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Willem Louis van der Poel 

Summary. The growth of automatic programming languages for computers poses 
certain problems in logical design and machine code programming. Most classical com­
puters are not very well equipped for composite actions such as searching a list, block 
transfer, sorting etc. There is a marked tendency in computers today to cope for these 
macro-actions by means of built-in features. The purpose of this article is to show 
some ways to build up these macro-instructions from a coding system where the pro­
grammer has immediate access to the micro-programming of the machine. Un­
fortunately, this subject cannot be treated without referring to a particular machine 
code. For this the ZEBRA code has been selected. 

After a short introduction into the features of ZEBRA, a survey is given of all sorts of 
complicated macro-actions and how they can be expressed in this very flexible micro­
code. One of the key stones is the feature to repeat an instruction. In this way often 
a multiple use can be made of a single instruction. Another feature is the generation of 
pieces of coding in fast registers which are subsequently executed. These pieces were 
not written out in full beforehand. This technique is called "under-water programming". 
A considerable ingenuity is often required to devise the macro-instructions and this 
has given rise to the name "trickology" for the art of using this tricky programming. 

Zusammenfassung. Die Entwicklung der automatischen Programmsprachen flir Rechen­
automaten erlegt der logischen Planung und der Festlegung des Maschinencodes gewisse 
Probleme auf. Die meisten klassischen Rechenautomaten sind in bezug auf zusammen­
gesetzte BefehlsabUiufe, wie beispielsweise Durchsuchen von Listen, Blocktransfer, 
Sortieren usw., nicht besonders gut ausgestattet. Heute besteht bei Rechenautomaten die 
deutliche Tendenz, solche MakroabHiufe vor all em durch besondere, in die Maschine 
eingebaute Befehle zu bewaltigen. In diesem Beitrag sollen einige Wage aufgezeigt 
werden, wie man solche Makrobefehle auch in einem Programmsystem aufbauen kann, 
in dem der Programmierer einen direkten Zugriff zum Mikroprogramm der Maschine 
hat. Ungliicklicherweise kann man dies en Gegenstand jedoch nicht behandeln, ohne auf 
einen bestimmten Maschinencode zuriickzugreifen. Es wird der Befehlscode des Rechen­
automaten ZEBRA zugrunde gelegt. 

Nach einer kurzen Einfiihrung in die besonderen Merkmale von ZEBRA wird ein Dber­
blick gegeben iiber aIle moglichen Arten von komplizierten Makroablaufen und auf 
welche Weise man sie in dies em sehr flexiblen Mikrocode ausdriicken kann. Hierbei 
besteht einer der Hauptgedanken in der Moglichkeit zur Wiederholung eines Befehls. 
Auf diese Weise kann haufig ein einziger Befehl vielfach gebraucht werden. En anderes 
Merkmal besteht in der Erzeugung von Teilstiicken des Programms in schnell en 
Registern, die nachher ausgeflihrt werden. Diese Teilstiicke waren vorher nicht voll aus­
geschrieben. Dieses Verfahren wird als "Unterwasserprogrammierung" bezeichnet. Da 
es jedoch haufig einer gewissen Erfindungskraft beim Zurechtlegen solcher Makro­
ablaufe bedarf, so mag es gerechtfertigt sein, diese Programmierungsart als 
"Trickologie" zu bezeichnen. 

Resume. L'accroissement des langages de programmation automatique pour les grandes 
calculatrices electroniques pose certains problemes quant a la realisation logique et a 
la programmatiort en code-machine. La plupart des calculatrices classiques n'est pas 
tres bien equipee pour les actions composees, telles que Ie traitement des listes, Ie 
transfert en bloc des mots, Ie tri des mots etc. A l'heure actuelle, il y a dans Ie domaine 
des calculatrices une forte tendance a assurer ces macro-actions au moyen de dispositifs 
incorpores dans la machine. Le but du present article est d'indiquer les moyens pour 
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realiser ces macro-instructions a partir d'un systeme de code dans lequel Ie pro­
grammeur a un acces direct a la micro-programmation de la machine. Malheureusement 
ce sujet ne peut etre traite sans se baser sur un code-machine particulier. A cet effet, a 
ete choisi Ie code de la machine ZEBRA. 

Apres une breve introduction expliquant les caracteristiques de la ZEBRA, l'auteur 
donne un aper~u de toutes sortes de macro-actions compliquees en precis ant comment 
elles peuvent etre exprimees dans ce micro-code extremement flexible. Un des points 
d'appui du systeme est la possibilite de repeter une instruction permettant de faire 
d'une seule instruction un usage multiple. Une autre caracteristique est la creation 
des fragments de code dans des registres rapides, fragments qui sont executes ensuite 
et qui ne sont pas ecrits en toutes lettres au prealable. Cette technique est appelee celIe 
de la «programmation submergee». Souvent, la composition des macro-instructions 
demande une grande ingeniosite, ce qui a donne lieu a la creation du mot «Trucologie», 
par lequel on designe l'art de la programmation. 

1. Introduction 

There is a very marked tendency today to do away with all machine languages. 
At the highest level, problem oriented languages are the main goal. At most a 
machine oriented language can serve as intermediate step in describing a translator 
or compiler. Nevertheless somewhere some people must descend to the machine 
languages themselves to be able to make the programs for the transition between 
machine language and machine oriented but essentially machine-free languages. 
It shall not be the subject of this article to go into the problems of machine-free 
languages at any level as they have been dealt with in the contribution by 
F. L. BAUER and K. SAMELSON, in this volume pp. 227-268. 

It is clear that the structure of automatic programming languages will have a 
repercussion on the logical structure of machines. Perhaps the most important 
facility of automatic programming languages is the automatic allocation of names 
in the store. As this allocation process is essentially a dynamic process (e. g. in 
recursive procedures [1, 2]) the store must be dynamically addressable, i. e. 
reference to locations must be possible relative to the last stored quantity. Such 
a store is called stack, LIFO (last-in-first-out) memory, push-down store, or 
nesting store 1). Of course it is possible to build the stacking property into 
the hardware but it is also possible to programme the facility by keeping track 
of the position of the top of the stack (d. KDF 9 of English Electric [3] and B5000 
of Burroughs [4]). This brings us to the desirability of index registers as they give 
just the possibility to add something to the address of an order to be executed, e. g. 
the top address of the stack. Going to a subroutine requires the storing of the top 
address of the stack for later reference when returning from that subroutine. A 
whole hierarchy of such top-addresses forms a list and it is clear that especially 
list searching for reference to variables of other levels of the hierarchy can be a 
frequent operation. 

The necessity of having index registers is often interpreted by machine builders 
as a necessity to add the contents of these index registers to the address on the 
same instruction. But when analised in time sequence this always requires an 
extra add cycle before the execution of the instruction. Therefore it seems more 

1) The same is designated "Keller" by F. L. BAUER and K. SAMELSON, cf. this volume, 
pp. 255-257 (Editor's remark). 
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logical to do this addition during the previous instructions. The end of the pre­
vious instruction fetches the next instruction and modifies it at the same time. As 
a by-product the advantage emerges that now with the same ease the modifiers 
can be modified by a whole string of such instructions (cf. 2 and 4 orders in 
EDSAC 2 [5], NKm orders in ZEBRA [6] and the structure of the Bendix G 20 
Computer [20]). In this way the most general addresses can be composed as e. g. 
«(a) + (b) + c) + d) + e where (n) denotes contents of n. The limitation of the 
number of index-registers to only a few and the special orders to handle them is 
a very severe drawback for automatic programming. The conclusion is: make 
every location of the main store also available as index register (cf. the George­
Computer [7] and the Bendix G 20). 

Of course the organization of stacks, lists, index registers etc. is greatly helped 
by having a big store of uniform properties. As soon as a two level store enters 
the picture, a transferring of blocks of information between main (high speed) 
store and background store becomes a problem. In this connection it is worth 
while to mention that it is possible to make the allocation for blocks to be stored 
by built in hardware and to keep track of the addresses in a label list. The alloca­
tion can be done in such a way that the first available free block is seized and 
reserved and is given a label which is independent of the real address that need 
not be known to the outside program any more. Especially when two independent 
programs are run on an interrupt basis side by side which must not disturb each 
other, this scheme can have great advantages (d. Atlas Computer of Ferranti 
[18, 19]). Of course the same technique can be programmed as well. 

Instead of haVing a stack, the individual locations can be organised in quite another 
way. When a variable must be stored the first free location can be looked up. 
To link the position of that location to the previous one in the stack or list a tag 
or label can be assiciated with it which gives reference to the previous address. 
This is called a threaded list. Manipulation of this list only requires manipulation 
with the tags, never with the information itself. Especially for system with 
variable length items (sorting problems, variable multi-length arithmetic, auto­
matic allocation) this way of organization has many advantages notwithstanding 
the drawback of consuming extra storage space for the tags. 

The reason for going in many details of machine structure in connection with 
automatic programming is that the present article wants to deal with some of the 
organization problems at the lowest machine level. 

The structure of the micro-instructions is of course very important for building 
machines which are well suited for doing their work efficiently but that goal can 
be attained through a suitable structure of micro-instructions. The question is, 
how far must one go in decomposing the well known mathematical concepts of 
addition; multiplication and the organizational operation as transport, test, list 
searching etc. into more elementary fragments to be able to make one's own order 
code. The argument that micro-code is more difficult to be handled by the human 
programmer does not hold for automatic programming and the flexibility gained 
could well be a boon to speed. 

