
PROGRAM MANUAL
(PART II)

Revised Edition . . . August 1959

© 1960 COPYRIGHT BY STANDARD TELEPHONES AND CABLES LTD.

PRINTED IN ENGLAND

-~--;::-:·

..,.{"'·
I.
I

Short Drum Address
Operaiion Address I Track Position' ' ·

+'A K Q L R I 8 C D E V x x x W~ xx xx xx > x ~ +
~~~ 

.' LI nput indication marking. ?aramGtcr markin8_j 

·Standard call-in combinations. 

1 X33P : Number from tape - A and - B 
'X38P: Change to simple code on instruction (8) 
'.X39P: Number from dial .... A, number of digits .... B 
X40P: (A) . (8) .-ndcd .... A and 8 Uses 4,5,6,15. 

:X40Pi : (A) . (8) ..... AB Uses 4,5,6,15. 
'X41P: (A)/ (8) rounded -+ A and B Uses 4,5,6,7,15. 
X42P : (AB)/ (8) ..... 8, remainder - A 

Standard 

X45Pn: 
X46Pn: 
X47Pn: 
X48P: 
llC47P3 : 
n ,. o : 

2 : 
4: 

28 : 
30: 
31 : 
32 : 

(A) < (8) (8) undisturbed Uses 4,5,6,7,8,15 

printing. 
(A) = number ( 8) = pattern 
Type 
Type and punch machine code. 
Punch teleprinter code. · 
Punch machine code. 
Set new resident pattern - (8) 
according to resident pattern. 
according to incident pattern. 
carr. return, line feed, figure shift. 
resident, superpositive. 
incident, superpo$itive. 
standard integer + 0000000000 spa spa. 
standard fraction + 0.000000000 spa spa. 

$tructure of pattern. I· 

AKQLRI8CDEVx xx W 00000 xxxxxxxxxxxxx 1· 
L_JULJlUJLJULJLJLJLJLJLJLJU f( 
number a 1mperauve after digits : 00 = end i 
of digits 01 = faculauve 0 I • carr. tet. f 
not 10 = space line feed. 1 

pnnted 11 = potnt, imp. 1 · 

As above but for fraction : I 
I 0 = suppress first digit. 

0 = integer 
I • fraction 
0 •unsigned 
I =signed ~ 

I 

jl 

\·' 

:i 

4096 
2~ 
1024 
512 
2-'6 
128 

~ 

r 
= I, output sign; = 0, suppress sign tr. 
= I, convert as fraction; = O. e-0nvert ~ • 

integ,icr' 

= i, then output 10 - i decimal digits • . 

I 
,I 

P, P,, onwards arc taken in pairs, each bit 
pair having a value k with the followi~g 
significance · 

k = 0, output digit imperatively 

k = I. output digit facultatively 

k = 2. output a space 

k = 3, output a point 

P, P, = 2 has special meaning on fracti~n 
output, suppress most significkt 
digit. I 

I 

After I 0 - i digits have been output ~ ~-
k = 0, leave output program and return b:. 

main program 

k = I, output CR/LF 
(similarly for P11) 

.~------

i 
f 

T"'°"""ICf Code .._,11 ...... 
E J 
Uno Feed 

" I -$pico 
s 

I 
, 

I g 
u 7 

·Can. mum 
D (fob) 
R 4 
J Beil 
N 
F 

·c 
K 
T 

( z + 
L ) 

" 2 
ff 
y 6 
p 0 
Q I 
0 9 
8 
G ,..,. ... 
~ j I 

IAiWI 

---.... _":I._ ,,..,, 
i 

I 

1! c 
I I I 

i ., r V•luc Mllcliinc Code 

() 0 Blar1~ 1 ~ 

.,....... 
0 ..., 
0 - 0 ..., 
0 r 0 m 0 
0 
0 • I I 1·: 

z 2 
'i ) J J. 

oe 
oee 

• ~ 
Nu- r s s 

' ' 
~ : 

7 1 (;; 
I 8 -. if 
~ ' 

,, 

eo 
eo • eo• 
eo•• • 0 • 0 • IC> K 

Shon, .. _ I: 
II Q Quociont Couts• L I? Docimol"""' 

• oe • oee ••o I) L Left Shih :·-1 

14 ll llisl>• Shift :1 
IS I lnYersiaa 

,, 
16 8, H 8 ACC11n1ulo1Gr 'f 

••o • ••o• eeoee • 0 • 0 •• 17 c,s a-. 
• oe 18 D 9lon IO l>nt.-

• oe• 19 E Scan 10 Sliort 

• eo lO T Floo .... 

• eo• • 21 .() T•S1"i-
22 v T• Sip, «c. 
2) N Na1,N1UU11ioo • •a• • •o•• •• 0 24 " Add 

•• 0 • 2S " Jump 

•• o• 26 + •• o•• 27 •••o 28 y Input llldicoa.. • ••o • 29 z u-.. •••o• JO I" ...,._ 
•••o•• )I # c.w-a.. 

0 
0 

\ 
[ 

\., 

0 

r 0 
0 
0 
0 
0 



Chapter 5 
5.1 
5.2 

5.3 
5.4 

5.5 

5.6 
5.7 

Chapter 6 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 

6.10 

Chapter 7 
7.1 
7.2 
7.3 

PART II 

Logical Description of Stantec-Zebra: Introduction to the Normal Code 
The instruction word 
Operational digits 
5.2.1 The A digit 
5.2.2 The K digit 
5.2.3 Adding jump 
5 .2 .4 Double jump 
5.2.5 Double addition 
5.2.6 Jumping addition 
5.2.7 The D and E digits 
The arithmetic unit 
Further operational digits 
5.4.1 The B Digit 
5 .4 .2 The Q digit 
5.4.3 The L digit 
5 .4 .4 The R digit 
5.4.5 The I digit 
5.4.6 The C digit 
The V, VI, V2, V4 digits 
5. 5 .1 The Ul-U7 combinations 
5.5.2 VI-Test A negative 
5.5.3 V2-Test B negative 
5.5.4 V3-Test A zero 
5.5.5 V4-Test least significant digit of B 
5.5.6 VS, V6, V7 
5. 5. 7 The V digit 
The opening symbols : A and X 
The W digit 

The Control Unit 
The 'C' and 'E' control registers 
The test and transfer box 
w =1 
The action of X and A instructions : the 'D' control register 
'Failing' test instruction : AW 
Connection between 'D' and register 4 
Calling in a subroutine 
Repeated instructions 
Some simple program examples 
6.9.1 N and NKK 
6.9.2 The L and R digits 
6.9.3 The combination LR 
6.9.4 Double transport 
6.9.5 A note on the I digit 
Pre-instructions 

Zebra Programming (1) 
The dynamic stop 
Repeated instructions : multiple shifting 
Double length addition and subtraction 
7. 3. I Double length addition 
7 .3.2 Double length subtraction 
7. 3. 3 The carry trap : normal action 
7 .3.4 The carry trap: exceptional cases 

18 



cnapter i-cont. 
7.4 

7.5 

Chapter 8 
8.1 
8.2 
8.3 
8.4 
8.5 
8.6 

8.7 

Chapter 9 
9.1 
9.2 

Chapter 10 
10.1 
10.2 

10.3 

Chapter 11 
11.1 

11.2 
11.3 
11.4 

11.5 
11.6 
11.7 

Chapter 12 
12.1 

12.2 
12.3 

Double length multiplication : use of register 15 
7 .4. 1 The action of the multiplication program 
7. 4. 2 The complete multiplication program 
7. 4. 3 Instruction analysis : unrounded product 
7 .4 .4 Rounded product : the V digit 
Relative drum locations 

Zebra Programming (2) 
The XD facility 
Division : short process 
The normal division program 
Block transport 
Repeating blocks of instructions 
Short multiplication 
8. 6. 1 Multiplication by small fraction 
8.6.2 Multiplication by small integer 
Conjugation or logical product 

Zebra Programming (3) 
Input instructions: use of registers 26-31 
Output instructions 
9.2. l Punch: E26-E31 
9.2.2 Teleprinter: Register 25 

Input Programs 
The pre-input program 
The short input program 
10.2.1 Location 32 
10. 2. 2 Character > 1 
10.2.3 Binary form 
10. 2 .4 Parameter indication digit : Register 9 
10.2.5 Input indication digit: Register 11 
Vertical ladder of the normal input program 

The Normal Input Program (1) 
Construction of instruction part 
11. 1 . 1 Entry with N or X 
11 . 1. 2 Entry with A 
11.1.3 After Y 
11.1.4 After Z 
Word assembly : Horizontal ladder 
The special symbols U and V 
The parameter facility P 
11.4. I : Subroutine call-in 
11 .4. 2 : Mechanism of P facility 
Cumulative parameters 
Accumulative parameters 
Some parameter conventions 

The Normal Input Program (2) 
The T facilities 
12. 1 . 1 T followed by digit 
12. I . 2 TA and TX facility 
12.1.3 TP facility: Floating addresses 
12.1.4 TV facility 
12. I. 5 TE facility 
12.1.6 TD facility 
Input of numbers 
Correction facility 

19 



Chapter 12-cont. 
12. 4 Subroutine for taking in numbers : X33P 
12. 5 Subroutine conventions 
12. 6 The telephone dial program : X39P 

Chapter 13 

13.1 

13.2 

Chapter 14 
14 .1 
14.2 
14.3 

Chapter 15 
15.1 

15.2 

Output Programs 
Complete output program 
13.1.1 Layout pattern 
13. 1 . 2 Some samples of output patterns 
13. 1 . 3 Signed double length. fractions 
13. 1. 4 Pattern for normal integer 
13. 1 . 5 Pattern for normal fraction 
Building blocks 
13.2.1 : Building block program for output of digit and sign 

Program Conventions 
Registers 
Convention regarding subroutines 
"Dead" programs : Drum storage allocation 

The Control Panels 
The machine control panel 
15 .1.1 Cathode ray tube and display selection 
15 .1.2 Efficiency meter 
15.1.3 The parity key 
15. I. 4 The 16 block keys and the store locking key 
15.1.5 The "instruction word" keys 
15.1.6 Clear key 
15. 1. 7 Start key 
15.1.8 Conditional stop (c.s.) key; step key; stop key; manual key 
15.1.9 The UI-U6 keys 
The desk control panel 
15.2.1 Parity light 
15.2.2 Telephone dial 
l5a2.3 -• · The loudspeaker. 
15. 2. 4 The emergency qutton 

20 



PART II 

LOGICAL DESCRIPTION OF STANTEC-ZEBRA : Chapter 5 

INTRODUCTION TO THE NORMAL CODE 

5. 1 The Instruction Word. 
In computers a word is generally regarded as a unit of information. In Zebra it can be defined as 

being a block of 33 binary digits representing either a number or an instruction. 

The number word in the machine therefore consists of 33 binary digits, designated 0-32 from the 
most to the least significant, and the first digit is the sign digit. 

The instruction word also has 33 binary digits, and its construction is one of the characteristics of 
Zebra. 

FUNCTION PART 

A K Q L R I 8 C 0 E V V4 V2 V1 W 

REGISTER 
ADORE SS 

It can be seen that the instruction word is in three parts : 

MA1N 
TRACI< 

FIG. S•I 

(1) The Drum Address, or Main Store Address, consists of 13 binary digits of which the 5 least 
significant determine the drum position, i.e. its orientation when the instruction is executed, 
and the more significant 8 digits determine the track of the drum to be selected. These 
8 digits are decoded into one of 256 combinations to select one track. The way in which 
the correct position round the track is found will be clear when the control unit has been 
described. (See Chapter 6.) 

(2) The 5 digits forming the register addresses are decoded to give 32 possible selections. 
There are twelve true registers, each having a word length of 33 binary digits: the other 
addresses select accumulators, useful constants, zero, the most significant 1, and the 
least significant 1, and some are used to operate input and output mechanisms (see 9.1). 
These latter addresses refer to what are called pseudo-registers. 

(3) The unusual characteristic of the Zebra instruction word is the size of the function part and 
the way in which it is used. There are 15 binary digits in this function part and most of 
these are not decoded at all, as is the usual practice. For when the instruction is staticised 
in the control unit, each function digit, being a 0 or a 1, operates a switch and causes an 
elementary operation within the computer. These are called operational digits and are 
completely independent and individual. 

5 . 2 Operational Digits. 
The operational digits are represented by letters : learning the normal code therefore only 

necessitates the memorising of the functions represented by each of the 15 letters. Let us now consider 
the action of some of these digits. 

5.2.1 The A Digit. 
The most significant digit in the word is the A digit, and this can be O or I. When A = 0 

the drum is connected to the control unit. When A = I the drum is connected to the 
arithmetic unit. 

Arithmetic 
Unit 

I RogIBtm I 
A 0 

Control 
Unit 

I 
Drum 

21 

Arithmetic 
Unit 

I R~'~" I 
A 

Control 
Unl.t 

Drum 



LOGICAL DESCRIPTION OF STANTEC-ZEBRA INTRODUCTION TO THE NORMAL CODE 

5.2.2 The K Digit. 
Similarly, the next digit K controls the connection between the registers and the arithmetic 

or control unit. 

Arithmetic 
Unit 

Registers 

K=O 

Control 
Unit 

Arithmetic 
Unit 

Registers 

Control 
Unit 

The combined action of the A and K digits give rise to four possible combinations which 
become four specific types of operation. 

5. 2. 3 Adding Jump. ·· 
When A = 0 and K = 0 and 'adding jump' is executed. 

Arithmetic 
Unit 

Registers 

Control 
Unit 

Drum 

fA =0 
l__K=O. 

In the adding jump the word specified by the drum address comes from the drum into the 
control unit. ·The registers are connected to the arithmetic unit. Thus, although an 
instruction is being extracted, at the same time arithmetic is being done between the registers 
and the arithmetic unit. 

In this state the machine is behaving as a l + I address machine. 

5. 2. 4 Double Jump. 
When A = 0 and K = 1 a 'double jumP' is executed. 

Arithmetic 
Unit 

Registers 

Control 
Unit 

Drum 

{
A=O 
K =I 

Here, words from any selected register and a main store location are added to form a new 
instruction. This is equivalent to modifying the instruction as it stands in the main store by 
the amount specified in the register. So any register can be used as a 'B' register or 'order 
modification' register. 

5. 2. 5 Double Addition. 
When A = I and K = 0 'double addition' occurs. 

Arithmetic 
Unit 

Registers 

Control 
Unit 

Drum 

_f A= l 

lK=O 

Both the registers and the main store are associated with the arithmetic unit. A word 
