prompt.

[f there is no internct server on your workstation when ipin is loaded, it runs one in the
background. The -l flag inhibits loading a local server, instead looking for a public internct
server running on another V host.

The -d flag enablcs dechug mode. In this mode, all transmitted and received telnet protocol
commands arc printed, and all received non-printable characters are printed in an ¢scaped
notation. Debug mode can be toggled on and off by typing ctri-t d while connected to a
remote host.

Lists the names dcfined in a context, and prints soine information about cach. If no
argument is given, the current context is assumed.

Command to start a scssion on a computer running a v server.
Command that terminates scssions.

Change terminal agents, T'akes one argument, the filename of a new terminai agent to take
the place of the existing one. All exccutives running under the old wrminal agent are
destroyed; the new onc will presumably provide mecans of creating a new one. For
example, newterm sts replaces the vgts with the Simple Terminal Scrver, which doces no
graphics but simply presents the workstation as an ascii terminal. [f no argument is given,
it defaults o "vgts”, Warning: If the named program is not in fact a terminal agent, you
will probably losc control of your workstation.

Enable or disable paged output maode in the current executive. Takes one argument, which
may have onc of two valucs: "on” or "off™. When paged output mode is on, the terminal
agent stops writing o a pad when the pad fills up with output. 'The terminal agent then
displays the message "I'ype <spaced> for next page” and waits {or the user to issuc a
command which unblocks the pad. T'he user interface for paged output mode is described
in section 3.3. '

Prints out the result of performing various 'query” operations. In particular, query
kernel prints the result of the QuaryKernal operation, query config prints the
contents of the workstation's configuration file, and query ethernet prints the result of
querying the “cthernet” device. query ? lists the possibic options.

Takes one or more filenamces as arguments, and removes cach file,

This program provides a full-duplex conversation between its standard input and output,
and a device connected to one of the serial ports of the workstation. The argument is a
device name, specifying the line to be opened. It defaults to [devicelserialt) if omitted.
Names of the form [device/seriain (with n a single digit) can be abbreviated by giving only
the digit. If the serial line is connceted to a modém or a terminal port on another
computer, this program allows the Sun to act as a terminal. The flag -b bitrate can be
used to specify the bit rate (baud rate) of the conncction; it defaults to 9600 bps.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

24

show

teinet

testexcept

timekcrnel

tn

type

undefine

ved

COMMAND SUMMARY

Displays a .dvi filc or a .press file, Ttis driven from a menu in the invoking pad: by
sclecting the appropriate field, you can move around from page to page, with cither
rclative movement, absolute page number or the TeX generated \count0 numbers. You
can invoke it with show filename, or you can sct the filename in the menu. You can
“scroll” a page by pressing a mousce button inside the view, moving the mouse and
releasing the button. [t handles the TeX gencrated dvi files pretty well, though
magnification is ignored and somme fonts arc missing. Biggest problems: it only handles a
small subsct of press format, there are no good scribe foats for it, and it is a bit slow.

A multi-window PUP-based telnet program using the VGTS. This program has a copy of
the VGTS linked into it, so it is only useful under the bare kernel or the STS. Use 1 under
the VGTS.

Simple intcractive program for testing the exception server.
Program to measure the time for Send/Receive/Reply kernel primitives.

PUP user telnet program. It can be run under the STS or in a VGTS window. n takes an
optional argument specifying the host to conncct to. While running, the following
keyboard commands arce available:

ctri-t ¢ Close the conncction.

ctrl-+ d Close the conncction and delete the VGT, if created by . (Only
available when running with the VGTS.)

ctrl-t e Close all connections and exit from tn.

ctri-t o Create a new VGT and open another conncction in it. (Only available

when running with the VGTS.)

ctrl-t b Creatc a big (48-linc) VGT and open another connection in it. (Only
available when running with the YGTS.)

ctri-t ctrl-t I'ransmit a ctrl-+ character.

(n is capable cither of using the raw Ethernet device on the workstation, or going through a
local internet server. If there is a local internct server, th must usc it, since the kernel
Fthernet device is single-user. BEven if there is no local internet server when th is loaded, to
be compatible with ipru, tn will load a local internet server and work through it if” there is
no public internet server clsewhere on the network that could be used by iptn. 1o foree tn
to usc the raw Ethernet device if it can, invoke it with the command line tn raw
hostname. :

Only one copy of tn may be run on a workstation at onc time.

Type out onc or more files on the terminal. Types a page-full and then' stops and waits for
input. Pressing {SPACL] brings up another page, while [RETURN] brings up another line,
Hit g or +C to quit. '

Removes the definitions of one or more local context names.

A text cditor, similar to Emacs, which runs under the vgts. Described in chapter 7.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

COMMANDS ON SESSION HOSTS) 25

4.2. Ccmmands on Session Hosts

There are also several useful commands that can be invoked on session hosts (usually a Vax/Unix system).
Use these commands once you have logged into a machine through a telnet connection. Most of these
commands also have versions that run locally on the workstation under the vgts, and the Unix versions can
also be run remotely under the vgts, using the exec’s remote execution feature (scetion 2.5).

dale A version of the Yale layout cditor that runs under the vgts.
photo Reads and displays a “.sun” format raster file.
siledit A program which cdits .STI. format files. SIT., a Simple Interactive Layout program, is a

graphics cditor-for logic designs and illustrations.

silpress A program which takcs a .sil format file and produces a .press format file that can be
prinicd on the Dover.

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDS

26

V-SYSTEM 5.0 REFERENCE MANUAL

EXECUTIVE CONTROL COMMANDS

COMMANDS

EXECUTIVE CONTROL COMMANDS . 2

| —_—5 —
Executive Control Commands

The following commands give the user access to the execserver functions.

checkoxecs

delexec
do

killprog

querycxec

startexec

Kill off any exec whose standard input server or standard output server has died.

Delete an executive, épcciﬁed by its exce id. The first exec created when the workstation is
booted will always have an id of O.

Create an cxec with a named file as its input. This file should contain a list of V
commands, cxactly as you would type them, one to a line. ;

Kill the program, if any, running in the specified exceutive,

Find out the status of the specified exccutive. Useful mainly for system testing, Scc
QueryExac in the Program Eavironment manual.

Creatc an excc in a new pad. The new exce will have the same context as the exce from

which startexec was invoked, NOT the [home] context. For most purposes the view
- manager's Create Fxecutive commands are to be preferred over this one, as the view

manager will not work on an exccutive created by startexec, startexec prints out the exec
id and process id of the new exce.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

28

V-SYSTEM 5.0 REFERENCE MANUAL

TIE V DEBUGGER

COMMANDS

THE V DEBUGGER ’ 29

— 6 —
The V Debugger

6.1. Synopsis
debug [-d] progName progArgl -progArg2 ...

6.2. Description

6.2.1. Invoking the Debugger With a Program

Debug is an assembler-level symbolic debugger for .r files created by the 68000 linker (1d68). It can be called
as a command to the V cxee and takes the following arguments:

-d If the VGTS is available, then this argument causes an O pad to be created for the
debugger which is separate from the onc used by the program to be debugged. This option
is a ncedssity for programs which read keyboard input via separate reader processes since
these may interfere with the debugger's keyboard input requests.

progName ~ The name of the program to be debugged.
progArgn The nth argument of the program to be debugged.
Thus, to debug a program which is normally invoked by:
progName argl arg2
ong types
debug progName argl arg2 .
Ifa separate 10 pad is desived (for Vs resident environments ondy) then one would type
debug. -d progName argl arg2

6.2.2. Postmortem Debugger

The debugger can also be uscd as a “postmortemn™ debugger. The V exces (both the Vgts-based onc and the
non-Vgts-buscd one) have been structured so that if an exception occurs in the program currently being run,
the debugger is automatically loaded and given control.

i
6.2.3. Common Usage .
A program invoked with the debugger will start out at the debugger’s command level. Breakpoints may be

set and the program code and global variables may be examined. ‘The program can then be started using the
commands described below., :

A frequent “postmortem” use of the debugger is to obtain a stack trace to find out where a program
incurred an cxception and then quit. This is donc by typing s after having been transferred into the
postmortcm debugger to get a stack trace, and q to quit:

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

30 THE V DEBUGGER

| prog argl arq2
Bus error on read from address f in process 20d0024
Instruction Program Counter Status Register
1010 10172 i0.
BO> 10174 4880 main+2C extw do
‘8
stack trace
-q
l

6.3. Commands

The debugger begins by displaying the line of code at which exccution has paused, and then gives a period
(*.") as a prompt. The user can then enter commands using the keyboard. Most commands are terminated
with a carriage return; exceptions will be noted in the command descriptions. The only characters that may
be used to erase previously typed input are backspace (\b) and delete (DEL). The entire line may be crased
by typing CI'R1.-u. When climinating optional arguments in commands which take more than one argument,
be sure W include the correct number of commas (or the command. In this way the debugger can determine
which argument is W be assumed.

6.3.1. Definitions

Within the command descriptions below, an expression is some combination of numcric constants, register
symbols, globally visible symbols from the program being debugged, and the operators +, =, and |,
representing 2's complement addition, subtraction, and bitwise inclusive or, respectively. Blanks arc not
sighificant except in strings. All operations arc carried out using 32-bit arithmetic and cvaluated strictly left to
right.

Register symbols arc symbols which represent the various processor registers. 'The following symbols are
recognized:

%d0 - %d7 Data registers 0- 7.

%a0 - %a7 Address registers 0 -1

%lp : Frame pointer (synonym for %a6).
%sp Stack pointer (synonym for %a7).
%pc Program counter.

%sr Status register.:

In all commands except the replace-register (rr) comumand a register symbol represents the contents of the
specified register. [n the replace-register command it represents the address of the register specified.

Globally visible program symbols arc names of program routines or global program variables,

The single character *.” (dot) is treated as a symbol representing the last memory location examined. Its
value upon entrance to the command level of the debugger is set @ the current value of the program counter,

6.3.2. Execution Control Commands

expression, number, h .
Set breakpoint mumber (in the range 2-15 decimal) at expression. expression must be a legal

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

EXECUTION CONTROL COMMANDS . 31

instruction address. If number is omitted the first unused breakpoint number is used. If
expression is 0 the named breakpoint is cleared, or if number is omitted then all breakpoints
are cleared. If expression is omitted all breakpoints are printed. Note: if expression is
omitted then number must also be omitted or must be preceded by a comma in order
distinguish it from being interpreted as the expression argument.

expression, g Go. Start or resume cxccution at expression. If expression is omitted, then start exccution
at the current pe value.

expression, gh Go past breakpoint. Like go with no argument, except that if we are presently stopped at a
breakpoint, then expression counts the number of times to pass this breakpoint before
breaking, [f expression is omitted, then 1 is assumed.

expression, X Executc the next expression instructions, starting from the current pc and printing out ail
cxecuted instructions. If expression is omitted, then 1 is assumed. Note: traps arc exccuted
as single instructions: i.c. the instructions cxecuted in a trap routine arc not displayed or

counted.

expression, y. Samc as x cxcept that subroutine calls are executed as single instructions; i.c. do not
descend into the called subroutine. -

XX XX is a synonym for y

: A synonym for x, except that cach instruction ¢xccuted is displayed on the same line as the

command, providing a more compact display. No carriage return is nceded to terminate
this command; the scmi-colon triggers cxccution. The typeout mode referred to in the
command descriptions is described under the t command.

sp Toggle the flag that determines whether the whole tcam stops at an exception or just the
process that incurred the exception. The debugger's default behavior is to stop the whole
tcam when an exception occurs, not allowing any of its processes to proceed until one of
the above Exccution Commands restarts the team. (Of course, at that point ANY of the
processes could resume execution -- .., single-stepping one process could allow another to
exceute indefinitely.) If this command is typed, an exception in any one process will not
halt any of the other processes on the team. ‘I'yped again, the debugger goes back to its
original behavior, ’

q Quit, Exits the debugger and kills both the debugger and the program being debugged.

6.3.3. Display Commands

The following commands are exccuted immediately without waiting for a carriage-return (CR) to be typed,
and their output overwrites the current line. (This provides a more compact display format.)

expression/

expression\ Display the contents of expression. The typeout mode used is determined {rtom the
program symbol table and the current typeout mode. The value of dot is sct W expression.

/ ' '

\ Display the contents of dot after having respectively incremented (/) or decremented (\) it.
The typeout mode used is determined from the program symboi table and the current
typeout mode.

@

expression@ Display the contents of the memory locations pointed to by the value of dot or expression,

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDS

2

expression=

THE V DEBUGGER

respectively, The typeout mode used is determined from the program symbol table and
the current typeout mode. The value of dot is set to the address of the memory location
just displayed. Note that %pe will yicld the contents of the memory location pointed to by
the pc register (i.c. the current instruction) and that %pc@ will attempt to place an
additional indirection on that memory location. %pc@ is almost always an invalid
reference.

Display the value of dot or expression, respectively,

The following display commands are cxccuted when a carriage-return is typed.

Display the contents of all the registers.

Print out a stack trace describing the chain of subroutinc calls and their parameters.
Warning: the debugger's stack trace examings the values of paramcters as they currently
cxist on the stack, not as they were when the routine was catled. Routines which change
the values of their parameters will similarly affect the stack trace output.

expression, nunlines, n

Display the next numlines memory locations, starting at expression, If expression is
omitted, then display starts at dot. If numlines is omitted, then 24 lines arc displayed.

expression, numlines, p

type, t

type, tt

base, ir

Display the previous numlines memory locations, starting at expression. 1f expression is
omitted, then display starts at dot. 1f numilines is omitted, then 24 lincs arc displayed.

Temporarily sct typeout modce to fype where fype is onc of:

¢’ type out bytes as ascii characters,

W type out bytes in current output radix.

'w’ type out words (2-bytes) in current output radix.

T type out longs (4-bytes) in current output radix.

's’, slrl,eng/h typc out strings. Sct the maximum length of strings o be sirl.engih,
The maximum string length determines how far the debugger is willing
to look for the end of a string, which is assumed be a "0’ byte. For
programming languages such as Pascal which don’t terminate their
strings with a "\(bytc this limit is important to prevent endless string
scarches. ‘The string maximum length is sticky (i.c. it need be sct to the
desired value only once). The default value is 80.

T type out as symbolic assembler instructions.

Note that the type characters must be surrounded by single quotes. [f no argument is
supplied then the default typcout maode is used. ‘This mode trics o set the typeout mode
based on the type of symbol(s) being displayed and uses 'T° format when the mode is not
obvious. The new typcout mode stays in effect until execution is resuned with one of the
Exccution Control Commands. .

Permancntly sct typcout mode to fype. The typcout mode is sct to the default typeout
mode if type is omitted. :

Sct the input radix to base, If base is illegal (lcss than 2 or greater than 25 decimal) or
omitted, then hexadecimal is assumed. (This is the default radix.)

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

DISPI.AY COMMANDS 33

base, or Set the output radix to base. f base is iliegal (less than 2 or greater than 25, decimal) or
omitted, then hexadecimal is assumed. (This is the default radix.)

off3et, of Set the maximum ofTsct from a symbol to offset. If offset is illegal (lcss than 1) or omitted,
then hexadecimal 1000 is assumed. (This is the default offset.) This command is uscful
when examining arcas of the tcam, such as the stack, which are more accurately labeled by
hex addresses than by symbol+ offset notation.

charcount, sl Sct the maximum number of characters in a symbol which will be displayed to charcount.
If charcount is illegal (less than 1 or greater than 128) or omitted, then 16 is assumed.

6.3.4. Replacement and Search Commands

expressionl, expression?, type, r
Replace the contents of the memory location specificd by expression! with expression2.
expression2 is interpreted to have type fype. Note: It is not currently possible to replace
strings with this command, and instructions should be specified. in 16-bit quantitics and
replaced with type 1. It expression? is omitted, then the value 0 is uscd.

register, expression, Tt
Replace the contents of the specificd register with expression. I expression is omitted, then
the value 0 is used. expression is interpreted to be a 32-bit quantity.

expression, lowlimit, highlimit, type,

Scarch for (find) patrern in the range lowlimit (inclusive) te highlimit {exclusive).
expression is interpreted as an object of type fype. Objects arc assumed to be aligned on
word (2-byte) boundaries except for 1-byte types and strings, which are aligned on byte
boundarics. A mask (sct with the mask command) determines how much of the expression
is significant in the scarch, unless expression is a string constant. ‘T'he first three arguments
to the scarch command are sticky: thus i’ any of them are omitted then their previously
specified value is used. is the only debugger command which allows the specification of a
string constant as expression. A string constant is delimited by the character ™ on cither
side; to use ™ in the string itself, precede it with a \. An exampice of a string is: "This is a
string with \" in it". ‘The typcout limit of strings dctermines how much of the string is
significant in the scarch, not the scarch mask.

expression, m Set the scarch mask o expression. W expression is omitted then 0 is used. -1,m forces a
’ complete match, fm (that's hex) checks only the low order 4 bits, O.m will make the
scarch pattern match anything,

6.3.5. Help Commands

h Print a brief description of cach of the debugger's commands.

w Print a sct of internal debugger statistics. ‘This was implemented for the convenicence of the
designers and may change frequently in content and format. It replaces the obsolete qq
. which, duc t the debugger's unsophisticated command parsing will behave exactly as docs

qo

6.4. Bugs
The debugger as it is currently implemented has some “features” one must be aware of.

Currently, cach instance of the debugger can debug only one team at a time. Programs that create and toad
new teams will cause problems because the debugger assumes that it is always dealing with the same program

V-8YSTEM 5.0 REFERENCE MANUAL COMMANDS

14 THE V DEBUGGLR

imagc.

If a breakpoint is encountered anywhere between the receipt of a message and a later attempt to call
RercadMessage() on that message then the breakpoint exception will destroy the message value, yielding
garbage in the subscquent call to RereadMessage().

The debugger assumces that any trace trap cxceptions have been caused by its own single-stepping
mechanism. Though it will rccognize the first one, and print an error message, subscquent trap exccptions
can cause intolerabic behavior.,

The stackdump routincs depend upon knowing the string names of the kerncl routines to produce correct
stack traces which include those routines. Right now, this list is being kept up to date by hand.

Putting breakpoints in code which is sharcd by two or more processes can be hazardous to your mental
health,

V-SYSTT'M 5.0 REFERENCE MANUAL - COMMANDS

VED: A TEXT EDITOR ' 35

—_7 —
Ved: A Text Editor

Ved is the V system text editor. It runs entirely on a Sun workstation, using a session host only for file
service. Its basic keyboard commands arc a subset of Fmacs. However, the mouse adds a whole new style of
interaction with the cditor. The multiple window capabiiity of the VGTS is put to good use, as well. And the
user will quickly notice that it responds much faster than Emacs on a normally loaded system.

Ved manages onc or more editing windows. Each window is thought of as a viewport onto a bujfer of text, a
continuously accurate display of some portion of that text. A change to the buffer is followed immediately by
a corresponding change to the display. In cach buffer there is a cursor, which is guaranteed always to be in
the portion of the text displayed. Each buffer normally has a filename associated with it, the file from which
it was read or the file to which it was most recently written,

7.1. Starting up

Ved runs under the V system cxecutive, which is invoked as described in the previous chapter. Once inside
the exccutive, type

ved
or
ved filename

The filcname can be in any of the forms recognized by the V exce -- a relative pathname, an absolute
pathname, or [session host] followed by a pathname of cither type. Ved proceeds to read in the named file
given, then requests a pad, its {irst editing window. This is indicated by the mouse pointer, which changes to
the word “Pad”™. Move the mouse to the desired upper left corner of the pad and click any button. The pad
will appcar, and in it the first screenful of text will be displayed. ‘'The pad in which ved was invoked is
reserved for displaying error messages and typing special text, such as filenames or scarch strings, which is not
to be inserted into any bulfer. In normal usc it is convenicent to shrink this window down o a few lines at the
bottom,

At the top of the cditing window, there is a banner. When the banner is inverted, then this window is
selected for input cither by the mouse or the keyboard. ‘1'he banner specifies the ved window number which
is used by the window sclection command (described in section 7.10) and the Vgt number (sce scction 3.2).
The rightmost arca is reserved for the file name associated with this window. {f the file name has an asterisk
(*) prefix, then ved thinks that this buffer has been modified since the last writc or save of the specified file.

As an added feature, there is a inverted line of text at the bottom of every ved window. 'This is the fixed
menu arca of the window. [t can be used to enter some frequently used commands using the mouse instcad
of the keyboard (a full description of the fixed menu is in section 7.6.2).

7.2. Motion

The following commands are available to move the cursor within a file: .
The four arrows Move the.cursor in the direction indicated.

tF, 1B, backspace

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

36 VED: A TEXT EDITOR

Horizontal cursor motion. -

esc f, esc b, esc backspace
Word-oriented cursor motion. esc-f goes forward to the cnd of a word; esc-b and esc-
backspace go back to the beginning of a word.

P, tN Vertical cursor motion -- scrolling if nccessary.
A, tE Cursor to beginning, end of line.

esc comma, esc period
Cursor to top, cursor to bottom of visible region.

esc, esc? Cursor to beginning', end of text.

G Get out of special states. Whether you have just typed Escape or +X and didn’t want to, or
are busy typing a search string, or whatcver, +G will get you back to the normal state.

tX1Z Quit the cditor. If there arc any modified buffers, you will be asked if you want to save
them. Here and in similar cascs, if you are warned and then decide you don't want to do
the command at all, type G to escape back to normal editing.

[Tl

+C " Also quits, but first asks for confirmation, which should be answered with “y™ or Return if
you mean to quit. tC is kept for Unix compatibility, protccted with a message becausc a
multi-window cdit can take some time to sct up, and should not be at the risk of a single
keystroke. In the future, +C is intended to serve a “quit local edit™ function, when ved or
something likc it is a service available to programs like mail and send.

7.3. Paging and Scrolling

tV,escv Page down, page up.

+L Redraw the display.

PF1 _ Scroll -- move the viewport down onc ling relative to the text

PF2 Scroll backward - move the viewport up onc line relative to the text
t7.csc2 lA Synonyms for PI1, PF2 respectively.

csc PF1 Moves the viewport 1/2 page down the text -- halfa 1V,

esc PF2 Movcs the vicwport 1/2 page up the text.

esc downarrow, ¢sc uparrow
Synonyms for ¢sc PF1, esc PF2,

7.4. Simple Editing

. Typing any printing character, or TAB, inscrts the character typed. Other special characters are handled as
follows:

D Delete forward from the cursor - the character under the cursor.
DEL Delete backward from the cursor.
escd Delete word forward.

V-SYSTEM 5.0 REFERENCE MANUAL : COMMANDS

SIMPLE EDITING

esc DEL, esch
Return

ue

+K

1Y

escy

Linefeed

esc 'T'ab

™Q

LA

kil

Delete word backward.
Insert a Lincfeed, not a CR character -- gets the desired effect.
Inscrta Linbfecd, lcaving the cursor before it.

As in Emacs. Delete the contents of one (logical) line, or the carriage return on an ecmpty
line, into the killbuffer. A scquence of tK commands uninterrupted by any other

command causcs the whole scction thus delcted to go into the killbuffer. K after any

other command cestarts the killbuffer from scratch.

* Yank - inscrt contents of the killbuffer at the cursor.. The killbuffer is unchanged. The

cursor cnds up at the beginning of the inscrtion, and the Mark (sce below) ends up at the
end. .

Yank, but without disturbing the Mark. The cursor ends up at the end of the inscrtion.

Inscrt a newline (Linefeed) and then indent the new line to the indentation of the previous
line, using tabs where possible, 1f the previous line is empty, it will look up until it finds a
noncmpty linc and usc that as the standard of indentation.

Add indentation to this line equal to the indentation of the previous line. Intended use: if
you type Return and wish you had typed Lincfeed, this will make up the dilference.

Quote the following character. Allows you to insert non-printing characters (such as the
useful tL., formfeed, which forees a page break on most printers) into the text.

Quote the following character and insert it with the high bit sct. tQ and t\ arc the only
exceptions to the +G command: they will quote a following G, but that simply mcans the
insertion of a character, which can casily be deleted. .

7.5. File Access

Whenever ved writcs a file, it preserves the previous version of that file (if there was onc) by renaming it to
its former name followed by *“.BAK™. Thus myfile.c becomes myfile.c.BAK .

XtV

t+X18
tXtW
X1l

C8C =~

tXb

t+X ¢

Visit a file, whose name will be requested. ‘The few file replaces the current ong, so if the
o . g 1 . . y .
current bufler is maodified you will be asked before procecding,

Write the bulter back to the file from which it was read.
Write the buffer to a file whose name will be requested.

Insert file at the cursor. You will be asked for the file name. Cursor and Mark are set just
asin tY above. . ’

Forget that the buffer has been modified.

Toggle the .BAK safety feature. Creation of JBAK files makes file writing take about 4
times as long as it otherwise would, so if you rcally want that specdup, this will turn off the
making of .BAK files. +X b again will turn it back on,

Change current context. This'command allows a user to change the way character string
names are interpreted. A context is similar to a directory in that it defincs which object is
associated with a name. The file name represented in the banner of the pad should always
be context independent, (Sec section 2.3.)

V-SYSTIIM 5.0 REFERENCTE MANUALL COMMANDS

38 , VED: A TEXT EDITOR

7.6. The Mouse

The mousc offers an alternative way of doing several common cditing functions, such as placing the cursor
and deleting or moving text. The mouse has two functions: fixed menu sclection and editing.

7.6.1. Editing With the Mouse

Left button Click and rclease it at any character in the text: sets the cursor at that character, Click it at
one character, move the mouse to another point in the window, and releasc: selects the
text between the point of clicking and the point of rclease. While you arc moving the
mouse with the left button held down, the region which would be sclected if you released it
at this moment is displayed in inverse video. When you release, your selection is defined
and remains displayed in inverse video. Carriage retums arc invisible, so the sclection of a
carriage return is shown by black space from the end of the text on that line to the end of
the window. Note that a sclection and a normal cursor arc mutually exclusive. The
importance of this will become apparent below. If you have a sclection and click the left
button, with or without moving, the former selection is desclected: and a new cursor
pusition or sclection is chosen.

Middle button When you have a selection, clicking the middle button deletes it into the killbuffer. [f you
have no sclection, nothing happens. The position of the mousc is irrelevant.

Right button Brings back the contents of the killbuffer and makes it selected. If there is nothing in the
killbuffer, nothing happens. If there was a sclection alrcady, its contents are swapped with
the contents of the killbuffer, If there was no sclection, the contents of the killbuffer
replace the cursor.

7.6.2. Fixed Menu

The fixed menu that appears at the bottom of every ved window provides the uscr with mouse oriented file
perusal capabilitics. Clicking the middle or right mousc buttons in the fixed menu arca wiil cxceute the
command that is necarest the mouse cursor. All the commands in the menu could be entered from the
keybuard, therefore they arc not described here. Refer to the scetions on scarching, scrolling, and regions for
descriptions.

In the fixed menu arca, the semantics of the cach of the buttons differ. 'The middle button (in general)
incans forward whercas the right button means backward. 1°or instance, clicking the middle button at the
FFull-Page command will cause the window to be scrolled forward one full page and the right button will cause
a reverse seroll. ‘The commands Half-Page, Scroll-Line, and Search behave in this same manner. ‘I'he Tag
command has cxactly the same semantics for both buttons. Mark/Point is the only “different”™ command; in
it, the middle button causces a jump to the Mark and the right button sets the mark at the point. Note that the
left button has no effect on menu selection, to maintain continuity during dynaimic selection. "I'he Search and
Tag commands will cither use the selected string as the pattern or prompt the uscr for one in the case of no
scicction.

7.7. Searching and Replacing

S Secarch for string. Prompts for a string, and finds the first instance of that string after the
cursor. Prints “Not found” if there is no such instance. If you type Return without typing
any scarch string, the previous scarch string is used -- +S Return is cquivalent to PF3 as
described below. Here and efsewhere, a newline can be inserted into the scarch string
using the linefeed key. It is cchoed as an inverse-video backslash. Non-printing
characters can be scarched for, and are cchoed as like “tA”, [f the scarch succeeds, the
string found is sclected, and sceveral special commands (described in The Right Hand and

V-SYSTEM 5.0 REFERENCE MANUAL : COMMANDS

SEARCHING AND REPLACING 39

the Left, below) arc available. In particular, typing s will repeat the search.

*R Reverse search. Just like 18 but scarches backward.

PF3orescs Repeat scarch. Forward search for the string most recently used in a S or tR command.
Works regardless of whether there is currently a sclection or not.

PFdorescr Repeat search backward. Likc esc s but scarches backward. ‘

escq Query Replace. Prompts for a scarch string, then a bephiccmcnt string; Thén sczirchcs till it

finds the scarch string, and sclects that text. Type y (yes) to replace, n (no) to Icave it alone
and go on. Other options arc described below. These special commands are available
whenever there is a sclection, so Query Replace is casily re-enterable. Just use PF3 to find
and sclect the next instance of the scarch string, and away you go.

escg Go to line. Prompts for a linc number, and moves the cursor to the head of that linc in the
file. The first line is numbered 1. If the number is too large, it will go to the end of text
and notify you of the true linc number there.

7.8. The Right Hand and the Left

When there is a sclection, the cursor is not in a single spot, so it would not make much sensc to insert
characters at the cursor. So various printing characters are used as special sclection-mode commands. The
most basic of thesc commands are all assigned to left-hand keys. "Thus one possible mode of operation is for
the user have his right hand on the mouse, sclecting things, and his left hand at the usual place on the
keyboard, giving commands which are not available on the mouse buttons. Others of these commands are
designed for use with the scarch and replacement facility.

Non-printing characters other than those described below desclect, then perform thcu' usual function as if
the cursor had been at the beginning of the selection.

space bar * Deselect. The cursor lands at the beginning of the sclection. All printing characters not
mentioned here also have this cffect, but the space bar is recommended.

Tab - Deselect, but the cursor lands following the end of the selection.

d Delete. Exactly identical to the middle mousc button,

¢ ' Fxchange. Exactly identical to the right mouse button.

¢ Copy in place. A copy of the current selection is inserted right after 1t, and becomes the

- new selection.

g ’ Grab. The current sclection is copied into the killbuffer without deleting it.

s ‘ Scarch for the next instance of the sclected string. This becomes the scarch string, as used
in futurc Repeat Scarch or search-and-replace commands.,

r Reverse version of s,

P13, PF4 Repeat scarch -- they perform their usual function, using the stored scarch string rather

than the current sclection.

PF1, PF2 Scroll -- as usual, but unlike other commands they do aot desclect unless the sclection is
being scrolled off the screen.,

+L Redisplay, with the sclection ncar the top of the screen, Good for long selections which
run off the bottom of the screen.

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDS

40 ' VED: A TEXT EDITOR

y Yes replace. Replace the sclection with the stored replacement string.

n - No don't replace. Search for the next instance of the stored scarch string. v

backspace Undo rcplacemént. Scarch backward for the first instance of the replacement string and
replace it with the search string. The resulting string is sclected.,

Y Yes replace but don’t move on. The selection is replaced and the result remains selected.

u Undo in place. The current selection (which hopefully is the replacement string) is replaced
with the scarch string. .

S Search for next instance of the replacement string.

R Reversce version of S.

Start query replace. Takes the current sclection as the scarch string, and prompts for a
replacement string. Replaces the current selection, and goes on to the next instance of it,
just as “y"” would do.

Q Sct replacement string. The current selection is copied into the replacement string. ‘This
makes it possiblc to alter a Query Replace in mid-flight.

7.9. Mark and Region -

Ved maintains an invisible point in the buffer called Mark. Until otherwise set. it is at the beginning. It can
be set by tXtM or Control-@ (Control-spacebar is the same as Control-@ on some keyboards). “Region”
refers to all the text between Mark and the cursor. The following commands use thesc concepts:

X M, @ Sct the Mark at the current cursor position.

X X Exchange Mark and cursor (changing the display if nccessary to keep the cursor on the
screen).

tX tK Kill Region. Rcgion vanishes and becomes the killbuffer -- so this command can be
undone with tY. Note that in Unix FEmacs this function is normally bound to tW.

+X R Write Region. Prompts for a file name, and writes the region into that {ile. The buffer is
unchanged.

7.10. Windows and Buffers

Ved is normally started with onc cditing window, but it can support scveral. Each cditing window is
associated with a scparate cditing buffer, which includes the text, cursor pusition, sclection if any, associated
filename, and whether this buffer has been modified. Multiple windows on the same bulTer are not
supported. Since the correspondence is once to ong, hercalter we refer to “window™ meaning “window and its
associated buffer™. At any time one window is selected for editing, and is foremost on the sereen, Window
selection can be changed by clicking a mousce button in an unsclected window, or by pressing the appropriate
number kcy on the keypad. Windows are numbered, starting at 1, in the order of their creation,

The search and replacement strings and the killbufTer arc universal across windows. Thus it is possible to
kill some text in onc window and yank it into another. [t is likewisc possible to search for a string in one
window, then sclect another window and repeat-search on the same string,

The window [rom which ved was invoked is special. It cannot reccive input except during certain
commands, at which time it is sclected automatically. [t is never receptive to mouse input.

V-SYSTIM 5.0 REVUERUENCE MANUAL COMMANDS

WINDOWS AND BUFFERS 41

tXg Get file. Prompts for a file name, and reads it into a new window. [f no filc namc is given,
creates an empty window. Here and in all other cascs, when a window is to be created the
mouse cursor will change to “Pad™ and let you indicate where the window is to go. [fyou
abort the pad creation by pressing all three buttons, the command is aborted.

+Xd Delete the current window. Will warn you if it is modificd. The next lower numbered
window becomes selected. If the last window is deleted, ved quits, because it cannot live
without a sciected window.

Xy Yank to window. The killbuffer is copied into a new window.
tX a Pull Apart. Kills the Region in the current window and transfers it to a new window.
t+Xm Merge windows. Asks the user to indicate a secondary window, and transfers its contents

into the current window at the cursor position. The sccondary window is then deleted.
The secondary window is indicated by clicking the mouse in it.

+X1-1X9 Select the corresponding window,

Mouse click in any unsclected window '
Scleet it.

7.11. Crash Recovery

In an ideal world, this program would never crash. But in fact it sometimes does -- but it is so designed that
it has to crash in two stages to lose your text. Normally a crash only breaks the first stage, in which case you
will get the message

Editor crash! Shall I try to save this buffer?

If you have any changes, and you value them, and the crash did not come during a save, it is probably a good
idca to answer “y". A .BAK file will be made, so the danger of total loss is smail. I this succeeds you will be.
asked

Try to continue?.

u "

If you answer “y”, the inner editor will be recreated with the buffers just as they were. For sone display-
related crrors, a ﬂ at this point will sct everything right. lowever, you are on slmky ground, and the best
thing o do first is save any modificd bufTers in other windows.

If you arc dumped into the debugger by an cditor crash, the dcbu;,gcr command Su1c1 de, g will destroy
the process that got the exception. 'This will usuaily activate ved's crash recovery tacility, as described above.

Ved trics to detect the cascs in which it runs out of memory. In some activitics, such as rcading in a file, it
will simply rcfusc. In others, such as a kill or an insertion, you will get the message

Out of memory! Please do one of the following:
Pick a window to deleta
¢ - continue (after you free something)
q - save and quit
+C - quit without saving

Ved cannot procced without more memory, and cannot cxit graccfully from this activity, so you have to help
it out. To pick a window, scicct it with onc mousc click and signal it with a sccond click. 1t will be saved if
modified, then deleted to reclaim its storage. I you have anything clse going on on your Sun, you can delete
a view or terminate a program or delete an cxec to free some storage. After doing so, type ¢ to continue. If
this won't work, type q to try to save everything and quit graccfully. [t will save the current buffer last, trymg
o avoid the dangers of saving a half~modificd text. +C is a last resort, a quick and dirty quit.

V-SYSTEM 5.0 REFERENCT MANUAL COMMANDS

42 VED: A TEXT EDITOR

7.12. Hints on Usage

Ved has no repeat factor like the +U of Emacs. Use the hold-repeat featurc of the arrow keys to move the
cursor around -- they happen fast enough that this is rather workable. Take advantage of the scrolling
features -- you will quickly become addicted to the convenience of getting your material centered on the
screen cxactly as you want it. When making scattered changes, you will find the mouse very helpful.
Arrow-repeat will get you there fast, but a mouse click will get you there now. Likewise sclect-and-delete is
the fastest way to delete a small picce of text so you can type something to replace it.

Ved is almost too large now to run on a 256K workstation. Use it only with onc or two page filcs on such
workstations. Attempts have been made to catch the event that ved runs out of memory, and give you a
chance to save, but this is not reliable. |

If you get into a weird state, try tL, it often restores sanity. [f that fails, a save may work anyway - it uses
only the textual data structurcs, and it is the display, structures that usually foul up.

Esc followed by a number key invokes onc of the debugging routines. Avoid them.

YV-SYSTEM 5.0 REFERENCE MANUALL . COMMANDS

DRAW: A DRAWING EDITOR 43

— 8 —
Draw: A DrawingEditor

The Draw program is meant to fill a spccific void in the V-System softwarc. Specifically, the lack of an
analog for the Alto Draw program is addressed. The V Draw program is not identical to its Alto counterpart,
although as much symmectry as possible was included. If you have any questions about the behavior of the
program, try using the Help command. [t will (hopefully) provide some mcaningful information.

This program runs under the vgtsexee only. Since it uses splincs, it will not run under the small version of
the VGTS configured for 256k Sun workstations.

8.1. Conceptual Model

The conceptual model behind this program is one similar to a person drawing regular objects on picees of
paper. ‘The drawing pen has a number of different nibs (tips) which can be selected, Similarly, the “ink™ and
fill pattern used to shade arcas also comes in several flavors. The ink can be cither TRANSPARENT or OPAQUE.
If transparent ink is used to fill an object, anything under the object will show through. [f opague ink is used,
underlying objects will be obscured. The Bring to Front (raisc) and Push to Back (lower) commands are
useful for shuffling which objects lic on top of cach other. Fach object lies entirely in its own plane, so it is
impossible to create works similar to thosc popularized by M. Escher.

Curves arc gencrated using B-Splines of various orders. By default, all curves are of order 3, and thus use
quadratic interpolation. The Alter command can be used to change the order of the interpolating splines.
Automatic filling (shading) of closed objects (prClllca"y, CLOSED CURVES, CLOSED POLYGONS, and certain
TEMPLATTS) is possible.

A GROUP is a cuilection of existings objccts lumped together and treated as a single unit. Groups arc uscful
for replicating completed symbols and figures in scveral places.

A variety of standard shapes arc provided, and are referred to as TEMPLATES. Templates for Arrowheads
(open and closed, wide and narrow) exist, as well as templates tor rectangles, circles, and ovals. Each object
on the screen has a type, so while it is quite possible to create a rectangular closed polygon which appears
identical to a rectangular template, they are of distinct type. This is important to bear in mind becausc
whenever you are asked to sclect an object on the screen, the program will only examine objects of a certain
type, and so some confusion might arise when the program doesn’t find the thing you are right on top of.

8.2. Screen Layout

When the program is first invoked, it will create two new windows on the screen. The farge eimpty onge is
the main drawing arca (known as “drawing arca” to the Vgtsexce), and the smaller one is the commands
window (known as “draw menu™ to the Vgtsexee). The drawing arca is zoomable (for instructions on how to
use the Vgtsexce, sec the V Commands Manual), and the grid spacing available at normal magnification is the
same as that uscd by the program. Since the program has no way of knowing what magnification you are
using, it aligns to the unzoomed grid values. ‘The VGTS will place grid points at a constant scparation,
regardless .of magnificatdion. You may create additional views, move existing views, cte., (0 your satisfaction.
The default drawing arca is in the proportion of 8.5 by 11, and centered. A frame is put around the actual size
of a drawing page to provide some reference points if you zoom the view or change its centering. ‘The frame is
normally not visible, as it lics entirely outside the default view. It will not appcar in any output,

V-SYSTEM 5.0 REFVERENCE MANUAL ' COMMANDS

4“4 ') DRAW: A DRAWING EDITOR

The Menu window is divided into three separate menus. One consists of action commands (Rotate, Scale,
Move, Copy, Draw, Alter, Frase, Push to Back, and Bring to Front), which place the program into a state
where it is waiting for you to specify certain actions, Typically, you will need to specify an object type (ALL
OBIJECTS, TEXT, OPEN CURVE, CLOSED CURVE, CURRENT OBJECT, OPEN POLYGON, CLOSED POLYGON, GROUP,
or TEMPLATE) and then some data points. A second serics of menu options runs along the bottom of the
menu window. These are the commands which control various defaults within the program. For example, if
you wish to change the dcfault font which new text is displayed in, sclect the Text default option in the lower
left corner of the menu (not the object type TEXT under the “Objects™ column), and make the desired
selection in the popup menus which will appear. The third scction of the Mcnu is the list of permanent menu
selections (Ex1t, He1p, Misc, Undo, Abort, and Done). These commands are valid most of the time. [n
particular, you can always hit He 1p.

The original window which you used to run the draw program will scrve as a combination history log and
prompt file: "The program will print many prompts in this window, telling you what it expects you to do next,
and what it didn't understand of your last action. When you ask for Help, it will appcar in this window.

8.3. Command Input

The program accepts all command input through the mouse. Clicking the mouse near a command in the
Menu is sufficient to indicate to the program that you wish to specify that command. Clicking the mousc in
the drawing arca will cither specify a data point or a command, depending on which mouse buttons arc used.
Morc-on that later. Sometimes input is requircd from the keyboard, Due to limitations of the VGTS, when
the program is requesting input from the keyboard, clicking the mouse will have no immediate cffect. Once
the program gets around to asking for mousc clicks again, all of the saved clicks will be progessed.

Occasionally the VGTS will have difficulties synchronizing communications. This almost invariably occurs
when you hit a character on the keyboard while the program is cxpecting a mouse click. When this happens,
amessage similar to

Sync error - Expected 037, got 040

will appecar. After this happens, things usually get a little strange. The program will starting complaining
about ‘ : . :

Internal Error: Bad mouse buttons 170 at (5, 89)
(maybe with other numbers) or more commonly
Missed! Please sclect a menu command,

and rcfusc to rccognize anything you do as intclligible, Do Not Despair!! ‘The remedy for this is to
dcliberatcly force more sync crrors (by alternately typing a character on the keyboard and attempting
innocuous commands with the mouse, like Help) until a full cycle has been completed. "This typically requires
you to force three more synchronization errors, and then everything will be compictely functional again.

8.4. Control Points and Sticky Points

When you create a curve, you will be asked to specily the Control Points of the spline. These points arc the
places which you wish the curve to pass ncar. ‘I'he more control points you put in one place, the nearcr the
curve will come to that place. Also, placing multiple control points at a single point will make the curve much
“sharper™ at that point. Except for the end points of open curves, and multiple control points, the curve will
not pass through any of the control points.

Sticky points (similar to Knots) arc points which actuaily lic on the curve. They are calculated by the
program to help you with the alignment of objects. There will be the same number of control points and
sticky points on curves. Polygons are a special case, in that since the control points of a polygon actually lie on
the “curve”, the program considers them to be sticky points too. 'This means that the sticky points on

V-8YSTEM 5.0 REFERENCE MANUAL . COMMANDS

CONTROL POINTS AND STICKY POINTS) 45

polygons lic at the corners and in the middle of cach cdge. Sticky points for bounding boxes (c.g., for TEXT
objects) are the same as thosc for polygons.

8.5. Mouse Buttons

When the mouse is clicked inside the Menu, it is unimportant which mouse buttons you use. Within a
popup menu (a list of choice which “pops up” after you do somcthing), you can abort by cither clicking
outside the menu or by pressing all three mouse buttons down and releasing them. In gencral, you don't have
to rclease (or press) the buttons all at once, but the mouse position is based upon where the cursor is when
you release the last button.

Clicking the mouse inside the drawing area can causc onc of several different commands (and mouse
locations) to be used by the program. The use of mousc keys within the drawing arca is as follows:

Buttons Effect
X - - Specifies a data point right where you are pointing.
- X - Requests the program to find a sticky point.
- - X Requests the program to use the nearest grid point.
XX - The Almost Done command. (see below)
X - X Requests that a Checkpoint be made.
- X X Equivalent to the "UNDO" command.
XXX Equivalent to the "ABORT" command.

Sticky points arc points located on or near cxisting objects on the screen, They are useful for connecting
lines to wbjects, specifying points actually on the object, ctc. GROUPS themsclves do not have sticky points,
although the objects within a group may. Curves have once sticky point per control point. ‘These points are
located midway between cach pair of control points. When you request that the program select a sticky point,
it will choose the ncarcst such point which is within a given radius (about 1 inch). If you arc further trying to
specify a point on a specific type of object, the scarch for a suitable point is begun again from the previous
result. Naturally, if the original mouse click relocated to a sticky point on an object of the proper type, that
will be the closest point for any further scarches.

Grid: points arc spaced cvery 16 pixcls (at normal magnification). 1f you wish to sce these grid points, usc
the Toggle Grid command within the Vgtsexce. 1or printed output, pixels are assumed o be distributed at
100 per inch.

The Almost Done command is quite similar to the Done command described below, in that it tells the
program you are satisfied with the selections you have made, and that you wish the program to accept them.
Ualike the Done command, it docs not tell the program that you are completely finished with whatever you
were doing. Instead, it permits you to, for example, crasc scveral objects of the same type without having to
go to the Menu cach time and specify the Krase command and the object type.

It differs from a “repcat™ command in that it does not force the program to create a checkpoint before
beginning the next command. As a special case, when in conjunction with the Draw command, Almost Doue
and Abort behave slightly differently. Abort will cause the last item you drew to be removed, and Undo will
subscquently remove all.of the others. Normally, Ahort would cause all changes since the command began to
be removed,

This command is also quite uscful when drawing a series of objects of similar type. You can specify that
you wish to draw a closed curve, place the control points for the curve, and then confirm with the right two
mousc keys (Almost Done). The program will complete the curve you have outlined, and wait for you to
specify another closed curve, just as if you had confirmed with Done, and then selected Draw Closed
Curve again. .

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDS

46 ‘ DRAW: A DRAWING EDITOR

8.6. Selecting Objects

The standard-method of selecting an object is to first choose the object type and then to point at the desired
objecct on the screen, using some combination of mouse buttons which specify a data point. If you select the
wrong objcct type, simply point at and choose a diffcrent object type before you select the object itsclf. As a
short cut, the program maintains a notion of what it considers to be the “Current Object”. This will be the
last object you sclected. 1f you choose the object type CURRENT OBJECT, and it is unambiguous as to what the
current object is, this will suffice. After you select an object, that object will be “highlighted” on the screen.
This normally consists of frame or bounding box appearing around the objcct. [f the program misinterprets
your pointing, usc the Undo command (also availabie by pressing the right two buttons on the mouse) and
then point to a different location on the screen.

The most notable exception to this process is the method for sclecting groups. Since individual objects can
appear in scveral groups, a popup menu appears when you select the GROUP object type, listing all of the
existing groups. Either choosc one of these groups from the menu, or click outside the menu to abort.

8.7. Action Commands

There arc nine action commands. FEach is usceful for manipulating one or more objects. Typically, cach
action cormnmand will require the sclection of an object type.

Rotate _ ‘This command will permit you to sclect an object, specify a fixed point about which the
rotation is to take place, and two points which will define the angle of rotation,

Text is rotated about its positioning point. Only the position of the text is changed -- the
oricntation of individual lctters is constant.

Scale This command will permit you to sclect an object, specify a fixed point for the scaling, and
two points which define the scaling vector. This command is uscful for expanding and
contracting objccts. .o '

Scaling text will not change its size or font. It will change the location of the string based
upun its positioning point.

Move This command will pcrmit you to sclect an object, and then specify a pair of points which
define a displacement vector. ‘This vector tells the program how far and in which direction
to move the object. By using this command, you can move existing object about on the
screen.

Copy This command is similar to Move, cxcept that it leaves behind an image of the object. F
you copy anything other than a group, the two resulting items arce completely independent.
Changing one will not affect the other. Groups, on the other hand, work diffcrently.
When you copy a group. it simply creates a new image of the same group, appending *,
copy n” to the old group name, where # is a smail number.

Draw This command lets you create new objects. Since it is anticipated that most of the time
spent in this program will be drawing new objects, this is (so to speak) the detauit
command. [f you ever sclect an object type without giving a command first, the program
will assume that you implicitly meant to draw an object of that type.

Alter * This command is uscful for changing the characteristics of an cxisting object. 1t will permit
you to move the control points on splines, change the filling and nib sclections used to
draw objects, ctc. Carrently Unimplemented.

Erasc This command allows you to delcte (erasc) objects from the screen. If you decide you just
don’t want to sce an object any more, crase it. If you decide that the last command you did
was a mistake, you probably want to usc the Undo command.

V-SYSTEM 5.0 REFERENCE MANUALL COMMANDS

ACTION COMMANDS 47

Push to Back

Bring to Front

Also known as Lower, this command will place the selected object behind all of the other
objects. This is uscful when you usc opaque ink to fill something, and it winds up
obscuring an object you want to see.

Also known as Raise, this command functions much like the onc above, except that it will
placc the selected object on top of all of the other objects. Note that you can still point to
objects you can't see -- the program will find sticky points on completely obscured objects
with no difficulty.

8.8. Object Types

There are nine sclections within the Object type menu. Some of the sclections are obvious, some are not.
All are meaningful for selccting existing objects, but the “Draw All Objects” command is not.

All Objects
Text
Open Curve

Closed Curve

Current Object

Open Polygon
Closcd Polygon

Group

Template

This will permit you to select all objects at once. If you decide, for example, to move
everything on the page a bit to the left, then this is the object type you want. The Clsar
Screen command (available under Misc) simply does an “Erase A17 Objects™, and
then scts the dirty flag to falsc.

