
WILLEM LOUIS
VAN DER POEL

Micro-programming and
Trickology*)

Den Haag, The Netherlands With 3 Figures

Disposition

1. Introduction

2. Description of ZEBRA Computer
2.1 Something about the Notation of Instructions
2.2 The Function of the Operation Digits
2.3 The Action of the Instructions - The Functional Digits
2.4 The Test Digits
2.5 Double-length Facilities
2.6 The Order of Preference

3. The Repetition Instruction
3.1 Multiplication
3.2 Division
3.3 Normalisation
3.4 Block Transport from Drum to Registers
3.5 Zero Searching
3.6 Searching. in a List
3.7 Generating Random Numbers by the Series of FIBONACCI
3.8 The Repetition of a Subroutine

4. Fast Repetitions
4.1 Drum Clearing
4.2 Fast Sorting in Classes
4.3 Summing the Store
4.4 Displacing
4.5 Fast Division

5. Miscellaneous Tricks
5.1 Transferring a Number without Making Use of the Accumulators
5.2 Extraction of Three and Four Consecutive Numbers
5.3 Storing Four Numbers in Consecutive Locations
5.4 Modifying a Modifier during a Repetition
5.5 Multiplication with Small Factors

6. Miniaturization
6.1 The Pre-input Program
6.2 Tape Copying Program (Disfosition cont'd)

*) Acknowledgement. Many of the tricks described in this contribution have been
found by other people. The most prominent among these were DR. G. VAN DER MEY
and MR. J. G. VAN LEYDEN who invented the more subtle tricks. It must be further
understood that much of the material is a result of close teamwork.
The author wishes to express his warmest thanks to all concerned.

270

6.3 Decimal Input by the Telephone Dial
6.4 Punching the Contents of the Store in Binary Form
6.5 Read and Print Text

7. The Binary Input Program on Track Zero (Appendix)

Willem Louis van der Poel

Summary. The growth of automatic programming languages for computers poses
certain problems in logical design and machine code programming. Most classical com­
puters are not very well equipped for composite actions such as searching a list, block
transfer, sorting etc. There is a marked tendency in computers today to cope for these
macro-actions by means of built-in features. The purpose of this article is to show
some ways to build up these macro-instructions from a coding system where the pro­
grammer has immediate access to the micro-programming of the machine. Un­
fortunately, this subject cannot be treated without referring to a particular machine
code. For this the ZEBRA code has been selected.

After a short introduction into the features of ZEBRA, a survey is given of all sorts of
complicated macro-actions and how they can be expressed in this very flexible micro­
code. One of the key stones is the feature to repeat an instruction. In this way often
a multiple use can be made of a single instruction. Another feature is the generation of
pieces of coding in fast registers which are subsequently executed. These pieces were
not written out in full beforehand. This technique is called "under-water programming".
A considerable ingenuity is often required to devise the macro-instructions and this
has given rise to the name "trickology" for the art of using this tricky programming.

Zusammenfassung. Die Entwicklung der automatischen Programmsprachen flir Rechen­
automaten erlegt der logischen Planung und der Festlegung des Maschinencodes gewisse
Probleme auf. Die meisten klassischen Rechenautomaten sind in bezug auf zusammen­
gesetzte BefehlsabUiufe, wie beispielsweise Durchsuchen von Listen, Blocktransfer,
Sortieren usw., nicht besonders gut ausgestattet. Heute besteht bei Rechenautomaten die
deutliche Tendenz, solche MakroabHiufe vor all em durch besondere, in die Maschine
eingebaute Befehle zu bewaltigen. In diesem Beitrag sollen einige Wage aufgezeigt
werden, wie man solche Makrobefehle auch in einem Programmsystem aufbauen kann,
in dem der Programmierer einen direkten Zugriff zum Mikroprogramm der Maschine
hat. Ungliicklicherweise kann man dies en Gegenstand jedoch nicht behandeln, ohne auf
einen bestimmten Maschinencode zuriickzugreifen. Es wird der Befehlscode des Rechen­
automaten ZEBRA zugrunde gelegt.

Nach einer kurzen Einfiihrung in die besonderen Merkmale von ZEBRA wird ein Dber­
blick gegeben iiber aIle moglichen Arten von komplizierten Makroablaufen und auf
welche Weise man sie in dies em sehr flexiblen Mikrocode ausdriicken kann. Hierbei
besteht einer der Hauptgedanken in der Moglichkeit zur Wiederholung eines Befehls.
Auf diese Weise kann haufig ein einziger Befehl vielfach gebraucht werden. En anderes
Merkmal besteht in der Erzeugung von Teilstiicken des Programms in schnell en
Registern, die nachher ausgeflihrt werden. Diese Teilstiicke waren vorher nicht voll aus­
geschrieben. Dieses Verfahren wird als "Unterwasserprogrammierung" bezeichnet. Da
es jedoch haufig einer gewissen Erfindungskraft beim Zurechtlegen solcher Makro­
ablaufe bedarf, so mag es gerechtfertigt sein, diese Programmierungsart als
"Trickologie" zu bezeichnen.

Resume. L'accroissement des langages de programmation automatique pour les grandes
calculatrices electroniques pose certains problemes quant a la realisation logique et a
la programmatiort en code-machine. La plupart des calculatrices classiques n'est pas
tres bien equipee pour les actions composees, telles que Ie traitement des listes, Ie
transfert en bloc des mots, Ie tri des mots etc. A l'heure actuelle, il y a dans Ie domaine
des calculatrices une forte tendance a assurer ces macro-actions au moyen de dispositifs
incorpores dans la machine. Le but du present article est d'indiquer les moyens pour

Micro-programming and Trickology 271

realiser ces macro-instructions a partir d'un systeme de code dans lequel Ie pro­
grammeur a un acces direct a la micro-programmation de la machine. Malheureusement
ce sujet ne peut etre traite sans se baser sur un code-machine particulier. A cet effet, a
ete choisi Ie code de la machine ZEBRA.

Apres une breve introduction expliquant les caracteristiques de la ZEBRA, l'auteur
donne un aper~u de toutes sortes de macro-actions compliquees en precis ant comment
elles peuvent etre exprimees dans ce micro-code extremement flexible. Un des points
d'appui du systeme est la possibilite de repeter une instruction permettant de faire
d'une seule instruction un usage multiple. Une autre caracteristique est la creation
des fragments de code dans des registres rapides, fragments qui sont executes ensuite
et qui ne sont pas ecrits en toutes lettres au prealable. Cette technique est appelee celIe
de la «programmation submergee». Souvent, la composition des macro-instructions
demande une grande ingeniosite, ce qui a donne lieu a la creation du mot «Trucologie»,
par lequel on designe l'art de la programmation.

1. Introduction

There is a very marked tendency today to do away with all machine languages.
At the highest level, problem oriented languages are the main goal. At most a
machine oriented language can serve as intermediate step in describing a translator
or compiler. Nevertheless somewhere some people must descend to the machine
languages themselves to be able to make the programs for the transition between
machine language and machine oriented but essentially machine-free languages.
It shall not be the subject of this article to go into the problems of machine-free
languages at any level as they have been dealt with in the contribution by
F. L. BAUER and K. SAMELSON, in this volume pp. 227-268.

It is clear that the structure of automatic programming languages will have a
repercussion on the logical structure of machines. Perhaps the most important
facility of automatic programming languages is the automatic allocation of names
in the store. As this allocation process is essentially a dynamic process (e. g. in
recursive procedures [1, 2]) the store must be dynamically addressable, i. e.
reference to locations must be possible relative to the last stored quantity. Such
a store is called stack, LIFO (last-in-first-out) memory, push-down store, or
nesting store 1). Of course it is possible to build the stacking property into
the hardware but it is also possible to programme the facility by keeping track
of the position of the top of the stack (d. KDF 9 of English Electric [3] and B5000
of Burroughs [4]). This brings us to the desirability of index registers as they give
just the possibility to add something to the address of an order to be executed, e. g.
the top address of the stack. Going to a subroutine requires the storing of the top
address of the stack for later reference when returning from that subroutine. A
whole hierarchy of such top-addresses forms a list and it is clear that especially
list searching for reference to variables of other levels of the hierarchy can be a
frequent operation.

The necessity of having index registers is often interpreted by machine builders
as a necessity to add the contents of these index registers to the address on the
same instruction. But when analised in time sequence this always requires an
extra add cycle before the execution of the instruction. Therefore it seems more

1) The same is designated "Keller" by F. L. BAUER and K. SAMELSON, cf. this volume,
pp. 255-257 (Editor's remark).

272 Willem Louis van der Poe!

logical to do this addition during the previous instructions. The end of the pre­
vious instruction fetches the next instruction and modifies it at the same time. As
a by-product the advantage emerges that now with the same ease the modifiers
can be modified by a whole string of such instructions (cf. 2 and 4 orders in
EDSAC 2 [5], NKm orders in ZEBRA [6] and the structure of the Bendix G 20
Computer [20]). In this way the most general addresses can be composed as e. g.
«(a) + (b) + c) + d) + e where (n) denotes contents of n. The limitation of the
number of index-registers to only a few and the special orders to handle them is
a very severe drawback for automatic programming. The conclusion is: make
every location of the main store also available as index register (cf. the George­
Computer [7] and the Bendix G 20).

Of course the organization of stacks, lists, index registers etc. is greatly helped
by having a big store of uniform properties. As soon as a two level store enters
the picture, a transferring of blocks of information between main (high speed)
store and background store becomes a problem. In this connection it is worth
while to mention that it is possible to make the allocation for blocks to be stored
by built in hardware and to keep track of the addresses in a label list. The alloca­
tion can be done in such a way that the first available free block is seized and
reserved and is given a label which is independent of the real address that need
not be known to the outside program any more. Especially when two independent
programs are run on an interrupt basis side by side which must not disturb each
other, this scheme can have great advantages (d. Atlas Computer of Ferranti
[18, 19]). Of course the same technique can be programmed as well.

Instead of haVing a stack, the individual locations can be organised in quite another
way. When a variable must be stored the first free location can be looked up.
To link the position of that location to the previous one in the stack or list a tag
or label can be assiciated with it which gives reference to the previous address.
This is called a threaded list. Manipulation of this list only requires manipulation
with the tags, never with the information itself. Especially for system with
variable length items (sorting problems, variable multi-length arithmetic, auto­
matic allocation) this way of organization has many advantages notwithstanding
the drawback of consuming extra storage space for the tags.

The reason for going in many details of machine structure in connection with
automatic programming is that the present article wants to deal with some of the
organization problems at the lowest machine level.

The structure of the micro-instructions is of course very important for building
machines which are well suited for doing their work efficiently but that goal can
be attained through a suitable structure of micro-instructions. The question is,
how far must one go in decomposing the well known mathematical concepts of
addition; multiplication and the organizational operation as transport, test, list
searching etc. into more elementary fragments to be able to make one's own order
code. The argument that micro-code is more difficult to be handled by the human
programmer does not hold for automatic programming and the flexibility gained
could well be a boon to speed.

