

UNDERSTANDING THE STANTEC-

ZEBRA

by

CHENGETAI DANSEL KADENGE

846900

SUPERVISOR: PROFESSOR JOHN TUCKER

SEPTEMBER 2016

This project dissertation is submitted to the Swansea University in

partial fulfilment for the Degree of Master of Science in Advance

Software Technology

Department of Computer Science Swansea University.

i

DECLARATIONS AND STATEMENTS

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

This dissertation is the result of my own independent work / investigation, except where

otherwise stated. Other sources are specifically acknowledged by clear cross referencing to

author, work and page(s) using the bibliography / references section. I understand that

failure to do this amounts to plagiarism and will be considered grounds for failure in this

dissertation and the degree examination as a whole.

I hereby give consent for my dissertation, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

ii

This project dissertation is submitted to the Swansea University in partial fulfilment for

the Degree of Master of Science in Advance Software Technology

iii

ACRONYMS AND ABBREVATIONS

EDSAC Electronic Delay Storage Automatic Calculator

ENIAC Electronic Numerical Integrator and Calculator

SSEM Small Scale Experimental Machine

STANTEC Standard Telephones and Cables Limited

UCD User-centred design

ZEBRA Zeer Eenvoudige Binaire Reken-Automat

iv

TABLE OF CONTENTS

ACRONYMS AND ABBREVATIONS ... iii

TABLE OF CONTENTS .. iv

ACKNOWLEDGMENTS .. viii

ABSTRACT ... ix

Part I: Overview

1 INTRODUCTION .. 2

1.1 Emulators ... 3

1.2 Aims .. 6

1.3 Objectives ... 6

1.4 Methodology for the Stantec-ZEBRA ... 7

1.5 Project Scope.. 8

1.6 Requirements ... 9

SUMMARY ... 9

Part II: The Stantec-ZEBRA and its Interpretation

2 UNDERSTANDING THE ZEBRA: AN INTERVIEW WITH ROD DELAMERE 12

3 HOW THE ZEBRA WORKS: AN INTERVIEW WITH ROD DELAMERE 14

4 SIMPLE CODE AND ITS INTERPRETATION .. 17

4.1 Jump instructions and labels .. 17

4.2 Input and execution indications ... 18

4.3 Simple Code in the Real ZEBRA .. 19

4.4 Stantec-ZEBRA Simple Code Instruction Code ... 20

SUMMARY ... 21

Part III: Software preservation and the Stantec-ZEBRA

5 LITERATURE REVIEW .. 23

5.1 Introduction ... 23

5.2 Emulation vs Simulation ... 23

5.2.1 Emulation .. 23

5.2.2 Simulation ... 24

5.3 Our Digital Heritage ... 28

5.4 Don Hunter’s Stantec-ZEBRA emulator ... 33

6 EMULATION AND EMULATORS ... 35

v

6.1 Benefits of emulation ... 36

6.2 Shortcomings of emulation .. 36

6.3 Types of Emulators ... 37

6.4 What Emulators achieve .. 37

SUMMARY ... 37

Part IV: Project development

7 GETTING STARTED .. 40

7.1 Refinements/Changes to proposed solution ... 40

8 METHODOLOGY ... 41

8.1 Waterfall development .. 41

8.2 Prototyping... 42

8.3 Spiral Development .. 42

8.4 V shape model .. 43

8.5 User Centered Design .. 44

9 TECHNOLOGY OF CHOICE ... 46

10 PROJECT PLAN .. 49

10.1 Basic Risk Analysis and Management .. 52

10.2 Testing/Evaluation Plan ... 54

SUMMARY ... 55

Part V: Monitoring, Control and Evaluation

11 RESULTS AND ANALYSIS ... 57

11.1 Installing the ZEBRA ... 57

11.2 Simple Code file format and running a program ... 59

11.3 Demo programs ... 61

11.3.1 Demo 1 .. 62

11.3.2 Demo 2 .. 63

11.3.3 Demo 3 .. 64

11.4 Assessment and Evaluation ... 65

12 CONCLUSION .. 69

12.1 Recommendations ... 71

REFERENCES .. 73

APPENDIX I: ROD DELAMERE’S SIMPLE CODE EXECISES ... 78

APPENDIX II: STANTEC-ZEBRA SIMPLE CODE INSTRACTION CODE 88

vi

APPENDIX III: RECORD OF SUPERVISON .. 91

List of Figures

1.1 Manchester “Baby” emulator .. 4

1.2 EDSAC emulator ... 4

1.3 BlueStakes .. 5

1.4 Andy ... 5

1.5 DOSBox .. 6

1.6 Work breakdown structure for ZEBRA project .. 8

1.7 Willem van der Poel, the creator of the ZEBRA computer .. 10

1.8 A Stantec-ZEBRA installation in Liverpool, England, used by an animal foodstuffs

manufacturer for computation of multiple combinations of vitamin contents against

available ingredients at varying prices .. 10

4.1 Rod Delamere pictured in May 2008 with his programming exercise book from 1961

for the Stantec-ZEBRA ... 21

5.1 Alan Marr and Don Hunter at work on the Stantec-Zebra installed at STL 34

10.1 Project WBS ... 50

10.2 Project Gantt Chart .. 51

11.1 Possible error message 1 ... 57

11.2 Possible error message 2 ... 58

11.3 Possible error message 3 ... 58

11.4 Stantec-ZEBRA emulator running .. 59

11.5 Press a and program askes to input PT paper tape ... 60

11.6 Output of computation on mine4.src Simple Code program 61

11.7 Acute angle triangle, find the value of a ... 64

11.8 Actual activities and the days taken to complete them shown in revised Gantt Chart

 ... 66

12.1 Proposed GUI design for Don Hunter’s MS-DOS emulator 71

List of Tables

1.1 Project Requirements .. 9

5.1 The difference between an Emulator and a Simulator ... 25

5.2 Organisations concerned with preserving digital information.................................... 29

9.1 Comparison of C, Assembly and Simple Code in relation to ZEBRA program

development ... 46

10.1 Risk Management .. 52

11.1 Requirements against outcomes ... 65

vii

11.2 Revised Risk Management ... 67

viii

ACKNOWLEDGMENTS

Even though the amount of effort put into this dissertation was enormous on a personal

level, it has been influenced in many ways, all of them good, by many individuals. Because

the roles that each of these individuals played were very significant, I would like to take

the time to thank as many of them as I can remember here.

First and foremost, I would like to thank God for giving me the opportunity to study this

course and guide me through the journey of being a Masters student at Swansea University.

Without his guidance I would not have the strength to endure and conquer my trials.

I would like to give a big thank you to my supervisor, Professor John Tucker. Without his

enthusiasm in early computer technology I would not have been able to do anything on this

project. He reminded me of technologies that I never knew existed and I am proud and

happy to know about them now. His constant monitoring of my progress and tasks that he

gave me to do always kept me on my toes. I want to thank him so much for the belief that

he had in me even when it looked so impossible to do the project. Also many thanks go to

Mrs. Jill Edwards for assisting me to communicate efficiently and effectively with my

supervisor. It would not have been possible without her.

I would also like to take this time to thank my friends Penelope, Nyasha, Tafadzwa, Natalie,

Takunda, Denzel, Dimitris, Lin, Robert, Beveline, Kudzanai Kapurura, Nab, Rumbidzai,

Wilfred and Emily Gusta for the support they gave me during the project development

process. Without their push and helping hand I would not be at the level at I am right now.

I would also like to thank Mrs. Chiedza Makoni and Munyaradzi Kadenge for their

continued support and always checking up on me if I was doing school work or not.

Finally, a big thank you goes to my parents, Levee Kadenge and Asiusinaye Kadenge for

their love and care and trust in me to send me to the UK to study a Master’s Program in

Computer Science. In my wildest dreams I had not envisioned myself as studying in the

UK but with their unending love it materialised. I would also like to give myself a pat on

the back for not giving up for I had ventured into uncharted territories but I conquered in

the end.

ix

ABSTRACT

This dissertation focuses on the Stantec-ZEBRA computer from the 1950s designed by

Willian van de Poel. This computer is a mystery to contemporary computer scientists but

this is a computer that was used to make many important calculations, such as calculating

the trajectory with which an aircraft has to take in order for it to land safely on the runway.

At that time, calculations would take hours of number crunching by this computer but with

today’s computers and resources it can be done within the blink of an eye.

The goal is to try and discover how this ZEBRA worked, how it performed its calculations,

and what type of programming language was used to write programs that ran on this

computer. This is achieved by creating new programs written in a language that was

compatible to the computer. These programs will be created for the ZEBRA emulator

created by Don Hunter using the Simple Code programming language.

This document is divided into five parts. The first part focuses on the history of early

computers focusing mainly on the Stantec-ZEBRA and emulators in general. The second

part is based on the authors interview with Rod Delamere, one of the people to use the

actual ZEBRA computer in the 1950s. The third part dives deeper into the details of the

computer giving a literature review and describing emulators and the emulation process.

The fourth part illustrates the project development process, giving the methodology that is

used to prepare this thesis and specifying the technology used to develop the programs to

run on the emulator. The fifth and final chapter gives the outcome of the whole process and

stating the challenges that were met and how they were overcome and giving a final

conclusion to the thesis itself.

UNDERSTANDING THE STANTEC-ZEBRA 1

Part I

Overview

 Chapter 1: INTRODUCTION

UNDERSTANDING THE STANTEC-ZEBRA 2

1 INTRODUCTION

It is good practise to preserve and maintain records of technological advancements as they

are a symbol of achievement and breakthrough. As new, faster and cheaper software and

hardware is created society tends to forget the origins of these technologies, which are

rendered obsolete. Digital preservation comes into play by trying to conserve these

achievements by documenting them. Digital preservation in itself is a formal endeavour to

ensure that digital information of continuing value remains accessible and usable (User,

2016).

(The encyclopaedia of computer languages, no date) In 1976, at the History of Computing

Conference in Los Alamos, Richard Hamming described why we might be interested in the

history of computing: "we would know what they thought when they did it". We need to

know why the people who designed computers thought the way they did. When they

designed them, they made conscious choices, which we have to live with. And they made

those choices for a wide variety of reasons, as many as the reasons for which they felt the

need to create a computer in the first place. By knowing this, we can see the path in which

those people had envisioned for the future and what expectations they had. As the world

becomes more dependent on software and computers we find that the core of that software

and computer still remain a mystery to even their users, the programmers. By paying

attention to the origin, rise and fall of each of the computers, we may learn why the

inventors made their decisions.

Many computers and programs have been created since the start of 1940 and the Electronic

Numerical Integrator and Calculator (ENIAC) is commonly called the first computer

because it was the first fully functional electronic computer. Computers during this time

would fill an entire room needing ventilation and many vacuum and mercury tubes to run

and store programs in. As big as they were, they would probably compute simple

calculations or to output data on paper tape which will need further interpretation in the

end. Apart from having these computers, this did not stop other people from designing and

coming up with smaller and more powerful computers of their own.

UNDERSTANDING THE STANTEC-ZEBRA 3

This thesis will focus on one of the early computers known as the Stantec-ZEBRA. This

computer is one of the many that were designed during the period of 1952-1958, including

the EDSAC and Manchester “Baby” commonly known as Small Scale Experimental

Machine. The ZEBRA is among the first commercial computers to be developed for use in

Universities, Technical Colleges and Laboratories. Before the Stantec-ZEBRA, computers

were only used by scientists and access was restricted. Willem van der Poel made the design

of the ZEBRA as his PhD thesis in 1956 at the University of Amsterdam. ZEBRA is an

acronym for the Dutch words Zeer Eenvoudige Binaire Reken-Automat, which means

Very Easy Binary Calculating Machine (Society, no date).

Around 58 of van der Poel’s computers were built at the Standard Telephones and Cables

company in Newport and most of them were shipped out to other countries and a small

number was left in Wales the area of its birth. One of the remaining latest version of the

ZEBRA computer is housed at the National Museum of Wales, and the aim of this project

is to investigate the Stantec-ZEBRA emulator and bring back its performances and

activities it used to carry out during its time.

1.1 Emulators

The Stantec-ZEBRA is among the first electronic computer to be used outside the scientific

area and introduced into the academic and economic areas. The latest ZEBRA is held at

The National Museum of Wales and it is not in functional condition. Other early computers

such as the Small Scale Experimental Machine (SSEM) also known as the Manchester

“Baby” and the Electronic Delay Storage Automatic Calculator (EDSAC) have been

revived and maintained electronically through the use of emulators. These emulators run

the programs that were previously run on the early computers. Having an emulator allows

the current generation to have a feel of how the pioneering computers worked since modern

computers have abstracted a lot of information. See figures 1 and 2 below showing the

Manchester “Baby” and the EDSAC emulators respectively.

UNDERSTANDING THE STANTEC-ZEBRA 4

Figure 1.1: Manchester “Baby” emulator. Image source http://www.davidsharp.com/baby/

Figure 1.2: EDSAC emulator. Image source http://www.computerconservationsociety.org/software/edsac/base.htm

In addition, projects are underway to revive the hardware components of these early

machines and one example is of the EDSAC Project at the National Museum of Computing

in United Kingdom. Unfortunately, the Stantec-ZEBRA computer is in a condition that

needs repair and the focus of this project is to help motivate the revival of this computer

through giving a detailed understanding of the functionality of this early computer.