from each can be added and their sum added into the accumulator. The machine is now behaving 
as a two-address machine with both addresses specifying locations to be used for arithmetic. 

22 



LOGICAL DESCRIPTION OF STANTEC-ZEBRA: INTRODUCTION TO THE NORMAL CODE 

5.2.6 Jumping Addition. 
With A = 1 and K = 1 we have an example of 'jumping addition'. 

Arithmetic 
Unit 

Registers 

Control 
Unit 

Drum 

This can modify an instruction already in the control unit by the contents of a register and 
at the same time can add a word from the main store into the accumulator. 

5 . 2 . 7 The D and E Digits. 
So far it has been assumed that both D and E = 0. When D = 1, writing into instead of 

reading from the drum occurs. Similarly, with E = 1, writing into the register occurs. Note 
that it is only possible to write into a true register, i.e. not those containing constants, etc., 
which are called pseudo-registers. It is convenient and economic to use addresses, when reading 
E = 0, to actuate input equipment and when writing E = 1 to actuate output equipment. 
(See Chapter 9.) 

With K = E = 1, it is possible to write from the control unit into a register. This gives 
a very convenient way of saving a return instruction when entering a subroutine. (For 
amplification, see 6.8.) 

In Zebra it is not possible to write into the drum from the control unit. 

ARITl-4METIC 
UNIT 

IMMEDIATE 
ACCESS 

REGISTERS 

TME ACTION OF A,K,D ANO e: DIGITS 

FIG. 5 ·Z 

23 

CONTROL 
UNIT 

A 

MAIN STORE 



LOGICAL DESCR1P1'ION OF STANTEC-2EBRA: INTRODUCTION TO THE NORMAL CODE 

5. 3 The Arithmetic Unit. 
In the arithmetic unit there are two accumulators known as A and B. Associated with each is 

a preadder in which the words coming from the registers or drum are first added together before their 
sum is added into, or subtracted from, the appropriate accumulator. The appropriate accumulator 
is specified by the B digit. 

DIAGRAM OF ARITHMETIC UNIT 

·p: PRE-ADDER r----·- - - - ----- --·1 SELECTED BY QEGISTER 
ADDRESS Z. .A. ACCUMULATOR 1 

I ,:---,------

L- - - - - - - - - - - - - - - J 

INPUT !=ROM 

~B 

INPUT FROM 
MAIN STORE 

B 

r----------------
1 I 

OUTPUT TO REGISTERS 

B~TORE. 

1---~' '9• ACCUMULATOR ,_! --------

INPUT 

1 I 

L--------------~ 

2- az WITH Q DIGIT 

DIAGRAM OF ACCUMULATORS 

S:OR ·a· ~------ --. 

~----..'---< r--~'--~ 
ACCUMULATOR: DB : 

! c: 
L-------.J 

8 

'A. ACCUMULATOR 

SIGN POSITION 
.f CONTROL 

24 

NORMAL LEAST 
SIGNll=ICANT DIGIT 

SELECTED BY REGISTER 
AOIOIRESS 3 

FIG. 5.3. 

ONE DIGIT 
t>ELAY 

FfG.5,4. 



LOGICAL DESCRIPTION OF STANTEC-ZEBRA: INTRODUCTION TO THE NORMAL CODE 

5. 4 Further Operational Digits. 
The following digits control the operation of the arithmetic unit. 

5 .4 . 1 The B Digit. 
When B = 0, the A accumulator is specified ; when B = 1 the B accumulator is specified. 

The inputs to and outputs from the accumulators are controlled by the B digit. The outputs 
of A and B can be read as if they were registers 2 and 3, respectively. (See Fig. 5 .3.) 

5 .4 . 2 The Q Digit. 
When the Q digit is present a I, or 2-a2, is added into, or subtracted from, the least 

significant end of the B accumulator independently of any other arithmetic operation which 
may be occurring at the same time_ We often refer to 2-32 as e. (See Fig. 5.3.) 

5 .4 . 3 The L Digit. 
When the L digit is present, the double length contents of A and B together are shifted one 

place to the left. This means that the most significant digit from B goes into the least significant 
digit position of A, and a 0 is produced in the least significant position of B. 

At the same time a number from a register or a main store location can, if specified, be added 
to the shifted contents. 

5 .4 .4 The R Digit. 
In the same way, the R digit shifts the double length accumulator one place to the right, 

i.e. the least significant digit of A becomes the most significant digit of B, and the least significant 
digit of B is lost. 

5 .4. 5 The I Digit. 
When the I digit is present in the instruction being executed, words entering the arithmetic 

unit are subtracted from the selected accumulator. When I is absent, the words are added into 
the contents of the selected accumulator. (See Fig. 5 .4.) 

5 .4 . 6 The C Digit. 
When the C digit is present, the accumulator specified by the B digit is cleared. If the 

contents of the specified accumulator are to be copied into a register or main store location 
this takes place before the accumulator is cleared. In shifting operations, the shifting from 
A to B, or B to A, does not take place when one of the accumulators is to be cleared. (See 6.9.2.) 

5.5 The V, Vi, V2, V4 Digits. 
These digits are used for testing purposes. They are treated differently and are decoded to give 

15 combinations, all zeros being disregarded. 

The combinations are : 
0 001 
0 010 
0 011 
0 100 
0 101 
0 110 
0 111 

1 000 

1 001 
I 010 
1 011 

1 100 
1 101 
1 110 
1 111 

The execution of the combinations are as follows : 

5.5.1 The Combinations U1-U7. 

Ul 
U2 
U3 
U4 
U5 
U6 
U7 

v 
Vl 
V2 
V3 
V4 
vs 
V6 
V7 

The execution of the Ul-U7 combinations depends on the state of the manual keys 1-7. 
(See 15.1.9.) Note that when V = 0 it is called U, i.e. U = V. 

25 



LOGICAL DESCRIPTION OF STANTEC-ZEBRA: INTRODUCTION TO THE NORMAL CODE 

5.5.2 V1-Test A Negative. 
VI tests on the sign digit of A. The test succeeds if the sign digit is 1. If the sign digit 

is 0, the test fails and the instruction is regarded in the machine as an A instruction. (See 5.6.) 

5.5.3 V2-Test B Negative. 
V2 tests on the sign of B and succeeds if it is 1. If a 0, then the test fails and the instruction 

is again regarded as an A instruction. (See 5. 6.) 

5.5.4 V3-Test A Zero. 
V3 tests to see whether there is a 1 anywhere in the A accumulator. If a 1 is present the 

test succeeds: if all the 33 digits are zero, then the test fails. In this test the extra digit of A 
is disregarded. 

5 . 5 . 5 V 4-Test Least Significant Digit of B. 
V4 tests on the least significant digit of Band succeeds if it is a 1. If it is a 0, the test fails 

and the instruction is regarded as an A instruction. (See 5. 6.) 

5.5.6 V5, V6, V7. 
These combinations are not test digits and are used for the control of external equipment. 

5.5. 7 The V Digit. 
The combination V has a special use. It controls the release of the 'carry' from the head 

of B to the tail of the A accumulator. Arithmetic in B may produce a 'carry'. This is trapped 
in a 'carry trap' and is only released into A when there is a subsequent instruction containing 
the V digit. (For amplification see 7 . 3. 3.) 

5. 6 The Opening Symbols: A and X. 
When writing instructions, only those digits having the value of 1 are written, the others being 

omitted. In writing the two addresses (i.e. drum and register) there is a convention that the drum 
address is written first. Thus the instruction AIOOBC5 means: add the contents of drum location 100 
and the contents of register 5 into the cleared B accumulator. This can be abbreviated to: 
(100) + (5) --+ cleared B. 

Instructions written in this way are interpreted by a Normal Input Program, which is normally 
kept inside the store. For example, when B is read, a I is automatically placed in the correct position 
in the instruction which is being formed in the machine. For this reason, the order and placing of 
these letters in an instruction word is not important. It is simply convenient to place them between 
the two addresses in order to separate the addresses. Addresses can be separated by a point. Thus 
AIOOBC5 = AIOOCBS = AlOOBSC = ABCI00.5. But the opening symbol A must go at the beginning 
since it marks the beginning of the instruction ; moreover, the end of one instruction is marked by 
the beginning of the next. 

In the case when A = 0, there is a special symbol called X. There are, therefore, two types of 
instructions : A and X. 

Example: XIOOBC5 = next instruction in 100; (5)--+ cleared B. 

To avoid ambiguity between drum and register addresses, drum addresses of less than 32 are 
signified by three digits, e.g. 031. Thus X004C4 = next instruction in drum location 004; 
(4) ---+ cleared A. 

5. 7 The W Digit, 
This is not normally provided directly by the programmer, but is supplied internally by the 

automatic action of the Normal Input Program. 

If an instruction is associated with a word located in the main store, its execution must be delayed 
until the drum has rotated to its correct position. Under these conditions the W digit is absent. 

· When the W digit is present the reading and writing circuits associated with the main store are inhibited 
or blocked, and the instruction is executed immediately. 

This is used in repeat instructions, in which the drum address, made redundant by the inclusion 
of the W digit, can be used as a counting device. (See 6.8.) 

26 



THE CONTROL UNIT Chapter 6 

6.1 The 'C' and 'E' Control Registers. 
Words can come into the control unit from drum locations and registers. They are first added 

together before entering the 'C' control register, which is a shifting register. When the complete word 
is in 'C', the position part of the drum address is examined and the word is held circulating in 'C', until 
the drum is orientated into position. It is then allowed to jump sideways into the static register 'E', 
from which switching occurs during the 50 microseconds interval between words, and is held for the 
whole of the successive word-time. 

THE CONTROL UNIT 

'o' CONTROL og1sTl:P 

r•'IC.S~""'L ... ._W"&'"_...~._-__._""lil.~-.-.l'L.""11.-m mr --~-"'" ...... + 

! ··-- ---t---TO DRUM 
~ j rt POSITION 

'c' CONTROL l=lEGISTER ··-=~"·-~--~~~-., .----)·---., i 5~~~:~ 

.T. (Tl=lANSFER) 

I 
i CDNTl'lOLS TO AAITHMET IC ANO r LOGICAL SWITCHING CIRCUITS. +. eot-JT~ TO AODA295 

Sl'UiCTJON CIRCU!'T5. 

'----~ FROM SELECTED IMMEDIATE ACCESS REGISTER 

..._ ______ FROM SELECTED STORE LOCATION. 

~--------To SELECTED IMMEDIATE A<X:E55 REGISTER 

1.) THE 0E' REGISTER STATICISES EACH INSTRUCTION l=<:>R ONE WORD TIME.DURING 'II/MICH. 
THE INSTRUCTION J. IS EXECUTED. 

2) AT THE ENO OF= EACH WORD TIME.~·e· REGISTEQ 15 AUTOMATICALLY SET TO 
TO THE 1-fAQ,,itLESS IN51RUCTION A'!:! 

!i IF ANO WHEN Tt<E t<ElCT INSTRUCTION IS DUE TO 6E EXECUTED IT IS TRAIJSFERREO 
(IN.I' PAR.AUEL) J=RONI THE·c· REGISTEf:l TO TI4£ ·e· Rl?GISTER CtJl::uf'-GTHE ~T TIME 
INTERVAL 6E1WEEN WOROS THUS CANCEU.JNG THE l!.Yi INSTRUCTION. 

4.) ~ ~: ~~~~~;~~ION t5 hQJ' TO SE ~ECUTEC TME E:u' 1NSTRUCTION ~EMA.INS 

2x2"
52 l. 

(REGISTER4.) 

FIG. 6.1. 

6. 2 The Test and Transfer Box. 
The test-and-transfer box, which allows this transfer, also examines the decoded combinations 

U1-U7, Vl-V4, and allows or does not allow the transfer according to their state and to the corresponding 
state of the switches or arithmetic unit. 

6.3 w = 1. 
The test-and-transfer box also examines the W digit. (See also 6.5.) If W = I, the word entering 

'C' is immediately allowed to jump into 'E' and is executed. The output from the drum is now blocked 
and can neither be 'read from' nor 'written into'. Thus an instruction with W = 1 has a redundant drum 
address, but the special use as a count can, in this case, be made of it. (See 5. 7 and 6 .8.) It is worth 
noting again that the W digit is not usually entered into an instruction by the programmer but 
automatically by the Input Program in those instructions not requiring waiting for the drum. Note that 
Wis examined in 'C' by the test-and-transfer box and is also staticised in 'E' to keep the drum inhibited 
during the word-time in which the instruction is executed. 

27 



THE CONTROL UNIT 

6.4 The Action of X and A Instructions: The •n• Control Register. 
If the instruction entering 'C' is an X instruction, it passes on serially into 'D', as well as jumping 

into 'E'. In the process 2 is added to the drum address. 

If, however, the word entering 'C' is an A instruction, then the next word from the drum will 
have as its destination the Arithmetic Unit. In this case, the next word for 'C' comes back from 'D' 
by the action of the A switch at the entrance to 'C'. 