It is the fate and doom of a machine code programmer that he can only describe
his findings in a particular code for a particular machine. This has been done
before, and most books on programming descend to the level of a particular
machine (e. g. WILKES, WHEELER, GILL [8]). Nevertheless I shall go through the

Micro-programming and Trickology 273

cumbersome details of describing a particular machine to be able to come to the
subject proper.
Some justification for doing this can perhaps be found in the reason that the
structure of the machine in question (Stantec ZEBRA) is rather different from
most classical machines so that the order code is composed of functional
bits which each have a seperate and independent meaning. (Reference is
made to [6] pp. 49-94.) We have tried to devise the logical design in such a way
that the micro-programming permits the easy implementation of most macro­
operations required. In fact it has appeared that a completely new technique of
programming emerged (which we have called under-water programming) in which
far more complicated macro-operations can be more easily dealt with than in
most usual built-in machine codes. It also appeared that some very complicated
actions involving timing problems in strobing a real time input or output device
(such as a telephone dial or a teleprinter) can be solved in an incredible low
number of instructions. Many of these complicated macro-instructions are
connected with list searching, manipulation of treaded lists, block transfer, inter­
pretation techniques so that the structure of micro-instructions has helped a great
deal to make all sort of processes occuring in automatic programming particularly
simple and speed.
In the design of ZEBRA not all ideal circumstances for making a good machine
for automatic programming have been realised. For instance, the limited number
of fast access index registers with special treatment and the optimum programmed
store do not comply with the requirements given in the first part of this intro­
duction.
A second reason for making the design as it stands was economic need to make
the machine as simple as possible without sacrificing speed. Indeed much gain
in speed has resulted from a more compact use of time and simultaneous action
of the elementary particles of the operationj on the other hand input and otitput
facilities were rather limited.
Hence I consider the purpose of this article to lie more in the line of giving
limits how some sort of macro-operations can be dissected in general, but the
only way to describe it is by taking two particular examples at hand. Other
machines with a coding of similar scope have been built. To mention a few
of them: The Z 22 Computer has a very similar functional bit coding (d. the con­
tribution by ZUSE, in this volume, particularly p. 528) j the Mailufterl Com­
puter of the Institut fur Niederfrequenztechnik, Technische Hochschule Wien [9]
is also based on a similar functional bit coding and has as special features opera­
tions for both binary and binary coded decimal. All have a one cycle basic
operation.,
In another line of thought the microprogramming in EDSAC 2 [10] has been
applied. Here a class of micro-operations are provided in the machine but they are
not accessible for the outside programmer. Instead they are used as constituents
in time series for composing the more complicated instructions on a wired-in
basis. All wiring is done in matrix form so that it is not too difficult to devise
new orders and to build them in. In the same way the computers G 3 of the Max­
Planck-Institut fur Physik und Astrophysik, Munchen [11,12], and TR 4 of Tele­
funken [13] are logically designed.
Again a slightly different form of micro-coding is used in the TX-o Computer
built at the Lincoln Laboratory, Massachusetts Institute of Technology [14, 15].

18 Dig. Inf.

274 Willem Louis van der Pod

The structure of the computer had to be made simple as it was only meant as test
machine. Here there was adopted a decoded operation part of three orders with
an address for fetching, storing and jumping. The fourth operation was addressless
and the address bits were used to do all other operations (including input and
output) in a functional bit way [15]. Both in EDSAC 2 and TX-o the concept of
having different groups of digits controling operations in time sequence was in­
corporated. In ZEBRA this is done only to the extent as comes naturally.

The concept of micro-programming and the practice of devising tricks to do the
more complicated composite actions is so interwoven in ZEBRA that the volume
of knowledge of these tricks has been given a special name: trickology. Without
this knowledge of trickology and the standard programs based on it, ZEBRA
would be a useless machine. In general this applies to all computer systems. The
computer in itself will be of little value when given to a man only in possession
of the manual of basic machine properties. The library of programs and the philo­
sophy of program organization will make this computer into a useful tool. It is
not unusual that this body of paper knowledge is more costly and more difficult
to obtain than the machine itself. Especially when exchange of programming
between machines takes place the program organization or languages used must
be rigorously the same.

2. Description of ZEBRA Computer

ZEBRA is a binary magnetic drum calculator with a storage capacity of 8192
words of 33 bits. The drum is divided in 256 tracks of 32 words each. The words
are consecutive on the drum. Words are transferred in series through the ma.chine.
Revolution time 'is 10 ms. The arithmetic unit comprises two accumulators A and
B, A having 33 bits and an overflow position, B having 33 bits and a special carry
trap "for a carry-over. The control unit comprises a control register C which holds
the next instruction, a control counter D both of 33 bits word length, and an
execution register E in which the instruction to be executed is set up from C.
A fast store comprising 12 short registers of 33 bits plus a few odd registers
containing constants or performing special functions completes the picture.

Input is via 5 hole punched paper tape. Max. speed is 200 symbols/so

Output is via 5 hole punched paper tape. Max. speed is 60 symbols/so

Further output is via ordinary teleprinter (7 symbols/s).

The bits of the contents of a word are denoted by small letters derived from the
name of the register or location with the left most digit starting in o.

Thus

(B) = bo bl b2 ••••••••• b32

It is a matter of interpretation to use the digits in a word to represent a fraction
in the following way:

32

Po PI P32 = - Po + ~ Pi 2-i, where Po acts as sign digit.
i~l

In the same way a number can be regarded as a signless integer:

32

Po PI P32 = ~ Pi 232-i
i~o

Micro-programming and Trickology 275

For the machine addition this makes no difference as all digits are treated in
exactly the same way.

The structure of an instruction is as follows:

Co Cl C2 C3 C4 C5 C6 C7 Cs C9 CIO Cl1 Cl2 C13 Cl4 Cl5 Cl6 Cl7 ClS Cl9 C20 C2l C22 C23 C21 C25 C26 C27 C2S C29 Cao C3l C32
, -v '''---.-' '- v '

operation part consisting of fast store 13 bits for drums address
15 bits bearing the names address

m n

There are two addresses, one for selecting a fast register, the other for selecting
a drum location. The 15 operation bits all have a separate meaning.

The fast addresses have the following properties and contents:

o contains a fixed constant O. It cannot be written into.
1 contains a fixed constant s (P32 = 1). It cannot be written into.
2 is identical with accumulator A. It cannot be written into.

3 is identical with accumulator B. It cannot be written into.

4

15

16

21

normal fast registers. They can be read off and written into.

not provided in the machine.

22 contains (A). It cannot be written into. When selected, ao is transferred to
the flip-flop for generating the signal for operating printer 2.

23 contains Po = 1; Pl to P32 = O. Constant. It cannot be written into.
24 contains the logical product of (A) and (B) taken bit by bit when read off.

When written into it has no effect as such but causes the logical product of
(5) and the contents of the selected drum address to be read from the drum
instead of the original contents.

25 same as 22 except that it operates teleprinter 1.

26 contains contents of 5th hole of input tape. All zero's for 0, all ones for 1.
When written into, ao is transferred to 5th hole of output punch.

27 same for 4th hole.

28 same for 3rd hole.

29 same for 2nd hole.

30 same for 1st hole.
31 when read off contents is 0 and input tape is stepped. When written into this

has no effect except that it causes the symbol set up in the punch to be
punched and the tape advanced.

IS"

276 Willem Louis van der Poel

2.1 Something about the Notation of Instructions

The instructions when written down on paper differ from the form in which they
are present in the machine. This is purely a matter of input program and does
not concern any of the principal points of the article. But as this notation has
grown and is used we shall adhere to its conventions.
In general, functional bits A, K, are written when present and are omitted
when absent. The letter A serves as opening symbol and must stand in front.
The letter X serves as opening symbol when A is absentj thus A = X.

Other functional letters can be written in an arbitrary order. They serve to
separate the addresses. The V-digits are treated separately and are always written
at the end.
Of the two addresses none, one or both can be present. A drum address is written
with at least 3 digits or must be ;2;; 32. A fast address is smaller than 32. Non­
significant zero's can be suppressed even if the address is zero.

The drum address is written before the fast address when the W-digit is absent,
thus:
A200BCE5 Functional digits A, B, C and E present. Drum address = 200,

fast address = 5.

X200R Functional bits R only. Drum address = 200, fast address = o.
The fast address is written first when the W-digit is present. The W-digit is
automatically inserted by the input program and is never written by th~ pro­
grammer. When the fast address is written first, another address p can be
written. This will cause an inactive drum address 8192-2 p to be input. Thus:

XK5 Functional digits K and W present, drum address 000, fast address 5.
X5K7 Functional digits K and W present, drum address 8178, fast address 5.

A point "." is written when no functional digits are available for separation of
two addresses ..
As an X jumping to the immediately following register is very frequent, an
abbreviation will be introduced: (p) = Xp + 1 is denoted by N. In the same way
NKK denotes (p) = Ap + 1.

2.2 The Function of the Operation Digits

The A-digit determines the character of the operation. If Co = 0 the operation is
called X, and if Co = 1 the operation is called A. An X-operation has as main
element the extraction of a new instruction, and the A-operation has as main
element the execution of an instruction. However, the distinction between these
kinds is not sharp.

The K-digit determines for which unit the fast registers are used, 1. e. for the
arithmetic unit or for the control. Together with the A-digit, the K-digit deter­
mines the way of coupling between the four parts: arithmetic unit, control, fast
registers, and drum store. This will be clear from the functional interconnection
scheme depicted in Fig. 1. (The term fast registers is now preferred to and
replacing the terms short registers or short store which have frequently been
used previously.)
The function of the Q-digit is the addition of ± c to the B-accumulator,
independent of the store.

Micro-programming and Trickology 277

The digits Land R effect the shifting of the contents of the double-length accu­
mulator to the left or to the right, respectively.
The I-digit controls the additive or subtractive action of an instruction. This only
applies to the accumulators, not to the control, and then only for the transfer to
Ii or B.

Fig.!. Scheme of the functional interconnection between the four main computer units

The B-digit determines whether an operation refers to the A or to the B-accu­
mulator. This only applies to adding, not to shifting.

The C-digit determines whether or not the accumulator engaged in the operation
must be cleared.

The digits D and E determine whether reading or writing takes place from/to the
drum and the fast registers, respectively.

The digits V, V 4, V2, V1 are called the test digits. With a testing operation the
operation is either or not executed, dependent on the criterion described by the
digits V, V 4, V 2, V 1• If the instruction is not executed, an inscruction AO is executed
instead.

The digit W is related to the time selection on the drum. If C14 = 0, the execution
of an operation is delayed till the selected storage location on the drum is present.
If C14 = 1, the operation is executed immediately without the drum being waited
for. The drum is completely disregarded. Zero is always read and nothing can be
written on the drum.

The remainder of the digits forms the addresses: C15 to C19 constitute the fast
address and C20 to C32 constitute the drum address; C20 to C27 serve the track selec­
tion and C28 to C32 serve the time selection within the selected track. For the sake
of shortness the contents of the drum address will always be denoted by (n) and
the contents of the selected fast address will always be written as (m). There is
(n) = 0 if the W-digit is 1. If (n) is destined for A, this number is denoted by
(n}A. Then (n}B and (n)c are O.

In the same way by (m}A, (m}B and (m)c is denoted the contents of (m) as far as
they are destined for A, B, or C. Both other entrances receive a O.

2.3 The Action of the Instructions - The Functional Digits

The A-digit.
In the control the A-digit has the following action:
Operation X: (C) + 2 E -+ D (n)c + (m}c -+ C
Operation A: (m}c + (D) -+ C (4) -+ D

278 Willem Louis van cler Poel

Both operations do not differ in so far as the arithmetic unit is concerned. In any
case adding or storing takes place according to:

(A) ± {(n)A + (m)A} -+ A (B) ± {(n)B + (m)B} -+ B

These standard operations can be modified by the other operation digits.