As is obvious, this will sclect any text string. It doesn’t matter what font the text is in = it is
all of object type text.

An open curve is a spline with open end conditions. When you create onc, the first and last
control point you specify will actually be on-the curve, and the curve will be tangent to its
convex Hull at these points. (It gets straight at the ends.)

Closed curves arc splines with closed end conditions. To create ong, you specify all of the
control points you desire (the program will build a frame for the spline to help you
visualize the resultant curve. You do not need to try to get the first and last control points
in the same place -- the program will close objects automatically. Closed curves can be
filledl. ’

This will select the current object, if one exists. [If you attempt to “Create Current
Object”, the program will interpret this as a request to create an object of the same type
as the current object.

A bunch of connected straight fines. (Internally, these are just splines of order 2, thus using
lincar interpolation.) '

Also straightforward. Closed polygons can be filled. The program will automatically add
the last edgc, clusing the polygon.

Groups are a bit tricky. A group consists of scveral cxisting objects, lumped together and
treated as a singled named object. To create a group, you sclect as many cxisting items as
you like, and they are all placed into the group. Once items arc inside a group you cannot
select them by normal means. ‘They are in effect hidden inside the group.

. Groups arc useful if you have a complicated, complete figure which you wish to deal with

as a wholc. Due to intcrnal limitation, you can’t have more than some fixed number of
groups active at one time, .

Templates are standard shapes. The broad classes of standard shapes are arrowheads,
circles, ovals, and rectangles. Arrowhcads can cither be open or closed. Closed
arrowheads arc filled with black ink. "The nib used to draw an arrowhead will be the same
size as the the current nib, but will be circular., : SR

Rectangles and Ovals are both created by specifying two points on a long diagonal of the

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

DRAW: A DRAWING EDITOR

bounding box. You can give either the upper left and the lower right or the lower left and
the upper right. The program doesn’t know the difference.

Circles arc created by specifying the center of the circle and a point on the circle. Since
circles arc actually high order splincs (5Lh order, using quartic intcrpolation), they are not
truly circular. If you draw a really large circle, it is possible that the point you specify for
being on the circle will be off by as much as a quarter of an inch or so. For normal sized
circles, there will be no difficultics.

8.9. Default-setting Commands

There arc a number of Menu selections which control various defaults within the program. They can be
sclected at any time. They are:

Text

Iill on/ofT

Nib

Fill

When you sclect this command, a popup menu will appear. You can usc this menu to
specify cither the method of positioning text, or the gencral class of font you wish to use.

There arc three different ways of positioning text -- you can specify (with a data point
entered via the mouse) cither the bottom left-hand corner of the bounding box for the text,
the center of the bottom edge of the bounding box for the text, or the bottom right-hand
corner of the bounding box. Initially, the program positions text based upon the center of
the bottom cdge of the text. You can only specify a point on the lower edge of the text
-~ the program will automatically compute where the hounding hox for the particular picce
of text lics. If you arc confused about where text should appear, try positioning a few
strings, using the cxact positioning (leftmost) mouse button,

If you wish to change the font in which new text is displayed, choose onc of the font menu
sclections. A sccond popup menu will appear, listing all of the available fonts. ‘The
“Standard Fonts™ category contains the fonts which can be considered to be mundanc text
foats -~ variations on Helvetica, ‘Iimes Roman, and a few randoms like Clarity 12 and
Cream 12. ‘The “Unusual Fonts™ selection contains cverything clsc -- Old English 18,
Hebrew, Cyrillic, Greek, APL, Math, CMR, ctc. "There are some fonts, like Gates 32 and
Template 64, which arc very difticult to use unless you are quite familiar with them. They
arc included primarily for completencess sake.

This toggle controls whether or not closed objects (Closed Arrowheads, Rectangles, Circles,
Ovals, Closed Curves, and Closed Polygous) arce filled by default. 1f you wish to use
created filled objects, set this switch to Fill on. Toggle the switch by pointing at it and
clicking the mousc.

If you wish to change the nib (paint brush?) used to draw lincs, select this command.
There are four nibs, cach of which comes in four sizes. The program initially uses a
Circular nib of size 1. ‘The four nib shapes are Square, Circular, a horizontal Dash, and a
vertical Bar. “The four sizes are (unsurprisingly) 0, 1, 2, and 3. Size 0 is a singlc pixel, so all
of the nibs look the same at that size. An example of the current nib, at the current size, is
displaycd in this arca.

This commiind allows you to change the {ill pattern used to shade closed objects. A small
squarce scction of the current 1l pattern appcars in this arca. When you sciect Fill, a popup
menu will appecar, permitting you to cither toggle the use of opaque vs. transtucent ink or
sclect a general class of fill pattern.

The “Striping Patterns™ consist mostly of lines drawn at various angles. The program-
initially uses the one pattern least like straight lines but still considered. a striping pattern:
Chain Link.

V-SYSTEM 5.0 REFERENCE MANUAL : COMMANDS

DEFAULT-SETTING COMMANDS 49

The “Gray Tones/Arca Patterns™ sclection consists more of patterns which are cither
various shades of gray, or arc regular and (to some) uninteresting. ‘These patterns are
useful for highlighting objects.

The “Textured Patterns” are supposed to be more representative of actual textures. The
names for thesc pattcrns are supposed to be suggestive of their appearance, but many of
the namcs are nonctheless obscure.

8.10. Permanent Menu Commands

There arc a few commands which arc generally useful, and arc thus considered permanent. Not all are
meaning{ul at all times, but are still useful cnough to be given an entry on the Menu.

Exit

Help

Misc

Undo

Abort

Done

This command will exit the program. 1t can be used at any time. If you have performed
any command since cither clearing the screen or writing a file, the program will ask you to
confirm that you actually wish 1o cxit cven though there arc unsaved changes. Typing “y”
will confirm. Typing anything elsc will abort the command. Note that since the program
is reading input from the keyboard when asking you to confirm, any mousc clicks you
make will simply be queued, and when you do type at the keyboard they will all be dealt

with. In particular, be careful about using the Abort command here.

This command will provide a bricf description of any other command you like. To get
help on a specific command, just select that command after you sclect help. To get help
with the mouse buttons, push any onc button in the drawing arca. 'T'o exit help, sclect Help
again. You can ask for help at any time.

This command is actually a front for a collection of less frequently used commands. The
various commands arc for clearing the screen {only valid if no other command is in
progress), reading and writing files, generating press files, and toggling debug printouts.
The debug printouts arc long and plentiful -- they are also meuaningless to the uninitiated.

Reading a SUN draw file docs not clear the screen -- it adds thc new objects to the current
display. Press files currently unimplemented.

There arc actuaily two forms of the Undo command. 1f you sclect it while at the top level
{when there are no other commands in progress), the ctfect will be to revert to the previous
checkpoint, in cffect undoing the Tast command. 'The program maintains a list of 10
checkpoints, so you can undo up w 10 commands.

Checkpoints arc copics of the complete state of the drawing arca. "The program will make
onc before it starts any action command. In this way, the Abort command docsn’t need to
kcep track of incremental changes during the processing of a command.

If you give the undo command whilc in the process of specifying another command, it will
attempt to undo your last choice. If you are specifying data points, Undo will delete the
last point you entered. If you are selecting an object, Undo will unselect the object and

permit you to choose again.

This command will abort any command in progress. In gencral, Abort will also revert to
the last checkpoint, since action commands all make a checkpoint before they begin
processing.

This command is used to tell the program that you arc happy with all of your choices, and
arc done specifying parameters. After you hit Dane, the program will attempt to perform
whatever command you are exccuting, and will display the results. Note that by pressing
down the Icft two mousc buttons while in the drawing arca, you can give the Almost

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

50 DRAW: A DRAWING EDITOR

Done command, which will confirm all of you sclcctions, but not stop the command. In
this way you'can, for ¢cxample, create several objects at once. Note, however, that if you
use the Almost Done command, you arc not guaranteed that a checkpoint will be made.
If you create several objects with Almost Done, and then hit Abort, some (perhaps even
all) of the ncw objects may be aborted also.

V-SYSTEM 5.0 REVERENCYE MANUAL - COMMANDS

BITS: A BITMAP AND FONT EDITOR ‘ 51

—_Q —
bits: a bitmap and font editor

b1its is a special-purpose editor for working with bitmaps and fonts. [t makes intensive use of the VGTS.
The VGT of the executive under which bits is started up, is used to display various status information, as
well as being the menu of commands to exccute. When started, bits will ask for you to create a ncw vicw in
which the actual editing is performed. 1f you request to view sample text, you will be asked to create a third
VGT (sce below). These last two VG'T's can be zoomed.

9.1. Command Input

In this chapter, when you are asked to do the command [xxx], it means that you should sclect and click
the mouse at the field [xxx] of the status/command VGT. You get the same feedback as with pop-up
menus, with the ficld in inverse video. Some of these fields, when activated, expect you to type in some
number or string. In those cases, you have the full power of the line editor, until you type a <rcturnd. (To
abort input, type CI'RL-g.),

9.2. Rasters

The important thing to remember is that b1ts handles pointers to bitmaps. These we call rasters. A raster
also contains size and offsct data, so it can point to parf of a bitmap. You can namng a raster using the [Store
with new name] command, and later retricve it from the Table of saved rasters. You can thus
save multiple pointers o the same bitmaps under different names. 1f you change bits in one of the bitmaps,
the bits will also change in the other rasters, since they refer to the same bitmaps. Usc the [Save a fresh
copy] command to makc a virgin copy of a bitmap, which is guaranteed to have no other rasters pointing at
it. '

9.3. Changing Raster Size

‘T'o change the size of a raster, point at the boundary, click the middle button and "move” the boundary to
where you want it. You can also change the sizc of a raster with the [Width] and [Height] commands. To
do this, sclect one of these ficlds, and type in a number. The absolute value typed in becomes the new size. IF
the value is positive, the old and new rasters coincide at the top left corner; if the value is negative, they
coincide at the bottom right corner. ’

Note that when you change a raster’s size, all other rasters pointing at the same bitmap will be adjusted to
point at whatcver bits they used to point at. ‘This is true cven when you increase the size. (When the size is
increased, and the underlying bitmap is larger than the part pointed to by the current raster, the hidden part
of the bitmap will appcar. If this isn’t enough, a new bitmap will be allocated, and all the pointers adjusted.)

9.4. Bitmap I/0 .
You can rcad and write bitmaps in .sun format (as used by the photo program), using the [Read

raster] and [Write raster] commands. To writc a raw raster in hex suitable for putting in a C
program, usc the [Write hex]command.

V-SYSTIM 5.0 REFERENCE MANUAL : ' COMMANDS

52 , ‘ BITS: A BITMAP AND FONT LIDITOR

9.5. Painting

To set (blacken) a pixel, point at it with the mouse, and click the /ef? button. To clear (whiten) a pixcl in a
bitmap, use the middle button.

9.6. Inverting a Raster

Sclecting [Invert black and white] inverts the interpretation of black and white pixels. This
interpretation is actually stored as part of the raster object, so no pixels are actually changed (except on the
display).

9.7. Raster Operations (BitBIt)

You can do a gencral 2-operand BitBlt with the [Raster operation] command. The current
(displayed) raster is uscd as onc of the operands (the "destination™), so this should be sclected first. Then give
the [Raster operation] command, after which you will be asked to sclect an operation. Available are
plain copy, "and’, "or’ (paint) and "xor’. In addition, the [Invert Source] modificr first inverts the source.
[Invert Destination] docs the same for the destination, which mcans inverting the destination
operand and the output result. Finally, you must sclect the other operand (the "source™) from the name table,

You can also select [Gat the empty raster] as a source. This gives you an infinite planc of white
pixels. This, together with the [Invert Source] option, allows you to conveniently clear or sct any:
rectangle.

9.8. Reflection and Rotation

Sclecting [Reflect/Rotate] will do onc of these transformations. (A popup menu asks for the
particular transformation.) Note that the result is a "t‘rcsh” raster: There arc no other rasters or tables
pointing at its bitmap.

9.9. [Replace in table]

This command asks you to sclcet an clement in the raster table or the current font, ‘The clement is replaced
by the current raster. Ifa [Table of saved raster] clementis replaced by the Hmpty Raster, its space
is freed.

9.10. Making a Copy of the 'Sc reen

You can makc copy of the frame buffer, with a little bother, Sclect [Get framebuffer], which gets a
pointer to the frame-bufTer. You shouid now usc [Height] and [Width] t rcducc the time and space
required to deal with it. (The framebulTer is big.) You should [Save a fresh copy] tosce what's going
on, and then use the middle button to select the part that interests you. This will be slow, since such a big
raster is involved, and you will also have to use the Vgts window manager commaands.

]
.

9.11. Fonts

A font is a collection of characters. From bits’ perspective, a character is a bitmap with somc cxtra
information. b1its currcntly knows about fonts in the following formats: .

o sf format ("Sun format™), which is specially optimized for the Sun graphics hardware. (The name

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

FONTS . 53

should probably be changed, since it conflicts with Xcrox® Spline Format.)

o The same format, but the font is stored in an archive (library) of relocatable binary files. Thus fonts can
be linked in with programs, or rcad in at run time. The standard fonts are stored in
/usr/sun/1ib/1ibsfsonts.a.

o Pxi format, which can be generated by MetalFont, and is used by a lot of the TeX people.

To read / write a font, sclect the desired field in the Read font | Write font table. Notc that you
cannot writc a font to an archive.

9.11.1. Displaying Fonts

When a character in a font is displayed, therc arc funny lines sticking out of the bitmap picture. The two
horizontal lines show where the bascline of the character is. The lower vertical linc shows the starting position
("origin™) of the character. The top line indicates the width of the character, and shows where the next
characters should start. You can select any of these lines (with the middle button), and adjust them with the
mouse.

9.11.2. Font parameters

This is a section of the pad with magic numbers about the current font. They can all be changed, but you
should know what you arc doing,

Design size is the size in points at which the font is designed for. Magnification is onc thousand
times the number of times the image is magified, relative to a default Pxi resolution of 200 pixels/inch. To be
compatible with the Altos, we have decided that the resolution of the Sun display should be defined to be 80
pixels/inch. This mcans that the 1.0 magnification will have the magnification parameter of 400, which is
somewhat small. Both these are "T'eX/Pxl parameters.

[Raster alignment] is thc bit boundary character bitmaps should be aligned on in st font files. [t
must be 1, 8, or 16.

9.12. Sample Texts -

To study how a text string would look at no magnification, sclect [Sample text]. You should then type
in the text you want displayed. ‘This text will be placed in a new VG, ‘T'o change the text, just resclect
[Sample text]. the uld text will be placed in the line editor buffer, to simplily small changes. 1f you edit
the foug, scleet [Radraw] to update the sample.

Note that in the sample, the character '\ ' is special. It is used to indicate special non-ascii characters, as in
C. Spccifically, '\’ followed by a 3-digit octal number is the character with that ordinal value. \\ displays \,
and \b, \t. \e, \r and \n arc BackSpacec, Horizontal Tab, Iscape, Carridge Rcturen and line Feed,
respectively. \@, \A, ... _ arc control characters: 1@, 1A, ... *_

9.13. Printing a Raster

"There is a Unix program to converta . sun filc to a .press file. To run it (on some Stanford VAXen), do
/usr/sun/src/graphics/pix/sunpress -p X.press X.sun

This, together with the [Get framebuffer] command, allows you to print a hardcopy of the screen.on a
Dover printer.

V-SYSTEM 5.0 REFERENCE MANUAL - " COMMANDS

54 ' BITS: A BITMAP AND FONT LDITOR

9.14. Bugs and Problems

.sun files use 1 to mean ‘white’ while bits uscs 0. This means that you should [Invert black and
white] after rcading and before writing, if you want to usc the bitmaps for programs like sunpress and
photo.

The are some limitations on how bitmaps arc displayed by the VGTS. A bitmap can only be should
magnificd 1, 2, 4, 8, or 16 times, so other zoom factors will be wrong. Also, it is over-conscrvative when
clipping rasters, which mcans that a whole row of bits could be missing.

Raster operations do not take into account that rasters may be overlapping.

bits is not very robust against things like running out of memory. Caution would imply that you save
your work often.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

AMAZE

55

— 10 —
Amaze

Amaze is a game for two to five players which runs under the plain (non-VGTS) exec (VV). If you sec the
letters VGTS in a small window on your screen you are not running the plain exce. Sce section 2.2 for

instructions on how to start up the plain exec.

To run amaze, type the command

amaze

1f no one cisc is playing, it will type “New game starting” and then draw the maze. Otherwise it responds
with “Joining game as player number x™ and then draws the maze. Your player token, called a monster, will
be sitting in the center of the screen just above a checkered flashing door. From this point, you control your
moaster through the keyboard. The commands are:

Move
Move
Move
Move
Hold

B K amdlds o e

b 7 I I)

(No

the monster up.

the monster
the monster
the monster
the monster
th the monster's moves bhe

down,
left.
right.
at its

current position,

Fire the monster's missile
Fire the monster’'s missile
Fire the monster's missile
Fire the monster's missile
te: the missile can be
seconds.)

selected randomly.

up.
down.
left.
right.

fired only once every six

h Hide the monster from other players -- no shooting‘allowed
" while hidden. |

v Let the monster be seen again -- can shoot again, too.
(Note: monsters stay hidden for ten seconds, but once

they become visible,

0 Set
1 Set
2 Set
3 Set
4 Set
6 Set

monster
monster.
monster
monster
monster
monster

velocity

velocity
velocity
velocity
velocily
velocity

to
to
to

to.

to
to

they remain visible for 16 seconds.)

LN =O

.

.

-- the starting velocity.

-

q Quit the game, but continue to watch other players.
* Rejoin the game just above the door,

r Rejoin the game at a random corner in the maze.
Ctr1-C Terminate your involvement with the game.

Note that to lcave the game cntircly you hold down the CIRL key and type '¢’.

V-SYSTEM 5.0 REFERENCE MANUAL

COMMANDS

56 AMAZE

To rcjoin the game after being shot by another monster, usc cither the + or the r command. The game
currently does not keep scorc of the number of hits you inflict or suffer.

Problems and qucstions should be dirccted to Eric Berglund -- berglund@Diablo.

checkers allows you to play a game of checkers against the computer. This version of the program cxccutes
entircly on the player’s workstation.

On starting the program, the view manager will prompt you for the positi'on of the VGT representing the
checkerboard. .

The player moves the 'red’ (whitc) picces: the program'’s pieces are black. You arc expected to make the
first move. You can, however, force the program to move first by "passing”. (Sec the paragraph describing the
menu, to follow.) To make a move, move the mouse to the square containing the picce that you wish to move,
and click cither the left or the middle mouse button. If this picce can be legally moved, it will then be
highlighted. Complete the move by moving the mouse to the destination square and once again clicking the
left or the middle button.

If the move that you have selected is legal, your picce will be moved, and the program will then make its
move. Note that having sclected a picee to move, you can abort this selection by clicking an illegal destination
square (the source square itsclf, for example). {f a capture of an opposing (ic. black) picce is possible, your
next move must be a capture. A mcssage indicating such “forced captures™ will be displayed just below the
board. In such a casc, the program will not allow you to make a move that is not a capture. Multiplc capturcs
arc handled correctly - if you move a picce by making a capture, your move will not be completed until all
possible captures with this picce have been made.

The standard rulcs of checkers apply. If a picce reaches the cighth rank of the board, it is promoted to a
king: kings may move in any dircction. A side wins cither by capturing all of the oppusing pieccs, or if the
opposing side can make no legal move.

When it is your turn to move, you may also usc the right mousc button to select from a menu of options,
which arc described below:

Redraw This causcs the VGTS to redraw the cntire board. This command should rarcly be
nccessary.

Pass (skip turn) ‘This command can be used if you want the program to make the first move. You can also
usc this to avoid any capturing obligations.

Change scarch depth

" By default, the program scarches 4 half-moves ahead when choosing its next move. ‘That is,
it considers its own move, your response to this move, its next move, and your response to
that. The "Change scarch depth” command allows you to change the depth ol lookahead
to any vaiue from 1 to 8. Don't sclect any of the higher depths unless you have a lot of
patience, however, The program takes about 20s to respond to a typical opcning move
when the depth is 6, about 50s when the depth is 7, and about 3 minutes when the depth is
8. (These limes were taken on a 10 MHz SMI workstation - Cadlines will be slightly
slower.) Note that you may {ind out the current scarch depth by selecting "Change search
depth”, and then clicking outside the "depth’ menu.

Edit board This command puts you into Ldit mode, which allows you to cheat by adding piccces to, or
removing picces. from, the board. Lidit mode is described below.

Back up one move This allows you to rctract (eg. to correct) your last move.
Resign The quick and cowardly way to end the game.

‘The program chooses it’s move by performing a.'brute-force’ scarch, using alpha-beta pruning. It cvaluates

V-SYSTEM 5.0 REFERENCE MANUAL : COMMANDS

AMAZE - ' ' 57

the board positions at the 'leaves’ of the scarch tree using a simple heuristic based on the number and position
of picces on cach side. A “value indicator’ to the right of the board indicates the value of the current position,
as scen by the program. (If the indicator is above the halfway mark, for cxample, then the program 'thinks’
that you arc winning.) There are also counters immediately above and below the value indicator, giving the
number of pieces on cach side. The value indicator and the picce counters arc updated whenever the program
completces its move.

You can make changes to the board (between moves) in Edit mode. In this mode, a special menu is
displayed to the right of the board. To add a picce to the board (or change an existing piccee), click the square
in the menu that contains that piece. You may place a copy of this picce on any (shaded) square of the board,
by clicking that squarc. You may do this rcpeatedly; it is not necessary to sclect from the menu each time.
Note that you use the ‘empty square’ to delete one or more picces from the board. You may remove all picces
from the board by clicking "Clear”. When you have finished making changes to the board, click "Donc™ to
leave Edit mode. It will still be your turn to move next.

Mail comments and/or gripes to Ross Finlayson - rsf@diablo.

VY-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

58 FSCIIECK: FILE SYSTEM CHECKING PROGRAM

V-SYSTEM 5.0 REFERIINCE MANUAL COMMANDS

FSCHECK: VILE SYSTEM CHECKING PROGRAM . 59

— 11 —
Fscheck: File System Checking Program

This program is a filc system disk checker as well as simple file system editor that can be used to inspect and
modify file system disk data structures. In addition, it gives onc the capability to create and initialize new file
systems. Fsheck must only be used when there is no other filc system activity. [t also should only be used by
persons responsible for maintaining the file system.

11.1. Invocation

One can invoke fscheck from within the V system exccutive by typing
fscheck
or
fscheck devicename

[f no device name is specificd, fscheck attempts to open two devices, [device]diskQ and [device]diskl. Non-
existence of a second device does not affect correct operation of the program. Note that the devices must be
attached to the workstation from which the command is invoked and the kernel running on the workstation
must include the proper disk driver (sce the Kernel Scction for details on which kernel should be booted).

11.2. Commands ' : 5_

Commands arc provided to check the global, data structure consistency of cach file system, inspect and
modify individual node descriptors (ND), and initialize new file systems.

a[+r][+s] cheek the consistency of the file system block allocation. If +r is specified. the bitmap is
reconstructed, [+s is specified, error messages about blocks marked in the biunap but
not allocated to a file arc suppressed,

b block print the nd number of all node descriptors that point o the given block number,
Normaily, there is at most one. If the allocation is inconsistent, a block may be allocated
more than once,

¢ _ update the checksum in the current NI, print it, and set the current ficld to the checksum
field.

f print the pathname of the current ND relative to the file system being checked.

g field sct the ficld corresponding to-the given name as the current ficld and print the current
ficld.

i initialize filc system information, Prompts the user for the name, drive number, star

block, and length of each file system in the disk subsystem and writes the information intc
the file "fstab" on the root file system. Note that the start block of the first (root) filc
system should correspond o the START_FI_FH.E definition (usually 40) in
"/V/scrvers/storage/storagedefs.h”. Warning: this command should only be exccutec
when new file systems are being created.

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDE

60 FSCHECK: FILI SYSTEM CHECKING PROGRAM

| print all links from and to the currcnt ND.

n<path> |<nd> set the¢ NI corresponding to the given pathname or number to be the current NI,
Pathnamecs must be specificd as absolute pathnames (i.e. starting with "/™). If a pathname
cannot be followed, the current ND is sct to the last node visited while looking up the
pathname. This occurs if the node docs not exist or the path from the root cannot be
followed (c.g. a nodce in the path has a bad checksum).

p print all the ficlds of the current ND.

q quit.

s number set the current file system to be the one indicated by ﬁumber.

t . check the consistency of the file system tree structure.

w write the current ND back to disk. The NID number is taken from the current valuc of the

number ficld. If the current NID describes an allocated node (i.c. its mame ficld is not the
null string), it is written only if its checksum is correct. It it describes an unallocated node,
it is written unconditionatly, Checks that the number ficld is correct before writing the
currcnt N1 out.

<RETURN> advance to the next ficld and print its name and value. Hitting <RETURNDY after an "n”
command prints the first ficld.

print the current ficld.
* set the current field to the previous ficld and print it.

= <number> | {str
store the given number or string in the current ficld and pnnt it. - 'The number may be
decimal, octal(CO’ prefix), or hexadecimal('$” prefix). A string is a sequence of characters
and must be enclosed by double quotes. A null string is represented by ", Strings are
accepted only when the name ficld is being modified. Note that modifications are not
effective until a "w" command is issucd. :

11.3. Initializing a new disk subsystem

Once the disk drive(s) have been formatted (using diskdiag), the characteristics of cach of the multiple
possible file systems should be specified. "This can be accomplished by creating the root file system (as
described below) and subscquently running the "i" command. ‘Then, using the "s" command to successively
switch to cach new file system, the rest of the file systcms should be created.

11.3.1. Creating a new file system

To build a new file system, one should allocate blocks to the NI file (ND 1) and to the bitmap file (ND 2).
(If the file system being created is the root file system then a single block should be allocated to "fstab”™ (ND
3).) This is done by modilying these node descriptors so that cach refers to non-overlapping extents of disk
blocks. Also, the link ficids in cach node descriptor should be updatcd 50 that a proper tree structure cxists,
i.e. ND 2 is the son of NI 1 and ND 3 is the brother of NI 2.4 /\t’tcr tlus is done, a "t" command should be
used to check the consistency of the new tree structure, and an "a +r" command must be issued so that the
bitmap rcflects these newly allocated blocks.

4ln the ncar future, the task of creating a new (ile system will be automated,

V-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

CHECKING FFILE SYSTEM INTEGRITY 61

11.4. Checking file system integrity

Once the "s” command has been used to set the current file system to the once you want to check, test the
consistency of block allocation using the "a" command. Used with the +r option, it rebuilds the bitmap file
in the casc of issing blocks (i.c. blocks markcd as allocated in the bitmap but not actually allocated to any
file) or blocks allocated to a file, but marked as free in the bitmap. Blocks allocated more than once have to
be handled manually. In this case, use the "b" comrnand to determine to which NID’s they arc allocated. Use
the "n" and the "f" commands to determine the pathnames of those ND’s. Make copies of the conflicting
files and remove the old onecs, Note that the information in the {iles may be damaged.

Second, check the tree structure using the "t" command. If there are missing links, find out what they
should be using "n" and "1". If there are nodes completely disconnected from the file system, remove them or
else determine From their father pointers where they should be in the tree structure. The casicst way to
remove a disconnected node is to mark the corresponding NID as unallocated (sctting the name ﬂcld to the
null string) and then using "a +r" to recover the blocks that were allocated to that file, :

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDS

62

V-SYSTUM 5.0 REFERENCE MANUAL

STANDALONE COMMANDS

COMMANDS

STANDALONE COMMANDS : 63

— 12 —
Standalone Commands

This chapter discusses standalone programs, i.e., programs that do not run under the V kernel, that are
uscful with the V-System. .

‘

12.1. Vload

Vioad is the V-System bootstrap loader. The Vioad program loads the V kernel and initial team into
memory and starts up the kernel. .

There arc scveral versions of Vluad Currcmly, all versions usc the V 170 protocol and V IKC protocol to
load programs over the Fthernet.’ On the Sun-l, the Sun 3 Mbit Ethernet board and Excelan 10 Mbit
Ethernet boards arc supported as boot devices. On the Sun-1.5 and Sun-2, the 3Com 10 Mbit Ethernet board
is supported.

Vioad determincs the files to load and other actions to take at run time, depending on what was typed on
the command linc and what information is stored in the configuration databasc for the workstation being
booted (sce section WORKSTATIONCONFIG). For cach of its paramcters, Vioad gives first priority to
command-linc information, if any, sccond priority to the defaults for this workstation rccorded in the
configuration database, if any, and third priority to a default value determined at compile time.

Team and kernel filenames are interpreted in the V-System “[public]™ context, unlesy they begin with a
squarc bracket. In the latter casc, the name inside brackets is taken as a machine name, in the same name
space used by the Jogin command. If *#™ is given as the kernel file name, no kernel is loaded. Instead, the
file specified as first tcam is loaded into the kernel’s memory arca and exccuted as a standalone program.

" e

Besides file names, two other parameters arc also required: “world™ and “options,” The world may be
cither V (production) or xV (experimental). ‘T'he only option currently recognized is ‘b which causcs a break
to the PROM monitor before the kernel is started.

The following sections describe the defaults and special characteristics of the three versions of Vioad in use
at this writing,
12.1.1. 3 MbitEthernet

This version of Vlvad is intended for booting Cadline, SMI Sun-1, and other Sun-1 workstation
configurations with 3 Mbit Sun Ethernet boards. 'These workstations ordinarily usc a version of the Stanford
PROM monitor that incorporates PUP bootstrap code. The (st step in booting these workstations is o load
Vioad using the bootstrap PROMs. This can be done by typing a keyboard command (b £1lename for SMI
workstations, n £11ename for others), or automaticaily on powerup or reset (see below).

For these workstations, the kernel resides from 0x1000 to 0x 10000, and teams arc loaded at 0x L0000.
The compiled-in default vaiues for Vload's parameters in this version are as follows:

world VY tcam

sln the ncar future, Lthere will be a version of Vioad that can boot a fileserver machine directly from ils local disk.

Y-SYSTEM 5.0 REFERENCE MANUAL COMMANDS

64 STANDALONE COMMANDS

tcaml-vgts kernel
Vkemnel/sunl +cn options
null

The only command line information visible to Vload is the name it was invoked under. Therefore, Vload is
installed undcr several different names, and its action depends on its name, The names and actions are listed
below.

v When called under this name, Vload will load the tcam tearn/-vgts and the default kernel
for this workstation, using the dcfault options. The tcam and kernel arc loaded froma V
storage server (production versions) rather than an xV storage server (experimental
versions), that is, the wor/d parameter is sct to V.

vV The team is teami-sts, and the world is V.

xV The tcam is team/-vgts, and the world is x V.

xVV The team is tearn/-sts, and the world is xV.

Vload .The uscr is prompted for team, kernel, and opllons The default value is used for any ficld
wherc the user enters a blank line. "The world is V.

xVload Same as Vload, cxcept that the world is sct to xV.

null If the name is null, Vload assumecs it was autobooted. Default values arc used for all
parameters.

others ' If a copy of Vload is installed under any other name, it will use its name as the team name

to be loaded, set the options to null, and usc defaults for the kernel and world.

No special sctup is required to get an SM1 processor to autoboot— it will do-so automatically 30 scconds
after powenip or a k2 command. The PUP boot PROM requests boot file number 1 by number, which causcs
a file called 1.Boot to be loaded from the first responding PUP EFTP server, We have arranged for this file to
be a copy of Vload, so the boot action is as described under the null name above.

A non-SMI processor can be made to autoboot by installing the proper jumpers in its configuration register.
(Scc the Sun User’s Guide for a full description of the configuration register.) Bits 7-4 of the configuration
register arc an index into a table of bootfile names stored in the PROM. An in-place jumper or closed DIP
switch corresponds to a 0 bit; no jumper or an gpen switch corresponds to a 1, These bits should be set to the
number corresponding to the name “Vioad.” The “W ft™* command typcd to the PROM monitor causes it to
list the bootfilc namcs and corresponding numbers that it knows about. Vicad is usually number 5,
corresponding to jumpers on bits S and 7. Vivad's action will be as described under the nu/l name above,

12.1.2. Excelan Ethernet

This version of Vload is intended for booting Cadline, SMI Sun-1, and other Sun-1 workstation
configurations with Excelan 10 Mbit Fthernet boards. Ordinarily, this version of Yoad is used only with
workstations using a special version of the PROM monitor that incorporates THITP bootstrap code. ‘The first
step in booting these workstations is to load Viead using the bootstrap PROMs. This can be done by typing a
kcyboard command, not described here,

The compiled-in default values for Vioad's paramecters in this version arc as follows:

world V team
tecaml-vgts kernel
Vkernel/sunl +cx options
null

V-SYSTIM 5.0 REFERENCE MANUAL : COMMANDS

EXCELAN ETUERNET ' 65

The only command line information visible to Vload is the name it was invoked under. Therefore, Vioad is
installed under several different names, and its action depends on its name. The names and actions are listed
below., -

xinV When called under this name, Vload will load the team eam/-vgts and the default kernel
for this workstation, using the default options. The tcam and kernel are loaded from a V
storage server (production versions) rather than an xV storage server (cxperimental
versions), that is, the world parameter is sct to V.

xlnVV The team is team!-sts, and the world is V.

xlnxV " The team is teami-vgts, and the world is xV.

xlnxVV The teamn is team{-sts, and the world is x¥.

xInVioad The user is prompted for team, kernel, and options. The default value is used for any field
where the user enters a blank line. The world is V.

xlnxVload Same as Vload, except that the world is set to xV.

others If a copy of Vload is installed under any other name, it will use its name as the tcam name

to be loaded, set the options to null, and usc defaults for the kernel and world.

There is currently no way to autoboot a workstation with TFTP boot PROMs. This limitation will be
removed in the future.

12.1.3. 3Com Ethernet

This. version of Vload is intended for booting Sun-1.5s and Sun-2s with 3Com 10 Mbit Ethernet boards.
These workstations boot using cither a local disk or tape, or the SMI network disk protocol. The network disk
protocol does not allow specifying a file name, so the V-System ND boot server is only capable of loading one
file— Vload. Vload, however, can rcad the éntire command line typed by the user.

The compiled-in default. valucs for Viead's parameters in this version are as follows:

world V. team
team[-vgts kernel
Vkernel/sunl.5+¢c options
null

Zero or more arguments may be passed on the command line to Viead. If the first argument to Vioad is
one of the special valucs described below, it is stripped off and the special action listed is taken. After this
check, the first three remaining arguments arc respectively used to override the defaults for tcam name, kernel
name, and options. Valucs sct by thesc arguments have priority over values that may have been sct by the
first argument. . :

v ' Sets the world to ¥, and the tcam to eami- ygrs. (This tcam name will be overridden by
the next argument if present.)

\A The tcam is sct to feam-sts, xu{d the world is V.

xVY . The team is sct to teami-vgts, and the world is x_V.

xVV " The team is sct to team/-sts, and the world is xV. .

null . If no arguments are present, the default values are used for all parameters.

ymunix The SMI. boot PROMs have this name hardwired in for autobooting, so it is treated the

same as a null first argument.

V-SYSTEM 5.0 REIFERENCE MANUAL (;"OM MANDS

66 . STANDALONE COMMANDS

others If the first argument is not one of these values, the default world is used, and the arguments
present specify team name, kernel name, and options, as described above. '

12.2. Postmortem

Postmortem is intended to provide some help in diagnosing systcm dcadlocks, kernel aborts, and other
disastrous crrors. Any time the system scems to be hanging, you can break to the PROM monitor, and typc the
command

n postmortem

Substitute b for n on SMI workstations.

Postmortem examines the kernel data structurcs left behind after a crash, and prints out the state of each
process, if any exist, the pid of the currently active process, and the ready queue.

It is important no/ to usc the monitor k1 or k2 command or press thc workstation.reset button before
running postmortem. These actions cause memory to be cleared. The PROM monitor on a Cadlinc
workstation will not operate properly if the mouse is active, but fortunately, it is possible to turn off the mouse
without power cycling the workstation by unplugging the keyboard and plugging it back in. 'This should not
be necessary if you were able to press the comma key on the numeric keyboard while the kernel was still
running.

12.3. Ipwatch

The ipwatch family of programs provide a way of monitoring thc Ethernet to debug protocol
implementations or scarch for the cause of strange behavior. Ipwatch knows about most common types of
packets scen on the Stanford network, including most PUP protocols, Internct protocols such as 1P, TCP, and
ICMP, XNS protacols. and the V interkernel protocol. [t can print packet traces on the screen, or save them
in a file. Eawatch is a version for the Sun 3 Mbit Ethernet board, while ecwatch works on the 3Com 10 Mbit
bourd. [fxwaich works with the Excelan 10 Mbit board.

To run enwatch, resct the workstation completcly, and type the command

n enwatch .
for Cadlinc workstations, or

b enwatch

for SMI workstations. 'The program is menu driven, and most options arc sclf-cxplanatory.

Currently, all versions of ipwatch use the PUP Leaf protocol on the 3 Mbit Ethernet to write'packet traces to
files, and they run only on the Sun-1 with Stanford PROMSs.

12.4. Diskdiag

The diskdiag program is a diagnostic program that allows onc to manually access specific sectors on the
disk. [t is usciul for verifying the correct interaction between the disk controller and disk drives, as well as for
initializing a ncw disk. Diskdiag is configurcd to run on a system with a Xylogics 450 or Interphasc 2181 disk
controller and FFujitsu M2351 and M2284 disk drives.

To run diskdiag, typc the command
b ec() diskdiag #°

6Somc SM1 workstations with older PROM revisions require that nd() be used in place of ec().

V-SYSTEM 5.0 REFERENCE MANUAL ~ COMMANDS

DISKDIAG 67

for SMI workstations, or

n diskdiag ’
for Cadlinc workstations, There arc commands available to format(f), read(r), seek(s), and
write(w). The uscr is prompted, as neccessary, for more information on cach of these commands.

In addition, it is possible to Tabe1(1) a drive with the configuration parameters nceded by the disk driver
in the kernel. Exccuting the format command automatically labels the disk after the format is complete. The
verify(v) command rcads the label off of disk and prints it on the console.

The partition(p} command prompts the user for the start block and length of each partition on the
disk and creates a disk partition table. Existence of a disk partition table is optional as it is not nccded by any
system software. The examine(x) command allows onc to examine the contents of the disk partition table.

Rcinitializing the diskdiag program is accomplished using the again(a) command.

12.5. Offload and Offload38

The offlvad prograin uscs PUP EFTP to load standalone programs into a Sun-1 equipped with.a Sun 3 Mbit
Ethernet interface, at a user-specified memory location. ‘This program is useful on Sun-1 workstations
cquipped with standard Stanford PUP boot PROMs, because they arc only capable of loading programs that
reside at the default address of 0x1000.

To use offload, first reset the workstation, then give the command

n offload
to the Sun PROM monitor. (Substitute ‘b’ for ‘n’ on SMI workstations.) The program will prompt for

L. The name of the program to be loaded. The default directory is the miscserver’s standard default
dircctory, as described under Vioad.

2. The load-origin of the program, in hex. This should be the same value specified to cc68 or Id68 with the
-T option when the program was linked. Oftload will refuse to load a program that would overlap part
of the memory it uses: usc offload38 if this is a problem (sce below).

3. Where to put a copy of the program’s b.out header. "This is usually not nceded; enter ‘0" to omit it.

4. Whether to load the program’s symbol table into memory. This is generally not needed. Sce the Sun
User's Guide for a description of how program symbol tables appear in memory.

5. Whether to jump to the program’s entry point or return to the PROM monitor af‘tcr the program is
loaded. After returning to the monitor, the command

g 1000
will restart offload to load another file.

Offload itself resides at 0x1000 so that it can be loaded by the PROM monitor. Ifitis necessary to load a
program that would overlap olfload’s delault location, use olTload to load offfoad38 at 0x38000. This program
is identical to offload cxcept for its starting address. ‘T'he command

g 38000
will restart offload38 after a return to the monitor.

The following dialog can be used to load a nonstandard kernel that is too large for Vicad. User input is
undertined.

V-SYSTEM 5.0 REFERENCE MANUAL - COMMANDE

68 , STANDALONE COMMANDS

>n _offload .

Sun Offset Loader - Version 2.2 - 2 Feb 1983
Loader resides from 1000 to 60e8

Program to load: 9ffioad3s

Origin (hex): 38000 .

Place b.out header at (hex; 0 if not needed): Q
Load symbols? (y/n): n

Execute? (y/n): ¥

Sun Offset Loader - Version 2.2 - 2 Feb 1983
Loader resides from 38000 to 3e0e8

Program to load: Zusr/sun/Vboot/teaml-sts

Origin (hex): 10000

Place b.out header at (hex; 0 if not needed): ffel
Load symbols? (y/n): g .

Execute? (y/n): n

>g_38000

Sun Offset Loader - Version 2.2 - 2 Feb 1983
Loader resides from 38000 to 3e0e8

Program to lToad: your nonstandard kernel

Origin (hex): 1000 A

Place b.out header at (hex; 0 if not needed): ffco0
Load symbols? (y/n): n

Execute? (y/n): y

Using *“/usr/sun/Vboot/teaml-sts” as above loads the standard version of the plain cxec. You can
substitute tcam1-vgts or your own special first team.

V-SYSTEM 5.0 REFERENCE MANUAL . COMMANDS

PROGRAM ENVIRONMENT

Part ll:
Program Environment

Y-SYSTEM 5.0 REFERENCE MANUAL

69

PROGRAM ENVIRONMEN

70

V-SYSTEM 5.0 REFERENCE MANUAL

PROGRAM ENVIRONMENT OVERVIEW

PROGRAM UENVIRONMENT

PROGRAM ENVIRONMENT OVERVIEW 71

— 13 —
Program Environment Overview

This manual, the V-System Program Environment Manual describes the exccution eavironment provided
for C programs written to run in the V system (and in particular the V kernel), primarily for programs in the
C language. This program cnvironment is designed to minimize the difficulty of porting C programs (and C
programmecrs) from other C program environments, such as that provided by uNIx’, and to provide access to
the distributed process and message facilitics provided by the V kernel and V servers.

The program cnvironment consists of three major components:

o The base C language implemented by the compiler.
o Routings that arc part of the C program library in most C implcmentations.

e Functions that access V facilities.

The basic C language is not described here. The reader is referred to The C Programmming Language by B. W,
Kernighan and D. M. Ritchic, Prentice-Hall 1978 for a tutorial on the language and standard C library
routines.

Standard C library routincs are only described here to the degree they differ in the V program environment
from other implementations, particularly the Unix C library. The reader is referred to the above-cited book
or The Unix Programmer’s Manual for details on these standard functions.

The V-specific functions are described in detail in the following chapters.

While there has been a strong attempt to provide a supersct of the standard C program environment, there -
is no real definition of “the standard C program cnvironment.” While C as a programming language docs not
define 170 fucilitics, memory management, ctc., an ill-defined de facto standard has arisen from the extensive -
use of C with the Unix operating system. Attempts to port C programs have resulted ina slightly more
portable standard program cnvironment than originally used with Unix. However, there is not, to the
authors’ knowledge, a definition of what a portable C program can reasonably cxpeet of its program
environment. ‘The functions included in the 'V program environment for C, excluding V and SUN
workstation specific routines, constitute our proposal for such a standard portable C program cnvironment.

The differences between the V C program environment and the Unix C program environment fall i into four
major catcgorics

¢ Functions that are Unix system calls which may be provided as V library routincs, c.g., stime().

e Functions that arc slightly changed in thcir implementation, but provide (cssentially) the same
functi(malily, ¢.g.. malloc().

. Funcnons that arc SUN workstation-specific, because they are not necessary in standard Unix on, say, a
vax®, For examplc, the long division routines are in this catcgory, as arc the cmulator traps,

o Functions that arc particular to the V-System, like Create() and Ready().

7Ule is a trademark of Bell Laboratorics.

8VAx is a trademark of Digital Equipment Corpomtion:

V-SYSTEM 5.0 REFERENCE MANUAL - PROGRAM ENYVIRONMENT

[A PROGRAM ENVIRONMENT OVERVIEW

13.1. Groups of Functions

The description of functions is structured by subdividing them according to functional groups as follows.

emt C language interface to the on-board PROM monitor cmulator traps. Sce the Sun User's
Guide for more information.

exec V-System program execution functions,

fields Functions that enable a pad to be uscd as a menu, similar to a data entry terminal.

io Input/output related routines.

math Mathematical functions.

mem Memory management and allocation routines.

naming V-Systcm name management functions.

numeric Arithmetic and aumeric functions.

process 'V-System process service functions and V kernel traps.

strings Character string manipulation routines.

time Clock and time conversion'scrvices.»

vgts Virtual Graphics Terminal Service interface routines.

others Miscellancous other functions.

This functional subdivision is also reflected in the structure of the program source for the V C library, where
cvery subdivision corresponds to a subdirectory of the C library directory.

13.2. Header Files

The following header files define manifest constants, type definitions and structs used as part of the V C
program cnvironment. They are included as usual by a ** # include <hcadernamed™ directive in C programs.

Venviron.h Standard header file for V kernel types and request/reply codes.

Vethernct.h Ethernet-specific header information. This is very low-lcvel information; most uscrs will
want to usc the network server instead.

Vexceptions.h Exception types and cxception request format,

Vgts.h Virtual graphics terminal server interface. This should be included in any programs that
- do graphics.
Vio.h [7O Protocot header file. Types and mode constants for file manipulation functions
described in chapter of this manual.
VYinousc.h Mouse device-specific header information. Most programs will use the Vgts to handle
- graphics input. .

Vanet.h Network server definitions. This is included in any programs that use the network.
Vprocess.h " Processor state structure and other process-specific header information.

Vscrial.h Manifests for the scrial lines. Again, very low level for most users; use the higher level

library interface instead to be more portable.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM]{NVIRONMHN‘F

HEADER FILES 73

Vsession.h Manifests and message structs for session services. These arc remotce scrvers, often called
Unix or V scrvers, that provide transparent file access over a network.

Vtcams.h Team header file. Structurcs used to communicate with the tcam server and to pass
information to tcams when they are created.

Vtime.h Structures used in time scrvices, primarily for getting time from a session server.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

74

V-SYSTEM 5.0 REFTERENCE MANUAL

PROGRAM CONSTRUCTION AND EXECUTION

PROGRAM ENVIRONMENT

PROGRAM CONSTRUCTION AND EXECUTION . 75

— 14 —
Program Construction and Execution

A V-System C program is constructed and executed similar to a C program on Unix.

14.1. Writing the C Program

An application program on the V-System starts to exccute as a single proccss9. with priority 4. [t is allocated
an initial stack arca of about 4000 bytes, just above its uninitialized data scgment. [f this is not large enough,
one of the first actions of the tecam’s root process should be to use the Create() library function to create
processes with larger stacks.

Note that large dynamically allocated arcas of memory should be allocated using malloc, calloe, or a similar
mcmory allocator, and not be allocated on the process stack. Warning: ‘There is no run-time checking for
overflowing the process stack allocation. The program behavior from stack overflow can be sufficiently
bizarrce as to cause good programmers to scck refuge in monasterics. If the stack overflow caused the process
in question to get an exception, the standard exception handling routine will usually detect the overflow and
print a message: however, not all stack overflows causc an exception in the process that gencrated them, and
sometimes the stack is back in bounds by the time the exception occurs.

The file Venviron.h is a header file defining the types and constants that arise as part of the interface to the
kernel. It is included by the line

#include <Venviron.h>
Other V header files, listed in the previous section, are included similarly.

14.2. Compiling and Linking

When the application program is compiled and linked, references to kernel operations and other standard
routines must be resolved by scarching the library file libV.a (kept in Zusr/sun/lib on Stanford Unix
systems). ‘The application must be relocated so that its text scgment starts at 0x10000. These defaults are
automatically sclected with the -V option of the ¢c68 command. The compile command:

¢c68 -V -r programfile

produces a .t file for running with the kerncl. The program environment provided by the libV.a library is
given in the later sections of this manual.

14.3. Program Execution

There are two modcls for exccuting V C programs, namely: using the V executive and bare kernel mode.

9l~‘or a complete discussion of processes, message passing, and other scrvices provided by the V kerncl, see the kernel manual,

V-SYSTEM 5.0 REFERENCE MANUAL ' PROGRAM [N V.l RONMENT

76 ’ PROGRAM CONSTRUCTION AND EXECUTION

14.3.1. Execution With the Executive

Use of the V exccutive is described in the V-System commands manual. Basically, one types the name of
the file containing the program to the command interpreter followed by zero or more command arguments.
'The program is then loaded and executed.

When the V exccutive is used, the program cxecution begins at a procedure called main(), passed a count
of the number of arguments to the program and an array of pointers to the program string arguments, as
given on the command line. Each new tcam is passed standard input, output, and error files through the
TeamRoot message. :

The following example shows how a program can read its command line arguments. The variable arge
contains the number of arguments including the command name. The arguments are kept in argv({0]
through argv{argc-1]; thc command name is argv[0], argv[1] is the first argument,
argv[argc-1] is the last argument, and argv[argc] is NULL. This matches the Unix convention.

main(argc, argv) ’
int argc:
char *argv(];
/* Echo arguments */

int 1;

for(1 = 0; 1 < arge; ++1)
printf("%s ", argv({i]):
putchar("\n"):

The executive scts the new tcam’s team priority to 30.

14.3.2. Bare Kernel Mode
In bare kernel mode, cxecution also begins at main(), but no arguments are available.

None of the standard scrvers ordinarily included in the V cxccutive arc available, unless the program
includes one or more of them itself (as described in the V servers manual).

A program to be exceuted in bare kernel mode is loaded by a special loader program called Vioad:
n Vload

typed to the SUN monitor causes it to load and cxccute the loader. (Use b in place of n on SMI
workstations.) Vivad then prompts for the name of a file containing the program. ‘The use of this loader is
described more fully in the Standalone chapter of the V commands manual.

