
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY' STANFORD, CA 94305-2192

PARTITIC)NING OF FUNCTION IN
A DISTRIBUTED GRAPHICS SYSTEM

by

William I. Nowicki

Technical Ileport No. ~OSL-85-282

(Also numbered STAN-CS-85-1082)

March 1985

Pa rtitioning of Function
in a Distributed Graphics System

William I. Nowicki

Abstract

Although recent advances in graphics workstations promise much computing power for the future needs of
researc1}(~rs, traditional approaches to software organization waste much of this power. Most systems treat the
workstation as either a fixed-function terminal or a self-contained personal computer; these roles have
limitations that can be overcome hy considering the workstation a multi-function component of a distributed
system. 'rraditional standard graphics' packages and object-oriented window systems offer importaQt
functionality, but a third approach, virtual terminal management systems, is more appropriate for a
distributc-d operating system.

The Stal;ford Distributed Systems Group has implemented such a distriblltcd system for graphics
workstations. organized as a collection of servers providing services to clients. Major issues arc how to
partition functions between the server and its clients, and physically partition the server. I n particular, the
service 1l1at displays graphical objects is called the Virtual Graphics Terminal Service (VGTS). The VGTS
architecture is described. as well as a prototype implementation.

This th($is discusses the trade-offs involved in partitioning of function in a distributed graphics system.
Performance is one important property traded f{)r advanced functionality or decreased cost. To provide
adequate performance in a distributed system. communication costs should be kept low, as well as the
frequency of the communication. By providing modeHng as wen as viewing facilities, the VGTS reduces the
communication required between applications and the service.

Measurements verify that performance is insensitive to network bandwidth, but depelids heavily on CPU
speed and protocol characteristics. Using structure provides important speed improvements in some cases,
but other basic factors such as inner loop optimization and proper batching of requests make even larger
differences.

Finally, conclusions are dr~wn regarding the partitioning approaches taken in the VGrl'S. The VGTS is
suitable for a large class of applications that pern)rm graphics as an aid to user interface, and is portable to a
wide range of powerful workstations. Moreover, the VGTS can be used as a basis for further research on
many open questions in distributed systems.

1. Introduction

1.1 Graphics Workstations
1.2 Role of the Workstation

Table of Contents

1.2.1 The Workstation as Terminal
1.2.2 The Workstation as Personal Computer
1.2.3 The Workstation as a Component of a Distributed System

1.3 Kinds of Partitions
1.3.1 Physical Partitions
13.2 Logical Partitions
1.3.3 Static and Dynamic Partitions
1,3.4 Total and Partial Partitions
L3.5 Protocol Design: the Result of Partitions

1.4 O\'crview and Major Contributions
2. Related Work

2.1 Standard Graphics Packages
2.1.1 The SIGGRAP.H CORE Graphics System
2.1.2 The Graphical Kernel System
2.1.3 The Programmer's Hierarchical Interactive Graphics Standard
2.1.4 The LBL Network Graphics System
2.1.5 Virtual Device Interface and Metafile
2.1.6 Videotex and Teletext Systems

2.2 Ohject-Oriented Window Systems'
, 2.2.1 Smalltalk
2.2.2 "Lisa Technology"
2.2.3 Othcr Window Systems

2.3 V~rtual Terminal Managcmcnt Systems
2.3.1 Network Virtual Tcrminals
2.3.2, Rochcstcr's Intdligcnt Gateway VTMS
2.3.3 Apollo Domain
2.3.4 The Virtual Graphics Tcrminal Scrvice

3. Architecture of the VGTS

3.1 The Environmcnt
3.1.1 Thc Stanford Univcrsity Network
3.1.2 The V-System
J.1.3 The VGTS

3.2 The USCI' Model
3.2.1 The Ideal
3.2.2 Reality .

3.3 The Nctwork Graphics Architccture
3.4 The Virtual Graphics Terminal Protocol

3.4.1 SDFs and thcir Manipulation
3.4.2 VaT and View Management
3.4.3 Input Event Managcment
3.4.4 Tcxt Terminal Emulation

3.5 Thc VGTS Clicnt Protocols
3.6 Summary and Implications of the Architecture

3

3
3
4
5
7
8
8
9
9

10
10
11

13

13
14
16
19
20
20
20
21
21
22
23
23
23
23
24
24

25
25
25
26
27
28
28
29
30
31
31
33
34
35
36
37

ii

4. An Implementation of the VGTS

4.1 General Organization
4.1.1 VGTS Implelnentation Modules -
4.1.2 Team and Process Structure
4.1.3 Module Sizes
4.1.4 Adaptive Techniques

4.2 Screen Updating
4.2.1 Implementing Overlapping Viewports
4.2.2 Zooming and Expansion

4.3 Client Interface
4.3.1 Item Naming
4.3.2 Representing SDF Items
4.3.3 Interface to V -System Protocols
4.3.4 Binding the VqTP to a Byte Stream
4.3.5 Network Transport Protocols

4.4 The View Manager Interface
4.4.1 VGTS Conventions
4.4.2 View Manager Menus

4.5 A Simple Application
4.5.1 Basic Operation
4.5.2 Commands
4.5.3 Selecting Alternate Fonts
4.5.4 Generating and Previewing Printed Copy

4.6 Summary of Implementation Status
5. VGTS Design Rationale

5.1 General Protocol Issues
5.1.1 Fundamental Implications of Partitioning
5.1.2 Replication Issues
5.1.3 Caching Issues
5.1.4 Transport Protocol Issues

5.2 Perfonnance Issues_
5.2.1 Code and Data Size
5.2.2 Resource Limitations
5.2.3 Speed of Execution

5.3 Some Simple Models
5.3.1 Comparison to Cache Model
5.3.2 The Time Dimension

5.4 Application Multiplexing Alternatives
5.4.1 Decentralized Control
5.4.2 Centralized Control

5.5 Unifhrmity and Portability
5.5.1 Device I ndependencc of Applications
5.5.2 Uniformity of User Interface
5.5.3 Portability of Implementation

5.6 Custom il.ab ility
5.6.1 Customi7.ability by Programs
5.6.2 Customizability by Users

5.7 Suitability for the Future
5.7.1 Future Display Devices

39

39
39
41
42
42
43
43
45
45
45
45
47
47
47
48
48
49
51
51
51
53
53
53

55

55
55-
57
58
59
59
59
60
60
60
61
62
64
64
64
65
65
65.
66
67
67
67
68
68

5.7.2 Future Comput(~r System Organization
5.8 Backward Compatibility .

5.8.1 Encapsulating Existing Facilities
5.8.2 Relation to Standards

5.9 Summary and Motivation for Measurements
6. Measu rements

6.1 Nature of PerfOImancc Measurements
6.1.1 Benchmark Programs
6.1.2 Test Configurations

6.2 Summary of Performance Results
6.3 Feasibility Evaluation
6.4 Internal Factors

6.4.1 Effects of Graphics Package
6.4.2 Effects of Processor Speed
6.4.3 Effects of Graphics Hardware

6.5 Protocol Factors
6.5.1 Effec~ of Structure
6.5.2 Effects of Hatching and Pipelining
6.5.3 Comparison to Bitmap Protocols
6.5.4 Effects ofTransjport Protocols and Their Implementations

6.6 Network Factors
6.7 Human Factors

6.7.1 J .. evels of Responses
6.7.2 Keystroke Data

6.8 Discussion of Results .
6.8.1 Hardware Factors
6.8.2 Software Factors
6.8.3 Fitting the Model

7. Conclusions and Futu re Work

7.1 Structured Display Files and Virtual Terminals
7.2 User and Program Int(~rface SO'paration
7.3 Transp,\rent Distribution
7.4 Techniques to Improve I>erformance

7.4.1 Protocol Design Techniques
7.4.2 Software Structuring Techniques
7.4.3 Internal Performance Tuning Techniques

7.5 What Can be l .. earned
7.6 More Open Questions

7.6.1 Integration with Editor
7.6.2 IlandJing or Attributes
7.6.3 Other Interfaces
7.6.4 Porting the Implementation
7.6.5 Multiple View Surfaces
7.6.6 Extended Funct.ionality
7.6.7 View Adapting Objects
7.6.8 View Manager Separation

7.7 Final Evaluation
Appendix A. Glossary

Appendix B .. A Short VGTS Sample Program

iii

68
69
69
69
70

73

73
73
74
75
77
79
79
79
81
81
82
82
83
83
85
86
86
87
87
87
88
88

91

91
91
91

·92
92
92
93
93
93
93
94
94
94
94
9S
9S
95
96

97

105

1'1

Appendix C. History of the Implementation

Appendix D. Detailed Experimental Results

0.1 Text Benchmark
D.2 Vector Graphics Benchmark
OJ Sttuctured Graphics Benchmark
D.4 Illustration Data

References

109

111

114
116
120
126

127

List of Figu res

Figure tool: A workstation-based distributed system
Figure 1-2: The wheel of reincarnation
Figure 2-1: Three kinds of approaches
Figure 2·2: Standard graphics package interfaces
Figure 3-1: Hardware organization of the Stanford V-System
Figure 3·2: Software organization of the Stanford V-System
Figure 3·3: High-level VGTS architecture
Figure 3-4: Relationship ofSDFs, VGTs, and Views
Figure 3·5: Possible clients of the VGTS
Figure 4·1: Process and module structure of the VGTS
Figurc 4-2: Example of item naming
}i~igurc 4·3: Encapsulation of the Virtual Graphics Tenninal Protocol
Figurc 5-1: User interactive response cycle
Figurc 5-2: Possib.Ie data partitioning points
Figurc 5-3: Simple request-response time model
Figure 6-1: W orkstatior. con figurations tested
Figurc 6 .. 2: Server host configurations tested

v

4
9

13
14
26
27
30
31
36
40
44
48
56
58
63
75
75

vi

List of Tables

Tablc 4-1: VOTS implementation module sizes
T~lblc 5-t: Comparison of graphics packages to VOTS
Tablc (i-t: Summary of graphics performance
Table 6-2: Summary of text performance
Table 6-3: Effect of graphics pipeline
Table 6-4: Effect of workstation speed
Table 6-5: Effect of remote host speed
'r~lble 6-6: SUN vs. Ethernet-based 780
Table 6-7: ARPANET-based 785 vs. Ethernet-based 750
Table 6-8: Effect of frame buffer
Table ti-9: Effect of structure
Table 6-10: EffectofSDF on memory usage
Table 6-11: Effect ofTep implementation
Table 6-12: Effect of Process Priorities
T~lhlc 6-13: Effect of lKP implementation
Table 6-14: Effect of network bandwidth
Table 6-1.5: Effect of polint-to-point communication rates
TabJc 6-16: Instnlmentation data
Tahl{~ I)-I: Detailed text results
Table 1)-2: Detailed vector graphics results
Table D-3: Detailed structured graphics results
T~lbl(.! D-4: Detailed illustration data.

vH

42
70
76
76
77
80
80
80
81
81
82
83
84
84
84
85
85
86

115
119
125
126

1

Acknowledgements

First I would like to thank my principal advisor Keith Lantz, who served as co-author of several papers that
have been adapted into parts of this thesis. He deserves special thanks for putting up with me through the
years. I would like to thank all other members of the Stanford distributed systems group. including David
Cheriton. who was responsible for much of the early development of the V-System. Forest Baskett started the
distributed graphics project. and initially supported the SUN workstation effort. All three members of the
reading committee, along with Eric Berglund, provided many helpful comments on early drafts.

The systems described here arc the result of the work of many people. Tom Davis and Charles Rhodes
implemented the first version of the snp manager as part of the VI -51 layout editor YALE. Marvin Theimer
performed the initial conversion ofY ALE to the V-System. and implemented the internet server. Per Bothner,
Kenneth Brooks, Craig Dunwoody, Ross Finlayson, Linda Gass, David Kaelbling and Joseph Pallas have all
contributed software to the VGTS as described in Appendix C. Tim Mann found and fixed many bugs in the
V-System. including the kernel and executive. Vaughan Pratt implemented the incredibly fast vector drawing
function discussed in Chapter 6, and provided lTIllch of the pioneering work before the VGTS was even
conceived. Andy Bechtolsheim designed the SUN workstation hardware, without which none of this would
have happened.

Joel Goldberger and James Koda of the USC InH)rmation Science Institute. and William Jackson and John
Larson of the Xerox Palo Alto Research Center provided computer. facilities for the experiments. Finally, I
would like to dedicate this thesis to my wife Elizabeth, who made 1984 the happiest year of my life, despite
the strain of my work.

This research ·was supported by the United Slates Defense Advanced Research Project Agency under
contract4i MDA903-80-C-OI02 and N00039-83-K"0431, by NASA under contract NAGW-419, and by a
National Science Foundation graduate fenowship.

Bitgraph is a trademark of Bolt. Beranek, and Newman, Inc.

The following are trademarks of Digital Equipment Corporation: DEC, DEcSystem-20, Massbus, PDP,
Tops-20, Unibus, VAX, VAX Station, VMS, Vr-100.

Ethernet is a trademark of Xerox Corporation.

Geometry Engine is a trademark of Silicon Graphics. ~nc.

Macintosh is a trademark of Apple Computer Corporation.

SUN Worksllllion is a trademark ofSull Microsystems Inc.

UNIX is a trademark of AT&T Bell Laboratories.

V-System is a trademark of Leland Stanford Junior University.

2 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

INTRODUCTION 3

-1-
Introduction

When computers were first invented, their time was so valuable that elaborate batch systems were devised.
People would spend hours preparing commands and data to be read, processed, .and printed out by the
computer. In the 1960s the concept of timesharing was introduced, dedicating inexpensive terminals to each
user, many of whom shared a compu ter. The first timesharing systems were modeled after batch systems, but
soon the advantages of interalctive programming became worth the extra cost. Throughout the 1970s many
computer systems were designed spccifically for timesharing.

Recent advances in VLSr technology make powerful yet physically small and inexpensive computer systems
feasible. 'Related advances in network technology have made computer systems that communicate to other
systems tl:e rule rather than the exception. One of the ideas behind timesharing can be applied with today's
different cost constraints: replicate inexpensive components and share the expensive components.

1.1 Graphics Workstations

The computing resource dc:dicated to each single user is called the workstation. In timesharing systems the
workstation is just a fixed function terminal, but the falling cost of microprocessors result') in a shift to more
powerful workstations. For the rest of the discussion we will assume that the workstation contains some kind
of programmable processor, some memory, at least one display device, and at least one input device.
Workstations arc often connected in clusters, forming a workstation-based distributed system, as illustrated in
figure 1-1.

The advent of high-perfiormance graphics workstations has been a mixed blessing. Inexpensive
micropro:cssors seem to promise unlimited computing power to satisfy everyone's' needs. However, now that
the information being processed and viewed is becoming more valuable that:t the hardware doing the
processing, old techniques for organizing computing systems arc no longer valid. In particular, common
activities like information display often have processors dedicated to them. but still require access to other
computing resources.

Although they are interconnected. most workstation systems built to date continue to treat the workstation
solely as a fixed-function t(~rminal or a' self-contained personal computer. More interesting roles exist
between these two extremes, especially considering the next logical step in the organization of computing
systems: many computing clements per user cooperating on the same task. To accomplish this cooperation,
the tasks must be partitionc:d or divided at appropriate points depending on many factors. This thesis
attempts to investigate and characterize some experimental attempts at partitioning in a distributed graphics
system. The goal is not a system that solves an the problems of distributed graphics, but rather to design and
build a prototype that can be used to evaluate one approach.

1.2 Role of the Work.station

It is fairly certain that both computing power and communication capability wiJI become more pervasive in
the future. and these trends will continue for some time. At present, however, the bottleneck in the
development of network-based systems has become the software, with much of the potential of powerful
workstation hardware being unrealized. The first key problem is to find the appropriate role fqr the
workstation within the context of the whole system. There are three basic approaches to the role of graphics
workstations in a computing environment: as a terminal, as a personal computer. and as a component of a
distributed system.

4 PARTITIONING OF FUNCI'ION IN A DISTRIBUTED GRAPHICS SYSTEM

Cluster Cluster

Network Network

User User User

User User User

Users Users

Gateway

Workstation

Printer Server

File Server

Timesharing System

Figure I-I: A workstation-based distributed system

1.2.1 The Workstation as Terminal

Cluster

Network

Trunk
Network

Long-haul

Network

When a low perfonnance workstation is used with a timesharing system, it is convenient to treat the
workstation as a terminal [91]. This concept applies not only to traditional alphanumeric terminals. but also to
bitmap (called Hall points addressable" by I BM) displays. Bitmap displays contain an area of memory which
stores every pixel of the displayed imagc. The auvmltages or using graphics ~crminals with timcsharing
systems has been recognized for many years. but the cost of the necessary dispiny hardware. compute power,
and communications bandwidth has been proribitive until recently [70].

One of the first graphics workstations with local network capability was the Alto. designed and built by the
Xerox Palo Alto Research Center (PARC) [142]. The ADIS System [127]. the Alto Terminal Program [12],
and Deutsch's Remote BitBlt protocol [47] were developed to allow programs on a timesharing system to use
an Alto as a display device across a network. However, in each of these protocols all but the lowest level
viewing operations were done on one particular host, with the workstation only manipulating bit.maps. This
was due to the limited speed and main memory capacity of the A1to, designed in the early 19708. Since

INTRODUCfION 5

current workstations have faster processors and larger memories, new architectures should take advantage of
this increased power. .

Bell Lab's Layers System [105] for the Blit teffilinal [72], now caned the Teletype 5620," provides a similar
bit-map interface to the application. An application can run on the terminal 'and communicate to a (single)
host using a higher-level protocol. Unfortunately, these protocols are not standardized, and the Layers system
is ·only designed for one particular kind of workstation to communicate with one kind of operating system.
Since many users are only concerned with one operating system or one terminal, these systems may be
successful. In fact, the ability to act as a terminal is an important capability that should be included in any
workstation-based system. However, even the design'ers of the Layers system are working on a more flexible
approach that does not waste the power of more advanced workstations.

1.2.2 The Workstation as Personal Computer

For higher performance workstations, one popular approach is to construct a small model of a larger
timesharing system. This is a simple and powerful idea pioneered by the Alto computer at Xerox PARCo and
now adopted in many new products. Examples include the various Lisp Machines [16], the Perq [144], and
many other new commercial systems being announced weekly at the time of this writing.

One principle motivation behind the personal computer approach is to avoid the partitioning problem, and
instead offer a single "integrated" system. But in reality each personal computer is isolatcd~ resulting in a
highly partitioned system with the following practical problems:

• Cost: There arc economics of scale involved in devices such as disks. For example, 30 10 Mbyte
disks cost much more than a single 300 Mbyte disk. A moderately sized disk would essentially
double the current cost of the workstation. Typically configured Lisp Machines sell ["()r $100,000
to $200,000. Since many organizations do not have $1000 terminals for each member, they
certainly will not spend 200 times that amount for a single user.

• Reli~lhility: An office environment is not as controlled as a clean, air-conditioned machine room.
Preventive maintenance and repair of delicate mechanical equipment is much easier for
centralized facilities.

• Vlcxibility: The personal compllter model provides for rigid control on the number of users; if
you arc not one of the few who own one, or find one to share, you can not use &lily computing
resources during peak hoors.

• Performance: There arc two aspects of perfonnance. Although fast response to user interaction
(such as editing [57]) favors personal computing, high-throughput and low-interaction activities
(such as compilation) favor large shared processors.

• Comfort: Adequately sized disks are large and noisy, producing an unwelcome intrusion into the
off-icc environment, with associated power requirements and heat dissipation problems. For
example, the Xerox] 100 Lisp workstations at Stanford arc physically centralized, with only the
displays and keyboards outsi(.k l.he machine room.

• nuplic~ltion: Many of the files on each disk arc duplicated. This obviously wastes space. but
more importantly, it causes problems with propagation of updates and useless duplication of
software maintenance effort.

There will still be many commercial1y successful personal computer products. For example, the entire
UNIX [111] operating system has been ported to a workstation with a local disk interface for each
workstation [68. 118]. Reasons for this success include the value many people put on total control, and the
"personal" nature of much computing [U6]. For instance, a small business would probably initially prefer
one self-contained personal computer.

6 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

However, if that business outgrows the single personal computer, a~d wishes to share large distributed
databases, the problems described here will eventually arise. Except for the low-performance computers
purchased for home use, most so-called "personal" computers used for science and busness are actually
purchased by some group or department, and are therefore actually shared. Furthermore, the high cost of
these scientific workstations has limited shipments to only a few thousand units [153]. For larger, multi­
person projects that are performed in research and development environments,. small self-contained systems
are not always desirable.

Even if workstations are available, current researchers still heavily use centralized server hosts. The
following are some reasons it might not tie possible or desirable to run aU applications on the workstation:

• The application may require fast floating point hardware.

• The application may require large virtual or physical memory.

• The application may require frequent access to a large database.

• The application may be written in a particular language or dialect.

• The application may require a license to run on each different CPU.

• The application may access secure in formation that should not be transmitted over a network.

• The application may perform I/O directly to a particular device.

• The application may contain dependencies on a particular machine or operating system.

Even if the ne.;cssary resources are available as an option for the workstations, they arc often too expensive for
widespread usc.

One could argue that since hardware costs arc decreasing, the personal computer model will inevitably
dominate in the end. But the decrease in hardware costs means that software costs become relatively more
important [156.1. It is wetl known that tJle largest portion of software life-cycle costs goes to maintenance.l18].
Therefore, ease or software maintenance should be an important issue in evaluating a computing system
architecture. Wilh individual personal computers. all users have to do lheir own software maintenance. This
resulL~ in a potentially enormous increase in the costs associated with distributing and installing new versions
of software.

·Even considering only hardware costs. self-contained personal computers may eventually become more
expensive than other alternative~. One might reason that since memory costs are decreasing. and memories
are getting more dense. the trend will be to compuler systems with higher ratios of memory to processing
power. However. a typical compllter ten years ago was an IBM System/370 with about a million bytes of
physical memory [104]. Today. a representalive computer is the I BM PC. with almost half the processing
speed. but only one tenth as mllch memory, typically about lOOK bytes [54]. or course lhe lower price of the
PC means thal many more people can affhrd one. On lhe other hand, the organizalion that len years ago had
a 370/13~, can now aff()rd a machine with a processor about eighl times (llster and sixteen times as much
memory. I Jarge computers are expanding principally by adding memory, while smaller computers are getting
less expensive principally by keeping memory small.

More interesting evidence is nie relative price of memories and processors. Today an MC68000 processor
costs about $50, and a 64K bit memory chip costs about $5. '111US. if a system has more than about tcn
memory chips per processor chip. the memory cost will dominate. Since the cost to produce integrated
circuits in large quantilies depends moslly on packaging considerations such as the number of pins. the ratio
of processor to menl0ry cost will probably stay fairly low. This provides motivation to design computer

INTRODUCfION 7

systems that take advantage of low-cost processors by replicating them for each user, but share expensive
resources such as memory. .

1.2.3 The Workstation as a Component of a Distributed System

Since most researchers who usc personal computers quickly recognize the problems caused by isolation,
manufacturers usually provide some fonn of communication capability. For example, a file transfer program
may be used to transfer files either explicitly or semi-automatically between the personal disks. Other
approaches use a remote disk or logical fi1e system to intercept operations at the appropriate level, and route
them instead to a remote disk or file access user module. There are many practical reasons to eliminate
expensive components such as secondary storage from each workstation. A diskless workstation is
inexpensive, small. quie~ and has almost no moving parts to break.

Several efforts, such as Locus at UCLA, modified standard operating systems to allow shared and replicated
file systems [150J. Berkeley 4.2 UNIX was intended for diskless operation, although for perfonnance rcasons
most 4.2 systems still have local disks. and all programs still run on thc workstation [68]. Some attempts
extend timesharing systems to handle remote execution [53]. but a more comprehensive solution is needed.
The file servkc·abstraction. developed in projects such as Woodstock [137], can be gencralized into the server
model, resulting in more flexibility of interconnection.

1.2.3.1 The Server Modlal

The architecture to be prc!sented in Chapter 3 treats the workstation as a multi-function component of a
d~stl'ib~lted system. We do not waste its power by treating it solely as a terminal, nor do we isolate it from the
rest of the world, under the false assumption that it can be all things to all users. Rather, by supporting a
distributed operating system the workstation may perform any function best suited to the user, the hardware,
and the applications at IUlnd [79,86, 109, 155]).

]n this view, the operating system is just a collection of servers. and a way of accessing those· servers. An
implementation of this model usual1y consists of cooperating kernels providing an inter-process
communication system, and. services implement.ed as processesl . The kernel or a server-based operating
system acts analogously to a hardware bus, being essentially a communications. switch. In addition to the
physical wires used to connc~ct modules in a hardware bus. a standard protocol is agreed upon to define the
semantics of the comm(mication. Similarly, in our software model, in addition to the ability to send message,
a protocol is defined for the meaning of the mes&'lges.

This model docs not make the system versus user distinction; the design is in terms of "clients" which
invoke the services of a particular server. For example, the concepts of "terminal" and "personal computer"
are now merely roles played by some collection of pro<;esses and processors at any given time. The result is
much more flexibility in the partitioning of the resulting system.

1.2.3.2 Network Transparency·

By considering the workstation as a component of a distributed system, we could consider a single
underlying communication concept for "network transparency." In general, network transparency is a
worthwhile goal: programs should be as independent as possible of the location of their execution and the
resources they use. However. every system has a boundary on this transparency, so the problem of
communicating to the outside this boundary must be addressed eventually. In fact. all the computing

] In fact. in many ways the kernel itself can be viewed as a server, providing objects such as processes and messages.

8 PARTITIONING OF FUNCnON IN A DISTRIBUTED GRAPHICS SYSTEM

resources in the world can be considered a single computer system, with many disconnected components.
This motivates communication between various kernels which may have' vastly different underlying
communication concepts, resulting in what might be called a distributed kernel. Network communication
always has some cost associated with it, so perfect transparency is never possible with respect to performance.
Chapter 3 describes a system which has been developed to help address some of these issues.

1.3 Kinds of Pa rtitions

The hardware trends discussed in the previous sections result in a physically distributed computing system,
with a corresponding partition required of the software. There are several forms that partitioning can take,
some of which are introduced below.

1.3.1 Physical Partitions

Computations can always be done more efficiently on machines that are built specifically for a particular
purpose. For example, a machine with large and fast disks is needed for fast searching of databases, while
interacting with a user requires powerful graphics capability. This suggests a physical partitioning by putting
particular operations onto specially built machines.

Partitioning has a long history in the field of computer graphics. Due primarily to the high cost of
hardware, graphics systems of the 1960's consisted of relatively p~werless graphics devices connected directly
to relatively large-scale computers, either single-user or time-shared. However, as the graphics devices
became more sophisticated, the load on timeshared hOSlS, in particular, became insufferable.

Fortunately, the minicomputers of the 1970s led to satellite graphics systems that served to offioad a­
variable amount of graphics functions on to another machine [51, 55, 62, 148]. By judicious partitioning of
responsibility between the host and the graphics devic'~, it was possible to achieve both better response and
higher throughput. The m(~re powerful the graphics processor, the more functions that could be offloadcd,
until the satellite system took on the appearance of the host. Taken to its extreme, this branch of evolution
led naturally to the personal computer - completing a round on the Wheel of Reincarnation [101], as
illustrated in Figure 1-2.

In configuration 1 of Figure 1-2. the processor directly controls the display device .. In configuration 2, the
display commands are accessed directly from the processor's memory. In configuration 3, a special dual-port
memory hold the display commands. In configuration 4, a second processor has been added to send
commands to the display from the display buffer. The display control is similar to configuration 1, except for
the communication channel to the main CPU. At each step through this cycle the partionability problems
must be addressed. I n fact. the amount of distribution of function increases at each cycle.

For the 1980's, increasingly powerful workstations. together with the proliferation of networks, have made
truly distributcd graphics possible. The highcr bandwidth of available nctwoJoks. when comparcd to that of
prcviolls host-satcllite ilitercollncctions, makes it even morc feasible to achievc bettcr perl{)fInance by
partitioning the application between machines, cspecially if thc remote host is significantly more powerful
than the local workstation. Moreover. it is now possible for a single workstation to have access to mUltiple
backend machines. possibly simultaneously. Many of those machines may support graphical applications that
can not be executed on the workstation - due to memory or language requirements, for example - but can use
the workstation for output.

On a hardware level, a given computer system may contain several different processors, and even a single
processor may be implemented as several functional units. This is consistent with further travel on the Wheel

INTRODUCTION

Display
Processor

Display

Device

Display
Buffer

4

Display

Programmed

1/0

1

Device 3

Figure 1·2: The wheel of reincarnation

9

DMA
Display

Device
2

of Reinc,arnation model cited above. These parallel architectures provide much promise for the future, but
this thesis will concentrate on partitioning at higher levCls. Before experimenting with partitioning problems
into many pieces (which will be required by future hardware), we should have a good understanding of how
to partition them into two pieces. '

1.3.2 L.ogical Partitions

In addition to the physical partitioning that may be motivated by cost and performance, experience in
developing local are~ networks by the author has resulted in the realization that long before networks reach
the~r physical size limits. they usually become unmanageable once they span several bureaucratic boundaries.
Even if the network is physic(~lIy contiguous. artificial division along organizational lines is often desired.

There is also a more fundamental logical partitioning between graphics systems and the application
program. That is. system designers must determine which 111cilities the graphics system should provide and
which the application should provide. Similarly. even when the functions or the service are decided upon, the
server may be implemented in many ways by partitioning its functions between modules or processes, tor
example.

1.3.3 Static and Dynamic Partitions

Another attribute of the partition is when it is performed. A static partitioning is performed once when the
program is designed, configured, or initialized. More ambitious projects might try to partition dynamically
during nm-time.' Load 'sharing is the usual motivation for dynamic partitioning. '111is involves migrating tasks

10 PARTITIONING OF FUNCfION IN A DISTRIl3UTED GRAPHICS SYSTEM

to more evenly distribute the load among several computer systems. I .. oad. sharing can be used only when the
systems arc relatively homogeneous. In this work we will deal with heterogeneous systems consisting of
dedicated workstations and centralized server hosts.

There have been a few attempts at dynamic partition ing in heterogeneous systems, by assigning tasks to
either the mainframe or host depending on current workloads. For instance, the ICOPS system at Brown
University attempted to perfonn dynamic partitioning [146, 128]. One application using the Brown
University Graphics System (BUGS) was dynamically distributed between a mainframe and a
minicomputer [97]. In another example, the CAGES system at the University of North Carolina automatically
generated the linkages at compile time for distributed graphics programs written in PL/I [62]. More
interesting would be a solution to the problem of handling multiple applications or mUltiple languages
simultaneously. .

We shall sec enough problems with static partitioning that it is not clear if dynamic partitioning is worth the
cost. In either case, efficient techniques for. static partitioning and effective measurements and evaluations are
prerequisites to solving the more general problem. Without the ability to easily experiment with static
partitioning, dynamic partitioning should not even be attempted.

1.3.4 Total and Partial Partitions

Unfortunately the word "partition" has taken on a fairly specific mean,ing in the terminology of networks.
It usually refers to a single network that is divided into two or more totally disconnected smaller subnetworks
because of a failure of one or more components. A ty'pical example of this kind of partitioning involves the
failure of several links or a gateway. causing a network to divide into disconnected parts. It is desirable to
continue functioning as much as possibl.e within each n(!twork partition.

f

However. if the disconnected subnetworks never reconnect. then the problems arc just the same as tl10se of
several smaller networks in isolation. The interesting situations occur only when the parts are reconnected,
and infbrmation flows again between the parts. Experience with the Stanford University Network has been
that in reality slow or partial degradation is much more common than total failure.

This thesis concerns i·t~elf only with the information flow between the parts of a connected system, not the
details of recovery from link errors after total partitions. A partial partitioning. in which communication
between the parts is possiblebut more costly than communication within each part, may be inevitable or even
desirable. Additional reasons for this wilt be discussed in in Chapter 5, in particular the sections on future
computing system organizations.

1.3.5 Protocol Design: the Result of Partitions

Many critical choices must be made when designing the protocols or interfaces between the part" of a
distribuled system. The protocols should be at a high enough level to make the communication efficient. hut
tlexiblecnough to allow f()r most users' needs. The designer mllst anticipate the degree or fUl1ctionality that
users will want. and provide enough services to achieve that functionality. or else the system will be too
restrktive to lIde. At the same time. if the service provides too many features. or requires too much interaction
with the client, the performance will not be adequate. This tllesis evaluates the protocol choices made in one
design of a distributed graphics system.

INTRODUCrION 11

1.4 Overview and MajorContril?utions

The spectnlm of roles for graphics workstations from fixed-function tenninal to self-contained personal
computer was examined in this chapter, along with motivations for the study of the partitioning problem for
distributed graphics systems. The next chapter discusses three different approaches to related problems:
traditional standard graphics packages, object-oriented window systems, and virtual terminal management
systems. Chapter 3 presents the Virtual Graphics 'rerminal Service architecture in fairly abstract terms. In
particular, the protocol between the server and a client application program is specified. Chapter 4 describes
a prototype implementation of the Virtual Graphics Terminal Service, the VGTS user interface, and a sample
application program. Chapt(~r 5 investigates some issues involved in partitioning of function. the rationale
behind the choices made in the VGTS design, and some simple performance models to motivate experiments.
Chapter 6 gives the results of these measurements. and discusses the cost/perfonnance tradeoffs. Finally,
some conclusions and directions for future work are drawn in Chapter 7.

Although many people were involved in the development of the VGTS. this thesis concentrates on the
following major research contributions by the author:

1. The virtual terminal concept was extended to support graphics by incorporating support for
structured display files, as well as conventional textual intcraction. The abilities of virtual
tenninals to support multiple distributed applications are c.ombined with the power and
port.ability of structured display files. .

2. The application interface for defining graphical objects was specified and implemented separately
from the user interface for viewing those objects. Both the advantages and disadvantages of this
strict separation are discussed.

3. The protocol used for defining objects was extended transparently across networks using several
transport protocols, reSUlting in distributed graphics programs. These programs were actually
used, so performance constraints were stringent.

4. Measurements were performed to detelmine the effect of various factors on performance of
graphical applications. The measuremcnts verify that performance is insensitive to network
bandwidth, but depends heavily on CPU speed and protocol characteristics. Using structure
provides important speed improvements in some cases, but other basic factors such as inner loop
optimization and proper batching of requests make even larger differences.

The results show that the VGTS is suitable for a large class of applications, and can be used as a basis for
much fu rther research.

12 PARTITIONING or FUNCfION IN A CISTRIBUTED GRAPHICS SYSTEM

RELA TED WORK 13

-2-
Related Work

This chapter compares the: evolution of three separate kinds of systems related to distributed graphics, as
illustrated in Figure 2-1. The arrows in this Figure arc drawn in the direction of control flow. The first and
oldest line of development is the traditional standard graphics package, with the application programmer in
control over a graphics library. The second deals with so-called "object-oriented window systems" for
personal workstations with the user in ultimate control. Finally, a third concept, virtual terminals, combines
both other approaches, with the user in control of the viewing process while the applications control the
objects being displayed.

Application

Graphics

System

Terminal

a) Traditional standard
graphics packages

I User Methods I
,j'

.,~

View Graphics

Manager System

t .,,.
User Terminal

b) Object-oriented
wi~dow systems

Figure 2-1: Three kinds of approaches

2.1 Standard Graphic~ Packages

Applications

Virtual'

Terminal

System

'User Terminal

c) Virtual terminal
management systems

It is important to examine the long history of Computer Graphics to discover what functionality has been
determined to he important Although many efforts have involved ad hoc systems to. produce a particular
picture or support a particular device, several standard efforts are more promising for our needs. Although
we are concerned with distributed systems for workstations, standards have the advantage of making graphics
software more readily available. Standards shquld also be studied so the common concepts and terminology
can be developed to comparc~ different approaches.

Early graphics systems were usually "packages" of fUI~ctions called by application programs. The few
dominant manufacturers of graphics devices, slich as Calcomp and Tektronix. established de jilc/o standards
until the 1970s [76J. Users first would link a program with the appropriate object library. \\'hen the program
was executed it would read some input data and produce output through the graphics functions. Since
graphics devices were expensive, a package was usually concerned with. one kind of device. If the tlser wanted
output on another device, either the program could be linked with another version of the graphics library, or
the library would handle several possible graphics deviGcs at run-time.

These types of graphics systems are most common since they have been in use for many years, and thus arc
the subject of many standardization efforts. Figure 2-2 gives an overview of the interfaces between

14 PARTITIONING or FUNCflON IN A DISTRIBUTED GRAPHICS SYSTEM

components of traditional graphics packages. At the highest level are application databases where models are
stored. One standard database format is called 10ES for Initial Graphics Exchange Standard [3]. This is a
common database fonnat to allow a user to exchange computer aided design data between systems of
different manufacturers.

Metafile

VOM

Hardware

Standard

Device

g
IGES

Application

Database

GKS. Core. PHIGS. etc.

VOl

Device

Driver

Figure 2-2: Standard graphics package interfaces

NAPLPS
Converter

NAPLPS

·NAPLPS

Device

The application's interface to the graphics system has seen the largest amount of standardization, with many
similar but incompatible standards for this levc1 such as G KS, CORE. PIIIOS, and others, to be described in the
remai'nder of this section. Some attempts at lower levels of standardization include: VDI, between the
graphics system and the device driver, and NAPLPS. between the device driver and the device.

2.1.1 The SIGGRAPH CORE Graphics System

The ACM Special Interest Group on Graphics (SIGGRAPII) Graphics SUlIldards Planning Committee
report. commonty known as CORE. has become widely used as a model for graphics systems [147]. One major
motivation for this standardization attempt was the undesired distinction made at that time between directed
beam (vector refresh) graphics d~vices, and storage tube (and hard copy) devices. The importance of device
independence was emphasized at the 1976 Computer Graphics workshop in Sei11ac, France [60]. This
workshop attempted to unify the treatment of the two kinds of graphics devices, and fOlmed a basis for many
·subsequent graphics packages such as CORE.

RELATED WORK 15

2.1.1.1 Device Independlence

Hard copy and storage tube devices have a simple physical concept of a current location. For example, in a
pen plotter the location of the pen was obviously visible. A sequence of move and draw commands was the
most natural way to think of how a pen plotter created a picture. The CORE system extended this move and
draw concept to three dimensions, using a synthetic camera analogy. Other state infonnation such as the
color or size of the pen, was also extended into the CORE system. The application constructed a model of the
object in its own internal data stnlctures, and would usc the graphics package only for viewing operations.

On the other hand, directed beam graphics devices usually had display lists, which were traversed
repeatedly to display the picture. Changing one clement in the display list would instantly change the item
being displayed, while storage tube and hard copy devices would be erased and redrawn completely for any
modifications besides additions. COR'E used the concept of segment to represent this retained graphics
in formation.

2.1.1.2 Coordinate Syst1ems

Another important contribution of CORE was the understanding of the importance of different coordinate
systems. The CORE System and most other subsequent graphics packages deal with three coordinate systems:

1. World Coordinates (We) arc arbitrarily defined by the applications programmer. In CORE these
are floating point numbers in either two or three dimensions.

2. Nonnalized Device Coordinates (NDC) arc used to define a uniform coordinate system for aU
display surfaces. In CORE these arc two dimensional floating point numbers between zero and
one.

3. Device Coordinates (DC) represent the actual units used by the display device, usually unsigned
integers of ten to sixteen bits. '

CORE implementations map from world coordinat.es to normalized device coordinates, with a driver fOI" each
device mapping from normalized device coordinates to actual device coordinates. This allows most of the
graphics package implementation to be retained when new graphics devices arc introduced.

2.1.1.3 CORE as a Standlard

The CORE System was defined as a set of language-independent functions, with the mapping from the
abstract function names t.o programming language identifiers left undefined. This resulted in
implementations that were incompatible in many detaa1s. although system models and basic concepts were
fairly consistent across most implementations.

Although the CORE system was proposed in 1977. ~md was revised in 1979. in tive years it has not yet
become an official standard., and may never become one, due to the sliccess of European standardization
eff(lI·L'i. There has been much more experience in the areas or portability' and device independence since the
197tJ report. as well as some reconsideration or the way modeling and viewing were separated in CORE [133].
Since these issues arc also important in a distributed system. the CORE system was not suitable for ollr work.
However. CORE influenced subsequent standardization attempts, described in the next sections, that have
overcome some of its problems.