Fortunately, enough, there exists an emulator for the ZEBRA and is available for download

on the Computer Conservation Society website. Emulation refers to the ability of a

computer program in an electronic device to imitate another program or device.

Some other programs of similar nature are BlueStakes, Andy and DOSBox. These are

examples of the many, successful emulations that have happened up to this day. Blue Stakes

and Andy are programs that emulate the Android mobile device so you can run applications

such as WhatsApp and Candy crush on your computer as if it were a mobile or tablet.

http://www.davidsharp.com/baby/
http://www.computerconservationsociety.org/software/edsac/base.htm

UNDERSTANDING THE STANTEC-ZEBRA 5

DOSBox emulates the command-line interface of DOS and you can enter commands and

run programs from there.

Figure 1.3 BlueStakes. Image source http://www.download-bluestacks.com/

Figure 1.4 Andy. Image source http://getintopc.com/softwares/emulators/andy-android-emulator-free-download/

http://www.download-bluestacks.com/
http://getintopc.com/softwares/emulators/andy-android-emulator-free-download/

UNDERSTANDING THE STANTEC-ZEBRA 6

Figure 1.5 DOSBox

1.2 Aims

The primary focus of this research project is:

1. To find and bring together information that enables us to reconstruct the operation

of an early computer, the Stantec-ZEBRA.

2. To raise awareness of the value of reviving old machines and legacy machines such

as the Stantec-ZEBRA and to develop an appropriate methodology for such

conservation.

1.3 Objectives

1. To master software engineering tools and methods of programming in Simple Code

Language.

2. To write custom code in Simple Code Language that runs on the emulator for the

ZEBRA computer.

3. To understand fine details of computer architecture and memories and machine

code programming.

4. Be able to interpret some sample Simple Code programs written by Don Hunter

UNDERSTANDING THE STANTEC-ZEBRA 7

1.4 Methodology for the Stantec-ZEBRA

A work breakdown structure is the decomposition of the total scope of work to be carried

out in order to accomplish the project objectives and create the required deliverables. By

splitting up the work, a clear path for accomplishing the objectives is laid out in a clear

manner. Below is the WBS that will be followed throughout the project development

process.

The work structure of this project intends to start with learning the commands that were run

on the Stantec-ZEBRA machine. How those commands executed the input that the

computer was given and to study the declarations and definitions that are found in the

commands. After learning the commands, the second step will be to find the language that

is supported by those commands. Languages such as Simple Code and Normal Code were

in existence during the 1950s and the target is to try and write a program in Simple code

that will be able to run on an emulator of the ZEBRA that was designed by Don Hunter.

The best explanation of Normal Code is given in an article called Stantec-ZEBRA and it

mentioned that, the structure of the Normal (machine) Code is based on a novel idea. Single

letters specify basic operations such as add, test, store; but there are 15 such letters (called

function digits) and these may be used in any combination so that the programmer may

construct thousands of different instructions. It is possible to instruct the machine to add,

transfer, shift, modify and test "all at the same time", thus making the effective speed of

operation of the computer greater than the intrinsic electronic speed would suggest (Part17,

no date).

At the same time of learning the programming language to be used to create the emulator

and its commands, designing and writing of sample programs will also take place. By

looking at other similar emulators like the Manchester baby and EDSAC, design structure

of the ZEBRA can be deduced. After learning and design, implementation can then take

place and the work put in will be on accomplishing a functional program written in Simple

Code that runs on the ZEBRA emulator.

On the other side, working concurrently with code learning and program writing, focus will

be also put on writing the project documentation and possibly having a tour to see the

UNDERSTANDING THE STANTEC-ZEBRA 8

hardware of the existing ZEBRA machine. After that the priority will be to raise awareness

on the importance of

Figure 1.6: Work breakdown structure for ZEBRA project

having to revive the computer, its importance and how this will benefit the computing

society as a whole.

1.5 Project Scope

The scope of a project defines the boundaries of a project. The information that is going to

be delivered and to what extent and what is going to be designed, what it will do and what

it will not do is defined as the scope of a project. The scope of the project is on:

1. Early machine architecture

2. Virtual machines

3. Emulators

UNDERSTANDING THE STANTEC-ZEBRA 9

1.6 Requirements

Defining requirements specifies the capabilities, features or attributes of the project’s

deliverables. The requirements are given below stating what the emulator will look like,

what kind of computations it will perform and which type will be created.

Table 1.1: Project Requirements

Requirements Description

Simple Code program A Simple Code program must be written using the command

and routine functions provided from sample programs that

come with the emulator

Must run on the ZEBRA

emulator

The written program must be able to run on the emulator to

show that the student has understood the programming

language

Key words to be used as

commands to the

program

As illustrated in

http://www.memtsi.dsi.uminho.pt/ocr/simple_code_zebra.pdf

Simple Code was used to program the machine because it was

more simplified by using key words in replace of functions

Interpret sample

programs

Student must be able to explain the code that was written for

some sample programs written for the ZEBRA emulator

The above requirements may be altered during the course of development to further

improve the final project.

SUMMARY

Part I of this thesis introduced the Stantec-ZEBRA computer, its background and the

inventor van der Poel a Dutch computer scientist. The description was brief leaving room

for more explanations in detail in Part II. The main focus was on specifying the aims and

objectives of this project to make a clear demarcation on the path that this project will take.

The goal is to try to meet these objectives as this will signify the success or failure of this

http://www.memtsi.dsi.uminho.pt/ocr/simple_code_zebra.pdf

UNDERSTANDING THE STANTEC-ZEBRA 10

project. The plan on how to tackle this project is also given in the form of a WBS. This

helps to break down and organise activities. By doing this it will make time management

more easy as the student only has to follow the order that he/she has designed in order to

finish the project on time. A list of the scope of that the project will be given and finally

the requirements are given as the key milestones of the project, what is required by the

users of the system.

Figure 1.7: Willem van der Poel, the creator of the ZEBRA computer. Image source

https://www.knaw.nl/nl/leden/leden/4658

Figure 1.8: A Stantec-ZEBRA installation in Liverpool, England, used by an animal foodstuffs manufacturer for

computation of multiple combinations of vitamin contents against available ingredients at varying prices. Image source

http://archive.computerhistory.org/resources/text/Standard/Stantec.Zebra.1961.102646082.pdf

https://www.knaw.nl/nl/leden/leden/4658
http://archive.computerhistory.org/resources/text/Standard/Stantec.Zebra.1961.102646082.pdf

UNDERSTANDING THE STANTEC-ZEBRA 11

Part II

The Stantec-ZEBRA and its

Interpretation

 Chapter 2: UNDERSTANDING

THE ZEBRA: AN INTERVIEW WITH

ROD DELAMERE

 Chapter 3: HOW THE ZEBRA

WORKS: AN INTERVIEW WITH ROD

DELAMERE

 Chapter 4: SIMPLE CODE AND ITS

INTERPRETATION

UNDERSTANDING THE STANTEC-ZEBRA 12

2 UNDERSTANDING THE ZEBRA: AN

INTERVIEW WITH ROD DELAMERE

The main idea of the machine is to economise as far as possible on the number of

components by simplifying the logical structure. For example, multiplication and division

are not built in but must be programmed (Compiled, Newell, and Bell, 1971).

On the 27th of August 2016 an interview with Mr. Delamere was held by the researcher at

his residence in Cardiff. Mr. Delamere is one of the individuals to have used the computer

during the 1950s. This interview was carried out in order to get first-hand information on

what was and how the machine worked. Mr. Delamere is in possession of a counter book

that he used during his University days in the 1950s. In this book he has some Simple Code

examples of programs that used to run on the original ZEBRA computer.

Mr. Delamere described the ZEBRA as a simple calculator and reiterated that although they

used Simple Code language to write programs that will be put in the machine in the form

of paper tape, the language was all not so simple to understand. “The language was called

Simple Code, but no, it was not that simple”. According to Mr. Delamere, he once used the

ZEBRA machine to calculate the possible trajectory that an aeroplane would use in order

for it to land safely without any problems. This calculation would take up to 5 hours on the

ZEBRA whereas the time that a plane would take to land in real time was less than 5 min.

A set of equations were internally embedded into the computer and a set on key words, Y,

L0, …, and Y, were used to code the input program. This program was written at the

Glamorgan College of Technology in Treforest and the program was transferred onto the

paper tape and this paper tape was taken to the Standards Telephone Cables where the

computer was and this was input to the machine and the output was given by a tele printer

that punched new holes on the paper tape.

The main problem with the ZEBRA was that it had no way of error handling or even giving

flags of messages when an error had occurred or what had caused it. The computer’s way

of signalling an error was that, during its execution of the paper tape, when it encountered

UNDERSTANDING THE STANTEC-ZEBRA 13

an error of some sort, be it a misplaced value or a missing value, the computer just halted

where it encountered the error. This was the only way that one could tell that there was a

problem in executing the code. This was not of much help because an individual would not

know what caused the problem and how to even fix it. The only thing that they could do

was to check where the tape stopped and trying to find out what values were represented at

that point and what could have caused the machine to stop.

This was the main problem when it came to using the computer stated Mr. Delamere. When

this happened, you had to go back to the College and rewrite your code paying special

attention to the point where the computer stopped. This was a big inconvenience to using

the machine and this meant that students had to wait for a week to go back to Standard

Telephone Cables to use the computer again.

UNDERSTANDING THE STANTEC-ZEBRA 14

3 HOW THE ZEBRA WORKS: AN

INTERVIEW WITH ROD DELAMERE

The ZEBRA is a calculator that was used to make simple calculations. Although, there

exists an emulator for the computer being hosted by the Computer Conservation Society,

this emulator seems to be an improvement on the original computer. Mr. Delamere’s

notebook contains some example programs that he used to run on the original computer

together with the results that these equations would output on the tele printer and on the

paper tape.

Rod Delamere’s Compute 10x from approximate number (1 + ax + bx2 + cx3 + dx4 + ex5)2.

Given constants

Y Be ready to accept ‘simple code’.

L0 Read e => (0), d => (1), c => (2), b => (3), a => (4).

(Q1) Z Stop

T100 (A) => (100) 0 => (A)

L6 Read x1 => 6

+05 Set count to 5 i.e. (α) => δ, 0 => α.

AR e => (A) (ex1 + α) (ex1 + d)x + c

V6 ex1 => (A) (ex1 + α)x etc.

+1 (α) + 1 => α (β) + (γ) => β compare (α) with (ε)

A5 ({[(cx1 + d)x + c]x1 + b}e1 + a)x1 + 1

U10 (A) => (10) (A) remaining

V10 (A)2 => (A)

Z9 C.R.L.F.

Z8 Print contents of (A)

X1 Jump to Q1

Y00 Begin execution at Y

UNDERSTANDING THE STANTEC-ZEBRA 15

The code above computed the results of 10x using the equation (1 + ax + bx2 + cx3 + dx4 +

ex5)2. This program is known as Simple Code and it produces the computation of 10x five

times. This is achieved by the line +05 which sets count to 5. The parameters for a, b, c, d

and e are (+1.15138424, +0.66130851, +0.26130650, +0.05890681, +0.02936622)

respectively and the x values are (+0.5, +0.7, 0.25). The output was in the form of tele

printer and produced the values (+0. 316665943 + 1, +0.501956281 + 1, +0.1779911374 +

1) together with a paper tape output that is given at the appendix section of this

documentation together with other examples.

The computer had a tube that acted as the output window and this valve would only mark

memory locations indicating which area contained a value and which one did not, using the

(. and !) symbols. The (.) means off or empty no value is present in memory and the (!)

means on and a value is present in memory This was the only output available and this did

not give away the value that was stored or whether it was a signed or unsigned value. That

was one of the difficulties of using the ZEBRA computer. Debugging was made really

difficult. Error handling was not even made easy at all.

This computer computed mathematical calculations to precision but it had a main

disadvantage which was that it took too long to compute the results. According to Mr.

Delamere at one point it had to compute the crystallization of compounds that were used in

chemical equations and it took 15 hours to come up with the results of one equation. The

other disadvantage of the ZEBRA computer was that it used vacuum tube as those that were

used in television sets during that period. These vacuum tubes were fragile and could often

explode when the computer was turned on. This meant that the computer had to be left in

its on state even for days so as to avoid the damage of these tube because if one was to

malfunction it would take about a week to two to replace just one tube and this had an

impact on the amount of time that the students will be allowed to use the computer.

The ZEBRA also had a coiled transistor on each and every wire that transferred an electric

current over the circuit board. This coiling made it easier to detect where a short circuit will

have occurred. Other computers during that period had their transistors glued to the circuit

board. This made it really difficult to identify where the short circuit will have occurred.

UNDERSTANDING THE STANTEC-ZEBRA 16

Apart from that, the time for repairs was reduced by a number of days but still was a lot for

students to skip their chances of using the computer.

UNDERSTANDING THE STANTEC-ZEBRA 17

4 SIMPLE CODE AND ITS

INTERPRETATION

Simple Code is a language that was developed to be a really simple form of code for a

beginner with further ‘not-quite-so-simple’ facilities giving a comprehensive and flexible

programming code (Ord-Smith, 1960). The only guide that is given to a Simple Code user

is the fictitious store and registers which he/she can use. The way that these stores and

registers work is similar to how the assembly language works. There are two special

registers:

i. An accumulator called A;

ii. An accumulative multiplication register called B.