Register 4 has a special function and is related to the A-operations. All instruc­
tions are either X-instructions or A-instructions.

The K-digit.

If the K-digit is absent: the fast registers are used for the arithmetic unit.

If K is present: the fast registers are used for the control.

On a reading operation: (m) -+ C

On a writing operation: (D) -+ m

The Q-digit.
If the Q-digit is absent: normal.

If Q is present: E is added to (B) (or is subtracted dependent on I). The E is intro­
duced in the carry entrance of the pre-adder of B as if it were a carry from "b33".
The adding of E under control of Q is also taking place on a storing operation.

The L-digit.

If L is absent: normal.

If L is present: (A) and (B) are shifted one place to the left. If A and B are not
cleared, the leftmost digit of B shifts to the rightmost digit of A and B is com­
pleted on the right-hand side with a zero. The leftmost digit of A is lost. If A or
B are cleared, zero is always transported from B to A. All other operations are
performed in the normal way.

The R-digit.

If R is absent: normal.

If R is present: A and B are shifted one place to the right. When A and B are not
cleared, the rightmost digit of A shifts to the leftmost digit of B. The rightmost
digit of B is lost. A is supplemented on the left-hand side with a digit from a place
which will be called a~l. This place is situated on the left side of ao, and completes
the A-accumulator to an adder of 34 places instead of 33 places. For this extra
place the following rules hold:

If A is cleared, 1L.1 is also cleared. All numbers to be added are first added
together in what is called the pre-adder; then the resulting number is completed
with a copy of its sign digit, after which the number of 34 digits is added into A
with the main adder. This digit is serving effectively to store an overflow. The only
method to recover this digit is to shift it to the right by an R-operation. The
shifting to the right prevails over shifting to the left; thus a combination of Rand
L shifts to the right only.

For the sake of doing multiplications the following facility has been added to LR:
if LR is present, add b32. (15) to A instead of (m)A.

The I-digit.

If the I-digit is absent: normal.

If the I-digit is present: take the complement of the numbers of drum and fast
register, in so far as they are destined for the arithmetic unit. The contents of

Micro-programming and Trickology 279

15 on an XD- and an LR-operation and the c on a Q-operation are also com­
plemented when I is present. The I-digit does not refer to numbers to be stored,
or to the control.

The B-digit.

If the B-digit is absent: the operation refers to A.
If the B-digit is present: the operation refers to B.

The addition normally takes place in A just as the storing normally takes place
from A. However, if the B-digit is present, the addition takes place in B and the
storing also takes place from B. The B-digit has no influence on the addition of
(15) to A on an LR-operation. This addition always relates to A. The addition or
subtraction of c on a Q-digit also always takes place in B. The B-digit has no
relation to the control.

The C-digit.

If the C-digit is absent: do not clear A and B.

If the C-digit is present: clear the accumulator as prescribed by the B-digit, before
an addition or a shift takes place. The C-digit does not relate to the control.

The D-digit.

If the D-digit is absent, and if the execution is waiting for the drum: read the
number from the selected drum storage location and perform on it an operation
according to the other digits.

If the D-digit is present, and the execution is waiting for the drum: write in the
selected drum storage location the number from A or B according to the following
rules:

With an operation without B: C8 = 0: (n) destined for A.
C8 = 1: Transfer (A) to n.

With a B-operation: c8 = 0: (n) destined for B.
C8 = 1: Transfer (B) to n.

On the combination of X and D an extra addition takes place: Add (15) instead of
(m)A or (m)n to A or B according to the B-digit.

The E-digit.
If the E-digit is absent: read the relevant fast register and use it for A, B or C
according to the K and B-digit in the operations.

If the E-digit is present: read the number as determined by K and B in the selected
register.

If K and B are both absent: C9 = 0: (m) destined for A.
C9 = 1: (A) m

If K is absent, B is present: C9 = 0: (m) destined for B.

C9 = 1: (B) m

If K is present: C9 = 0: (m) destined for C.
C9 = 1: (D) m

2.4 The Test Digits

If the V-digit is not present, the digits V4, V2 and Vl together determine a number,
having the value 0 to 7. These combinations are denoted by Uo to U7, added
behind an instruction. If the instruction contains Uk, this operation is executed if

280 Willem Louis van cler Poe!

a testable switch k has been thrown. If not, the operation Ao is executed. The
sense switches will be also denoted by U1 to U7. Uo is considered to be always
thrown. An instruction with Cl0' C11, C12, C13 = 0 will be executed in the normal
way. U7 is materialized as a key having a normally closed contact; hence in con­
trast to the other six switches the test U7 succeeds when switch U7 is not thrown.
This key serves as a start key.

If the V-digit is present, a V is added to the instruction.

Cl0' CUr C12' C13 = 1000 is denoted by V: See next paragraph.

Cl0, CUr C12, C13 = 1001 is denoted by VI: Execute the instruction if a o = 1,
else execute A.

Cl0' Cll' C12, C13 = 1010 is denoted by V2: Execute the instruction if bo = 1,
else execute A.

Cl0, C1t- C12' C13 = 1011 is denoted by V3: Execute the instruction if (A) = 0,
else execute A.

Cl0' C1V C12' C13 = 1100 is denoted by V 4: Execute the instruction if b32 = 1,
else execute A.

The combinations V5, V6 and V7 are free for special applications. A test can be
performed with the aid of these functional digits.

2.5 Double-length Facilities

To be able to perform double-length arithmetic very easily a device to take the
carry-over from B to A is provided. As this carry-over is only produced on the
last impulse time in a word, it is not possible to add it to A in the same cycle. This
is always done in a later cycle (not necessarily the next).

The normal rule for double-length arithmetic is as follows: On every B- or Q­
operation the carry-over is stored in an intermediate storage of one digit, named
carry-trap. This carry is added to A on the first instruction having a VO, which
can be written simply as V. The B-instruction and the related V-instruction must
have an equal I-digit. The carry-trap retains the carry which has been put into it
on the last B- or Q-operation. The carry from the carry-trap is introduced on the
carry entrance of the pre-adder of A as if it were a carry from" a33". On a left
shifting instruction with V it is introduced one digit time late as if it were a carry
from a32. This implies that an instruction of the form A200L5V can give wrong
results, because the addition of (200) and (5) in the pre-adder can give rise already
to a carry from a33 to a32 so that no other carry can be added at the same time.
For a better understanding a short account will be given of the precise action of
the carry-trap. A subtraction in B is performed by adding the inverse of the
number together. with introducing an extra complementary one on the carry
entrance of the main adder of B as if it were a carry from "b 33". When a number
is added, the resulting carry is just the opposite of what it would be, when the
same number would be subtracted. For example, subtracting 0 gives a carry l.
In general this can be formulated as follows: The borrow produced on a subtrac­
tion is the opposite of the carry produced by adding the complement. However,
on the next V-instruction the fact that a borrow has been stored in the carry-trap
in opposite form must be taken into consideration by reversing its significance
as an I-operation. The negative value of a borrow is automatically accounted for

Micro-programming and Trickology 281

by the introduction into the pre-adder. The result of this pre-addition (now in­
cluding the borrow) is subtracted from A on a subtraction.

These seemingly awkward rules are necessary to be able to round-off on multi­
plication with a special trick, and to use the V as a sort of "Q-digit" for the'
A-accumulator.

Examples.

Round-off on multiplication:

N ... IB23

N ... V

The use of V as "Q-digit":

N .. . BI

N ... V

Z.6 The Order of Preference

Last instruction of multiplication contains I.
B23 subtracts ~ from tail giving carry-over
when tail ;;:::~.

Round-off is added to head on next operation.
B-instruction and corresponding V-instruction
do not have the same I-digit!

Subtract 0 from B thus making carry = 1.

Add extra 1 to head from carry-trap i etc.

The functional digits of the operation are written in a certain order. This order is:
AKQLRIBCDEVV4V 2V 1• By reading it from the right to the left the order of
preference of the functional digits is given. One can imagine the action to be thus
lhat all functions take place subsequently. First from the test digits it is tested
whether the operation is taking place or not. Then if storing has to take place,
first storing is effected. Then if clearing has to take place, the clearing is per­
formed. The relevant register is indicated by the B-digit. The position of the in­
version digit is of no importance. The order of LR indicates that R has preference
over L. When Rand L are used together, only a shift to the right is effective. As
last action the additions with Q and A take place. The position of the K-digit is
unimportant.

3. The Repetition Instruction

The possibility to repeat an instruction has given this type of coding its greatest
power. In this chapter we shall give a number of applications which encompass
the most frequent types of serial operations. They comprise multiplication,
division, normalisation (single and double length), block transport, zero-searching,
searching in a non-ordered list for a specified part of a word" generating random
numbers with FIBONACCI series, etc.

The basic idea of repeating an instruction stems from the fact that when a register
is serving as the next instruction source, the drum address is not used as such
when the W-bit is present. Nevertheless the address counter is augmented by 2
every cycle. This does not influence the fast address until the drum address
overflows into the fast address. Thus when the drum address is equal to
8192-2p, it will overflow after getting added p times 2 to it. Hence the notation
XSK7 for: repeat instruction in 5 seven times.

282

Program:

100 NKE6
10] XsKp--+

-+102 etc.

Action:

C D

X100
X102KE6
XSKp

X102
X102--+ 6

Willem Louis van cler Poe!

SI instruction to be repeated: A ..

6 return instmction

A ...
XSKp-1

XSKp-1 XSKp = XSK + 8192 - 2p
XSKp-1 = XsK + 8192 - 2p + Z

A ... XSKp-2

XsKl
A ...
X6K
X102

X6K XsK1=XsK+8192-Z hence X5K1+002=X6K

Return to drum.

In this example we see the alternation between an X- and an A-instruction. The
X is called the repeating instruction, the A is called the repeated instruction. .
Of course both X- and A-instructions can do useful things. Observe that this
count requires no extra apparatus but uses the normal address counter.

3.1 Multiplication

The most important application for a repetition instruction is multiplication. This
can be done by the classical VON NEUMANN system. The A and B are forming a
double-length accumulator, the multiplicand is placed in IS, the multiplier is

. placed in B, and A is cleared initially. At every cycle the last digit of B is tested
and only when it is I, the contents of IS is added to A. Then A and B are both
shifted to the right, thereby dropping the right hand digit of the multiplier and
shifting a bit from the product from A to B. This digit does not change any more.
The repetition of a multiplication runs as follows.

Program:

100
NKE6LRC

101 XSK1SLR

102.1 NLRI

Place return instruction in 6. Clear A and add (IS)
conditionally. Shift right.

Repeat ALR fifteen times (X5K15LR itself is done
sixteen times).

The last cycle is done negatively because of the sign
convention.

5/ ALR
6 return instruction

Micro-programming and Trickology 283

With respect to timing the 31 repeated and repeating instructions just fit into one
revolution time of the drum.
Of course for an isolated multiplication the instruction ALRinS must be prepared.
To give an insight how this can be done, an example shall be given of a complete
open subroutine for multiplication of (A) and (B) without pre-supposing any
contents of the registers.

Program:

100 NEs

101 NKKCEIS

102 ALR

103 NKE6LRC

104 XSKlSLR

105 NLRI

3.2 Division

Pre-instruction activity only starts after next instruction.

Store multiplicand -+ 15. ALR -+ A.

