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Abstract

Although recent advances in graphics workstations promise much computing power for the future needs of
rescarchers, traditional approaches to softwarc organization waste much of this power. Most systems treat the
workstation as cither a fixed-function terminal or a sclf-contained personal computer; thesc roles have
limitations that can be overcome by considering the workstation a multi-function component of a distributed
system. Traditional standard graphics packages and object-oriented window systems offer important
functionality, but a third approach, virtual tecrminal management systems, is morc appropriate for a
distributcd operating systcm. ) -

The Stasford Distributed Systems Group has implemented such a distributed system for graphics
workstations, organized as a collection of servers providing services to clients. Major issucs arc how to
partition functions between the server and its clients, and physically partition the server. In particular, the
service that displays graphical objects is called the Virtual Graphics Terminal Scrvice (VGTS). The VGTS
architecture is described, as well as a prototype implementation. '

This thesis discusses the trade-offs involved in partitioning of function in a distributed graphics system.
Performance is one important property traded for advanced functionality or decreased cost. To provide
adequate performance in a distributed system, communication costs should be kept low, as well as the
frequency of the communication. By providing modeling as well as viewing facilitics, the VG'TS reduces the
communication rcquired between applications and the service,

Mcasurements verify that performance is insensitive (0 network bandwidth, but depends heavily on CPU
speed and protocol characteristics.  Using structure provides important speed improvements in some cascs,
but other basic factors such as inner loop optimization and proper batching of requests make cven larger
differences. ’

Finally, conclusions arc drawn regarding the partitioning approaches taken in-the VGTS. The VGTS is
suitable for a large class of applications that perform graphics as an aid to user interface, and is portable to a
wide range of powerful workstations. Morcover, the VGTS can be used as a basis for further rescarch on
many open questions in distributed systems, :
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Introduction

When computers were first invented, their time was so valuable that elaborate batch systems were devised.
People would spend hours preparing commands and data to be rcad, processed,-and printed out by the
computer. In the 1960s the concept of timesharing was introduced, dedicating inexpensive terminals to each
uscr, many of whom shared a computer. The first timesharing systems were modcled after batch systems, but
soon the advantages of interactive programming became worth the extra cost. Throughout the 1970s many
computer systems were designed specifically for timesharing.

Recent advances in VLST technology make powerful yet physically small and inexpensive computer systems
feasible. Reclated advances in network technology have made computer systems that communicate to other
systems the rule rather than the exception. Onc of the ideas behind timesharing can be applied with today’s
different cost constraints: replicate inexpensive components and share the expensive components.

1.1 Graphics Workstations

The computing resource dedicated to each single uscr is called the workstation. In timesharing systems the
workstation is just a fixed function terminal, but the falling cost of microprocessors results in a shift to more
powerful workstations. For the rest of the discussion we will assume that the workstation contains some kind
of programmable processor, some memory, at lcast one display device, and at least one input device.
Workstations are often connccted in clusters, forming a workstation-based distributed system, as illustrated in
figure 1-1. , . :

The advent of high-performance graphics workstations has been a mixed blessing. Inexpensive
microprozessors seem to promisc unlimited computing power to satisfy everyone's needs. However, now that
the information being processed and viewed is becoming more valuable than the hardware doing the
processing, old techniques for organizing computing systcms arc no longer valid. In particular, common
activitics fike information display often have processors dedicated to them, but still require access to other
computing resources. '

Although they are interconnected, most workstation systems built to date continue to treat the workstation
solely as a fixed-function terminal or a sclf-contained personal computer. More interesting roles cxist
between these two extremes, especially considering the next logical step in the organization of computing
systems: many computing clements per user cooperating on the same task. To accomplish this cooperation,
the tasks must be partitioned or divided at appropriate points depending on many factors. ‘This thesis
attempts to investigate and characterize some experimental attempts at partitioning in a distributed graphics
system. ‘The goal is not a system that solves all the problems of distributed graphics, but rather to design and
build a prototype that can be used to evaluate one approach.

1.2 Role of the Workstation

It is fairly certain that both computing power and communication capability will become more pervasive in
the future, and these trends will continue for some time. At present, however, the bottlencck in the
development of nctwork-based systems has become the software, with much of the potential of powerful
workstation hardware being unrcalized. The first key problem is to find the appropriate role for the
workstation within the context of the whole system. There arc three basic approaches to the role of graphics
workstations in a computing cnvironment: as a terminal, as a personal computer, and as a component of a
distributed system. i
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Figurc 1-1: A workstation-based distributed system

1.2.1 The Workstation as Terminal

When a low performance workstation is used with a timesharing system, it is convenient to treat the
workstation as a terminal [91]. "This concept applics not only fo traditional alphanumeric terminals, but also to
bitmap (calied “all points addressable™ by 1BM) displays. Bitmap displays contain an arca of memory which
stores every pixel of the displayed image.  The advantages ol using graphics terminals with timesharing
systems has been recognized for many years, but the cost of the necessary display hardware, compute power,
and communications bandwidth has been probibitive until recently [70].

Onc of the first graphics workstations with local nctwork capability was the Alto, designed and built by the
Xerox Palo Alto Rescarch Center (PARC) [142). The ADIS System [127], the Alto Terminal Program [12],
and Deutsch's Remote BitBIt protocol [47] were developed to allow programs on a timesharing system to use
an Alto as a display device across a nctwork. However, in cach of these protocols all but the lowest level
viewing opecrations were done on one particular host, with the workstation only manipulating bitmaps. This
was duc to the limited speed and main memory capacity of the Alto, designed in the carly 1970s. Since
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current workstations have faster processors and larger memories, new architectures should take advantage of
this increased power.

Bell Lab’s Layers System [105] for the Blit terminal [72], now called the Teletype 5620, provides a similar
bit-map interface to the application. An application can run on the terminal and communicate to a (single)
host using a higher-level protocol. Unfortunately, these protocols are not standardized, and the Layers system
is'only dcsigned for one particular kind of workstation to communicate with onc kind of opcrating system.
Since many users arc only concerned with onc operating system or onc terminal, these systems may be
successful. In fact, the ability to act as a terminal is an important capability that should be included in any
workstation-based system. However, even the dcsignérs of the Layers system are working on a more flexible
approach that does not waste the power of more advanced workstations.

1.2.2 The Workstation as Personal Computer

For higher performance workstations, one popular approach is to construct a small model of a larger
timesharing system. This is a simple and powerful idea pioneered by the Alto computer at Xerox PARC, and
now adopted in many ncw products. Examples include the various Lisp Machines [16], the Perq [144], and
many other new coimmercial systems being announced weekly at the time of this writing.

One principle motivation bchind the personal computer approach is to avoid the partitioning problem, and
instead offer a single “integrated™ system. But in reality cach personal computer is isolated, resulting in a
highly partitioned system with the followmg practical problems:

e Cost: There arc economics of scale involved in devices such as disks. For cxample, 30 10 Mbyte
disks cost much more than a single 300 Mbyte disk. A modecrately sized disk would cssentially
double the current cost of the workstation. Typically configured Lisp Machinces seil for $100,000
to $200,000. Since many organizations do not have $1000 terminals for cach member, they
certainly will not spend 200 times that amount for a singlc user.

¢ Reliability: An officc cnvironment is not as controlled as a clean, air-conditioned machine room.
Preventive maintenance and repair of delicate mechanical cquipment is much casier for
centralized facilities.

e Flexibility: The personal computer model provides for rigid control on the number of users; if
you arc not one of the few who own ong, or find one to share, you can not use any computing
resources during peak hours.

o Performance: There are two aspects of performance.  Although fast response to user intcraction
(such as cditing [57]) favors personal computing, high-throughput and low-interaction activitics
(such as compilation) favor large shared processors.

o Comlfort: Adcquatcly sized disks arc large and noisy, producing an unwelcome intrusion into the
office environment, with associated power requirements and heat dissipation problems.  For
cxample, the Xcrox 1100 Lisp workstations at Stanford arc physically centralized, with only the
displays and keyboards outside the machine room.

# Duplication: Many of the files on cach disk arc duplicated. This obviously wastes space, but
morc importantly, it causes problems with propagation of updates and uscless duplication of
software maintenance cffort.

There will still be many commercially successful personal computer products. For example, the entire
UNIX [111] operating systern has been ported to a workstation with a local disk interface for cach
workstation [68, 118]. Reasons for this success include the value many people put on total control, and the

“personal” nature of much computing [L16). For instance, a qmall business would probably initially prcfcr
one sclf-contained personal computcr
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However, if that business outgrows the single personal computer, and wishes to share large distributed
databases, the problems described here will eventually arisc. Except for the low-performance computers
purchased for home use, most so-called “personal” computers used for scicnce and busness are actually
purchased by some group or dcpartment, and are therefore actually shared. Furthermore, the high cost of
these scientific workstations has limited shipments to only a few thousand units [153]. For larger, multi-
person projects that arc performed in rescarch ;md devclopment environments,- small self-contained systems
are not always desirable.

- Even if workstations are available, current rescarchers still heavily use centralized server hosts. The
following arc some reasons it might not be possible or desirable to run all applications on the workstation:

e The application may require fast floating point hardware.

e The application may require large virtual or physical memory.

e The application may rcquire frequent access to a large database.

e The application may be written in a particular language or dialect,

e The application may require a license to run on each different CPU.

e The application may access sccure information that should not be transmitted over a network.
e The application may perform I/0 directly to a particular device.

e The application may contain dependencies on a particular machine or opcrating system.

Even if the necessary resources are available as an option for thc workstations, they arc often too cxpcnsxve for
widespread use.

Onc could argue that since hardware costs are decreasing, the personal computer model will inevitably
dominate in the end. But the decrease in hardware costs means that softwarc costs become relatively more
important [156]. 1t is well known that the largest portion of software life-cycle costs goes to maintcnance [18].
Therefore, ease of software maintenance should be an important issuc in evaluating a computing system
architecture. With individual personal computers, all users have to do their own software maintenance. This
results in a potentially enormous increase in the costs associated with distributing and installing new versions
of software.

‘Even considering only hardware costs, sclf-contained personal computers may cventually become more
cxpensive than other alternatives. One might reason that since memory costs are decreasing, and memorics
are getting more dense, the trend will be to computer systems with higher ratios of memory to processing
power. However, a typical computer ten years ago was an IBM System/370 with about a million bytes of
physical memory [104]. "Today, a representative computer is the 1IBM PC, with almost half the processing
speed, but only one tenth as much memory, typically about 100K bytes {54]. Of course the lower price of the
PC means that many more people can afford onc. On the other hand, the organization that ten years ago had
a 3707138, can now afford a machine with a processor about cight times faster and sixteen times as much
memory. Large computers are expanding principally by adding memory, while smaller computers are getting
less expensive principally by keeping memory small.

More interesting cvidence is the relative price of memories and processors. Today an MC68000 processor
costs about $50, and a 64K bit memory chip costs about $5. Thus, if a system has more than about ten
memory chips per processor chip, the memory cost will dominate. Since the cost to produce integrated
circuits in large quantitics depends mostly on packaging considerations such as the number of pins, the ratio
of processor to memory cost will probably stay fairly low. 'This provides motivation to design computer
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systems that takc advantage of low-cost processors by replicating them for cach user, but share expensive
resources such as memory.

1.2.3 The Workstation as a Component of a Distributed System

Since most rescarchers who usc personal computers quickly rccognize the problems caused by isolation,
manufacturers usually provide some form of communication capability. For example, a filc transfer program
may be used to transfer files cither explicitly or semi-automatically between the personal disks. Other
approaches use a remote disk or logical file system to intercept operations at the appropriate level, and route
them instead to a remote disk or file access user module. There are many practical rcasons to climinate
expensive components such as secondary storage from each workstation. A diskless workstation is
inexpensive, small, quiet, and has almost no moving parts to break.

Scveral efforts, such as Locus at UCLA, modified standard operating systems to allow shared and replicated
file systems [150]. Berkeley 4.2 UNIX was intended for diskless opceration, although for performance reasons
most 4.2 systems still have local disks, and all programs still run on the workstation [68]. Some attempts
extend timesharing systems to handle remote cxecution [53], but a more comprchensive solution is needed.
The file scrvice-abstraction, developed in projects such as Woodstock [137] can be generalized into the server
model, resulting in more ﬂexnblhty of interconnection.

1.2.3.1 The Server Model

The architecture to be presented in Chapter 3 treats the workstation as a multi-function component of a
distributed system. We do not wastc its power by treating it solcly as a terminal, nor do we isolate it from the
rest of the world, under the false assumption that it can be all things to all users. Rather, by supporting a
distributed operating system thc workstation may perform any functlon best smtcd to the uscr, the hardware,
and the applications at hand [79, 86, 109, 155]).

In this view, the operating system is just a collection of servers, and a way of accessing those-servers. An
implementation of this modcl usually consists of cooperating kernels providing an inter-process
communication systecm, and services implemented as processcs]'. The kernel of a server-based opcrating
system acts analogously to a hardwarc bus, being cssentially a communications switch. In addition to the
physical wires used to connect modules in a hardware bus, a standard protocol is agreed upon to define the
semantics of the communication. Similarly, in our software model, in addition to the ability to send message,
a protocol is defined for the meaning of the messages.

This mode! does not make the system versus user distinction; the design is in terms of “clicnts™ which
invoke the services of a particular server. For example, the concepts of “terminal” and “personal computer”
arc now merely roles played by some collection of processes and processors at any given time. 'The result is
much more flexibility in the partitioning of the resulting system.

1.2.3.2 Network Transparency -

By considering the workstation as a component of a distributed system, we could consider a single
underlying communication concept for “nctwork transparency.” In general, nctwork transparency is a
worthwhile goal: programs should be as independent as possible of the location of their execution and the
resources they usc.  However, cvery system has a boundary on this transparency, so the problem of
communicating to the outside this boundary must be addressed cventually. In fact, all the computing

]ln fact, in many ways the kernel itsclf can be viewed as a scrver, providing objects such as processes and messages.
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resources in the world can be considered a single computer system, with many disconnected components.
This motivates communication between various kernels which may have vastly different underlying
communication concepts, resulting in what might be called a distributed kernel. Network communication
always has some cost associated with it, so perfect transparency is never possible with respect to performance.
Chapter 3 describes a system which has been developed to help address some of these issues.

1.3 Kinds of Partitions

The hardware trends discussed in the previous sections result in a physically distributed computing system,
with a corresponding partition required of the software. There are scveral forms that partitioning can take,
some of which arc introduced below.

1.3.1 Physical Partitions

Computations can always be done more efficiently on machines that arc built spccifically for a particular
purpose. For cxample, a machine with large and fast disks is nceded for fast scarching of databascs, while
interacting with a uscr requires powerful graphics capability. This suggests a physical partitioning by putting
particular operations onto spccially built machines.

Partitioning has a long history in the ficld of computer graphics. Due primarily to the high cost of
hardware, graphics systems of the 1960’s consisted of relatively powerless graphics devices connected directly
to relatively large-scale computers, cither single-user or time-shared. However, as the graphics devices
became more sophisticated, the load on timeshared hosts, in particular, became insufferable,

Fortunately, the minicomputers of the 1970s led to satcllitc graphics systems that served to offload a
variable amount of graphics functions on to anothcr machine [51, 53, 62, 148]. By judicious partitioning of
responsibility between the host and the graphics device, it was possible to achicve both better response and
higher throughput. 'The more powerful the graphics processor, the more functions that could be offloaded,
until the satellite system took on the appearance of the host. Taken to its extreme, this branch of cvolution
led naturally to the personal computer - completing a round on the Wheel of Reincarnation [101], as
illustrated in Figure 1-2.

In configuration 1 of Figurc 1-2, the processor directly controls the display device. " In configuration 2, the
display commands arc accessed directly from the processor’s memory. In configuration 3, a special dual-port
memory hold the display commands. In configuration 4, a sccond processor has been added to send
commands to the display from the display buffer. The display control is similar to configuration 1, except for
the communication channel to the main CPU. At cach step through this cycle the partionability problems
must be addressed. In fact, the amount of distribution of function increases at cach cycle.

For the 1980’s, increasingly powerful workstations, together with the proliferation of nctworks, have made
truly distributed graphics possible. 'T'he higher bandwidth of available networks, when compared to that of
previous host-satellite interconnections, makes it cven more feasible to achicve betler performance by
partitioning the application between machines, especially if the remote host is significantly more powerful
than the local workstation. Morcover, it is now possible for a single workstation to have access to multiple
backend machincs, possibly simultancously. Many of thosc machines may support graphical applications that
can not be exccuted on the workstation - due to memory or language requirements, for example - but can use
the workstation for output, ’

On a hardware level, a given computer systcm may contain scveral different processors, and cven a single
processor may be implemented as several functional units. This is consistent with further travel on the Wheel
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Figure 1-2:  The wheel of reincarnation

of Reincarnation model cited above. These parallel architectures provide much promise for the future, but
this thesis will concentrate on partitioning at higher levels. Before experimenting with partitioning problems
into many picces (which will be required by future hardware), we should have a good under standmg of how
to partition them into two pieces.

1.3.2 Logical Partitions

In addition to the physical partitioning that may be motivated by cost and performance, experience in
devcloping local arca networks by the author has resulted in the realization that long before networks reach
their physical size limits, they usually become unmanageable once they span several burcaucratic boundaries.
Even if the network is physically contiguous, artificial division along organizational lines is often desired.

There is also a more fundamental logical partitioning between graphics systems and the application
program. ‘T'hat is, system designers must determine which facilitics the graphics system should provide and
which the application should provide. Similarly, cven when the functions of the service are decided upon, the
server may be implemented in many ways by paluuomng its functions between modules or processcs, for
example.

1.3.3 Static and Dynam’ic Partitions

Another attribute of the partition is when it is performed. A static partitioning is performed once when the
program is designed. configurcd, or initialized. More ambitious projects might try to partition dynamically
during run-time. Load sharing is the usual motivation for dynamic partitioning. This involves migrating tasks
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to more cvenly distribute the load among several computer systems. 1.oad sharing can be used only when the
systems are relatively homogeneous. In this work we will deal with heterogencous systems consisting of
dedicated workstations and centralized server hosts.

There have been a few attempts at dynamic partitioning in heterogencous systems, by assigning tasks to
either the mainframe or host depending on current workloads. For instance, the ICOPS system at Brown
University attempted to perform dynamic partitioning [146, 128).  Onc application using the Brown
University Graphics System (BUGS) was dynamically distributed between a mainframe and a
minicomputer [97]. In another example, the CAGES system at the University of North Carolina automatically
gencrated the linkages at compile time for distributed graphics programs written in pL/1[62]. More
intcresting would be a solution to the problem of handling multiple applications or multiple languages
simultancously. ’ -

We shall scc enough problems with static partitioning that it is not clear if dynamic partitioning is worth the
cost. In cither case, cfficient techniques for static partitioning and cffective measurements and cvaluations are
prerequisites to solving the more gencral problem. Without the ability to casily experiment with static
partitioning, dynamic partitioning should not even be attempted.

1.3.4 Total and Partial Partitions

Unfortunately the word “partition” has taken on a fairly specific meaning in the terminology of networks.
1t usually refers to a single network that is divided into two or more totally disconnected smaller subnetworks
because of a failure of onc or more components. A typical example of this kind of partitioning involves the
failure of several links or a gatcway, causing a nctwork to divide into disconnected parts. It is desirable to
continuc functioning as much as possible within cach network partition.

/ .

However, if the disconnected subnetworks never reconncct, then the problems arc just the same as those of
several smaller networks in isolation, 'The intercsting situations occur only when the parts are reconnected,
and information flows again between the parts. Expericnce with the Stanford University Network has been
that in rcality siow or partial degradation is much morc common than total failure.

This thesis concerns itsclf only with the information flow between the parts of a connected system, not the
details of rccovery from link errors after total partitions. A partial partitioning, in which communication
between the parts is possible but more costly than communication within cach part, may be incvitable or cven
desirable. Additional reasons for this will be discussed in in Chapter 5, in particular the scctions on future
computing systcm organizations.

1.3.5 Protocol Design: the Result of Partitions

Many critical choices must be made when designing the protocols or interfaces between the parts of a
distributed system. The protocols should be at a high cnough level to make the communication cfficient, but
flexible -cnough to allow for most uscrs’ nceds. The designer must anticipate the degree of functionality that
uscrs will want, and provide cnough services to achicve that functionality, or clse the system will be too
restrictive to use. At the same time, if the scrvice provides too many features, or requires too much intcraction
with the client, the performance will not be adequate. ‘This thesis evaluatces the protocol choices madce in one
design of a distributed graphics system.
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1.4 Overview and Major Contributions

The spectrum of roles for graphics workstations from fixed-function terminal to self-contained personal
computer was cxamined in this chapter, along with motivations for the study of the partitioning problem for
distributed graphics systems. The next chapter discusses three different approaches to related problems:
traditional standard graphics packagces, object-oriented window systems, and virtual terminal management
systems. Chapter 3 presents the Virtual Graphics Terminal Service architecture in fairly abstract terms. In
particular, the protocol between the server and a client application program is specificd. Chapter 4 describes
a prototype implementation of the Virtual Graphics Terminal Scrvice, the VGTS user interface, and a sample
application program. Chapter 5 investigates some issues involved in partitioning of function, the rationale
behind the choices made in the VGTS design, and some simple performance models to motivate experiments.
Chapter 6 gives the results of these measurements, and discusses the cost/performance tradeoffs.  Finally,
some conclusions and directions for future work are drawn in Chapter 7.

Although many pcople were involved in the development of the VGTS, this thesis concentrates on the
following major research contributions by the author:

1. The virtual terminal concept was extended to support graphics by incorporating support for
structurcd display files, as well as conventional textual interaction. The abilitics of virtual
terminals to support multiple distributed applications are combined with the power and
portability of structurcd display files. '

2. The application interface for defining graphical objects was specified and implemented scparately
from the uscr interface for viewing those objects. Both the advantages and disadvantages of this
strict separation arc discussed.

3. The protocol used for defining objects was extended transparently across networks using several
transport protocols, resulting in distributed graphics programs. Thesc programs were actually
used, so performance constraints were stringent.

4. Mcasurements were performed to determine the cffect of various factors on performance of
graphical applications. The measurements verify that performance is inscnsitive to network
bandwidth, but depends heavily on CPU speed and protocol characteristics.  Using structure
provides important spced improvements in some cases, but other basic factors such as inncr loop
optimization and proper batching of requests make cven larger differences.

The results show that the VGTS is suitable for a large class of applications, and can be uscd as a basis for
much further research. '
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This chapter compares the ¢volution of threc scparate kinds of systems related to distributed graphics, as
illustrated in Figure 2-1. The arrows in this Figure are drawn in the direction of control flow. The first and
oldest linc of deveclopment is the traditional standard graphics package, with the application programmer in
control over a graphics library. The sccond deals with so-called “object-oriented window systems” for
personal workstations with the user in ultimate control. Finally, a third concept, virtual terminals, combines
both other approaches, with the user in control of the viewing process while the applications control the
objccts being displayed.

Applications
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a) Traditional standard b) Object-oriented c) Virtual terminal
graphics packages window systems management systems

Figure 2-1: Threc kinds of approaches

2.1 Standard Graphics Packages

It is important to examine the long history of Computer Graphics to discover what functionality has been
determined to be important.  Although many cfforts have involved ad hoc systems to produce a particular
picture or support a particular device, scveral standard efforts are more promising for our nceds. Although
we arc concerned with distributed systems for workstations, standards have the advantage of making graphics
software more readily available. Standards should also be studied so the common concepts and terminology
can be developed to compare different approaches.

Early graphics systems were usually “packages™ of functions called by application programs. 'The few
dominant manufacturcrs of graphics devices, such as Calcomp and ‘I'cktronix, cstablished de fucto standards
until the 1970s [76]. Uscrs first would link a program with the appropriate object library. When the program
was cxccuted it would read some ‘input data and produce output through the graphics functions. Since
graphics devices were expensive, a package was usually concerned with one kind of device. 1f the user wanted
output on another device, cither the program could be linked with another version of the graphics library, or
the library would handle several possible graphics devices at run-time. ‘

These types of graphics systems are most common since they have been in use for many years, and thus are
the subject of many standardization cfforts. Figurc 2-2 gives an overview of the interfaces between
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components of traditional graphics packages. At the highest level arc application databases where modcls are
stored. Onc standard database format is called I1GES for Initial Graphics Exchange Standard [3]. This is a
common database format to allow a user to exchange computer aided design data between systems of
different manufacturers.

Application

Database
l IGES

Application Program

GKS, Core, PHIGS, etc.
. A
Metafile Graphics Package
VDM .
' o VoI
v Y Y
Hardware Device Cglrﬁlzlr-tl:?
Standard ‘ Driver ‘
Device ‘L NAPLPS
Devi '
eviee NAPLPS
Device

Figure 2-2: Standard graphics package interfaces

The application’s interface to the graphics system has scen the largest amount of standardization, with many
similar but incompatible standards for this level such as GKS, CORE, p111GS, and others, to be described in the
remainder of this section. Some attempts at lower levels of standardization include: VDI, between the
graphics system and the device driver, and NAPLPS, between the device driver and the device.

2.1.1 The SIGGRAPH CORE Graphics System

'The ACM Special Interest Group on Graphics (SIGGRAPH) Graphics Standards Planning Committee
report, commonly known as CORIE, has become widely used as a model for graphics systems [147]. One major
motivation for this standardization attempt was the undesired distinction made at that time between directed
beam (vector refresh) graphics devices, and storage tube (and hard copy) devices. The importance of device
independence was cmphasized at the 1976 Computer Graphics workshop in Scillac, France[60]. This
workshop attempted to unify the treatment of the two kinds of graphics devices, and formed a basis for many
subscquent graphics packages such as CORE,
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2.1.1.1 Device Independence

Hard copy and storage tube devices have a simple physical concept of a current location. For example, in a
pen plotter the location of the pen was obviously visible. A scquence of move and draw commands was the
most natural way to think of how a pen plotter created a picture. The CORE system extended this move and
draw concept to threc dimensions, using a synthctic camera analogy. Other state information such as the
color or size of the pen, was also extendced into the CORE system. The application constructed a model of the
object in its own internal data structures, and would use the graphics package only for viewing operations.

On the other hand, directed beam graphics devices usually had display lists, which wcre traversed
repeatedly to display the picture. Changing onc clement in the display list would instantly change the item
being displayed, while storage tube and hard copy devices would be crased and redrawn completely for any
modifications besides additions. CORE used the concept of segment to represent this retained graphics
information.

2.1.1.2 Coordinate Systems

Another important contribution of CORE was the understanding of the importance of different coordinate
systems. The CORE System and most other subscquent graphics packages deal with three coordinate systems:

1. World Coordinates (WC) arc arbitrarily dcfined by the applications programmer. In CORE these
are floating point numbers in cither two or three dimensions.

2. Normalized Device Coordinates (NDC) are used to define a uniform coordinate system for all
display surfaccs. In CORE these are two dimensional floating point numbers between zero and
one.

3. Device Coordinates (DC) represent the actual units uscd by the dlsplay device, usually unsigned
integers of ten to sixteen. bits.

CoRE implementations map from world coordinates to normalized device coordinates, with a driver for each
device mapping from normalized device coordinates to actual device coordinates. This allows most of the
graphics package implementation to be retained when new graphics devices are introduced.

2.1.1.3 CORE as a Standard

The CORE System was defined as a sct of language-independent functions, with the mapping from the
abstract function names to programming language identifiers Icft undcfined.  This resulted in
implementations that were incompatible in many details, although system modcls and basic concepts were
fairly consistent across most implementations.

Although the CORE systemn was proposed in 1977, and was revised in 1979, in five years it has not yct
become an official standard, and may never become one, due to the success of Furopean standardization
cfforts. There has been much more experience in the arcas of portability and device independence since the
1979 report, as well as some reconsideration of the way modcling and viewing were separated in CORE [133].
Since these issucs are also important in a distributed system, the CORE system was not suitable for our work.
However, Cori: influenced subscquent standardization attempts, described in the next scctions, that have
overcome some of its problems.
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2.1.2 The Graphical Kernel System

The Graphical Kernel System [64] has become a popular standard that started in Europe with the German
DIN (Deutches Institute fuer Normung) and spread to America. German standards are specified and
adopted more quickly than American standards because DIN is a government body while ANSI is a volunteer
organization requiring the conscnsus of competing industrial representatives. Although they are intended to
be as close as possible, there are some slight differences between the ISO GKS and American National
Standards Institute Committee on Computer Graphics Programming Languages (ANSI X3H3) version of
GKS. Most notably, due to the complexity of the GKS standard (which alrcady has nine lcvels of subsets)
ANSI committee X3H35 has defined a subsct of the lowest level of functionality, called the Programmer’s
Minimal Interface to Graphics, or PMIG [122, 2].

2.1.2.1 GKS Workstations

GKS uses the workstation concept to represent some logical input devices and one associated output device.
This is in contrast to CORE in which only supports onc view surface and does not support any relationship
between input cvents from different input devices. GKS explicitly states that one application can manipulate
multiple workstations; no mention is made of scveral applications sharing a singlc workstation. The idea of
placing the 170 devices on a physically scparate machine from the one running the application program was
one of the original motivations for the workstation concept [48], but most implementations of GKS have run
on only one machine. Section 2.1.2.7 will discuss the problems involved in a distributed GKS
implementation. The distribution capability has some subtle but important cffects on the structure of GKS.

2.1.2.2 GKS Output Primitives
The graphics primitives uscd in GKS, similar to those in CORE, arc the following six:
1. Polyline: A sct of connccted lines drawn between a list of points.
2. Polymarker: Symbols of onc type are centered at given positions.

3. Text: Character strings arc drawn at a given position. There are many attributes to control the
oricntation, spacing, and justification.of text.

4, Fill Arca: A polygon which may be filled with a uniform color, pattern, or hatch style.
5. Pixel Array: An array of pixcls with individually specified colors or intensitics is displayed.

6. Generalized Drawing Primitive: A sct of points is transformed and passed through to the device
dependent driver.

The generalized drawing primitive is intended to take advantage of special functions of the workstation, such
as the ability to draw arcs or curves. Note that there is no notion of current position as in CORE, and
operations are in two dimensions only. Three dimensional extensions arc currently under development,

2.1.2.3 GKS Attributes

Abstracting slightly from the hard-copy analogy, GKS and CORE retain current values for each of scveral
attributes, representing the state of the drawing device used for relevant output primitives. Thus, although the
notion of current position docs not appear in GKS, the state variables nccessary to simulate a drawing device
are still needed. For example, the polyline primitive has linc-type (solid, dashed, ctc.), width, and color
attributes. However, in GKS bundle tables can be used to group attributes. Instcad of specifying cvery
attribute on every output primitive, an index into the bundle table (a small integer) is specified, and the table
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gives values for all the attributes. For example, instcad of specifying a color absolutely everywhere it is used,
it could be defined only once to simplify changes.

2.1.2.4 GKS Segments

GKS segments arc named with integers specified by the application. Segments may be transformed, made
visible or invisible, highlighted, ordered from front to back, deleted, renamed, and inserted into other open
segments. Every primitive within a segment can have an attribute called the pick identifier which establishes a
second level of naming for use with the pick input device. However, the primitives within a scgment cannot
be modified; the pick identificr serves only to distinguish parts of a picture used for graphical input. There is
an cxplicit function to set the pick identifier. All primitives added to the segment until the next call to this
functior will have the same pick identifier.

In GKS segments can be posted on actual workstations, called Workstation Dependent Ségmcnt Storage or
Wnss. In addition segments can be sent to Workstation Independent Scgment Storage (WIss). Scgments can
be moved back and forth between Wiss and WDSS (actual workstations) under control of the application
program.

2.1.2.5 Graphical Input in GKS

The concept of logical input devices was used as a basis for extending device independence to graphical
input in GKS as well as CORE [152). The CoORE system treated input and output functions as orthogonal
concepts. so, for example, the selection of view surfaces had no effect on echoing. On the other hand, GKS
associates logical input devices with workstations. GKS provides the following classes of input devices:

Locator Provides a position in world coordinates and a transformation number, determined by the
vicwport in which the input occurred. A trackball or joystick is the typical locator device.

Stroke  Provides a scries of positions in world coordinates and a transformation number.

Valuator Provides a single rcal number scalar value, from a one-dimensional device such- as a rotary
dial. :

Choice  Provides the ability to choose among alternatives, like the button device in CORE. A non-
negative integer indicates a sclection, and zero indicates no selcction,

Pick Provides a pick status, a scgment name and a pick identifier (the item “picked™). Primitives
outside scgments cannot be picked. The typical pick device is the light pen, which senses
when the beam of a CRT passes over the point underncath its tip.

String Provides a character string, similar to the keyboard device in CORE.

The original GKS specification did not have the stroke device class, since it can casily be built on top of other
primitives, given a suitable semantic model of input devices [113].

At any time a logical input device is in one of three modes:

Request  Allows the input device to accept request commands. When the application issues a request, GKS
waits until input is entered, or the operator cnters a break action. Control is then passed back to
the application.

Event  GKS maintains an cvent queue. An event report on this queuc contains the logical device
numbcer and a value from that device. Events are gencrated asynchronously by operator action.
An application can wait for an cvent, remove it from the queue, or flush events from the queue
without rcading them. ’
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Sample  Allows the input device to accept sample commands. Sampled devices do not cause events on any
queue, but arc instead polled by the application. When the application issues a sample command,
GKS returns the current value of the device without waiting.

