
DCEL IX 1' .. ? HET P'TT ·BEDl\l)F Al:GUSTIJS ""

THE SIMPLE COD E FOR ZEBRA
by

Dr. ir. W. L. V 1\N DER POEL 68 l. 142 ZEllltA

L INnODllCTIO:>

ZEBRA is an electronic digiul computer logically
designrd in the D r. Neher Labornory of t he Nethcr-
1.nds Postal and Telecommunications Services and
tech nic•lly deve.loped and connructed by Standard
Telephones :tnd Cables l ed , England. I t has been
the object of the designers to build a machine o f •
simple connruc cion which is most reliable and re­
quires a minimum of service, while at che same rime
a high speed and great flexibility of programming
arc maintained. It is quite obvious that S>crifices
had to be made for this simplicity. Thus in gencu l
ic is true char programming (duwing up a list of
detailed instructions for the machine) is somewhat
more difficult for ZEBRA thon for mosc ocher
mochines. For example mu lciplic>tion is n ot• builc­
in fen cure of the machine. Thus even chc elcmcnrnry
orichmetic operation must be programmed . On rhe
other hand che flexibility of the basic programming
is very great and che speed which can be attained
by skilled programmers is relatively high. N"•er­
thclm, programming in the real code of the
m•chinc is still • job which requires a good deal of
\'cry special rralning.

To make an :automatic computer n1ore easily
>eccssible to chose who occJSionally have c olculacion s
co m:1kc and w ho do not wont lO devote coo muc h
time co learning the real code o(ZEBR.A, another
code called SL\1PLE CODE has been developed.

Machines like ZEBRA arc not only able to make
cJlculations bur thei• can also do •II k inds of work
"'•hich can be expressed in form•I logic•! r ules, such
as translation of one code into another. lo t!Us way
complicated operotions con e.g. be e:<pressed in
Sim ple Code as one single instruction, while in the
mochinc this operation is trJnSlated into a whole set
of rc" I code instruc tions. The code is t ranslated
behind chc scenes by a very complicoted prog ramme,
co iled no intcrprecivc progrommc. In this • rtide we
shall not deal with the reol code nor with an y of t he
actu•I components of che m•chine, but we shall
cxclusivtly treat chc Simple Code os if it describes
the propertiC1 of quice •nochcr mochine in which oll
the futurC1 of Simple Code h.1ve been built in,
The user docs nor hlve to bother •bout the reol
m.chinc •nd when he keeps strictly co the rules
of Simple Code he can use the rnochinc in a very
cHective wo y af ter on ly few hours o f study. In
view of the aforcgoing it is hoped that many more

O'·f'1Jrt1/.. uit lrt't l'TT-BrcJrij/. Ucf!l /X. ;'Vo. J

pcopl< can and will use ZEBRA, and k«p • better
contact with che numericol rcsulcsoftheirproblems.

In some places of this articl< coruiderorion v.•ill be
given to the co-opention between r<•I code .ad
Simple Code, and for the sake of completeness
something will be soid about t he b ackground of
real code, but occasion al users can com plecely ignore
these poin ts as they will only be needed for veq•
advanced programmers.

II. Pl\OG~A \!MING

Programming is drawing up a dotailed list of in­
structions telling the computer whu to do co solvo
• problem. T his does not only include instructions
for the effecting of the req ui red arirhmetico l
operotions but also instructions to cell the m achine
how many n umbers arc to be read, how the lay-out
of t he prin ted results is to be made etc. T his part
of a problem is sometimes far more di ffic ult co
uckle than the act ual arithmetic, but for the time
being we shall first devote our time to arithmetic
coding.