14.4. The Team Root Message

Each team is passed a tcam root mmessage at the time it is started. This is the message passed to the team by
the Raply () call that sets it running. The team root message is a structure of type RootMessage, as defined
in the standard header file <Ytcams.hd, A function called TeamRoot () (automatically included in every
program by the -V option of cc68) receives the team root message, stores a copy of the team root message in
an arca pointed to by the global variable RootMsg. initializcs the tcam’s standard i/0, and calls main(). If
main() rcurns, TeamRoot () calls exit(). ‘The tcam root message can be accessed from within a tcam
(not usually nccessary) by declaring it as

extern RootMessage *RootMsg;

"The tcam root message contains the following ficlds:

V-SYSTEM 5.0 REFERENCE MANUAL . PROGRAM ENVIRONMENT

THE TEAM ROOT MESSAGE ' 7

stdinserver Process id of the scrver providing this team’s standard input file.

stdoutserver Process id of the server providing this team'’s standard output ﬂl;.

stderrserver Process id of the server providing this team’s standard crror filc.

stdinfile Instance id of this team’s standard input file.

stdoutfile Instance id of this team’s standard output file,

stderrfile . Instance id of this tcam’s standard error file.

rootflags A set of flags indicating whether the team is to overwrite or append 1o its standard output

and standard error, whether standard input, output, or error have been redirceted, and
whether it is to releasc its standard input, output, or ¢rror instances upon exit.

namescrver Process id of the server providing the team's initial current context (i.c., current working
dircctory).

contextid The context id of the team's initial cyrrent context.

kernelpid Process id to which the team is to send to obtain sccondary kernel services (sce the V kernel

manual). Normally the same as the team crcator’s kernel pid, provided the new tcam is
running ‘on the same workstation as its creator,

14.5. The Per-Process Area

Each process has a region of tcam memory reserved for its own use, called its stack space. On the Sun, a
process’s stack grows downward from the highest address in this region. A portion of the stack space, called
the per-process area, is used to store a few process-global variables. On the Sun, this arca begins at the lowest
address of the stack region. A tecam-global variable called PerProcess points to this arca. It is reset by the
kernel to point to the correct arca on cvery process switch.,

The standard per-process arca is described by the PerProcessArca structure in the header file <Vio.hd, [t
contains the following values:)

stdio . An array of three File pointers describing the process's standard input, output, and crror
files. <Vio.h> defines the macros stdin, stdout. and stderr to be PerProcess->
stdio[0], PerProcess->stdio[1], and PerProcess->stdio[2] rcspectively.
Note that only pointers, not the File structures themsclves, arc kept in the per-process

arcas. , :

namescrver Process id of the scrver providing the process’s current context.
contextid Context id of the process's current context,

stackSize ‘The size of the process’s stack space, in bytes.

The TeamRoot () function initializes the tcam root process’s per-process arca from the valucs passed in the
team root message. The Create() library function, used to crcate new processes, initializes cach new
process’s per-process area to be a copy of that of its creator (except for the stackSize ficld). This causes each
child proccss to inherit its creator’s standard 170 and current context.

V-SYSTEM 5.0 REFERENCE MANUAL ' PROGRAM ENVIRONMENT

78

V-SYSTEM 5.0 REFERLNCE MANUAL

THE V-SYSTEM CONFIGURATION DATABASE

PROGRAM UNVIRONMENT

THE V-SYSTEM CONFIGURATION DATABASE 79

— 15 —
‘The V-System Configuration Database

15.1. lnt‘roductiron

When a diskless workstation boots up, it has a limited amount of information about its own configuration
and identity. A boot program can probe to see what devices are attached, and some workstations may have
configuration registers, additional switches, or a small amount of nonvolatile memory, {fa workstation has an
Ethernet board, there will be a PROM or DIP switch on the board containing its Fthernet address. There
may also be some machine-specific information in PROMs on the processor board. If the workstation is
booted by typing a command, rather than automatically on power-up, the user may be asked to type in some
information.

From this information, the workstation Softwarc necds to deducc scveral things, including at lcast:
1. What version of the kernel to load (68000, 68010).
2. Which Ethernet board to use for interkerncl communication, if there is more than one.
3. What to run as the initial tcam.
4, Whether to run the VGTS, the STS, or some other program as the terminal server.

5. What commands to exccute before turning control over to the user, if any. (For example, we may wish
to run a print server on this workstation, or automatically bring up an intcrnet scrver in the
background.)

6. What Intcrnet address to usc for this workstation.,
7. What the name of this workstation is (e.g., SUN-MJ402).
8. What type of terminal is conneeted to the workstation, if the ST'S is to be used,

In general, there is no reliable algorithm for determining most of these things. In fact, many arce the result
of cssentially arbitrary human decisions — for example, the workstation name.

15.2. Configu ration Database

As a solution to this problem, the V-System maintains a configuration database, containing information
about cach workstation. The information is organized as sets of keyword/valuc pairs, one per workstation.

There is one standard library function provided (or extracting information from the configuration database:

SystemCode QueryWorkstationConfig(keyword, value, maxlength)

char *keyword, *value;

int maxlength;
Given a character string representing the keyword, this routing returns the corresponding value as another
character string. 'The variable keyword points W the keyword, value points to the place to put the value,
and maxlength is the sizc of the bufler, which should include space for a terminating null byte. The routine
returns a system crror code if there is no configuration information recorded for the querying workstation

V-SYSTEM 5.0 REFERENCE MANUAL - PROGRAM ENVIRONMENT

80 : ' THE V-SYSTEM CONFIGURATION DATABASE

(NOT_FOUND), there is some configuration information, but no value corresponding to the given keyword
(BAD_ARGS). or the buffer was too short to hold the value (BAD_BUFFER), clse returning OK. I[n the
buffer-too-short case, it will return as much as therc is room for. n unusual situations, other error codes may
be generated; these can be treated as failures or considered equivalent to NOT_FOUND.

15.3. Implementation

Ordinarily, programs should not be aware of the implementation of the configuration database; this
implementation may chaage in the future. The QueryWorkstationConfig() function should be the only
interface used. Since there is no standard library function provided to modify the configuration database,
however, system maintainers neced to be aware of its impicmentation. The current implementation allows the
configuration database to be modificd with an ordinary text editor, and the changces installed with the same
tools that are uscd for installing new binary program imagges on storage servers,

The V configuration databasc is currently implemented as a sct of configuration files, one for each
workstation. Each configuration file must be available on every publically-available V storage server.!
requests from nonlocal clients.)

The name of cach workstation’s configuration file is derived from its hardware Ethernct address—a
convenient unique identifier.'! The files arc kept in a subcontext named “config”, under the scrver’s public
context. (Sce section 30.) For a workstation with Ethernet address 0260.8¢01.9954 (a typical 3Com-assigned
address), thc configuration file could then ‘be recad by a workstation as a file named
“[public]config/C.02608c019954"; this is in fact how QueryWorkstationConfig() is implemented.

A configuration file is an ASCI! text files, consisting of a set of keyword/value pairs, arranged in no
particular order. Each keyword appears at the beginning of a ncw line, and is separated from its
corresponding value by a colon (*:"). A linc beginning with a colon serves as a continuation of the value on
the previous line. ‘This format has been designed to be casy to rcad and easy to parse. (Note that spaces both
before and after the colon may be considered significant by programs, so take care when creating or editing
config files.)

At Stanford, the master copics of configuration files are kept in the directory /xV/config on Pescadero, and
only those copics should be cdited. The command “make install” (run as user ds) is used to install changes.

Currently Defined Keywords

The following kéywords arc in usc at this writing. A list ol keyword names and their meanings is presently
kept in the same directory as the config files themsclves, in a file called “keywords.”

name The name of this workstation. Should match the name uscd in local IP name tables for this
workstation's IP address. ‘There is no default,

ip-address The workstation's Internct Protocol address, given in the conventional [a.b.c.d| notation,
* where a, b, ¢, and d arc decimal integers. On the 3 Mbit Ethernet, the default valuc of d is
the 8-bit Lthernet host address, while default values of a, b, and ¢ are determined by the

Internet server. FFor 10 Mbit Suns, this keyword should always be present.

ip-gatcways Name of a file containing a list of Internct gateways to be used by this workstation. The
file name is given rclative to the standard [public] context. [f this keyword is omitted, the
Internet server will not forward datagrams through any gatcways, i.c., only local traffic will

1oi’ublic::uly-av:\i'lablc storage servers are defined as those that respond to GetPid(STORAGE - SERVER, ANY-PID

1]('_’un't:m.ly, on Sun-2 workstations with JCom Cthernct intcrfaces, the address assigned 1o the Fthernet board is used, not the address
assigned Lo the processor.

V-SYSTEM 5.0 REFIERENCE MANUAL ‘ PROGRAM lZNVlRONMF.NT

IMPLEMENTATION . a1

be supported.

kernel . Filename of the program to be loaded as the kerncl, for use by Vload. The name is given
relative to the standard [public] context. If this keyword is omitted, Vload uses a compiled-
in default, currently Vkernel/sunl +en for the 3 Mbit Ethernct version, chrm.l/aunz +ec

for the 10 Mblt.
. team | ~ . Filename of the first team, as above. If it is omitted, Vload uses a compiled-in default,
: currently tcaml-vgts.
world - Either Vor xV. Used by Vload. Ifomitted, Vload uses a compiled-in default, currently V.
boot-options Boot options for use by Vload. Currently thc; only option is b, meaning “break before

starting kernel.” The default is a null string.

startup-script Filecname of the startup script. Currently used only by teaml-server, for workstations that
autoboot as servers. No default. In the futurc, the definition of this keyword will be
: changcd to allow the startup script to be placed du‘cctly in the config file, and all (or most)

versions of the first team will use it,

alt-ether-addr Alternate cthernet addresses for this workstation, one per linc. These arc addresses the
workstation may usc, other than the one the config file is named for. 10 Mbit addresscs
should be given in hexadecimal, in the form xxxx.yyyy.zzzz. 3 Mbit addresses may be
-given in octal. Thic defauit is null. This keyword must be present for use by the Vax Unix
ND server for workstations that boot using the ND protocol under a different Ethernct
address than the one the config file is named for. This is true of SMI Sun-2's with PROM
revision N or later.

ndboot . The Vax Unix ND boot server looks for a configuration file when deciding whether it
: should answer boot requests, and will refusc to respoad if there is nonc or it contains the
line “ndboot:no™. (This procedure allows our NI server to coexist ‘with SMIL Network
Disk servers on the same nct.) Thus, the default value for this option is “yes” if a config

cxists for this workstation, otherwise “no.”

terminal-type’ Type of terminal used as a console. Used by the STS. The default is to assume the
: Stanford PROM terminal emulator for Cadlings, or something ANSI-compatible (like the
SMI PROM terminal cmulator) otherwise. The only other recognized value for this option

is “ni9”.

Usage

In general, we have implemented programs that usc this service in such a way that if a configuration filc or
specific keyword/value pair is missing, some reasonable default is used where this is possible. Also, where it
is casy to rcliably detcerminé something by examining the hardware present, it is best to do that instead of
putting the information in the configuration file. Following these principles means that fewer updates to the
configuration filcs are nceded to keep workstations running correctly when something changes.

In some cases, the value of a keyword may be the name of a file, perhaps because it is more convenient for
the client to read the information from a file, or because the information associated with the keyword is quite
bulky. In the present implementation, such files arc kept in the “[publicjconiig/™ directory along with the
configuration files themsclves. Files whose names begin with S.” are startup. command scripts for
workstations that boot automatxcally Files whosc namcs begin with “G.” are gatcway information files used
by the internet server. .

ate e

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

82

V-SYSTEM 5.0 REFERENCE MANUAL

INPUT AND OUTPUT

PROGRAM ENVIRONMENT

INPUT AND QUTPUT : ' 83

—_—16 —
Input and Output

The input and output routines can be divided into three categorics:

1. Basic 170 routines like getchar() that arc supported but differ in thcu' implementation from the
standard Unix versions.

2. 170 support routines like printf () that are identical with the standard Unix version.

3. V-specific 170 routines like Read() and Write() that are used in scveral cases to unplcment the
standard C routines in the V message-based world.

16.1. Standard C1/0 Routines

The following standard C 1/0 routines are available:

chdir() clearerr() fclose() faof ()
farror() fflush() fgetc() fgets()
fopen() fprintf() fputc() fputs()
fread() freopen() fscanf() fseak()
ftelli() - fwrite() getc() getchar()
gets() getw() printf() putc()
putchar() puts() - putw() rewind()
scanf() sprintf() " setbuf() sscanf()
ungetc() 4 :

However, fapen() returns a pointer value of type *File, where File is defined in <Vio.h> and is a totally
different record structure trom that used by, for instance, the Unix standard [70. Also, setbuf () is a no-op
under V,

16.2.V1/0 Conventions

Program input and output arc provided on files, which may include disk files, pipes, mail-boxes, terminals,
program memory, printers, and other devices.

To opcratc'on a file, it is first “opened™ using Open() if the file is specified by a pathname, otherwise by
OpenFilé() il the file is specilicd by a server and instance identifier. The modc is onc of the following:

FREAD No write operations arc allowed. File remains unchanged.

FCREATE Any data previously associated with the described file is to be ignored and a new file is to
be created. Both read and write operations may be allowed, depending on the file type
described below.

FAPPEND Data previously associated with the described file is to remain unchanged. Write
. operations are required only to append data to the existing data.

FMODIFY Fxisting data is to be modificd and possibly appended to. Both read and write operations
arc allowed.

V-SYSTEM 5.0 REFERENCE MANUAL . PROGRAM UN\./lRONMIZN'I

84 ' INPUT AND OUTPUT

Both open functions return a pointer to an open file descriptor that is used to specify the file for subsequent
operations. Close() removes access to the file, Seek() provides random access to the byte positions in the
file. Note: the value rcturned from a bytc position that has not been written is not defined.

Each program is executed with standard input, output and crror output files, referred to as stdin,
stdout, and stderr respectively.

The file type indicates the operations that may be performed on the open file as well as the scmantics of
these operations. The file type is specificd as some combination of the following attributes.

READABLE The file can be read.
WRITEABLE The file can be written.

APPEND_ONLY
Only bytes after the last byte of the data previously associated with the file can be written.

STREAM All reading or writing is strictly sequential. No seeking is allowed. A file instance without
the STREAM attribute must store its associated data for non-sequential access.

FIXED_LLENGTH
The file instance is fixed in length. Otherwise the file instance grows to accommodate the
data written, or the length of the file instance is not known as in the casc of terminal input.

VARIABLE_BLOCK . ‘
Blocks shorter than the full block size may be returned in response to read operations other
than duc to end-of-file or other exception conditions. For cxample, input frames from a
communication linc may differ in length under normal conditions.

With a file instance that is VARIABLE_BLOCK, WRITEABLE, and not STREAM,
blocks that arc written with less than a full block size number of bytes return exactly the
amount written when read subscequently.

MULTIL_BLOCK Read and write operations arc allowed that specify a numbcer of bytes larger than the block
size. ’ '

INTERACTIVE ‘The open file is a text-oriented stream. It also has the connotation of supplying
interactively (human) gencerated input.

Not all of the possible combinations of attributcs yicld a useful file type.

Files may also be used in a block-oriented mode by specifying FBILLOCK_MODRE as part of the mode when
opening the file. No byte-oriented operations arc allowed on a filc opencd in block mode.

Sce the V-System Servers Manual for more details on the semantics of the various possible file types and
modes. ' : . A

16.3.V1/0 Routines

16.3.1. Opening Files

File *Open(pathname, mode, error)
char *pathname; unsigned short mode; SystemCode *error;

Open the file specified by pathname with the specificd mode and return a file pointer for use with
subsequent file opcrations.

V-SYSTEM 5.0 REFERENCE MANUAL ‘ PROGRAM F,NVIRON.MI".NT

OPENING FILES : 8s

mode must be one of FREAD, FCREATE, FAPPEND, or FMODIFY, with FBLOCK_MODE if block
mode is required. If Open() fails to open the file, it returns NULL and the location pointed to by error
contains a standard system reply code indicating the reason. If an crror occurs and error is NULL, Open()
calls abort().

File *OpenfFile(server, instanceidentifier, mode, error)
ProcessId server; Instanceld instanceidentifier;
unsigned short mode; SystemCode *error;

Ogen the file instance specified by the server and instanceidentifier arguments and rcturn a file
pointer to be used with subsequent file operations.

mode must be on¢ of FREAD, FCREATE, FAPPEND, or FMODIFY, with FBLOCK_MODE if block
mode is required. If the instance is to be relcased when Close() is called on this file pointer,
FRELEASE_ON_CIL.OSE must also be specified as part of the mode. If OpenFile() fails to open the file,
it returns NULL and thc location polntcd to by error contains a standard system rcply code indicating the
reason. If an crror occurs and error is NULL, OpenFile() calls abort().

File *_Open(req, mode, sarver, error)
CreateInstanceRequest *req; unsigned short mode;
Processld server; SystemCode *srror;

Open a file by sending the specified 170 protocol request message req to the server specified by server and
return a file pointer to be used with subsequent file operations. ‘This function is only used when additional
server-dependent information must be passed in the requcst message, or the file is to be opcened on a scrver
that cannot be spccxhcd by a character string pathname as in Opan().

The request req may be cither a CreatclnstanceRequest or a QueryInstanceRequest. mode must be one of
FREAD, FCREATE, FAPPEND, or FMODIFY, with FBLOCK_MODE if block mode is required. If

_Open() fails to open the file, it returns NUILL and the location pomtcd to by error contains a standard
system reply code indicating thc rcason. [fan error occurs and error is NULL, _Open() calls abort ().

SystemCode Creatolnstance(pathname mode, req)
char *pathname; unsigned short mode; Craatelnstanceaaquest *raq;

Opcen the file specificd by pathname in the given mode using the specified CreatelnstanceRequest, but do
not sct up a File structure for it. A CreatelnstanceReply is returned at the location pointed to by req. ‘The
function returns a standard system reply code, which will be OK if the operation was successful.

16.3.2. Closing Files

Close(file)
File *file;

Remove acccss to the specificd file, and free the storage allocatcd for the File structurc and associated buffers,
If the file is WRITEABLE and not in FBLOCK_MODE, the output buffer is flushed.

SpecialClose(f1l1e, releasemods) :
File *file; unsigned releasemode; : -

Closc the spccificd file, as in Close(). If SpecialClose() relcases the file instance assocmtcd with thc,

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

86 INPUT AND OUTPUT

specified File structure, the relcase mode will be sct to releasemode. Close() scts the relcase mode to
zero. Sce the 170 protocol scction of the V servers manual for a explanation of releasc modes.

ReleaseInstance(fileserver, fileid, releasamode)
ProcessId fileserver; Instanceld fileid; unsigned releasemods;

Close the file instance specificd by f1leserver and file1d, using the specified relcase mode. This
function is uscd only when there is no File structure for the given file.

16.3.3. Byte Mbde Operations

The standard Unix functions mentioned above may be usced on files opened in byte mode (i.c., not opened
in FBLOCK_MODE). Several other functions arc also available on such files, as described below.

int Seek(file, offset, origin)
File *file; 1int offset, origin;

Set the current byte position of the specified open file to that specified by offsat and origin and rcturn
TRUE (nonzcro) if successful.

Iforiginis ABS_BI.K or ABS_BY'TE, the byte position is set to the of fset-th block or byte in the file
starting from 0. If ordigin is REI._BYTE, offset spccifics a signcd offset relative to the current byte
position. If origin is FILE_END, of fset is the signed byte offsct from the end of file,

If the file is FIXED_LENGTH, an attempt to seek beyond the end of file causes Seek to return FALSE
and the byte position to remain unchanged. The end of file position is one beyond the last byte written. The
value of bytes in the file previous to the end of file that have not been explicitly written is undefined.

Seek() may not be used on files opened in block mode. SeekBlock () should be used on such files.
Seek() is identical-to fsaek (). :

unsigned BytePosition(file)
File *file;

Return the current byte position in the specified file. The valuc returned is correct only if the current byte
position is less than MAX_UNSIGNEID. "This function is identical to ££811().

Flush(file)
File *file;

Flush any buffered data associated with the file, providing it is WRITEABLE. Flushing a file causcs local
buffered changes to the file data to be communicated to the real file. If the file is in block mode or not
WRITEABLLE, no action is performed. ‘This function is identical to ££Tush().

Resynch(file)
File *file;

Resynchronize the next block to read and write in the file with the server. Any buffered bytes arc lost. This

operation is only valid for strcams, and is only nceded when there is more than one File structure associated .
with a single file instance. This will happen, for cxample, if two teams arc sharing the same standard output.

Normally it should not be nceded for files uscd in a single tcam. '

V-SYSTIM 5.0 REFERENCE MANUAL . PROGRAM ENVIRONMENT

BYTE MODL OPERATIONS 87

SystemCode Eof(file)
File *file;

Any of the byte mode read or writc operations may rcturn EOF (Exception On File) as a special value
indicating an inability to read or write further in the file. Eof returns a standard system reply code indicating
the nature of the exception. This may be a true end-of-file, i.c., the current byte position exceeds the last byte
position of the file, or some type of error.

ClearEof(file)
File *file;

Clear the exception on the specified file. This only clcars the local record of the exception; it d()Cb not affect
the circumstances that causcd the exception to occur. See Eof ().

int BufferEmpty(file)
File *file;

Test whether or not a file's local buffer is empty. If this function returns llel* (nonzero), the next gete()
will cause an actual rcad. If it returns FALSE (zcro), the next gete() will return immediately with a byte
from the buffer.

16.3.4. Block Mode Operations

The following functions are most uscful on files opened in block mode. Unless otherwise noted, they may
also be uscd on files opencd in byte mode.

unsigned Read(file, buffer, bytas)
File *file; char *buffer; unsigned bytes;

Read the specified number of bytes from the file starting at the beginning of the current block location of the
file and store contiguously into the byte array starting at buf fer, returning the actual number of bytes read.

If the number of bytes read is less than the number of bytes requested, the reason is indicated by the
standard reply code returncd by FileExcaption(). The number of bytes requested may not be more than
the block size of the file (returned by BlockS1ze()) unless the file has the type attribute MULTT_BI.OCK.
Read(’) is intended for usc on files opened in block mode only. Note: Read() docs ner increment the
current block number stored in the File structure {or the given file.

unsigned Write(file, buffer, bytes)
File *file; char *buffer; unsigned bytes;

Write the specificd number of contiguous bytes from the buffer to the file starting at the beginning of the
current block location of the file, and return the actual number of bytes written,

The number of bytes to be written must be less than or cqual to the block size (as returned by
BlockSize()) unless the file has the type attribute MULTI_BLOCK. If the number of bytes written is less
than the number of bytes rcquested, the reason is indicated by the standard reply code returncd by
FileException().

Write() should be uscd only on files opened in block mode. Note: WMta() docs not increment the
current block number stored in the File structure for the given file.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

88 INPUT AND OUTPUT

unsigned B1ksInF11e(f11e)
File *file;

Return the number of blocks in the specified file. Mcaningful if the file is FIXED_LENGTH or is a
WRITEABLE. non-VARIABLE_BLOCK, STREAM file.

unsigned BlockPosition(file)
File *file;

Return the current block position in the specified file,

SeokBlock(file, offset, origin)
File *file; int offset; 1int origin;

Set the current block position of the specified open file to that spccxﬁcd by or‘lg‘! n and offset. The new
block position is the block offset from the specified block origin. origin is onc of FILE_BEGINNING,
FILE_END or FILE_CURRENT_POS.

unsigned BlockSize(file)
File *file;

Return the block size in bytes of the specified file,

unsigned FileException(file)
File *file;

Return the standard reply code indicating the last exception incurred on the spccificd file. This is used
primarily on files opened in FBLOCK_MODE. Eof () is used on bytc-oricnted files,

16.3.5. Server-Specific Operations

‘T'his scetion describes routines in.the 170 library which are specific to particular servers.

SystemCode CreatePipeInstance(readOwner, writeOwner, buffers, reply)
ProcessId readOwner, writeOwner; int buffers;
CreatelnstanceReply *reply;

Interuct with the pipe server to create a pipe, with the specified owners for the reading and writing ends of the
pipe, and the specified number of buffers, buffers should be between 2 and 10 inclusive. The reply to the
create instance request is returned at the location pointed to by reply: it contains the file instance id of the
writcable end of the pipe. The id of the readablce end is equal to this value plus 1. QpenFil1e() may be used
to set up IFile structurcs for cither or both ends of the pipe. CreatePipeInstancsa() returns a standard
system reply code, which will be OK if the operation was successful,

File *OpenTcp(localPort, foreignPort, foreignHost, active,
precedence, security, error)
unsigned short localPort, foreignPort; unsigned long foreignHost;
int active, precedence, security; SystemCode *error;

Interact with the Internet server to create a TCP network instance, and return a pointer-to a File structure
opened in byte modc that can be used to send data on the corresponding T'CP connection,

V-SYSTEM 5.0 REFERENCLE MANUAL . PROGRAM ENVIRONMENT

SERVER-SPLECIFIC OPERATIONS ‘ 89

To obtain a second File structure that can be used to read from the conncction, use the call

f2 = OpenFile(FileServer(fl), Fileld(fl) + 1,
FREAD + FRELEASE_ON_CLOSE, &error)

where 1 is the value returned by OpenTcp(). Note that it is neccssary to releasc both the readable and
writcable instances to cause the conncction to be deallocated. Releasing the writcable instance closes the
caller’s end of the connection. Data can still be rcad from the readable instance until it is relcased, or other
end closcs (resulting in an END_OF_FILE indication).

The parameters 1ocalPort, foreignPort, and foreignHost specify the sockets on which the TCP
connection is to' be opened. active specifies whether the conncction should be active (i.c., send a
connection “syn™ packet), or passive (i.e., listen for an incoming “syn” packet). precedence and
security specify the precedence and security valucs to be used for the connection. Specifying zero for
these parameters will cause appropriate default values to be used.

If the open is unsuccessful, OpenTcp() retums NULL, and a standard systcm reply code indicating the
rcason for failure is returned in the location pointed to by error; else OK is returned in this location.

File *Openlp(protocol, error)
char protocol; SystemCode *error;

Interact with the [nternect server to create an IP network instance, and return a pointer to a File structure
opencd in block mode that'can be used to writc [P packets to the network.

To obtain a second File structure that can be uscd to read IP packets, use the call .

f2 = OpenFile(FileServer(fl), Fileld(fl) + 1,
FREAD + FBLOCK_MODE + FRELEASE_ON_CLOSE, &error)

where f1 is the value returned by OpenIp(). Note that it is nccessary to release both the readable and
writcable instances cven if only one of them is used.

The protocol spccifics which value of the protocol ficld in the 1P packet headers is of interest. The
readablc instance will only return packets with the requested protocol value, and the client program should
only write packets with the specified protocot ficld to the writcable instance, though this is not currently
checked by the server. If protocol is zcro, it specifics “promiscuous™ mode, in which all 1P packets are
returned which arc not of protocol types that have been requested by another client, and packets of any
protocol type may be written,

If the open is unsuccessful, OpenIp() rcturns NULL, and a standard system reply code indicating the
reason for failure is returned in the location pointed to by error; else OK is returned in this location.

File 'OpehPup(socket, arror)
unsigned long socket; SystemCode *error;

Intcract with the Internet server to create a PUP network instance, and return a pointer to a File structure
openced in block mode that can be used o write PUPs to the network.

To obtain a sccond [File structure that can be uscd to read PUPs, use the call

f2 = QpenFile(FileServer(fl), Fileld(f1l) + 1,
FREAD + FBLOCK_MODE + FRELEASE_ON_CLOSE, &error)

where 1 is the value rcturned by OpenPup (). Notc that it is nccessary to relcase both the recadable and
writcable instances cven if only one of them is used.

The socket paramcter sbcciﬁcs which value of the socket ficld in the PUP headers is of interest. The

V-SYSTEM 5.0 REFERENCE MANUAL ' PROGRAM EN V'IRONMI'IN'I‘

% . INPUT AND OUTPUT

rcadable instance will only return packets sent to the requested socket, and the client program should only
write packets with the specified source socket to the writcable instance. though this is not currently checked
by the server. If socket is zero, it specifies “promiscuous”™ mode. in which all PUPs are returned which are
not to sockets that have been requested by another client, and packets with any source socket number may be
written.

If the open is unsuccessful, OpenPup () returns NULL, and a standard system reply code indicating the
reason for failure is returned in the location pointed to by arror; clse OK is returned in this location.

16.3.6. Misceilaneous |/0 Functions

Instanceld Fileld(fTi1e)
File *file;

Return the file instance identifier associated with the open file. This was cither gcneratcd as part of Open()
or specified as an argument to the QpenFi 19() opcration that opened the file,

ProcessId FileServar(file)
File *file;

Return the file server identifier associated with the open file. This was either gencrated as part of Open() or
specificd as an argument to the OpenF 116 () operation that opened the file.

unsigned F1feType(f110)
File *file;

Return the file type, which indicatcs the operations that may be performed on the open file as well as the
semantics of these operations.

unsigned Interactive(f11e)
File *file;

Return IRUF {nonzero) if the file has the type attribute INTERACTIVE, else I'ALSE (/cro)

File *OpenStr(str, size, error)
unsigned char *str; unsigned size; SystemCode *error;

Make the specified string look like a file. The file is FIXED_LENGT'H, with onc block of sizc 81z, and the
end of file sct to the cnd of this block. str must point to an arca at lcast s1ze bytes in length. A file opencd
by OpenStr() is identified as such by its file server (as returned by Fi11eSarver()) being cqual to Q.

SystemCode RemoveFile(pathname)
char *pathname;

Remove (delete) the file specificd by pathname.

SystamCode SetBreakProcess(file, breakprocess)
File *file; Processld breakprocess;

Sets the break process associated with the specified file (which must be INTERACTIVE) to breakprocess.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

MISCELLANEOUS [/0 FUNCTIONS 9l

If a break occurs on the file after a break process has been sct, the [O_BREAK reply will be returncd to any
outstanding read requests, and the specificd break process will be destroyed.

SystemCode SetInstanceOwner(fileserver, fileid, owner)
ProcessId fileserver, owner; Instanceld fileid;

Set the owner of the specified file instance to be owner.

PrintFile(name, file)
char *name; File *file;

Print the value of cach field in the given File structure on the standard output, identifying the filc by the
name name. Useful in debugging servers and [/0 routines.

SystamCode ChangeDirectory(name)
char *name;

Changc the current context for the calling process to be the context specificd by name. and return a standard
system reply code indicating OK if successful, clse the reason for failure. name is interpreted in the
(previous) current context. This function is identical to chdir (), except that the latter returns 0 to indicate
success or -1 to indicate failure,

V-SYSTEM 5.0 REFERENCE MANUAL - PROGRAM ENVIRONMENT

7]

V-SYSTEM 5.0 REFERENCE MANUAL

NUMERIC AND MATHEMATICAL FUNCTIONS

PROGRAM ENVIRO NM ENT

NUMERIC AND MATHEMATICAL FUNCTIONS o 93

— 17 —
Numeric and Mathematicai Functions

17.1. Numeric Functions

Most of the functions in the numeric scction of the library are not called directly in user prdgrzxms; they are
accessed by the C compiler as needed. The following functions are uscful in user programs:

unsigned abs(value)
int value

Integer absolute value.

int rand()

Random number gencrator. Generates pscudo-random numbers in the range from 0 to 23.1, Thisisa very
poor gencrator, identical to the onc provided in Berkeley Unix 4.1,

srand(seed) "
unsigned seed;

Reseed the rand() random number generator.

17.2. Mathematical Functions

The maLh-rclatcd functions in the V library are listed below. They arc similar to tlu, ‘section 3M™ functions
of the Unix library. Sce the Unix manual for documentation,

sin() cos() tan{) asin()
acos() atan() atan2() sinh()
cosh() tanh() jo() i1()
in() yo() y1() yn()
hypot() cabs() gamma() fabs()
foot() cail() axp() Tog()
Togl0() pow() sqrt() .

V-SYSTTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

94 MEMORY MANAGEMENT

V-SYSTEM 5.0 REFERENCE MANUAL . PROGRAM ENVIRONMENT

MEMORY MANAGEMENT 95

— 1418 —
Memory Management

Blocks within a managed pool of memory can be dynamically allocated and freed within the address space
of a team using the functions described below. Note that there is one pool of free storage for all processes in
the tcam. Programmers must be carcful to synchronize the processes allocating and freeing this storage.
These routines provide essentially the same functionality as the standard C library. The memory allocation
routines ar¢ provided on a per-team basis.

char *malloc(size)
unsigned size;

Returns a pointer to a memory block that is size bytcs long. NULL is rctumcd if there is not cnough
memory available, .

free(ptr)
char *ptr;

The memory pointed to is returned to the free storage pool. ptr must pomt to a block allocatcd by onge of the
routines listed. hcre., ‘ S .

char *realloc(ptr, size)
char *ptr; uns1gned s1ze,

Changes the sizc of the block pointed to by ptr to be size bytcs Returns a possibly moved pointer.

char *calloc(elements, sizs)
unsigned elements, size; =,

Equivalent tomalioc(elements*size), cxceptthé arca is cleared to zero. Provided for allocating arrays.
cfrea(ptr, elemants, size)
char *ptr; unsigned elements, size;

Frees stor'ugc allocated by calloc(). Actually, this function is identical to free(ptr). which may be user
lnumm 8lements und size arc ignored.

i

1 REER

unsigned Copy(destination, source, count)
char *destination, *source; unsigned count;

A block tmnsfer funcnon Ttansfers count bytes from source to destination. Returns count.

unsigned blt(destination, source, count)
char *destination, *source; unsigned count;

V-SYSTEM 5.0 REFERENCE MANUAL ' PROGRAM [’.NV.lRONM[EN

%) MEMORY MANAGEMENT

[dentical to Copy().

char *Zero(ptr, n)
char *ptr; unsigned n;

Zero memory. Writcs n bytes of zeros starting at ptr, and returns ptr.

clear(ptr, n)
char *ptr; unsigned n; .

Clear memory. Writes n bytes of zcros starting at ptr.

swab(pfrom, pto, n)
char *pfrom, *pto; unsigned n;

Swap the bytes in n 16-bit words starting at the location pf rom into a block starting at Lhc location pto.

The following functions arc of interest only to those managing memory (using the kernel primitives) in
addition to that provided by the above routines. The current implementation of malloc() prevents these
routines from adding space below the current top of the pool.

GiveToMalloc(start,length)
char ®*start; 1int length;

Add the Tength bytes of memory at start to the pool used by the allocators described above, returning thc.
number of bytes dCf.Ua“y installed after alignment and error-checking is done.

char * GetMoreMallocSpace(min,actual)
int min, *actual;

Malloc() calls this function to acquire more space for its pool; a default version is supplicd. which is
replaced if the programmer supplies a routine of this name. GetMoreMallocSpacea() should return a
pointer to at lcast min bytes of space and sct *actual to the number of bytes made avanlublu NULL may be
returned if no more space is to be added to the pool.

In the default version, free memory is determined and extended based on the memory map and memory
usage of the tcam (using the V kerncl operations GetTeamSize () and SetTeamSize()).

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

PROCESSES AND INTERPROCESS COMMUNICATION 97

— 19 —
Processes and Interprocess Communication

- The process-related functions in the V C library provide services and/or interfaces between processes and
the V kernel. They have no direct analog in the standard Unix C library.

19.1. Kernel Operations

These functions provide a convenicnt interface to kernel-provided services. Some of the functions cxccute
kernel trap instructions, whilc others send messages to a pscudo-proccss inside the kernel..

A kernel aperation cxecutes as a single indivisible function call as far as the C progmmmcr is concerned.
Each kernel operation takes zero or more arguments and returns a single value,

In the descriptions below, the active process or invoking process always refers to the process that exccuted
the kernel operation.

Some operations such as SetTcamPriority and SetTime are intended to be used only by “operating system™
or management processes and should not be uscd by application programs.

int AwaitingRepiy(frompid, awaitingpid)
ProcessId frompid, waitingpid;

Return true (nonzcro) if awaitingpid is awaiting reply from frompid; othcrw:sc return false. Nate: if
awaitingpid is send blocked on frompid, but frompid has not yct received the message, this function
will return false,

Processld Creator(pid)
ProcasslId pid;

Return the process id of the process that created pid. [f pid is zero, return the creator of the invoking
process. If p1d does not exist or is the root process of the initial tcam, return 0.

ProcessId CreateProcess(priority, initialpc, initialsp)
short priority; char *initialpc, *initialsp;

Create a new process with the specified priority, initial program counter and initial stack pointer and return its
unique process identifier,

The priority must be between 0 and 127 inclusive, with 0 the highest priority. init{ialpc is the address of
the first instruction of the process to be exccuted outside of the kernel. Generally, initialsp specitics the
initialization of the stack and general registers and is processor-specific. In the casc of the Motorola 68000,
initialsp is asimple long word valuc that is assigned to the user stack pointer.

The process is created awaiting reply from the invoking process and in the same tcam space. The scginent
access is set up to provide read and write access to the entire tcam space of the newly created process. The
creator must reply to the-newly created process before it can execute. | there are no resources to create the
proccss or the priority is illegal, a pid of 0 is returned.

V-SYSTEM 5.0 REFERENCE MANUAL - PROGRAM ENVIRONMENT

98 ' PROCESSES AND INTERPROCESS COMMUNICATION

Usually programmers will prefer the Create () call described later in this chapter.

ProcassId CroateTeam(priority, initialpc, initialsp)
short priority; char ®*initialpe, *initialsp;

Creatc a new tcam with initial or root process having the specified priority, initial program counter, and initial
stack pointer.

CreateTeam() is similar to CreateProcess() except the new process is created on a new tcam. The
new team initially has a null team space. It is intended that the creator of the teamn will initialize the team
address space and root process state using SetTeamSize(), MoveTo(), and WriteProcessStata().

CreateTeam returns Q if there are no resources to create the team or the root process, or the priority is

illegal.

Delay(seconds, clicks)
unsigned seconds, clicks;

Suspend the exccution of the invoking process for the specified number of seconds and chcks (where a cllck is
a machine-specific unit, usually one clock interrupt).

Delay() returns 0 after the time period has passed, or the number of clicks remaining in the dclay time if
the process has been unblocked by Wakeup (). A clock interrupt on the SUN workstation is 10 milliscconds.

SystemCode DestroyProcess(pid)
Procassld pid;

Destroy the specificd process and all processes that it created. When a process is destroyed, it stops cxccunnﬁ
its pid becomes invalid, and all processcs blocked on it become unblocked (eventually).

DaestroyProcess() returns OK if pid lt‘ successful, else a reply code indicating the reason for failure.
DestroyProcass(0) is suicide.

Usually programmecrs will prefer the Destroy() call described later in this chapter.

ProcessId Forward(msg, frompid, topid)
Message msg:; Processld frompid, topid;

Forward the message pointed to by msg to the process specificd by top4d as though it had been sent by the
process frompid.

The process specified by fromp1d must be awaiting reply from the invoking process. The effect of this
operation is the-same as if fromp1d had scnt dircctly to topid. except that the invoking process is noted as
the forwarder of the message. Notc that Forward() docs not block.

Forward() rcturns topid if it was successful, 0 if unsuccessful. If topid is invalid, frompid is
unblocked with an indication that its Send() failed.

ProcessId Forwarder(pid)
ProcessId pid;

lszcss‘s blocked on a nonexistent processes arc detected and unblocked by the clock interrupt routine checking periodically.

V-SYSTEM 5.0 REIERENCE MANUAL ' PROGRAM liNVlRONMF.NT

KERNEL OPERATIONS 99

Return the process id that forwarded the last message reccived from pid, providing pid is still awaiting reply
from the invoking process. 1f the message was not forwarded, p1d is returned. If p1d does not cxist or is not
awaiting reply from the invoking process, 0 is returned.

Processld GetPid(logicalid, scope)
int logicalid, scope;

Retumn the pid of the process registered using SetP1d() with the specified 1ogicalid and scope, or 0 if
not set.

The scope is one of?: ’
LOCAL_PID Return a locally regisicred process only.

REMOTE_PID Recturn a remotely registered process only.

ANY_PID . Return a local or remote process pid.

If Togicalid is ACTIVE_PROCESS, the pid of the invoking process is returned. If a scope of remote is
specified, the kernel broadcasts a request for a process identifier registered as this logical id to other
workstations running the V kernel on the nctwork. If the scope is any, the kerncl first looks for a locally
registered process: if one is not found, it then looks for a remote process. In this way, a kernel can discover
the process identificrs of the standard server processes from other kernels, or at lcast from the kernel that is
running the server process of interest.

Processld GetTeamRoot(pid)
ProcessId pid;

Return the process identifier of the root process of the team coataining p1d, or zcro 1f pidis not a valid
process identifier. A p1ld of zero specifics the invoking process.

char *GetTeamSize(pid)
ProcesslId pid;

Return the first unused location in the tcam space associated with pid, as sct bySetTeamSiza(). Ifpidis
zero, the size of the invoking proccss’s team is returned. If pid doces not cxist, 0 is returned.

unsigned GetTime(clicksptr)
unsigned ®*clicksptr;

Return the current time in seconds. The standard is to represent time as scconds since January 1, 1970 GMT.
If cTicksptr is not NULL, the number of clock interrupts since the last second is stored at that location.

SystemCode MoveFrom(srcpid, dest, src, count).
Processid srcpid; char *dest, *src; unsigned count;

Copy count bytes from the memory scgment starting at src in the team space of srcpid to the scgment
starting at de st in the invoking process’s space, and return the standard system reply code OK.

The seepid process must be awaiting reply from the invoking process and must have provided read access
to the scgment of memory in its space using the message format conventions described for Send().
MoveF rom() rcturns a standard system reply code indicating the reason for failure if any of thése conditions
arc violated.

V-SYSTEM 5.0 REFERENCE MANUAL ‘ PROGRAM ENVIRONMENT

100 'PROCESSES AND INTERPROCESS COMMUNICATION

SystemCode MoveTo(destpid, dest, src, count)
ProcessId destpid; char *dest, *src; unsigned count;

Copy count bytes from the segment starting at src in the invoking process’s tcam space to the scgment
starting at dest in the team space of the destp1d process, and return the standard system reply code OK.

The destpid process must be awaiting reply from the invoking process and must have provided write
access to the segment of memory in its space using the message format conventions described under Send().
MovaeTo() rcturns astandard system reply code indicating the reason for failure if any of these conditions are
violated.

QueryKernel(pid, groupSelact, reply)
ProcessId pid; int groupSelect; Message reply;

Query the kerncl on the host where process pid is resident. A pid of zero specifies the invoking process’s
kernel. |

The groupSelect ficld specifies what information is to be returned in the reply message. The available
group sclection codes are MACHINE—CONFIG, to return information about the processor configuration,
PERIPHERAL = CONFKIG, to return a list of peripherals available on the machine, KERNEL - CONFIG, to
return the kernel’s configuration parammeters, MEMORY —STA'TS, to return memory usage statistics, and
KERNLEL=STA'TS, to return other kernel statistics. These codes, and the corresponding structures that may
be returned, are defined in the standard header file <Vquerykernel.hd,

ProcessId QueryProcessState(pid, pb)
ProcessId pid; ProcessBliock *pb;

Copy the state of the process into the structure pointed to by pb. The various ficlds in the structurc are
defined in <Vprocess.h>. Their meanings should be self-explanatory.

The message buffer is only available if pid is the invoking process or is awaiting reply from the invoking
process. 1f not, the appropriate ficlds in the structure are zcroed.

If pid is zero, the process state of the invoking process is returned. 1f pid does not cxist. 0 is returned:
otherwise, pid is returned.

ProcessId ReadProcessState(pid, state)
ProcessId pid; Processor_state *state;

Copy the machine-specific processor state into the structure pointed to by state. The information returned
is a subsct of that returncd by QueryProcessState().

[Fpid is zcro, the processor state of the invoking process is returned. [f p1d does not exist, 0 is returned:
otherwise, pid is returned.

ProcessId Receive(msg)
Message msg;

Suspend the invoking process until a message is available from a scnding process, rcturning the pid of this
proccss, and placing the message in the array pointed to by msg.

ProcessId ReceiveWithSegment(msg, segbuf, segsize)
Message msg; char *segbuf; unsigned *segsize;

V-SYSTEM 5.0 REFERENCTE MANUAL PROGRAM UENVIRONMIENT

KERNEIL OPERATIONS 101

Suspend the invoking process until a message is available from a sending process, returning the pid of this
process, and placing the message in the array pointed to by ms g and at most the first *segs 12e bytes of the
segment included with the message in the buffer starting at segbuf. The actual number of bytes in the
portion of the scgment received is returned in *segsize.

ProcessId RecsiveSpecific(msg, pid)
Message msg; . ProcessId pid;

Suspend the invoking process until a message is available from the specified process, returning the pid of this
process, and placing the message in the array pointed to by msg.

If pid is not a valid process identifier, ReceiveSpecific returns 0.

ProcessId Reply(msg, pid)
Message msg; Processld pid;

Send the specified reply message to the process specified by pid and return pid.

The specified process must be awaiting reply from the invoking process. Zcro is returned if the process
does not ¢cxist or is not awaiting reply.

ReplyWithSegment(msg, pid, src, dest, bytes) .
Message msg; ProcesslId pid; char *src, *dest; unsigned bytes;

Send the specified reply message and segment to the process specified by pid and return pid.

The Spcciﬁéd process must be awaiting reply from the invoking process. Zero is returned if the process
does not cxist or is not awaiting reply. ‘The segment size is currently limited to 1024 bytes. A
ReplyWithSegment() with a nonzero segment size may only be used to reply to an idempotent request
(scc Send()).

RereadMsg(msg, pid)
Message msg; Processld pid;

Reread into msg the message received from the process specified by pid, providing it is still .nwmung reply
from the invoking process.

RereadMsg() copics the contents of the message buffer last received from pid into the array msg,
providing the process specified by pid still exists and has not been replied to. £ pid is zcro, it is taken to
mean the invoking process and rereads the last reply message. This operation also allows a newly created
process to read the initial reply message from its creator. .

int SameTeam(pidil, pid2)
ProcessId pidi, pid2;

Return true (nonzero) if the processes spcuf ed both exist and are on-the same tcam otherwisc return falsc,
If either pid is zero, the invoking process is assumed.

ProcessId Send(msg, pid)
Message msg; Processld pid;

Send the message in msg to the specified process, blocking the invoking process until the message is both

Caee

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

102 PROCESSES AND INTERPROCESS COMMUNICATION

reccived and replied to. The array specificd by msg is assumed to be 8 long words. ‘The reply message
overwrites the original message In the array.

If Send () completes successfully, it returns the pid of the process that replied to the message. The pid
returned will differ from that specified in the call if the message is forwarded by the receiver to another
process that in turn replics to it. If the send fails (for instance, because the intended receiver does not exist),
Send() rcturns the pid of the process the message was last forwarded to (the pid it was sent to, if it was never
forwarded). ‘The kernel indicates the reason for the failure by overwriting the first 16 bits of the message with
a standard system reply code. (This places it in the replycode field for reply messages that follow the standard
system format.) :

All messages must follow the kernel message format conventions as follows. The first 16 bits of the message
are considered to be a requcst code or reply code. The highest order 6 bits are assigned special meanings.

Bit0 is 0 if a request message is being sent, or 1 if a reply message.

Bitl is 1 if the request code or reply code is considered a standard system code. Applications
can usc special request codes and reply codes internal to their programs but use standard
ones for interfacing to other programs and the system. The remaining 4 bits are
interpreted with the following special meanings only if the message is a request.

Bit2 is 1 if the request is considered to be idempotent. This is just a hint to discriminate
between requests that do not nced duplicate suppression and thosc that do.

Bit3 is 1 if the request specifics a segment. If 1, the kernel interprets the last 2 words of the
message as specifying a pointer to the start of the segment and the size in bytes of the
scgment, respectively. The kernel then makes the scgment available to the receiving
process using MoveTo and MovelFrom. Access to the secgment is controlled by the
following two bits, which only have meaning if bit 3 is 1.

Bit4 . is 1 if rcad access is provided to the segment.

Bits - ©is L if write access is provided to the scgment.

It is intended and assumed that most requests can be assigned a request code that is stored in the first 16 bits
of the request message, so that the bits arc st correctly for the request by the value of the request code.

SetPid(logicalid, pid, scope) '
int logicalid, scope; ProcessId pid;

Associate pid with the specified logical id within the specifed scope. Subscquent calls 10 GetP1id() with
this Togicalid and scope return this pid. This provides an cfficient, low-level naming service.

The scope is one of:
LOCAL_PID Register the process in the local scope only.
REMOTLE_PID Rcgister the process in the remote scope only.
ANY_PID Register the process in both the local and remote scopes.

The local scope is intended for servers serving orily the local workstation. The remote scope is for network-
accessed server processes scrving several workstations (but not the local workstation). ‘The any scope permits
both local and remote access.

SetTeamPriority(pid, priority)
ProcessId pid; short priority;-

V-SYSTIM 5.0 REFERENCE MANUAL : PROGRAM ENVIRONMUNT

KI:RNEL OPERATIONS ' 103

Set the team priority of the team associated with pid to the specified priority and return the previous team
priority.

Each process effectively ruas with the absolute scheduling priority of its tcam’s priority plus the priority
specificd when the process was created. SetToamPriority() changes the absolute scheduling priority of
cach process on the tcam by modifying the tcam priority. "This operation is intended for implementing
macro-level scheduling and may eventually be restricted in use to the first tcam. ‘

If pid is zcro, the invoking process’s team priority is set.

char *SetTeamSize(pid, addr)
ProcessId pid; char *addr; .