2.1.2.6 GKS as a Standard

Like CORE, GKS was defined as an abstract sct of operations instcad of a particular interface in a particular
programming language. However, efforts are underway to standardize language bindings, so there is a greater
chance that GKS programs can truly be portable. A FORTRAN binding is included in the ANSI standard, and
work on other language bindings such as C[114] is underway. Unfortunately, even these standard binding
cfforts arc hampcred by the many different dialects of these languages.

Full GKS (highest levels for both input and output) includes 110 functions plus 75 inquiry functions. The
lowest level of ISO GKS recquires 52 functions plus 38 inquiry functions. The lowest level of ANSI GKS (no
input) requires 31 functions plus 17 inquiry functions [122]. Of course, counting the number of functions is a
very coarse measurc of complexity, but by most measures GKS secems to be a much simpler system to
implement than CORE. There arc proposals for 31D extensions to GKS, since this lack is the major reason why
Amcrican groups like SIGGRAPII oppose the standard.

2.1.2.7 A Distributed Implementation of GKS

One of the principle advantages of GKS for distributed workstation-based systems is the ability of the
workstation concept to allow potential distribution. A recently-announced product called NOVA*GKS is an
implementation of GKS that can be distributed across several machines, but still allows only one application
to be run at a time, and handlcs only one host at a time {149]. Ncverthcless, NOVA*GKS can be examined as an
example of a distributed graphics systcm using GKS. The NOVA*GKS impicmentation consists of four major
layers:

1. GKS Interfacc - provides the functions specificd in the GKS standard, implemented as modules
that arc linked with an application program.

2. Workstation Manager - handles device independent aspects of workstations, including
workstation independent segment storage (WISS).

3. Workstation Supervisor - provides software simulation of GKS functions that are not dircctly
supportcd by the physical workstation or the device driver.

4. Device Driver - low level device driver, which implements the graphics primitives and maps into
device coordinates.

Between cach sct of layers, an interesting coupling scheme is used. Instcad of dircctly calling the functions in
the lower level, all accesses must funncl down through a single lower level supervisor function. 'T'he lower level
supervisor can then cither be a large case statement which fans out to all the appropriate lower level
modules, or it can encode the functions over a communication line o a remote processor, where the fan-out
then takes place. ‘Thus the choice of where the communication takes place and cven the kind of protocol used
can be done at link-time with no changes to the rest of the package.

2.1.2.8 Adding Structure to GKS

Proposed GKS output level 3 supports structured scgments [130]. The later Chapters of this thesis provide
evidence that structured segments provide performance increascs in a distributed environment. As the name
implics, this proposal is upward-compatible with the other Ievels of GKS. The main addition is the ability of
scgments to call other segments. An cxisting scgment can be rcopened for cditing, and clements can be
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inserted and deleted. Editing is performed using an efement number, an intcger count of elements within a
segment. For cxample, the first clement in a scgment is number 1, then 2, cte. It is not clear what happens
when an element is added or delcted from the middle of a segment - probably all the elements change their
numbers, leading to possiblc confusion. For this reason labels may be used to-refer symbolically to elements
instcad of using their numbers. Labels are known only within a segment; separate external names arc used to
name wholc segments.

The transformation of each primitive is the concatenation of all segment transformations of the ancestors of
the primitive. Thus a stack of matrices is stored, starting with the identity transformation, multiplying the
current matrix by the call transformation matrix and the called segment transformation matrix, and pushing
the result onto the stack for cach scgment, starting with root scgments.

The contents of segments can retricved, and segments can be stored on metafiles. There is a call to write
private data to the scgment, which scems to indicate a desire to use the segment facility as an application
databasc. A total of 15 new functions are added to GKS for this level, so the complexity of GKS is increased
only slightly. However, run-time overhead could be significant, since a total of 29 attributes (in addition to
the transformation matrix) arc pushed and popped during cach scgment traversal. The GKS output level 3
proposal was a rcaction to the PGS cffort to be described next. ‘The principle advantage is compatibility
with many GKS implementations and applications currently being built.

2.1.3 The Programmer’s Hierarchical Interactive Graphics Standard

A more recent standardization cffort has produced the Programmer’s Hicrarchical Interactive Graphics
Standard (P1iGS) [4]. As its name implics, PUIGS allows arbitrarily decp hicrarchica! specification of
graphical objects, instead of the less general segmentation mechanism in CORE and current GKS. One of the
stated reasons for this more claborate structure of objects is the increased cffectiveness of making changes to
the display in support of intcractive graphics. An important design critcrion was to provide adequate
performance in interactive applications, by taking advantage of today’s more powerful graphics workstations.

The actual display primitives in PIIGS are similar to those of GKS, although they appear in a more
claborate framework. ‘There arc both 2-dimensional and 3-dimensional functions. Display primitives, along
with attributes, viewing operators, modeling transformations, and references to other structures, can all be
clements of a structurc. Structurcs can be cdited, by dceleting and inscrting clements.

P1iGs includes the concept of workstations, but workstations do not logically store the graphics data, ‘An
application program defines a picture by adding entrics to the device independent structure database. The
workstation driver then reads the databasc to causc the physical terminal screens to be drawn.  Each
workstation has at most onc fixed-size rectangular viewing surface, and may have any number of input
devices.  Workstations have descriptor tables that describe the capabilitics of the workstation.  The
applications program can inquirc about which capabilitics arc available and adapt accordingly. Although
programs written using this featurc can work on several different types of workstations, the application
programmer must anticipate all possible configurations when the program is written.

Each attribute corresponds to a “register” of a virtual workstation; these registers are changed by commands
in the header of cach structure, and objects are rendered in the color that is in the registers at the time of the
rendering. Unfortunately this introduces much complexity in the device driver, because it must keep track of
the state of all of these virtual registers.
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2.1.4 The LBL Network Graphics System

The Network Graphics System was devcloped by Lawrence Berkeley Laboratories as an extension of CORE
for a network environment [24]. Although this is an on-going development cffort, as opposed to a proposed
standard, NGS is similar in spirit to PHIGS. lLike GKS and CORE, it was designed for vector refresh and
storage tubc devices, and later extended to raster devices.

The Network Graphics System allows the definition of hicrarchical structures, which can be deleted or
appended, but not otherwise modified [25].  Attribute information is storcd scparately from the object
definitions, so it can be changed dynamically. Attributes can be bundled, or controlled explicitly and
individually. Even though bundling capability is provided, the authors state that direct control is expected to
be used most often.,

2.1.5 Virtual Device Interface and I'Vle'tafile

Since most graphics packages use some form of normalized device coordinates, this is another logical
candidate for a standard partitioning point. The graphics package can be written in terms of a virtual device,
which is then implemented on the physical device. The Virtual Device Interface specification (VDI) is yet
another graphics standardization cffort of ANSI committce X3H33 [7]. As shown in figure 2-2, the Virtual
Device Interface specifies the low level target for graphics packages. The Virtual Device Mctafile (VDM)
standard [5], similar to that developed at L.os Alamos National Laboratory [110], is an encoding of the Virtual
Device Interface into a strcam of bytes to be stored on a file.

As indicated in Figure 2-2, the VDI specification could be realized in a real device, or at-least a “black box”
which the user treats as a hardware device. The device drivers would be written by the manufacturer of the
graphics device, instcad of the author of the graphics system. Since the VDI specification is preciscly defined,
it should be possible to put the implementation of the the virtual device on a different maching than the one
running the graphics package. Unfortunately, this interface involves both a high frequency and large amount
of information interchange. Thus it may not be suitable for partitioning when communication costs arce high,

2.1.6 Videotex and Teletext Systems

Other systems have been developed for situations with high communication costs between the graphics
system and the device.” Examples that dcal with partitioning are Videotex and Teletext. Videotex is an
interactive communications scrvice that delivers color graphics information from centralized databases. This
information is most often delivered over telephone lines, decoded by a dedicated hardware device, and
displayed on a television monitor. Thus, videotex is intended for direct use by consumers, combining two of
the most familiar picces of clectronic equipment in most homes today: the telcphone and the television set.
In addition to providing information, vidcotex allows uscrs to perform transaction such as ordering products.
Onc of the major standards in this arca is the North Amcrican Presentation Level Protocol Syntax
(NAPLPS) [6]. Since telephone companics in Burope are generally smaller and run by the governiment, there
have alrcady been several videotex systems in operation in Britain (PRESTEL) and France (ANTITOPE).

Teletext is a similar technigiic designed to bring information service to home consumers, However, teletext
uscs onc-way broadcast transmission, often through cable television systems. 'Fhe major standard in this area
is the North Amecrican Broadcast ‘I'cletext Specification [L1]. This standard specifies exactly how the messages
are cncoded for transmission, which arc the lower Ievels (physical to transport) of protocols. The data can be
transmitted on standard television channels, during the vertical blanking inter val or entirc channcls can be
dedicated to teletext. ‘The presentation level of NABTS is NAPLPS.

Unfortunatcly, sincc these protocols arc directed to a consumer market, they are limited in their abilities.
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For example, they are often tied to specific common video resolutions that are lower than typical scientific
workstations. Morc importantly, they are intended for very inexpensive terminals, so they would waste the
power of most modern workstations. In particular, they handle only one activity at a time. Since we are
interested in future computing systems that contain multiple processors executing concurrently, we will next
examine systems that can managge this concurrency.

2.2 Object-Oriented Window Systems

The desire to use graphics as an aid to user interface has led to the development of object-oriented window
systems. In these systems, there might not be application programs, per se, but rather objects that respond to
the control of the user. An interesting paraphrase of the object-oriented window system philosophy is “don’t
call us, we'll call you”. That is, instcad of the application program calling functions in the graphics package,
the graphics system calls user-defined functions to display themselves when needed. This mechanism, the
graphics system calling client software, is referred to as an up-call, in contrast to down-calls of traditional
graphics packages. ‘

This difference in control reflects the different application areas for which these systems were developed.
The graphics systems discussed in the previous scction consider the picture to be the main purposc of the
program. Thus they are suitable for application arcas such  as commercial animation in which recalism and
precise control of the picture are most important. However, many programs are intended to perform. some
other function, with graphics as a side-effect. For cxample, the principle function of an integrated circuit
editor is to edit integrated circuits, not to draw beautiful pictures of them. 1n fact, the information being
displayed by programs is oftcn abstract, so “rcalism’ is mcaningless in these cascs.

2.2.1 Smalltalk

Smalltalk is a scrics of languages based hcavily. on graphics with an object-oriented window system [58].
The language was first designed as a tool for rescarch by the Learning Rescarch Group at Xerox Palo Alto
Rescarch Center. In their view, the ideal system would use powerful yet compact and portable “personal
dynamic mcdia” which students could usc and interact with [90]. The idcal personal dynamic media was
called the dynabook, and corresponds to a futuristic view of today’s graphics workstations.

A Smalltalk system is composed of objects, which consist of some private memory and a sct of opcrations.
The programmer specifics these operations as merhods that are invoked when objects reccive messages.
Advantages of such an approach include cxtensibility; applications can define their own graphics objects and
primitives because screen updating is controlled by the application itsclf. On the other hand, the programmer
can declare a class to be a subclass of another class, so that operations arc inherited. Only the ncw operations
have to be defined, so the extensibility can be performed without much programming overhead.

2.2.1.1 The Smalltalk Environment

Smalltalk is a graphical, intcractive programming cnvironment. Onc key aspect of the uscr interface of
Smalltalk is the use of a pointing device such as a mousc to sclect items instcad of typing commands [50].
Many of thesc ideas originated in the NLS system at Stanford Rescarch Institute by Englebart and others
during the late 1960s and carly 1970s [49]. Although NLS was used only within SRI, the system is now called
Augment and marketed by Tymeshare corporation.

Smalltalk, unlike Augment, is intended to be implemented on sclf-contained personal computers which
include a single large address space and a disk. Unfortunately, implementations of Smalltalk on commercial
microcomputers have failed duc to the performance problems of small processors and storage devices. One of
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the few machines that can run Smalltalk with adequate performance is the Dorado, a very high-performance
and expensive scientific computer devcloped at Xerox PARC[75]. Workstations are becoming more
powerful, but machines in the class of the Dorado will be expensive for some time to come. Although using
the object-oriented approach of Smalltalk at all levels may not be desired, the user interface advances are
being adapted to other systems.

2.2.1.2 Smalltalk User Interface

The uscr interface of a Smalltalk system typically consists of scveral Views of objects on a gray background.
The name “window system” comces from the appcarance that these views are “windows” into the world of
objects. Thce user controls a small arrow called a cursor by moving the pointing device. Dirccting activity to a
particular picce of information in a view is donc by making a sefection. The system provides immediate visual
feedback to indicate the sclection. For cxample, the sclection is often displayed complemented (black to
white and white to black). At any particular time, only one view is sclected, indicated by a cormplemented
title, and appcaring to lic on top of any other overlapping views.

Pop-up Menus are also used to sclect commands. In responsc to a user action such as a button press, a list of
commands appcars underncath the cursor. While the button is held down, the cursor is moved to sclect one
of the commands in the menu. When the button is relcased, the sclected command is carried out. Some
command menus are particular to the object being displayed in the sclected view, while other command
menus are uniform across the entire system. Similar powerful uscr interfaces have been incorporated into
other objcct-oriented single language integrated environments, such as on the New Window System for the
Symbolics Lisp Machine, through a language cxtension called Ilavors that provides objects with inheritance
of operations from multiple super-classes [157].

2.2.2 “Lisa Technology”’

The Star word processing system by Xcrox corporation [124] incorporated many of these object-oriented
idcas into a commercial product using the fairly conventional programming language Mcsa [87]. The Star -
system uscd an analogy between the graphics screen and a conventional desk top. The screen contained icons,
small symbolic images that invoked actions when sclected by the mouse. For example, moving a document to
a filing cabinet icon causcd it to be stored in a file server, while moving it to a printer icon caused it to be
printed. ‘The Star developers claimed that interfaces using icons were easicer to Iearn and Iess crror-pronce than
conventional textual command languages.

The Cedar Viewers System [92] was developed at the Xcrox Computer Science Laboratory for their
prototype software development environment called Cedar [46, 140]. ‘The Cedar environment was intended
to combine the best features of Interl.isp, in particular the Programmer's Assistant [139], with the Mcsa
program development cnvironment [99].  "The application program specified procedures to be called in
response 1o input cvents.  ‘These procedures used the Cedar Graphics Package to draw the objects they
represent on the screen when requested [154). '

Unfortunately the Star system suffered from slow response” times, and the Cedar system required very
cxpensive computers such as the Dorado to run cffectively.  Similar user interface functionality was made
available for much lower cost with the introduction of the Apple Lisa and Macintosh computer systems [159].
The lisa and Macintosh software borrowed the desk top metaphor from Star, with icons representing data
objccts such as documents. Since these machines were the first to gain widespread attention, such systems
have been called examples of *“Lisa Technology™. Lisa was intended as a low-cost office personal computer,
so its performance was also fairly slow, with some operations taking 30 scconds. This was due, for example, to
swapping of scveral megabytes of object code into a physical memory that was only cxpandable to one
megabyte, ' '
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2.2.3 Other Window Systems

An impoitant research effort has been the Canvas system [13], and its successor, called Sapphire, developed
at Carnegie-Mcllon University for the Spice project. Sapphire (Screen Allocation Package Providing Helpful
Icons and Rectangular Environments) provides a virtual bitmap which applications can manipulate any way
they wish [95]. Applications can spccify exact location and shape of the windows, or be notified when location
and shape is changed. Each window can be transparent, or can take responsibility for remembering what it
obscures. For example, pop-up menus are implemented as windows.

Some of the user interface ideas of object-oriented window systems have been implemented on traditional
text-only [158, 65] or vector display terminals [89}], although a full bitmap display is desirable, and becoming
more prevalent, especially in research environments [23].  More important is the requircment of shared
memory for the many procedure calls in this approach. Some systems have extended the up-call concept with
remote procedure calls, with inconclusive performance results [59].

2.3 Virtual Terminal Management Systems

As we have scen in the last two Sections, graphics packages put the application in control, while object-
oriented window systems put the user in control. This distinction between main-stream standardization
efforts and the window system linc of development has only been touched upon in the literature, Partly this is
because of the delay involved in standardization cfforts; the current standards were designed for hardware of
more than ten years ago. Since the workstation-based distributed systems described in Chapter 1 did not exist
ten years ago, these standards do not easily lend themselves to a distributed environment [9].

One of the few cfforts to combine these two lincs of development was a window system for a storage tube
display [115]. The basic observation from this work was that the advantages of the two approaches can be
combined if the problem is vicwed as one of resource management. Since a major role of an operating system
is to manage hardware resources, recent rescarch in resource management by opcratmg systems, in particular
the mandgcmcnt of terminal systems, should be cxamined.

2.3.1 Network Virtual Terminals

The name “virtual terminal” was first used during the development of protocols for long-haul networks
[43]. Problems arosc duc to the large number of different operating systems and terminals that needed to
communicatc in the network. If there were 1 types of terminals and m types of operating systems, then nx m
terminal handlers were needed. "This led to very large software costs as networks diversificd.

Instcad of forcing cach computer system to handle all possible types of terminals, cach could handle only
onc abstractly-defined nerwork virtual terminal. 'The conversion from virtual to real terminal would be
performed by the machine to which the terminal dircctly connccts. "This is similar to the virtual device
approach described in the previous section, also used to provide device independence.  As workstations
become more powerful, they can be considered as nodes in a network, and the virtual (o physical terminal
translation could be performed by workstations. .

2.3.2 Rochester’s Intelligent Gateway VTMS

Another advantage of the virtual terminal concept is the support of multiple applications simultancously.
Traditional graphics packages described in the first section of this chapter assume onc application is in total
control at any time. Although the window systems discussed in the previous section display multiple contexts,
usually only onc application is active at any time on the personal computer. One of the first attempts to use
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multiple concurrent processes in multiple windows for program devclopment was a system called
Copilot [136]. The ability to monitor concurrency naturally through a window system has been determined
by the author to be invaluable in a distributed environment.

Rochester’s Intelligent Gateway was designed to provide a uniform uscr intcrface to manage distributed
resources [78, 79]. The RIG Virtual Terminal Management System (VTMS), was one of the carliest systems to
provide simultaneous access to multiple, possibly distributed applications [77]. VIMS mapped any number
of virtual terminals to a physical screen simultaneously, and each virtual terminal could be written to or
queried for input by applications throughout the distributed system.

In RIG the resource management problem was viewed fundamentally as a problem of proccss
management, with requests sent to server processes through messages. Table-driven command interpreters
were also provided to enforce a consistent user intcrface across different tools. These contributions
significantly influenced many subsequent efforts, including the research described in this thesis. However,
VTMS did not provide graphics support, nor did it provide cffective terminal emulation.

2.3.3 Apollo Domain

The Apollo Domain workstation-based distributed system usces some of the concepts of virtual terminals as
developed in VIMS[8]. Domain also provides a distributed file system, and other distributed objects.
However, its architecture applics to only one particular manufacturer since the network transparency is
handled at a very low level: demand paged virtual memory. Since most research computing environment are
very heterogencous, Domain cannot be used to solve all partitioning problems [37].

2.3.4 The Virtual Graphics Terminal Service

The extension of the virtual terminal concept to graphics is the subjcct of the next two chapters. The system
described here is called the Virtual Graphics ‘I'erminal Scrvice, or VGTS?, the name reflecting the VIMS
conceptual basc [81]. The VGTS takes an approach different from Domain’s, handling transparency at a
much higher level: abstract operations. This allows opcrations to be partitioned between machines of very
different architectures running different operating systems, and using vastly different network technology.

The VG'TS interface to the programiner is much simpler than most of the systems discussed in this chapter.
For cxample, the NGS working design document [25] has a partial list of 181 functions, while the VGTS
programiner’s interface is about 30 functions. Of course these other systems may provide more functionality
in some areas, but it is not clear that this functionality is always nccessary.

The next two chapters will provide more details on the architecture and implementation of the VGTS,
including more comparisons to both standards and window systems. Chapter 5 will examinc these types of
design trade-offs in depth.

2Pmnounccd “Vee Gee Tee Fss”, that is, there is no attempt at pronunciation of the acronym,
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| —3—
Architecture of the VGTS

As we have seen in the last two chapters, the functional partitioning problem is an important one that is not
adequately addressed by ecither traditional graphics packages or window systems. In order to perform
experiments on the partition of function we have first designed an architecture for a distributed graphics
system, as described in this chapter. Only the architecture is described here; an actual implementation is
described in Chapter 4 and rationale for the design is given in Chapter 5.

3.1 The Environment

No single design will be appropriate for every circumstance. It is important to limit the scope of the
anticipated environment because most systems that try to do everything for everybody, end up not doing
much well at all. This section describes the particular environment for which the VGTS was designed.

3.1.1 The Stanford University Network

The VGTS architecture was designed within the context of the Stanford University Network (SUN). SUN is
arapidly evolving environment consisting of:

e graphics workstations, such as the Xcrox 1100, Symbolics 3600, SUN [15] and IRrIs [39];
o standard timésharing systems, such.as DECSystem-20/Tops-20, VAX/UNIX, and VAX/VMS; and

o dedicated server machines, for high quality anc‘l‘high volume printing, filc storagé, terminal
multiplexing, and gateway scrvices;

intcrconnected by various local networks, including about 25 different ‘Ethcrn‘ct segments [94).  Various
machines are also connected to long-haul networks such as the ARPANET, cither directly or through gateways.
This fits the gencral model iltustrated in Figure 1-1.

SUN is representative of many workstation-based distributed systems currently in place or being developed
throughout the computer rescarch community [14, 119]. Thesc systems typically provide the equivalent of:

o powerful workstations with:

- 0 a general-purpose processor (1 MIPS or more)
o a large local physical memory (1 MByte or more)
o a high-resolution raster display (1000 by 1000 or more pixcls)
o a large virtual address space (O 20 bit)
o a graphics input device (such as a mouse)
o an optional disk

cach usually dedicated to a singlc uscr at a time;

» a fast > 1 MHz) communications nctwork that will link the workstations;

¢ a number of dedicated processors providing printing, file storage, gencral computation support,
and other services; and access to timesharing or special-purpose computers and to long-haul
computer nctworks, . :

The architecture we arc about to describe is well-suited to any such system.
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3.1.2 The V-System

The software environment used for this research is called the V-System. Logically it consists of a
distributed kernel and a distributed set of scrver processes. The distributed kernel consists of the collection of
kernels resident on the participating machines. Communication within a single graphics workstation is via
fixed-size synchronous messages, using the V kernel[31, 32]. These message scmantics were originally
developed in the Thoth [29] system and later used in Verex [30]. The individual kerncls are intcgrated via a
low-overhead inter-kernel protocol (IKP) that supports transparent interprocess communication between
machines over a local network [164].

Scrvers include network servers, storage servers, cxecutives (command interpreters), and, of course, virtual
graphics terminal servers.> The V-System software architecture is especially tailored to communicate with
existing timcsharing opcrating systems such as Unix, VMS, and Tars-20. A uscr-level program called the “V
server’” runs on the timesharing machines and implements the V inter-kernel protocol. Programs running
within the V environment can then access file service or remote execution of programs transparcntly on the
timesharing hosts as well as the workstation. Other protocol architectures like {P/TCP [106]} and PUP [19] are
also used to communicate with dedicated servers and larger or more remote time-sharing machines.

The V-System architecture was designed to allow flexible interconnection, similar in nature to hardware
organizations. Consider an opcrating system kernel as a bus, which provides a standard interface to connect
modulcs. In computer hardware, the bus is usually a simple, passive device. The V-System takcs into account
multiple busses in both its hardware, as scen in Figure 3-1, and its software, as scen in Figure 3-2 [80]. The
striking similaritics between the hardware and softwarc organizations are intentional. Note that busses
correspond to cither operating system kernels (usually small and synchronous) or nctwork protocols (larger
and asynchronous). Hardware modules correspond to software processes in this analogy.
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Figure 3-1:  Hardwarc organization of the Stanford V-System

Bus adapters correspond to network server processes, which can also be considered protocol converters.
Onc major reason for hardwarc bus adapters is the availability of many peripheral devices for certain old
busses. The adapter allows the usc of the old peripherals on new systems, without the need to redesign all the

3W<_: will refer to both the service and the server as VGTS, The latter is the sofiware module that provides the former.
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Figure 3-2: Software organization of the Stanford V-System

interfaces. Similarly, much software for older operating systems can be encapsulated and augmented in this
model, instead of being replaced.

3.1.3 The VGTS

In the V-system, the workstation provides a virtual terminal service, similar to the VI'MS in RIG [78], but
extended to include graphics. The VG'TS acts as a multiplexor, handling requests from clients to cdit data
structures representing graphical objects. [t then uscs a real terminal protocol to.actually draw the objects on
the screen. '

The following arc some attributes of the VG'T'S which distinguish it from related work:

o The VGTS model is declarative rather than procedural. Instead of describing how to draw a
picture, the application describes what is to be drawn. The user then specifics where the picture
should be displayed. Thus, uscrs control physical terminals, while applications control virtual
terminals. '

e Objcects can be constructed with hicrarchical structurc. An object can consist of primitives or calls
to other objccts, which can in turn be defined in terms of other symbols. 'This is in contrast to
systems like GKS that allow only onc level of structure (usually called segments).

o 'I'hc VG'IS supports truc device independent applications.  ‘There is a standard high-lcvel
intcrface, called the Virtual Graphics 'Terminal Protocol (VG'TP) between a VG'I'S and its clients.
Different terminal drivers exist for cach real terminal, with the VGT'S handling all the details of
the real graphics protocol.

e The VGTS implementation and interface arc portable to a range of relatively high-performance
devices. This contrasts with most of the object-oriented window systems that are tailored to a
specific machine or language cnvironment,

e The VGTS supports distributed clients.  Applications can run on the same workstation as the
VGTS, on another workstation, or on some large computation scrver. Since the communication is
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at a high level, the different machines may have vastly different architectures. If the application is
written in a suitable high-level language, the same source code is used in any location.

e A single user can access several different applications simultaneously. The user can switch
contexts between these applications quickly and ecasily. Because of the ease with which
applications can be distributed (the previous point), they can be using the local workstation or
remote computing servers at the same time. .

These last two aspects are the major influence of the distributed heterogencous environment on the VGTS.
Timcsharing is effective when many users must share a computing resource; since current trends indicate that
the uscr is quickly becoming the most important resource, we can extrapolate the philosophy that uscrs are
more important than machines, and have one uscr being served by scveral different computing resources.

3.2 The User Model

In the modern distributed system environment, we require access to a variety of applications, distributed
literally throughout the world. We would like to take advantage of the power of advanced workstations to
provide a high-quality user interface to these resources, The ideal interface must take into account four
fundamental principles:

1. The interface to application programs should be independent of particular physical devices 6r
intervening networks.

2. The user should be allowed to perform multiple tasks simultancously.
3. The command interaction discipline should be consistent and natural,
4. Response to user interaction should be fast.

The first principle has led to work in virtual terminals and device-independent graphics packages; the
sccond to work in window systems: and the third to work in what has recently been called user interface
management systems [143], the most common cxamplces of which are command languages. Without adhering
to the fourth principle, however, much of the other work is moot. Ideally, human uscrs should never have to
wait for the computers; the computers should wait for the user. 1n a distributed environment, in particular,
the supporting nctwork protocols cannot incur inordinate overhead.

3.2.1 The Ideal

In view of these principles, consider the following user model.  When users boot a workstation they
communicatc with a view manager“, which allows uscrs to authenticate themselves and initiate onc or more
activities. "'The activitics may run local to the workstation or remote. ‘They may be written with the particular
workstation in mind, or run in “terminal emulation”™ mode. They may require 170 modalitics other than
traditional one-dimensionai text: graphics or audio, for cxample. '

Each activity may be associated with one or more scparate, device-independent virtual terminals (V). A
VT may be created by the user or by the activity itsclf. Each V'I' may be used to emulate a different type of
real terminal, for cxample, a page-mode VI-100 or a 3-D graphics terminal. Thus, while consistency is
cncouraged, the uscr is still able to access all resources to which he previously had access.

4Unfm’tunatcly many similar systems refer to this component ds the window manger, even though this is incorrect with réspcct to most
terminology.
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When uscrs wish to initiate a new activity, thcy must first create a new executive. The cxccutive acts as a
command interpreter from which desired activities may be initiated, Users can create a new exccutive, with
an associated VT, or terminate an existing activity and VT at any time, that is, totally asynchronous to any
other activities. When a particular activity rcquires additional virtual terminals, it is free to create them.
These V'T's will be deallocated when the activity terminates.

Virtual terminals arc mapped to the screen when and where the user desires. In fact, multiple screens are
intentionally allowed by the architecture, since in many applications color or gray-scale is desired, but high
resolution color monitors are expensive. Thus a workstation may have, for example, onc low resolution color
monitor.and onc high resolution monochrome monitor. Each mapping of a V' to the screen is termed a view.
When an activity creates a new VT, it prompts the user to specify the default view interactively, or the view
manager creates the view automatically, depending on user preference for screen layout. Thereafter, users
may create as many additional views as they wish. They may manipulate views of the same VT independent
of all other vicws of that VT, for example, to pan or zoom the view.

The interaction discipline across VTs (and hence activitics) is as consistent and natural as possible. The
mechanisms for moving between VT's and reorganizing the screen are standardized in the view manager.
Standard cditing facilities permit the user to copy text or graphics from one VT to another. A standard
command interpreter enforces consistent command interpretation across applications. A varicty of
information presentation facilities are provided to allow the user to view and manipulate data as desired. In
fact, diffcrent representations of the same data should be viewable with different formats, such as bar charts
of data contained in columns of numbers. ‘

Ultimately, the executive mentioned above could evolve into an intelligent agent that manages the user’s
distributcd resources in much the same way a traditional command language interpretcr manages a single
system'’s rcsources [78] . Then and only-then would the user be totally unaware of where the activities are
actually being cxccuted - local to the workstation, on remote hosts, or distributed dynamically between some
combination of workstations and hosts.

3.2.2 Reality

This thesis focuses on virtual terminal management issues, with particular cmphasis on distributed graphics.
The resulting workstation software will be referred to as the Virtual Graphics Terminal Service (VGTS).
Below we will consistently usc the term virtual graphics terminal (VG'T) in place of virtual terminal to
distinguish it from more traditional work in nctwork virtual terminals and window systems described in the
previous chapter. The VGTS contains both a graphics package and a window system, as modules in the
implementation to be described in Chapter 4.

Although we have not solved all the problems of command interaction, simply in order to manipulate the
screen we have developed a reasonable command interface - for creating, destroying, and rcarranging VG'Ts;
managing cxccutives: zooming, ctc. In addition, many of the common command interaction technigqucs, such
_as menus and forms, require graphical support, which the VGTS is can provide. In short, the VG'I'S provides
the facilitics necessary to experiment with a varicty of different command interfaces. This distinction between
terminal management and command interfaces follows from previous work and is consistent with the recent
trend towards uscr interface management systems [78, 143].  The rest of this chapter describes the VGTS
architecture in detail.
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3.3 The Network Graphics Architecture

The VGTS, as the rest of the V-System, fits the classic object or server model of software
architecture [67, 155]: The world consists of a collection of resources accessible by clients and managed by
servers. We will use the term client to refer to any entity (a human user or program) requesting access to a
resource. .We will usc the term user to refer exclusively to humans. Architecturally, we make few assumptions
as to how servers arc implemented - as monitors or processes, for example. The current implementation is in
the form of the message-based V-System, where servers are, in fact, processes.

For the purpose of terminal interaction, the principal resouree is the workstation, the server is the VGTS,
and clients consist of the user and application programs. Figure 3-3 presents the interrelationships among
these components. Following the traditional virtual terminal modecl, applications communicate with the
VGTS via the terminal-independent virtual graphics terminal protocol (VGTP), and with host software in
whatever way necessary. The VGTS communicates with the hardware via the terminal-dependent real
terminal protocol (RTP). Thus, the VGTS provides a protocol translation service between VGTP and R'TP.
Alternatively, the VG TP defines the interface or scmantics of the VGTS,
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Figure 3-3: High-level VG'T'S architecture

In terms of the 1SO Reference Model for computer networking [163], the VGT'P is a presentation level
protocol. Naturally, when used across a network, the VG'TP must be encapsulated in appropriate session and
transport protocols. We refer to the former as the network graphics protocol (NGP), described in Sectica 3.5.

In terms of traditional graphics terminology, the VGTP is the graphics language and the VGTS implements
the graphics package. Together, they offer similar functionality to a number of cxisting graphics systems,
including thosc conforming to the 1SO standard Graphical Kernel System (GKS) [64] and the proposed Core
standard [147] as discussed in chapter 2. The VGTP bears an cven greater resemblance to the proposed PHIGS
standard [4], which was developed at approximately the same time. The R'I'P, on the other hand, could easily
be the proposed ANS! Virtual Device Interface (VIDI)[122] or the North Amecrican Presentation Level
Protocol Syntax (NAPLPS) [6].
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3.4 The Virtual Graphics Terminal Protocol

The VGTS has two very different protocol interfaces: one to the user and one to the client application
program. First we will discuss in detail the protocol used between the VGTS and its clients, rcferred to as the
VGTP in Figure 3-3. Instead of standardizing on a byte-stream or procedural interface, the VGTP was first
specified as kinds of objects and a sct of operations on those objects. This section describes these abstract
operations, and the next chapter discusses how the operations are actually implemented. Figure 3-4 illustrates
the relationships between the objects discussed in this section. The next chapter will contain a concrete
example in Figure 4-2 to further explain these concepts.