16 PARTITIONING OF FUNCl'ION IN A DISTRIBUTED GRAPHICS SYSTEM

2.1.2 The Graphical Kernel System

The Graphical Kernel System [64] has become a popular standard that started in Europe with the German
DIN (Deutches Institute fuer Normung) and spread to America. German standards are specified and
adopted morc quickly than American standards because DIN is a government body while ANSI is a volunteer
organization requiring the consensus of competing industrial representatives. Although they arc intended to
be as close as possible, there are some slight differences between the ISO GKS and American National
Standards Institute Committee on Computer Graphics Programming Languages (ANSI X3H3) version of
GKS. Most notably, due to the complexity of the GKS standard (which already has nine levels of subsets)
ANSI committee X3H35 has defined a subset ·of the lowest level of functionality, called the Programmer's
Minimal Interface to Graphics, or PMIG [122, 2].

2.1.2.1 GKS Workstations

GKS uses the workstation concept to represent some logical input devices and one associated output device.
lbis is in contrast to CORE in which only supports one view surface and does not support any relationship
between input events from different input devices. GKS explicitly states that one application can manipulate
multiple workstations; 110 mention is made of several applications sharing a single workstation. 'fhe idea of
placing the I/O devices on a physically separate machine from the one running the application program was
one of the original motivations for the workstation concept [48], but most implementations of GKS have run
on only one machine. Section 2.1.2.7 will discuss the problems involved in a distributed GKS
implementation. The distribution capability has some subtle but important effects on the' structure ofGKS.

2.1.2.2 GKS Output Primitives

The graphics primitives used in G KS, simil.ar to those in CORE, arc the following six:

1. Polyline: A set of connected lines drawn between a list of points.

2. Polymarker: Symbols of one type are centered 'at given positions.

3. Text: Character strings are drawn at a given position. There are many attributes to control the
orientation, spacing, and justification.of text.' .

4. li'i11 Area: " polygon which may be filled with a uniform color, pattern, or hatch style.

5. Pixel ArnlY: An array of pixels with individually specified colors or intensities is displayed.

6. Gcncralilcd nmwing Primitive: A set of points is t.ransformed and passed through to the device
dependent driver.

The generalized drawing primitive is intended to ta~e advantage of special functions of the workstntion, such
as the ahility to draw arcs or curves. Note that there is no notion or current position as in CORE. and
operat.ions arc in two dimensions only. Three dimensional extcnsions urc currcntly under dcvelopment.

2.1.2.3 GKS Attribute~

Abstracting slightly from the hard-copy analogy. GKS and CORE retain current values for each of several
aflributes, representing the state of the drawing device used for relevant output primitives. Thus. although the
notion of current position docs not uppear in G KS. the state variables necessary to simulate a drawing device
are still needed. For exmnple. the polylinc primitive has line-type (solid. dashed. etc.). width, and color
attributes. However, in G KS bundle tables can be used to group attributes. Instead of specifying every
attribute on every output primitive. an index into the bundle table (a sma)) integer) is specified, and the table

RELATED WORK 17

gives values for all the attributes. For example, instead of specifying a color absolutely everywhere it is used,
it could be defined only once to simp lify changes.

2.1.2.4 GKS Segments

GKS segments are named with integers specified by the application. Segments m~y be transformed, made
visible or invisible, highlighted, ordered from front to back, deleted, renamed, and inserted into other open
segments. Every primitive within a segment can have an attribute called the pick identifier which establishes a
second level of naming for use with the pick input device. However, the primitives within a segment cannot
be modified; the pick identiffter serves only to distinguish parts of a picture used for graphical input. There is
an explicit function to set t1l(~ pick identifier. All primitives added to the segment until the next call to this
function-will have the same pick identifier.

In GKS segments can be posted on actual workstations, called Workstation Dependent Segment Storage or
Wnss. In addition segments can be sent to Workstation Independent Segment Storage (Wrss). Segments can
be moved back and forth b(~tween WISS and WDSS (actual workstations) under control of the application
program.

2.1.2.5 Graphical Input nn GKS

The concept of logical input devices was used as a basis for extending device independence to graphical
input in GKS as well as CORE [152]. The CORE system treated input and output functions as orthogonal
concepts., so, for example, tl1e selection of view surfaces had no effect on echoing. On the other hand, GKS
associates logical input devic(~s with workstations. GKS provides the following classes of input devices:

Locator ProvidGs a position in world coordinates and a transfonnation number, detennined by the
viewport in which the input occurred. A trackball or joystick is the typical locator device.

Stroke Provides a series of positions in world coordinates and a transformation number.

Valuator Provides a single real number scalar value, from a one-dimensional device such as a rotary
d~L .

Choice Provides tl1e ability to choose among alternatives, like the button device in CORE. A non­
negative integer indicates a selection, and zero indicates no selCction.

Pick Provides a pick status. a segment name and a pick identifier (the item "picked"). Primitives
outside segments cannot be picked. The typical pick device is the light pen, which senses
when the beam of a CRT passes over tl~e point underneath its tip.

String Provides a character string, similar to the keyboard device in CORE.

The original G KS specification did not have the stroke device class, since it can easily be built on top of other
primitives. given a suilablescmantic model or input devices [113].

At any time a logical input device is in one of three modes:

Request Allows the input device to accept request commands. When the application issues a request, GKS
waits until input- is entered, or tile operator enters a break action. Control is then passed back to
tile applicati~n.

Event G KS maintains an event queue. An event report on this queue contains tl1e logical dcvice
number and a value from that device. Events are generated asynchronously by operator action.
An application can wait for an event, remove it from tile queue, or flush events from t11C queu.e
without reading them.

18 PARTITiONING OF FUNCflON IN A DISTRIBUTED GRAPHICS SYSTEM

Sample Allows the input device to accept sample commands. Sampled devices do not cause events on any
queue, but are instead polled by the application. When the application issues a sample command,
GKS returns the current value of the device without waiting.

2.1.2.6 GKS as a Standard

Like CORE, GKS was defined as an abstract set of operations instead of a particular interface in a particular
programming language. However, efforts are underway to standardize language bindings, so there is a greater
chance that GKS programs can truly be portable. A FORTRAN binding is induded in the ANSI standard, and
work on other language bindings such as C [114] is underway. Unfortunately, even these standard binding
efforts are hampered by the many different dialects of these languages.

Full G KS (highest levels for both input and output) includes 110 functions p'Ius 75 inquiry functions. The
lowest level of ISO GKS requires 52 functions plus 38 inquiry functions. The lowest level of ANSI OKS (no
input) requires 31 functions plus 17 inquiry functions [122]. Of course, counting the number of functions is a
very coarse measure of complexity. but by most measures GKS seems to be a much simpler system to
implement than CORE. Th~re are proposals for 3D extensions to GKS, since this lack is the major reason why
American groups like BIGGRAPH oppose the standard.

2.1.2.7 A Distributed Implementation of GKS

One of the principle advantages of OKS for distributed workstation':'based systems is the ability of the
workstation concept to allow potential distribution. A recently-announced product caned NOVA*GKS is an
implementation of GKS that can be distributed across several machines, but still allows only one application
to be run at a time, and handles only one host at a time [149]. Nevertheless, NOVA*GKS can be examined as an
example of a distributed graphics system using OKS. The NOVA*GKS implementation consists of four major
layers:

1. OKS Interface - provides the functions specified in the OKS standard, implemented as modules
that arc linked with an application program. .

2. Workstation Manager - handles device independent aspects of workstations, including
workstation independent segment storage (WISS).·

3. Workstation Supervisor - provides software simulation of OKS functions that are not directly
supported by the physical workstation or the device driver.

4 .. Device Driver - low level device driver, which implements the graphics primitives and maps into
device coordinates.

Between each set of layers. an interesting coupling scheme is.used. Instead of directly calling the functions in
the lower level. all accesses must funnel down through a single lower level supervisor function. The lower level
supervisor can then either be a large case statcmcnt which fans out lo al1 the appropriate lower level
modules, or it Gill encode the functions over a communication line to a remote processor. where the fan-out
then takes place. Thus the choice of where the communication ulkes place and even the kind of protocol used
can be done at link-time with no changes to the rest of the .Jackagc.

2.1.2.8 Adding Structure to GKS

Proposed 0 KS output level 3 support.') structured segments [130]. The later Chapters of this thesis provide
evidence that structured segments provide performance increases in a distributed environment. As the name
implies, this proposal is upward-compatible with the other levels of 0 KS. The main addition is the ability of
segments to can other segments. An existing segment can be reopened for editing, and clements can be

RELATED WORK 19

inserted and deleted: Editing is perfonned using an element number, an integer count of elements within a
segment. For example, the first element in ·a segment is number 1, then 2, etc. It is not dear what happens
when an clement is added or deleted from the middle of a segment - probably all the element., change their
numbers, leading to possible confusion. For this reason labels may be used to·refer symbolically to elements
instead of using their numbers. Labels are known only within a segment; separate external names are used to
name whole segments.

The transformation of each primitive is the concatenation of all segment transformations of the ancestors of
the primitive. Thus a stack of matrices is stored, starting with the identity transformation, mUltiplying the
current matrix by the cal1 transformation matrix and the called segment transformation matrix, and pushing
the result onto the stack for each segment, starting with root segments.

The contents of segments can retrieved, and segments can be stored on meulfiles. There is a call to write
private data to the segment. which seems to indicate a desire to usc the segment facility as an application
database. 1\ total of 15 new functions are added to GKS for this level, so the complexity of(iKS is increased
only slightly. However, run·time overhead could be significant, since a total of 29 attribut(!s (in addition to
the transformation matrix) are pushed and popped during each segment traversal. The G KS output level 3
proposal was a reaction to the PIIIOS effort to be described next. The principle advantage is compatibility
with many GKS inlp)ementations and applications currently being built.

2.1.3 The Programmer's HierarchicallnteracUve Graphics Standard

A more recent standardization effort has produced the Programmer's Hierarchical Interactive Graphics
Standard (PI UGs) [4]. As its name implies. Pmos allows arbitrarily deep hierarchica1 specification of
graphical objects, instead of the less gen('ral segmentation mechanism in CORE and current OKS. One of the
stated reasons for this more elahorate 'structure of objects is the increased effectiveness of making changes to
the display in support of interactive graphics. An important design criterion was to provide adequate
performance in interactive applications, by taking advantage of today's more pow,?rful graphi'cs workstations.

~Ille actual display primitives in PIIIGS are similar to those of OKS, although they appear in a more
elaborate framework. There arc both 2-dimensional and 3-dimensional functions. Display primitives, along
with attributes, viewing operators, modeling transformations, and references to other structures, can all be
element~ of a structure. Structures can be edited. by deleting and inserting elements.

PIIIOS includes the concept (;r workstations, but workstations do not logically store the graphics data. An
applicatuon program defines a picture by adding entries to the device independent structure database. The
workstation driver then reads the database to cause the physical terminal screens .to be drawn. Each
workstation has at most one fixed-size rectangular viewing surface, and may have any ,number of input
devices. Workstations have descriptor tables that describe the capabiJitics of the workstation. The
applicatuons program can inquire about which capabiJitics are available and adapt accordingly. Although
programs writtcn using this featurc can work on several different types of workstations, thc application
programmcr must anticipate all possible configurati()ns when thc program is written.

r:ach attribute corresponds to a "register" of a virtual workstation; these registers are changed by commands
in the header of each structure, and objects are rendered in the color that, is in the registers at the time of the
rendering. Unfortunately this introduces much complexity in the device driver, because it must keep track of
the state of all of these virtual registers.

20 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

2.1.4 The LBL Network Graphics System

The Network Graphics System was developed by Lawrence Berkeley Laboratories as an extension of CORE

for a network environment [24]. Although this is an on-going development effort. as opposed to a proposed
standard, NGS is similar in spirit to PI-IIGs. Like GKS and CORE, it was designed for vector refresh and
storage tube devices, and later extended to raster devices.

lbe Network Graphics System allows the definition of hierarchical structures. which can be deleted or
appended, but not otherwise modified [25]. Attribute information is stored separately from the object
definitions, so it can be changed dynamically. Attributes can be bundled, or controlled explicitly and
individually. ·Even though bundling capability is provided, the authors state that direct control is expected to
be used most often.

2.1.5 Virtual Device Interface and Metafile

Since most graphics packages use some form of normalized device coordinates, this is another logical
candidate for a standard partitioning point. The graphics package can be written in terms of a virtual device,
which is then implemented on the physical device. The Virtual Device Interface specification (VOl) is yet
another graphks standardization effort of ANSI committee X3H33 [7]. As shown in figure 2-2, the Virtual
Device Intcrt~lce specifies the low level target for graphics packages. The Virtual Device Metanie (VDM)
standard [5], similar to that developed at Los Alamos National Laboratory [110], is an encoding of the Virtual
Device Interface into a stream of bytes to be stored on a file.

As indicated in Figure 2-2, the VDI specification could be realized in a real device, or at least a "black box"
which the user treats as a hardware device. The device drivers would be written by the manufacturer of the
graphics device, instead of the author of the graphics system. Since the VDI specification is precisely defined,
it should be possible to put the implementation of the the virtual device on a different machine than the one
running the graphics package. Unfortunately, this interface i.nvolves both a high frequency and large amount
of information interchange. Thus it may not be suitable for partitioning when communication costs arc high.

2.1.6 Videotex and Telete.xt Systems

Other syst(:ms have been developed for situations with high communication costs between the graphics
system and the device.· Examples that deal with partitioning are Videotex and Teletext. Videotex is an
interactive communications service that delivers color graphics information from centralized databases. 'n)is
information is most often delivered over telephone lines, decoded by a dedicated hardware device, and
displayed on a television monitor. Thus, videotex is intended (br direct use by consumers, combining two of
the most familiar pieces of electronic equipment in most homes today: the telephone and the television set
In addition to providing inform,ltion, videotex allows users to perfbrm transaction such as ordering product..,.
One of the major standards in this area is the North American Presentation Level Protocol Syntax
(NAPI ,ps) [61. Since telephone companies in I ~lIrope are gcncrally smaller and rlln hy the government, there
have already been several videol~x systems in operation in Britain (PR1':STEL) and France (ANTJTOPE).

Teletext is a similar techniq:le designed to bring information service to home consumers. However, teletext
uses one-way broadcast transmission. often through cable television systems. The major standard in this area
is the North American Broadcast Teletext Specification [11]. This standard specifies exactly how the messages
are encoded for tran.smission, which are the lower levels (physical to transport) of protocols. The data can be
transmitted on standard television channels, during the vertical blanking interval, or entire channels can b~
dedicated to teletext. The presentation level of NA1HS is NAPLPS.

Unfortunately. since these protocols are directed to a consumer market, they are limited in their abilities.

RELATED WORK 21

For example, they are often tied to specific common video resolutions that are lower than typical scientific
workstations. More importantly, they are intended for very inexpensive terminals, so they would waste the
power of most modern workstations. In particular, they handle only one activity at a time. Since we are
interested in future computing systems that contain multiple processors executing concurrently, we will next
examine systems that can manage this concurrency.

2.2 Object-Oriented Window Systems

The desire to use graphics as an aid to user interface has led to the development of object-oriented window
systems. In these systems. there might not be application progratns, per se, but rather objects that respond to
the control of the user. An interesting paraphrase of the object-oriented window system philosophy is "don't
call us. we'll call you". That is, instead of the appiication program calling functions in the graphics package,
the graphics system calls user-defined functions to display themselves when needed. This mechanism, the
graphics system calling client software, is referred to as an up-~al/, in contrast to down-calls of traditional
graphics packages.

This difference in control reflects the different application areas for which these systems were developed.
The graphics systems discussed in the previous section consider the picture to be the main purpose of the
program. Thus they are suitable for application areas such as commercial animation in which realism and
precise control of the picture are most important. However, many programs are intended to perform. some
other function, with graphics as a side-effect. For example, the ptinciplc function of an integrated circuit
editor is to edit integrated circuits, not to draw beautiful pictures of them. In fact, the information being
displayed by programs is often abstract, so "realism" is meaningless in these cases.

2.2.1 Smalltalk

Small talk is a series of languages based heavily: on graphics with an object-oriented window system [58].
The language was first designed as a tool for research by the Learning Research Group at XeJ"()X Palo Alto
Research Center. In their vRew, the ideal system would use powerful yet compact and portable "personal
dynamic media" which studc~nts could use and interact with [90]. The ideal personal dynamic media was
called the dynabook, and corresponds to a futuristic view of today's graphics workstations.

A Smalltalk system is composed of objects, which consist of some private memory and a set of operations.
The programmer specifies these operations as methods that are invoked when objects receive messages.
Advantages of such an approach include extensibility; applications can define their own graphics objects and
primitives because screen updating is controlled by the application itself. On the other hand, the programmer
can declare a class to be a subclass of another das:), so that operations are inherited. Only the new operations
have to be defined, so the extensibility can be performed without much programmfng overhead.

2.2.1.1 The Smalltalk Environment

Smal1talk is a graphical, interactive programming environment. One key aspect of the user interface of
Smalltalk is the use of a pointing device such as a mouse to select items instead of typing commands [50].
Many of tllese ideas originated in the NLS system at Stanford Research Institute by Englebart and others
during the late 1960s and eady 1970s [49]. Although NLS was used only witllin SR1, the system is now called
Augment and marketed by Tymeshare corporation.

Smalltatk, unlike Augment. is intended to be implemented on self-contained personal computers which
include a single large address space and a disk. Unfortunately, implementations of Smalltalk on commercial
microcomputers have failed due to the performance problems of small processors and storage devices. One of

22 PARTITIOr-;,NG OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

the few machines that can run Smalltalk with adequate performance is the Dorado, a very high-performance
and expensive scientific computer developed at Xerox PARC [75]. Workstations are becoming more
powerful, but machines in the class of the Dorado will be expensive for some time to come. Although using
the object-oriented approach of Smalltalk at all levels may not be desired, the user interface advances are
being adapted to other systems.

2.2.1.2 Smalltalk User Interface

The user interface of a Smal1talk system typically consists of several Views of objects on a gray background.
The name "window system" comes from the appearance that these views are "windows" into the world of
objects. 'n1e user controls a small arrow called a cursor by moving the pointing device. Directing activity to a
particular piece of information in a view is done by making a selection. The system provides immediate visual
feedback to indicate the selection. For example, the selection is often displayed complemented (black to
white and white to black). At any particular time, only one view is selected, indicated by a cOflplemented
title, and appearing to lie on top of any other overlapping views.

Pop-up Menus are also used to select commands. In response to a user action such as a button press, a list of
commands appears und~rneath the cursor. While the button is held down, the cursor is moved to select one
of the commands in the menu. When the button is released, the selected command is carried out. Some
command menus are particular to the object being displayed in the selected view. while other command
menus are uniform across the entire system. Similar powerful user interfaces have been incorporated into
other object-oriented single language integrated environments, such as on the New Window System for the
Symbolics Lisp Machine, through a language extension called Flavors that provides objects with inheritance
of operations from multiple super-classes [157].

2.2.2 "Lisa Technology"

The Star word processing system by Xerox corporation [124] incorporated many of these object-oriented
ideas into a commercial product using the fairly conventional programming language Mesa [87). The Star
system used an analogy between the graphics screen and a conventional desk top. The screen contained icons,
small symbolic images that invoked actions when selected by the mouse. For example, moving a document to
a filing cabinet icon caused it to be storcd in a file server, while moving it to a printer icon caused it to be
printed. The Star developers c1aimeQ that inte~faces using icons were easier to Jearn and less error-prone than
conventional textual command languages.

The Cedar Viewers System [92] was developed at the Xerox Computer Science I Jaboratory for their
prototype software development environment called Cedar [46, 140]. The Cedar environmc"nt was intended
to combine the best features of InterLisp, in particular the Programmer's Assistant [139], with the Mesa
program development environment [991. The application program specified procedures to be called in
response to input events. These procedures lIsed' the Cedar Graphics Package to draw the objects they
represcnt on the screen when requested [154]. .

Unfortunately the Star system suffered from slow response' times, nnd the Cedar system required very
expensive computers such as the Dorado to run effectively. SimiJar lIser interface functionality was made
available for much lower cost with the introduction of the Apple Lisa and Macintosh computer systems [159].
The Lisa and Macintosh software borrowed the desk top metaphor from S~1r, with icons representing data
objects such as documents. Since these machines were the first to gain widespread attention, Stich systems
have been called examples of "Lisa Technology". Lisa was intended as a low-cost office personal computer,
so its performance was also fairly slow, with some operation"s taking 30 seconds. This was duc, f()r example. to
swapping of several megabytes of object code into a physical memory that was only expandable to one
megabyte. .

RELATED WORK 23

2.2.3 Other Window Systems

An important research effort has been the Canvas system [13], and its successor, called Sapphire, developed
at Carnegie-Mellon Universit.y for the Spice project. Sapphire (Screen Allocation Package Providing Helpful
Icons and Rectangular Environments) provides a virtual bitmap which applications can manipulate any way
they wish [95]. Applications can specify exact location and shape of the windows, or be notified when location
and shape is changed. Each window can be transparent, or can take responsibility for remembering what it
obscures. For example, pop-up menus are implemented as windows.

Some of the user interface ideas of object-oriented window systems have been implemented on traditional
text-only [158,65] or vector display terminals [89], although a full bitmap display is desirable, and becoming
more prevalent, especially in research environments [23]. More important is the requirement of shared
memory for the many procedure calls in this approach. Some systems have extended the up-call concept with
remote pr6cedure calls, with inconclusive performance results [59].

2.3 Virtual Terminal Management Systems

As we have seen in the last two Sections, graphics packages put the application in control, while object­
oriented window systems put the user in control. This distinction between main-stream standardization
efforts and the window system line of development has only been touched upon in the literature. Partly this is
because of the delay involved in standardization efforts; the current sL:'1ndards were designed for hardware of
rnore than ten years ago. Since the workstation-based distributed systems described in Chapter 1 did not exist
ten years ago, these standards do not easily lend themselves to a distributed ellvironment [9].

One of the few efforts to combine thes,c two lines of development was a window systenl for a storage tube
display [US]. The basic observation from this work was that the advantages of the two approaches can be
combined if the problem is viewed as one of resource management. Since a major role of an operating system
is to manage hardware resources, recent research in resource management by operating systems, in particular
the management of terminal systems, should be examined.

2.3.1 Network Virtual Terminals

The name "virtual terminal" was first used during the development of protocols for tong-haul networks
[43]. Problems arose due to the large number of different operating systems and terminals that needed to

communicate in the network. If there were n types of terminals and 111 types of operating systems, then n x m
terminal handlers were nee~cd. This led to very large software costs as networks diversified.

Instead of fill·cing each computer system to handle all possible types of terminals, each could handle only
one abstractly-defined network virtual lenllinal. The conversion from virtual to real terminal would be
performed by the machine to which the terminal directly connects. This is similar to the virtual device
approach described in the previous section. also lIsed to provide device independence. As workstations
become more powerful, th~y can be considered as nodes in a network, and the virtual to physical terminal
translation could be performed by workstations ..

2.3.2 Rochester's Intelligent GatewayVTMS

Another advantage of the virtual terminal concept is the support of multiple applications simul~1neously.
Traditional graphics packages descrihed in the first section of this chapter assume one application is iri tO~'11
control at any time. Although the window systems discussed in the previous section display multiple contexts,
usually only one application is active at any time on the personal computer. One of the first attempt~ to use

24 PARTITIONING OF ruNcnoN IN A DISTRIBUTED GRAPHICS SYSTEM

multiple concurrent processes in multiple windows for program d~velopment was a system called
Copilot [136]. The ability to monitor concurrency naturally through a window· system has been dctennined
by the author to be invaluable in a distributed environment.

Rochester's Intelligent Gateway was designed to provide a uniform user interface to manage distributed
resources [78, 79]. The RIG Virtual Tenninal Management System (VTMS), was one of the earliest systems to
provide simultaneous access to multiple, possibly distributed applications [77], VTMS mapped any number
of virtual terminals to a physical screen simultaneously, and each virtual terminal could be written to or
queried for input by applications throughout the distributed system.

In RIG the resource management problem was viewed fundamentally as a problem of process
management, with requests sent to server processes through messages. Table-driven command interpreters
were also provided to enforce a consistent user interface across different tools. These contributions
significantly influenced many subsequent eftarts, including the research described in this thesis. However,
VTMS did not provide graphics support, nor did it provide effective terminal emulation.

2.3.3 Apollo Domain

The Apollo Domain workstation-based distributed system uses some of the concepts of virtual terminals as
developed in VTMS [8]. Domain also provides a distributed file system, and other distributed objects.
However. its architecture applies to only one particular manufacturer. since the network transparency is
handled at a very low level: demand paged virtual memory. Since most research computing environment are
very heterogeneous, Domain cannot be used to solve all partitioning problems [37].

2.3.4 The Virtual Graphics Terminal Service

The extension of the virtual termInal concept to graphics is the subject of the next two chapters. The system
described here is called the Virtual Graphics Terminal Service, or VGTS2, the name reflecting the ,YTMS
conceptual base [81]. The VGTS takes an approach different from Domain's, handling transparency at a
much higher level: abstract operations. This allows operations to be partitioned between machines of very
different architectures running different operating systems, and using vastly different network technology.

The VGTS interface to the programmer is much simpler than most of the systems discussed in this chapter.
For example, the NGS working design do·cument [25] has a partial list of 181 functions, while the VGTS
programmer"s interface is about 30 functions. Of.course these other systems may provide more functionality
in some areas, but it is not clear that this functionality is always necessary.

The next two chapters will provide more details on the architecture and implementation of the VGTS,
including more comparisons to both standards and window systems. Chapter 5 will examine these types of
design trade-oft:o; in depth.

2pronounced "Vee Gee Tee F.ss", that i..c;, there is no attempt at pronunciation of the acronym.

ARCHITECfURE OF THE VGTS 25

-3
J~ rchitectu re of the VGTS

As we have seen in the last two chapters, the functional partitioning problem is an important one that is not
adequately addressed by either traditional graphics packages or window systems. In order to perform
experiments on the partition of function we have first designed an architecture for a distributed graphics
system, as described in this chapter. Only the architecture is described here; an actual implementation is
described in Chapter 4 and rationale for the design is given in Chapter 5.

3.1 Th.~ Envi ronmenit

No single design will be appropriate for every circumstance. It is important to limit the scope of the
anticipated environment because most systems that try to do everything for everybody, end up not doing
much well at all. This section describes the particular environment for which the VGTS was designed.

3.1.1 The Stanford University Network

The VerI'S architecture was designed within. the context of the Stanford University Network (SUN). SUN is
a rapidly evolving environment consisting of:

• graphics workstations, such as the Xerox 1100, Symbolics 3600, SUN [15] and IRIS [39];

• sta'.1dard timcshari'llg systems, such ·as DEcSystem-20/ToPs-20, VAX/UNIX, and VAx/VMS; and

• dedicated server machines, for high quality and high volUlne printing, file storage, tenninal
multiplexing, and gateway services;

interconnected by various local networks, including about 25 different Ethernet segments [94]. Various
machines arc also connected to long-haul networks such as the ARPANET, citherdirectly or through gateways.
This fits the general model illustrated in Figure 1-1.

SUN is representative of many workstation-based distributed :;J'stems currently in place or being developed
throughout the computer res(~arch community [14, 119]. These systems typically provide the equivalent of:

• powerful workstations with:

o a general-purpose processor (1 MIPS or more)
o a large local physical memory (I M Byte or more)
o a high-resolution raster display (1000 by 1000 or more pixels)
o a large virtual address space (> 20 bit)
o a graphics input device (such as a mouse)
o an optional disk

each usually dedicated to a single user at a time;

• a fast (> 1 MHz) communications network that win link the workstations;

• a number of dedicated processors providing printing, file storage, general computation support,
and other services~ and access to timesharing or special-purpose computers and to long-haul
computer networks.

The architecture' we arc' about to desCribe is well-suited to any such system.

26 PARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

3.1.2 The V-System

The software environment used for this research is called the V -System. Logically it consists of a
distributed kernel and a distributed set of server processes. The distributed kernel consists of the collection of
kernels resident on the participating machines. Communication within a single graphics workstation is via
fixed-size synchronous messages, using the V kernel [31, 32]. These message semantics were originally
developed in the Thoth [29] system and later used in Verex [30]. the individual kernels are integrated via a
low-overhead inter-kernel protocol (IKP) that supports transparent interprocess communication between
machines over a local network [164].

Servers include network servers, storage servers, executives (command interpreters), and, of course, virtual
graphics terminal servers.3 The V-System software architecture is especially tailored to communicate with
existing timesharing operating systems such as Unix, Vrv1S, and TOps-20. A user-level program called the "V
server" runs on the timesharing machines and implements the V inter-kernel protocol. Programs lunning
within the V environment can then access fiJe service or remote execution of programs transparently on the
timesharing hosts as well as the workstation. Other protocol architectures like [P/TCP [106] and PUP [19] are
also used to communicate with dedicated servers and larger or more remote time-sharing machines.

The V-System a~chitecture was designed to allow flexible interconnection, similar in nature to hardware
organizations. Consider an operating system kernel as a bus, which provides a standard interface to connect
modules. In computer hardware, the bus is usually a simple, passive device. The V-System takes into account
multiple busses in both its hardware, as seen in Figure 3-1, and its softw.are, as seen in Figure 3-2 [80]. The
striking similarities between the hardware and software organizations are inten~ional. Note that busses
correspond to either operating system kernels (usuall} small and synchronous) or network protocols (larger
and asynchronous). Hardware modules correspond to software processes in this analogy.

Figure 3-1: Hardware organization of the Stanford V-System

Bus adapters correspond to network server processes, which can also be considered protocol converters.
One major reason for hardware bus adapters is the availability of many peripheral devices for certain old
busses. The adapter allows the use of the old peripherals on new systems, without the need to redesign all the

3We will refer to both the service and the server as VGTS. 'The latter is the software module that provides the romler.

ARCHITECfURE OF THE VOTS

I Display I
Mgr. ~.ocal I I Local t gent • Application I I Application I

I I' ... 1-.... - ... --· ----........ ..,..· V Kernel

::~J I
Input PUP

Mgr. Server

PUP I
Leaf

Server

Leaf

Server
File] I
System

a..-___ - IFS
I I

V

Server

I

I

IP

Server

I

IP

Server

Internet

I File
System

I
I Unix

I I.....--A-pp-I ica ... t-Io-n ----'J
a..-... ____

I
Application

Figlllre 3-2: Software organization of the Stanford V-System

I

File
System

I
TOPS-20

27

interfaces. Similarly, much software fol' older operating systems can be encapsulated and augmented in this
model, instead of being repla.ced.

3.1.3 The VGTS

In the V-system, the workstation provides a virtual tenninal service. similar to. the VTMS in RIO [78], but
extended to include graphics. The VaTS acts as a mUltiplexor. handling requests from clients to edit data
structures representing graphical objects. It then uses a real terminal protocol to actually draw the objects on
the screen. -

The following are some attributes of the VaTS which distinguish it from related work:

• The VaTS model is declarative rather than procedural. lnstead of describing how to draw a
-picture. the application describes what is to be drawn. The user then specifics where the picture
should be displayed. Thus. users control physical terminals. while applications control virtual
tenninals. .

• Objects can be constructed with hierarchical structure. ;\n object CHn consist of primitives or calls
to other objects. which can in turn be defined in terms of other symbols. This is in contrast to
systems like GKS that allow only one level or structure (usually called segments).

• The VaTS supports true device independent applications. There is a standard high-level
interface. called the Virtual Graphics Terminal Protocol (VGT!» between a VGTS and its clients.
Different terminal drivers exist for each real terminal, with the VaTS handling all the details of
the real graphics protocol. .

• The VaTS implementation and interface are portable to a range of relatively high-performance
devices. This contrasts with most of the object-oriented window systems that arc tailored to a
specific machine or language environment. .

• The VaTS supports distributed clients. Applications can run on the same workstation as the
VGTS, on another workstatiljn. or on some large computation server. Since the communication is

28 PARTITIONING OF FUr-.lCTION IN A DISTRIBUTED GRAPHICS SYSTEM

at a high level, the different machines may have vastly different arc~itectures. If the application is
written in a suitable high-level language, the same source code is used in any location .

• A single user can access several different applications simultaneously. The user can switch
contexts between these applications quickly and easily. Because of the ease with which
applications can be distributed (the previous point), they can be using the local workstation or
remote computing servers at the same time.

These last two aspects are the major influence of the distributed heterogeneous environment on the VGTS.
Timesharing is effective when many users must share a computing resource; since current trends indicate that
the user is quickly becoming the most important resource, we can extrapolate the philosophy that users are
more important than machines, and have one user being served by several different computing resources.

3.2 The U~ie r Model

In the modern distributed system environment, we require access to a variety of applications, distributed
literally throughout the world. We would like to take advantage of the power of advanced workstations to
provide a high-quality user interface to these resources. The ideal interface must take into account four
fundamental principles:

1. The interface to application programs should be independent of particular physical devices or
intervening networks.

2. The user should be allowed to perform multiple tasks simultaneously.

3. The command interaction discipline sho~ld be consistent and natural.

4. Respons;e to user interaction should be fast

The first principle has led to work in virtual temlinals and device-independent graphics packages; the
second to work in window systems: and the third to work in what has recently been called user interface
management systems [143], the most common examples of which are command languages. Without adhering
to the fourth principle, however, much of the other work is moot. Ideally. human users should never have to
wait for the ,;omputers: the computers should wait for the user. In a distributed environment. in particular,
tile supporting network protocols cannot incur inordinate overhead.

3.2.1 The Ideal

In view of these principles, consider the fol1owing user model. When users boot a workstation they
communicate with a view IIlmUlge~A, which allows users to authenticate themselves and initiate one or more
activities. Thl.! activities may run local to the workstation or remote. They may be written with th(! particular
workstation in mind. or run in "terminal emulation" mode. They may rcquire 1/0 modalities other than
traditional onc-dimcnsionaltext: graphics or audio, fbr example.

Each activity may be associnted with one or more separate, device-independent virtual terminals (VT). A
VT may be created by tJle user or by tJle activity itself. Each VT may bc used to emulate a different type of
real terminal, for example, a p~ge-mode VT-IOO or a 3-D graphics terminal. Thus, while consistency is
encouraged. tJ1C user is still able to access all rcsources to which he previously had access.

4Unfortunately many similar systems refer to this component as the window manger, even though this is incorrect with respect to most
terminology.

ARCHITECI'URE OF THE VGTS 29

When users wish to initiat(! a new activity, they lnust first create ?l new executive. The executive acts as a
command interpreter from which desired activities may be initiated. Users can create a new executive, with
an associated VT, or terminate an existing activity and VI' at any time, that is, totally asynchronous to any
other activities. When a particular activity requires additional virtual terminals, it is free to create them.
These VTs will be deallocated when the activity terminates.

Virt.ual terminals arc mapped to the screen when and where the user desires. In fact. multiple screens arc
intentionally allowed by the architecture, since in many applications color or gray-scale is desired, but high
resolution color monitors are expensive. Thus a workstation may have, for example, one low resolution color
monitor and one high resolution monochrome monitor. Each mapping of a VT to the screen is termed a view.
When an activity creates a new VT, it prompts the user to specify the default view interactively, or the view
manager creates the view automatically, depending on user preference fi)r screen layout. Thereafter, users
may create as many additional views as they wish. They may manipulate views of the same VT independent
of all other views of that vr, tbr example, to pan or zoom the view.

The interaction discipline across vrs (and hence activities) is as consistent and natural as possible. The
mechanisms for moving between VTs and reorganizing the screen arc standardized in the view manager.
Standard editing facilities permit the user to copy text or graphics from one VT to another. A standard
command interpreter enforces consistent command interpretation across applications. A variety of
infOlmatioll presentation facilities are provided to allow the user to view and manipulate data as desired. In
fact, different representations of the same data should be viewable with different formats, such as bar charts
of data contained in columns of numbers.

Ultimately, the executive mentioned above could evolve into an intelligent agent that manages the user's
distributed resources in much the same way a traditional command language interpreter manages a single
system's resources [78]. Th(!n and only· then would the user be totany unaware' of where the activities are
actually being executed - local to the workstation, on remote hosts. or distributed dynamically between some
combination of workstations and hosts.

3.2.2 Reality

This thesis focuses on virtual terminal management issues, with particular emphasis on distributed graphics.
The resulting workstation software will be referred to as, the Virtual Graphics Terminal Service (VGTS).
Below we will consistently usc the term virtual graphics terminal (VGT) in place of virtual terminal to
distinguish it from more traditional work in network virtual terminals and window systems described in the
previous chapter. The VGTS contains both a graphics package and a window system, as modules in the
itnplem(!lltation to be described in Chapter 4.

Although we have not solved all the problems of command interaction. simply in order to manipulate the
screen we have developed a reasonahle command interface - for creating. destroying, and rearranging VGTs;
managing executives: zooming, etc. In addition, many of the common command interaction techniques, such

_ as menus and forms, require graphical support, which the VGTS is can provide. In short, the VGTS provides
the facilities necessary to ex-p.~riment with a variety of different command intert~lces. This distinction between
terminal management and command interfaces follows from previous work and is consistent with the recent
trend towards user interface management systems [78, 143]. The rest of this chapter describes the VGTS
architecture in detail.

30 PARTITIONING OF FUNCTION IN A DISTRIBUTED GR1\PllICS SYSTEM

3.3 The NetworkGraphics Architecture

The VaTS, as the rest of the V-System, fits the classic object or server model of software
architecture [67, 155]: The world consists of a collection of resources accessible by clients and managed by
servers. We will usc the term client to refer to any entity (a human user or program) requesting access to a
resource .. We will use the tenn user to refer exclusively to humans. Architecturally. we make few assumptions
as to how servers are implemented - as monitors or processes, for example. The current implementation is in
the form of the message-based V-System. where servers are, in fact, processes.

For the purpose of tenninal interaction. tJle principal resouree is the workstation. tJle server is the VOTS,
and clients consist of me user and application programs. r"'igure 3-3 presents me interrelationships among
these components. Following me traditional virtual terminal model. applications communicate with the
VGTS via the terminal-independent virtual graphics tt:,rminal protocol (VGTP). and with host software in
whatever way necessary. The VGTS communicates with the hardware via me terminal-dependent real
terminal protocol (RTP). Thus, the VGTS provides a protocol translation service between VaTP and RTP.
Alternatively, the VGTP defines the interface or semantics of the VGTS.

Workstation

1'l1li(Real Terminal

Protocol

• • • • • • • • • • • • • •
• • I • • • • • • • • • • •

t
User

Application

Virtual Graphics

Terminal Protocol

VGTS

VGTP

VGTP

Application

Other Services

Figure 3-3: High-level VGTS architecture

Application

In terms of the 1S0 Reference Model for computer networking rt6JI. the VGTP is a presentation ievel
protocol. Naturally, when used across a network, the VGTP must be encapsulated in appropriate session and
transport protocols. We refer to the former as the network graphics protocol (NGP). described in Sccticn 3.5.

In terms of traditional graphics terminology, the VGTP is the graphics language and tJle VGTS implements
the graphics package. Together. they offer similar functionality to a number of existing graphics systems,
including those conforming to tJle 1S0 standard Graphical Kernel System (G KS) [64] and me proposed Core
standard [147] as discllssed in chapter 2. The VGTP hears an even greater resemblance to the proposed PIIIGS

standard [4]. which was developed at approximately the same time. The RTP. on the other hand, could easily
be the proposed ANSI Virtual Device Interface (VDI) [122] or the North American Presentation Level
Protocol Syntax (NAPLPS) [6].

ARCHITECl'URE OF THE VGTS 31

3.4 The Virtual Graphics Termi.nal Protocol

The VOTS has two very different protocol interfaces: one to the user and one to the client application
program. First we will discuss in detail the protocol used between the VOTS and its clients, referred to as the
VOTP in Figure 3-3. Instead of standardizing on a byte-stream or procedural interface, the VGTP was first
specified as kinds of objects and a set of operations on those objects. This section describes these abstract
operations, and the next chapter discusses how the operations are actually implemented. Figure 3-4 illustrates
the relationships between the objects discussed in this section. The next chapter will contain a concrete
example in Figure 4-2 to further explain these concepts.