There are also 6 special registers used for counting and order modification and these are

called α, β, γ, δ, ε, θ.

To input numbers in the computer you use the command Ln which means, ‘read number

into n’ and to input a group of numbers you use the instruction LOn, which reads the

numbers in sequence putting them into n, n+1, n+2, … until a terminating Y is encountered.

The same instruction also counts the numbers, placing the count in δ. The output

instructions are Pn and POn and will be in floating-point form.

 4.1 Jump instructions and labels

Simple Code instructions are normally executed in sequence because it is a one-address

language (Ord-Smith, 1960). To jump out of sequence of the code, this is done with an

instruction Xp meaning ‘Jump to instruction location labelled p’. There can be any number

of jumps backward or forward to a labelled point. A point may have more than one label

attached to it but, the same label cannot be attached to two or more different points. When

a jump takes place, the X instruction automatically records a note of the location next to

which it occupies and this is called the return instruction and it can be picked up and placed

in a specific location by the instruction XOp.

UNDERSTANDING THE STANTEC-ZEBRA 18

There are also two conditional jump or test instructions which are:

 Ep: jump to location labelled p if (A) >= 0 otherwise proceed serially.

 EOp: jump to location labelled p if (A) < 0 otherwise proceed serially.

4.2 Input and execution indications

A Simple Code program when punched on tape is always preceded by the letter Y. This is

an indication to the computer to jump to the Simple Code interpretive input program and

begin taking in Simple Code (Ord-Smith, 1960). There are so many ways to start the Simple

Code program and some of them include:

 Y: jump to S.C. input, clear labels, and begin input of instructions at the beginning

of the instruction store

 Yp: means begin input of S.C. without clearing labels at the point previously

labelled p.

 YOn: means begin input (no clearing of labels) of instructions at location n in the

number store.

Execution indication, YOO, means stop input and begin execution at the place given in the

last input indication. Therefore, a very simple program will begin with Y and be terminated

with YOO.

To begin a cycle of instructions n times it is necessary to precede the block with +On and

end it with +1. The operations in the block are then repeated n times after which the program

proceeds serially. These commands use the special registers α, ε, θ, δ. +On does the

following:

 The contents of register α are transferred unchanged to register δ: (α) preserved δ;

 α is cleared;

 The register ε is set to n, the count limit

 A return instruction is written into the register θ.

UNDERSTANDING THE STANTEC-ZEBRA 19

If there are instructions within the loop, the address of which will vary depending on the

count, R is written before the address in those instructions. An example to sum the contents

of locations 200, 201, …, 299, the instructions required are:

+O100

AR200

+1

The above code has the effect of placing the contents of 200 in A, incrementing by 1 (+1)

and adding the contents of 201 to A, 100 times (+O100). The instruction is A200. +n (‘count

with n at a time’) has the action:

(α) + n α;

Instructions of the form IRn mean the number that is in instruction location n + contents of

special register α: (IRn = In + (α)).

 4.3 Simple Code in the Real ZEBRA

The interpretive programs of the Simple Code occupy approximately 1000 locations of the

real ZEBRA store, a magnetic drum of 8192 words capacity. All the interpretive programs

and all the subroutines are completely ‘dead’, they have no ‘live’ locations and can be

locked away at the end of the store where they will be read but cannot, without unlocking

them, be overwritten accidentally (Ord-Smith, 1960). Simple Code instructions are partially

interpreted during input and are translated by the input program into a Normal Code

instruction pair; one called the address part and one the operation part.

Instructions are classified into two types:

 Extractive instructions and

 Non-extractive instructions

Extractive instructions must extract the number to work with before performing operations,

for example A, S, V, D and – instructions. Non-extractive instructions have to perform their

main operation before worrying about storage location of the number, for example U, T, L

UNDERSTANDING THE STANTEC-ZEBRA 20

and + instructions. Execution of a Simple Code instruction consists of first extracting the

appropriate instruction pair and transferring them into the A and B accumulators of ZEBRA.

A wide variety of problems have been programmed in Simple Code, including telephone

traffic problems, cable calculations, aircraft flight calculations and integration, have

demonstrated the flexibility of the code and the speed with which such problems could be

tackled, and working on calculations involved in what are called uniformity trials for the

determination of optimum plot size and shape.

4.4 Stantec-ZEBRA Simple Code Instruction

Code

Arithmetic Instructions

 An (A) + (n) A

 Sn (A) – (n) A

 Vn (A) * (n) A

 Nn -(A) * (n) A

 Dn (A) / (n) A

 Tn (A) n 0 A

 Un (A) n

 Hn (n) A

Accumulative multiplication instructions

 Kn (n) B

Followed immediately by:

 Vn’ (B) * (n’) + (A) (A)

 Nn’ -(B) * (n’) + (A) (A)

Also provided:

 V0n (A) + (n)2 A

 N0n (A) – (n)2 A

Some of the common subroutines are given below. The full list is given at the Appendix

section

 Z stop, wait for dial or start key

 Z7 test key U1

UNDERSTANDING THE STANTEC-ZEBRA 21

 Z8 print (A) in floating form

 Z19 jump from Simple code to Normal code

These are the most common commands and instructions used in the development of a

Simple Code program. All input numbers in the ZEBRA and converted into floating point

form for faster processing. This is how the machine is structured (Ord-Smith, 1960).

SUMMARY

Part II of this thesis focuses on the Stantec-ZEBRA computer in more technical detail.

Interviews were held with a former user of the ZEBRA computer during the 1950s and he

provided first hand source information in the form of his notebook exercises from College

and these are presented in Appendix I. This information was the turning point in the

development process of this project. This information gave much detail in how to write

Simple Code programs. Together with the short paper written by Ord-Smith describing the

Simple Code, it made it more easy for the student to grasp the techniques on how the code

is written. More advanced sections where presented in van der Poel’s book The Simple

Code for ZEBRA.

Figure 4.1: Rod Delamere pictured in May 2008 with his programming exercise book from 1961 for the Stantec-ZEBRA.

Image source http://www.swansea.ac.uk/library/archive-and-research-

collections/hocc/peopleandreminiscences/reminiscences/roddelamere/

http://www.swansea.ac.uk/library/archive-and-research-collections/hocc/peopleandreminiscences/reminiscences/roddelamere/
http://www.swansea.ac.uk/library/archive-and-research-collections/hocc/peopleandreminiscences/reminiscences/roddelamere/

UNDERSTANDING THE STANTEC-ZEBRA 22

Part III

Software preservation and the Stantec-

ZEBRA

 Chapter 5: LITERATURE REVIEW

 Chapter 6: EMULATION AND

EMULATORS

UNDERSTANDING THE STANTEC-ZEBRA 23

5 LITERATURE REVIEW

5.1 Introduction

This section focuses on looking at similar works that were done throughout the years and

to find out a relationship between the work of the student and that which was done before.

This is a review of texts from scholars which includes the current knowledge including

substantive findings, as well as theoretical and methodological contributions to a particular

topic. By referencing to known scholars this will solidify the relevance of the project and

to show that what is being done is not totally new but some people have done it or at least

attempted to do it and evidence is supplied for it.

5.2 Emulation vs Simulation

In some regards, the words emulation and simulation can be used interchangeably but there

is a difference between the two concepts. In order to successfully complete this project, the

researcher had to clearly distinguish between the two terms so as to minimise ambiguity

and demarcate the bounds and scope of this project.

5.2.1 Emulation

(Joshi, 1989) defined emulation as a means of operating close to real-time. An emulators’

goal is for it to replace the original for real use. An emulator uses the same processes to

achieve its objective and is mostly made out of the same materials as the original. (Kulenov,

2016) looks at emulation as a model of some system that captures the functional

connections between inputs and outputs of the system, based on processes that are the same

as, or similar to, those of that system, and that is built of the same materials as that system.

(Kumaarr, 2014) is of the opinion that, in computing and electronics, an emulator is

considered as a software or hardware which can imitate (duplicate) the behaviour and

functionality of different software within another software/hardware platform. Emulation

is best described as imitating a certain computer platform or program on another platform

or program. In this manner, it is possible to view documents or run programs on a computer

UNDERSTANDING THE STANTEC-ZEBRA 24

not designed to do so. An emulator is itself a program that creates an extra layer between

an existing computer platform “host platform” and the platform to be reproduced “target

platform” (What is Emulation, no date).

With emulation, one will be trying to match the exact performance, speed and ability of the

original. With this in mind, emulation is slow and expensive to do. One has to properly

match the inner behaviours of an original device. If it took time to boot up as a machine,

then the emulator also has to take the same amount of time. For an emulator to be

considered good enough, it must act as the original device and it must be able to run the

same programs as its predecessor at the same speed and using the same amount of

resources.

5.2.2 Simulation

Simulation is a way that mimics the activity of something that it is simulating. It appears to

be the same as the thing being simulated. For example, the flight simulator "appears" to be

a real flight to the user, although it does not transport you from one place to another. A

simulator is an environment which models but cannot be substituted with real system (Joshi,

1989). In more technical terms, a simulator is a model of a system that captures the

functional connections between inputs and outputs of the system, but without necessarily

being based on processes that are the same as, or similar to, those of the system itself

(Kulenov, 2016). In a simulator, the operation of a targeted system is recreated to the best

possible. The underlying mechanisms used to recreate the scenario may be the same or

different from the original. A simulator sets up a similar environment to the original

device's OS, but doesn't attempt to simulate the real device's hardware. Some programs

may run a little differently, and it may require other changes (like that the program be

compiled for the computer's CPU instead of the device's), but it's a close enough match that

you can do most of your development against the simulator (Keyan, 2014).

Simulation is mainly focused on trying to reproduce and what is being made can have the

same look and feel even the performance but it is not the same as the original device. A

good example of how and where simulators work is the flight, car and movie simulators.

An individual can enter into a plane or car and inside of it you can find the steering wheels

UNDERSTANDING THE STANTEC-ZEBRA 25

and controllers and the screens that you look at will give the environment as if you were

actually driving or flying and the simulator tends to shake and give an experience of being

real but in actual fact it will be stationary.

(Kulenov, 2016) gives a table that gives the distinctions between simulation and emulation

in more technical details.

Table 5.1: The difference between an Emulator and a Simulator, source The Open University, 2007

Emulation/Emulator Simulation/Simulator

The microprogram-assisted macroprogram

which allows a computer to run programs

written for another computer.

One that simulates, especially an apparatus

that generates test conditions

approximating actual or operational

conditions.

Hardware, software or a combination of the

two that enables a computer to act like

another computer and run applications

written for that computer. In the past, it was

often a hardware add-on that actually

contained an instruction execution module

for the emulated computer. Today,

“emulator” more often refers to software,

which provides a translation layer from the

emulated computer to the computer it is

running in. The emulator may translate

machine language, calls to the operating

system or both.

A broad collection of methods used to

study and analyse the behaviour and

performance of actual or theoretical

systems. Simulation studies are performed,

not on the real-world system, but on a

(usually computer-based) model of the

system created for the purpose of studying

certain system dynamics and

characteristics. The purpose of any model

is to enable its users to draw conclusions

about the real system by studying and

analysing the model. The major reasons for

developing a model, as opposed to

analysing the real system, include

economics, unavailability of a “real”

system, and the goal of achieving a deeper

understanding of the relationships between

the elements of the system.

UNDERSTANDING THE STANTEC-ZEBRA 26

An emulator in computing duplicates

(provides an emulation of) the functions of

one system using a different system, so that

the second system behaves like (and

appears to be) the first system. This focus

on exact reproduction of external

behaviour is in contrast to some other

forms of computer simulation, which can

concern an abstract model of the system

being simulated.

Simulation can be used in task or

situational training areas in order to allow

humans to anticipate certain situations and

be able to react properly; decision-making

environments to test and select alternatives

based on some criteria; scientific research

contexts to analyse and interpret data; and

understanding and behaviour prediction of

natural systems, such as in studies of stellar

evolution or atmospheric conditions.

With simulation a decision maker can try

out new designs, layouts, software

programs, and systems before committing

resources to their acquisition or

implementation; test why certain

phenomena occur in the operations of the

system under consideration; compress and

expand time; gain insight about which

variables are most important to

performance and how these variables

interact; identify bottlenecks in material,

information, and product flow; better

understand how the system really operates

(as opposed to how everyone thinks it

operates); and compare alternatives and

reduce the risks of decisions.

Emulation is the process of mimicking the

outwardly observable behaviour to match

an existing target. The internal state of the

emulation mechanism does not have to

Simulation involves modelling the

underlying state of the target. The end

result of a good simulation is that the

UNDERSTANDING THE STANTEC-ZEBRA 27

accurately reflect the internal state of the

target which it is emulating.

The goal of an emulation is to able to

substitute for the object it is emulating.

simulation model will emulate the target

which it is simulating.

A simulation’s focus is more on the

modelling of the internal state of the target

— and the simulation does not necessarily

lead to emulation. In particular, a

simulation may run far slower than real

time.