Application Application
SDF
Item: Symbol Item: Symbol
Item: Primitive Item: Primitive
item: Call Item: Primitive
Item: Primitive Item: Primitive
VGT VGT
Cllient . Client
View - | View View
Viewport Viewport Viewport
Depth Depth : Depth
Window Window Window
User

Figure 3-4:  Rclationship of SDIs, VGTs, and Views

The VGTS provides two basic types of structures: structured display files (SDF) and virtual graphics
terminals. Kvery graphical object is defined within a specific SDI; thus, an SDI¥ represents an object
definition space. In order to view an object, it is nccessary, first, to associate the object’s SIDF definition with
a VG'T' (by the program) and, sccond, to specify a mapping of the VGT to the screen (by the user).

3.4.1 SDFs and their Manipulation

An SDF consists of a collection of items. The items ¢an be cither primitives, or grouped into symibols, which
can in turn be contained in instances of other symbols, to any desired depth. The SDIF forms a directed
acyclic graph (DAG), with items as nodes of the DAG. Abstractly, symbol definition nodes have arcs to all
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their component items.  Symbol call nodes have arcs to the symbol definition node, and primitive items
correspond to leaf nodes.

An SDF is similar to a segment network in PHIGS, while an item is cquivalent to an element [4]. An SDF
may also be thought of as a symbol system [56]. Items are named by identifiers chosen by the application, are
typed, and have type-dependent attributes. The ranges of these identifiers and attributes will be discussed in
Section 4.3. Item types include: '

e line

o (filled) rectangle

o (filled) polygon

e bitmap

e text (in arbitrary fonts)
o (filled) spline

o symbol definition

e symbol call

All items are defined within a 2 dimensional integer world coordinate space. Translation is the only modcling
transformation permitted on “called” symbols. All other transformations, such as rotation or projection from
higher dimensions, arc presently handled by the application program. Attributes are spccified as indices into
type-specific attribute tables similar to the bundled attributes of GKS. However, these attribute tables are
shared by all VGTs and managed by the VGTS in its rolc as mediator between simultancous applications. In
contrast, GKS allows the single application to control the bundle tables. VGTS attributcs are specified (at
least indircctly) on each item, not inherited from calling symbols, as they are in PHIGS, for cxample, or sct by
modes.

A client can create and delete structured display files, symbols, or items. It may edit symbols, and obtain or
changg the properties of an item. The following functions are provided to manipulate the SDF:

CreateSDF () =) sdf
Create a structurcd display file, and return its identificr in sdf. This must be donc before any symbols
arc defined.

DeleteSDF (sdf)
Return all the items defined in the given sdfto frec storage.

DefineSymbol (sdf, item, name)
Enter a symbol into the symbol table, and open it for cditing. The sdf'is one returned from a previous
CreateSDF call. item is an application-spccific integer identificr for the symbol and name is an optional
string name. :

EndSymbol (sdf; item, vgt)
Closc symbol item in sdf'so no more items can be changed, and cause the vgr to be redrawn to reflect the
new sdf.  Called at the end of a list of items defining a symbol, started with CreateSymbol or
EditSymbol,

EditSymbol (sdf, item)
Open cxisting symbol item in sdf for modlﬁcatmn This has the cffect of calling DefineSymbol and
inserting all the alrcady cxisting cntrics to the definitions list. The editing process is ended in the same
way as the initial definition process: a call to EndSymbol,

DeleteSymbol (sdf. item)
Delete the definition of symbol item from sdf. Any dangling instanccs of this symbol crcatcd by
AddCall, will remain, but will contain nothing.
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AddCall (sdf, item, offset, calledSymbol)
Add an instance of calledSymbol to the currently open symbol in the sdf. The instance is given the
name item. The called symbol’s origin will be placed at offSet in the calling symbol’s coordinate space; it
is not windowed or transformed in any other way. This is cquivalent to a move call unit in Sproull and
Thomas's structured format protocol [126], or an Execute call in NGS, as opposed to a Copy call. That
is, changing the symbol definition changes all instances. This is more like a subroutine call than a macro
expansion,

AddItem (sdf, item, extent, type, attributes, typeData)
Add an item ‘to the currently open symbol in the sdf, giving it the name item. extent specifics the
bounding box of the item in its coordinate space. fype and attribute determine the type and attributes
respectively. typeData contains any other data necded to define the item, such as the control points for
a spline item or the text string for a text item.

Deleteltem (sdf. item)
Deletc item from the currently open symbol definition in sdf.

Inquireltem (sdf, item). =D extent, type, attributes, tvpeData
Return the parameters for item in sdf.

InquireCall (sdf, item) =) calledSymbol
Return the item name, calledSymbol, of the symbol called by thp item in sdf.

Changeltem (sdf. item, extent, type, attributes, typeData)
Change the paramcters of an alrcady existing item in sdf. This is equivalent to deleting an item and then
reinserting it, so the item must be part of the open symbol.

3.4.2 VGT and View Mana‘gément

Once the VGTS client has defined some graphical objects, the client or the user nceds: to provide
information on how the objects should appcar. The VGTS lcts a user sce objects in any VGT anywhere on
the screen.in views. Each view has a zoom factor, a window on the world coordinates of the. VG, and screen
coordinatcs which determine its viewport. Thus, a view defines a particular viewing transformation directly
from world to device coordinate space. No intermediate transformations, such as normalized device
coordinates, arc visible to the client.

Although the client can create default views, the user can change them with the view manager, and create
and destroy more of them. Each VG can cxist in zero or more views, but cach view has exactly one VGT
associated with it. Each VG is associated with at most onc SDF, but cach SDF may be associated with
several VG'T's. Symbol dcfinitions arc shared between VGTs that have the same SDF. Thus one VGT can
display at its top level a symbol that appcars as a called instance at a lower level in some other symbol in
another VGT.

Functions for clients’ manipulation of VG'I's and views include:

CreateVGT (1ype, name, sdf, item) =D vgt :
Create a VGT of type 1ype and return its identificr in vgt. name is a client-specified symbolic name for
the VGT that may be uscd later to sclect that VGT for input. item in sdf'is placed as the top-level item
in the VGT; it can be zero to indicate an initially blank VGT. The typc can be some combination of
Text, Graphics, and Zoomable.

DestroyVGT (vgt)
Destroy the given vgt and all the associated views.
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DefaultView (vgt, width, height, wXmin, wYmin, zoom, showGrid) => width, height

Create a view of the given display, with the user determining the position on the screen with the
graphical input device. width and height give the initial size of the view; non-positive valucs indicate
that the uscr should determine the size dynamically, in which casc the selected values are returned.
wXmin and wYmin arc the world coordinatcs to map to the left bottom corner of the viewport; the
amount of the world actually viewed depends on the size of the viewport and the zoom factor. The
zoom factor is the power of two to multiply world coordinates to get screen coordinates; it may be
ncgative, to denote that a view is zoomed out. Views are not otherwisc transformed. If showGrid is set,
a grid of points is displayed in the viewport.

To display a new graphical object in a VGT after the VGT is created, cither the old top symbol can be
cdited, or a new symbol can be defined and the following function called:

Displayltem (vgt, sdf; item)
Change the top-level item in vgt to be item in sdf. The new itcm is displayed in every view of the VGT.

DefaultView exccutes an implicit DisplaylItem aftcr creating the view. EndSymbol may also cause output to
appear after (re)defining a symbol, although the VG'TS redraws only the part of the view that has changed in
this casc. The VGTS implementation is also frce to perform other optimizations, such as only drawing the
additional items if thc only changes before an EndSymbol are adding top-level primitives. Using these
functions, the VGTS client can achicve the effect of deferral modes for graphical output, including:

baich Construct the graphical object in its entirety and then display it, by executing a
DefineSymbol or EditSymbol, many AddlItem calls, followed by an EndSymbol call. This
corrcsponds to creating an invisible segment and making it visible, or using the A7 Some
Time deferral mode in GKS.

incremental  Construct and display the object “on the fly”, that is, display cach primitive item (eich
vector, for example) as it is added to the object, by repeatedly exccuting an EditSymbol,
AddlItem, EndSymbol scquence. This corresponds to creating a visible segment, using the As
Soon As Possible deferral mode in GKS. '

The latter approach may achicve better response, and is the normal mode of ‘operation for most traditional
graphics systems. Howcver, as results will show, the former method usually achiceves higher throughput, and
is the norm for programs using the VG'1S.

3.4.3 Input Event Management

Since the VGTS was designed to support multiple simultancous clients, it must decide which client receives
which input events. This is called input demull:plexmg, and naturally occurs on a VG'T basis. The following
functions arc available for graphical input:

GetEvent (vgt, eventMask) =D eventDescriptor
Wait for an input cvent to occur with respect to the indicated vgr and return a variant record in
eventDescriptor that describes the event. The record will contain the type of the cvent and the relevant
type-dependent information. eventMask spccifics the acceptable types of input events: keyboard or
mousc. The mouse cvents subsume button and locator devices of GKS, returning the buttons pressed
and the location in virtual coordinates within the vge, The first cvent in any of the indicated classes to
occur is returned.

FindSelectedObject (eventDescriptor, scarchType) =D item, cdgeSel
Given an event descriptor as rcturned by GetLvent, rcturn. the item of thc smallest object near the
event, and a sct of (Left, Right, Top, Bottom) edges which the event was near.
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GetGraphicsStatus (vgt) =D status '
Return the status of the graphical input device with respect to the indicated vgr including buttons
pressed and location. As a side effect, the event queue is clcared of any outstanding graphical events.

PopUp (menu) =2 selection
Display a menu of choices at the cursor position, consisting of an array of strings, to the user. When the
uscr selects a particular item, return the array index in selection. 'This is similar to the GKS choice
device.

GetEvent and GetGraphicsStatus together provide the functionality of the GKS input modes. The VGTS
maintains an event queue for cach VGT; all keyboard and mouse ¢vents related to that VG'T are queuced in the
same queug, in First-In-First-Out order. Thus the event mode of GKS is supported for both the keyboard
and mousc through GetEvent. Pick device functionality is obtained from the FindSelectedObject function,
which is similar to request mode of GKS. GerGraphicsStatus allows the mouse to operate in sanple mode.
Sampling of the keyboard is not supported, since such a capability would be quite device dependent.

Keyboard input is always associated with some VGT group. Each VGT belongs to exactly one group, and a
group typically corresponds to an activity (although an activity can crcate multiple groups). The groups are
identificd by their master, which reccives keyboard input when the group is selected through the user
interface. The next scction describes the te- al output interface, provided so the simple symmetric model of
standard terminals can be used for echoing aeyboard input. '

3.4.4 Text Terminal Emulation

The VGTS supports a text VGT mode optimized for page-mode terminal emulation. Specifically, an
application may trcat a VGT as a standard ANSI terminal [1], such as a DEC VT-100. Such an application
need not-know anything about the graphical facilitics of the VGTP, and may use the ANSI terminal protocol
to communicate with the VGTS, including cscape scquences for cursor control. Output to the VGT is stored
in a pad[77], which is a symbol within an SDF. The symbol consists of a lincar array of simple text itcms,
cach of which represents onc line. :

Note that the terminal cmulation output interface is of a different nature from (and therefore,
“unfortunatcly, incompatible with) the graphics interface as discussed above. However, this docs not prevent a
mixed text and graphics application. One particular type of graphics item is text, permitting a client to casily
integrate text and graphics within a graphics VG'T. The terminal emulator interface is provided to optimize
performance for a typical special case.

The VGTS architecture provides several advanced features for the support of keyboard input processing.
Applications can opcratc in “raw” mode, or sclectively cnable any of the following featurcs:

Local Echo This allows instant response to keyboard input, providing uscful feedback to users of
potentially loaded timesharing systems.

Linc Editing Programs that intcract on a linc-by-line basis, such as the cxccutive, can cause lines to be
buffered (and usually cchocd) inside the VGTS. Sophisticated cditing commands are
available on the linc buffer, and the exccutive (for example) can “stuff” previous command
lines into the line buffer, in conjunction with its history mechanism.

Paged Cutput When this mode is in cffect, the VGTS will block output requcsts larger than onc page. A
message is displayed in the banner, and the user types a command to unblock when ready.

Graphics Escapes Inside a pad, when conncected to some remote hosts through a TELNIEL program, graphical
input cvents can send cscape sequences back to the application. This allows many useful
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programs that deal with conventional terminals to be simply extended to take advantage of
graphical input capability without major redesigns of the applications. For example, an
EMACS [129] library can be loaded to bind thesc character strings to commands that
position the text cursor, sct the EMACS mark, delete and insert text.

By default, keyboard input is line-buffered and echocd by the VGTS, with the powerful line-editor built in.
Support for text editing by a pointing device could be provided, transparently to applications. This has been
partially implemented in onc user’s custom version of the VGTS.

3.5 The VGTS Client Protocols

The VGTP is constant over all applications, but allows for a wide variety of bindings to lower-level
protocols. Somc applications have no knowledge of the VGTP and some applications arc running on
machines that do not support the interprocess communication mechanisms underlying the VGTP. Whenever
the application is running remotely, the VGTP must be encapsulated within an appropriate network transport
protocol. The following situations arise (scc Figure 3-5, in which cach intcr-machine arc is labeled with an
example (presentation protocol, transport protocol) pair):

VAX
SUN ) : VLSI Layout
Compiler Editor
(=) ()
SUN
VGTP vare
IKP RTP/BSP
D ]
DEC-20
VAX
. Local

Text Editor llustrator Distributed

. Game
Telnet
@ Custom : E
TCP NGP

Figure 3-5:  Possible clicnts of the VGTS

e Application A runs on the workstation and communicates via V kernel messages. Current
examples include text editors, document illustrators, and design aids.

e Application B and the VGTS run on two scparate machines that support nctwork-transparent
interprocess communication, such as the V-System inter-kernel protocol (IKP), B communicates
with the VG'TS via the VGTP, as in the casc of a application A.
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o Application C runs on a machinc that does not support nctwork-transparent IPC, but docs
support a traditional network architecture. In addition, a VGTP interface package is available that
cncapsulates the VGTP within the appropriate transport protocol. Similarly, a local agent for the
application, C’, is created on the workstation to decapsulate the VGTP. Thus, the application may
still be written in terms of the VGTP and neither it nor the VGTS have any knowledge that the
other is remote.  Our VLSI layout editor, for example, can be run in this fashion under
VAX/UNIX.

e Application D has no knowledge of the VGTS or the VGTP; it wishes to regard the workstation as
just another terminal. The local agent, D’ is “user TELNET” and performs the appropriate
translations between TELNET and VGTP.,

e Application E is distributed between the workstation and one or more other machines. The local
agent. E’ is responsible for communicating between the distributed parts of the application and
the VGTS. It must perform the appropriate st of protocol conversions indicated above. In
addition, it may wish to perform application-specific functions, such as high-level caching. In that
casc, the protocol used to communicate with the remote applications may require more than
simple transport service.

All applications but 4 use a network transport protocol, whether they recalize it or not. Application B
employs an interprocess communication protocol that has nothing to do with graphics per se. Application D
employs a protocol that in no way depends on knowledge of the VGTS and typically has nothing to do with
graphics; in order to run, an appropriate protocol-converter must run on the workstation.

Applications Cand E, on the other hand, know all about the VGTS and are very intercsted in graphics. We
will refer to the protocol they employ as the nerwork graphics protocol (NGP). The NGP may be a simple
encapsulation of the VG'TP by an cxisting transport protocol, it may be a problem-oricnted protocol [117], or
it may itsclf be a muiti-level protocol. Application C, for cxample, may find a direct encapsulation of the
VGTP acceptable. Application E, however, may wish to maintain a replicated database (the main database
plus the cache), or may wish to trade reliability against cost. In these cascs, the NGP offers considerably more
functionality than mere encapsulation/dccapsulation of the VGTP. In general, the VGTP and NGP
correspond roughly to presentation and scssion layer protocols, respectively, in the ISO reference model [163].
The transport protocols uscd in the prototype implementation arc discussed in Scction 4.3.5.

3.6 Summary and Implications of the Architect'u re

This chapter presented a high-level virtual graphics terminal protocol that is the key clement of the VGTS
architecturc. This protocol is used by applications to spccify graphical objects with hicrarchical structure.
The use of standard protocols helps to provide device independence. Any application’ program which uscs
the standard protocol can be used with any implementation of the VGTS, without any modifications. More
information about how this is achicved, and other details of the prototype implementation are given in the
next chapter.  Chapter 5 discusses the rationale behind the design of both the architecture and the
implementation, including why the design facilitates distribution and concurrency. As will be shown in the
~ Chapter 6, this protocol is successful in limiting both the frequency of communication between application
and VG'TS and the amount of data transmitted at any onc time.
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. — 4 —
An Implementation of the VGTS

The architecture described in the previous chapter is independent of any implementation. Programs
developed for one implementation of the VG'I'S should be able to run with any other implementation, given
the existence of the appropriate transport protocols. In this chapter we will first describe the organization of
one particular prototype implementation. This implementation actually adapts itself at run-time to several
different varictics of workstations, and many modules can be used on other very different workstations. The
techniques used in this implementation to update the screen are discussed, followed by the client interface,
and then the user interface. Finally, an cxample application program is described: a simple illustration
editor.

4.1 General Organization

As noted in Scction 3.2, the VGTS is only onc component of the user interface software in the V-System.
The other components are:

# the view manager

# the cxec server

» the exccutives .
# the application library

The view manager provides the means by which users can create, destroy, and modify the screen layout, as
well as create new executives. Executives represent instances of the same basic command interpreter, as
defined by the exce server, To create a-new cxccutive, the user communicates with the view manager, which
communicates with the excc scrver. The user may replace the excc server at any time, effectively redefining
the exccutive command- interpreters. Logically, the view manager is another module that may be replaced.
Ultimatcly, however, these components employ the services of the VGTS to communicate with the user.

In fact, the VGTS is merely an instance of a terminal agent. Hence, the user may also replace the VGTS at
any time with simpler terminal agents, or other window systems. This facility permits a programmer to
. develop new graphics facilitics without having to constantly reboot his workstation, On the other hand, it
provides the mechanism by which the same user interface management system can communicate with a
substantially “reduced” terminal agent such as the simple terminal server (STS), a subsct of the VGTS
architccture which runs on a simple text-only terminal [17].

4.1.1 VGTS Implementation Modules

At onc more level of detail, cach terminal agent is composed of multiple components. In particular, the
VG'TS implementation consists of the following modules:

master multiplexor Handles all client requests by dispatching (o the appropriate routine in other modules.
Provides synchronization betwecen all the possible clients, by receiving messages from
them. The major part of the operating system interface is contained in this module.

cscape interpreter  Monitors the incoming byte strcam for graphics commands and calls the SDF
manager to perform them. Other characters are passed through to the terminal
cmulator, '

terminal cmulator  Interprcts a byte strcam as if it were an ANSI standard terminal [1).  Printable
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Figure 4-1:  Process and module structure of the VG TS

characters arc added to text objects, and control and escape codes arc mapped into the
proper VGTP operations.

Handles requests to create, destroy, and modify graphical objccts within structured
display files. Maximum extents of symbols are maintained to help the redrawing
process. ‘This is effectively the display file compiler{27, 56]. Included is a hash table
manager to keep track of symbol definitions and item numbers.

Highest-level graphical output operations. The structurcd display file is visited
recursively, with appropriate clipping for extents totally outside the arca being drawn.
This is cffectively the display processing unit.  In a higher-performance
implementation this module and the ones below it could be implemented in hardware.

The structured display file is visited, but instcad of actually drawing the primitives, the

* positions are checked to match the cursor’s position. A list of possibly sclected objects

(under other optional constraints) is rcturned to the client,
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event handler Handles the event queues, line buffering, and the blocking and unblocking of clients
waiting on events. '

view manager Providcs the user interface for screen management. Although this is logically a fairly
scparate entity from the lower-level functions of the VGTS, in the current
implementation it is provided as a module which runs as a coroutine to the master
multiplexor process.

view primitives Perform the view-changing operations. These are the operations invoked by the view
manager, such as creating, deleting, and modifying vicws.

display manager Low-level but possibly device-independent operations, such as handling the
overlapping viewports.  Although this module docs not do any frame buffer
opcrations dircctly, it uses several device-dependent parameters, such as the size of the
screen in physical coordinates.  Also, some of these operations could be done in
“hardware on higher-performance graphics devices.

drawing manager  Device-dependent graphics primitives called by the display manager. On the SUN
“workstation, for cxample, these primitives manipulate the frame buffer. On other
lower-performance workstations this might be done by a scparate process to prevent
the mutltiplexor process from blocking for long periods of time.

input handlers Device-dependent modules for reading the keyboard and tracking the mouse. There
is also a timer module to supply periodic messages to the multiplexor.

The relationships between these modules are illustrated in Figure 4-1. The general direction of control is
_indicated by the dircction of the arrows. The higher level modules near the top of the figure call lower level
modu]es near the bottom.

4.1.2 Team and Process Structure

The V-System provided three techniques for structuring software:  modules, processes, and teams.
Moduies arc groups of functions that communicate through function calls and global variables. The kernel
manages independent concurrent processes, which communicate through messages or shared memory. Only
processes on the same tcam share memory; separate teams arc scparate virtual address spaces. The process
structure of the VGTS is also illustrated in Figure 4-1, by the presence of the thick arrows. The arrows are
drawn in the dircection that messages arce sent, from the sender to the receiver. The VGTS implementation
consists of four processes:

1. The keyboard helper process reads from the kcn nel console dcvncc and scnds mcssages to the
master multiplexor.

2.The mouse helper reads from the kernel mouse dcvncc and sends messages to the master
multiplexor,

3. The timer helper delays for a sct period and sends timing messages to the master multiplexor.
Scveral activities are triggered by these messages, including a blanking of the screen after ten
minutcs if no other messages have been received.

4. The master multiplexor process synchronizes all frame buffer operations, and performs most of
the other functions,

The low level interface to the console, mouse, and timer is implemented by the V kernel. Normal messages
arc sent to a pscudo-process called the “device server” which will block until data is available. This blocking
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necessitates the three extra helper processes for these devices. The main loop of the VGTS, like most servers
in the V-System, consists of a Receive primitive followed by a switch on the type of request. The main
process of the VGTS should never block for significant periods of time. :

4.1.3 Module Sizes

The number of lines of source and the number of bytes for object code for each of the modules is given in
Table 4-1. The “Others” line refers to lines of code in the header files, and bytes obtained from libraries.
Note that about one third of the object code is obtained from libraries. Another interesting observation on
the relative sizes of modules is that the module that is largest in source and sccond largest in object code
(spline and polygon functions) is very rarcly used.

Source Size Object Size

Module (Lines) (Bytes)
Display 442 3475
Splines and Polygons 1498 10068
SUN Drawing Manager 1423 8860
Event Handler 1150 6540
SDF Interpreter 638 6540
Escape Interpreter 594 5164
Input Handlers 427 2416
View Manager 1137 9920
Hit Detection 983 6024

. Master Multiplexor 1045 8212
" Terminal Emulator 896 6000
SDF Manager ' 1349 14240
View Primitives 1209 3676
Others 4 425 51059
Total o 13283 140654

Table 4-1: VGTS implementation module sizes

4.1.4 Adaptive Techniques

The VG'T'S uses scveral techniques to adapt to its environment. First, several link-time versions are
available. In the full configuration, the basic V-System scrvices (such as the excc server, context prefix server,
team server, cxception server, ctc.), are provided by onc team, which loads another tcam at initialization
consisting of the VG'TS and a default view manager. The user can then issuc a command to replace the entire
VG'TS and view manager at run-time. Since this capability is rarely used except by some VG'T'S developers,
another configuration has the VG'T'S linked together with the basic services into a single tcam. ‘The two-tcam
version tikes longer to load, and occupies at least SOK bytes more of memory and another team descriptor.,
Finally, for systems that arc short of memory, a reduced function VG'I'S is available with no splincs, polygons,
or font loading facilitics.

The low-level VGTS device driver has to deal with subtle differences among the many versions of SUN
workstation hardwarc that have cvolved over the years. Some differences are handled by the V kernel device
server, which provides virtual keyboard and mouse devices. Other parameters, such as the exact screen size
(which varics from 796 lincs by 1024 pixcls to 1024 lincs by 800 pixels) and the virtual address of the frame
buffer, are determined at run-time with the aid of a kernel workstation query operation.

More changes were required to support an implemcntation of the VG'TS for a later modcl of the SUN
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workstation, called the SUN-2. Initially the single installed VGTS would query the kernel on start-up to
determine the type of frame buffer and set a variable. This variable was tested before cach primitive to
determine which low-level graphics function to call. Although the run-time CPU overhead was acceptable,
the memory usage of the combined version cventually prompted the split into separate versions for the
SUN-1 and SUN-2 frame buffers. Interestingly, the mere act of identifying device dependencics that had
crept into modules that were previously thought to be device dependent, resulted in cleaning up the
implementation and marginally decrcascd the size of the original SUN-1 implementation.

Additional techniques could be usced for adaptation in futurc implementations of the VGTS. For example,
if the V-System implemented virtual memory then the rarcly-uscd modules could be page-faulted into
physical memory only when actually nceded. Dynamic linking could also be used to reduce the minimum
memory requirements, at the expense of slightly more complicated inter-module linkages. Dynamic linking
would also require more complicated debugging tools, and possibly introduce reliability problems.

4.2 Screen Updating

This scction discusses the techniques used for displaying objects, the end result of VGTS operations. In
contrast to many systems, the VGTS provides centralized rather than distributed control of screen updating.
The next chapter, and in particular Scction 5.4, will discuss the rationale behind this decision in greater detail,
There are a fixed sct of graphical primitives, executed under the control of the VG'TS SDF interpreter, display
manager, and drawing manager, the lowest level modules in Figure 4-1. This centralized control eliminates
any possibility of applications interfering with cach other. In fact, operations on the SUN frame buffer
cannot be interrupted and restarted, so, some kind of synchronization is neccssary. Morcover, centralized
control is the only rcasonablc approach for distributed applications. The user methods of object oriented
window systems discussed in Chapter 2 rely on shared memory, which is not typically available in a
distributed cnvironment. '

4.2.1 Implementing Overlapping Viewports

Originally, vicwports were restricted to lie entircly on the screen and to not overlap. However, this proved
to be inadequate, since screen space quickly filled up, and viewport manipulation commands often failed.
'The current implementation uses a novel scheme of dividing cach viewport into visible non-overlapping
rectangles (called subviewports) whenever the screen layout changes. The viewports are redrawn by
interpreting the structured display file in cach of the subvicwports. This has the advantage of no speed
penalty for updating views that are not obscured (the normal casc). Vicws which have non-rectangular visible
portions -may take longer to update for complicated SDFs, but almost always the actual drawing time is the
dominating factor, which is proportional to the arca being redrawn and independent of the shape of the
region. The resulting scheinc is clecan and simple.

Onc major advantage over systems that maintain obscured bitmaps (such as Apollo Domain [8], Blit
ayers [105], and Spice Canvas [13]) is that no extra memory is required 10 store those obscured bitmaps. 'The
SDF can represent extremely large objects in modest amounts of memory. As an example, consider the two
overlapping viewports in Figurc 4-2. "The SDF data structurces takc up only a few hundred bytcs, while the
bitmap could need many thousands of bytes. View number 1 lics on top, and is entircly on the screen, so it
has only onc subviewport, number 1. View number 2 is partially obscurcd, so it has two rectangular
subvicwports, numbers 2 and 3. The “banncrs™ or labels on the .top of cach view arc implemented as
additional subviewports, cach displaying a single itcm: a string name, VG'T number, optional view number
and zoom factor, and a string controlled by the application.

Another advantage of updating from the SDF instead of from a.bitmap, is that it is often actually faster to
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Figure 4-2: Example of item naming

redraw the picture from the SDF than to restore the bitmap, assuming that the bottleneck of graphics is the
frame buffer update bandwidth. For example, a picture composed of vectors usually has a low density of
pixcls touched by the vectors. For scrolling text, our experience has been that it is significantly faster to
redraw a single character on the SUN-1 than it is to scroll it by moving the bitmap. ‘This is because moving
the bitmap touches cach bit of the frame bufter twice (one read and one write), while redrawing touches it
only once. 'The source for the redrawn character is main CPU memory, which is accessed more quickly than
frame buffer memory.  Unfortunately, the SUN-2 frame buffer was designed to optimize large raster
operations used in the raster-oriented software marketed by SUN Microsystems, instcad of the many small
opcrations donc by the VGT'S. In other words, on the SUN-1 frame buffer the bottleneck was the number of
bits per second that could be sent over the 1/0 bus, while on the SUN-2 the bottleneck is the number of raster
operations per sccond. ‘The result is that the SUN-2 frame buffer is slower than the SUN-1 for all VGTS
drawing opcrations. :
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4.2.2 Zooming and Expansion

The VGTS provides support for zooming and cxpansion depth that is independent of its clients. Zooming
consists of redrawing the SDF with larger objccts, not replicating pixels. Expansion depth, onc of the
attributes of cach view, indicatcs how far down in the SDF to go when displaying a symbol. If the cxpansion
depth is less than the SDF tree height, an outlined box will be displayed at the appropriate point in place of
the symbol. Depending on the size of the box, the text name of the symbol may also be displayed. Views may
be zoomed and expanded independently such that a uscr may view an entire symbol in one view, for example,
while simultaneously viewing a picce of the symbol in a zoomed-in view.

4.3 Client Interface

Before the techniques described in the last section can be used to display objects, the objects must be
defined by some client application program. The abstract objects and operations were discussed in the
previous chapter, Section 3.4. The details of the C language binding for this interface are discussed in the
V-System Reference Manual, in the chapter on the graphics library functions [17]. This scction discusses
some important design choices taken in the prototype VGTS implementation regarding the client interface.

4.3.1 [tem Naming

Items within an SDF arc named with 16 bit identifiers chosen by the application. It is assumed that the
application will maintain some higher-level data structures, along with the appropriate mapping to these
internal item names. The item namcs are global to each SDF, but applications may also have scveral SDFs
for different name spaces. [tem identifiers are referenced via a hash table, so there are no constraints on their
values [73]. Items that will never be referenced can be given item number zero, and are never introduced into
the hash table. In practice, only a few “intercsting” items arc actually given non-zero numbers. Item
numbers can refer to both definitions of symbols and their instances. Symbols arc also given string names,
but- these strings arc only used for disambiguation during hit testing, or for displaying symbols at the
cxpansion depth. String names of symbols are not related to item numbers,

For example, a picturc of a bicycle might define a symbol for a wheel. The item number of the top-level
“bike” symbol could be 1, with 2 and 3 referring to other parts of the symbol. ‘T'he definition of the wheel
symbol is given item number 4. ‘There may then be two instances (calls) of item number 4, which could be
given item numbers 5 and 6. ‘The individual spokcs of the wheel are components of symbol number 4, but are
all given item number 0, since we will never want to refer to any of them individually. Ifit is desired to delete
or move any individual spoke, then cach of these items may also be given numbers. Figurc 4-2 on page 44
illustrates this cxample.

4.3.2 Representing SDF Items

~ Scction 3.4 introduced some of the kinds of item types used in the VGTS. 'The implementation uses a
compact linkced list of display records to-represent these items internally. Each item within an SDF has the
following paramcters: '

Item A 16 bit unique (within the SDF) identifier for this object, or zero. This identifier is
referenced by the client when performing editing opcrations.'

Type Onc of the predefined types described below; cither a primitive type or one to indicate
structurc. Currently cight bits are allocated to this.
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TypeData Eight bits of type-dependent information, such as the stipple pattern index for a filled

Xmin

Xmax
Ymin
Ymax

Pointer

Sibling

rectangle. Most attributes are stored here, such as the font index for general text.

Minimum X coordinate of the extent. All coordinates are in “world” coordinates, stored as
signed 16 bit signed integers.

Maximum X coordinate of the extent.
Minimum Y coordinate of the extent.
Maximum Y coordinatc of the extent.

Depending on the type, this is cither a pointer to some data such as an ASCII text string, or
for symbol calls, a pointer to the called symbol.

All the component items within a symbol are linked together via this chain. This is a
circular chain, as illustrated in Figure 4-2. Normally this rclationship should not be visible
to the client, unlcss the client wants to step through a symbol definition in order.

Some of the meanings of the above ficlds depend on the type of the item. The following arc the types of
items that occur in structured display file records in the prototype implementation:

Filled Rectangle A rectangle filled with some texture. The TypeData ﬁéld specifies the stipple pattern, or

Horizontal Line
Vertical Line
Point

Simple Text

Gcnéral Line
Outline

Text

Raster

Spline

Filled Polygon

color on the IRIS system.

Horizontél line from (Xmin,Ymin) to (Xmax,Ymin). Ymax is ignored. _
Vertical linc from (Xmin,Ymin) to (Xmin,Ymax). Xmax is ignored.