Application

SDF
Item: Symbol

Item: Primitive

Item: Call

Item: Primitive

VGT

View
Viewport

Depth

W~ndow

Client

View
Viewport

Depth

Window

User

Application

Item: Symbol

Item: Primitive

Item: Primitive

Item: Primitive

VGT
Client

View
Viewport

Depth

Window

]t'igurc 3-4: Rc1ati~)nship of SDFs, VaTs. and Views

The VGTS provides two basic types of structu,res: structured display files (SDF) and virtual graphics
terminals. Every graphical object is defined within a specific S1)l": thus. an SDF rep'resents an object
definition space. In order to view an object. it is necessary. first. to associate the object's SDF definition with
a VGT (by the program) and, second, to ~pecify a mapping of the VGT to the screen (by the user).

3.4.1 SDFs and thei r Manipulation

An SDF consists of a collection of items. The items can be either primitives, or grouped into symbols, which
can in turn be contained in insulJ1ces of other symbols. to any desired depth. The SOF forms a directed
acyclic graph (DAG), with items as nodes of the DAG. Abstractly. symbol definition nodes have arcs to all

32 PARTITIONING or FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

their component items. Symbol call nodes have arcs to the symbol d9finition node, and primitive items
correspond to leaf nodes.

An SDF is similar to a segment network in PlUGS. while an item is equivalent to an element [4]. An SDF
may also be thought of as a symbol system [56]. Items are named by identifiers chosen by the application, are
typed, and have type-dependent attributes. The ranges of these identifiers and attributes will be discussed in
Section 4.3. [tern types include: .

• line
• (filled) rectangle
• (filled) polygon
• bitmap
• text (in arbitrary fonts)
• (filled) spline
• symbol definition
• symbol call

All items are d~fined within a 2 dimensional integer world coordinate space. Translation is the only modeling
transformation permitted on "called" symbols. All other transformations, such as rotation or projection from
higher dimensions, are presently handled by the application program. Attributes are specified as inruces into
type-specific at.tribute tables similar to the bundled attributes of GKS. However" these attribute tables are
shared by all VGTs and managed by the VGTS in its role as mediator between simultaneolls applications. In
contrast, G KS allows the single application to control the bundle tables. VGrrS attributes are specified (at
least indirectly) on each item, not inherited from calling symbols, as they arc in PlIIGS, for example, or set by
modes.

A client can create and delete structured display files. symQols, or items. It may edit symbols, and obtain or
change the properties of an item. The following functions are provided to manipulate the SDF:

CreateSDF 0 = > sdf
Create a structured display file. and return its identifier in sdf. This must be done before any symbols
arc defined.

DeleteSDF (sdj)
Return all the items defined in the giv-cn sdfto free storage.

DefineSymbol (r;d/. item, name)
Enter a symbol into the symbol table. and open it for editing. The sdfis one returned from a previous
CreateSDF call. item is an application-specific integer identifier for the symbol and name is an optional
strlng name.

EndSymbol (sdf, item, vgt)
Close symbol item in sdfso no more items can be changed, and cause the vgl to be redrawn to reflect the
new sdJ7 Called at the end of a list of items defining a symbol, started with CreateSymhol or
Etlit ... \ymboL

EditSymhol (sdf. item)
Open existing symbol item in sdf for modification. This has the effect of calling DefineSymbol and
inserting all the already exi~ting entries to the definitions list. The editing process is ended in the same
way as the initial definition process: a call to ElldSymbol.

DeleteSymhol (sd/. item)
Delete the definition of symbol item from sdf. Any dangling instances of this symbol, created by
AddCull. wilt remain. but will contain nothing.

"

ARCHITECTURE OF THE VGTS 33

AddCall (sd/. item, offset, calledSymbol) ' .
Add an instance of calfedSymbol to the currently open symbol in the sdf. The instance is given the
name item. The called symbol's origin will be placed at offset in the calling symbol's coordinate space; it
is not windowed or transformed in any other way. This is equivalent to a move call ullit in Sproull and
1110mas's structured format protocol [126], or an Execute call in NOS, as opposed to a Copy call. That
is, changing the symbol definition changes all instances. This is more like a subroutine call than a macro
expansion.

Addltem (sd/. item. extent, type, allributes. typeData)
Add an item 'to the currently open symbol in the sdf, giving it the name item. extent specifics the
bounding box of the item in its coordinate space. type and allribute determine the type and attributes
respectively. typeData contains any other data needed to define the item, such as the control points for
a spline item or the text string for a text item.'

Delete] tern (sdf, item) ,
Delete item from the currently open symbol definition in sdf.

Inquireltem (slit item). = > extent, type, attributes, typeData
Return the parameters for item in sdf.

Inquire-Call (sdf, item) = > calledSymbo/
Return the item name, calledSymbol, of the symbol called by ~e item in sdf.

Change Item (sdf, item. extelll. type, attributes. typeData)
Change the parameters of an already existing item in sdf. This is equivalent to deleting an item and then
reinserting it, so the item must be part of the open symbol.

3.4.2 VGT and View Management

Once the VaTS c1ient has defined some graphical objects, the c1ient or the user needs, to provide
infonnation on how the objects should appear. The VGTS lets a user see objects in any VaT anywhere on
the screen in views. Each view has a zoom factor. a window on the world coordinates of the, VaT. and screen
coordinates which determine its viewport. Thus, a view defines a particular viewing transfonnation directly
from world to device coordinate space. No intemlediate transformations, such as normalized device
coordinates, are visible to the client.

Although the client can create default views. the user can change them with the view manager, and create
and destroy more of them. Each VaT can exist in zero or more views, but each view has exactly one VaT
associated with it. f:-:ach VaT is associated with at most one SDF. but each SOF may be associated with
several VaTs. Symbol definitions are shared between ~OTs that have the same BDF. Thus one VaT can
display at its top level a symbol that appears as a called instance at a lower level in some other symbol in
another VaT.

Functions for clients' manipulation of VGTs and views include:

Create VaT (type, name, sdf, item) = > vgt
Create a VaT of type /ype and return its identifier in vgl. flame is a client-specified symbolic name for
the vaT that may be used later to select that VGT for input. item in sd/is placed as the top-level item
in the VGT; it can be zero to indicate an initially blank VaT. The type can be some combination of
Text. Grapllics. and Zoomable.

DestroyVGT (vgt)
l)cstroy the given vgt and all the associated views.

34 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

DefaultView(vgt, width, height. wXmin. wYmin, zoom, sllOwGrid) => width, height
Create a view of the given display, with the user determining the position on the screen with the
graphical input device. width and height give the initial size of the view; non-positive valm!s indicate
that the user should determine the size dynamically, in which case the selected values arc returned.
wXmin and wYmin are the world coordinates to map to the left bottom corner of the viewport; the
a~nount of the world actually viewed depends on the size of the viewport and the zoom factor. The
zoom factor is the power of two to multiply world coordinates to get screen coordinates; it may be
negative, to denote that a view is zoomed out. Views are not otherwise transformed. If showGrid is set,
a. grid of points is displayed in the viewport.

To display a new graphical object in a VGT after the VGT is created, either the old top symbol can be
edited, or a new symbol can be defined and the following function called:

Displayltern (vgt. sd[. item)
Change the top-level item in vgt to be item in sdf. The new item is displayed in every view of the VGT.

DefaultView executes an implicit Display/tem after creating the view. EndSymbol may also cause output to
appear after (re)deflning a symbol, although the VOTS redraws only the part of the view that has changed in
this case. The VGTS implementation is also free to perform other optimizations-, such as only drawing the
additional items if the only changes before an EndSymbol are adding top-level primitives. Using these
functions, the VOTS client can achieve the effe~t of deferral modes for graphical output, including: .

batch Constnlct the graphical object in its entirety and then display' it, by executing. a
DefineSymbol or EditSymbol, many Addltern calls, followed by an EndSymbol call. This
corresponds to creating an invisible segment and making it visible, or using the At Some
Time deferral mod\! in OKS.

incremental Constnlct and display the object "on the fly", that is, display each primitive item (each
vector, for example) as it is added to the object, by repeatedly executing an EditSymbol,
Add/tell', EndSymbolsequence. This corresponds to creating a visible segment, using the As
Soon As Possible deferral mode in G KS.

The latter approach may achieve better response, and is the normal mode of 'operation for most· traditional
graphics systems. However. as resultc; will show, the former method lIsually achieves higher throughput. and
is the norm for programs using the VQTS.

3.4.3 Input Event Management

Since the VGTS was designed to support mUltiple simultaneous clients. it must decide which client receives
which input events. This is called input demulliplexillg, and naturally occurs on a VGT basis. The following
functions are available for graphical input:

Get Event (vgl. evcnt Alask) :.= > ('vellt Dcscriptor
Wait for an input event to occur with respect to the iildicated vgt and return a variant record in
eventDescriptor that describes the ev ~nt. The record wiJIcontain tlle type of the event ·and the relevant
type-dependent information. eventMask specifies the acceptable types of input events: keyboard or
mouse. The mouse events subsume button and locator devices of GKS. returning the buttons pressed
and the location in virtual coordinates within the vgt. The first event in any of the indicated classes to
occur is returned.

FindSelectedObject (evelltDescriptor, scarchType) = > item. edgeSet
Given an event descriptor as returned by GetEvellt,' return the item of the smallest object ncar the
event, and a set of (Left, Right, Top. Bottom) edges which the event was near.

ARCHITEcrURE OF THE VaTS 35

GetGraphicsStatus (vgt) = > status .
Return the status of the graphical input device with respect to the indicated vgt including buttons
pressed and location. As a side effect, the event queue is cleared of any outstanding graphical events.

PopUp (menu) = > selection
Display a menu of choices at the cursor position, consisting of an array of strings, to the user. When the
user selects a particular item, return the array index in selection. This is similar to the OKS choice
device.

GetEvell(and GetGraphicsStatus together provide the functionality of the OKS input modes. The VOTS
maintains an event queue for each VOl'; all keyboard and mouse events related to that VGT are queued in the
same queue, in First-In-First-Out order. Thus the event mode of OKS is supported for both the keyboard
and mouse through GetEvellt. Pick device functionality is obtained from the FindSelectedObject function,
which is similar to request mode of 0 KS. GetGraphicsStatus allows the mouse to operate in sample mode.
Sampling of the keyboard is not supp.orted, since such a capability would be quite device dependent. .

Keyboard input is always associated with some VaT group. Each VGT belongs to exactly one group, and a
group typically corresponds to an activity (although an activity can create multiple groups). The groups are
identified by their rnaster, which receives keyboard input when the group is selected through the user
interface. The next section describes the tc' '11 output interface, provided so the simple symmetric model of
standard terminals can be us(~d for echoing J\",yboard input

3.4.4 Text Terminal Emulation

The VOTS supports a text VOT mode optimized for page-mode terminal emulation. Specifically, an
application may treat a VOT as·a standard ANSI tenninal [1], such as a DEC VT-IOO. Such an application
need not know anything about the graphical facilities of the VOTP, and may use the ANSI terminal protocol
to communicate with the VGTS, including escape sequences for cursor control. Output to the VaT is stored
in a pad [77], which is a symbol within an SDF. The sYJnbol consists of a linear.array of simple text items,
each of which represents one line.

Note that the tenninal emulation output interface is of a different nature from (and therefore,
. unfortunately, incompatible with) the graphics interface as discussed above. However, this does not prevent a

mixed text. and graphics application. One particular type of graphics item is text, permitting a client to easily
integrate text and graphics within a graphics VOTe The terminal emulator interface is provided to optimize
perform.ance for a typical special case.

The VGTS architecture provides several advanced features for the support of keyboard input processing.
Applications can operate in "raw" mode, or selectively enable any of the following features:

Local Echo

Line Editing

Paged Output

This allows instant response to keyboard input, providing useful feedback to users of
potentially loaded timesharing systems.

Programs that interact Oil a line-by-line basis, such as the ex·ecutive, can cause lines to be
buffered (and usually echoed) inside the VaTS. Sophisticated editing commands arc
available on the line buffer, and the executive (for example) can "stuff' previous command
lines into .the line buffer, in conjunction with its history mechanism.

When this mode is in effect. the VOTS will block output requests larger than one page. A
message is displayed in the banner, and the user types a command to unblock when ready.

Oraphics Escapes Inside a pad, when connected to some remote hosts through a TELNET program, graphical
input events can send escape sequences back to the application. This allows many useful

36 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYJTEM

programs that deal with conventional terminals to be simply extended to take advantage of
graphical input capability without major redesigns of the applications. For example, an
EMACS [129] library can be loaded to bind these character strings to commands that
position the text cursor, set the EMACS mark, delete and insert text.

By default, keyboard input is line-buffered and echoed by the VOTS~ with the powerful line-editor built in.
Support for text editing by a pointing device could be provided. transparently to applications. This has been
partially implemented in one user's custom version of the VOTS.

3.5 The VGTS Client Protocols

The VOTP is constant over all applications, but allows for a wide variety of bindings to lower-level
protocols. Some applications have no knowledge of the VOTP and some applications are running 011

machines that do not support the interprocess communication mechanisms underlying the VGTP. Whenever
the application is running remotely, the VGTP must be encapsulated within an appropriate network transport
protocol. The following situations arise (see Figure 3-5, in which each inter-machine arc is labeled with an
example (presentation protocol. transport protoeolj pair):

SUN
Compiler

VGTP

IKP

DEC-20

Text Editor

Telnet

TCP

Local
Illustrator

Custom

NaP

Figure 3-5: Possible clients of the VOTS

VAX
VLSI Layout

Editor

VGTP

RTP/BSP

VAX

Distributed
Game

• Application A runs on the workstation and communicates via V kernel messages. Current
examples include text editors, document, illustrators, and design aids .

• Application B and the VGTS run on two separate machines that support network-transparent
interprocess communication, sllch as the V-System inter-kernel protocol (I KP), JJ communicates
with the VGTS via the VGTP, as in the case of a application A.

ARCHITEcrURE OF TIlE VGTS

• Application C runs on a machine that docs not support network-transparent IPC, but docs
support a traditional network architcctilre. In ,addition, a VOTP interface package is available that
encapsulates the VGTP within the appropriate transport protocol. Similarly, a local agent for the
application, C~ is created on the workstation to decapsulate the VOTP. Thus, the application may
still be written in terms of the VGTP and neither it nor the VGTS have' any knowledge that the
other is remote. Our VLSI layout editor, for example, can be run in this fashion under
VAX/UNIX.

• Application D has no knowledge of the VGTS or the VGTP; it wishes to regard the workstation as
just another terminal. The local agent, D~ is "user TELNbT" and perfOlIDs the appropriate
translations between TELNET and VGTP.

• Application E is distributed between the workstation and one or more other machines. The local
agcnt. E: is responsibl(! for communicating bctween the distributed parts of the application and
the VGTS. It must perform the appropriate set of protocol conversions indicated above. In
addition, it may wish to perform application-specinc functions, such as high-Ieve1 caching. In that
case, the protocol used to communicate with the remote applications may require more than
simple transport service.

37

All applications but A use a network transport protocol, whether they realize it or not. Application B
employs an interprocess communication protocol that has nothing to do with graphics per sew Application D
employs a protocol that in no way depends on knowledge of the VGTS and typically has nothing to do with
graphics; in order to run, an appropriate protocol-converter must nlO on the workstation.

Applications C and E, on the other hand, know all about the VOTS and arc very interested in graphics. We
will refer to the protocol they employ as the network graphics"protocol (NGP). The NGP may be a simple
encapsulation of the VOTP by an existing transport protocol, it may be a problem~oricnted protocol [117], or
it may itself be a multi-level protocol. Application C, for example. may find a direct encapsulation of the
VGTP acceptable. Application E. however, may wish to maintain a replicated database (the main database
plus the cache), or may wish to trade reliability against cost. In these cases, the NGP offers considerably more
functionality than mere encapsulation/decapsulation of the VOTP. In gen~ral, the VGTP and NOP
correspond roughly to presentation and session "layer protocols. respectively. in the ISO refer~nce model [163].
The transport protocols used in the prototype implemen~ation are discussed in Section 4.3.5.

3.6 Summary and Imlplications of the Architecture

This chapter presented a high~level virtual graphics terminal protocol that is the key element of the VOTS
architecture. This protocol iiS used by applications to specify graphical objects with hierarchical structure.
The usc of sGmdard protocols helps to provide device in'dependence. Any application" program which uses
the standard protocol can be used with any implementation of the VGTS. without any modifications. More
information about how this is achieved, and other details of the prototype implementation arc given in the
next chapter. Chapter 5 discusses the rationale behind the design of both the architecture and the
implementation, including why the design nlcilitatcs distribution and concurrency. ;\s will be shown in the
Chapter 6, this protocol is successful in limiting both the frequency of communication between application
and VOTS and the amount of data transmitted at anyone time.

38 PARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

AN IMPLEMENTATION OF THE VGTS 39

-4-
An Implementation of the VGTS

The architecture described in the previous chapter is independent of any implementation. Programs
developed for one implementation of the VGTS should be able to run with any other implementation, given
the existence of the appropriate transport protocols. In this chapter we will first describe the organization of
one particular prototype implementation. This implementation actually adapts itself at run-time to several
different varieties of workstations. and many modules can be used on other very different workstations. The
techniqucs used in this implementation to update the screen are discussed. followed by the client interface,
and then the user interface. Finally. an example application program is described: a simple illustration
editor.

4.1 Gene ral 0 rganization

I\s noted in Section 3.2, the VaTS is only one component of the user interface software in the V-System.
The other components are:

• the view manager
• the exec server
• the executives
• the application library

The view manager provides the means by which users can create, destroy, and modify the screen layout, as
well as create new executives. Executivcs represent ins~~nces of the same basic comma~1d interpreter, as
defined by the exec server. To create a·new executive. the user communicates with the view manager, which
communicates with the exec server. The user may replace the exec server at any time, effe,:tively redefining
the executive command" interpreters. Logically. the view manager is another module that may be replaced.
Ultimately, howe~er, these components employ the services of the VGTS to communicate with the user.

In fact. the VGTS is merely an instance of a terminal agent. Hence. the user may also replace the VaTS at
·any time with simpler terminal agents. or other window systems. This facility permits a programmer to
develop' new graphics facilities without having to constantly reboot his workstation. On the other hand, it
provides the mechanism by which the same user interface management system can communicate with a
substantially "reduced" terminal agent such as the simple ter~ninal server (STS), a subset of the VGTS
architecture which runs on a simple text-only terminal [17].

4.1.1 VGTS Implementation Modules

At one more level of detail, each terminal agent is composed of mUltiple components. In particular, the
VGTS implementation consists or the following modules:

master multiplexor Handks all client requests by dispatching to the appropriate routine in other modules.
Provides synchronization between all the possible dients, by receiving messages from
them. The major part of the operating system interface is contained in this modulc.

escape interpreter Monitors the incoming byte stream for graphics commands and calls the SDF
manager to perform them. Other characters are passed through to the terminal
emulator.

terminal emulator Interprets a byte stream as if it werc an ANSI standard terminal [1]. Printable

40 PARTITIONING OF FUNCrION IN A DISTRIBUTED GRAPHICS SYSTE.LYl

Clients

Keyboar d
Keyboard , ,.. , ,..

Helper ...

J

Mouse

SDF manager

SOF interplcter

hit dctection

Mouse
Helper

Timer
Helper

Hit
Detection

.... Master
r

Multiplexor

....
r

t
Escape Sequence

Interpreter

Terminal
Emulator

t
SDF
Manager

~if

I-

lo. Event ,.
Handler

t
View
Manager

t
View
Primitives

.,,.

SDF
Interpreter

t 'f

Display
Manager

t
Drawing
Manager

+
Frame Buffer

Figure 4-1: Process and module structure of the VaTS

characters are added to text objects, and control and escape codes are mapped into the
proper VGTP operations.

Handles requests to create, destroy, and modify graphical objects within structured
display files. Maximum extents of .symbols are maintained to help the redrawing
process. This is effectively the <li.\1"(/)' jill' cOlllpilcr[27, 56]. Included is a hash table
managerlo keep track of symbol definitions and item numbers.

Highest-level graphical output operations. The stnlctured display tile is visited
recursively, with appropriate clipping for extents totally outside ·the area being drawn.
This is effectively the display processing unit. In a higher-performance
implementation this module and the ones below it could be implemented in hardware.

The stntctured display file is visited, but instead of actua1ty drawing the primitives, the
positions are checked to match the cursor's position. A list of possibly selec'ted objects
(under other optional constraints) is returned to the client.

AN IMPLEMENTATION OF TIlE VGTS 41

event handler Handles the event queues, line buffering, anel the blocking and unblocking of clients
waiting on events.

view manager Provides the user interface for screen management. Although this is logically a fairly
separate entity from the lower-level functions of the VOl'S, in the current
implementation it is provided as a module which runs a~ a coroutine to the master
multiplexor process.

view primitives Perform the view-changing operations. These are the operations invoked by the view
manager, such as creating. deleting, and modifying views.

display manager Low-level but possibly device-independent operations. such as handling the
overlapping viewports. Although this module does not do any frame buffer
operations directly, it uses several device-dependent parameters, such as the size of the
screen in physical coordinates. Also, some of these operations could be done in

. hardware on higher-performance graphics devices.

drawing manager Device-dependent graphics primitives called by the display manager. On the SUN
workstation, for example, t.hese primitives manipulate the frame buffer. On other
lower-performance workstations this might be done by a separate process to prevent
the multiplexor process from blocking for long periods of time.

input handlers Device-dependent modules for reading the keyboard and tracking the mouse. There
is also a timer module to supply periodic messages to the multiplexor.

The rClationships between these modules are il1ustrated in Figure 4-1. The general direction of control is
, indicated by the direction 'of the arrows. The hig~cr level modules ncar the top of the figure call lower level

modules near the bottom.

4.1.2 Team and Process Structu ra

The V-System provided th,ree techniques for structuring software: modules. processes, and teams.
Modules are groups of functions that communicate through function call~ and global variables. The kernel
manages independent concurrent processes. which communicate through messages or shared memory. Only
processes on the same team share memory; separate teams are separate virtual address spaces. The process
structure of the VGTS is also illustrated in Figure 4-1, by the presence of the thick arrows. The arrows are
drawn in the direction that messages are sent, from the sender to the receiver. The VGTS implementation
consists of four processes:

1. The keyboard helper process reads from the kernel console device and sends messages to the
master multiplexor. .

2. The mouse helper re;lds from the kernel mouse device and sends messages to the master
multiplexor.

3. The tinler helper delays for a set period and sends timing messages to the master multiplexor.
Several activities are triggered by these messages, including a blanking of the screen after ten
minutes if no other messages have been received.

4. The master multiplexor process synchronizes all frame buffer operations, and performs most of
the other functions.

The low level interface to th.~ console, mouse. and timer is implemented by the V kernel. Normal messages
are sent to a pseudo-process called the "device server" which will block until data is available. This blocking

42 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

necessitates the three extra helper processes for these devices. The main loop of the VGTS. like most servers
in the V-System, consists of a Receive primitive followed by a switch on the type of request. The main
process of the VOTS should never block for significant periods of time.

4.1.3 Module Sizes

The number of lines of source and the number of bytes for object code for each of the modules is given in
Table 4-l. The "Others" line refers to lines of code in the header mes, and bytes obtained from libraries.
Note that about one third of the object code is obtained from libraries. Another interesting observation on
the relative sizes of modules is that the module that is largest in source and second largest in object code
(spline and polygon functions) is very rarely used.

Module
Display
Splines and Polygons
SUN Drawing Manager
Event Handler
SnF Interpreter
Escape Interpreter.
Input Handlers
View Manager
Hit Detection
Master Multiplexor
Tcnninal Emulator
SnF Manager.
View Primitives
Others
Total

Source Size
(Lines)

442
1498
1423
1150
638
594
427

1137
983

1045
896

1349
1209
425

13283

Object Size
(Bytes)

3475
10068
8860
6540
6540
5164
2416
9920
6024
8212
6000

14240
8676

51059
140654

Table 4-1: VOTS implementation module sizes

401.4 Adaptive Techniques

The VOTS uses several techniques to adapt to its environment. First, several link-time versions arc
available. In the full configuration, the basic V-System services (such as the exec server, context prefix server,
team server, exception server, etc.), are provided by one team, which loads another team at initialization
consisting of the VGTS and a default view manager. The user can then isslie a command to replace the entire
VGTS and view manager at run-time. Since this capahility is rarely used except by some VGT~~ developers,
another configuration hlls the VGTS linked together with the basic services into a single team. The two-team
version takes longer to load, and occupies at least SOK bytes more or memory and another team descriptor.
Finally, fbr systems that arc short ofmemoI'Y,- a reduced function VGTS is available with no splines. polygons,
or font loading facilities.

The low-level VGTS device driver has to deal with subtle differences among the many versions of SUN
workstation hardware that have evolved over the years. Some differences are handled by the V kernel device
server, which provides virtual keyboard and mouse devices. Other parameters, such as the exact screen size
(which varies from 796 lines by 1024 pixels to 1024 lines by 800 pixels) and the virtual address of the frame
buncr, are determined at run-time with the lIid of a kernel workstation query operation.

More changes were required to support an implementation of the VGTS for a later model of the SUN

AN IMPLEMENTATION OF THE VOTS 43

workstation, called the SUN-2. Initially the single installed VaTS would query the kernel on start-up to
determine tlle type of frame buffer and set a variable. This variable was tested before each primitive to
determine which low-level graphics function to call. Although the run-time CPU overhead was acceptable,
the memory usage of the combined version eventually prompted the split into separate versions for the
SUN-l and SUN-2 frame buffers. Interestingly, the mere act of identifying device dependencies that had
crept into modules that were previously thought to be device dependent, resulted in cleaning up the
implementation and marginally decreased the size of the original SUN-l implementation.

Additional techniques could be used for adaptation in future implementations of the VGTS. For example,
if the V-System implemente~d virtual memory then the rarely-used modules could be page-faulted into
physical memory only when actually needed. Dynamic linking could also be used to reduce the minimum
memory requirements, at the expense of slightly more complicated inter-module linkages. Dynamic linking
would also require more complicated debugging tools, and possibly introduce reliability problems.

4.2 Sc reen Updatin~1

This section discusses the techniques used for displaying objects, the end result of VOTS operations. In
contrast to many systems. the: VGTS provides centralized rather than distributed control of screen updating.
The next chapter, and in particular Section 5.4, will discuss the rationale behind this decision in greater detail.
There arc a fixed set of graphical primitives, executed under the control of the VaTS SDF interpreter, display
manager. and drawing manager. the lowest level modules in Figure 4-l. This centralized control eliminates
any possibility of applications interfering with each other. In fact. operations on the SUN frame buffer
cannot b{! interrupted and restarted. so, some kind of synchronization is necessary. Moreover, centralized
control is the only reasonable approach, for distributed applications. The user methods of object oriented
window systems discussed in Chapter 2 rely on shared memory, which is not typically available in a
distributed environment . '

4.2.1 Implementing Overlapping Viewports

Originally. viewports were restricted to lie entirely on the screen and to not overlap. However, this proved
to be inadequate. since screen space quickly fllled uP. and viewport manipulation commands often failed.
The current implementation uses a novel scheme of dividing each viewport into visible non-overlapping
rectangles (called subviewports) whenever the screen layout changes. The viewports are redrawn by
interpret.ing the stnlctured display file in each of the subviewports. This has the advantage of no speed
penalty fbI' updating views that are not obscured (the normal case). Views which have non-rectangular visible
portions may take longer t<> update for complicated SDFs, but almost always the actual drawing time is the
dominating factor, which is proportional to the area being redrawn and independent of the shape of the
region. The resulting scheme is clean and simple.

One major advantage over systems that maintain obscured hitmaps (such as Apollo Domain [81. Blit
J ,ayers [105]. and Spice Canvas [13]) is that no extra memory is required to store those obscured bitmaps. The'
SDF can represent extremCly large objects in modest amounts of memory. /\s an example. consider the two
overlapping viewports in Figure 4-2. ,The SDF data stnlctures take up only a few hundred bytes, while the
bitmap could need many thousands of bytes. View number 1 lies on top, and is entirely on the screen, so it
has only one subviewport,' number l. View number 2 is partially obscured, so it has two rectangular
subviewports. numbers 2 and 3. The "banners" or labels on the ,top of each view are implemented as
additional subviewports. each displaying a single item: a string name, VaT number, optional view nU,mber
and zoom factor. and a string controlled by the application.

Another advantage of updating from the SDF instead of from a bitmap, is that it is often actual1y faster to

44 PARTITIONING or FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

litem 1: Svmbol "Bike" lil+-

t
I Item 2: Line (frame) II I

t
I Item 3: Line (frame) II I

litem 4: Symbol, "Wheel" II t+- t t
litem 0: Circle II

Q a _ •

t t oJ I LlJ litem 0: line (spoke) II "'" I Item 4: Call (front wheel)

T t oJ I II J I Item 5: Call (rear wheel)
t ~

litem 0: Line (spoke) II ·VGT 1
t

'" Top Symbol: 1 ,
Name: "Bike Editor"

...
Screen I . Views

vgt 1 view 1

t
(subviewport 1)

View 1
Viewport

vgt 1 view2
.,,.

Depth

Window View 2
(subviewport 2)

oJ
Subviewporls Viewport

-" ~- "'"
Depth ...

(subviewport 3) Window
J
.....

Subviewports
J
.....

000

Figure 4-2: Example of item naming

redraw the picture from the SOl':" than to restore the bitmap. assuming that the bottleneck of graphics is the
frame buffer update bandwidth. For example. a picture composed of vectors usually has a low density of
pixels touched by the vectors. For scro11ing text, our expcriencc has been that it is significantly faster to
redraw a single character on the SUN-I than it is to scroll it by moving thc bitmap. This is because moving
thc·hitmap touchcs each hit of the frame hurter twice (olle read and one writc). while rcdrawin~ touchcs it
only once. Thc source for the rcdrawn charucter is main CPU memory. which is accesscd more quickly than
frame buffer memory. Unfortunately, the SUN-2 frame buffer was designed to optimize large raster
operations lIscd in the raster-oriented software marketcd by SUN lv1icrosystems. instead of the many small
operations done by the VGTS. In other words, on the SUN-! frame buffer the bottleneck was the number of
bits per second that could be sent over the I/O bus, while on the SUN-2 the bottleneck is the number of raster
operations per second. The result is that the SUN-2 frame buffer is slower than the SUN-l for all VGTS
drawing operations.

AN IMPLEMENTATION OF THE VaTS 45

4.2.2 Zooming and Expansion

The VGTS provides support for zooming and expansion depth that is independent of its clients. Zooming
consists of redrawing the SDF with larger objects. not replicating pixels. Expansion depth, one of the
attributes of each view, indicates how far down in the SDF to go when displayi'ng a symbol. If the expansion
depth is less than the SDF tree height. an outlined box will be displayed at the appropriate point in place of
the symbol. Depending on the size of the box, the tcxt name of the symbol may abo be displayed. Views may
be zoomed and expanded independently such that a user may view an entire symbol in one view, for example,
while simultaneously viewinga piece of the symbol in a zoomed-in view.

4.3 Client Interface

Before the. techniques described in the last section can be used to display objects, the objects must be
defined by some client application program. The abstract objects and operations were discllssed in the
previous chapter, Section 3.4. The details of the C language binding for this interface are discussed in the
V -System Reference Manual, in the chapter on the graphics library functions [17]. This section discusses
some important de~ign choices taken in the prototype VGTS implementation regarding ~e client interface.

4.3.1 Item Naming

Items within an SDF are named with)6 bit identifiers chosen by the application. It is assumed that the
application will maintain some higher-level data structures. along with the appropriate mapping to these
internal item names. Thc item names are global to each SDF. but applications may also have several SDFs
for different name spaces. [wm identifiers are referenced via a hash table. so there are no constraints on their
values [73]. Items that will never be referenced can be given item number zero, and are nevrr introduced into
the hash table. In practice, only a few "interesting" items are actually given non-zero numbers. Item
numbers can refer to both d(~finitions of symbols and their instances. Symbols are also given string names,
but· these strings are only used for disambiguation during hit testing, or for displaying symbols at .the
expansion depth. String names of symbols arc not related to item numbers.

For example, a.picture of a bicycJemight define a symbol for a wheel. The item number of the top-level
"bike" symbol could be 1. with 2 and 3 referring to other p~lrts of the symbol. The definition of the wheel
symbol is given item number 4~ There may then be two instances (calls) of item number 4, which could be
given item numbers 5 and 6. The individual spokes of the wheel arc components of symbol number 4, but are
a11 given item number 0, sinc(~ we will never want to refer to any of them individually. Ifit is desired to delete
(lr move any individual spoke, then each of these items may also be given numbers. Figure 4-2 on page 44
illustrates this example.

4.3.2 Representing SDF Items

Section 3.4 introduced some of the kinds of item types used in the VGTS. The implcmentc.ltioll uses a
compact linked list of display records to:represent these items internally. Each item within an SDF has the
following parameters:

Item A 16 bit uniqlle (within the SDF) identifier for this object, or zero. This identifier is
referenced by the client when performing editing operations.

Type One of th(~ predefined types described below; either a primitive type or one to indicate
structure. Currently eight bits are allocated to this.

46 PARTITIONING OF FUNCfION IN A DISTRIBUTED lJRAPHICS SYSTEM

TypeData Eight bits of type-dependent information, such as the stipple pattern index for a filled
rectangle. Most attributes are stored here, such as the font index for general text

Xmin Minimum X coordinate of the extent. All coordinates are in "world" coordinates. stored as
signed 16 bit signed integers.

Xmax Maximum X coordinate of the extent.

Ymin Minimum Y coordinate of the extent

Ymax Maximum Y coordinate of the extent.

Pointer Depending on the type. this is either a pointer to some data such as an ASCII text string, or
for symbol calls, a pointer to the called symbol.

Sibling All the component items within a symbol are linked together via this chain. This is a
circular chain. as illustrated in Figure 4-2. Nonnally this relationship should not be visible
to the client, unless the client wants to step through a symbol definition in order.

Some of the meanings of the above fields depend on the type of the item. The following are the types of
items that occur in structured display file records in the prototype implementation:

Filled Rectangle A rectangle filled with some texture. The TypeData field specifies the stipple pattern? or
color on the IRIS system.

Horizontal Line Horizontal line from (Xmill,Ymin) to (Xmax,Ymin). Ymax is ignored.

Vertical Line· Vertical line from (Xmin,Ymin) to (Xmin,Ymax). Xmax is ignored.

Point A point, which usually appears as a 2 by 2 pixel square at (Xmin,Ymin).

Simple Text A simple text string, with (Xmin.Ymin) as its lower left corner. This produces text in a
single fixed-width font that can be drawn very quickly. The values of Xmax and Ymax
need not surround the text, but they are used as aids for redrawing, so should correspond
roughly to the real extent.

General Line A generaJii',ed line, from (Xmin,Ymin) to (Xmax,Ymax). Note that Xmin etc. arc slightly
misleading names. The SI)F manager actually sorts the endpoints and calculates the extent
correctly.

Outline Outline for a selected symbol. Xmin. Xmax, Ymin and Ymax give the box for the outline.
The TypeData field specifies bits to select each of the edges: Le ft Edge, RightEdge,
TopEdge or BottomEdge.

Text A string of general text, with a lower left corner at (Xmin,Ymin). The TypeData field
specifics the font number. Xmax is recalculated from the width int<wmation for th~ font.

Raster A general rast-cr bitmap with a lower left corner at (Xmin.Ymin), and upper right corner at
(Xmax,Ymax). The Typcl)ata field determines if the raster is written with ones 'lS black or
white. The pointer field points to the actual biunap, in 16 bit-wide swaths.

Spline A spline object, optionally filled with a specified pattern. The pointer field points to a
SPLINE structure.

Filled Polygon A list of points which defines a polygon that can be optionally filled with a specified
pattern. .,

AN IMPLEMENTATION OPTHE VGTS 47

Arcs , A list of points defining a series of circular arcs. Although arcs can be very closely
approximated by splines, this provides a simpler interface and faster implementation.

There are a few other types that are not visible to the user. For example, symbol definitions and calls are
represented as items with most. of the same attributes.

4.3.3 Interface to V·Sys~em Protocols

The VGTS implements a subset of the standard V I/O protocol [33]. Thus simple applications can write to
standard output and read from standard input, with no changes required when execLlting under the VGTS,
under the simple terminal server, or with input or output redirected to any other file. Pads are created by the
standard request to create a tile instance, and destroyed by the,standard request to release a file instance.

The VGTS also implements some of the operations in the V distributed naming protocol [34]. When the
standard directory listing program is used to list th(~ directory of the context named vgts, information about
the currently defined virtual terminals will be print,~d. Thus each virtual teIn1inal is a named V I/O object.

4.3.4 Binding the VGTP to a Byte Stream

The functions described in section 3.4 arc all encapsulated in escape sequences to form a byte stream using
a very simple protocol. Each call causes a special flag character to be 'sent (the ASCII character called US. octal
037) followed by a one-byte code indicating the function number. This is followed by each of the arguments
to the function, transmitted with the high-order byte first in each argument. Any· return values arc sent with
the same escape character followed by the bytes of the returned value, high-order byte first. Most parameters
are sixteen bit unsigned integ'ers, requiring two bytes for each value. .

This results in a very small number of bytes for common operations. As we shall see in the next chapter,
this makes the protocol fairly insensitive to network speeds. A more ambitious project would have used an
automatic "remote procedure call" generator [102]. but the manual method was sufficient for this project,
since the functional interface did not change very often. An automatic RPC mechanism should not affect the
performance of applications, and in fact should be entirely transparent.

4.3.5 NetworkTransport Protocols

The encapsulation of the VGTP within transport protocols is illustrated in Figure 4-3. Dashed lines
separate library packages, solid lines separate programs. and arrows indicate network protocols. All
interaction to the VGTS is through the V Input/Output protocol (VIO). which provides a byte stream of data
in terms of V messages. The in te rp module decodes graphical operations out of this byte stream. providing
the server side of the remote procedure can nlciJity. The terminal emulator is also provided as a simple VIO
byte stream interface. Clients use either the VIO stream package. or the UNIX Stdio package. The stubs
module cncodes graphical in i(>nnation on the standai'u output channel and decoucs !'espollses from sumdard
input

For distributed applications, one of three network transport protocols can be used5:

1. PUP TELNET [19]

5Both Tr,j,Nlrl' prolocols are used :lS "l~ansport" by remole VGTS clients, even though they arc usually treated as presentation-level in
the ISO hierarchy, 'lhe distinction is in name only.

48 PARTITIONING OF FUNCfION IN A DISTRIBlITED GRAPHICS SYSTEM

.Application
- - - -­

~------~----------~----~

V Server PUP Telnet
Server

Telnetd

Stubs - - - --
Stdio

..... - - - ---.... -.,...--------.... Unix Kernel

VIKP BSP/PUP

PUP

Telnet

TCP/IP

Internet
Telnet

V Kernel

Local
Application
- - - --

Server Stubs

- - - -r-- - - - -- - -- - - - -
VIOClient VIOServer VIOClient

Remote
Application
f------

Stubs -- - - --
VIOClient

VIKP

- - ---.,... -----..... --..,.------.... ------- V Kernel

VGTS

Figure 4·3: Encapsulation of the Virtual Graphics Terminal Protocol

2. Internet TELNm' [107)

3. V-System Inter-Kernel Protocol [31)

These are standard, general-purpose transport protOCols, with nothing specific in their design for distributed
graphics. In particular, the Internet Protocol allows lise of any of the hundreds ofcompllting resources on the
ARPA lnternet with no modifications to their operating systems.

4.4 The View Manager Interface

The view manager provides the visible interface between a person using the V-System and the VGTS. This
is very different from the programmer's interface to the VGTS which was described abstractly in Section 3.4,
and discussed in the previous section. Programs create SDFs and objects within them, and associate these
objects with Virtual Graphics Terminals (VGTs). Through the view manager, the user maps these VGTs onto
a physical screen, and manipulates the resulting views. The view manager also provides the ability to manage
executives, through an intern.ce to the exec server. 1\ similar component in other systems is lIsually called the
window manager or screen manager. This section describes the .def~lult view manager in the protolype VOTS
implementation.