The reason 2 is added to the drum address when in 'D' is that when it returns to 'C' it can add 
in the next address which is the most optimum available without detriment to timing. To this extent 
Zebra can be said to have an optimising facility built into it. 

X and A instructions can be best clarified in the following examples : 

(1) Drum location Program instruction B Accumulator 'C'j 'D' 

99 XlOO XlOO 
100 ABC101 ABCIOl X102 
101 Constant Constant I 

B c D 
--------

(2) 99 X100BE4 X100BE4 
100 ABClOI ABC IOI X102BE4 
101 Constant Constant X102BE4 

Xl04BE4 

Notice that the instruction returns again from D and may bring with it a second action of some 
of the operational digits. Thus, in the second example, (B) ~ 4 again after the execution of the A 
instruction. For this reason XlOOBE4 is an example of a pre-instruction. (See 6.10 and 7.4.) · 

Below is illustrated the 'pattern' of operations: 

c D 

X1 .•• +2 
X 2 .•• +2 

When an X instruction passes from 'C' to 'D' and has 2 added, it remains in 'D' until either (1) it 
returns to 'C' after a subsequent A instruction, or (2) is wiped out by another X instruction from 'C' 
immediately following it. 

6. 5 'Failing' Test Instruction : AW. 
Let us now consider an example of a test instruction which fails : 

99 
. 100 

If fails [101 
102 

B 

If succeeds 

c D 

X102 

If the test succeeds the instruction would jump to 101. When the test fails, however, as above, 
the instruction X101V2, which tests on the sign of the B accumulator, does not go into 'E'. Instead 
the test-and-transfer box automatically provides the instruction AW. This is harmless, but because 
it is an A instruction X102 returns to 'C' from 'D', i.e. when the test fails there is a jump to the 
next-but-one location. 

28 



THE CONTROL UNIT 

6. 6 Connection between 'D' and Register 4. 
When the contents of 'D' pass into 'C' after an A instruction, it also happens that the contents of 

register 4 pass into 'D'. Abbreviated, this can be written as: when (D) ---?C, then (4) --)D. 

X!O:j: D :t 4 
ABCIOI Xl02 X .... 
X102 X ... 

Let us take as a further example the case of the failing test instruction which follows an A 
instruction : 

c 

X100V2 
ABC IOI 
X102V2 

D 4 

Xl02V2 

In 6. 5 we have seen that a test instruction which fails is interpreted as an A instruction. So here 
we have two A instructions following each other, and there is the danger that there is no X instruction 
available in 'D' which can return to 'C'. But (4) can pass i1:1to 'C'. So if, say, an appropriate jump 
instruction had been previously written into 4, then this would return to 'C' via 'D'. In this example 
it would immediately follow the AW instruction which has automatically replaced the failed test 
instruction. 

B c D 4 

-ve no. XIOOV2 
ABC IOI Xl02V2 X . . . jump inst. 

+ve no. XI02V2 x ..... 
x ..... 

The jump instruction in 'C' can now be executed, causing the machine to jump to a further 
instruction in any specified location. 

6 . 7 Calling in a subroutine. 
There are some processes in computation which occur very frequently, such as square-rooting, 

evaluating logarithms, and so on. To save the time and space of having to insert instructions to 
perform these operations every time they occur, they are written once and called in every time they are 
required. Such a program is called a subroutine. Subroutines are prepared on tapes and kept in 
a library. 

To call in a subroutine it is necessary to jump to the appropriate location where the subroutine 
begins and to return to the next instruction in the main program after the subroutine has been 
executed. This is done by attaching KE4 (i.e. 4 or any other register) to the instruction which jumps 
to the subroutine and to end the subroutine with : 

X next address K4 
-1 

These last instructions link the subroutine to the next instruction of the main program. The action 
of these instructions is described below : 

99 
100 
101 

XlOO 
X address of subroutine KE4 

29 

ct 
XlOO 

X .... KE4 . 

Subroutine 

X ... K4 
X(I02-1) 

XIOI 

D. 4 

X102 
X102 



THE CONTROL UNIT 

The instruction in 4, by means of which we have come back to the main program, is called in Zebra 
the return instruction. 

6.8 Repeated Instructions. 
It is required to repeat an A instruction which is in a register, say 5, a number of times, say 3. 

The instruction used is : X5K3, which is called the repeat instruction. 

Now in this instruction the drum address and register address are interchanged. The W digit 
is automatically inserted by the Normal Input Program (see 6.3) and the drum address blocked. The 
drum address 3 is regarded now as a count of 3. 

The instruction X5K3 is interpreted in the machine as an instruction XKW which has a register 
address of 5, and a drum address of 8192-2 x 3. 

The action is as follows : 

2 

3 

c 

X5K8192-6 

AlOO 
XSK8192-4 
AIOO 

XSK8192-2 
AIOO 

X6K 

D 

XSK8192-6 + 2 
= X5K8192-4 

X5K8192-4 + 2 
= X5K8192 - 2 

XSK8192 - 2 + 2 
= X5K8192 = X6K 

Notice here that X5K8192 = X6K. This is because 8192 = 214 and there are only 13 digits located 
in the main store address ; so there is an overflow into the register address position and the register 
address is augmented by 1. (See Fig. 5 .1.) Therefore X5K8192 is identically equal to X6KOOO. 

The A instruction, which is the contents of register 5, has been repeated three times. The next 
instruction would, in this example, have been previously placed in register 6. There is a convention 
that jump instructions are underlined in a written program for the programmer's convenience, i.e. 
X5K3. 

6,9 Some Simple Program Examples. 
Here are some very simple examples of Zebra normal code programs. X instructions are basically 

'take' instructions, and A instructions are similarly 'do' instructions. This take-do rhythm is typical 
of many computers, but it is possible to break the rhythm. 

(I) Example : (300) + (500) + (700) --+ A. 
100 XlOl Take 
101 A300C Do 
102 X103 Take 
103 ASOO Do 
104 XlOS . Take 
105 A700 Do 
106 X107 Take 
107 X200 Take 

It is possible and clearly desirable to 'take' and 'do' simultaneously. 

(2) Example: (5) + (7) + (12) + (14) -+ B. 
100 X101BC5 (5) --+ cleared B 
101 X102B7 (5) + (7) --+ B 
102 X103B12 (5) + (7) + (12) -+ B 
103 X104B14 (5) + (7) + (12) + (14) --+ B 

This is a powerful feature of Zebra. 

(3) This example shows the use of the I digit and the point : 
(5) + (6) - (7) ---+ A. 

100 I XIOIC5 
101 Xl02.6 
102 X103I7 

30 

(5) -+ cleared A 
(5) + (6) ----+ A 
(5) + (6) - (7) -+ A 



THE CONTROL UNIT 

6.9.1 N and NKK. 
X next address can be abbreviated and written as N. This is recognised inside the machine 

by the Normal Input Program. Thus the last example could be written as: 

100 I NCS 
101 N6 
102 NI7 

Similarly, A next address has an abbreviated form: NKK. 

Example: 101 I ABC102 _ NKKBC 
102 X002.1 
103 A104CE15 - NKKCE15 

6.9.2 The L and R Digits. 
The L and R digits shift both accumulators, which can also be coupled together for double 

length working. There is a special convention about clearing and shifting: shifting digits 
never appear in a simultaneously cleared accumulator. (See 5 .4. 6.) 

Examples : A200CE5R : (A) --+ 5 ; (200) --+ cleared A ; 

NRBC3: 
NRC2: 

(B) is right shifted. 
(3) --+ cleared B ; (A) is right shifted. 
(2) --+ cleared A; (B) is right shifted. 

The above examples show the action of Ron single length accumulators. Notice that it is 
the unspecified accumulator which is right shifted here. The action of the L digit is similar. 

Now the A accumulator has an extra digit. (See 2 .4.) This is required, as has been seen 
in 2.5, for the multiplication process. The digits of A are labelled a_1 a0 a1 •••••• a 32, where 
a_1 is the extra digit. On right shifting, the extra digit moves into the sign digit position, and the 
extra digit position is refilled by a copy of its previous contents, i.e. a_1 --+ a0 ; (a_1) new --7 

(a_J old. 

6. 9. 3 The Combination LR. 
The combination LR, which is logically meaningless, has, however, a special meaning. It 

is decoded to give a facility used in the multiplication process. (See 7 .4.) 

6. 9. 4 Double Transport. 
Notice that the D and E digits used separately enable instructions to be given which allow 

simultaneous reading from and writing into the arithmetic unit. 

Example: (1) AD300BC6: D writes (B) --+ 300 
B is cleared 
(6) --7 B 

(2) A300BCE6 : E writes (B) --+ 6 
B is cleared 
(300)--+ B 

6.9.5 A Note Oil the I Digit. 
The I digit has no influence on the control unit or on writing into the store. 

Example : (1) A300IBCE6 : writes (B) ~ 6 
I only affects (300) --+ B 

(2) A300IK5 : I only affects A300 
i.e. makes (A) = -(300) 

6. 10 Pre-Instructions. 
Pre-instructions are X instructions, whose effect is not of use until they return to 'C' from 'D' in 

later sequence. 

An example can be seen in the multiplication program 7 .4. 

31 



ZEBRA PROGRAMMING (1) Chapter 7 

7. 1 The Dynamic Stop. 
When Zebra is switched on and waiting to be started, it executes over and over again a single 

instruction. This instruction is permanently recorded in drum location 000. The instruction is: 
XOOOKE4U7; it is used in conjunction with the manual key U7, which is the start key. 

The action of this instruction, called the dynamic stop, is an example showing the combined action 
of the C and D registers and register 4. The action is as follows: 

c 

XOOOKE4U7 
XOOOKE4U7 
XOOOKE4U7 

D 

X002KE4U7 
X002KE4U7 

4 

X002KE4U7 

The above sequence takes place when the start key is not pressed, i.e. when,U7 = 1, and continues 
until the key is depressed. When this is done, and U7 = 0, the action becomes : 

XOOOKE4U. 7 ~ X002KE4U7 zt: X002KE4U7 
X002KE4U7 X002KE4U7 
X002KE4U7 

This sequence changes when the key is released and U7 = l again : 

I X002KE4U7 c-r ~ 
When the last instruction is executed it causes a jump to location 002, which contains a further 

instruction. This mechanism returns when the 'clear' key (see 15. 1. 6) is pressed during some action 
of the machine. The clear key causes zero, i.e. the instruction XOOO, to come into the 'C' register and 
hence a return to the dynamic .stop. 

7 .2 Repeated Instructions: Multiple Shllting. 
It has been seen in 6.8 that an instruction of the form X5Kp causes (5) to be repeated p times. 

This device can be fitted into a program as follows: 

100 NKE6 
101 X5Kp 

Here the A instruction to be repeated is in register 5 and the return instruction Xl02, placed by 
the action of KE6, is in register 6. An example is multiple shifting : 

100 I NKE6 5 I AR 
101 X5Kp(R) 6 Xl02 

If the R digit is included in the X5Kp instruction, then 2p + 1 shifts occur ; with no R, p shifts 
occur. 

A complete piece of program, which sets AR in 5 as well, is shown below : 

A c D 
100 
101 NES X102E5 
102 A103C Al03C X104E5 w103 AR AR Xl04E5 104 NKE6R X105KE6R Xl06E5 105 X5KpR XSKpR 

AR 
X5Kp-1R 

X5Kp-1R 

AR X5Kp-2R 
until X6KR 

In this example the return instruction is Xl06E5. 

Remarks 

(A)= AR--+ 5 
Xl06E5 ~6 

(6) = Xl06ES-+ C 

The comma notation on location 103 indicates that the contents of the location are to be regarded 
as a constant, i.e. they are not executed directly from location 103. 

32 



ZEBRA PROGRAMMING (1) 

7. 3 Double Length addition and Subtraction : Use of Carry Trap. 
7 . 3 . 1 Double Length Addition. 

Example: 
There is a double length number in registers 7 and 8 (head and tail, respectively) and 

a double length number in A and B. The double length sum is required in 7 and 8. 

Program: 
NBS 
N7V 
NBES 
NE7 

Remarks. 
(8) ~Band added to (B). 
(7) ~A and added to (A). The V 
digit controls the carry from B to A. 
(B) ~s; (A) ~7. 

Rule: The carry produced by addition in Bis transmitted to A by V. (See 5.5.7.) 

7. 3. 2 Double Length Subtraction. 
Let us suppose that the situation is the same as above, but the double length difference 

is required. 

Program: 
NIBS 
NI7V 
NBE8 
NE7 

Remarks. 
(8) ~ B and is subtracted from B. 
(7) ~ A and is subtracted from A. IV 
controls the borrow from B to A. 
(B) ---')> 8 ; (A) --r 7. 

Rule: The borrow produced by the subtraction in B is transmitted to A by IV. 

Hence V or IV follow I or I arithmetic in B, respectively. 