A point, which usually appears as a 2 by 2 pixel squaré at (Xmin,Ymin).

A simple text string, with (Xmin,Ymin) as its lower left corner. This produces text in a
single fixcd-width font that can be drawn very quickly, The values of Xmax and Ymax
nced not surround the text, but they arc used as aids for redrawing, so should correspond
roughly to the rcal extent.

A generalized line, from (Xmin,Ymin) to (Xmax,Ymax). Note that Xmin etc. arc slightly
mislcading names. The SDF manager actually sorts the endpoints and calculates the extent
correctly.

Outlince for a selected symbol. Xmin, Xmax, Ymin and Ymax give the box for the outline.
The TypeData ficld spccifies bits to select cach of the cdges: lefiEdge, RightEdge,
TopEdge or BottomEdge.

A string of general text, with a lower left corner at (Xmin,Ymin). The TypcData ficld
specifics the font number. Xmax is recalculated from the width information for the font.

A gencral raster bitmap with a lower left corner at (Xmin,Ymin), and upper right corncr at
(Xmax,Ymax). The TypeData ficld determines if the raster is written with ones s black or
white. The pointer field points to the actual bitmap, in 16 bit-wide swaths.

A spline object, optionally filled with a specificd pattern. The pointer ficld points to a
SPLINE structure,

A list of points which dcfines a polygon that can be optionally filled with a specificd
pattern. : C
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Arcs » A list of points defining a series of circular arcs. Although arcs can be very closely
approximatcd by splings, this provides a simpler interface and faster implementation.

There arc a few other types that are not visible to the user. For example, symbol definitions and calls are
represented as items with most of the same attributes.

4.3.3 Interface to V-System Protocols

The VGTS implements a subset of the standard V 170 protocol [33]. Thus simple applications can write to
standard output and read from standard input, with no changes requircd when exccuting under the VGTS,
under the simple terminal server, or with input or output redirected to any other file. Pads arc crcated by the
standard request to create a file instance, and destroyed by the standard requecst to release a file instance.

The VGTS also implements some of the operations in the V distributed naming protocol [34]. When the
standard dircctory listing program is uscd to list the dircectory of the context named vgts, information about
the currently defined virtual terminals will be printed. Thus cach virtual terminal is a named V 1/0 object.

4.3.4 Binding the VGTP to a Byte Stream

The functions described in scction 3.4 arc all encapsulated in escape sequences to form a byte stream using
a very simple protocol. Each call causcs a special flag character to be sent (the ASCII character called US, octal
037) followed by a onc-byte code indicating the function number, This is followed by cach of the arguments
to the function, transmitted with the high-order byte first in cach argument. Any return values are sent with
the same escape character followed by the bytes of the returned value, high-order byte ﬁrst Most parameters
arc sixtecn bit unsigned integers, requiring two bytes for each value.

This results in a very small number of bytes for common opcrations. As we shall sce in the next chapter,
this makes the protocol fairly insensitive to nctwork speeds. A more ambitious project would have used an
automatic “remote procedurce call” gencrator [L02), but the manual mcthod was sufficient for this project,
since the functional interface did not change very often. An automatic RPC mechanism should not affect the
performance of applications, and in fact should be entircly transparent.

4.3.5 Network Transport Protocols

The encapsulation of the VGTP within transport protocols is illustrated in Figurc 4-3. Dashed lines
separate library packages, solid lines scparate programs, and arrows indicate network protocols.  All
interaction to the VGTS is through the V Input/Output protocol (VIO), which provides a byte strcam of data
in tcrms of V messages. The interp module decodes graphical operations out of this byte strcam, providing
the server side of the remote procedurce call facility. The terminal cmulator is also provided as a simple VIO
byte strcam interface. Clients use cither the VIO stream package, or the UNIX Stdio package. 'The stubs
module encodes graphical information on the standard output channel and decodes responses from standard
input.

For distributed applications, one of three network transport protocols can be used®:

1. Pup TELNET [19]

SBolh TrINET protocols are used as “tr'ansport" by remote VGTS clients, even though they are usually treated as presentation-level in
the 1SO hicrarchy. The distinction is in name only,
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Figure 4-3: Encapsulation of the Virtual Graphics Terminal Protocol
2. Internet TELNET [107]
3. V-System Inter-Kernel Protocol [31]

Thesce are standard, general-purpose transport protocols, with nothing specific in their design for distributed -
graphics. In particular, the Internet Protocol allows usc of any of the hundreds of computing resources on the
ARPA Internet with no modifications to their operating systems, ' :

4.4 The View Manager Interface

The view manager provides the visible interface between a person using the V-System and the VGTS. This
is very different from the programmer’s interface to the VG'I'S which was described abstractly in Section 3.4,
and discussed in the previous section. Programs create SDIs and objects within them, and associate these
objects with Virtual Graphics Terminals (VG'Ts). ‘Through the view manager, the user maps these VG'I's onto
a physical screen, and manipulates the resulting views. 'The view manager also provides the ability to manage
cxcecutives, through an interface to the exec server, A similar component in other systems is usually called the
window manager or screen manager. This section describes the default view manager in the prototype VGT'S
implementation,

4.4.1 VGTS Conventions

On the physical screen, virtual terminals appear as whitce overlapping rectangles with a black border and a
label near the top edge called the banner. There is at most onc virtual terminal (usually a pad, or text-only
virtual terminal) that is receciving input from the keyboard, along with possibly other virtual graphics
terminals receiving graphical input. These input sclections are indicated by a flashing box (the text cursor) in
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the text virtual terminal, and a black label on all the views that are accepting input. Note that all virtual
terminals are always active in the sensc that any application may run or change the display in any virtual
terminal at any time independent of these selections; selections only apply to input.

There are a few conventions for using the mouse with the VGTS. A click consists of pressing any number
of buttons down and rcleasing them at a certain point on the screen. While the buttons are down there may
be some kind of feedback: usually an object that follows the cursor. The click is usually only acted upon
when all the buttons are released, so if users decide they have made a mistake after pressing the buttons they
can slide the mouse to some harmicss position before releasing the buttons. Holding all three buttons down is
also interpreted as a universal abort by most programs and the view manager. The click event is sent to the
program associated with the view in which the event occurred (through its VGT).

Clicking the left or middle button of the mouse in a non-selected virtual terminal will cause it to be selected
for input. Views of selected pads will be brought to the top. The input pad can be changed by typing the
control up-arrow character (octal 036) followed by a single command character. The only command
characters interpreted by the VGTS are 1-9 to sclect the given pad for input.

Although the user can always crcate views, some are created by application programs. In particular,
programs like the text editor will create a pad when a new virtual text terminal (pad) is desired. When a
V-System program requcsts the creation of a pad, the cursor will change to the word “Pad”. At this point, the
user holds down any button, and an outline of the vicw that will be created will be tracked on the screen. The
user positions the view where desired, and releascs the buttons. Other prompts can appear as cursor changes
to denote that the next click will not be treated as normal input. Unfortunately such convenience features
make the view manager very device-dependent.

4.4.2 View ManagerMenus

The view manager menus can always be invoked by moving the cursor to the grey background arca or any
virtual terminal not sclected for input (cxcept in the banncr arca) and pressing the right button. The
following commands arc available from the view manager menus:

Creatc View Creates another view of an cxisting VGT. Move the cursor to the desired position of any
' onc of the four corners for the new viewport. Hold any button down, and move the cursor
to the diagonally oppositc corner. An outline of the new view will follow the cursor as it
movcs with the button down. 1.ct the button up, and then point at the VG'I that is desired
to be viewed with the left or middle buttons, or hit the right button and sclect the VGT
from the menu. Normally this command is only used with graphics VGTs.

Delete View Onc view is clicked and removed from the screen. If the last view of a VGT is deleted, it
docs not destroy the VG'I' or the process associated with it. 1t is still possible to create
views of the VG'I' by using the right button menu in the Create View command.

Move Viewport  Pressing any button sclects a vicwport to move. While the button is being held down, the
outline of the viewport will move, following the cursor. The button is released at the
desired position. Nonc of the cther view parameters are changed. A shortcut to this
function is obtained by pressing the middlc button while pointing to the banner of the
desired viewport. The viewport outline will follow the cursor until the middle button is
released.

Make Top Brings the view to the top, potentially obscuring other views. A shortcut to this function is
obtaincd by pressing the left button while pointing to the banner of the desired viewport.
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Make Bottom

Exec Control
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Pushes the view to the bottom, potentially making other views visible. A shortcut to this
function is obtained by pressing the right button while pointing to the banner of the view.

Selects a submenu to create another exccutive, destroy an exccutive (and the teams running
in it), kill a program, or control paged output mode. When creating an executive, the
outline of the new pad will follow the cursor as the uscr holds the button down. The user
lifts the button up at the desired position, or presses all three buttons to abort. A shortcut
to the exec control menu is obtained by pressing both the middle and right buttons while
the cursor points to the gray background or the display area of a viewport not selected for
input,

Graphics Commands

Center Window
Move Edges

Move Edges + O

Zoom

Expansion Depth

Redraw

Toggle Grid

Decbug

Sclects another menu of commands that are usually only applied to graphics views. A
shortcut to this menu is available by clicking the right and left buttons at the same time
while the cursor points to the gray background or the display arca of a viewport not
selected for input. These graphics commands are described below:

Click the position to become the center of the viewport. This command docs not change
‘the position of the viewport on the screen, just the objects within the view., Normally this
command is applicd only to graphics views.

Push any button down next to an cdge or corner, move that edge or corner to the new
position, and lct the button up. The edge outline should follow the cursor as long as the
button is held down. Doces not move the objects being viewed relative to the screen.

bject
Similar to the previous command, but this one drags the underlying objects around with
the moved cdge or corner, while the previous command kceps it stationary with respect to
the screen. '

Invokes a zoom modec, indicated by a change in the cursor to the word “Zoom”. Users can
get out of this mode in two different ways: First, clicking the left or middle buttons when
the cursor is inside a view of a pad returns from the view manager and sclects that pad for
input. As asidc cffect that view is also brought to the top. Sccond, users can click the right
mousc button to exit this mode. The cursor should change back to the normal arrow.

The left and middle buttons in zoom modc zoom out and in respectively. That is, the left
button makcs the objccts look smaller, and the middle button makes them look larger. A
shortcut to this mode is available by clicking the middle and left buttons at the same time
while the cursor points to the gray background or the display area of a viewport not
sclected for input. '

Click to determine the view, then sclect the new expansion depth from the menu. Symbols
will not be expanded more than this many levels into the hicrarchy. Instead they will be
drawn as outlines with text for their namcs if there is room. ‘The default expansion depth is
infinity, so all levels will be normally expanded.

Redraws all the views on the screen; necessary only during debugging.

Click once to turn the grid on if it is off, or off it is on in the view sclected. The grid dots
are cvery 16 screen pixcls, and always line up with the origin.

Enablcs extra printouts, for maintenance usc only. This command asks for confirmation,
to discourage its accidental invocation.
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4.5 A Simple Application

The VGTS and View Manager provide many functions that encourage applications to be simple and
consistent. The siledit program, a simple illustration cditor, is an example VGTS client program. It uses a
compatible file format with the Alto SIL program, although some advanced fcatures such as macros arc not
implemented [141]. The main limitation of this format is that only horizontal and vertical lines are supported,
with a limited range of fonts. On the other hand, it is simpler and faster than the other V-System illustrator
(draw), and illustrations produced by siledit can be casily printed or inserted into other documents. A
remote version of this program exccutes under UNIX, although users prefer the V-System version when
permitted by workstation memory limitations.

4.5.1 Basic Operation

The siledit program is invoked with one argument in the V-System cxecutive:
siledit filename.s1il

It first attempts to open the file name given as an argument. If no such file exists, the program creates one. A
graphics VGT is created, and the cursor changes to the “View” prompt indicating the creation of a default
view. The default view will be slightly larger than the illustration, or a whole page if the illustration is empty.
The user presses and holds any button causing an outline of the new view to appear and track the cursor. The
user moves the upper left corner of the default view, and lifts the button up when the view is positioned.
Next the siledit program prints the names of the text fonts to be used, and trics to load them into the
VGTS. The cxisting illustration is displayed (along with some performance statistics), and the following
prompt appears: ‘
Use mouse buttons: Mark, Select, Menu

This means two mouse buttons arc used for the basic commands, with other commands available through
combinations of buttons or from the command menu,

The mark, indicated by an “X” shaped cross, is onc end of lines and the position of added text. Once added
to the illustration, objccts can be modified by sclecting them and performing a modification command.
Sclected objects appear highlighted in some way, although the exact form of the highlight may depend on the
VG'T'S implementation. In the SUN implementation, objects are normally black on white, with sclected lines
half-tone gray and sclected text appcaring within a gray box.

4.5.2 Commands
Commands available on the mouse are as follows:

Left Button Moves the mark to the point of the click. The “X™ shaped cross moves to the new location.
The mark is normally moved before drawing lines or placing text.

Middlc Button  Sclects the single object at or near the click. Any other objects previously sclected are no
longer sclected. ‘The program will echo the kind of object sclected, or issue a diagnostic if
no objects arc found. '

Left+ Middle Draws a linc from the mark to the point of the click, of current linc width. The line is
cither horizontal or vertical, depending on which difference in position is larger, This is a
faster way of drawing lincs than using the menu. The mark is moved to the point of the
click, to facilitate drawing a series of connccted line segments, ’

Middie+Right  Adds the object near the click to the selection. This is in contrast to the Middle Button,
which causcs cxactly one object to be selected. Use this command to select several objects.
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Right Button
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Pops up a command menu, as described below.

More advanced commands are available on the menu as follows:

Quit
Line Width

Delete
Unsclect

Draw Line

Add Text
Modify Text
Write

Stretch Line
Move
Copy

Box

Sclect Arca

Dcbug

Exits without saving the illustration. Usually the Write command should be used to save the
file, so if there have been changes since the last Writc command, confirmation is requested.

Pops up a menu of default line widths. Select the desired new width from 1 to 8 units. Clicking
outside the menu results in no change.

The selected objects arc deleted.
A click is requested; the object near that click will no longer be selected.

A click is requested, and a horizontal or vertical linc is drawn between the mark and the
position of the click.

A line of text is requested, and the text is addced at the position of the mark in the current font.
Sclects another menu for commands used to modifying text.
Writes the illustration back to the filc given on the command line.

Position the cursor necar one end of the sclected ling, and hold down a button. The end of the
line will move following the cursor until the button is released. (Available only in the native

V-System version.)
(4

' Position the cursor anywhere in any view of the illustration and press any button. The sclected

objects will follow the cursor until the button is released. (Available only in the native V-
System version.)

Position the cursor anywhere in any view of the illustration and press any button. A copy of the
sclected objects will follow the cursor until the button is relcased. (Available only in the native
V-System version).

Move the cursor to onc corner of the box, and press any button. While holding down the
button, position the opposite corner of the box. The box will be drawn in the current line
width. The box can be aborted by pressing all three buttons at the same time., (Available only
in the native V-System version.)

Move the cursor to one corner of the arca, and press any button. While holding down the
button, position the opposite corner of the arca. All objects within the arca will be selected.
(Available only in the native V-System version.)

Enables several debugging print statements, for maintenance usc only. (Available only in UNIX
version,) .

The following commands arc used to modify text:

Edit Text

The sclected text is stuffed into the VG'T'S line buffer, and cdited by the user.

Decfault Font Displays a menu of fonts to become the new default font, for Text added with the Add Text

command.

Change Font Displays amenu of fonts to bé the new font for the sclected text.
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4.5.3 Selecting Alternate Fonts

Two text font/size combinations are available in SIL format, with regular, bold and italic faces in each
font/size combination. Default fonts are Helvetica7 and HelveticalO, with Helvetica7B, the bold face,
Helvetica7l the italic face, etc. A third font, Template64, is used to draw circles and diagonal lines.

Other fonts can replace Helvetica by creating a file with the name filename. fonts. This file contains the
names of the fonts to be used, one per line. Comments are indicated by a # character at the start of a line.
The default fonts are acceptable for illustrations to be included in papers, but for slides larger fonts like 12
and 18 point should be used. Thus, for example, the font file:

# font file for slides
Helvetical2
Helvetical8

could be used when making slides. A simple command to list the defined global symbols in the font library
can be used to determine what fonts are available.

4.5.4 Generating and Previewing Printed Copy

A rclated program called silpress produces printed illustrations from SIL format files. Alternate fonts
can be selected as in the siledit program. The command line:

" silpress filename.sil

converts the named illustration into a printing format file and queuecs it for the local laser printer. An option
is available to retain the printer format file, to merge the illustration into a document produced with the
Scribe or T,.X document compilers. It may take several iterations to get proper positioning and size, but it is
faster than using a scissors and paste. Thc show program can be used to preview documents including
illustrations before they are printed. :

4.6 Summary of Implementation Status

Virtual Graphics Terminal Servers have been implemented for five varietics of SUN workstation, with two
kinds of frame buffers. Interface libraries have been written in C and Interlisp. The C interface for UNIX is
callable from other languages such as Pascal. Implementations for the IRIS workstation and VaxStation are in
progress at the time of this writing. :

Current applications include:

» Emacs and an Emacs-like text editor [21],

» a VLS layout cditor [42],

® a font design system [74],

¢ a font and bitmap cditor,

» two document illustrators,

# a document previewer,

o some distributed games, and

» a varicty of display tools for vector graphics and raster images.

All applications may be run dircctly on workstations if they have enough memory. Many may also be
available remotcly, under systems supporting appropriate nctwork protocols and interface libraries, such as
VAX/UNIX or DiCSystem-20/Tors-20. Since all interaction goces through the VG'TS, other clients include
exccutives and any remotce applications accessible via- TELNE-style protocols. Thus, we have implemented
clients of types A through D in Figure 3-5. With respect to short-circuiting, the VGT'S handles cursor control,
hit detection, zooming, linc-cditing, and all screen management functions.



54 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

The implementation is reliable and fast cnough to be used as a general computing environment. In fact,
this thesis was written primarily using a text editor under the VGTS, and all diagrams were produced using
the illustration editor described in the previous section. The experience gained from this use helped to judge
the importance of criteria such as performance and reliability.

Appendix C gives some details of the development of the VGTS, including other people who contributed
software to the cffort. The prototype implementation took less than one year by the author, with slow
cvolution continuing by others. The next year was spent evaluating the design, which is discussed in the next
chapter, and taking measurements, which will be discussed in Chapter 6.
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VGTS Design Rationale

The partitioning problem is full of trade-offs: most design choices have both advantages and disadvantages.
Some of these trade-offs are discussed in this chapter, along with rationale for the way decisions were made in
the VGTS. One of the basic trade-offs-is that for cvery “feature” to be added there is an associated cost. The
cost must be balanced carcfully against the potential benefit of the feature. Since this was a rescarch project,
we were concerned with developing the minimum functionality to create a tool for some prototype
applications and taking mcasurements, rather than a system that could mect everyone’s nceds.

Many of the factors intcract with cach other. For example, the general partitioning issucs discussed in the
first section could cause performance problems discussed in the second section, and analyzed in the third
section. The results of this analysis lead to the centralization decision given in the fourth section. Although
centralization aids in ‘portability and uniformity, it can causc problems with customizability. In the last
section, the suitability of the VGT'S design for the future is discussed.

5.1 General Protocol Issues

Some basic problems appeared when trying to define a good interface (VGTP) to the VGTS. Although
total application and devicc independence is a laudable goal, it can lcad to a VGTS that supports too much
function for some applications and too little function for others. Both situations lcad to excessive overhead:
the first because the VG'T'S is doing too much; the sccond because the application must go to extra lengths to
subvert the VGTS. For cxample, if the VGTS were tailored for the basic SUN workstation, it would include a
varicty of routines for clipping and scaling. Howcver, in the IRIS workstation these functions are provided 4n
hardware by the Geometry Enginc [38]. General'ly, the IRIS provides considerably more functions than the
SUN workstation, favoring additions to the VGTP. Thus, the VG'TS itself had to be structurcd as a collection
of building blocks, and careful consideration was given to the intended range of graphics devices and
applications.

5.1.1 Fundamental implications of Partitioning

Although networks should be as transparent as possible, physical distribution raiscs fundamental problems.
In all cascs we would like to limit both the frequency of communication and the amount of data transmitted at
any onc time. In somc extreme cascs this might require caching mechanisms on the workstation and
necessitate complicated protocols to keep the workstation cache synchronized with the remote database.

Nevertheless, we observed that most interactive programs could be divided into a frontend that converses
with the user and a backend that does the real precessing, This simple model of user interaction is illustrated
in Figurc 5-1. 'The ideat VG'T'S would provide a common user interface portion and avoid the duplication
and inconsistent interfaces that currently abound between applications.  In so doing, it would short circuit the
traditional interactive response cycle between the user and the application [SS5].
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Figure 5-1:  User interactive response cycle
Short-circuiting is possible at a number of different levels, including:

e mousc-controlled cursor: The updating of the cursor position is performed by the VGTS in
response to uscr motion of the mouse (or similar pointing device).

e screen management functions: These arc necessary to allow multiple applications to run
concurrently without interference.

e hit detection: Applications are informed when a significant event occurs, such as selection of an
object; they do not keep track of the cursor position.

e cditing: The VGTS supports editing so only some high-level indication of the editing changes
needs to be communicated to the application.

Higher-level short-circuiting, such as local hit-detection, provides:

1. better response for those operations that can be short-circuited, . .
2. better utilization of powerful workstation resources,

3. lower demands on the network (for distributed applications),

4. reduced programming required for applications, and

5. lower processing demands for hosts.

However, to support high-level short-circuiting, the VGTS nceds to be provided with high-level information
about input and display semantics. That is, the VGTP must allow the application to communicate the model
that it is representing pictorially, not just the image of that model, as is common in contemporary graphics
systems. : :

Imagine, for cxample, that multiple VGTs were mapped to overlapping viewports on the display screen. If
the top VG'I' is repositioned on the screen, it and the previously obscured VG'I'(s) must be redrawn.  If the
VGTS docs not have a model of the picture associated with the VG'T, the VGT'S cannot redraw the picture in
its new position.  Similar observations hold for panning and zooming. Instcad, the VGTS would query a
possibly remote application to redraw the picture, a potentially time-consuming operation. Naturally, it is
cven more important for the VGTS to support a model if it is Lo provide generic editing,

The exact kind of model provided by the VG'TS could have ranged from simplc to complex. For cxample,
cven systems like GKS provide a rudimentary form of modcling through the Workstation Independent
Segment Storage capability. The power of using more general structure to define pictures has been exploited
since the pioncering SKETCHPAD system in the carly 1960s [135]. Ironically, a number of carly graphics
systems took this approach to its extreme by merging the application modcl and the display filc into a single
graphical data base[36,112]. 'This approach fell into disfavor largely because it imposed a fixed
representation on all applications.  In light of distributed graphics, it is also impractical to support a single
data structure spanning multiple machings. ' '
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A number of subsequent systcms developed the notion of a structured display file that encodes the
hicrarchical structure of figures, but leaves most of the application-specific information in a separate
application model [51, 52, 126, 148]. The structured display file is partially redundant, but provides a
rcasonable amount of structure for high-level short-circuiting. In particular, compared to the more
conventional segmented display file, a structured display file can provide better responsec when editing
objccts. Our initial application was VLSI circuit layout, which often requires drawing objects that are highly
structured and regular [83].

The use of structured display files in the VGTS was motivated primarily by Sproull and Thomas’s
Structurced Format Protocol, which in turn was motivated primarily by network issues of the sort discussed in
this scction [126]. However, that protocol was never fully implemented, primarily due to the lack of sufficient
computing power in the tecrminals available at that time.

In contrast, more traditional graphics packages do not retain object definitions at as high a level. This has
threc major performance problems compared to the VGTS. First, defining complex objects can require
significantly more time, if those objects contain several instances of the same symbol. Sccond, editing cxisting
objects is more time-consuming since the entirce object must be redefined. Third, gencrating different views
of objects is considerably slower, since the application itself must redraw cach view. On the other hand, “on
the fly” graphics could be faster under traditional systems since the VGTS does not permit an application to
simply “write” on the display, but rather requircs the application to repcatédly edit and redisplay an entire
symbol.

The cvolution of graphics protocols can be compared to the cvolution of general purpose programming
languages. The simple bitmap oriented systems can be compared to assembly language, with total generality
but lack of structure. The next step is procedure abstraction, which corresponds to languages like BCPL. with

control structure. The final step is to provide both control and data structurc abstractions, such as languages
like Pascal and Ada.

Another worthwhile analogy is with low-level disk storage systems. Early attempts forced uscrs to deal
directly with the scctor, track, and head allocation of disk files. 'The concept of “logical blocks™ divides the
disk into uniformly sized and scquentially numbered blocks. Intcracting with disks in terms of these slightly
higher-level objects makes impossible some of the clever optimizations donc by carly programmers.
However, the advantages of this level make it almost universally uscd in modern opcerating systems,

5.1.2 Replication Issues

- The replication of data (keeping multiple copics) that results from the partitioning described in the last
section was another major design issuc for the VGTS. In graphics systems, the multiple copics arc usually at
different levels of representation, and the reason for the copies is performance. ‘The actual number of
representations may vary, but most high-performance graphics systems maintain some kind of display list or
display file, which is intermediate in representation between the application’s data structures and the final
displayed picture {560].

For example, an applicaiion usually reads some permanent data files and constructs an internal model of
the objects being displayed. A structured display file contains information on structure and gcometry, but no
application information. The viewing process then displays this SDF with some viewing parameters, in our
casc on a bit map tecrminal. ‘Thus, a typical situation may result in four levels of partially redundant
information. This Ilcads to scveral natural places to partition the daw in a distributed graphics systcm, as
illustrated in Figure 5-2.

In cach casc the data structurcs below the thick line are stored on the workstation, and those above the line
arc storcd on some remote server machine. In traditional personal computers, everything would be on the
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Figure 5-2: Possible data partitioning points

workstation, with the possible cxception of data on a large archival file server to back up the personal
computer’s files. For large but diskless workstations, U:¢ application program can still run on the workstation,
but access the data files over a network. For smaller workstations, the structured display file is stored locally,
but the application program runs on the machine with the file system. In the simplest of workstations, only
the bit map is stored locally.

Note that arrows only go onc dircction, from the higher level representation to the lower level one. Each
representation can be generated from the next higher layer, which greatly simplifies the propagation of
updates. Pipclining, including possible hardware implementations, is much casicr if the conversion is always
in onc dircction. In actual practice, however, some amount of short circuiting can be donc to provide faster
fecdback, since input has to travel in the reverse direction. ‘I'he architecture and implementations of the
VGTS keep this short circuiting to a minimum, with only a few simpic local functions vastly improving
average performance. More rescarch can bc donce in the future within this framework on even higher levels of
short circuiting.

The V-System allows all configurations of Figure 5-2, although the first (personal computer) and last (bit
map terminal) have been thoroughly investigated in other work discussed in Chapter 1. The configurations
labeled “small workstation™ and “large workstation™ are the focus of this work..

5.1.3 Caching lssues

Onc way to further reduce communications costs would be to write an agent for each application that
maintains a cachc of the main data basc. Once a cache is in place, the usual problems of updatc arisc. When
should the cache updated and how much of it is updatcd at a time? For cxample, there are two intercsting
cascs in circuit layout:

e When viewing the entire design it is unnccessary to maintain the details of the lowest levels. This
information may bc omitted in order to maintain the representation for the higher-level structure.
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o When viewing a specific component it is unnccessary to maintain the representation of picces of
the picture not now on view. )

Thus the agent would be constructed in such a way so as to maintain only the necessary data. Appropriate
parts of the figure representation would contain the equivalent of invalid pages, leading to the cquivalent of
page faults.

The idcal VGTS would provide most of this support without requiring that a special-purpose agent be
written for each application. Although the current VGT'S architecture allows caching, the current prototype
does not implement any. The size of most SDFs rarcly exceeds two or three thousand bytes, which is an
insignificant amount of memory compared to the size of the VGTS itsclf. This and other possible VGTS
cxtensions are discussed in the final chapter.

5.1.4 Transport Protocol Issues

Once the higher-level protocols are decided wpon, the transport and lower level protocols must be
determined. Possible choices for transport protocol include datagrams, byte streams, and packet (or message)
strcams. Strcams arc an obvious choice because they generally provide a high degree of reliability, can be
used with a wide variety of terminals and nctworks, and simplify programming the applications and the
service. In addition, if the workstation and remote host interact frequently or in volume, high bandwidth is
required, better achieved with virtual circuits.

If bandwidth requircments are low, then the low delay of datagrams might be more appropriate.
Furthermore, interactive graphics requires real-time communication, which places greatest importance on the
most recent data. In contrast, strecams under load tend to lose or delay new data in favor of old data. The
graphical representation also impacted our choice. Since high-level information was being transmitted, the
loss of a single datagram would be catastrophic. Thus, only “reliable” stream-oriented protocols were used.

Fortunatcly, the V-System architecture allowed us to experiment with scveral of these protocols. Each
remote application must have an agent on the workstation, so the application and the agent may communicate
with whatever protocol they desire.  Since our prototype applications had rclatively modest requircments,
simplc encapsulations of the VG'TP with standard byte-strcam protocols were most widely used.

5.2 Performance Issues

~ Besides communication issucs, performance was also kept in mind during every phasc of the design of the
VGTS. Without careful attention, many distributed systems can end up being slower than their centralized
counterparts. In particular, many previous distributed systems have failed becausc of lack of attention to total
system performance. On the other hand, although poor performance guarantces that a system will fail, high
performance doces not guarantee success. Other factors such as the various costs associated with high
performance cannot be neglected. ' '

5.2.1 Code and Data Size

Despite the falling cost of memory, main memory can still be a major cost of a computing system. In fact,
no matter how much memory a computer system has, it scems to almost always nced more. Eliminating
duplication is onc way to save mcmory, but often rcdundancy buys performance. A hardware cache is an
cxample of such redundancy used to speed up a physical processor. Similar techniques to take advantage of
redundancy were used in sofiware, as discussed in Scction 5.1.2.
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Another way to save memory is cconomy of function: to not implement features that are rarely used, or
that can be done with cxisting capabilitics, unless they are necessary. For example, some users might like to
have blinking as a primitive attribute. Since blinking can be simulated by having the application program
repeatedly add and delete an item from a symbol, blinking attributes were not included in the VGTS. This
means that cach application program must include code for blinking if desired, but the overhead is rarely
cncountered. On the other hand, diagnostics and crror recovery are intended to be rarcly used in properly
written software, but many understandable crror messages are included in the standard VGTS, since when
they are used they can provide invaluable information.

5.2.2 Resource Limitations

The concern for memory costs is another prime motivation for the use of high-level display files instcad of
the more common bitmap approach. Note that the architecture does not explicitly prohibit the storing of
bitmaps, and in fact a bitmap item type is supported. However, Section 4.2.1 described how the prototype
implementations redraw only from the SDF, with no bitmap caching of overlapping arcas necessary. The
current architecture requires that to display large images the entire bitmap must be transferred into the VGTS
for every change. This has proved adequate for simple image display tasks, or editing small bitmaps such as
characters. For more intensive image processing applications, simple raster operations could be provided on
raster objccts to improve performance if nccessary. ’

Some display file approaches may scverely limit the maximum size or complexity of objects that can be
displayed. For example, many traditional graphics system support only one level of structure, the scgment.
Since we arc primarily concerned with the research community, absolute limitations should be avoided
whenever possible. However, making some assumptions about maximum rcsource limitations may simplify
the design or improve performance. For example, a reasonable limit on the number of virtual terminals or
views might be an acccptable limitation, so such limitations were included in the prototype VGTS
implementation.

5.2.3 Speed of Execution

The two main measurcs of cxccution speed of interactive systems are responsc time and throughput.
Response time is more important when the user has to wait. Many uscrs of carly workstation systems had to
spend much of their time waiting while an “hourglass™ cursor appeared on the screen. Operations which take
significant amounts of time should have been done in the “background”. This requires a priority-based
multi-process operating system, such as the V-System. 1

For all other applications for which the user does not have to wait, throughput should be maximized. Since
the hardware trends arc to more specialized processors, a natural division is suggested between processes
optimized for responsc time (intcractive) and those optimized for throughput (batch). A fairly common
scenario for users of the VGTS is to be running an cditor on the workstation in one VG'I' while monitoring
scveral long-running batch operations in other VG'I's at the same time.

5.3 Some Simple Models

As discussed in the previous scction, many attempts at distributed systems have failed due to poor
performance. In addition to the inherent cost of the computation, the costs of communication between the
parts of the distributed program arc incurred. Thus the wial computation cost of a distributed program is
almost always highcr than the total computation cost of an equivalent centralized program.
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There arc two approaches to improving the performance of distributed programs, both by identifying and
overcoming these communication costs. The traditional approach is to improve the performance of the
underlying network communication mechanism. The work of Spector and others on remote memory
references is in this category [125]. A morc promising approach taken in the VGTS was to decrcase the
" amount of network traffic by using highcer-level protocols. In other words, reduce the frequency and volume
of communication by making the applications more loosely coupled.