One of rhc first difficulties of using 2 computer
(not only elect ronic computers but also mechanical
desk calculators) is t he problem of capacity of chc
counters. Many computers req uire that all num bers
appearing in t he calculation should lie in t he range
- I < a<+ I and should have say 9 decima ls
precision. I t is quite a d iHicult usk to secute char
oll variables lie within this ronge. E.g. the num ber
" = 3.14 15· cannot be represented but must be

expressed by giving :i - l or 1~ ·'· This difficulty

can be overcome by using numbers in floating
point. In this syStem all numbers will be written
aS

a X 10•

where 0.1 < I a I < I ond b is :i n integer. " is called
the mon tisso and b the exponent.

E.g. H.67 can be written .s + o.H 67 X 10=
-0.0032 .. " .. •• -0.)200 x 10 =

In the next p~ragraph J shore account of oridi­
metic in the floating system '"ill be gi''<ll·

A second dtfficulcy of progr> mming is t he re­
petition of a process for a number of times cogether
with keeping t rack of ru n ning indices. In real code
t his is of ten a point w here mistakes can easily be

l I

DEE.L IX No. l H£T PTT·BEDRIJf /\CGUSTUS uu

mJde. ~lor«>vcr, running indices rcqulrc \'ariiblc
instructions, i.e. c2lculation "'ith the instructioni
themseh•es, 2nd this 2g2.in is far beyond the scope of
occasion•! users. In Simple Code special provisions
have been made for repeating and counting, and
also for making variable instructions. In no cose ore
rhe instructions writren down by the programmer
v.ri•blc ond he never hos co make calculations with
instructions. Counting will be dealt with extensively
in the respective chopcers.

A5 no operitions :ire done on instructions Lt 'v.a.s
thought better to seporotc the two kinds of infor­
mation. The Simple Code machine has a scpar>t<
score for numbers (about 1200) and • separate
store for innructions (alro about 1200). This is
especially useful for the beginner. Later on it will
appear that in case of lack of capacity in the
number store, the inscruction score can also be wed
for numbers 2nd inv<rsely. The locations in the
number store con each conuin one number (float­
ing). The locations uc numbered from 0 onwards
and the numbers of rhesc locacions are coi led the
addresses of che respective loc>tions. The loc.cion
11 itself will often be referred to as rhe oddress 11.

The locations in the inscrucrion score need not be
numbered as the instructions ore put into this
nore from the beginning, and they arc executed
consecutl\'clr.

\\:'h<n the 1nttruction store lS used for numbers th~
Jbsolutc :1ddm~ in tht instruction stor< ""ill be writttn
is n-; cht point indic.itcs th.Jt noi- .iddttss 11 in the
number store i.s m~.int. but n. in tht instruction stor~.
Cf. Ch•p«r XIII.

1\n instruction consists of two pJrts: an operation
p•rt specifi•ing the type of operotion to be effected
(addition, niulciplication, etc.) 2nd che oddrcss cel­
ling the m>ehinc where to find the operand in the
5torc. The opcrncion is denoted by • leccc1· nnd the
address follows the letter (e.g. A3 l I or H2). T his
sort of code is c.1llcd • one-•ddrcss-code.

II I FLOATING NUMBERS

All numbers processed by rhe arithmetic in­
structions Jrc floating numbers in the m•chinc.
Some of the b;isic arithmetic rules for floating
numbers will be outlined in this chapter.

A number c•n of course be written as follows:

H.79 = + O.OOH79 X 10•

Jn c·hJt c::tsc it is flo:iring but non-norm.1l1scd.
Thus the .-·•il>blc copacicy of the m•ntissa will
not be used completely. The gcncrol rule is th•c oil
nu1nbcrs \Virhin chc m:tchine '"ill be nutont:iticall)1

normalised (0.1 <I montissa I ~ 1). The oppcarnnce
of •n unnormaliscd number on paper certainly

.l2

points co bad functioning of the mochine or a
misuke in chc programme.

All numbers in the machine have a precision
of 9 decimal digits in che m•ntisu and 3 in chc
exponent. When results arc produced in floating
form the number will be printed as :::: O.xxxxxxxxx
± xxx, in which the signed froction denotes
the montissa and the signed integer denotes the
exponent.