The difference between the two, henceforth, is made easy going through the literature of

different authors. As mentioned above, an emulator is mainly concerned in reproducing the

actual device, behaviour, functionality and speed using materials or software similar to the

original and the end result is a functional device, whereas, a simulator mimics the original

concept and creates/models an environment same as what the device will encounter but this

device cannot be used as a substitute for the real work. A simulators’ main purpose is for

education and training. Giving you an environment that is the same as to what you expect

and training you in advance before doing the actual thing in real life, just like first person

shooter games for the army, it’s a training exercise to give you more information on how

to operate during battle.

This project is, therefore, focused on the Stantec-ZEBRA computer and by deducing the

above information it can be found that it matches the criterion of a simulator. This is due to

the fact that the software created by Don Hunter, although it is an exact replica, the time

that was spent processing on original programs during the 1950s is more than the time that

his emulator takes to make mathematical equations. Don Hunter’s emulator was designed

to run on all operating systems including the Windows 7 and later versions. This is made

possible through the use of a software called the DOSBox. This DOSBox simulates the

DOS environment on the machine and from this environment the ZEBRA computer can be

run without any problems. This DOSBox helps to compile the PASCAL code used to write

the ZEBRA with ease and also gives the chance to enthusiastic programmers and scholars

UNDERSTANDING THE STANTEC-ZEBRA 28

to make changes and help improve the computer or learn the programmatic details of the

machine (Computer conservation society, no date).

This Stantec-ZEBRA runs the actual programs that were run on the original ZEBRA

machine but with addition of some few lines of code which will be explained in later

chapters. These programs were written in Simple Code and Normal Code which is similar

to Sub Programming. Sample programs written in these languages are available. This

program is software based only and hence any hardware will not be referenced to, however,

in the near future other projects can be embarked on as to revive the hardware parts of the

machine and have it up and running. An example of such an endeavour is the project to

build, demonstrate and maintain a replica of the Small-Scale Experimental Machine

(SSEM) - the world's first computer. This project is a currently undergoing activity and

there are volunteers needed in helping to recreate the machine and having it up and running

at the London Museum. To learn more about this venture, visit these websites

http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/rebuild/ and

http://www.cs.man.ac.uk/CCS/SSEM/volunteers/index.html.

5.3 Our Digital Heritage

Digital Preservation is the management and maintenance of digital objects which can be

categorised into the files, or groups of files, that contain information in digital form, so they

can be accessed and used by future users (Stuchell, 2013). This preservation of digital data

leads to the upcoming generation’s heritage. This heritage is key to people knowing where

they are coming from, where they are and where they are heading. There are so many events

that are held over the world to celebrate our digital heritage and the recent one is the Digital

Heritage International Congress held in Granada Spain from 28 September to 2 October

2015.

These events help to raise awareness and try to convince people to preserve data, whatever

in its form because you never know when it will be needed in use and who it will help.

Digital data is one of the most vulnerable forms of data due to the fact that if something

happens to where it is stored, like a virus attack, the data will be corrupted, altered or

completely lost. Recovery from such situations is really hard but there have been

http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/rebuild/
http://www.cs.man.ac.uk/CCS/SSEM/volunteers/index.html

UNDERSTANDING THE STANTEC-ZEBRA 29

developments of many means of back up as a number of alternatives to CD’s, flash and

external drives. The Cloud and Google drive are some of the few to mention where you

store your digital information and there it is guaranteed safe from corruption and deletion.

Apart from these there are organizations who specialise in the conservation of digital

information and this section is dedicated in giving more insight on them and their

importance as our digital heritage keepers.

Founded in 1989, the Computer Conservation Society is a joint venture between the British

Computer Society, the Science Museum and the Museum of Science and Industry in

Manchester. This organization’s primary mission is to preserve historic computers, develop

awareness of the history of computing, and encourage research. It runs many specialised

projects, organise public lecture series, and publish a regular bulletin (Computer

conservation society, no date).

This organisation is focused on preserving digital data but in the form of application

software. Apart from the Computer Conservation Society, there exist some organisations

that are committed to preserving digital information. Some of them include:

Table 5.2: Organisations concerned with preserving digital information

Digital Preservation (Library of Congress)

http://www.digitalpreservation.gov/

The National Digital Information

Infrastructure and Preservation Program

implements a national strategy to collect,

preserve and make available significant

digital content, especially information

that is created in digital form only, for

current and future generations.

University of Kent UK mirror services

http://www.mirrorservice.org/

The UK Mirror Service provides a

collection of mirrors of FTP, web and

rsync sites of interest to academic users.

The service is provided by the University

of Kent's School of Computing.

http://www.digitalpreservation.gov/
http://www.mirrorservice.org/

UNDERSTANDING THE STANTEC-ZEBRA 30

Online Historical Encyclopaedia of

Programming Languages

http://hopl.info/

This site is concerned with the idea-

historical treatment of the development

of programming languages as a means of

human expression and creation.

http://www.cs.man.ac.uk/CCS/

Software Preservation and Machine

Emulation

http://sw.ccs.bcs.org/CCs/index.html

In preserving software, the desire is to

keep the source text so that the style of

programming is visible, and to provide

facilities for execution of the preserved

software on widely available current

platforms. Where source text is in a

language unlikely to be widely known

(often assembly language) the intention is

to provide reference information to

enable the source text to be understood by

a reader with basic programming literacy.

The (The encyclopaedia of computer languages, no date) states that in 1976, at the History

of Computing Conference in Los Alamos, Richard Hamming described why we might be

interested in the history of computing: "we would know what they thought when they did

it". We need to know why the people who designed programming languages thought the

way they did. When they designed languages, they made conscious choices, which we have

to live with. And they made those choices for a wide variety of reasons, as many as the

reasons for which they felt the need to create a language in the first place.

We see that for every creation there is a reason behind, an influencing factor that drives

individuals to do come up with better means and ways of solving particular problems. The

invention of programming languages led to the creation of computers and these computers

initially were huge, expensive to run in terms of resources and very difficult to use. As more

and more individuals studied how these computers worked they found better ways and

means of designing them in a new way, to be faster, able to store information electronically,

to be compact and portable and eventually to interconnect and for the global village that we

http://hopl.info/
http://www.cs.man.ac.uk/CCS/
http://sw.ccs.bcs.org/CCs/index.html

UNDERSTANDING THE STANTEC-ZEBRA 31

have today. This whole process did not just happen within a day. It took years of studying,

improving and reengineering for what we have at this moment to be what it is.

The danger, however, is that technology is evolving at a fast pace and people are now more

concerned than ever to keep up with the changing trends and tend to forget the later and it

tends to be rendered obsolete. As mentioned by the (The encyclopaedia of computer

languages, no date), as the world becomes increasingly and overwhelmingly dependent on

software, we find that the core of that software - programming languages and systems -

remain a mystery to even their users, the programmers. By paying attention to the origin,

rise and fall of each of the languages we may learn why they made their decisions.

(Santayana, 1905) also said, "...Progress, far from consisting in change, depends on

retentiveness. When change is absolute there remains no being to improve and no direction

is set for possible improvement: and when experience is not retained, as among savages,

infancy is perpetual. Those who cannot remember the past are condemned to repeat it. In

the first stage of life the mind is frivolous and easily distracted, it misses progress by failing

in consecutiveness and persistence. This is the condition of children and barbarians, in

which instinct has learned nothing from experience....".

As mentioned above, if we cannot remember our past then we are condemned to repeat it.

During the time of the creation of the first computer, they had their own view of the world

and future than what this generation will be anticipating. By learning how they thought and

what they were expecting to achieve you will have a foundation on which to build on that

is solidified by ideas of the predecessors. Thus, this is the role of the Digital Preservation

Societies and the Computer Conservation Society. These organisations are there to preserve

the history of digital information, be it in text form or software form. The aim is to keep

safe this information and archive it for future use or upgrade.

The Computer Conservation Society in particular is focused on the preservation of digital

information but in its software/application form. The society is dedicated to:

 To promote the conservation of historic computers and to identify existing

computers which may need to be archived in the future.

 To develop awareness of the importance of historic computers.

 To develop expertise in the conservation and restoration of historic computers.

UNDERSTANDING THE STANTEC-ZEBRA 32

 To represent the interests of Computer Conservation Society members with other

bodies.

 To promote the study of historic computers, their use and the history of the

computer industry.

 To publish information of relevance to these objectives for the information of

Computer Conservation Society members and the wider public.

This organisation is not centred on making profits and thus it is funded and supported by

voluntary subscriptions from members, a grant from The Chartered Institute for IT (BCS),

fees from corporate membership and members’ donations. The society is also home to some

projects of rebuilding early computers and one of the noted on is the project to build,

demonstrate and maintain a replica of the Small-Scale Experimental Machine (SSEM) - the

world's first computer. Some other projects being undertaken include the Colossus Rebuild

Project, Our Computer Heritage, creating simh tapes images from real tapes, The HEC 1

computer and computer films and other media known to the CCS. For more information on

these please visit http://www.computerconservationsociety.org/special.htm.

The Society is also home to the famous computers that have been the pioneers of all the

computers that we have in our current day and age. The software is downloadable and

sufficient documentation is given explaining how these machines work and what they were

used for during their days. The softwares that are housed by the Computer Conservation

Society are:

 Manchester Baby (SSEM)

 Cambridge EDSAC

 Ferranti Sirius

 Ferranti Pegasus

 Stantec-ZEBRA

 ICT/ICL 1900

 Elliott 903

 Ferranti Atlas 1

 MU5

 KDF9

http://www.computerconservationsociety.org/special.htm

UNDERSTANDING THE STANTEC-ZEBRA 33

 LEO III

One of the many activities of the Computer Conservation Society is to develop and preserve

software for historic computers, many of which have long since passed into oblivion. In

order to make this activity meaningful and to allow for the possibility of writing new

programs for dead computers it is sometimes necessary and always useful to implement

emulators: programs which run within modern computers but which interpret programs

written for the target machine and cause them to be executed in much the same way as the

hardware of the original computers once interpreted the instructions of their programs and

carried out those instructions (Computer conservation society, no date).

5.4 Don Hunter’s Stantec-ZEBRA emulator

Don Hunter was in charge of the ZEBRA installed at STC's research laboratories (Standard

Telecommunication Laboratories Ltd, or STL) in Harlow from 1960 to 1963. He had earlier

worked on Edsac I (Society). Hunter was part of the people who installed and first used the

Stantec-ZEBRA machine. He wrote an article called (The Stantec-Zebra Computer

Memories of the Zebra). In his article he acknowledged the initial works of WL van der

Poel. Besides working on the ZEBRA machine van der Poel also worked on Testudo and

it took 5 years to complete. It could do in 16 hours what we human beings could do in eight,

if we worked intensively for the whole day. The other one is the Ptera (PTT Electronic

Reckoning Automat).

The emulator created by Don Hunter mimics the original ZEBRA. Even though the

telephone dial, switches, input and output tape and teleprinter are not visible they can still

be used on the emulator. The input to them is done via key press on the keyboard. All the

major components are accessed via a sequence of key presses and the result is printed on

the screen. This emulator is command line based and the help menu can be accessed on the

emulator by typing the question mark (?). Output is displayed in the same window of the

emulator and can be transferred to the RESULTS.OUT file by the user by following the

instructions given in the user manual that comes with the emulator.

Demonstration programs come with the emulator and these help the user to run them and

see how the emulator works and its performance efficiency meter which is located at the

UNDERSTANDING THE STANTEC-ZEBRA 34

bottom right of the screen. These programs are written in Normal Code and Simple Code

the programming languages that were used during that time. Other sophisticated programs

such as the ACTAB.SRC are provided to show the level of complexity that the emulator

can handle and how it can perform.

A more technical and detailed explanation of the emulator can be found online at the

Computer Conservation Society

http://www.computerconservationsociety.org/resurrection/res11.htm#e the article written

by Don hunter.

Figure 5.1: Alan Marr and Don Hunter at work on the Stantec-ZEBRA installed at STL: Image source

http://www.stlqcc.org.uk/docs/computers_03.htm

http://www.computerconservationsociety.org/resurrection/res11.htm#e
http://www.stlqcc.org.uk/docs/computers_03.htm

UNDERSTANDING THE STANTEC-ZEBRA 35

6 EMULATION AND EMULATORS

Emulation works by handling the behaviour of the processor and the individual

components. You build each individual piece of the system and then connect the pieces

much like wires do in hardware. Emulation in itself is broad and can be categorised into

software emulation and hardware emulation (How do emulators work and how are they

written, 2016). There is strong dependency between hardware and software and this

introduces a risk. If one of these fails, it will have influence on the computer’s operation

and its capabilities. Emulation comes into play by providing a solution to this problem.

As described by (What is Emulation, no date), “emulation is best described as imitating a

certain computer platform or program on another platform or program. In this manner, it is

possible to view documents or run programs on a computer not designed to do so. An

emulator is itself a program that creates an extra layer between an existing computer

platform (host platform) and the platform to be reproduced (target platform).” An

individual may not be concerned by imitation the actual performance or time measures of

hardware or software but so long as the end product acts as required then it is deemed as

successful emulation.

Emulation can also be seen as a means of digital preservation and it focuses on recreating

the original computer environment. Emulation is difficult, this is because developing an

emulator is a precise and time-consuming task and especially because the emulated

environment must appear authentic and must function accurately too. The Church-Turing

thesis also implies that emulation can be quite difficult, particularly when the exact

behaviour of the system to be emulated is not documented and has to be deduced through

reverse engineering (Emulator, 2016).