4.4.1 VGTS Conventions

On the physical screen, virtual tenninals appear as white overlapping rcctangles with a black border and a
label ncar the top cdge called the banner. There is at most one virtual terminal (usually a pad, or text-only
virtual terminal) thllt is receiving input from the keyboard, along with possibly other virtual graphics
terminals receiving graphical input. Thc'se input sclections arc indicated by a flashing box (the text cursor) in

AN IMPLEMENTATION OF THE VGTS 49

the text virtual terminal, and a black label on all the views that a~c accepting input. Note that all virtual
terminals are always active in the sense that any application may run or change the display in any virtual
terminal at any time independent of these selections; selections only apply to input.

There an: a few conventions for using the mouse with the VaTS. A click consists of pressing any number
of buttons down and releasing them at a certain point on the screen. While the buttons are down there may
be some kind of feedback: usually an object that follows the cursor. The click is ·usually only acted upon
when all the buttons are released, so if users decide they have made a mistake after pressing the buttons they
can slide the mouse to some harmless position before releasing the buttons. Holding all three buttons down is
also interpreted as a universal abort by most programs and the view manager. The click event is sent to the
program associated with the view in which the event occurred (through its VaT).

Clicking the left or middle button of the mouse in a non-selected virtual teoninal will cause it to be selected
for input. Views of selected pads will be brought to the top. The input pad can be changed by typing the
control up-arrow character (octal Q36) followed by a single command character. The only command
characters interpreted by the VaTS are 1-9 to select the given pad for input.

Although the user can always create views. some are created by application programs. In particular,
programs like the text editor will create a pad when a new virtual text terminal (pad) is desired. When a
V-System program requests the c.reation of a pad. the cursor will change to the word ··Pad". At this point. the
user holds down any button, and an outline of the view that will be created will be tracked on the screen. The
user positions the view where desired, and releases the buttons. Other prompts can appear as cursor changes
to denot(~ that the next click will not be treated as normal input. Unfortunately such convenience features
make the view manager very device-dependent.

4.4.2 View ManagerMenus

The view manager menus can always be invoked by moving the cursor to the grey backgrolllld area or any
virtual terminal not selected for input (except in the banner area) and pressing the right button. The
fonowing commands are available from the view manager menus:

Create View Creates another view of an existing VOl'. Move the cursor to the desired· position of any
one of the four corners for the new viewport. Hold any button down. and move the cursor
to the diagonally opposite corner. An outline of the new view will fbllow the cursor as it
moves with the button down. I Jet the button up. and then point at the VOT that is desired
to be viewed with the left or middle buttons, or hit the right button and select the VGT
from the menu. Nonnatty this command is only used with graphics VaTs.

Delete View One view is clicked and removed from the screen. If the last view of a VaT is deleted, it
does not destroy the VaT or the process associated with it. It is still possible to create
views of the VaT hy using the right button menu in the Create View command.

Move Viewport Pressing any buuon selects a viewport to move. While the huUon is being held down, the
outline Of the viewport will move, following the cursor. The button is released at the
desired position. None of the ether view parameters are changed. A shortcut to this
function is obtained by pressing the middle button while pointing to the banner of the
desired viewport. The viewport outline will follow the cursor until the middle button is
released.

Make Top Brings the view to the top. potentially obscuring other views. A shortcut to this function is
obtai.ned by pressing the left button while pointing to the banner of the desired viewport.

50

Make Bottom

Exec Control

PARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

Pushes the view to the bottom, potentially making other views visible. A shortcut to this
function is obtained by pressing the right button while pointitig to the banner of the view.

Selects a submenu to create another executive, destroy an executive (and the teaIns nmning
in it), kill a program, or control paged output mode. When creating an executive, the
outline of the new pad will follow the cursor as the user holds the button down. The user
lifts the button up at the desired position, or presses all three buttons to abort. A shortcut
to the exec control menu is obtained by pressing both the middle and right buttons while
the cursor points to the gray background or the display area of a viewport not selected for
input

Graphics Commands
Selects another menu of commands that are usually on Iy applied to graphics views. A
shortcut to this menu is available by clicking the right and left buttons at the same time
while the cursor points to the gray background or the display area of a viewport not
selected for input These graphics commands are described below:

Center Window Click the position to become the center of the viewport. This command does not change
the position of the viewport on the screen, just the objects within the view. Normally this
command is applied only to graphics views.

Move Edges Push any button down next to an edge or corner, move that edge or corner to the new
position, and let the button up. The edge outline should follow the cursor as tong as the
button is held down. Docs not move the objects being viewed relative to the screen.

Move Edges + Object

Zoom

Similar to the previous command. hut this one drags the underlying objects around with
the moved edge or corner, while the previous command keeps it stationary with respect to
the screen.

Invokes a zoom mode. indicated by a change in the cursor to the word "Zoom". Users can
get out of this mode in two different ways: First. clicking the left or middle buttons when
the cursor is inside a view of a pad returns from the view manager and selects that pad for
input. As a side effect that view is ,}Jso brought to the top. Second. users can click the right
mouse button to exit this mode. The cursor should change back to the normal arrow.

The left and middle buttons in zoom mode zoom out and in respectively. That is, the left
button makes the objects look smaller, and the middle button makes them look larger. A
shortcut to this mode is available by clicking the middle and left buttons at the same time
while the cursor points to the gra.y background or the display area of a viewport not
selected fbr input

Expansion Depth Click to determine the view, then select the new expansion depth from the menu. Symbols
will not be expanded more than this many levels into the hierarchy. Instead they wilt be
drawn as outlines with text fi)r t.heir names if there is room. The default expansion depth is
infinity, so all levels will be normally expanded.

Redraw

Toggle Grid

Debug

Redraws all the views on the screen; necessary only during debugging.

Click once to turn the grid on if it is off, or off it is on in the view selected. The grid dots
are every 16 screen pixels, ~nd always line up with the origin.

Enables extra printouts, for maintenance usc only. This command asks for confirmation,
to discourage its accidental invocation.

AN IMPLEMENTATION OF THE VGTS 51

4.5 A Simple Appliccltion

The VGTS and View Manager provide many functions that encourage applications to be simple and
consistent. The s i 1 e d i t program, a simple illustration editor, is an example VGTS client program. It uses a
compatible file format with the Alto S I L program, although some advanced features such as macros are not
implemented [141]. The main limitation of this format is that only horizontal and ve~ticallines are supported,
with a limited range of fonts. On the other hand, it is simpler and faster than the other V-System illustrator
(draw), and illustrations produced by s i 1 ed it can be easily printed or inserted into other documents. A
remote version of this program executes under UNIX. although users prefer the V-System version when
permitted by workstation memory limitations.

4.5.1 Basic Operation

The s i 1 ed it program is invoked with one argument in the V-System executive:

s i 1 e d i t filename. s i 1

It first attempts to open the file name given as an argument. Ifno such me exists. the program creates one. A
graphics VGT is created, and the cursor changes to the "View" prompt indicating the creation of a default
view. Thf~ default view will be slightly larger than the illustration, or a whole page if the illustration is empty.
The user presses and holds any button callsing an outline of the new view to appear and track the cursor. The
user moves the upper left corner of the default view, and lifts the button up when the view is positioned.
Next the s i 1 e d i t program prints the names of the t(!xt fonts to be used, and tries to load them into the
VGTS. The existing illustration is displayed (along with some performance statistics), and the following
prompt appears:

U~e mouse buttons: Mark" Select, Menu

'Ibis me~ms two mouse buttons are used for the basic commands, with other commands available through
combinations of buttons or from the command menu.

The lI1f1rk, indicated by an "X" shaped cross, is one end of lines and the position 'of added text. Once added
to the illustration, objects can be modified by selecting them and performing a modifica~ion cOJnmand.
Selected objects appear highlighted in some way, although the exact fonn of the highlight may depend on the
VGTS implementation. In the SUN implementation, objects are normally black on white, with selected lines
half-tone gray and selected text appearing within a gray box.

4.5.2 Commands

Commands available on the mousc are as follows:

Left Button Moves the mark to the point of the click. The "X" shaped cross moves to tJ)e new location.
The mark liS normally moved before drawing lines or placing text.

Middle Button Selects the single object at or ncar the click. Any other objects previously selected are no
longer sCiccted. The program will echo tJ)e kind of object selected, or isslle a diagnostic if
no objects are found.

Left + Middle Draws a line from the mark to the point of the click, of current line width. 'I11C line is
eitJ)er horizontal or vertical, depending on which difference in position is larger. This is a
faster way of drawing lines than llsing tJle menu. The mark is moved to the point of the
click, to facilitate drawing a series of connected 1ine segments.

Middle + Right Adds tJ)e object ncar the click to the selection. This is in contrast to the Middle Button,
which causes exactly one object to be selected. Use this command to select several objects~

'52 PARTITIONING OF FUNCnON IN A DISTRIBUTED GRAPHICS SYSTEM

Right Button Pops up a command menu, as described below.

More advanced commands are available on the menu as follows:

Quit Exits without saving the illustration. UsuaJly the Write command should be used to save the
file, so if there have been changes since the last Write command, confirmation is requested.

Line Width Pops up a menu of default line widths. Select the desired new width from 1 to 8 units. Clicking
outside the menu results in no change.

Delete The selected objects arc deleted.

Unselect /\ click is requested; the object near that click wiJl no longer be selected.

Draw Line A click is requested, and a horizontal or vertical hne is drawn between the mark and the
position of the click.

Add Text A line of text is requested, and the text is added at the position of the mark in the current font.

Modify Text Selects another menu for commands used to modifying text.

Write Writes the ilhlstration back to the file given on the command line.

Stretch Line Position the cursor ncar one end of the sc:1ccted line. and hold down a button. The end of the
line will move following the cursor until the button is rele"ased. (1\ vailable only in the native
V-System version.)

Move

Copy

Box

,
Position the cursor anywhere in any view of the illustration and press any button. The selected
objects will fonow the cursor until the button is released. (/\ vailable only in the native V­
System version.)

Position the cursor anywhere in any view of the i11ustration and press any button. A copy of the
selected object') will follow the cursor until the button is released. (Available only in the native
V-System version).

Move the cursor to one corner of the box. and press any button. While holding down the
button, position tJle opposite corner of the box. The box witJ be drawn in the current line
width. The box can be aborted by pressing atl three buttons at the same time. (Available only
in tJle native V-System version.)

Select Area Move the cursor to one corner of the area. and press any button. While holding down the
button. position the opposite corner of the area. All objects within the area will be selected.
(Available only in the native V-System version.)

l)ebug Enables several debugging print statements. for maintenance use only. (Available only in UNIX
version.)

The f()lIowing commands arc used to modify text:

Edit Text The selected text is stuffed inlO the VGTS line buffer, and edited by the user.

Default Font Displays a menu of fonts to become the new default font, for Text added with the Add Text
command.

Change Font Displays a menu of fonts to be the new font for the selected text.

AN IMPLEMENTATION OF THE VGTS 53

4.5.3 Selecting AlternatlB Fonts

Two tcxt font/size combinations are available in SIL format, with regular, bold and italic faces in each
font/size combination. Default fonts are Helvctica7 and Helvetica10, with Helvetica7B, the bold face,
Helvetica7I the italic face, etc. A third font, Template64? is used to draw circles 'and diagonal lines.

Other fonts can replace Helvetica by creating a file wnth the namefilename. fonts. This tile contains the
names of the fonts to be used. one per line. Comments are indicated by a # character at the start of a line.
The default fonts are acceptable for illustrations to be included in papers, but for slides larger fonts like 12
and 18 point should be used. Thus, for ex~mple, the font file:

font file for slides
Helvetica12
Helvetica18

could be used when making slides. A simple command to list the defined global symbols in the font library
can be used to determine what fonts are available.

4.5.4 Generating and PrlBviewing Printed Copy

A related program called s i 1 pre s s produces printed illustrations from SIL format files. Alternate fonts
can be selected as in the s i 1 e d i t program. The command line:

. silpress filename.sil
conveJts the named illustration into a printing format me and queues it for the local laser printer. An option
is available to retain the printer format file, to merge the illustration into a document produced with the
Scribe or TEX document compilers. It may take several iterations to get proper positioning and size, but it is
faster than llsing a scissors and paste. The show program can be used to preview document') including
illustrations before they arc printed.

4.6 Summary of Implementation ·Status

Virtual Graphics Terminal Servers have been implemented for five varieties of SUN workstation, with two
kinds of frame buffers. Interface libraries have been written in C and Jnterlisp. The C int.erface for UN1Xis
callable from other languages: such as Pascal. Implementations for the IRIS workstation and VAxStation arc in
progress at the time of this writing.

Current appJications include:

• Emacs and an Rmacs-1ike text editor [21],
• a VI ,Sllayout editor [42],
• a font design system [74],
• a font and bitmap editor,
• two document illustrators,
• a document previewer,
• some distributed games. and
• a variety of display tools for vector graphics <\nd raster images.

All applications may be run directly on worksultions if they have enough memory. Many may also be
available remotely, under systems supporting appropriate network protocols and interface Jibraries, such as
VAX/UNIX or DEcSystem-20/Tops-20. Since all interaction goes through th~ VGTS, other clients include
executives and any remote applications accessible via, TELNET-style protocols. Thus, we have implemented
clients of types A through D in Figure 3-5. With respect to short-circuiting, tl1e VGTS handles cursor control,
hit detection, zooming, line-editing .. and all screen management functions.

54 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

The implementation is reliable and fast enough to be used as a generC;l1 computing environment In fact,
this thesis was written primarily using a text editor under the VGTS, and all diagrams were produced using
the illustration editor described in the previous section. The experience gained from this use helped to judge
the importance of criteria such as performance and reliability.

Appendix C gives some details of the development of the VGTS, including other people who contributed
software to the effort. The prototype implementation took less than one year by the author, with slow
evolution continuing by others. The next year was spent evaluating the design, which is discussed in the next
chapter, and taking measurements, which will be discussed in Chapter 6.

VGTS DESIGN RATIONALE 55

-5-
VGTS Design R,ationale

The partitioning problem,is ful] ~ftrade-offs: most design choices have both advantages and disadvantages.
Some of these trade-offs are discussed in this chapter, along with rationale for the way decisions were made in
the VGTS. One of the basic trade-offs"is that for every "feature" to be added there is an associated cost. The
cost must be balanced carefully against the potential benefit of the feature. Since this was a research project,
we were concerned with developing the minimum functionality to create a tool for some prototype
applications and taking measurements, rather than a system that could meet everyone's needs.

Many of the factors interact with each other. For example, the general partitioning issues discussed in the
first section could cause performance problems discllssed in'the second section, and analyzed in the third
section. The results of this analysis lead to the centralization decision given in the fourth section. Although
centralization aids in 'portability and uniformity, it can cause problems with customizability. In the last
section, the suitability of the VOl'S design for the future is discussed.

5.1 General Protocol Issues

Some basic problems appeared when trying to define a good interface (VGTP) to the VGTS. Although
total application and device independence is a laudable goal, it can 'lead to a VGTS that slipports too much
function for some applications and too little function fhr others. Both situations lead to excessive overhead:
the first because the VOTS is doing too much: the second because the application must go to extra lengths to
subvert the VGTS. For example, if the VOTS were tailored for the basic SUN workstation, it would include a
variety of routines for clipping and scating. However, in the IRIS workstation these functions are provided;n
hardware by the Geometry Engine [38]. OeneraPy, the IRIS provides considerably more functions than the
SUN workstation, favoring additions to the VOTP. Thus, the VGTS itself had to be structured as a collection
of building blocks, and careful consideration was given to the intended range of graphics devices and
applications.

5.1.1 Fundamental Implications of Partitioning

Although networks should be as transparent as possible, p~ysical distribution raises fundamental problems.
In all cases we would like to Hmit both the frequency of communication and the amount of data transmitted at
anyone time. In some extreme cases this might require caching mechanisms on the workstation and
necessitate complicated protocols to keep the workstation cache synchronized with the remote database.

Nevertheless, we observed that most interactive programs could be divided inte) a /rolllelld that converses
with the user and a back('lId t.hat does the real processing. This simple model of user interaction is illustrated
in Figure 5- L The ideal VGTS would provide a common lIser interHu.:e portion and avoid the duplication
and inconsistent inlerHlccs that clIrrcntly abound bctwc(~n applications. In so doing, it would short circuit tile
traditional interactive response cycle between ti1e user and tile application [55].

56 I-ARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

User
Front
End

Short

Circuit

Back

End

Figure 5 .. 1: User interactive response cycle

Short-circuiting is possible at a number of different levels. including:

Database

• mouse-contr~lIed cursor: The updating of the cursor position is performed by . the VGTS in
response to user motion of the Olouse (or similar pointing device).

• screen management functions: These are necessary to allow multiple applications to run
concurrently without interference.

• hit detection: Applications arc infonned when a significant event occurs, such as selection of an
object; they do not keep track of the cursor position.

• editing: The VaTS supports editing so only some high-level indication of the editing changes
needs to be communicated to the application. .

Higher-level short-circuiting, such as local hit-detection, provides:

1. better response for those operations that can be short-circuited,
2. better utilization of powerful workstation resources,
3. lower demands on the network (for distributed applications),
4. reduced programming required for applications, and
5. lower processing demands for hosts.

However, to support high-level short-circuiting. the VaTS needs to be provided with high-level information
about input and display semantics. That is. the VGTJ> must allow the application to communicate the model
that it is representing pictorially, not just the image of tl1at model, as is common in contemporary graphics
systems.

Imagine, for example, that multiple VaTs were mapped to overlapping viewports on the d.isplay screen. If
the top VaT is repositioned on the screen, it and the previollsly obscured VGT(s) must be redrawn. If the
VGTS does not have a model of the picture associated with the VaT. the VGTS cannot redraw the picture in
its new position. Similar observations hold H.lr panning and zooming. Instead, the VGTS would query a
possibly remote application to redraw the picture. a potentially timc-consliming operation. Naturally, it is
even more imporlant ror the VGTS to support a model if it is to provide generic editing.

The exact kind of model provided by tlle VaTS could have ranged from simple to complex. For example,
even systems like G KS provide a rudimentary form of modeling through the Workstation Independent
Segment Storage capability. The power of using more general structure to define pictures has been exploited
since the pioneering SKETClIPAD system in the early 19605 [135]. Ironical1y, a number of early graphics
systems took this approach to its extreme by merging the application model and the display file into a single
graphical data base [36, 112]. This approach fell into disfavor largely becmise it imposed a fixed
representatiOli on all applications. [n light of distributed graphics, it is also impractical to support a single
data structure spanning multiple machines. .

VGTS DESIGN RATIONALE 57

A number of subsequent systems developed the notion of a .structured display file that encodes the
hierarchical structure of figures, but leaves most of the application-specific information in a separate
application model [51, 52, 126, 148]. The structured display file is partially redundant, but provides a
reasonable amount of structure for high-level short-circuiting. In particular, compared to the more
conventional segmented display file, a structured display file can provide better response when editing
objects. Our initial application was VLSI circuit layout, which often requires drawing objects that are highly
structured and regular [83].

The use of structured display files in the VaTS was motivated primarily by Sproull and Thomas's
Structured Format Protocol, which in turn was motivated primarily by network issues of the sort discussed in
this section [126]. However, that protocol was never fully implemented, primarily due to the lack of sufficient
computing power in the terminals available at that time.

In contrast, more traditional graphics packages do not retain object definitions at as high a level. This has
three major performance problems .compared to the VGTS. First, defining complex objects can require
significantly more time, if those objects contain several instances of the same symbol. Second, editing existing
objects is more time-consuming since the entire object must be redefined. Third, generating different views
of objects is considerably slower. since tlhe application itself must redraw each view. On the other hand, "on
the fly" graphics could be faster under traditional systems since the VaTS does not pennit an application to
simply "write" on the display, but rather requires the application to repeatedly edit and redisplay an entire
symbol.

The evolution of graphics protocols can be compared to the evolution of general purpose programming
languages. The simple bitmap oriented systems can be compared to assembly language, with total generality
but lack of structure. Th·e next step is procedure abstraction, which corresponds to languages like BCPL with
control structure. The final step is to provide both control and data structure abstractions, such as languages
like Pasc~l and Ada.

Another worthwhile analogy is with low-level disk storage systems. Early attempts forced users to deal
directly with the sector, track, and head allocation of disk files. The concept of ~'Iogieal blocks" divides the
disk into uniformly sized and sequentially numbered blocks. Interacting with disks in terms of these slightly
higher-kvel objects makes impossible some of the clever optimizati()I1s done by early programmers.
However, the advantages of this level make it almost universal1y used in modern operating systems.

5.1.2 Replication Issues

. The replication of daCt1 (keeping multiple copies) that result<; from the partitioning described in the last
section was another major design isslle for the VGTS. In graphics systems. the multiple copies arc usually at
different levels of represent~\tion, and the reason for the copies is performance. The actual number of
representations may vary. but most high-perf(.lrmance graphics systems maintain some kind of display Jist or
display file. which is intermediate in representation between the application's data structures and the final
displayed picture [56].

For example, an application lIsually reads some permanent data files and construet<; an internal model of
the objects being displayed. A structured display file contains in formation on structure and geometry, but no
application information. Th(! viewing process then displays this SI)F with some viewing parameters, in our
case on a bit map termimil. Thus, a typical situation may result in four levels of partially redundant
information. This leads to several natural places to partition the data in a distributed graphics system, as
illustrated in Figure 5-2.

]n each case the data .. structures below the thick line arc stored on the workstation, and those above the line
arc stored on some remote server machine. In traditional personal computers, everything would be qn the

58

Application

Data Structures

PARTITIONING OF FUNCTIOK IN A DISTRIDUTED GRAPHICS SYSTEM

Large

Workstation

-------- Small
Workstation

Bit Map

Terminal

~

t

Figure 5-2: Possible data partitioning points

Personal

Computer

~

workstation, with the possible exception of data on a large archival file server to back up the personal
computer's files. For large but diskless workstations. l.l\e application program can still run on the workstation,
but access the data tiles over a network. For smaller workstations, the stnlctured display file is stored locally,
but the application program runs on the machine with the fi1e system. In the simplest of workstations, only
the bit map is stored locally.

Note that arrows only go one direction, from the higher level representation to the lower level one. Each
representation can be generated from the next higher layer, which. greatly simplifies the propagation of
·updates. Pipelining. including possible hardware implementations. is much easier if the conversion is always
in one direction. In actual practice, however, some amount of short circuiting can be done to provide faster
feedback. since input has t() travel in the reverse direction. The architecture and implementations of thc
VGTS keep this short circuiting to a minimum, with only a few simple local functions vastly improving
average pertbrmance. More research can be done in the future within this framework on even higher levels of
short circuiting.

The V-System allows all configurations of Figure 5-2. although the first (personal computer) and last (bit
map terminal) have heen thoroughly investigated in other work discussed in Chapter 1. The configurations
labeled "small workstation" and "large workslation" are the focus of this work.·

5.1.3 Caching Issues

One way to further reduce communications costs would be to write an agent for each application that
maintains a cache of the main data base. Once a cache is in place. the usual problems of update arise. When
should the cache updated and how much of it is updated at a time? For example. there arc two interesting
cases in circuit layout: .

• When viewing the entire design it is unnecessnry to maintain the details of the lowest levels. l11is
information may be omitted in order to maintain the representation for the higher-level structurc.

VGTS DESIGN RATIONALE 59

• When viewing a speciflc component it is unnecessary to maintain the representation of pieces of
the picture not now on view.

Thus the agent would be constructed in such a way so as to maintain only the necessary data. Appropriate
parts of the figure representation would contain the equivalent of invalid pages, leading to the equivalent of
page faults.

The ideal VGTS would provide most of this support without requiring that a special-purpose agent be
written for each application. Although the current VGTS architecture allows caching, the current prototype
does not implement any. The size of most SDFs rarely exceeds two or three thousand bytes, which is an
insignificant amount of memory compared to the size of the VGTS itself. This and other possible VGTS
extensions arc discussed in U1C final chapter.

5.1.4 Transport Protocol Issues

Once the higher-level protocols arc decided l.lpOn, the trarisport and lower level protocols must be
detennined. Possible ~hoices, for transport protocol include datagrams, byte streams, and packet (or message)
streams. Streams are an obvious choice because they generally provide a high degree of reliability, can be
used with a wide variety of terminals and networks, and simplify programming the applications and the
service. [n addition, if the workstation and remote host interact frequently or in volume. high bandwidth is
required. better achieved with virtual circuits.

If bandwidth requirements are low. then the low delay of datagrams might be more appropriate.
FurtJlermore, interactive graphics requires real-tim(~ communication, which places greatest importance on the
most recent data. In contrast, streams under load tend to lose or delay new data in favor of old data. The
graphical representation also impacted our choice. Since high-level infonriation was being transmitted, the
loss of a single datagram would be catastrophic. Thus. only "reliable" stream-oriented protocols were used.

Fortunately, the V-System architecture allowed us to experiment with several of these protocols. Each
remote application must have an agent on tJle workstation, so the application and the agent may communicate
with whatever protocol tJley desire. Since our prototype applications had relatively modest requirements,
simple encapsulations of tJle VGTP with standard, byte-stream protocols were most widely used.

5.2 Performance Issues

Besides communication isslles, performance was also kept in mind during every phase of the design of the
VGTS. Without careful attention, many distributed systems can end up being slower than their centralized
counterparts. In particular, many previous distributed systems have tailed because of lack of attention to total
system performance. On the other hand, although poor performance guarantees that a system will fail, high
performance does not guarantee success. Othcr factors such as the various costs associated with high
performance cannot bc negtc,cted.

5.2.1 Code and Data Size

Despite the falling cost of memory, main memory can still be a major cost of a computing system. In fact,
no matter how much memory a computer system has" it seems to almost always need more. Eliminating
duplication is one way to save memory, but often redundancy buys perfonnance. A hardware cache is an
example of such redundancy used to speed up a physical processor. Similar techniques to take advantage of
redundancy were used in software, as discussed in Section 5.1.2.

60 PARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

Another way to save memory is economy of function: to not implement features that are rarely used, or
that can be done with existing capabilities, unless they arc necessary. For example, some users might like to
have blinking as a pri.mitive attribute. Since blinking can be simulated by having the application program
repeatedly add and delete an item from a symbol, blinking attributes were not included in the VGTS. This
means that each application program must include code for blinking if desired. but the overhead is rarely
encountered. On the other hand, diagnostics and error recovery arc intended to be rarely used in properly
written software, but many understandable error messages are included in the standard VGTS, since when
they are used they can provide invaluable information.

5.2.2 Resource Limitations

lbe concern for memory costs is another prime motivation for the usc of high-level display files instead of
the more common bitmap approach. Note that the architecture does not explicitly prohibit th~ storing of
bitmaps, and in fact a bitmap item type is supported. However, Section 4.2.1 described how the prototype
implementations redraw only from the SDF, with no bitmap caching of overlapping areas necessary. The
current architecture requires that to display large images the entire bitmap must be transferred into the VGTS
for every change. This has proved adequate for simple image display tasks, or editing small bitmaps such as.
characters. For more intensive image processing applications, simple raster operations could be provided on
raster objects to improve performance if necessary.

SOlne display file approaches may severely limit the maximum size or complexity of objects that can be
displayed. For example, many traditional graphics system support only one level of structure, the segment
Since we are primarily concerned with the research community, absolute limitations should be avoided
whenever possible. However. making some assumptions about maximum resource limitations may simplify
the design or improve performance. for example, a reasonable limit on the number of virtual t.erminals or
views might be an acceptable limitation, so such limitations were included in the prototype VOTS
implementation.

5.2.3 Speed of Execut'on

The two n:tain measures of execution speed of interactive systems are response time and throughput.
Response time is more important when the user has to wait. Many users of early workstation systems had to
spend much of their time waiting wllile an "hourglass" cursor appeared on the screen. Operations which take
significant amounts of time should have been done in the ·'background". This requires a priority-based
multi-process operating system, such as the V-System. :

For a11 other applications for which the user does not have to wait, throughput should be maximized. Since
the hardware trends are to more specialized processors, a natural division is suggested between processes
optimized for response time (interactive) and those optimized for throughput (batch). ;\ fairly common
scenario for users ()f the VGTS is to be running an editor on the workstation in one VOT while monitoring
several long-running hatch operations in other VGTs at the same time.

5a3 Some Simple Models

As discussed in the previous section, many attempts at distributed systems have failed due to poor
performance. In addition to the inherent cost of the computation, the costs of communication between the
part., of the distributed program arc incurred. Thus the lolal computation cost of a distributed program is
almost always higher than the total computation cost of an equivalent centralized program.

vaTS DESIGN RATIONALE 61

There arc: two approaches to improving the perfonnance of distri~uted programs, both by identifying and
overcoming these communication costs. The traditional approach is to improve the perfonnance of the
underlying network communication mechanism. The work of Spector and others on rClnote memory
references is in this category [125]. A more promising approach taken in the VGTS was to decrease the

. amount of network traffic by lIsing higher-level protocols. In other words. reduce the frequency and volume
of communication by making the applications more loosely coupled.

For comparison. consider the many performance studies made of demand-paged virtual memory systems.
Although performance can be improved by speeding up the handling of page faults. better results are usually
achieved by reducing the number of page faults. For example. increasing physical memory, tuning the page
size. improving the locality of the application, or using a better selection algorithm can make as substantial a
difference ,IS the speed of the disk.

Although this section does not attempt an exhaustive analysis of the VGTS architecture, some very simple
models can be developed. As in other simplified models of two-processor systems [132]. a simple model is
necessary before a more detailed one. Although some attempts have been made to model larger systems of
many processors [131], these have mostly been theoretical models with very little total system performance
data. At Hrst glance one might assume that the factor most important at any given time is the bottleneck, and
construct a queuing theory model. The problem is that in a complete system the bottleneck is not so
well-defined.

5.3.1 C(.mparison to Cache Model

A cache is a well-known hardware mechanism to improve perfOlmance of a hardware design by taking
advantage of locality properti4!s of ~oftware [121]. The locality principle states that a program's references to
data are not uniformly distributed, but instead concentrate around a set of locations at any given
moment [108]. A small number of addresses are responsible for a large fraction of the memory references.
lbe virtual memory concept is made possible by taking advantage of the principle of locality at the next
higher level in the storage hierarchy. We can extend this concept to an even higher level, and take advantage
of the patterns of usage for high-level graphics functions in the VGTS.

In a distributed graphics system the processor in the cache model plays a rotc analogous to the workstation,
and the main memory corresponds to other server hosts. The perfonnance of a cache can be roughly
characteril.ed by fOllr numbem:

T local is the average time for access to the smaller but faster ·resource.

T remote is the average time to reference the larger but slower resource.

T is the time it takes to communicate between the local and remote resources. comlll

P is the "hit" rate, or probahility that an average operation can be handled by the local resource.

This large communications Ulctor, T , is the major dirference from the hardware cache model. along with . conmu
another component that is common to both local and remote operation:

T vgts is the average time taken by the VGTS for both local and remote operations.

The average time for all operations is then:

Tavg = p Tlocal + (1- p)(Tcomm + Tremote} + TVgts
'Ibe ideal would be to minimize this time with respect to the various hardware and software trade-oft's
mentioned in the rest of this chapter. .

62 PARTITIONING OF FUNCTION IN A DISTRIIJUTED GRAPHIC~. SYSTEM

In more concrete terms, this model represents a terminal by making p zero (or very small), so no operations
arc performed locally. The terminal role is acceptable when Tcomm and Trcmotc are small components of the
overall cost, which implies a very fast mainframe and high-bandwidth communication (or batch-oriented
tasks). When p is ncar one, this models the personal computer configuration. Personal computers are fastest
when T1oca1 is small, which implies fast personal computers (or simple interactive tasks).

When the task is too large to be handled by the personal computer or terminal configurations, the following
approaches can make T avg smaller:

l. Reduce Tcomm (communication time) by using special protocols or network improvements. This

requires measurements to determine if the actual bandwidth of the network or the transport

protocols are the bottleneck.

2. Reduce T1oca1 by using a faster workstation. As we will see by the measurement results, speeding

up the processor usually has the desirable side-effect of also increasing effective network

throughput, or reducing Tcomm' However, this cost must be incurred on every workstation.

3. Reduce Tremotc by using a larger, faster computer for the server host. This cost can be shared

among all the workstations sharing a server.

4. Increase p by caching information on the workstation or using high-level short circuiting so that

more operations can be performed locally. Applications could also partition themselves to put

more of their functionality on the workstation. Note that this usually implies an increase of the

memory of each workstation.

5. Reduce Tvgts by improving the performance of the VGTS itself. In fact. for many simple

applications with insignificant computation demands, this factor could be the only important one.

The value of short-circuiting has already been introduced. The next section goes into more detail on the
relationship between the local, remote, and communi~ation times in the VGTS model.

5.3.2 The Time Dimension

VGTS performance can also be examined by viewing the events along the time dimension. Figure 5-3
iI1ustrates the· time lIsed on each processor resource for one typical interaction response cycle. Time
progresses from lell to right. The I1rst example is a persol1,il computer configuration. The next two lines
represent the partitioning of the problem between a workstation and a server host.

The variables in Figure 5-3 represent tlle following values:

T Input

T Swapln

Represents tlle time to handle the input event. This is usually the same in both the local and
distributed case.

Represents the time to swap in or otherwise change contexts to the application program on the
workstation.

VGTS DESIGN RATIONALE 63

Personal Computer

)-- t::ji-.-__ .. I .. I ____ ::1 .. 1 ____ 11 ______ ..

T Input T Swapln T
PC

T SwapOut T Display

Workstation

T Input
T Display

Server

T Netln
T

Server T NctOut

Figure 5-3: Simple request-response time model

TNetln Represents the time to send the input event from the workstation to the server host. for the
server to receive it. and possibly schedule and change context to the computation.

T Server

[s the time for the computation to be executed on the workstation.

Is the time for the computation on a server. Usually execution of the compuUltion is faster on a
larger central server host than the individual workstation.

TSwnpOut Represents the dme to swap out the application program. or change context back to the graphics
system.

TNetOut Represents the time to send the result~ from the server host to the wo:rkstation, for the
workstation to receive it, and possibly schedule and change context to the display process.

T Represents the time to display the result of the interaction. Display

The conclusion from Figure 5-3 is that it is faster to use the workstation/server split when the swap times
plus the local computation ti.me is longer than the round-trip network overhead plus the host computation
time. That is:

T Swapln + Tpc + T SwapOut > T Nelln + T Server + T NctOut
is the condition for superior performance of the, partitioned configuration.

Since the V-System at the time of this writing supports neither paging nor swapping. TSwa -,In is either
insignificant (for programs already fully loaded) or else. it is the time to load the applicati .. tn program.
Similarly, TSwapOut is the time fbI' a context switch. On the other hand, for the applications mentioned in
Section 1.2.2 that must run on the server, the swap timls are essentially in finite. On most personal computer
operating systems, swap times can be as high as several hundred milliseconds. Even without physical
swapping, many operating systems have long context swfitching times.

The time dimension analysiis suggests the following techniques to improve performance:

1. Reduce the T Netln and T NctOut times by reducing delay in the network, increasing the bandwidth

of the network, or increasing concurrency in the network overhead.

64 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

2. Have the server send results back to the workstation as soon as .possible, since the rest of its

computation can continue in the background concurrently with T Display'

3. Use the personal computer approach whenever possible with high timesharing loads.

Timesharing loads add a queuing delay to T Server' which could easily make it much higher titan

Tpc on a powerful workstation.

These models provide the framework for interpreting the performance measurements to be given in Chapter
6. The following sections will discuss important design considerations that may not be directly related to
distribution or perfonnance.

5.4 Application Multiplexing Alternatives

One crucial job of the viewing service is to multiplex the single user and display devices to the possibly
many application programs. This function is similar to that of the kernel or process manager of a general
purpose operating system.

5.4.1 Decentralized Control

Most operating systems handle contention for the processor by letting one process have full control, then
saving the state of tile processor. loading the state of the next process to run, and letting that process have full
control. A similar approach could be taken with graphics [35]. The reasonin,g is that t.his will allow higher
perfonnance, . since compiled programs usually have better perfonnance than interpreted. programs.
However. it is not necessary to have decentralized control to have compiled display lists; it is just a question of
whether the application program or the viewing service does the compiling.

A number of sophisticated object-oriented window systems have been built for personal computers with
decentralized control, as discussed in Section 2.2. While these window system approaches work well for local
applications. they do not extend well to remote applications. especially those written outside the framework of
the particular language and workstation. Even systems that attempt to provide the object-oriented "up-call"
functionality in a distributed environment have resulted in centralized control [59].

One major problem with decentralized control is that current graphics devices do not always allow the state
of the graphics device to be saved and restored. Another problem is that application programs would be
non-portable at the binary level even if there were workstations that used the same processor architecture but
different graphics architectures. This may not seem like a problem since source-level compatibility could be
retained. but it could result in a version "explosion" with many copies of every graphics application, each of
which must be maintained in parallel with the others. Since both of these problems existed for the SUN and
IRIS workstations, the decentralized approach was not possible for the prototype implementation. The
original motivation for virtual terminals (see Section 2.3) was to eliminate Ole 11 J 111 version problem. -

5.4.2 Centralized Control

The VGTS, on the other hand. is designed to operate in a environment composed of a variety of
appJications, programming languages, machines, and networks, with widely varying terminal interaction
requirements. A centralized approach, rarely tlken in bitmap graphics systems, communicates a list of objectS
to be drawn to the viewing service, and tile viewing service actuaHy renders the objects. This virtu~ll temlinal

VGTS DESIGN RATIONALE 65

approach, previously introduced in Section 2.3, was taken in the VaTS due to the advantages for portability
and parti tioning.

It is not a contradiction (as it might seem) that partitioning implies centralization. Centralized control was
used in the VaTS to provide adequate performance despite expensive communication. The actual costs of
communication will be measured in Chapter 6. Another side benefit of centralization is conservation of
memory. Each application program is smaller because it does not need to be linked with the graphics library.

5.5 Uniformity and Portability

Another set of issues concerns different aspects of unifbrmity. The general problem associated with
unifOlmity is that, almost by definition, uniformity may restrict flexibility. The goal was to restrict how things
are done, but not whnt can be done.

5.5.1 Device Independence of Applications

Since workstation hardwaf(~ is changed constantly, software developed on one kind of workstation usually
does not nm on other workstations. One traditional approach to this problem have been query operations.
Application programmers may take advantage of query operations to change behavior depending on the
results of the query [28]. This is a highly restricted furm of device independence, that requires premeditation
by the applications programmer of all pObsible devices with which the program will ever run.

Device independence has been recognized as a goal for quite some time, but is even more important
today [60]. In fact, technology can progress so fhst that by the time an application is finished. totally new
graphics devices may be available that were not even anticipated at the time the application was designed.

For example, the prototype VaTS took about one year to deve10p, another year to measure and a final year
to evaluate. In the meantime, the architecture of the SUN workstation had changed drastically, so the
prototypc implemcntation no 10ngcr worked on thc new workstation. If the VaTS architecture had been
t:'lilored to the original workst:'ltion, then all tJle applications developed during these years would have to be
rewritten. Instead. as soon as tJ1C new version ofth(~ VaTS that handled the new workstation was installed, all
client programs could be rUIl immediately. without any modifications. VaTS changes were limited to one
low:-level module, tJle drawing manager, as indicated·in Figure 4-1.

5.5.2 Uniformity of User Interface

In addition to uniformity across different hardware devices. unifonnity across different software tools is
another desirable goal. Powerful hardware like bitmaps.and mice provide the opportunity for more advanced
interfaces, but also can cause chaos if each application chooses its own user interface. Every programmer has
his own idea of what is "right" and those tastes may not match those of the intended users. One partial
solution to this problem is the user inlerfllce management system concept which isolates the operation of a
program from the details of how those operations arc invoked [143].

l11e VaTS provides a step in this direction, with the following user interface standards:

• Pop-up menu feedback is implemented inside the VaTS. The view manager menus as well as
those provided by applications arc handled unifonnly .

• 1\ common line editor provides simple editing functions like character and word delete to all
applications requesting keyboard input

66 PARTITIONING OF FUNCI'ION IN A DISTRIBUTED GRAPHICS SYSTEM

• Banners provide a common mechanism to indicate some concise status information, such as the
name of the program currently executing. .