For comparison, consider the many performance studics made of demand-paged virtual memory systems.
Although performance can be improved by speeding up the handling of page faults, better results are usually
achicved by reducing the number of page faults. For example, increasing physical memory, tuning the page
size, improving the locality of the application, or using a better sclection algorithm can make as substantial a
difference as the speed of the disk.

Although this section does not attempt an exhaustive analysis of the VGTS architccture, some very simple
modcls can be developed. As in other simplified models of two-processor systems [132], a simple model is
necessary before a more detailed one.  Although some attempts have been made to model larger systems of
many processors [131}, these have mostly been theoretical models with very little total system performance
data. At first glance one might assume that the factor most important at any given time is the bottleneck, and
construct a quecuing theory model. The problem is that in a complete system the bottleneck is not so
well-defined.

5.3.1 Comparison to Cache Mode!

A cache is a well-known hardware mechanism to improve performance of a hardware design by taking
advantage of locality properties of software [121]. The locality principle states that a program’s references to
data arc not uniformly distributed, but instcad concentrate around a set of locations at any given
moment [108]. A small number of addresses arc responsible for a large fraction of the memory references.
The virtual memory concept is made possible by taking advantage of the principle of locality at the next
higher level in the storage hicrarchy. We can extend this concept to an even higher level, and take advantage
of the patterns of usage for high-level graphics functions in the VGTS.

In a distributed graphics system the processor in the cache model plays a role analogous to the workstation,
and the main memory corresponds to other server hosts, The performance of a cache can be roughly
characterized by four numbers:

’l‘kml is the average time for access to the smaller but faster resource.
Trcmm is the average time to reference the larger but slower resource.
‘comm is the time it takes to communicate between the local and remote resources.
p is the “hit” rate, or probability that an avvcragc operation can bc handled by the local resource.

This large communications factor, T’ comm® 15 the major difference from the hmdwam cachc modecl, along with
another component that is common o both local and remote opcration:

T, ots is the average time taken by the VGTS for both local and remote operations.

The average time for all operations is then:
1 =P Tlocal + (1 p)( comm + Tremote) + Tvgts

The idcal would be to mlmmuc this time with respect to the various hardware and software tradc offs
mentioned in the rest of this chapter.
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In more concrete terms, this model represents a terminal by making p zero (or very small), so no operations

are performed locally. The terminal role is acceptable when T omm and Tremme' are small components of the

overall cost, which implics a very fast mainframe and high-bandwidth communication (or batch-oriented
tasks). When p is near one, this modcls the personal computer configuration. Personal computers are fastest
when T, ocal is small, which implics fast personal computers (or simplc interactive tasks).
When the task is too large to be handled by the personal computer or terminal configurations, the following
approaches can make T | . smaller:
1. Reduce Tcomm (communication time) by using spccial protocols or network improvements. This
requircs measurements to determine if the actual bandwidth of the nctwork or the transport

protocols arc the bottleneck.

2.Reduce T, , by using a faster workstation. As we will see by the measurement results, speeding
up the processor usually has the desirable sidc-cffect of also increasing cffective network
throughput, or reducing T . However, this cost must be incurred on every workstation.

3. Reduce Trem ote 0V using a larger, faster computer for the server host. This cost can be shared

among all the workstations sharing a scrver.

4. Increase p by caching information on the workstation or using high-level short circuiting so that
morc operations can be performed locally. Applications could also partition themselves to put
more of their functionality on the workstation. Note that this usually implies an increase of the
memory of cach workstation.

5. Reduce Tvg(s by improving thce performance of the VGTS itsclf. In fact, for many simple
applications with insignificant computation demands, this factor could be the only important one.

The value of short-circuiting has alrcady been introduced. The next scction gocs into more detail on the
relationship between the local, remote, and communication times in the VGTS model.

5.3.2 The Time Dimension

VGTS performance can also be ecxamined by viewing the cvents along the time dimension. Figure 5-3
illustrates the “time used on cach processor resource for onc typical intcraction responsce cycle.  Time
progresses from Ieft to right. 'The first example is a personal computer configuration. ‘The next two lines
represent the partitioning of the problem between a workstation and a server host,

The variables in Figurc 5-3 represent the following values:

TInput Represents the time to handle the input cvent. This is usually the same in both the local and
distributed case. -
T Swapln Represents the time to swap in or otherwise change contexts to the application program on the

workstation.
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Figure 5-3: Simple requcst-response time model

Tnean  Represents the time to send the input cvent from the workstation to the server host, for the
server to receive it, and possibly schedule and change context to the computation.

TPC Is the time for the computation to be exccuted on the workstation.,

Server Is the time for the computation on a server. Usually execution of the computation is faster on a

larger central server host than the individual workstation.

'I‘SW apOut Represents the time to swap out the application program, or change context back to the graphics
system. A , ‘ :

Ty ciout  Represents the time to send the results from the server host to the workstation, for the
workstation to receive it, and possibly schedule and change context to the display process.

TDN)'my Represents the time to display the result of the interaction.

The conclusion from Figure 5-3 is that it is faster to usc the workstation/server split when the swap times
plus the local computation time is longer than the round-trip nctwork overhead plus the host computation
time. That is: ’

TSwapln + TPC + TSwapOul > rNetln + TS(:rvcr + TNclOut

is the condition for superior performance of the partitioned configuration,

Since the V-System at the time of this writing supports neither paging nor swapping, !"Swnpln is cither
insignificant (for programs already fully loaded) or else it is the time to load the application program,
Similarly, TSwapOul is the time for a context switch. On the other hand, for the applications mentioned in
Scction 1.2.2 that must run on the server, the swap timces are essentially infinite. On most personal computer
operating systems, swap times can be as high as several hundred milliscconds. Even without physical

swapping, many operating systcms have long context switching times.
The time dimension analysis suggests the following techniques to improve performance:

1. Reduce the Ty etin and rNclOul
of the network, or increasing concurrency in the network overhead.

times by reducing dclay in the network, increasing the bandwidth
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2. Have the server send results back to the workstation as soon as possible, since the rest of its

computation can continue in the background concurrently with TDispl ay’

3. Usc the personal computer approach whenever possible with high timesharing loads.

Timesharing loads add a queuing dclay to T,

Server which could casily make it much higher than

Ty on a powerful workstation.

These modecls provide the framework for interpreting the performance measurements to be given in Chapter
6. The following scctions will discuss important design considerations that may not be dircctly related to
distribution or performance.

5.4 Application Multiplexing Alternatives

One crucial job of the viewing service is to multiplex the single user and display devices to the possibly
many application programs. This function is similar to that of the kernel or process manager of a general
purposc operating system.

5.4.1 Decentralized Control

Most operating systems handlc contention for the processor by letting one process have full control, then
saving the statc of the processor, loading the state of the next process to run, and letting that process have full
control. A similar approach could be taken with graphics [35]. The reasoning is that this will allow higher
performance, since compiled programs usually have better performance than interpreted . programs.
However, it is not necessary to have decentralized control to have compiled display lists; it is just a question of
whether the application program or the viewing service docs the compiling.

A number of sophisticated object-oricnted window systems have been built for personal computers with
decentralized control, as discussed in Section 2.2. While these window system approaches work well for local
applications, they do not extend well to remote applications, especially those writtén outside the framework of
the particular language and workstation. Even systems that attempt to provide the object-oriented “up-call”
functionality in a distributed cnvironment have resulted in centralized control [59).

One major problem with decentralized control is that current graphics devices do not always allow the state
of the graphics device to be saved and restored.  Another problem is that application programs would be
non-portable at the binary level éven if there were workstations that used the same processor architecture but
different graphics architectures. This may not scem like a problem since source-level compatibility could be
retained, but it could result in a version “explosion™ with many copics of cvery graphics application, cach of
which must be maintained in parallel with the others. Since both of these problems cxisted for the SUN and
IrIS workstations, the decentralized approach was not possible for the prototype implementation.  The
original motivation for virtual tcrminals (sce Scction 2.3) was to climinate the » § m version problem.

5.4.2 Centralized Control

The VGTS, on the other hand, is designed to operate in a environment composed of a variety of
applications, programming languages, machincs, and nctworks, with widely varying terminal interaction
requirements. A centralized approach, rarcly taken in bitmap graphics systems, communicates a list of objects
to be drawn to the viewing scrvice, and the viewing scrvice actually renders the objects. T'his virtual terminal
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approach, previously introduced in Scction 2.3, was taken in the VGTS due to the advantages for portability
and partitioning. '

It is not a contradiction (as it might scem) that partitioning implies centralization. Centralized control was
used in the VGTS to provide adcquate performance despite expensive communication. The actual costs of
communication will be measured in Chapter 6. Another side benefit of centralization is conservation of
memory. Each application program is smaller because it does not need to be linked with the graphics library.

5.5 Uniformity and Portability

Another sct of issues concerns different aspects of uniformity. The gencral problem associated with
uniformity is that, almost by definition, uniformity may restrict flexibility. The goal was to restrict how things
arc done, but not what can be done.

5.5.1 Device Independence of Applications

Since workstation hardware is changed constantly, software developed on one kind of workstation usually
docs not run on other workstations. One traditional approach to this problem have been guery operations.
Application programmers may takc advantage of query opcrations to change behavior depending on the
results of the query {28]. This is a highly restricted form of device independence, that requires premeditation
by the applications programmecr of all possible devices with which the program will ever run.

Device independence has been recognized as a goal for quite some time, but is ¢ven more important
today [60]. In fact, technology can progress so fast that by the time an application is finished, totally new
graphics devices may be available that were not even anticipated at the time the application was designed.

For example, the prototype VGTS took about one year to devclop, another year to measure and a final year
to cvaluate. In the meantime, the architecture of the SUN workstation had changed drastically, so the
prototype implementation no longer worked on the new workstation. If the VGTS architecture had been
tailored to the original workstation, then all the applications developed during these years would have to be
rewritten. Instead, as soon as the new version of the VG'T'S that handled the new workstation was instailed, all
client programs could be run immediately, without any modifications. VG'I'S changes were limited to one
low-lcvel module, the drawing manager, as indicated-in Figure 4-1.

5.5.2 Uniformity of User Interface

In addition to uniformity across different hardware devices, uniformity across different softiware tools is
another desirable goal. Powerful hardware like bitmaps.and mice provide the opportunity for more advanced
interfaces, but also can cause chaos if cach application chooscs its own uscr interface. Every programmer has
his own idca of what is “right” and those tastes may not match thosc of the intended uscrs. Onc partial
solution to this problem is the user interface management system concept which isolates the opceration of a
program from the details of how thosc operations arc invoked [143].

The VGTS provides a step in this direction, with the following user interface standards:

@ Pop-up menu feedback is implemented inside the VGTS. The view manager menus as well as
those provided by applications arc handled uniformly. :

» A common linc cditor provides qnmplc cditing functions like character and word dclctc to all
applications requesting keyboard input.
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e Banners provide a common mechanism to indicatc some concisc status information, such as the
name of the program currently exccuting.

o All screen management, such as zooming and moving of views is done uniformly through the view
manager.

e Other conventions and library packages arc provided as suggestions. For example, pressing all
three buttons simultancously signals an abort to most programs.

The result is that users quickly learned how to use new tools, instead of having to adapt to the whims of the
implementor of the new tool. :

5.5.3 Portability of Implementation

It was found to be casier to modify the code of the first implementation to handle another kind of
workstation than to start from scratch. Several techniques were used to aid in portability:

e Restricting the range of hardware. In our case, the VGTS was targeted to higher-cnd workstations
and future higher. performance hardware instead of the lower cost popular personal computers
currently being mass produced.

e Using a high level language. The VGTS was written in the C programming language [71]. C
compilers arc widcly available for many computer architectures. ‘The UNIX timesharing system
has been ported to many different architectures successfully by using C [66].

e Using a standard computer architecture. The prototype VGTS implementation was on the
Motorola MC68000 architecture, which has several different implementations used in many
commercial products [100].

e Attention to modularity and isolation of machine dependencics, This was only achieved by
actually supporting two or morc dcvices with the same source code. Once the system worked on
two machincs, the third was casicr, and so on. The first few cfforts detected subtle hidden
machine dependencies that would otherwise be overlooked, such as byte ordering problems [40].

Portability was another of many propertics greatly helped by cconomy of featurcs. A small system was
inherently casicr to port than a larger system. For this reason many attractive featurcs were not included in
the VG'TS design unless they were. found to be necessary.  For cxample, some uscrs requested up/down
encoding of the keyboard, or advanced support for special function keys. Unfortunately, the implementation
alrcady worked with about ten types of keyboards, some of which did not have up/down cencoding or special
function keys. -

Although the trend to faster but checaper graphics workstations is unmistakable, the time between the start
of a design and its production is usually underestimated. For example, a major computer manufacturer
announced a workstation product and demonstrated it in July of 1982, In the fall of 1982, a rescarch contract
with Stanford was ncgotiated that included porting the VGTS w this new workstation. By the summer of
1984 the project shifted cfforts to a newer kind of workstation. Hardware progress had been so great that the
workstations were obsolete before they were delivered.,

A more important problem with porting the VG'TS was not technological but political. Most workstation
manufacturers were unwilling to reveal low-level details of their graphics devices. If they contained custom
hardware, the manufacturer wanted to protect the trade sccrets involved in the hardware, so other
manufacturers could not usc the same techniques. If the graphics devices were simple frame buffers driven
by software, the low-level raster operation functions were proprictary, to prevent the use of the software on
other machines. In our case we had no desire to pirate trade sccrets, but we failed to convince the
manufacturers that it was in their best interests to give us the information.
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5.6 Customizability

Unfortunatcly the goal of uniformity was in direct conflict with that of customizability. Although at first
customizability seems attractive, there are many hidden costs. For example, people often work together on a
single project in a rescarch environment. Highly customized interfaces make exchange more difficult, if users
cannot use their custom commands on other workstations. On the other hand, since researchers are often
systems programmers themselves, they have irresistible urges to change a program that they do not like. Ifthe
interfaces arc not designed carefully and flexibly cnough, users will develop their own versions of the system
anyway and the goal of uniformity is lost.

- 5.6.1 Customizability by Programs

The author of a program may want to specify some slightly device-dependent “hints” about the display
process. For example, a program may have information on the size of some object or its desired location on
the screen. The program may also wish to advise the VG'T'S on how the objects should be viewed. Although
the VGTS architecture allows such hints, only one was provided in the prototype implementation: An
application can declare the size of a default view.

Onc example of a programmer who wanted customization of the viewing process occurred in an integrated
VL.S1 layout cditor and design-rule checker. The author of such a program requested the ability to position
an item within a view, so that a design rule violation could be centered in the viewport. Such a feature could
easily be added by creating another VG'T' with the item as its top-level symbol, and then defining another
default view with the desired coordinates. The view manager could also include commands to center a view
on coordinates typed by a user, instead of pointed to by the mouse. Thercfore, the view manipulation
capability was not added to the VGTS client interface.

A common:argument is that programs should be ablc to perform any function that a user can perform. This
is not provided in the current VGTS, since the user interface deals with views and physical screens, while the
application interface intentionally hides these objects and deals with graphical items and virtual terminals.
One arca of future rescarch is the design of a different kind of interface that could be used for customized
view management. However, it is important to make the clear distinction between non-uniformity on the part
of the application tools, and customization of those tools on the basis of the user.

5.6.2 Customizability by Users

- A user may want to specify a profile to tailor certain aspects of the user interface to his or her nceds. For
example, novice users may want an interface that is casier to learn or in which it is harder to make mistakes,
while expert users want moic powerful interfaces with commands available quickly. In addition, many
aspects of user interfaces arc a matter of personal taste.  With respect (o screen management, some people
prefer to usc arbitrarily overlapped viewports as implemented by the prototype VG'TS, while others prefer to
usc the tiled approach, in which the view manager causes views to exactly (il the screen without overlap [140].
Another open question is the proper form of menus. In the current implementation, one button click causes
the menu to appear and another causes the selection. This reduces the probability of errors when incorrect
button combinations arc given, but requires two uscr actions for cach menu sclection. Other systems cause
the menu to appear when the button is pressed, and the sclection to occur when the button is released.

Some systems usc profiles on a workstation or application basis, but they should really be provided on the
basis of user, since users and applications should be able to use any workstation. The VGTS architecture
allows this customization of the view management process, but the current implementations do not realize this
capability. Partially this is due to the lack of a user identification concept in the current V- Systcm but also
due to the fact that the conventions as.implemented have proven reasonable in actual use.
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5.7 Suitability for the Future

The future in the computer industry is hard to predict in detail, but some gencral trends are certain, We
wanted to take advantage of these trends whencver possible, instead of tying the design to technology that
would quickly become obsolcte.

5.7.1 Future Display Devices

Larger, faster bitmaps, and special-purpose graphics hardware should become less expensive in the future.
For cxample, while this thesis was in preparation, the Apple Macintosh was made available for about $1000
with a University discount; this is less than most alphanumeric terminals. 'The Macintosh has a fairly small
display screen and low-performance processor, but the miere existence of the mouse and bitmap display in a
mass-produced product arc encouraging.

The [RIS workstation is an example of a higher-performance and therefore higher-cost system, with custom
hardware applied to the viewing process [39]. The current RIS implementation renders the output primitives
using a bit-slice microprocessor, and is too cxpensive for wide-spread use. However, the IRIS is indicative of
the trend to applying special-purpose hardware to graphics systems.

Current developments include “smart memories™ that use special devices to perform rendering, including
anti-aliasing and shading via ray-tracing, directly in the frame buffer [63]. Performance can be enhanced
further by using pipelining and parallclism. With this kind of hardware the BitBlt model of operations breaks
down. Instcad of moving bits around, the interface to the hardware is at a higher level: declaring primitive
graphics objects like vectors and polygons.

There are two differing opinions on the effect of this advanced specialized hardware. One line of reasoning
is that sincc all this custom hardware is so cxpensive, the raw graphics device must be used at a very low level
to avoid wasting any power. The other line of reasoning is that new hardware can be usced to allow
programming at a higher level, with straightforward, simple, and clcgant approaches replacing the special
mechanisms necessary on slower hardware. The first opinion appeals more to those who design and market
the hardware, while the sccond appcals to those who develop the software and use the workstations. Since
softwarc costs arc becoming increasingly more important, in the long run the clegant software approach
should dominate.

As thec VGTS was designed, it was hard to predict what the future held, but onc thing was certain: there
would be many more changes in the kinds, quality, and cost of graphics devices. One good way to take
advantage of these new devices, given this uncertainty, was to usc abstract, high-level interfaces and
concentrate on portability as done in the VGTS.

5.7.2 Future Computer System Organization

Ironically, the personal computing trend may be short-lived.  Computer systems arc still expensive, and
people can not afford fully configured personal computers. On the other hand, microprocessors arc almost
frec. and getting cheaper. The cost of a microprocessor should eventually approach the cost of a memory
integrated circuit, so despite the increcasing densitics of memory, the trend should be to less memory per
processor instead of more memory per processor. The result should be computer systems that consist of many
microprocessors working together.

For cxample, the cluster of workstations for which the VGTS was developed consists of about ten diskless
SUN workstations connccted with a local network to three VAX-11/750s, one VAX-11/780, and a shared
DECSystem-20. In fact, cach of the workstations is rcally a multiprocessor in its own right. In addition to the
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MC68000, there are simple finite-state machines to refresh and update the frame buffer, a bit-slice processor
to handlc the Fthcmct, and microprocessors in the keyboard and mouse.

For these reasons, protocols that trcat the workstation as a terminal (that is, partitioning below the VDI
level as illustrated in Figure 2-2) are not very intercsting for the future. The main limitation with these
protocols is that they assume only one conncction at a time. Since future computer systems will probably
have many processors, and a single user will probably use many processors at once, the VGTS should allow as
much concurrency as possible. Concurrency is a uscful concept both at the hardware level (as many
computers as possible should be kept busy) and at the higher levels of user interface (the user should be able
to have many tasks in progress at the same time). As a first step, the VGTS provides the graphics operations
in a separate process, instcad of as functions called by the application programs.

5.8 Backward Compatibility

Although planning for the future is important, the VGTS design did not ignore the past. It is unrcasonable
to expect all software to be rewritten for cvery new system. For this reason, one VG'TS goal was to be able to
take advantage of as much existing software as possible. A similar approach was taken in the BRUWIN virtual
terminal system [96]: the terminal manager was designed to take advantage of existing tools, instcad of being
the focus of all new developments. Even though BRUWIN provided support for only text on a conventional
graphics device dircctly connected to a timesharing system, it proved to be a uscful tool. Similarly, the VGTS
also was ablc to access applications running under the UNIX timesharing system through remote execution.

5.8.1 Encapsulating Existing Facilities

For cxample, the V-System itsclf (including the VGTS) was compiled on a VAX/UNIX timesharing system.
Eventually more software development tools were ported to the native V-System cnvironment., The ability to
run the tools under UNIX greatly eased the transition. Many specialized or proprictary programs arc still
accessed through the UNIX scrver interface.

In addition, through thc use of terminal emulators and user TELNET programs, a VGTS user can run
applications anywhcere throughout the ARPA Internct. This remote terminal capability has trned out to be
one of the most heavily used features of the current implementation. The next chapter will describe some
experiments using cven interactive graphics programs in this manncr. Fortunately, many tools can be
accessed in a batch fashion, so there is little performance degradation when they are executed remotely. For
example, this thesis was produced with a document compiler that ran on a UNIX server host.

5.8.2 Relation to Standards

Another way of taking advantage of the past is to follow standards. The graphical facilitics of the VG'TS arc
similar o those several cxisting graphics packages, including thosc conforming to thc Corc [147] and
GKS |64] standardization cfforts. 'The principal differences are:

1. standardized support for object modeling as well as viewing;
2. hicrarchical structure of objects; ,
3. the ability to handle multiple, distributed applications simultancously;

4. less flexibility in terms of attribute and coordinate transformation facilitics,
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In general, the standards remain oriented toward a single, dedicated host, and pay little attention to
distributed systems issucs, especially the usc of contemporary powerful bitmap workstations. Furthermore,
there were no specific applications written for these graphics standards that had to be supported by the
VGTS. Therefore the VGTS did not conform to any of these standards.

Some recent graphics efforts arc more in the spirit of the VGTS. Both NGS [24] and PiiGs [4], for
example, extended the concepts of GKS and Core to include structured display files, similar to the VGTS. As
with previous standardization cfforts, thcse go beyond the current VGTS in support for attributes and
coordinate transformations. In fact, had they cxisted at the time the VGT'S was first designed (the fall of
1981), we might have adopted many of their facilitics outright. However, ncither emphasizes distributed
graphics (despite its name, Network Graphics System, in the case of NGS) or multi-application (window
system) facilities.

Table 5-1 surnmarizes how the VGT'S graphics capabilities compare to some traditional graphics packages.
The first colurn gives the name of the graphics package, and the sccond gives the number of dimensions in
most operations. The next column indicates the kind of structures, including no retained segments in minimal
GKS, simple one-level segments in CORE and GKS, exccute segments (like procedure calls), and copy
segments (like macro e¢xpansions). The next column gives the approximate number of functions, which is
always larger than the small number of graphics primitives. The last column gives the approximate years
during which the design took place. ‘

System Dimensions Structure Functions Years
CORE 3D Scgments 227 1977-1979
GKS Maximal 2D Scgments 185 1978-1982
GKS Minimal 2D None 48 1981-1982
NGS 3D Copy/Execute © 181 1982-1984
PHIGS iD “Copy/Exccute’ - 180+ 1983-1985
VGTS 2D Exccute 30 1982-1984

Table 5-1: Comparison of graphfcs packages to VGTS

The Virtual Device Interface, VDI, could be uscd as a real terminal protocol in the VGTS, by developing an
SDF interpreter that would genecrate VDI commands. The same observations hold with respect to
NAPLPS [6]. This would allow a single VGTS implementation for all devices mecting the specification. An
interesting question is whether all device dependencies should be below the VI (or equivalent) layer, or if
common code could be used to simulate the commonly missing hardwarc capabilitics. For cxample, the code
to handle dashed lines for devices having only solid lines, could be written once instead of inside cach device
driver. There scems to be an unwritten rule that if a graphics device has any special hardware capabilitics,
then these “features™ must be used, at almost any sacrifice in software structure. T'his could cause problems if
devices are supported that provide graphics primitives in hardware that are not included in the VGTS
architccture.

5.9 Summary and Motivation for Measurements

This Chapter discussed the reasons behind the major design decisions taken in the VGTS. The next
Chapter attempts to quantify the degree of these trade-offs. For example, the structured display file approach
favors highly structured picturcs, and incremental cditing over initial display. The penalty for initial display
and unstructured pictures should be small compared to the improvement for structure. Since total system
performance was considered important throughout the design, some simple modcls were developed and
_cxamined in this Chapter. The models show that performance can be improved by reducing the frequency of
communication and the amount of information communicated.,
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The centralized control of the VGTS has benefits for uniformity and portability, but still allows some
customization. Partitioning as exemplificd by the VGT'S should become more important as future display
and computing devices are introduced. On the other hand, users should be isolated from changing hardware
by encapsulation of cxisting facilitics and adherence to standards. Experiments are also needed to prove that
performance is adequate compared to the older systems being emulated and replaced.
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—6 —
Measurements

The previous chapter discussed many qualitative advantages of the VGTS design, such as portability and
suitability to future hardware. Quantitative measures arc also desircd to provide a firm basis for cvaluation.
One ultimate measurc of a system'’s success is whether people choose to use it to get work dong, cven in a
rescarch project. This criterion certainly applics in the case of the VGTS, since the high level of interaction
enforced by the VGTS may trade off some functionality, flexibility, or performance. If the amount of these
qualitics Tost is small cnough compared to the advantages gained, then the approach may be worthwhile for at
lcast some class of applications.

For example, some graphics terminals allow special effects like limited animation using tricks with the color
map. On a workstation sharcd with other applications, these special mechanisms cannot be used, since
resources like the color map are shared between scveral different applications. This chapter will show that
carcful design of VGTS protocols can make performance acceptably close to that of other systems that do not
have the advantages of the VGTS.

6.1 Nature of Performance Measurements

Performance measurements have been taken for three benchmark programs, two for graphics and one for
text, in a-variety of test configurations. In addition, the illustration cditor used to create the diagrams in this
thesis was instrumented to measure memory usage, construction, and display rates.

6.1.1 Benchmark Programs

The first graphics benchmark created a fully-connected 36-agon with a radius of 350 pixcls, drawing 630
vectors or 288,364 pixels. Thus the average vector size in this benchmark was 457 pixcls. Since the picture
was a fully-connccted polygon, many different angles of vectors were used. This was intended to test the
performance of traditional vector graphics functionality. The action was repcated ten times, and the numbers
listed arc the mean of ten consccutive trials, '

All numbers given as vectors per second in this chapter refer to this same artificial benchmark, so they
should be valuable for relative comparisons but not absolute limits. However, since most significant
computation was donc before the timed parts of this program, and the number of items in the picture is
relatively large, the intent was to measure the peak rates of adding items to a symbol and then drawing that
symbol. This would mecasure the rate of initially drawing a new picture.

The second graphics benchmark was intended to test the cffects of using structure on a simple picture of the
kind uscd in a VLSI layout editor [42]. 'I'his benchmark drew an array of five by six NMOS inverters [93].
“Each of these 30 inverters consisted of 26 rectangles, for a total of 780 rectangles, all filled with one of four
stipple patterns (which would appear as colors in a color implementation) representing the four NMOS layers.
First the picture was drawn using a single-level SDIF and adding all 780 rectangles individually. 'The second
part of this test defined a contact cut symbol, then an inverter symbol, and then added 30 calls to the inverter
symbol, with only 23 primitive items in the SDF.

Although the regularity fuctor of this drawing (the ratio of total items divided by defined items, or 30 in this
casc) is fairly high, modern VLSI designs typically have regularity factors in the same range, and the trend is
to increasing regularity [83, 84]. In fact, many of the designs currently under development could never be
possible with smaller regularity factors. Independent of the structure, the resulting image was the same, about
400 pixcls on a side. _ o ’
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The text benchmark programs simply wrote characters until stopped by the user. This behavior would
occur, for example, when displaying a new page in a text editor. The characters were from a fixed-width font
with each character cight pixels wide and 16 pixcls high, or 128 total pixels per character. This was the
standard font used by most applications cxcept those doing specialized text display. It was developed by the
author by manually cditing the output of the METAFONT type design program [74].

6.1.2 Test Configurations

The actual structures of the protocols and programs used in the performance measurements are illustrated
in Figures 6-1 and 6-2. The benchmarks were conducted with the following communication configurations:

Local Application running on the same workstation as the onc used for display. The application sends V
messages directly to the VGTS. Since the application is on a separatc team (address space), the V
kernel’s data transfer operations arc needed to move information from the application to the
VG1'S’ address space; no shared memory is used. This is illustrated in Figure 6-1a.

SUN-IKP  Application running under the V-system but on a different machine, connected via Ethernet to
another workstation, and using V-System 1KP. As illustrated in Figure 6-1b, this involves the
application using the samc message-passing interface, but with kernels implementing the Inter-
Kernel Protocol.

VAX-IKP Application running under VAX/UNIX, connected via Ethernet to the workstation, and using
V-System IKP. As illustrated in Figure 6-2a, this involves the application writing to a pipe, which
is read by the V-server program, which sends messages over the network to a V kernel. The
workstation runs a simple program called fexecute which is necessary only because both the
VGTS and the V-server are servers; they both are sent messages to which they reply, instead of
initiating the sending of mcssages by themselves.

Pup Application running under VAX/UNIX, connected via Ethernet to the workstation, and using PUP
TrRINET. Figure 6-2b illustrates this configuration. 'The application uscs pscudo-tty devices
(ptys) to communicate with the PUP TELNET server program Telser. This program sends
packets over the network to the workstation, where a user PUP TELNET program scnds the
messages to the VGTS.

E-IP Application running under VAX/UNIX, connccted via Ethernet to the workstation, and using
Internet TELNET.  This is Figure 6-2c. The application again uses pscudo-tty devices to
communicatc with the IP TELNET server Telnetd. 'The implementation of the transport
protocol in this casc is in the UNIX kernel, and a separate program called the Internct Server on
the workstation. The user TELNET program finally sends the messages to the VGTS.

A-1P Application running under VAX/UNIX, connccted via Ethernet and ARPANET to the workstation,
and using Internct TELNIET, This is the same as IFigure 6-2¢, but with network including a gatcway
and an extension through the ARPANET backbone.

Tests were conducted using standard 10 Mbit/sccond Ethernet unless otherwise noted. Tests were also
pertormed on the experimental 3 Mbit/sccond Ethernet [41]. ach configuration used workstations with both
8 and 10 MHz MC68000 processors. For configurations involving VAX-11's, 750’s, 780’s, and a 785 wcre used,
and the tests were conducted during unsociable hours with correspondingly light loads. Real applications are
often run with high timesharing loads, but these are hard to control for the sake of the experiments.

Even more difficult to control were changes to underlying software. Some variation through time incvitably
occurred in the VGTS, other workstation software, and host software. For example, introducing new features
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Figure 6-2: Server host configurations tested

and fixing crrors typically reduce performance, while casing bottlenccks found during cxperiments improves
performance.  Although cach table in this Chapter compares configurations with similar software, two
different tables may compare dissimilar versions. ‘T'he detailed results in Appendix 1) include the date of cach
measurement,

6.2 Summary of Performance Results
Given the declarative nature of the VGTP, some measures of interest are:

construction rate 'The rate that objects can be added to a symbol, without any display opcrations.

batch rate The rate that objects can be added to a symbol, and then displayed.
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incremental rate 'The rate that 6bjects can be added and displayed as each is added.
display rate The rate that objects can be displayed once they are defined.

Construction rate is the best measure of the peak nctwork offered load for distributed graphical applications.
The batch rate takes into account display overhead, which is fairly independent of the network. Nevertheless,
it gives the best measure of overall graphics throughput. On the other hand, the incremental rate gives a
better measure of expected response, when interpreted as the maximum number of display transactions per
second. Display rate is another measure of responsc for operations such as screen rearrangement or redisplay
of defined symbols.

Unstructured vector graphics performance is summarized in Table 6-1. Additional dctails appear in the rest
of the tables in this chapter and in Appendix 1. In all of the tables, columns arc labeled with the test
configurations listed above (local, SUN-IKP, VAX-IKP, PUP, E-IP, and A-IP). Most rows are labeled with
(speed, host, ra'e) triples, where speed is the speed of the SUN workstation processor (8 or 10 MHz), host is the
type of VAX (750, 780, or 785), and rate is onc of the ratcs listed above (construction, batch, incremental, or
display). All numbers arc in vectors or characters or rectangles per second, so larger numbers indicate better
performance. Results have been rounded to two significant digits, and should be taken as order of magnitude
estimates only, duc to the many factors involved. However, as we shall sce, cven these very rough
measurements can be helpful to determine the feasibility of this approach.

Table 6-1 prescnts the performance figures for configurations employing the most common processors, 10
MH>” SUN and VAX-750. As shown by the construction rate row, objects can be constructed at 440
veetors/second for applications running locally, and 380 vectors/sccond for Ethernet-based applications.
Overall graphics throughput, as shown by the batch rate row, is 220 vectors/second for local applications, up
to 350 vectors/sccond for Ethernct-hased applications, and 120 vectors/sccond for ARPANET-based
applications. Incremental display permits 62 vectors/sccond for local applications, up to 87 vectors/second
for Ethernet-based applications, and 39 vectors/second for ARPANET-bascd applications. - Actual display rates,
shown in Table 6-3, are on the order of 430 vectors/second, or .2 million pnxcls/sccond or 5
microscconds/pixcl including all display overhead.