7 .3.3 The Carry Trap: Normal Action. 
The normal action of the carry trap can be shown as follows : 

Arithmetic in B Release in A 

I: Carry 0 V: Carry 0 
I: Carry 1 V: Carry I 

I: Borrow 0 IV: Borrow 0 
I: Borrow I IV: Borrow 1 

I 

The entrance to and exit from the carry trap are influenced by the I digit, so that if we 
show the contents of the trap as well, the diagram becomes more fully : 

Arithmetic in B Contents of Trap Release in A 

I: Carry 0 0 V: Carry 0 
I: Carry 1 1 V: Carry 1 

I: Borrow 0 1 IV: Borrow 0 
I: Borrow 1 0 IV: Borrow 1 

7. 3. 4 The Carry Trap : Exceptional Cases. 
The table below gives the exceptional cases which break the rule : 

Arithmetic in B Contents of Trap Release to A 

I: Carry 0 0 IV: Borrow 1 
I: Carry 1 1 ' IV: Borrow 0 

x 

I: Borrow 0 1 V: Carry 1 x 
I: Borrow 1 0 V: Carry 0 

33 



ZEBRA PROGRAMMING (1) 

It can be seen from this that borrow 0 is inverted to carry 1, etc. Of particular importance 
are those entries marked X. An instruction which adds 0 to B is harmless, but a subsequent 
IV instruction can be used to subtract e from A. 

An instruction subtracting 0 from B will produce borrow 0 and is harmless, but a subsequent 
V instruction can be used to add e into A. An example of this is used in the multiplication 
program. (See 7.4.) 

7 .4 Double Length Multiplication: Use or Register 15. 

The method of multiplication used is precisely that described in 2. 5. The fundamental operation 
is that of right shifting the accumulators and adding the multiplicand into A if the least significant 
digit of B before the shift was 1. This facility is provided by the LR combination. LR causes the 
product of the least significant digit of B and register 15 to go into the A accumulator, i.e. LR causes 
b 32 X (15) ~ A. Register 15 can therefore be used to contain the multiplicand. Register 15 is 
also used in connection with the XD facility in the division process. (See 8. 1.) 

7. 4 .1 The Action of the Multiplication Program. 

The basis of the program is : 303 
304 
305 
306 

N 
NCLR 
X5K15LR 
NLRI 

5 
6 

15 
B 

ALR 
X306 
multiplicand = a 
multiplier = b 

Notice that ,LR occurs in both the repeat and the repeated instructions. In this manner 
we can obtain the sign digit and 64 digits of the product; the 66th digit, which is the least 
5ignificant digit of B, is zero. 

The detailed action is: 

A B c D 

b 
b 

0 or a 
,_, 

% 01 
I zl 

2nd step 
-:i ALR o, ~I 

L :1 X5K14LR o, until 
XSKlLR 
ALR 

I X6KLR 
32nd s tep 01 X306 

I' Q 

X307LRI 
33rd s tep 

original sign 
digit of b 

The final step is done negatively. This takes care of the sign digit. If bis positive, nothing 
is su,btracted from the double length product at the 33rd step. If b is negative, the multiplicand 
is subtracted from (A) at this stage. - · 

. 3-i 



ZEBRA PROGRAMMING (1) 

7 .4. 2 The Complete Multiplication Program. 

The complete program is : 300 
301 

.. 302 
303 
304 
305 
306 

•307 

NIB 
NKKCEIS 
ALR 
NESV 
NLRCKE6 
X5K15LR 
NLRIBK4 
-1 

This could be used in another program by having for instance, 199 
200 

X200 
X300KE4B, 

and this would give a rounded answer, correct to 32 binary digits, in A. 

If 200 I X301 KE4B 
this would give a double length answer in AB. 

We assume that the multiplier b has already been placed in B, and the multiplicand a 
in A. 

7 .4.3 Unrounded Product. 

The detailed action for a double length an,swer is : 

A B c D 4 6 Remarks 
1----1----1-------1-------1------------1 

a b 

ALR 

0 or a O! 
2nd step 
3rd step 

33rd step 

ALR 
X6KLR - -~i-~~~~~-r--r~ 
X306ESV-
X307K4LRIB 
X201 
(= X202- 1) 

So 

carry trap set to 0 
a~1s 

ALR ~ 15. V has no 
effect, since 0 in carry 
trap 

Double length product 
built up in A and 
Bin 33 steps 



ZEBRA PROGRAMMING (1) 

7 .4. 4 Rounded Product. 

The action for a single length rounded product is : 

A B c D 4 6 Remarks 
- -

a b X200 
X300KE4B X202 
X30IIB 
A302CE15 carry trap set to I 

ALR X303IB 
XS04E5V 

ALR+ e X305LRCKE6 
0 or a 1 i 

un til 
ALR 
X6KLR 
X306E5V 

xxx ... xxx xxxx ... x X307K4LRIB 
xxx ... xxx xxx .... xx e is released into A by V 

After the e is added to A by the V digit it is immediately shifted into B, so the effect 
is the same as adding a 1 into the head of B at the 33rd step. This gives the correct 
round-off to the product in A. 

7. 5 Relative Drum Locations. 

In the program examples previously given we have numbered drum locations with 100, 101, etc. 
This is done purely for purposes of illustration and convenience. In fact, when a program is actually 
written, drum locations are numbered in a relative form with P, Pl, P2, etc. This is interpreted 
automatically by the Normal Input Program which chooses a drum location relative to P which is the 
most convenient. (For amplification see 11.4.) 

36 



ZEBRA PROGRAMMING (2) Chapter 8 

8. 1 The XD Facility. 
The combination XD is used in the division process. An instruction containing this combination 

causes, in addition to the separate actions of these digits, the contents of register 15 to go into the 
specified accumulator, i.e. XD causes (IS) ~ specified accumulator. 

Example : XlOOKSD : (A) ~ 100. 

(A) + (15) - A. 
(5) - C = 'C' register. 

D also causes writing into the drum even though there is an X instruction. With the XD 
combination work can still be done in A even though the contents of the specified register are going 
into C. It is usual to have (register) - C in an XD instruction, otherwise nothing can reach C and 
the machine stops. The instruction XDlOO, for example, will cause a stop. 

8 . 2 Division : Short Process. 
The central process in the division of fraction by fraction is as follows: Let us assume that the 

dividend a is in A, and that minus the divisor bis in register 15, i.e. a = (A) ; -b = (15). We wish 
to find a: 

b 
100 I X4KDQp 
101 

4 
5 

15 

AI15QV1 
Xior-­
-b 

In register 4 we have the repeated instruction AI15QVI, which is also a test instruction. Test 
instructions are signified by the dotted underline notation. VI tests A negative (see 5.5.2). 
Register 5 contains the return instruction XlOl. 

I 
A 

a 
a-b 

a - 2b 

a-b 

remainder 

B c D 

X4KDQp --
~X4KDQp-1 e AI15QVI 

X4KDQp-l..itl::-v 
2e AI15QVI ' 

e I 
........................... ... and so on 

quotient 

Tests if (A) < 0. If not, the 
test fails. 
When (A) < 0 then b has been 
subtracted once too much. This 
is compensated by IISQ. 

Such a short division process is used in binary to decimal conversion. 

The mechanism is: (1) Subtract. 

(2) Test if positive or negative. 
(3) If positive, then write 1. 
(4) If negative, then recover. 

8.3 The Normal Division Program. 
This introduces register 23 which permanently contains the sign digit : i.e. (23) = 20 as a constant. 

In the normal division program, the process described above works more quickly since the remainder 
after each step is left shifted before the next subtraction. (See 2.4.) The numerator must be smaller 
than the denominator. The rounded quotient in A and B is required. 

37 



ZEBRA PROGRAMMING (2) 

The full program is : 

Uses registers: 
100 NIBC3 4 Return instruction 
101 X103IC2V2 5 AQI15Vl 
102 --------- 6 XIf4-I15-
103 NBEIS 7 dividend a 
104 NE6 15 -divisor b 
105 A106CE7R 

w106 AQI15Vl 
107 A108CE5LQ 

w10s X114Il5 
109 NIC7V 
110 ~~I?.9!~~~! 
Ill 
112 X5K32LDQ 
113 
114 NRB23Q 
115 NC3 
116 NK4 
117 -1 

The program is called in by XlOOKE4. 

A B c D I Analysis ,_, __ , ___ , ______ , 
a 

-a 

AQI15Vl 

X114Il5 

a-B 

a-E 

b 

-b 

-b 
2 

-b' + E 

-b' + E 

X100KE4 return instr.+2 
X101IBC3 

X103IBC3 
XI03IC2V2 ~ 

X104BE15 
XIOSE6 
A106CE7R 

X107E6 
A108CE5LQ 

XI09E6 

Xl07E6 

X109E6 

X110IC7V --1 _ 
~ X112IC7V 

X112QI15Vl 

r.i. + 2 --7 4 
Clears B ; adds -(3) ___,.. B. 
(Register 3 = (B).) 
Clears A; adds -(2) ____,..A. 
(Register 2 = (A).) 
We show here the case where 
b > 0. With b < 0 we 
should not have changed a, 
and b would be restored. 
-b--+ 15 
Pre-instruction. 
(A) =-a -T 7 (+a if b < 0). 
Constant --T cleared A. 
Right shift b, i.e. divide by 
2. 

AQI15Vl --7 5 ; A cleared; 
I constant ---+ A. 

B is left-shifted again so that 
-b is restored, but with 
least significant digit now 1. 
Xl 14Il5 --+ 6. Carry trap 
has been set to no carry by 
the Q digit. 
-(7) -e --+ cleared A. 
I.e. a -s --+ A (-a -e if 
b < 0}. Because of IV, the 
'carry O' is interpreted as 
'borrow 1' (see 7 .3.4). 
At this step (A) + (B) can be 
regarded as a - ! b'e in A. 

The final s in B can be regarded as the first digit in the quotient assuming that we are dividing 
(a - ! b'e + b) by b. It is as if we had already done the first subtraction of b and we must look 
to see if the result is +ve or -ve, to leave alone or add b in again, respectively. In the latter case 
we must also remove the "one" from the quotient. This is the result of the last instruction appearing 
in C. If it is not executed, then X112IC7V returns harmlessly from D. 

38 



A B 

I 
I 

2(a -! b'e+b)+(15) I XX 

q +ts 

I 
Continues until 

2(1+q-!e) 
q+!e 

q + ie 

ZEBRA PROGRAMMING (2) 

c D 

X5K32LDQ ....._ , 
AQI15Vl ~X5K31LDQ 

AQI15Vl ~ ___..+- X6KLDQ 
X6KLDQ~ 

X114Il5 
Xll5RB23Q 

X116C3 
Xll7K4 
Return instruction 

Analysis 

(15) are added to the left­
shifted accmnulator, and now 
we have two digits of the 
quotient (marked XX). At 
each stage, if the subtraction 
of b "won't go", it is removed 
and the quotient digit put 
zero as above. 
At this stage we have done 
one step too many and have 
in B: 
2 (a - i b'e + b) + (l5} = 

b 
2(1 + q - ie) + (15) 
where q represents the quot­
ient. We therefore remove 
(15), right shift b, and add 
I+ e. 
This is done with the instruc­
tion Xll5RB23Q. This now 
gives 
I+q - !e+l+s = q+!s, 
which is the correct rounded 
quotient. 
This is also placed in A. 

X 117K 4 brings the return 
instruction from 4 into C. 
Hence a return to the main 
program. 

The quotient is found as 2 + q + te. The 2 is lost off the front in the case of a positive quotient, 
but serves to give a correct result in the complementary notation if the quotient is negative since 
-q is represented as 2-lq!. 

The time of execution for the division subroutine is 35.7 ms. 

8 .4 Block Transport. 
It is very important to be able to bring the contents of the drum locations into registers. 

I.e. n--+ m 
n+2--+m+l 
n + 4 --+ m + 2, etc., where n represents the drum location and m the registers. These 

use the instructions An CEm - 1 
An+2CEm, 
An+ 4CEm + l, respectively. 

This process may be performed by using a repeated instruction which must be altered each time. This is 
achieved by placing the instruction to be altered in an accumulator and by altering it there. 

Example: Put (n}, (n + 2), etc., into registers 6-15, inclusive. 
The program is: 100 I NCS 

101 ABC102 - NKKBC 
'102 X002.l 
103 AB104CE15 NKKCEB15 

"104 ACnE5 
105 NKE4 
106 X3KllBD 

39 



ZEBRA PROGRAMMING (2) 

This program makes use of the XD facility mentioned above (8.1). The repeated instruction to be 
altered is ACnE5. Note that register 3 = (B) and register 1 contains 1. The previous contents of 5, 
if any, are preserved. 

Detailed action : 

A B 

X002.l 

ACnE5 

ACn +2E6 

(n) 

ACn + 4E7 
(n + 2) 

c 

Xl01C5 
ABCI02 
Xl03C5 
AB104CE15 
X105C5 
Xl06KE4 
X3KllBD 

\iACnE5 
X3KIOBD 

\& 
ACn +2E6 
X3K9BD 
etc. 
until 
X4KBD 
Xl07C5 

8. 5 Repeating Blocks of Instruction. 

D 

X103C5 

X105C5 

X107C5 

\ 
X3KIOBD 

X3K9BD 

Remarks. 

X002. l - cleared B. 

xoo2.1-1s. 
ACnES - cleared B. 
X107C5 = return instruction - 4. 
(B) = ACnE5 - C. 
XD sends (15) = X002.1---+ B. 
This is added to ACnE5 in B to 
become ACn + 2E6. 
(n) - cleared A. 
(B) = ACn + 2E6 ----+ C. 
XD adds (15) = X002.1 ----+ B. 
Thus we have ACn + 4E7 in B. 
(n) --+ 6 ; (n + 2) - cleared A. 

and (n + 2)----+ 7 
(n + 4) ----+ 8, etc. 

return instruction from 4 ----+ C. 

Let us suppose there is a block of instructions in locations 200-220 which has to be repeated p times. 

The program is : 
96 N 
97 NKKC 

w9g X200KE6 
99 NE4 

100 NKES 
101 X4Kp 

The block of instructions which are to be repeated must end with X6K in this instance. 

Detailed action : 

A B 

X200KE6 

c D 

X97 -.._ 
A98C ~X99 
X99 _....J..L _ _,-