It is the fate and doom of a machine code programmer that he can only describe 
his findings in a particular code for a particular machine. This has been done 
before, and most books on programming descend to the level of a particular 
machine (e. g. WILKES, WHEELER, GILL [8]). Nevertheless I shall go through the 
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cumbersome details of describing a particular machine to be able to come to the 
subject proper. 
Some justification for doing this can perhaps be found in the reason that the 
structure of the machine in question (Stantec ZEBRA) is rather different from 
most classical machines so that the order code is composed of functional 
bits which each have a seperate and independent meaning. (Reference is 
made to [6] pp. 49-94.) We have tried to devise the logical design in such a way 
that the micro-programming permits the easy implementation of most macro­
operations required. In fact it has appeared that a completely new technique of 
programming emerged (which we have called under-water programming) in which 
far more complicated macro-operations can be more easily dealt with than in 
most usual built-in machine codes. It also appeared that some very complicated 
actions involving timing problems in strobing a real time input or output device 
(such as a telephone dial or a teleprinter) can be solved in an incredible low 
number of instructions. Many of these complicated macro-instructions are 
connected with list searching, manipulation of treaded lists, block transfer, inter­
pretation techniques so that the structure of micro-instructions has helped a great 
deal to make all sort of processes occuring in automatic programming particularly 
simple and speed. 
In the design of ZEBRA not all ideal circumstances for making a good machine 
for automatic programming have been realised. For instance, the limited number 
of fast access index registers with special treatment and the optimum programmed 
store do not comply with the requirements given in the first part of this intro­
duction. 
A second reason for making the design as it stands was economic need to make 
the machine as simple as possible without sacrificing speed. Indeed much gain 
in speed has resulted from a more compact use of time and simultaneous action 
of the elementary particles of the operationj on the other hand input and otitput 
facilities were rather limited. 
Hence I consider the purpose of this article to lie more in the line of giving 
limits how some sort of macro-operations can be dissected in general, but the 
only way to describe it is by taking two particular examples at hand. Other 
machines with a coding of similar scope have been built. To mention a few 
of them: The Z 22 Computer has a very similar functional bit coding (d. the con­
tribution by ZUSE, in this volume, particularly p. 528) j the Mailufterl Com­
puter of the Institut fur Niederfrequenztechnik, Technische Hochschule Wien [9] 
is also based on a similar functional bit coding and has as special features opera­
tions for both binary and binary coded decimal. All have a one cycle basic 
operation., 
In another line of thought the microprogramming in EDSAC 2 [10] has been 
applied. Here a class of micro-operations are provided in the machine but they are 
not accessible for the outside programmer. Instead they are used as constituents 
in time series for composing the more complicated instructions on a wired-in 
basis. All wiring is done in matrix form so that it is not too difficult to devise 
new orders and to build them in. In the same way the computers G 3 of the Max­
Planck-Institut fur Physik und Astrophysik, Munchen [11,12], and TR 4 of Tele­
funken [13] are logically designed. 
Again a slightly different form of micro-coding is used in the TX-o Computer 
built at the Lincoln Laboratory, Massachusetts Institute of Technology [14, 15]. 

18 Dig. Inf. 
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The structure of the computer had to be made simple as it was only meant as test 
machine. Here there was adopted a decoded operation part of three orders with 
an address for fetching, storing and jumping. The fourth operation was addressless 
and the address bits were used to do all other operations (including input and 
output) in a functional bit way [15]. Both in EDSAC 2 and TX-o the concept of 
having different groups of digits controling operations in time sequence was in­
corporated. In ZEBRA this is done only to the extent as comes naturally. 

The concept of micro-programming and the practice of devising tricks to do the 
more complicated composite actions is so interwoven in ZEBRA that the volume 
of knowledge of these tricks has been given a special name: trickology. Without 
this knowledge of trickology and the standard programs based on it, ZEBRA 
would be a useless machine. In general this applies to all computer systems. The 
computer in itself will be of little value when given to a man only in possession 
of the manual of basic machine properties. The library of programs and the philo­
sophy of program organization will make this computer into a useful tool. It is 
not unusual that this body of paper knowledge is more costly and more difficult 
to obtain than the machine itself. Especially when exchange of programming 
between machines takes place the program organization or languages used must 
be rigorously the same. 

2. Description of ZEBRA Computer 

ZEBRA is a binary magnetic drum calculator with a storage capacity of 8192 
words of 33 bits. The drum is divided in 256 tracks of 32 words each. The words 
are consecutive on the drum. Words are transferred in series through the ma.chine. 
Revolution time 'is 10 ms. The arithmetic unit comprises two accumulators A and 
B, A having 33 bits and an overflow position, B having 33 bits and a special carry 
trap "for a carry-over. The control unit comprises a control register C which holds 
the next instruction, a control counter D both of 33 bits word length, and an 
execution register E in which the instruction to be executed is set up from C. 
A fast store comprising 12 short registers of 33 bits plus a few odd registers 
containing constants or performing special functions completes the picture. 

Input is via 5 hole punched paper tape. Max. speed is 200 symbols/so 

Output is via 5 hole punched paper tape. Max. speed is 60 symbols/so 

Further output is via ordinary teleprinter (7 symbols/s). 

The bits of the contents of a word are denoted by small letters derived from the 
name of the register or location with the left most digit starting in o. 

Thus 

(B) = bo bl b2 ••••••••• b32 

It is a matter of interpretation to use the digits in a word to represent a fraction 
in the following way: 

32 

Po PI ............. P32 = - Po + ~ Pi 2-i, where Po acts as sign digit. 
i~l 

In the same way a number can be regarded as a signless integer: 

32 

Po PI .......... P32 = ~ Pi 232-i 
i~o 



Micro-programming and Trickology 275 

For the machine addition this makes no difference as all digits are treated in 
exactly the same way. 

The structure of an instruction is as follows: 

Co Cl C2 C3 C4 C5 C6 C7 Cs C9 CIO Cl1 Cl2 C13 Cl4 Cl5 Cl6 Cl7 ClS Cl9 C20 C2l C22 C23 C21 C25 C26 C27 C2S C29 Cao C3l C32 
, -v '''---.-' '- v ' 

operation part consisting of fast store 13 bits for drums address 
15 bits bearing the names address 

m n 

There are two addresses, one for selecting a fast register, the other for selecting 
a drum location. The 15 operation bits all have a separate meaning. 

The fast addresses have the following properties and contents: 

o contains a fixed constant O. It cannot be written into. 
1 contains a fixed constant s (P32 = 1). It cannot be written into. 
2 is identical with accumulator A. It cannot be written into. 

3 is identical with accumulator B. It cannot be written into. 

4 

15 

16 

21 

normal fast registers. They can be read off and written into. 

not provided in the machine. 

22 contains (A). It cannot be written into. When selected, ao is transferred to 
the flip-flop for generating the signal for operating printer 2. 

23 contains Po = 1; Pl to P32 = O. Constant. It cannot be written into. 
24 contains the logical product of (A) and (B) taken bit by bit when read off. 

When written into it has no effect as such but causes the logical product of 
(5) and the contents of the selected drum address to be read from the drum 
instead of the original contents. 

25 same as 22 except that it operates teleprinter 1. 

26 contains contents of 5th hole of input tape. All zero's for 0, all ones for 1. 
When written into, ao is transferred to 5th hole of output punch. 

27 same for 4th hole. 

28 same for 3rd hole. 

29 same for 2nd hole. 

30 same for 1st hole. 
31 when read off contents is 0 and input tape is stepped. When written into this 

has no effect except that it causes the symbol set up in the punch to be 
punched and the tape advanced. 

IS" 
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2.1 Something about the Notation of Instructions 

The instructions when written down on paper differ from the form in which they 
are present in the machine. This is purely a matter of input program and does 
not concern any of the principal points of the article. But as this notation has 
grown and is used we shall adhere to its conventions. 
In general, functional bits A, K, ....... are written when present and are omitted 
when absent. The letter A serves as opening symbol and must stand in front. 
The letter X serves as opening symbol when A is absentj thus A = X. 

Other functional letters can be written in an arbitrary order. They serve to 
separate the addresses. The V-digits are treated separately and are always written 
at the end. 
Of the two addresses none, one or both can be present. A drum address is written 
with at least 3 digits or must be ;2;; 32. A fast address is smaller than 32. Non­
significant zero's can be suppressed even if the address is zero. 

The drum address is written before the fast address when the W-digit is absent, 
thus: 
A200BCE5 Functional digits A, B, C and E present. Drum address = 200, 

fast address = 5. 

X200R Functional bits R only. Drum address = 200, fast address = o. 
The fast address is written first when the W-digit is present. The W-digit is 
automatically inserted by the input program and is never written by th~ pro­
grammer. When the fast address is written first, another address p can be 
written. This will cause an inactive drum address 8192-2 p to be input. Thus: 

XK5 Functional digits K and W present, drum address 000, fast address 5. 
X5K7 Functional digits K and W present, drum address 8178, fast address 5. 

A point "." is written when no functional digits are available for separation of 
two addresses .. 
As an X jumping to the immediately following register is very frequent, an 
abbreviation will be introduced: (p) = Xp + 1 is denoted by N. In the same way 
NKK denotes (p) = Ap + 1. 

2.2 The Function of the Operation Digits 

The A-digit determines the character of the operation. If Co = 0 the operation is 
called X, and if Co = 1 the operation is called A. An X-operation has as main 
element the extraction of a new instruction, and the A-operation has as main 
element the execution of an instruction. However, the distinction between these 
kinds is not sharp. 

The K-digit determines for which unit the fast registers are used, 1. e. for the 
arithmetic unit or for the control. Together with the A-digit, the K-digit deter­
mines the way of coupling between the four parts: arithmetic unit, control, fast 
registers, and drum store. This will be clear from the functional interconnection 
scheme depicted in Fig. 1. (The term fast registers is now preferred to and 
replacing the terms short registers or short store which have frequently been 
used previously.) 
The function of the Q-digit is the addition of ± c to the B-accumulator, 
independent of the store. 
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The digits Land R effect the shifting of the contents of the double-length accu­
mulator to the left or to the right, respectively. 
The I-digit controls the additive or subtractive action of an instruction. This only 
applies to the accumulators, not to the control, and then only for the transfer to 
Ii or B. 

Fig.!. Scheme of the functional interconnection between the four main computer units 

The B-digit determines whether an operation refers to the A or to the B-accu­
mulator. This only applies to adding, not to shifting. 

The C-digit determines whether or not the accumulator engaged in the operation 
must be cleared. 

The digits D and E determine whether reading or writing takes place from/to the 
drum and the fast registers, respectively. 

The digits V, V 4, V2, V1 are called the test digits. With a testing operation the 
operation is either or not executed, dependent on the criterion described by the 
digits V, V 4, V 2, V 1• If the instruction is not executed, an inscruction AO is executed 
instead. 

The digit W is related to the time selection on the drum. If C14 = 0, the execution 
of an operation is delayed till the selected storage location on the drum is present. 
If C14 = 1, the operation is executed immediately without the drum being waited 
for. The drum is completely disregarded. Zero is always read and nothing can be 
written on the drum. 

The remainder of the digits forms the addresses: C15 to C19 constitute the fast 
address and C20 to C32 constitute the drum address; C20 to C27 serve the track selec­
tion and C28 to C32 serve the time selection within the selected track. For the sake 
of shortness the contents of the drum address will always be denoted by (n) and 
the contents of the selected fast address will always be written as (m). There is 
(n) = 0 if the W-digit is 1. If (n) is destined for A, this number is denoted by 
(n}A. Then (n}B and (n)c are O. 

In the same way by (m}A, (m}B and (m)c is denoted the contents of (m) as far as 
they are destined for A, B, or C. Both other entrances receive a O. 