Emulation allows a user to have access to any kind of application or operating system on a

current platform, while the software runs as it did in its original environment.

UNDERSTANDING THE STANTEC-ZEBRA 36

 6.1 Benefits of emulation

 Potentially better graphics quality than original hardware.

 Potentially additional features original hardware didn't have.

 Emulators maintain the original look, feel, and behaviour of the digital object,

which is just as important as the digital data itself.

 Despite the original cost of developing an emulator, it may prove to be the more

cost efficient solution over time.

 Emulators allow software exclusive to one system to be used on another. For

example, a PlayStation 2 exclusive video game could be played on a PC using an

emulator.

 6.2 Shortcomings of emulation

 Due to intellectual property rights, some information is lost in a preservation with

little supporting documentation due to the proprietary nature of the hardware and

software.

 Copyright laws are not yet in effect to address saving the documentation and

specifications of proprietary software and hardware in an emulator module.

 Emulators are often used as a copyright infringement tool, since they allow users

to play video games without having to buy the console, and rarely make any attempt

to prevent the use of illegal copies and this leads to a number of legal uncertainties

regarding emulation, and leads to software being programmed to refuse to work if

it can tell the host is an emulator.

 Emulators require better hardware than the original system has.

UNDERSTANDING THE STANTEC-ZEBRA 37

 6.3 Types of Emulators

There are so many types of emulators and it all depends on which angle you look at them.

Some emulators are accurate to the core, in terms of clock timing and processing speed and

most of them are just developed as a reminder of what used to be and placed in museums

for example. Most common types of emulators are game emulators. Game emulators are

available for some of these platforms Nintendo, Sony, Microsoft, Sega and Arcade. Popular

games like Donkey Kong have been emulated and are being enjoyed by those who used to

play the game in its popular days.

Some other emulators come as educational tools such as the Android emulator that comes

with Microsoft Android Software Development kit and some come as alternatives and

placeholders for the original. Examples include the Blue Stakes and MS Dos.

 6.4 What Emulators achieve

Emulators are designed to carry out a specific task and that task is tailor made to the

requirements that initiated its creation. This thesis will focus on the historic uses of

emulators and these include:

 drive detailed historic analyses to discover and understand designs for computers

 They record inconsiderable detail machines

 They restore an operational understanding of machines and are a tool for

investigating questions about the machine and its software

 A tool for historical research for technological developments

SUMMARY

Part III of this thesis talks about the Literature review and highlights on simulators and

emulators stating their differences. Focus is also given on the emulator that was developed

by Don Hunter which is available on the Computer Conservation Society website. This

emulator is a replica of the original ZEBRA computer but it need some extra code to be

written to the Simple Code program for it to run a program properly. On this section, a

UNDERSTANDING THE STANTEC-ZEBRA 38

history of the need for understanding native software and programming languages is given

so that readers are well aware of the need of knowing how early programmers thought and

plans they had for the future they anticipated.

UNDERSTANDING THE STANTEC-ZEBRA 39

Part IV

Project development

 Chapter 7: GETTING STARTED

 Chapter 8: METHODOLOGY

 Chapter 9: TECHNOLOGY

CHOICES

 Chapter 10: PROJECT PLAN

UNDERSTANDING THE STANTEC-ZEBRA 40

7 GETTING STARTED

This thesis will focus on improving/modifying some of the information that was delivered

in the first report which gave an overall view of the project. The aim is to write a running

program for the Stantec-ZEBRA computer. The objective is to build a program that is able

to run the basic programs and implement the functions that the original ZEBRA machine

performed. The target is to be able to create a running program and having all of the basic

commands functioning properly.

7.1 Refinements/Changes to proposed solution

The initial target for this project was to have as many programs as possible being developed

and coded by the student and having to demonstrate them working. This requirement has

not changed. In addition, there can be given an explanation for the demo programs created

by Don Hunter as a means of showing that the student has understood the Simple Code

programming language.

This project is also going to solely focus on Simple Code. Simple Code uses some of the

features and procedures of Normal Code (Ord-Smith, 1960). However, normal Code is

mentioned in passing and there is no demonstration of its code and functionality. Since the

ZEBRA computer is a calculator, mathematical problems will be solved using the Simple

code. This will demonstrate how much level of understanding the student has attained.

UNDERSTANDING THE STANTEC-ZEBRA 41

8 METHODOLOGY

The methodology of choice for the development of the programs is influenced by the

already existence of a product (ZEBRA DOS emulator). The product is there and it has

gone through the product life cycle phases which are: Development, Introduction, Growth,

Maturity and Decline/Death. Not focusing though on the sales of this product, the ZEBRA

DOS emulator will be in its maturity phase heading to the decline phase.

There are multiple choices for methodologies that will suit the development of the ZEBRA

emulator and these include:

 Waterfall development

 Prototyping

 Spiral development

 V shape model

8.1 Waterfall development

In a waterfall model, each phase must be completed before the next phase can begin and

there is no overlapping in the phases. It is also referred to as the linear-sequential life-cycle

model. It is mainly centred on verification – are we building the right software, and

validation – are we building it right. The phases found in the life cycle include Requirement

Gathering and analysis, System Design, Implementation, Integration and Testing,

Deployment of system, and Maintenance. You cannot proceed to the next phase before the

previous one is complete and at each phase a document has to be produced. Although this

model is suitable for small projects it would not be suitable for the program design in

Simple Code for the ZEBRA since user involvement is key in its development and

requirements are likely to change during development process so going back up a phase to

make changes to a specification will be really difficult.

UNDERSTANDING THE STANTEC-ZEBRA 42

8.2 Prototyping

This model refers to building software application prototypes which display the

functionality of the product under development but may not actually hold the exact logic

of the original software. With this model multiple designs are made for the interface and as

they are presented some of them will be taken off while some of them will be accepted for

further improvement. Some of the phases in this model include Basic Requirement

Identification, Developing the initial Prototype, Review of the Prototype, and Revise and

enhance the Prototype. This model focuses more on user involvement and it goes through

the requirements until they are met due to the number of prototypes that will have been

developed.

This model is good for the design of the programs that will run on the ZEBRA, however, it

is mainly concerned with developing blue or pseudo codes. These pseudo code gives a

logical description in detail with all the steps but it will be written in English so that users

understand how the logic works. This is not the aim of this project. Pseudo codes are helpful

but the English language that will be written will not work if it is used as code for the

machine. Rather a second option will be survivable in order to come up with the final

running programs for the ZEBRA computer.

8.3 Spiral Development

Spiral model is a combination of iterative development process model and sequential linear

development model; waterfall model with very high emphasis on risk analysis. The spiral

model has four phases and a software project repeatedly passes through these phases in

iterations called Spirals. These phases include Identification, Design, Construct or Build,

and Evaluation and Risk Analysis. This model is suited to complex projects and those that

have requirements that are ever changing and which are undertaken in a turbulent

environment.

This model is fairly suited to all sorts of projects but the major disadvantage for it towards

the development of the ZEBRA Simple Code program that management for the project will

become very costly and complex. Having the project go through many iterations for risk

UNDERSTANDING THE STANTEC-ZEBRA 43

and design and identification will take much of the development time. Just by having the

specifications clearly labelled out it will be more than enough for the system to be

developed successfully.

8.4 V shape model

V model is an extension of the waterfall model and is based on association of a testing

phase for each corresponding development stage. This means that for every single phase in

the development cycle there is a directly associated testing phase. The next phase only starts

when the previous phase is done. The corresponding testing phase of the development phase

is planned in parallel so there are verifications on one side of the V and validations on the

other side. Coding phase joins the two sides of the model. The phases found in this model

include Business Requirement Analysis, System Design, Architectural Design, Module

Design and Coding which is the pivot between verification and validation. The phases

above are the verification phases and the validation phases include Unit Testing, Integration

Testing, System Testing, and Acceptance Testing.

The advantage of V model is that it is very easy to understand and apply. The simplicity of

this model also makes it easier to manage. However, considering the ZEBRA project there

is a high risk that the project will not be rigid and that even clearly specified specifications

will not remain the same. Once the application is in the testing stage, it is difficult to go

back and change a specific function. Flexibility is clearly missing in this model.

Having stated the models and outlined their pros and cons, the ZEBRA development project

will be highly suited with the User centred design model/framework. Although the Spiral

model will have been a great fit for the project, this project is designed focusing on the

needs of particular users and these users included Professor John Tucker and Rod

Delamere. These users have an emotional attachment towards it and to use other models to

develop the system will be a big risk because these models may not accommodate the

personal needs of these users. Also these users have sufficient knowledge of this machine

including Mr. Don Hunter and Mr. Noel Cox who are one of the few people to be in physical

contact with the machine and used it during its time and also learnt its programming

language.

UNDERSTANDING THE STANTEC-ZEBRA 44

8.5 User Centred Design

User-centered design (UCD) also known as User-Driven Development (UDD) is a

framework of processes in which the needs, wants, and limitations of end users of a product,

service or process are given extensive attention at each stage of the design process (User-

centered design, 2016). The focus on UCD is to get as much detail as possible from the

users. First-hand information from them and not to make assumptions and in the end

making a product/software that will not confirm to their expectations. According to (Travis,

2015), design is based upon an explicit understanding of users, tasks, and environments. It

is driven and refined by user-centred evaluation, and addresses the whole user experience.

The process involves users throughout the design and development process and it is

iterative in nature.

There are some general phases in a UCD framework and these include:

 Specify the context of use: Identify the people who will use the product, what they

will use it for, and under what conditions they will use it.

 Specify requirements: Identify any business requirements or user goals that must be

met for the product to be successful.

 Create design solutions: This part of the process may be done in stages, building

from a rough concept to a complete design.

 Evaluate designs: Evaluation - ideally through usability testing with actual users -

is as, integral as quality testing is to good software development.

There are many variations to the UCD framework and this makes it flexible enough to be

incorporated into the other trademark software development models. The one big advantage

of using UCD is that it is cheap to use. There are no complicated steps to go through and

no need for a fairly large number of people within a team. The goal here is to get enough

from the user and that these users participate fully during the development of the software

so that what they mention is what they get.

The chief difference from other product design philosophies is that user-centred design tries

to optimize the product around how users can, want, or need to use the product, rather than

UNDERSTANDING THE STANTEC-ZEBRA 45

forcing the users to change their behaviour to accommodate the product (User-centred

design, 2016).

UNDERSTANDING THE STANTEC-ZEBRA 46

9 TECHNOLOGY OF CHOICE

The technology of choice to be used for the development of the Stantec-ZEBRA program

is the Simple Code language. Although there can be an option of using assembly language,

this will be a very difficult task indeed because there are some built in/hard coded functions

in the form of mathematical equations that are not mentioned in Ord-Smith’s article and by

Don Hunter. This thesis will focus on C and Assembly vs the Simple Code language and

give reasons why this language was the number one contender over others.

Table 9.1: Comparison of C, Assembly and Simple Code in relation to ZEBRA program development

Topic C Assembly Simple Code

Architecture It is a structured

programming

language and

knowledge for

header files is

important to make

use of functions

It is a structured

programming

language and very

low level with

ability to move

values directly in

memory

It is a structured

programming

language; earlier to

Assembly and has

inbuilt functions to

run with Normal

Code

Memory

management

Manual memory

management, when

using variables,

input data must not

exceed the variable

size otherwise

buffer overflow and

overwriting of stake

memory will occur

Manual memory

management, when

using variables,

input data must not

exceed the variable

size otherwise

buffer overflow and

overwriting of stake

memory will occur

Memory

management is

automatically done

by the computer

since every entry is

converted directly

into floating point

Error handling Minimum error

handling as

programmer has to

write correct code

Minimum error

handling as

programmer has to

write correct code

Very difficult to

error handle code;

when error occurs

the computer just

UNDERSTANDING THE STANTEC-ZEBRA 47

otherwise the

program will crush

otherwise the

program will crush

stops and

programmer has to

go over the code and

find out why it did

not run properly

Execution speed Fast executions time

as it is more closely

linked to machine

code

Very fast execution

time as it is linked

directly to machine

code

Very fast execution

time as it is linked

directly to machine

code and uses only

floating point values

Support for other

languages

Integration with

other languages at

the lower level is

easy

Integration with

other languages at

the lower level is

easy

Integration with

other languages is

very difficult

because of the

missing information

on Normal Code

Debugging Very hard to debug

programs since it is

structured an error

may be flag on a

line that will have

correct syntax when

in actual effect the

error occurred on a

different line

Very hard to debug

programs and must

have knowledge of

movement of data

from one register to

another

Very hard if not

impossible to

debug; full

knowledge of the

code is needed in

order to be able to

debug at any point

in the program

Interoperability Programs

developed using the

C language can be

run on any platform

Programs

developed using the

Assembly language

can be run on any

platform

Programs

developed using

Simple Code only

run on the Stantec-

ZEBRA computer

UNDERSTANDING THE STANTEC-ZEBRA 48

Support for GUI C language at

programming level

has little or no

support for GUI.

Interaction is

command line based

Assembly language

at programming

level has little or no

support for GUI.