• All screen management, such as zooming and moving of views is done uniformly through the vicw
manager. '

• Other conventions and library packages are provided as suggestions. For example, pressing all
three buttons simultaneously signals an abort to most programs.

The result is that users quickly learned how to use new tools, instead of having to adapt to the whims of the
implementor of the new tool.

5.5.3 Portability of Implementation

It was found to be easier to modify the code of the first implementation to handle another kind of
workstation than to start from scratch. Several techniques were used to aid in portability:

• Restricting the range of hardware. In our case, the VGTS was targeted to higher-end workstations
and future higher, performance hardware instead of the lower cost popular personal computers
currently being mass produced.

• Using a high level language. The VGTS was written in the C programming language [711~ C
compilers arc widely available for many computer architectures. The UNIX timesharing system
has been ported to many different architectures successfully by using C [66]. '

• Using a standard computer architecture. The prototype VOTS implementation was on the
Motorola MC68000 architecture, which has several different implementations used in many
commercial products [100].

• Attention to modularity and isolation of machine dependencies. This was only achieved by
actual1y supporting two or more devices with the same source code. Once the system worked on
two machines. the third was easier. and so on. The first few efforts detected subtle hidden
machine dependencies that would otherwise be overlooked, such as byte ordering problems [40].

Portability was another of many properties greatly helped by economy of features. A small system was
inherently easier to port than a larger system. For this reason many attractive features were not included in
the VGTS design unless they were. fbund to be necessary. For example, some users requested up/down
encoding of the keyboard, or advanced support for special function keys. Unfortunately, the implementation
already worked with about ten types of keyboards. some of which did not have up/down encoding or special
function kcys.

Although the trend to faster but cheaper graphics workstations is unmistakable. the time between the start
of a design and its production is usually underestimated. For example. a major computer manufacturer
announced a workstation product and demonstrated' it in July of 1982. In the fall of 1982. a research contract
with Stanford was negotialed that included porting the VGTS lo this new workstatioll. By the Sl,lI11mcr of
1984 the project shifted effort') to a newer kind of workstation. J hlrdware progress had been so great that the
workstations were obsolete before they were delivered.

A more important problem with porting the VGTS was not technological but political. Most workstation
manuf.:1cturers were unwilling to reveal1ow-level details of their graphics devices. If they contained custom
hardware, the manufacturer wanted to protect the trade secrets involved in the hardware, so other
manuf.:1cturers could not use the same techniques. If the graphics devices were sim'pte frame buffers driven
by software. the low-level raster operation functions were proprietary, to prevent the use of the software on
other machines.' In our case we had, no desire to pirate trade secrets.' but we failed to convince the
manufacturers that it was in their best interests to give liS the information.

VGTS DES[GN RATIONALE 67

5.6 Customizability

Unfortunately the goal of uniformity was in direct conflict with that of customizability. Although at first
customizability seems attractive, there are many hidden costs. For example, people often work together on a
single project in a research environment. Highly customized interfaces make exchange more difficult, if users
cannot use their custom commands on other workstations. On the other hand, si~ce researchers are often
systems programmers themselves. they have irresistible urges to change a program that they do not like. If the
interfaces are not designed carefully and flexibly enough, users will develop their own versions of the system
anyway and the goal of uniformity is lost.

5.6.1 Customizability by Programs

The author of a program may want to specify some slightly device-dependent "hints" about the display
process. For example, a program may have information on the size of some object or its desired location on
the screen. The program may also wish to advise the VGTS on how the objects should be viewed. Although
the VGTS architecture allows such hinL~, only one was provided in the prototype implementation: An
application can declare dle size of a default view.

One example of a programmer who wanted customization of the viewing process occurred in an integrated
VLSI layout editor and design-rule checker. The author of such a program requested the ability to position
an item within a view, so that a design nt1e violation cOllld be centered in me viewport. Such a feature could
easily be added by creating another VGT with me item as its top-level symbol, and then defining another
default view with dle desired coordinates. The view manager could also include commands to center a view
on coordinates typed by a user, instead of pointed to by the mouse. Therefore, dle view manipulation
capability was not added to the VGTS client interface.

A cominou'argument is mat programs should be able to perform any function mat a user can perform. This
is not provided in the current VGTS, since the user interface deals with views and physical screens. while the
application interface intentionally hides these objects and deals with graphical items and virtual terminals.
One area of future research is the design of a different kind of interface dlat could be used for cU,stomized
view management. However, it is important to make dle clear distinction between non-uniformity on me part
of dle application tools. and customization of mose tools on the basis of the user.

5.6.2 Customizability by Users

A user may want to specify a profile to tailor certain aspects of the user interface to his or her needs. For
example. novice users may want an interface that is easier to team or in which it is harder to make mistakes,
while expert users want mote powerful interfaces with commands available quickly. In addition. many
aspects of user interfaces are a matter of persona) taste. With respect to screen management. some people
prefer to lise arbitrarily overlapped .viewports as implemented by the protot.ype VGTS. white others prefer to
lise the tiled approach. in which the view manager callses views t~) exactly fill the screen without overlap [140].
Another open question is the proper form of menus. In the current implementation, one button click causes
dle menu to appear and another causes the selection. This reduces the prohability of errors when incorrect
button combinations are given, but requires two lIser actions fbr each menu selection. Other systems cause
me menu to appear when the button is pressed, and me selection to occur when the button is released.

Some systems use profiles on a workstation or application basis, but they should reatly be provided on the
basis of lIser. since users and applications should be able to use any workstation. The VGTS architecture
allows this ctlstomization of the view management process, but the current implementations d9 not realize this
capability. Partially this is due to the lack of a user identification concept in me current V-System, but also
due to dle fact mat me conventions as.implemented have proven reasonable in actual use.

'68 PARTITIONING OF FUNCl'ION IN A DISTRIBUTED GRAPHICS SYSTEM

5.7 Suitability for the Futu re

The future in the computer industry is hard to predict in detail, but some general trends arc certain. We
wanted to take advantage of these trends whenever possible, instead of tying the design to technology that
would quickly become obsolete.

5.7.1 Futu re Display Devices

Larger, faster bitmaps. and special-purpose graphics hardware should become less expensive in the future.
For example, while this thesis was in preparation. the Apple Macintosh was made available for about $1000
with a University discount; this is less than most alphanumeric terminals. The Maeintosh has a fairly small
display screen and low-performance processor, but the mere existence of the mouse and bitmap display in a
mass-produced product arc encouraging.

'111e [RIS workstation is ail example of a higher-performance and therefore higher-cost system. with custom
hardware applied to the viewing process [39]. The curr(:nt IRIS implementation renders the output primitives
using a bit-slice microprocessor. and is too expensive for wide-spread usc. However, the IRIS is indicative of
the trend to applying special-purpose hardware to graphics systems.

Current developments include "smart memories" that usc special devices to perform rendering, including
anti-aliasing and shading via ray-traeing.directly in the frame buffer [63]. Perfonnancc can be enhanced
further by using pipelining and parallelism. With this kind of hardware the BitBlt model of operations breaks
down. Instead of moving bits around. the interface to the hardware is at a higher level: declaring primitive
graphics objects like vectors and polygons.

There are two diffei'ing opinions on the effect of this advanced specialized hardware. One line of reasoning
is that since all this custom hardware is so expensive, the raw graphics device must be used at a very low level
to avoid wasting any power. l11e other line of reasoning is that new hardware can be used to allow
programming at a higher level, with straightforward. simp1e. and elegant approaches replacing the special
mechanisms necessary on slower hardware. The first (>pinion appeals more to those who design and 'market
the hardware. while the ~econd appeals to those who develop the software and usc the workstations. Since
software costs arc becoming increasingly more important, in the 1911g nm the elegant software approach
should dominate.

As the VGTS was designed. it was hard to predict what the future held. but one thing was certain: there
would be many more changes in the kinds. quality, and cost of graphics devices. One good way to take
advantage of these new devices, given this uncertainty, was to usc abstract, high-level interfaces and
concentrate on portability as done in the VGTS.

5.7.2 Future Computer System Organization

Ironically. the personal computing trend lTlay be short-lived. Computer systems arc stilt expensive, and
people can not afford fully configured personal computers. On the other hand, microprocessors arc almost
free. and getting cheaper. The cost of a microprocessor should eventually approach t.he cost of a memory
integrated circuit, so despite the increasing densities of memory. the trend should be to less memory per
processor instead of more memory per processor. The result should be computer systems that consist of many
microprocessors working together.

For example, the cluster of workstations for which the VGTS was developed consists of about ten diskless
SUN workstations connected with a local network to three VAx-1l/750s, one VAx-11/780, and a shared
DEcSystem-20. In fuct, each of the workstations is really a multiprocessor in its own right. In addition to the

VGTS DESIGN RATIONALE 69

MC68000, there are simple finite-state machines to refresh and update the frame buffer, a bit-slice processor
to handle the Ethernet, and microprocessors'in the kcyboard and mouse.

For these reasons. protocols that trcat the workstation as a tenninal (that i,s, partitioning below the VOl
level as iHustrated in Figure 2-2) are not very interesting for the future. The main limitation with these
protocols is that they assume only one connection at a time. Since future computer systems will probably
have many processors, and a single user will probably usc many processors at once. the VaTS should allow as
much concurrency as possible. Concurrency is a useful concept both at the hardware level (as many
computers as possible should be kept busy) and at the higher levels of user interface (the user should be able
to have many tasks in progress at the same time). As a first step, the VaTS provides the graphics operations
in a separate process, instead of as functions called by the application programs.

5.8 Backward Compatibility

Although planning for the future is important, the VaTS design did not ignore the past. It is unreasonable
to expect all software to be rewritten for every new system. For this reason, one VaTS goal was to be able to
take advantage of ~s much existing software as possible. A similar approach was taken in the BRUWIN virtual
terminal system [96]: the terminal manager was designed to take advantage of existing tools, instead of being
the focus of all new developments. Even though BRUWIN provided support for only text on a conventional
graphics device directly connected to a timesharing system. it proved to be a useful tool. Similarly, the VaTS
also was able to access applications running under the UNIX timesharing system through remote execution.

5.8.1 Encapsulating Existing Facilities

For example; the V-System 'itself (including the VaTS) was compiled on a VAX/UNIX timesharing system.
Eventually more software development tools were ported to the native V-System environment. The ability to
run the tools under UNIX greatly cased the transition. Many specialized or proprietary programs arc still
accessed through the UNIX server interface.

In addition, through the usc of terminal emulators and user TELNET programs, a VGTS ~ser can naIl
applications anywhere throughout the ARPA Internet. 'fhis, remote terminal capability has turned out to be
one of the most heavily used features of the current implementation. The next chapter will describe some
experiments using even interactive graphics programs in this manner. Fortunately, many tools can, be
accessed in a batch fashion, so there is little performanc(~ degradation when they arc executed remotely. For
example, this thesis was produced with a document compiler that ran on a UNIX server host.

5.8.2 Relation to Standalrds

Another way of taking advantage nfthe past is to follow standards. The graphical fncilities of the VaTS arc
similar to those severa) existing graphics packages, including those conforming to the Core [147] and
G KS [64] standardization efforts. The principal differences arc:

1. st.1ndardized support for object modeling as well as viewing;

2. hierarchical structure of objects;

3. the ability to handle mUltiple, distributed applications simultaneously;

4. less fle,xibility in terms of attribute and coordinate transformation faci1it~es.

70 PARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

In general, the standards remain oriented toward a single, dedicateq host, and pay little attention to
distributed syste:ms issues, especially the use of contemporary powerful bitmap workstations. Furthermore,
there were no specific applications written for these graphics standards that had to be supported by the
VGTS. Therefore the VGTS did not conform to any of these standards.

Some recent graphics efforts are more in the spirit of the VGTS. Doth NOS [24] and PIIIGS [4], for
example, extended the concepts of 0 KS and Core to include structured display files. similar to the VOTS. As
with previous standardization efforts. these go beyond the current VGTS in support for attributes and
coordinate transformations. In fact. had they existed at the time the VGTS was first designed (the fall of
1981), we might have adopted many of their facilities outright. However, neither emphasizes distributed
graphics (despite its name, Network Graphics System, in the case of NOS) or multi-application (window
system) facilities.

Table 5-1 summarizes how the VGTS graphics capabiJities compare to some traditional graphics packages.
The first colutr,n gives the name of the graphics package, and the second gives the number of dimensions in
most operations. 'fhe next column indicates the kind of structures, including no retained segments in minimal
GKS, simple one-level segments in CORE and a KS, execute segments (like procedure calls), and copy
segments (like macro expansions). The next column gives the approximate number of functions, which is
always larger than the small number of graphics primitives. The last column gives the approximate years
during which the design took place.

System DimensiQD~ Stnlctllr~ FynctiQns Yea[§
CORE 30 Segments 227 1977-1979
OKS Maximal 20 Segments 185 1978-1982
OKS M.inimal 20 None 48 1981~1982

NGS 3D Copy IExecute 181 1982-1984
PI-IIGS 30 . Copy I Execute 180+ 1983-1985
VGTS 2D Execute 30 1982-1984

Table 5-1: Comparison of graphics packages to VGTS

The Virtual Device Interface, VDI, could be used as a real terminal protocol in the VGTS, by developing an
snp interpreter that would generate VOl commands. The same observations hold with respect to
Nt\PLPS [6]. This would allow a single VaTS 'implementation for all devices meeting the speCification. An
interesting question is whether aJl device dependencies should be below the VDI (or equivalent) layer, or if
common cod4~ could be used to simulate the commonly missing hardware capabilities. For example, the code
to handle dashed lines for devices having only solid lines, could be written once instead of inside each device
driver. Ther<~ seems to be an unwritten rule that if a graphics device has any special hardware capabilities,
then these "features" must be used. at almost any sacrifice in software stmcture. This could cause problems if
devices are supported that provide graphics primitives in hardware that are not included in the VGTS
architecture.

5.9 Summary and Motivation for Measurements

This Chapter discussed the reasons behind the major design decisions taken in the VGTS. The next
Chapter attempts to quantify the degree of these trade-offs. For example, the structured display tile approach
favors highly structured pictures.' and incremental editing over initial display. The penalty for initial display
and unstructured pictures should be small compared to the improvement for structure. Since total system
performance was considered important throughout the design, some simple models were developed and
examined in this Chapter. The models show that performance can be improved by reducing the fr~qllency of
communication and the amount of in formation communicated.

VGTS DESIGN RATIONALE 71

The centralized control of the VOTS has benefits for uniformity and portability, but still allows some
customization. Partitioning as exemplified by the VOl'S should become· more important as future display
and computing devices are introduced. On the other hand, users should be isolated from changing hardware
by encapsulation of existing facilities and adherence to standards. Experiments are also needed to prove that
performance is adequate compared to the older systems being emulated and replaced.

72 PARTITIONING OF FUNCnON II\! A DISTRIBUTED GRAPI lIes SYSTEM

MEASUREMENTS 73

-6-
Measu rements

The previous chapter discussed many qualitative advantages of the VaTS design, Sllch as portability and
suitability t.o future hardware. Quantitative measures are also desired to provide a firm basis for evaluation.
One ultimate measure of a system's success is whether people choose to use it to get work done, even in a
research project. This criterion certainly applies in the case of the VaTS, since the high level of interaction
enforced by the VOl'S may trade off some functionality, flexibility, or performance. If the amount of these
qualities'lost is small enough compared to the advantages gained, then the approach may be worthwhile for at
least some class of applications.

For example, some graphics tenninals allow special effects like limited animation using tricks with the color
map. On a workstation shared with other applications, these special mechanisms cannot be used, since
resources like the color map arc shared between several different applications. This chapter will show that
careful deslgn of VaTS protocols can make performance acceptably close to that of other systems that do not
have the advantages of the VGTS.

6.1 Nature of Perforlmance Measurements

Perfonnance measurements have been taken for three benchmark programs, two for graphics and one for
text, in a variety of test configurations. In addition. the illustration editor used to create the diagrams in this
thesis was instnlmented to measure memory usage, construction, and display rates.

6.1.1 Benchmark Progr~ms

The first graphics benchmark created a fully-connected 36-agon with a radius of 350 pixels, drawing 630
vectors or 288,364 pixels. Thus the average vector size in this benchmark was 457 pixels. Since the picture
was a fuBy-connected polygon, many different angles of vectors were used. This was intended to test the
performance of tradition(ll vector graphics functionality. The action was repeated ten times, and the numbers
listed arc the mean of ten consecutive trials.

All numbers given as vectors per second in this chapter refer to this same artificial benchmark, so they
should be valuable fbI' relative comparisons but not absolute limits. However, since most significant
Gomputation was done before the timed part'i of this program. and the number of items in the picture is
relatively large. the intent was to measure the peak rales of adding items to a symbol and then drawing that
symbol. This would measure the rale of initially drawing a new picture.

The second graphics benchmark was intended to test the effects of using structure Oil a simple picture of the
kind used in a VI.81 layout editor (42). This benchmark drew an array of five by six NMOS inverters [93].

, Each or these 30 inverters consisted of 26 rectangles. Ihr a total of 7RO rectangles, all lined with one of four
stipple patterns (which would appear as colors in a color implementation) representing the four NMOS layers.
First the picture was drawn using a single-level SnF and adding all 780 rectangles individU<ll1y. The second
part of this test defined a contact cut symbol, then an inverter symbol, and then added 30 calls to the inverter
symbol, with only 23 primitive items in the SDF.

Although the regularity faclor of this drawing (the ratio of total items divided by def1ned items, or 30 in this
case) is fairly high. modern VLSI designs typical1y have regularity factors in the same range. and the trend is
to increasing regularity [83, 84]. In fact. many of the designs currently under devcl()pment ,could never be
possible with sm~lller regularity factors. Independent of the structure. tIle resulting image was tIle same, about
400 pixels on a side.

74 PARTITIONING OF FUNCnON IN A DISTRIBlJTED GRAPHICS SYSTEM

The text benchmark programs simply wrote characters until stopped by the user. This behavior would
occur, for example, when displaying a new page in a tex~ editor. The characters· were from a fixed-width font
with each character eight pixels wide and 16 pixels high, or 128 total pixels per character. This was the
standard font used by most applications except those doing specialized text display. It was developcd by the
author by manually editing the output of the METAFONT type design program [74].

6.1.2 Test Configu rations

Thc actual structures of the protocols and programs uscd in the performance mcasurcments are illustrated
in Figures 6-1 and 6-2. Thc benchmarks werc conducted with the following communication configurations:

Local Application nmning on thc same workstation as the one used for display. Thc application sends V
messages directly to the VGTS. Since the application is on a separate team (address space), the V
kernel's data transfer operations are needed to move information from the application to the
VGTS' address space; no shared mcmory is uscd. This is illustrated in Figure 6-1a.

SUN-IKP Application running under the V-system but on a different machine, connected via Ethernet to
another workstation, and using V-System lKP. As illustrated in Figure 6-1b, this involves the
application using the same message-passing intcrface, but with kcrnels implementing the Inter­
Kernel Protocol.

VAX-IKP Application nmning under VAX/UNIX, connected via Ethernet to the workstation, and using
V-System IKP. As illustrated in Figure 6-2a, this involves the application writing to a pipe, which
is i·cad by the V-scrver program, which sends messages over the network to a V kernel. The
workstation runs a simple program called fexecute which is necessary only because both the
VGTS and the V-server are servers; they both are sent messages to which they rcply, instead of
initiating thc sending ofmcssagcs by themsdves.

PUP Application running under VAX/UNIX, connected via Ethernet to the workstation, and using PUP
TELNET. Figure 6-2b illustrates this configuration. The application uses pseudo-tty devices
(ptys) to communicate with the PUP TELNET server program Telser. This program scnds
packets over the network _ to the workstation, where a user PUP TELNET program sends the
messages to the VGTS.

E-IP Application nmlling under VAX/UNIX, connected via Ethernet to the workstation, and using
Internet TELNET. This is Figure 6-2c. The application again uses pseudo-tty devices· to
communicate with the IP TELNET server Tel netd. The implementation of the transport
protocol in this case is in the UNIX kernel, and a separate program called the Internet Server on
the workstation. The user TELNET program finally sends the messages to the VGTS.

t\-IP Application running under VAX/UNIX. connected via Ethernet and ARPANET to the worksultion,
and using Inlernet TEl ,NFr. This is the same as Figure 6-2c, but with nctwork including a gateway
and an eXlension through the ARPANET backbone.

Tests were conducted using standard 10 Mbitlsecond Ethernet unless otherwise noted. Tests were a1so
perl()rmed on the experimental 3 Mbitlsecond Ethernct [41]. Each configuration used workstations with both
8 and 10 MHz MC68000 processors. For configurations involving VAx-II 'so 750's, 780'8, and a 785 were used,
and the tests were conducted during unsociable hours with correspondingly Jight loads. Real applications are
often run with high timesharing loads, but these arc hardlo control for the sake of the experiments.

Even more difficult to contro1 werc changes to underlying software. S(lme variation through time inevitably
occurred in tlle VGTS. other workstation software, and host software. For example, introducing new features

MEASUREMENTS

Application

V kernel

Application

IKP

V kernel V kernel

VIO VIO

vaTS
vaTS

a) Local b) SUN-IKP

Figurc 6-1: Workstation configurations tested

AppIIcI pipe Vt--
~

Application

vaTS

fexecute

PUP Telser

SSP

SSP

PUP Telnet iptn

net

Unix TCP

net

Internet·

sarver

a) VAX-IKP b) PUP Telnet c) IP Telnet

Figurc 6-2: Server host configurations tested

7S

and fixing errors typical1y reduce performance, while casing hottlenecks found during experiments improves
performance. Although each table in this Chapter compares configurations with similar software, two
different tables may compare dissimilar version's. The detailed result') in Appendix I) include the date of each
measurement.

6.2 Summary of Performance Results

Given the declarative nature of the VGTP. some measures of interest are:

construction rate The ralte that objects can be added to a symbol, without any display operations.

balch rate r111e rate that objects can be added to a symbol, and the~l displayed.

76 PARTITIONING OF FUNCnON IN A DISTRIBUTED GRAPHICS SYSTEM

incremental rate The rate that objects can be added and displayed as.each is added.

display rate rIlle rate that objects can be displayed once they are defined.

Construction rate is the best measure of the peak network offered load for distributed graphical applications.
The batch rate takes into account display overhead, which is fairly independent of the network. Nevertheless,
it gives the best measure of overaH graphics throughput. On the other hand, the incremental rate gives a
better measure of expected response, when interpreted as the maximum number of display transactions per
second. Display rate is another measure of response for operations such as screen rearrangement or redisplay
of defined symbols.

U nstnlctured vector graphics performance is summarized in Table 6-1. Additional details appear in the rest
of the tables ill this chapter and in Appendix D. In all of the tables. columns are labeled with the test
configurations listed above (local, SUN-IKP, VAX-IKP, PUP. E-IP, and A-IP). Most rows are labeled with
(speed, host. ra'(') triples, where speed is the speed of the SUN workstation processor (8 or 10 MHz), host is the
type of VAX (750, 780, or 785), and rate is one of the rates listed above (construction, batch. incremental~ or
display). All r,umbers are in vectors or characters or rectangles per second. so larger numbers indicate better
perfOlmance. ResulL') have been rounded to two significant digits. and should be taken as order of magnitude
estimates only, due to the many factors involved. However, as we shall see, even these very rough
measurements can be helpful to determine the feasibility of this approach ..

Table 6-1 presents the performance figures for configurations employing the most common processors. 10
MHz SUN and VAx-750. As shown by the construction rate row, objects can be constructed at 440
vectors/second for applications running locally, and 380 vectors/second for Ethernet-based applications.
Overall graphics throughput, as shown by the batch rate row, is 220 vectors/second for local applications, up
to 350 vectors/secon.d for Ethernet-based applications. and 120 vectors/second for ARPANET-based
applications. Incremental display permits 62 vectors/second for local applications, up to 87 vectors/second
for Ethernet-based applications, and 39 vectors/second for ARPANEr-based applications. Actual display rates,
shown in Table 6-3, arc on the order of 430 vectors/second, or .2 million pixels/second, or 5
microseconds/pixel including all display overhead.

Configuration
10. 750, construction
10, 750. batch
10, 750, incremental

Table 6-1:

1.0cal
440
220
62

Vectors/second
IKP PUP
380 200
350 200
81 58

R-IP
220
220

87

Summary of graphics perfonnance

A-IP
130
120

39

The text results are summarized in 'fable 6-2. Throughput is 7700 characters/second for local applications,
up to 4300 chamcters/second· for local net-based applications, and 1900 characters/second for
ARPANEr-based applications. Additional details appear in Tables 6-4 and 6-5 .

. Characters/second
Con tigu mtion Local IKP PUP E-IP A-IP
10, 781), text 7700 4300 1600 4300 1900

T~lblc 6-2: Summary of text perfonnance

MEASUREMENTS 77

6.3 Feasibility Evaluation

The most gratifying conclusion is that the VaTS perfomls better than many systems that researchers are
currently using. Traversing the structured display files to refresh the screen is within 25% of the speed of the
bare hardware; accessed through a package of low-level graphics primitives [22]. Symbols can be constructed
at about the same rate as they' can be' displayed. Lastly, as shown by the incremental rate row in Table 6-1,
applications may issue around 60 EditSymhol- Add/tern - EndSymbol sequences per second. This is more
than the 10-20 updates per s(!cond needed to make limited forms of animation possible at the application
level. without any need to resort to display file compilation or other special techniques. Display file
compilation is still possible in this architecture, and may be needed for graphics devices that are faster in
relation to processor speed.

Oraphics pipeline Vectors/second
1. Local application .'-' frame buffer (clever code)
2. VaTS ~ frame buffer
3. Remote application ~ VaTS" frame buffer
4. Local application ~ W ?frame buffer
5. Loc~ll application ~ VOl'S .~ frame buffer
6. Local application ~ frame buffer (straightforward code)

Table 6-3: Effect of graphics pipeline

570
430
350
300
220
190

Perhaps the most important concern is how the VaTS performance compares to' more traditional graphics
architectures. Table 6-3 compares a number of different "graphics pipelines" to help make this comparison.
The pipelines include the following: .

1. An application writing. directly. to the frame buffer using the standard, highly optimized
implementation of vector drawing.

2. The VOTS refreshing the frame buffer from a structured display file.

3. An application program on a server' host using tlle VaTS to construct and display the picture.

4. A local application using an alternative "Window System" [10]. T'his is an example of me more
c()mmon graphics model in which the application is in control of all drawing.

5. An application program on the workstation using the VGTS to construct and display the picture.

6. An application writing directly to the frame buffer using a straightforward implementation of
vector drawing. .

By comparing the performance of these pipelines. we can estimate upper bounds on the cost of the major
architectural tcatures of the VGTS. Lines 1 and 2 show about 25% perf{)l'Jnance degradation for all drawing
overhead in the VGTS. The principal costs arc:

• Coordinutc tmllsrorllUltiolls. Applications specify objects in a virtual coordinate space, which
must be transformed into device coordinntes. This could be done at SDF creation time using a
form of display file compilation. but is currently done at draw time, avoiding the use of expensive
arithmetic operations like multiplications by using shifts.

• Clipping. ObjecL~ are displayed only within window boundaries. Object~ that He entirely outside
of the window should not be displayed, but the parts of objects that . lie partially within the
window should still appear.

• SDF lntcrprctation. The SDF structure was designed to be interpreted very quickly. With an
overhead of one pointer reference per item, this constitutes very little of tlle drawing overhead.

78 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

Lines 1 and 4 can be used to estimate the cost of centralized control. The W system is representative of the
,"minimalist" approach, with actual drawing centralized but few of the other features of the VaTS. Thus the
47% overhead ofW can be attributed primarily to:

• Message overhe~\d. This will be incurred whenever the graphics service runs as a separate process
from the applicati<.)n. Besides the time for the actual message passing and context switching, the
operations must be encoded into and decoded from the message.

• Datu movement. This is the cost of copying infonnation from the address space of the application
to the server, incurred whenever the server is not linked into each application.

Comparing line 4 to line 5 indicates a 27% performance difference when using the VaTS instead of
w. Although some of this may be due to SDF interpretation overhead, most is due to the following VGTS
features:

• Client stb~e~lm interface. The prototype interface library encodes all graphics operations into a
stream of bytes, and uscs the standard V I/O protocol. This allows for I/O redirection, even
among machines with differentbyte orders.

• Server stremn interf~lce. The prototype server implementation decodes the graphics operations
from the byte stream and calls appropriate internal functions.

o Error chceking. The VaTS attempts to do most error checking, such as verifying that table
indices are within their proper bounds, at SOF creation time, so subsequcnt redraws will perform
at full hardware speed.

• Memory allocation. rvtemory must be allocated to the SOF display records for each new object.
Once thc memory is obtained from th~ system. this involves only a simple pointer movement
down the free list ..

• SDF Saying. The actual overhead for saving the display record involves storing the coordinates
and attributes (usual1y insignificant) and calculating the extent ofthc currently open symbol.

Despite these costs, the VGTS distributed rate (line 3) is higher than W (line 4). This shows that a significant
amount of th~ overhead is incurred on the c1ient. which resultl) in a benefit from concurrency. It is, in fac~
standard protocols such as V 1/0 and the byte stream concept that facilitate distribution.

Notc that almost al1 of these costs must still be incurred even if SDFs were not used to reulin the graphics
information; the only saving would be the few microseconds to store into the display record. Of course, some
overheads could be avoided by using only one process. one address space, screen coordinates, etc. but the
resulting system wou1d not have ~le advantages described in the last chapter.

Final1y. comparisons of app1ication~screen throughput show the VGTS at its worst case. since they do not
take advantage of the display me. Even though the initial picture sometimes takes longer to appear when
using the VerI'S, once it is defined it can be drawn very quickly. For example. in response to screen
managemcnt operations. any W-Iike system would require the application to redisplay its contents at the 300
vectors per second ratc, while· the VGTS would redisplay at 430 vectors pcr second, a 43% performance
advantage.

A simple qualitative measure of text performance is how the VaTS compares to standard RS-232 9600
baud terminals. which generate· about 940 characters per second. For example, consider a typical page
forward command in a screen editor which changes about 1000 characters. On a 9600 baud RSa232
connection this would ulke about one second. With the VGTS it takes about a tifth of a second, which is fas~
enough to seem ·instantaneous to most users.

The remainder of this chapter wit] attempt to show the effect of varying different parameters, and evaluate
the effects to the limited extent possible in the configurations available. These parameters include: -

MEASUREMENTS

• speed of the workstation and graphics device

• speed of the remote host (if any)

• speed of the network

• choice and implementation oftrallsport protocol

• level at which information is communicated, including characteristics of the virtual graphics
terminal protocol

6.4 Internal Factors

79

For many application programs with large proce:;sor demands, the importance of the speed of the graphics
can be insignificant compared to the importance of the speed of the application. These programs are ideally
suited to the VaTS architecture since the application can be nm on a larger, specializedl. high-perfOlmance
processor instead of the workstation. Thus, the major concern is when the frequency of interaction is high.

Even though the VaTS was designed for efficient partitioned operation, it is still good at local operation.
As we shaH see, the most important factors affecting the performance of the VOTS arc the same as those
affecting mqst other programs. This might be considered as unfortunately mundane, but it means that the
VaTS can take advantage of the many well-known techniques for making typical programs run faster; there
are no inherent performance reasons to prevent th·~ use of VGTS concept-s.

6.4.1 Effects of Graphic~) Package

One of these important factors that is often overlooked, is that for any program. most of the time is spent in
a small part of the code. In the case of the graphics benchmarks. much of the execution time was spent in the
vector or rectangle drawing function. The Brescnham algorithm, which is usually the fastest, was used to
draw vectors [20). However, even a straightforward implementation of tlle fastest algorithm was much slower
than an implementation using clever coding .of the inner loops of t~e Bresenham algorithm.

In the clever implementation. the vector drawing function compiles a custom-made inner loop for' each
vector. This tukes a little more time to set up for each vector, but tllis initial time is kept small by using table
look-ups. As seen in Table 6-3, using compiled vectors instead of straightforward coding yielded a 200%
improvement in vectors per second on the draw rate. However. using tlle VGTS introduced some overhead
on the drawing times since it is interpreting a structured display file. Table 6-3 showed that the SDF
overhead is very small compared to the large improvement from compiled vectors.

Unfbrtunately. the speedup from chosing a good algorithm and optimizing its inner loop is good for only a
one-time increase in performance. Once the best algorithm is found and its inner loops arc hand-optimized.
more work will not result in more pcrf()J"Jnance'improveml'llts. On the other hand. the cost or carefully
recoding one module or writing a few lines of assC'mbly code is usually small. so the return on the investment
is good up to a point.

6.4.2 Effects of Processor Speed

Another fairly obvious fact: that is often overlooked is that the speed of an application is directly related to
tlle speed of the processor on which it rtllls. Table 6-4 compares the perfhnnance of workstations that have
two different basic clock r<ltcs, but arc similar in most other respect.,. Usc of 10 MHz SUN workstations
instead of 8 MHz workstations yielded up to 22% improvement. The principal reason that the increase from

80 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

8Mhz to 10Mhz 68000 processors did not produce a 25% increase in the performance was that the 10MHz
design required polling of the keyboard and mouse. Similarly, executing the application on a VAx-11/780
instead of a VAx-11/750 yields up to 50% improvement (see Table 6-5).

Vectors/second
~onfiguration Local lKP PUP E-TP A-IP
10, 780, batch 210 190 130 110 92
8, 780, batch 180 150 110 99 88

Characters/ second
10, 780, text 7700 4300 1600 4300 1900
8, 780, text 6700 3200 1400 3600 1800

Table 6-4: Effect of workstation speed

Two of the more surprising results relate to the benefits of distributed computing. First, applications can be
expected to runjGsler when distributed between a VAx-780 and a SUN workstation than when run locally (see
Table 6-6). Even if construction rates are lower in the distributed case, the concurrency from the use of two
processors resulted in hi'gher rates for both batch and incremental display. Second, some applications execute
faster using a VAx-785 on the ARPANET than using a VAx-750 on the local net (see Table 6-7). Since the
ARPANET is substantially slower than the Ethernet and network communication in general is slower .than local
communication, the conclusion is that CPU speed is the dominant factor in this instance ..

Configuration
109 780, construction
10, 750, construction

10, 780, text
10, 750, text

IKP
510
340

4300
4100

Vectors/second
PUP E-IP
210 170
130 110

Characters/second
1600 4300
1400 2300

Tablc 6-5: Effect of remote host speed

Note that Table 6-4 and 6-6 contain batch rates, to emphasize overal1 performance. Table 6-5. on the other
hand. contains construction rates, to emphasize the performance of the processor executing the application.
However. regardless of where the application executes. the workstation is always required to do some work,
namely, to mainulin and display the graphical objects. Therefore. performance is more sensitive to
workstation speed than to remote processor speed. For example: whereas a 25% increase in workstation
speed result') in almost linear speed-up. a 100% increase in VAX speed re~mIL'; in at most 50% speed-up as seen
in Tables 6-4 and 6-5. Note that Tables 6-4 and 6-:-5 were constructed with early versions of the protocols;
later changes to the protocols increased the sensitivity of I P to server host speed. but decreased the sensitivity
of I KP and PUP.

V ectors/ second
Configuration Local E-IP
10, 780, batch 220 380
10, 780, incremental 62 92

Tablc 6-6: SUN VS. Ethernet-based 780

One might conclude from these measurements that there is little reason to distribute applications, since

MEASUREMENTS

Configuration
10, 785, construction
10, 750, constnlction

10, 785, batch
10, 750, batch

Vectors/second
E-IP A-IP

160
130

140
125

Table 6-7: ARPANET-based 785 vs. Ethernet-based 750

81

batch rates are comparable between local and remote applications. Performance should be improved as two
processors are used. Howevc:r. our benchmarks make no significant computational or database demands that
would take advantage of faster hosts. Moreover, as mentioned in Section 1.2.2, some applications simply
cannot run on the workstation, due to memory or language requirements. for example. Non-graphical
applications can be expected to depend more on disk or operating system performance, softening the impact
of processor speed. On the other hand, compute-bound applications, including any that use floating point,
are impacted more heavily by host processor speed.

6.4.3 Effects of Graphics Hardware

Table 6-8 gives the effect of two measured frame buffers. The first line in the table refers to the original
frame buH'cr which simplified graphics primitives by providing bit-shifting hardware. The second line refers
to the frame buffer in which display memory is byte-addressed like all other memory. The second frame
buffer is about 30% slower on vector drawing than the original frame buffer. However, creation is faster on
the Sun-2, due to a slightly different I/O architectut:,e. Although the Sun-2 is' still about 15% slower for the
total local batch ratc, remote batch rates are sometimes higher due to CPU saturation.

Con figu ration
Sun-l,750
Sun-2,750

6.5 Protocol Facto rs

Draw
430
290

V ectors/ second
Create Batch

440 220 .
470 180

Table 6-8: Effect of frame buffer

E-]P
220
170

111e nature of the applications and of the information they communicate among their distributed parts
make th{~ network behave differently from what might commonly be expected. The lise of high-level graphics
protocols reduces the dcgradatio~ that is experienced betwecn diflcrcnt bandwidth networks. This can
inflllenc(~ the choice of nctwork protocols sincc the pcrformance penalty or accessing a high-perfhnnnnce host
ovcr a long-haul internetwork instead of a less powcrful host locatcd 011 a localnctwork may be outweighed
by the dHlcrence in host capabilities.

From another point of view, the higher-level protocols tend to increase the CPU cost of fast
communication. This may be an advantage, due to the decreasing costs of CPUs compared to
communication, but also means that less of the CPU is available fbr other tasks. In concretc tenns, the
protocols are "high level" since they deal with graphical objects like lines and polygons instead of low-level
bitmap operations, and they take advantage of stmcturc.

82 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

6.5.1 Effects of Structure

As discussed in Sectiol), 3.4, the VGTP allows objects to be defined in terms of graphical primitives such as
vectors or rectangles, or in terms of other objects. Once the objects are defined, they can be made to appear
on or disappear from the screen with short commands of only a few bytes. The perfolmance advantages of
retaining the display files on a dedicated workstation, introduced in Section 5.1, have been known for some
time [88]. The following tests were performed with a program that used the structuring facilities of the VGTS
to create 30 instances of a symbol consisting of26 rectangles each.

The results for the structure benchmark are given in Table 6-9. The first thing to notice is the very low rate
for incremental performance. especially over long-delay networks like the ARPANET. By batching and
pipelining the operations. perfonnance increases by a factor of 7 for local operations, 30 for Ethernet
operations, and 40 for ARPANET operations. Using structure instead of an unstructured list of primitive items
increases performance again by factors of 3 to 4 for both local and relTIotc operations.

Configuration
10, 750, incremental
10, 750, pipeHned incremental
10, 750, batch unstructured
10, 750, batch structured

Rectangles/second
Local E-IP

41 5
61 66

310 180
1070 670

Table 6-9: Effect of structure

A-IP
2

36
81

370

Some other interesting observations can be made fmm Table 6-9 that reflect the value of batching and
structure. First. the time to define and display the picture for a 10cal application was about 1 millisecond per
item. This is roughly the time to perfonn a local Send - Receive -l{eply sequence in the V kernel [31]. so any
protocol that uses a message transaction for each item will be slower. Secondly, it is f~lstcr to run this
benchmark over the ARPANET and use structure than it is to nm the same program locally and use
incremental or unstructured display. The latter is comparable to traditional graphics systems. It is als.o faster
to run the program across the Ethernet and use structure than it is to run the program locally, even with
batching.

Structure introduces a slight amount of overhead, since the VOl'S must trace through the symbol data
structure. However. in this benchmark the structure interpretation introduced an overhead of about 20
milliseconds out of about 900, or less than 3% of the local draw time. Thus there is little performance
advantage to use a segmented dispJay file instead of an· arbitrarily structured one. By using a linear list instead
of a linked list, display records could be 16 bytes instead of 20. or a 20% savings in memory. Unfortunately
this would make insertion and deletion much more difficult. Moreover, the SDF representation is already
quite concise, as will be shown in Section 6.5.3.