Vectors/sccond
Configuration Local IKP___PUP  E-IP___A-IP
10, 750, construction 440 380 200 220 130
10, 750, batch 220 350 200 220 120
10, 750, incremental 62 81 58 87 39

Table 6-1: Summary of graphics performance

The text results are summarized in Table 6-2. Throughput is 7700 characters/sccond for local applications,
up to 4300  characters/sccond for local net-based applications, and 1900 characters/sccond  for
ARPANET-based applications. Additional details appcar in T'ables 6-4 and 6-5.

, - Characters/sccond
Configuration . Local IKP__ PUP E-IP__A-IP
10, 781, text 7700 4300 1600 4300 1900

Table 6-2: Summary of text performance
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6.3 Feasibility Evaluation

The most gratifying conclusion is that the VGTS performs better than many systems that researchers are
currently using. Traversing the structured display files to refresh the screen is within 25% of the speed of the
bare hardware, accessed through a package of low-level graphics primitives [22]. Symbols can be constructed
at about the same rate as they can be displayed. Lastly, as shown by the incremental rate row in Table 6-1,
applications may issue around 60 EditSymbol - AddItem - EndSymbol scquences per second. This is more
than the 10-20 updates per second nccded to make limited forms of animation possible at the application
level, without any nced to resort to display file compilation or other special techniques, Display file
compilation is still possible in this architecture, and may be necded for graphics devices that are faster in
relation to processor speed.

Graphics pipeling Vectors/sccond
1. Local application -sframc buffer (clever code) 570
2. VGTS -» frame buffer 430
3. Remote application > VGTS - frame buffer 350
4. Local application -»W -»frame buffer 300
5. Local application =»VGTS - frame buffer 220
6. Local application -» frame buffer (straightforward code) 190

Table 6-3: Effect of graphics pipeline

Perhaps the most important concern is how the VGTS performance compares to more traditional graphics
architectures. Table 6-3 compares a number of diffcrent “graphics pipelines” to help make this comparison.
The pipclines include the following: ' '

1. An application writing dircctly .to the frame buffer using the standard, highly optimized
implementation of vector drawing.

2. The VGTS refreshing the frame buffer from a structured display file.
3. An application _program on a server host using the VGTS to construct and display the picture.

4. A local application using an alternative “Window System™ [10]. This is an cxamplc of the more
common graphics modecl in which the application is in control of all drawing,

5. An application pr()gram on the workstation using the VGTS to construct and display the picture.

6. An application writing dircctly to the frame buffer using a straightforward implementation of
vector drawing,

By comparing the performance of these pipelines, we can estimate upper bounds on the cost of the major
architectural features of the VGTS. Lines 1 and 2 show about 25% performance degradation for all drawing
overhead in the VGTS. 'The principal costs are:

e Coordinate transformations, Applications specify objects in a virtual coordinate space, which
must be transformed into device coordinates, "This could be done at SDIF creation time using a
form of display file compilation, but is currently done at draw time, avoiding the usc of expensive
arithmetic operations like multiplications by using shifts.

e Clipping. Objccts arc displayed only within window boundarics. Objects that lic entircly outside
of the window should not be displayed, but the parts of objects thatlic partially within the
window should still appcar.

o SDF Interpretation. The SDF structure was designed to be interpreted very quickly. With an
overhead of one pointer reference per item, this constitutes very little of the drawing overhead.
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Lines 1 and 4 can be used to estimate the cost of centralized control. The W system is representative of the
“minimalist” approach, with actual drawing centralized but few of the other featurcs of the VGTS, Thus the
47% overhead of W can be attributed primarily to:

o Message overhead. This will be incurred whenever the graphics scrvice runs as a separate process
from the application. Besides the time for the actual message passing and context swntchmg, the
opcrations must be encoded into and decoded from the message.

o Data movement. This is the cost of copying information from the address space of the application
to the server, incurred whenever the server is not linked into each application.

Comparing linc 4 to line 5 indicates a 27% performance difference when using the VGTS instead of
W. Although some of this may be due to SDF interpretation overhead, most is due to the following VGTS
featurcs:

o Client stream interface. The prototype interfacc library encodes all graphics operations into a
strcam of bytes, and uscs the standard V [70 protocol. This allows for 1/0 redirection, even
among machincs with different byte orders.

o Server stream interface. The prototype server implementation decodces the graphics operations
from the byte strcam and calls appropriate internal functions,

e Error checking. The VGTS attempts to do most error checking, such as verifying that table
indices are within their proper bounds, at SDF creation time, so subsequent redraws will perform
at full hardware spced.

e Memory allocation. Mcemory must be allocated to the SDF display records for each new object.
Once the memory is obtained from the system, this involves only a simple pointer movement
down the free list.

e SDF Saving. The actual overhead for saving the display record involves storing the coordinates
and attributes (usually insignificant) and calculating the extent of the currently open symbol.

Despite these costs, the VG'TS distributed rate (line 3) is higher than W (linc 4). This shows that a significant
amount of the overhead is incurred on the client, which results in a benefit from concurrency. It is, in fact,
standard protocols such as V 170 and the bytc strcam concept that facilitate distribution.

Note that almost all of these costs must still be incurred cven if SDFs were not used to retain the graphics
information; the only saving would be the few microseconds to store into the display record. Of course, some
overheads could be avoided by using only onc process, one address space, screen coordinates, etc. but the
resulting system would not have the advantages described in the last chapter.

Finally, comparisons of applicatione<screen throughput show the VGT'S at its worst case, since they do not
takc advantage of the display file. Even though the initial picture sometimes takes longer to appear when
using the VGTS, once it is defined it can be drawn very quickly,  For example, in response to screen
management operations, any W-like system would require the application to redisplay its contents at the 300
vectors per sccond rate, while the VG'I'S would redisplay at 430 vectors per second, a 43% performance
advantage. ‘

A simple qualitative measure of text performance is how the VGTS compares to standard RS-232 9600
baud terminals, which generate about 940 characters per sccond. For cxample, consider a typical page
forward command in a screen cditor which changes about 1000 characters. On a 9600 baud RS-232
connection this would take about onc sccond.. With the VG'I'S it takes about a hfth of a sccond, which is fast
cnough to scem instantancous to most uscrs.

The remainder of tlm chaptcr will attcmpt to show the cffect of varying different parameters, and cvaluate
the effects to the limited cxtent possnblc in the configurations available. These parameters include:
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e spced of the workstation and graphics device

¢ speed of the remote host (if any)

o speed of the network

e choice and implementation of transport protocol

e level at which information is communicated, including characteristics of the virtual graphics
terminal protocol

6.4 Internal Factors

For many application programs with large processor demands, the importance of the speed of the graphics
can be insignificant compared to the importance of the speed of the application. These programs are ideally
suited to the VGTS architecture since the application can be run on a larger, specialized, high-performance
processor instcad of the workstation. Thus, the major concern is when the frequency of interaction is high.

Even though the VGTS was designed for efficicnt partitioned operation, it is still good at local operation.
As we shall sec, the most important factors affecting the performance of the VGTS arc the same as those
affecting most other programs. This might be considered as unfortunately mundane, but it means that the
VGTS can take advantage of the many well-known techniques for making typical programs run faster; there
are no inhcrent performance rcasons to prevent the use of VGTS concepts.

6.4.1 Effects of Graphics Package

One of these important factors that is often overlooked, is that for any program, most of the time is spent in
a small part of the code. In the case of the graphics benchmarks, much of the exccution time was spent in the
vector or rectangle drawing function. The Bresenham algorithm, which is usually the fastest, was used to
draw vectors [20]. However, even a straightforward implementation of the fastest algorithm was much slower
than an implementation using clever coding of the inner loops of the Bresenham algorithm.

In the clever implementation, the vector drawing function compiles a custom-madce inner loop for cach
vector. "This takes a little more time to sct up for cach vector, but this initial time is kept small by using table
look-ups. As scen in Table 6-3, using compiled vectors instcad of straightforward coding yiclded a 200%
improvement in vectors per sccond on the draw rate. However, using the VGT'S introduced some overhead
on the drawing times since it is interpreting a structured display file. Table 6-3 showed that the SDF
overhead is very small compared to the large improvement from compiled vectors.

Unfortunately, the speedup from chosing a good algorithm and optimizing its inner loop is good for only a
one-time increase in performance. Once the best algorithm is found and its inner loops are hand-optimized,
more work will not result in more performance improvements.  On the other hand, the cost of carefully
rccoding one module or writing a few lines of assembly code is usually small, so the return on the investment
is good up to a point,

6.4.2 Effects of Processor Speed

Another fairly obvious fact that is often overlooked is that the speed of an application is directly related to
the speed of the processor on which it runs. "Table 6-4 compares the performance of workstations that have
two different basic clock rates, but arc similar in most other respects.  Use of 10 MHz SUN workstations
instcad of 8 MHz workstations yiclded up to 22% improvement. The principal reason that the increase from
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8Mhz to 10Mhz 68000 processors did not produce a 25% increase in the performance was that the 10MHz
design required polling of the keyboard and mouse. Similarly, executing the application on a VAX-11/780
instead of a VAX-11/750 yields up to 50% improvement (sec Table 6-5). .

, Vectors/second
Configuration Local IKP__PUP _E-IP___A-IP
10, 780, batch 210 190 130 110 92
8, 780, batch 180 150 110 99 88
Characters/second
10, 780, text 7700 4300 1600 4300 1900
8, 780, text 6700 3200 1400 3600 1800

Table 6-4: Effcct of workstation speed

Two of the more surprising results relate to the benefits of distributed computing. First, applications can be
expcected to run faster when distributed between a VAX-780 and a SUN workstation than when run locally (see
Table 6-6). Even if construction rates are lower in the distributed case, the concurrency from the use of two
processors resulted in higher rates for both batch and incremental display. Second, some applications execute
faster using a VAX-785 on the ARPANET than using a VAX-750 on the local net (sec Table 6-7). Sincc the
ARPANET is substantially slower than the Ethernet and network communication in general is slower than local
communication, the conclusion is that CPU speed is the dominant factor in this instance.

Vectors/second

Configuration IKP PUP E-IP
10, 780, construction 510 210 170
10, 750, construction 340 130 110
Characters/second
10, 780, text 4300 1600 4300
10, 750, text 4100 1400 2300

Table 6-5: Effect of remote host speed

Note that Table 6-4 and 6-6 contain batch rates, to emphasize overall performance. Table 6-5, on the other
hand, contains construction rates, to emphasize the performance of the processor exccuting the application.
However, regardless of where the application exccutes, the workstation is always required to do some work,
namcly, to maintain and display the graphical objects. Therefore, performance is more sensitive to
workstation speed than to remote processor speed.  For cxample: whercas a 25% incrcase in workstation
speed results in almost lincar speed-up, a 100% increase in VAX speed results in at most 50% speed-up as scen
in Tablcs 6-4 and 6-5. Notc that Tables 6-4 and 6-5 were constructed with carly versions of the protocols;
later changes to the protocols increased the sensitivity of 1P to server host speed, but decrcased the sensitivity
of IKP and PUP.

Vectors/second

Configuration . Local E-1P
10, 780, batch 220 380
10, 780, incremental 62 92

Table 6-6: SUN vs. Ethernet-based 780

Onc might conclude from these measurements that there is little rcason to distribute applications, since
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Vectors/second
Configuration E-IP_ A-IP -
10, 785, construction 160
10, 750, construction 130
10, 785, batch 140
10, 750, batch 125

Table 6-7: ARPANET-based 785 vs. Ethernet-basced 750

batch rates arc comparable between local and remote applications. Performance should be improved as two
processors are used. However, our benchmarks make no significant computational or databasc demands that
would take advantage of faster hosts. Morcover, as mentioned in Section 1.2.2, some applications simply
cannot run on the workstation, due to memory or language requirements, for example. Non-graphical
applications can be expected to depend more on disk or operating system performance, softening the impact
of processor speed. On the other hand, compute-bound applications, including any that use floating point,
are impacted more heavily by host processor speed. '

6.4.3 Effects of Graphics Hardware

Table 6-8 gives the cffect of two measured frame buffers. The first line in the table refers to the original
frame buffer which simplified graphics primitives by providing bit-shifting hardware. The second line refers
to the frame buffer in which display memory is bytc-addressed like all other memory. The sccond frame
buffer is about 30% slower on vector drawing than the original frame buffer. However, creation is faster on
the Sun-2, due to a slightly different 170 architecture. Although the Sun-2 is still about 15% slower for the
total local batch rate, remote batch rates are sometimes higher duc to CPU saturation.

Vectors/second
Configuration Draw Create Batch E-1P
Sun-1, 750 - 430 440 220 - 220
Sun-2, 750 290 470 180 170

Table 6-8:  Effect of frame buffer

6.5 Protocol Factors

The nature of the applications and of the information they communicate among their distributed parts
make the nctwork behave differently from what might commonly be expected. 'The usc of high-level graphics
protocols reduces the degradation that is experienced between different bandwidth networks.  "This can
influcnce the choice of network protocols since the performance penalty of aceessing a high-performance host
over a long-haul internctwork instead of a less powerful host located on a local network may be outweighed
by the diffcrence in host capabilitics.

From another point of view, the higher-level protocols tend to increase the CPU cost of fast
communication. This may bec an advantage, duc to the dccreasing costs of CPUs comparcd to
communication, but also means that less of the CPU is available for other tasks. In concrete terms, the
protocols arc “high level” since they deal with graphical objects like lines and polygons instcad of low-level
bitmap operations, and they take advantage of structure.
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6.5.1 Effects of Structure

As discussed in Section 3.4, the VGTP allows objects to be defined in terms of graphical primitives such as
vectors or rectangles, or in terms of other objects. Once the objects are defined, they can be made to appear
on or disappear from the screen with short commands of only a few bytes. The performance advantages of
retaining the display files on a dedicated workstation, introduced in Section 5.1, have been known for some
time [88]. The following tests were performed with a program that used the structuring facilitics of the VGTS
to creatc 30 instances of a symbol consisting of 26 rectangles each.

The results for the structure benchmark are given in Table 6-9. The first thing to notice is the very low rate
for incremental performance, especially over long-delay nctworks like the ARPANET. By batching and
pipclining the opcrations, performance increases by a factor of 7 for local operations, 30 for Ethcrnet
opcrations, and 40 for ARPANET opcrations. Using structure instead of an unstructured list of primitive items
increases performance again by factors of 3 to 4 for both local and remote operations.

Rectangles/sccond
Configuration Local E-IP A-1P
10, 750, incremental 41 5 2
10, 750, pipclined incremental 61 66 36
10, 750, batch unstructured 310 130 . 81
10, 750, batch structured 1070 670 370

Table 6-9: Effect of structure

Some other intercsting observations can be madc from Table 6-9 that reflect the value of batching and
structure. First, the time to define and display the picture for a local application was about 1 millisccond per
item. This is roughly the time to perform a local Send - Reccive - Reply sequence in the V kernel [31], so any
protocol that uscs a message transaction for cach item will be slower. Sccondly, it is faster to run this
benchmark over the ARPANET and usc structure than it is to run the samc program locally and use
incremental or unstructurcd display. The latter is comparable to traditional graphics systems. It is also faster
to run the program across the Ethernet and use structure than it is to run the program locally, even with
batching.

Structurc introduces a slight amount of overhead, since the VGTS must trace through the symbol data
structure. However, in this benchmark the structure interpretation introduced an overhead of about 20
milliscconds out of about 900, or less than 3% of the local draw time. Thus there is little performance
advantage to usc a segmented display file instead of an-arbitrarily structured one. By using a linear list instead
of a linked list, display rccords could be 16 bytes instcad of 20, or a 20% savings in memory. Unfortunately
this would makc inscrtion and deletion much more difficult, Morcover, the SDF representation is alrcady
quite concise, as will be shown in Section 6.5.3.

6.5.2 Effects of Batching and Pipelining

Comparing the batch and incremental rates in Table 6-1 as well as Table 6-9, shows the importance of
batching. ‘T'hc original implementation of the VG'TP employed a rcturn valuc for cach opcration. In the
current implementation operations arc batched so that values are rcturned only after an entire sequence of
opcrations (such as all changes to a given symbol) have been performed. 'This change reduced network delays
substantially, yiclding performance improvements of up to factors of 30!

The first two lincs of Table 6-9 give the cfféct of another important change to the VGTP, By removing the
return valucs from the EditSymbol and EndSymbol operations, cven incremental operations could be
pipelined, resulting in much more concurrency than the “stop-and-wait™ protocol resulting from return values
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on each transaction. The reduced message traffic caused an increase of 50% for local operations, and increases
of factors of 10 to 15 for remote operations. In fact, remote incremental operations are almost always faster
than local incremental operations due to this concurrency.

675.3 Comparison to Bitmap Protocols

Many approaches to graphics within a distributed system use protocols based on bitmap manipulation.
Unfortunately, bitmap protocols can be inefficient in both their bandwidth and memory utilization. By-
reducing the length of the descriptions of graphical objects, they are made independent of the structure of the
bitmap as well as being smaller in both transmission and storage.

The advantages of the SDF for memory usage are indicated in Table 6-10. In the vector benchmark, the
SDF represented the fully-connected polygon with 20 bytes per item, or 12,600 bytes. This compares to the
800 by 800 bitmap area, which would take 80,000 bytes. In practice, most pictures are even less dense than
the fully-connected polygon, so the advantage would be even greater. In particular, the SIDF approach has
the advantage as long as there arc more that 20 bytes of bitmap space for each item in the SDDF. The rectangle
benchmark shows that cven without using structure, a factor of about two in memory savings is possible.
Using structure, thie 900 bytes used by the SDF is a factor of 37 less than the space for the bitmap. Slmllar
large improvement factors in nctwork bandwidth requirements will be discussed in Scction 6.6.

Bytes of memory used

Benchmark SDF Bitmap
vector 12,600 80,000
rectangle, unstructured 15,600 34,000
rectangle, structured 900 34,000

Table 6-10: Effect of SDF on memory usage

6.5.4 Effects of Transport Protocols an'd Their Implementations

As noted for Table 6-5, three different transport protocols were used, with significantly different
performance results. The V-system supports both a local protocol and two genceral inter-network byte-stream
protocols. 'The local protocol provides an interprocess communications facility between V-system processes.
The two general protocols arc the Xerox PUP family implemented through the RTP/BSP level, and the ARPA
Internet protocol family implemented through the TCP level. User TELNET programs cxist on top of both.
The network configurations were illustrated in Figure 6-2.

Unfortunately it is very hard to comparc only the cffect of protocol design, because of many
implementation issucs that vary between the protocols. For cxample, the implementation of PUP BSP did
not usc any of the windowing features availablc in the protocol, resulting in much lower performance than the
IP. Morc important, the packet size used in the IKP implementation was 1024 bytes, while both PUP and 1P
uscd packets of 100 or 200 bytes. On the other hand, the incremental rates for the IKP experiments were very
poor, duc to the fact that a UNIX server process was polling cvery few seconds for output (rom a pipe, while
the other protocols were interrupt driven.®I'hus the implementation of the protocol may have a greater effect
that any propertics inherent in the protocol itseif.

Fortunately we were able to cxperiment with different implementations of the same protocol. During the
course of our experiments, there were two major implementations of the ARPA Internct Protocol available for

6l'he UnNix V-server could be modificd in 4.2 to usc the select system call [68), which would eliminate this dclay.
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VAX/UNIX systems. The first was done by Bolt, Beranck and Newman (BBN) and was for the 4.1 version of
UNIX [61]. The second was done by the University of California at Berkeley for the 4.2 version of UNIX [68].
The relative performances of these two implementations of the same protocol are given in table 6-11. The 4.2
implementation is 14% faster for batch construction and display rates. The difference in peak throughput
rates is even more significant, but cven this higher rate is several orders of magnitude below the actual
bandwidth of the network. Possible reasons for this will be discussed in the next section.

Vectors/second
4.2 4.1
Configuration - 1P/TCP IP/TCP
10, 750, construction 140 110
10, 750, batch 93 81
10, 750, incremental 7.8 4.3

Table 6-11: Effect of TCP implementation

Table 6-12 indicates the effect of changing the relative priorities of the application program or the TELNET
server program. This test was done using the PUP protocol on a local 10 Mbit/second Ethernet. The first
column gives the results for normal operation. For the second column, the operating system gave priority to
the TELNET server program. Batch performance actually decreased, since more network packets were sent.
For the third column, both the application and the TELNET server were given priority, which increased both
the batch and incremental rates. However, as shown in the last column, the best performance was obtained by
giving priority to the application.

Vectors/second
Telser &
Configuration Normal —__Telser Application Application
10, 750, batch 170 160 190 200
10, 750, incremental 47 48 58 58

Table 6-12: Effect of Process Priqrities

Another interesting comparison is between remote cxccution on a timesharing host and exccution on
another workstation. ‘Table 6-13 displays this comparison. The construction rate is about the same on the
VAX/UNiX system and on the V-System. The incremental rates on the VAX/UNIX implementation arc very
poor without pipelining, duc to the high delay. Note, however, that the total batch rate and the pipelined
incremental rate arc much higher on the VAX than on another workstation. This is due to the fact that there is
actually little concurrency in the remote workstation case, due to the synchronous VIKP messages. Much

better performance could be obtained by replying to the message before it is processed, instcad of after the
opcrations arc performed.

Vectors/second

SUN VAX

Configuration IKP IKP
10, 750, construction 380 380
10, 750, batch 190 350
10, 750, incremental 29 4.6
10, 750, pipelined incremental 44 81

Tahle 6-13: Effcct of IKP implementation
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6.6 Network Factors

The use of networks implies both limitations in bandwidth and increased delays. All of the above factors
(and our design and implementation) combine to render the actual network bandwidth insignificant. Table
6-14 shows that although a 3 Mbit/sccond Ethernet is about 60 times faster than the 56 Kbit/second links
used in the ARPANET, using a backend host on the local network yiclds less than a 50% performance
improvement over using a backend host on the ARPANET®, Morcover, there was very little measurable
performance difference between using the 3 Mbit/second experimental Ethernet rather than 10 Mbit/sccond
standard Ethernet [44]. The column labeled EL0-IP refers to standard 10 Mbit/second Ethernet. Although
the Ethernct is about 180 times faster than the links used in the ARPANET, the Ethernet construction ratcs are
less than twice the ARPANET rate. In fact, most of the difference in the total batch rate is duc to the delay of
the ARPANET and intcrvening gateway, not any bandwidth restriction.  Earlier implementations of the
protocols had even less of difference.

: Vectors/second
Configuration E-IP E10-1P A-1P
10, 750 4.2, construction 220 230 130
10, 750 4.2, batch 210 220 - 120

Table 6-14: Effect of network bandwidth

These results can be attributed primarily to the level of communication as discussed in section 6.5.1, and the
conclusion that processor speed is the usual bottlencck. This is consistent with other measurements of
Ethernet performance [120] that show very low utilization of the available bandwidth of the Ethernct, and
comparatively long delays on the ARPA Network. Thus, these systems rarcly approach the limits described in
analytical studies that concentrate on performance under heavy loads [145). In fact, these protocols can be
uscd on very low-bandwidth communication links.

Each AddItem call sends 20 bytes of data, so a construction rate of 230 itcms per sccond (the Ethernet load
given in Table 6-14) corresponds to only 4600 bytes per sccond, or about 40 Kbits/second, about 0.4% of the
Ethernet's bandwidth. Duc to the small amount of data, graphics could cven be possible over standard speed
telephone lines. For exampilce, at 1200 bits/sccond, a peak rate of 7.5 items/sccond should be possible. To test
this, the experiment was run successfully on a workstation over a 1200 bits/sccond telephone link. Several
other rates were tested using point-to-point RS-232 conncctions at various speeds, with the results glvcn in
Table 6-15.

Items/second
Configuration 1200 2400 4800 9600 __ E-IP
10, 750 4.2, construction 7.4 14 26 54 166
10, 750 4.2, batch 6.2 12 23 46 131
10, 750 4.2, structure 84 142 230 320 380

Table 6-15:  Effect of point-to-point communication rates

For the structurc benchmark, cven at 1200 bits/sccond, the measurced crcation ratc was 7.4 items/sccond,
very close to the maximum 7.5 calculated above. This rate is slightly less than lincar in relation to the
bandwidth, indicating that cven at low speeds the CPU can be a factor. Morcover, the total rate when using
structure was 84 items/sccond at 1200 bits/second, which is twice as fast as running the program locally with
incremental drawing (the first entry in Table 6-9). Structurc and lack of significant delays also makes this

8lu fact, the experimental Ethernet is really about 2.93 Mbnt/sccond The difference between this and 3 Mbit/second is greater than
the 56 Kbit/second of the ARPANET link!
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structure rate faster than the batch rate for the ARPANET (the last entry in Table 6-9). Significant dclays can
even be secn in the local Ethernet IP results, as given in the last column of Table 6-15. The 9600 bits/second
structure rate is only about 15% slower than using Ethernet, even though Ethernet has a raw bandwidth a
thousand times greater.

6.7 Human Factors

The actual VGTS could be instrumented to take data during production use. This information would
record the frequency of operations and the corresponding response time. A “user simulator” could be written
to simulate a real uscr's command sequence, with suitable randomness. This could be used to tune the
performance of the VGTS to match the user profiles gathered in the above cxperiments. Morc claborate
instrumentation results would be very interesting, but are beyond the scope of this thesis.

. Objects  Time __ Rate Bitmap _ SDF
Maximum 365 1370 266 40K 73K

Mean 116 485 234 21K 23K
Median 101 430- 235 9K 20K
Minimum 33 160 203 13K 07K

Table 6-16: Instrumentation data

Instcad, the illustration editor used to create the diagrams used in this thesis was instrumentcd to mcasure
both response time and memory usage. The detailed measurements are given in Table 1D-4 in Appendix D,
with a summary given here in Table 6-16. 'This table gives the maximum, minimum, median, and mecan for
each value. These tables list the number of items in cach figure, the time for display in milliscconds, the
resulting rate (including both creation and display) in items per sccond, the memory that would be needed to
storc the bitmap (in thousands of bytcs), and and the memory used in the SDF (also in thousands of bytes).
The average times were under half a sccond, resulting in quite good response. The memory savings averaged
around a factor of ten for using an SDI instcad of a bitmap. '

6.7.1 Levels of Responses

Unlike other studics which consider throughput the factor to be optimized, we have concentrated on
optimizing response time. Experiments have shown that uscrs prefer systems with low variability of response
time, cven if the throughput is slightly lower [98].

Onc natural division of functions from a linguistic point of view is into the following three gencral
catcgorics [151]:

Lexical  'These operations require immediate uscr feedback, on the order of 50 milliscconds. 'T'his rate
(20 cvents/second) corresponds roughly to an upper bound on the speed of very fast typists
(keystrokes/second).

Syntactic Thesc operations involve a single syntactic operation, and can take up to 0.5 to 1 sccond.

Scmantic  Major opcrations can take on the order of tens of scconds without the users losing their trains
of thought.

Clcarly all lexical interactions should be performed on the workstation. In fact, the VGTS line cditing and
cursor tracking account for most of these Iexical actions. Syntactic actions include screen management and
sclection feedback. In the VGTS these operations arc typically performed outside the service, but in
programs residing on the workstation. Syntactic responscs can cven be done across the nctwork if the load on
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the remote host is not very high. Larger-scale scmantic opcrations, like loading and running large programs,
searching central databascs, or compilation, are typically done on remote scrver hosts or distributed between a
server host and the workstation.

6.7.2 Keystroke Data

Many studies have been done for text editors to determine the common operations [26, 57). These studies
can be extended to graphics, but are also valuable in their own right since a large part of any user’s interaction
is still textual. The main conclusion of these studics is that the majority of the users’ time is spent doing very
simple repetitive tasks. Thus we concentrated on making these few simple tasks faster by taking advantage of
the power of the local workstation.

6.8 Discussion of Results

To summarize our findings, the primary factors affecting performance of our distributed graphics
applications are, in approximate order of importance:

1. Specd of the workstation.

2. Speed of the remote host, if any. -

3. Level of communication, as determined by the virtual graphics terminal protoéol.
4. Bandwidth of the nctworks employed.

Essentially the same observations hold for text. Note that these observations relate to the degree of
performance improvement relative to the degree of change in the indicated parameters. Thus, a 50%
performance improvement duc to a 200% increase in processor speed could be considered relatively greater
than a 300% improvement in performance due to a 6000% incrcase in network speed. The importance of
CPU speed and amortizing communication costs over large buffers was a major conclusion of onc of the few
other similar studies [85].

It is rélatively casy to rate the sensitivity to hardware factors. Software factors arc another matter; it is casy
to measurc the absolute performance improvement resulting from a change in software, but quite difficult to
mcasure the cost of the software change. Nevertheless, certain conclusions will be drawn based on available
information. Also note that there arc limits beyond which changing once factor will not affect performance;
for cxample, a CPU-bound application running on a remote host will be little affected by an increase in
workstation speed.

CPU speed rates at the top of the list simply because desired speed-ups can be achicved almost indefinitely
by substituting more powerful workstations and backend hosts. Continuous improvement is not possible with
network protocols.  1KP, for example, provides as good performance on the local net as can be achicved.
Another way of saying this is that nctwork protocols arc- limited by the available hardware, and the most
important picce of hardware is the CPU,

6.8.1 Hardware Factors

As workstations become more powerful, one might think that offloading functions from hosts to the
workstation mcans that slower backend hosts can be used. In reality, faster hosts are required to keep up with
the increased demands of the workstations. On the other hand, one might think that as networks become
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faster, communication is cheap. Unfortunately, network interfaces have not kept pace with bandwidth, so
that many network operations remain CPU-bound. In both cases, the offloading and increased bandwidth
may allow more uscrs to share the same resource, but do not increase the performance for individual users.
Hence, faster hosts are necded, not slower ones.

Similarly, network controllers arc now being marketed with microprocessors that are intended to offload
tasks from the main processor. Our cxperience has been that such controllers are usually slower, not faster,
than simpler and cheaper controllers that perform fewer functions but use fixed logic at a higher speed.

With respect to network bandwidth, sensitivity is directly related to communication requirements.
Communications requirements arc inversely related to the frequency of communication and the amount of
information transmittcd, both of which are reduced by the techniques discussed above. Therefore, the
remarkable insensitivity of our applications to network bandwidth implics that they are quite sensitive to the
“level” of communication.

6.8.2 SoftwareFactors

This high level of communication is duc to the Virtual Graphics Terminal Protocol design. In particular,
the ability to batch many operations into a single update using a small number of bytes provndcd large
increascs in performance

It is hard to make dircct comparisons about network protocols independent of their implementations. For
example, a protocol inside the kernel of an opcrating system is usually more responsive than if it is
implemented on top of the kernel. Of course, a processor runs at the same speed both in kernel and user
state. The increased responsiveness comes with the cost of increasing the size of the (usually always resident)
kernel and the related difficultics of debugging at lower levels,

In our particular casc, despite the fact that the PUP protocols are simpler than the ARPA Internct protocols,
ARPA Internet-based TELNET connections can sometimes run about twice as fast as PUP-based ones. This is
attributed primarily to the fact that PUP is implemented as an application outside the Unix kernel whercas
the ARPA Internct protocols are implemented inside the kernel.

For very time-critical functions such as nctwork communications, messages and process context switches are
expensive cven in systems designed to provide very fast message passing and light-weight processes. 'The
intercsted reader should refer to [82] for a more detailed analysis of the networking issucs which are not of
dircct concern of this thesis, :

6.8.3 Fitting the Model

The experiments given in this chapter give some cstimates of the times used in the models of Section 5.3.
For example, peak pipelined incremental rates are about 60 interactions per second, or Ty o0 + Tnean OF
about 1/60th second. If this is lcss than the swapping times I.’an + l‘,wnolu then the workstation/host
split will be faster, even with comparable computation times. Most of today's pcxsun.ll computers take much
longer than 1/60 sccond to swap an application out and back in. The advantage will incrcase with more
powerful hosts and less powerful workstations. '

Of course, carc must be taken when generalizing these results to other programs. These benchmarks were
intended as communication-intcnsive limits, since they only do graphics and no rcal computation. More
sophisticated applications could be expected to achicve even larger speed-ups when distributed.  The
instrumentation results show that the synthetic benchmarks are not fundamentally different from actual
applications, except for slightly slower rates duc to the computation by the application. No claim is made that
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these results allow us to predict the performance of an arbitrary program. On the other hand, a protocol that
provided one hundred items per second in our experiments will probably be faster that onc that provided ten
items per sccond. More analytical work needs to be done to accurately predict performance, but these results
provide a start.
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— 7 —
Conclusmns and Future Work

The previous chapters described the motivation for, the design, implementation, rationale, and
measurements of a simple distributed graphics system. This Chapter draws a number of conclusions from this
work, and presents possible extensions for the future.