2.3 The Action of the Instructions - The Functional Digits 

The A-digit. 
In the control the A-digit has the following action: 
Operation X: (C) + 2 E -+ D (n)c + (m}c -+ C 
Operation A: (m}c + (D) -+ C (4) -+ D 
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Both operations do not differ in so far as the arithmetic unit is concerned. In any 
case adding or storing takes place according to: 

(A) ± {(n)A + (m)A} -+ A (B) ± {(n)B + (m)B} -+ B 

These standard operations can be modified by the other operation digits. 

Register 4 has a special function and is related to the A-operations. All instruc­
tions are either X-instructions or A-instructions. 

The K-digit. 

If the K-digit is absent: the fast registers are used for the arithmetic unit. 

If K is present: the fast registers are used for the control. 

On a reading operation: (m) -+ C 

On a writing operation: (D) -+ m 

The Q-digit. 
If the Q-digit is absent: normal. 

If Q is present: E is added to (B) (or is subtracted dependent on I). The E is intro­
duced in the carry entrance of the pre-adder of B as if it were a carry from "b33". 
The adding of E under control of Q is also taking place on a storing operation. 

The L-digit. 

If L is absent: normal. 

If L is present: (A) and (B) are shifted one place to the left. If A and B are not 
cleared, the leftmost digit of B shifts to the rightmost digit of A and B is com­
pleted on the right-hand side with a zero. The leftmost digit of A is lost. If A or 
B are cleared, zero is always transported from B to A. All other operations are 
performed in the normal way. 

The R-digit. 

If R is absent: normal. 

If R is present: A and B are shifted one place to the right. When A and B are not 
cleared, the rightmost digit of A shifts to the leftmost digit of B. The rightmost 
digit of B is lost. A is supplemented on the left-hand side with a digit from a place 
which will be called a~l. This place is situated on the left side of ao, and completes 
the A-accumulator to an adder of 34 places instead of 33 places. For this extra 
place the following rules hold: 

If A is cleared, 1L.1 is also cleared. All numbers to be added are first added 
together in what is called the pre-adder; then the resulting number is completed 
with a copy of its sign digit, after which the number of 34 digits is added into A 
with the main adder. This digit is serving effectively to store an overflow. The only 
method to recover this digit is to shift it to the right by an R-operation. The 
shifting to the right prevails over shifting to the left; thus a combination of Rand 
L shifts to the right only. 

For the sake of doing multiplications the following facility has been added to LR: 
if LR is present, add b32. (15) to A instead of (m)A. 

The I-digit. 

If the I-digit is absent: normal. 

If the I-digit is present: take the complement of the numbers of drum and fast 
register, in so far as they are destined for the arithmetic unit. The contents of 
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15 on an XD- and an LR-operation and the c on a Q-operation are also com­
plemented when I is present. The I-digit does not refer to numbers to be stored, 
or to the control. 

The B-digit. 

If the B-digit is absent: the operation refers to A. 
If the B-digit is present: the operation refers to B. 

The addition normally takes place in A just as the storing normally takes place 
from A. However, if the B-digit is present, the addition takes place in B and the 
storing also takes place from B. The B-digit has no influence on the addition of 
(15) to A on an LR-operation. This addition always relates to A. The addition or 
subtraction of c on a Q-digit also always takes place in B. The B-digit has no 
relation to the control. 

The C-digit. 

If the C-digit is absent: do not clear A and B. 

If the C-digit is present: clear the accumulator as prescribed by the B-digit, before 
an addition or a shift takes place. The C-digit does not relate to the control. 

The D-digit. 

If the D-digit is absent, and if the execution is waiting for the drum: read the 
number from the selected drum storage location and perform on it an operation 
according to the other digits. 

If the D-digit is present, and the execution is waiting for the drum: write in the 
selected drum storage location the number from A or B according to the following 
rules: 

With an operation without B: C8 = 0: (n) destined for A. 
C8 = 1: Transfer (A) to n. 

With a B-operation: c8 = 0: (n) destined for B. 
C8 = 1: Transfer (B) to n. 

On the combination of X and D an extra addition takes place: Add (15) instead of 
(m)A or (m)n to A or B according to the B-digit. 

The E-digit. 
If the E-digit is absent: read the relevant fast register and use it for A, B or C 
according to the K and B-digit in the operations. 

If the E-digit is present: read the number as determined by K and B in the selected 
register. 

If K and B are both absent: C9 = 0: (m) destined for A. 
C9 = 1: (A) m 

If K is absent, B is present: C9 = 0: (m) destined for B. 

C9 = 1: (B) m 

If K is present: C9 = 0: (m) destined for C. 
C9 = 1: (D) m 

2.4 The Test Digits 

If the V-digit is not present, the digits V4, V2 and Vl together determine a number, 
having the value 0 to 7. These combinations are denoted by Uo to U7, added 
behind an instruction. If the instruction contains Uk, this operation is executed if 
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a testable switch k has been thrown. If not, the operation Ao is executed. The 
sense switches will be also denoted by U1 to U7. Uo is considered to be always 
thrown. An instruction with Cl0' C11, C12, C13 = 0 will be executed in the normal 
way. U7 is materialized as a key having a normally closed contact; hence in con­
trast to the other six switches the test U7 succeeds when switch U7 is not thrown. 
This key serves as a start key. 

If the V-digit is present, a V is added to the instruction. 

Cl0' CUr C12' C13 = 1000 is denoted by V: See next paragraph. 

Cl0, CUr C12, C13 = 1001 is denoted by VI: Execute the instruction if a o = 1, 
else execute A. 

Cl0' Cll' C12, C13 = 1010 is denoted by V2: Execute the instruction if bo = 1, 
else execute A. 

Cl0, C1t- C12' C13 = 1011 is denoted by V3: Execute the instruction if (A) = 0, 
else execute A. 

Cl0' C1V C12' C13 = 1100 is denoted by V 4: Execute the instruction if b32 = 1, 
else execute A. 

The combinations V5, V6 and V7 are free for special applications. A test can be 
performed with the aid of these functional digits. 

2.5 Double-length Facilities 

To be able to perform double-length arithmetic very easily a device to take the 
carry-over from B to A is provided. As this carry-over is only produced on the 
last impulse time in a word, it is not possible to add it to A in the same cycle. This 
is always done in a later cycle (not necessarily the next). 

The normal rule for double-length arithmetic is as follows: On every B- or Q­
operation the carry-over is stored in an intermediate storage of one digit, named 
carry-trap. This carry is added to A on the first instruction having a VO, which 
can be written simply as V. The B-instruction and the related V-instruction must 
have an equal I-digit. The carry-trap retains the carry which has been put into it 
on the last B- or Q-operation. The carry from the carry-trap is introduced on the 
carry entrance of the pre-adder of A as if it were a carry from" a33". On a left 
shifting instruction with V it is introduced one digit time late as if it were a carry 
from a32. This implies that an instruction of the form A200L5V can give wrong 
results, because the addition of (200) and (5) in the pre-adder can give rise already 
to a carry from a33 to a32 so that no other carry can be added at the same time. 
For a better understanding a short account will be given of the precise action of 
the carry-trap. A subtraction in B is performed by adding the inverse of the 
number together. with introducing an extra complementary one on the carry 
entrance of the main adder of B as if it were a carry from "b 33". When a number 
is added, the resulting carry is just the opposite of what it would be, when the 
same number would be subtracted. For example, subtracting 0 gives a carry l. 
In general this can be formulated as follows: The borrow produced on a subtrac­
tion is the opposite of the carry produced by adding the complement. However, 
on the next V-instruction the fact that a borrow has been stored in the carry-trap 
in opposite form must be taken into consideration by reversing its significance 
as an I-operation. The negative value of a borrow is automatically accounted for 
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by the introduction into the pre-adder. The result of this pre-addition (now in­
cluding the borrow) is subtracted from A on a subtraction. 

These seemingly awkward rules are necessary to be able to round-off on multi­
plication with a special trick, and to use the V as a sort of "Q-digit" for the' 
A-accumulator. 

Examples. 

Round-off on multiplication: 

N ... IB23 

N ... V 

The use of V as "Q-digit": 

N .. . BI 

N ... V 

Z.6 The Order of Preference 

Last instruction of multiplication contains I. 
B23 subtracts ~ from tail giving carry-over 
when tail ;;:::~. 

Round-off is added to head on next operation. 
B-instruction and corresponding V-instruction 
do not have the same I-digit! 

Subtract 0 from B thus making carry = 1. 

Add extra 1 to head from carry-trap i etc. 

The functional digits of the operation are written in a certain order. This order is: 
AKQLRIBCDEVV4V 2V 1• By reading it from the right to the left the order of 
preference of the functional digits is given. One can imagine the action to be thus 
lhat all functions take place subsequently. First from the test digits it is tested 
whether the operation is taking place or not. Then if storing has to take place, 
first storing is effected. Then if clearing has to take place, the clearing is per­
formed. The relevant register is indicated by the B-digit. The position of the in­
version digit is of no importance. The order of LR indicates that R has preference 
over L. When Rand L are used together, only a shift to the right is effective. As 
last action the additions with Q and A take place. The position of the K-digit is 
unimportant. 

3. The Repetition Instruction 

The possibility to repeat an instruction has given this type of coding its greatest 
power. In this chapter we shall give a number of applications which encompass 
the most frequent types of serial operations. They comprise multiplication, 
division, normalisation (single and double length), block transport, zero-searching, 
searching in a non-ordered list for a specified part of a word" generating random 
numbers with FIBONACCI series, etc. 

The basic idea of repeating an instruction stems from the fact that when a register 
is serving as the next instruction source, the drum address is not used as such 
when the W-bit is present. Nevertheless the address counter is augmented by 2 
every cycle. This does not influence the fast address until the drum address 
overflows into the fast address. Thus when the drum address is equal to 
8192-2p, it will overflow after getting added p times 2 to it. Hence the notation 
XSK7 for: repeat instruction in 5 seven times. 
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Program: 

100 NKE6 
10] XsKp--+ 

-+102 etc. 

Action: 

C D 

X100 
X102KE6 
XSKp 

X102 
X102--+ 6 

Willem Louis van cler Poe! 

SI instruction to be repeated: A .. 

6 return instmction 

A ... 
XSKp-1 

XSKp-1 XSKp = XSK + 8192 - 2p 
XSKp-1 = XsK + 8192 - 2p + Z 

A ... XSKp-2 

XsKl 
A ... 
X6K 
X102 

X6K XsK1=XsK+8192-Z hence X5K1+002=X6K 

Return to drum. 

In this example we see the alternation between an X- and an A-instruction. The 
X is called the repeating instruction, the A is called the repeated instruction. . 
Of course both X- and A-instructions can do useful things. Observe that this 
count requires no extra apparatus but uses the normal address counter. 