6.5.2 Effects of Batching and Pipelining

Comparing the batch and incremental rates in Table 6-1 as well as Table 6-9. shows the importance of
hatching. The original implementation of the VOTP employed a return value for e<1ch operation. [n the
current implementation operations are batched so that values are returned only after an entire sequence of
operations (such as a)] changes to a given symbol) have been performed. This change reduced network delays
substantially. yielding performance improvements of up to factors of30!

The first two lines of Table 6-9 give the effect of another impOltant change to the VGTP. By removing the
return values from the EditSymbol and EndSymhol operations, even incremental operations could be
pipelined, resulting in much more concurrency than the "stop-and-waif' protocol resulting from return values

MEASUREMENTS 83

on each transaction. The reduced message traffic caused an increase of 50% for local operations, and increases
of factors of 10 to 15 for remote operations: In fact, remote incremental operations arc almost always faster
than local incremental operations due to this conc·urrency.

6.5.3 Comparison to Bitmap Protocols

Many approaches to graphics within a distributed system use protocols based on bitmap manipulation.
Unfortunately, bitmap protocols can be inefficient in both their bandwidth and memory utilization. By.
reducing the length of the descriptions of graphical objects, they are made independent of the structure of the
bitmap as well as being smaller in both transmission and storage.

The advantages of the SDF for memory usage are indicated in Table 6-10. In the vector benchmark, the
SDF represented the fully-connected polygon with 20 bytes per item, or 12,600 bytes. This compares to the
800 by 800 bitmap area, which would take 80,000 bytes. In practice, most pictures are even less dense than
the fully-connected polygon, so the advantage would be even greater. In particular, the SnF approach has
the advantage as long as there: are more that 20 bytes of bitmap space for each item in the SDF. The rectangle
benchmark shows that even without using structure, a factor of about two in memory savings is possible.
Using structure, the 900 bytes used by the SDF is a factor of 37 less than the space for the bitmap. Similar
large improvement factors in network bandwidth requirements will be discussed in Section 6.6.

Benchmark
vector
rectangl(~, unstructured
rectangle, structured

Bytes of memory used
snF BitmaP

12,600 80,000
15,600 34,000

900 34,000

Table 6-10: Effect of SOF on memory usage

6.5.4 Effects of Transport Protocols and Their Implementations

As noted for Table 6-5, three different transport protocols were used, with significantly different
perform~mce results~ The V-system supports both a local protocol and two general inter-network byte-stream
protocols. The local protocol l?rovides an interprocess communications tllcility between V-system processes.
The two general protocols ar(~ the Xerox PUP family implemented through the RTP/BSP level, and the AIU)A

Internet protocol family implemented through the 'rep level. User TELNEf programs exist on top of both.
The network configurations were illustrated in Figure 6-2.

Unfortunately it is very hard to compare only the effect of protocol design, because of many
implementation issues that vary between the protocols. For example. the implementation of PUP nSf> did
not usc any of the windowing features available in the protocol. resulting in much lower perrormance than the
II'. More important. the packet size used in the IKP implementation was 1024 bytcs. whik~ hoth PUP and II'
used packets of 100 or 200 bytes. On the other hand. the il~cremental rates fhr the I KP experimcnts were very
poor. due to the fact that a UNIX server process was polling every few seconds for output fhllTI a pipe, while
the other protocols were interrupt driven.60 rhus the implementation of the protocol may have a greater effect
that any properties inherent in the protocol itself.

Fortunately we were able t.o experiment with different implementations of the same protocol. During the
course of our experiments, there were two major implementations of the ARPA ·Internet Protocol available for

6Thc UNIX V-server could be modified ino4.2 to use the sel ect system call [68], which would eliminate this delay.

84 PARTITIONING Of FUNCfION IN A DISTRIBUTED GRAPHICS SYSTEM

VAX/UNIX systems. The first was done by Bolt, Beranek and Newman (BllN) and was for the 4.1 version of
UNIX [61]. The second was done by the University of California at Berkeley for the 4.2 version of UNIX [68].
The relative perfonnances of these two implementations of the same protocol are given in table 6-11. The 4.2
implementation is 14% faster for batch construction and display rates. The difference in peak throughput
rates is even more significant, but even this higher rate is several orders of magnitude below the actual
bandwidth of the network. Possible reasons for this will be discussed in the next section.

Con figu ration
10, 750, construction
10, 750, batch
10, 750, incremental

Vectors/second
4.2

TP/TCP
140
93
7.8

4.1
IP/TCP

110
81

4.8

Table 6-11: Effect ofTCP implementation

Table 6-12 indicates the effect of changing the relative priorities of the application program or the TELNET
server program. This test was done using the PUP protocol on a local 10 Mbit/second Ethernet. The first
column gives the resultS for normal operation. For the second column, the operating system gave priority to
the TELNET server program. Batch performance actually decreased, since more network packets were sent
For the third column, both the application and the TELNET server were given priority, which inc:rc~sed both
the batch and incremental rates. However, as shown in the last column, the best pefform~nce was obtained by
giving pt;ority to the application.

Configuration Nonnal
10, 750, batch

V ectors/ second

Telser
Telser &

Apolication Application

10, 750, incremental
170
47

160
48

190
58

200
$8

Table 6-12: Effect of Process Priorities

Another interesting comparison is between remote execution on a timesharing host arid execution on
another workstation. Table 6-13 displays this comparison. 'llle construction rate is about the: same on the
VAX/UNIX system and on the V-System. The incremental rates on the VAX/UNIX implementation are very
poor without pipcIining, due to the high delay. Note, however, that the total batch rate and the pipelined
incremental rate are much higher on the VAX than on another workstation. This is due to the fact that there is
actually little concurrency in the remote workstation case, due to the synchronous VIKP messages. Much
better performance could be obtained by replying to the message be/ore it is processed, instead of after the
operations are performed.

Configuration
10. 750, construction
10, 750, batch
10. 750, incremental
10, 750, pipelined incremental

Vectors/second
SUN VAX
IKP IKP
380 380
190 350

29 4.6
44 81

Table 6-13: Effect of IKP implementation

MEASUREMENTS 85

6.6 Net\vo rk Facto rs

The usc of networks implic:s both limitations in bandwidth and increased delays. All of the above factors
(and our design and implemmltation) combine to render the actual network bandwidth insignificant. Table
6-14 shows thal although a 3 Mbit/second Ethernet is about 60 times faster than the 56 Kbitlsecond links
used in the ARPANET, using a backend host on the local network yields less tI~an a 50% performance
improvement over using a backend host on the A RPANET8. Moreover, there was very little measurable
performance difference between using the 3 Mbit/second experimental Ethernet ratller than 10 Mbit/second
standard Ethernet [441~ The column labeled E10-IP refers to standard 10 Mbit/second Ethernet. Although
the Ethernet is about 180 timl~s faster than the links used in the ARPANET, tlle Ethernet construction rates are
less tllan twice the ARPANET rate. In fact. most of the difference in the total batch rate is due to the delay of
the ARPANET and intervening gateway, not any bandwidth restriction. r=.arlier implementations of tile
protocols had even less of differencc.

Con flgu ration
10, 7504.2, construction
10, 7504.2, batch

E-IP
220
210

Vectors/second
E10-IP A-IP

230 130
220 . 120

Table 6-14: Effect of network bandwidth

Thcse results can be attributed primarily to the level of communication as discussed in section 6.5.1, and me
conclusion that processor speed is the usual bottleneck. This is consistent with other measurements of
Ethernet performance [120] that show very low utilization of tile available bandwidth of the Ethernet. and
comparatively long delays on the ARPA Network. Thus, these systems rarely approach the limits described in
anal,Ytical studies that 'concentrate on perfonnance under heavy loads [145). In fact, tllese protocols can be
used on 'v'cry low-bandwidth communication links.

Each Add/tem call sends 20 bytes of data, so a construction rate of 230 items per second (the Ethernet load
given in Table 6-14) corresponds to only 4600 bytes per second. or about 40 Kbits/second, about 0.4% of tile
Ethernet's. bandwidth. Due to the small amollnt of data. graphics could even be possible over stand~rd speed
telephone lines. For example, at 1200 bit~/second, a peak rate of7.5 items/second should be possible. To test
tllis, the experiment was run successfully on a workst.ation over a 1200 bils/second telephone link. Several
other rates were tested using point-to-point RS-232 connections at various speeds, with the results given in
Table 6-15.

Con flgu ration
10, 7504.2, construction
10, 7504.2, batett
10, 7504.2, structure

1200
7.4
6.2
84

Items/second
2400 4800 9600

14 26 54
12 23 46

142 230 320

E-IP
166
131
380

Tahle 6-15: Effecl of poinl-to-point communicat.ion rates

For the structure benchmark, even at 1200 biLc;/second, the measlired creation rate was 7.4 items/second,
very close to the maximum 7.5 calculat.ed above. This rate is slightly less than linear in relation to me
bandwidth, indicating that even at low speeds the CPU can be a factor. Moreover. the total rate when using
structure was 84 items/secOild at 1200 bits/second, which is twice as fast as running the program locally witll
incremental drawing (the first entry in Table 6-9). Structure and lack of significant delays also makes tI1is

8)n fact. the experimental Ethernet is really about 2.93 Mbitlscco~d. lbe ditTcrcnce betwccn this and 3 Mbitlseoond is grcatcr than
the 56 Kbitlsccond of the ARPANET Ilink!

86 PARTITIONING OF FUNcnON IN A DISTRIBUTED GRAPHICS SYSTEM

structure rate faster than the batch rate for the ARPANET (the last entry in Table 6-9). Significant delays can
even be seen in the local Ethernet IP results, as given in the last column of Table 6-15. The 9600 bits/second
structure rate is only about 15% slower than using Ethernet, even though Ethernet has a raw bandwidth a
thousand times greater.

6a7 Human Factors

The actual VaTS could be instnlmented to take data during production use. This information would
record the frequency of operations and the corresponding response time. A ··user simulator" could be written
to simulate a real user's command sequence, with suitable randomness. This could be used to tunc the
performance of the VGTS to match the user profiles gathered in the above experiments. ~1orc elaborate
instrumentation results would be very interesting, but arc beyond the scope of this thesis.

Obiect~ Time Rate BitmaQ SDF
Maximum 365 1370 266 40K 7.3K
Mean 116 485 234 21K 2.3K
Median 101 430 235 19K 2.0K
Minimum 33 160 203 13K 0.7K

Table 6m 16: Instrumentation data

Instead, the illustration editor used to create the diagrams used in this thesis was instrumented to measure
both response time and memory usage. The detailed measurements are given in Table 1)-4 in Appendix D,
with a summary given here in Table 6-16. This table gives the maximum, minimum, median, and mean for
each value. These tables list the number of items in each figure. the time for display in milliseconds, the
resulLing rate (including both creation and display) in it~ms per second, the memory that would be needed to
store the bitmap (in thousands of bytes). and and the memory used in the SDF (also in thousands of bytes).
The average times were under half a second, resulting in quite good response. The memory savings averaged
around a factor of ten for using an SOF instead of a bitmap.

6.7.1 levels of Responses

Unlike other studies which consider throughput the factor to be optimized. we haye concentrated on
optimizing response time. Experiments have shown that users prefer systems with low variability of response
time, even if the throughput is slightly lower [98].

One natural division of functions from a linguistic point of view is into the following three general
categories [151]:

Lexical These operations require immediate user feedback. on the order of 50 milliseconds. This rate
(20 events/second) corresponds roughly to an upper bound 01) the speed of very (list typists
(keystrokes/second).

Syntactic These operations involve a single syntactic operation, a~,d can take up to 0.5 to 1 second.

Semantic Major operations can take on the order of tens of seconds without the users losing their trains
of thought

Clearly a111exical interactions should be performed on the workstation. In fact. the VaTS line editing and
cursor tracking account for most of these lexical actions. Syntactic actions include screen management and
selection feedback. In the VaTS these operations are typically performed outside the service, but in
programs residing on the workstation. Syntactic responses can even be done across the network if the load on

MEASUREMI!NfS 87

the remote host is not very high. Larger-scale semantic operations, like loading and running large programs,
searching central databases, or compilation, are typically done on remote server hosts or distribu ted between a
server host and the workstation.

6.7.2 Keystroke Data

Many studies have been done for text editors to determine the common operations [26, 57]. These studies
can be extended to graphics, but are also valuable in their own right since a large part of any user's interaction
is still textual. The main conclusion of these studies is that the majority of the users' time is spent doing very
simple repetitive tasks. Thus we concentrated on making these few ~imple tasks faster by taking advantage of
the power of the local workstation.

6.8 Discussion of Results

To summarize our findings, the primary factors affecting performance of our distributed graphics
applications are, in approximate order of itnportance:

1. Speed of the workstation.

2. Speed of the remote host, ifany. '

3. Level of communication, as detennined by the virtual graphics terminal protocol.

4. Bandwidth of the networks employed.

Essentially the same observations hold for text. Note that these observations relate to the degree of
pcrfonnance improvement relative to the degree of change in the indicated parameters. Thus, a 50%
performance improvement due to a 200% increase in processor speed could be ~onsidered relatively greater
than a 300% improvement in performance due to a 6000% increase in network' speed. The importance of
CPU speed and amortizing communication costs over large buffers was a major conclusion of one of the few
other similar studies [85].

It is relatively easy to rate ~he sensitivity to hardware fnctors. Software factors are another matter; it is easy
to measure the absolute performance improvement reSUlting from a change in software. but quite <.lifflcult to
measure the cost of the software change. Nevertheless. certain conclusions will be drawn based on available
information. Also note that there are limits beyond which changing one factor will not affect perfonnance;
for example, a CPU-bound application running on a remote host will be little affected by an increase in
workstation speed.

CPU speed rates at the top of the Jist simply pecause desired speed-ups can be achieved almost indefinitely
by suhstitllting more powerful workstations and backend hosts. Continuolls improvement is not possible with
network protocols. I K p. I()!"' example. provi<.les as good performance on the local net as can be achieved.
Another way of saying this iis that nctwork protocols arc- limited by the available har<.lware. and the most
important piece of hardware fis the CPU.

6.8.1 Hardware Factors

As workstations become more powerful. one mig~lt think that offioading' functions from hosts to the
workstation menns that slower backend hosts can be used. In rea1ity. faster hosts are required to keep up with
the increased demands of the wor~stations. On the other hand, one might'think that as networks become

PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

faster, communication is cheap. Unfortunately, network interfaces have not kept pace with bandwidth, so
that many network operations remain CPU-bound. In both cases, the omoading and increased bandwidth
may allow more users to share the same resource, but do not increase the performance for individual users.
Hence, faster hosts are needed, not slower ones.

Similarly, network controllers arc now being marketed with microprocessors that are intended to offload
task~ from the main processor. Our experience has been that such controllers arc usually slower, not faster,
than simpler and cheaper controllers that perform fewer functions but use fixed logic at a higher speed.

With respect to network bandwidth, sensitivity is directly related to communication requirements.
Communications requirements arc inversely related to the frequency of communication and the amount of
information transmitted, both of which arc reduced by the techniques discussed above. Therefore, the
remarkable insensitivity of our applications to network bandwidth implies that they are quite sensitive to the
"level" of communication.

6.8.2 Software Factors

This high level of communication is due to the Virtual Graphics Terminal Protocol design. In particular,
the ability to batch many operations into a single update using a small number of bytes provided large
increases in performance.

It is hard to make direct comparisons about network protocols independent of their implementations. For
example, a protocol inside the kernel of an operating system is usually more responsive than if it is
implemented on top of the kernel. Of course, a processor runs at the same speed both in kernel and user
state. The increased responsiveness comes with the cost of increasing the size of the (usually always resident)
kernel and the related difficulties of debugging at lower levels.. '

In OUf particular case, despite the fact that the PUP protocols are simpler than the ARPA Internet protocols,
ARPA Internet-based TELNET connections can sometimes run about twice as fast as PUP-based ones. This is
attributed primarily to the fact that PUP is implemented as an appIlcation outside the Unix kernel whereas
the ARPA Internet protocols arc implemented inside the kernel. .

For very time-critical functions such as network communications. messages and process context switches are
expensive even in systems designed to provide very fast message passing and light-weight processes. The
interested reader should refer to [82] for a more detailed analysis of the networking issues which arc not of
direct concern of this thesis.

6.8.3 Fitting the Model

'Ine experiments given in this chapter give some estimates of the times used in the models of Section 5.3.
r'or example. peak pipelined incremental rates are about 60 interactions per second, or TNclOut + T Nctln of
about 1/60th second. I r this is less than the swapping limes Ts I + Ts () I then the workstation/host • wap II • wap . u
split will be faster, even with cOlnparable computation times. Most of Loday's personal computers take much
longer than 1160 second to swap an application out and back in. The advantage will increase with more
powerful hosts and less powerful workstations. .

Of course, care must be taken when generalizing these results to other programs. These benchmarks were
intended as communication-intensive limits, since they only do graphics and no rea] computation. More
sophistiCated applications could be expected to achieve even larger speed-ups when distributed. '{be
instrumentation results show that the synthetic benchmarks arc not fundamentally different f~otn actual
applications, except n·}r slighUy slower rates due to the computation by the application. No claim is made that

MEASUREMENTS 89

these results allow us to predict the performance of an arbitrary program. On the other hand, a protocol that
provided one hundred items per second in our experiments will probably be faster that one that provided ten
items per second. More anaJytical work needs to be done to accurately predict performance, but these results
provide a start.

90 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

CONCLUSIONS AND FUTURE WORK 91

-7-
COI,clusions and Future Work

The previous chapters described the motivation for, the design, implementation, rationale, and
measurements of a simple distributed graphics system. This Chapter draws a number of conclusions from this
work, and presents possible extensions for the future.

7.1 Structu red Display Files and Vi rtual Terminals

The first important conclusion is that the structured display file technique can be combined with the virtual
terminal concept, resulting in an architecture for distributed graphics. The virtual terminal concept, described
in Section 2.3, provides the user with access to multiple simultaneous distributed resources. The Virtual
Graphics Terminal Server mediates "between application programs that share a workstation dedicated to a
single user.

The declarative nature of structured display files outlined in Chapter 3 reduces communication, and allows
higher-level short circuiting. The performance and decreased memory utilization motivations for structure
given in Section 5.1.1, are supported by the measurements in Section 6.5.1. In particular, SDFs can yield both
higher performance and lower memory requirements than traditional graphics systems. These advantages
increase as pictures become more structured. and applications perform more incremental updates. 'The
VGTS pc:rforms cursor motion, screen management. and keyboard echoing internally (as described in Section
5.1), resulting in a short-circuit of the interactive response cycle for these common operations.

7.2 User and Program Interface Separation

The VGTS architecture first specified only the application program interface for defining and modifying
objects, in Section 3.4. A separate user interface for viewing those objects" was then specified in Section 4.4.
The prototype implementation rigidly enforced this distinction: applications could not inquire the s"izc of the
screen, fhl' example, and adapt themselves accordingly. "

The resulting principle advantage is absolute device independence and portability. which is vital for the
reuse of software with rapidly-changing workstation hardware. Concern for the portability of the prototype
saved rdmplementing most of the modules described in Section 4.1.1 for new devices, such as the Sun-2
frame buffer. The principle disadvantage is that cllstomization is made more difficult. Section 5.6 discussed
when cllstomization by both users and programmers is desirable, but also mentioned reasons not to allow
arbitrary customization.

7.3 Transpa rent Dist ri bution

Although distributed graphics is possible with the SDF approach. it sti11 may not always be desirable. For
example. in many cases running the benchmarks locally was faster than running th~m distributed.
Unfortunately, for the reasons given in 1.2.2, it is not always possible to run all applications on the
workstation. Even if the necessary resources are available as an option for the workstations, they are typically
too expensive tor widespread use. In other words, even with today's advanced hardware, we still need larger
virtual and physical memories, and faster processors, at)ower prices.

The protocol used for defining objects (the VGTP) was extended transparently across "networks using
several transport protocols, described in Section 4.3.5. The same source program can be compiled and linked

92 PARTITIONING OF FUNCTION IN A DISTRII3UTED GRAPIHCS SYSTEM

for any of a number of environments, and the same binary can be accesse(j through three different transport
protocols. Distribution allows applications to run on the best suited computational resource, and use multiple
resources to achieve concurrency. These programs were actually used, so performance constraints were
stringent. Results such as those in Table 6-6 show that distributed operation was often faster than local
operation.

7.4 Techniques to Improve Performance

The tables in Chapter 6 show that VaTS perfOlmance is close to the best possible speed. In the best case,
the VaTS can give much better response than systems that do not retain any information on the structure of
the image, or aHow for concurrent operation. More instrumentation of applications would provide useful
information. but is beyond the scope of this thesis. . The measurements presented in Chapter 6 already
indicate several ways that performance can be improved.

7.4.1 Protocol Design Techniques

Once the decision to distribute is made, a more subjective decision is wh~lt and when to distribute. In our
expericnce, a few simplc opcrations and applications can bc done locally. such as text and illustration editors,
and the resulting average perfOlmance is adequate. The simple but powerful modeling facilitics provided by
the VGTS allow this short circuiting.

The use of Structured Display Files also means that once objects are defined, instances of them can appear
or disappear with a very small amount of communication. This makes the protocols very insensitive to
network bandwidth, as shown in Tables 6-14 and 6-15. Since delay causes more restrictions than bandwidth,
many simple operations should be batched together for each interaction. Return values should also be
eliminated whenever possible to increase concurrency by allowing pipelining to occur. Although direct
quantitative comparisons could not be made between the factors affecting performance, batching certainly has
a very important effect

7.4.2 Software Structu ring Techniques

One interesting rule of design learned from the VGTS implementation experience was to usc software
structuring mechanisms only for the appropriate purpose:

• ·Use separate processes where separate threads of control are needed. otherwise use one process.
for example. the main part of the VGTS consists of many modules but only one process.

• Usc teams (complete address spaces) for programs that.should be executed as a unit. Partitioning
the VGTS into separate teams caused a great increase in memory consumption, due to the
common library functions.

• Usc modules fbr parts of a program that can be separately compiled. A direct procedure call
interface was still fllster than other kinds of communication.

Much performance can be lost if one of these partitioning mechanisms is used improperly. Even on a system
like V where message passing is fast, it is still slow compared to a procedure call. In particular, Table 6-9
shows that the drawing rate can approach one item per millisecond. which is about the same time it takes to
perform a message Send/Receive/Reply cycle. Thus each message should cause many lower-level actions
instead of just one, reiterating the importance of bat ching.

CONCLUSIONS AND FUTURE WORK 93

7.4.3 Internal Performance Tuning Techniques

Once hardware and protocol decisions arc made, performance can be improved by using standard software
tuning techniques such as inner loop optimization and increasing buffer sizes and blocking factors. In fact,
reasonable performance can be obtained using the standard transport protocols compared in Table 6-1,
without resorting to special-purpose protocols and incurring all th9 problems of being non-standard. On the
other hand, the use of structure and proper batching and buffering strategies must be done at every level, to
avoid bottlenecks.

7.5 What Can be Learned

In light of the VGTS experience, we can evaluate some aspects that were later determined to be
unsuccessli.ll, for the benefit of future designers:

• 'nlC declarative nature of the VGTP and lack of a simplified interface library discouraged
app"iication programmers accustomed to more procedural graphics systems.

• Application programs developed their own conventions since there were few common user­
interface libi·aries.

• Encoding graphical in formation in the same stream as text at the lowest level did not allow
redirection of graphics commands into a file or background graphics programs.

• Th(! lack of raster operations in the programmer's interface discouraged the lise of the VGTS for
image processing applications.

• Sevcnil minor device-dependencies in the implementation were not made apparent until ports
were actually attempteq, due to lack of a well-specified device interface.

• The close coupling of the view manager to the rest of the VGTS discouraged attempts at
customizatiol1 through user profiles.

Most of these problems can be easily overcome by the work described in the next section.

7.6 MoreOpen Questions

The VGTS effort raised more questions than it answered. The following is certainly not an exhaustive list,
but it should give an overview of possible future topics in this area.

7.6.1 Integration with Editor

One useful· function in many window systems is t.he ability to select text (or other data) from one place and
sluJlit into [lnother. Due to the simple structure of t.ext. this would be relatively easy to add for clients lIsing
the byte~stream terminal emulation interface. For advanced graphical objects. SDF and higher-level
interfaces could be used. Unfortunately this requires common data representations at the applications level, .
beyond that with which the current VGTS prototype is concerned. Since some performance and flexibility is
already lost by enforcing the·levclused by the VGTS, getting applications to agree on even higher levels could
be quite difficult. On the other hand, there are many potential benefits from even higher levels of
standardization.

94 PARTITIONING OF FUNCnON IN A DISTRIBUTED GRAPHICS SY.:iTEM

7.6.2 Handling of Attributes

The VaTS used a limited number of attributes for its primitives, most stored as a small integer used as a
table index to get the actual value. This approach, similar to bundled attributes of a KS, has proven to be
simple yet powerful. However, in the VOl'S most values arc predefined at compile-time; they should be
dynamically defined at run-time. For example, for t<;xt fhnts the DefineFont function returns an attribute to
be used in subsequent Text items. Similar functions should be available to define colors, fill patterns, and
line styles.

In keeping with the declarative approach of the VOl'S, each item has its attributes explicitly specified. For
example, if a symbol contains 500 blue lines, then each line contains the information that its color is blue.
This is in contrast to the approach taken by t.raditional graphics packages, which would have a command to
set the current line color to blue and then draw 500 lines. Although the traditional approach requires
additional state during interpretation of the SOF, it would allow the inheritance of attributes from containing
environments. An open issue is the value of this inheritance capability.

7.6.3 Other Interfaces-

If VOl'S allowed inheritance of attributes, then it could support an interface compatible with a KS. The
application could still take advantage of the structuring capabilities of the VOTS if the interface is upward­
compatible with a KS, in the manner of Steinhart [130]. Such a redesign is in progress at the time of this
writing.

Other virtual terminal emulators could provide, for example. NAPLPS virtual terminals as another possible
_ interface. These interfaces could be implemented as an alternative library package, retaining the current
message interface. /\ new message interface could be designed. with the conversion to byte-streams done in
the TELNET programs. The relation between the V-System concept of file instances and VGTS objects such
as SDF, VOT, and VOT group could be made cleaner.

7.6.4 Porting the Implementation

At the time of this writing, although two totally incompatible frame buffers are supported, the VOTS has
not yet been fully ported to another graphics device besides SUN workstations. Many potential graphics
devices were either too expensive or provide too low a performance level to adequately support an
implementation of the VOTS. /\ port is currently in progress to Ule VAxStation, which should prove that the
implementation is independent of processor architecture as well as graphics architecture.

7.6.5 Multiple View Su rfaces

Another aspect of the design never fully exploited was the use of multiple screens per workstation. A
typical configuration might have a color screen for computer aided design. and a black and while screen for
general textual interaction. Applications should run with no modifications on such a configuration. /\ natural
extension of tile user interface (used on other systems with multiple view surf11ces) would have one cursor for
both screens. When the cursor is moved past an edge on one screen, it appears on the edge of the adjacent
screen.

Most of the current VOl'S implementation could be used with multiple view surfaces. The internal data
structures for views could easily be augmented by a pointer to a frame buffer descriptor structure, containing
pointers to the primitive functions to operate on the particular frame buffer. This approach is similar to the
pixrect specification by SUN Microsystems [l23]. In fact, pixrect would be a good candidate for this layer,

CONCLUSIONS AND ruruRE WORK 95

were it not proprietary to a single manufacturer. Another candidate would be one of the Virtual Device
Interface standards, or normalized device coordinates at a well-specified internal interface.

7.6.6 Extended Functionality

Since the VaTS evolved in an environment rich in system programmers, there was no shortage of suggested
enhancements, including three dimensional SDFs, color, floating-point, image processing, and general
coordinate transfOlmations. Currently the few programs that use floating point or three dimensions execute
on server hosts in batch mode, because our workstations do °not have adequate numeric performance. The
batch programs convert to two-dimensional integer coordinates that arc then displayed by the VGTS. Simple
animation is possible in the current implementation, by defining successive stages as symbols and then rapidly
changing between the symbols. Future floating point processors in workstations may make it possible to
absorb some of these functions into the workstation's viewing service.

A fourth dimension, time, could also be considered for actions like animation or nlbber banding. One
approach would be to add graphics primitives that would cause changes to the screen, but not be stored in an
SDF. These would be similar to temporary (or non-retained) segments in the Core, but would conmct with
the declarative nature of the current design. More attractive would be to specify rubber banding or trajectory
as attributes of objects.

7.6.7 View Adapting Objects

One principle advantage of the up-call approach taken by most object-oriented window systems is the
ability for graphical objects to adapt to their viewing environment. For example, when a view becomes
narrower. document paragraphs could be reformated to break into correspondingly narrower lines. Similar
functionality could be added to the VaTS in several ways. The current VaTS includes a function to return
the size specified by the user for a default view. This could be extended to allow querying the view for its sizc,
but requires 'some kind of asynchronous notification which would be hard to cleanly add to the architectl:lre.
The notification could be done on the basis of VGTs instead views, since VGTs are already visible objects to
clients, and multiple views are allowed per VaT. However, in the prototype a graphics VaT has no sjze, and
a text VaT is a fixed size once created.

A more promising approach is to specify the viewing constraints as additional attributes of the object. For
example, the current prototype implements ··reference lines". displayed as lines with text labels drawn ncar
the edge of the views in which they appear. Thus the same object in the same VaT can appear diftcrcntly in
different sized views. The key problem is to design a method of specifying these viewing constraints with
more generality but retaining adequate performance at viewing time.

7.6.8 View ManagerSeparation

One of the most request1cd areas of customizatioll W~lS the view manager. The VGTS architectural
distinction between the application program's interface and the user's interface means that users should be
able to experiment with alternate 0 or parameterized view managers without affecting any application
programs. For example, tiled and overlapped viewports should both be provided. [n addition, work needs to
be done to develop more advanced command internlces on top of the VaTS.

PARTITIONING OF FUNCfION IN A DISTRIBUTED GRAPIIICS SYSTEM

7.7 Final Evaluation

Even with the deficiencies noted in Section 7.5, few other systems provide as powerful a set of features on
equivalent workstations. The VGTS approach is well-suited to environments under the following conditions:

1. Workstations can provide adequate user response without requiring performance extremely close
to hardware speeds.

2. Computing resources much more powerful than workstations are available across some kind of
network.

3. Portability and device independence is important due to a heterogeneous or rapidly changing
hardware base.

4. Productivity of potential users could be increased by providing multiple simultaneous contexts.

5. Application programs deal primarily with incremental changes or structured pictures instead of
producing images to be only viewed once.

As a result. the VGTS is in daily use at Stanford and several other sites. Moreover, it has been valuable for
the performance measurements and design studies described here.

GLOSSARY 97

- Appendix A -
Glossary

This work encompasses three different sub fields of computer science: Operating Systems, Networks, and
Compute"r Graphics. Unfortunately some tenns have different meanings in more than one of these fields.
This glossary should help to provide one set of consistent definitions. Many of these detinitions arc adapted
from the literature [161,64], while others are particular to this work. For more details, refer to the references
provided in the bibliography or the text section as indicated.

ADIS

ANSI

ARPA

APA

Dackend

BCPL

BitBlt

Bitgraph

Bitmap

mit

nsp

C

CAD

A system developed by Robert Sproull at Xerox Palo Alto Research Center [127] to allow an
InterLisp program running on a timeshared computer to perform raster graphics operations
on a workstation. ..

American National Standards Institute. In the United States such standards arc voluntary
only. Computer related standards can be obtained from the X3 Secretariat at the Computer
and Business Equipment Manufacturers Association in Washington D. C.

Advanced Research Project Agency of the United States Department of Defense. An agency
that funds major computer science research projects, including the ARPANET, a nation~wide
computer net.work [106].

All Points Addressable. IBM terminology for a bitmap raster graphics device.

The part of a computer system (hardware or software) that does not interact with a user. It is
separated from interaction with the user by the front end. For hardware, backends can be
optimized for batch operation, tllvoring throughpllt over response time. For software,
requests are mad<! from other programs or software modulcs instead of directly by the user.

Basic Cambridge Programming I.anguage. A very simple language with control structures
but no data structuring facilities.

Bit~bollndary BLock Transfer. The operation of moving blocks of bits from and to arbitrary
locations within computer words.

A terminal built and marketed by Bolt Beranek and Newman of Cambridge, Massachusetts,
based on an MC68000 processor and a bitmap display.

A digital image memory containing a description of each of the addressable pixels in a raster
display. The color or intensity level of each pixel is directly determined by the value of a set
of bit.;; in the bitmap.

A terminal built at Bell I.aboratories based on an MC68000 processor and a bitmap
display [72]. A reengineered version is being marketed under the name Teletype .5620. '111C

screen management software supplied for the Blit is called L4Jyers [105].

Byte Stream Protocol. A transport protocol in the PUP Internetwork Architecture [19]. BSP
implements a reliable virtual circuit on top of the internet datagrams of the network layer.

A programming language designed at Bell Laboratories for the Unix operating system [71].
The languag1c is above the level of assembler, but allows machine-dependent constructions
for low-level systems programs such as device drivers.

Computer Aided Design. The application of computers to the design process.

98

CAGES

Calcomp

Cedar

Clipping

CORE

CPU

PARTiTIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

Configurable AppJications for Graphics Employing Satellites. A system developed at the
University of North Carolina that allowed a programmer to assign modules in interactive
graphics programs to one of two processors at load time [62]. The implementation used an
IBM 360/75 connected to a DEC PDP-11/45 with 88K bytes of memory. Programs were
written in a subset ofPL/I.

California Computer Corporation. An early manufacturer of computer graphics output (pen
plotting) devices.

An experimental computing. environment developed at Xerox Palo Alto Research
Center [46], using the language Mesa [99] with extensions taken from InterLisp [138].

A process to insure that an image lies within a certain (usualty rectangular) boundary of
visible space.

A graphics subroutine package specification developed in 1979 by the ACM SIGGRAPI-I
Graphics System Planning Committee [147].

Central Processing Unit. The part of a computer system that fetches and executes
instnlctions.

Cursor A special symbol used" to specify a particular position on a screen.

Datagram A network protocol in which every packet includes a full address and is routed separately
from all other packets. This is in contrast to virtual circuit networks in which addressing and
routing are performed on a connection basis.

DFS Distributed File System. l\ general concept (providing network transparent file access), and
in particular a project at the Xerox Palo Alto Research Center to develop a distributed file
system [134].

Display File A data structure used to generate an image. Foley and van Dam disCuss the many possible
uses for display files [56]. Alternately called display lists or display buffers.

olson Device Independent Structure DataBase. A concept in the Lawrence Berkeley Laboratories
Network Graphi~s System [24], similar to the WISS of G KS. Application programs usc the
workstation-independent layer to create. modify. and delete inf()rmation in the database,
while the workstation-dependent layers read the structure information to update the displays.

Dragging The translation of a selected displayed object along a path specified by a grap~ic input device.
This is a form of image transformation.

Dorado 1\ high-performance personal scientific computer built at Xerox PARC [75].

Dynabook /\ concept of a powerful portable personal corhputer system that could be used in education
much like a notebook is cUlTcnlly being lIsed [90J.

Emacs A screen display editor that is extensible by using an interpreter for a powerful
language [129]. The original version was implemented in 1974 for the DFcSystcm-lO and
DEcSystem-20 line of computers. There are now many versions for a variety of machines
and operating systems.

Escape A facility to access functions that are normally not part of the interface specification.

Ethernet 1\ particular kind of local area network that uses carrier sense multiple access with collision
detection. The ofticial- specification for the data link and physical layers was developed
jointly by Xerox, Digital Equipment. and Intel Corporations [44].

GLOSSARY 99

Extent Also called the bounding box. The smallest orthogonal rectangle containing the object in
question. This is obtained by calculating the maximum and minimum coordinates of the
objects along each axis.

Frame Buffer The digital memory used to store the bitmap in a raster display.

Frontend _ The part of a computer system that deals with the user. The frontend should be optimized
for fast response time, with longer operations made part of the backend.

G KS· Graphical Kernel System. A standard graphics package definition adopted by the
International Standcuds Organization [64] and the American National Standards Institute.

Hit Detection The operation of associating an event on a graphics input device· with an item in the display
list. This is the function of a Pick device.

leops InterCOnnected Processor System. A graphics. system developed at Brown University to
dynamically distribute parts of an application program between two processors [97, 146, 128],
an IBM 360/67 and a Meta 4 with 64K bytes of memory and a 50K bits per second serial
connection. A single application program written in the Algol-W language was used for
performance measurements.

IKP rnter-Kernel Protocol. The protocol used in the V-System between kernels to provide the
transparency of message passing.

Inquire Operations that return information from the graphics system~

InterLisp An experimental computing environment developed at Xerox Palo Alto Research Center,
based on a form of the Lisp language [138]. The r nterLisp system has been ported to several
different computing environments, from personal computers to timesharing systems ..

IPInternet Protocol [l06]. A network-level protocol used in the ARPANET.

Jptn Internet Protocol TelNet. The V-System program that allows a user to have a terminal
session on a remote server host. .

IRIS Integrated Raster Imaging System. i\ high-performance color graphics workstation
developed at Stanford University [39]. and now marketed by Silicon Graphics, Inc. of
Mountain Vi,cw California.

ISO International Standards Organization.

Keystroke One user act.ion, such as pressing a key on a keyboard. Used to model the psychology of
human-comp·uter interaction [26].

Layers A software system developed for the Blit terminal developed by Bell Laboratories [l05].

LRG Learing Research Group. The group that developed the Smalltalk language; called the
Software Concepts Group since ,1981.

Mainframe A very large and expensive computer, typically purchased by a group and maintained in a
computer room.

Mbyte Megabyte. The twentieth power of two, number of bytes, usually referring to computer
memory. Actual number is 1048576, significantly larger than Qne Million.

MC68000 A currently popular microprocessor produced by Motorola Corporation [tOO]. It is a 32 bit
architecture 1[69], with several different iinplementations. Unfortunately this name was used

100 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

for both the architecture and the first implementation (a 16 bit implementation with 23
address bits).

Mesa A language developed at Xerox PARC for writing systems programs. Mesa supports systems
of separate modules with controlled sharing of information. The basic Mesa language has
been extended j" the Cedar experimental programming environment [46].

Mhz MegaHertZ. One million cycles per second. One parameter of microcomputer performance
is the clock speed.

Mips Million lnstructions Per Second. A common (but inaccurate) measure of computer system
performance.

Mouse

Mux

NABTS

NAPLPS

NDC

NOP

NOS

NLS

NMOS

NVT

PARe

Pel

Perq

PIlIGS

Pick

Pilot

A graphics input device that operates by sensing relative position changes when traveling
over a flat surface [50].

Multiplexo'r. A device which mediates bctween several entities all wishing to use a common
resource.

North American Broadcast Teletext Specification [11].

North American Presentation Level Protocol Syntax [6].

Normalized Device Coordinates. A very low-level but resolution indepcndent coordinate
system. For example, the coordinates of the view surface as floating point numbers ranging
from zero to one with (0,0) the lower left corner and (1,1) the upper right.

Network Graphics Protoco1. The transport layer protocol used to communicate between a
workstation and the system runn"ing a remote graphics, application.

Network Graphics System. Designed at the Lawrence Berkeley Laboratory [25]. and partially
implemented [24].

oN-Line System. A software system developed at SRI [49] that used computers with graphics
workstation to augment the abilities of knowledge workers. It is now marketed by Tymeshare
Corporation.

N-channcl Metal Oxide Silicon. A process for making very large scale integrated circuits [93].

Network Virtual Terminal. A concept originally developed for long-haul networks [162], to
case the connection of a variety of real terminals to a variety of computer systems without
having to support all possible combinations.

The Xerox Palo Alto Research Center.

I BM terminology for Pixel.

A workstation built by Three Rivers Corporation [144].

Programmer's Hierarchical Interface to the Graphics System. A draft st:lOdard for a graphics
package with hierarchical segment structure [4].

A graphical input event which returns the identification of an item within a display file.

An operating system for workstations developed at Xerox PARCo written in the Mesa
language and used as the basis for the Xerox Development Environment [160].

GLOSSARY

Pixel

Pixrect

Pop-up

piy

Raster

RasterOp

RPC

RS-232

RTP

101

Picture Element. The smallest display area on a raster display surface whose characteristics
can be controlled independently of .its neighbors.