7.1 Structured Display Files and Virtual Terminals

The first important conclusion is that the structured display file technique can be combined with the virtual
terminal concept, resulting in an architecture for distributed graphics. The virtual terminal concept, described
in Scction 2.3, provides the user with access to multiple simultancous distributed resources. The Virtual
Graphics Tcrminal Scrver mediates between application programs that share a workstation dedicated to a
single user.

The dceclarative nature of structured display files outlined in Chapter 3 reduces communication, and allows
higher-level short circuiting. The performance and decreased memory utilization motivations for structure
given in Scction 5.1.1, are supported by the measurements in Section 6.5.1. In particular, SDFs can yicld both
higher performance and lower memory requirements than traditional graphics systems. These advantages
increase as pictures become more structured, and applications perform more incremental updates. The
VGTS performs cursor motion, screen management, and keyboard cchoing internally (as described in Section
5.1), resulting in a short-circuit of the interactive responsc cycle for these common operations.

7.2 User and Program Interface Separation

The VGTS architecture first specified only the application program interface for defining and modifying
objccts, in Section 3.4. A separate uscr interface for viewing thosc objects. was then specificd in Scction 4.4.
The prototype implementation rigidly enforced this distinction: appllcatlons could not inquirc the size of the
screen, for example, and adapt themsclves accordingly.

The resulting principle advantage is absolute device independence and portability, which is vital for the
reusc of software with rapidly-changing workstation hardware. Concern for the portability of the prototype
saved reimplementing most of the modules described in Section 4.1.1 for new devices, such as the Sun-2
frame buffer. The principle disadvantage is that customization is made more difficult. Scction 5.6 discussed
when customization by both uscrs and programmers is desirable, but also mentioned rcasons not to allow
arbitrary customization.

7.3 Transparent Dist ribution

Although distributed graphics is possiblc with the SDF approach, it still may not always be desirable. For
example, in many cascs running the benchmarks locally was faster than running them distributed.
Unfortunately, for the recasons given in 1.2.2, it is not always possible to run all applications on the
workstation. Even if the necessary resources are available as an option for the workstations, they arc typically
too expensive for widespread use. In other words, cven with today's advanced hardware, we still nced larger
virtual and physical memories, and faster processors, at lower prices.

The protocol used for defining objects (the VGTP) was cxtended transparently across ‘networks using
several transport protocols, described in Scction 4.3.5. The same source program can be compiled and linked
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for any of a number of cnvironments, and the same binary can be accessed through three different transport
protocols. Distribution allows applications to run on the best suited computational resource, and use multiple
resources to achieve concurrency. These programs were actually used, so performance constraints were
stringent. Results such as those in Table 6-6 show that distributed operation was often faster than local
opcration. ' ‘

7.4 Techniques to Improve Performance

The tables in Chapter 6 show that VGTS performance is close to the best possible speed. In the best case,
the VGTS can give much better response than systems that do not retain any information on the structure of
the image, or allow for concurrent operation. More instrumentation of applications would provide uscful
information, but is beyond the scope of this thesis. The mcasurements presented in Chapter 6 alrcady
indicate several ways that performance can be improved.

7.4.1 Protocol Design Techniques

Once the decision to distribute is made, a more subjective decision is what and when to distribute. In our
experience, a few simple operations and applications can be done locally, such as text and illustration editors,
and the resulting average performance is adequate. The simple but powerf'ul modcling facilitics provided by
the VGTS allow this short circuiting.

The use of Structurcd Display Files also mcans that once objects are defined, instances of them can appear
or disappear with a very small amount of communication. 'This makes the protocols very insensitive to
nctwork bandwidth, as shown in Tables 6-14 and 6-15. Since delay causcs more restrictions than bandwidth,
many simple opcrations should be batched together for each interaction. Return values should also be
climinated whencver possible to increase concurrency by allowing pipclining to occur. Although direct
quantitative comparisons could not be made between the factors affecting performance, batching ccrtamly has
a very important cffect.

7.4.2 Software Structuring Techniques

One interesting rule of design lcarned from the VGTS implementation cxpcncncc was to usc software
structuring mechanisms only for the appropriate purpose:

o Usc separate processes where separate threads of control arc needed, otherwise use one process.
For example, the main part of the VG'T'S consists of many modules but only one process.

e Usc tcams (complcte address spaces) for programs that.should be exccuted as a unit. Partitioning
the VGTS into scparatc tcams caused a great incrcase in memory consumption, duc to the
common library functions.

¢ Use modules for parts of a program that can be separately compiled. A direct procedure call
interface was still faster than other kinds of communication.

Much performance can be lost if one of these partitioning mechanisms is used improperly. ‘Even on a system
like V where message passing is fast, it is still slow compared to a procedure call. In particular, Table 6-9
shows that the drawing ratc can approach onc item per millisccond, which is about the same time it takes to
perform a message Send/Receive/Reply cycle. ‘Thus cach message should cause many lower-level actions
instcad of just onc, rciterating the importance of batching.



CONCLUSIONS AND FUTURE WORK v 93

7.4.3 Internal Performance Tuning Techniques

Once hardware and protocol decisions are made, performance can be improved by using standard software
tuning techniques such as inner loop optimization and increasing buffer sizes and blocking factors. In fact,
reasonable performance can be obtained using the standard transport protocols compared in Table 6-1,
without resorting to special-purpose protocols and incurring all the problems of being non-standard. On the
other hand, the use of structure and proper batching and buffering strategics must be done at every level, to
avoid bottlenecks.

7.5 What Can be Learned

In light of thec VGIS expericnce, we can cvaluate some aspects that were later determined to be
unsuccessful, for the benefit of future designers:

o The declarative nature of the VGTP and lack of a simplifiecd interface library discouraged
application programmers accustomed to more procedural graphics systems.

e Application programs developed their own conveations since there werc few common user-
interface librarics.

e Encoding graphical information in the same stream as text at the lowest level did not allow
redirection of graphics commands into a file or background graphics programs.

e The lack of raster operations in the programmer’s interface discouraged the use of the VGTS for
image processing applications.

e Scveral minor device-dependencies in the implementation were not made apparent until ports
were actually attempted, duc to lack of a well-specificd device interface.

e The close coupling of the view manager to the rest of the VGTS dlscouragcd attempts at
customization through user profiles.

Most of these problems can be casily overcome by the work described in the next section,

7.6 More Open Questions

The VGTS cffort raisced more questions than it answered. The following is certainly not an exhaustive list,
but it should give an overview of possible future topics in this area.

7.6.1 Integration with Editor

Onc useful function in many window systems is the ability to select text (or other data) from one place and
stuffit into another. Due to the simple structure of text, this would be relatively casy to add for clients using
the byte-strcam terminal emulation interface.  For advanced graphical objects, SDF and higher-level
interfaces could be used. Unfortunately this requires common data representations at the applications level, -
beyond that with which the current VG'T'S prototype is concerned. Since some performance and flexibility is
alrcady lost by enforcing the level used by the VGTTS, getting applications to agree on ceven higher levels could
be quite difficult. On the other hand, there arc many potential benefits from cven higher levels of
standardization.
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7.6.2 Handling of Attributes

The VGTS used a limited number of attributes for its primitives, most stored as a small integer used as a
table index to get the actual valuc. This approach, similar to bundled attributes of GKS, has proven to be
simple yet powerful. However, in the VGTS most valucs arc predefined at compile-time; they should be
dynamically defined at run-time. For example, for text fonts the DefineFont function returns an attribute to
be used in subsequent Text items. Similar functions should be available to define colors, fill patterns, and
line styles.

In keeping with the declarative approach of the VGTS, cach item has its attributes explicitly specified. For
cxample, if a symbol contains 500 bluc lincs, then cacti line contains the information that its color is blue.
This is in contrast to the approach taken by traditional graphics packages, which would have a command to
sct the current line color to bluc and then draw 500 lincs. Although the traditional approach requires
additional state during interpretation of the SDF, it would allow the inheritance of attributes from containing
cnvironments. An open issuc is the value of this inheritance capability.

7.6.3 Other Interfaces -

If VGTS allowed inheritance of attributes, then it could support an interface compatible with GKS. The
application could still take advantage of the structuring capabilitics of the VGTS if the interface is upward-
compatible with GKS, in the manner of Steinhart[130]. Such a redesign is in progress at the time of this
writing.

Other virtual terminal emulators could provide, for example, NAPLPS virtual terminals as another possible
_interface. These interfaces could be implemented as an alternative library package, retaining the current
message interface. A new message interface could be designed, with the conversion to byte-streams done in
the TCLNET programs. The rclation between the V-System concept of file instances and VGTS objects such
as SDF, VGT, and VGT group could be made cleancr.

7.6.4 Porting the Implementation

At the time of this writing, although two totally incompatible frame buffers are supported, the VGTS has
not yet been fully ported to another graphics device besides SUN workstations.  Many potential graphics
devices were cither too cxpensive or provide too low a performance level to adequatcly support an
implementation of the VG'I'S. A port is currently in progress to tic VAXStation, which should prove that the
implementation is independent of processor architecture as well as graphics architecture.,

7.6.5 Multiple View Surfaces

" Another aspect of the design never fully exploited was the use of multiple screens per workstation. A
typical configuration might have a color screen for computer aided design, and a black and white screen for
general textual interaction, Applications should run with no modifications on such a configuration. A natural
cxtension of the user interface (used on other systems with multiple view surfaces) would have one cursor for
both screens. When the cursor is moved past an cdge on one screen, it appears on the edge of the adjacent
screen.

Most of the current VGTS implementation could be used with multiple view surfaces. The internal data
structurcs for vicws could casily be augmented by a pointer to a frame buffer descriptor structure, containing
pointers to the primitive functions 1o operate on the particular frame buffer. This approach is similar to the
pixrect spccification by SUN Microsystems [L23]. In fact, pixrect would be a good candidate for this layer,
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werc it not proprictary to a single manufacturer. Another candidate would be one of the Virtual Device
Interface standards, or normalized device coordinates at a well-specified internal interface.

7.6.6 Extended Functionality

Since the VGTS evolved in an environment rich in system programmers, there was no shortage of suggested
enhancements, including three dimensional SDFs, color, floating-point, image processing, and gencral
coordinate transformations. Currently the few programs that use floating point or three dimensions execute -
on server hosts in batch mode, because our workstations do not have adequate numeric performance. The
batch programs convert to two-dimensional integer coordinates that are then displayed by the VGTS. Simple
animation is possible in the current implementation, by defining successive stages as symbols and then rapidly
changing between the symbols. Future floating point processors in workstations may make it possible to
absorb some of these functions into the workstation’s viewing service.

A fourth dimension, time, could also be considercd for actions like animation or rubber banding. One
approach would be to add graphics primitives that would cause changes to the screen, but not be stored in an
SDF. These would be similar to temporary (or non-retained) segments in the Core, but would conflict with
the declarative nature of the current design. More attractive would be to specify rubber bandmg or trajcctory
as attributcs of objects.

7.6.7 View Adapting Objects

Onc principle advantage of the up-call approach taken by most object-oriented window systems is the
ability for graphical objects to adapt to their viewing environment. For example, when a view becomes
narrower, documecnt paragraphs could be reformated to break into correspondingly narrower lines. Similar
functionality could be added to the VGTS in scveral ways. The current VG'TS includes a function to return
the size specified by the uscr for a default view. This could be extended to allow querying the view for its size,
but requires some kind of asynchronous notification which would be hard to cleanly add to the architecture.
The notification could be done on the basis of VGT's instead views, since VGT's are alrcady visible objects to
clients, and multiple views arc allowed per VGT. However, in the prototype a graphics VG'I' has no size, and
atext VG is a fixed size once created.

A more promising approach is to specify the viewing constraints as additional attributes of the object. For
cxample, the current prototype implements “reference lines”, displayed as lincs with text labels drawn near
the edge of the views in which they appear. Thus the same object in the same VGT can appear differently in
different sized views. The key problem is to design a method of specifying these viewing constraints with
more gencrality but retaining adequate performance at viewing time,

7.6.8 View ManagerSeparation

One of the most requested arcas of customization was the view manager. The VGI'S architectural
distinction between the application program’s interface and the user's interface means that users should be
able to cxperiment with alternate, or parameterized view managers without affecting any application
programs. For cxample, tiled and overlapped viewports should both be provided. In addition, work needs to
be done to develop more advanced command interfaces on top of the VGTS.
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7.7 Final Evaluation

Even with the deficiencics noted in Section 7.5, few other systems provide as powerful a set of features on
equivalent workstations. The VGTS approach is well-suited to environments under the following conditions:

1. Workstations can provide adcquate user response without requiring performance cxtrcmcly close
to hardware spceds. .

2. Computing rcsources much more powcrful than workstations are available across some kind of
network.

3. Portability and device independence is important due to a heterogencous or rapidly changing
hardwarc base.

4. Productivity of potential uscrs could be increased by providing multiple simultancous contexts.

5. Application programs deal primarily with incremental changes or structured pictures instcad of
producirg images to be only viewed once,

As a result, the VGTS is in daily usc at Stanford and scveral other sites. Moreover, it has becn valuable for
the performance measurements and design studies described here.
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— Appendix A —
Glossary

This work cncompasses three different subficlds of computer science: Operating Systems, Networks, and
Computer Graphics. Unfortunately some terms have different meanings in more than one of these fields.
This glossary should help to provide onc sct of consistent definitions. Many of these definitions arc adapted
from the literature [161, 64], while others arc particular to this work. For morc details, refer to the references
provided in the bibliography or the text scction as indicated.

ADIS A system developed by Robert Sproull at Xerox Palo Alto Rescarch Center [127] to allow an
InterLisp program running on a timeshared computer to perform raster graphics operations
on a workstation.

ANSI Amcrican National Standards Institute. In the United States such standards are voluntary
only. Computer rclated standards can be obtained from the X3 Secretariat at the Computer
and Business Equipment Manufacturers Association in Washington D. C,

ARPA Advanced Research Project Agency of the United States Department of Defensc. An agency
that funds major computer science rescarch projects, including the ARPANET, a nation-wide
computer network [106].

APA All Points Addressable. IBM terminology for a bitniap raster graphics device.

Backend The part of a computer system (hardware or software) that docs not interact with a user. It is
separated from interaction with the user by the front end. For hardware, backends can be
optimized for Latch operation, favoring throughput over response time. For software,
requests arc made from other programs or software modules instcad of directly by the user.

BcrL Basic Cambridge Programming [.anguage. A very simple language with control structures
but no data structuring facilities. '

BitBlt Bit-boundary BLock Transfer. The operation of moving blocks of bits from and to arbitrary
. locations within computer words.

Bitgraph A terminal built and markctcd by Bolt Beranck and Newman of Cambridge, Massachusctts,
based on an MC68000 processor and a bitmap display.

Bitmap A digital image memory containing a description of cach of the addressable pixcls in a raster
display. The color or intensity lcvel of each pixel is dircctly determined by the value of a set
of bits in the bitmap.

Blit A terminal built at Bell Laboratorics based on an MC68000 processor and a bitmap
display [72]. A reengincered version is being marketed under the name ‘Teletype 5620, ‘The
screcn management soltware supplied for the Blitis called Laycers [105].

BSP Byte Strcam Protocol. A transport protocol in the PUP Internctwork Architccture [19]. BSP
implements a rcliable virtual circuit on top of the internct datagrams of the nctwork layer.

C A programming language designed at Bell Laboratories for the Unix operating system [71].
The language is above the level of assembler, but allows machine-dependent constructions
for low-lcvel systems programs such as device drivers.,

CAD Computer Aided Design. The application of computers to the design process.
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Configurable Applications for Graphics Employing Satellites. A system developed at the
University of North Carolina that allowed a programmer to assign modules in interactive
graphics programs to one of two processors at load time [62]. The implementation used an
1BM 360/75 connected to a DEC PDP-11/45 with 88K bytes of memory. Programs were
written in a subsct of PL/1.

California Computer Corporation. An early manufacturer of computcr graphics output (pen
plotting) devices.

An cxperimental computing cavironment devcloped at Xerox Palo Alto Research
Center [46], using the language Mesa [99] with cxtensions taken from InterLisp [138].

A proccss to insure that an image lics within a certain (usually rcctangular) boundary of
visible space.

A graphics subroutine package specification developed in 1979 by the ACM SIGGRAPH
Graphics System Planning Committee [147].

Central Processing Unit.
instructions.,

The part of a computer system that fctches and exccutes

A special symbol used to specify a particular pbsition on a screen,

A nctwork protocol in which cvery packet includes a full address and. is routced separately
from all other packets. This is in contrast to virtual circuit networks in which addressing and
routing arc performed on a connection basis.

Distributed File System. A general conicept (providing network transparent file access), and
in particular a project at the Xerox Palo Alto Rescarch Center to develop a distributed file
system [134].

A data structure used to generate an image. Foley and van Dam discuss the many possible
uses for display files [56]. Altcrnately called display lists or display buffers.

Device Independent Structure DataBase. A concept in the Lawrence Berkeley Laboratorics
Network Graphics System [24], similar to the WISS of GKS. Application programs usc the
workstation-independent layer to create, modify, and delete information in the database,
whilc the workstation-dependent layers read the structure information to update the displays.

The translation of a selected displayed object along a path specificd by a graphic input device.
This is a form of image transformation.

A high-performance personal scientific computer built at Xcrox PARC [75].

A concept of a powerful portable pcm)nal computer system that could be used in education
much like a notebook is currently being used l‘)O]

A screen display cditor that is cxtcnsiblc by using an intcrpreter for a powerful
language [129]. ‘The original version was implemented in 1974 for the DicSystem-10 and
Dr:cSystem-20 line of computers. There arec now many versions for a varicty of machincs
and operating systems.

A facility to access functions that are normally not part of the interface specification.

A particular kind of local arca network that uscs carricr scnse multiple access with collision
detection.  The official- specification for the data link and physical layers was developed
jointly by Xcrox, Digital Equipment, and Intcl Corporations [44].
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Also called the bounding box. The smallest orthogonal rectangle containing the object in
question. This is obtained by calculating the maximum and minimum coordinates of the
objects along each axis.

The digital memory used to store the bitmap in a raster display.

_The part of a computer system that deals with the user. The frontend should be optimized
for fast responsc time, with longer operations made part of the backend.

Graphical Kernel System. A standard graphics package definition adopted by the
International Standards Organization [64] and the American National Standards Institute.

The operation of associating an cvent on a graphics input device' with an item in the display
list. This is the function of a Pick device,

InterCOnnccted Processor System. A graphics system developed at Brown University to
dynamically distribute parts of an application program betwcen two processors [97, 146, 128],
an [BM 360/67 and a Mcta 4 with 64K bytes of memory and a 50K bits per sccond serial
conncction. A single application program written in the Algol-W language was uscd for
performance measurements.

Inter-Kernel Protocol. The protocol used in the V-System between kernels to provide the
transparency of message passing.

Operations that return information from the graphics system.

An cxperimental computing environment developed at Xerox Palo Alto Rescarch Center,
based on a form of the Lisp language [138). 'The InterLisp system has been ported to several
different computing cnvironments, from personal computers to timesharing systems.

TInternct Protocol [106]. A network-level protocol used in the ARPANET.

Internet Protocol TelNet. The V-System program that allows a user to have a terminal
session on a remote scrver host. '

Integrated Raster Tmaging System. A high-performance color graphics workstation
developed at Stanford University [39], and now marketed by Silicon Graphics, Inc. of
Mountain View California. ‘

International Standards Organization.

One user action, such as pressing a key on a keyboard. Used to model the psychology of
human-computer intcraction [20].

A softwarce system developed for the Blit terminal developed by Bell Laboratories [105].

L.earing Rescarch Group. ‘The group that developed the Smalltalk language; called the
Software Concepts Group since 1981.

A very large and expensive computer, typically purchased by a group and maintained in a
computer room,

Mcgabyte. The twenticth power of two, number of bytes, usually referring to computer
memory, Actual number is 10485706, significantly larger than onc Million.

A currently popular. microprocessor produced by Motorola Corporation [100]. It is a 32 bit
architecture [69], with scveral different implementations.  Unfortunately this name was used
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for both the architecturc and the first implementation (a 16 bit implementation with 23
address bits). '

A language developed at Xerox PARC for writing systems programs. Mesa supports systems
of separate modules with controlled sharing of information. The basic Mesa language has
been extended in the Cedar experimental programming cnvironment [46].

McgaHertZ. One million cycles per second. One paramcter of microcomputer performance
is the clock speed.

Million Instructions Per Sccond. A common (but inaccurate) measure of computcr system
performance.

A graphics input device that opcrates by sensing relative position changes when traveling
over a flat surface [50].

Multiplexor. A device which mediates between several entities all wishing to use a common
resource.

North American Broadcast Tcletext Specification [11].
North American Presentation Level Protocol Syntax [6].

Normalized Device Coordinates. A very low-level but resolution independent coordinate
system. For example, the coordinates of the view surface as floating point numbers ranging
from zero to one with (0,0) the lower left corner and (1,1) the upper right.

Network Graphics Protocol. The transport layer protocol used to communicate between a
workstation and the system running a remote graphics application.

Network Graphics System. Designed at the Lawrence Berkeley Laboratory [25], and partially
implemented [24].

oN-Line System. A softwarc system developed at SR [49] that used computers with graphics
workstation to augment the abilitics of knowledge workers, It is now marketed by Tymeshare
Corporation. ‘

N-channel Metal Oxide Silicon. A process for making very large scale integrated circuits [93].

Network Virtual Terminal. A concept originally developed for long-haul networks [162], to
casc the connection of a varicty of rcal terminals to a varicty of computer systems without
having to support all possiblc combinations.

The Xerox Palo Alto Research Center.,
IBM terminology for Pixel.
A workstation built by Three Rivers Corporation [144].

Programmer’s Hicrarchical Interface to the Graphics System. A draft standard for a graphics
package with hicrarchical scgment structure [4].

A graphical input cvent which returns the identification of an item within a display file.

An operating system for workstations developed at Xerox PARC, written in the Mesa
language and uscd as the basis for the Xcrox Development Environment [160].
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Pixel Picture Element. The smallest display arca on a raster display surface whose characteristics
can be controlled independently of its neighbors.

Pixrect A layer in the graphics architecture of SUN Microsystems Inc. {123].

Pop-up " A type of menu that only appcars when a choice must be made.

Pty Pscudo-terminal. An operating systcrri object that behaves as a terminai on one side, but
communicates to a program (typically a server TELNET) on the other side.

Raster A rcctangular array of pixels. A raster display is one that use an array of pixcls to produce the
image, in contrast to a scrics of lines, for example.

RasterOp A Raster Opceration. One of the many bit-oriented operations bctwccn one two bit-arrays
producing another bit-array [103].

RPC Remote Procedure Call. An attempt to preserve the semantics of local procedure calls across
a network, usually done as an extension to a compiler [102].

RS-232 A Recommended Standard 232 of the Electronics Industrics Association. Used to connect
most low to medium speed terminals to computers. The communication is full-duplex using
twisted pairs between two points, over short distances. A functionally similar interface used
outside the United States is CCINT specification V24,

RTP Rendez-vous and Termination Protocol. Part of the PUP Internctwork Architecture [19],
uscd to set up and terminate byte strcam protocol connections.

Rubber Banding

Scan Conversion

An interactive technique that moves the common vertex of one or more objects such as lincs
while the other end points remain fixed.

The process of converting an iinagc defined in terms of graphical objccts into a raster (array
of pixels).

Screen Coordinates

Scrolling

SDF

Scgment
SIGGRAPH
Smalltalk

SUN

Device dependent coordinates, usually integer raster units. Only the lowest-level device
driver uses this coordinate system,

Continuous vertical (or horizontal) movement of display clements within a vicwport. As new
objects appear at one edge (such as lines of text along the bottom), old objects disappear at
the opposite cdge.

Structured Display File. A dirccted, acyclic graph of items, cach of which is cither a primitive
item or a symbol, which is a list of other items. SDI¥s arc manipulated via the VGTP, which
is described in Scction 3.4,

An ordcred collection of output primitives defining an image.
Association for Computing Machincry Special Interest Group on computer Graphics.

A language and system developed at the Xerox Learning Research Group, now known as the
Softwarc Concepts Group [58].

Stanford University Network. Also appllcs to a particular wolkbtatmn a trademark of SUN

Microsystems Incorporated.
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Symbol

TCP
TELNET

Tors-20
Ule
User
VAX
VDI
VDM

VGT

VGTP

View

Viewport

V-Kernel
VLSI
VMS
V-Server

V-System

PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

A list of graphical items grouped together and given a name. This name can be used to add
instances of the symbol to other symbols, producing levels of structure in an SDF.

Transmission Control Protocol. A transport protocol in the ARPA protocol architecture [106].
A protocol to allow remotc logins [107].

A timesharing system from Digital Equipment Corporation for the DIiCSystcm-ZO line of
computers.

A portable timesharing system developed by AT&T Bell Laboratories in the carly 1970s [111].

The human cnd-user of a computer system or sct of software. Thus the uscr interface deals
with the person trying to usc the system to get work done, in contrast to the programmer
interface which is used by the developer.

Virtual Address e¢Xtension. A line of computers built by Digital Equipment Corporation
with a 32 bit architecture [45].

Virtual Device Interface. A proposed standard interface between a graphics package and a
device driver, as shown in Figure 2-2,

Virtual Device Mctafile. A mecthod for storing graphicslinformation on a file. Figure 2-2
illustrates how VDM fits into the architecture of standard graphics packages.

Virtual Graphics Terminal. A concept of the VGTS which combines advantages of
traditional graphics packages and window systems within the framework of a virtual terminal
management system.  Scction 3.4.2 defines the semantics of a VGT, which is associated with
one item in an SDF (usually a symbol).

Virtual Graphics Terminal Protocol. The protocol uscd between the VGTS and a client.
Described in Section 3.4.

A mapping of a virtual terminal onto a physical output device. Default views arc provided by
the application programmecr, whilc the user creates and manipulates views with the View:
Manager, as described in Scction 4.4,

A rectangular arca of a physical output device which presents the contents of a window. The
VG'TS prototype implementation supports potentially overlapping viewports, so the actual
arcas of the screen that are visible for cach viewport are called subviewports. Scction 4.2.1
describes this process in more detail,

A small rcal-time¢ portable operating system kernel [31], descended from Thoth [29] and
Verex [30].

Very Large Scale Integration [93]. VI.SI is both the rcason why graphics workstations are
becoming cconomical, and one of the major users of those workstations.

Virtual Memory System. The operating system supplicd by Digital Equipment Corporation
for the VAX computer [45].

A program running within somc predefined operating system that provides scrvices such as
file access and remote exccution to clicnts in a V-System [31].

A system of distributed servers and a synchronous message-based kernel developed by the
Distributed Systems Group of Stanford University [17].
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vT Virtual Terminal. A concept originally developed for long-haul networks [162], to ease the
connection of a variety of real terminals to a variety of computer systems without having to
support all possible combinations. :

VIMS Virtual Terminal Management System. An agent in the Rochester Intelligent Gateway which
managed terminal interaction [77].

WDss Workstation Dependent Segment Storage. A concept used in GKS [64].

Wiss Workstation Indcpendent Segment Storage. A concept used in GKS [64].

Window That part of the virtual (or world) coordinate spacc that is being displayed in a particular
view. This is the standard graphics package terminology [147], in contrast to the “window
system” terminology (scc Chapter 2) which uses the term to refer to the view itsclf.

Woodstock A stateless file server project at Xerox PARC[137]. One of the first experiments at
partitioning between an application program and its disk.

World Coordinates , :

The coordinate system of the application program’s model of an object. The input to the
viewing pipelinc in most graphics systems [147].

Workstation A computing resource dedicated to a user. This may range from a small, fixcd-function
terminal to a large sclf-contained personal computer.

Zoom Changing the scaling factor mapping from virtual coordinates to physical ccordinates to give

the appearance of having moved towards or away from the ebject of interest,
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A SHORT VGTS SAMPLE PROGRAM

— Appendix B —
A Short VGTS Sample Program

The following program has actually been run both under Unix and under the V system executive. The
#ifdef Vsystem dircctives allow the programmer to conditionally compile code for one environment or
the other. It also must be compiled with the appropriate compiler and linked with the correct library. It first

creates an SDF and VGT, then displays 100 random objects of various kinds.

®

* test.c - a test of the remote VGTS implementation
* Bi11 Nowicki September 1982
] / .

include <Vgts.h>
include <Vio.h>

define Objects 100 /* number of objects */
hort sdf, vgt;

uit()

{

DeleteVGT(vgt,1);
DeleteSDF(sdf); -
ResetTTY();
exit();

}

ain()

int 1;
short item;
Tong start, end;

ifndef Vsystem
printf("Remote VGTS test program\n").
else Vsystem
printf("VGTS test program\n");
endif Vsystem
fflush(stdout);
GelTTY();
sdf = CreateSDF();
DefineSymbol( sdf, 1, "test" );
AddItem( sdf, 2, 4, 40, 4, 60, NM, SDF_ FILLED _RECTANGLE,
EndSymbol1( sdf, 1, 0 );

NULL );

vgt = CreateVGT(sdf, GRAPHICS+ZOOMABLE, 1, "random objects" );

DefaultView(vgt, 500, 320, 0, 0, O, O, 0, 0);
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time(&start);
for (i=12; i<Objects; i++ )
{
short x = Random( -2, 155);
short y = Random( -10, 169);

short top = y + Random( 6, 100 );
short right x + Random( 4, 120 );
short layer Random( NM, NG );

EditSymbol1(sdf, 1);
DeleteItem( sdf, i-10);
switch (Random(1, 6) )

{
case 1:
AddTtem( sdf, i, x, right, y, top, Tlayer,
SDF_FILLED_RECTANGLE, NULL );
break;
case 2:
AddItem( sdf, i, x, x+1000, y, y+16, 0, SDF_SIMPLE_TEXT,
"Here 1is some simple text" );
break;
case 3:
AddItem( sdf, i, x, right, y, y+1, O,
SDF_HORIZONTAL_LINE, NULL );
break;
case 4:
AddItem( sdf, i, x, x+1, y, top, O,
SDF_VERTICAL_LINE, NULL );
break;
case 5: :
AddItem( sdf, i, x, right, y, top, O,
SDF_GENERAL_LINE, NULL );
break;
case 6:

AddItem( sdf, i, x, right, top, y, O,
SDF-GENERAL_LINE, NULL );
break;

}
EndSymbol( sdf, 1, vgt );:
}

time(&end);

if (end==start) end = start+1;

printf("%d objects in %d seconds, or %d obJects/second\r\n"
Objects, end-start, Objects/(end-start));

printf("Donel\r\n"});

Quit();
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indom( first, Tast )
{
/*
* generates a random number
* between "first" and "last"” dinclusive.
*/
int value = rand()/2;
value %= (last - first + 1);
value += first;
return(value);
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— Appendix C —
Hlstory of the Implementation

The SDF manager was originally written by Charles “Rocky” Rhodes, mcorporatcd into the Yale VLSI
layout program by Tom Davis [42]. and converted to usc the V kernel by Marvin Theimer during the summer
of 1982. Most of the conversion into the VGTS by the author was donc in latc summer and fall of 1982, with
significant cvents as follows:

July, 1982
August 27, 1982

September 1, 1982

September 18, 1982

October 2, 1982
November 1, 1982

January 1983

February 17, 1983
March §, 1983

March, 1983
April 5, 1983
April 20, 1983

May, 1983

The Yale program was converted to run under the V kernel.

The SDF manager opcrations could be called via C function calls from the Yale
program, but was a scparatc module. The window manager and related drawing
routines could be linked together with any client wanting to use them.

A terminal program was written to combine standard terminal emulation functions, a
PUP User TELNET implementation, and the SDF manager functions in one program.
This was based on an earlicr implementation of PUP User TELNET by the author.

The terminal program was augmented to decode the escape sequences, so that a
program running on a remote host could manipulate an SDF. A sct of “stub” functions
was written that allowed programs to run cither on the SUN directly or on any host
reachable through a TELNET connection.

Yale was ported to the VAX, using the stub routincs to simulate the local VGTS
environment. A few remote test programs were written at this time, including the
program in Appendix B.

Overlapping viewports added. Arbitrary lines were also added and debugged. Another
test program to dlsplay wire-frame drawings projected from three dimcnsions was
written.,

" A simple illustration editor was written by the author to edit diagrams for papers on the

VGTS. All of the diagrams in this thesis arc produced with this program.
The text editor Ved operated under the VG'T'S along with other exccutives.

Graphics applications, including previously mentioned test programs, and both the
distributed and local versions of the Yale program werc operated under the VGT'S
and cocxisted with each other. 'The VGTS/Executive combination was installed for
production use by other members of the Distributed Systems Group.

The ability to display text in arbitrary fonts was added, in addition to the special
fixed-width font.

Continuous mouse monitoring added, so real-time feedback was possible. With these
new additions to the illustrator program, and the Ved cditor, usability was. greatly
incrcased. The view manager also provided feedback when positioning viewports. ’

Raster objects were added, and a test program which displays half-tone photographic
imagcs was written. Another test program successfully displayed a databasc contammg
a map of the world.

Filled po]ygons and splincs were addcd and a drawing cditor program was developed
to tcst them,
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July, 1983

September, 1982

November, 1983
July, 1984
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Banners added and integrated into the executive. Screen saver added to turn off SUN
video if nothing has happcned in the last ten minutes. View manager menus were
reorganized. '

Added line editor and intcgrated into the executive. Removed line editors from most
application programs. Addcd dircctory protocol support.