3.1 Multiplication 

The most important application for a repetition instruction is multiplication. This 
can be done by the classical VON NEUMANN system. The A and B are forming a 
double-length accumulator, the multiplicand is placed in IS, the multiplier is 

. placed in B, and A is cleared initially. At every cycle the last digit of B is tested 
and only when it is I, the contents of IS is added to A. Then A and B are both 
shifted to the right, thereby dropping the right hand digit of the multiplier and 
shifting a bit from the product from A to B. This digit does not change any more. 
The repetition of a multiplication runs as follows. 

Program: 

100 
NKE6LRC 

101 XSK1SLR 

102.1 NLRI 

Place return instruction in 6. Clear A and add (IS) 
conditionally. Shift right. 

Repeat ALR fifteen times (X5K15LR itself is done 
sixteen times). 

The last cycle is done negatively because of the sign 
convention. 

5/ ALR 
6 return instruction 
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With respect to timing the 31 repeated and repeating instructions just fit into one 
revolution time of the drum. 
Of course for an isolated multiplication the instruction ALRinS must be prepared. 
To give an insight how this can be done, an example shall be given of a complete 
open subroutine for multiplication of (A) and (B) without pre-supposing any 
contents of the registers. 

Program: 

100 NEs 

101 NKKCEIS 

102 ALR 

103 NKE6LRC 

104 XSKlSLR 

105 NLRI 

3.2 Division 

Pre-instruction activity only starts after next instruction. 

Store multiplicand -+ 15. ALR -+ A. 

Constant. After-action of NEs stores ALR -+ 5. 

Multiplication as described above. 

After-action of Es destroys ALR but that does not matter. 

A division is more complicated but here also the classical VON NEUMANN scheme 
fits into the two available operations. 

A step of a division can be subdivided in: 
a) shift to the left, subtract divisor and note down a quotient digit 1, right or 

wrong; 
b) test whether result has become negative. If so, subtraction must be undone. 

Add divisor again and remove quotient digit. 

The repetition starts with the following initial contents: A and B contain the 
double-length dividend (positive), (15) = negative divisor. 

Then the program runs as follows: 

100 I NKE7 
101 X6K31QLD 

102 AQllSVl 

103 unused 

104 etc. 

Place return instruction in 7. 

Repeating instruction: shift left, XD subtracts divisor, 
Q adds 1 to quotient. Repeated instruction: test sign 
of result. If negative undo action of XDQ. Only 63 word 
times fit into 2 revolutions. 
So last restoration is done separately. 

61 AQllSVl 

7 return instruction 

Of course in a practical application this core has to be supplemented by some 
preparatory programming for dealing with all combinations of signs. In practice 
a closed subroutine will be made for division once and for all. An example can be 
found in [6]. 

3.3 Normalisation 

Normalisation is shifting a number a to the left until (a) > ~ and counting the 
number of necessary steps. The example of single length normalisation 
(shifting in A and counting in B) has been given already in [6]. So we shall deal 
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with the more difficult case of double-length normalisation. A and B are supposed 
to be filled with a positive double-length number which has to be normalised with 
a repetition instruction. The difficulty is that both accumulators are occupied for 
shifting and cannot be used for counting. The solution can be found by using the 
repeating instruction itself as an indication for the number of steps. 

Program: 

100 NR23 

101 NKE6V1 

102 NKE6 

103 XK6L 

Shift double-length number temporarily to the right and 
make sign-digit 1 for making next test succeed for the 
first time. 
Pre-instruction succeeds. KE6 has no meaning yet. 
Place return instruction X104KE6V1 in 6. Thus the 
repeated instruction is a test. 
Repeat and shift left X104KE6Vl. As long as number 
to be normalised is still positive, test fails and repetition 
goes on. As soon as test succeeds, return to 104 and store 
the' present repeating instruction in 6. When having 
shifted over n places, contents of 6 is in the end 
XK6L+2n. 2n can be separated from (6) later. 

The technique of first preparing a few instructions in the registers which after­
wards are executed many times and meanwhile alter themselves is called under­
water programming because the active instructions do not appear as such in the 
object program. We shall see many examples of under-water programming later 
on where often the instructions executed far outnumber the instructions written 
down. 

3.4 Block Transport from Drum to Registers 

It is clear that for the preparation of under-water programs often a block of 
words has to be transferred to the registers. This can be done by a repetition 
instruction in the following way. As the instruction to be repeated must be 
modified during the repetition, the obvious place to put it is the B-accumulator. 
With the XBD combination the repeating instruction can modify the repeated 
instruction on every cycle. 
Suppose we want to transfer (m), (m + 2) ... (m + 8) to registers 6, 7, 8, 9, 10i 
then the program runs as follows: 

100 NC5 (5) to A. Necessary for starting. 
101 NKKBC Take modifier X002'1 in A. 
102 XOO2'1 

103 NKKBCE15 
104 AmCE5 
105 NKE4 
106 X3K6BD 

107 I etc. 

Modifier for augmenting drum address with 2 and 
register address with 1. 
Put modifier X002'1 ~ 15 
and take instruction to be repeated in B. 
Store return instruction in 4. 

Repeat AmCE5 six times and modify it during repetition 
in B. It becomes successively AmCE5, Am + 2CE6, 
Am + 4CE7, Am + 6CE8, Am + 8CE9, Am + 10CE10 
so that it has just transferred (m) ~ 6, (m + 2) ~ 7 etc. 
Remark that there are no waiting times except for the 
first one. 
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The same type of procedure can be applied for transport of numbers in the other 
direction. 

3.5 Zero Searching 

In list processing it often occurs that the first free location of a list must be 
looked up. This can again be done with a repetition instruction. 

Suppose that the list is 50 places long and that these places are alternately spaced 
on n, n + 2, etc. The program now runs as follows: 

100 NKKBC 

101 AnCQ 

102 NKE4ICV 

103 X3K50QV3 

104 X ... V3 

105 not used 

106 NC6 

107 NK3QIBC 

108 ADOOOK3Q-
A002CQ 

109 N etc. 
110 

Take AnCQ in B to be repeated. 

Store return instruction X104 in 4. 
Fill A with a number=f=O to insure that process will start. 

Repeat (B) = AnCQ 50 times. The Q on the repeating 
as well as on the repeated instruction step the address n 
by two every cycle so that all alternate locations are 
fetched in A. The test V3 looks for zero. 

When somewhere during the repetition the test fails, 
(4) comes into C and the program returns to 104 (see 
below). A V3 test on 104 can see whether actually a zero 
has been found and then goes on to 106. If nowhere a 
zero can be found, the repetition comes to a normal end 
on 4 after having repeated (3) for 50 times. But now the 
test on 104 succeeds because (A) =f= o. The place x where 
an eventual zero has been found can be reconstructed 
from 

(B) = AX+2CQ. 

For example when (6) must be stored in x there can 
follow: 

Take (6) in A. 

Take as next instruction (108) + (B) = ADxK3Q. 
Put -e in B afterwards. 

Instruction executed is ADxK3Q storing (6) -+ x. 

K3 modifies after-action not to X110K3QIBC but to 
X109K3QIBC and the Q on 108 clears B again so that 
the instruction on 109 is extracted unmodified by the 
X109K3QIBC. 

In this example there are a few difficult actions to visualize. Therefore an action 
diagram shall be added. Each successive line gives an instruction. 
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Action: 

A 

-e 

(n)=I=O e. q. 

(x) = 0 e. q. 

(6) 

(6) --+ x 

B 

AnCQ 

An+1CQ 
All + 2CQ 

Ax + 1CQ 
Ax+2CQ 

-£ 

o 
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C 

X100 
A101BC 
X102 
X103KE4ICV 

X3K50QV3 
AnCQ 
X3K49QV3 

AxCQ 
X3K ... QV3 fails 
X104 
X ..... V3 fails 
X106 
X107C6 
X108K3QIBC 
AxDK3Q 
XllOK3QIBC 
(110) + 0 etc. 

D 

-------..... (4) 

X3K49QV3 

X3K ... QV3 (4) 

X104 ---

X106 

XllOK3QIBC 

3.6 Searching in a List 

A more complicated action is searching an item in a non-ordered list. Suppose e. g. 
that a list contains in the usual even numbered places an identifier in the right­
hand 15 digits. The left-hand 18 digits and the next word contain information to 
be extracted. So in this case a search must be made for a part of the word to be 
equal to a prescribed word. A mask defines the part of the word. 
The mask is put in 5 and the prescribed word is put negatively in 15 at the start. 
(5) = 215 - Ii (15) = - a. 

100 NKKBC 

101 AnQE24 

102 NKE4ICV 

103 I X3K50QCDV3 

I 

104 X ... V3 

etc. 

Put AnQE24 in B as instruction to be repeated. 

Return instruction to 4. - e to A to let the first repeti­
tion succeed. 

The XCD combination puts (15) = - a in A. Then 
AnQE24 is repeated. E24 fetches (n) masked by (5) and 
adds this to A. The next X .... V3 tests for 

- a + (n)masked = o? 
The Q on X ... QV3 and AnQE24 steps up the instruc­
tion AnQE24 over 2. 

Test whether zero has been found or 
whether repetition has ended list. 
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Needless to say that this type of repetition is a keystone to all sorts of automatic 
programming language translation programs to search in identifier lists. Even in 
this computer with its waiting type store, the action is comparatively fast; only 
two word times per item. When the first item has been looked up, all others 
follow without further waiting times. 

3.7 Generating Random Numbers by the Series of Fibonacci 

A curious example of the application of a repetition instruction is the execution 
of a number of steps of the process Un+l = Un + Un-v the series of FIBONACCI. 

This is sometimes used as a generator of random numbers. The overflow of the 
addition is lost. The process described here, is a simplified form which would not 
be very good as random generator as the numbers are cyclically even, odd, odd. 
Suppose we want to progress p terms in the series. (A) = Un-1; (15) = Un. 

Program: 

100 NBEs 

101 NKKBC 

102 ALRCE1s 

103 NKE6BC 

104 XSKpDQ 

105 etc. 

Pre-instruction. 

Take ALRCE1s. 

After-action BEs puts this in 5 as instruction to be 
repeated. 

Place return instruction in 6 and clear B. 

Repeating instruction forms Un+l in A by the XD 

facility and puts e in B. 

The repeated instruction ALCRE1s then interchanges 
(A) and (IS)!! For CEls places Un+l in 15 and the LR 
facility puts (15) = Un at the same time in A. The e in B 
made LR succeed. The right shift of LR cleared B again. 
The same process is repeated p times. 

3.8 The Repetition of a Subroutine 

Although highly important for the most frequent processes a single repeated in­
struction cannot do more complicated repetitive' processes. But fortunately it is 
possible to use as repeated instruction the call-in combination of a subroutine so 
that in fact the whole subroutine is repeated. This mode of working has as a 
drawback a loss of time because the program repeated is not any more in the fast 
registers but on the drum. 

In principle this repetition works as follows. 