Interaction is

command line based

Simple Code has no

support for

incorporating GUI

Simple Code was chosen as the technology of choice for this project. Although, Assembly

language is fairly similar to Simple Code in terms of moving values directly from one

memory location to another, Simple Code has the ability to call Normal Code which is used

for mathematical operations using the operator Z19. In order to use Assembly language and

C language there is a disadvantage in that one has to understand the code that was written

to develop the ZEBRA computer. This language is PASCAL.

A line by line interpretation will be needed for the code in order to understand how the

computer takes in the Simple Code and switch over to Normal Code for its mathematical

operations. The C language also has the problem of memory overflow when a value too big

is specified it overflows from one memory location into another and this will cause many

errors to occur that are complicated to fix. This is highly possible to happen using the

ZEBRA because it only works with floating point numbers and there is a risk that values

may be truncated or lose its significance by a certain percentage. So it is safer not to

translate the PASCAL code and just use the Simple Code instead.

UNDERSTANDING THE STANTEC-ZEBRA 49

10 PROJECT PLAN

This phase of the project mainly focuses on how resources are to be allocated towards

development and how time will be managed throughout the course of development. The

planning aspect is the pinnacle for success for any activity that requires management.

According to (Gunder, 2003), planning in itself is the process that identifies the goals or

objectives to be achieved, formulates strategies to achieve them, arranges or creates the

means required, and implements, directs, and monitors all steps in their proper sequence.

A project is said to be successful when it has met its requirements. These requirements

make up the goals of the project and the major goal of this project is to develop a fully

functional written program for the Stantec-ZEBRA machine. In order to achieve this, a set

of deliverables have to be outlined. These act as the milestones so that progress can be

monitored properly. The set of deliverables for the project includes:

 To master software engineering tools and methods and programming in Simple

Code language.

 To understand fine details of computer architecture and memories and machine

code programming.

 To write a program in Simple Code that can run on Don Hunter’s Stantec-ZEBRA

emulator.

These are the high level deliverables that are generalised and which touch across all the

aspects of the project. The low level deliverables include:

 Learning the Simple Code language in order to write a running program on Don

Hunter’s emulator.

 Understand sample codes written by Don Hunter as a way of showing that the

student fully understands Simple Code.

 Completing the project before the end of the month of September in order to meet

the University deadline

UNDERSTANDING THE STANTEC-ZEBRA 50

Deliverables for them to be effective they need to be given estimated start date and end date

and these may be gradually updated during the course of the project. The estimated dates

and time frames for the deliverables will be given in the Gantt Chart in figure 10.2. Gantt

charts illustrate the start and finish dates of the terminal elements and summary elements

of a project. This plots the time to be taken versus the deliverables or the task to be

accomplished. Below is the Work Breakdown Structure (WBS) that will be taken in order

to fulfil project objectives:

Figure 10.1: Project WBS

UNDERSTANDING THE STANTEC-ZEBRA 51

Figure 10.2: Project Gantt Chart

The Gantt chart above shows the dependencies and the duration that each and every task is

expected to take. The tasks are in the form of WBSs and the estimated durations are listed

in weeks required to be spent on each and every task.

The tasks which take the least amount of time which is 2 weeks are Learning commands,

Designing the programs, Visualization of the original machine and Raising awareness for

the need of such emulators to the public. The tasks that are expected to take up much of the

time are writing the documentation and actual coding of the programs which takes 9 and

10 weeks respectively. These are the core activities and thus take about 70% of the duration

of the planned time to finish the project. The estimated duration of completing the project

is 17 weeks and this starts from June 2016 to mid-September 2016.

The initial tasks are Learning commands and Learning language supported, thus they have

no predecessors. After Learning the commands, the next activity is Learning the

programming language and this is expected to start whilst still the student is learning the

Language supported. At the same time code implementation is expected to start at the same

time with Learning the programming language.

Testing of the system is set to start after the Learning programming language is complete

and for it to be successful it will be done during code implementation as well.

UNDERSTANDING THE STANTEC-ZEBRA 52

10.1 Basic Risk Analysis and Management

Risk is defined as the possibility that something bad or unpleasant will happen. Risk cannot

be anticipated or predicted when it will occur but there are strategies that will help in

formulating plans and proper measures of guarding against the effects of risk. This thesis

will use the notion of using the key elements of risk management placing them in a table

format, identifying the risk, assessing it, monitoring it and suggesting ways to control or

mitigate the effects of the risk.

The scale used for calculating the probability of occurrence of a risk runs from 1 – 5 and 1

meaning that there is a low probability for the risk to happen. The value 3 represent the

mid-point that the risk can either happen or not and it will depend if it can be placed under

a priority concern or not. The value 5 represents the highest value that the risk may happen

and this will require more attention and monitoring during the development of this project.

Table 10.1: Risk Management

Risk Assessment of

risk

Monitoring the

risk

Controlling the

risk

Probability of

occurrence

(scale 1-5)

Methodology of

choice not

appropriate

The

methodology

used for the

development of

this program

may be too

complicated

and require too

much effort to

be put in

When duration

stated in Gantt

chart exceeds

for the

development of

the of the

program, this

will be the

warning of the

methodology

having failed to

meet the needs

of the project

Having to take

out some of the

activities in

order to meet

project

requirements

2

UNDERSTANDING THE STANTEC-ZEBRA 53

Technology of

choice is not

meeting

requirements

The technology

may not be able

to implement

some of the

features and the

functions of the

original

command line

emulator

Make sure that

functions meet

the technology

available

Remove

features and

functions that

will be difficult

to implement in

project

development

3

Understanding

and

implementing

Simple Code

language

This is a major

factor that can

lead to the

failure of

meeting project

goals and

objectives

Check learning

progress

against the time

stipulated on

the Gantt chart

to find out if

task time has

not exceeded

original

amount of time

planned for

Try to put in

more effort in

order to

understand the

language

because

without

knowledge of

the language

then coding

cannot occur

together with

development

3

Time

management

Time is a big

factor in the

success of any

project and

milestones

have to be meet

before the

deadline

because if the

Milestones

have to be met

before deadline

A pre-

allocation of 5

days has been

placed on every

activity to

allow for any

complications

that may allow

a milestone to

4

UNDERSTANDING THE STANTEC-ZEBRA 54

overlap into

other activities

it will cause

problems in

development

be extended its

delivery time

Illness and

personal

problems

This will have a

small impact in

terms of

affecting the

success of the

project unless it

is something

life threatening

Stick to

planned

schedules and

take regular

breaks

Plan to always

take a day or 2

off for resting

and

recuperating in

order to

maintain the

project flow

3

10.2 Testing/Evaluation Plan

The testing of software is an important means of assessing the software to determine its

quality. The general aim of testing is to affirm the quality of software systems by

systematically exercising the software in carefully controlled circumstances. The goal of

testing is to find an undiscovered error and a successful test is one that uncovers an as yet

undiscovered error. Testing is involved in every stage of development but the testing done

at each level of software development is different in nature and has different objectives.

Unit Testing is done at the lowest level which is the smallest testable piece of software and

it is often called a unit. Integration Testing is performed when two or more tested units are

combined into a larger structure. System test is often based on the functional/requirement

specification of the system and non-functional quality attributes are also checked.

Acceptance Testing is done when the completed system is handed over from the developers

to the customers or users.

The testing strategy that is going to be used for the project is black-box testing. This is the

technique of testing without having any knowledge of the interior workings of the

UNDERSTANDING THE STANTEC-ZEBRA 55

application. The tester is looking at the system architecture and will not have access to the

source code. While performing a black-box test, a tester will interact with the system's user

interface by providing inputs and examining outputs without knowing how and where the

inputs are worked upon.

This test strategy is best suited for the project in the fact that what is required of the student

is to be able to write a program that will run on the ZEBRA emulator available on the

Computer Conservation Society website. Understanding of the code is really crucial but the

way in which Normal Code is integrated and how Normal Code is written is not part of the

focus for this project.

SUMMARY

The aim of this report is to give a detailed overview of the project. Giving a brief

introduction to the problem and picking up the methodology to be used in order to

accomplish the task of designing the emulator made up part of the main core of this report.

A project evaluation plan was given and this focused on how time and resources will be

managed through the use of a Gantt chart and a work break down structure. This project is

not intended to be sold and it is meant to be an open source software, therefore, budgeting

and finance was not included in this report. The technologies to be used for the development

of this project is Simple Code and it was compared and evaluated against other existing

technologies to justify its choice as the main technology to be used. Finally, an assessment

of the possible risks that might occur was given and strategies were given on how to

mitigate then and a scaling factor was given on the probability of the risk occurring and

whether it should be priorities or not.

UNDERSTANDING THE STANTEC-ZEBRA 56

Part V

Monitoring, Control and Evaluation

 Chapter 11: RESULTS AND

ANALYSIS

 Chapter 12: CONCLUSION

UNDERSTANDING THE STANTEC-ZEBRA 57

11 RESULTS AND ANALYSIS

In this chapter the focus is on the outcome of the dissertation as a whole. Emphases will be

on whether the requirements and specifications of the project were met. This chapter also

gives the author the opportunity to mention the major challenges faced and evaluate the

effects of stated challenges and what methods/approaches were taken to overcome these.

11.1 Installing the ZEBRA

The Stantec-ZEBRA emulator developed by Don Hunter is available for download from

the Computer Conservation Society. Since technology has changed drastically over time,

the ZEBRA was written to be run on MS-DOS or PC-DOS platforms so there is a high

chance that by installing the emulator and trying to run it on Windows 7 and earlier versions

will prompt the following errors messages (Computer conservation society, no date):

Figure 11.1: Possible error message 1: Image source

http://www.computerconservationsociety.org/software/dosboxnotes.htm

http://www.computerconservationsociety.org/software/dosboxnotes.htm

UNDERSTANDING THE STANTEC-ZEBRA 58

Figure 11.2: Possible error message 2: Image source

http://www.computerconservationsociety.org/software/dosboxnotes.htm

Figure 11.3: Possible error message 3: Image source

http://www.computerconservationsociety.org/software/dosboxnotes.htm

The error messages above show that there is a problem that is encountered with running

these DOS programs on early computers. It is either that the program is not compatible on

64bit computers or when it is 32bit it will not support full screen mode. On windows 10 it

will completely not run and prompt you to find a version of a PC that is compatible to the

program.

There is, though, a measure of going around this and it is to download and install DOS-

BOX which provides a DOS environment for the DOS programs to run. The DOX-BOS

program is available for download at http://www.dosbox.com/. After downloading and

installing the DOS-BOX the second step will be, after extracting the contents of the DOX-

BOX setup file into a folder, mount the folder created as a virtual hard drive in DOS-Box.

To mount the folder on the hard drive, for example C: drive you write the following in

DOS-BOX:

http://www.computerconservationsociety.org/software/dosboxnotes.htm
http://www.computerconservationsociety.org/software/dosboxnotes.htm
http://www.dosbox.com/

UNDERSTANDING THE STANTEC-ZEBRA 59

 MOUNT C C:\[path to the folder with ZEBRA]

 If the folder name is ZEBRA for example, to run the emulator you just type in

ZEBRA and the emulator will run giving the window below

 Type in KEYB UK so that the program will use the UK keyboard layout for input

to the program.

Figure 11.4: Stantec-ZEBRA emulator running

 11.2 Simple Code file format and running a

program

All Simple Code programs must be saved using the .src extension otherwise it will not run

on the ZEBRA emulator. To write a custom Simple Code program the two best programs

to do so with are Notepad and Notepad++. To load in a program in the emulator user presses

the (a) key and prompts to enter the program name as shown below. An example of a

program named mine4 is entered after the prompt.

UNDERSTANDING THE STANTEC-ZEBRA 60

Figure 11.5: Press a and program askes to input PT paper tape

To run the program, press f7 twice and the output from computation will be printed top left

to the ZEBRA ?=menu as shown below:

UNDERSTANDING THE STANTEC-ZEBRA 61

Figure 11.6: Output of computation on mine4.src Simple Code program

The dots on the A:, B:, C: and D: lines signify that memory address is empty/off and the

question marks means that it has a value/on. NC & SC dial is a prompt to enter a value from

the range of 1 – 9 as if you are entering it from a telephone dial. This feature is not used in

this dissertation.

11.3 Demo programs

The requirements and specifications of this project were met. The student managed to write

his own programs using the Simple Code language. The language is said to be derived from

the Edsac I instruction set with the addition of index registers, labels, many built-in

functions, a trace facility and nine digit floating point arithmetic and is approximately dated

from 1950-55 (Society, no date).