~~~it~ X102E4 

i~~KE~ X4Kp-1

block
en.ding with
X6K
X4Kp--1

until
XSK
Xl02E4

40

Remarks

X200KE6 --+ cleared A.

X200KE6 ----+ 4.
X102E4 - 5.

X4Kp-l ---?- 6.

X4Kp-1 = (6) - C.

Return instruction from 5 and
jump back to program.

ZEBRA PROGRAMMING (2)

8. 6 Short Multiplication.
8. 6. 1 Multiplication by Small Fraction.

There is no need to call in the multiplication subroutine every time that multiplication is
required. For instance, if we wish to multiply a number by a fraction which has only a few
digits in the most significant end, the multiplication can be performed very simply in the
following way.

Example: We wish to multiply the number a by 0.1011.

We assume that a = (5).

The program is : N C5 I
NRS 1
NR 0
NR5 1

1 NR 0

The multiplication is done in an accumulator-in this case A-by right-shifting a and add­
ing in (5) corresponding to the digits of the fraction. In this case the process takes 1.5 ms.,
which is five word times. Notice that capacity can be exceeded twice and use made of a_1 •

{See 6.9.2 and 2.5.)

If it is required to multiply by a fraction which has a few digits in the least significant end,
it is better to use the B accumulator.

Example : (5) = a. Required : a X 0.00 1011001.

The program is : NBC5 1
NLBV 0
NLBSV 1
NLBSV 1
NLBV 0
NLBV 0
NLBSV 1
NV

Notice that there is a special action associated with LV. The carry digit is released before the
shifting, i.e. it goes in the a 31 position. It is this action which permits this double length working.

The LV action does, however, present difficulty with instructions of the form AnLmV.
Without the L (i.e. An.m V) it is possible to release the carry digit into the carry part of the pre­
adder of A during the first digit time (i.e. the least significant digit time) because there is then
no carry from a previous step as a result of adding (n) and (m). But if (n) and (m) each contain
a least significant one there is a carry produced to the next stage ; and if the carry trap contains
one this also requires entry at the same time and the same point. The carry part of the pre­
adder cannot accept both at once and one of them is lost.

Thus if (n) is odd}
(m) is odd AnLm V will fail.

1 = (carry trap)

8.6.2 Multiplication by Small Integer.
Similarly there is no need to call in the subroutine if we wish to multiply by a small integer.

This can also be done very simply.

Example ! Multiply (B) x 10.

The program is : I NLBES
NLB5

. NLV

8. 7 Conjugation or Logical Product.

2B---+ B
SB---+ B

lOB--+ B

The conjugate (a, b) has ones where a and b both have one and zero elsewhere.

Example:
1011011 = a
1001101 = b

1001001 = conjugate (a, b)

41

ZEBRA PROGRAMMING (2)

The logical product can be used for separating a part of an instruction.

Example: We wish to separate the register address of an instruction word.

Instruction word
Mask

Conjugate (instruction, mask)

01...... 11 0 10101 10 1 01
00...... 00 o 11111 00 0 00

00...... 00 o 10101 00 0 00

The conjugate of instruction and mask gives the word containing only the register address. We
can imagine the 'mask' as being placed directly on top of the instruction word, masking what is not
wanted and making transparent the part required-in this case the register address part.

The conjugate of (A) and (B) is always contained in the pseudo-register 24. Thus a program to
find the register address part of the word in drum location n, say, would be as follows:

NKKC
X000.31 = mask
ABCn
x
NC24 conjugate ((A), (B))---+ A

An extension to the logical product is required in looking for equality, i.e. to obtain a word having
ones where both words are the same. This word C can be expressed as: C = conjugate (a, b)+con­
jugate (inverse a, inverse b). The inverse of a word is obtained by interchanging ones and zeros.
The inverse of register m can be obtained with the single instruction NBICmQ.

Now since register 24 always contains the conjugate ((A), (B)), it is not possible to write into it.
E24, which is therefore logically impossible, has, however, a special meaning: E24 in an instruction
obtains the conjugate of the specified drum location and register 5. (Always register 5.) I.e. AnE24
sends conjugate ((n), (5)) ---+A. This means that with a single instruction word and with a suitable
mask in register 5, we can extract part of a word from the store.

Example: We wish to look up a drum location which contains a specific part. We assume minus
the required part in register 15, and the mask for the part in register 5. The instruction AmE24Q
is in B.

The one instruction we use is: X3KpDQCV3. Notice again the action of the XD facility.

A

-part reqd.
m' -part reqd.

B

AmE24Q

Am+ 1E24Q
Am+ 2E24Q

c

X3KpDQCV3

AmE24Q
X3Kp-1QDCV3

When the part is found the test fails and (4)---+ C.

D Remarks

(3) = AmE24Q ---* C.
X3Kp-IDQCV3 XD brings (15) --A.

m' is the conjugated
part of m.

If there is no part found X4KDQCV3 finally comes into C, but in this case (A) ::j=. O. The address
of the required part is the address in B minus 2. Note that we are running through the store at full
speed. If we need to search through consecutive locations, we can use firstly even, then odd, locations.

In the example above we can see that the machine is automatically finding and obeying its own
instructions from other parts of the machine, i.e. more instructions than ever appeared in the written
program. We call this type of action "underwater" programming. Examples of this can be seen in
the multiplication program (7 .4), in repeating blocks of instructions (8.5), and elsewhere.

42

ZEBRA PROGRAMMING (3) Chapter 9

9. I Input Instructions : Use of Registers 26-31.
The normal way in which instructions are input in Zebra is on five hole-per-character punched

paper tape. There are six pseudo-registers connected with reading from the tape. These are registers
26, 27, 28, 29, 30, 31. They are most commonly used by the programmer in test programs (see Part IV),
particularly in those which test the input reader, and are also included in the Normal Input Program.
(See Appendix.)

CHART SHOWING EQUIVALENT NUMERICAL
CHART SHOWING MURRAY TELEPRINTER CODE AND

COMPUTER CODE WITH SYMBOLIC REFERENCE
VALUES TO TAPE TO PUNCHED PAPER TAPE

TAPE BINARY DECIMAL TELEPRINTER TAPE ZEBRA

VALUE VALUE CODE COMPUTER
5 4 3 2 1 LETTERS FIGURES 5 4 3 2 ' CODE

0 0 0

• I I E 3 • '
• fO 2 LINEFEED • 2

• • 1 1 3 A I - • • 3

• fOO 4 SPACE • 4

• • 1 01 5 s ' • • 5

• • ff 0 6 I 8 • • 6·

• .. . 1 1 1 7 u 7 • • • 7

• 1000 8 CAP.R RETURN • 8

• • 1001 9 0 TAB • • 9

• • fOfO tO R 4 • • K

• • • 101 f f f J BELL • • • 0

• • ff 00 f 2 N ' • • •
• • • f f 0 t f 3 F • • • L

• • • I I I 0 14 c • • • • R •
• • • • f f I f ' s K (• • • • 1

• 10000 I 6 T 5 • B,H

• • f 0001 t 7 z + • • C,S

• • 10010 t 8 L) • • D

• • • t OOt I I 9 w 2 • • • E

• • t OtOO 20 •H • • T

• • • f Of Qt 21 y 6 • • • u

• • • f 01 1 0 22 p 0 • • • v
• • • • f Of t f 23 Q f • • • • N

• • It 000 24 0 9 • • A

• • • ft OOt 25 B ? • • • x .
• • • 11Of0 26 G • • • +
• • • • HOH 27 FIGURES • • • • -
• • • t t t 00 28 M • • • • v

••• • f I f 01 29 x I • • • • !

• • • • f f f f 0 30 v - • • • • p -
••• • • f ft f1 3f LETTERS • • • • • #

FIGURE 9. IA FIGUAE 9.tB

Associated with the input reader there is also a "staticising" register or "staticiser". The staticiser
contains the contents of the previous character to the one actually standing under the reader. When
a new tape is put under the reader, press the reader button. This clears the staticiser and gets rid
of any hannful character which may have been left by a previous action. The tape is one step ahead of
information being read.

43

ZEBRA PROGRAMMING (3)

Register 26 has the following action. It sends -e to the appropriate accumulator if the 5th
hole is represented in the staticiser; it sends zero to the appropriate accumulator if there is no 5th hole
represented in the staticiser. The 5th hole corresponds to the most significant digit of the character.
-e is sent because ones are supplied for the whole of the word time. It is possible to send +e by
using 126.

Thus, NIBC26 means : 0 -- cleared B if 5th hole is absent ; + e -- cleared B if 5th hole is
present. Similarly, registers 27, 28, 29, 30 signify the 4th, 3rd, 2nd, 1st holes represented in the
staticiser, respectively.

Register 31 causes the input reader to step the tape on to the next character, and, in a parallel
action, transfers information under the tape into the staticiser.

Example (1) :

Example (2) :

Example (3) :

NIC26
NLI27
NLI28
NLI29
NLI30
N31

NIBC26
NLIB27Q
NLIB28
NLIB29Q
NLIB30
N31

I NIC26
. NLI27
IN11
i NLI28
i NLI29
'Nll

NLI30
N31
NEll

This program reads the charac­
ter from the tape into A and
steps tape.

Character - 10 -- B

This can, for example, now be
tested for a digit.

Character+ 10 X (11) --+ 11 .
This is used in decimal to binary
conversion.

Sometimes it is required to read the five holes in some other order, or to read only some of them.

Example:

In case of 0,
character < 16

[
I

NC26
NVl :J In case of -&, character > 16.

The 5th hole represented in the staticiser corresponds to the number 16 {see Fig. 9.1).

The hole can be directly read into the 'C' control register with a K digit. Since I cannot influence
C, only -& is given for the hole.

Example:
299

Ca~
character > 16 302

9. 2 Output Instructions.

X300K26
X302

J If character < 16.

The mode of output in Zebra is usually output punch and/or teleprinter.

9.2.1 Punch: E26.
This is similar to the input method and uses registers 26--31 together with the E digit.

The instruction E26 means : set the 5th hole for punching or not according to whether the
sign digit of the A accumulator is I or 0. Similarly, E27, E28, E29, E30 are associated with the
4th, 3rd, 2nd, 1st hole, respectively. E31 means: punch and step the output tape.

44

Example:

ZEBRA PROGRAMMING (3)

NLE26
NLE27
NLE28
NLE29
NLE30

I NE31

Punches the character according
to the five most significant
digits of A which have been
shifted out.

9. 2. 2 Teleprinter : Register 25.

HIGH

LOW

The teleprinter is controlled by a seven-unit signal of the form :

20ms
LOW START

SIGNAL

20ms
I

f
LEAST

SIG
DIGIT

20ms
t

20ms
0

20ms
0

20ms
1

' MOST
SIG

DIGIT

30ms
HIGH STOP

SIGNAL

FIGURE 9,2

The output of these time signals is completely controlled by program. This makes use of
register 25, which causes a low or high signal to be sent to the printer according to whether the
sign digit of A is 0 or 1. Also (25) = (A), so that selection of register 25 will double the contents
of A. Thus, the instruction A25 sends a signal to the printer and doubles A.

Sometimes it is required to send a signal without doubling A. This can be done with the
instruction E25.

Example: Send the character 10011 to the printer.

This requires 0. 11 11 00 00 11
_...__..._...__~

Register 5 contains the instruction AlOl.25.

100 I AE25
"101 Zero
102 X5K13

Program:

AE25 : Sends low signal to the printer ; does not double A.

X5K13: AlOl.25 = (5) is obeyed one revolution later. Sends low signal to the printer.
So the printer is low for 20 ms. : this is the start signal. Then the high signal
for 20 ms., and so on. Finally the signal is high for 20 ms. The high signal
continues for another 10 ms. since a low signal cannot be entered for another
revolution.

Since (5) is not obeyed again until the time of 101, the instruction X5K13 can be up to a track
length further on. This "waiting time" is available for other instructions, such as setting
a constant in A. This might be looked up in a list to correspond to a given letter or digit.

45

INPUT PROGRAMS Chapter 10

There must be a small amount of information in the computer before it is capable of doing anything.
The information is permanently recorded in track zero, i.e. drum locations 000-031. This information is
known as the Short Input Program. It is linked to further stored information called the Normal Input
Program, which interprets and carries out instructions written in the normal code.

10.1 The Pre-Input Program.
The Pre-input Program is entered into the machine manually from the control panel keys. It

consists of two instructions, which are set in locations 000 and 8190. They are :

000 I X8190IB30
8190 AD8191LK29

The Short Input Program itself must be put into the machine; and this is entered off a specially
punched tape with the aid of these two instructions.

10. 2 The Short Input Program.
The complete Short Input Program (or S.I.P.) can be found in 22. 4. 1. In this paragraph we intend

to illustrate its structure and the mechanism of its action.

It has already been seen in Chapter 7 that in location 000 there is an instruction of the form
XOOOKE4U7, called the dynamic stop, which works in conjunction with the manual key U7. The
key U6 is also used:

I
.j,

Stop if U7
is not

depressed

U6 depressed -->- 34
1---->--

U6, U7 depressed -->- 8191
1---->--

I U7 depressed
normal exit .

.j,
FIG. 10.1

Thus, besides the normal exit from the stop to the S.I.P., there are two other special exits caused by
the use of U6.

(1) When the machine is on stop, and is restarted with the manual key U6, kept depressed, there
is always a jump to location 34. This normally contains the key address, that is, the address
of the beginning of the previously stored program. It will be seen later that this is a result of
the way in which a complete program is stored. This special exit from the stop can be used
to begin again at the beginning of a program, i.e. stop by clearing, and begin again by
depressing the start key and releasing again with U6 depressed.