Constant. After-action of NEs stores ALR -+ 5.

Multiplication as described above.

After-action of Es destroys ALR but that does not matter.

A division is more complicated but here also the classical VON NEUMANN scheme
fits into the two available operations.

A step of a division can be subdivided in:
a) shift to the left, subtract divisor and note down a quotient digit 1, right or

wrong;
b) test whether result has become negative. If so, subtraction must be undone.

Add divisor again and remove quotient digit.

The repetition starts with the following initial contents: A and B contain the
double-length dividend (positive), (15) = negative divisor.

Then the program runs as follows:

100 I NKE7
101 X6K31QLD

102 AQllSVl

103 unused

104 etc.

Place return instruction in 7.

Repeating instruction: shift left, XD subtracts divisor,
Q adds 1 to quotient. Repeated instruction: test sign
of result. If negative undo action of XDQ. Only 63 word
times fit into 2 revolutions.
So last restoration is done separately.

61 AQllSVl

7 return instruction

Of course in a practical application this core has to be supplemented by some
preparatory programming for dealing with all combinations of signs. In practice
a closed subroutine will be made for division once and for all. An example can be
found in [6].

3.3 Normalisation

Normalisation is shifting a number a to the left until (a) > ~ and counting the
number of necessary steps. The example of single length normalisation
(shifting in A and counting in B) has been given already in [6]. So we shall deal

284 Willem Louis van der Poe!

with the more difficult case of double-length normalisation. A and B are supposed
to be filled with a positive double-length number which has to be normalised with
a repetition instruction. The difficulty is that both accumulators are occupied for
shifting and cannot be used for counting. The solution can be found by using the
repeating instruction itself as an indication for the number of steps.

Program:

100 NR23

101 NKE6V1

102 NKE6

103 XK6L

Shift double-length number temporarily to the right and
make sign-digit 1 for making next test succeed for the
first time.
Pre-instruction succeeds. KE6 has no meaning yet.
Place return instruction X104KE6V1 in 6. Thus the
repeated instruction is a test.
Repeat and shift left X104KE6Vl. As long as number
to be normalised is still positive, test fails and repetition
goes on. As soon as test succeeds, return to 104 and store
the' present repeating instruction in 6. When having
shifted over n places, contents of 6 is in the end
XK6L+2n. 2n can be separated from (6) later.

The technique of first preparing a few instructions in the registers which after­
wards are executed many times and meanwhile alter themselves is called under­
water programming because the active instructions do not appear as such in the
object program. We shall see many examples of under-water programming later
on where often the instructions executed far outnumber the instructions written
down.

3.4 Block Transport from Drum to Registers

It is clear that for the preparation of under-water programs often a block of
words has to be transferred to the registers. This can be done by a repetition
instruction in the following way. As the instruction to be repeated must be
modified during the repetition, the obvious place to put it is the B-accumulator.
With the XBD combination the repeating instruction can modify the repeated
instruction on every cycle.
Suppose we want to transfer (m), (m + 2) ... (m + 8) to registers 6, 7, 8, 9, 10i
then the program runs as follows:

100 NC5 (5) to A. Necessary for starting.
101 NKKBC Take modifier X002'1 in A.
102 XOO2'1

103 NKKBCE15
104 AmCE5
105 NKE4
106 X3K6BD

107 I etc.

Modifier for augmenting drum address with 2 and
register address with 1.
Put modifier X002'1 ~ 15
and take instruction to be repeated in B.
Store return instruction in 4.

Repeat AmCE5 six times and modify it during repetition
in B. It becomes successively AmCE5, Am + 2CE6,
Am + 4CE7, Am + 6CE8, Am + 8CE9, Am + 10CE10
so that it has just transferred (m) ~ 6, (m + 2) ~ 7 etc.
Remark that there are no waiting times except for the
first one.

Micro-programming and Trickology 285

The same type of procedure can be applied for transport of numbers in the other
direction.

3.5 Zero Searching

In list processing it often occurs that the first free location of a list must be
looked up. This can again be done with a repetition instruction.

Suppose that the list is 50 places long and that these places are alternately spaced
on n, n + 2, etc. The program now runs as follows:

100 NKKBC

101 AnCQ

102 NKE4ICV

103 X3K50QV3

104 X ... V3

105 not used

106 NC6

107 NK3QIBC

108 ADOOOK3Q-
A002CQ

109 N etc.
110

Take AnCQ in B to be repeated.

Store return instruction X104 in 4.
Fill A with a number=f=O to insure that process will start.

Repeat (B) = AnCQ 50 times. The Q on the repeating
as well as on the repeated instruction step the address n
by two every cycle so that all alternate locations are
fetched in A. The test V3 looks for zero.

When somewhere during the repetition the test fails,
(4) comes into C and the program returns to 104 (see
below). A V3 test on 104 can see whether actually a zero
has been found and then goes on to 106. If nowhere a
zero can be found, the repetition comes to a normal end
on 4 after having repeated (3) for 50 times. But now the
test on 104 succeeds because (A) =f= o. The place x where
an eventual zero has been found can be reconstructed
from

(B) = AX+2CQ.

For example when (6) must be stored in x there can
follow:

Take (6) in A.

Take as next instruction (108) + (B) = ADxK3Q.
Put -e in B afterwards.

Instruction executed is ADxK3Q storing (6) -+ x.

K3 modifies after-action not to X110K3QIBC but to
X109K3QIBC and the Q on 108 clears B again so that
the instruction on 109 is extracted unmodified by the
X109K3QIBC.

In this example there are a few difficult actions to visualize. Therefore an action
diagram shall be added. Each successive line gives an instruction.

286

Action:

A

-e

(n)=I=O e. q.

(x) = 0 e. q.

(6)

(6) --+ x

B

AnCQ

An+1CQ
All + 2CQ

Ax + 1CQ
Ax+2CQ

-£

o

Willem Louis van der Poel

C

X100
A101BC
X102
X103KE4ICV

X3K50QV3
AnCQ
X3K49QV3

AxCQ
X3K ... QV3 fails
X104
X V3 fails
X106
X107C6
X108K3QIBC
AxDK3Q
XllOK3QIBC
(110) + 0 etc.

D

-------..... (4)

X3K49QV3

X3K ... QV3 (4)

X104 ---

X106

XllOK3QIBC

3.6 Searching in a List

A more complicated action is searching an item in a non-ordered list. Suppose e. g.
that a list contains in the usual even numbered places an identifier in the right­
hand 15 digits. The left-hand 18 digits and the next word contain information to
be extracted. So in this case a search must be made for a part of the word to be
equal to a prescribed word. A mask defines the part of the word.
The mask is put in 5 and the prescribed word is put negatively in 15 at the start.
(5) = 215 - Ii (15) = - a.

100 NKKBC

101 AnQE24

102 NKE4ICV

103 I X3K50QCDV3

I

104 X ... V3

etc.

Put AnQE24 in B as instruction to be repeated.

Return instruction to 4. - e to A to let the first repeti­
tion succeed.

The XCD combination puts (15) = - a in A. Then
AnQE24 is repeated. E24 fetches (n) masked by (5) and
adds this to A. The next X V3 tests for

- a + (n)masked = o?
The Q on X ... QV3 and AnQE24 steps up the instruc­
tion AnQE24 over 2.

Test whether zero has been found or
whether repetition has ended list.

Micro-programming and Trickology 287

Needless to say that this type of repetition is a keystone to all sorts of automatic
programming language translation programs to search in identifier lists. Even in
this computer with its waiting type store, the action is comparatively fast; only
two word times per item. When the first item has been looked up, all others
follow without further waiting times.

3.7 Generating Random Numbers by the Series of Fibonacci

A curious example of the application of a repetition instruction is the execution
of a number of steps of the process Un+l = Un + Un-v the series of FIBONACCI.

This is sometimes used as a generator of random numbers. The overflow of the
addition is lost. The process described here, is a simplified form which would not
be very good as random generator as the numbers are cyclically even, odd, odd.
Suppose we want to progress p terms in the series. (A) = Un-1; (15) = Un.

Program:

100 NBEs

101 NKKBC

102 ALRCE1s

103 NKE6BC

104 XSKpDQ

105 etc.

Pre-instruction.

Take ALRCE1s.

After-action BEs puts this in 5 as instruction to be
repeated.

Place return instruction in 6 and clear B.

Repeating instruction forms Un+l in A by the XD

facility and puts e in B.

The repeated instruction ALCRE1s then interchanges
(A) and (IS)!! For CEls places Un+l in 15 and the LR
facility puts (15) = Un at the same time in A. The e in B
made LR succeed. The right shift of LR cleared B again.
The same process is repeated p times.

3.8 The Repetition of a Subroutine

Although highly important for the most frequent processes a single repeated in­
struction cannot do more complicated repetitive' processes. But fortunately it is
possible to use as repeated instruction the call-in combination of a subroutine so
that in fact the whole subroutine is repeated. This mode of working has as a
drawback a loss of time because the program repeated is not any more in the fast
registers but on the drum.

In principle this repetition works as follows.

Program:

100 NKEs

101 X4Kn

102

Store return instruction. The subroutine 200 N etc.
reads like

where e. g. (4) = X200KE6

The first time X4Kn-1 is stored in 6 etc. XK6 return
The last time this instruction has become
XsK and returns to 102.

288 Willem Louis van cler Poel

A practical and elegant way to implement this idea is the following program:

100 NKE7
,

101 X103KEs -

102 Xn

103 NKE6 ~

104 X6Kp

105 I n-1 XKS

~ n etc.

4. Fast Repetitions

Place return instruction X102 -+ 7.

Pre-instruction!

Program returns here and jumps over the

repeated program.

Put X10sKEs in 6 as return instruction.

Repeat (6) = X10sKES p times.

Program to be repeated.

Until so far all repetitions were of the type: two instructions I a repeating and a
repeated instruction alternating each other. They work most effectively on alter­
nate places of the drum. As soon as they have to work on every consecutive word
they become very slow. There is another type of repetition which is termed a fast
repetition. Here only one instruction is doing the work and is repeating itself.

4.1 Drum Clearing

As a first example a drum clearing routine is given. It will be programmed on the
drum and consequently destroys itself during its action.

Program:

100

101

102

103

NCE1S

AI03BCKE4

unused

XOOOK3QCD

Pre-instruction clears A and clears 15 as second action.

XOOOK3QCD -+ B. Place return instruction to 103
which will thence be cleared.

A is cleared.

Start execution of instruction in B. Store 0 -+ 000 i next
instruction is X001K3QCD. XCD takes (15) = 0 -+ A.
Q augments instruction in Band K3 takes new instruc­
tion. Process stops when at last instruction has become
XOOOK4QCD.

With another filling of 15 and making (103) = XOOOK3QD it is possible with the
same trick to fill the store with any arithmetic progression.

4.2 Fast Sorting in Classes

A frequent problem is the determination between which boundaries XlI X21 Xa etc.
(Xl<X2<Xa<X4 etc.) a number X is lying. According to the class found
another number can be extracted.

Micro-programming and Trickology 289

Program:

100 N
101 NKKBC Take return instruction in B.
102 X114
103 NKKBCE4 X114 --'>- 4.

104 A108K3QV1- X114

105 NK3Q

106 AK23 -- A108K3QV1 + X114

Take instruction to be executed -(4) inB.
Modify next instruction into AK23.

AK23 makes second action of X108K3Q
into A108K3Q.