Sets the first unused address for the team containing pid to addr. The new tcam size may be cither greater
or smaller than the previous size. The new tcam size is returned; this will normally be equal to addr. [fthere
was not enough memory available to grant the request; the return value will be less than addr: if addr was
below the starting address for tcam spaces on the host machine, the team space will be set to null and its
starting address will be returned. Thus SetTeamSize(pid, 0) is a machinc-independent way of sctling a
team space Lo null.

A pid of 0 specifics the invoking process. Only. thie creator of the tcam or members of the tcam may change
the team size and (consequently) the specilied process must be local.

SetTime(seconds, clicks)
unsigned seconds, clicks;

Sct the kernel-maintained time to that specified by seconds and ¢114cks.

The standard time representation used is the number of scconds sinee January 1, 1970 GMT, plus the
number of clock interrupts since the last second.

ProcessId Wakeup(pid)
ProcessId pid; .

Unblock the specificd process if it is delaying using Delay () and rcturn pid. If the process does not exist or
is not delaying, return 0.

int ValidPid(pid)
ProcessId pid;

Return true (nonzero) if pid is a valid process identifier; otherwisc return false.

ProcessId WriteProcessState(pid, state)
ProcessId pid; Processor_state *state;

Copy the spcciﬁcd process state record into the kernel state of the process specified by pid and return pid.

The specified process must be the invoking process, or awaiting reply from the invoking process.
WriteProcessState() rcturns 0 if the process docs not exist, is not awaiting reply or there is a problem
with the state record. The kernel checks that the new state cannot compromisce the integrity or sccurity of the
kerncl.

A pid of 0 spccifics the invoking process. A process that writcs its own processor state affects only the

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

104 PROCESSES AND INTERPROCESS COMMUNICATION

machinc-independent per-process arca information kept as part of the state record (sec section 14.5),

19.2. Other Functions

ProcessId Creats(priority, function, stacksize)
short priority; .char *function; unsigned stacksize

Create a new process executing the specified function with the specified priority and stack size. The new
process i3 blocked, waiting for a reply from the creator. The function Ready () should be used to start the
process running. The new process is on the same tcam as its creator, and inherits the creator’s standard input,
output, and error filcs, and the creator's current context (current working dircctory).

Create fctums the pid of the new process, or zero if a process could not be created. This function is
usuaily preferable to calling the kernel operation CreateProcess() directly.

Processld Ready(pid, nargs, ai, ..., an)
ProcessId pid; wunsigned nargs; Unspec al, ..., an;

Sct up the stack of the specified process and reply to it, thus placing it on the ready queue. The valucs al,
.c.s an-appear as arguments to the root function of the new process, while nargs is the number of
arguments passed. 7Zero is returned if there is a problem, clsc pid is returned.

Destroy(pid)
Processld pid;

Destroy the specified process. If the destroyed process was on the same tcam as the invoking process, the
memory allocated to its stack by Create () is freed. Warning: Do not invoke Destroy() on a process that
was not created by Create(); usc DestroyProcess() in that casc.

Suicide()

Destroy the invoking process and free its stack. Suiedide() is identical to Destroy(0), and the same
warning applics.

axit()

Terminate the exccution of the team (i.c., program), after closing all open files. Using the V executive, control
is returned to the command interpreter. In bare kernel mode, control is returned to the PROM monitor.

abort()
Abort exceution of the team by causing an exception in the calling process.

V-SYSTEM 5.0 REFERENCE MANUAL . PROGRAM UNVIRONMUENT

NAMING 10s

— 20 —
Naming

The naming scction of the library includes a number of functions that provide a convenient interface to
V-System naming protocol messages. Functions for ¢reating and terminating storage scrver sessions arc also
included.

SystemCode AddContextName(name, serverpid, contextid)
char *name; Processld serverpid; ContextlId contextid;

Add name as a local name for the context specified by (serverpid, contextid), and return OK, or a
standard system reply code if an crror occurred. This function creates and sends an
ADD_CONTEXT_NAME rcquest message to the context prefix server. '

SystemCode AddLogicalName(name, logicalpid)
char *name; Processld logicalpid;

Add name as a local name for the default context specified by Togicalpid, and return OK, or a standard
system reply code if an crror occurred. “This function creates and sends an ADD_CONTEXT_NAME request
message to the context prefix scrver.

SystemCode AliasContextName(newname, oldname)
char *newname, 'oldn_ame:

Definc newname as a local name for the context specified by oldname. oldnams is interpreted in the
current context. Returns OK'if the namc was defined successfully, or a standard system code indicating the
reason for failure.

SystemCode CreateSession(host, user, password, sessionname, owner)
char *host, *user, *password, *sessionname;
ProcessId owner;

Create. a session on the storage server (usually a Unix server) specified by host, using the given user name
and password, and definc sessionname as a local name for the user’s home directory on this session. If
owner is nonzcro, the scssion owner is sct to be the specified process; otherwise, the invoking process
becomes the session owner. A session is auwtomatically terminated when its owner no longer cxists.

The given session name is considercd the primary name for the session {(the SESSION bit is set in its
descriptor), and its definition should not be removed until the session is terminated.

CreateSession() returns OK if successful, clsc a standard system code indicating the reason for failure.

SystemCode DeleteContextName(name)
char *name;

Remove the definition of the context name nama, but do not delete the context. it refers to. Return OK if

V-SYSTEM 5.0 REFERENCE MANUAL, - PROGRAM ENVIRONMENT

106 ' NAMING

successful, elsc a system reply code indicating the rcason for failure.

The name is interpreted dircctly by the context prefix server, not in the current context, since the function is
ordinarily used only to remove names from the context prefix server's directory.

ProcessId DirectToCurrentContext(request)
NameRequest *request;

Direct a request to the current context, or to the context prefix server if the name begins with a square bracket
(‘[The function returns the pid to which the request should be sent, and puts the proper context id into the
NamecRequest message. This routine is provided to avoid duplicating the code that implements the square
bracket convention in a large number of tunctions. request may be of any request type that fits the
standard NamcRequest template given in <Vnaming.ho. ’

SystemCode GetContextld(name, serverpid, contextid)
char *name; ProcessId *serverpid; ContextId *contextid;

Interpret the given name in the current context, and return a corresponding (serverpid, contextid) pair in the
locations pointed to by serverpid and contextid. The function returns OK if successful, or a standard
system error code if an error is detected, such as the given name specifying an object that is not.a context.

SystemCode GetContextName(name, namelen, serverpid, contextid, namesarver)
char name[]; unsigned *namelen;
Processld *serverpid; Contextld *contextid;
ProcessId nameserver;

Perform an inverse mapping from the specificd (serverpid, contextid) pair to a character string context name.
The request is sent to the server specificd by nameserver. 'I'hc array name must be *name 1an characters
in length: *name len is muodificd to contain the actual length of the name upon rcturn. *serverpid and
scontextid arc modified upon rcturn to indicatc the context in which the namc is valid.
GetContaxtName() rcturns OK if the mapping was successful, or a standard system crror code if a failure
occurred,

SystemCode GetFileName(name, namelen, serverpid, contextid, instanceid)
char name[]: unsigned *namelen;
Processld *serverpid; ContextId *contextid;
Instanceld instanceid;

Perform an inverse mapping from the specified (serverpid, instanceid) pair to a character string file name.
The array name must be *name 1en characters in length; *namelen is modificd to contain the actual length
of the name upon return. *serverpid and *contextid arc modified upon return to indicate the context
in which the name is valid, GetContextName() fcturns OK if the mapping was successful, or a standard
system crror code if a failure occurred.

SystemCode TerminateSession(sessionname)
char *sessionname;

Terminate the session specificd by sessionname and invalidate the name. Return OK on success, clse a
standard system code indicating the rcason for failure. The session namc is interpreted by the local context
prefix scrver. The function checks that the SESSION bit is sct in the name’s descriptor; if it is not,
NONEXISTENT_SESSION is returncd.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

PROGRAM EXECUTION FUNCTIONS 107

— 921 —
Program Execution Functions

This chapter describes a number of functions relating to program cxccution. Most of these functions are
used internally in the V exccutive; some of them may also be useful in uscr-level programs that nced to start
up other programs as part of their operation., All the functions in this chapter arc subject to change.

21.f.Progran1Execuﬁon

ProcessId LoadProg(argv, concurrent, teamServer, rtMsg, drtMsg, error)
char *argv[]: int concurrent; Processld teamServer;
RootMessage *rtMsg, *drtMsg; SystemCode *error;

LoadProg() intcracts with the tcam server to create a new team and load a program image into the new
tcam space. It includes path scarching cud«. which currcntly always looks for the program along the default
path of

1. The current context
2. The context “[bin]”
3. The context “[public]”

If all these f"ul LoadProg() loads the fexecute program, which, when started, will attcmpt to exccute the
program on the storage server that is providing the current context.

The array argv contains pointers to the character string arguments to be passed to the new tcam. By
convention, argv[0] should point to the name of the program. "The last element of the array must be a null
pointer. ‘I'he concurrant argument specifics whether the team is to be “owned™ by Lthe process cxecuting
the LoadProg() call (if concurrent is zcro) or by the tcam server itself (if it is nonzera), The team server
destroys any tcam whose owner ceases to cexist: thus, programs to be run “in the background™ should be
flagged as concurrent. ‘e teamServer argument specifics which team server is to create the team. ‘This is
uscful for running programs remotely. If teamServer is zcro, the program is run locally.

The rtMsg argument holds the root message to be passed to the new team. This message specifies file
instances t0 be used for stundard input, output, and crror, the initial current context, and some other
information. ‘The ficlds in the message arc described in section 14.4. The drtMsg argument is the root
message to be uscd to start up the postmortem debugger if a process tcam on the new tcam incurs an
exception. ‘The debugger root message should specify a real keyboard and display as standard input and
output, cven if the standard i/0 for the progmm being loaded is redirected. These root messages are stored by
the team server.

The function returns the process id of the new team’s root process, or 0 in case of an error. A standard
systemn code is rewrned in the location pointed to by error.. The new tcam can be started running by
replying to the pid returncd, using the same root message as was passed to LoadProg.

Processld ExecProg(argv, concurrent, teamServer, rtMsg, drtMsg. error)
char *argv[]: 1int concurrent; ProcessId teamServer;
RootMessage *rtMsg, *drtMsg; SystemCode ®*error;

V-SYSTEM 5.0 RIFERENCE MANUAL PROGRAM ENVIRONMENT

108 PROGRAM EXECUTION FUNCTIONS

ExecProg() intcracts with the team scrver to create a new tcam and load a program image into the new
tcam spacc, as in LoadProg(). It then starts the new tcam running by replying to it. The arguinents to
ExecProg() are exactly the same as thosc to LoadProg().

ProcessIld RunProgram(argv, concurrent, teamServer, error)
char *argv[]: 1dint concurrent; Processld teamServer;
RootMassage *rtMsg, *drtMsg; SystemCode *srror;

RunProgram() performs the same function as ExecProg() except that it uses the standard 1/0 bindings
to initialize the rtMsg and drtMsg paramcters that arc passed in to ExecProg().

ProcessId LoadNewTeam(teamServer, name, concurrent, argv,
rtMsg, drtMsg, error)
ProcessId teamServer; char *name; 1int concurrent; char *argv(];
RootMessage *rtMsg, *drtMsg; SystemCode ®*error;

LoadNewTeam() is an internal routine called by LoadProg(). It docs no path scarching; the name of the
file Lo load the program image from is given by the name argument. ‘Uhe other six arguments are as described
above, under LoadProg(). though they appear in a different order.

LoadNewTsam() calls ValidProgram() to check whether the specified file appears to contain a valid
program imnage, interacts with the tcam server to create the new team, and sets up the arguments on the new
tcam’s stack. :

ProcessId LoadTeam(filename, priority, stacksize, error)
char *filename; short priority;
int stacksize; SystemCode *error;

Create a new team with the specificd root process priority, and load the program contained in the specified
file into it. “T'he number of bytes specificd by stacks 1ze is allocated at the end of the icam space as a stack
arca for the team root process unless stacksize is -1, in which casc the default 4000 bytes are ailocated. 1f
the operation is successful, the pid of the new tcam’s root process is returned; otherwise 0 is returned. 1f
arror is not NULL, a standard system reply code is returned in the location to which it points.

This function does not request the tcam server to create and load the team; it creates the team and performs
the team load itsclf. It is normally preferable to usc one of the other functions described above, all of which
make usc of the tcam scrver.

SystemCode RemoteExecute(processFile, programname, argv, mode)
File *processFile{2]; char *programname;
char *argv(]: unsigned short mode;

Cause the specified program to be cxceuted on the server machine providing the invoking process's current
context by opening a file in FEXECUTT mode. This function is used by the fexecute program.

. The argv paramectcer is an array of null-terminated strings which are to passed as arguments to the program,
The array itself is terminated by a nuil pointer. mode should be FREAI or FCREA'TE, A File structurc
describing a stream from which the program’s standard output can be read is returned in processFila[0].
If the mode is FCREATE, a File structurc describing a writcable strcam that is fed into the program’s
standard input is returned in processFile{1]. RemotsExecute() rcturns OK if successiul, cls¢ a-
standard system code describing the error condition.

Closing the writcable file pulsscs an end-of-file indication on to the remote program: Closing the readable

V-SYSTIM 5.0 REFERENCTE MANUAL . PROGRAM ENVIRONMENT

PROGRAM EXECUTION ‘ 109
file terminatcs the program,

21.2. Other Functions

File *ValidProgram(filename, error)
char *filename; SystemCode *error;

This tunction opens the file specified by f4lename and checks whether it has a valid “magic number,”
marking it as an exccutable V program image. Ifit is a valid program, ValidProgram() rcturns a pointer
to a File structure describing the open file; if not, it closcs the file again and returns NULL. A standard system
code is returncd in the location pointed to by error. The crror code END_OF_FILE indicates that the file
was too short to be a valid program, while BAD_STATE indicates that the magic number was invalid.

SetUpArguments(pid, argv)
ProcessId pid; char *argv[];

SetUpArguments () is the function called by LoadProg() to set up the arguments on a newly created
team’s stack. Users will not normally need to call it dircctly, The array argv has the format described under
LoadProg(). above. "The process id pid specifics the root process of the tcam whose arguments arc to be
sct up.

ParselLine(start, argv, maxArgs)
char *start; char *argv[]:; 1int maxArgs;

ParselLine() parses a command linc into scparate words, null terminating cach one, and filling in an array
of pointers to cach word. Spaces and tabs are recognized as word separators. "This routine is used by the V
cxecutive to construct an argv array to pass to LoadProg().

The start argument points to the command ling, which should be a null-terminated character string. The
string is modificd by inscrting null characters after cach word. The array of pointers created is returned in
argv. which should be defined in the calling program to be of sive maxArgs. Parsebine() terminates the
array with a null pointer. If there are too many words in tie command line to fit in the array, only the
leflmost maxArgs = 1 words are returncd. :

V-8YSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

110 CONTROL OF EXECUTIVES

V-SYSTIM 5.0 REFERENCE MANUAL " PROGRAM TINVIRONMENT

CONTROL OF EXECUTIVES 111

— 292
Control of Executives

Instances of the V exccutive, or command interpreter, are normally created and controlled directly by the
user interacting with the sytstem. However, this control is also available to programs through the following
functions:

int CreateExec(execsarver, inserver, infile, outserver, outfile,

errsaerver, orrfile, nameserver,context, flags, execpid,
error)

ProcessId execserver;

ProcessId inserver, outserver, arrserver;

Instanceld infile, outfile, errfile;

ProcessId nameserver;

Contextld context;

short flags;

ProcessId *aexecpid;

SystemCode *error;

Creaté an instance of the exccutive with the specified standard input, standard output, standard crror output,
and contcxt. Fach of the three standard i/0 files is specificd by two. parameters, the server pid and the
instance identifier within that server. This means that all these instances must be opened before Create Fxee
is called. Context is specified by two parameters, a name server pid and a context identificr within that
nameserver, The GetContextld function will map a context name into such a pair. Execserver is the pid of -
the excc server to which the request is being made. ‘The Flags paramecter determines which if any of the
standard /0 instances are to be owned by the newly created exccutive: it may be any combination of
RELEASE~= INPUT . RELEASE— QUTPUT, and RELEASE—=ERR. If for cxample RELFEASE—INPUT is
specified, the exccutive will own its standard input instance and will relcasc it on termination.

Createkixec returns an cxee indentifier, a small integer which will be used o refer to this exceutive in other
exccutive control requests. In the location pointed to by execpid it returns the process id ot the new executive.,
In the location pointed to by error it returns a system crror codes if this code is not OK, the excc identifier and
excepid are meaningless.

WARNING: a server process cannot call Createlxec with a file instance pointing to that server itself, or the
server and the exceserver will become deadlocked waiting for cach other. A server that nceds to do this
should create a subprocess to cail Createlixec. : '

SystemCOde DeleteExac(execserver. axecid)
ProcessId execserver;
int execid;

Declete the cxecutive specified by execid, along with the program running under it if any. It nced not have
been created by this process: there is no concept of ownership of execs. Note that this is not the only way
cxccutives vanish; they also terminate on end of file on the standard input. I)dctclwcc will return
NOT - FOUND if execid is invalid.

V-SYSTTM 5.0 REFURENCE MANUAL - PROGRAM ENVIRONMENT

112 ' CONTROL. OF EXECUTIVES

System......

Inquire about the state of the specificd cxec. [f successful, it returns a code of OK, and the following
information: inexecpid the process id of the exec; in program, the process id of the program running under it,
if any; in status, the status of the exec. Status can be one of

EXEC—-FREE Excc is waiting for a command.

EXEC-LOADING
excc is in the process of loading a program.

EXEC—-RUNNING - :
A program is running under this excc. In this case and this case only, program rcturns
relevant information.

EXEC- HOLD Excc has been created but not yet started. Hopefully this statc should never be obscrved,
as it is taken care of within CreateF.xec.

SystemCode KillProgram(execserver, axecid)
ProcessId execserver;
int execid;

Kill the program, if any, running under the. specified exce. Returns OK is successful, NOT—FOUND if

'''''

SystemCode CheckExecs(exacsarver)
ProcessId exacserver;

Causcs the exceserver to do a check on all executives. Any of them whose standard input server or standard
output scrver (but NO'T standard crror server) has died is destroyed during the check. This should be called
after an action that might have destroyed an i/0 server which was providing standard i/0 for one or more
cxccutives.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

SERVICE REGISTRATION AND SELECTION FUNCTIONS 113

— 923 —
Service Registration and Selection Functions

This chapter describes a number of functions which deal with the globally visible service server; which
provides registration and selection facilitics for globally visible services. A description of the service server
and the details of how to interact with it are provided in its servers manual chapter. "This chapter assumcs that
the reader is familiar with the servers manual chapter and bases the form of its cxplanations on that
assumption. All the functions in this chapter arc subject to change.

23.1. Registration Facilities

Instanceld RegisterServer(nameType, namelndex, typelndex,
ownerPid, desc, desclen, error)
int nameType;
int namelndex;
int typelndex;
ProcessId ownerPid;
char *desc;
int descleon;
SystemCode *error

RegisterServer rcgisters the server descriptor (actually any object descriptor) pointed Lo by desc with
the service server. desclen indicates how long the descriptor is in bytes. ‘The owner of the descriptor is
specificd by ownerPd{d. It is assumed that the descriptor containg both a valid server name and type field,
whosc starting indices within the descriptor are given by nameIndex and typeIndex. 'lhe type ficld is
assumed to be a null-terminated string ficld. There arc two types of name ficld allowed: a process id or a
null-terminated string ficld. nameType spccifics which type of name ficld is being used. The allowable
values for nameTypa arc defined in the Vsarvice, h include file. error is used to return a status value
indicating whether the operation was successful or why it failed. [the operation is successful then
RegisterServer rcturns an id number for the server’s registration entry. "T'his is used for unregistering the
server (and possibly other things in the futurce).

SystemCode UnregisterServer(serverld)
Instanceld serverld;

UnregisterServar rcmoves a server's registration entry from the service server's database. It takes as
argument the id number returned from the original RagistarServar operation,

23.2. Selection Facilities .

Instanceld CreateSelectionInstance(serverType, pattern, patternfcn,
howMany, desc, desclLen, error)
char *serverType;
char *pattern;

V-SYSTIEM 5.0 REFERENCE MANUAL . PROGRAM ENVIRONMENT

114 SERVICE REGISTRATION AND SELECTION FUNCTIONS

int patternfFcn;
int howMany;

char *desc;

int desclsen;
SystemCode *error;

CreateSaelectionInstance() spccifics a set of registered objects to associate with a sefection instance
and rcturns the first entry of the instance in desc. descLen spccifics the maximum size that the descriptor
rerurncd may be. [f the sclected descriptor is larger than that then only the first descLen bytes are returned.
The server type under which sclection is to take place is specified by the serverType ficld, which is a
null-terminated string. The pattern-matching function to be uscd is specified by patternFcn. Values that
this paramecter may assume are defined in the Vservice.h include file. The pattern to match against
registered descriptor entrics is pointed to by pattern. The format of the pattern as far as this function is
concerned (its interpretation within the service server will depend on which pattern-matching function is
specified) is a null-terminated string. howMany specifics whether one or more selections is desired. [f only.
one sclection is desired then that sclection is returned in desc and no selection instance is created. 'This
provides a means of circumventing the overhead of establishing a full-blown connection for obtaining just
one selection. error is used to return the status of the operation performed. If the operation is successful
then CreateSelectioninstance rcturns an instance id for the sclection instance cstablished. (This
valuc is meaningless if howMany cquals 1.) '

V-SYST1M 5.0 REFERENCE MANUAL . PROGRAM ENVIRONMENT

GRAPLICS FUNCTIONS ' 115

—_ 24 —
Graphics Functions

The Virtual Graphics Terminal Service (VGTS) allows the display of structured graphical objects on a
workstation running the V system. This chapter describes the interface of a client (application) program to
the VGTS to provide facilitics for the creation, destruction, and cditing of structured display files (SDI's).
The user interface to the VGTS is. described in the View Manager chapter (chapter 3) of the Commands
Manual. For simple text applications, the VGTS implements the standard [/O protocol. 'The functions in
this chapter arc primarily for graphics applications. ' ,

24.1. Terminology

The central concept of the VG'TS is that application programs should only have to deal with creating and
muaintaining abstract graphical objects. The details of viewing these objects are taken care of by the VG'TS.
‘This is in contrast to traditional graphics.systems in which users perform the operations dircctly on the screen,
or on an arca of the screen referred to as a viewport or window. Thus the VGTS deals with declarative
information rather than procedural; you describe what the objects are rather than how to draw them.

‘The following are the typcs of objccts managed by the VGTS:

SDF A structurcd display file is a‘name space in which symbols and items arc defined. Each
item can be given a uniquc identifier by the client. :

[tem Items can be cither graphical primitives such as rectangles, lines, or text, or symbols, which
consist of other items,

Symbol A list of items (primitives or calls to other symbols) used to represent the hicrarchical
structure of the display file.

VGT A virtual graphics terminal, can be cither an emulation of an ANSI standard text terminal,
or a general graphics terminal which can display an instance of a symbol in some SDF,

Event Graphical input is in terms of events in the coordinate space of some virtual graphics
terminal. FFor example, a mouse click used to sclect a displayed object.

View Both applications and users can create views of Virtual Graphics Terminals. A view
consists of a viewport on some screen of some workstation, a window onto some VGT
giving the world coordinates of the viewed area, and some other viewing parameters. The
same VGT can appear in scveral dilferent views, with independent control of all
parameters.

Items within an SDF arc named with 16 bit identifiers chosen by the application. {t is assumed that the
application will maintain some higher-level data structures, along with the appropriate mapping to these
internal item namces. ltems that will never be referenced can be given item number zero. The item names are
global to cach SDF, but applications may also have several SDFs for different name spaces. ‘The item
identifiers are hashed into a symbol table, so there are no constraints on their values. [tem numbers can refer
to both definitions of symbols and their instances. :

For example, a picture of a bicycle might define a symbol for a wheel, This definition of the wheel symbol
is given item number 4. 'There may then be two instances of item number 4, that are given itetn numbers 5

V-8YSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

116 , GRAPIICS FUNCTIONS

and 6. The individual spokes of the whee! are components of symbol number 4, but arc all given item
number 0, since we will never want to refer to any of them. If it is desired to delete or move any individual
spoke, then the items may be given numbers.

Each item has the following parameters: i
Ttem A 16 bit unique (within the SDF) identifier for this object, or zero. This identifier is

referenced by the client when performing cditing operations.

Type One of the predefined types described below, either a primitive type or one to indicate
structure. Currently cight bits are allocated to this.

TypeData Eight bits of type-dependent information, like the stipple pattern number for a filled
rectangle. Other attributes are stored here, such as the font index for gencral text.

Xmin Minimum X coordinate of the bounding box. All coordinates are in “world”™ coordinates,
stored as signed 16 bit signed integers.

Xmax Maximum X coordinate of the bounding box.

Ymin Minimum Y coordinatc of the bounding box.

Ymax Maximum Y coordinate of the bounding box.

Pointer Depending on the type, this is cither a pointer to some data like an ASCII text string, or for
symbol calls, a pointer to the called symbol.

Sibling All the component items in a symbol are linked together via this chain. ‘Normally it should
not be visible to the clicnt, unless the client wants to step through a symbol definition in
order.

24.2. SDF Primitive Types

Somc of the meanings of the ficlds depend on the type of the item. The following arc the types of items
that occur in display records in a structured display file:

SOF_FILLED_RECTANGLE :
A filled rectangle, ‘The T'ypeData ficld determines the stipple pattern, or color on the lris
system. Refer to the Vgts. h include file for the available colors,

SDF_HORIZONTAIL_LINE
Horizonwt line from (Xmin,Ymin) to (Xmax,Ymin). Ymax is ignored.

SDF_VERTICAL_LINE
Vertical line from (Xmin,Ymin) to (Xmin,Ymax). Xmax is ignored.

SDE_POINT A point, which usually appears as a 2'by 2 pixel square at (Xmin,Ymin):

SDE_SIMPLE_TEXT
A simple text string, which appears at (Xmin,Ymin) as its lower left corner. Currently only
a single fixed-width font is available. The valucs of Xmax and Ymax nced not surround

. the text, but they are used as aids for redrawing, so should correspond roughly to the real
bounding box.
SDF_GENERAL_LINE

A generalized line, from (Xmin,Ymin) to (Xmax,Ymax). Note that Xmin ctc. arc slightly
mislcading names. The SDF manager actually sorts the endpoints and caleulates the
bounding box correctly.

V-§YSTEM 5.0 REFERENCE MANUAL PROGRAM IINVIRONMENT

SDF PRIMITIVE TYPES 117

SDF_OUTLINE Outline for a sclected symbol. Xmin, Xmax, Ymin and Ymax give the box for the outline.
The Typelata ficld spccifics bits to sclect each of the edges: LeftEdge, RightEdge,
TopEdge or BottomEdge.

SDF_HORIZONTAL_REF

: A horizontal reference line at (Ymin + Ymax)/2. Reference lines consist of a thick line
with- two tick marks at the ends, and some associated text. They arc intended for use in
computer aided design applications like the Yale layout editor.

SDF_VERTICAL_REF
A vertical reference line at (Xmin + Xmax)/2.

SDF_SFI._HORIZ_REF
A thick (sclected) horizontal reference line at (Ymin + Ymax)/2.

SDF_SEL_VERT_REF ,
A thick (selected) vertical reference line at (Xmin + Xmax)/2.

SOF_TEXT A string of gencral text, with a lower left corner at (Xmin,Ymin). The TypeData field
determines the font number, Xmax is recalculated from the width information for the
font. Sce scction 24.6 for an cxample.

SDF_RASTER A general raster bit-map with a lower left corner at (Xmin,Ymin), and upper right corner at
(Xmax,Ymax). The Typellata ficld determinces if the raster is written with ones as black or
white. The pointer ficld points to the actual bitmap, in 16 bit-wide swaths.

SDF_SPLINE A spline object, of which a special case is a polygon. The pointer ficld points to a SPLINE
: structurc as defined in the include file <splincs.h.

‘There arc a few other types that are not visible to the user. For example, symbol definitions and calls are
represented as items with most of the same attributes. .

Note: The following SDF item types are not yet implemented for the SMI model 120 framebuffer:
SOI2us(TEXT, SDEF2usORASTER, SDRF2usQOGENERAL = LINE and SDF2us()SPLINE.

24.3. SDF Manipulation Procedures

The following are the currently defined procedures used o manipulate the SDEF. When called from C, all
return values except the actual C expression value are passed via pointer parameters. [Fany pointer is NULL,
no value is returncd for that paramcter.

short CreateSDF()

Create.a structured display file, and return it. Return -1 if the VGTS runs out of resources. This must be
done before any symbols arc defined.

short DeleteSDF(sdf)
short sdf;

Return all the items defined in the given SDF to free storage. This includes all strings, polygon structures, and
spline structures associated with items in the SDF, Returns sdf,

short DefineSymbol(sdf, item, text)
short sdf, item;

V-SYSTEM 5.0 REFERENCE MANUAL, - PROGRAM ENVIRONMENT

18 ' GRAPHICS FUNCTIONS

char *text;

Enter symbol into the symbol table, and open it for editing. The sdf is returned from a previous CreateSDF
call. 'The text is an optional descriptive name for the symbol, used in the hit selection routines for
disambiguating sclections. Rcturns 1 tem if successful, or zcro on some error.

short EndSymbol(sdf, item, vgt)
short sdf, item, vgt;

Close the given symbol so no more inscrtions can be done, and cause the VGT to be redrawn to reflect the new
SDF. Called at the cnd of a list of AddItem() and AddCal11() calls defining a symbol, started with
DefineSymbo1() or EditSymbo1(). Rcturns item if successful. Note that the VGT number is.only a
“hint,” because an object can exist in several different vGT1s. The client can always.call DispTlayItem() to
force a VGT to be redrawn.

short AddItem(sdf, item, xmin, xmax, ymin, ymax,
typedata, type, string)
short sdf, item, xmin, xmax, ymin, ymax;
unsigned char type, typedata; char *string;

Add an item to the currently open symbol. Returns the item name if successful, or zero on crrors. string is
an optional pointer to a text string used only for text types and reference lines, or special object descriptors for
rasters and sptines. 'The 1tem number can be z¢ro to indicate that the item will never be referenced.

short AddCall(sdf, item, xoffset, yoffset, calledSymbol)
short sdf, item, xoffset, yoffset, calledSymbol;

Add an instance of the called symbol to the currently open symbol. ‘The called symbol instance is placed at
(Xoffsct.Yoffsct). Returns 1tem if successful, 0 otherwise.

short DeletsItem(sdf, item)
short sdf, item;

Delete an item from the currently open symbol definition, The item name will be removed from the hash
table. Symbol calls can be deleted just like any other item, but symbol delinitions arce deleted by the
DeleteSymbol function, Again, returns zero on errors, the item name if successful.

short Inquireltem(sdf, item, xmin, xmax,
ymin, ymax, typedata, type, string)
short sdf, item; short *xmin, *xmax, *ymin, “ymax;
unsigned char *type, *typedata; char *string;

All paramcters except sdf and {tem arc pointers. For cach non-null pointer, the value of the field for that
item is returned. Zero is returned if the item could not be found; otherwise 1tem is returncd.

short InquireCali(sdf, item)
short sdf, item;

Return the item name of the symbol called by the indicated item. Rcturns zéro if the item is not a call, or
could not be found.

V-SYSTUM 5.0 REFERENCIEE MANUAL PROGRAM I’.NVIR()NMI‘.N'l'

SDF MANIPULATION PROCEDURES : 119

short Changeltem(sdf, item, xmin, xmax,
ymin, ymax, typedata, type, string)
short sdf, item, xmin, xmax, ymin, ymax; .
unsigned char type, typedata; char *string;

Change the parameters of an already cxisting item. Return zero if the item did not exist, otherwise 1tem.
This is equivalent to delcting an item and then reinserting it, so the item must be part of the open symbol.

short EditSymbol1(sdf, item)
short sdf, item;

Open an alrcady cxisting symbol definition for modification. This has the cffect of calling
DefineSymbo1() and inscrting all the alrcady cxisting entrics to the definitions list. The cditing process is
endedin the same way as the initial definition process - a call to EndSymbo1(). Returns 1tem if successtul,
0 otherwise.

short DeleteSymbol(sdf, item)
short sdf, item;

Delete the definition of a symbol. 1tem must be a symbol definition. Any dangling instances of this symbol
will remain, but will contain nothing. Returns 1tem if successful, else 0,

To continue the example of the previous section, to create the bicycle figure we would use code like the
following: :

short sdf;

sdf = CreateSDF();
DefineSymbol(sdf,4, "Wheel"”):

AddItem(sdf,0,.xmin,xmax,ymin,ymax,0,S0F GENERAL_LINE NULL): ¢
(add the components of the wheel symbol)
EndSymbo1l(sdf,4,0); -

DefineSymbol(sdf,3,"Bicycle”);
AddCali(sdf ,5,x1.ymin, 4);
AddCall(sdf.6,x2,ymin,4);
EndSymbol(sdf.4,0);

24.4. VGTs and Views

Once a client has defined some graphical objects, it also needs to provide information on which objects can
be viewed. BEvery VGT (Virtual Graphics T'erminal) is an item (usually a structured symbol) that is associated
with one¢ or more views, that actually appear on the screen. ach VGT can exist in zero or morce views, but
cach view has exactly one vGT associated with it. ‘The “SDE Numbers™ can be thought of as separate object
definition spaces, while the vG'Us arc object instance spaces. Symbol definitions arce shared between vars, but
instances of symbols arc not,

The VG'T'S lets a user view objects in any VGTs anywhere on the screen in views. Fach view has a zoom
factor, a window on the world coordinates of some VGT, and screen coordinates which determine its viewport,
Although the client can create default views, the VGTS user can change them with the window manager, and
create and destroy more of them. Routines for the client’s manipulation of VGTs and views:

int CreateVGT(sdf, type, topltem, string)

V-SYSTEM 5.0 REVERENCE MANUAL PROGRAM ENVIRONMENT

120 ‘ GRAPHICS FUNCTIONS

short sdf; dint type; short topItem; char *string;

Create a VGT, return the vGT number, and put the indicated item as the top-level item in the VGT. The type
can be some combination of TTY, GRAPHICS, and ZOOMABLE. The Pads created by making TTY VGTs
can presently only be manipulated by the VGTS or through the 170 protocol interface (Sce the description of
OpenPad in scction 24.7.2). If the ZOOMABLE bit is sct, the view zooming factor can be changed by the
uscr. The topltem can be zcro to indicate a blank VGT. Returns negative on errors.

int DeleteVGT(vgt)
short vgt;

Destroy the given VGT. All the views of the VGT will also be destroyed.

DisplayItem(sdf, topItem, vgt)
short sdf, topItem; 1int vgt;

Changg the top-level item in a VGT. The new item is displayed in every view that contains the VGT.

int DefaultView(vgt, width, height, wXmin, wYmin,
zoom, showGrid, pWidth, pHedight)
short vgt, width, height, wXmin, wYmin, zoom, showgrid;
short *pWidth, *pHeight;

Create a view of the given VGT, with the user determining the position on the screen with the graphics input
device. The width and height parameters give the initial size of the view if they are positive. Zero (or
negative) valucs indicate that the user should determine the size with the mouse at run-time. Sce the View
Manager scction of the commands manual (chapter 3) for more information about the user interface.

If the pWidth and pHeight pointers arc non-NULL, then the shorts which they point to reccive the
sclected width and height. wXmin and wYmin arc the world coordinates 1o map to the left and bottom cdges
of the viewport. The zoom factor is the power of two to multiply world coordinates to get screen coordinates.
The zoom factor may be negative, to denote that a view is zoomed out. If showGrid is non-zcro a grid of
points cvery 16 pixels is displayed in the window. Returns negative on crror. :

24.5. Graphical and Character Input

The VG'T'S maintains an event queuc for cach instance, and the vGTs associated with the given file instance.
The mode bits of the instance give the kind of cvents that will be queued. ‘The following functions arce
availablc to handle the event qucucs: :

LISTTYPE FindSelectedObject(sdf, x, y, vgt, searchType)
short sdf, x, y, vgt;
char searchType;

Return a list of items that are at or ncar the sclected location within the VGT. Along with cach item is a set of
edges, to indicate that the hit was near one or more cdges of the object. ‘The searchType sclects one of
several modes of hit detection, as given in the <Vgts.h> include file. Usually the constant value A1T will be
usced. The return type LISTTYPE is also defined in this file.

V-SYSTEM 5.0 REFERENCE MANUAL, : PROGRAM ENVIRONMENT

GRAPHICAL AND CHARACTER INPUT . 121

typedef struct MinElement

{
.short . item:
short) adgeset;
struct MinElement *next;

} MINREC, *MINPTR;
typedef struct ListInfo

MINPTR Header;
short NumQfElements;
} LISTTYPE;

short popup(menu)

PopUpEntry menul]; .
Provide a “Pop-Up" menu. The menu argument points to an array of PopUpEntry structures, cach of which
is a string and a code. 'The array is terminated by a NULL string. The code of the menu item sclected by the
user is returncd. If the user clicks outside the menu a negative value is returned.

typedaf struct
{

char *string; /* String to display. */ :
unsigned char menuNumber: /* Number returned if entry selected. */
} PopUpEntry;

24.6. Defining and Using Fonts

short befineFont(name. filelame)
char *name, "fileName;

Defines a font to be used in subsequent SDE_TEXT items. "The name is a pointer to a string giving the name
of the font, for cxample, “HelveticalOB”, ‘The font is read by the VGTS from the file with the pathname
given as the sccond argument. ‘The £i1eName argument can be null to indicate a read from the standard
place. The fontl returned by this call is used as the T'ypeData field of the Addlitem call for these characters.
A ncgative return value indicates an crror. For example,

short roman = Definefont("TimesRoman12", NULL):
AddItem(sdf, 0, x, x, y, y, roman, SOF_TEXT, "Hello")

will display the string “Hello™ in the Times Roman font at 12 point size, at the position (x.y) on the screen.

24.7. Using the VGTS

The constants for mousc scarch types, VGT usage types, ctc. are found in the include file Vgts. h. The stub
routines arc available in the default V library, so just including the option =V on your ¢¢688 conunand line for
linking should work. Do NO'I' include the =1Vgts option on your command line.

Use =1Vgts on your ¢¢ command line for transparently running programs on a Unix system. Usc
=I/usr/sun/include to get the file Vgts . h. 'This package uscs an cscape scquence which can be used
through PUP ‘T'clnet, 1P Telnct, or with the remote command cxecution facility of the cxccutive. Please
contact the author for the details of this protocol if you wish to implement it on some other operating systems,
There alrcady are cffocts underway for using this protocol from TOPS-20 assembler programs (c.g. SUDS)
and InterLisp.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMUNT

122

GRAPHICS FUNCTIONS

24.7.1. Cooking Your Pads

The following mode bits arc maintained for each pad to indicate the amount of rawncss of the 1/0:

CR_Input

LF_Output
Echo

LineBuffer

PagcOutput

Change the CR (return) character to LLF (UNIX newline) on input. This is for the benefit of
UNIX programs which cxpect “\n’ as a line terminator.

Change LFF to CR-LF on output. That is, every line-feed operation is preccded by a return.

Echo input characters. This bit should be off for programs which can also run on the kernel
console device.

Wait for a linc of input before returning. The user interface to the line editing feature is
described in section 2.7.1.

Block the writer cach time a pad fills up with output, and wait for the uscr to issuc a
command which unblocks the pad. The user interface to the PagcQutput featurc is
described in section 3.3. This bit is "on™ by default.

PagcOutputEnable

DiscardOutput

ReportTransition
ReporiClick

NoCursor

When turned on in a ModifyPad request. this bit causcs the new value of the PageQutput
bit to be assigned to a user-controlled, "sticky™ enable/disable bit. 'The PagcOutputlinable
bit should only be used by "privileged” programs (such as exccutives) as a means Lo allow
the user to "permancntly” disable paged output mode. A QUERY_FILE request will
return the actual value of the PageOutputkEnabie bit.

When sct, this bit causcs all output to a pad to be ignored. [t is automatically sct when the
uscr types 'q’ to a pad that is blocked at the end of a page in PageOutput mode. [t is
automatically clearcd whenever the VG'I'S sends input to a program that is reading from
the pad. The bit may also be cleared "manually” via ModifyPad. Application programs
should call MedifyPad to clecar this bit before sending a prompt to a pad, to insurc that the
prompt is not discarded along with any previous output that was discarded at the user's
request.

Report every change of buttons on the graphical input device as a significant cvent.
Report events only when all the buttons have been released on the graphical input device.

Do not display a cursor in the indicated pad.

"T'he default when pads arc crcated, or commands are initially run by the exccutive, is for all the keyboard bits
to be on, and the mousc bits to be ofF.

24.7.2. Other Interface Routines

The following routines to communicate with the VGTS via the 170 protocol interface are in the V library:

File *OpenPad(name,lines,columns, eéror)

char

*name;

short lines, columns; “
~ SystemCode *arror;

Returnsa file descriptor for a new pad. error is a pointer to the reply code, normally OK. A NULL pointer is
returned on an error. Note that the file descriptor returned is open for writing. If you want to read from i,
you must usc OpenFile to create another file descriptor with the same fileserver and fileid.

V-SYSTIIM 5.0 REFERENCE MANUAL s PROGRAM ENVIRONMENT

OTIIER INTERFACE ROUTINES 123

SelectPad(file)
File *file;

Causes the indicated file to be sclected for input, and brought to the top.

ModifyPad(file,mode)
File *f1ile;
int mode;

Sets the Cooked mode of the file. mode is some combination of the bits described in the previous subsection.

int QueryPad(file)
File *file;

Returns the Cooked mode of the file, some combination of the bits described in the previous subscction.

int QueryPadSize(file,plines,pcols)
File *file;
short *plines, *pcols;

Gets the number of rows and columns of the specified pad, storing them in the shorts pointed to by plines
and pcols. The value returned is the same as for the preceding function.

GetTTY()

Puts the terminal in raw modc. The UNIX version of this routine docs the appropriatc UNIX operation if
standard input is a tty device, otherwisc it sends the proper code for the remote exceution facility.

[

ResatTTY()
Restores the mode before the last GetTTY (). Runs under UNIX as well, checking standard input properly.

GotGraphicsEvent{file,px,py,pbuttons)

File *file;

short *px, *py, *pbuttons;
Waits for a graphical event-in the indicated vGT, and returns the world X and Y coordinates in the shorts
pointed to by px and py. The state of the buttons is returned in the short pointed to by pbuttons. Usc the
file pointer stdin to get events in VGTs that were created with CreateVGT ().

SystemCode GetGraphicsStatus(file,px,py.pbuttons)
File *file;
short *px, *py, *pbuttons;

Returns after any motion the world X and Y courdinates in the shorts pointed to by px and py. The statc of
the buttons is rcturned in the short pointed to by phuttons. The valuc returned will be EOF if the graphics
cursor is not within a view of the given VGT.

GatEvent(file,px,py,pbuttons,cbuf)
File *file; :

V-SYSTEM 5.0 REFERENCE MANUAL - PROGRAM ENVIRONMENT

124 GRAPHICS FUNCTIONS

short *px, *py, *pbuttons;
char *cbuf;

Waits for any event in the indicated VGT, and returns the world X and Y coordinates in the shorts pointed to
by px and py, and the buttons in the short pointed to by pbuttons if the event is graphical, or clse returns
the characters in the buffer pointed to by ¢buf. The return value is zero for a graphical cvent and the byte
count for keyboard cvents.

RedrawPad(file)
Waits until the indicated pad.is redrawn.

PadfFindPoint(vgt,nlines,x,y,pline,pcol)
short vgt, nlines, x, y;
short *pline, *pcol;

Converts a set of world coordinates in x and y into a line and column position within a pad. Currently the
vgt paramcter is unuscd, and the number of lincs must be specified in n11ines.

24.8. Example Program

‘T'he following program can be run cither under Unix or under the V system exccutive. The #1fdef VAX
dircctives allow the programmer to conditionally compile code for one environment or the other. Tt first
creates an SDF and VG, then displays 100 random objects of various kinds.

/-
* test.c - a test of the remote VGTS implementation

* B8il11 Nowicki September 1982
./

include <Vgts.h>
include <«<Vio.h>
define Objects 100 /* number of objects */
short sdf, vgt:
Quit()
¢
DeleteVGT(vgt,1):
DeleteSDF(sdf);

ResatTTY():
exit():

main()
int i;

short item;
1ong start, end;

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

EXAMPLE PROGRAM : 125

ifdef VAX
printf("Remote VGTS tast program\n");
else VAX '
printf("VGTS test program\n");
endif VAX
fflush(stdout);
GetTTY():
sdf = CreateSDF();
DefineSymbol(sdf, 1, "test”);
AddItem(sdf, 2, 4, 40, 4, 60, NM, SOF_FILLED_RECTANGLE, NULL);
EndSymbol(sdf, 1, 0):
vgt = CreateVGT{sdf, GRAPHICS+ZOOMABLE, 1, "random objects”):
DefaultView(vgt, 500, 320, 0, 0, 0, 0, 0, 0);

time(&start);
for (i=12; i<Objects; i++)
{
short x = Random(-2, 185):
short y = Random(~-10, 169);
short top = y + Random(6, 100):
short right = x + Random(4, 120):
short layer = Random({ NM, NG);

EditSymbol(sdf, 1):
Deleteltem(sdf, i~10):
switch (Random(1, 8))
case 1:
AddItem(sdf, 1, x, right, y. top, layer,
SOF_FILLED_RECTANGLE, NULL);
break:

case 2:
AddItem(sdf, i, x, x+1000, y, y+16, 0, SDF_SIMPLE_TEXT,
“Here 1s some simple text” }: : ’
break’;

case 3:
AddItem(sdf, 1, x, right, y, y+1, 0,
SDF_HORIZONTAL_LINE, NULL);:
break;

case 4:
AddItem(sdf, i, x, x+1, y, top, O,
SDF_VERTICAL_LINE, NULL);
brsak;

case 5:
AddItem(sdf, %, x, right, y, top, O,
SOF _GENERAL_LINE, NULL);
break: -

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

126 GRAPHICS F'UNCTIONS

case 6:
AddItem(sdf, 1, x, right, top, y, O,
SOF_GENERAL_LINE, NULL):
break;

}
EndSymbo1(sdf, 1, vgt):
}

time(&end):

if (end==start) end = start+1;

printf("%d objects in %d seconds, or %d objects/second\r\n”",
Objects. end-start, Objects/{end-start));

printf("Donel\r\n");

Quit():

Random(first, last)
{
/t
* generates a random number
* between "first” and "last” inclusive.
-/
int value = rand()/2;:
value %= (last - first + 1):
value += first;
return{value);

V-SYSTEM 5.0 REFERENCE MANUAL : PROGRAM ENVIRONMUNT

FIELDS: USING A PAD AS A MENU 127

—_ 05 —
Fields: Using a Pad as a Menu

These routines allow you to set up a table of fields in a pad. They can be selected with the mouse, so that
you can have a menu. The advantages over the standard pop-up menu are that you can have morc choices,
you can display more information with cach choicc, and the menu is always there. :

With each ficld, you can associate a value, which can be displayed and cdited.

The menu is an array of Fie1ds. These are defined in {f1e1ds.h>. Each Fie1d consists of:
typedef struct .

{‘ .
short row; “/* field’s row numberin pad */
short col; /* lefimost character of ficld */
short width; /* width of ficld */

long *value;

int (*proc)():

char *format; /* format in which to display *value */
} Field; :

row and co1 indicate where in the pad the field begins. (row=1 and coi=1 is the top left comer of the pad.)
width i the length of the ficld in characters. Only one-line ficlds are supported. proc is not used by the
packagg itsetf. The intended uscage is:

field = GetField(...);

if (field) (*field->proc))(field->value);

or perhaps:

if (field) (*field->proc))(field);

format is discusscd below.

25.1. Formats

format is a format like those used by printf and scanf. Together with the value, it determines the
string to be displayed in the ficld. This string must be a least width characters long. Itis a zero-terminated C
(asciz) string. Formats arc of the form:

prefix [conversion] suffix

Here prefix and suffix is constant text which is displayed. 1fa % is to be displayed, it must be written as %%.
The following utility routine will do a string copy analogous to strncpy, except that %s are automatically
copicd:

-

char * StrToFormat(f, s, n)
char *f; /* dcstination string buffer where '%'s are to be doubled "/
char *s; /* sourcestring */
int n; /* count - buffersize */

The optxonal conversion describes how value is to be dlsplaycd/ read. Its form is:

*[-J[0]fi e/dwzdlh][precisionf{AJc

V-SYSTUM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

128 FIELDS: USING A PAD AS A MENU

Here the %\ indicatcs the beginning of the conversion specification. The conversion type letter ¢ marks the end
of the conversion specification.” The format is cxactly as used by printf, cxcept that there may be a data
length specification A. If value isa short *ratherthan a int *, A must be given as h. Ifthe valueisa
double * ratherthan a float *, A must be 1, or the conversion type letter ¢ must be capitalized.

When ficlds arc displayed, sprintf is used to do the conversion. The length specification X is only used
to dereference value (except for ficlds where the conversion type letter is 8); it is stripped from the format
before being passed to sprintf.

On input to ficlds, only the length specification A and the type code ¢ are passed to sscanf. If the type
code is @ or g, it is changed to 1. :

25.2. The Field Table as a Menu: Selecting an Action

Field * GatField(menu, menulength, buttons, pad)

Field *menu;

int menulLength;

short buttons;

File *pad; /* output pad */
Ifbutton 1= 0,itis assumed that the mousc is down on procedure entry. GetField rcturns when the
button statc changes; if it changes to non-zcro, GetField fails by rcturning zcro. If button == 0,
GetFie1d will first wait for an event. (It will fail unless it is a mouse button being pressed down.)