(2) If both U6 and U7 are depressed there is a jump to location 8191. An example of the use of
this exit is given by the procedure adopted when the computer is left running unattended.
(See 15 .1. 3.) In this case the machine is left With U6 and U7 depressed. A return to stop
caused by a fault in a program will now run straight through the stop and jump to location
8191. Here begins a small program of six instructions which ignores tape until 100 con­
secutive blanks are read and then begins to read again. In this way the machine can leave one
program and begin another.

46

INPUT PROGRAMS

10 . 2 . 1 Location 32.
Suppose that the first character read from the tape is > 1. This causes a jump from

S.I.P. to location 32. When the Normal Input Program (or N.I.P.) is taken into the machine
a jump instruction to the first track of the N.I.P. itself is written into location 32. This first
track is called the "Verticat Ladder" (see 10.3 for amplification).

Dynamic
Stop

character >

S.I.P.

10. 2. 2 Character > 1.

I location
32

Vertical
Ladder

FIG. 10.2

The S.I.P., therefore, does not accept tape which begins with a character > 1. It does
accept and read tape beginning with a character 1. If 0, i.e. blank tape is read, the S.l.P.
reads the next character, i.e. the S.l.P. is able to skip over blank tape before the first
significant character is read. The diagram can now be enlarged to become:

10. 2. 3 Binary Form.

---+-

Blank
tape

-.i.

Dynamic
Stop

I
t

Reads
next

character

I
t

Tests
if > 1

I
t

Tests
again

.,..lo
I
t
I

Location 34
~--

Location 8191
---->---

_____,__1321--+-Vertical
L:.J Ladder

FIG. 10.3

The Short Input Program can only read tape prepared in a special form, in which each
word has to be written in its binary equivalent. Thus, for example, the instruction A003BC5Vl
would be represented by :

100000110010010001010000000000011

These 33 digits, together with two extra holes on the tape to spare, can be written as seven
five-hole characters. The extra holes are used for special purposes.

47

INPUT PROGRAMS

10 . 2 .4 Parameter Indication Digit : Register 9.
On entering the S.I.P. proper, the seven characters are read and the 35 digits formed as:

special digit + 33 binary digits+ special digit. The last special digit is examined. If it
is zero the binary word is unchanged, if it is 1 the binary word is modified by the contents of
register 9.

This enables us to make use of a "parameter", that is, to make instructions with drum
addresses relative to a fixed point (see 7 .5), the point having previously been written into
register 9. The special digit is called the parameter indication digit and register 9 is normally
used as the parameter register.

10. 2. 5 Input Indication Digit : Register 11.
Now the first special digit is examined. If it is 1, the 33-digit binary word is written into

register 11 ; if it is zero the binary word is stored according to the instruction in register 11. ·
Thus the word written into register 11, by making this digit 1, is normally a "store instruction".
This special digit is called the "input indication digit".

The input indication digit is therefore used to place a store instruction into register 11.
In this way it is possible to begin a tape which has to be taken in by the S.I.P. with an
instruction saying where the input must begin. Then storing from this point is sequential.

To end a short code tape,' fill register ·11 with a jump instruction instead of a store instruc­
tion. Then one further block of seven characters is read (normally this will be blank on the
end of the tape) and instead of storing this extra word the jump is executed.

In this way the reading of the tape could end, and the machine would commence execution
of the program or stop.

10.3 Vertical Ladder of the Normal Input Program.
The jump from location 32 (see 10.2.1) to the vertical ladder is modified according to the particular

character > 1 which was read from the tape. Thus the vertical ladder is entered at a different point
for each character. The scheme is as follows:

Dynamic
Stop

S.l.P.

location
32 --+- ---+-

---+-

Vertical
Ladder

+----

+----

FIG. 10.4

The vertical ladder consists of a list of jump instructions jumping to appropriate parts of the
N.I.P. for dealing with words beginning with the opening symbol which has been read. The first
character on the tape is therefore the character for A, and this passes from the vertical ladder into that
part of the N.I.P. for "constructing instructions". Similarly other opening digits have their exits
from the vertical ladder (see Chapter 11). There are a number of positions in the ladder left empty
(i.e. containing XOOO) for those characters representing letters or digits which do not normally start
a word. These will cause the machine to stop.

A special meaning might be attached to one of these opening symbols: for example, a tape
beginning with B is made to mean that what follows is in teleprinter code. The program which
translates teleprinter code to the normal code will fill in the position in the ladder corresponding to B with
a jump to this program.

48

SHORT INPUT PROGRAM
FLOW DIAGRAM.

SKIP
BLANK
TAPE

INPUT PROGRAMS

ENTERED ON
CLEARING

LOCATION 34

DYNAMIC STOP
LOCATION 81'9t

NORMAL EXIT

READ NEXT

CHARACTER

TESTS > 1
>I _____ _ 32

I
,.. 0 TESTS AGAIN

FIG 10.5

!vERTICAL J----!

SEVEN ,
TIMES

l

CONSTANTS
SET IN

11 ~ IZ.

READ CHARACTER
FF¥:>M TAPE INTO
8 ACCUMULATOR

WHILST LEFT
SHIFTING

=o

TEST
PARAMETER
INDICATION

DIGIT

1

A00{9)

IF LAST INSTRUCTION
jY/ITH I/PINO.DIGIT WAS = 0 TEST INPUT

JUMP INSTRUCTIONt-----+---1
DO NOT STORE BUT INDICATION DIGIT

JUMfiTO THE
APPROPRIATE Pl.ACE

IF LAST INSTR. WAS
STORE INSTR. STORE
WORD ACCORDING TO
STORE INSTRUCTION
IHCREAs; 1TORE lt4ST.

•

TAKE WOR!l'i FROM

B ACCUMULATOR

PU'I' INTO 11 A~
NEW STORE

LADDER
OF N.l.P !----"

INSTRUCT I Of.I !-----.

49

1-­
f--

C/l
0

p
l

'#

ll<ETURN TCJ S.1.P

....

, u v

ADDO.I AND
READ NEXT
CHARACTER

OIGIT

~ADD
DIGIT

AFTEQ TP, TO.TE ORT• _f S .,,. p l_ AJ:TE'.I< NEW OPENING SVMBOL.

c:l. {TP FACILITY } &i
;u

T F'ACILITY } ..I.. -t E {TE F'ACI L.ITY } n
)>
r 0 {TD FACILITY} AF"rER TX,.,

01< TArn r
)>
0
0

CONSTRUCTION
N Pl
A ICJ

OF INSTRUCTIONS)(+ - J INPUT OF NUMBERS [

'--

NEW OPENING
SYMSOL.

1-lORIZONTAL LADDER

rN A X p T '(z

ASSEMBLE ASSEMBLE ASSEMBLE ASSEMBLE
WORD AND WORD AND WORD AND WORD AND

STORE STORE STORE IN EXECUTE. REGISTER 13

PARAMETER I t
F'ACILITY RETURN TO

[RETURN TO S.I.P J ' T PART

J

~
fT1
n
0 s:
"fJ ..,,
-i
fTl
z :u
OJ r
0
(I

" 0
'i> z
(j) "'O
;o d
)> ~
~

ffi "'O
l:l:1

]
+ -

)> 0
(J) Q

d l:l:1
> r ~ r

0 (f)

ASSEMBLE
~
•

WORD AND
STORE

-
G')

--

THE NORMAL INPUT PROGRAM (1) Chapter 11

CLASSIFICATION OF SYMBOLS FIG. 11.2

Digits Supplementary Symbols Opening and Closing Symbols

0 K T (see Chapter 12) Opening
1 Q u Special opening
2 v Special opening
3 I N Opening
4 L A Opening
5 R x Opening
6 B + Opening
7 c - Opening
8 D y Closing
9 E z Closing

p Special closing

Special
0 < character .;;: 9 10 < character < 19 character ;;. 20

I

The Normal Input Program itself can be found in the Appendix: in this chapter we intend only to
discuss its structure and the mechanism of its actions. This will be done by explaining how instructions
are constructed, and how words are assembled.

11. l Construction of Instruction Part.
In 10.3 we have seen that the vertical ladder is entered at different points for each character.

The opening symbols N, A, X go from the vertical ladder directly into the "construction of instructions"
part. Here instructions are constructed in four parts, by making use of registers 10, 11, 12, and 14.

Register 14 deals ;vith the opening and supplementary symbols ;
Register 12 deals with the 1st address ;
Register I 1 deals with the 2nd address ;
Register 10 deals with the parameter.

Register 13 always contains the store instruction during normal input, by means of which the
instruction, when assembled, is stored.

11 . 1. 1 Entry with N or X.
When entering with X or N, XOOO, i.e. the word with the most significant digit zero, is

written into 14. Also, in the case of N, the address+ 1 from the store instruction in 13 is placed
in 10.

11. 1. 2 Entry with A.
When entering with A, AOOO, i.e. the word with the most significant digit 1, is written

into 14.

Subsequent supplementary symbols are added into appropriate positions in 14 from
a supplementary symbols list ; a decimal to binary conversion of addresses is made, these
being temporarily stored in registers 11 and 12.

11.1. 3 After Y.
When the word has been assembled (see 11.2) it is written into register 13. The program

then jumps back to the reading of characters in the Short Input Program. Thus, after Y,
blank tape can be written and this will be skipped over. Register 13 is normally the store
instruction register ; so the word before Y is usually of the form ADm, where m is the store
instruction. The instruction ADm Y can therefore be read as meaning "to begin input at m".

51

l'HE NORMAL INPUT PROGRAM (1)

11. I. 4 After z.
After Z, the word just assembled is executed immediately. This enables an instruction

during input to be executed very simply. For example, a program tape may begin :

and end with :
or:

ADIOOY Begin input at 100;

xoooz
XlOOZ

Cease input and stop ;
Cease input and commence
execution at 100.

A jump instruction can be executed during input by writing "jump Y'', for then the
jump is written in 13 and subsequently executed. This is the mechanism used in the Short
Input Program for executing a jump during input. The disadvantage is two-fold :

(1) Another instruction has to be read before the jump is executed, this other
instruction being just thrown away.

(2) The store instruction is destroyed, so that all record of where the jump occurred
has been lost.

For both these reasons "jump Z" is preferable. Z can also be attached to A instructions
to be executed during input.

Example:
---1 ------J Normalinput

AClOOZ } (100) -+ cleared A
A200Z (200) + (100) -+ A
AD300Z (200) + (100) -+ (300)

---} Resume input

But the accumulators themselves are being used during the construction and assembly
of the instruction AClOO, etc. To overcome this, register 4 is used as a "phantom accumulator"
during execution of Z instructions.

The action of ACIOOZ is: assemble word ACIOO,
contents of 4 -+ A,
execute ACIOO ; (100) -+ A.

In the case of jump z} (A)__,.. 4
this part is never reached. Return to S.I.P.
Implicit in an A ... z instruction is the action (A) -+ 4. It is .also worth noting that

during the execution of a Z instruction (13) -+ B.
Thus, in the instruction ABDIOOOZ, the store instruction-+ 1000.

11.2 Word Assembly: Horizontal Ladder.
When a symbol > 20 is read the construction part is left and the "horizontal ladder" jumped to.

This is another list of jump instructions which are written 'one' at the beginning of each track full of
instructions which constitute the Normal Input Program. The Normal Input Program occupies
366 locations, i.e. 11 ! tracks.

Vertical
Ladder

UVNAXPYZ+

52

Horizontal
Ladder

FIG. 11.3

THE NORMAL INPUT PROGRAM (1)

The jumps corresponding to +, -, N, A, X, T, Z are all to the word assembly. The various parts
of the word are assembled together, and four possibilities are present.

(1) Drum Address (D.A.) followed by Register Address (R.A.). This has taken place during
construction :

D.A. in register 12, and
R.A. in register 11.

(2) Drum Address only : D.A. in register 11 ;
(12) is interpreted as R.A. zero.

(3) Register Address followed by Drum Address : R.A. in 12 ;
D.A. in 11.

(4) Register Address only : R.A. in register 11 ;
(12) interpreted as D.A. zero.

It is here that the conventions for Drum Address or Register Address being first are catered for.
After the assembly there is a special exit corresponding to each of the above entrances. The exits

corresponding to +, -, N, A, X, Tall cause the word just assembled to be stored according to the
store instruction and then to jump back to the appropriate parts of the Normal Input Program; for
example, N, A, X go to the constructing of the next instruction, the storage instruction being increased
by one.

11.3 The Special Symbols U and V.
When either U or Vis read in the construction of instructions part, there is a jump to the horizontal

ladder. In the case of U, there is a jump to read the next character, which is assumed to be an opening
symbol or a digit < 7. (See 5. 5.) In the former case, 0 is written in the V digit position, and there is
a return to the appropriate entrance of normal construction. - In the latter, 0 is written into the V digit
position, and V4, V2, Vl filled in appropriately, and returns to normal construction to read the next
character. When Vis read the case is just the same except that now 1 is placed in the V digit position.
Thus Um or Vm need not be at the end of the word, though it is usually better to put it there, i.e.
A100BCV35 interpreted as AIOOBC5V3.

11.4 Parameter Facility: P.
It is possible to make an instruction relative to the contents of a register or drum location by

simply writing an instruction of the form XaPb (see 7 .5) which is interpreted as Xb + (a)-where bis
always interpreted as the drum address, a may be the register address or drum address. For example,
X5P100 = XlOO + (5). With this P facility we can now write a program in an absolute form.

Example:

9PO
9Pl
9P2

1-:~! I
~9P5

AD9PY
N
NKKC
+1057
X9P5

and this will be stored relative to a beginning point given in register 9.

11.4.1 Subroutine Call-in~
This gives a neat way of c_alling in a subroutine.
For example, the square-root subroutine is called in by the instruction X address KE4.