107

108

109

110

111

112

113

114

not used

X2 - Xl

xa - X2

X4 - xa
Aooo - X4

not used
etc.

Thus form Xl - x. Next instruction
comes from (3) + (4) = A109K3QVl.

Test Xl - x. If negative: go on. If positive:
return to 114.

Form X2 - X; etc.
Form Xa - x.

At last form something which is certainly
positive.

Of the critical part of the program an action diagram will be given which clarifies
the action in the different registers.

Action:

A B C D 4

-X A108K3QV1- X114 X106K3Q ______ X114
A109K3QV1- X114 AK23 rX108K3Q

----~ (23) ~ ~

All0K3QV1- X114:
A108K3Q X114

Xl - x :-"A109K3QV1
X2 - X All1K3QV1- X114 "All0K3Q fails Suppose

X114 - X2>X

etc.

4.3 Summing the Store

For checking purpose it can be very convenient to form a sum of the store from
a pre-determined beginning to the end. When a single spare location is filled with
the negative sum of all the others then this checks sum must result in 0, which can
be easily tested.

Suppose we want to sum the store from address X to the end. Then the program
could run as follows:

19 Dig. Inf.

290

100 AOOOIC

101

102 NKKBC

103 Xs4

104 NKKBCE4

105 AxK3Q-Xs4

106 NK3Q

Will em Louis van der Poe!

Take - (000) in A.

= ~ X (return instruction).
Place ~ (return instruction) in 4.

= AxK3Q-(4) -+ B.
Execute A109K23QIC which subtracts (109)
from A and 1 from B.

107 A109K23QIC - (105) Next instruction becomes A109K3Q instead
of X109K3Q. This adds again (109) to A
and 1 to B.

108 etc.

Next instruction becomes AxK3Q which
adds (x) to A. Next instruction is Ax+1K3Q
etc. Last instruction becomes AOOOK4Q.
This adds (000) which had been subtracted
right at the beginning. Furthermore the next
instruction becomes (4) + (4) = X108 and
the program returns to 108 with

8191

~ (k) in A.
k=x

The drawback of all three fast repetitions is that an end can only be forced by
reaching the physical end of the store or by a test failing during the process. This
limits the scope of the fast repetition. But for forming hash totals for checking
purposes after having filled the store with a previously dumped contents it is
very fast. In fact it is the fastest process which can ever be devised even in an
immediate access store.

4.4 Displacing

A very neat application of a peculiar type of fast repetition appeared in a sorting
routine. In that particular routine a set of items standing in alternate locations on
the drum had to be moved up over two locations. Of course this can be done when
starting at the last item.

765 4 3 2 1

But in this way it is a very slow process. When (x) has been picked up it can be
dropped into x + 2 but then almost a revolution is lost in reaching x - 2.

The following trick solves the difficulty. Suppose the intermediate odd places can
be used temporarily.
Now starting at the first item in a, (a) can be picked up and dropped in a + 1, in
time (a + 2) can be picked up and dropped in a + 3 etc. By repeating this proce­
dure a second time the displacement has been performed.

In the program example the address a of the first item to be displaced will be
supposed in B and a flag consisting of a zero will be considered to be present as
last element. Only one of the two steps necessary will be described.

Micro-programming and Trickology 291

Program:

10C NKKC3 Form in A:

101 XD001K3QV3 - X109K3Q XDa+1K3QV3-X109K3Q as modifier.

Form in B. 102 NKKB

103 ACOOOQ

104 NKE4

105 X107K3Q

106 etc.

107 XOOOK2

4.5 Fast Division

AaCQ.

Store return instruction to 106 in 4.

Form variable instruction ACaQK2.

Program returns here.

Is executed as ACaQK2. Take (a) in A.
Modify second action X109K3Q into
XDa+1K3QV3. Test if (A) = o.
If instruction: store (a) --+ a + 1. Take
next instruction from B. This has become
ACa + 2Q in the meantime because of
the Q. Repetition ends with a failing test
when 0 is found and program returns via
4 to 106.

As a last application of fast repetitions a division will be treated. Often it is
known in advance that the quotient will be a small integer only. In a conversion
process from binary to decimal a binary number < 1000 can be divided by 100.
The quotient never exceeds 9. The fastest way to program such a division is a
stretched division consisting of repeated subtractions only.
Suppose for the example that the divisor has been put in 15. The dividend is but
negatively in A and B is cleared for the quotient.

Program:

100 NBE5

101 NKKBC

102 XK5QDV1

103 NKE4BC

104 XK5QD

105 Nl15Q

19'

Pre-instruction.

Take XK5QDV1 in B.

and put it in 5 by second action of BE5.

Place return instruction in 4 and clear B.

Start division. Q notes down units of the quotient. The
XD facility adds the divisor to the negative dividend.
From now on (5) = XK5QDV1 is continuously repeated
testing the dividend. As long as subtraction succeeds
quotient bits are registered until VI fails. Then the
second action also fails and (4) comes into C returning
to 105 with the remainder in A (positive because the
subtraction has been performed one step to far) and the
quotient + 1 in B.
This instruction restores the correct remainder and
quotient.

292 Will em Louis van der Poe!

5. Miscellaneous Tricks

A lot of useful tricks do not fall under the heading repetition instruction. But all
tricks treated below fulfil the requirement that they are minimum programs in
respect of time as well as of number of instructions or both. Some of them
indicate ways of doing things which are not possible in another way, e. g. the
extraction of four consecutive words from the store in four consecutive word
times. In this respect it is rather irrelevant that the store of the machine in question
is a waiting type store although many of the tricks have been produced under the
necessity of doing it optimally or alternatively wasting prohibitive waiting times.
The result however can be applied to other machines with non-waiting types of
store. The gain in speed will then not be of the order of 32 but of the order of
2 to 4.

5.1 Transferring a Number without Making Use of the Accumulators

By accident the following trick was discovered in a situation where the accumula­
tors could not be destroyed and all registers except a particular one (say m) were
occupied. In that situation (4) had to be transferred to m. The following few
instructions do this transportation via the D register, instead of via A or B.

Instructions:

NKEm

A

etc.

Pre-instruction. Store "return-instruction" from D to m.

Any A-instruction e. g. AE4. On every A-instruction (4) -+ D.

Second action of KEm stores (D) -+ m.

The pictured case of passing over a number behind your back shows once more
how arithmetic unit and control unit must be regarded as one integral organising
unit as has been shown before in repetition instructions where B often served as
an extension of the control. Especially in the next few tricks the boundaries
between arithmetic and control become very vague. In a certain way this is true
for every machine as soon as it starts calculation on instructions. However in
many machines calculation with instructions only means calculation with
addresses. In all examples shown until here it is very clear that the aspect of
altering the operation part as well is at least as important. This is the main reason
that all registers contain full words, even the D-register and the short registers
when used as modifier with NKm.

5.2 Extraction of Three and Four Consecutive Words

The problem of extraction from the main store two or more words (or numbers)
from consecutive lines is more a problem of timing. Of course a program can
always be written for it but then more than one word time is lost for extraction
of one word. This is perhaps not so serious in an immediate access store but in a
waiting type store like a drum this wastes a whole revolution. In any case doing
it in one word time per word is quicker. The difficulty in getting access to con­
secutive words with a two address instruction is amounting to two main points:

a) All instructions must be dependent on the same initial and variable address.
For fixed addresses there is not the problem of index-modifying the instruc­
tions.

Micro-programming and Trickology 293

b) The first address is used for the extraction, the register address can serve as
next instruction source (via modification) but then the extracted number
cannot be stored away. Or the accumulator is freed from the extracted
numbers by Em but then the register address is not available any more for
fetching a new instruction.

For two numbers it is not difficult to devise a solution as there the difficulty
mentioned under point b) is not yet present; both numbers can be left in the accu­
mulators. Therefore our attention will only be directed to the extraction of three
and four numbers. Both examples given are the result of laborious trying. Although
thought to be possible it was not known for a long time how to do the four
number extraction until VAN LEYDEN found the solution. A proof can be given that
no five consecutive numbers can be extracted.
The three word extraction reads as follows: (B) = ni then (n) -+ 4, (n + 1) -+ B
and en + 2) -+ A at the end of the program.

Program:

100 NQIBE6

101 NKKIB

102 NKKBDE61V7

103 NQIEI

104 NKQIE4

105 NKIB3

106 NKI

107 etc.

An explanation of the above program is given in detail as follows.

Action:

A B

n

n-1

n-1-A103BDE61V7

n - A10SBDE61 V7

n - A106BDE61 V7

(cont'd)

c

X101QIBE6

A102IB

X103QIBE6

X104QIE1

D

Only QI is important,
BE6 is pre-instruction.

X103QIBE6 Subtract constant
from (102) to (B).
Accidentally this
constant could be
written as an NKK.

n-A104BDE61 V7-+6.

Only QI is important.
The E1 is harmless
and required on the
return instruction in
4 for modification.

X106QIE1 Store return
'" instruction.

4 X106QIE1-+ 4.
QI goes on subtracting
1 from B.

294

A B

n-A107BDEG1V7

(n)

(n+1)

-+4

(n+2) (n+1)+1

(n+1)

C

X106IBK3

D

Willern Louis van der Poel

IB is harmless but
required for
modifica tion.
Take as next
instruction
(106) + (B) =
X107 KI + n - AI07
BDE61V7=AnCK3.

X10SIBK3 Extract first number
from n. Modify
X10slBK3

(4) with (B).

/
X10slBK3 + n - AI07
BDE61V7=An+1
KBC6.

An + 1BCK6 X106QIE1 Extract second
number from n+l.

+ (6)

An+2QCE4

X106QIE1

X107KI
etc.

Next instruction is
obtained as:
(4)+(6)=
X106QIE1 + n - A104
BDE61V7=
An+2QCE4.
Store first number in 4.
Extract third number
in A. Q serves for
counteracting QI on
return instruction.

Restore (B). E1
is harmless.

KI is harmless.

Observe that the program as written down in the form of Nand NKK instructions
only, is impervious against displacement, i. e. it would work equally well in any
place of the drum when input with the N, NKK notation. Of course for all pro­
gramming on paper a symbolic or relative addressing system is used, but as this
is a question of the construction of an appropriate input program, it does not
belong to the realm of machine-bound micro-programming and hence will be
explicitly omitted from this article.

The four word extraction is based on the idea that the only channel from where a
string of four consecutive instructions can come is from A or B by storing -+ 4
-+ D -+ C. First by successive A . .. E4 orders a chain of appropriate orders is
built up in B, 4, D, C. The best way to explain is the action diagram (d. p. 295).

The program (d. p. 296) is as follows: (A) = n at the beginning, the program
returns with (n) in 5, (n + 1) in 6, (n + 2) in A, (n + 3) in B.

A
ct

io
n

:
A

n (1
02

)
'--

....