As long as the user keeps the mouse button down, display the selected ficld (if any) in inverse video. When
the user relcases the button, return the last sclected Fie1d, or if none, return 0.

The menu is terminated by the first negative row ficld, or when the menuLength count is exhausted.
25.3. Displaying Fields

PutField(buffer, field)
char *bhuffer; /* destinationstring bulfer */
Field *field; /* sourcc formatand value */

Morc or less like sprintf(buffer, field->format, *field->value).

DisplayFields(menu, menulength, pad)
Field *menu;
" 1nt menuLength; /* see GetField function */
Filea *pad; /* output pad where fields are to be written */

Display in the pad all the string liclds, at the positions given by the row and ¢o1 components.

. The width components are ignored. This allows convenient display of material which the user cannot
sclect ("write-protected” ficlds) cither by using ficlds with width <= 0 or by having a string longer than
thewidth.

V-SYSTUM 5.0 REVERENCE MANUAL . PROGRAM ENVIRONMENT

USER INPUT TO FIELDS ‘ 129

25.4. User Input to Fields

EditField(field, stuff, out, in)
Field *field; /* ficld whosc ®*value isto he cdited */
int stuff; /* 0:old text should be clearcd: 1: stuff into editor */
File *out, *1in; /* inputand output sides of pad to use */

Move the cursor to the conversion part of the f1e1d. If stuff is 0, the old value is cleared from the screen;
if it is 1, the old valuc is placed in the line cditing buffer. Enter line-edit mode, and wait for the user to type
in a line. If the user types +G, abort, redisplay old value and return -1. Else parse the linc using
field->format. I[f this succceds, update *fie1d->value, returning 1, else 0. In any casc, redisplay
things correctly.

EditStdF1d(field)
Equivalent to EditField(field, 1, stdout, stdin)

ReadStdF1d(field)
FEquivalentto EditField(f1e1d, 0, stdout, stdin)

25.5. An Example

/* This is a program which adds up integers, optionally scaled */
#include <stdio.h>

#include <fields.h>

double Scale = 1.0, Total = 0.0:

int Value = 0; ;

Quit() { ... c¢leanup actions ...; exit(-1):}

NewValue(T)
Field *f;

it (ReadStdF1d(f) == 1)
. Total += Value * Scale;
}
Fields Menu[] =

/* VAL (defined in fields.h) coerces pointers and values to (int *) =/

{1, 41, 10, VAL &Scale, EditStdF1d, "Scale: %6 "},
(1. 1, 15, VAL &value, NewValue, "New value: %-8d"},
{2, 1, 0, VAL &Total, 0, "Total: %G. "}.
6. 1, 8,0, Quit, "==Quit=="},

LASTFIELD /* defined in fields.h */

.
.

main()
{ Field *fiald:
“while (1)
{ .
putc('L’ & 31, stdout); /® write FormFeed to clear screen */
DisplayFields(Menu, 999, stdout); .
field = GetField(Menu, 999, 0, stdout);
if (field) (*(field->proc)) (field);

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMEN

130 _ FIELDS: USING A PAD AS A MENU

Since the screen is updated every time here, we do not have to worry about garbage being left behind when
the ficld becomes shorter. However, [have shown two solutions which can be used when this is not desired:
In the Value ficld, we make sure the ficld doesn't becomne shorter, by left justification if needed. This loses if
we want to output punctuation after the value, as in the Total ficld. In this case, we can make sure that we
output enough trailing spaces to erase the garbage. .

25.6. Limitations

No facilities yet for arrays.

V-SYSTIM 5.0 REFEREINCE MANUAL, PROGRAM LENVIRONMENT

SUN PROM MONITOR EMULATOR TRAPS 131

— 26 —
SUN PROM MonitorEmulator Traps

The emulator trap interface functions in the V C library are listed below. These are extremely dependent
on the version of the SUN workstation PROM monitor being used. The usc of these functions should be
avoided if at all possiblc; none of them are present in the Unix C library. For more information sce the Sun
User’s Guide, Notc that not all the traps mentioned there are available under the V kernel, since processes
always run in user statc.

int emt_getconfig()
Returns the current value of the “configuration register.”

int emt_getmemsize()
Returns the size of the on-board RAM in bytes.

char emt_getchar()

I3usy wait input from the console. Will not work unlcss Lhc kerncl console device is closed to prevent it from
“stealing™ the characters,

int emt_putchar(c)
char ¢;

Busy-wait output to the console.

int emt _ticks{)
Rcmms the numbcr of milliscconds since the monitor was last booted. Incremented at cach “memory refresh,

int emt_version()
Returns the version number of the PROM monitor.,

int fbmode(newmode)
int newmodse;

Qucrics/scts the frame huffer mode.

setecho(flag)
int flag;

Controls whether characters read using emt_getchar() are cchoed.

V-SYSTEM 5.0 REFERENCE MANUAL - II’ROGRAM ENVIRONMENT

132 ‘ MISCELLANEOUS FUNCTIONS

V-SYST1M 5.0 REFURENCE MANUALL PROGRAM ENVIRONMENT

MISCELLANEOQUS FUNCTIONS 133

—27 —
Miscelianeous Functions

27.1. Time Manipulation Functions

The time-related functions in the V C library are described below. A few of them are not present in the
Unix C library. '

stime(), time(), ftime()

These are Unix systcm calls and arc implemented here with simple library functions which emulate the Unix
functions by performing the appropriate V kerncl operations SetTime() and GetTime(). They have the
samnc interface and functionality as in Unix; however, ftime() has the timezone hardwired as Pacific Time,
since the V-System provides no time zone information,

ctime(), localtime(), gmtime(), asctime(), timezone()
These arc identical to the Unix library functions. '

sleep(sacaonds)
unsigned seconds;

The invoking process is suspended from exccution for the specificd number of scconds. The actual time may
be considerably longer than that specified if the process is not the highest priority rcady process when its sleep
time expires. sleep() is not scnsitive to Wakeup()'s. Usc the V system call Delay() for a
Wakeup ()-able suspension.

unsigned GetRemoteTime()

Returns the time according to the TIME_SERVER in scconds since January 1, 1970, GMT. Returns zero if it
fails, c.g., no time scrver responded. Currently the Unix servers act as time scrvers.

27.2. Strings

The string-related functions in the V-System C library are described below.

27.2.1‘. Unix String Functions

The following functions arc identical to the functions of the same name provided by Unix. Sce the Unix
Programmer’s Manual for documentation,

atof() atoi() atol() crypt()

ecvt() gevt() index() rindex()

strcat{) strncat() strcmp() strncmp() .
strepy() stracpy() strien a

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

134 MISCELLANEOUS FUNCTIONS

27.2.2. Verex String Functions

There is also another sct of string manipulation functions which were ported from Verex. These include the
following:

int Any(c, string)
char ¢; char *string;

Determine whether there is any occurence of the byte ¢ in the string string, and return true (nonzcro) if so,
clsc false (zero).

char *Concat(dest, si1, s2, s3)
char *dest, *s1, *s2, *s3; .

Concatenate the strings s1, 82, and s3, store the result in dest, and return dest. dest must have enough
room to store the resulting string. If any of s1, 82, $3 are null pointers, the remaining arguments are
ignored.

int Convert_num(string, delim, base)
char *string; char **delim; unsigned base;

Parse the given string to cxtract a number of basc base and rcturn its value. If base is zero, the initial
character of the string determincs the base, as follows

DBase?

0 (zero) Base$8
$ DBasclé
otherwise Base 10

Upon return, *de1im is modificd to contain a pointer to the dclimiter that terminated the number.

char 'Coby_str(str1ng)
char *string;

Copy the given string into a newly allocated region of memory and return a pointer to the copy. The new
region is allocated using malloc() and may thus be freed using free() when the copy is no longer nceded.

int Equal(sl, s2)
char *s1, *s2;

Compare the strings s1 and s2. Return truc (nonzero) if the strings are cqual, clsc false (zero). Strings are
considered to he cqual if and only if they arc of cqual length (up to the terminating null byte) and cach
corresponding byte is the same.

int Hex_value(¢)
char c;

Return the valuc of ¢, interpreted as a hex digit. Return -1 if ¢ is not a hex digit.

char *Lowar(string)

V-SYSTIM 5.0 REFERENCE MANUAL . PROGRAM ENVIRONMENT

VEREX STRING FUNCTIONS " 135

char *string;
Convert all alphabetic characters in string to lower case and return string.

unsigned Null_str(string)
char *string; .

Return true (nonzero) if string is a null string (i.c., of length zero), clse return false (zcro).

char 'Shift_ieft(string, chars)
char *string; unsigned chars;

Delete the leftmost chars characters of string by shifting the remaining characters to the left, and return
string. string must be at least chars characters long, but this condition is not checked.

unsigned Size(string)
char *string;

Return the number of characters in the given string, i.c., the index of the null byte that terminates the string.

char *Upper(string)
char *string;

Convert all alphabetic characters in string to upper case and return string.

27.3. Other Functions

qsort(base, nel, width, compare)>
char *base; 1int nel, width; int (*compare)();

Implements the quicksort algorithm. base is a pointer to the base of the data; nel is the number of
clements; width is the width of an clement in bytes: and compare is a function to compare two clenients.
T'he function compare must return an integer less than, equal to, or greater than zero, if the first argument is
less than, cqual to, or greater than the sccond, respectively.

setjmp(env)
Jmp_buf env;

longjmp(env, value)
jmp_buf env; 1int value;

setjmp () saves the stack cnvironment in eav, so that a later call w YongJmp () will act like a return was
made from the function which contained the call to set jmp (), with return valuc value.

char *ErrorString(error)
SystemCode error;)

Returns a pointer to a string describing the system request or reply code error, in human readable terms.
Use this in error messages instead of printing the numeric value of the code.

V-SYSTEM 5.0 REFERENCE MANUAL PROGRAM ENVIRONMENT

136 ' MISCELLANEOUS FUNCTIONS

PrintError(error, msg)
SystemCode error; char *msg;

Prints the string msg and an explan;ntion'of'the SystemCodc error on the standard crror file.

V-SYSTTM 5.0 REFERENCE MANUAL, PROGRAM ENVIRONMENT

SIERVERS 137

Part lll:
Servers

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

138 SERVERS OVERVIEW

V-SYSTEM 5.0 REFERENCE MANUAL . SUERVERS

SERVERS OVERVIEW ' 139

— 28 —
Servers Overview

All system services other than those implemented by the kernel are provided by sending a message to one of
the system server processes. This manual describes the protocol for requesting these services, including the
format of the request message, the format of the reply message, the possible valuces for the message ficlds, and
the process that handles the request. This information is gencrally not required by application programmers
because the protocol is implemented in a library of standard functions that provide system services via simple
function calls. The library is described in the V-System program cnvironment manual. Morc sophisticated
usc of the system requires the more detailed informatiou in this manual.

‘This chapter describes some general message format standards used in communicating with servers. The
next two chapters give details of two standard protocols, the V-System 170 Protocol and V-System Naming
Protocol. The remaining chapters give the details of the particular servers, describing which of these protocols
they implement, additional server-specific request types they provide, and the scrver-specific semantics of the
services and requests cach implements.

28.1. Message Format Conventions

System scrver protocols obey several system-wide conventions. The first short word of cvery request
mgessage contains a request code indicating the service requested. The first short word of every reply message
contains a code indicating the successful completion of the request exccution or the reason that the request
was not executed normally. A requesting process can assume that the request has been completely executed
when the reply message is received with a successful reply code (although in cascs such as disk write-behind
this may not be strictly true).

28.2. Standard System Request Codes

Hach system request is altocated a unigue request code o be placed in the first word of the request message
when requesting that scrvice. "T'he request codes obey the message lormat conventions imposed by the kernel,
as described for Send() in the V environment manual, "T'he manifest constant definitions for these request
codes arc defined in the standard C include file <Venviron.hd.

28.3. Standard System Reply Codes

The reply code returned in a message from a server is normally oune of the following standard system
replics:

OK Operation successful.

ABORTED An operation was aborted. For cxample, a network conncction that has been aborted
returns this code.

BAD_ADDRESS Request contains an invalid memory address. _
BAD_ARGS Request contains ficld(s) with illegal or inconsistent values.
BAD_BLOCK_NO

V-SYSTIIM 5.0 REFERENCE MANUAL SERVIERS

140 ‘ SERVERS OVERVIEW

The block number specified in an 1/0 request does not specify an existing block. [f the file
instance has attribute STREAM, the block number does not specify the block which is
scquentially next in reading or writing,.

BAD_BUFFER A buffer specified in the request lies (perhaps partially) outside the client’s address space.

BAD_BYTE_COUNT
The byte count is larger (or smaller) than that supported by the server. On a file instance .
without the MULTI_BLOCK attribute, this is returncd if the number of bytes requested to
read or write is greater than the block size.

BAD_PROCESS_PRIORITY
The request specified an illegal valuc for a process priority.

BAD_STATE Request invalid at this time.

BUSY The server cannot satisfy the request at this time, probably because the requested resources
arc allocated to another client.
CURRENT_CONTEXT_INVALID

Normally only returncd by library routines, not servers. "The routine has detected that the
current context of the calling procgess is invalid, probably because its process-id component
refers to a nonexistent process:

DEVICE_ERROR
File or device-dependent error has occurred.

DUPLICATE_NAME
The request attempted to assign the same name to two different objects.

END_OF_FILE Attempt to read beyond file boundaries,

ILLEGAL_REQUEST
Invalid request code. ‘The request was probably sent to the wrong typu of server, one wthh
could not pcrk)rm that function,

INTERNAL_ERROR _)
‘The server detected .m inconsistency in its own state. ‘This crror code may indicate a bug in
the server.,

INVALID_CONTEXT
The request contained a context identifier (sec chapter 30) that was invalid.

INVALID_FILE_ID
The request contained an invalid file instance identifier.

INVALID_MODE
The mode specified as part of a CREATE_INSTANCE request is not valid.

IO_BREAK Returned from interactive files.

KERNEL_TIMEOUT
A timeout occured in the kernel when trying to send to a remote process. This error differs
from NONEXISTENT_PROCESS in that the sending kernel did not reccive a negative
acknowledgement from the remote kernel, but for most purposcs it can be handled in the
same way. ‘This error code is only gencrated by the kernel, but may be passed on by other
scrvers, A

MODE_NOT_SUPPOR'TED

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

STANDARD SYSTUEM REPLY CODES) 141

The mode specificd as part of a CREATLE_INSTANCE request is not supported by this
server,

NO_MEMORY The server was not able to obtain enough memory to satisfy the request.
NO_PDS The scrver was not able to crcate a process or team nceded to satisfy the request.

NO_PERMISSION
Some kind of restricted operation was attempted.

NO_SERVER_RESOURCES
The server has (temporarily) inadequate resources to satisfy the request.

NONEXISTENT_PROCESS
The request was scnt or forwarded to a nonexistent process, OF a nONCXisteRt process was
specified in the request. This crror code is only generated by the kerncl, but may be passed
on by other servers.

NONEXISTENT_SESSION
The request referred to a session (sce chapter 36) which docs not cxist, or to an object
which is not a session. ‘

NOT_AWAITINGREPLY
The process specified in a request was not awaiting reply from the client.

NOT_FOUND The object named in the request was not found.

NOT_READABLE
L Spccificd file instance docs not have the attribute READABLE which is required for the
requested operation,

NOT_WRITEABLE
Specified file instance does not have the attribute WRITEABLE which is required for the
requested operation.

POWER_IFAILURE
Operation was unsucessful due to a power failure.

REQUEST_NOT_SUPPORTED
: The server recognizes the request, but docs not support it.

RETRY Client should repeat request.

SERVER_NOT_RESPONDING
The server failed to receive a response from another server specified in the request.

TIMEOUT An attempt to satisfy the request failed because of a timeout. Usually applied to network
coancctions,

The ErrorString() function described in the V Environment manual will return a character string
version” of many of the system reply and request codes, “Lhe string form is much more informative than
printing the codes in numeric form.

V-SYSTEM 5.0 REFERENCE MANUAL - SERVERS

142 ' THE V-SYSTEM 170 PROTOCOL

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

‘THE V-SYSTEM IO PROTOCOL ‘ 143

— 20 —
The V-System |/0 Protocol

A standard input/output protocol is defined in V to provide transfer of data between processes in a uniform
fashion. Using this protocol, a cfient process views and accesses data managed by a server process as a file. A
file is a “view"™ of the data associated with an object or activity managed by a server. An object viewed as a
file is a sequence of variable-size records or blocks.

To operate on an object viewing it as a file, it is nccessary to create an instance of that file. The protocol is
object-based in the scase that it is defined in terms of operations on-a object, the file instance. File instance
operations include: creating a file instance, querying a file instance, sctting the file instance owner, reading,
writing, and releasing file instances. ‘T'here are also operations for sctting a prompt string and break process
associated with a file instance which are restricted to interactive file instances. A scrver that supports this
protocol is called an 170 server or file instance server. (The term “tile server™ might be more appropriate if it
did not have a different established meaning in the rescarch literature on distributed systems).

A file instance is created by a server in response to a client request, which specifics the file, i.c. the object or
data and the particular view and usage required. Conceptually, a file instance is an object which is created at
the time of the client’'s CREATE_INSTANCE request, and (possibly) initialized to contain the samc data as
an cxisting, pcrmanent file. When the instance is relcased by the client, the data contained in the instance is
atomically written back to the corresponding permanent file. For some servers (for example, the internetwork
server), however, there is no permanent file corresponding to an instance, while for others (for example, the
device server), there is effectively no distinction between the instance and the permanent file -- changes in the
instance are immediately reflected in the underlying file or 170 device, The current implementation of some
storage servers (e.g., the V Unix server) also causes changes in an instance to be immediately reflected in the
underlying filc.

A file instance is uniquely identificd by the server process identifier und the instance identifier returncd by
the CREATE_INSTANCE request. ‘e creating process is made the owner of the file instance. The lifetime
of the file instance and the validity of the instance identificer does not exceed that of the owner of the lilc
instance. The owner of a file instance can be changed by the SET_INSTANCE_OWNUER request.

The reply message to a CREATE_INSTANCE or QUERY_INSTANCE request specifics the server, file
instance identificr, block length in bytes, file typc, last block (written) in the file instance, numbcer of bytes in
the last block, and the next block o read.

The file fype indicates the operations that may be performed on the file instance as well as the semantics of
these operations. ‘These types arce defined in the include file <Vio.hD; file types are specified as some
combination of the following attributes.

READABLE READ_INSTANCI operations arc allowed on the file instance.
WRITEABLE WRITE_INSTANCE operations arc allowed on the file instance.

APPEND_ONLY WRITE_INSTANCE operations arc only cffective to bytes in the file instance beyond thc
last byte associated with the instance at the time it was created.

STREAM All reading and writing is strictly sequential. The first READ_INSTANCE operation must
specify the block number returned as nextblock in the reply to the CREATE_INSTANCE
request. This next block number to read is incremented after cach READ_INSTANCE
operation. Its current value is returned by a QUERY_INSTANCLE. A server must store

v V-SYSTEM 50 REFERENCE MANUAL - SERVERS

14 ' THE V-SYSTEM 1/0 PROTOCOL

the last block read and allow it to be rcad again, to provide duplicate suppression on
requests.

Similarly, each WRITE_INSTANCE operation must specify the block number returned as
lastblock by CREATE_INSTANCE or QUERY_INSTANCE. 'This block number is
incremented after every write operation. A scrver must ignore requests to rewrite the last
block written, returning a reply code of OK, to provide duplicate suppression on requests,

A file instance without the STREAM attribute stores its associated data for non-scquential
(“random”) access. That is, on a non-stream file, for any n, block n may be read or written
at any time, and reading block 7 will return the same data as was last written to block n.

Since cach file models a single scquence of data blocks, objects which provide bidirectional
communication, such as scrial lines or nctwork conncctions, are most appropriatcly
modcled as a pair of file instances, one a READABLE STREAM., the other a
WRITEABLE STREAM. Somc scrvcrs may allow both instances to be created by a single
CREATF_INSTANCE request. 3

FIXED_LLENGTH _
The file instance is fixed in length. The length is specificd by the last block and last byte
returned from a create or query instance request. Otherwise the file instance grows to
accommodate the data written or ¢lse the length of the file instance is not known (as in the
casc of terminal input).

VARIABLE_BI.OCK
Blocks shorter than the full block size may be returned in responsc to read operations other
than duc to end-of-file or other ¢xception conditions. For cxample, input frames from a
communication line may differ in length under nonmal conditions.

With a file instance that is VARIABL E_BLOCK, WRITEABLE, and not STREAM,
blocks that are written with less than a full block sizc number of bytcs return cxactly the
amount written when read subscquently.

MULTI_BLOCK Rcad and write operations arc allowed that specify a number of bytes larger than the block
size.

INTERACTIVE ‘The file instance is a text linc-oriented input stream on which a prompt can be-sct using the
SET_PROMPYT request and a break process can be defined using the
SE I_BRI AK_PROCESS request. 1t also has the connotation of supplying interactively
(human) generated input.

Not all of the possible combinations of attributes yicld a uscful file type. ‘The file instance types supported
by cach server are documented with cach server.

A client must specify a mode of usage for the file instance when crcaiing it. The mode is onc of FREAD,
FCREATE, F'MODIFY and FAPPEND. 'The modcs of usage have the following scrmantics.

FREAD No write operations are to be performed, only reads,
FCREATE Any data previously associated with the described file is to be ignored and a new file
13

A few existing scrvers bend this rule by assigning the same instance id to the input and output streams, even though block number n
of the input stream. is unrclated to block number 72 of the output stream. Strictly speaking, this behavior is in violution of the protocol,
and we plan to change these servers eventually. A single STREAM that is both READABLL and WRITEABLE would have to return
the data written to block 2 il block n is later read back. 'This type of file might be used to model a Unix-like pipe, but in fact, the
V-System pipe server (see chapter 33) takes a different approach, creating a separate instance for cach cnd ol the pipe, with the
conncection between them invisible to the protocol.

V-SYSTEM 5.0 REFERENCE MANUAL, SCRVIERS

THE V-SYSTEM [70 PROTOCOL 145

instance is to be created. Write operations arc permitted; rcad operations are also
permitted if the filc instance has type attribute READABLE.

FAPPEND Data previously associated with the described file remain unchanged. Write operations are
permitted only to append data to the existing data.

FMODIFY Fxisting data is to be modificd and possibly appended to. Both recad and write operations
arc required. This is only supported on file instances that are not STREAM.

A server creatcs a file instance of a suitable type for the specified usage mode if it can. For example, the
storage server provides file instances with typc attributes READABLE, FIXED_LENGTH and
MULTI_BLOCK in response to a CREATE_INSTANCE request specitying FREAL usage mode.

One of three modificrs may be used on the mode ficld of a CREATE_INSTANCE request.
FDIRECTORY Indicates that the given name specifics a context dircctory. Sce section 30.7.

FEXECUTE Spccifics that the given file is to be exccuted as a program on the storage scrver machine.
The mode must be FREAD or FCREATE. Respectively, one or two file instances are
returned, which allow: recading from the program’s standard output, and optionally (in
FCREATE mode) writing into its standard input. When two instances arc created, the
fileid of the sccond (readable) file instance is obtained by adding 1 to the fileid of the
writcable instance (which is returned in the reply message). This mode modificr need not
be supported by all storage servers.

FSESSION Specifics that a scssion is to be created on the server machine, using the (null-scparated)
uscr namc and password passed in the filcname ficld of the CREATE_INSTANCE
request. The file server pid returned is the process id of the session. Rclcabmg the file
instance id returned will terminate the session. ‘The session will also be terminated after
the death of the instance owner. ‘This mode modificr is only supportcd by storage scrvers
that usc the concept of “session.” Sce section 36.

The following subscctions give the format of the request message and the format of the reply, plus a
description of the semantics for each operation in the protocol. These message formats arc defined in the C
include file <Vioprotocol.hd, -

29.1. CREATE INSTANCE

requestcode CREATE_INSTANCE

filcnameindex The index of the first byte in the filename to use in the name mapping,

type Type of file to create an instance of. This is used, for example, to specify the device to the
device server and protocol to the internet server.

filemode Desired usage mode indicating FREAD, FCREATE, FAPPEND or FMODIIY, plus

~optionally FDIRECTORY, FEXECUTE, or I'SESSION.

unspccified Scrver-dependent information specifying the file to be created.

contextid Spccifies the context within the server in which the filename is to be mtcrprctcd (See
scction 30.2.)

filcname- ~ Pointer to a byte array containing the symbolic name of the server or file.

filenamelen Number of bytcs in filename, not including the terminating null byte.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

46 THE V-SYSTEM 1/0 PROTOCOL

replycode Standard sysicm reply. If the reply code is not OK, the file instance was not created and
the remainder of the reply is not defined.

fileid Filc instance identifier. This is the number used in subsequent opcrations on the file.

fileserver Process identifier of the server managing this file. This is not necessarily the same as the id
to which the request was sent.

blocksize Maximum size in bytes of a block.

filetype Type attributes of the filc instancc as described at the beginning of this section.

filelastblock Index of the last block in the file or of the last block written to the file instance if it is a
STREAM file. Indexing is 0-origin. o

filclastbytes Number of bytes in the last block. For filc instances which arc not WRITEABLE and not

FIXED_LENG'TH, this ficld and thc filelustblock field should return the maximum
unsigned integer.

filenextblock Number of the next block that can be read if this filc is a READABLE STREAM.

The CREATE_INSTANCE request is issucd cither directly to the server or sent via a name server process.
In the former case, the use of the ficlds of the request is server-dependent and is documented for cach server.
[n the latter case, the unspecified ficld is not filled in by the clicnt. ‘The namc scrver maps the symbolic name
to a server and a scrver-dependent description of the file and then forwards the request to the appropriate
server. An 1/O server may not usc the filename, filenamelen, and filenameindex fields if it docs not support
symbolic naming.

"The fileid and fileserver uniquely identify the file instance created. The file instance exists until released or
until the requesting process ¢eascs to exist.

29.2. QUERY INSTANCE

requcstcode QUERY_INSTANCE

fileid File instance identifier.

replycode A standard system reply. IF the reply code is not OK, the file instance was not queried and
the remainder of the reply is not defined.

filcid File instance identifier, samec as the request for compatibility with the reply to the
CREATE_INSTANCE request.

filescrver Server process identificr.

blocksize The maximum size in bytes of a block.

filetype Type attributes of the file instance as described at the beginning of the section.

filelastblock Index of the last block in the file or the last block written to the file instance if it is a°
STREAM file. Indexing is 0-origin.

filclastbytes The number of bytes in the last block,

V-SYSTIEM 5.0 REFURENCE MANUAL . SERVERS

QUERY INSTANCE ‘ 147

filcnextblock Number of the next block that can be read if the file is a READABLE STREAM.

In response to a QUERY_INSTANCE request message, the server queries the file instance specified by
fileid for the parameters supplied in the reply message. The reply message has the same format and scimantics
as the reply to a CREATE_INSTANCE request cxcept for the reply code. For cxample, a reply code of
NOT_FOUND to a CREATE_INSTANCE request indicates that the file specificd does not exist, while a
reply code of INVALID_FILE_ID to a QUERY_INSTANCE rcquest indicates the file instance does not
exist. :

29.3. RELEASE INSTANCE

requestcode RELEASE_INSTANCE

fileid File instance identifier
relcasemode Scrver-dependent action to perform when relcasing the instance. This ficld is sct to zero

on & normal close.

replycode A standard system reply code.

" In response to a RELEASE_INSTANCE rcquest, the server invalidates the instance identifier, reclaims
server resources dedicated to the instance and possibly performs some server-dependent function with the file
instance data. A refeasemode of Q indicates normal complction of the usc of the file instance. For example, in
the case of the printer server, the file instance data is printed. In the case of the storage scrver, the data
atomically replaces the previous version of the stored file data. A non-zero release mode causcs the data to be
discarded.

A server may release a file instance with a non-zero relcase mode if it deteets that the process that created
the instance no longer cxists. A server should maximize the time before reusing a file instance identificr.

29.4. READ INSTANCE

requestcode READ_INSTANCE
fileid ~ File instance identifier
blocknumber Index of the block in the file from which the read is to begin,

bufferptr Address of the data buffer in which the data is tw be moved if more than
10_MSG_BUIFFER bytes arc read. That is, lIO_MSG_BUFIFER is the maximum number
of data bytes that fit in the message.

bytecount Number of bytes to be read.

replycode. Standard system rcply code.

fileid Same as in request.

shortbuffer IO_MSG_BUFFER bytes containing the data bytes rcad if less than or cqual to

V-SYSTEM 50 REFERENCE MANUAL SERVIIRS

148 _ THE V-SYSTEM 170 PROTOCOL

I0_MSG_BUFFER bytes.

bytecount Number of bytes read.

In responsc to a READ_INSTANCE rcquest, the server transfers up to bytecount bytes from the file
instance starting at the block numbered blocknumber. [f the number of bytes read is less than the number
requested, the reply code indicates the reason. [f the file instance has the type attribute VARIABLE_BLOCK
and the block being read was not the full block size specified for the file instance, this case is not an error, and
the reply may be OK, or END_OF_FILE if the last block was read. Note that a clicat may ignore the reply
code if the returned byte count is cqual to the requested byte count, so servers should set the byte count to
zero on error conditions.

If the number of bytes read is less than or equal to [O_MSG_BUFFER, the data read is contained in the
reply message starting at shortbuffer. If it is greater than IO_MSG_BUFFER, the data rcad is transferred into
the space of the requesting process starting at the address bufferptr.

1f the file instance has the type attribute STREAM, the block number specified must be the next block to
read for this instance, which is incremented after the read. Rcads always start at the beginning of the
specificd block. The valucs of bytes read that were not explicitly written arc undefined. The number of bytes
requested must be less than or equal to the block size unless the file instance has the type attribute
MULTL_BLOCK.

29.5. WRITE INSTANCE

requestcode WRITE_INSTANCE, or WRITESHORT_INSTANCE if bytecount is less than or equal to
10_MSG_BUIFER.

fileid File instance identifier.

blocknumber Index of the block in the file instance at which the write is to begin.

shortbuffer Data bytes to be written if less than or cqual to IO_MSG_BUFFER.

bufTerptr Address of the dma. buffer if no more than 1I0_MSG_BUIFIFER l)ytcs' arc being written,
' Otherwisc, this ficld may be overwritten by the data bytes.

bytecount Number of bytes to be written.

replycode Standard system reply code.

bytecount Number of bytes written.

In response to a WRITE_INSTANCE or WRITESHOR T_INSTANCE request, the server transfers up to
bytecount bytes to the file instance starting at the block numbered blocknumber. 1f the number of bytes
written is less than the number requested, the reply code indicates the reason. As with READ_INSTANCE, a
client may ignore the reply code if the returned byte count is equal to thé requested byte count, so servers
should sct the byte count to zero on crror conditions.

If the number of bytes to write is less than or cqual to IO_MSG_BUFFER, the data is assumed to be
contained in the request message starting at shortbuffer. If it is greater than [O_MSG_BUFFER, the data is
transferred from the space of the requesting process starting at the address bufferprr. Writes always start at the
beginning of the specified block. Note that the scparate request code WRITHESHORT_INSTANCIE is used

V-SYSTEM 5.0 REFERENCE MANUAIL SERVERS

WRITE INSTANCE 149

when the data is contained in the message oaly to be consistent with the kerncl message format conventions.
There is no READSHORT_INSTANCE neceded because the data is passed back in the reply. That is,
WRITE_INSTANCE specifies that scgment access is being passed while WRITESHORT_INSTANCE
specifies no segment access.

If the file instance has type attribute STREAM, the block number specificd must be one greater than the
last block in this file instance, which is incremented after the write. The number of bytes to write must be less
than or cqual to the block size unless the file instance has the type attribute MULTI_BLOCK.

29.6. SET INSTANCE OWNER

requcstcode SET_INSTANCE_OWNER
fileid File instance idchtiﬁer

instancecowner Process identifier of new file instance owner.

replycode Standard system reply code.

In response to a SET_INSTANCE_OWNER request, the server scts the file instance owner process to that
specificd by instanceowner. 'The requesting process must be the current owner of the file instance. ‘The initial
owngr of a file instance is the process that created the instance.

29.7. SET BREAK PROCESS

requestcode SET_BREAK_PROCESS

fileid - File instance identificr
breakprocess Process to be “broken™ when next break generated on this file instance.

replycode Standard system reply code.

In response to a SET_BREAK_PROCESS request, the server sets the break process associated with the file
instance to the process specified by breakprocess. When a break is gencrated on this file (the 10_BREAK
reply returned to any outstanding rcad operations), the server issucs a DestroyProcess kernel operation on the
specified process. :

‘This request is only supported on file instances with type attribute INTERACITVE.

29.8. SET PROMPT

- requestcode SET_PROMPT

fileid Filc instance identifier

V-SYSTEM 5.0 REFERENCE MANUAL - SERVERS

150 . THE V-SYSTEM 1/0 PROTOCOL

promptstring Prompt string, which must be less than [O_MSG_BUFFER bytes long.

replycode Standard system reply code.

In responsc to a SET_PROMPT request, the server scts the prompt string output previous to cvery read
operation to that specified. This request is only supported on file instances with type attribute
INTERACTIVE,

29.9. QUERY FILE and NQUERY FILE

requcstcode QUERY_FILE

fileid File instance identifier

requestcode NQUERY_FILE
namcindex ‘The index of the first byte in the file name to usc in the name mapping.
unspecified Up to the last three 32-bit words in the message.

namecontextid Context in which the name is to be interpreted.

nameptr Pointer to a memory scgment containing the file namce.
nameiength 1.ength of the segment in bytes.
replycode Standard system reply code. -

‘unspecified Scrver dependent information.

In responsc o a QUERY_IFILE or NQUERY_IFILE request, the server returns server specilic information
about the file or file instance. For example, the VG'I'S returns the “cooking™ bits, and the internct server
returns connection information. A QUERY_IFILE request specifics the file using an instance identificr, while
a NQUERY_FILE request uses a character-string name. Both types of request return the same information,

29.10. MODIFY FILE and NMODIFY FILE

requestcode MODIFY_FILE
filcid File instance identifier

unspecified ~ Server-dependent information.

requestcode NMODIFY_FILE

nameindex The index of the first byte in the file name to usc in the name mapping,.

V-SYSTEM 5.0 REVERENCE MANUAL _ SI'RVERS

MODIFY FILE AND NMODIFY FILE 151

unspcecified Scrver-dependent information. Up to the last three 32-bit words in the message.

namccontextid Context in which the name is to be interpreted.

namcptr Pointcr to a mcmory segment containing the file name.
namciength [.ength of the segment in bytes,
replycode Standard system reply code.

The MODIFY_FILE and NMODIFY_FILE rcquests are supported by some servers to modify some
attributes of the file or file instance. For example, the VGTS uscs MODIFY_FILE to turn cchoing on and
off. -

. A MODIFY_FILE request specifies which file is to be modificd by passing an instance identificr, whilc an
NMODIFY _FILE request passes a character string name.

V-SYSTEM 5.0 REFERENCE MANUAL . ' SERVYERS

152 THE V-SYSTEM NAMING PROTOCOL

V-SYSTEM 5.0 REFERENCE MANUAL : SERVERS

THIE V-SYSTEM NAMING PROTOCOL ‘ 153

— 30 —
The V-System Naming Protccol

A number of V-System services usc character string names to specify the objects to be operated on, and
many standard message types include space for such a name. Examples include the CREATE_INSTANCE
request and several other requests described above as part of the 170 Protocol.

Name mapping in the V-System is performed by a collection of cooperating server processes rather than a
single, monolithic “name server.,” The V-System Naming Protocol consists of a uniform format for request
messages that contain symbolic names, and a small sct of request types which must be handled specially by
any scrver that implements the protocol. The protocol also specifics conventions for forwarding partiaily-
interpreted requests from one server to another.

30.1. Character String Names

Syntactically, a character string name (CSname) is a sequence of zero or more bytes, of a specificd length or
cisc terminated by a null byte. Operationally, a character string namce is a byte string as above that is uscd to
specify an object relative to a server that can interpret the name. There is no universal limit on the length of
charucter string namcs. ‘Two CSnamcs arc cqual if and oaly if they arc byte-wise identical and cqual in length
(where a null in the name takes precedence over the length specification).

Although CSnamcs may contain arbitrary bytes, they are generally specified or chosen by the client (as
opposcd to the server) and are usually human-readable ASCII strings.

The term character string name handling server (CSNH server) refers to any scrver that performs character
string name mapping, regardicss of what clsc it docs. The term CSname request describes any request
containing a character string name that must be mapped in order to perform the requested operation.

30.2. Contexts and Context Ids

In general, the interpretation of a string name depends on the context in which the name is used. [Formally,
a context is a set ol (name, object)-tuples, A context can have an arbitrary set of members in theory. In the
V-System, the context of a name includes (1) the scrver to which the name is to be sent, and (2) the place
within that server’s naming hicrarchy where interpretation is to begin, or more gencrally, the context within
the server. A scrver is specified by its process id, while a context within a server is specified by a context
identifier. A context identifier is a 32-bit identifier asmgncd by the server. Thus in gencral, a context is
specified by a (scrver-pid, context-id) pair.

This definition docs not specify detailed semantics for contexts, leaving it o individual servers. ‘This is
similar to the 170 protocol where, for example, the semantics of writing Lo a file instance is not specificd but is
scrver-dependent. ‘Thus, cach name server must specify the semantics of its contexts. For example, while a
file server may implement a purcly hicrarchical name space and only implement contexts that modify the
semantics of so-called relative pathnames, a interncetwork server may implement contexts that correspond to
different networks, or scts of hosts talking particular protocols, cte.

A context-id has the same lifetime as the server. ‘Thus, after a context-id is acquired by a client, there is no
nced {and no way) to relcase it when the client is finished using it. A context-id identifies the context itsclf,
not an “instance” of the context. Therefore, we have made context-ids rclatively long (32 bits).

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

154 TIE V-SYSTEM NAMING PROTOCOL

Basically, character string name mapping is structured as three levels: server, context and CSname.
However, a CSname may be structured hicrarchically, as in the case of a filesystem pathname. The naming
protocol is independent of this structure, though usually cach component in a hicrarchical name will be the
character string name of a context in which the rest of the name is interpreted.

It is cxpected that, given a character string name, a server and a context id, the interpretation of that
character string namc is fully specified independent of the operation requested.

30.3. Well-Known Context Ids

We require that context-id 0 (called DEFAULT_CONTEXT) represent a valid context on cvery CSNH
server. In general, DEFAULT_CONTEXT should be a reasonable default for clients that are not sure which
context within a server a name should be mapped in, but do know the server. For example, a scrver that
provides access to a Unix file system should map DEFAULT_CONTEXT to the root dircctory (known as
“/™). A server that provides only onc context should number it 0.

Other small context identificrs (less than 16, say) are reserved for use as “well-known™ contexts. There is a
need for some servers to publish certain context ids, similar to DEFAULT_CONTEX'T, and some servers
may provide certain contexts which have special properties. Currently defined well-known contexts include

DEFAULT_CONTEXT
As described above.

PUBLIC_CONTEXT
Holds publically-availablc V programs on storage servers,

LOGIN_CONTEXT | :
The home dircctory of the owner of a session, on storage servers that implement the'
concept of a session.,

ANY_CONTEXT
A spccial value used with the GET_FFILE_NAME and GETU_CONTEXT_NAME
operations. When returned by onc of these operations, it indicates the name is an
“absolute™ name, vaiid in any context on the given server. When passed in the contextid
ficld of a GET_CONTEXT_NAME request, it acts as a wild card, i.c.. the server receiving
the request may retrn the name of any context on the server specified in the request.

30.4. Name Request Format

All V-System rcquest messages that contain CSnamcs arc built on a common skelcton, defined as the
NamecRequest structure in the standard header file <Vnaming.h,

requestcode Any valid request code that grants read access to a scgment,

namcindex ‘The byte ofTsct of the name, within the segment specificd by the last two long words of the
message.

unspecified Request-specilic information, up to the last three long words in the message.

namccontextid A 32-bit identifier for the context in which this name is to be interpreted.
nameptr Pointer to the segment containing the symbolic name.

namelength Length of the scgment containing the name.

V-SYSTEM 5.0 REFERENCE MANUAL SERVIERS

NAME REQUEST FORMAT . 155

The reply is not specified by this protocol because it is generally dependent on the operation requested.

The name nced not be first in the scgment but is considered to start at the byte offsct specified by
nameindex. If the name is not last in the segment, it must be terminated by a null. A CSNH server may reject
a request if the total scgment size is too long for it to handle.

30.5. Name Parsing and Forwarding
A CSNH server follows the following algorithm in handling a request containing a CSname. |

If the server does not provide pointers to contexts in other servers as part of its name space, it may interpret
the nane in any way it chooses.

Otherwisc, the server begins by looking at the name itscif, not the request code. Since this rcquest may
have been directed to another server (to which it will eventually be forwarded by this algorithm), the request
codc is irrcicvant at this point.

Names arc ordinarily interpreted left-to-right, if the server implements hicrarchical naming. ‘The server
initializes the variuble CurremiContext to the context id specified in the request. As cach component of the
name is parsed. it is looked up in the current context. [f the name specifics a context, CurrentContext is
updated. . If the new context is implemented by some other server, the nameindex ticld in the request message
is updated to point to the first character of the name not yet parsed, the nanecontextid ficld is sct to
CurrentContext, and the request is forwarded to the scrver that implements the context,

A server with a flat name space may ignore the contextid ﬁc!d of requests, but it must sct this ficld when
forwarding requests to other servers,

30.6. Standard CSNH Server Requests

There are several standard CSNH requests, which. should be implemented by all CSNH servers, and others
which nced only be implemented by context prefix scrvers (sec chapter 42), but may be implemented by
others as well. All of the request and reply formats described below arce subscts of the ContextReguest
structure defined in the standard system header lile <Vnaming.h>.

30.6.1. GET CONTEXT 1D

requesicode GET_CONTEXT_ID

namcindex The byte offsct of the name, within the segment specified by the last two long words of the
. message.

namccontextid Coantext in which to interpret the given name.

nameptr Pointer to the segment containing the symbolic name.,
namclength Lcngili of the scgment containing the name.
replycode Standard system reply code.

serverpid The serverpid component of the named context.
contextid The contextid component of the named context.

V-SYSTEM 5.0 REFERENCE MANUAL - SERVYERS

156 . THE Y-SYSTEM NAMING PROTOCOL

entrytype Optional, server-specific type information.
instanceid - File instance id associated with the context, if any. Server-specific.
otherinfo Optional, server-specific information.

Given a CSname that namcs a context, this request returns a (serverpid, contextid) pair which identifies the
same context.

30.6.2. GET CONTEXT NAME

requestcode GET_CONTEXT_NAME

serverpid "The serverpid component of the context for which a name is to be found.

contextid The contextid componeat of the context.

nameptr Pointer to a buffer in which the name is to be returned.

namcicngth Size of the buffer.

replycode Standard system reply code.

serverpid The serverpid component of the coatext in which the returncd name is valid.
contextid ‘The contextid component of the context in which the returned name is valid.
nameptr ‘The value provided is rctumc;l unchangcd.

namelength Length of the returned name,

Returns a CSname corresponding to the specified (serverpid, contextid) pair, if one is known to the server
receiving the request, plus the server and context-id required to fully qualify the CSname. ‘I'he context-id
returncd will be ANY_CONTEXT, if possible, and the server will ordinarily be the one to which the request
was sent. .)

Since the inverse mapping from (serverpid, contextid) to CSname is not well-defined in general, a server
may sometimes fail to satisfy this request despite its best efforts. Also, there may be many possible choices for
the name that is to be returned. Scrvers should attempt to return a name that is as informative to a human
uscr as possible,

30.6.3. GET FILE NAME

requestcode GET_FILE_NAME

instanceid A file instance id for the file whose name is desired. -
nameptr Pointer to a buffer in which the name may be returned.
namclength ~ Size of the buffer.

V-SYSTIM 5.0 REVERENCIE MANUAL ’ SI?I{VI*’,RS

GET FILE NAME : 157

replycode Standard system reply code.

serverpid . The serverpid component of the context in which the returned name is valid.
contextid The contextid component of the context in whig:h the returned name is valid.
nameptr The value provided is returned unchanged.

nameclength Length of the returned name.

Returns a CSname for the file associated with the specified file instance, plus the scrver and context-id
required to fully qualify the filc name. The context-id returned will be ANY_CONTEXT, if possible, and the
server will ordinarily be the one to which the request was sent.

30.6.4. ADD CONTEXT NAME

requestcode ADD_CONTEX'T_NAME

nameindex The byte offset of the name, within the segment specified by the last two long words of the
message.

serverpid Scrver pid to assign to name.

contextid Context id to assign to name.

cntrytype Scrver-specific fypc information.

instanceid Instance id associated with context, if any.
otherinfo Server-specific.

namcecontextid Coatext in which to interpret (or define) the given name.

nameptr Pointer to the scgment containing the symbalic name..
nameiength Length of the segment containing the name.
replycode Standard system reply code.

The ADD_CONTEXT_NAME operation defines a new CSname to refer to an existing context. ‘The
cxisting context is specified. in the (serverpid, contextid) ficlds of the request. ‘The specified CSname is
interpreted according to the naming protocol, in the context specified by namecontextid, until the mapping
algorithm reaches a context in which the remainder of the name is not defined, at which point it is added to
that context,

This operation need only be implemented by context prefix servers, but of course all CSNH servers must be
able to forward it in accordance with the naming protocol.

a

30.6.5. DELETE CONTEXT NAME

requestcode DELHI’B_CON’l‘F,X'l‘_NAM E ' R

nameindex ‘The byte offset of the name, within the scgment spegificd by the last two long words of the

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

158 THE V-SYSTEM NAMING PROTOCOL

message.

namecontextid Context in which to interpret the given name.

nameptr Pointer to the scgment containing the symbolic name.

namclength Length of the scgment containing the name.

replycode Standard system reply code

serverpid The serverpid componcnt of the name’s former value.

contextid The contextid comp.oncnt of the name’s former value.

cnurytype Server-specific type information formerly- associated with the name.
instanceid File instance identifier formerly associated with the name, if any.
otherinfo _Scrver-specific information formerly associated with the name.

Delete the specified context name, making it no longer meaningful. The context associated with this name
is not deleted. This operation need only be implemented by context prefix servers, but of course all CSNH
servers must be able to forward it in accordance with the naming protocol.

30.7. Context Directories and Object Descriptors

Each context consists of a sct of (name, object)-tuples and is implemented by a server process. ‘The
discussion so far has concentrated on performing operations on specific objects and the protocol for
specifying a particular object. However, an important aspect of system operation is supporting query
operations about objects or scts of objects. A simple example is that of listing the names of all objects in a
given context. In general, onc may wish to list a varicty of information about objeets in a context, perhaps
ignoring some of the objects based on their propertics.

Fach CSNH server implements: one or more context directories of objeets that it manages. A context
dircctory appears as a file of records, with cach record specifying an object in the associated context. A
dircctory file is accessed using the 170 protocol with the CREATHE_INSTANCYE request specifying the name
of the context to be used. 'The FDIRECTORY bitis set in the mode field of such a request. A client can then
usc the standard 1/0 routines to read the contents of the directory and derive the information required. The
sclection of the information required is done by the client, not the server, ‘The client may also be able to
modify some or all of the ficlds of a directory record by writing it, using the standard 1/0 protocol. A server
is not obligated to make all ficlds presented in a directory modifiable. 1f a client attempts to change a
non-maodifiable ficld, that ficld should be left unaltercd, but any other changes indicated in the request should
be carried out. :

The FDIRECTORY bit is primarily for the benefit of Verex-like file systems, which permit cach node in
the naming hicrarchy to be (in Unix terms) both a file and a dircctory. [t discriminates between aceess to the
data content of such a node, and the context directory associated with it, Also, servers that do not implement
character sting naming at all can usc this bit to distinguish between requests to access one of the objects they
manage and requests to read their context directory.

Fach record in a dircctory starts with a descriptor-type ficld that specifics the format of the record describing
the object. FFor space cconomy, this ficld is an identifier that specifics a description of the record format -
stored clsewhere in a system database of such formats. (The standard formats and descriptor type identificrs
are defined in the header file. {Vdirectory.h>.) Applications can rcad a dircctory and extract the required
information by rcferring to the descriptor-type fitld and these format descriptions, éven when a directory

V-SYSTEM 5.0 REFERENCE MANUAL - SERVERS

CONTEXT DIRECTORIES AND OBJECT DESCRIPTORS ‘ 159

contains heterogencous records.

A similar query activity involves accessing the descriptor of a single object. For efficiency and consistency,
this is supported by a separate READ_DESCRIPTOR funétion on the object (as opposed to being subsumed
by the context directory facility), which returns the same record as found in the context directory. A
corresponding WRITE_DESCRIPTOR operation is available for modifying an object’s descriptor.

There is no implication that a scrver need store information about objects as it is presented in a context
dircctory. For instance, the Unix file system stores the names of files scparate from their descriptors with the
association provided by so-called “i-node numbers.” A context dircctory entry in this casc is fabricated
dynamically by replacing the i-node number in cuch record by its descriptor.