In storing the square-root subroutine X address KE4 is written into location 50 with the appro­
priate address known at the time of storing. To call in the subroutine it is now only necessary
to write XSOP, because during input this will become

XOOO + (50) = XOOO + X address KE4
= X address KE4.

Hence, the correct call is written in automatically.
The "call-in" instructions for some common subroutines are :

X39P call in telephone dial (see 12.6).
X40P rounded multiplication.
X40Pl unrounded multiplication;
X41P single length division.
X42P double length division.
X50P square root.

53

THE NORMAL INPUT PROGRAM (1)

11.4.2 Mechanism of the P Facility.
When P is read in the vertical ladder a jump to the horizontal ladder occurs, with the

last address read in A. When entering the P part : AKQOOO ---+ 11 ; (10) + (address before
P) ---+ 10. Normally (10) is initially zero.

Thus Xa a ---+ 11
XaP AKQOOO ---+ 11 ; (a) ---+ 10
XaPb b' ---+ 11 ; (a) ---+ 10

Therefore XaPb = Xb' + (a)

11 . 5 Cumulative Parameters.

where the dash signifies that this
address is regarded as a drum address.
where a can be a register or drum
address.

There can be further P symbols in a single instruction ; but a second P is regarded differently.
Here are some examples, showing the action.

XaPb b' ---+ 11 ; (a) ---+ 10 (' signifies drum address).
XaPbP : AKQOOO ---+ 11 ; ((a) + b') ---+ 10.
XaPbPc : c' ---+ 11 ; ((a) + b') ---+ 10.
Therefore XaPbPc Xe' + (b' + {a)).
Similarly XaPbPcPd = Xd' + (c' + (b' + (a))).

These are called cumulative parameters.

The Normal Input Program places a special interpretation on no address before P, provided this is
a first P. It assumes that register 4 is meant. Thus XP30 = X030 + (4).

11 . 6 Accumulative Parameters.
If a point occurs after a P then a further Pis regarded as a first P. Some examples, showing the

action, are :

(1) XaPb : b' ---+ 11 ; (a) ---+ 10.
XaPb.c : b' ----+ 12; c ---+ 11; {a) ---+ 10.

Therefore XaPb. c = Xb' + (a). c, where c is always regarded as a register address
even if c > 31.

(2) XaPb.cP : AKQOOO ---+ 11; b' ---+ 12; (a)+ (c) ---+ 10. Here the P after
the point is regarded as a first P.

(3) XaPb.cPd : d ---+ 11; b' ---+ 12; (a)+ (c) ---+ 10.

Therefore XaPb.cPd = Xb' +(a)+ (c) .d, where d is regarded as a register address.

(4) Similarly XaP.bPc = XOOO + (b) + (a).c
and XaP.bP.cPd = XOOO + (c) + (b) + (a).d.

Rule : Last address = register address.
Last but one = drum address.
Previous ones are lost.

These are called accumulative parameters.

11 . 7 Some Parameter Conventions.
Register addresses 2 and 3 before a first P have a special meaning.

2P subtracts (12) from 10
3P subtracts E from 10.

Parameters can also be attached to N instructions. In particular, the instruction N3P is an
absolute way of writing a jump to the same address, but a register address must also be given even if
this is zero.

Example: 200 I X200KE4U7 can be written in absolute form as N3PKE4U7.

54

THE NORMAL INPUT PROGRAM (1)

It is worth mentioning here that a further drum address can be added to an N instruction, but
a register address is also required to be given (even if it is zero) for it to be regarded as such.

Example : (1) 200 I N003.5 = X204.5
(2) 300 N45.0 = X846

In this way any desired number of locations can be skipped over, whereas 200 I N003 = X201.3,
i.e. 3 is regarded as a register address even though given as a drum address.

With the parameter facility we are able to write programs in a relative form without concerning
ourselves where they are to be stored in the machine. Thus a tape can be headed with :

PO
Pl

A9CZ (9) ---? A and then ~ 4
ADPY : Begin to put in at (4)

55

THE NORMAL INPUT PROGRAM (2) Chapter 12

12 . 1 The T Facilities.
Tis an opening symbol and is a character > 20 (see Fig. 11.2) .. When Tis read in the Short

Input Program there is a jump to the T part via the vertical ladder. T may also be read inside the
construction of instructions part ; then the word before the T is assembled and stored ; thence a final
jump to the T part.

12. 1. 1 T followed by Digit.
The digit m is regarded as a normal register address and the address from the store

instruction is written into this register m. Thus m has only usual significance and is in the
range 4 < m < 9. It is possible to extend the facility to registers 10, 11, etc., by writing
TK, TQ, and so on ; but since these registers are used during input this can only be done in
exceptional circumstances.

T followed by a digit, i.e. Tm, enables registers 5, 6, 7, 8 to be used as special parameter
registers during input.

This facility can also be used for writing a number into a register from the tape. For
example, X49YT7 sends 49 --+ 7. Tricks like this are of value in so-called tape programs.
These are programs executed entirely from the tape and registers and are not written into
the drum store.

Example: I X39PZ
AE9Z

12.1.2 TA and TX Facility.

Number from telephone
dial--+ 9

On reading A or X after T: AOOO or XOOO--+ 14, and a further character is read which
is normally a digit. This is again regarded as a register address m.

The action now is : store instruction address --+ m ; previous m -- IO ; and a return
to the normal construction of instructions.

This gives: r TXm r --+.m

Similarly: r TAm
XOOO + (m) --+ r
r~m

AOOO + (m) --+ r, where r is the store instruction
address. The purpose of this will become clear after a description of the TP facility.

12. 1 . 3 TP Facility : Floating Addresses.
On reading P after T a jump back to the Short Input Program occurs ; P is read again

and re-enters the vertical ladder entrance jor P. This is P after T and must not be confused
with parameter P, which is dealt with via the horizontal ladder. The next character, which
is normally a digit, is now read, and is again regarded as a register address.

The Tm, TXm, and TPm instructions provide a floating address facility.

Example : Let us suppose that it is required to jump to an unknown point, i.e. drum
location, and that further jumps are necessary to this location from other addresses.

r is the 1st point from which it
is required to jump to an un­
known point ;
r' is the 2nd point, etc

56

r

r'

r"

r'''

I
- I

TmX

TXm

TXm

TXm

The presence of the instruction
X means that the W digit is
automatically inserted.
r ~ m; XWO ~ r.
XOOO + (m) = Xr --+ r' ;
r'--+ m.

XOOO + (m)
r" - m.

Xr' --+ r";

XOOO + (m) Xr'' ~ r''';
r"' ---+ m.

THE NORMAL INPUT PROGRAM (2)

Points to which jump is required
=S

I.e. after TPm all the jump in­
structions to this hitherto un­
known point are made proper
jump instructions Xs.

s

z

TPm

XmP

(m) ~ r"'; r"' ~ r".
Replace Xr" by Xs ~ r"'.
Test for W digit-no W here, so
repeat process.

r" ~ Xr' ; replace Xr' by
Xs. No W digit here.

r' = Xr ; replace Xr by Xs.
No W digit.
r = XWO. W digit present ;
therefore replace (m) by s. (i.e.
s~m).

if required to jump back to s.

Although there is no limit to the number of jumps that can be made, there is a certain restriction
in that m is only in the range 4 < m < 9 and there are, therefore, only six possible floating
points.

With the TV facility, however, ultimate flexibility in floating address can be achieved.

12.1.4 TV Facility.
This facility gives an extended facility to that described in 12 .1.3. The TV facility works

in conjunction with the Normal Input Program but has to be entered as a separate program.
The~r suffers two limitations:

(i) :!i is limited to the range 4 < m < 9 ;

(ii) it must be known whether the instruction containing the floating address is entered
into the computor before or after the labelled point, i.e. before or after in time.

In the TV facility both these limitations are removed. The rules are:

(1) An unknown drum address in an instruction is written as n#V where n is any drum
location set aside for the purpose. n must be cleared before use.

(2) The unknown location when entered is labelled TVn with the same n.
Thus:

I -1--

12.1.5 TE Facility.

Xn#VBCE9

TVn

Xn#VCE7Vl

It is envisaged that the TV facility is best
used when it is required to use :floating
addresses between complete programs. The
floating address facility included in the
Normal Input Program, and described in
12.1.3, is best used inside a particular
program.

When E is read after T there is a return to the Short Input Program and thence to the
E entrance of the vertical ladder.

The TE facility enables the difference of two instructions to be obtained during input.
For example, it is required to input X200BE4 - X102K3. To achieve this during input we
simply attach TE to the instructions, i.e. X200BE4 - X102K3TE. In this way the correct
difference is formed and written into the store.

57

THE NORMAL INPUT PROGRAM (2)

This can be extended to form an alternating sum of instructions by placing a further E
on the instructions, i.e.

X1 - X 2 TE
X 1 - X 2 + X 3 TEE
X1 - X 2 + X3 - X 4 TEEE

where Xn denotes any instruction.

It is important to know how the machine reacts to an instruction of this nature. In the
instruction X 1 - X 2 TE, the machine firstly reads X 1 (which is really a complete instruction)
and stores it in, say, location n. The sign - is stored in n + l, and X 2 in n + 2. Then
TE is read, and the binary result is calculated and placed in n. Subsequent instructions will
then destroy (n + I) and (n + 2). In the same way X1 - X 2 + X 3 - X4 will originally
take up seven locations before TEEE is read and the calculated result placed in n.

This must be remembered when it is required to insert a TE instruction into a program
which is already stored. In this event, the original contents of the appropriate locations
which follow must be restored.

12.1.6 TD Facility.
After Tm the machine returns to the Short Input Program. If D is now read, the

directory part of the Normal Input Program is entered via the vertical ladder. The directory
part only works if the tape has begun with the standard beginning with directory. The standard
beginning is :

PO

AD100YT4
X39PU7Z

AD34Z
ADPY
NDKllQ
ADP16Y
T9D

Begin input at 100 if U7 = 0.
U7 = 1 (i.e. start key not depressed) ;
begin input at dialled location (see 12 .5).
Key address --+ location 34.
Begin to put in at PO.
1st store instruction of directory.
Keep 16 places free.
Use directory ; place beginning of next
program in 9 and in Pl_of directory.

Suppose we wish to store a main program and three subroutines. This is placed on the
tape as:

-Standard
-beginning

Blank may follow
I I -}5~Dsubroutine : ends with

Blank
I- I
I - ~ 2nd subroutine : ends with
1- j T9D

I Blank

.,-_I' 3rd subroutine : ends with
1- T9D

j Blank

I
~ Main j program

Blank
I
~ Standard
j ending

58

THE NORMAL INPUT PROGRAM (2)

Input begins at the dialled beginning if the start key is not depressed, i.e. it waits for the
dial. It begins at 100 otherwise. The standard beginning places the working instruction in
the beginning point PO, and PO __,.. 34. This makes the storing instruction begin input at
P16.

T9D, which ends the standard beginning, sends Pl6--+ Pl and P16 --- 9. The actual
input of the 1st subroutine commences at Pl6. A note of this address is now in Pl. Similarly,
the 1st subroutine ends with T9D. This puts the beginning point of the 2nd subroutine
---+ P2 and ---+ 9. Thus, the beginning point of each subroutine is written temporarily in 9
and permanently in Pl, P2, P3. The end of the last subroutine places the beginning of the main
program in P4 (in this special case of three subroutines), and the ending + 1 is placed in PS
by the standard ending. Also, the beginning of the main program is finally written into PO.

Therefore, the directory for three subroutines consists of :
PO Beginning address of main program.
Pl Beginning address of 1st subroutine.
P2 Beginning address of 2nd subroutine.
P3 Beginning address of 3rd subroutine.
P4 Beginning address of main program.
PS Ending address + I of main program.

The standard ending is :

12. 2 Input of Numbers.

TOD

AC9Z
AD34PZ

xz

Use directory to record last address of mam
program.
Call in (9).
Place beginning of main program in the key
address.
Stops tape. This must be X34Z if the directory
is to be used on unattended work.

The Normal Input Program has an "input of numbers" part, and can distinguish between
+ and - when these symbols are read· from the tape. A point following either symbol is also
remembered. The following digits are converted to binary as if the number were a positive integer.
Positive integers are represented as XZ-32, with their least significant digit in the least significant digit
position of the word.

If there was a point, there is a final correction made to the conversion to achieve the correct
conversion of the fraction. In fact, the conversion of fraction f has been f x 109 x 2-32• We must
now correct this by multiplying by 10-9 x 232• (See 3.2.) Finally, the word is made negative if
the sign - was present. All this is done after the reading of a new opening symbol. When the
opening symbol of a new word appears, these corrections take place and the number is stored. After
storing, the machine returns to the Short Input Program. Thus, in reading a series of numbers,
re-entry to the "input of numbers" part is always via the Short Input Program and the vertical ladder.

Therefore, during input of numerical data, the machine is always prepared to begin input in any
code.

12. 3 Correction Facility : :j:j::.

The erase or correction symbol, which consists of all the five holes on the tape, has a. special written
symbol #. If a word is mispunched during tape preparation, we have only to punch :j:j:: and begin
the word again, which may be an instruction or a number.

The action of # causes the machine to jump back to the Short Input Program without storing
the partially built-up word. The jump instruction to the Short Input Program associated with # is
in the position of the Normal Input Program shared by the horizontal and vertical ladders (see
Fig. 11. 1). Thus we may place a number of consecutive :j:j:'s on the tape.

12.4 Subroutine for Taking in Numbers: X33P.
The subroutine is called in by X33P, and makes use of the input of numbers part of the Normal

Input Program. Since the N.I.P. uses registers 11, 12, and 13, these are "brought to safety" in the
drum before the number is input and then replaced afterwards.