A layer in the graphics architecture of SUN Microsystems Inc. [123].

A type of menu that only appears when a choice must be made.
-

Pseudo-tennina1. An operating system object that behaves as a terminal on one side, but
communicates to a program (typically a server TELNET) on the other side.

A rectangular array of pixels. A raster display is one that usc an array of pixels to produce the
image, in contrast to a series of lines, for example.

A Raster Operation. One of the many bit-oriented operations between one two bit-arrays
producing another bit-array [103].

Remote Procedure Call. An attempt to preserve the semantics of local procedure calls across
a network, usually done as an extension to a compiler [102].

1\ Recommended Standard 232 of the Electronics Industries Association. Used to connect
most low to medium speed terminals to computers. The communication is full-duplex using
twisted pairs between two points, over short distances. A functionally similar interface used
outside the United States is cenT specification V24.

Rendez-vous and Termination Protocol. Part of the PUP Internetwork Architecture [19],
used to set up and terminate byte stream protocol connections.

Rubber Banding .
An interactive technique that moves the common vertex of one or more objects such as lines
while the other end points remain fixed.

Scan Conversion
The process of converting an image defined in terms of graphical objects into a raster (array
of pixels).

Screen Coordinates

Scrolling

SDF

Segment

SIGGRAPH

Smalltalk

SUN

Device depc~ndent coordinates, usually integer raster unit.~. Only the lowest-level device
driver uses this 'coordinate system.

Continuous vertical (or horizontal) movement of display clements within a viewport. As new
objects appear at one edge (such as tines of text along the bottom), old objects disappear at
the opposite edge.

Structured Display File. A directed, acyclic graph of items. each of which is either a primitive
item or a symbol, which is a list of other items. SDFs are manipulated via the VGTP, which
is described in Section 3.4.

An ordered col1ection of Olltput primitives defining an image.

Association for Computing Machinery Special Interest Group on computer Graphics.

A language and system developed at the Xerox Learning Research Group, now known as the
Software Concepts Group [58].

Stanford University Network. Also applies to a particular workstation, a trademark of SUN
Microsystcms Incorporated.

102

Symbol

TCP

TELNET

TOP$-20

UNIX

User

VAX

VOl

VDM

VGT

VG1P

View

Viewport

V-Kernel

VLSJ

VMS

V-Server

V-System

PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

A list of graphical items grouped together and given a m~me. This name can be used to add
instances of the symbol to other symbols, producing levels of structure in an SDF.

Transmission Control Protocol. A transport protocol in the ARPA protocol architecture [106].

A protocol to allow remote logins [107].

A timesharing system from Digital Equipment Corporation for the DEcSystem-20 line of
computers.

A portable timesharing system developed by AT&T Dell Laboratories in the early 1970s [l11].

The human end-user of a computer system or set of ~oftware. Thus the user interface deals
with the person trying to lise the system to get work done, in contrast to the programmer
interface which is used by the developer.

Virtual Address eXtension. A line of computers built by Digital Equipment Corporation
with a 32 bit architecture [45].

Virtual Device Interface. A proposed standard interface between a graphics package and a
device driver, as showl} in Figure 2-2.

Virtual Device Metafile. A method for storing graphics information on a file. Figure 2-2
illustrates how VDM fits into the architecture of standard graphics packages.

Virtual Graphics Terminal. A concept of the VGTS which combines advantages of
traditional graphics packages and window systems within the framework of a virtual terminal
management system. Section.3.4.2 defines the semantics of ~ VGT. which is associated w.ith
one item in an SDF (usually a symbol).

Virtual Graphics Terminal Protocol. The protocol used between the VGTS and a client.
Described in Section 3.4.

A mapping of a virtual tenninal onto a physical output device. Default views arc provided by
the application programmer, while the user creates and manipulates views with the View'
Manager. as described in Section 4.4.

A rectangular area of a physical output device which presents the contents of a window. The
VGTS prototype implementation supports potentially overlapping viewports. so the actual
areas of the screen that are visible for each viewport arc called sub view ports. Section 4.2.1
describes this process in more detail.

A smal1 real-timc' portable operating system kernel [JI]. descended from Thoth [29] and
Verex [30].

Very Large Scale Integration [931. VLSI is both the reason why graphics workstations arc
becoming ccolH~mical. and onc of the major users of those workstations.

Virtual Memory System. The operating system supplied by Digital Equipment Corporation
for the VAX computer [45].

A program running within some predefined operating system that provides services such as
file access and remote execution to clients in a V-System [31].

A system of distributed servers and a synchronous message-based kernel developed by the
Distributed Systems Group of Stanford University [17]. .

GLOSSARY

VT

VlMS

Wnss

WISS

Window

103

Virtual Tennilnal. A concept originally developed for long-haul networks [162], to ease the
connection of a variety of real tenninals to a variety of computer systems without having to
support all possible combinations.

Virtual Terminal Management System. An agent in the Rochester Intelligent Gateway which
managed terminal interaction [77].

Workstation Dependent Segment Storage. A concept used in GKS [64].

Workstation Independent Segment Storage. A concept used in GKS [64].

That part of the virtual (or world) coordinate space that is being displayed in a particular
view. This is the standard graphics -package terminology [147], in contrast to the "window
system" terminology (see Chapter 2) which uses the telm to refer to the view itself.

Woodstock . A stateless file server project at Xerox PARC [137]. One of the first experiments at
partitioning between an application program and its disk.

World Coordinates
The coordinate system of the application· program's model of an object. The input to the
viewing pipeline in most graphics systems [147].

Workstation A computing resource dedicated to a user. This may range frOln a smal1,fixed-function
terminal to a large self-contained personal computer.

Zoom Changing the scaling factor mapping from virtual coordinates to physical coordinates to give
the appearance of having moved towards or away from the object of interest.

104 PARTITIONING Ot,' FUNCnON IN A DISTRIBUTED GRAPHICS SYSTEM

A SHORT VGTS SAMPLE PROGRAM 105

- Appendix B -
A Short VGTS Sample Program

The following program has actually been run both under Unix and under the V system executive. The
if def Vsy s tern directives a110w the programmer to conditionally compile code for one environment or
the other. It also must be compiled with the appropriate compiler and linked with the correct library. It first
creates an SDF and VGT, then displays 100 random objects of va rio liS kinds.

* test.c - a test of the remote VGTS implementation
• Bill Nowicki September 1982
*/

include <Vgts.h>
include <Vio.h>

define Objects 100

hOf't sdf, vgt;

LJit()
{

DeleteVGT(vgt.l);
DeleteSDF(sdf);
ResetTTY();
exit();

}

ain()
{

int i;
short item;
long start, end;

i1rndef Vsystem

/~ number of objects */

printf("Remote VGTS test program\n");
e"'se Vsystem

printf{"VGTS test program\n");
endif Vsystem

fflush(stdout);
GetTTY{);
sdf = CreateSDF{);
DefineSymbol (sdf, 1'1 "te-st");
Addltem{ sdf, 2, 4, 40, 4. 60, NM. SDF_FILLED_RECTANGLE, NULL);
EndSymbol (sdf, 1. 0);
vgt = CreateVGT{sdf, GRAPHICS+lQOMABLE, 1, "random objects");
DefaultView{vgt, 500 1 320, 0. 0, 0, 0, 0, 0);

}

106 PARTITIONING OF FUNCI'ION IN A DISTRIBUfED GRAPHICS SYSTEM

time(&start);
for (i=12; i<Objects; i++)

{

}

short x = Random(-2, 155);
short y = Random(-10, 169);
short top = y + Random(6, 100);
&hort right = x + Random(4, 120);
short layer = Random(NM, NG);

EditSymbol(sdf, 1);
Deleteltem(sdf, i-10);
switch (Random(I, 6))

{
case 1:

AddItem(sdf, i, x, right, y, top, layer,
SDF_FILLED_RECTANGLE, NULL);

break;

case 2:
AddIte~(sdf, i, x, x+l000, y, y+16, 0, SDF_SIMPLE_TEXT,

"Here is some simple text");
break;

case 3:
AddItem(sdf, i, x, right, y, y+1, 0,

SDF_HORiZONTAL_LINE, NULL);
break;

case 4:
AddItem(sdf, 19 x, x+19 y, top, 0,

SDF_VERTICAL_LINE, NULL);
break;

case 5:
Addltem(sdf, i, x, right, y, top, 0,

SDF_GENERAL~LINE, NULL);
break;

case 6:

}

Addltem(sdf, i, x, right, top, y, 0,
SDF~GENERAL_LINE, NULL);

break;

EndSymbol(sdf, 1, vgt):

time (&end) :
if (end==start) end = start+l;
printf("%d objec~s in %d seconds, or %d objects/second\r\n",

Objects, end-start, Objects/(end-start»;
printf("Donel\r\n");
Quit();

A SHORT VGTS SAMPLE PROGRAM

tndom{ first, last)
{

}

/*
* generates a random number
* between "first" and "last" inclusive.
*/

int value = rand{)/2;
value %= (last - first + 1);
value += first;
return{value);

107

108 . PARTITIONING OF FUNCnON IN A DISTRIBUTED GRAPHICS SYSTEM

HISTORY OFTHE IMPLEMENTATION 109

- Appendix C -
History of the Implementation

The SDF manager was originally written by Charles "Rocky" Rhodes. incorporated into the Ya 1 e VLSI
layout program by Tom Davis [42]. and converted to usc the V kernel by Marvin Theimer during the summer
of 1982. Most of the conversion into the VOl'S by the author was done in late summer and fall of 1982, with
significant events as follows:

July, 1982 The Ya 1 e program was converted to run under the V kernel.

August 27.1982 The SDF manager operations could be called via C function calls from the Val e
program, but was a separate module. The window manager and related drawing
routines could be linked together with any client wanting to use them.

September 1~ 1982 A tenninal program was written to combine standard terminal emulation functions, a
PUP User TELNET implementation, and the SnF manager functions in one program.
This was based on an earlier implementation of PUP User TELNET by t.he author.

September 18, 1982 The terminal program was augmented to decode the escape sequences, so that a
program running on a remote host could manipulate an SDF. A set of "stub" functions
was written that allowed programs to nm either on the SUN directly or on any host
reachable through a TELNET connection.

October 2, 1982 Yale was ported to the VAX. using the stub routines to simulate the local VGTS
environment. A few remote test programs were written at this time, including the
progra1ll1 in Appet:ldix B.

November 1, 1982 Overlapping viewports added. Arbitrary lines were also added and de·~ugged. Another
test program to display wire-frame drawings projected from three dimensions was
writtel1l.

January 1983 . A simple illustration editor was written by the author to edit diagrams for papers on the
VGTS .. All of the diagrams in this thesis are produced with this program.

February 17, 1983 The text editor Vcd operated under the VOTS along with other executives.

March S, 1983 Graphics applications, including previously mentioned test programs. and both the
distributed and local versions of the Ya 1 e program were opera~ed under the VGTS
and coexisted with each other. The VOTS/Executive combination was instnlled for
production lise by other members of the Distributed Systems Group.

March,1983

AprilS, 1983

April 20. 1983

May, 1983

The ability to display text in arbitrary fonts was added. in addition to the special
fixed-width font.

Continllolls mouse monitoring added, so real-time feedback was possible. With these
new additions to the illustrator program, and the Ved editor. usability was greatly
increased. The view manager also provided feedback when positioning viewports.

Raster objects were added, and a test program which displays half-tone photographic
images was written. Another test program successfully displayed a database containing
a map of the world. .

Filled polygons and splines were. added, and a drawing editor program was developed
to test them. .

110

July, 1983

September, 1983

November, 1983

July. 1984

PARTITIONING OF FUNCnON IN A DISTRIBUTED GRAPHICS SYSTEM

Banners added and integrated into the executive. $creen saver added to turn off SUN
video if nothing has happened in the last ten minutes. View manager menus were
reorganized.

Added line editor and integrated into the executive. Removed line editors from most
application programs. Added directory protocol support.

Split off exec server instead of linking directly to executives.

lnitial port to the SUN-2 frame buffer. Only simple text and rectangle objects worked
at this point. View manager shortcuts installed.

Other people who have contributed to the VaTS implementation were as follows:

P. M. Bothner Primitives for display of rasters and arbitrary fonts, on both SUN-1 and SUN-2 frame
buffers.

K. P. Brooks Continuous mouse monitoring, arc and fast filled polygons, design of GKS compatibility
package.

D. R. Cheriton Design of I/O protocol, and the V kernel; Co-principal investigator for the Distributed
Systems Group.

T. R. Davis Original application. which was Integrated with SOF management and display routines, as
well as original view manager in the YALE program.

1. C. Dunwoody Automatic pagination of pad output, simple terminal server, mouse text selection for line
editor.

R. S. Finlayson Port to the SUN-2 frame buffer, including most of the graphics primitives for the SUN-2.

L. Gass Hit detection functions (FindSelectedObject).

D. R. Kaelbling Filled splines and polygons, and an application program that-uses them {Draw}.

K. A. Lantz Virtual Terminal concept, overall architecture of user interfilce; research supervisor. and
Co-principal investigator for the Distributed Systems Group.

T. P. Mann V-Kernel support for frame buffer access, many minor bug fixes in related software.

i. I. Pallas]mproved cursor visibility. some minor bug fixes, and short cuts to get to view
management. functions.

V. R. Pratt Fast vector drawing function implementation.

C. C. Rhodes lnitial SDF management functions. partial port to the Iris.

M. M. Theimcr Conversion of YALE to the V-System. and the internet server.

Undoubtedly there are others who have helped in one way or another, but these are the major contributors.

DETAILED EXPERIMENTAL RESULTS 111

- Appendix D -
Detailed Expe rimental Results

This appendix contains the specific results from benchmarks and instrumentation discussed in Chapter 6.
There are three kinds of synthetic benchmarks: text, graphics, and stnlcturc. Measuremcnts were also taken
from the illustration editor, using the illustrations in this thesis as data. Within each kind of benchmark the
results arc grouped first by workstation type, which appears in the first column. The following workstations
were used for the tests:

Sun-l This was the first model of workstation marketed as model 100 by Sun Microsystcms, Inc. of
Mountain View, California. It is connected to experimental (3 ~1bit/sccond) Ethernet with a
controller built by Sun Microsystems. It contains a 10Mhz MC68000 processor, with 1Mbyte
of memory accessed with no wait states. Keyboard and optical mouse are polled by software.

Sun-lo5 This was the: first upgrade to the Sun-l by Sun Microsystems, called model 100U. It is
connected to standard 10 Mbit/second Ethernet with a controller made by 3eorn
Corp{)ration, also of Mountain View, California. It contains a 10Mhz MC68010 processor,
with 2Mbyte of memory accessed with wait states, with a resulting effective speed of about
8Mhz. Keyboard and optical mouse arc polled by software.

Sun-2upg This was another upgrade to the same physical workstation made by Sun Microsystems, also
called model 2/100. It contains. a 10Mhz "MC68010 processor, with 2Mbyte of memory
accessed with no wait states. It is connected to standard 10 Mbit/second Ethernet with a
controller made by 3Corn Corporation. Keyboard and optical mouse are polled by software.
It is actually slightly slower on graphics than the Sun-I, probably due to a different bus
arbitration circuit.

Sun-2 This was the second workstation product made by Sun Microsystems, called modcl2/120. It
contains a IOMhz MC68010 processor, with 2Mbyte of memory accessed with no wait states,
the same processor as the Sun-2upg, but a different graphics architecture. The screen bitmap
is larger than the previous Suns. but is addressed as linear memory instead of the clever
scheme of the Sun-I. This makes smaller operations much slower, while large operations
take about the same time. Jt is connected to standard 10 Mbit/second Ethernet with a

" controller made by 3Corn Corporation. Keyboard and optical mouse are connected by
RS232 serial1ines.

Cadlinc An older but similar workstation design, with an 8Mhz MC68000 processor. Only 5I2K
bytes of memory are accessed with no wait states. and another 5] 2K bytes are available on the
Multibus. Keyboard and mechanical l)1ouse are controlled by a dedicated microprocessor,
connected to the MC68000 through an RS232 serial connection.

112

The following server hosts were used in the exp?riments:

Diablo A VAx-11/780 nmning 4.1 Unix during experiments, with 4 Mbyte memory" connected to
3Mbitlsecond Experimental Ethernet. Operated by the SUME~ project in the Stanford
University Medical Center.

Navajo A VAx-11/780 nmning 4.1 Unix during experiments, with 4 Mbyte memory. connected to
3Mbit/second Experimental Ethernet. Owned by the Stanford Numerical Analysis group
of the Computer Science Department.

Whitney A VAx-11/780 running 4.1' Unix. with 8 Mbyte memory. connected to 3ivtbit/second
Experimental Ethernet. Owned by the Robotics group of the Stanford Computer Science
Department.

Carmel ,A VAx-1l/750 running 4.1 Unix during experiments, with 2 Mbyte memory, connected to
3Mbit/second Experimental Ethernet. Owned by the Stanford Computer Science
Department for file server development.

Coyote A VAx-11/750 nmning 4.2 Unix. with 2 Mbyte memory, connected to both 3rv1bit/second
Experimental Ethernet and 10Mbitisecond Ethernet. Owned by the Robotics group of the
Stanford Computer Science Department.

Gregorio A VAx-11/750 running 4.2 Unix. with 5 Mbyte memory, connected to both JMbit/second
Experimental Ethernet and 10Mbitisecond Ethernet. Owned by the'Distributed Systems
Group, and used for VAX operating system support. both the VAX V kernel port and Unix.

Pescadero A V Ax-1l/750 running 4.2 Unix, with 6 Mbyte memory, connected to both 3;\tlbitlsccond
Experimental Ethernet and 10Mbitlsecond Ethernet. Owned by the Distributed Systems
Group, and used as the primary file server for V-System development.

lSI-A A VAx-11/780 running 4.1 Unix. with 4 Mbyte memory. connected to the ARPANET,
located in the Info~ation Science Institute in Marina del Rey, California, about 500 miles
south of Stanford. Used for InterLisp support.

ISI-H A VAx-1l/750 running 4.2 Unix, with 2 Mbyte memory, connected to the ARPANET, also
.located in the Information Science Institute. Used for Unix developnlent.

Camelot A VAx-ll/780 running 4.2 Unix, with 4 Mbyte memory, connected to 3Mbit/second
Experimental Ethernet. Located in the Center for Educational Research at Stanford, and
operated by the Low Overhead Timesharing System (LOTS).

Parc-C A VAx-U/785 running 4.2 Unix, with 8 Mbyte memory, connected to the ARPANET.
Located in and owned by the Xer9x Palo Alto Research Center. Used as a mail gateway.

· 113

The next column gives the protocols used in the experiments. J'hese were discussed at the begining of
Chapter 6, and are illustrated in Figu.res 6-1 and 6-2.

Local The application runs on the same workstation that is used for display. Communication is by
local V kernel messages.

V AX-JKP The V-System 1/0 protocol. using a message protocol implemented directly above the data-link
layer of Ethernet. The application runs on a VAX UNIX system and communicates via pipes to a
Unix program that simulates a V~kernel by sending kernel packets on the Ethernet.

SUN-IKP The application runs on another workstation, and sends V messages directly using the Inter­
Kernel Protocol.

PUP The PUP Byte Stream Protocol on a directly connected Ethernet.

PUPGW The PUP Byte Stream Protocol through one or more gateways to another Ethernet.

IP Internet Protocol on a directly connected Ethernet.

IPGW Int.ernet Protocol through one or more gateways.

A-IP Internet Protocol, over an Ethernet to a PDP-II/23 acting as a gateway to the ARPANET.

nnnn A four digit number, one of 1200. 2400, 4800. or 9600, refers to the baud rate of a VAX terminal
port that was attached to an RS-232 port on the workstation. A simple V-System program
allowed normal UNIX terminal sessions on this terminal port.

114

0.1 Text Benchmark

The text benchmark was primarily a program called t time, originally written by Peter Eichenberger. This
program simply printed characters as quickly as possible until stopped by an internlpt or for a given amount
of time (two minutes was the time used in these experiments). The columns are: workstation type, server
host, protocol, and character rate. All numbers are given as characters per second through all layers of
software including the tenninal emulator. except in the local case where the rates are broken down into draw
and constnlction times. For these experiments, which were done only with the V protocols. an option of the
vectime program was used.

Sun-1 Sun-1 Draw 20711
Construct 7286
Page 5387
Scroll 448

Sun-1 7804.1 (Diablo) VAX-IKP 4157
Sun-1 7804.1 (Diablo) IP 3911
Sun~l 7804.1 (Navajo) IP 4139 .
Sun-1 7804.1 (Navajo) PUP 1566
Sun-1 7804.1 (Whitney) VAX-IKP 4257
Sun-1 7804.1 (Whitney) [P 4344
Sun-1 7804.1 (Whitney) p{JP 1638
Sun-1 7504.2 (Coyote) VAX-IKP 3628
Sun-l 7504.2 (Coyote) IP 3521
Sun-1 7504.2 (Coyote) PUP 2030
Sun-1 7504.1 (Carmel) VAX-IKP 4078
Sun-1 7504.1 (Carmel) IP 2299
Sun-l 7504.1 (Carmel) PUP 1371
Sun-1 7504.2 (Gregorio) IP 1544
Sun-l 7504.2 (lSI-H) A-IP 2170
Sun-1 7804.1 (lSI-A) A-IP 1911

Sun-2 Draw 10111
Construct 6037
Page 3653
Scroll 201

Sun-2 7504.2 (Gregorio) II> 4409

Sun-2upg Draw 18193
Construct 6702
Page 4776
Scroll 354

Sun-2upg 7804.1 (lSI-A) A-IP 2200
Sun-2upg 785 4.2 (Pare-C) A-IP 2317
Sun-2upg Another Sun-2 Draw 18916

Construct 4067
Page 3342
Scroll 386

Sun-2upg

Sun-loS

Sun-loS
Sun-1.5
Sun-1.5
Sun-loS
Sun-l.5
Sun-1.5

Sun-loS

Cadlinc

Cadtinc
Cadlinc
CadIinc
C)ldHnc

/<Cadlinc
// Cadlinc

Cadi inc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
Cadlinc
CadHnc
Cadlinc
Cadlinc

Another Sun-loS

7504.2 (Coyote) .
7504.2 (Coyote)
7504.2 (Gregorio)
7504.2 (Gregorio)
7804.1 (lSI-A)
Another Sun-2

Another Sun-1.5

7804.1 (Diablo)
7804.1 (Diablo)
7804.1 (Navajo)
7804.1 (Navajo)
7804.1 (Whitney)
7804.} (Whitney)
7804..1 (Whitney)
7504.2 (Coyote)
7504.2 (Coyote)
7504.2 (Coyote)
7504.1 (Carmel)
7504.1 (Carmel)
7504.l (Cannel)
7504.2 (Gregorio)
7504.2 (Gregorio)
7804.1 (lSI-A)

Draw
Construct
Page
Scroll

Draw
Construct
Page
Scroll
VAX-IKP
IP
VAX-IKP
IP
A-IP
Draw
Construct
Page
Scroll
Draw
Construct
Page
Scroll

Draw
Construct
Page
Scroll
VAX-IKP
IP
IlP
PUP
VAX-IKP
IP
PUP
VAX-IKP
IP
PUP
VAX-IKP

IP
PUP
IPGW
PUl>GW
A-IP

Table D-l: Detailed tcxt rcsults

19104
3713
3109
341

17111
4496
4046

330
3187
3628
3213
3554
873

15483
3099
2582
306

15360
3109
2585
290

15737
5509
4080
331

2856 .
3208
3558
1349
3179
2453
1354
3179
3462
1562
3323
2407
1325
3510
1327
1837

115

116

0.2 Vector Graphics Benchmark

The vect ime program was used to test simple vector graphics perfonnance. The columns in the results
below are: workstation type, server host, protocol, test name, and vector rate. All numbers are in vectors per
second. The program drew a fully-connect 36-agon, and was based on a similar program written by Professor
Vaughan Pratt. The calculations for the points of the polygon were done once before til~ing began. For the
Batch test the polygon was erased and displayed ten times, with the results computed over a1l ten trials. The
benchmark program reported the standard deviation for the trials. Runs with large deviations were repeated
on the assumption that transient effects such as incoming computer mail or other background activity caused
these anomalolls results.

For the Incremental test (noted below as ··Add") each AddltemcaH was preceded by an EditSymbolcal1 and
followed by an EndSymbol call, to measure the number of transactions per second. Since one run of the
Incremental test typically took several minutes, these were only repeated once. All experiments were
performed when timesharing load was low. The last column gives the month and year the measurements
were taken.

Sun-l Local Batch Draw 451 12-83
Create 485 12-83
Total 234 12-83

Sun-l Local Batch Draw 428 12-84
Create 450 12-84
Total 219 12-84

Sun-l 780 4.1 (Diablo) IPGW Batch Create 114 6-84
Total 81 6-84

Sun-l 780 4.1 (Navajo) VAX-IKP Batch· Create 508 12-83
Total 185 12-83

Sun-l 780 4.1 (Navajo) IP Batch . Create 162 12-83
Total 111 12-83

Sun-1 780 4.1 (Navajo) PUP Batch Create 200 12-83
Total 122 12-83

Sun-1 780 4.2 (Navajo) VAX-IKP Batch Create 180 12-84
Total 171 12-84

.Sun-1 780 4.2 (Navajo) IP Batch Create 387 12-84
Total 377 12-84

Sun-1 780 4.2 (Navajo) PUP Batch Create 222 12-84
Total 218 12-84

Sun-1 780 4.1 (Wh.i tney) VAX-IKP Batch Create 396 12-83
Total 168 12-83

. Sun-1 780 4.1 (Whitney) IP Batch Create 168 12-83
Total 111 12-83

Sun-l 780 4.1 (Whitney) PUP Batch Create 207 12-83
Total 128 12-83

Sun-l 750 4.2 (Coyote) VAX-IKP Batch Create 160 12-83
Total 97 12-83 .

Sun-1 750 4.2 (Coyote) IP Batch Create 136 12-83
Total 93 12-83

Sun-1 750 4.2 (Coyote) PUP Batch Create 133 12-83
Total 91 12-83

Sun-1 750 4.1 (Carmel) VAX-IKP Batch· Create 335 12-83
Total 155 12-83

Sun-1 750 4.1 (Carmel) IP Batch Create 107 12-83
Total 81 12-83

Sun-1 750 4.1 (Carmel) PUP Batch Create 128 12-83
Total 80 12-83

Sun-1 750 4.2 (Gregorio) IP Batch Create 220 12-84
Total 215 12-84

Sun-1 750 4.2 (Gregorio) PUP Batch Create 198 12-84

117

Total 195 12-84
Sun-l 780 4.1 (lSI-A) IP Batch Create 133 . 12-83

Total 92 12-83
Sun-l 750 4.2 (lSI-H) A-IP Batch Create 120 6-84

Total 73 6-84
Sun-l 780 4.2 (Camelot) IPGW Batch Create 154 6-84

Total 100 6-84
Sun-l 780 4.2 (Camelot) PUPGW Batch Create 156 6-84

Total 105 6-84
Sun-l Another Sun-l Sun-IKP Batch Create 360 6-84

Total 192 6-84

Sun-2 local Batch Draw 290 12-84
Create 468 12-84
:rotal 179 12-84

Sun-2 750 4.2 (Gregorio) VAX-IKP Batch Create 372 11-84
Total 345 11-84

Sun-2 750 4 .. 2 (Gregorio) IP Batch Create 168 11-84
Total 166 11-84

Sun-2 785 4.2 (Pare-C) A-IP Batch Create 155 11-84
Total 145 11-84

Sun-2upg local Batch Draw 418 6-84
Create 439 6-84
Total 214 6-84

Sun-2upg local Batch Draw 406 12-84
Create 446 12-84
Total 211 12-84

Sun-2upg 780 4.1 (Navajo) IPGW Batch Create. 149 6-84
Total 101 6-84

Sun-2upg 780 4.1 (Navajo) PUP Batch Create 167 6-84
Total 109 6-84

Sun-2upg 750 4.2 (Gregorio) VAX-IKP Batch Create 381 12-84
Total 348 12-84

Sun-2upg 750 4.2 (Gregorio) IP Batch Create 229 12-84
Total 224 12-84

Sun-2upg 750 4.2 (Gregorio) PUP Batch Create 204 12-84
Total 198 12-84

Sun-2upg 750 4.2 (Pescadero) IP· Batch Create 128 6-84
Total 90 6-84

Sun-2upg 780 4.2 (lSI-A) IP Batch Create 134 9-84
Total 93 9-84

Sun-2upg 750 4.2 (lSI-H) A-IP Batch Create 126 12-84
Total 121 12-84

Sun-2upg 785 4.2 (Parc-C) IP Batch Create 159 12-84
Total 144 12-84

Sun-2upg Another Sun-2 Sun-IKP Batch Create 402 6-84
Total 204 6-84

Sun-2upg Another SUI1J-2 Sun-IKP Batch Create 384 12-84
Total 185 12-84

Sun-2upg Another SUI1J-1.5 Sun-IKP Batch C .. eate 360 6-84
Total 192 6-84

5un-1.5 local Batch Draw 339 3-84
Create 364 3-84
Total 176 3-·84

Sun-1.5 750 4.2 (Coyote) VAX-IKP Batch Create 445 3-84
Total 145 3-84

Sun-1.5 750 4.2 (Coyote) IP Batch Create 144 3-84
Total 95 3-84

5un-1.5 750 4.2 (Gregorio) VAX-IKP Batch Create 453 3-84
Total 146 3-84

118

Sun-1. 5 750 4.2 (Gregorio) IP Batch Create 143 3-84
Total 90 3-84

Sun-1.5 750 4.2 (Pescadero) VAX-IKP Batch Create 326 6-84
Total 128 6-84

Sun-1.5 750 4.2 (Pescadero) IP Batch Create 129 6-84
Total 88 6-84

Sun-1.5 750 4.2 (Pescadero) PUP Batch Create 93 6-84
Total 68 6-84

5un-1.5 780 4.1 (lSI-A) A-IP Batch Create 129 3-84
Total 85 3-84

Sun-1.5 750 4.2 (151-H) A-IP Batch Create 125 6-84
Total 75 6-84

5un-1.5 Another 5un-2 Sun"':IKP Batch Create 361 6-84
Total 175 6-84

Sun-1.5 Another Sun-1. 5 5un-IKP Batch Create 322 6-84
Total 165 6-84

Cadlinc local Batch Draw 340 12-83
Create 369 12-83
Total 177 12-83

Cadlinc 780 4.1 (Diablo) VAX-IKP Ba'tch Create 422 12-83
Total 152 12-83

Cadlinc 780 4.1 (Diablo) IP Batch Create 84 12-83
Total 61 12-83

Cadlinc 780 4.1 (Diablo) PUP Batch Create 129 12-83
Total 82 12-83

Cadlinc 780 4.1 (Navajo) VAX-IKP Batch Create 292 12-83
Total 131 12-83

Cadlinc 780 4.1 (Navajo) IP Batch Create 159 12-83
Total 99 12-83

Cadllnc 780 4.1 (Navajo) PUP Batch Create 179 12-83
Total 107 12-83

Cadlinc 780 4.1 (Whitney) VAX-IKP Batch Create 431 12-83
Total 153 12-83·

Cadlinc 780 4.1 (Whitney) IP 'Batch Create 140 12-83
Total 92 12-83

Cadlinc 780 4.1 (Whitney) PUP Batch Create 177 12-83
Total 106 12-83

Cadlinc 750 4.2 (Coyote) VAX-IKP Batch Create 164 12-83
Total 92 12-83

Cadlinc 750 4.2 (Coyote) IP Batch Create 139 3-84
Total 92 3-84

Cadlinc 750 4.2 (Coyote) PUP Batch Create 132 12-83
Total 86 12-83

'Cadllnc 750 4.1 (Carmel) VAX-IKP Batch Create 346 12-83
Total 143 12-83

Cadlinc 750 4.1 (Carmel) PUP Batch Create 123 12-83
Total 75 12-83

Cadlinc 750 4.2 (Gregorio) IP -Batch Create 146 3-84
Total 91 3-84

Cadlinc 750 4.2 (Gregorio) PUP Batch Create 121 3-84
lO,ta 1 82 3-84

Cadlinc 780 4.1 (lSI-A) A-IP Batch Create 133 12-83
Total 88 12-83

Cadlinc 750 4.2 (lSI-H) A-IP Batch Create 111 6-84
Total 68 6-84

Cadlinc Another Sun-1 Sun-IKP Batch Create ' 249 6-84
Total 143 6-84

Sun-l Local Add Total 47.7 12-83
Sun-l Local Add Total 62.2 12-84
Sun-l 780,4.1 (Diablo) PUP Add Total 5.5 12-83

119

Sun-t 780 4.2 (Navajo) VAX-IKP Add Total 62.7 12-84
Sun-l 780 4.2 (Navajo) IP Add Total 91.6 12-84
Sun-1 780 4.2 (Navdjo) PUP Add Total 59.0 12-84
Sun-l 780 4.1 (Navajo) VAX-IKP Add Total 6.1 12-83
Sun-l 780 4.1 (Navajo) IP Add Total 4.8 12-83
Sun-1 780 4.1 (Navajo) PUP Add Total 4.3 12-83
Sun-1 780 4.1 (Whitney) VAX-IKP Add Total 6.5 12-83
Sun-1 780 4.1 (Whitney) IP Add Total 4.9 12-83
Sun-1 780 4.1 (Whitney) PUP Add Total 4.9 12-83
Sun-1 750 4.2 (Coyote) IP Add Total 7.8 12-83
Sun-1 750 4.1 (Carmel) VAX-IKP Add Total 4.6 12-83
Sun-1 750 4.1 (Carmel) IP Add Total 4.8 12-83
Sun-1 750 4.1 (Carmel) PUP Add Total 4.9 12-83
Sun-l 750 4.2 (Gregorio) IP Add Total 86.6 12-84
Sun-1 750 4.2 (Gregorio) PUP Add Total 54.5 12-84
Sun-1 780 4.1 (lSI-A) A-IP Add Total 3.0 12-83
Sun-1 780 4.2 (Camelot) IPGW Add Total 3.1 6-84
Sun-1 780 4.2 (Camelot) PUPGW Add Total 2.9 6-84
Sun-1 Another Sun-1 Sun-IKP Add Total 9.0 6-84

Sun-2 Local Add Total 40.6 9-84
Sun-2 Local Add Total 61.5 11-84
Sun-2 750 4.2 (Gregorio) VAX-IKP Add Total 81.7 11-84
Sun-2 750 4.2 (Pescadero) IP Add Total 59.4 11-84
SUI1-2 785 4.2 (Parc-C) A-IP Add Total 69.6 11-84
Sun-2 780 4.2 (Camelot) IPGW Add Total 84.0 12-84

Sun-2upg Local Add Total 42.0 6-84
Sun-2upg Local Add Total 59.4 12-84
Sun-2upg 750 4.2 (Gregor'io) VAX-IKP Add Total 81. 4 12-84
Sun-2upg 750 4.2 (Gr'egor i 0) PUP Add Total 57.6 12-84
Sun-2upg 750 4.2 (Gregorio) IP Add Total 81.5 12-84
Sun-2upg 750 4.1 (Pescadero) IP . Add Total 6.8 6-8,4
Sun- 2upg 785 4.2 (Parc-C) A-IP Add Total 3.7 11-84
SUrl-2upg 785 4.2 (Parc-C) A-IP Add, Total 64.1 12-84
Sun-2upg 750 4.2 (lSI-H) A-IP Add Total 39.3 12-84
Sw,-2upg Another SUI1l-2 Sun-IKP Add Total 29.0 6-'84
Sun-2upg Another SUI1l-2 Sun-IKP Add Total 44.2' 12-84
Sun-2upg Another SUI1l-1. 5 Sun-IKP Add Total 23.0 6-84

Sun-1.5 Local Add Total 35.0 6-84
Sun··1.5 750 4.1 (Pescadero) IP Add Total 6.8 6-84
Sun-1.5 Another Sun~2 Sun-IKP Add Total 24.5 6-84
Sun-1.5 Anothe" Sun-·1.5 Sun-IKP Add Total 22.3 6-84

Cadlinc Local Add Total 36.1 12-83
Cadlinc 780 4.1 (Diablo) IP Add Total 4.0 12-83
Cad'linc 780 4.1 (Diablo) PUP Add Total 3.0 12-83
Cadline 780 4.1 (Navajo) IP Add Total 4.7 12-83
Cadl'inc 780 4.1 (N""ajo) PUP Add Total 2 .1 12-83
Cal/line 180 4.1 (WhHney) VAX-IKP Add Total 6.2 12-83
Cadlinc 750 4.2 (Coyote) IP Add Total 7.2 12-83
Cadlinc 750 4.1 (C'8rme 1) VAX-IKP Add Total 4.5 12-83
Cadlinc 750 1.1 (Carmel) IP Add Total 4.8 12-83
Cadlinc' 750 4.1 (Cal'me 1) PUP Add Total 4.7 12-83
Cadlinc 780 4.1 (ISJ[-A) A-IP Add Total 2.8 12-83

Table D-2: Detailed vector graphics results

120

0.3 Structured Graphics Benchmark

The s t rue time program was designed to test the effect of structure. The benchmark drew an array of 30
NMOS inverters. each consisting of 26 rectangles, for a total of 780 rectangles. The resulting image was about
400 pixels on a side. Each rectangle was filled with one of four stipple patterns. each representing one of the
NMOS process layers. In the batch test, each of the 780 rectangles was added to the SDF, resulting in a single
level, unstructured symbol. The incremental test also used a single-level unstructured symbol, with each of
the 780 rectangles displayed as it was added.

In the structure test. a "contact cut" symbol was detined which consisted of three rectangles. Then an
"inverter" symbol was defined with two cans to the contact cut symbol and 20 other rectangles. 30 instances
of the inverter symbol were then added to the top-level symbol. reSUlting in a three-level display file. Thus a
total of 23 primitive items and 32 cans were added to the SDF. for a total of 55 items. 1\11 numbers arc in
rectangles per second. Note that the structure create rate might be considered unfairly low. The benchmark
divided the total time for creation by the number of primitives added, in this case 23. To obtain the rate
including symbols calls, multiply thls rate by 55/23 or about 2.4. The'last column gives the month and year
the measurements were taken.