‘The standard descriptor rcading and writing operations are described below. The rhcssagc formats uscd are
described by the DescriptorRequest and DescriptorReply structures defined in'<Vdirectory.hd,

30.7.1. READ DESCRIPTOR and NREAD DESCRIPTOR

requestcode READ_DESCRIPTOR or NREAD_DESCRIPTOR

namcindex The byte offsct of the name, within the scgment specificd by the last two long words of the
message (NREAD_DESCRIPTOR only).

fileid File instance id of the file whose descriptor is to be read (READ_DESCRIPTOR only).

dataindex The byte offsct from the stalt of the specified scgment where the returned descriptor is to
be placed.

namccontcxtid ‘The context id of the context in which the given name is to be interpreted
(NREAD_D! bCRll’lOR only).

scgmentptr Pointer to a buffer which containg the object name (for NREAD_ I)P SCRIPTOR), and in
which the descriptor is to be returned. '

scgmentien Length of the bufTer,
replycode - Standard system reply code.
'~ dataindex Returned unchanged.
scgmentptr Returned unchanged.
segmentlen Returned unchanged.

These request types provide a way of reading the déscriptor (context directory entry) of a single object.
READ_DESCRIPTOR specilics the object by tile instance id, while NREAD_DESCRIPTOR specilies it by
CSname,

30.7.2. WRITE DESCRIPTOR and NWRITE DESCRIPTOR-

requestcode WRITE_DESCRIPTOR or NWRITE_DESCRIPTOR

namcindex The byte offsct of the name, within the scgment specified by the last two long words of the
message (NWRITE_DESCRIPTOR only).

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

160

fileid
dataindex
nam‘econ‘textid
segmcntptr

scgmentlen

THE V-SYSTEM NAMING PROTOCOL

File instance id of the file whose descriptor is to be modificd (WRITE_DESCRIPTOR
only).

The byte offsct from the start of the specified segment where the new descriptor value
begins.

The context id of the context in which the given name is to be interpreted
(NWRITE_DESCRIPTOR only).

Pointer to a buffer which contains the object name (for NWRITE_DESCRIPTOR), and
the new descriptor value,

Length of the bufTer.

replycode
dataindex
scgmentptr

segmentlen

Standard system reply code.
Returned unchanged.
Returned unchanged.

Returned unchanged.

Thesc request types provide a way of modifying the descriptor (context directory entry) of a single object.
WRITE_DESCRIPTOR specifics the object by lile instance id, while NWRITE_DESCRIPTOR specifics it
by CSname. 'The server will modify each ficld in the object’s descriptor for which the valuc written differs
from the existing value, if the ficld is client-modifiable and the new value is legal. A client normally uses one
of these operations by first reading the descriptor, then modifying the field(s) of interest, and finally writing it

back.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

DEVICE SERVER 161

— 31 —
Device Server

The device server provides access to the raw kernel-supported devices via the [/O protocol. 1Tt is
implemented directly by the kernel as a pscudo-process as opposed to being a normal process like other
system scrvers. Conscquently, it is always configurcd when the V kernel is used. However, the device server
behaves as any other 170 server process as far as applications are concerned.

The device server appears as a single process that supports different types of devices using the same 1/0
protocol. Access to a device is cstablished by sending a create instance request to the pid returncd by
GetPid(DEVICE_SERVER, LOCAL_PID), or, if the standard context prefix server has been configured, by
prefixing the device name with the context name “[device]™ in a create instance request or Open() call. Using
the standard-information returned by the create instance request, the device can then be accessed using 170
protocol messages, cither directly or by means of the standard 170 library routines described in chapter .
T'here are also some device-specific operations defined for some devices. The currently supported devices are
described below.,

31.1.Ethernet

The Ethernet interface is accessed by specifying a device name of the form enetts, where ¢is replaced by the
Ethernet type, cither 3 for 3 Mbit experimental Ethernet, or /0 for standard Ethernet, and s is a suffix, which
is null for the first Ethernet interface, a for the second, b for the third, and so forth. Currently only onc
Ethernet instance may cxist at a time and only one Ethernet interface is supported, and the name ethernet is
defined as an alias for cither enet or enet/(, whichever is present.

The standard header file <Vethernct.h> defines Ethernct-specific information, including the FEthernet
packct‘ﬂ)l‘mat and various constants such as ENET _MAX_DATA, the maximum sizc of the data portion of -
an lithernet packet. :

In a ¢reate instance request, the filemode must be FCREATE, The type of an lithernet instance is always a
readable, writcable, variable block stream.

Read and write instance requests arce standard cxcept for the Ethernet block format. The Ethernet is only
sensibly accessed as a block (or packet) device, as opposed to a byte strecam. The Ethernct block format is
exactly that expected by the interface, namely, on the 3 Mbit Ethernet, one byte for destination, one byte for
source, two bytes for Ethernet packet type, followed by some number of data bytes, and on the 10 MBit
Ethernet, six bytes for destination, six bytes for source, two bytes for packet type, followed by data bytes. The
number of bytes specified in a write and returned by a read includes the destination, source and type bytes as
well as.the data bytes.

An Ethernet-specific QUERY_FILE request is supported that returns the host number, the number of
coilisions, receiver overflows, CRC errors, receiver synchronization crrors, transinission timeouts detected,
and the number of valid packets received. The host number should be used as the source address for every
packet transmitted. The format for the request and reply messages is given by the QueryEnctRequest struct
dcfined in {Vcthernet.ho.

V-SYSTEM 5.0 REFERENCE MANUAL - . SERVIERS

162 ' DEVICE SERVER

31.2. Mouse: The Graphics Pointing Device

The mouse is a graphics pointing deyice. It provides a means of indicating a coordinate position plus
signalling different states via its three buttons. The device server provides access to the mouse through the
1/0 protocol, thus viewing it as a file.

The mousc file appears as a 10-byte file divided into 3 major ficlds. The first two bytes specify the mouse
button positions, the three buttons being the low-order three bits of the sccond byte. A bit with value 0
indicates the button is up, otherwise down. The next 4 bytes specify its current X coordinate. The last 4 bytes
specify its current Y coordinate. The kernel updates this file according to the input from the device. These
ficlds are spccified in <Vmouse.h> as buttons, xcoordinate and ycoordinate with MBUTTONI1, MBUTTON2
and MBUTTON3 spcecifying the button bit ficld assignments in the buttons field.

A create instance request for a mouse specifics the name mouse in the filename field. Only one mouse and
one instance of that mousc are currently supported. The filemode ficld of the create instance request must be
FCREATE. The mouse file instance created is initialized to have X and Y courdinates of 0. [t has type
attributes READABLE, WRITEABLE, and FIXED_LLENGTH.

Read and write requests must specify block 0 and a bytc count of 10 bytes. A rcad instance request returns
10 bytes specifying the current state of the mouse “file.” A read instance request is queued until a change to
the mousce file occurs, providing no change has occurred since the last read request. Thus, for instance, a
mouse reader process that repcatedly reads from the mouse and updates a cursor is suspended when the
mouse i$ not being moved and no button positions arc changing. Conversely, the rcad returns cvery time a
change does occur.

A writc instance operation cnanges the kernel-maintained record of the mouse button positions and the X
and Y coordinates to that specificd by the 10 bytes in the buffer, Sctting the mousc buttons in the kernel has
no significant cffcct because this record is updated to agree with the actual button positions on the next mput
(or “*squeak™) received from the mouse.

There is no need to provide a query function-that simply returns the current mousce position because that
should always be stored outside the kernel. That is, the application decides where the mousc is; the kernel
simply updatcs the pusition relative to the absolute position specified.

‘The kernel does not provide any scaling of mouse movements. That is left to the application.

31.3. Serial Line

The kemcl device server provides access to raw serial lines through the scrial device. T'wo serial lines arce
supported, but only one instance for cach may cxist at a time.

In a create instance request, the name serial) or seriall specifics a scrial fine. The filemode must be
FCREATE. "The instance id returned is used for output; the instance id + 1 is used for input. Paramcters for
the input instance can be obtained using Queryinstance.

Bach serial line is a pair of streams, one readable and one writcable. Characters read from cach serial line
arc buflered in the kernel until a process reads from the device, but the buiTer is rather simail, so a user who is
interested in input from a serial line should keep a process “listening™ to it at all times. The serial line device
does not provide any cchoing of input characters, nor docs it convert input editing or conversion of newline
characters to a carriage return/line feed sequence on output.

'The serial device drivers support QueryFile and ModifyFile operations to allow changing such parameters
as the data rate, bits per character, and the statc of the modem control outputs IDTR and R'I'S. The necessary
message structures and constants for these operations arc defined in the standard header file <Vseriat.h). (At
this writing, the Query and Mudify operations arc not implemented in the Sun-1 scrial device driver.)

V-SYSTEM 5.0 REFERENCE MANUAL SI‘.l-{Vl“.RS

CONSOLE . ‘ 163

31.4. Console

The kernel console device is intended to provide a measure of hardware independence to programs doing
interactive character strcam input and output. The console device provides access to the console keyboard
and display of the workstation the kernel is running on, independent of the type of workstation. On
workstations whosc keyboards are connected to serial line 0, reading from the console device reads [rom scrial
line 0; on others, it reads from the port to which the keyboard is connected. Likewisc, on workstations with
frame buffers, writing to the console device draws characters on the' frame buffer; for those without, writing to
the console sends output to serial line 0. In cascs where the console uscs serial line 0, instances for scrial linc 0
and the console may not both exist at the same time,

A create instance request must specify filemode FCREATE, and name console. "The console device is a pair
of strcams, one rcadable and one writcable. As with the serial line device, the instance id returned by a
Createlnstance is writcable, and that instance id + 1 is readable. The parameters of the second instance can
be obtained using Querylnstance. Both instances are marked INTERACTIVE, but SET_PROMPT and
SET_BREAK_PROCESS arc not supported.

Consvle device input is buffered in the same way as scrial line input (sce above). The console device does
not provide any cchoing or output conversion, but it docs make an cffort to sound the workstation’s beeper
when an ASCII BEL character is output.

The consvle device is automatlcally opened by the kernel upon creation of the first team, and is ordinarily
never closed.

31.5. Null Devices

Two null devices arc available, and arc normally configured into all versions of the V kerncl. The nullin
device is a readable strcam that returns an end-of-file indication on every read attempt. The aullous device is
an endless sink for output,

V-SYSTTEM 5.0 REFERENCE MANUAL ; SERVERS

164

V-SYSTEM 5.0 REFERENCLE MANUAL

EXCLPTION SERVER

SERVERS

EXCEPTION SERVER 165

— 32 —
Exception Server

The exception server handles processes that have incurred a processor exception during their execution. [t
is included in programs that run dircctly under the V kernel by including a call to
InitExceptionServer() at the beginning of the program. This call returns the pid of the exception
server if successful, clse 0. If an exception scrver alrcady exists, InitExceptionServer () will not start
another. The pid of the exception server is also returncd by

GatPi1d(EXCEPTION_SERVER, LOCAL_PID)
The standard V cxccutives automatically start up an exception scrver.

When a process incurs an exception, it causes a trap which is ficlded by the kernel. The kernel effectively
causcs the process to send a message to the exception server with the contents of the message describing the
exception incurred. 1f there is no exception scrver, the kernel disables the faulting process by causing it to
send to itself, which permanently blocks the process.

The exception server checks to sce if another exception handler has registered for this process or an
ancostor. f so, it forwards the message to the handler. For ordinary programs, arrangements arc made for
such messages to be passed on to the V debugger (described in the V-System Commands Manual). The format
of the exception request and registration messages are defined in <Vexceptions.h>. ‘The only request types
supported are EXCEPTION_REQUEST and REGISTER_HANDLER. The REGISTER_HANDLER
request code is used both for registering and deregistering handlers. EXCEPTION_REQUEST ‘messages
should only be generated by the kernel.

If no process was registered, the exception server prints a message on the screen indicating the type of
exception, the pid of the faulting process, and the instruction, program counter and status register at the time
the cxception occurred. ‘The cexception scrver then destroys the faulting process, thus preventing it from
doing further harm. Note: the program counter may have been incremented beyond the actual instruction
incurring the exception so it should not be considered exact, although the crror message routing attempts to
find the correct PC by searching for the opeode of the instruction that was reported in the exception message.

The exception scrver and its standard message printing routine arc included in a special 'V exceptions
library. The loader may be instructed to scarch this library using the =1Vexcapt option on its command
line. The error printing routine is available to other exception handlers as

short *StandardExceptionHandler(req, pid, fout)
ExceptionRequest *req;
Processld pid;
File *fout;

where req points to the cxception request message, pid is the process id of the process that incurred the
exception, and fout is the file on which the message is Lo be printed. The routine returns the PC value at the
time of the cxception, corrected as described above.

-

V-SYSTEM 5.0 REFERENCE MANUAL : SERVERS

166

V-SYSTEM 5.0 REVERENCE MANUAL

PIPE SERVER

SERVIERS

PIPE SERVER ' 167

— 33—
Pipe Server

The pipe server is an 170 server that implements a synchronized stream file called a pipe. A pipe is a
unidircctional flow-controlled communication channel between two processes usmg the standard [/O
protocol. V pipes are similar to Unix pipes.

A pipe file instance is type STREAM, VARIABLE_BLOCK, and RH\DABI E (for the read end) or
WRITEABLE (for the write end).

{n response to a CREATE_INSTANCE request, the pipe server creates an instance of a pipe, which is
actually two file instances representing the read and write ends of the pipe. The file id returned in the reply to
the CREATE_INSTANCY request is the file id of the write end. The file id of the file instance for the read
end is onc greater than the file id for the write end. “The file instances arc owned initially by the processes
specified in the readowner and writeowner ficlds of the CreatePipeRequest. When a pipe is created, it is
allocated a fixed number of buffers between 2 and 10 as specified by the buffers ficld of the
CreatcPipeRequest. Include <Vpipe.h> in a program to define CreatePipeRequest.

Pipe synchronization provides that a request to read a block that has not yet been written is queued uatil
that block is written. Also, a request to write a block when the current buffer limit for the pipe is exceeded is
qucucd until ‘buffer space is available."* A requcst to read from an empty pipe whose write file instance has
been relcased is replied to with an END_OF_FILE reply code. When the read end file instance is released,
unread data is discarded and the data of subscquent writes to the write instance are discarded with the write
returning successfully, A pipe no longer exists when both the read and write instances are released. 'The pipe
server periodically checks that the owners of both file instances of the pipe exist. When the server determines
that the owner of an instance no longer exists, it offectively releases that instance.

‘The pipe server is located by
server_pid = GetPid(PIPE_SERVER,ANY_PID)

where the pipe scrver may be local to the workstation or located on a server node.

‘The pipe server can be compiled as an independent V program or included in another program. To include
the pipe server directly in a V program, call the function InitPipeServer() at the start of the program
and causc the linker to scarch the pipe server library when loading the program (i.c., add -IVpipe on the C
compilation command fine). ‘T'he standard V command pipeserver may be run in the background to provide a
local pipe server on any workstation. The V excecutive automatically starts up a local pipe server if there is not
onc available when a pipe is needed. '

14Actually only one reader and one writer are qucuced; the rest are replied to with a RETRY reply code.

V-SYSTIIM 5.0 REFERENCE MANUAL | SERVERS

168

V-SYSTIM 5.0 REFERENCE MANUAL

INTERNET SERVER

SERVERS

INTERNET SERVER ‘ 169

— 34 —
Internet Server

The internet server is an 170 scrver that provides network communications using any of scveral protocols.
It is essentially a protocol converter which allows applications which communicate by means of the V [/O
protocol to communicate with hosts which can only (or prefer to) be reached by some other protocol. As
such, the scrver has been structured in a manner which allows easy addition and deletion of protocols as
needed. The server consists of a general framework, which is independent of the particular protocols being
supported, and one or more protocol-specific modules. Each module implements a particular protocol and
must interface that protocol to the requirements and facilitics provided by the server’s general framework.
Currently the DARPA Internet protocols 1P and 'T'CP, and the Xerox PUP datagram protocol are supported.

34.1. Running the Internet Server
The internct server can be compiled as an independent V program, or linked into another program.

The standard V command “internetscrver™ may be run in the background to providce a local internet server
on any. workstation. The internctserver program by default will only register the server for the logical id
INTERNET_SERVER on alocal basis. Specifying the -g option to the internetserver program will cause it to
register.itsclf globally so that it can create connections for arbitrary hosts in the V system. This facility allows
local hosts to avoid spending some 100K of memory for this server. B Two additional switches are available
with the internet server. -d turns on debugging print-outs: and -q starts up a “query™ process which can be
used to query the internal state of the server from the user's keyboard. Normal users should not need to
concern themselves with these options; they are intended mainly for people who arc adding additional
protocols to the server.

To include the internct server in another V program, have it create a process which executes the function
InitInternetServer(qFlag, localFlag, debugFlag) '

int qFlag; /* Set up query process for runtime
diagnostics if qFlag is true. */

int localFlag; /* True if internetserver should be local. */

int debugflag; /* True if debug output should be printed. */

and causc the linker to scarch the V internct library when loading the program (i.c. add -1Vinternet on the C
compilation command linc). It is gencrally preferable to run the internet server on its own tcam by invoking
the internctserver program described above, rather than linking it into another program,

34.2. Accessing the Internet Server

Oncc the internct server has been started it can be accessed using the 1/0 protocol plus the protocol-specific
requests and parameters specificd in <Vact.h).

A CREATE_INSTANCE request to the internet server must specify the mode FCREATE. Tt results in the
creation of two instances, one of type READABLE, VARIABLE_BLOCK, and STRIZAM, the other of type
WRITEABLE, YVARIABLE_BLOCK, and STREAM. The parameters of the writcable instance are returned

ls'l‘his an degrade perfonmance however. For bursty applications such as telnet connections it usually not a problem.

V-SYSTEM 5.0 REFERENCE: MANUAL - : SERVERS

170 ' INTERNET SERVER

in the CreatclnstanceReply. The readable instance has an instance id equal to the id of the writcable instance
plus 1; its parameters can be obtained using QUERY_INSTANCE.

An internet server conncction is owned by the process which requested its creation. If that process should
die then the connection is aborted. Ownership of a connection can be passed on to another process by means
of the SET_INSTANCE_OWNER request.

34.3. DARPA Internet Protocol (IP)

Posscssion of an TP network instance provides a process access to the network for sending and recciving [P
packets of a specific IP protocol type. Differing IP instances are delincated by the protocol field in the IP
packets. Any protocol id value may be specified when creating the instance except for those valucs already
taken. For cxample, the valuc for I'CP, is alrcady taken by the TCP impicmentation inside the internet server
itsclf. Creating an instance with protocol 0 yields a “promiscuous” instance that receives all protocol types
which have not been specificd by any other active 1P instances.

IP network instances expect WRITE_INSTANCE to supply completely packaged [P packets.
READ_INSTANCE similarly will return complete IP packets. ‘This approach allows [P instances to remain
conncctionless in concept and thus avoids the overhead of establishing a network conacction instance for cach
different sct of 1P packet parameters. (Remember that READ and WRITE under the 170 protocol don't
allow for specification of parameters.)

To open an [P network instance, usc CREATE_INSTANCE and specify the protocol by overlaying the
IpParms structure dcfinition in Vnet.h onto the unspecified ficld of the CreatcinstanccRequest structure.
QUERY_IFILE will return the value of the protocol field for an IP instance. MODIFY_FILE has no mcaning
for these instances. A standard library routine, Openlp, is provided to allow creating an IP instance and
allocating a File structure for it, for usc with other /0 library routines.

34.4. DARPA Transmission Control Protocol (TCP)

TCP file instances created by the internet server implement DARPA T'CP byte stream connections. There
arc three minor differcnces from the specification in the DARPA Internet Handbook. First, the “push flag”
is always sct -- data written is transmitted over the nctwork as soon as possible. (Buffering of data is
performed by the 170 library routines and would thus be redundant.) Sccond, the urgent data flag is not set
as part of' a write operation. Instcad, a MODIFY_IFTLE request is used to set the urgent data {lag immediately
before a write operation containing urgent data. ‘The urgent data flag is reset immediately afler the write
operation and thus must be set using 1 MODIFY_FILE request before cach urgent data write operation.
Third, there is not concept of connection timcout provided. Connections are aborted if their owner process
gocs away.

Two variants of CREATE_INSTANCE are permitted on instances- of type TCP, corresponding to the
Active and Passive opens of the Internet Handbook. Note that the foreign host must be specified completely
when issuing a CREATE_INSTANCE request with the active bit set. A standard library routine, Open'tiep, is
provided to allow creating a 'TCP instance and allocating a I<ile structure for it, for use with other 170 library
routincs. '

Two types of relcase mode are supported for RELEASE_INSTANCI requests corresponding to the Close
and Abort primitives of the DARPA specification, respectively REL_STANDARD (cqual to U, the normal
relcase mode defined by the V 170 protocol) and REL_ABORT. Releasing the writcable instance closes the
client’s end of the connection. Data can still be read from the readable instance until the other end closes. It
is necessary to release both the readable and writcable instances to deallocate a connection.

Since T'CP supports the concept of a byte stream, the READ_INSTANCE and WRITE_INSTANCE
opcrations do not segment the data flow in any way. The presence of unrcad urgent data in the receive bufter

V-SYSTIM 5.0 REFERENCE MANUAL ‘ SERVERS

DARPA TRANSMISSION CONTROL PROTOCOL (TCP) - 171

of a TCP instance is signaled by the UrgentData reply code to READ_INSTANCE and QUERY_FILLE
requests until the urgent data has been rcad by the client. Any READ_INSTANCE requests outstanding
when a TCP connection closes for whatever reason are replicd to with a replycode indicating the reason. An
attempt to read from a closed connection is signaled by an END_OF_FILE reply code.

The QUERY_FILE operation may be uscd on T'CP instances to find out the statc of the TCP'conncection.
MODIFY_FILE may be uscd to change various parameters of the connection. The structure TepParmsl in
Vnet.h defines the parameters which can be sct both at CREATE_INSTANCE time and by means of a
MODIFY_FILE request. The meaning of the ficlds arc defined in the Internet handbook. TepParms2
defines both parameters which may be sct and state variables which may not be sct but whose values are
returned if QUERY_FILE is executed with TepParms2 specified. The parameter in TepParms2 which may
be sct is sndUrgFlag. This parameter is used to signal urgent data. The revUrgFlag ficld returns whether or
not urgent data has been sent from the remote host and not yet reccived. The bytcsAvall ficld indicates how
many bytes of data are waiting to be received by the user. The state field indicates what state the connection
is in with respect to being open, listening, cstablished, closed-waiting-for-remote-close, ctc. (see the [nternet
handbook).

34.5. Xerox PUP Protocol

Possession of a PUP nctwork instance provides a process access to the network for sending and receiving
PUP packets on a specific local PUP port. Different PUP instances arc delincated by the tocal socket ficld in
the PUP packets. (Net and host fields will be the same for all PUP packets received by the local host, of
course.) Opening socket 0 yiclds a “promiscuous”™ instance that ficlds all PUP packets whose local socket
numbers have not been explicitly registered for. '

PUP nctwork instances cxpect WRITE_INSTANCE to supply completely packaged PUP packets.
READ_INSTANCE similarly will return complcte PUP packets. 'This approach allows PUP instances to
remain connectionless in concept and thus avoids the ovcrhcad of cstablishing a network connection instance
for cach different set of PUP packet parameters. :

Since PUP instances- arc connectionless, MODIFY_FIL.E has no mecaning for these network instances.
QUERY_FILE will return the valuc of the locai socket ficld for an PUP instance. (QUERY_INSTANCE will
only return whether an instance is 1P, TCP, or PUP.)

A standard library routine, Op?:nf’up, is provided to allow creating a Pup instance and allocating a File
structure for it, for use with other 170 library routines.

34.6. Adding New Protocols

This scction should be of intcrest only to persons who wish to add an additional protocol to (or remove one
from) the internet server. It describes the specifications governing the interactions between particular
communications protocols and the general framework of the internet server,

There arc two interfaces that a protocol must deal with: the external interface o clients of the internet
server, and the internal interface o the general communications facilitics provided by the server's framework.
‘The external interface consists of the operations, message formats, ete. that the protocol must understand in
order to interface with a client’s V 170 connection. "The internal intertice consists of the routines, message
buffer conventions, ctc. that the protocol itnplementation must respectively use or provide in order to send
packets to the network and reccive packets from the network.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

172 A INTERNET SERVER

34.6.1. External Client Interface

The external interface to a protocol is dictated for the most part by the V 170 protocol specification.
Interaction betwcen a clicnt and the internet server is by means of a V [/0 coanection and the only variations
that can be cffected are by means of the QueryFile and ModifyFilc operations. Thus clients open a
connection by means of the Createlnstance operation, they read and write data by means of the ReadInstance
and WritcInstance opcrations, they determine the general statc of a connection by means of the
Querylnstance opcration, and they closc a conncection with the Releascinstance operation.

A conncction is "owned” by the client process which sent its CreateInstance request, but can be transferred
by means of a SetinstanccOwner request. The semantics of ownership are that a conncection must be aborted
if its owner process dics. One of the general facilities provided by the internet server is monitoring of the
existence of connections’ owners. Howecver, the protocul implementation module is responsible for providing
an abortion routine.

Protocol-specific intcractions are handled by means of the QueryFile and ModifyFile operations. Protocol-
specific instantiation parameters can also be specified as part of the Createlnstance operation. The QueryFile
operation is used by the client to determine the state of protocol-specific conncction variables; the ModifyFile
opceration is used to modify these variables. Thus the manner in which things such as the "Urgent Data
Notification™” facility in TCP must be implemented is the following: '

1. The client’s ReadInstance operation rcturns an exception code indicating that soincthing out of the
normal has happened.

2. The client docs a QueryFile operation to determine the protocol-specific state of the connection and
obtains the "Urgent Data Notification"” on return.

Similarly, a.client wishing to signal "Urgent Data” on a TCP conncction must do so with a ModifyFile
operation.

34.6.2. internal Protocol Interface

Protocol implementations must interface both to the external internet scrver client and also to the internal
environment of the server itself. This internal interface consists of the following components:

1. A network packet buffer module which all protocols must use. This module provides a pool of packet
buflers which have a standardized header format so that various general facilitics can manipulate them,

2. A process structure specification for the protocol. All protocol implementations must define certain
processes and be aware of the existence of certain other processes. Part of this specification is a
specification of the message interactions between these processes.

3. A sct of protocol-independent routines supplicd by the server which all protocol implementations must
usc for such things as writing packets out to the network, obtaining and returning packet buffers, ctc.

4, A sct of protocol-specific routines supplied by the protocol implementation which are used by the
general server facilitics to return incoming network packets to a connection, sighal timeout conditions,
ctc.

Thesc components will be described in more detail in the following subsections.

16‘l‘hc reason why the V 170 protocol specification has been structured in this manncr is for reasons of efficiency. The vast majority of

data read and write operations donce ‘on a conncction are done with "normal” settings for the connection parameters. By removing
parameter specification {rom the read and write operations these operations can-be exccuted morce quickly.

V-SYSTEM 5.0 REFERENCE MANUAL : SERVIIRS

A BRIEF OVERVIEW OF T1IE INTERNET SERVER'S STRUCTURE 173

34.6.2.1. A Brief Overview Of The Internet Server’s Structure
The internet server consists of the following processes:

1. A conncction-establishment process. This process registers itsclf as the internet server logical id and
waits for connection creation requests from new clients. For cach new connection creation request it
invokes a creation routine for the protocol specified in the request. This routine is responsible for
setting up a conncection and its associated data structures and handling process(es).

2. Conncction handling processes. Each protocol conncction is handled by one or more separate
processes. ‘It is up to the protocol implementation to decide how to structure the connection handling
processes for a conncction. However, onc -of these must be designated the “primary” conncction
process. ‘This process will be responsible for handling all communications with the rest of the internet
server.

3. A network reader process. The V kernel allows only one network device instance to exist at any time.
The network reader process reads packets from the network device and calls a protocol-specific routine
for cach protocol being supported. The protocoi-specific routines invoked arc respounsible for
determining which conncction of their protocol type a packet should be given to. ‘The network reader
process runs at the highest priority allowed so that it can read and multiplex incoming network packets
before they arc overwritten by subscquent packets in the kernel device.

4. Two timer processes. The first timer is a timeout timer which wakes up periodically and invokes a
timeout checking routine for cach connection. If the timcout check for a connection returns a time
which is less than the current time then a message is sent to that conncection’s primary connection
handling process. ‘the timer determines how long to sleep before waking up again by keeping track of
the minimum timeout time beyond the current time. T'he second timer checks whether any connection
owners have died. ‘A mcssage is sent to the primary conncection handling process of cach conncction
whose owner has dicd signalling that the connection should be aborted. This sccond timer wakes up
once every 5 seconds. . '

34.6.2.2. The Packet Buffer Module

The packet buffer module provides a set of routines which manage a pool of packet buffers which are used
as the medium of data transmission inside the internet server. These packet buffers arc handed between
various parts of the internct server by means of pointers (to avoid copy operations) and their header format
must be understood by all parts of the internet server.,

The header format for packet bufTers is the following:
typedef struct pbuf

{
struct pbuf *next; /* General purpose link field.*/
int length; /* Length of the data in the buffer. */
char *dataptr; . ., /* Location of the start of the
- ‘ data. */
unsigned unspecified[2]; /* Scratchpad fields. */
char data[MAXPBUFSIZE]; _ /* The actual packet buffer. */

} *PktBuf;

The next ficld alows packet buffers to be placed in various qucucing data structures, The dataptr ficld points
to the start of the data in the data array. Packets are typically constructed starting from the back of the data
array, with various headers progressively added on to the front. The unspecified ficlds are intended for
storing various packet-specific items of information. They arc used as scratchpad working arcas.
MAXPBUFSIZE must be large enough to accommodate all packets encountered by the internct server. [t is

V-SYSTEM 5.0 REFERENCE MANUAL ' | SERVIERS

174 , . INTERNET SIERVER

sct to the maximum allowed packet size of the physical network. 7

'The routines provided by packet buffer module are the following:
PktBuf AllocBuf();

DeallocBuf(pkt);
PktBuf pkt;

BufTers are handed out onc at a time by means of calls to AllocBuf(). Buffers are returncd to the free pool by
calling DeallocBuf(). These routines manipulate the buffer pool in an atomic manner; so that they can be
used from multiple processes without conflict.

34.6.2.3. Process Interactions

The implementation of a protocol connection must deal with the nctwork reader and the two timer
processes in a prescribed manner. In order for these processes to know whom to send messages to cach
connection must have a "primary” process associated with it. The process ids of these primary processes are
stored in a global data structure maintained by the internet server which contains one entry per connection.
The details of this data structure will be described in a later subsection,

Network Reader Interactions

The network reader process must run at high priority and cannot afford to do much processing because it
must always be rcad¥ {0 accept incoming network packets before they are overwritten in the kernel device by
subscquent packets. 8 ‘I'his has lead to an interface format between the network reader and the various
connection handling processes where communication is by mecans of atomically updated qucucs of packet
buffers. The network reader process enqueues packets for a connection by calling the FnQueueSafe() routine,
which places a packet in a specified connection queuc. This routine is non-blocking (i.c. no message traffic:
involved) so that the reader process can immediately continue on to process any additional packets that may
have arrived from the network. The connection handling processes then remove packet buffers from their
queucs by calling the DeQueueSafe() routine. The definitions for these two routines arc as follows:

EnQueueSafe(pkt, q)

PktBuf pkt;
RingQueue *q;

DeQueueSafe(q)
.RingQueue *q;

RingQueucs arc atomically updated quecucs which arc defined in the general internet server module. They
must be initialized with calls to the InitSafeQueue() routine:

InitSafeQueue(q, ringBufs)
RingQueue *q; /* Queue header. */
RingBufRec ringBufs[]; /* An array of MAX«RING+BUFS queuse
records. */

RingQuecucs consist of the following two data types:

17Nolc that there is only one packet buffer size for the entire internet server. A single bufler size was chosen primarily for reasons of
simplicity. Fixtending the packet bulfer module to handle multiple buller sizes would not be difTicult. ' Y

18l.c. it must be able to keep up with the (possibly many) hosts that arc sending it packets.

V-SYSTTM 5.0 REFERENCE MANUAL STRVERS

PROCESS INTERACTIONS 175

typedef struct

RingBuf head;
RingBuf tail;
} RingQueus;

typedef struct RingBufType

PktBuf pkt; :
struct RingBufType *next;
} RingBufRec, *RingBuf;

The RingQucue structure defines a header record for the queue. ngBuchcs arc the actual qucue clements,
and are placed in a circular list by the InitSafeQueuc() routine.”? The pkt ficld of a RingBufRec is used to
point to the packet buffer which is enqueucd by it.

Note that at most MAX — RING — BUFS packet buffers can be enqueued in a RingQueue. EnQueucSafe()
returns Q if it can’t enqucuc a packet buffer.

There is- onc caveat to the above description of how the network rcader interacts with individual
connecti%ns., The primary conncction handling process for a connection may be blocked waiting on client
requests so that the packet buffer queue cannot be processed until a request message is received. To take
carc of this case cach primary conncction process must also sct a variable indicating whether it is blocking
awaiting clicnt requests or not. The network reader checks this variable when enqueucing a packet for a
connection and sends the connection a "wakcup™ message if it is blocked. The process receiving the message
must reply immediately to this message in order to minimize the time that the network reader is blocked.

Anaother point to be made here is that the actions for the network reader described above (i.c. invocation of
EnQueueSafe() and checking to sec if a "wakeup” mcssage must be sent) are actually part of the protocol-
specific "network reader” routine that cach protocol must supply as part of its inplementation, This will be
described in more detail later.

Timer Interactions

The two timer processes communicate with conncctions by means of "timcout” messages. Whenever a
timcout condition is detected by a timer process it sends a message to the relevant connection process
indicating that a timcout condition has occurred. The message format employed is the following:

struct timeoutMsg
{
SystemCode requestcode; /* Standard message r'equest code
. field. */
short unused; ‘
unsigned timeoutCondition; /* Which timeout has occurred. */
unsigned unusedi{6];
}: .
The requesteode ficld is the same as that used for all other message requests. However, instead of a
"standard” V 1/0 protocol request code an internct server-specific request code signalling timeout is used.
The timeoutCondition ficld specifics which timcout condition has occurred.

19Thc reason why a circular queuc of this form is needed stems from the problem of maintaining these qucucs in an alomic manner,

Ihc protacol implementations to date have consisted of a single proccs.s per conncction which alternately waits on client requests
and processes it packet buffer queue,

V-SYSTEM 5.0 REFERENCTE MANUAL - SERVERS

176 : ' INTERNET SERVER

34.6.2.4. Protocol-independent Interface Routines and Data Structures
Global Data Structures

There is one global data structure that must be maintained by all active connections in the internct scrver.
This is the NetlnstTable, which contains an entry for cach conncection specifying various V 170 protocol-
specific parameter values, the process id of the primary conncction handling process, and a poiater to a
control block associated with that connection. ‘The V [/O protocol paramcter intormation is used by the
Queryinstance() routine for answering Querylnstance requests about conncctions. Lrhe process id is uscd by
the network reader and timer processes to find the primary process for a given connection. The control block
pointer is used to access connection-specific information. It is intended for use by the protocol-specific
network reader and timeout checking routines.

The primary manner in which connections manipulate the NetInstTable is through the following two
routines:

int AllocNetInst(prot, ownerPid, pid, rblocksize, wblocksize, tcBId)

int prot; /* Connection protocol type
(TCP, PUP, etc.) */

ProcessId ownerPid; /* Process id of owner .of the
connection. */

ProcessId pid; /* Process id of primary connection

_ handling process. */
int rblocksize, wblocksize; /* Block sizes for resp. read and write
' V I/0 connection instances. */
unsigned tcbld; /* Pointer to the control block for
this connection. */ '

DeallocNetInst(index)
int index; /* Index of NetlInstTable entry to
‘ deallocate. */

AllocNetInst() returns an index into the table where the newly allocated entry has been placed. Individual
ficlds can then be set by indexing through this value into the table. (E.g. SctinstanceOwner requests would be
dealt with in this manncr.) :

Fach protocol implementation is cxpected to ecmploy these routines to manage the NetlnstTable in a correct
manner. Le. allocation and deallocation of NetlnstTable entrics is not done automatically by the server's
general facilitics. :

Useful But Not Essential Routines

The internet server provides several generally uscful but not essential routines which may be employed by
protocol implementations if they so chose. These include the following:

ZLl'hcsc requests are actually dirceted at the connection handling processes themselves, implying that cach connection could employ
its own Querylnstance routine. [lowever no benefit would be gained by such duplication.

V-8YSTEM 5.0 REFER{ENCE MANUAL Sl?liV!-‘.RS

PROTOCOL-INDEPENDENT INTERFACE ROUTINES AND DATA STRUCTURES 177
SystamCode QuerylInstance(rqMsg)
QueryInstanceRequest *rqMsg;

Boolean InvalidFileid(rgMsg)
IoRequest *rqMsg;

ReplyToRead(replycode, pid, packet, bufferPtr, length)

SystemCode replycode; /* Reply code to send to a reader. */
ProcessId pid; /* Process id of the reader. */
PktBuf packet; /* Packet buffer containing data to

return to the reader. NULL if

. there is no data to return., */

char *bufferPtir; /* Address of reader’s buffer, */
int length; /* Length of data to return. */

QueryProcess()

QueryInstance() rcturns the state of a'specified network connection. Itis V 170 protocol-specific and hence
independent of the particular network protocol being supported by the other end of the conncction. [t
obtains its information from the NetinstTable entry for the connection. Connections arc specified in the
request message in the same manner as with all other V [/0 conncections, namcly by a fileid.

InvalidFileid() checks whether the fileid: ficld in a client’s request message is reasonabie; i.c. whether it maps
to an c¢xisting connection entry in NetlnstTable which is in use. All incoming clicnt requests should be
checked with this routine to avoid corruption of other connections' control blocks.

ReplyToRead() is a generic routine for replying to a client’s read request. It performs the MoveTo
operation necded to move data from a packet bufter to the client’s read bufter and packages an appropriate
reply message.

QueryProcess() is a routine which runs in its own process and is used for dcbtxgging. It provides a means
for examining and changing the state of the internct scrver while it is in operation.

34.6.2.5. Protocol-Specific Interface Routines and Data Structures

"T'here are two types of protocol-specific routines that a protocol implementation must provide: network-
level routines and conncction-fevel routines. Network-level routines are used by the network reader process
to multiplex incoming network packets to the correct connection. Connection-level routines arc used to
initialize a protocol, create a new conncection and interface with the connection timeout checking process.

Protocol implementations are usually done for protocol families rather than individual protocols. For
cxample, the current internet server implements both the IP and the 'TCP Internet protocols. However, rather
than implementing these two protocols as separate modules, they are implemented together, so that the TCP
module can make use of facilitics alrcady defined by the [P module. This results in a situation where only the
1P module intcrfaces with the network layer and the 'TCP module intertaces internally to the 1P moduie. Thus
the 1P/7TCP protocol family implementation has three interfaces to the rest of the internet server rather than
four: it has a single network-level interfuce and a connection-level interface for both 1P and 'TCP respectively,

Protocol-specific interface routines are accessed by the genceral server facilitics through function tables
indexed by protocol type. There are two such function tables, onc for the network-level routines and one for
the connection-level routines. The format of these tablces is described below.

Network-level

The network-lcvel function table is called PnetTable and is defined as follows:

V-SYSTUM 5.0 REFERENCE MANUAL - SERYERS

178 ' INTERNET SERVER

struct PnetBlock

{
unsigned prot; . /* Network protocol type. */ ‘
Boolsan active; - /* True if a network connection is
active for this protocol. */
int (*initNetProt() (): /* Initialization routine for this
‘ protocol., */
int (*rev) (); /* Receiving routine for this

protaocol. */
} PnetTable[NumPnetProtocols];

The first two ficlds are actually not functions. The prot ficld is used to store the network protocol type id so
that the network rcader process can figure out which table entry to use for a given network packet.

The active field is used to allow the network rcader process to "short circuit” discarding of broadcast and
invalid packets for inactive protocols. Without this ficld the reader process would have to call the rev()
routine for these packets since it can't tell itself whether they should be discarded. The active ficld is
managed through the following two routincs:

ActivateNetProtocol(prot)
int prot;

DeactiveateNetProtocoli(prot)
int prot;

prot specifics which table entry to access. _
Associated with the active ficld is another table, called Netl.evelProtocol, which is used to map from
conncction protocols to the network-level protocols which support them. For exampile, the IP/T'CP protocol

implementation described previously would designate both [P's and TCP's network-level protocol as being
1P, The definition of the table data structure, along with an cxample initialization is as follows:

int NetLeve]Protoco1[NumProtoéols] =

{
0, /* IP */
0, ‘ /* TCP */
1, , ‘ /* PUP */
}:

The index of cach entry corresponds to the index of the correspoading protocol entry in the Func'Table table.
‘The contents of cach entry is the index of the corresponding network-level protocol in the Pnet'Table table. -
Thus, in the example shown, the FuncTable defines the 1P protocol at index 0, the 'T'CP protocol at index 1,
and the PUP protocol at index 2. ‘The PnetTable defines the IP network-level protocol at index 0 and the
PUP network-level protocol at index L2 I'hc initNetProt ficld specifics an initialization routine for the
protocol which is called at server boot time. .

"The rev ficld specifics a routine which is called whencver a network packet arrives which has a protocol type
cqual to that specified in the prot ficld of the entry (and the active ficld is true). This routine is responsible
for figuring which conucction of its protocol, if any, should receive the packet. I a conncction is found then
the routine i3 responsible for cnqueucing the packet in that connection’s RingQueuc (using the
EnQueneSale() routine) and for checking to make sure that the connection’s process(es) will actually be able
to process the enqueued packet bufler. (l.e. if the connection’s process(es) are reccive-blocked awaiting client
requests then the routine must send a message to “wake™ them up.) Packets for which no connection is found
must be returncd to the free butfer pool with a call w DealloeBuf().

22Ihc actual inlernet server code uses manifest counstants instcad of integers o {ill these fields - making things much more rcadable.
However, to illustrate the principle, no manilests were employed.

V-SYSTEM 5.0 REFERENCE MANUAL Sli]iVl"fRS

PROTOCOL-SPECIFIC INTERFACE ROUTINES AND DATA STRUCTURES 179

The interface definition for the initNetProt() and rev() routinges is as follows:

InitNetProtocol()
ReceiveProtocolPkts(packat)
PktBuf packet; /* Ptr to the incoming network
packet. */

where InitNetProtocol() and ReceiveProtocolPkts() arc example namcs.
Connection-level

The connection-level function table is called FuncTable and is defined as follows:
struct FuncBlock '

int (*InitProtocol) ();
SystemCode (*CreateConnection) ();
int (*NextTimeout) ();

} FuncTable[NumProtocols];

The InitProtocol ficld specifies an initialization routine for the protocol which is called at server boot time.

The CreateConnection field specifies a routine which is called by the conncction-cstablishment process
when a client requests the creation of a new connection instance. 'The routine must create the data and
process structures for a new connection and then handle the Createlustance request from the client.® This is
usually also the place where a call to the ActivateNetPProtocol() routine is made to bagnal that the plotocol is
active. .

The NextTimeout ficld specifics a routine which is called by the timcout checking timer process. . This
routine returns- the time of the next timeout for its connection. [f that time is alrcady past then -the timer
pmmwwM%mMUmwmm%mwunmammwmnpmmwpmaw mmmmmmmstﬁmammmc
aceessed through the tebld field of the connection’s Netlnst Table entry.

The interface definition for the InitProtocol(), CreateConnection(), and chtllmcout() routines is as
tollows:

InitProt()

CreateProtConnection(reqMsg, clientPid)
CreatelnstanceRequest reqMsg;
/* Createlnstance request message sent
by a the client. */
ProcessId clientPid; /* Process id of the client. */

NextProtTimeout(tchbId)
unsigned tcbld; /* Ptr to the control block for the
connection. */

where 1nitProt(), Createl’rotConnection(), and NextProtTimeout() are example names.

23‘111:: method recommended for doing this is to have the routine create the connection handling prncc:v;(cs) and then forward the
Createlnstance request to the conncection's primary process. This allows the connection handling process(cs) o manipulate their own
data structures (which are typically kept on the process(es)” stack(s)).

V-SYSTEM 5.0 REFERENCLE MANUAL SURVERS

180

V-SYSTIEM 5.0 REIFERENCE MANUAL

V STORAGE SERVER

SERVERS

V STORAGE SERVER ‘ 181

— 35 —
V Storage Server

The V storage server is a file system that implements the V 170 protocol. It is intended to run on a "server”
machine with mass disk storage, thus providing filc access for users on the network. [t provides an altcrnative
to the Unix Server for file storage. It implements a hicrarchical name space with a syntax very similar to that
of the UNIX file system (i.e. pathname components are scparatcd by a "/"). Additionally, there is no
distinction between files and directorices in the V storage scrver (i.c. any file can "act” like a dircctory in that it
can have descendents in the trec structure). ' '

One word of caution is that the V storage scrver is still at an "experimental” stage, thus providing limited
access facilitics and no protection. Hence, uscrs requiring robust file access and proteciton should use the file
storage provided by the Unix Scrver. The robustness of the V storage server sofiware is cxpected to greatly
improve in the near future,

35.1. Running the V storage server

One can start up the V storage server from within a V executive by typing
storageserver '
or -
storageservar devicename

If no device name is spccified, the storage scrver attempts to open two devices, [device]disk0 and
[device]diskl. Non-existence of a second device does not affect correct operation of the program. Note that
the devices must be attached to the workstation from which the command is invoked and the kernel running
on the workstation must include the proper disk driver (sce the Kernel Scction for details on which kernel’
should be booted). ‘

35.2. Accessing the V storage server

When the V storage server is started it registers itsclf as VSTORAGE_SERVER. Thus, before a client can
communicate with the V storage scrver it must do a Getlid(VSTORAGE_SERVER, ANY_PID). This
function returns a pid to which a client will send its CREATE_INSTANCE request messages.

A CREATE_INSTANCE request causes the server to attempt to open the named file. Files opened in
FREAD mode arc of type READABLE, FIXED_LENGTH, and MULTI_BLOCK. The modes IFCREATE
and FMODIFY create instances of type READABLL, WRITEABLE, and MULTI_BLOCK. FFAPPEND
mode adds the further constraint of APPEND_ONLY. All instances are random access, but operations must
start on a block boundary.

If the mode is FCREATE, and the file docs not exist, then a new file is created along with the associated
instance. The permission bits of the new file will be the same as those of its parent node in the directory tree
structure.

If a CREATE_INSTANCE request is successful, a file instance identi fier is returned by the scrver that is
used by the client for all subscquent aceesses to this instance. [n addition, the server returns a file instance
server pid which is the process o which all subscquent 170 requests will be directed, This pid is different

V-SYSTIM 5.0 REFERENCE MANUAL ‘ - SERYERS

182 V STORAGE SERVER

than that of the main server because one process (namely, the one registered as the VSTORAGE_SERVER)
handles CREATE_INSTANCE requests and other processes handle [/0 requests.

Once an instance has been created, a client can perform [/O operations on the file represented by the
instance using READ_INSTANCE and WRITE_INSTANCE requests. Thcesc requests, if legitimate, result
in the file instance server carrying out the desired tasks. When a client is finished accessing a file, it closes the
file by issuing a RELEASE_INSTANCE rcquest.

The V storage server supports many other types of requests including ones to create, remove, and rename
files and most other relevant requests associated with the V 170 and naming protocols. Note that many
applications nced not be concerned with message types and formats as actual message construction usually
takes place within V commands and standard library routincs. For example, CREATE_INSTANCE,
READ_INSTANCE, WRITE_INSTANCE, and RELEASE_INSTANCE requests are encapsulated in the
library routincs Open(), Read(), Write(), and Closc(), respectively.

35.3. Creating a context for the V storage server

In order to provide casy access to the V storage server and its dircctories, it is convenient to define a context
for it using the def ine command. Oncc this is done, onc can simply cd to the newly created context and
subscquent relative pathnames will be interpreted relative to this context.

Thus, for cxample,
define ss [storage]
results in a context being defined for the V storage server, and
cd [ss]
causcs the user’s current context to be changed to its root directory.

PRT N

V-SYSTEM 5.0 REFURENCE MANUAL SERVERS

UNIX SERVER ' 183

— 25 —
Unix Server

The V Unix server is a Unix2? program (and not a V program or command) designed to simulate a V
kernel/storage scrver on a VAX</Unix system. [t provides access to some of the Unix system scrvices via the
V kerncl! interprocess communication primitives. To workstations running the V kernel, the Unix server
appears as a standard V server, primarily providing Unix file access using the standard V 170 protocol,

GetPid(UNIX_SERVER, REMOTE_PID) returns the pid of a Unix server accessible to this workstation.
With more than one, GatP1id() returns the pid of the first Unix server to respond to the request. This is the
pid of a public Unix server. Public Unix servers also register themselves under the logical pid
STORAGE_SERVER. A public storage server is the definitive source for all the standard system files and
commands whereas hosts that run non-public storage servers are not required to be kept up-to-date.

36.1. Sessions

The public Unix server provides access to all files on a Unix host that are publically readable (in Unix
terminology, “readable by others™). To get access to other files, a client must create a session with the Unix
server. 'To create a session, the client sends a CREATE_INSTANCE request to the server, with the mode ficld
set to FSESSION+ FCREATE. The name ficld of the rcquest contains a Unix user name and password
(separated by a NULL character). The reply message will contain the process id and instance id of the scssion.
The process id allows the client to communicate dircctly with the session. The scssion provides scveral Unix
system services, all running under the access privileges of the Unix user specificd in the
CREATE_INSTANCE request.

The initial owner of a session is specified by a server-specific field in the CREATE_INSTANCE request.
"The format of this request is dctuu.d in the standard header file {Vsession.hd,

The operations SET INSIANC} _OWNER and RELFASE_INSTANCE arc mc‘mmgful on scssion
instances. Other 170 protocol operations arc currently not suppoltt.d Releasing a session instance terminates
the scssion and invalidates its process id.