A
n

C
E

4

A
n

+
lB

C
E

4

A
n

+
2

C
E

S

A
n

+
3

B
C

E
6

,
(n

)

/
S

(n
+

2
)

B

C

D

4

A
I0

2

X
I0

3B
E

4
X

I0
3B

E
4

X
I0

IB
E

4
J

(1
0

4
)\

A

I0
4B

C

X
l0

S
B

E
4

A
Q

B
E

4
X

I0
S

B
E

4
(1

0
6

)\

A
I0

6B
C

K
23

X

I0
7B

E
4
A

 A
Q

B
E

4

A
ll

O
B

C
E

4
A

I0
7B

E
4

A
Q

B
E

4
A

ll
IE

4

A
Q

B
E

4
A

Q
B

E
4

A
ll

O
B

C
E

4

A
1

l2
E

4

A
1

l3
E

4
,

X
1

l4

(n
+

l)

A
Q

B
E

4
A

ll
O

B
C

E
4

A
l1

1E
4

A
1

l2
E

4

A
1

l3
E

4

A
ll

O
B

C
E

4
A

ll
IE

4

A
ll

IE
4

A

ll
2

E
4

A

ll
2

E
4

A

ll
3

E
4

A

ll
3

E
4

A

nC
E

4

A
nC

E
4

A
n

 +
 IB

C
E

4

A
nC

E
4

A
n

+
lB

C
E

4

A
n

+
2

C
E

S

A
n

+
lB

C
E

4

A
n

+
2

C
E

s
A

n
 +

 3B
C

E
6

A
n

 +
 2C

E
S

A

n
+

3
B

C
E

6

X
ll

4

I
A

n
+

3
B

C
E

6

X
1

l4

6
(n

+
3

)
X

1
l4

et

c.

P
re

-i
n

st
ru

ct
io

n
.

A
d

d
 A

oo
oC

E
4

to
 n

.

T
ak

e
ch

ai
n

fi
ll

in
g

in
st

ru
ct

io
n

 i
n

 B
.

S
to

re
 A

Q
B

E
4

in
 4

.
T

ak
e

co
n

st
an

t
B

 a
n

d
 m

o
d

if
y

X

I0
7B

E
4

in
to

 A
I0

7B
E

4.

C
h

an
g

e
(B

),
 s

to
re

 t
o

4.

T
h

e
ch

fl
in

 h
as

 s
ta

rt
ed

:
A
~
4
~
D
~
C
.

Q
 a

u
g

m
en

ts
 B

.
R

et
u

rn
 i

n
st

ru
ct

io
n

 t
o

B.

A
n

C
E

4
+

X
O

O
IB

=
A

n
+

lB
C

E
4

.
A

n
 +

 IB
C

E
4

-
X

oo
oB

 +
 XO

O
l'

l =

A
n

+
2

C
E

S
.

A
n

 +
 2C

E
S
+

 XO
O

IB
I =

A

n
+

3
B

C
E

6
.

A
t

la
st

 (
n

)
~
 A

.
(n

+
l)

 ~
 B

re

tu
rn

 i
n

st
ru

ct
io

n
 ~
 4

(n

)
~
 5

.

(n
+

l)
 ~
 6

.

~

n' ... o , '0
 ... o O

Q
 ... III
 :3 :3 S·

O
Q

III
 ::s p.
.

>-
l ... ~

o 0
'

O
Q

'<

IV

\(
)

(J
l

296 Willem Louis van der Poe!

Program:

100 NBE4

101 NKK

102 AoooCE4

103 NKKBC

104 AQBE4

105 NKKBCK23

106 A110BCE4

107 +1-XoooBC

108
} free places

109

110 X114

111 XOOIB

112 XOOI '1- XoooB

113 XOOIBl

114 etc.

Perhaps the idea of having a series of instructions available, which are put up
beforehand, can be useful generally for inner cycles of procedures where the
utmost of speed is required. In this machine the setting up could be done only in
a clumsy way, in most machines it cannot be done at all, but a control could be
built with a stack of fast-access registers pre-filled with the required instructions
and executed without an extra instruction fetch cycle.

5.3 Storing Four Numbers in Consecutive Locations

The storing of four numbers is much easier. This is caused by the irregular action
of the D-digit which always stores from the accumulators. Only a sketch of the
program shall be given.

The numbers to be stored in n, n + I, n + 2 and n + 3 shall be denoted by a, h,
c and d. Then at the outset the following contents of the registers must be set up:

A=2 a

B=3 c

4 XBDn + 3K8

5 ADn+ lK6

6 ABDOOOC - XCDoooK5

7 d

8 return instruction to drum

15 h

Micro-programming and Trickology 297

The process is started by:

Store a - n next instruction from 5.

XCD takes (15) - A.
Store b - n + 1. K6 modifies XCNnK5 to ABDn + 2C.

Store c - n + 2; n - B. Two successive A-instructions
hence next instruction from 4.

(4) = XBDn + 3K8 Store d - n + 3. Next instruction from 8. Return.

5.4 Modifying a Modifier during a Repetition

Once the problem arose of storing two numbers in nand n + 2 and extracting
three numbers from n + 6, n + 8 and n + 10 2). Of course the alternate spacing
of locations lends itself better for treatment with a normal repetition instruction.
There is no time to do it with index-modified drum instructions as n is variable.
The only way to make it quick is by under-water programming.

Action:

A B

a AnCDllV
An+2CDI3

b

An + 4CE1sV

XOO2-XOOO'6

An + 6CE17

(n+4)+1

An + 8 CEll
(n+6)

An + 10CEs
(n+8)

C

XK3BD6

XK3BD3

An+6CEI7
XK3BD2

return
instruction

Modify (B) with (15).

Store a - n. Fetch (11) + 1 = b.
Modify An+2CD13+X002.2-
xoooV = An+4CE15.

-.......
Store b-n+2.
Fetch 2nd modifier in A.

Store new modifier in 15.
(15) = X002-XOOO·6.
Extraction of (n + 4) is not used.
Go on modifying
An + 6CE17 + X002 - XOOO . 6 =
An+8CEll.
(n+6) -A. E17 is harmless.

(n+6) -11; (n+8)-A.
Last modification is not important.

(n+8)-5; (n + 10)-A

(4)
Return to drum routine.

2) The problem came from a program for solution of simultaneous differential equa­
tions with the method of RUNGE-KuTTA-GILL [16] where y and q of the previous
equation must be stored and y, q, k of the next equation must be fetched.

298 Willem Louis van der Poe!

The preparation shall not be given. At the outset we suppose:

(A) =
(11) =
(15) =
(13) =
(B) =

a, first number to be stored

b-l, b is second number to be stored

X002'2 - XOOOV 1st modifier

X002 - XOOO'6 2nd modifier

AnCD11V

The program starts with

I
NKE4

XK3BD6

Place return instruction in 4.

Repeat (B) six times.

The explanation follows from the action diagram (d. p. 297).

5.5 Multiplication with Small Factors

For multiplication with small constant factors often shorter programs can be
devised than would appear possible at first sight. Only a few examples will be
given.

Multiplication of (B) with 10.

Program:

NLC3 Form 2-fold of B but take I-fold in A.

AL2 Form 4-fold in B and add I-fold from A giving 5-fold.

After-action LC3 forms 10-fold.

Multiplication with 32. It is obvious how it can be done with five shifts. It can,
however, be done in four instructions. Suppose (B) = b.

Program:

NLC3 Form 2b in B but take b in A.
NLB3 Form 2b in A and 4b+2b=6b in B.

NLB3 Again double A and triple B giving (A) = 4b; (B) = l8b.

NLIB2 Form in B 36b-4b=32b.

Multiplication with 100. It is obvious how to do it in six word times (twice the
program for forming 10-fold). It can be done in five instructions.

Program:

NLC3 (A) = b

NLB3 (A) = 2b

NLB3 (A) = 4b

NLB3 (A) = 8b

NLIB2

(B) = 2b

(B) = 6b

(B) = l8b

(B) = 54b

(B) = 108b-8b = loob

Micro-programming and Trickology 299

Dependent on the required constant remarkable short solutions can be found.
Until so far no systematic tabulation of the shortest programs for factors has been
undertaken but for all factors under 100 the solution is known by hand methods.

6. Miniaturization

Until so far problems of micro-programming have been treated, doing compound
actions with repetition instructions. A second field of applications is miniaturiza­
tion in the sense of compressing programs in a space as small as possible. Espe­
cially one kind deserves attention, viz. the so-called tape programs. A tape pro­
gram is a program which does not use anything on the drum (except track zero,
see below) but reads its instructions during action. The registers may be used
freely. Therefore, these programs could also be named register programs. As the
number of registers is very limited much ingenuity has gone into these tape pro­
grams. To be read-in they make use of an input program for input in binary form.
This binary input program is almost permanently contained on the drum in track
zero and is kept locked (i. e. track zero can be read but not be written into unless
specifically unlocked by a carefully guarded switch). Many of the register pro­
grams borrow instructions from track zero. The advantage of tape programs lies
in the fact that they can be run and used without being anything on the drum
and without destroying anything on the drum. So they are inherently suitable for
service programs, testing programs etc. In the sequel a few examples will be
treated, namely:

1) a tape copying program to copy tape from input reader to output punch,

2) a program to input decimal number by telephone dial,

3) a program for punching out the contents of the store (from a predetermined
address to another address) in binary form to be read in subsequently,

4) a program for reading tape and printing the symbols immediately on the tele­
printer. This serves for making tapes print their own title on the output
printer without even the standard printing routines being present in the
machine.

For a good understanding of the register programs it is not strictly necessary but
very desirable to know how they can be read into the machine by track zero.
Since a few instructions are borrowed from the binary input program, the
description has been added in an appendix (d. Section 7, p. 30sH.).

Another kind of miniaturization was required in finding a pre-input program;
i. e. a program consisting of as few instructions as possible which enables the
machine to read in a more complete input program. Some machines have a built-in
facility to read words into the store starting with an empty machine; this machine
has not. Therefore the pre-input program must be put into the machine manually
which is a rather tedious procedure. Fortunately this need never be done under
normal operating conditions as track zero cannot normally be destroyed. Only in
case of a breakdown of track zero one must revert to the pre-input program. In
fact the pre-input program does not build up track zero in one step but in three
steps. This bootstrapping technique is well known.

300 Willem Louis van der Poe!

6.1 The Pre-input Program

After an intensive search for miniaturization at last a program of only two in­
structions could be devised. It is rather unsatisfactory that in general no theory
exists which can prove that a particular solution is the minimum solution although
for this case an ad hoc proof can be given that two instructions form the
minimum pre-input program.

Instructions:

000 X8190IB30

8190 AD8191LK29

Read 1st hole from tape into B.

Store word from A into 8191. Shift A and B left.
lf 2nd hole = 0 after-action of
X8190IB30 becomes XOOOIB31: step tape
and go again to 000.
lf 2nd hole = 1 after-action becomes
X8191IB30: go to instruction in 8191.

Reading from the first hole by register 30 causes a string of zeros to be read in
case of hole zero and a string of ones (= - 1) in case of hole one. Hence IB30
reads 0 or 1 into the right-hand side of B. The L on 8190 shifts A and B to the left,
the after-action of IB30 becomes IB31 because 8190 + 2 overflows into the register
address. This does the stepping. In this way A and B can arbitrarily be filled.
Every cycle (A) is stored in 8191 overwriting the previous number in 8191. At last
a suitable storing instruction (e. g. XnBD31) which stores the word built up in B
in location n. The end mark of a word is given by the presence of a second hole
whereupon the K29 modifies X8192IB30 by -1 into X8191lB30. One can see that
B always ends in 00 or in 11 which puts a severe limitation to the words which can
be input. For a detailed description of the coding on the tape we must refer to the
programming manual of the machine [17].

6.2 Tape Copying Program

The requirement of this program was that it could copy tape continuously as well
as step by step (this for correction purposes). It is admitted that this copying of
tapes with a high speed computer is an abuse of the machine. Parts of the pro­
gram however have served for copying titles, etc.