UNDERSTANDING THE STANTEC-ZEBRA 62

 11.3.1 Demo 1

The program takes in a value c, multiplies it by the value a, and takes the result of (c*a)

and adds it to b2. a = 2, b = 3, c = 4, A is the accumulator. The Simple Code for this program

is given below:

00000

Y

L {a = +2}

L1 {b = +3}

L2 {c = +4}

-00 {4 decimal digits and no sign}

+00 {no decimal point}

Z30

H2 {move c into A: A contains 4}

V {A * n = A: n holds the value +2 therefore, A = 8}

V01 {A + (n+1)2 = A: (n+1) holds the value +3 therefore, A = 8 +

9 = 17}

Z9 {cr lf fs}

Z31 {print A + (n+1)2}

Z {stop}

Y00

+2 a

+3 b

+4 c

Y

00?000

The first line in any Simple Code program begins with 00000 and this line signifies the

beginning of the program. Y signifies the beginning of Simple Code. L, L1, L2, mean read

number into. L has a container n which takes an input value. Here n = +2, (n+1) = +3 and

(n+2) = +4. Z30 means output or suppress sign. H2 means move value of L2 into A. V

means multiply A with n. V01 means A plus (n+1) and store the contains in A. Z9 prints

UNDERSTANDING THE STANTEC-ZEBRA 63

out a carriage return. Z31 prints out the value in A with no decimal point. Z stops the

computer. Y00 comes straight after Z. Values that are written after Y00 are the values that

will be read into n, n+1, etc. Y signifies the end of Simple Code. 00?000 specifies the end

of the program.

The output of the above program is +17. A full guide of instructions is given in the appendix

section.

 11.3.2 Demo 2

Given two sides of a triangle, a = 3 and b = 4 find the hypotenuse c using the Pythagoras

Theorem c = √ (a2 + b2).

00000 {The first seven lines are the same as explained in the above

program}

Y

L

L1

-00

+00

Z30

H

V

V01

Z1 {√ (a2 + b2)}

Z9

Z31

Z

Y00

+3

+4

Y

00?000

UNDERSTANDING THE STANTEC-ZEBRA 64

The above program finds the hypotenuse using the Pythagoras Theorem. Given a = 3 and

b = 4 therefore, √ (32 + 42) = 5.

Note that; in any Simple Code program comment are made inside a program using {}.

Anything that is contained between the opening curly brace {and the closing brace} is a

comment and is not part of the program. The comments are put inside programs to explain

to the reader what the program is or what the line of code means.

 11.3.3 Demo 3

Given a triangle in the figure below, find the value of a.

Figure 11.7: Acute angle triangle, find the value of a

00000

Y

L

L1

L2

L3

L4

L5

H {n = 49}

Z5 {cos (49) = A}

V1 {A * n+1 = A}

V2 {A * n+2 = A}

V3 {A * n+3 = A}

V04 {A + (n+4)2 = A}

UNDERSTANDING THE STANTEC-ZEBRA 65

V05 {A * (n+5)2 = A}

Z1 {√A}

Z9

Z8 {print A in floating point form}

Z

Y00

+49

+7

+5

-2

+7

+5

Y

00?000

The value of a is supposed to be 5.30 correct to 2 decimal places but the problem is Z5 {cos

(49)} is providing an answer of 0.300593 on the ZEBRA computer instead of 0.656059,

therefore, the resulting answer from the ZEBRA is wrong.

 11.4 Assessment and Evaluation

Looking at the project and comparing the expected results from actual results, it can be

concluded that the project was a success. Below are the tables for the requirements that

were stated out and the results that transpired during the course of project development. A

set of symbols will be used to signify weather the target was met or not using the to

mean that objective was not met and to show that the objective was met.

Table 11.1: Requirements against outcomes

Requirements Completed Description

Simple Code

program

 Provided in this thesis are 3 running examples of

mathematical problems.

UNDERSTANDING THE STANTEC-ZEBRA 66

Must run on the

ZEBRA

emulator

 The three mathematical problems are successfully

running on Don Hunter’s ZEBRA emulator.

Key words to

be used as

commands to

the program

 The key words are the subroutines and procedures that

are used in the creation of Simple Code programs and

they were used properly in the programs

Interpret

sample

programs

 The student is able to interpret some of Don Hunter’s

programs but the majority is Normal Code and is

difficult to interpret since information on Normal Code

is not available

In terms of progress analysis using the WBS and the Gantt chart, all the steps except for

one was omitted in the WBS which is the physical visualization of the ZEBRA computer.

This did not manage to happen but the student got the opportunity to meet face-to-face with

one of the few people to have used the original ZEBRA computers from the 1950s Mr. Rod

Delamere. He gave an explanation on what the computer was used for and how the

programming language was named Simple Code but yet it was not that simple at all.

With regards to the Gantt chart, changes had to be made in order to finish the project on

time. The actual way in which the activities were carried on with looked like this in the end

as compared to the planned one under the Project Plan section.

Figure 11.8: Actual activities and the days taken to complete them shown in revised Gantt Chart

UNDERSTANDING THE STANTEC-ZEBRA 67

The writing of the documentation took more than 80 percent of the time and this was the

biggest challenge faced by the student. This was followed by learning the commands and

the programming language. This had a factor on having the documentation being so long

because the student could not start anything before he had a clear mind of the Stantec-

ZEBRA computer.

This proved to be a huge challenge because even the Computer Conservation Society was

not so familiar on how Don Hunter’s simulator worked. Help was eventually acquired from

Mr. Rod Delamere but still, his notebook from 1950 together with his examples could not

work on the emulator. This took a lot of time for the student to realise that for a program to

run on the emulator it requires some additional lines of code.

The major challenge and obstacle faced during the project development was understanding

how the Stantec-ZEBRA works. Up until this point, the student has basic functionality

understanding of the computer. The fact that debugging the computer is made almost near

to impossible without any error detecting systems makes using Simple Code very difficult

to even grasp and write a basic program. Below is the revised table for risks that were

anticipated and how the student managed to overcome the challenges.

Table 11.2: Revised Risk Management

Risk Assessment of risk Tackling the risk

Methodology of choice not

appropriate

The methodology used for

the development of this

program may be too

complicated and require

too much effort to be put in

The methodology of choice

(User Centred Design) was

an effective choice because

there was the right amount

of interaction between the

users and the student.

Technology of choice is not

meeting requirements

The technology may not be

able to implement some of

the features and the

functions of the original

command line emulator

Simple Code was the

obvious and only choice

and it has made the student

fully understand how to

program in the language

UNDERSTANDING THE STANTEC-ZEBRA 68

Understanding and

implementing Simple Code

language

This is a major factor that

can lead to the failure of

meeting project goals and

objectives

Having to understand the

Simple Code was not an

easy task. It took most of

the development time and

in the end the student

understood the language

Time management Time is a big factor in the

success of any project and

milestones have to be meet

before the deadline because

if the overlap into other

activities it will cause

problems in development

Time plans had to be

changed on a regular basis

to accommodate the drastic

changes that occurred due

to the difficulty in

understanding Simple

Code

Illness and personal

problems

This will have a small

impact in terms of affecting

the success of the project

unless it is something life

threatening

Thankfully enough there

were no major illnesses

witnessed during the

development of this

dissertation

UNDERSTANDING THE STANTEC-ZEBRA 69

12 CONCLUSION

During the course of this project development the student has learnt quite a lot from

researching, from the supervisor and interacting with the supervisor in order to produce

what is required. The highlight of the journey was finally getting to speed with the Simple

Code programming language. This took a long time for the student to grasp as it is a very

old programming language dating to 1950 and is not even listed on the programming

languages list on these popular websites http://rigaux.org/language-study/diagram.html,

https://www.levenez.com/lang/ and http://hopl.info/images/genealogies/tester-country.jpg.

Simple Code, however, despite the name is not so simple. This code is a set of subroutines

that you call using key terms just like how programming works using Assembly language.

Simple Code works directly with numbers in their floating point form which makes it faster

for the program to run because there is no need for converting from one form to another

which takes up time and memory. It also works by referring directly to a memory location

just like Short Code and Assembly code and this makes it really versatile because you are

given full control over memory management and have the actual address to every value

that is stored in the program.

The biggest challenge that came about using the ZEBRA computer was the problem of

debugging. This computer has no means of telling the user the reason of it not working or

where the error is or even what sort of error it is. Mr. Delamere concurred to this when he

mentioned a story about his encounter with the ZEBRA computer. He said that there was a

time when he ran a paper tape program into the ZEBRA and at the middle of the tape the

computer just stopped and by that is was a signal that something had gone wrong. At the

second attempt he ran the same paper tape and the computer jammed at the same point. At

that point in time he did not know what to do next so he took a small piece of paper and

stuck it on one of the holes with bubble-gum in the place where the computer was jamming

and put back the paper in the computer. At the third attempt, the ZEBRA jammed again but

after a nudge of the paper it went through and continued its calculations.

This just shows how hard it was to know what sort of error had effected the computer. It

was just too hard to know where to start and the student can testify to this as he also

http://rigaux.org/language-study/diagram.html
https://www.levenez.com/lang/
http://hopl.info/images/genealogies/tester-country.jpg

UNDERSTANDING THE STANTEC-ZEBRA 70

encountered the same problem when trying to write a simple program on Don Hunter’s

emulator. It was a gruelling experience because the emulator also gave away no error

messages. If the program was wrongly written, for example, the screen would not output

anything. Then and only then would you know that something is wrong and the best way

to deal with such a case was to go through the program again line by line to see where the

problem was.

In the end, three programs were created that are perfectly running on the emulator. There

are also many sample programs provided by Don Hunter which show the full power and

potential that is held within this computer.

Within the whole journey that the student took on this project, the biggest notable point is

that, as technology is evolving we are losing our touch on the obscured or depleted software

and programs. By asking online on the explanations on how the ZEBRA works, most of

programmers online, especially on Stake Overflow, they did not even know the computer

later alone the programming language. This shows that preservation of data is important

and raising awareness on existence of such computers had to be done. It might be outdated

but by studying it you will get a feel of how early computers worked and it may also inspire

you in a way that was not even expected.

As the world becomes increasingly and overwhelmingly dependent on software, we find

that the core of that software - programming languages and systems - remain a mystery to

even their users, the programmers. By paying attention to the origin, rise and fall of each

of the languages we may learn why they made their decisions (The encyclopaedia of

computer languages, no date). "...Progress, far from consisting in change, depends on

retentiveness. When change is absolute there remains no being to improve and no direction

is set for possible improvement: and when experience is not retained, as among savages,

infancy is perpetual. Those who cannot remember the past are condemned to repeat it. In

the first stage of life the mind is frivolous and easily distracted, it misses progress by failing

in consecutiveness and persistence. This is the condition of children and barbarians, in

which instinct has learned nothing from experience...." (Santayana, 1905).

UNDERSTANDING THE STANTEC-ZEBRA 71

 12.1 Recommendations

It would be a good thing for the continuation of this project and to design a user interface

for the Stantec-ZEBRA computer. Don Hunter’s emulator is available for download from

the Computer Conservation Society website but it is a DOS software program. Many people

are not familiar with using DOS commands, therefore, although the emulator is fully

functional it will not be an attractive application to contemporary computer users. An

upgrade to a user-friendly interface will enhance its popularity also just like other emulators

such as the SSEM and the EDSAC that have user-friendly interfaces that most computer

users are accustomed to.

Some work was done by the author regarding the development of a user interface for Don

Hunter’s Stantec-ZEBRA emulator. Figure 12.1 below shows the work that was done and

an individual can pick up form there and finish up the project.

Figure 12.1: Proposed GUI design for Don Hunter’s MS-DOS emulator

UNDERSTANDING THE STANTEC-ZEBRA 72

This GUI has been designed using JAVAFX programming language. All of the keys that

work on the DOS emulator have been given links in the GUI program however, this

program is not functional. It is the skin of the hard code of the ZEBRA emulator and the

task will be to interpret Don Hunter’s emulator written in PASCAL and try to integrate it

with the JAVAFX interface or to redesign the emulator entirely to produce a contemporary

ZEBRA computer that can be used in this day and age without experiencing any

unnecessary difficulties.

An error handling mechanism must also be put in place so as to give users error and warning

messages when they use the machine in the wrong manner. An addition of the telephone

dial to the interface will be a great idea so that the full ZEBRA functions will be available

to the user.

The second requirement is to embark on a project to reconstruct the ZEBRA in its physical

form. To reassemble the original parts and try to build the original computer designed by

van der Poel. A similar project is currently underway for the project to build, demonstrate

and maintain a replica of the Small-Scale Experimental Machine which is the world's first

computer and also the Bombe machine. The SSEM is currently being rebuilt and there are

a number of groups who are helping out with this project. To find out more information on

these project please visit http://www.cs.man.ac.uk/CCS/SSEM/volunteers/index.html,

http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/rebuild/ and

http://www.computerconservationsociety.org/wg-bombe.htm.

http://www.cs.man.ac.uk/CCS/SSEM/volunteers/index.html
http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/rebuild/
http://www.computerconservationsociety.org/wg-bombe.htm

UNDERSTANDING THE STANTEC-ZEBRA 73

REFERENCES

1. 2015 (1995) HOPL. Available at: http://hopl.info/ (Accessed: 17 July 2016).

2. 50 years of computing in south wales (2016) Available at:

http://www.bcs.org/content/ConWebDoc/37063 (Accessed: 16 August 2016).

3. A little about the STANTEC ZEBRA (1994) Available at:

http://niwo.mnsys.org/saved/~flavell/zebra/ (Accessed: 15 September 2016).

4. Afridi, F. (2014) Andy Android emulator free Download. Available at:

http://getintopc.com/softwares/emulators/andy-android-emulator-free-download/

(Accessed: 25 July 2016).

5. An Introduction to Stantec ZEBRA (1959) Standard Telephones and Cables Ltd:

Information Processing Division, Newport, Mon.