Program: 

100 NKEs 

101 X4Kn 

102 

Store return instruction. The subroutine 200 N etc. 
reads like 

where e. g. (4) = X200KE6 

The first time X4Kn-1 is stored in 6 etc. XK6 return 
The last time this instruction has become 
XsK and returns to 102. 
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A practical and elegant way to implement this idea is the following program: 

100 NKE7 
, 

101 X103KEs -

102 Xn 

103 NKE6 ~ 

104 X6Kp 

105 I n-1 XKS 

~ n etc. 

4. Fast Repetitions 

Place return instruction X102 -+ 7. 

Pre-instruction! 

Program returns here and jumps over the 

repeated program. 

Put X10sKEs in 6 as return instruction. 

Repeat (6) = X10sKES p times. 

Program to be repeated. 

Until so far all repetitions were of the type: two instructions I a repeating and a 
repeated instruction alternating each other. They work most effectively on alter­
nate places of the drum. As soon as they have to work on every consecutive word 
they become very slow. There is another type of repetition which is termed a fast 
repetition. Here only one instruction is doing the work and is repeating itself. 

4.1 Drum Clearing 

As a first example a drum clearing routine is given. It will be programmed on the 
drum and consequently destroys itself during its action. 

Program: 

100 

101 

102 

103 

NCE1S 

AI03BCKE4 

unused 

XOOOK3QCD 

Pre-instruction clears A and clears 15 as second action. 

XOOOK3QCD -+ B. Place return instruction to 103 
which will thence be cleared. 

A is cleared. 

Start execution of instruction in B. Store 0 -+ 000 i next 
instruction is X001K3QCD. XCD takes (15) = 0 -+ A. 
Q augments instruction in Band K3 takes new instruc­
tion. Process stops when at last instruction has become 
XOOOK4QCD. 

With another filling of 15 and making (103) = XOOOK3QD it is possible with the 
same trick to fill the store with any arithmetic progression. 

4.2 Fast Sorting in Classes 

A frequent problem is the determination between which boundaries XlI X21 Xa etc. 
(Xl<X2<Xa<X4 etc.) a number X is lying. According to the class found 
another number can be extracted. 
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Program: 

100 N 
101 NKKBC Take return instruction in B. 
102 X114 
103 NKKBCE4 X114 --'>- 4. 

104 A108K3QV1- X114 

105 NK3Q 

106 AK23 -- A108K3QV1 + X114 

Take instruction to be executed -(4) inB. 
Modify next instruction into AK23. 

AK23 makes second action of X108K3Q 
into A108K3Q. 

107 

108 

109 

110 

111 

112 

113 

114 

not used 

X2 - Xl 

xa - X2 

X4 - xa 
Aooo - X4 

not used 
etc. 

Thus form Xl - x. Next instruction 
comes from (3) + (4) = A109K3QVl. 

Test Xl - x. If negative: go on. If positive: 
return to 114. 

Form X2 - X; etc. 
Form Xa - x. 

At last form something which is certainly 
positive. 

Of the critical part of the program an action diagram will be given which clarifies 
the action in the different registers. 

Action: 

A B C D 4 

-X A108K3QV1- X114 X106K3Q ______ X114 
A109K3QV1- X114 AK23 rX108K3Q 

----~ (23) ~ ~ 

All0K3QV1- X114: 
A108K3Q X114 

Xl - x :-"A109K3QV1 
X2 - X All1K3QV1- X114 "All0K3Q fails Suppose 

X114 - X2>X 

etc. 

4.3 Summing the Store 

For checking purpose it can be very convenient to form a sum of the store from 
a pre-determined beginning to the end. When a single spare location is filled with 
the negative sum of all the others then this checks sum must result in 0, which can 
be easily tested. 

Suppose we want to sum the store from address X to the end. Then the program 
could run as follows: 

19 Dig. Inf. 
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100 AOOOIC 

101 

102 NKKBC 

103 Xs4 

104 NKKBCE4 

105 AxK3Q-Xs4 

106 NK3Q 
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Take - (000) in A. 

= ~ X (return instruction). 
Place ~ (return instruction) in 4. 

= AxK3Q-(4) -+ B. 
Execute A109K23QIC which subtracts (109) 
from A and 1 from B. 

107 A109K23QIC - (105) Next instruction becomes A109K3Q instead 
of X109K3Q. This adds again (109) to A 
and 1 to B. 

108 etc. 

Next instruction becomes AxK3Q which 
adds (x) to A. Next instruction is Ax+1K3Q 
etc. Last instruction becomes AOOOK4Q. 
This adds (000) which had been subtracted 
right at the beginning. Furthermore the next 
instruction becomes (4) + (4) = X108 and 
the program returns to 108 with 

8191 

~ (k) in A. 
k=x 

The drawback of all three fast repetitions is that an end can only be forced by 
reaching the physical end of the store or by a test failing during the process. This 
limits the scope of the fast repetition. But for forming hash totals for checking 
purposes after having filled the store with a previously dumped contents it is 
very fast. In fact it is the fastest process which can ever be devised even in an 
immediate access store. 

4.4 Displacing 

A very neat application of a peculiar type of fast repetition appeared in a sorting 
routine. In that particular routine a set of items standing in alternate locations on 
the drum had to be moved up over two locations. Of course this can be done when 
starting at the last item. 

765 4 3 2 1 

But in this way it is a very slow process. When (x) has been picked up it can be 
dropped into x + 2 but then almost a revolution is lost in reaching x - 2. 

The following trick solves the difficulty. Suppose the intermediate odd places can 
be used temporarily. 
Now starting at the first item in a, (a) can be picked up and dropped in a + 1, in 
time (a + 2) can be picked up and dropped in a + 3 etc. By repeating this proce­
dure a second time the displacement has been performed. 

In the program example the address a of the first item to be displaced will be 
supposed in B and a flag consisting of a zero will be considered to be present as 
last element. Only one of the two steps necessary will be described. 
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Program: 

10C NKKC3 Form in A: 

101 XD001K3QV3 - X109K3Q XDa+1K3QV3-X109K3Q as modifier. 

Form in B. 102 NKKB 

103 ACOOOQ 

104 NKE4 

105 X107K3Q 

106 etc. 

107 XOOOK2 

4.5 Fast Division 

AaCQ. 

Store return instruction to 106 in 4. 

Form variable instruction ACaQK2. 

Program returns here. 

Is executed as ACaQK2. Take (a) in A. 
Modify second action X109K3Q into 
XDa+1K3QV3. Test if (A) = o. 
If instruction: store (a) --+ a + 1. Take 
next instruction from B. This has become 
ACa + 2Q in the meantime because of 
the Q. Repetition ends with a failing test 
when 0 is found and program returns via 
4 to 106. 

As a last application of fast repetitions a division will be treated. Often it is 
known in advance that the quotient will be a small integer only. In a conversion 
process from binary to decimal a binary number < 1000 can be divided by 100. 
The quotient never exceeds 9. The fastest way to program such a division is a 
stretched division consisting of repeated subtractions only. 
Suppose for the example that the divisor has been put in 15. The dividend is but 
negatively in A and B is cleared for the quotient. 

Program: 

100 NBE5 

101 NKKBC 

102 XK5QDV1 

103 NKE4BC 

104 XK5QD 

105 Nl15Q 

19' 

Pre-instruction. 

Take XK5QDV1 in B. 

and put it in 5 by second action of BE5. 

Place return instruction in 4 and clear B. 

Start division. Q notes down units of the quotient. The 
XD facility adds the divisor to the negative dividend. 
From now on (5) = XK5QDV1 is continuously repeated 
testing the dividend. As long as subtraction succeeds 
quotient bits are registered until VI fails. Then the 
second action also fails and (4) comes into C returning 
to 105 with the remainder in A (positive because the 
subtraction has been performed one step to far) and the 
quotient + 1 in B. 
This instruction restores the correct remainder and 
quotient. 
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5. Miscellaneous Tricks 

A lot of useful tricks do not fall under the heading repetition instruction. But all 
tricks treated below fulfil the requirement that they are minimum programs in 
respect of time as well as of number of instructions or both. Some of them 
indicate ways of doing things which are not possible in another way, e. g. the 
extraction of four consecutive words from the store in four consecutive word 
times. In this respect it is rather irrelevant that the store of the machine in question 
is a waiting type store although many of the tricks have been produced under the 
necessity of doing it optimally or alternatively wasting prohibitive waiting times. 
The result however can be applied to other machines with non-waiting types of 
store. The gain in speed will then not be of the order of 32 but of the order of 
2 to 4. 

5.1 Transferring a Number without Making Use of the Accumulators 

By accident the following trick was discovered in a situation where the accumula­
tors could not be destroyed and all registers except a particular one (say m) were 
occupied. In that situation (4) had to be transferred to m. The following few 
instructions do this transportation via the D register, instead of via A or B. 

Instructions: 

NKEm 

A .... 

etc. 

Pre-instruction. Store "return-instruction" from D to m. 

Any A-instruction e. g. AE4. On every A-instruction (4) -+ D. 

Second action of KEm stores (D) -+ m. 

The pictured case of passing over a number behind your back shows once more 
how arithmetic unit and control unit must be regarded as one integral organising 
unit as has been shown before in repetition instructions where B often served as 
an extension of the control. Especially in the next few tricks the boundaries 
between arithmetic and control become very vague. In a certain way this is true 
for every machine as soon as it starts calculation on instructions. However in 
many machines calculation with instructions only means calculation with 
addresses. In all examples shown until here it is very clear that the aspect of 
altering the operation part as well is at least as important. This is the main reason 
that all registers contain full words, even the D-register and the short registers 
when used as modifier with NKm. 

5.2 Extraction of Three and Four Consecutive Words 

The problem of extraction from the main store two or more words (or numbers) 
from consecutive lines is more a problem of timing. Of course a program can 
always be written for it but then more than one word time is lost for extraction 
of one word. This is perhaps not so serious in an immediate access store but in a 
waiting type store like a drum this wastes a whole revolution. In any case doing 
it in one word time per word is quicker. The difficulty in getting access to con­
secutive words with a two address instruction is amounting to two main points: 

a) All instructions must be dependent on the same initial and variable address. 
For fixed addresses there is not the problem of index-modifying the instruc­
tions. 
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b) The first address is used for the extraction, the register address can serve as 
next instruction source (via modification) but then the extracted number 
cannot be stored away. Or the accumulator is freed from the extracted 
numbers by Em but then the register address is not available any more for 
fetching a new instruction. 