Program:

4 X6Kl

5 XK14BCU7

6 X5KIV4

7 XK15RIC

8 ALR

9 XKI0L

10 X011LE26

11 XK11QBCU7

12 X013LE27

13 XK11QBCUI

14 XOOIC7

15 X8K5

Micro-programming and Trickology 301

The progam is started in 11 and stops. Copying is started when "start" is pressed
and stopped when U1 is pressed. When U1 is locked in the "I" position, starting
with U7 only does a single step. The program is explained in the following action
table giving the successive contents of C.

Action:

11= XK11QBCU7

4= X6K1

6 XSK1V4

S XK14BCU7

14 X001C7

001 X003LlB26

003 NLlB27

004 NLlB2S

OOS NLlB29

006 NLlB30.

007 NL31V1

OOS X001RV1 >
L31V1

4 X6K1

6 XSK1V4

7 XK1SRIC

IS XSKS

S ALR

XSK4

etc.

9 XK10L

10 X011LE26

011 X12Ks

(cont'd)

Program makes a loop stop until U7 is pressed.
Then also the after-action fails and control goes
to 4. 1 has been put into B.

Go to 6 and execute once (unless a jump).
V 4 succeeds. Go to S and execute once.
As long as U7 is pressed U7 fails and control
comes to 6 again with (B) = 1. As soon as U7 is
released, go to 14 and clear B.

Take XK1SRIC in A as constant. Of this constant
only the I-bit is of importance. (A) = 000011 etc.
Read sth hole of symbol to be copied in B.
(A) = 00011 ...
Read 4th hole of symbol to be copied in B.
(A) = 0011 ...
Read 3rd hole of symbol to be copied in B.
(A) = 011. ..
Read 2nd hole of symbol to be copied in B.
(A) = 11 ...

Read 1st hole. Symbol S is now complete.
(A) = 1 ...

Test succeeds. 2S ~ B, step tape (A) = 0 ...
VI fails.
After-action also fails. Hence go to 4.

V4 now fails because 2S is even. Hence go to 7.
Jump to IS; clear A, S ~ B.

Start multiplication of S steps.

The multiplication constant is (IS) = XsKS itself!!
Only the K-bit is important. The multiplication

brings symbol 5 from the right most places of B
to one place but left in A. (A) = Oxxxxx.

Repetition ends in 9.

Shift symbol in A left.
Put sth hole in punch buffer. Shift bit off.

Go to 12. This instruction is borrowed from track
zero, otherwise instruction in 10 could not make
use of a register address for setting up the punch.

302

12

013

014

015

016

017

13

X013LE27

NQLE28

NLE29

NLE30

NE31

X13K1

XK11QBCUl

Will em Louis van der Poel

Set up 5th hole. Timing is just right.

Set up 3rd hole. Q is of no importance.

Set up 2nd hole.

Set up 1st hole.

Punch symbol.

Go back to register 13.

Test U1. If Ul = 0 go on to 14 and copy another
symbol. If Ul = 1 go to stop cycle on 11 with
(B) = 1 again.

6.3 Decimal Input by the Telephone Dial

More difficult, especially in timing, is the dial input program. The telephone dial
is coupled in series with U7. In quiescent state it means that U7 normally succeeds.
When dialling the dial interrupts U7 for 60 ms for every impulse, the time between
the impulse being 40 ms (both with 10 Ofo tolerance). A zero is dialled as 10 im­
pulses. The convention has been made that when a next decimal digit follows
within 1.5 s it must be accepted; 1.5 s after the last decimal digit the program goes
on with the dialled number converted to binary in A.
The filling of the registers is as follows.

Program:

4 XK14QCD

5 A
6 X011[(3

7 ADooO

8 X5K96U7

9 AE1s

10 return instruction

11 XK11BCU7

12 X017.3

13 X9K2400BCU7

14 X7K8D

15 0 initially. Later: partially converted number.

The explanation of the program is given in an action table (d. pp. 303-304).

The principle of strobing the timing of the dial is done according to the timing
diagram shown in Fig. 2.

Fig. 2. Principle of strobing the timing of the dial

Micro-programming and Trickology 303

Strobing is done continuously until the start of the first pulse is seen. From that
moment onward the program goes into a wait cycle for so ms (nothing inter­
esting in the meantime). Then the program looks again for the start of the next
pulse during 60 ms. When it does not arrive within 60 ms, the decimal digit is
finished and the digit can be added to ten times the previous result. Then it enters
into a wait cycle for 1500 ms. If a next pulse arrives within these 1500 ms, the
program starts building up the next decimal digiti if no pulse arrives, the program
must return with the complete dialled number in A.

Action:

11 XK11BCU7

4 XK14QCD

14 X7KSD
7 ADOOO

S XsK96U7

5 A

6 X011K3

X12Ks+S192-10+S

12 X017'3

017 X13K1

13 X9K2400BCU7

(cont'd)

Loop stop on 11. Clear B. Test U7. As soon as the
beginning of the first pulse comes in, U7 fails.
Then also the contents of D fails and program
goes to 4.

The Q-bit registers a one in B for the pulse seen.
XCD adds (15) into a cleared A. We shall suppose
that in 15 an already partially built-up number a
is present.

Start waiting so ms by repeating ADOOO eight
times. The instruction ADOOO tries to write on 000
but track zero is locked. Hence this has no effect.
But it must wait for 000 and thus loses 10 ms.
In the meantime the repeating instruction has
added nine times (15) = a to the accumulator, thus
forming lOa in A. The repetition ends in S.

Start repeating (5) = A for 96 times. This takes
60 ms. A is a harmless non-waiting instruction.
The repeating instruction tests U7. When a next
pulse arrives within that time, the repeating as
well as the repeated instructions are A-instructions
and the program goes back to 4 where a next one
is noted down in B. The forming of 10 a is done
again. When no pulse arrives within 60 ms, the
decimal digit S is complete in B, zero being
represented by10 (A) =10a. Therepetitionendsin6.
Borrow an instruction from track zero and modify
it with the digitS.
(011)=X12Ks=X12K+S192-10
hence (011)+S=X12K+S192-10+S.

For all digits S < 10 thb is a jump to 12. But in
case of S = 10 the instruction just becomes X13K.

Add the digit S to lOa thus having performed the
conversion.
Via a borrowed instruction on 017 it comes to 13.
In case of a digit S = 10 the instruction on 12 is
skipped and nothing is added.
Go into the 1500 ms wait cycle by repeating (9)
2400 times.

304

9 AE15

10 return instruction

Willem Louis van der Poe!

Store 10a+S into 15.
This action is done repeatedly: clear B. In the
meantime U7 tests the dial again. When a pulse
arrives within 1500 ms, the after-action of U7
fails and the program goes to 4 again. When
ready, repetition ends in 10.

6.4 Punching the Contents of the Store in Binary Form

We shall suppose that t words in the store from address n onward have to be
dumped in binary form on the tape. The format shall be the same as for binary
input, i. e. the 33 bits of the word will be punched as 7 characters of 5 bits each
and of which the 5th bit of the most significant symbol and the first bit of the
least significant symbol will be 0 (d. Appendix Section 7).

Program:

4 return instruction

5 A

6 X011LE26

7 AC11V

8 X012CE11

9 ABE15

10 X7K16IBC

-+11 ACnE26

12 X013LE27

13 X9K1QBCDV2

14 X5K16

15 --t

The program is entered at 11 by X11K1 with (A) = 0, (B) = O.

Action:

11 ACnE26

12 X013LE27

013 NLE28Q

014 NLE29

Set up 5th hole of first symbol = O. Extract (n) =
word to be punched.

Set up 4th hole on punch and shift next bit to ao.
A small piece of punching program is borrowed
from track zero. B was clear initially.

Set up 3rd hole on punch. Shift a one into the least
significant side of B. This one travels left during
the punching of seven symbols and comes to bo
right at the end of punching the 7th symbol. All
other ones shifted into B by other than the first
symbol, have no meaning.

Set up 2nd hole.

Micro-programming and Trickology 305

015 NE30

016 NE31

017 X13K1

13 X9K1QBCDV2

14 X5K16
5 A

6 X011LE26

011 X12K5

13 X9K1QBCDV2

9 ABElS

X10KQBCDV2

10 X7K16IBC

7 AC11V

8 X012CE11

012 X11KllV

9 ABElS

X10KQBCDV2

4 return instruction

6.5 Read and Print Text

Set up 1st hole.

Punch symbol. Note that even setting up the holes
and punching are microprogrammed.

Go to 13.
Test shifting count in B. When not all seven
symbols have been output it fails and program
comes to 14.
Introduce a time delay of an extra revolution by
repeating a harmless instruction in 5. Only once
every 20 ms a symbol can be punched owing to
the speed of the punch. For a faster punch this
delay could be changed.

Set up 5th hole of next symbol and shift.

Borrow (011). Repeat from 12 until all 7 symbols
have been punched. Then:

Test shifting count in B. All symbols have been
punched and test succeeds.
XQBCD adds (15)+1= -t+1.

Store augmented count again in 15.

The after-action again tests with V2 but now
(B) = count!! As long as count is negative, output
must go on.
Introduce a time delay for the punch. IBC prepares
a carry = 1 and clears B.
Although repeated 16 times, augment extraction
instruction with 1.

Store augmented extraction instruction
An + 1CE26 in 11. Clear A.
IV is not active. Start again in 11.
When at last all words have been punched:

Test of after-action: on X10K ... V2 fails and
program goes to 4.

Although normally all printing is done via the standard output program, this very
short register program is just meant for printing titles on the supervisory type­
writer even when no standard output program is present in the machine.

20 Dig. Inf.

306 Willem Louis van der Poel

The standard output program is necessary for all normal printing and can arrange
for all types of digit lay-out. It has been made because operating the printer by
micro-programming it is no easy matter. This will become clear when it is
realised that the only means to influence the output teleprinter is by transferring
the sign bit of A into a special flip-flop through a gate operated by selecting
register 25. A teleprinter requires a signal of a structure as depicted in Fig. 3
(signal to teleprinter is 1 in quiescent state).

0 '0 .-n .0 • - E -c:
.GI ~ c:
E GI

.!! - E
GI

0 .!! - :t:: :E
:Ii

GI - :.0 .0 :is L- a. 0
'lii

,.
1! .t:. .t:. 0 1;; c·

~
..

'Iii .- N ('I) &D

Fig. 3. Structure of the signal required by teleprinter

The teleprinter reverts to rest if signal (= contents of output flip-flop)
remains 1. Or a next start can follow. The separate bits will be designated with
50 - 56'

The correct timing has to be generated by micro-programming. Fortunately the
symbols can be read from tape in the same form as they are to be printed. The
program has been designed in such a way that it stops printing as soon as a
blank symbol is read (blank is a non-existant symbol in teleprinter code). The
filling of the registers is as follows.

Program:

4 X5K1

5 AC3

6 X7K1

7 X12K1BDV3

8 return instruction

9 X017CV3

~10 X001C12

11 X011C3

12 X9Kll

13 AC23V4

14 X012RC25

15 +64

The program is entered at 10 with a cleared B-accumulator.