6. BABY DIARY (no date) Available at:

http://www.cs.man.ac.uk/CCS/SSEM/volunteers/index.html (Accessed: 30 August

2016).

7. Bauer, Henry R. et al. (1970) Algol W Programmming Manual. University of

Newcastle Upon Tyne, Newcastle Upon Tyne, England.

8. Bell, C. Gordon and Alan Newell, (1971) Computer Structures. Readings and

Examples. McGraw-Hill Book Company, Inc., New York.

9. Chord (2006) The programming languages Genealogy project. Available at:

http://www.everything2.com/index.pl?node_id=858421 (Accessed: 23 June 2016).

10. Compiled, G.B.C., Newell, A. and Bell, G.C. (1971) Computer structures: Readings

and examples. 12th edn. New York: McGraw-Hill Inc.,US.

11. Computer conservation society (1900) Available at:

http://www.computerconservationsociety.org/software/software-index.htm

(Accessed: 08 August 2016).

12. Computer conservation society (no date) Available at:

http://www.computerconservationsociety.org/software/dosboxnotes.htm

(Accessed: 27 July 2016)

13. Computer conservation society (no date) Available at:

http://www.computerconservationsociety.org/software/edsac/base.htm (Accessed:

25 September 2016).

14. Computer conservation society (no date) Available at:

http://www.computerconservationsociety.org/special.htm (Accessed: 30 July

2016).

15. Computer conservation society (no date) Available at:

http://www.computerconservationsociety.org/wg-bombe.htm (Accessed: 02

September 2016).

16. Computer memories - Stantec zebra Available at:

http://www.stlqcc.org.uk/docs/computers_03.htm (Accessed: 03 August 2016).

17. Computing and calculating (no date) Available at:

https://www.liverpool.ac.uk/~cmi/src/computers.html (Accessed: 02 September

2016).

18. Diagram & history of programming languages (no date) Available at:

http://rigaux.org/language-study/diagram.html (Accessed: 23 June 2016).

UNDERSTANDING THE STANTEC-ZEBRA 74

19. Digital preservation (library of congress) (no date) Available at:

http://www.digitalpreservation.gov/ (Accessed: 27 July 2016).

20. DOSBox (2016) DOSBox, an x86 emulator with DOS. Available at:

http://www.dosbox.com/ (Accessed: 20 September 2016).

21. Download Bluestacks App player for PC - windows 10/8/7 - Download Bluestacks

App player (2016) Available at: http://www.download-bluestacks.com/ (Accessed:

25 July 2016).

22. EDSAC (2016) Available at: http://www.tnmoc.org/special-projects/edsac

(Accessed: 02 September 2016).

23. Emulator (2016) in Wikipedia. Available at:

https://en.wikipedia.org/wiki/Emulator (Accessed: 08 August 2016).

24. Gunder, Michael (2003). Passionate Planning for the Others' Desire: An Agonistic

Response to the Dark Side of Planning. Progress in Planning

25. History of Computing Collection at Swansea University (2014) HoCC on BBC

radio wales’ science cafe. Available at:

https://www.youtube.com/watch?v=BrHxCrwR_Ks (Accessed: 16 August 2016).

26. History of Computing Collection at Swansea University (2015) Rod Delamere on

the StanTec ZEBRA. Available at:

https://www.youtube.com/watch?v=PT2R4GCtAEA (Accessed: 16 August 2016).

27. History of Computing Collection at Swansea University (2016) The Stantec

ZEBRA. Available at: https://www.youtube.com/watch?v=GALePEG35VE

(Accessed: 16 August 2016).

28. History of programming languages (2016) in Wikipedia. Available at:

https://en.wikipedia.org/wiki/History_of_programming_languages (Accessed: 30

August 2016).

29. History of programming languages (no date) Available at:

https://web.archive.org/web/20080324234919/http://www.cs.iastate.edu/~leavens/

ComS541Fall97/hw-pages/history/ (Accessed: 23 June 2016).

30. HOPL (no date) Available at:

http://hopl.info/showhardware.prx?id=4353&which=byhw&Name=Stantec%20Ze

bra (Accessed: 30 July 2016).

31. Hollingdale, S. H. and G. C. Tootill. (1970) Electronic Computers. Revised Edition.

Penguin Books. Ltd., Harmondsworth, Middlesex, England.

32. How do emulators work and how are they written? (2016) Available at:

http://stackoverflow.com/questions/448673/how-do-emulators-work-and-how-are-

they-written (Accessed: 03 August 2016).

33. Hume, J. N. P. and Beatrice H. Worsley. (1955) Transcode: A system of automatic

coding for Ferut. Journal of the Association for Computing Machinery, vol. 2, no.

4, pp. 243 - 252.

34. Hume, J. N. Patterson. (1954) Development of systems software for the Ferut

computer at the University of Toronto, 1952 to 1955. Annals of the History of

Computing, vol. 16, no. 2, pp. 13 - 19.

35. Joshi, A. (1989) Difference Between Emulation & Simulation. Available at:

http://www.slideshare.net/catchanil1989/difference-between-emulation-simulation

(Accessed: 25 July 2016).

UNDERSTANDING THE STANTEC-ZEBRA 75

36. Keyan, K. (2014) What are the differences between simulation and emulation?

Available at: https://www.quora.com/What-are-the-differences-between-

simulation-and-emulation (Accessed: 25 July 2016).

37. Kulenov, R. (2016) Rustam’s techno-feed. Available at:

http://blog.avangardo.com/2011/05/what-difference-emulator-simulator-imitator-

replication/ (Accessed: 25 July 2016).

38. Kumaarr, H. (2014) What is the difference between emulator vs simulator?

Available at: http://hemantcnb.blogspot.co.uk/2013/08/what-is-difference-

between-emulator-vs.html (Accessed: 25 July 2016).

39. Lévénez, É. (no date) Computer languages history. Available at:

https://www.levenez.com/lang/ (Accessed: 23 June 2016).

40. Marakas, James A. O'Brien, George M. (2010). Management information systems

(10th ed.). New York: McGraw-Hill/Irwin.

41. Ord-Smith, R. J. (1960) The STANTEC-ZEBRA and its Interpretation. Annual

Review in Automatic Programming, vol. 1, pp. 146 - 168.

42. Ord-Smith, R. J. (1960) The STANTEC-ZEBRA Simple Code and its

Interpretation. The Standard Telephones and Cables Ltd.

43. Pardo, C. (2016) Digitisation & digital Archiving. Available at:

http://www.dpconline.org/ (Accessed: 17 July 2016).

44. Part17 (no date) Available at:

https://webdocs.cs.ualberta.ca/~smillie/ComputerAndMe/Part17.html (Accessed:

03 September 2016).

45. Poel, prof. Dr. Ir. W.L. Van der (Willem) — KNAW (no date) Available at:

https://www.knaw.nl/nl/leden/leden/4658 (Accessed: 15 September 2016).

46. Ray, P. (2005). Harrod's librarian glossay and reference book, 10th Edition. Ashgate

publisher.

47. Rebuilding the baby (digital 60) (1998) Available at:

http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/rebuild/

(Accessed: 02 September 2016).

48. Richard, P (2005). A Glossary of Archival and Records Terminology. Archival

Science Society of American Archivists.

49. Rod Delamere (2014) Available at: http://www.swansea.ac.uk/library/archive-and-

research-collections/hocc/peopleandreminiscences/reminiscences/roddelamere/

(Accessed: 16 August 2016).

50. Santayana, G. (1905) The Life of Reason. (1 Vols). NEW YORK: DOVER

PUBLICATIONS, INC.

51. Sharp, D. (2010) Davidsharp.Com. Available at: http://www.davidsharp.com/baby/

(Accessed: 25 July 2016).

52. Smillie, Keith, (1991). The Department of Computing Science: The First Twenty-

Five Years. Technical Report TR 91-01, Department of Computing Science,

University of Alberta.

53. Smillie, Keith, (1993). Computing Science at the University of Alberta 1957 - 1993.

Department of Computing Science, University of Alberta.

54. Society, C.C. (no date) Computer resurrection issue 11. Available at:

http://www.computerconservationsociety.org/resurrection/res11.htm#e (Accessed:

25 July 2016).

UNDERSTANDING THE STANTEC-ZEBRA 76

55. Society, C.C. (no date) Computer resurrection issue 16. Available at:

http://www.cs.man.ac.uk/CCS/res/res16.htm#d (Accessed: 25 July 2016).

56. Software preservation (1900) Available at: http://sw.ccs.bcs.org/CCs/index.html

(Accessed: 30 July 2016).

57. Sommerville, I. and Sawyer, P. (1997). Requirements Engineering: A Good

Practice Guide. Chichester: John Wiley & Sons.

58. Standard Telephone and Cables (1961) STANTEC ZEBRA Electronic Digital

Computer. Available at: http://bitsavers.trailing-

edge.com/pdf/stantec/Standard.StantecZebra.1957.102646083.pdf (Accessed: 30

July 2016).

59. Stantec ZEBRA (2014) Available at: http://www.swansea.ac.uk/library/archive-

and-research-

collections/hocc/computersandsoftware/earlycomputers/stanteczebra/ (Accessed:

16 August 2016).

60. Stuchell, L.T. (2013) What is digital preservation? Available at:

http://www.lib.umich.edu/preservation-and-conservation/digital-

preservation/what-digital-preservation (Accessed: 27 July 2016).

61. The computer conservation society (UK) (no date) Available at:

http://www.cs.man.ac.uk/CCS/ (Accessed: 21 September 2016).

62. The encyclopaedia of computer languages (no date) Available at:

http://hopl.info/why.html (Accessed: 17 July 2016).

63. The UK mirror service (no date) Available at: http://www.mirrorservice.org/

(Accessed: 27 July 2016).

64. The virtual museum of computing (VMoC) (1950) Available at:

http://www.si.mahidol.ac.th/simi/museum.html (Accessed: 15 September 2016).

65. Travis, D. (2015) User centred design. Available at:

http://www.userfocus.co.uk/consultancy/ucd.html (Accessed: 08 August 2016).

66. User, S. (2016) Introduction - digital preservation coalition. Available at:

http://handbook.dpconline.org/introduction (Accessed: 17 July 2016).

67. User-centred design (2016) in Wikipedia. Available at:

https://en.wikipedia.org/wiki/User-centered_design (Accessed: 08 August 2016).

68. van de Mey, G. and Laboratorium, N. (1962) Process For an Algol Translator Part

One: The Translator. Available at: http://bitsavers.trailing-

edge.com/pdf/stantec/Zebra_Algol-60_Part1_Jul62.pdf (Accessed: 30 July 2016).

69. van de Mey, G. and Laboratorium, N. (1962) Process For an Algol Translator Part

Two: The Interpreter. Available at: http://bitsavers.trailing-

edge.com/pdf/stantec/Zebra_Algol-60_Part2_Jul62.pdf (Accessed: 30 July 2016).

70. van de Mey, G. and Laboratorium, N. (1962) Process For an Algol Translator Part

Zero: Introduction Part Three: The Tables. Available at: http://bitsavers.trailing-

edge.com/pdf/stantec/Zebra_Algol-60_Part0_Part3_Jul62.pdf (Accessed: 30 July

2016).

71. van der Poel, W. L. (1956) The Logical Principles of Some Simple Computers.

University of Amsterdam

72. van der Poel, W. L. (1959) THE SIMPLE CODE FOR ZEBRA.

73. Virine L, Trumper M. ProjectThink: Why Good Managers Make Poor Project

Choices. Gower Pub Co.

UNDERSTANDING THE STANTEC-ZEBRA 77

74. Weaver, Patrick (2006). "A Brief History of Scheduling." Mosaic Project Services

Pty Ltd.

75. What is Emulation (no date) Available at:

https://www.kb.nl/en/organisation/research-expertise/research-on-digitisation-and-

digital-preservation/emulation/what-is-emulation (Accessed: 25 July 2016).

76. Wilson, James M. (2003). "Gantt charts: A centenary appreciation". European

Journal of Operational Research.

77. Ziring, N. (1997) Dictionary of programming languages. Available at:

http://cgibin.erols.com/ziring/cgi-bin/cep/cep.pl (Accessed: 23 June 2016).

UNDERSTANDING THE STANTEC-ZEBRA 78

APPENDIX I: ROD DELAMERE’S SIMPLE
CODE EXECISES

UNDERSTANDING THE STANTEC-ZEBRA 79

UNDERSTANDING THE STANTEC-ZEBRA 80

UNDERSTANDING THE STANTEC-ZEBRA 81

UNDERSTANDING THE STANTEC-ZEBRA 82

UNDERSTANDING THE STANTEC-ZEBRA 83

UNDERSTANDING THE STANTEC-ZEBRA 84

UNDERSTANDING THE STANTEC-ZEBRA 85

UNDERSTANDING THE STANTEC-ZEBRA 86

UNDERSTANDING THE STANTEC-ZEBRA 87

UNDERSTANDING THE STANTEC-ZEBRA 88

APPENDIX II: STANTEC-ZEBRA SIMPLE

CODE INSTRACTION CODE

UNDERSTANDING THE STANTEC-ZEBRA 89

UNDERSTANDING THE STANTEC-ZEBRA 90

UNDERSTANDING THE STANTEC-ZEBRA 91

UNDERSTANDING THE STANTEC-ZEBRA 92