For two numbers it is not difficult to devise a solution as there the difficulty 
mentioned under point b) is not yet present; both numbers can be left in the accu­
mulators. Therefore our attention will only be directed to the extraction of three 
and four numbers. Both examples given are the result of laborious trying. Although 
thought to be possible it was not known for a long time how to do the four 
number extraction until VAN LEYDEN found the solution. A proof can be given that 
no five consecutive numbers can be extracted. 
The three word extraction reads as follows: (B) = ni then (n) -+ 4, (n + 1) -+ B 
and en + 2) -+ A at the end of the program. 

Program: 

100 NQIBE6 

101 NKKIB 

102 NKKBDE61V7 

103 NQIEI 

104 NKQIE4 

105 NKIB3 

106 NKI 

107 etc. 

An explanation of the above program is given in detail as follows. 

Action: 

A B 

n 

n-1 

n-1-A103BDE61V7 

n - A10SBDE61 V7 

n - A106BDE61 V7 

(cont'd) 

c 

X101QIBE6 

A102IB 

X103QIBE6 

X104QIE1 

D 

Only QI is important, 
BE6 is pre-instruction. 

X103QIBE6 Subtract constant 
from (102) to (B). 
Accidentally this 
constant could be 
written as an NKK. 

n-A104BDE61 V7-+6. 

Only QI is important. 
The E1 is harmless 
and required on the 
return instruction in 
4 for modification. 

X106QIE1 Store return 
'" instruction. 

4 X106QIE1-+ 4. 
QI goes on subtracting 
1 from B. 
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A B 

n-A107BDEG1V7 

(n) 

(n+1) 

-+4 

(n+2) (n+1)+1 

(n+1) 

C 

X106IBK3 

D 

Willern Louis van der Poel 

IB is harmless but 
required for 
modifica tion. 
Take as next 
instruction 
(106) + (B) = 
X107 KI + n - AI07 
BDE61V7=AnCK3. 

X10SIBK3 Extract first number 
from n. Modify 
X10slBK3 

(4) with (B). 

/ 
X10slBK3 + n - AI07 
BDE61V7=An+1 
KBC6. 

An + 1BCK6 X106QIE1 Extract second 
number from n+l. 

+ (6) 

An+2QCE4 

X106QIE1 

X107KI 
etc. 

Next instruction is 
obtained as: 
(4)+(6)= 
X106QIE1 + n - A104 
BDE61V7= 
An+2QCE4. 
Store first number in 4. 
Extract third number 
in A. Q serves for 
counteracting QI on 
return instruction. 

Restore (B). E1 
is harmless. 

KI is harmless. 

Observe that the program as written down in the form of Nand NKK instructions 
only, is impervious against displacement, i. e. it would work equally well in any 
place of the drum when input with the N, NKK notation. Of course for all pro­
gramming on paper a symbolic or relative addressing system is used, but as this 
is a question of the construction of an appropriate input program, it does not 
belong to the realm of machine-bound micro-programming and hence will be 
explicitly omitted from this article. 

The four word extraction is based on the idea that the only channel from where a 
string of four consecutive instructions can come is from A or B by storing -+ 4 
-+ D -+ C. First by successive A . .. E4 orders a chain of appropriate orders is 
built up in B, 4, D, C. The best way to explain is the action diagram (d. p. 295). 

The program (d. p. 296) is as follows: (A) = n at the beginning, the program 
returns with (n) in 5, (n + 1) in 6, (n + 2) in A, (n + 3) in B. 
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Program: 

100 NBE4 

101 NKK 

102 AoooCE4 

103 NKKBC 

104 AQBE4 

105 NKKBCK23 

106 A110BCE4 

107 +1-XoooBC 

108 
} free places 

109 

110 X114 

111 XOOIB 

112 XOOI '1- XoooB 

113 XOOIBl 

114 etc. 

Perhaps the idea of having a series of instructions available, which are put up 
beforehand, can be useful generally for inner cycles of procedures where the 
utmost of speed is required. In this machine the setting up could be done only in 
a clumsy way, in most machines it cannot be done at all, but a control could be 
built with a stack of fast-access registers pre-filled with the required instructions 
and executed without an extra instruction fetch cycle. 

5.3 Storing Four Numbers in Consecutive Locations 

The storing of four numbers is much easier. This is caused by the irregular action 
of the D-digit which always stores from the accumulators. Only a sketch of the 
program shall be given. 

The numbers to be stored in n, n + I, n + 2 and n + 3 shall be denoted by a, h, 
c and d. Then at the outset the following contents of the registers must be set up: 

A=2 a 

B=3 c 

4 XBDn + 3K8 

5 ADn+ lK6 

6 ABDOOOC - XCDoooK5 

7 d 

8 return instruction to drum 

15 h 
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The process is started by: 

Store a - n next instruction from 5. 

XCD takes (15) - A. 
Store b - n + 1. K6 modifies XCNnK5 to ABDn + 2C. 

Store c - n + 2; n - B. Two successive A-instructions 
hence next instruction from 4. 

(4) = XBDn + 3K8 Store d - n + 3. Next instruction from 8. Return. 

5.4 Modifying a Modifier during a Repetition 

Once the problem arose of storing two numbers in nand n + 2 and extracting 
three numbers from n + 6, n + 8 and n + 10 2). Of course the alternate spacing 
of locations lends itself better for treatment with a normal repetition instruction. 
There is no time to do it with index-modified drum instructions as n is variable. 
The only way to make it quick is by under-water programming. 

Action: 

A B 

a AnCDllV 
An+2CDI3 

b 

An + 4CE1sV 

XOO2-XOOO'6 

An + 6CE17 

(n+4)+1 

An + 8 CEll 
(n+6) 

An + 10CEs 
(n+8) 

C 

XK3BD6 

XK3BD3 

An+6CEI7 
XK3BD2 

return 
instruction 

Modify (B) with (15). 

Store a - n. Fetch (11) + 1 = b. 
Modify An+2CD13+X002.2-
xoooV = An+4CE15. 

-....... 
Store b-n+2. 
Fetch 2nd modifier in A. 

Store new modifier in 15. 
(15) = X002-XOOO·6. 
Extraction of (n + 4) is not used. 
Go on modifying 
An + 6CE17 + X002 - XOOO . 6 = 
An+8CEll. 
(n+6) -A. E17 is harmless. 

(n+6) -11; (n+8)-A. 
Last modification is not important. 

(n+8)-5; (n + 10)-A 

(4) 
Return to drum routine. 

2) The problem came from a program for solution of simultaneous differential equa­
tions with the method of RUNGE-KuTTA-GILL [16] where y and q of the previous 
equation must be stored and y, q, k of the next equation must be fetched. 
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The preparation shall not be given. At the outset we suppose: 

(A) = 
(11) = 
(15) = 
(13) = 
(B) = 

a, first number to be stored 

b-l, b is second number to be stored 

X002'2 - XOOOV 1st modifier 

X002 - XOOO'6 2nd modifier 

AnCD11V 

The program starts with 

I 
NKE4 

XK3BD6 

Place return instruction in 4. 

Repeat (B) six times. 

The explanation follows from the action diagram (d. p. 297). 

5.5 Multiplication with Small Factors 

For multiplication with small constant factors often shorter programs can be 
devised than would appear possible at first sight. Only a few examples will be 
given. 

Multiplication of (B) with 10. 

Program: 

NLC3 Form 2-fold of B but take I-fold in A. 

AL2 Form 4-fold in B and add I-fold from A giving 5-fold. 

After-action LC3 forms 10-fold. 

Multiplication with 32. It is obvious how it can be done with five shifts. It can, 
however, be done in four instructions. Suppose (B) = b. 

Program: 

NLC3 Form 2b in B but take b in A. 
NLB3 Form 2b in A and 4b+2b=6b in B. 

NLB3 Again double A and triple B giving (A) = 4b; (B) = l8b. 

NLIB2 Form in B 36b-4b=32b. 

Multiplication with 100. It is obvious how to do it in six word times (twice the 
program for forming 10-fold). It can be done in five instructions. 

Program: 

NLC3 (A) = b 

NLB3 (A) = 2b 

NLB3 (A) = 4b 

NLB3 (A) = 8b 

NLIB2 

(B) = 2b 

(B) = 6b 

(B) = l8b 

(B) = 54b 

(B) = 108b-8b = loob 
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Dependent on the required constant remarkable short solutions can be found. 
Until so far no systematic tabulation of the shortest programs for factors has been 
undertaken but for all factors under 100 the solution is known by hand methods. 

6. Miniaturization 

Until so far problems of micro-programming have been treated, doing compound 
actions with repetition instructions. A second field of applications is miniaturiza­
tion in the sense of compressing programs in a space as small as possible. Espe­
cially one kind deserves attention, viz. the so-called tape programs. A tape pro­
gram is a program which does not use anything on the drum (except track zero, 
see below) but reads its instructions during action. The registers may be used 
freely. Therefore, these programs could also be named register programs. As the 
number of registers is very limited much ingenuity has gone into these tape pro­
grams. To be read-in they make use of an input program for input in binary form. 
This binary input program is almost permanently contained on the drum in track 
zero and is kept locked (i. e. track zero can be read but not be written into unless 
specifically unlocked by a carefully guarded switch). Many of the register pro­
grams borrow instructions from track zero. The advantage of tape programs lies 
in the fact that they can be run and used without being anything on the drum 
and without destroying anything on the drum. So they are inherently suitable for 
service programs, testing programs etc. In the sequel a few examples will be 
treated, namely: 

1) a tape copying program to copy tape from input reader to output punch, 

2) a program to input decimal number by telephone dial, 

3) a program for punching out the contents of the store (from a predetermined 
address to another address) in binary form to be read in subsequently, 

4) a program for reading tape and printing the symbols immediately on the tele­
printer. This serves for making tapes print their own title on the output 
printer without even the standard printing routines being present in the 
machine. 

For a good understanding of the register programs it is not strictly necessary but 
very desirable to know how they can be read into the machine by track zero. 
Since a few instructions are borrowed from the binary input program, the 
description has been added in an appendix (d. Section 7, p. 30sH.). 

Another kind of miniaturization was required in finding a pre-input program; 
i. e. a program consisting of as few instructions as possible which enables the 
machine to read in a more complete input program. Some machines have a built-in 
facility to read words into the store starting with an empty machine; this machine 
has not. Therefore the pre-input program must be put into the machine manually 
which is a rather tedious procedure. Fortunately this need never be done under 
normal operating conditions as track zero cannot normally be destroyed. Only in 
case of a breakdown of track zero one must revert to the pre-input program. In 
fact the pre-input program does not build up track zero in one step but in three 
steps. This bootstrapping technique is well known. 
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6.1 The Pre-input Program 

After an intensive search for miniaturization at last a program of only two in­
structions could be devised. It is rather unsatisfactory that in general no theory 
exists which can prove that a particular solution is the minimum solution although 
for this case an ad hoc proof can be given that two instructions form the 
minimum pre-input program. 