Micro-programming and Trickology 307

Action:

10 XOOIC12

001

003

004

OOS

006

X003LIB26

NLIB27

NLIB28

NLIB29

NLIB30

007 NL31Vl

008 XOOIRVI

L31Vl

4 XsKl

S AC3

XK6

6 X7Kl

7 X12KIBDV3

12 X9Kl

9 X017CV3

017 X13Kl

13 AC23V4

X14K

14 X012RC2S

012 XllKlIV

11 XOllC3

011 X12Ks

12 X9KII

9 X017CV3

XloK

10 XooIC12

20'

I
Put X9Kll in A as shifting count. Only I-bit is
important. Go to 001 for reading a symbol.

Read symbol from tape. (For explanation reference
is made to the example of the tape copying
program.)

(B) = 0 0 5554535251 (56 = 0).

I-bit in A shifted out. Instruction fails.

After-action fails. Instructions executed at level
009 of drum.

(A) = 0-----0 55 54 Sa 52 51 So

After-action.

(level 010)

(level 011)

Test symbol in A. If 5 = 0, (7) fails and program
returns on 8. If no blank: add stop bit 56 = 1 with
XBD facility. (level 014)

(B) = 0 0 56 55 54 Sa 52 51 So (level 01S)

Test if all bits have been put on printer,

Clear A. (level 016)

Level 017 was just reached in time.

Transfer right-most bit of B to left-most bit of A.
(level 018)

After-action. (level 019)

Set up this bit on printer flip-flop and shift bit
off in B. From now on next bit has to wait 20 ms.

(level 020)

Level 012 is reached after 23 word times waiting.
(B) -+ A.
Level 011 is reached after almost another
revolution (= 10 ms).

Go back to 9 for next digit.

If all digits including stop bit have been set up
test fails.

After-action (B) = o.
Start reading next symbol. Reading a symbol.
just wastes an extra 10 ms making up for 30 ms
of stop bit.

308 Willem Louis van der Poel

APPENDIX

7. The Binary Input Program on Track Zero

For the understanding of the binary input program which can be supposed to be
permanently stored in track zero it is necessary to know the composition of a
binary word on tape. A binary word is represented on tape by 7 symbols of 5 bits
each. Of the available 35 bits only 33 are necessary for the word, hence 2 are
available for other purposes. One has been given the significance that the word
must not be placed in the store by the so called store instruction but that the store
instruction itself has to be replaced by that word. In that way input can be started
at arbitrary location by giving the appropriate input indication. The other spare
bit is used for relative addressing by adding (9) to the word when this bit is
present. With the help of it programs can be made relocatable.

The composition of the word is as follows:

+ AKQL RIBCD EVV4V 2V 1 TV1 XXXX xOOOO 00000 0000 +
'--v--' -v----' '--v--' -...--' '--v--' --v-

1st 2nd 3rd 4th 5th 6th 7th symbol

t t
input indication bit parameter bit

Track zero has to fulfil the following requirements:

It must provide a stop at 000.

Blank tape at start must be skipped.

All symbols 2-31 must leave track zero and are treated elsewhere.

The opening symbol 1 indicates that binary tape follows. The first word read
must replace the store instruction, following words are to be stored until another
input indication follows.

A rudimentary punch routine is included in track zero.

The coding and explanation of track zero is as follows:

000 XoooKE4U7 Loop stop on 000. Loop until U7 is pressed and

001 Xo03LIB26

002 X020E4

003 NLIB27

004 NLIB28

005 NLIB29

006 NLIB30

007 NL3IVI

008 XOOIRVI

released. Go on to 002.

Read symbol. In the meantime, shift shifting count
in A left.

Go on to 020. E4 is of no significance for the
present use.

Read symbol and shift it into B.

Shift shifting count in A at the same time.

Step tape. Test shifting count. If (A);;;; 0 test
fails and word is ready.

If (A) < 0, undo L of previous order. Read next
symbol. If VI fails: go to special outlet on 4
(d. some of the tape programs).

Micro-programming and Trickology 309

009 NRB31

010 X012RB9V 4

011 X12K5

012 X11K1IV

013 NLE28Q

014 NLE29

015 NLE30

016 NE31

017 X13K1

018 NKKBCK3

019 X001BCE11 VI

002-+ 020 X029U6

018 -+ 021 X019BE12

018 -+ 022 NBC26

023 NLB27

024 NLB28

025 NLB29

026 NLB30

(cont'd)

If 007 failed, do step here and undo after-action
of LIB30. Hence of the 35 bits, two are now in A,
33 in B.

If parameter bit is present: add (9) and shift off
parameter bit. Otherwise after-action of 009 does
right shift. In both cases no carry hence a
borrow has been put in the carry trap.

Instruction only used in dial program.

Go to 11 and repeat it once. IV subtracts 1 from
A. A just contained input indication bit. Hence
no input indication on (A) becomes -1 (all ones).
If input indication: (A) = o.
Normally (11) = ADnQBC11V1: store word built
up in B into n. QBC11 augments instruction itself
with 1 thus forming ADn+1QBC11VI. All this
only when (A) < o.
Then go on to 12. (12) = X001BCE11 VI: put
augmented store instruction again in II.

Or in case (11) failed: replace store instruction by
another. VI now succeeds in all cases as after­
action X12KIV has subtracted 1 from A. Return
to 001 with cleared B and read next word.

1 Rudim'nt~y pun,bing cyd, fo, u'" by tap'

[p,"",a=.

If blank tape has been read (B) = 2. Go on to 022
and read next symbol.

If 1 has been read (B) = 1:
prepare for binary reading X001BCE11 VI -+ B.
Go to 21!

Test U6. If U6 = 1 go to 029. If U6 = 0 go to 022.

Put X001BCE11V1 in 12 and go to 019 (now
executed as instruction).

This also put X001BCE11 VI in 11. Hence first
word read will always replace 11 by suicide.

Read opening symbol negatively in cleared B.

Only case that 5 = 0 and 5 = 1 have to be

considered here.

310 Willem Louis van der Poel

027 N31Q Step tape and add 1 to - S.

Hence (B) = 1 for 5 = 0
(B) = 0 for 5 = 1
(B) < 0 for 5;:;;: 2

028 X32K3QIBCV2 Test if (B) is positive. If negative: go to outlet for
other symbols s;:;;: 2. For 5 = 0 and 1 test fails.

020 -+ 029 X34U7 If U7 = 1 go to 34. The contents of 34 is used to
restart a program. This is of no concern for binary
input.

030 X018IC1 Put shifting count -1 in A. After-action of N31Q
has made (B) = 2 for 5 =0, (B) = 1 for 5 = 1.
Shifting count (A) = -1 is only becoming positive
after 7 symbols having been read.

031 X8191 If U7=0 on 029 go to 8191 as special outlet. This
place can only be reached when going to 000 with
U7=O, U6=1. Also used as constant.

Normally the form of the input indication to start input of words at location n
has the form ADnQBC11V1 (in binary form). When it is necessary to fill registers
they can only be filled individually by preceding each word with the input indica­
tion X001BCEmV1 (store in m and read next word) when m is the register to be
filled. VI enables the input program to replace this store instruction. Only for
filling 11 and 12 another trick is needed. After having filled all necessary registers,
11 and 12 can be filled as the last ones by giving an input indication of the form
X030QIBCE12. Hence (11) = X030QIBCE12 and the next word is stored in 12,
replacing the usual Xo01BCE11V1. Program is directed to 030 with -1 in B. Via
030 control arrives at (018) = NKKBCK3 taking in X001BCE11 VI in B but as
(B) = - 1 the K3 does not go to 020 but to 019 as next instruction. Hence
X001BCE11V1 is executed as instruction putting X001BCE11V1 in 11 without
destroying (12). The next word read is overwriting (11) = X001BCE11V1 by
suicide action and program starts action on 11.

Bibliography

[1] SAMELSON, K., BAUER, F. L.: Sequentielle Formeliibersetzung. Elektronische Rechen­
anlagen 1 (Nov. 1959) No.4, pp. 176-182. (Eng!. translation entitled "Sequential
Formula Translation", Communications ACM 3 (Febr. 1960) No.2, pp. 76-83.)

[2] DIJKSTRA, E. W.: Recursive Programming. Numerische Mathematik 2 (Oct. 1960)
No.5, pp. 312-318.

[3] DAVIS, G. M.: The English Electric KDF 9 Computer System. The Computer
Bulletin 4 (Dec. 1960) No.3, pp. 119-120.

[4] LONERGAN, W., KING, P.: Design of the B 5000 System. Datamation 7 (1961) No.5,
pp.28-32.

[5] Programming for EDSAC 2. The University Mathematical Laboratory, Cambridge,
England 1958.

[6] VAN DER POEL, W. L.: The Logical Principles of Some Simple Computers. Disserta­
tion, University of Amsterdam. Uitgeverij Excelsior, 's-Gravenhage 1956.

[7] KASSEL, L.: George Programming Manual. Report ANL-5995. Argonne National
Laboratory, Lemont, HI. 1959.

Micro-programming and Trickology 311

[8] WILKES, M. V., WHEELER, D. J., GILL, S.: The Preparation of Programs for an
Electronic Digital Computer. Addison Wesley Press, Cambridge, Mass. 1951.
Revised Edition 1957.

[9] KUDIELKA, V., WALK, K., BANDAT, K., LUCAS, P., ZEMANEK, H.: Programs for Logical
Data Processing. Research Report, Mailiifterl Volltransistor-Rechenautomat,
Vienna, February 1960.

[10] WILKES, M. V., STRINGER, J. B.: Micro-programming and the Design of the Control
Circuits in an Electronic Digital Computer. Proc. Cambridge Philosoph. Soc. 49
(April 1953) Part 2, pp. 230-238.

[11] BILLING, H.: Die im Max-Planck-Institut fUr Physik und Astrophysik entwickelte
Rechenanlage G 3. Elektron. Rechenanlagen 3 (April 1961) No.2, pp. 83-84.

[12] BILLING, H., HOPMANN, W.: Mikroprogramm-Steuerwerk. Elektron. Rdsch. 9
(Oct. 1955) No. 10, pp. 349-353.

[13] TR 4 - Telefunken. Digital Computer Newsletter 12 (Oct. 1960) No.4. Reprinted
in Communications ACM 3 (Oct. 1960) No. 10, pp .. 586-589.

[14] GILMORE JR., J. T., PETERSON, H. P.: A Functional Description of the TX-o Com­
puter. Memorandum 6 M-4789, Lincoln Laboratories, Massachusetts Institute of
Technology, Cambridge, Mass., November 20, 1956.

[15] CARR III, J. W.: Programming and Coding - Section 17, Microprogramming. In:
Handbook of Automation, Computation, and Control Vol. 2 (Eds.: E. M. GRAEBE,
et al.). John Wiley, New York 1959, pp. 2'251-2'257.

[16] GILL, S.: A Process for the Step-by-step Integration of Differential Equations in
an Automatic Digital Computing Machine. Proc. Cambridge Philosoph. Soc. 47
(Jan. 1951) Part 1, pp. 96-108.

[17] Stantec ZEBRA Program Manual. Standard Telephones & Cables, Ltd., England
1958.

[18] DEVONALD, c. H., FOTHERINGHAM, J. A.: The Atlas Computer. Datamation 7 (1961)
No.5, pp. 23-27.

[19] GILL, S.: Neue Wege beim Bau von GroBrechenanlagen (Atlas). Elektron. Rechen­
anlagen 3 (April 1961) No.2, pp. 81-83.

[20] Bendix G-20 System. Communications ACM 3 (May 1960) No.5, pp. 325-328.