36.2. File Access

When a CREATE_INSTANCE request is reccived by the server (or session), and there are no special mode
flags sct (such as FSESSION), it attempts to open the named file. As was mentioned carlicr, the file must
have others access privileges in order for it to be opened by the main server. Also, the main server docs not
allow creation of new files, or writing to any file. A session, on the other hand, has the same access privileges
as the Unix user that (.rcatcd it.

[f the client has the ¢ orrcct pcrmmlom then an instance is created, with the sype ficld sct m.cmdmg to the
request mode. Files opened in FREAD mode are of typc READABLE, FIXED_LENGTH, and
MULTI_BLOCK. The modes FCREATE and FMODIFY create instances of type READABLE,

24Ule is a tradainark of Bell { aboratorics.

25VAX is a trademark of Digital iquipment Corpoml.ioh.

V-SYSTEM 5.0 REFERENCE MANUAL - SERVERS

184 UNIX SERVER

WRITEABLE, and MULTI_BL.OCK. FAPPEND mode adds the further constraint of APPEND_ONLY.,
All instances are random access, but operations must start on a block boundary. The block size of these
instances is equal to the maximum appended segment size for V kernel messages.

If the modc is FCREATE, or it is FMODIFY and the file does not exist, then a new file is created along
with the associated instance. Files arc created with Unix file protection bits (“mode bits™) set to allow reading
and writing by the owner, and reading by group and others. A clicnt may change the mode bits using a
WRITE_DESCRIPTOR or NWRITE_DESCRIPTOR request.

36.3. Program Execution

A client can exccute Unix programs through a V session by sending a CREATE_INSTANCE request with
the FEXECUTE flag set in the mode ficld. The namc and arguments of the program to be exccuted are sent
in the scgment with the NULL character being a ficld scparator. The last argument nced not be nult
terminated. The context in which the program is to be exccuted is also specified in the request.

Given_a request, the session has a built-in search path that it uses to determine which Unix program to
exceute.?® The session tries to find the first file in a directory along the scarch path that matches the given
name. If the name contains a */°, then the scarch path mechanism is not used and only the context specified in
the request is scarched. If the program is a shell script, the Bourne shell is invoked explicitly, and it
dctermines which shell should exccute the script based on the normal Berkeley Unix conventions. As a
side-cffect, the shell expands any wild-card characters (such as ™ and *?") found in the arguments. ‘This
expansion docs not occur if the Unix program is not a shell script.

After all of the preliminary cheeking is done, the session forks and its child attempts to run the program.
The parent process replics to the requestor with an OK status. However, there is no guarantee that the
exccution will be successful. A failure can occur after the OK reply has been returned, since the program is
not loaded until the child has been forked oft and the reply is sent asynchronousty. 1f a failure of this nature
occurs, then aa error message should appear in the program’s output. :

[n the reply message, the session includes an instance id for the running program. If the file modc in the
CREATE_INSTANCE request was FREAD, then the instance id specifics an instance of type REAIDABLE,
VARIABLE_BLOCK, and STREAM. ‘The client can read the program’s standard output using this instance.

If the mode was FCREATE, FMODIFY, or FAPPEND, then the instance returned in the reply message is
of type WRITEABLE, VARIABLE_BILLOCK, APPEND_ONLY, and STREAM. Data written into this
instance is piped into the program’s standard input. An instance with id 1 greater than the one returned in the
reply is also created, of type READABLE, VARIABLE_BLOCK, and STREAM. Rcading from this instance
provides access to the program’s standard output.

When the program terminates (cither normally or abnormally), the session returns an END_OF_FILE
reply to any write requests. Read requests will continue to be accepted as long as data is left in the pipe.
Write requests will block if the pipe is full and the Unix program is not reading from it. (Unix pipcs can
bufler up to 4096 bytes of data.)

A client may terminate the program by releasing all instances associated with it. 1f only onc of the instances
is closed, then program will not terminate immediately. ‘This allows a client to close the program’s input and
have it clean up betore exiting. One should be careful not to release the readable instance before program
termination, because Unix sends a signal to any program that writes to a pipe with only onc end. ‘The signal
will kill the Unix process, if the process is not catching or ignoring it.

Zﬁ!o find out the search path used’in your installation, cxccute the Unix conunand printenv. This will display the environment
variables (that are passed on (o programs exccuted vm the session,

V-SYSTEM 5.0 REFIERENCE MANUAL . SERVERS

FILE DISCRIPTORS ' 185

36.4. File Descriptors

The server supports the V context directories and descriptor requests. One can open a Unix dircctory with
the FDIRECTORY flag set in the mode field and the server will automatically translate standard Unix
directory entries to V Unix file descriptors. Directorics are not writcable dircctly, but descriptors can be
modified using a WRITE_DESCRIPTOR or NWRITE_DESCRIPTOR request. The UnixFileDescriptor
type is defined in the system include file, <Vdirectory.hd. '

36.5. Server Name Lookup

A client can get the pid of any Unix server by sending a LOOKUP_SERVER request to another Unix
server. The request and reply formats arc as follows

requestcode LOOKUP_SERVER

hostname Pointer to the character string name of the host on which the scrver is mnn\ing.
namclength Length of the host name,

replycode Standard system reply code.

serverpid Process id of the scrver.

The hostname ficld of the request gives the name of the host machine that the requested server is running
on. Theserver's pid is returned in the serverpid ficld of the reply message. These message formats are defined
in the standard include file <Vscssion.h>. :

V-SYSTIEM 5.0 REFERENCE MANUAL | SERVERS

186 SERVICE SERVER

V-SYSTIM 5.0 REFERENCTE MANUAL SERVERS

SERVICE SERVER 187

— 37 —
Service Server

37.1. Overview

The service server provides a means for managing globally visible servers and services. [t provides facilities
for registering arbitrary objects (typically entrics which describe the state and contact address of a server or
service) and also for selecting a subsct of these registered objects for retricval. "The selection facilities take a
client-specificd pattern and match it against the information in cach registration entry to determine whether
that entry should be included in the retrieval sct.

Since any kind of object can be registered, the server is in fact a general "switchboard” service which can be
used for arbitrary “rendevous” between two or more clients. However, the primary usage of this server is
intended to be for management of global servers and services: and the sclection. facilitics provided for
retricving registered objects have been structured with this goal in mind.

37.2. Registering an Object

Objects arce registered with the service server by means of the RegisterServer() library routine. This
routine packages a registration descriptor into a message and sends it to the service server. Registration is on
the basis of an object name and an object type. Object type essentially represents a subcontext within the
scrvice server and all objects of a given type must be registered using the same registration entry: record
structure. Object name distinguishes between the various registered objects within a given object type. All
sclection and listing of registered objects is done with respect to a given object type.

The scrvice server maintains the concept of an owner for the objects registered with it. Registered objects
are unregistered when their owacer dics. This is achicved by having the server periodically check cach
registered object’s owner's process id to see if it is still valid. The ownership of a registered object can be
changed using the standard SetInstancaOwner() library routine,

The format of the registration entry for a particular object type is left to the client. “Thus an entry can store
arbitrary sorts of information in it. However, in order to be able to perform sclections of registered objects on
the basis of information contained within their descriptors the formats of the relevant descriptor ficlds must
be known to the service server’s pattern matching facilitics. 1o support this, scveral well-known descriptor
formats have been defined in the Cinclude file Vservica . h. These record structures arc actually descriptor
format prefixes since the client can append arbitrary numbers of additional ficlds on the end of the descriptor
structurc which contain information not used in the sclection proccss.

There arc various well-known object types (and associated registration descriptor formats) which are
defined in Vservice . h. ‘These are utilized by various existing facilitics such as the team servers of all hosts
throughout the system.

Objects can be unregistered by means of the UnregisterServer() library routinc. Objects already
registered can be reregistered with a new descriptor entry by simply invoking the RagisterSarver() a
second time. The service server will automatically remove the originai entry, -

The service server has a well-known multicast group associated with it which it uses to send out requests for
status update when it first starts up. This allows it to reinitialize itself after crashes and other such events, The
well-known multicast address is defined in the Venviron, h header file.

V-SYSTEM 5.0 REFERENCE MANUAL - . SERVERS

188 ' A SERVICE SERVER

37.3. Listing Registered Objects

All registered objects’ descriptors of a given type can be listed using the standard V dircctory listing
protocol. Similarly, a single registered object’s descriptor can be listed using the NReadDescriptor request
defined in this protocol. ‘I'he format for specifying an object is

object-type: object-name

If no object type is specified in the CreateInstance rcquest message then all registered objects are
returned. :

Since the service server understands the V directory listing protocol it is possible to use the 1istdir() and
11stdesc() programs to query it from the exec level. Thus, for example, the status of all running hosts
within the system can be found out by typing

listdir [service]host
to the V excc to query the well-known object type host.

37.4. Retrieving Sets of Registered Objects

Sets of registered objects are retricved from the service server by means of a combination of service
server-specific library routines and general V-1/0 protocol library routines. ‘The basic idea is to cstablish a
connection instance, just as for a V-170 protocol connection, through which the descriptors of the sclected
objects are read as if they constituted a scparate file unto themselves. ‘The selection instance is created using
the CreateSelactionInstanca() routinc, which specifics which set of objects to retrieve. The instaace
is subsequently treated just as if it were a standard V-1/0 instance; which can be read using standard library
routines such as Read() and is relcased using the standard library routine Close (). The only difference is
that the first descriptor associated with the selection instance is immediately returned by the
CreataSelectionInstance opcration. :

Since there are many cascs where one wants only the first object returned fom a sct of selected objects (e.g.
the first host from a sct of hosts cligible as remote exccution sites) a means is provided by which a single
object descriptor can be retricved without incurring the cost of cstablishing a sclection instance. One of the
parameters to CreateSelectionInstance allows onc to specify whether one or more than one objects is
to bc returned. If only one is specified then no conncction is | established and
CreateSelectionInstance mercly returns the desired descriptor record.

Sclection of objects is based on the specification of both a retricval pattern and a pattern matching function,
As mentioned before, all selection is done strictly within a given object type. ‘The pattern matching function
to spccify is determined by the format of the descriptors for the desired object type. ‘The include file
Vservice.h contains a list of all available pattern matching functions and descriptions of the descriptor
formats they expect to use. ‘This include file also contains a description of the form that retrieval patterns
must take as a function of which pattern matching function is to be used.

V-SYSTEM 5.0 RIETFERENCLE MANUAL SERVYERS

EXEC SERVER 189

— 38 —
Exec Server

The excc server is central control facility for all instances of the V system cxecutive on a workstation. Its
purpose is to allow sharing of code and data (such as aliascs) among all cxecutives. The intention is that while
each executive is a separatc command stream, all exccutives on the same workstation should present the same
command interface to the user. That includes customized aspects of that command interface, such as aliascs.
Since the exce server is part of the basic equipment of the V system, such customizations do not vanish gven if
the terminal agent is replaced, but as long as the user is logged in.

The excc server is located by
GetPid(EXEC+SERVER,LOCAL+PID

It is present in all the standard configurations of the Vsystem.

The excc server allows programs to have instances of the executive (usually referred to simply as "execs™)
created and destroyed. An cxec is known to the server by its exec id; exce ids arc small integers starting at
O. There is currently no concept of ownership of exccs-any program can destroy any cxce regardless of
whether it created it or not.

The following requests arc supported.

CREATE—EXECCreates an cxccutive, with standard i/0 and context specificd in the request message, and
returns the exce id.

START—EXEC Under some circumstances an exee is not started by the CREATE—EXEC request,
" becausc the requestor needs to do some SetlnstanceOwner operations first.,
START = EXIEC then allows the excc to start running. Normally all this is transparent and

is handled in Createlixec,

DELETE—EXEC Delcte an cxccmivc,, If there is a program running under it, it is abruptly stopped due to
the death of its parent process.

KILL—~ PROGRAM
Kill the program running undcr an exccutive. [Ff there was no program runnmg under that
exccutive, nothing happens.

QUERY —EXEC Returns information on an cxccutive: its status (free, loading a program, or running a
program), its process id, and the process id of the program running under it, if any.

CHECK - EXEC Makes a check of all exceutives. IF the standard input server or standard output server of
-~ an cxec has died, the exce is destroyed. ‘This is used mainly when changing terminal
agents.

V-SYSTIM 5.0 REFERENCE MANUAL - SERVLERS

190 ' TERMINAL AGENTS

V-SYSTEM 50 REFERENCE MANUAL ‘ SERVERS

TERMINAL AGENTS 191

— 39—
Terminal Agents

Terminal agents are a generic class of sesrver used in the V system. A terminal agent has the duty of
mediating between the terminal hardware, the user, and the other programs in the system, [t is responsible
for line cditing functions,e.g. the fact that the back space key does not add a backspace character to the imput
stream but deletes a character from the imput stream, [t translates the newline character "\n’ into a carriage
return/lincfeed sequence on terminals that require it. It is also responsible for interacting with the exec scrver
to create at least onc exccutive, or providing means for the user to do so. It may, but nced not, support
multiple i/o streams. Terminal agents may differ for two rcasons: because they are designed to offer different
services to the user, or because they are designed to run on different types of terminals.

The V system currently contains two different terminal agents, the Simple Terminal Server (sts) and the
Virtual Graphics T'erminal Server (vgts). ‘I'he Simple Terminal Server is a minimal terminal agent. 1t
providces a single i/0 stream, using the terminal fucilitics provided by the firmware monitor of the workstation,
and creates onc cxecutive using that i/o stream. ‘The standard V linc editing interface is provided, but no
mousg or graphics facilities are available. ‘The Virtual Graphics Terminal Scrver, in contrast, provides a very
large set of facilities: multiple i/0 strcams in multiple windows, graphics, and mouse-controlled menus. But it
supports the same line cditing facilities. A large class of programs should be able to run under either of these
terminal agents, or any other terminal agent, without any knowledge of which terminal agent is present.

The newterin command allows the user to replace the terminal agent on his workstation without rebooting
the workstation. , '

39.1. Implementation of Terminal Agents

These arc the requests that should be supported by a terminal agent, at the minimum . [t should support
the V 170 protocal for INTERACTIVE STREAM files. In simple cases, it may give polite replics
CREATE~INSTANCE and RELEASE—INSTANCE!] without really doing anything, as the sts docs. 1t
should also support the MODIFY = IF11LE request in the fashion expected by ModifyPad: it sets the pad
mode, with a combination of bits controiling such features as line cditing, cchoing of input, and translation of
\n to carriage-return/linefeed. In particular,Modily Pad(file,0) should turn oft all such fcatures, giving the
client access to the raw, unadorned terminal.

The following conventions should be observed, in order to allow the newterm command to work: Upon
starting up, a terminal agent should define the context [screen] with itself as the server, 1t should also support
the GetRawlO request message, in which the terminal agent tells the client the server and instance id’s for its
own standard input and output. Presumably these refer to the raw terminal.

V-SYSTEM 5.0 REFERENCE MANUAL SERVIIRS

192 VIRTUAL GRAPIICS TERMINAL SERVER

V-SYSTEM 5.0 REFERENCE MANUAL . SERVERS

VIRTUAL GRAPIIICS TERMINAL SCRVER - 193

— 40 —
Virtual Graphics Terminal Server

The Virtual Graphics Terminal Service (VGTS) allows the display of structured graphical objects on a
workstation running the V system., This chapter describes the internal structure of the VGTS. The SDF
manager was originally written by “Rocky™ Rhodes, incorporated into the Yale program by Tom Davis, and
converted to usc-the V kernet by Marvin Theimer. The current VGI'S is the work of Bill Nowicki.

40.1. Current VGTS Versions

There arc currently two working versions of the VGTS. sun100vgts is used on workstations with SMT
model 100 framcbuffers, while sun120vgts is used with the SMI model 120 framcbuffer. Uscrs usually will
not have to concern themselves with this, since teami-vgts (the default first tcam) automatically loads the
correct version of the VG'I'S. Furthermore, the program vgts is a 'bootstrap’ program which loads the
correct version of the VGT'S (in a new tcam), and then dics. Thus, “vgts™ can be given as an arguimnent to
newterm(scc Scction 4), regardless of the framebuffer type.

The difference in VGTS versions is important, however, when loading special first teams that have a VG'T'S
alrcady linked in. tcaml-+sunlOOvgts] will run only with a SMI model 100 framecbuffer, and
tcaml +sunl20vgts] only with a model 120 framebuffer.

40.2. VGTS Philosophy

The central concept of the VGTS is that application programs should only have to deal with creating and
maintaining abstract graphical objccts. The details of viewing these objects are taken care of by the VGTS.
This is in contrast to traditional graphics systems in which users perform the operations directly on the screen,
or on an arca of the screen referred to as a viewport or window. ‘The types of objects managed by the VG'I'S
are discussed in more detail in the VG'I'S chapter of the library manual.

40.3. VGTs, Views, and Instances

Once the VG'I'S client has defined some graphical objects, it also needs to provide information on which
objects can be viewed. Every VGT is an item (usually a structured symbol) that is associated with one or more
views, that actuaily appear on the screen. Each VGT can exist in 7zero or more views, but cach view has exactly
one VGT associated with it. "The "SDF Nuwnbers™ can be thought of as separate object definition spaccs, while
the VGTs are object instance spaces. Symbol definitions are shared between vG s, but instances of symbols
arc not,

The VGTS lets a uscr view objects in any vGTs anywhere on the sereen in views. Fach view has a zoom
factor, a window on the world coordinates of some VGT, and screen coordinates which determinc its viewport.
Although the SDF client can create default views, the VG'I'S user can change them with the window manager,
and create and destroy more of them. Routines for the client’s manipulation of vGTs and views are described
in the hbrary manual,

The VG’I‘S maintains an cvent queuc for cach instance, and the vGTs assuciatcd with the given file instance.
Each vGT corresponds to an instance in the V 170 protocol. ‘The mode bits of the instance give the kind of
cvents that will be queucd. T'he details of these [unctions are defined in the library manual,

V-SYSTEM 5.0 REFERENCE MANUAL ' . SERVIERS

194

VIRTUAL GRAPHICS TERMINAL SERVER

40.4. Pad Escape Sequences

Unless otherwise noted, all escape sequences can come with or without the optional left bracket between
the escape and the escape command character. Arguments to the escape command are decimal character
strings scparated by a semicolon. The following subsct of the ANS! standard escape scquences is decoded by
the SUN VGTS terminal cmulator: '

BELL
TAB

FF
CR
LF

BS

SO

St

NUL
DEL
ESC A
ESC[iA
ESC B
ESC[iB
ESC C

ESC[iC
ESC D
ESC[iD
ESCE

ESCllcf

ESCH
ESCllcH
ESCJ
ESC[n]

Causcs some form of audio feedback (buzzer, bell, ete.) if possible, and flashes all the views
of the pad..

Positions the cursor at next multiple of eight (plus one) columns, erasing characters
between the current cursor position and the new position.

Clears the pad.
Returns the cursor to the first column of the current line.

Newl.inc -- Moves the cursor down onc line. [fit is at the last linc of the pad, all lines move
up (scroll). . ’

Cursor moves backwards oﬁc spacc.

Shift Qut -- Sclect the G1 character set. Currently ignored.
Shift Out -- Select the GO character sct. Currently ignored.
Null - ignured: may be uscd for padding.

Delete - ignored; may be used for padding.

CursorUp -- move the cursor up onc line,

CursorUp -- movce the cursor up i lincs.

Newl.ine -- move the cursor down, as with LLF.

Newl.inc - move the cursor down the i/ lines.

CursorForward -- move the cursor forward, but do not overwritc the character at the
current position.

CursorForward -- move the cursor forward /7 character positions.
Index -- scroil the current scroll region up one line.
CursorBackward -- move the cursor backwards / character positions.

Next Line - move the cursor down one line, but if it is at the end of the region, scroll the
region up (Index).

CursorPosition -~ Move the cursor to line /, columa ¢, ‘The lines and columns start from the
upper lelt, which is (1,1). Specitying zero or leaving an argument blank is cquivalent to a
valuc of 1. Thus ESC|[falone will "home™ the cursor to the upper lcft.

Ignored. Uscd by some terminals to sct tab stops.
CursorPosition - same as ESC f.
ClecarToFOS -- clear from the current cursor position to the end of the pad.

Clear -- if the argument is 2, clear the entire pad. Otherwise, clear to end of pad.

V-SYSTEM 5.0 REFERENCE MANUAL SIIRVERS

PAD ESCAPE SCQUENCES 195

ESCK ClearToEOL -~ ¢lear from the cursor to the end of the current line.

ESCL ' Inseril.ine -~ insert a line at the cursor position. All the lines below and including t_he
current onc arc moved down. The bottom line goes away.

ESC[nL InsertLine -- insert n lines at the cursor position.

ESCM Reversclndex -- move the scroll region down one line. The top line in the scroll region
becormes blank.

ESC[iM DeleteLine - delete / lines starting from the line that the cursor is on, and move all lines
below them up.

ESCP DeleteChar - delete the character at the cursor position, moving all the rest of the
characters in the line to the left one column.

ESC[iP DeleteChar -- delete / characters, starting from the onc under the cursor.

ESC@ InscrtChar -- move all the characters to the right of the cursor to the right onc column. A
spacc appears at the cursor position.

ESCli @ InsertChar - Insert / characters at the cursor position.

ESC[im If the valuc of the argument is non-zcro, standout mode is turned on, which will mecan
characters appear in reverse video. A zero argument rescts to nomal video.

ESClsb¢ Specifies the top and bottom lines of a scroll region. This is used in the Index and
Reverselndex commands.

ESC< Enter ANSI mode. Currently it is ignored, since VGTS pads arc always in ANSI mode.

ESC)e¢ Scleet GO character set. Currently it is ignored.

ESC(c¢ - . Sclect G1 character set. Currently it is ignored.

The default size of a VGTS pad'is 28 lines by 80 columns. ‘This is to be compatible with the “sun™ terminal
type of the Stanford Unix systems. This terminal type is just a V'1-100 with 28 lines, and a few additional
escape sequences as described above. For 'TOPS-20, the command term VT100 will work. On the SU-AI
WAITS system, the ,tty sun 28 80 command can be used for display service.

40.5. VGTS Messagelinterface

The use of the vgtsexee and view manager is given in the V-System Comtmands Manual. This chapter
describes only the internal programmer's interface. The following requests of the 170 protocol are supported:

CREATE_INSTANCE

Causes a new pad to be created. The view manager will let the user decide where to put the

~upper lefL corner of the pad by changing the cursor and blocking the process until the user
clicks the mousc. ‘The file instances created arc READABLE, WRITEABLE,
VARIABLE_BLOCK STREAMs. ‘The first two unspecified ficlds of the message (if non-
zero) arc the number of lincs and columns in the new pad. The filename ficld of the
message is used as the name of the VGT. Usually this is invoked only by thc
OpenPad routine described in the VG I'S chapter of the Library Manual.

QUERY_INSTANCE
Returns the standard valucs, the same as a Create Instance reply.

WRITE_INSTANCE

V-8YSTEM 5.0 REFERENCE MANUAL - ' SERVERS

196 . VlRTUAL GRAPHICS TERMINAL SERVER

Writc the bytes to the pad corresponding to the file instance. Output conversions are
performed if the appropriate “Cooking™™ modes are set.

WRITESHORT_INSTANCE .
Samc as WRITE_INSTANCE.

READ_INSTANCE
Blocks unm somc characters are entered into the pad. If there are any characters alrcady in
the event queue for this pad, they are returned immediately. Note that since the instance is
VARIABLE_BLOCK, un unknown number of characters can be rcturned, up to the
blocksize.

RELEASE_INSTANCE
The pad is deleted, along with any views of the pad, and storage is reclaimed.

QUERY_FILE Returns the Cooking mode bits for the pad. These are defined in <Vgts.h> and described
below.

MODIFY_FILE The Cooking mode bits arc set for this pad. The structure ModxfyMsg describes the format
of this message.

SET_BREAK_PROCESS
The break process for cach instance is the process which will be killed when the Kill
Program command is invoked from the View Manager.

Switchlnput The given pad (from the filcid) is selected for input. This is used in the SclectPad routine. 4

MouseStatusRcquest
‘The position of the mouse is returncd immediately. This will be replaced by l"VC.'n(RLunbf.
in the future.

MouscEventRequest
The position of the mouse is rctumcd as soon as a significant event occurs, as defined by
the¢ Mouse mode bits described in the next section. This will be subsumed by
EventRequest in the future.

EventRequest The first item from the event queue is returned to the requester. 1F the event qucue is
cmpty, the requester is blocked until an event comes in for the given vGT

40.6. Internal Organization

The current VG'T'S implementation consists of the following modulcs:

e Master Multiplexor. This is the only module which is operating system dependent. Upon initialization,
the appropriatc process structure is sct up. ‘T'he main loop consists of waiting for a message, dispatching
to the appropriate routine in the other modulces, and returning a reply. Synchronization problems are
avoided by having the data structurcs accessed only in onc process.

e T'erminal emulator, ‘This module interprets a byte stream as if it were an ANSI standard terminal.
Printable characters arc added to text objects, and control and cscape codes are mapped into the proper
SDF manipulations. .

o Input handlcr. There are various device-dependent input handlers. For example, a single process reads
the keyboard and sends typed charucters to the multiplexor. Another reads the mouse and tracks the
Cursor.

o SDIY manipulator. This module handles requests of applications to create, destroy, and maodify
graphical objccts in structured display files. These routines maintain bounding boxcs for symbols, and

V-SYSTEM 5.0 REITFRENCE MANUAL . SF.!.{V ERS

INTERNAL ORGANIZATION : 197

call the appropriate redrawing routines when necessary, There is a hash table to locate items givcn their
client names.

o SDF interpreter. These are the highest level redrawing operations. The structurcd display files are
visited recursively, with appropriate clipping for bounding boxes totally outside the arca being redrawn.

o Display operations. Thesc are the graphical operations called by the SDF interpreter. They are device
independent, but some of the operations, like viewport clipping, are donc in hardware on the IRIS
system,

e Drawing primitives. There is one module which implements device dependent graphics primitives. On
the SUN workstation this is a simple interface to the RasterOp package. At this level color rectangles
arc drawn as stipple patterns on monochromatic displays.

o Hit detcection. The structured display filc is visited, but instead of actually drawing the primitives, the
positions are checked to match the cursor’s position. A list of possibly sclected objects (under other
optional constraints) is returned to the application.

e View manager. This module provides a modc in which users can create, destroy, and modify the screen
layout. Viewports can be moved rigidly, stretched, or squeczed. Views can be zoomed or panned, all
without affecting the applications manipulating the represented objects. On the SUN workstation
zooming is by powers of two, and all motions arc donc in one step. On the IR]S system zooming and
moving viewports arc smooth, continuous operations.

o Viewport primitives. These are the routincs which pcrform the vxew-changmg opcrations, invoked by
either an application program or the user through the view manager.

40.6.1. E:xecutlve Interface

Since the V-System is intended to be modular the VGTS can be used with an exccutive othcr than the
standard one. The VGT'S module execs . ¢ handles the Exec Control part of the view manager command. [t
starts up ncw cxccutives as new processes on the same team with the calling sequence: Exec(in, out,
arr, cmdin) where ail of the parameters arc pointers to Files. ‘These are the input, output, crror, and
command input files. The.Fxccutive then calls the functions SetVgtBanner(file, banner) and
SetBroakProcass(file, p1d) as commands arc cxccuted.

40.6.2. Frame Buffer Interface

The VGTS was intended to be ported to different graphics devicces. Somcday somcone might actually do it,
and then we could have some material for this section. Right now most of the device-dependent routines are
in the draw. ¢ file.

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

198 . SIMPLE TERMINAL SERVER

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

SIMPLE TERMINAL SERVER . 199

—_Aa1 —
Simple Terminal Server

The Simple Terminal Server(STS) is a minimal terminal agent. It does not use graphics, and it takes up less
memory than the VGTS. Only one i/0 stream is supported. A program that wants to do graphics dircctly on
the SUN hardwarc, not mediated by the VGTS, should be run under the STS, . ‘

The STS creates one cxccutive, If this cxecutive is ever destroyed, by encountering end of file or by other
means, it will be replaced within a sccond or so. Such a replacement can be forced by the scquence control-+
X. A program running undcr the executive can be killed by control-t k. The normal *Z and +C commands also
work, but they can be disabled by ModifyPad requests, while the control-t sequences cannot be disabled.

41.1. Input Editing Facilities

The STS provides a superset of the input cditing facilitics provided by the VGTS. All ModifyPad bits that
are not rclated to the mouse work as they do under the VGTS: CR~ lnput LF = OQutput, Iicho, Lincbufter,
PageOutput, PageOQutputtinable, and DiscardQutput.

Printing characters arc inserted at the cursor. In addition, the input buffer can be edited with Emacs-style
text-cditing commands. In the following descriptions, CTRL-x means striking the Control key and the x key
simultancously; ESC-x mecans striking the I'scape key and then the x key. Killing an object means movmg the
object {rom the mput buffer to the kill buffer.

The STS supports the following text-cditing commands:

RETURN Releascs the input buffer, with a newline appended, to the application.
LINEFEED Same as RITURN.

CIRI.-a Move cursor to beginning of the current screen line,

CTRIL.-b . Move cursor back one character.,

BACKSPACE Samc as CTRL-b.

LEITT ARROW Samc as CT'RL-b.

CTRL<c - Kills the Break Proccss, usually the command running in the current cxecutive.
CTRLd - Delete character under the cursor.

CIRlL-¢ Move cursor to the end of the current screen line,

CTRL-f Move cursor forward onc character.

RIGITT ARROW Samc as CTRL-f.

CIRL-g Abort the command. The input editor will relcase the input buffer, with a CTRIL.-g
: appended, to the application, which is responsible for detecting the CURL-g and reacting
to it.
CIRL-h Delete the character before the cursor.

V-SYSTEM 5.0 REFERENCE MANUAL v ‘ . SERVERS

DEL
CTRL-k
CTRLA
CIRL-n
DOWN ARROW
CTRL-p
UP ARROW
CTRL-q
CTRL-t
CTRL-u
CTRL-w
CTRL-y

CTRL-z

CTRL-\

ESC-,
HOME
ESC-.
ESC-b

ESC-BACKSPACT

ESC-d
ESC-f
ESC-h
ESC-DEL
ESC-t

SIMPLE TERMINAL SERVER

Same as CI'RL-h.

Kill Kill from the cursorto the end of the current line.
Re-display the if\put buffer,

Move cursor down one screen line.

Same as CTRL-n.

Move cursor up one screen line.

Samec as CTRL-p.

Quote next character. Control characters are displayed as +C'.
Transposc the two characters preceding the cursor.

Kill the entire input buffer.

Kill from the cursor to the beginning of the current word.

Move the contents of killbuffer into the input buffer, inscrting at the current cursor
position. ,

Causcs an End of File indication to be sent to the application reading the input. This will
terminate the Exceutive if no application is running.

Insert next character with the eighth bit set. Character is displayed as "\nnn’, where nnn is
the octal representation of the character code.

Move cursor to the beginning of the input buffer.

Same as ESC-, .

Move cursor to the end of the input buffer.

Move cursor to the beginning of the current word.

Same as ESC-b.

Kill from the cursor to the end of the current word.,

Move cursor past the cnd of the current word.

Kill from the cursor to the beginning of the current word. Same as CIRI.-w.
Samc as ESC-h and CTRL-w.

Transposc the two words preceding the cursor,

41.2. HardwareEnvironment

The STS communicates with the user via the kernel console device. If the workstation has a framebufier,
characters are sent to the terminal emulator built into the workstation’s PROM monitor; otherwise, characters
arc sent through serial line 0 to a character terminal,

The attached terminal or terminal emulator imust understand the escape scq'ucnccs sent to it by the STS for
cursor positioning, The §T'S currently works properly with the following tenninal emulators and terminals:

e Any PROM monitor terminal ¢cmulator that supports ANSI standard cscape sequences, ¢.g., the SMI

V-SYSTEM 5.0 REFERENCLE MANUAL

SERVERS

HARDWARE ENVIRONMENT 201

PROM monitor.
e Cadlinc PROM monitor terminal emulator.

e Any character terminal that supports ANSI standard escape sequences, ¢.g., VI100 or Heath-19 in
ANSI mode. ' :

V-SYSTEM 5.0 REFERENCE MANUAL SERVERS

202 CONTEXT PREFIX SERVER

V-SYSTTM 5.0 REFFERENCLE MANUAL . SERVERS

CONTEXT PREIFIX SERVER 203

— 42 —
Context Prefix Server

The V-System naming world is in gencral a forest, with each tree corresponding to a server. Although the
naming protocol provides a way to link this forest into a single, connected graph, we do not anticipate that
enough permancnt cross-links will be sct up to make the graph connccted. - Note that the simplest
implementation of a cross-link requircs one scrver to store the (server-pid, context-id) corresponding to a
context on another server, Since server processes (and hence, scrver pids and context ids) may be relatively
short lived compared to the objects they provide access to (e.g., files on non-volatile storage), such a simple
implementation is not adcquate for a permancent cross-link.

As a partial solution to this problem, each workstation in the V-System contains a local name server process
as part of its V cxccutive. The local name server maintains a directory of local aliases for (server-pid,
context-id) pairs on servers of interest,

Further, since the present V kernel device server docs not provide character string names for the devices it
implements, the local name server also performs name mapping on behalf of the device server. The directory
of local aliases and the dircctory of devices are maintained as scparate contexts within the name scrver,

42.1. Name Syntax

When a client issues a Createlnstance request using the standard Open library routine, if the character
string name begins with ‘[", thc request is sent to the first process responding to a
GetPid(CONTEXT_SERVER, ANY_PID), ordinarily the context prefix server on the client’s workstation.

If the name does not begin with a squarc bracket, the: Open routine will send the request to the client
process’s “currcnt comcxti" a (scrver-pid, context-id) pair stored in a standard place in the client’s stack space
(the “per-process arca™). 7 The context prefix server is a character string name handling scrver that
participates in the naming protocol described. in chapter 30, including the ADD_CONTEXT_NAMLE and
DELETE_CONTEXT_NAME requests. It recognizes the character *[7 as a special escape which causes the
next component of a CSname (up to the next *]" character or end of string) to be interpreted in its context 0
(DEFAULT_CONTEXT). Context 0 is the dircctory of contexts maintained by the context prefix server, as
mentioned above,

The context prefix scrver maps the name in brackets (context namc) to a (server-pid, context-id) pair. {f the
name consists of more than just the context name, the request is forwarded to the process designated by
server-pid with context-id placed in the name request. The context prefix server adjusts the nameindex ficld so
the receiving name scrver docs not look at the context name. 1f the name consists only of a context, the
context prefix server may handie the request itself, depending on the type of request. IFor example,
“DELETE_CONTEXT_NAME [diablo|™ deletes “diablo™ as the name of a context in the server. On the
other hand, "CREATE_INSTANCE [diablof” would be forwarded to the context “[diablo]” with the name
reduced to a null string. "This request could be used to read the context directory (or “{diablo]”.

27By “scnding a request to A context,” we mean sending the request to the server specified by the (server-pid, context-id) pair, with the
specified context-id placed in the request message. This procedure causes the CSnamne in the request Lo be interpreted in the given
context.

V-SYSTEM 5.0 REFERENCE MANUAL . . SERVERS

204 . . CONTEXT PREFIX SERVER

42.2, Additional Features

The context prefix server provides a few other features which are useful in the prescut V-System
environment,

An entry in the server’s context directory includes space for a type indication and some flag bits, as well as
an associated instance id and a long word of client-defined information. Space for these is also included in
the standard context request and context reply message structurcs. The only bits of the entrytype ficld which
are clicnt-settable are the SESSION and LOGICAL_PID bits. The SESSION bit has no meaning to the
context prefix server, but is used by other standard V software to flag the primary name assigned to a session
at the time it is created. The instance id of a session is rccorded in the instanceid directory field.

The LOGICAL_PID bit indicates to-the context prefix server that the given server pid is to be interpreted
as a logical pid in the ANY_PID scope rather than an actual pid. Every timc the scrver’s name mapping
algorithm passes through this entry, it will issue a GetP41d () request to obtain the next pid to use.

V-SYSTIM 5.0 REFERENCE MANUAL SUERVERS

TEAM SERVER 205

— A3 —
Team Server

43.1. Ov_e rview

"The team server loads and keeps track of tcams (usually cquivalent to programs -- although a program may
consist of more than one tcam) running on a local host. 1t accepts requests to load teams and termninate teams,
and implements a directory which can be rcad to find out information about all teams currently running. The
team server also registers itself with the cxception server as an exception handler “of last recourse.” . If no
other handler registers itself for the process which incurs an exception (or its ancestors), then the team server
will receive the exception message and will load a post-mortem debugger to handle matters from therc on.
(Sce the command debug for a description of the debugger that is used.)

The team scrver fesides on the “first tcamm™ on a host, i.e., it is considcred to be a scrver which is always
present on a host and is loaded automatically when a host’s V-System is booted.

43.2. Team Loading

Teams can be loaded from specific object code files using the library routines LoadProg(),
ExecProg(), or RunProgram() in the V library. These package up an appropriate requcest to the team
server and take care of matters such as setting up the initial arguments to a tcam on its stack. "The tcam server
only creatcs a new tcam and loads down its object code from a designated open file instance. Setting up
parameters and setting initial cxecution priority and stack size is left to the tcam load requestor in order to
allow control over the order of events. This is nccessary for programs such as debuggers which wish to allow
users to sct breakpoints and examine the code hefore a tcam actually starts to run.

Load requests to the tecam server also specify who the “owner” of a tcam is. 'Tecams are destroyed if their
OWNer process. goes away (same semantics as for processes created by other processes). Teams can optionally
be specitied to be owned by the team scrver itself, thus permitting them to outlive their load requestors.

43.3. Team Termination

T'eams can terminate by cither having their root process destroyed or by sending a termination request to
the tcam server (the library routine ex1t() does this). The latter fonn also causes the tcam server to destroy
the tcam’s root process; but in addition it allows the team server to immediatcly update its record of the state
of currently running teams. The server uses a timer process to periodicaily query the state of all tecams which
the server thinks arc still running and remove server entrics for those that have unexpectedly gone away.

43.4. Status of Running Teams

"The standard context dircctory listing protocol (see section 30.7) can be usced to obtain information on all
tcams which arc currently running under the team server. 'o obtain information on a specific tcam only, an
NREAD_DESCRIPTOR request can be made. The team of interest is specilied by setting the request
message's contextid ficld to the team’s root process id; the CSname in the message has no significance.

V-SYSTEM 5.0 REFERENCE MANUAL - | SERVERS

206 TEAM SERVER

43.5. Remote Execution

The implementation of the team scrver and tcam-loading library routines is such that load requests can be
made to both local and remotc tcam scrvers, thus allowing for transparent remote exceution of V programs.
In order to assure the priority of local requests the team server keeps track of the state of the local host with
respect to things such as whether someonce is logged in or not, how many applications are running, etc. This
state is used to determine whether or not a remote load request will be accepted or not.

Currently the only state information maintained by the team server is whether or not someone has logged
into the host. Also, the current policy with respect to remote execution is to accept all requests regardless of
the local host's state.

The tcam server also interacts with tlic service server in order to globally register the current state of its host.
An update of the host’s status is sent whenever its state changes and whenever the service server requcsts such
an update (c.g. when the scrvice server first starts up and needs to acquire the current state of all hosts in the
system). ‘ '

V-SYSTEM 5.0 REFERENCE MANUAL . SERVERS

KERNEL 207

Part1V:
Kernel

V-SYSTEM 5.0 REFIERENCE MANUAL KERNEL

208

V-SYSTEM 5.0 REFERENCE MANUAL

KERNEL OVERYVIEW

KERNEL

KERNEL OVERVIEW . 209

— A4 —
Kernei Overview

The V kernel is a message-based distributed kernel that implements a program environment of many smail
processes communicating by messages. This program environment is implemented on one or more
workstations connected by a local.network. The kernel was designed to provide an cfficient, real-time process
model on which to build sophisticated single-user systems, multi-user systems, network-accessed servers and
dedicated real-time applications. These applications may be distributed over one or more network nodes or
workstations.. The kernel is also designed to be reasonably portable over a large class of machincs and-local
nctworks.®® This manual describes the V kernel: its operations, the mechanics of using the kernel, the
kernel internal structure, and how to maintain the kernel, namely adding kernel opcrations and devices.
Kernel operations can be broadly divided into three categorics: process and memory management,
interprocess communication, and device management. The following scctions of this chapler provide an
overview of the kernel facilitics and their intended use.

44.1. Process and Memory Management

The kernel manages memory as entitics called ream spaces, which correspond to an address space or context
on the workstation. For example, on the SUN workstation a team space is a context as implemented by the
hardware memory management. Opcrations are provided for creating tcam spaces. querying the size of a
tcam spacc, and sctting the size of the tcam space. ‘I'cam spaces disappear when the last proccss contained in
that space is destroyed, so there is no explicit operation for destroying a tcam.

A tcam spacg is entirely contained on a single workstation. On some machines, the kernel is actually part of
the team address space but this fact is transparent to the program. For instance, on the SUN processor board,
scgments 0 and 1 in every context are kernel space, but protection bits are sct to prevent access except in
supervisor mode. '

A process is a logical activity that sequentially exccutes instructions. Associated with cach process is a
priority, state, a team space and a stack. The process priority dictates the preference given to this process with
respect o processor allocation. "The highest priority ready process is allocated the processor. (0 s the highest
priority.) The state is essentially the machine state of the processor for that process. The team space is the
arca of memory to which the process has direct access. The stack is the local memory arca contained in the
team space that the process uses for local workspace, procedure linkage and return, and the like. All processcs
with the samc tcam space are said to be on the same team.

The kernel provides support for a per-process area by associating a location and value with cach process.
Whenever a process is activated, the kernel stores its per-process value in its per-process location. By
convention, cach process on a team uses the same per-process location, and cach per-process value is a pointer
to a standard per-process data arca within the process’s stack space.

Processes can be dynamlcally created and destroyed. When a process is created, it is assigned a unique
process identifier that is used subscquently to specify that process. Also, it is created as part of the samic tcam
as its creator. A process is created in the initial state of awaiting-reply from its creating process. (Sce next
section on interprocess communication.) When a process is destroyed, all the processes created by this

ZBCurremly‘ it has only been’ implemented on the Motorola 68000-based SUN workstations connccted by 3 Megabit or 10 Megabit
Lithernet. An impiementation on a VAX 11/750 is under way.

V-8YSTEM 5.0 REFERENCE MANUAL - KERNEL

210 : ‘ KERNEL OVERVIEW
process arc also destroyed.

44.2. Interprocess Comnfuﬁication

Interprocess communication is provided in two forms by the kernel. First, processes may send, receive,
reply to, and forward fixed-length synchronous messages. A proccss sending a message is suspended awaiting
reply until the message it sent has been received and replied to by the receiving process. Mcessages are
currently 8 full words, where a full word is defined to be the maximum of the space required for a general
machinc pointer and the space required for a “natural™ machine precision integer (32 bits on the MCG68000-
based SUN workstation).

Second, a process can pass access to a single segment in its tcam space to the recipient of its message. The
recipient process can access this segment for reading or writing, depending on the access specified by the
sender, while the proccss is awaiting reply from the recipicnt. By convention, the segment start address and
size are specified by the last two words of the message by which access to the segment was given. The
presence of a segment and its access modces arc specificd in the first byte of the message.

A process that is blocked awaiting reply from a process that is subsequently destroyed is unblocked with an
indication that the receiver of the message docs not exist.

44.3. Naming

The kernel implements a low-level naming scrvice that provides cfficient access to server processes that
implement higher level functions. A process can register its process identifier as corresponding to a particular
logical process identifier. Processes can then query the kernel as to the process identifier corresponding to a
specified logical process identifier. Registration of the logical to real process identifier can be specified as
local to a workstation, remote, or both,

44.4. Time Management

The kernel provides operations for rcading the umc, setting the time, dclaying For a time period, and
unblocking a delaying process.

44.5. Device Management

Devices managed by the kernel arc currently all accessed through the device server pseudo-process inside
the kernel. Operations are performed by sending messages to the device server. The protocol used in these
messages is the Verex 170 protocol“” which is described in the V-System Servers Manual.

Devices that can be controlled without special kerne! support can be l{andlcd dircctly by processes. Special
devices that require kernel support but do not fit the 170 model can be handled by adding new kernel
operations.

44.6. Initialization
After the kernel has completed its internal initialization, it creates an initial tcam space and an initial

process on this tcam. 1t assumnes there is a descriptor following it in memory that describes the code and data
scgments plus the starting instruction for this initial tcam. Enough physical memory is assigned to the team to

Bepistributed 1/0 using an Object-Based Protocol” by David R. Cheriton, UBC Computer Science Technical report 81-1,

V-SYSTEM 5.0 REFERENCE MANUAL KERNEL,

INITIALIZATION _ : 211

accommuodate its code and data segments,

44.7. Distributed Operation

The kernel supports transparcnt communication among several workstations running thé V' kernel.
Processes on different workstations may send and reccive messages and access scgments as though all
processes were executing on the same machine. This mode of operation requires a high-speed local network
connecting the workstations. Most kernel operations may be performed transparently on non-local processcs.

44.8. Application-Level Model

Using the kernel well requires undcerstanding the model of processes and messages that the kernel provides,
and how they are intended to be used. Processes represent logical activities in the application. They are
intended to be sufficiently incxpensive to allow the usc of multiple processes to achicve the desired level of
concurrency in the application. The process identifier is intended to serve as a loose form of capability or
“ticket.” Posscssion of a process identifier is sufficient to allow the process to send a message to the specified
process. Also, becausc there is no notification facility on the destruction of a process, resources allocated to a
process should be associated with its process identifier il they are to be reclaimed. 'The application can then
use “lazy reclamation™ of resources by “garbage collecting™ resources associated with invalid process
identifiers. However, a process may block until another is destroyed using cither ReceiveSpecific or Send.

The synchronous message sending is intended to implement communication between processes that looks
to the scnder cssentially like procedure calls. ‘That is, the Send request message sends the paramcters of the
procedure and the reply message returns the resulis. ‘The greater flexibility provided o the receiver allows
sophisticated scheduling of message handling and replics. Because message sending is totwally synchronous,
concurrency must be achicved by multiple processcs.

The segment access operations follow the procedure paradigm in being used primarily to access what are
logically “call-by-reference™ paramcters. ‘The argument for providing exactly one segment is that at least one
is nceded, and one is sufficient for the dominant activity, namely filc access. [t is expensive and difficult to
provide arbitrarity many scgments - having just onc segment allows a simpler ‘and more cfficient
implementation. Finally, multlph, scgments can be lincarized to one, s0 no functionality is lost with ths
restriction. .

There is no form of asynchronous communication between processes. 1t is mtcndcd that process destruction
be used lor asynchronously interrupting the activity of a process.

Teams are intended to provide finc-grain sharing of code and incxpensive sharing of data between
cooperating processes. They separate the idea of program, cxecutable unit, and address space from that of
process.

V-SYSTLM 5.0 REFERENCTE MANUAL KERNEL

212 KERNEL OPERATIONS

V-SYSTIM 5.0 REFERENCE MANUAL . KERNEL

KERNEL OPERATIONS

213

— 45 —
Kernel Operations

The operations provided by the V kernel can be divided into three classes: kerncl traps, kernel process

operations, and kernel device operations.

The most basic kernel operations, including Send(). are implemented as kernel traps. These operations
arc invoked by cxecuting a trap or system call instruction which invokes the Kernel. A number of sccondary
opcrations are implemented by a pscudo-process running in the kernel, cafled the kernel process. Such
operations are invoked by sending to the kernel process’s pid. Finally, operations on kernel-implemented

devices are provided by a sccond pseudo-process, called the kernel device server.
invoked by sending messages to the device server’s pid, using the standard V-System [/0 protocol.

The kernel traps include:

Forward() GetPid()
MoveTo() ReceiveSpecific()
ReplyWithSegment() . RereadMsg()

The kernel process opcerations include:
CreateProcess() CreateTeam()
DestroyProcess() GetTime()
SetPid() SetTeamPriority()
SetTime() Wakeup()

MoveFrom()

ReceiveWithSegment()

Send()

DeTay()
QueryProcessState()
SetTeamSize()
WriteProcessState()

Such opcrations are

These functions are documented fully in the V-8 ystem Program Fnvironment Manual. Other kernel
operations described there, such as Receive(), Raply(), ValidPid(). ctc., arc implemented as library

functions using the basic operations listed above,

V-SYSTEM 5.0 REFERENCE MANUAL

KERNEL

214 _ EXCEPTIONS AND KERNEL EXCEPTION HIANDLING

V-SYSTEM 5.0 REFERENCE MANUAL KERNEL

EXCEPTIONS AND KIERNEL EXCEPTION HHANDLING 215

—_— 45 —
Exceptions and Kernel Exception Handling

The V kernel handles exceptions (such as illegal instruction or bus error traps) by forcing the erroncous
process to send a message to the exception server containing the details of the error. The exception server is a
process that has registered as the EXCEPTION_SIERVER with the kernel using SetPid. If no exception
server cxists, the message is sent back to the process that caused the error, blocking it permanently. In cither
case, other processes in the system can continue to run,

The message from the exception-incurring proccss to the exception server appears as a normal message and
can be received by the standard message primitives. After receiving the message, the exception scrver can
read the faulting process’s state using cither the kernel primitive QueryProcessState or the library function
ReadProcessState. In the Sun implementation of the kernel, the registers in the state record reflect the
processor state at the time of the exception, uniess it occurred while running in the kernel, In that case, the
program counter and status register returned are thosc that were saved at the time the kernel trap was taken.
The other registers reflect the state at the time of the exception. ‘The correct program counter and status
register contents can always be obtained from the exception message.

The message also provides read and write access to the segment consisting of the entire team address space
of the cxception-incurring process. This provides debuggers and exception servers with complete access to
the code and data of the process.