Sun-l Local Batch Create 40? 6-84
Total 312 6-84

Local Struct Create 145 6-84
Total 1010 6-84

Local Inere Total 48 6-84

Sun-l Local Batch Create 398 12-84
Total '307 12-84

Local Struct Create 169 12-84
Total 1070 12-84

Local Inere Total 61 12-84

Sun-1 780 4.1 (Navajo) VAX-IKP Batch Create 287 6-84
Total 207 6-84

VAX-IKP Struct Create 23 6-84
Total 403 . 6-84

Sun-1 780 4.1 (Navajo) IP Batch Create 148 6-84
Total 124 6-84

IP Struct Create 19 6-84
Total 406 6-84

IP Incre Total 4.7 6-84

Sun-1 780 4.1 (Navajo) IP Batch Create 222 12-84
Total 210 12-84

IP Struct Create 22 12-84
Total 744 . 12-84

IP Inere Total 71 12-84

Sun-1 780 4.1 (Navajo) PUP Batch Create 156 6-84
Total 123 6-84

PUP Struct Create 21 6-84
Total 405 6-84

PUP Incre Total 4.4 6-84

Sun-l 780 4.1 (Navajo) PUP Batch Create 171 12-84
Total 164 12-84

PUP Struct Create 18 12-84
Total 681 12-84

PUP Incre Total 51 12-84

121

Sun-l 750 4.2 (Gregorio) IP Batch Create 128 6-84
Total 103 6-84

IP 'Struet Create 24 6-84
Total 442 6-84

IP Inere Total 5 ,6-84

Sun-1 750 4.2 (Gregorio) IP Batch Create 185 12-84
Total 175 12-84

IP - Struet Create 20 12-84
Total 672 12-84

IP Inere Total 66.1 12-84

Sun-l 750 4,2 (Gregorio) . PUP Batch Create 139 12-84
Total 133 12-84

PUP Struct Create 17 12-84
Total 574 12-84

PUP Inere Total 36.4 12-84

Sun-1 750 4.2 (Pescadero) VAX-IKP Batch Create 65 6-84
Total 57 6-84

VAX-IKP Struet Create 2 6-84
Total 28 6-84

Sun~1 780' 4.1 (lSI-A) A-IP Batch Create 117 6-84
Total 94 6-84

A-IP Strllet Create 14 6-84
Total 305 6-84

A-IP Incre Total 3 6-84

Sun-l 750 4'.2 (lSI-H) A-IP Batc:h Create 108 6-84
Total 75 6-84

A-IP Struct Create 12 6-84
Total 257 6-84

A-IP IncJ'e Total 2 6-84

Sun-l 780 4.2 (Camelot) IPGW Batch Create 193 6-84
Total 146 6~84

IPGW Struct Create 20 6-84
Total 394 6-84

IPGW InCI'e Total 3.4 6-84

Sun-l 780 4.2 (Camelot) PUPGW Batch Create 146 6-84
Total 114 6-84

PUPGW Struct Create 20 6-84
Total 405 6-84

Sun-l Another Sun-l Sun-UP Batch Create 324 6-84
Total 258 6-84

Sun-IKP Struct Create 112 6-84
Total 835 6-84

Sun-UP Inere Total 14.6 6-84

Sun-2upg Local Batch Create 398 6-84
Total 304 6-84

Local Struct Create 142 6-84
Total 990 6-84

Local Inclre Total 42 6-84

Sun-2upg Local Batch Create 391 12-84
Total 300 .12-84

Local Str!Jct Create 133 12-84
Total 975 12-84

Local Inere Total 59 12-84

122

Sun-2upg 780 4.1 (Navajo) IPGW Batch Create 140 6-84
Total 118 6-84

IPGW Struct Create 18 6-84
Total 378 6-84

IPGW Incre Total 4.5 6-84

Sun-2upg 780 4.2 (Navajo) IPGW Batch Create 207 12-84
Total" 202 12-84

IPGW Struct Create 21 12-84
Total 687 12-84

IPGW Incre Total 61 12-84

Sun-2upg 780 4.1 (Navajo) PUPGW Batch Create 128 6-84
Total 99 6-84

PUPGW Struct Create 6.8 6-84
Total 182 6-84

PUPGW Incre Total 1.5 6-84

Sun-2uPU 750 4.2 (Gregorio) . VAX-IKP Batch Create 258 6-84
Total 173 6-84

VAX-IKP Struct Create 14 6-84
Total 287 6-84

VAX-IKP Incre Total 4.7 6-84

Sun-2upg 750 4.2 (Gregoria) VAX-IKP Batch Create 199 12-84
Total 196 12-84

VAX-IKP Struct Create 15 12-84
Total 520 12-84

VAX-IKP Incre Total 72 12-84

Sun-2upg 750 4.2 (Gregorio) IP. Batch Create 176 12-84
Total 171 12-84

IP' Struct Create 19 12-84
Total 670 12':84

IP Incre Total 65 12-84

Sun-2upg 750 4.2 (Pescadero) IP Batch Create 120 6-84
Total 98 6-84

IP Struct Create 25 6-84
Total 456 6-84

IP Incre Total 7 6-84

Sun-2upg 780 4.1 (lSI-A) A-IP Batch Create 106 6-84
Total 88 6-84

A-IP Struct Create 13 6-84
Total 278 6-84

A-IP Incre Total 3.4 6-84

Sun-2upg 750 4.2 (lSI-H) A-IP Batch Create 100 6-84
Total 76 6-84

A-IP Struct Create 12 6-84
Total 257 6-84

A-IP Incre Total 2.7 6-84

Sun-2upg 750 4.2 (lSI-In A-IP Batch Create 91 12-84
Total 81 12-84

A-IP Struct Create 11. 0 12-84
Total 373 12-84

A-IP Incre Total 35.9 12-84

Sun-2upg 780 4.2 (Camelot) IPGW Batch Create 189 12-84
Total 185 12-84

IPGW Struct Create 14 12-84
Total 473 12-84

IPGW Incre Total 64 12-84

123

Sun-2upg 785 4.2 (Pare-C) A-IP Batch Create 163 11-84
Total 116 . 11-84

A-IP Struet Create 15 11-84
Total 323 11-84

A-IP Incre Total 3.7 11-84

Sun-2upg 785 4.2 (Pare-C) A-IP Batch Create 126 12-84
Total 114 12-84

A-IP Struct Create 14 12-84
Total 464 12-84

A-IP Incre Total 57.9 12-84

Sun-2upg Another Sun-2 Sun-IKP Batch Create 352 6-84
Total 277 6-84

Sun-IKP Struct Create 112 6-84
:fatal 875 6-84

Sun-IKP Incre Total 28 6-84

Sun-2upg Another Sun-l.5 Sun-IKF' Batch Create 312 6-84
Total 251 6-84

Sun-IKP Struct Create 98 6-84
Total 831 6-84

Sun-IKP Inere Total 25 6-84

Sun-2 Local Batch Create 439· 9-84
Total 295 9-84

Local Struct Create' 146 9-84
Total 748 9-84

Local Incre Total 44.9 9-84

Sun-2 Local Batch Create 429 12-84
Total 288 12-84

. Local Struct Create 160 12-84
Total 741 12-84

Local Inere Total 63 12-84

Sun-2 780 4.2 (Navajo) IPGW Batch Create 193 12-84
Total 190 12-84

IPGW Struct Create 15 12-84
Total 499 12-84

IPGW Incre Total 70 12 .. 84

Sun-2 750 4.2· (Pescadero) IP Batch Create 150 12-84
Total 146 12-84

IP Struct Create 16 12-84
Total 521 12-84

IP Inere Total 66.3 12-84

Sun-2 750 4.2 (Gregorio) VAX-H~P Batch Create 205 12.-84
Total 199 12-84

VAX-IKP Struct Create 13 12-84
Total 452 12-84

VAX-UP Incre Total 68 12-84

Sun-2 750 4.2 (Gregorio) IP Batch Create 166 9-84
Total 131 9-84

IP Struet Create 22 9-84
Total 383 9-84

IP Incre Total 6.1 9-84

Sun-2 750 4.2 (Gregorio) 9600 Batch Create 53.5 9-84
Total 45.9 9-84

9600 Str'uct C,'eate 20.2 9-84
Total 320 9-84

9600 Inere Total 9.8 9-84

124

Sun-2 750 4.2 (Gregorio) 4800 Bateh Create 25.8 9-84
Total 22.5 9-84

4800 Struet Create 10.6 9-84
Total 233 9-84

4800 Inere Total 7.4 9-8~

Sun-2 750 4.2 (Gregorio) 2400 Bateh Create 14.4 9-84
Total 12.2 9-84

2400 Struet Create 7.6 9-84
Total 142 9-84

2400 Inere Total 4.2 9-84

Sun-2 750 4.2 (Gregorio) 1200 Batch Create 7.4 9-84
Total 6.2 9-84

1200 Struct Create 4.3 9-84
Total 84.1 9-84

1200 Incre Total 2.6 9-84

Sun-2 785 4.2 (Pare-C) A-tP Batch Create 146 11-84
Total 133 11-84

A-IP Struct Create 14 11-84
Total 462 11-84

A-IP Incre Total 56.9 11-84

Sun-l.5 local Batch Create 326 6-84
Total 250 6-84

local Struct Create 119 6-84
Total 832 6-84

local Incre Total 34 6-84

Sun-l.5 780 4.1 (Navajo) IP Batch Create 106 6-84
Total 86 6-84

IP Struct Create 14 6-84
Total 292 6-84

IP Incre Total 4 6-84

Sun-l.5 750 4.2 (Pescadero) VAX-UP Batch Create 223 6-84
Total 147 6-84

VAX-IKP Struct Create 17 6-84
Total .395 6-84

VAX-IKP Incre Total 5.0 6-84

Sun-1.5 750 4.2 (Pescadero) IP Batch Create 128 6-84
Total 102 6-84

IP Struct Create 22 6-84
Total 395 6-84

IP Incre Total 6.5 6-84

Sun-l.5 750 4.2 (Pescadero) PUP Batch Create 68 6-84
Total 58 6-84

PUP Struct Create 18 6-84
Total 341 6-84

PUP Incre T~tal 4.5 6-84

Sun-1. 5 750 4.2 (Pescadero) 1200 Batch Create 7.4 6-84
Total 6.4 6-84

1200 Struct Create 4.5 6-84
Total 83 6-84

1200 Incre Total 0.5 6-84

Sun-l.5 780 4.1 (lSI-A) A-IP Batch. Create 100 6-84
Total 84 6-84

A-IP Struct . Create 13 6-'84
Total 275 6-84

125

A-IP Incr'e Total 2 6-84

Sun-l.5 750 4.2 (lSI-H) A-IP Batch Create 113 6-84
Total 82 6-'84

A-IP Struct Create 11 6-84
Total 232 6-84

A-IP Inc,'e Total 0.8 6-84

Sun-I. 5 Another Sun-2 Sun-IKP Batch Create 306 6-84
Total 238 6-84

Sun-IKP Struct Create 100 6-84
Total 770 6-84

Sun-IKP Incre Total 24.2 6-84

Sun-l.5 Another Sun-l.5 Sun-IKP Batch Create 279 6-84
Total 220 6-84

Sun-IKP Struct Create 85 6-84
Total 690 6-84

Sun-IKP Incre Total 22.1 6-84

Cadlinc 780 4.1 (Navajo) IP Batch Create 138 6-84
Total 111 6-84

IP Struct Create 18 6-84
Total 350 6-84

IP Incre Total 4.6 6-84

Cadlinc 780 4.1 (Navajo) VAX-IKP Batch Create 272 6-84
Total 187 6-84

VAX-IKP StrlUct Create 21 6-84
Total 370 6-84

VAX-IKP Incre Total 7.5 6-84

Cadlinc 750 4.2 (Pescadero) IP Batch /Create 130 ·6-84
Total 99 6-84

IP St~uct Create 22 6-84
Total 386 6-84

IP Incre Total 4 6';84

Cadlinc 780 4.1 (lSI-A) A-IP Batch Create 101 6-84
Total 84 6-84

A-IP Struct Create 12 6-84
Total 255 6-84

A-IP Incre Total 2.7 6-84

Cadlinc 750 4.2 (lSI-H) A-IP Batch Create 115 6-84
Total 75 6-84

A-IP Struct Create 12 6-84
Total 251 6-84

A-IP Incre Total 2 6-84

Cadlinc 780 4.2 (Camelot) IPGW Batch Create 115 6-34
Tota" 82 6-84

IPGW Slrucl Cre,1 Le 12 6-84
Total 2!J9 6-84

IPGW Incre Total 2.7 6-84

Table D-3: Detailed stnlctured graphics results

126

0.4 Illustration Data

These tests were performed on a locall0Mhz workstation with the Sun-l frame buffer. This table lists the
number of items, time for display in milliseconds, the resulting rate (including both creation and display) in
items per second. the memory that would be needed to store the bitmap (in thousands of bytes). and and the
memory used in the SDF (also in thousands of bytes). These experiments were performed in October of
1984.

Figure
1-1
1-2
2-1
2-2
3-1
3-2
3-3
3-4
3-5
4~1

4-2
5-2
5-3
6-1
6-2

Objects
365
105
71
80

125
137
115
73
88

132
157
66
99
33

101

Time
1370
430
·330
360
510
530
490
360
400
540
680
280
390
160
450

Rate
266
244
215
222
245
258
235
203
220
244
231
236
254
206
224

Bitmao
34K
21K
17K

'19K
17K
19K
19K
13K
20K
27K
28K
40K
16K
10K
13K

Table 0"4: Detailed illustration data

snF
7.3K
2.1K
1.4K
1.6K
2.5K
2.7K
2.3K
1.5K
1.8K
3.6K
3.1K
1.3K
2.0K
0.7K
2.0K

127

References

1. Additional Controls/or Use with the American National Standardfor In/ormfltion Interchange. American
National Standards Institute, 1976. ANSI Standard X3L2/76/33.

2." American National Standards Institute Committee X3H31. Programmer's Minimal Interface to Graphics.
Proposal X3H31/81-87, Alnerican National Standards Institute, December, 1981.

3. American National Standards Institute. Digital Representation for Communication ofProdllct Definition
Data, IGRS Version 2.0. Y 14.26M, Anlerican National Standards Institute, February, 1983.

4. American National Standards Institute Committee X3H31. American National Standard for the
Functional Specification of the Programmer's Hierarchical Interactive Graphics Standard (PlUGS). Draft
X3H31/82-03R02 X3H3/83-44, American National Standards Institute, March, 1983.

5. American National Standards Institute Committee X3H3, P. Bono Chainnan. Virtual Device Metafile
Functional Description. Draft X3.122-198x, American National Standards Institute, December, 1983.

6. ANSI and Canadian Standard's Association. VideotexlTeletext Presentation Level Protocol Syntax. Draft
BSR X3.110-198X. American National Standards Institute, June, 1983.

7. American National S~1ndards Institute Committee X3H3. Virtual Device rnterface Functio"nal
Description. Draft Project 346D, American National Standards Institute, March, 1984.

8. "Apollo Domain Architecture. 1981. Apollo Computer Inc.

9. D. Arnold. "A Requirement for Process Stnlctured Graphics Systems". Computer Graphics 15, 2 (July
1981),163-173. ""

10. P. 1. Asente. W: A SUN Window System. Stanford University Computer Sy.stems Laboratory.

11. Teletext Sub-Committee.} B. Astle. Chairman. North American Broadcast Teletext Specification.
Working Paper NABTS. Electronic Industries Association, April, 1983~

12. J. E: Ball. AT: Alto as Terminal. Carnegie-Menon University, March, .1980.

13. J. E. Ball. Canvas: The Spice Graphics Package. Spice Document Sl08. Computer Scienc~ Department,
Carnegie-Mellon University, October, 1981.

14. J. E. Ball. M. R. Barbacci. S. E. Fahlman, S. P. Harbison, P.G. Hibbard, R.F. Rashid, G. G. Robertson,
and G. L. Steele Jr. The Spice Project. In 1980/1981 Compuler .. \'cience Research Review,
Computer Science Department. Carnegie-Melton University. 1982, pp. 5-36.

15. F. Baskett. A. V. Bcchtolscheim, W. I. Nowicki, and J. K. Seamons. The SUN Workst(1tiol1: A Terminal
Sysle~ll f()I' the Stanford University Network. Stanford Un.iversity Computer Science Department.

16. A. Bawden, etal. Lisp IVlachine Project Report. Artificial InteltigenceMcmo 444. MIT AI Laboratory,
August, 1977.

17. E.1. Berglund, K. P. Brooks. D. R. Cheriton. D. R. Kaelbling, K. A. I Jantz. T. P. Mann, R. 1. Nagler,
W. I. Nowicki. M. M. Theimcr. and W. Zwaenepoe1. V~System Reference Manual version 5.0. Stanford
University Distributed Systems Group 1984. Available from the Stanford University Office of Technology
Licensing.

128

18. B. W. Boehm. Software Engineering Econom!cs. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

]9. D. R. Boggs. 1. F. Schoch, E. A. Taft, and R. M. Metcalfe. "PUP: An Internetwork Architec~re". IEEE
Transactions on Communications 28,4 (April 1980), 612-624.

20. 1. E. Rresenham. "Algorithm for Computer Control of Digital Plotter". IBM Systems Journal 4, 1 (1965).
25-30. '

21. K. P. Brooks. VED - A Full-Screen Editor for a Distributed Operating System. Comprehensive
Programming Project Report for Stanford Univ,ersity Computer Science Department.

22. D. J. Brown and W. 1. Nowicki. A Package of Graphics Primitives for SUN. Stanford University
Computer Systems Laboratory.

23. M. H. Brown and S. P. Reiss. Toward a Computer Science Environment for Powerful Personal Machines.
Proceedings of Hawaii International Conference on System Sciences, January, 1983.

24. D. U. Cahn and A. C. Yen. A Device-Independent Network Graphics System. the Proceedings of the
SIGGRAPH 1983 Conference, ACM, July, 1983, pp. 167-174. Published as Computer Graphics 17(3) ..

25. p. U. Cahn, W. E. Johnston. and A. C. Yen. Design Document for the Network Graphics System
(NOS). Lawrence Berkeley Laboratory, October, 1983. Design Document for the Computer Science and
Mathematics Department. '

26. S. Card and T. Moran. The Psychology of Human-Computer Interaction. Conference on Visual Display
Terminals, Stanford University, March, 1982.

27. I. n. Carlbom. System Architecture/or High-Performance Vector Graphics. Ph.D. Th., Brown University,
1980. Providence, RI. '

28. E. D. Carlson, 1. R. Rhyne, and D. L. Weller. "Software Stnlcture for Display Management Systems".
IEEE Transactions on Software Engineering SE-9, 4"(July 1983),385-394.

29. D. R. Cheriton, M. A. 'Malcolm. L. S. Meten, and G. R. Sager. "Thoth, a Portable Real-time Operating
System". Cs1CAf 22. 2 (February 1979), 105-115.

30. D. R. Cheriton. Distributed 1/0 Using an Object-based Protocol. 81-1, Computer Science Department,
University of British Columbia, Jan, 1981.

31. D. R. Cheriton and W. Zwaenepoe1. The Distributed V Kernel and its Performance for Diskless
Workstations. Proceedings of the Ninth Symposium on Operating System Principles. ACM, October, 1983,
pp. 129-140.

32. D. R. Cheriton. "'n1e V Kernel: A Software Base for Distributed Systems". IEEE Software 1.2 (April
1984), 19-42.

33. D. R. Cheriton. A Uniform 110 Interface and Protoco1 for i)istributcd Systems. Computer Science
Department. Stanford University.

34. D. R. Cheriton and T. P. Mann. Uniform Access to Distributed Name Interpretation in the V-System.
Proceedings of the Fourth International Conference on Distributed Computing Systems, ACM, May, 1984,
pp ..

35. D. R. Cheriton and C. Rhodes. Animated Graphics in Windows,. Personal Communication.

36. C. Christensen and E. N. Pinson. Multi-function Graphics for a Large Computer System. Fall Joint
Computer Conference, AFIPS, 1967, pp. 697-.

37. D. Clark. M.LT. Campus Network Implementation Planning Document. Internal Draft, MIT
Laboratory for Computer Sience, October, 1982.

129

38. J. H. Clark. "The Geometry Engine: A VLSI Geometry System for Graphics". Computer Graphics 16, 3
(July 1982), 127-133.

39. 1. H. Clark and '1'. R. Davis. "Workstation Unites Real-time Graphics with Unix, Ethernet". Electronics
(October 201983), 113-119.

40. D. Cohen. "On Holy Wars and a Plea for Peace". IEEE Computer 14. 9 (October 1981).

41. R. C. Crane and E. A. Taft. Practical Considerations in Ethernet Local Network Design. Proceedings of
Hawaii International Conference on System Sciences, January, 1980. Also published as Xerox Palo Alto
Research Center Technical Report CSL-80-2.

42. T. R. Davis. Yet Another Layout Editor., Stanford University Computer Systems Laboratory 1982.

43. 1. D. Day. "Tenninal Protocols". IEEE Transactions Oil Communications COM-2S, 4 (April 1980),
585-593.

44. Digital Equipment Corporation, Maynard,MA, Intel Corporation, Santa Clara, CA, and Xerox
Corporat:ion. Stamford, CT. The Ethernet. A Local Area Network. Data Link Layer amd Physical Layer
Specifications. 1980. '

45. VAx-II Architecture Handbook. Digital Equipment Corporation, 1980.

46. L. P. Deutsch and E. A. Taft. Requirements for an Experimental Programming Environment. CSL
80-10, Xerox Palo Alto Research Center, June, 1980.

47. P. Deutsch. /\ Bitmap Terminal Protocol. Xerox Palo Alto Research Center, May, 1981~

48. J. Encarnacao, O. Enderle, K. Kansy. G. Nees. E. G. Schlechtendal, J. Weiss. and P. Wisskerchen. lbe
Workstation Concept ofGKS and the Resulting Conceptual Differences to the GSPC CORE System. the '
Proceedings of the SIGGRAPII 1980 Conference, AeM, July, 1980. Published as CompUler Graphics 14(3) ..

49.· D. C. Engelhart. R. W. Watson, and 1. C. Norton. The Augmented Knowledge Workshop. National
Computer Conference, 1973. pp. 9-21. .

50.W. K. English. D. C. Engelhart, and M. L. Berman. "Display Selection Techniques for Text
Manipulalion". 1 HHR Trallsactiolls on Human Factors ill Hlcctrollics II FH-8, I (March 1967).

51. Picture System 2 User's Alallual. Evans and Sutherland Corporation. Salt Lake City, Utah, 1977.

52. PS300 User's Manual. Evans and SuLherland Corporation, Salt Lake City. Utah, 1981.

53. D. Ferrari. "The Evolution of Berkeley Unix". IEEE Distributed Processing Newsletter 6. SI-2 (June
1984),3-6.

'54. M. Fleming editor. Business Micro Overview. 1984. Marketing survey by International Resource
Development, Inc .• Norwalk, cr.

130

55. 1. D. Foley. "A Tutorial on Satellite Graphics Systems". IEEE Compl/ter 9,8 (August 1976), 14-2l.

56. 1. D. Foley and A. Van Dam. Fundamentals 0/ Interactive COl'nputer Graphics. Addison-Wesley, 1982.

57. R. N. Goldberg. Software Design Issues in the Architecture and Implementation o/DistributedText
Editors. Ph.D. Th .• Deparunent of Computer Science, Rutgers University, 1982. Technical Report DCS­
TR-110.

58. A. Goldberg and D. Robson. Smalltalk-80 the Language and its Implementation. Addison-Wesley
Publishing Company, 1983.

59. J. A. Gosling and D. S. H. Rosenthal. A Window Manager for Bitmapped Displays and Unix. Carnegie­
Mellon University Information Technology Center, Presented at B~rkeley 4.2 Unix Workshop.

60. R. A. Guedj and H. Tucker, eds. IFIP Workshop on Methodology in Computer Graphics. Seillac,
France, North Holland.

61. R. F. Gurwitz. R. F. Gurwitz, Bolt Beranek and Newman, Inc. SRI ARPA Network Information Center
lEN 168.

62. G. Hamlin and J. D. Foley. Configurable Applications for Graphics Employing Satellites (CAGES). the
Proceedings of the SIGGRAPH 1975 Conference. ACM, June. 1975, pp. 9-19. Published as Computer Graphics
9(1), Summer 1975 ..

63. M. R. Hannah. Distributed Architecturesfor Computer Graphics Displays. Ph.D. Th., Department of
Electrical Engineering, Stanford University, 1984.

64. International Standards Organization TC97/SC5/WG2 and American National Standards Institute
Committee X3H3. Infonnation Processing Systems Computer Graphics Graphical Kernel System, Draft.
International Standard 7942. Also published as special Issue of Computer Graphics 18(1) and ANSI
document X3H3/83-25r3.

65. R. J. K. Jacob. User-Level Window Managers for UNIX. UniForum Conference Proceedings,
/usr/group, January. 1984, pp. l24-133.

66. S. C, Johnson and D. M. Ritchie. "Portability ofC Programs and the UNIX System". /Jell System
Technical Journal 57, 6 (July 1978),2021-2048.

67. A. K. Jones. The Object Model: A Conceptual Tool for Structuring Software. In Operating Systems: An
Advanced Course. R. Bayer. R.M. Graham. and G. Seegmuller, Eds., Springer-Verlag,]978. pp. 7-16.

68. W. N. Joy ct al. Berkeley 4.2 Unix System Manual. University of California at Berkeley 1983.

69. G. Kane. 68000 Alicroprocessor Handbuok. Osbourne/McGraw-Hili, 1981.

70. J. K. Kennedy. "Syslem for Time-Sharing Graphic Consoles. Fall Joint Compuler Conference. AFIPS.
1966, pp. 211-222.

71. B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall, 1978.

72. n. W. Kernighan. Blit Notes. Personal Communication, 1983.

73. D. E. Knuth. The Art o/Computer Programming. Volume 3: Sorting and Searching. Addison-Wesley,
1973.

131

74. D. E. Knuth. TEX and M ETA FO NT, New.Directions in Typesetting. The American Mathematical Society
and Digital Press, 1979.

75. B. W. Lampson and K. A. Pier. A Processor for a High-Performance Perso~al Computer. Proceedings of
the 7th International Symposium on Computer Architecture, May, 1980.

76. F. E. Langhorst and T. n. Clarkson. "Realizing Graphics Standards for Microcomputers". Byte
(February 1983),' 256-268.

77. K. A. Lantz and R. F. Rashid. Virtual Terminal Management in a Multiple Process Environment.
Seventh Symposium on Operating Systems Principles, ACM, December, 1979, pp. 86-97. PubHshed as
Operating .,'>'ystems Review 13(5}.

78. K. A., Lantz. Uni/onn Interfaces/or Distributed Systems. Ph.D. Th., University of Rochester, 1980.

79. K. A. Lantz. K. D. Gradischnig, 1. A. Feldman. and R. F. Rashid. "Rochester's Intelligent Gateway".
Computer 15, 10 (October 1982), 54-68.

80. K. A. Lantz, D. R. Cheriton, and W. r. Nowicki. Third Generation Graphics for Distributed Systems.
STAN-CS-82-958, Stanford University Computer Systems Laboratory, February, 1983.

81. K. A .. Lantz and W. I. Nowicki. Virtual Terminal Services in Workstation-based Distributed Systems.
Seventeenth International Conference on System Sciences, ACM/IEEE, January, 1984, pp. 196-205.

82. K. A. Lantz. W. 1. Nowicki and M. M. Thcimer. Factors Affecting the Performance of Distributed
Applications. Proceedings of the SIGCOMM 1984 Symposium on Communications Archit(!ctures and
Protocols. ACM, June, 1984, pp. 116-123.

~

83. W. W. Lattin. VLSI Design Methodology: the Problems of the 80's for Microprocessor lJcsign. First
Caltcch Conference on VLSI, California Institute of Technology, Pasadena, California, January, 1979, pp ..

84. W. W. Lattin, J. A. Bayliss. D. L. Budde, J. R. Rattner. and W. S. Richardson. "A Methodology for VLSI
Chip Design". Lambda (VLSI Design) 2, 2 (Second Quarter 1981), 34-44.

85. E.l). Lazowska. J. Zahorjan, D. R. Cheriton, and W. Zwaenepoel. Fi11e Access Perfornlance of Diskless
Workstations. 84-06-01. University of Washington Department of Computer Science, June, 1984.

86. P.1. Leach, P. H. Levine, B. P. Douros. J. A. Hamilton, D. L. Nelson, and Il L. Stumpf. "The
Architecture of an Integrated Local Network". 1l~"EE Journal on Software and Applications SAC-I, 5
(November 1983),842-857.

87. D. E. Lipkie. S. R. Evans. J. K. Newlin, and R. L. Weissman. "Star Graphics: An Object Oriented
Implementation". Computer Graphics 16. 3 (July 1982).

88. W. D. 1 .ittle and R. Wi11iams. Enhanced Graphics Performance with User Controlled Segment Files. the
Proceedings or the SIUGRAPII J976 Conference, "eM, July.. 1976, pp. 179-182. Published as Computer
Graphics 10(2}, Summer 1976 ..

89. R.1. Littlefield. Priority 'Windows: A Device Independent, Vector Oriented Approach. the Proceedings
of the SIGGRAPII 1984 Conference, ACM, July, 1984, pp. 187-l93. Published as Computer Graphics 18(3) ..

90. Learning Research Group. Personal Dynamic Media. SSL-76-1, Xerox Palo Alto Research Center,
March,1976.

132

91. 1. M. McCarthy. Thor - a Display Based Timesharing System. AFIP~ Conference Proceedings, Spring,
1967, pp. 623-633.

92. S. McGregor. Cedar Viewers Package. Personal COinmunication at Xerox Palo Alto Research Center.

93. C. Mead and L. Conway. Introduction to VLS[Systems. Addison-Wesley, 1980.

94. R. Metcalfe and D. R. Boggs. "Ethernet: Distributed Packet Switching for Local Computer Networks".
CACM 19, 7 (July 1976).

95. B. A. Meyers. User's Guide to the Sapphire Window Manager. PERQ Systems Corporation, 1984.
Computer Science Department, Carnegie-Me11on University.

96. N. Meyrowitz. BRUWIN: An Adaptable Design Strategy for Window Manager/Virtual Terminal Systems.
Eigth SymposilllTI on Operating Systems Principles. ACM, December, 1981, pp. 180-189. Published as
SIGOPS' Operating ~\ystems Review 15(5) .•

97. 1. Michel and 1. D. Foley. Experience with Distributed Processing on a Host/Satellite Graphics System.
the Proceedings of the SIGGRAPH 1976 Conference, ACM, July, 1976, pp.190-195. Published as Computer
Graphics 10(2), Summer 1976 ..

9S. L. H. Miller. An Investigation of the Effects of Output Variability and Output Bandwidth on User
Performance in an Interactive Computer System. University of Southern California InfOimation Science
Institute. 1976.

99. 1. G. Mitchell, W. Maybury, and R. Sweet. Mesa Language Manual. CSL 79-3, Xerox Palo Alto
Research Center, April, 1979.

..
tOO. tv1C68000 /6-bi/ Microprocessor User's ~fanual. 1980. Motorola Corporation, Document number
MC68000UM(AD2).

101. T. H. Myer and I. E~ Sutherland. "On the Design of Display Processors". Comm. ACM 11,6 (June
1968),410-414. .

102. B. 1. Nelson. Remote Procedure Call. Ph.D. Th .. Com.puter Science Department, Carnegie-Mellon
University. 1981. Also published as eMU technical report CMU-CS-Sl-119.

103. W. M. Newman and R. F. Sproull. Principles of Interactive Computer Graphics. McGraw-Hill, 1979.

104. A. Padegs. "System/360 and Beyond". IBAf Journal of Research and Development 25. 5 (September
1981).377-390. .

105. R. Pike. "Graphics in Overlaying Ritmap Layers". Computer Graphics 17, 3 (July 1983),331-356.

106. 1. B. Postel. Ed. Internet Protocol Handbook. SRI ARPA Network Information Center.

t07. 1. B. Postel and 1. Reynolds. TELNET Protocol Specification. SRI ARPA Network InFormation Center
RFC 854.

lOS. O. S. Rao. "Performance A~alysis of Cache Memories". Journal of the ACM 25 (1978),378-395.

109. R. F. Rashid and G. G. Robertson. Accent: A Communication Oriented Network Operating System
Kernel. Eigth Symposium on Operating Systems Principles, ACM, December, 1981, pp. 64-75. Published as .
SIGOPS Operating Systems Review 15(5),.

133

110. T. N. Reed. "A Metafile for Effecient Sequential and Random Display of Graphics". Computer
Graphics 16, 3 (July 1982),39-43. .

111. D. M. Ritchie and K. Thompson. "The UNIX Time-sharing System". Bell System Technical Journal 57,
6 (July 1978), 1931··1946.

112. L. O. Roberts. Graphical Communication and Control Languages. Proceedings of the lnformation
System Sciences 2nd Congress. 1964, pp. 211-.

113. D. S. H. Rosenthal, 1. C. Michener, G. Pfaff. R. Kesener. and M. Sabin. The Detailed Semantics of
Graphics Input Devices. the Proceedings of the SIGGRAPII 1982 Conference. ACM, July. 1982. Published as
Computer Graphics 16(3) .•

114. D. S. H. Rosenthal andP. J. W. ten Hagen. OKS in C. Pi"oceedings of EUROGRAPHICS, September,
1982, pp. 359-369.

115. D. S. H. Rosenthal. "Managing Graphical Resources". Computer Graphics 17.1 (January 1983), 38-45.

116. 1. H. Saltzer. The Research Problems of Decentralized Systems with Largely Autonomous Nodes. In
Operaling 5'ystems: An Advanced Course, R. Bayer. R. M. Graham. and O. Seegmullcr, Eds., Springer-Verlag,
1978. pp. 584-593.

117. 1. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System Design. Proceedings of
the 2nd International Conference on Distributed Computing Systems, [NRIA/LRI, April, 1981, pp. 509-512.

118. J. K. Seamons. Unix Version 7 for the SUN ·Workstation. LucasFilms Ltd. Personal Communication.

119. J. Seybold. "The Xerox 'Professional Workstation>Ut. The Seybold ReporllO, 16 (April 1981), 3-18.

120. J. F. Shoch. Inter-network Naming. Addressing, and Routing. Proc. Fall COMPCON, September,
1978. pp. 72-79.

121. D. P. Siewiorek, C. O. Bell, and A. Newell. Computer Slruclures: Principles andl{xamples. McGraw·
Hill, 1982.

122. R. W. Simons. Minimal OKS. the Proceedings of the SIGGJ~APII 1983 Conference, ACM. July, 1983,
pp. 183-189. Published as Compuler Graphics 17(3.) ••

123. SUN Window System Manual. SUN Microsystems, Inc., 1984.

124. D. C. Smith. E. Harslem. C. Irby, and R. Kimball. The Star User Interface: An Overview. Xerox Palo
Alto Research Center 1981. .

125. A. Z. Spector. "Performing Remote Operations Efficiently on a Local Computer network". COIllm.
ACAl 25.4 (April 1982).246-260. Presented atlhe 8th Symposium on Operating Systems Principles, ACM,
I)eccl1l bcr 1981..

126. R. F. Sproull and E. L. Thomas. "A Network Graphics Protocol". Computer Graphics 8. 3 (Fall 1974).

127. R. F. Sproull. Raster Graphics for Interactive Programming Environments. :CSL-79-6", Xerox Palo
Alto Research Center, June, 1979. Also appeared in COMPUTER GRAPHICS 13(2) August, 1979, Pages 83-93.

128. O. M. Stabler. A System/or Interconnected Processing. Ph.D. Th., Drown University, 1974. Providence,
RI.

134

129. R. M. Stallman. EMACS: "The Extensible, Customizable Display Editor. 519a, MIT Artificial Intelligence
Laboratory, 1981. .

130. 1. E. Steinhart Proposal for OKS Output Level 3. Proposal X3H31/84~09Rl X3H35/84~02, American
National Standards Institute, 1984.

131. H. S. Stone. "Miltiprocessor Scheduling with the Aid of Network Flow Algorithms". IEEE
Transactions on Software Engineering SE~3, 1 (January 1977), .

132. H. S. Stone. "Critical Load Factors in Two-Processor Distributed Systems". IEI!."E Transactiollson
Software Engineering SE-4, 3 (May 1978), 254-i58.

133. D. H. Straayer. "G raphics Standards: The Pace Quickens". Computer Graphics Forum 2, 1 (March
1983).

134. H. Sturgis. J. Mitchell. and 1. Israel. "Issues in the Design and Use of a Distributed File System".
SIGOPS Operatings ... ~ystems Review 14, 3 (July 1980),55-69.

135. l. E .. Sutherland. SKETCHPAD: A Man-machine Graphical Communication System. Spring Joint
Computer Conference, May. 1963, pp. 329~346. Also available as MIT Lincoln l..aboratory Technical Report
296, May 1965.

136. D. C. Swinehart. Copilot: A Multiple Process Approach to Interactive Programming Systems. 'AIM~230
and STAN-CS-74-412, Stanford Artificial Intelligence Laboratory Memo, July, 1974. .

137. D. C. Swinehart, G. McDanie'l, D. Boggs. WFS: A Simple Shared File System for a Distributed
Environment. CSL 79-13, Xerox Palo Alto Research Center. October. 1979. Also appeared in the Proceedings

, of the 7th ACM Symposium on Operating Systems Principles, pages 9-17, published as SIGOpS Operating
Systems Review 13(5).

138. W. Teitelman et a1. TnterLisp Reference Manual. Xerox Palo Alto Research Center.

139. W. Teitelman. A Display Oriented Programmer's Assistant. CSL-77-3, Xerox Palo Alto Research
Center, March. 1977.

140. W. TeitcJman. 'l1le Cedar Programming Envrionment: A Midtenn Report. CSL 83~ 11, Xerox Palo Alto
Research Center, December, 1983. '.

141. C. P. Thacker. R. F. Sproull, and R. D. Bates. SIL, ANALYZE, GOBBLE, BUILD Reference Manual.
Xerox Palo Alto Research Center.

142. C. P. Thacker, E. M. McCreight, B. W. Lampson. R. F. Sproul1, and D. R. Boggs. Alto: A Personal
Computer. In Computer Structures: Principles alld Hxamples. D. P. Siewiorek, C. G. Bell, and A. Newell,
Hds .. McGraw-I I ill, 1982, pp. 549-572.

143. J. J. Thomas, G. Ilamlin. W. Buxton, D. Rosenthal. A. Yen. and D. Kasik (I~<.ls.). "Graphical Input
Interaction Techniques: Workshop Summary". Computer Graphics 17, I (January 1983),5-30.

144. PERQ Manual. Three Rivers Corporation, 1980.

145. F. A. Tobagi and V. Il. Hunt. Performance Analysis of Carrier Sense Multiple Access with Collision
. Detection. Local AreaComnlunications Network Symposium, May, 1979.

146. A. van Dam, G. M. Stabler, and R. 1. Harrington. "Intelligent ~atellites for Interactive Graphics".
Proceedings of the IEEE 62,4 (April 1974), 483-492 ..

147. A. van bam et a1. "Report of the SIGGRAPH Graphics System Planning Committee". Computer
Graphics 13, 3 (August 1979).

148. Series 3400 Technical lvlanual, Volume I: Graphics Display System. Vector General Inc., Woodland
Hills, CA, 1978. Publication Number MI10700.

135

149. C. N. Waggoner, C. Tucker, and C. J. Nelson. NOVA*GKS, A Distributed Implementation of the
Graphical Kernel System. th(~ Proceedings of the SIGGRAPlI1984 Conference, ACM, July. 1984, pp. 275-282.
Published as Computer Graphics 18(3) ..

150. B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS Distributed Operating System.
Proceedings of the Ninth Symposium on Operating Systems Principles, October, 1983, pp. 49-70. Published
as SIGOPS Operating Systems Review 17(5}.

151. W.t. Wallace and J. D. Foley. "The Art of Natural Graphics Man-Machine Conversation".
Proceedings of the .TEEE 62,4 (April 1974), 462-470.

152. W. L. Wallace. "The Semantics of Graphics Input Devices". Computer Graphics /0,.1 (Spring 1976),
61-65.

153. P. \Valtich. "A Review of Engineering Workstations". IEEE Spectrum 21,10 (October 1984),48':'53.

154. 1. W'arnock and D. K. Wyatt. A Device Independent Graphics Imaging Model for Use with Raster
Devices. the Proceedings ofdlle SIGGRAPII1982 Conference, ACM, July, 1982. Published as Computer
Graphics 16(3).. .

155. R. W. Watson. Distributed System Architecture Model. In Distributed SystemsArchilecture and
Implementation: An Advanced Course, B. W. Lampson, Ed., Springer-Verlag, 1981, pp.l0-43.

156. P. 'iVegncr. "Capital-Intensive Software Technology". IEEE Software 1,3 (July 1984).

157. D. Wcinr9b and D. A. Moon. lntroductiolllo Using the Window System. 1981. Symbo1ics Lisp
Machine Manual, under license from Massachusetts Institute of Technology, Cambridge, Massachusetts,
1981.

158. M.Weiser, C. Torek, and R. 1. Wood. Three Window Systems. Computer Science Department,
University of Maryland, December, 1983.

159. G.Williams. "The Lisa Computer System". Byte (February 1983),33-50.

160. Xerox Corporation, Office Systems Division. Xerox Development Environment Product Overview.
Palo Alto, Califhrnia. February, 1984.

161. E. H. Yen. "A Graphics Glos8<1fY". Computer Graphics 15, 2 (July 1981),208-229. Also appeared as
Technical Report 086-01 at Gruman Data Systems Corporation, June, 1980.

162. H. Zimmennann. Proposal for a Virtual Terminal Protocol. TER 533.1, Reseau Cyclades, July, 1976.

163. H. Zimmermann. "The ISO Model of Architecture for Open Systems Interconnection". IEEE
Transactions on Communication COM-2B, 4 (April 1980), 425-432.

136

164. W. Zwaencpoel. Atlessage Passing on a Local network. Ph.D. Th., Stanford University, November 1984.

	0000a
	0000b
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136