Split off exec server instead of linking directly to executives.

[nitial port to the SUN-2 frame buffer. Only simple text and rectangle objects worked
at this point. View manager shortcuts installed.

Other people who have contributed to the VGTS implementation were as follows:

P. M. Bothner
K. P. Brooks

D. R. Cheriton
T. R. Davis

J. C. Dunwoody

R. S. Finlayson
L. Gass

D. R. Kaclbling
K A Lantz_

T.P. Mann
J. L Pallas

V. R. Pratt
C. C. Rhodcs
M. M. Theimer

Primitives for display of rasters and arbitrary fonts, on both SUN-1 and SUN-2 frame
buffers.

Continuous mouse monitoring, arc and fast filled polygons, design of GKS compatibility
package.

Design of 1/0 protocol, and the V kernel; Co-principal investigator for the Distributed
Systems Group.

Original application, which was integrated with SDF management and display routines, as
well as original view manager in the YALE program.

Automatic pagination of pad output, simple terminal server, mouse text sclection for line
editor. .

Port to the SUN-2 frame buffer, including most of the graphics primitives for the SUN-2.
Hit detection functions (FindSelectedObject). _ | |
Filled splines and polygons, and an application program that uscs them (Dr aw).

Virtual Terminal concept, overall architecture of user interface; rescarch supervisor, and
Co-principal investigator for the Distributed Systems Group.

V-Kernel support for frame buffer access, many minor bug fixes in related software.

Improved cursor visibility, some minor bug fixes, and short cuts to get to view
management. functions.

Fast vector drawing function implecmentation,
Initial SDF management functions, partial port to the Iris.

Conversion of YALL to the V-System, and the internet server.

Undoubtedly there are others who have helped in once way or another, but these are the major contributors.
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— Appendix D —
Detailed Experimental Results

This appendix contains the specific results from benchmarks and instrumentation discussed in Chapter 6.
There are three kinds of synthetic benchmarks: text, graphics, and structure. Mcasurcments were also taken
from the illustration cditor, using the illustrations in this thesis as data. Within each kind of benchmark the
results are grouped first by workstation type, which appears in the first column. The following workstations
were used for the tests:

Sun-1

Sun-1.5

Sun-2upg

Sun-2

Cadlinc

This was the first model of workstation marketed as model 100 by Sun Microsystems, Inc. of
Mountain View, California. It is connected to experimental (3 Mbit/sccond) Ethernet with a
controller built by Sun Microsystems. It contains a 10Mhz MC68000 processor, with 1IMbyte
of memory accessed with no wait states. Keyboard and optical mouse are polied by software.

This was the first upgrade to the Sun-1 by Sun Microsystems, called model 100U. 1t is
connected to standard 10 Mbit/sccond Ethernet with a controller made by 3Com
Corporation, also of Mountain Vicw, California. It contains a 10Mhz MC68010 processor,
with 2Mbyte of memory accessed with wait states, with a resulting cffective speed of about
8Mhz. Keyboard and optical mouse are polled by software.

This was another upgrade to the same physical workstation made by Sun Microsystems, also
called model 2/100. It contains a 10Mhz MC68010 processor, with 2Mbyte of memory
accessed with no wait states. It is connccted to standard 10 Mbit/sccond Ethernet with a
controller made by 3Com Corporation. Keyboard and optical mouse arc polled by software.
It is actually slightly slower on graphics than the Sun-1, probably due to a diffcrent bus
arbitration circuit.

This was the sccond workstation product made by Sun Microsystems, called model 2/120. It
contains-a 10Mhz MC68010 processor, with 2Mbyte of memory accessed with no wait states,
the same processor as the Sun-2upg, but a different graphics architecture. The screen bitmap
is larger than the previous Suns, but is addressed as lincar memory instead of the clever
schemne of the Sun-1. This makes smaller operations much slower, whilc large operations
take about the same time. It is connccted to standard 10 Mbit/sccond Ethernet with a

" controller made by 3Com Corporation. Keyboard and optical mouse are connccted by

RS232 serial lines.

An older but similar workstation design, with an 8Mhz MC68000 processor. Only 512K
bytes of memory arc accessed with no wait states, and another 512K bytes arc available on the
Multibus. Keyboard and mechanical mouse arc controlled by a dedicated microprocessor,
connected to the MC68000 through an RS232 scrial conncction,
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The following server hosts were used in the experiments:

Diablo

A VAX-11/780 running 4.1 Unix durihg experiments, with 4 Mbyte memory, connected to
3Mbit/sccond Experimental Ethernet. Operated by the SUMEX project in the Stanford

- University Medical Center.

Navajo

Whitncy

Carmecl

Coyote

Gregorio

Pecscadero

ISI-A

ISI-H.

Camclot

Parc-C

A VAX-11/780 running 4.1 Unix during experiments, with 4 Mbytc memory, connected to
3Mbit/sccond Experimental Ethernet. Owned by the Stanford Numerical Analysis group
of the Computer Science Department.

A VAX-11/780 running 4.1 Unix, with 8 Mbytc memory, connected to 3Mbit/sccond
Experimental Ethernet. Owned by the Robotics group of the Stanford Computer Science
Decpartment.

.A VAX-11/750 running 4.1 Unix during experiments, with 2 Mbytce mémory, connected to

3Mbit/sccond Experimental Ethernet.  Owned by the Stanford Computer Science
Decpartment for file server development.

A VAX-11/750 running 4.2 Unix, with 2 Mbyte memory, connccted to both 3Mbit/second
Expcrimental Ethernet and 10Mbit/sccond Ethernet. Owned by the Robotics group of the
Stanford Computer Science Department.

A VAX-11/750 running 4.2 Unix, with 5 Mbyte memory, connected to both 3Mbit/second
Experimental Ethernet and 10Mbit/sccond Ethernct. Owned by the Distributed Systems
Group, and used for VAX operating system support, both the VAX V kernel port and Unix.

A VAX-11/750 running 4.2 Unix, with 6 Mbyte memory, connccted to both 3iVibit/second
Experimental Ethernet and 10Mbit/second Ethernet. Owned by the Distributed Systems
Group, and used as the primary file server for V-System devclopment.

A VAX-11/780 running 4.1 Unix, with 4 Mbyte memory, connccted to the ARPANET,
located in the Information Science Institute in Marina del Rey, California, about 500 miles
south of Stanford. Uscd for InterLisp support.

A VAX-11/750 running 4.2 Unix, with 2 Mbytc memory, connccted to the ARPANEI‘, also

located in the Information Science Institute. Used for Unix development.

A VAX-11/780 running 4.2 Unix, with 4 Mbytc mcmory., connected to 3Mbit/second
Experimental Fthernet. Located in the Center for Educational Rescarch at Stanford, and
operated by the Low Overhead Timesharing System (LOTS).

A VAX-11/785 running 4.2 Unix, with 8 Mbytc memory, conncected to the ARPANET,
Located in and owned by the Xcrox Palo Alto Rescarch Center. Used as a mail gateway.
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The next column gives the protocols used in the experiments. These were discussed at the begining of
Chapter 6, and are illustrated in Figures 6-1 and 6-2.

Local

VAX-IKP

SUN-KP

Pup
PurGgw
i
IPGW
A-IP

nnnn

The application runs on the same workstation that is used for display. Communication is by
local V kernel messages.

The V-System 1/0 protocol. using a message protocol implemented dircctly above the data-link
layer of Ethernct. The application runs on a VAX UNIX systcm and communicates via pipcs to a
Unix program that simulates a V-kernel by sending kerncl packets on the Ethernet.

The application runs on another workstation, and sends V messages directly using the Inter-
Kernel Protocol.

The PUP Byte Strcam Protocol on a directly connected Ethernet.

The PUP Byte Strcam Prdtocol through one or more gateways to another Ethernet.
Internct Protocol on a directly connected Ethernet.

Internet Protocol through one or more gateways.

Internet Protocol, over an Ethernct to a PDP-11/23 acting as a gateway to the ARPANET,

A four digit number, one of 1200, 2400, 4800, or 9600, refers to the baud rate of a VAX terminal
port that was attached to an RS-232 port on the workstation. A simple V-System program
allowed normal UNIX terminal sessions on this terminal port.
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D.1 Text Benchmark

The text benchmark was primarily a program called ttime, originally writtcn by Peter Eichenberger. This
program simply printed characters as quickly as possible until stopped by an interrupt or for a given amount
of titne (two minutes was the time used in these experiments). The columns are: workstation type, server
All numbers arc given as characters per second through all layers of
software including the terminal emulator, except in the local case where the rates are broken down into draw
and construction times. For these experiments, which were done only with the V protocols, an option of the

host, protocol, and character rate.

vectime program was used.

Sun-1

Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1

Sun-2

Sun-2

Sun-2upg

Sun-2upg
Sun-2upg
Sun-2upg

Sun-1

780 4.1 (Diablo)
780 4.1 (Diablo)
780 4.1 (Navajo)
780 4.1 (Navajo)
780 4.1 (Whitney)
780 4.1 (Whitncy)
780 4.1 (Whitney)
750 4.2 (Coyote)
750 4.2 (Coyote)
750 4.2 (Coyete)
750 4.1 (Carmel)
750 4.1 (Carmel)
750 4.1 (Carmel)
750 4.2 (Gregorio)
750 4.2 (ISI-H)
780 4.1 (ISI-A)

750 4.2 (Gregorio)

780 4.1 (ISI-A)
785 4.2 (Parc-C)
Another Sun-2

Draw
Construct
Page
Scroll
VAX-IKP
1P

1P

Pupr
VAX-IKP
P

Pup
VAX-IKP
iP

Pup
YAX-IKP
P

Pup

P

A-IP
A-IP

Draw
Construct
Page
Scroll

P

Draw
Construct
Page
Scroll
A-IP
A-1P
Draw
Construct
Page
Scroll

20711
7286
5387

448
4157
911
4139
1566

- 4257

4344
1638
3628
3521
2030
4078
2299
1371
1544
2170
1911

10111
6037
3653

201
4409

18193
6702
4776

354
2200
2317

18916
4067
3342

386
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Sun-2upg

Sun-1.5

Sun-1.5
Sun-1.5
Sun-1.5
Sun-1.5
Sun-1.5
Sun-1.5

Sun-1.5

Cadlinc

Cadlinc

~ Cadlinc
Cadlinc
Cadlinc
“Cadlinc
- Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc

Another Sun-1.5

750 4.2 (Coyote)
750 4.2 (Coyote)

750 4.2 (Gregorio)
750 4.2 (Gregorio)

780 4.1 (ISI-A)
Another Sun-2

Another Sun-1.5

780 4.1 (Diablo)
780 4.1 (Diablo)
780 4.1 (Navajo)
780 4.1 (Navajo)

780 4.1 (Whitney)
780 4.1 (Whitncey)
780 4.1 (Whitncy)

750 4.2 (Coyotc)
750 4.2 (Coyote)
750 4.2 (Coyote)
750 4.1 (Carmel)
750 4.1 (Carmel)
750 4.1 (Carmel)

750 4.2 (Gregorio)
750 4.2 (Gregorio)

780 4.1 (ISI-A)

Table D-1:

Draw
Construct
Page
Scroll

Draw
Construct
Page
Scroll
VAX-IKP
P
VAX-IKP
P

A-IP
Draw
Construct
Page
Scroll
Draw
Construct
Page
Scroll

Draw
Construct
Page
Scroll
VAX-IKP
1P

IP

Pupr
VAX-IKP
IP

Pupr
VAX-IKP
1P

Pup
VAX-IKP
P

Pup
IPGW
PuPGW
A-1P

Dectailed text results

19104
3713
3109

341

17111
4496
4046

330
3187
3628
3213
3554

373

15483
3099
2582

306

15360
3109
2585

290

15737

3509
4080
331

2856 -

3208
3558
1349
3179
2453
1354
3179
3462
1562
3323
2407
1325
3510
1327
1837

115
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D.2 Vector Graphics Benchmark

The vectime program was used to test simple vector graphics performance. The columns in the results
below are: workstation type, server host, protocol, test name, and vector rate. All numbers are in vectors per
sccond. The program drew a fully-connect 36-agon, and was bascd on a similar program written by Professor
Vaughan Pratt. The calculations for the points of the polygon were donc once before timing began. For the
Batch test the polygon was crased and displayed ten times, with the results computed over all ten trials. The
benchmark program reported the standard deviation for the trials. Runs with large deviations were repeated
on the assumption that transicnt cffects such as incoming computer mail or other background activity causced
these anomalous results.

For the Incremental test (noted below as “Add™) cach Addltem call was preceded by an EditSymbol call and
foltowed by an EndSymbol call, to measurc the number of transactions per second. Since onc run of the
Incremental test typically took scveral minutes, these were only repcated once.  All cxperiments were
performed when timesharing load was low. 'The last column gives the month and year the mecasurcments
were taken. '

Sun-1 Local Batch Draw 451 12-83

Create 485 12-83

Total 234 12-83

Sun-1 Local Batch Draw 428 12-84

Create 450 12-84

. Total 219 12-84

Sun-1 780 4.1 (Diablo) IPGW Batch Create 114 6-84

o Total 81 6-84

Sun-1 780 4.1 (Navajo) VAX-IKP Batch  Create 508 12-83

Total 185 12-83

Sun-1 780 4.1 (Navajo) Ip Batch . Create 162 12-83

Total 111 12-83

Sun-1 780 4.1 (Navajo) PUP Batch Create 200 12-83

Total 122 12-83

Sun-1 780 4.2 (Navajo) VAX-IKP Batch Create 180 12-84

Total 171 12-84

Sun-1 780 4.2 (Navajo) ip Batch Create 387 12-84

Total 377 12-84

Sun-1 780 4.2 (Navajo) PUP Batch Create 222 12-84

Total 218 12-84

Sun-1 780 4.1 (Whitney) VAX-IKP Batch Create 396 12-83

Total 168 12-83

" Sun-1 780 4.1 (Whitney) IP Batch Create 168 12-83

Total 111 12-83

Sun-1 780 4.1 (Whitney) PUP Batch Create 207 12-83

Total 128 12-83

Sun-1 750 4.2 (Coyote) VAX-IKP Batch Create 160 12-83
Total 97 12-83 -

Sun-1 760 4.2 (Coyote) 1P Batch Create 136 12-83

N Total 93 12-83

Sun-1 750 4.2 (Coyote) PUP Batch Create 133 12-83

Total 91 12-83

Sun-1 750 4.1 (Carmel) VAX-IKP Batch - Create 335 12-83

Total 165 12-83

Sun-1 750 4.1 (Carmel) IP Batch Create 107 12-83

Total 81 12-83

Sun-1 750 4.1 (Carmel) PUP Batch Create 128 12-83

Totail 80 12-83

Sun-1 750 4.2 (Gregorio) IP Batch Create 220 12-84

: Total 215 12-84

Sun-1 750 4.2 (Gregorio) PUP Batch Create 198 12-84



Sun-1
Sun-1
Sun=-1
Sun-1

Sun-1

Sun-2

Sun-2
Sun-2

Sun-2

Sun-2upg

Sun-2upg

Sun=-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg
Sun-2upg

Sun-2upg

Sun-1.5

780 4.1 (ISI-A)

750 4.2 (ISI-H)

780 4.2 (Camelot)

780 4.2 (Camelot)

Another Sun-1

750 4.2 (Gregorio)

750 4.2 (Gregorio)

785 4.2 (Parc-C)

780

750

785

4.

2

Another

Another

Another

(Navajo)
(Navajo)
(Gregorio)
(Gregorio)
(Gregorio)
(Pescadero)
(ISI-A)
(ISI-H)
(Parc-C)
Sun-2
Sum=-2

Sun-1.5

Sun-1.5 750 4.2 (Coyote)

Sun-1.5 750 4.2 (Coyote)

Sun-1.5 750 4.2 (Gregorio)

" A-1IP

IPGW

PUPGW

Sun-IKP

Local

VAX-IKP

IP

Local

Local

IPGW
PUP
VAX-IKP
IP

PUP

IP

Sun-IKP

Sun-IKP

Sun-1IKP

Local

VAX-IKP

IpP

VAX-IKP

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

»Batch

Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch

Batch

Batch

Batch

. Batch

Batch

Total

Create -

Total
Create
Total
Create
Total
Create
Total
Create
Total

Draw
Create
Totatl
Create
Total
Create
Total
Create
Total

Draw
Create
Total
Draw
Create
Total

Create

Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Totatl

Draw

- Create

Total
Create
Total
Create
Total
Create
Total

290
468
179
372
345
168
166
1556
145

418
439
214
406
446
211

192

339
364
176
445
145
144
95

453
146

117

12-84
12-83
12-83
6-84
6-84
6-84
6-84
6-84
6-84 -
6-84
6-84

12-84
12-84
12-84
11-84
11-84
11-84
11-84
11-84
11-84

6-84
6-84
6-84
12-84
12-84
12-84

6-84

6-84
6-84
6-84

- 12-84

12-84
12-84
12-84
12-84
12-84
6-84
6-84
9-84
9-84
12-84
12-84
12-84
12-84
6-84
6-84
12-84
12-84
6-84
6~84

W w ? ? ? W W W W
XXX XX
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Sun-1.5
Sun-1.5
Sun-1.56
Sun-1.5
Sun-1.5
Sun-1.5
Sun-1.5

Sun-1.5

Cadlinc

Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc

Cadlinc

“Cadlinc

Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc

Cadlinc

Sun-1
Sun-1
Sun-1

750 4.2
750 4.2
750 4.2
750 4.2
780 4.1
750 4.2
Another

Another

780 4.1

780 4.1
780 4.1
780 4.1
780 4.1
780 4.1
780 4.1
780 4.1
780 4.1
750 4.2
750 4.2
750 4.2
750 4.1
750 4.1
750 4.2
750 4.2
780 4.1
750 4.2

Another

780 4.1

(Gregorio)
(Pescadero)
(Pescadero)
(Pescadero)
(ISI-A)
(IST-H)
Sun-2

Sun-1.5

(Diablo)
(Diablo)
(Diablo)
(Navajo)
(Navajo)
(Navajo)
(Whitney)
(Whitney)
(Whitney)
(Coyote5 '
(Coyote)
(Coyote)
(Carmel)
(Carmel)
(Gregorio)
(Gregorio)
(1SI-A)
(ISI-H)

Sun-1

(Diablo)

1P

VAX-IKP

Sun-IKP

Sun-IKP

Local

VAX-IKP
1P

PUP
VAX-TKP
IP

PUP
VAX-IKP
1P

PUP
VAX-IKP
IP

PUP
VAX-IKP
PUP

P

PUP
A-IP
A-1P

Sun-IKP

Local
Local
PUP

Batch
Batch
Batch
Batch
Batch
Batch
Batch

Batch

Batch

Batch
Batch
Batch
Batch
Batch
Batch

Batch

‘Batch

Batch

Batch

Batch

Batch

Batch

Batch

‘Batch

Batch

Batch

Batch

Batch

Add
Add
Add

Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total

Draw
Create
Total

Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total
Create
Total

Total
Total
Total

123
75
146
91
121
82
133
88
111
68

249

143

47.7
62.2
5.5

3-84
3-84
6-84
6-84
6-84
6-84
6-84
6-84
3-84
3-84
6-84
6-84
6-84
6-84
6-84
6-84

12-83
12-83
12-83

12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83
12-83.
12-83
12-83
12-83
12-83
12-83
12-83
3-84
3-84
12-83
12-83
12-83
12-83
12-83
12-83
3-84
3-84
3-84
3-84
12-83
12-83
6-84
6-84
6-84
6-84

12-83
12-84
12-83
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Sun-1 780 4.2 (Navajo) VAX-IKP Add Total 62.7 12-84
Sun-1 780 4.2 (Navajo) ip Add Total =~ 91.6 12-84
Sun~1 780 4.2 (Navajo) PUP Add Total 59.0 12-84
Sun-1 780 4.1 (Navajo) VAX-IKP Add Total 6.1 12-83
Sun-1 780 4.1 (Navajo) ip Add Total 4.8 12-83
Sun-1 780 4.1 (Navajo) PUP Add Total 4.3 12-83
Sun-1 780 4.1 (Whitney) VAX-IKP Add Total 6.5 12-83
Sun-1 780 4.1 (Whitney) 1P Add Total 4.9 12-83
Sun-1 780 4.1 (Whitney) PUP Add Total 4.9 12-83
Sun-1 750 4.2 (Coyote) ip Add Total 7.8 12-83
Sun-1 750 4.1 (Carmel) VAX-IKP Add Total 4.6 12-83
Sun-1 750 4.1 (Carmel) P Add Total 4.8 12-83
Sun-1 760 4.1 (Carmel) PUP Add Total 4.9 12-83
Sun-1 750 4.2 (Gregorio) ip Add Total 86.6 12-84
Sun-1 750 4.2 (Gregorio) PUP Add Total 54.5 12-84
Sun-1 780 4.1 (ISI-A) A-1IP Add Total 3.0 12-83
Sun-1 780 4.2 (Camelot) IPGW Add Total 3.1 6-84
Sun-1 780 4.2 (Camelot) PUPGW  Add Total 2.9 6-84
Sun-1  Another Sun-1 . Sun-IKP Add Total 9.0 6-84
Sun-2 Local Add Total 40.6 9-84
Sun-2 Local Add Total 61.5 11-84
Sun-2 750 4.2 (Gregorio) VAX-IKP Add Total 81.7 11-84
Sun-2 750 4.2 (Pescadero) Ip Add Total 59.4 11-84
Sun-2 785 4.2 (Parc-C) A-IP Add Total  69.6 11-84
Sun-2 780 4.2 (Camelot) IPGW Add Total 84.0 12-84
Sun-2upg Local Add Total 42.0 6-84
Sun-2upg Local Add Total 59.4 12-84
Sun-2upg 750 4.2 (Gregorio) . VAX-IKP Add Total 81.4 12-84
Sun~2upg 750 4.2 (Gregorio) PUP Add Total 57.6 12-84
Sun-2upg 750 4.2 (Gregorio) - IP Add Total 81.5 12-84
Sun-2upg 750 4.1 (Pescadero) IP .. Add Total 6.8 6-84
Sun-2upg 785 4.2 (Parc-C) A-IP Add Total 3.7 11-84
Sun-2upg 785 4.2 (Parc-C) A-IP Add Total 64.1 12-84
Sun-2upg 750 4.2 (ISI-H) A-1IP Add Total 39.3 12-84
Sun-2upg Anather Sun-2 Sun-IKP Add Total 29.0 6-84
Sun-2upg Another Sun-2 Sun-IKP Add - Total 44 .2 12-84
Sun-2upg Another Sun-1.5 Sun-IKP Add Total 23.0 6-84
Sun-1.56 Local Add Total 35.0 6-84
Sun-1.5 750 4.1 (Pescadero) ip Add Total 6.8 6-84
Sun-1.5 Another Sun-2 Sun-IKP Add Total 24.5 6-84
Sun-1.5 Apnother Sun-1.5 Sun-IKP Add Total 22.3 6-84
Cadlinc Local Add Total 36.1 12-83
Cadlinc 780 4.1 (Diablo) ip Add Total 4.0 12-83
Cadlinc 780 4.1 (Diablo) PUP Add Total 3.0 12-83
Cadlinc 780 4.1 (Navajo) IP Add Total 4.7 12-83
Cadlinc 780 4.1 (Navajo) PUP Add Totail 2.1 12-83
Cadlinc 780 4.1 (Whitney) VAX-IKP Add Total 6.2 12-83 .
Cadlinc 750 4.2 (Coyote) 1P Add Total 7.2 12-83
Cadlinc 750 4.1 (Carmel) VAX-IKP Add Total 4.5 12-83
Cadlinc 750 4.1 (Carmel) 1P Add Total 4.8 12-83
Cadlinc 760 4.1 (Carmel) PUP Add Total 4.7 12-83
Cadlinc 780 4.1 (ISI-A) A-IP Add Total 2.8 12-83

Table D-2: Detailed vector graphics results
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D.3 Structured Graphics Benchmark

The structime program was designed to test the effect of structure. The benchmark drew an array of 30
NMOS inverters, each consisting of 26 rectangles, for a total of 780 rectangles. The resulting image was about
400 pixcls on a side. Each rectangle was filled with one of four stipple patterns, each representing one of the
NMOS process layers. In the batch test, cach of the 780 rectangles was added to the SDF, resulting in a single
level, unstructured symbol. The incremental test also used a single-level unstructured symbol, with each of
the 780 rectangles displayed as it was added.

In the structure test, a “contact cut” symbol was defined which consisted of three rectangles. Then an
“inverter” symbol was defined with two calls to the contact cut symbol and 20 other rectangles. 30 instances
of the inverter symbol were then added to the top-level symbol, resulting in a three-level display file. Thus a
total of 23 primitive items and 32 calls were added to the SDF, for a total of 55 items. All numbers arc in
rectangles per second. Note that the structure create ratc might be considered unfairly low. The benchmark
divided the total time for creation by the number of primitives added, in this case 23. To obtain the rate
including symbols calls, multiply this ratc by 55/23 or about 2.4. The last column gives the month and year
the mcasurcments were taken,

Sun-1 Local Batch Create 407 6-84
Total 312 6-84

Local Struct Create 145 6-84

Total 1010 6-84

Locail Incre Total 48 6-84

Sun-1 Local Batch Create 398 12-84

Total 307 12-84

Local Struct Create 169 12-84
Total 1070 12-84

Local Incre Total 61 12-84

Sun-1 780 4.1 (Navajo) VAX-IKP Batch Create 287 6-84
Total 207 6-84

VAX-IKP Struct Create 23 6-84

Total 403 ' 6-84

Sun-1 780 4.1 (MNavajo) 1P Batch  Create 148 6-84
Total 124 6-84

1P Struct Create 19 6-84

Total 406 6-84

1P Incre Total 4.7 6-84

Sun-1 780 4.1 (Navajo) P Batch Create 222 12-84 -

‘Total 210 12-84

P Struct Create 22 12-84

Total 744 - 12-84

IpP Incre Totatl 711 - 12-84

Sun-1 780 4.1 (Navajo) PUP Batch Create 156 6-84
Total 123 6-84

pPUP Struct Create 21 6-84

Total 405 6-84

PUP Incre Total 4.4 6-84

Sun-1 780 4.1 (Navajo) PUP Batch Create 171 12-84
’ Total 164 12-84

PUP Struct Create 18 12-84

’ Total 681 12-84

PUP Incre Total 51 12-84



Sun-1 750 4.2 (Gregorio)

Sun-1 750 4.2 (Gregorio)

Sun-1 750 4.2 (Gregorio)

Sun-1 750 4.2 (Pescadero)

Sun-1 780 4.1 (ISI-A)

Sun-1 750 4.2 (ISI-H)

Sun-1 780 4.2 (Camelot)

Sun-1 780 4.2 (Camelot)

Sun-1 Another Sun-1

Sun-2upg

Sun-2upg

IP
P
IP
IP
P -

1P

" PUP

PUP
PUP
VAX-IKP

VAX-IKP

IPGW
IPGW
IPGW
PUPGW

PUPGW

Sun-IKP
Sun-IKP

Sun-IKP

Local
Local
Local
Local
Local

Local

Batch

"Struct

Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch

Struct

Batch

Struct

Incre

Batch
Struct
Incre
Batch
Struct
Incre
Batch

Struct

Batch
Struct

Incre

Batch
Struct
Incre
Batch
Struct

Incre

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

128
103
24

442

185
175

672
66.1

139
133

574
36.4

65
57

28

117

193
146
20

394
3.4

146
114

405

324
258
112
835
14.6

398
304
142
990
42

391
300
133
975
69

121
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Sun=-2upg

Sun-2upg

Sun-2upg

Sun-2upy

Sun-2upy

Sun-2upg

Sun-2upg

Sun-2upg

Sun-2upg

Sun-2upg

Sun-2upg

780

780

780

750
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750

750

780

750

750

780

(Navajo)

(Navajo)

(Navajo)

(Gregorio)

(Gregorio)

(Gregorio)

(Pescadero)

(ISI-A)
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(ISI-H)

(Camelot)

IPGW
IPGW
IPGW
IPGW
IPGW
IPGW
PUPGW
PUPGW

PUPGW

. VAX-IKP

VAX-IKP

VAX-1KP

VAX-IKP

VAX-IKP

VAX-IKP

IP.

IP-

IP

1P

1P

Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
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Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Create
Total
Create
Total
Total

Create
TotaT
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

"Create

Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

140
118
18

378
4.5

207
202
21
687
61

128
6.8
182
1.5

258
173

287
4.7

199
196

189
185

473
64

12-84

12-84
12-84
12-84



Sun-2upg 785 4.2 (Parc-C)

Sun-2upg 785 4.2 (Parc-C)

Sun-2upg Another Sun-2

Sun-2upg Another Sun-1.5

Sun-2

Sun-2

Sun-2 780 4.2 (Navajo)

Sun-2 750 4.2 (Pescadero)

Sun-2 750 4.2 (Gregorio)

Sun-2 750 4.2 (Gregorio)

Sun-2 750 4.2 (Gregorio)

Sun-IKP
Sun-IKP
Sun—IKﬁ
Sun-IKF
Sun-IKP

Sun-IKP

Local
Local
Local

Local

. Local

Local
IPGW
IPGW
IPGW

{

IP

1P
VAX-IKP
VAX-IKP
VAX-IKP
1P

1P

IP

9600
9600

9600

Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Batch
Struct
Incre

Batch

Struct

Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Strhct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total

Create

Total
Total

Create

Total

Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

163

" 116 -

16
323
3.7

126
114

464
57.9

352
277
112
8756
28

312
251
98
831
25

439’
295
146
748
44.9

429
288
160
741
63

193
190
15
499
70

150
146
16
521
66.3

206
199
13
452
68

166
131
22

383
6.1

63.5
45.9
20.2
320
9.8

11-84
11-84
11-84
11-84
11-84

12-84
12-84
12-84
12-84
12-84

6-84
6-84
6-84
6-84
6-84

9-84

9-84
9-84
9-84
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Sun-2

Sun-2

Sun-2

Sun-2

Sun-1.5

Sun-1.5

Sun-1.5

Sun-1.5

Sun-1.5

Sun-1.5

Sun-1.5

760
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750
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780
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780

.2 (Gregorio)

.2 (Gregorio)

.2 (Gregorio)

.2 (Parc-C)
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.2 (Pescadero)
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.2 (Pescadero)

.2 (Pescadero)

.1 (ISI-A)

4800
4800 .
4800
2400
2400
2400
1200
1200

1200

Locatl
Local
Local
1P
1P
1P

VAX-IKP

VAX-IKP

VAX-1IKP

IP

IP

IP

PUP

PUP

PUP

1200

1200

1200

A-IP

Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Batch

Struct
Incre
Batch
Struct

Incre

Batch .

Struct .

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Totatl
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total

656.9

9-84
9-84
9-84
9-84
9-84

9-84
9-84
9-84
9-84
9-84

9-84
9-84
9-84
9-84
9-84

11-84
11-84
11-84
11-84
11-84



Sun-1.5

Sun-1.5

Sun-1.5

Cadlinc

Cadlinc

Cadlinc

Cadlinc

Cadlinc

Cadlinc

750 4.2 (ISI-H)

Another
Another
780 4.1
780 4.1
750 4.2
780 .?
750 4.2
780 4.2

Sun-2

Sun-1.5

(Navajo)

(Navajo)

(Pescadero)

(ISI-A)

(ISI-H)

(Camelot)

Table D-3:

Sun-IKP
Sun-IKP
Sun-IKP
Sun-IKP
Sun-IKP

Sun-IKP

P
P
Ip
VAX~IKP
VAX-IKP
VAX-IKP
IP
1P

P

A-IP
IPGW

IPGW

IPGW

Detailed structured graphics results

Incre
Batch
Struct
Incre
Batch
Struct

Incre

Batch -

Struct

Incre

Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Batch
Struct

Incre

Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

. Create

Total
Create
Total
Total

Create -

Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

2

24.2

279
220
856
690
22.1

138
111

350

4.6

272
187
21

370
7.5

130

6-84
6-84
6-84
6-84
6-84

6-84
6-84
6-84
6-84
6-84

6-34
6-84
6-84
6-84
6-84
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D.4 lllustration Data

These tests were performed on a local 10Mhz workstation with the Sun-1 frame buffer. This table lists the
number of items, time for display in milliscconds, the resulting rate (including both creation and display) in
items per sccond, the memory that would be nceded to store the bitmap (in thousands of bytes), and and the
memory used in the SDF (also in thousands of bytes). These experiments were performed in October of

1984.
Figure Objects Time _ Rate Bitmap __ SDF
1-1 365 1370 266 4K 173K
1-2 105 = 430 244 21K 21K
2-1 71 330 215 17K 14K
2-2 80 360 222 ‘19K 1.6K
3-1 125 510 245 17K 25K
3-2 137 530 258 9K 27K
3-3 115 490 235 19K 23K
3-4 73 360 203 13K L5K
3-5 88 400 220 20K 138K
4-1 132 540 244 27K 36K
4-2 157 680 231 28K 3.1K
5-2 66 280 236 40K 13K
5-3 99 390 254 16K = 2.0K
6-1 33 160 206 10K 07K
6-2 101 450 224 13K . 20K

Table D-4: Detailed illustration data
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