The format of the exception message is given by the ExceptionMessage struct in <Vexceptions.hd together
with manifest constant definitions for the type of exception. The message format for the Motorola 68000 is
given below. -

requestcode EXCEPTION_REQUEST

type Type of exception.” “This is encoded as the address of the MC68000 exception vector that
was taken.

buserrortype Additional information on the causc of the crror, if fype is cqual to BUS_ERROR,

code In the case of address crrors and bus crrors, this contains a code returned by the processor

to identify the type of memory reference that caused the exception. Only the low order 5
bits of this word are valid; the others should be masked off. For other types of cxceptions,

this word contains zcro.
accaddr - The access address in the case of address or bus errors, otherwise zero.
instruction The instruction register in the casc of address or bus cerrors, otherwise zero, This should be
- the lirst word of the instruction that caused the error.
status The status register.
erTpe The program counter.
segment Starting address of the tecam’s address space. Cufrcntly at 0x10000 on the SUN workstation

because the kernet uses the first two scgments.

segmentsize Number of bytes in the team’s address space.

V-SYSTTM 5.0 REFERENCE MANUAL - KERNEL

216 " EXCLPTIONS AND KERNEL EXCEPTION HANDLING

See the Motorola MC68000 User’s Manual for a description of the types of exceptions possible and the
meaning of the information returned by the processor and passed on in these exception messagcs. '

Exceptions are always blamed on the currently active process, even if they occur inside the kernel. For
instance, it is possible for an cxception inside the kernel to be caused by an invalid pointer passcd by a process
when invoking a kernel operation. However, it is also possible for ¢xceptions 0 be caused by bugs in the
kernel itself, though this is unlikely unless an cxperimental version of the kernel is being tested.’® A
standard exception server process has been implemented and is described in the V-System Servers Manual.

30'I‘hc worst case is when the exception is caused by a bug in a kernel interrupt handier, since in that case there would be no relation
between the currently active process and the code that caused the exception; however, in this case, the bug is likely to crash the processor
anyway.

V-SYSTIM 5.0 REFERENCE MANUAL Kl’;RNEI.

PERFFORMANCE 217

— 47 —
Performance

Two mecasures of performance for the kernel arc the speed of various operations and space requirements.
For a detailed account of the performance of the V kernel, we refer the rcader to The Distributed V Kernel
and lts Performance on Diskless Workstations, by David R. Cheriton and Willy Zwacncpocl, in Proccedings
of the 9th Symposium on Operating System Principles, October 1983 (also available as Technical Report
STAN-CS-83-973, Computer Science Department, Stanford University).

47.1. Space Requirements

The space requirements arc dependenit on the machine, the number and complexity of devices supported,
and the maximum number of processes, teams and devices configurcd. Table 47-1 gives the code segment
size for the kernel configured to support distributed operation on the SUN workstation with support for
cousole device, scrial interfaces, Ethernet interface and a mousc pointing device. The table also gives the unit
spacc cost of a process descriptor and a tcam descriptor, and the total space requirements for a kernel
configured with a maximum of 64 processcs, 16 teams and 16 device descriptors. All measurcments arc given
in bytes. ' '

Table 47-1: SUN Workstation Kernel Memory Requirements

Component Size in bytes

code segment 31836
process descriptor 202
tcam descriptor 18
device descriptor 4
total 47990

.

47.2. Kernel Operation Times

Table 47-2 gives the times for various sequences of kernel operations on the SUN workstation using a 10
Megahertz Motorola 68000 processor. ‘T'he times for sequences of operations are given instead of times for
individual opcrations to give a better indication of the kernel overhead for higher-level operations, For
instance, the Send-Receive-Movetrom-Reply sequence is indicative of the time to perform a file read
operation using the /0 protocol. These sequences are also casier to time in some cases than individual
component operations.

Table 47-2: SUN Workstation Times for Kernel Operations (in milliscconds)

local remote
Getlime 0.06 Not Applicable
Send-Receive-Reply(0 bytes) 0.77 2.54
Send-Receive-Reply(512 bytes) 131 5.56

The table is not intended to be complete but simply indicative of performance. The Send-Reccive-Reply time
is indicative of the interprocess communication time using the kernel. The column labeled "remote” gives the
Send-Receive-Reply time between two processes resident on different workstations. - 'I'he Geflime Llime s
indicative of the cost of a trivial kernel operation. All other kernel operations can be cxpected to be faster
than the Send-Receive-Reply sequence,

V-SYSTIM 5.0 REFERENCE MANUAL KUERNEL

218 ' PERFORMANCE

Another measurc of interest is the speed at which packets can be read and written over the Ethernet with
the overhead of sending read and write requests to the kernel device server to access the nctwork. Table
47-3 gives performance figurcs for the kernel running on the SUN workstation conncected to a 3 Mcgabit
Ethernet. '

Table 47-3: SUN Workstation Fthernet Output

ize in bytc dackets per sec Throughput in Kbytes/sc
16 2200 35

512 360 180

1024 170 : 170

Similar throughput figurcs for a stand-alone Alto are 4, 120 and 140 Kbytes per sec (appro'ximatcly).

On the input side, with one SUN writing as fast as possible to another, 10000 packets of 1024 bytes can be
received in 5.89 scconds with 0 packets lost, yielding a throughput of about 170 Kbytes per sccond, which is
about 40% of the bandwidth of the net. However, for some unknown reason, packets arc dropped as the
packet sizc becomes smaller.

47.3. Interrupt Disable Time

The interrupt disable time {or the kerncl is-essentially the maximum of the time required to inscrt a record
in a ordered qucue (the rcady queuc) and the time to load the processor with the state of a new process.
Although the former is dependent on the maximum number of ready processcs, it is typically very small. For
example, on the SUN workstation, adding a lowest priority proccss to the ready queuc when 32 processes are
rcady to exccute is estimated to result in an interrupt disable time of 164 microseconds. Under normal
circumstances, an interrupt disable time of about 30 microscconds can be expected.

V-SYSTEM 5.0 REFERENCE MANUAL KI%RNIEL

KERNEL INTERNAL STRUCTURE 219

— 48 —
Kernel Internal Structure

The kernel is implemented as a simple monitor. It executes logically in its own address space in supervisor
mode with its own code, data and stack. [t is invoked by trap operations and interrupts. When a proccess
executes a kernel operation or an interrupt trap is taken, the kernel exccutes on the kernel stack.

48.1. Teams

Each team is represented by a tcam descriptor record (TD) that describes the tcam space, records the root
process of the team, user associated with the team, tcam priority level, etc. A machine-dependent portion of
the team descriptor describes the tcam’s memory space.

48.2. Processes

For cach process, the kernel maintains a process dcscriptor record (PD) that containg the process state and
sundry information about the process. When a process is running, a variable /\cuvu points at the process
descriptor of the currently active process.

48.3. Kernel Synchronization

The kerncl is synchronized intcrnally by a combination of scheduling conventions and interrupt
masking. The conventions are:

e Both kernel trap-invoked and interrupt-invoked operations only add or remove processes (rom the list
of ready processes. They cannot block a process in the middic of a kernel operation. ‘I'he clock
interrupt routine that may change the state of a process blocked on a remote or nonexistent process only
docs so if it did not interrupt a kernel operation. Similarly, cthernet interrupts are disabled during the
exccution of a kernel operation to prevent remote interkernel packets from interfering with the
exccution of the kernel operation.

e A process switch occurs at the end of a kernel operation if the active or invoking process is no longer the
highest priority ready process. "The process switch occurs at the point of return from the kernel trap
handler after exccuting the kernel trap.

e A process switch occurs at the end of the exceution of an interrupt service routine if the active process is
no longer the highest priority ready process AND the interrupt servicing did not interrupt a kernel
operation. "That is, a process switch cannot occur in the middle of a kernel operation due to an interrupt
cven though the interrupt can otherwise be serviced,

The net result is that a process exccutes a kernel operation indivisibly. with respect to other processes until it
blocks. However, the highest priority ready process is allocated the processor whenever the processor is not in
supervisor state. Masking of interrupts is used at crucial points in manipulation of the lcady queues and
process switching so that interrupt routines do not interfere.

V-SYSTEM 5.0 REFERENCE MANUAL ' KERNEL

220 KERNEL INTERNAL STRUCTURE

48.4. Interrupt Routines

Interrupts arc handled by first invoking a simple assembly language routine that saves some registers and
then calls a C procedure associated with that interrupt lovel, possibly passing some arguments. A macro
“Call_inthandler” generates the required assembly language routines that call the C procedure it is passed as
an argument. Interrupt-invoked routines are assumed to be short and do little in interacting with processes
other than possibly readying a process.

48.5. Kernel Traps

An asscmbly-language module handles trap instructions, invoking the specified kerncl operation and
handling the return. On a trap, it moves the arguments onto the kernel stack and calls the specified kernel
operation as a C function. On return, it moves the return value back to the process’s stack if necessary and
checks for a highcr priority rcady process. If therc is one, it switches to the highest priority process. If the
active process is stiil the highest priority ready process, the active process is allowed to continue execution at
the instruction after the trap instruction in its code segment.

48.6. Kernel Process

If the specilied pid fails to validatc on a Send, the Send routine checks whether it is the pid of the kernel
process or of the device server process. [f the kernel process pid was specified, Send calls the SendKernel
routinc to perform the requested operation. Thus, the “kernel process”™ code is cxccuted by the process
invoking the operation, not a scparate process running in the kernel. The message format and the request
codes the kernel process supports can be found in <Venviron.h>. The kernel process identificr is a global
variable, Kernel_Process_Pid, sct at the beginning of cach team’s execution.

48.7. De.vice Server Process

A Send to the device server process results in Send calling the SendDevice routine to perform the requested
operation. ‘Thus, the device server code is exccuted by the process invoking the operation, not a scparate
process running in the kernel. A process that is forwarded to the device server has its finish-up function (sce
below) set to Sendevice, and is readicd, so that it will begin exccuting in Sendlevice as soon as it reaches
the head ol*the ready queuc:

48.8. Process Switching

Al process switches occur in the macro function Switch that switches from the currently active process to
the process at the head of the ready queue. Each process is created with its state initialized to start it at the
initial program counter in its tcam spacc when it is readied. Switch relics on there always being a ready
process to exccute (i.c. non-empty ready queuc). ‘This is guaranteed by the presence of an “idle™ process that
is always rcady and executes the processor stop or idle instruction.

Interrupt-invoked routines execute as “involuntary™ asym.hronous function calls madc by the currently
actwc process and thus can also use Switch,

Process switches always occur upon ¢xit from Lhc kernel, never in the middle of a kernel routine. Thus, the
kernel only requires one stack. not a separate kernel stack for cach process. f there will still be some work to
be donc on a kernel operation when a process is unblocked, the kernel routine that blocks it scts the finish-up
function ficld in the process's state record. If this ficld is non-zero when a process is unblocked, the specified:
function is calied before the process exits the kernel, A finish-up function can block the process again and sct
another finish-up function if necessary.

V-SYSTEM 5.0 REFERENCE MANUAL . KERNEL

PROCESS SWITCHING ‘ 221

Note: The kernel implementation described so far should support a number of different types of kernels.
Also, this basis of trap and intcrrupt handling plus process switching, device management, and memory
management represents most of the- machinc-dependent code in the kernel.

48.9. Processor Allocation

The strict priority-based processor allocation is implemented cfficiently by maintaining a qucue of ready
processes in order of priority, highest priority first. A state field in the process descriptor indicates the process
is ready (and thus in this list) or clsc the state in which it is blocked. Process switching incorporating this
priority-based allocation and ready queue management is implemented by two (internal) primitives.

Removeready(pd) Remove the specified process from the ready queuc. The active process continues to
exccute until it ¢xits the kernel even if it has just removed itsclf from the ready queue.

Addready(pd) Add the specified process (descriptor) to the ready queue iﬁ order of priority, after all
processes of the same priority as this process.

48.10. Process Creation and Destruction

Unused process descriptors are maintained in a queue. When a process is created, a process descriptor is
removed from the queue, assigned a process identifier, and initialized to thc specified priority, awaiting reply
state, creator’s team, etc.

When a process is destroyed, it is removed from any system queues, such as the ready qucuc or any message
queucs (onc major use of the PD state ficld is indicating presence in a queuce), the process identifier is
invalidated and all its descendants are destroyed similarly. The resulting free process descriptors are added to
the end of the queue of unused process descriptors. The clock interrupt routine is charged with checking for
processes blocked on non-cxistent processcs (one per clock interrupt) so the process destruction mechanism
need not worry about this.

48.11. Message Primitives

While a message implementation normally requires independent kernel message buffers, the semantics of
the message primitives in this kernel allow the message buffer to be statically associated with the process
descriptor so we include it as part of the same C struct. Thus, a message is queuced at a recciver by queuing
the process descriptor of the sender, saving on cxtra space for sender identifier, ctc. plus time to map to the
PD of the sender for unblocking it.

Sending to the kernel device server or to the kernel process is handled by checking the pid of Send to sce if
it specifics the kernel device server or the kernel process when the pid fails to validate as a real process. The
Scnchvicg: or SendKernel routine is then called directly to implement the kernel device server or kernel
process.

48.12. Time Primitives
Processes delaying using [Delay are maintained in a queuc starting at Delayq_head ordered by increasing

time to unblock. The time before a process unblocks is stored in its blocked_on field in terms of the number
of clock interrupts it must delay after the process before it in the queue is unblocked.

V-SYSTEM 5.0 REFERENCE MANUAL ' ' KERNEL

m ' KERNEL INTERNAL STRUCTURE

48.13. Distributed Operation

The process identificr contains an indication of the host in its 16 high-order bits. When an opceration is
invoked that specifies a process identifier that fails to validate locaily, it is assumed to be a remote process.
The operation then invokes a “nonlocal” version of the operation that formats a network mcssage and
transmits it to the workstation host specificd by the process identificr. The primary interface to the network is
the WritcKernelPacket routine,

In the case of GetPid, a message is broadcast rcqucsu'rig the logical id to pid mapping.

When a process is blocked sending to a remote process, the message is retransmitted periodically by the
clock interrupt routine until a reply is received. 'The Send fails after some number of retransmissions if no
“breath of life” packets have been reccived from the remote host in that time.

A message reccived on a workstation from a remote process causes a process descriptor to be allocated to
storc the message and make it appear as a local message to the rest of the kernel. A process descriptor used in
this fashion is called an alien. Aliens are destroyed an appropriate time interval after the Reply message is
sent. (This interval is 0 for idempotent requests.)

This description is far from complete. For a fully detailed discussion of the interkernel protocol, sec The
Distributed V Kernel and lts Performance on Diskless Workstations, by avid R.Cheriton and Willy
Zwacnepoel, in Procecdings of the 9th Symposium on Operating System Principles, October 1983 (also
availablie as "I'echnical Report STAN-CS-83-973, Computer Science Department, Stanford University).

Y-SYSTEM 5.0 REFERENCLE MANUAL KﬁRNEl,

KERNEL MODIFICATION AND MAINTENANCE 223

—_ A0 —
Kernel Modification and Maintenance

The type of kernel modifications anticipated include: changing the maximum number of processcs, teams,
or devices allowed, adding or removing kernel operations, and adding support for new devices.

49.1. Kernel Configuration Parameters

The machine-dependent file config. s contains the kernel configuration parameters.

MAX_PROCESSES .
Maximum number of processes, which must be a power of 2.

MAX_TEAMS Max. number of tcams, currently at most 16 on the SUN workstation.
MAX_DEVICES Max. number of device instances, which must be a power of 2.

ROOT_PRIORITY
Priority of root process of first tcam.

INIT_STACK Sizc of initial stack for root process of first tcam.

The kernel can be reconfigured with respect to these parameters by changing their definitions in config.h
within the constraints mentioned above and recompiling the kernel.

49.2. Adding New Device Support

Supporting a new device using the kernel device manager requires writing device-specific initialization,
rcad, write, release, modify and interrupt-handling routines and adding an cntry for the device in the
DeviceCreationTable defined in config.e. There is normmally a header file for the new device that defines its
device type for this table plus other device-specific information required by users ol the device. "The cxisting
devices and kernel operations arc useful models from which to work.

49.3. Adding Kernel Operations

Adding a kernel operation requires writing the C routines that implement the operation, adding an entry
for it to the kernel trap table, kernelops, defined in /rup.¢ and possibly adding a sted for this call to the C
cnvironment library for the kernel calls. Adding a new operation to the kernel process requires defining a
new request code in <Venviron.h>, handling this request code in the main loop of the kernel process and
writing the appropriate code for handling the request. Operations that must be available to remote processes
should be impiemented as kernel process operations rather than kernel traps.

Certain restrictions apply to kernel operations. They may not exccute trap operations or cail upon scrvices
provided by other processes outside the kernel. However, they can use other routines already available inside
the kernel. Kernel operations arc passed cxactly 5 arguments and allow one return value. A kernel operation
cannot take a variable number of arguments unless the number is encoded in the values passed. Operations
that access any data modificd by interrupt-invoked routines need to mask interrupts i€ there is any possibility
of interference. Finally, operations that block or unblock processes should usc the internal primitives

YV-SYSTEM 5.0 REFERENCE MANUAL KERNEL

224 KERNEL MODIFICATION AND MAINTENANCE

Addready and Removeready.

V-SYSTEM 5.0 RETFURENCE MANUAL - KERNEL

APPENDICES ' 225

Part V:
Appendices

V-SYSTTM 5.0 REFERENCE MANUAL APPENDICIS

226 CPROGRAMMING STYLE

V-SYSTEM 5.0 REFERENCE MANUAL ‘ APPENDICES

C PROGRAMMING STYLE 227

— Appendix A —
C Programming Style

There has been an cffort to use a consistent style in V for writing C programs. The style and the uniformity
it encourages arc motivated by the desire for readability and maintainability of software. Although style is to
a large extent a matter of individual taste, the following describes some general practices with which most of
us agree.

A.1. General Format

Recognizing that software is written to be read by other programmers and only incidentally by compilers,
the general format follows principles established in formatting general English documents. Take a few more
scconds to make things more readabile; it is time well spent.

First, softwarc is written to be printed on standard size (8 by 11) paper. This mecans avoiding lincs longer
than about 80 columns. In general, there is one statement or declaration per line.

As with other documents, judicious use of white space with short lines and blank lines is encouraged. In
particular,

1. At least 2 blank lines between individual procedures.,
2. Blank lines surround *“targe™ comments.
3. Blank lincs around any group of statements.

4, Blank lines around cascs of a switch statement,

A.2. Names

Names are chosen when possibie to indicate their semantics and to read well in use, for example:
if (GetDevice(EtherInstance) == NULL) return{ NOT_FOUND);

Words should be spelled out, not shortened, A good test is to read your code aloud. You should be able to
cominunicate it over a telephone casily, without resorting to spelling out abbreviations.

In addition, character case conventions are used to improve readability and suggest the scope and type of
the name. Global variables, procedures, structs, unions, typedefs, and macros all begin with a capital letter,
and are logically capitalized thereafter (c.g. MainHashTable). A global variable is one defined outside a
procedure, even though it may not be exported fromn the file, or an external variable. The motivation for
treating macros in this way is.that they may then be changed to procedure calls without renaiming,

Manifest constants cither follow the above convention (since they are cssentially macros with no
paramecters) or else are fully capitalized with use of the underscore to scparate components of the name. E.g.
WRITE_INSTANCE. '

Local variables begin with a lower-case letter, but arc cither logically capitalized thereafter (c.g. b1tWidth,
power, maxSumOfSquaraes) or clsc totally lower casc. Ficlds within structures or unions arc treated in this
manner also. .

V-SYSTEM 5.0 REFERENCE MANUAL - APPENDICES

28 ‘ C PROGRAMMING STYLE

I.ocal variables of limited scope are often declared as register, if they arc used very often inside inner loops.
[t is not only more cfficient, but usually more rcadable, to put a pointer to an array of complicated structures
(a common océurrence in object-oriented’ programming) into a register variable with a short name. For
cxample,)

register struct Descriptor *p = DescriptorTabls+objectIndex:
p->count = 0;)

Initialize(p->start);

p->usage = p->default;

p->length = p->end - p->start;

instead of the inefficicnt and cluttered:

DescriptorTable{objectIndex].count = 0;
Initialize(DescriptorTablefobjectIndex].start); .
DescriptorTable{objectIndex].usage = DescriptorTabie[objectIndex].default;
DescriptorTable{objectIndex].length = DescriptorTable{objectIndex].end

- DescriptorTabie{objectIndex].start;

A.3. Comments

There arc generally two types of comments: block-style comments, and on-the-line comments or remarks.
Multi-ling, block-style comments have the /* and */ appcaring on lines by themsclves, and the body of the
comment starting with a properly aligned *.- The comment should usually be surrounded by blank lines as
well. “Thus it is casy to add/delete first and last lincs, and it is casicr to detect the cornmon crror of omitting
the */ and thus including ail code up to and including the next */ in a cominent.

/.
* this is the first line of a multi-line comment,
this is another 1ine

* the last line of text
LY .

On-line comments or remarks are used to detail declarations, to explain single lines of code, and for bricf
(i.c. on¢ linc) block-style descriptive comments. '

Procedures arc preceded by block-style comments, explaining their (abstract) function in terms of their
parameters, results, and side cffects. Note that the parameter declarations are indented, not flushed left.

SystemCode EnetCheckRequest(req)
register IoRequest *raq;

/‘
* Check that the read or write request has a legitimate buffer, etc.
s/

ragister unsigned count;

register SystemCode r;

/* Check length */
count = regq->bytecount;
if(count <= IO_MSG_BUFFER) return(OK);:

reg->bytecount = 0; /* To be feft zero if a check fails */
if(count > ENET_MAX_PACKET)

{
-r = BAD_BYTE_COUNT;
}
else
¢
/t
* Make sure data pointer is valid.
* (Check that on a word boundary and not in the karnel area.
./

V-SYSTIM 5.0 REFERENCE MANUAL A|’PF.Ni)lCFS

COMMLENTS 29

if((lChackUsarPoHnter(req->bufferPointer)) i
(Active=->team=->teamSpaca.size < (req->bufferPointer + count)) ||
((int) reg->bufferPointer) & 1)

r = BAD_BUFFER;
}

else

reg-»bytacount = count;
r s 0K
}

retuen(r):

A.4. Indenting

The above example shows many of the indenting rules. Braces (“{™ and “}") appcar alone on a line, and
arc indented two spaces from the statement they are to contain. 'The body is indented two more spaces from
the braces (for a total of four spaces). 81se’sand 81se s linc up with their dominating if statement (to
avoid marching off to the right, and to reflect the semantics of the statemnent).

I ((x=y)==0)

flag = 1;
printf(" the value was zero ");

}
else if (y == 1)
switch (today)
case Thursday:
flag = 2;
ThursdayAction():
break;

case Friday:

flag = 3;
FridayAction().
break:
default:
OtherDayAction():
}
}
elsa

printf(" y had the wrong valus *);

A.5. File Contents

ile contents are arranged as follows.

L. initial descriptive comment (sce cxample below) contains bricf. dcscnptxvc abstract of contents. Some
programmers add one or morce of the following as well:

a, alist of all defined procedurcs in their defined order, or alphabeticaily.

" b. list of recent and major modifications in reverse chronological order with mdlcatlon (mumls) of
who madc the change. .

2. included files (use relative path names whenever possible)

V-SYSTEM 5.0 REFERENCE MANUAL APPENDICES

230 CPROGRAMMING STYLE

3. external definitions (imports and exports)
4. cxternal and forward ﬁmc.tion declarations
5. constant declarations

6. macro definitions

7. type dcfinitions

8. global variable declarations (use static declarations whenever possible, and group variables with the
functions that use them)

9. procedure and function definitions

Here is the beginning of a file as an example.

/*

* Distributed V Kernel - Copyright (c) 1982 by David Cheriton, Willy Zwaenepoal
»

* Kernal Ethernet driver

.y :

#include "../../11bc¢c/include/Vethernet.h"”
#include "interrupt.h”

#include "ethernet.h”

#include "ikc.h”

#include "../mi/dm.h"

/* Imports */
extern Process *Map_pid();
axtern SystamCode NotSupported():
extern Devicelnstance *GetDevicse();

/* Exports */
axtarn SystemCode EnetCreate();
extern SystemCode EnetRead():
axtern SystemCode EnetWrite():
extern SystemCode EnetQuery():
extern SystemCode EnetCheckRequest():
extern SystemCode EnetReadPacket():
extern SystemCode EnetPowarup():

unsigned char EnetHos tNumber; /* physical ethernet address */
Instanceld Ethernetinstance: /* Instance id for Ethernet */
int EnetRecaiveMask; /* addresses to listen for */
short . EnetStatus; /* Current status settings */
int EnetFIFQempty; /* FIFO was emptied by last read */
int EnetCollisions = 0; /* Number of collision errors */
int EnetOverflows = 0; /* Queue overflow errors */
int EnetCRCerrors = 0; /* Packets with bad CRC's */
int EnetSyncErrors = 0; /* Receiver out of sync */
int EnetTimeouts = 0; /* Transmitter timeouts */
int EnetValidPackets = 0;
char kPacketArea[WORDS_PER_PACKET*BYTES_PER_WORD+20];

' /* Save area for kernel packats */
kPacket *kPacketSave = (kPacket *) kPacketArea:

/* Pointer to kernel packet area */

/* Macro expansion to interrupt-invoked C call to Ethernetinterrypt */
CallHandler(EnetInterrupt)

V-SYSTEM 5.0 REFIRENCE MANUAL : APPENDICTS

PARENTUHESES 21

A.6. Parentheses

For function calls, the parentheses “belong to” the call, so there is no space between function name and
open parcntheses. (Fhere may be some inside the parentheses to make the argument list look nice.) When
parenthescs enclose the expression for a statement (1f, for, ctc.), the parentheses may be treated as
belunging to the statement (since they are syntactically required by the statement) so therc is no space
between the keyword and the expression. '

if((bytes = req->bytecount) <= I0_MSG_BUFFER)
buffer = (char *) req->shortbuffer;

alse)
return(req->bufferPointer);

Alternatively, parentheses may be treated as belonging to the cxpression, so there is a space between the
keyword and the parenthesized expression.

if (FuncA())
{

FuncB((a = b) == 0);
return (N11);

else

FuncC(a, b, ¢);
return (ToSender):

}

Note that spaces arc uscd to scparate operators from operands for clanty and may be sclectively omitted to
suggest precedence in evaluation,

A.7. Messages

Although V is a message-based system, most scrvices are available by calling standard routines, so
programming at the “message level” is rarcly nccessary or desirable. However, the programming of new
servers and the non-standard use of services or the use of messages within a program require message-ievel
programming. The following conventions have been followed in V.

Space to send or reccive a message is declared of type Message, as defined in <Venviron.h>. Standard
message formats, as defined in the V header files, declare cach message format to be a new data type. Access
to the space for the message is made by casting a pointer to the space W be of the type of the message format
required. ‘This guarantees that enough space is reserved even when a message format is not as large as the
fixed-size message used by the kernel. The following illustrates this style.

Read(fad, buffer, bytes)

File *fad;

char *huffer:

int bytes; . -

FA
* Read the specified number of bytes into the buffer from the
* file instance specified by fad. The number of bytes read is
* returned, .
./

Message msq;

-register loRequest *raquest = (IoRequest *) msgs
register IoReply *reply = (IoReply *) msg;
register unsigned r, count:

_register char *buf;

V-SYSTUM 5.0 REFERENCE MANUAL ‘ Ai’l’l‘INDICIL‘S

232

for(::)
request->requestcode = READ_INSTANCE;
request->fileid = fad-»>fileid;
request-»bufferPointer = buffer;
request->bytacount = bhytes;
request-»>blocknumber = fad->block;
if(Send(request, fad->fileserver) == 0)

fad->lastexception = NONMEXISTENT_PROCESS:
return(0);

}
if((r = reply->replycode) I= RETRY) break:
fad->lastexception = r;
count = reply->bytecount;
if(count <= IO_MSG_BUFFER)

buf = (char *) request->shortbuffer;
for(r = 0; r < count; ++r) *buffer++ = *buf++;

return(count);

V-SYSTIM 5.0 REFERENCE MANUAL

C PROGRAMMING STYLE

APPENDICES

INSTALLATION NOTES) 2313

— Appendix B —
Installation Notes

This document is intended to be an informal collection of information about the problems involved with
installing and maintaining the V-System softwarc. The reader should be familiar with the V-System as
documented in the V-System manuals, and with the Unix system used for development.

B.1. V-System Distribution

The software should be distributed on a 1600 bpi tar format tape. Licensing information and tapes can be
obtaincd from:

Office of Technology Licensing
105 Encina Hall ,
Stanford University

Stanford, CA 943035
(415)497-0651

Plcasc report any bugs you find, or improvements you make. All the software is under copyright protection,
50 you must get a license for any further distributions. Send comments on the software and documentation to
the Arpanct address vbugs@SU-Pescadero.ARPA. New versions of the software may be relcased from
time to time.

The first file on the tape is the entire source directory tree for the V-System. Since the first implementation
of the V-System is for the Motorola MC68000, our versions of the 68000 C compiler, assembler, and linker are
included as the second file on the tape.

Note: This distribution has been booted only on Cadline and SUN MicroSystems Warkstations with
MC68000s, not MC68010s, connected to a VAX by a 3Mb experimental Fthernet, using PUP boot protocols.
The next release will support the MC68010, 10 Mb standard Fthernet, and booting via the SMI network disk
protocol.

The first step is to run tar X to extract the two files into directories in your file system wherever you have
room. Remember to usc the non-rewinding driver (e.g. /dev/rmt12) or themt s command if you want
to read the sccond file. Throughout this document the V-System pathnames will be referred to as
V/something, and the 68000 dircctory as sun/somcthing,

B.2. 68000 Tools

We normally put the 68000 tools into /usr/sun. ‘There are a few other required directories that are
hardwired into a foew of the makefiles. Zusr/sun/include is for the include (. h) files, and Zuse/sun/lib is for
librarics. 'The two major librarics that arc ncéded by some of the V-System servers.are Tibsfonts., a for the
character fonts, and Tibgraphics.a for the SUN graphics primitives. We put binary versions of the
stand-alone bootfiles under /usr/sun/bootfile, and put the V-System commands under Zusr/sun/Vhoot.

Many of the V-System makefiles invoke the "cc68” command to compile and link. Be sure you have the
latest version of the ¢c68 command, with the =V option. Conncect to sun/src/cmd and do a make
install. You might want to cdit the command file to put the commands in a place other than

V-SYSTEM 5.0 REFERENCE MANUAL - APPENDICES

234 - ' INSTALLATION NOTES

/ust/local/bin. Next conncct to sun/src/graphics/lib and do amake instal? to make the graphics library.
There will be a few warnings issucd by the compiler which should be ignored. ‘There are manual entrics for
the 63000 software in /usr/sun/man68. -

QOur current V-Server software requires the CMU packet-filtering Ethernet driver for 4.1 or 4.2 Unix. Make
surc the maximum packet size (MTU) is large encugh to fit all the data bytes in a kerncl packet plus the
header. This driver and the associated higher-level software is available to people who have purchased Xerox
1100 workstations in a separate distribution.

Users who want to do 68000 development on a 68000-based Unix machine should be able to do so with a
small amount of work: Please report your expericnces back to us so that any softwarc or information can be
included in future relcases. .

The ipwatch family of programs under sun/diag/ipwatch arc very uscful to ‘dcbug nctwork problems.
The enwatch program. is used for 3Mb experimental Ethernet, and ecwatch for the 3Com interface.
Others could be added casily. It keeps a record of the network packets of interest which can be written to a
log file. Please include such a log file in all error reports.

B.3. Makingthe V-System

Edit the shell script under V/netinstall to do the appropriate installation procedure for your system.
We have it ftp the files to several other machines to automate the installation. ‘This and a few other shell
scripts arc assuined to be in the scarch path by the V-System Makefiles. These sources are in V/tools and
should be instailed into some dircctory in the scarch path before making the rest of the system. Each
dircctory contains a file called buildf41e which is processed by the buiidmake program to produce a
makefile. 'I'hc bui1dfile step includes conditional macro expansion.

Change dircctory to V/11bc and do a make 1install-{includes. This should copy the V-System
specific include files into Zust/sun/include. ‘Then do a make and then make i1nstall under this dircctory.
This should result in 11bV. a and teamroot. b being copicd into /usr/sun/lib.

Next change directory to V/sarvers, and do a make followed by a make iastall. The Vserver is
usually installed in /7eate/Vserver and then a line is added to /etc/re to start it up on system reboot.
Give it a large argument on the command ling, so that it can put uscful information into the arca printed by
the Unix ps command. It should be run.as super-user, to allow it to check access protections correctly and
setuid to the correct user,

"The following arc the options available on the Vserver:

-d Debug flag for the major server code.

=g Used if your system does not have the simultancous group featurc (4.1a systems and
beyond have this). ‘ .

=K * Kernel debug. Used to debug the kernel simulator.

=f Network debug. Used to produce a trace of network packets sent and received.

=p Public mode. If this flag is sct then broadcast GetPid requests are answered. 'The default is

to answer only requests directed specificly at this particular host. There must be at least
onc Vscrver running Lthe =p option on any given local network.

Then change to the V/kerne1 dircctory and do a make followed by a make install to compile the
kernel and put the binary into /usr/sun/bootfile. You may have to cdit the makefile to contigure the
kernel for your 1/0 devices, ‘I'he default is to support the Sun MicroSystems Fxperimental 3M bit Ethernet
interface. The 3Com Multibus Ethernet Interfuce can also be supported. Other devices such as disk
controllers will be supported in the next release.

V-SYSTEM 5.0 REIFERENCE MANUAL /\PPEN.DICES

MAKING THE V-SYSTTM . 235

Change directory to V/cmds and again do a make followed by a make install to compile all the
comimands. This takes a while, and uscs the include files, libraries, and servers.

Finally, change to the V/standalone directory. - This directory is for bootstrapping and loading utilitics.
Currently the kernel and system tcam are loaded with the PUP EFTP protocol. ‘The Vload program is
compiled with scveral differcat flags. By default.it will ask for a first tcam file, and possible the name of a
kernel. By defining the symbol FIRST_TEAM a specific first tcam file can be used.

It is also possible to usc the V protocol itseif to do the bootstrapping. In fact, some day we might put such a
bootstrap into the PROMSs to make the booting process easier.

V-SYSTEM 5.0 REFFERENCE MANUAL APPENDICES

236

V-SYSTEM 5.0 REFERENCE MANUAL

INDEX

INDEX

68000 7

BACKSPACE 199
DEL 200

DOWN ARROW 200
HOME key 200
LEFT ARROW ~ 199
LINEFEED 199
RETURN 199
RIGHTARROW 199
UP ARROW 200
Open 85

[bin] 7, 10
[home] 10
[public] 7,10

Abort 104

Abort Command 11, 199
Aborted 139

Abs 93

Active 219 ‘
Add Context Name 157
AddCall 118
AddContextName 105
Adding devices 223
Adding kernel operations 223
Additem 118
AddlogicaiName 105
Addready 221,224
AliasContextName 105
Alien 222

All 120

Amaze 21

ANSI 195

Any 134

Any Context 154
Append Only 84, 143
Arrows 35
Asynchronous communication 211
Autobooting 04
Awaiting-reply 209 .
AwaitingReply - 97

Backspace 36, 40, 194
Backup 37

Bad Address 139
ad Args 139

Bad Block No 140
Bad Bulter 140
Bad Byte Count 140

V-SYSTEM 5.0 REFERENCE MANUAL

Index

Bad Proccss Priority 140
Bad State 140

Bare kernel mode 75, 104
Beginning of Buffer 200
Beginning of Line 11, 199
Bell 194

Biopsy 21

Bits 21,51

Black 7

Blank lines 227
BlksinFile 88
BlockPosition 88
Blocks 143
BlockSize 88

Bit 95

Boise 21

Booting 7

Bottom 36

Break Process 11, 199
BufferEmpty 87

Busy 140

Cadtinc 8
Call_inthandler 220
Calloc 95

CD 8,2

Center Window 16
Clree 95

Change Context 8,37
Change Current Conlext 91
Changg Dircctory 8,21
ChangeDircctory 9t
Changeltem 119
Character Sct 195
Checkexees 27

Clcar 96, 1%4
ClcarPad 194

Clear To EOL. 195
Clear To FOS 194
ClearEol 87 '
Click 15

Client 115’

Clock .219

Close 85

Color 116 -
Compile command 75
Concat 134

Config Files 79
Conlig.h 223
Configuration 79
Console 163
Context 9, 22, 153

237

238

Context Dircctorics 158
Context Request 155
Contexts 8
Control 11, 199
Convert_num 134
Cooking 18, 122, 196
Copy 39.95
Copy_str 134
Copydir 22
Cp 2
CR Input 122
Create 75,104
Create Instance 145, 195
Create View 15
Createlnstance 85
CreatePlpcinstance 88
CreateProcess Y7
CrealeSDFF 117 ‘
CreateSclectioninstance 114
CreateScssion 105
CreateTeam Y8
CreateVGT 120
Creator 97
CSname 153
CSNIIserver 153
CIRL-\ 200
CIRL-a 11,19
CTRL-b 11,199
CIRL-d 11,199
CIrRL-¢ 11,199
CIRE-f 11,199
CIRL-g 11,199
CIRIL-b 11,199
CIrRL-k 11,200
CURL- 200
CIrRL-n 200
CIRL-p 200
CIRI-q 200
CrRI-~t 11,200
) CIRL-u (1,200

CI'RL-w LI, 200
CIRL-y 200
CIRL-z 12,200
Current Context Invalid 140
Cursor 122
Cursor Backward 11, 194, 199
Cursor Down 200
Cursor ['orward L1, 194, 199
Cursor Motion 36
Cursor Position 194
Cursor Up 194, 200
Cursor Word Backward 12, 200
Cursor Word Forward 12, 200

Daie 22

Date 22

Debug 17
Debugger 29, 165
DefaultView 120
Define 9,22

V-SYSTEM 5.0 REFERENCE MANUAL

Define Font 121
DefineSymbol 118
DEL 1%

Delay 98, 103, 221
Delete 36, 39

Delete Char 195

Delete Character 11, 199

Delete Character Backward 11, 199
Delcte Character I‘orward 11, 199

Delete Context Name 157
Delete Last Character 11, 199
Delcte Line 11, 195

Delete to Beginning of Line 11
Delete to End of Line 11
Delete to Start of Line 11
Delcte View 16

Delete Window 41

Delcte Word 36, 37

Delete Word Backward 11
Nelete Word Forward 12
DeleteContextName . 105
Deleteltem 118

DelcteSDU 117
DeleteSymbol 119
DeleteVGT 120

Delexee 27

Destroy 22, 104
DestroyProcess 98

Device Lrror 140

Device server 161, 210, 218
Device type 161
DeviceCreationTable 223
Devices 210
DirectToCurrentContext 106
DiscardOutput 122
Displayltem 120

Distributed operation 2L1, 222
Do 27 -
Duplicaic Name 140

fcho 22,122
Iditor 35
LditSymbol 119
Und of Buffer 200
Iind of File 12, 140, 200
Fnd of Line 11, 199
EndSymbol 118
liof 87

Fqual 134]
lrrorSiring 135, 141
ESC-, 200

ESC-. 200
ESC-packseace 200
ESC-put. 200
ESC-b 12,200
ESC-d 12,200
ESC-f 12, 200
[ISC-h 12,200
ESC-t 200

Escape 11, 199

INDEX

Escape Scquences 194
Lthernet 161

Fthernet performance 218
Event 115

Event Request 196
Cxample 124

[xception Request 165
Exception Server 165, 215
ExceptionMessage 215
Exceptions 165, 215
Exchange 39

Exec 7, 197

Exee Control 7, 16
ExecProg 107

Exccutive 7, 15,75, 104
Exit 104

Expansion Depth 17

FAppend 83, 145
I'Create 83, 144
I'Dircctory 145
Flixecute 145
[iclds 127

Tiile Access 37

File Modes 83, 144
[ile Types 84, 143
FilePxception 88
Fileld 90
[ileServer 90
FileType 90

[illed Rectangle 116
I“indSclectedObject 120
Fixed length 84, 144
lixed Menu 38 °
[lush 86

I'Modify 83, 145
Font (21

l'orget 37

Forward 98
l'orwarder 98
I'‘Read 83, 144

Free 95

Fscheek 59
I'Scssion 145

General Line 116
Get Context Id 155
Get Context Name 156
Get lile 41

Get lile Name 156
GeiContextid 106
GetContextName 106
Getlivent 124
GetlileName 106
GetGraphicsBvent 123
GetGraphicsStatus 123
GetMorcMallocSpace 96
GetPid 99, 222
GetlecamRoot 99
GetTeamSize 99

V-SYSTEM 5.0 REFERENCE MANUAL

GetTime 99

Ge1TY 123
GiveToMalloc 96
GoTo 39

Grab 39

Graphics 115

Graphics Commands 16

Help 22

Hex_value 134

History 12

Hit Detection 120

Ilorizontal Line 116
Horizontal Reference Line 117

170 83

170 Protocol 115, 143, 193,210
Idempotent 102

Idle process 220

Ignored 194

filegal Request 140
Index 194
InitlixceptionServer 165
Initial priority 75

Initial process 75

Initiat stuck 75, 223
Initialization 210
InquircCall 118
Inquircitem 118

Insert 37

Insert Char 195

Insert Line 195

Insert Lincfced 37

Insert With Cighth Bit Set 200
Installation 233
Interactive 34, 90, 144
Internal Grror 140
Internct Server - 22
Interprocess commuaication 210
Interrupt disable time 218
Interrupt masking 219
Interrupts 220

Invalid Context 140
Invalid lile Id 140
Invalid Mode 140
Inverse Video 195

[O Break 140

10 Protocol 72

Ipteinet 22

Ipta 22

Iris 116

Item 115,116

Item Type 116

Kernel arguments 223
Kernel configuration 223
Kernel Operations 213
Kernel stack 219
Kernel ‘Timecout 140

Kernel timings 217

239

20

Kernel traps 220
Kernelops 223

Kiil 37 .
Kill Break 11,199
Kill Buffer 38

Kill Input Buffer 200
Kill Prograin 196

Kill Region 40

Kill to End of Line 200
Kill Word Backward 200
Kill Word l'orward 200
Killprog 27

1.d68 29

Left Button 18, 38
Left+Middlc Buttons 18
Left+ Right Buttons 18
LF Output 122
Libva 75

Line 36, LI6

Line Builer 122

Line Editing 11 .
Line-Liditing 15,122
Lincleed 37

Linking 75

List Type 120

Listdie 23

Loader 76

Loading Nonstandard Kernels 67
l.oadNewTcam 108
LoadProg 107
l.oadTeam 108

Local Name Scrver 8
Login 9,23

l.ogin Context 154

. Logout 10,23
lLongjmp 135

Lower 135

Make Bottom 16

Make Top 16

Malloc 75,95 -

Mark 40

Math 93

Mcmory management 209
Menu 121, 127

Menu. View Manager 1S
Merge Windows 41
Message I'ormat Conventions 139
Message primitives 221
Messages 210

Middle Button 18, 38
Middle+ Right Buttons 18
Mode 145

Mode Not Supported 141
Modes 83, 144

Modify FFile 150, 196
ModifyPad 123
Monasterics 75

Motorola 68000 215

V-SYSTEM 5.0 REFFERENCE MANUAL

Mouse 15, 18, 38, 162
Mouse cmulation 18
Mouse Fvent Request 196
Mouse Status Request 196
Move Edges 16

Move Edges + Object 16
Move Viewport 16
Movel'rom 99

MoveTo 100

Mulli Block 84, 144

Name Request 154
Names 227

Naming 210

Naming Protocol 153
New Line 194
Newterm 23

Next Line 194
NModify File 150

No 40

No Mcmory 141
NoPDs 141

No Pcrmission 141

No Process Descriptors 141
No Server Resources 141
NoCursor 122
Nonexistent Process. 141
Nonexistent Session 141
Not Awaiting Reply 141
Not FFound 141

Not Readable 141

Not Writeable 141
NQuery File 150
NRead Descriptor 159
NUL, 194

Null_str 135
Number of devices 223
Number of processes 223
Number of lcams 223
Numecric 93

NWrite Descriptor 159

Object Descriptors 158
OK 139

Open 84

OpenFile 85, 122
Openip 89

Openi’ad 122, 195
OpenPup 39
OpenStr 90

Openlep 83

Qutline 117

Pad 15

Pad Fscape Scquences 194
PadlFindPoint 124

Page Down 36

Page Up 36

Paged output mode 17
Pagemode 23

INDEX

INDEX

PageOutput 122
PageQutputCnable 122
ParscLine 109 .
Per-Process Area 77, 209
Point 116

Pointer 116

Popup 121

Power Failure 141
Previous Word 12, 200
PrintError 136

Priatf 83

PrintFile 91

Priority 219, 221
Process 97, 209

Process ercation 221
Process descriptor 219
Process destruction 221
Process identifier 209
Process management 209
Process switching 220
Processes 219
Processor allocation 209, 221
PROM 72

PROM monitor 104
Protocol 139

Public 183

Public Context 154
Pull Apart 41

PUP 24

Pwd 9,22

Qsort 135

Query File 150, 196

Qucery Instance 146, 195
Query Replace 39, 40
Queryexee 27

QueryKernel 100
QueryPad 123 '
QueryPadSize 123
QueryProcessSiate 100, 215
QueryWorkstationConfig 79
Quit 36

Quote 37

Quote Character 200

Rand 93

Raster 117, 118

Raw 122

Re-Display Tnput 200
Read 87 -

Read Descriptor 159
Read Instance 147, 196
Recadable 84, 143
ReadProcessState 100, 215
Recady 104, 209
Realtime 209

Reailoc 95
RecciveSpecific 101
Receive WithSegment 100
Rectangle 116

V-SYSTEM 5.0 REFERENCE MANUAL

Redisplay 39

Redraw 17, 36
RedrawPad 124
Reference Line 117
Region 40

Register Handler 165
RegisterServer 113
Release Input Buffer 199
Release Instance 147, 196
Relcaselnstance 86
Relocation 75

Remote program exccution 10
Remotelixccute 108
Removelile 90
Removercady 221, 224
Repeat Scarch 39
Replacement String 40
Reply 10L

Reply code 139 .
ReplyWithScgment 101
Report Click 122
Report Transition 122
Request code 139
Request Message formats 145
Request Not Supported 14t
RereadMsg 101
RosetTTY 123

Resynch 86

Retry 141

Return 37, 194

Reverse Index 195
Reverse Search 39, 40
Right Button 13, 38
Root process 223
RunProgram 108

Samcl'cam 101

Sanity 42

Save 37

Scheduling 219

Seroll 36, 39

Scroll Region 195

S 11S

Search 38, 39, 40
Scarching 38

Scek 86

ScekBlock 88

Scgment 102

Scgments 210

Sclcet 41

Sclected Vertical Reference Line 117
SclectPad 123

Send 101, 222
Send-Receive-Reply 217
Scrial 23

Serial line 162

Server Not Responding 141
Services 139

Scssion 23,73

Scssions 9

241

2142

Set Break Process 149, 196
Set Instance Owner 149
Sct Mark 40

Sct Prompt 149
SctBreakProcess 90, 197
ScilnstanceOwner 9L
Setjmp 135

SetPid 102 '
SetTeamPriority 102
Sctl'camSize 103
SetTime 103 i
SetUpArguments 109
SetVgtBanner 197
Sheit 7

Shitt In 194

Shilt Out 194
Shift_left 135

Show 24

Sibling 116

Size 135

Slecp 133

SMI 7.8

Space Bar 39

Special States 36
SpeciaiClose 85
Spline 117, 118

Srand 93

Siack 209

Stack overflow 75
Start of Line 11, 199
Startexee 27

Stipple 116

Strecam 84, 143 |
Structured Display File "115
STS hardwarce environment 200
STS input cditing 199
Style 227

Suicide 104
Supervisor mode 219
Swab 9%

Switch 220

Switch Input 196
Symbol 115
Synchronization 219

Tab 37,39, 194

Team 209

Team descriptor 219
Team Root Mossage 76
TeamRoot 76

Teams 209, 219
Telnet 24

‘Terminal Emulator 194
TerminateSession 106
Testexcept 24

Text 36, 115, U16, 117
Time 73

Time management 210
‘Time primitives 221
‘imekernel 24

V-SYSTEM 5.0 REFERENCE MANUAL

Timeout 141

Toggle Grid 17

Top 36

Tops-20 7

Transparent operation 211
Transpose 11

Transpose Characters 200
Transpose Words 200
Trap.c 223

Type 24,34, 116
TypeData 116

Types 143

Un-Kill 200

Undcfine 9

Undo 40

Unix 7, 10, 25,71.73, 183
UnregisterServer 113
Upper 135

Vserver 9, 10, 183
ValidPid 103
ValidProgram 109
Variable Block 84, 144
Vax 25

Ved 24,35

Venviron.h 75, 139
Vertical Line 116
Vertical Reference Line 117
Vetherneth 161
Vexceptions.h 165, 215
VGT 115, 119, 193
VGTS 7,15, 18,29
Vgis.h L6, 120, 121
Vatsexee 7

View 16, 115, 119, 193
View Manager 7, 15, 196
View Manager Mcenu 1S
Vio.h 143
Vioprotocol.h 145
Virtual Graphics Terminal 119
Visit 37

Vioad 63.76

Vmousc.h 162

Wakcup 103

Word 36

Workstation 209
Write 37,87

Write Descriptor 159
Write lnstance 148, 196
Write Region 40
Writcable 84, 143
WritcKernclPacket 222
WritcProcessState 103
Writeshort [nstance 196

Xmax 116
Xmin 116

INDEX

INDEX 243

Yale 22,117

Yank 37

Yank to window 41
Yes 40

Ymax 116

Ymin 116

Zero 96. 116
Zoom 16

V-SYSTEM 5.0 REFERENCE MANUAL

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243