Instructions: 

000 X8190IB30 

8190 AD8191LK29 

Read 1st hole from tape into B. 

Store word from A into 8191. Shift A and B left. 
lf 2nd hole = 0 after-action of 
X8190IB30 becomes XOOOIB31: step tape 
and go again to 000. 
lf 2nd hole = 1 after-action becomes 
X8191IB30: go to instruction in 8191. 

Reading from the first hole by register 30 causes a string of zeros to be read in 
case of hole zero and a string of ones (= - 1) in case of hole one. Hence IB30 
reads 0 or 1 into the right-hand side of B. The L on 8190 shifts A and B to the left, 
the after-action of IB30 becomes IB31 because 8190 + 2 overflows into the register 
address. This does the stepping. In this way A and B can arbitrarily be filled. 
Every cycle (A) is stored in 8191 overwriting the previous number in 8191. At last 
a suitable storing instruction (e. g. XnBD31) which stores the word built up in B 
in location n. The end mark of a word is given by the presence of a second hole 
whereupon the K29 modifies X8192IB30 by -1 into X8191lB30. One can see that 
B always ends in 00 or in 11 which puts a severe limitation to the words which can 
be input. For a detailed description of the coding on the tape we must refer to the 
programming manual of the machine [17]. 

6.2 Tape Copying Program 

The requirement of this program was that it could copy tape continuously as well 
as step by step (this for correction purposes). It is admitted that this copying of 
tapes with a high speed computer is an abuse of the machine. Parts of the pro­
gram however have served for copying titles, etc. 

Program: 

4 X6Kl 

5 XK14BCU7 

6 X5KIV4 

7 XK15RIC 

8 ALR 

9 XKI0L 

10 X011LE26 

11 XK11QBCU7 

12 X013LE27 

13 XK11QBCUI 

14 XOOIC7 

15 X8K5 
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The progam is started in 11 and stops. Copying is started when "start" is pressed 
and stopped when U1 is pressed. When U1 is locked in the "I" position, starting 
with U7 only does a single step. The program is explained in the following action 
table giving the successive contents of C. 

Action: 

11= XK11QBCU7 

4= X6K1 

6 XSK1V4 

S XK14BCU7 

14 X001C7 

001 X003LlB26 

003 NLlB27 

004 NLlB2S 

OOS NLlB29 

006 NLlB30. 

007 NL31V1 

OOS X001RV1 > 
L31V1 

4 X6K1 

6 XSK1V4 

7 XK1SRIC 

IS XSKS 

S ALR 

XSK4 

etc. 

9 XK10L 

10 X011LE26 

011 X12Ks 

(cont'd) 

Program makes a loop stop until U7 is pressed. 
Then also the after-action fails and control goes 
to 4. 1 has been put into B. 

Go to 6 and execute once (unless a jump). 
V 4 succeeds. Go to S and execute once. 
As long as U7 is pressed U7 fails and control 
comes to 6 again with (B) = 1. As soon as U7 is 
released, go to 14 and clear B. 

Take XK1SRIC in A as constant. Of this constant 
only the I-bit is of importance. (A) = 000011 etc. 
Read sth hole of symbol to be copied in B. 
(A) = 00011 ... 
Read 4th hole of symbol to be copied in B. 
(A) = 0011 ... 
Read 3rd hole of symbol to be copied in B. 
(A) = 011. .. 
Read 2nd hole of symbol to be copied in B. 
(A) = 11 ... 

Read 1st hole. Symbol S is now complete. 
(A) = 1 ... 

Test succeeds. 2S ~ B, step tape (A) = 0 ... 
VI fails. 
After-action also fails. Hence go to 4. 

V4 now fails because 2S is even. Hence go to 7. 
Jump to IS; clear A, S ~ B. 

Start multiplication of S steps. 

The multiplication constant is (IS) = XsKS itself!! 
Only the K-bit is important. The multiplication 

brings symbol 5 from the right most places of B 
to one place but left in A. (A) = Oxxxxx. 

Repetition ends in 9. 

Shift symbol in A left. 
Put sth hole in punch buffer. Shift bit off. 

Go to 12. This instruction is borrowed from track 
zero, otherwise instruction in 10 could not make 
use of a register address for setting up the punch. 
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12 

013 

014 

015 

016 

017 

13 

X013LE27 

NQLE28 

NLE29 

NLE30 

NE31 

X13K1 

XK11QBCUl 

Will em Louis van der Poel 

Set up 5th hole. Timing is just right. 

Set up 3rd hole. Q is of no importance. 

Set up 2nd hole. 

Set up 1st hole. 

Punch symbol. 

Go back to register 13. 

Test U1. If Ul = 0 go on to 14 and copy another 
symbol. If Ul = 1 go to stop cycle on 11 with 
(B) = 1 again. 

6.3 Decimal Input by the Telephone Dial 

More difficult, especially in timing, is the dial input program. The telephone dial 
is coupled in series with U7. In quiescent state it means that U7 normally succeeds. 
When dialling the dial interrupts U7 for 60 ms for every impulse, the time between 
the impulse being 40 ms (both with 10 Ofo tolerance). A zero is dialled as 10 im­
pulses. The convention has been made that when a next decimal digit follows 
within 1.5 s it must be accepted; 1.5 s after the last decimal digit the program goes 
on with the dialled number converted to binary in A. 
The filling of the registers is as follows. 

Program: 

4 XK14QCD 

5 A 
6 X011[(3 

7 ADooO 

8 X5K96U7 

9 AE1s 

10 return instruction 

11 XK11BCU7 

12 X017.3 

13 X9K2400BCU7 

14 X7K8D 

15 0 initially. Later: partially converted number. 

The explanation of the program is given in an action table (d. pp. 303-304). 

The principle of strobing the timing of the dial is done according to the timing 
diagram shown in Fig. 2. 

Fig. 2. Principle of strobing the timing of the dial 
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Strobing is done continuously until the start of the first pulse is seen. From that 
moment onward the program goes into a wait cycle for so ms (nothing inter­
esting in the meantime). Then the program looks again for the start of the next 
pulse during 60 ms. When it does not arrive within 60 ms, the decimal digit is 
finished and the digit can be added to ten times the previous result. Then it enters 
into a wait cycle for 1500 ms. If a next pulse arrives within these 1500 ms, the 
program starts building up the next decimal digiti if no pulse arrives, the program 
must return with the complete dialled number in A. 

Action: 

11 XK11BCU7 

4 XK14QCD 

14 X7KSD 
7 ADOOO 

S XsK96U7 

5 A 

6 X011K3 

X12Ks+S192-10+S 

12 X017'3 

017 X13K1 

13 X9K2400BCU7 

(cont'd) 

Loop stop on 11. Clear B. Test U7. As soon as the 
beginning of the first pulse comes in, U7 fails. 
Then also the contents of D fails and program 
goes to 4. 

The Q-bit registers a one in B for the pulse seen. 
XCD adds (15) into a cleared A. We shall suppose 
that in 15 an already partially built-up number a 
is present. 

Start waiting so ms by repeating ADOOO eight 
times. The instruction ADOOO tries to write on 000 
but track zero is locked. Hence this has no effect. 
But it must wait for 000 and thus loses 10 ms. 
In the meantime the repeating instruction has 
added nine times (15) = a to the accumulator, thus 
forming lOa in A. The repetition ends in S. 

Start repeating (5) = A for 96 times. This takes 
60 ms. A is a harmless non-waiting instruction. 
The repeating instruction tests U7. When a next 
pulse arrives within that time, the repeating as 
well as the repeated instructions are A-instructions 
and the program goes back to 4 where a next one 
is noted down in B. The forming of 10 a is done 
again. When no pulse arrives within 60 ms, the 
decimal digit S is complete in B, zero being 
represented by10 (A) =10a. Therepetitionendsin6. 
Borrow an instruction from track zero and modify 
it with the digitS. 
(011)=X12Ks=X12K+S192-10 
hence (011)+S=X12K+S192-10+S. 

For all digits S < 10 thb is a jump to 12. But in 
case of S = 10 the instruction just becomes X13K. 

Add the digit S to lOa thus having performed the 
conversion. 
Via a borrowed instruction on 017 it comes to 13. 
In case of a digit S = 10 the instruction on 12 is 
skipped and nothing is added. 
Go into the 1500 ms wait cycle by repeating (9) 
2400 times. 
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9 AE15 

10 return instruction 

Willem Louis van der Poe! 

Store 10a+S into 15. 
This action is done repeatedly: clear B. In the 
meantime U7 tests the dial again. When a pulse 
arrives within 1500 ms, the after-action of U7 
fails and the program goes to 4 again. When 
ready, repetition ends in 10. 

6.4 Punching the Contents of the Store in Binary Form 

We shall suppose that t words in the store from address n onward have to be 
dumped in binary form on the tape. The format shall be the same as for binary 
input, i. e. the 33 bits of the word will be punched as 7 characters of 5 bits each 
and of which the 5th bit of the most significant symbol and the first bit of the 
least significant symbol will be 0 (d. Appendix Section 7). 

Program: 

4 return instruction 

5 A 

6 X011LE26 

7 AC11V 

8 X012CE11 

9 ABE15 

10 X7K16IBC 

-+11 ACnE26 

12 X013LE27 

13 X9K1QBCDV2 

14 X5K16 

15 --t 

The program is entered at 11 by X11K1 with (A) = 0, (B) = O. 

Action: 

11 ACnE26 

12 X013LE27 

013 NLE28Q 

014 NLE29 

Set up 5th hole of first symbol = O. Extract (n) = 
word to be punched. 

Set up 4th hole on punch and shift next bit to ao. 
A small piece of punching program is borrowed 
from track zero. B was clear initially. 

Set up 3rd hole on punch. Shift a one into the least 
significant side of B. This one travels left during 
the punching of seven symbols and comes to bo 
right at the end of punching the 7th symbol. All 
other ones shifted into B by other than the first 
symbol, have no meaning. 

Set up 2nd hole. 
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015 NE30 

016 NE31 

017 X13K1 

13 X9K1QBCDV2 

14 X5K16 
5 A 

6 X011LE26 

011 X12K5 

13 X9K1QBCDV2 

9 ABElS 

X10KQBCDV2 

10 X7K16IBC 

7 AC11V 

8 X012CE11 

012 X11KllV 

9 ABElS 

X10KQBCDV2 

4 return instruction 

6.5 Read and Print Text 

Set up 1st hole. 

Punch symbol. Note that even setting up the holes 
and punching are microprogrammed. 

Go to 13. 
Test shifting count in B. When not all seven 
symbols have been output it fails and program 
comes to 14. 
Introduce a time delay of an extra revolution by 
repeating a harmless instruction in 5. Only once 
every 20 ms a symbol can be punched owing to 
the speed of the punch. For a faster punch this 
delay could be changed. 