59

THE NORMAL INPUT PROGRAM (2)

12. 5 Subroutine Conventions.
The subroutine convention is that registers 10-14 inclusive must be left undisturbed by the sub­

routine. A subroutine user can leave results in 10-14 during the action of the subroutine, but if he
leaves results in 4-9 inclusive or in 15 they may be spoilt. To find out if a particular subroutine does
not use these registers, it is necessary to look up the particular subroutine specification.

When subroutines and main program are stored with the directory, it is possible to refer in the
main program to each subroutine as the 2nd or 3rd, etc.

Example:

X34P2PP Jump to 2nd subroutine.

This is because X34PkPP is the 1st instruction of the subroutine k, i.e. :

Because
Therefore

(34)
34P

34Pk
34PkP

34PkPP

PO.
PO of directory.
Pk of directory.
(Pk) of directory = beginning address
of kth subroutine.
(beginning address of kth subroutine),
i.e. 1st instruction of kth subroutine.

Example : The square-root subroutine begins:
AC9Z Take the beginning point from 9.
ADSOY

50 XPIKE8 Call in instruction 50.
ADPY

PO I NKE8
Pl Pl is the actual beginning.

T9D

Then the square root can be called in either by XSOP or by X34PkPP, when it is the kth subroutine
in a directory.

The Normal Input Program also contains within itself the multiplication subroutine, called in by
X40P (rounded) and X40Pl (unrounded), and a telephone dial subroutine called in by X39P.

12.6 The Telephone Dial Program: X39P.
Entered by X39P, this causes the machine to stop and wait for a number to be dialled. An integer

is dialled into the machine in decimal form, digit by digit. The number is automatically converted
into binary, the binary integer being built up in A. The machine can cope with integers of up to nine
decimal digits. The end of a number is assumed by the machine if more than five seconds elapse after
a digit is dialled.

Then, the number ----r A, and the number of decimal digits ----r B ; the machine then returns
to executing the next instruction in the main program.

A misdialled number can be cleared during its input by depressing the start key and beginning
to dial again.

60

OUTPUT PROGRAMS Chapter 13

Output programs fall into two categories :

(1} Complete and comprehensive output programs.
(2} Building blocks.

13. 1 Complete Output Program.
The value of the complete output program is the ease with which it can be used. It is possible to :

(1} Print.
(2) Print and punch tape in machine code simultaneously.
(3) Punch in machine code.

. (4) Punch in teleprinter code.
The layout of printed information can be specified by supplying a single pattern word.

There are two versions of the output program. One is timed to run the 25 character per second
(25 c/s) punch, the other the 50 c/s punch. The programmer places the number to be output in A and,
if specifying the layout, the pattern in B.

The output program, which is given in detail in the Appendix, is called in like a subroutine by
an instruction of the form XmPn. m can have various values with different meanings :

m = 45 Print.
m = 46 Print and punch tape in machine code simultaneously.
m = 47 Punch in teleprinter code.
m = 48 Punch in machine code (always has n = 0).
m = 49 Standard program for punching in short or binary code (always has n = O).

Similarly, n has different values :

n = 0 Output according to resident pattern, i.e. that which has been already set in the output
program. .

n = 2 Output according to incident pattern, i.e. the one placed in B.

n = 28

n = 30

n = 31

n = 32

n =4C

Output superpositive* integer according to resident pattern, i.e. sign digit being treated
as part of the number.
Output superpositive integer according to incident pattern.

Output integer in normal form, i.e. ± XXXXX space XXXXX space space.

Output fraction in normal fo~. i.e. ± ~.XXXXXXXXX space space.

Carriage return, line feed, figure shift.

• A superpositive integer is a +ve integer whose sign digit is regarded as the most significant digit of the
integer.

Some instructions of this form have special meanings :

(1) X47P3 Make resident pattern= (B).
(2) X45P6 } : Output thirteen pentads* from A and B.

X47P6 Output ceases when (A) = 0. The thirteen pentads do not include the a0

digit.

When called in by X45P6C or X47P6C, the B accumulator is cleared and
only six pentads are output from A. This output is useful for text, etc.

• A pentad is a group of :five digits and is made up in the reverse order to that in which the character is
normally written. E.g., the letter Lis represented by 01101, but is in the machine as 10110.

13. 1 . 1 Layout Pattern.
This is a 33-binary digit word in which digits, or groups of digits, are used to specify the

output layout. Each digit has a specific meaning.
I I

PO iPil P2 P3
Xrx:x x

I I
I I

P4 P5 P6 P7 PS P9 PIO Pll
xxxxxx xx

P28 P29 P30 P31 P32
x x x x x

PO= 1
PO= 0

Type or punch in teleprinter code the sign of the number.
Suppress the sign.

61

OUTPUT PROGRAMS

In machine code output of the sign is always provided regardless of PO.
. Pl = 1 : Number to be converted and output as a fraction.

Pl = 0 : Number to be converted and output as an integer.

In machine code the point is punched automatically. In other forms this depends on the
pattern.

P2, P3, P4, PS : together specify the number of digits to be suppressed.

If there is no suppression, i.e. when P2, P3, P4, PS = 0, then 10 digits are output. The
digits specified for output are the most significant in the number.

This can be written as :
If P2, P3, P4, PS = i, then output = 10 - i digits. So when the combination is :

P2 P3 P4 PS, for example, five digits are output and five digits suppressed.
0 1 0 1

The following digits are taken in pairs, e.g. P6 and P7, PS and P9, etc. The value of
such a "bit pair" is called k, where 0 < k < 3.

k = 1

k=2

k=3

Output next digit imperatively, i.e. the next digit must be printed whatever
it may be.

Output next digit jacultatively, or conditionally. Facultative output
suppresses the most significant zeros replacing them by spaces. When a
non-zero digit is found, subsequent output becomes imperative.

Type or punch in teleprinter code a space.

Type or punch in teleprinter code a point. After output of a point,
output of digits becomes imperative.

When all the 10 .,--- i digits have been output, the values k = 0 and k = 1 change in
meaning:

k = 0 : Leave output program and return to main program.
k = 1 : Carriage return, line feed, figure shift.

The last digit P32 is automatically followed by a zero :

P32 = 0 : Leave output program.
P32 = 1 : Type space ; after which k = 0 follows.

In fraction output the most significant digit is regarded as the digit in front of the point.
This inay be 0 or 1 as a result of rounding, e.g. 0.1111 1 will be output as
1.00 0. For fraction output P6, P7 = 2 has a special meaning: suppress this
most significant digit. This is useful for double length output where it is wished to output
the tail next to the head, with the digit in front of the point in the tail suppressed.

The slow version of the output program reconverts the number converted for output and
leaves it in A and B. ·This can be used for checking purposes.

13. 1. 2 Some Samples of Output Pattern.
Here are some samples of output patterns :

Integer ± XXX spa XXX.XX
± XXX spa XXX.XX
± XXX spa XXX.XX
etc., with only the one digit in front of the
point imperative.

It is possible to output a column like the following example :

+ 123 498.17
23 001.01

+ 107.30
23.69

+ 0.98

62

OUTPUT PROGRAMS

I The pattern is as follows :
............... _......---.....-.-....

I
I

01 10 oTi
u 6 w:

............... ,..._.I....-..._, .,...-.....--... ~ .,.....---.....
01 00:11 00 00 01 00 000 1000100101

AK Q LR I BC DE 20 : 6176

The pattern can be expressed as a "pseudo-instruction", by writing letters corresponding to
ones in the function part, and by converting the binary register address part into their decimal
equivalent.

The pseudo-instruction in this case is A6176RCE20U6.

13. I . 3 Signed Double Length Fractions.
The patterns for the head and tail of double length fractions with sign are : -------- ---- __...... ---11 0000 00 11 00 000

AK DE

The pseudo-instruction is AOOOKDE.

Pattern for tail : 1 1
.....---- --- ---.. ---.. -·- ----... ~ t-.. .--.... --- ...--------....

1 1 o o o o 1 o 1 1 o o o o o:o o o o o Io o o o o o o o o 1 o o o
AK B DE : l 8

The pseudo-instruction is A008KBDE.

Care must be taken that the tail does not round up to I on output. This can be done
by ensuring that the last three digits of the tail are zeros. There is then a ~light doubt on
the accuracy of the least significant digit of the tail.

When an integer contains more digits than has been allowed for by the pattern, the
machine stops. On restarting :

(1) The slow program leaves the space blank.
(2) The fast program writes zero in the space.

13.1.4 Pattern for Normal Integer. - - I

-·-
I -·--0 1 l 0 1 -- -1 0 0 0 0 0 0 1 0 1 0 I 0 I 01 I

I 0 I
21 A C E U 5

Pseudo-instruction is A2640CE21U5.

13.1.5 Pattern for Normal Fraction.

I
I

I
I

I I

0 1 0 0 1 0 1 0 0 0 0
2640

------..-- --...-... - 1- ..--.. --- I ~ .--..... --.. ----._
1 1 0 0 0 0 0 0 1 1 0 0 0 0 o: 0 0 0 0 0 : 0 0 0 0 0 0 0 0 1 0 0 0 0
AK DE 11 l 020

Pseudo-instruction is A020KDE.

13 . 2 Building Blocks.
Building blocks consist of short pieces of program, each designed to give a particular facility.

Typical blocks are :
Output digit block ;
Output sign block ;
Output carriage return, line feed, figure shift.

The advantage of the building block idea is that only those blocks which are required for a specific
purpose need be used. One can achieve as much complexity of output as required, but will fill no
more storage space than necessary.

63

OUTPUT PROGRAMS

13. 2. 1 Building Block Program for Output of Digit and Sign.
PO
Pl

"P2
P3
P4
PS

"P6
P7
PS
P9
PIO
Pll
P12
P13
Pl4
PIS
P16
P17
PIS
P19
P20
P21

P31

NLBE6
ACE2S
+o
NLB6
NLBV
NKKCE6R
X009-XOOOK6RTE
NK6R
NKKK2C
f(O)
f(l)
f(2)
£(3)
f(4)

Table of teleprinter
equivalents of the
digits 0-9.

Program to Set Sign.

P32
P33

"P34
P35

"P36
P37

"P38
P39
P40

NIBC3
NKKCE25
AP2D25
NKKCES
f(-)
NKKCK1V2 ----------f(+)
NIBC3
XP19

f(S) For example :
f(6) f(6) = 0.11 00 11 00 11 11 etc.
f(7) start ?' l 0 l 0 I stop
f(S) These constants convert machine
f(9) code into teleprinter code.
NKE6
XSK13
XP31K4

1-1
The sign program precedes the typing out of digits, i.e. on first entering the machine the

instruction XP32KE4C enters the subroutine at instruction P32 and the sign is printed out.
For this reason, let us firstly analyse the sign program. Since B contains the number to be printed
out, we will treat the digit in B as (1) positive, (2) negative.

A B c D Remarks

(1) +ve XP33IBC3
-ve AP34CE25 :XP35IBC3 Sets teleprinter signal; does not

AP2D25 double (A).

-ve XP35IBC3
+ve AP36CE5 AP2D2S ~ 5

f(-) +ve XP37IBC3
f(-) -ve AP38KCIV2 Clears A ; test succeeds on sign
f(+) -ve XP40IBC3 of B. f(+) ~ A. Note

action of K I.
f(+) +ve XP19

Here the test succeeds and XP19 jumps to the instruction XP20KE6 in P19. Let us now
consider the case of a negative number in B. In this case the test fails.

f(-)
f(-)
f(-)
f(-)
f(-)

(2) -:-Ve

+ve
+ve + ve XP40IBC3
-ve XP19

XP39IBC3 Test fails. So next instruction
is not executed.

------------------ -------- ---------- - ------------------- ---------

64

OUTPUT PROGRAMS

Now the sign is printed out:

A B c

XP19
XP20KE6
X5Kl3
ADP2.25
X5K12

until

X6K
XP21
XP31K4

D

XP21

XSK12

X6K

Remarks

(D) = XP21 --+ 6
instructiop.

return

The repeat instruction XSK13 repeats ADP2.25 thirteen times. This sets the teleprinter
signal and doubles (A), and is executed once per 10 ms. owing to the harmless writing into P2.
By the repeated execution of AP2D25 the teleprinter signal is each time made equal to a 6 ; also,
A is left-shifted because of the action of register 25, so that all consecutive digits come into
the a0 position. The process causes each signal to last 20 ms., i.e. it duplicates each digit.

Successive digits are printed by entering with XPOKE4C. The contents of five are made
AP2D25 by the Sign Program.

Instruction Analysis :

XPILBE6 Store (B) in 6; form 2 (B).
ACE25 Clear A; set teleprinter signal low (do not double A); sends

(P2) = +o --+ A.
XP3LBE6 returns to C from D; sends 2 (B)--+ 6. Forms 4 (B).

XP4LB6 Forms 8 (B) + 2 (B} = 10 (B) = B'.

XPSLBV

AP6CE6R

XP8K6R

AP9K2C

XP20KE6

Forms 2 (B)'. The carry trap is set to zero, i.e. V releases carry trap,
previously set by the sum 8 (B) + 2(B). Because there is no
register address, nothing is added into B, and hence the carry trap
is set to zero.

Store digit to be typed in 6 ; the constant in P6 = X009-XOOOK6R
--+ cleared A.
XPSLBV returns to C as XP7LBV. Forms 2(B)' and 2(P6).
Forms (B)' and (P6) in A; passes into D to become XP10K6R.

K2 connects C to register 2 = (A) ; executes X009-XOOOK6R +
XP10K6R (from D) = XP19.

Write return instruction--. 6.

Successive digits are printed out by entering with XPOKE4C, and they are output in the same
way as the sign, i.e. by means of the instruction AP2D25, which is repeated thirteen times.

65