Set up 5th hole of next symbol and shift. 

Borrow (011). Repeat from 12 until all 7 symbols 
have been punched. Then: 

Test shifting count in B. All symbols have been 
punched and test succeeds. 
XQBCD adds (15)+1= -t+1. 

Store augmented count again in 15. 

The after-action again tests with V2 but now 
(B) = count!! As long as count is negative, output 
must go on. 
Introduce a time delay for the punch. IBC prepares 
a carry = 1 and clears B. 
Although repeated 16 times, augment extraction 
instruction with 1. 

Store augmented extraction instruction 
An + 1CE26 in 11. Clear A. 
IV is not active. Start again in 11. 
When at last all words have been punched: 

Test of after-action: on X10K ... V2 fails and 
program goes to 4. 

Although normally all printing is done via the standard output program, this very 
short register program is just meant for printing titles on the supervisory type­
writer even when no standard output program is present in the machine. 

20 Dig. Inf. 
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The standard output program is necessary for all normal printing and can arrange 
for all types of digit lay-out. It has been made because operating the printer by 
micro-programming it is no easy matter. This will become clear when it is 
realised that the only means to influence the output teleprinter is by transferring 
the sign bit of A into a special flip-flop through a gate operated by selecting 
register 25. A teleprinter requires a signal of a structure as depicted in Fig. 3 
(signal to teleprinter is 1 in quiescent state). 

0 '0 .-n .0 • - E -c: 
.GI ~ c: 
E GI 

.!! - E 
GI 

0 .!! - :t:: :E .... 
:Ii 

GI - :.0 .0 :is L- a. 0 
'lii 

,. 
1! .t:. .t:. 0 1;; c· 

~ 
.. 

'Iii .- N ('I) &D 

Fig. 3. Structure of the signal required by teleprinter 

The teleprinter reverts to rest if signal (= contents of output flip-flop) 
remains 1. Or a next start can follow. The separate bits will be designated with 
50 - 56' 

The correct timing has to be generated by micro-programming. Fortunately the 
symbols can be read from tape in the same form as they are to be printed. The 
program has been designed in such a way that it stops printing as soon as a 
blank symbol is read (blank is a non-existant symbol in teleprinter code). The 
filling of the registers is as follows. 

Program: 

4 X5K1 

5 AC3 

6 X7K1 

7 X12K1BDV3 

8 return instruction 

9 X017CV3 

~10 X001C12 

11 X011C3 

12 X9Kll 

13 AC23V4 

14 X012RC25 

15 +64 

The program is entered at 10 with a cleared B-accumulator. 
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Action: 

10 XOOIC12 

001 

003 

004 

OOS 

006 

X003LIB26 

NLIB27 

NLIB28 

NLIB29 

NLIB30 

007 NL31Vl 

008 XOOIRVI 

L31Vl 

4 XsKl 

S AC3 

XK6 

6 X7Kl 

7 X12KIBDV3 

12 X9Kl 

9 X017CV3 

017 X13Kl 

13 AC23V4 

X14K 

14 X012RC2S 

012 XllKlIV 

11 XOllC3 

011 X12Ks 

12 X9KII 

9 X017CV3 

XloK 

10 XooIC12 

20' 

I 
Put X9Kll in A as shifting count. Only I-bit is 
important. Go to 001 for reading a symbol. 

Read symbol from tape. (For explanation reference 
is made to the example of the tape copying 
program.) 

(B) = 0 0 5554535251 (56 = 0). 

I-bit in A shifted out. Instruction fails. 

After-action fails. Instructions executed at level 
009 of drum. 

(A) = 0-----0 55 54 Sa 52 51 So 

After-action. 

(level 010) 

(level 011) 

Test symbol in A. If 5 = 0, (7) fails and program 
returns on 8. If no blank: add stop bit 56 = 1 with 
XBD facility. (level 014) 

(B) = 0 0 56 55 54 Sa 52 51 So (level 01S) 

Test if all bits have been put on printer, 

Clear A. (level 016) 

Level 017 was just reached in time. 

Transfer right-most bit of B to left-most bit of A. 
(level 018) 

After-action. (level 019) 

Set up this bit on printer flip-flop and shift bit 
off in B. From now on next bit has to wait 20 ms. 

(level 020) 

Level 012 is reached after 23 word times waiting. 
(B) -+ A. 
Level 011 is reached after almost another 
revolution (= 10 ms). 

Go back to 9 for next digit. 

If all digits including stop bit have been set up 
test fails. 

After-action (B) = o. 
Start reading next symbol. Reading a symbol. 
just wastes an extra 10 ms making up for 30 ms 
of stop bit. 
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APPENDIX 

7. The Binary Input Program on Track Zero 

For the understanding of the binary input program which can be supposed to be 
permanently stored in track zero it is necessary to know the composition of a 
binary word on tape. A binary word is represented on tape by 7 symbols of 5 bits 
each. Of the available 35 bits only 33 are necessary for the word, hence 2 are 
available for other purposes. One has been given the significance that the word 
must not be placed in the store by the so called store instruction but that the store 
instruction itself has to be replaced by that word. In that way input can be started 
at arbitrary location by giving the appropriate input indication. The other spare 
bit is used for relative addressing by adding (9) to the word when this bit is 
present. With the help of it programs can be made relocatable. 

The composition of the word is as follows: 

+ AKQL RIBCD EVV4V 2V 1 TV1 XXXX xOOOO 00000 0000 + 
'--v--' -v----' '--v--' -...--' '--v--' --v-

1st 2nd 3rd 4th 5th 6th 7th symbol 

t t 
input indication bit parameter bit 

Track zero has to fulfil the following requirements: 

It must provide a stop at 000. 

Blank tape at start must be skipped. 

All symbols 2-31 must leave track zero and are treated elsewhere. 

The opening symbol 1 indicates that binary tape follows. The first word read 
must replace the store instruction, following words are to be stored until another 
input indication follows. 

A rudimentary punch routine is included in track zero. 

The coding and explanation of track zero is as follows: 

000 XoooKE4U7 Loop stop on 000. Loop until U7 is pressed and 

001 Xo03LIB26 

002 X020E4 

003 NLIB27 

004 NLIB28 

005 NLIB29 

006 NLIB30 

007 NL3IVI 

008 XOOIRVI 

released. Go on to 002. 

Read symbol. In the meantime, shift shifting count 
in A left. 

Go on to 020. E4 is of no significance for the 
present use. 

Read symbol and shift it into B. 

Shift shifting count in A at the same time. 

Step tape. Test shifting count. If (A);;;; 0 test 
fails and word is ready. 

If (A) < 0, undo L of previous order. Read next 
symbol. If VI fails: go to special outlet on 4 
(d. some of the tape programs). 
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009 NRB31 

010 X012RB9V 4 

011 X12K5 

012 X11K1IV 

013 NLE28Q 

014 NLE29 

015 NLE30 

016 NE31 

017 X13K1 

018 NKKBCK3 

019 X001BCE11 VI 

002-+ 020 X029U6 

018 -+ 021 X019BE12 

018 -+ 022 NBC26 

023 NLB27 

024 NLB28 

025 NLB29 

026 NLB30 

(cont'd) 

If 007 failed, do step here and undo after-action 
of LIB30. Hence of the 35 bits, two are now in A, 
33 in B. 

If parameter bit is present: add (9) and shift off 
parameter bit. Otherwise after-action of 009 does 
right shift. In both cases no carry hence a 
borrow has been put in the carry trap. 

Instruction only used in dial program. 

Go to 11 and repeat it once. IV subtracts 1 from 
A. A just contained input indication bit. Hence 
no input indication on (A) becomes -1 (all ones). 
If input indication: (A) = o. 
Normally (11) = ADnQBC11V1: store word built 
up in B into n. QBC11 augments instruction itself 
with 1 thus forming ADn+1QBC11VI. All this 
only when (A) < o. 
Then go on to 12. (12) = X001BCE11 VI: put 
augmented store instruction again in II. 

Or in case (11) failed: replace store instruction by 
another. VI now succeeds in all cases as after­
action X12KIV has subtracted 1 from A. Return 
to 001 with cleared B and read next word. 

1 Rudim'nt~y pun,bing cyd, fo, u'" by tap' 

[p,"",a=. 

If blank tape has been read (B) = 2. Go on to 022 
and read next symbol. 

If 1 has been read (B) = 1: 
prepare for binary reading X001BCE11 VI -+ B. 
Go to 21! 

Test U6. If U6 = 1 go to 029. If U6 = 0 go to 022. 

Put X001BCE11V1 in 12 and go to 019 (now 
executed as instruction). 

This also put X001BCE11 VI in 11. Hence first 
word read will always replace 11 by suicide. 

Read opening symbol negatively in cleared B. 

Only case that 5 = 0 and 5 = 1 have to be 

considered here. 
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027 N31Q Step tape and add 1 to - S. 

Hence (B) = 1 for 5 = 0 
(B) = 0 for 5 = 1 
(B) < 0 for 5;:;;: 2 

028 X32K3QIBCV2 Test if (B) is positive. If negative: go to outlet for 
other symbols s;:;;: 2. For 5 = 0 and 1 test fails. 

020 -+ 029 X34U7 If U7 = 1 go to 34. The contents of 34 is used to 
restart a program. This is of no concern for binary 
input. 

030 X018IC1 Put shifting count -1 in A. After-action of N31Q 
has made (B) = 2 for 5 =0, (B) = 1 for 5 = 1. 
Shifting count (A) = -1 is only becoming positive 
after 7 symbols having been read. 

031 X8191 If U7=0 on 029 go to 8191 as special outlet. This 
place can only be reached when going to 000 with 
U7=O, U6=1. Also used as constant. 

Normally the form of the input indication to start input of words at location n 
has the form ADnQBC11V1 (in binary form). When it is necessary to fill registers 
they can only be filled individually by preceding each word with the input indica­
tion X001BCEmV1 (store in m and read next word) when m is the register to be 
filled. VI enables the input program to replace this store instruction. Only for 
filling 11 and 12 another trick is needed. After having filled all necessary registers, 
11 and 12 can be filled as the last ones by giving an input indication of the form 
X030QIBCE12. Hence (11) = X030QIBCE12 and the next word is stored in 12, 
replacing the usual Xo01BCE11V1. Program is directed to 030 with -1 in B. Via 
030 control arrives at (018) = NKKBCK3 taking in X001BCE11 VI in B but as 
(B) = - 1 the K3 does not go to 020 but to 019 as next instruction. Hence 
X001BCE11V1 is executed as instruction putting X001BCE11V1 in 11 without 
destroying (12). The next word read is overwriting (11) = X001BCE11V1 by 
suicide action and program starts action on 11. 
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