Adding flo><ing numbers is effected in the fol­
lowing way. First the cxponencs muSt be made
equal. Then the oddition of moncisn can be effected.

E.g. ::,,1 = - 0.126100000 ..._ l = .._ t .Zl,100tOO - l

J. Jl = ~ 0. JJlOOOOOO ~I = - 0.t JJIOOOOO - l

- • .?ff1f0to0 + :!

In c•s• thn the difference bet11•een two exponents
is more thin 9, one of the m2ntissac is shifted O\'Cr

more than 9 digits so that nothing is left for che
addition. Then the actual addition need not be done
3t all.

Another c•se arises in rhc followi ng situation:

+ 0.570000000 + I

+ 0.740000000 + I
+ 1.310000000 + I

<= S.7)
(= 7.4)

Now the mancisu is too large and the number
must be shift<d into the form

-r 0.1 31000000 + 2 (= l}.1)

As can be seen in this example, one digit of
the precision is lost at the right h>nd side of this
numb<:<.

Loss of precision is even more apporenc in cases
where one number is positive and the other is
negnive, or in the case of subrracrion of two
positive nurnbcrs.

E.g.

normalised

+ 0.6.l2421l1 I -)
T 0.632.ll 1 l 11 - 3

-'- 0.000 L 10000 - 3

+ 0.11 ooooloool - 6

The l zeros on the right h•nd side ore shifted
into the register but they ha\'C: no signilicJnce for
the precision of the number. This loss of precision
IS one of the serious dangers of the flo•ting number
system. Only • m.chemaiical rreatmen1 of the
problem can re,·eal chis 105' of precision.

For moni• practical cases the difficulty does
not arise ar •II and we sh>ll not deal with the
mathc111acical difficulties of flooting arithmetic in
the rest of this article ony more.

OtEL lX ~o. 2 HtT l'TT.ftED'-lJF AUGUSTUS It!'

A p«uliu c2se is the subcr2ction of two equ:tl
numbers.

+ 0.632000000 + 3
+ 0.632000000 + 3

+ 0.000000000 + 3

The rcsulc con never be normo.lised. In other
words: the number 0 c•nnot be represented in the
flo2ting system. In th>t c•se the: m2chinc will
autom2tic2ll y supply the number + 1.000000000
X 10- • .. , 2 very sm2ll number indeed, which ploys
the role of O in on effective woy. The result of
2 subtr2ction of two equal numbers will 2lwoys be
+ Io-"', never - Io-'". This is of imporunce
for the tesr instruction. (Cf. Cb1pcer VIII.)

Mulciplic1lion of two numbers in the f102cing
sysrem is done in the following way:

+ O.HOOOOOOO + 3 (= HO)
+ 0.440000000 + 2 (= 44)

+o.JHOOOOOO + 5 (= 15400)

In words: The manriss•e •re mulciplied while chc
exponents uc odded. The product of che mantissoe
could be •moller t han 0.1. In that c2se the product
is norm2lised.

normalised

+ 0 . .lS 0000000 T 3
+ 0.220000000 + 2

+ 0.077000000
+ 0.770000000

+ s
+ .;

Bec2usc in the multiplicotion • double length
produce is formed from cwo singk length num bers,
the norm•liu cion does not resu lc in a loss of
precision. After chc norm•liS>tion che produce is
rounded off co 9 decimals.

In c2sc of a division there is the ••me diHiculcy
before the actu2I division can be sto.rted. When the
dividend is greater than the divisor, the quotient
wou ld be too large. Hence the dividend is first
shifted co the righ t in chu cue.

E.g.

+ 0.300000000 + s + 0.030000000 + 6
---------- -+ 0.200000000 + 2 + 0.200000000 + 2

= + 0. 150000000 + 4

The montissac ore divided, the exponenrs arc
subtracted.

Of cou rse t he user needs nor know this becouse
:alJ actions :arc nutomacic. Buc it c:i n give some more

insight into the puticubr difficuhies of calculation
in £102ting point. A single instruction for one
2ddition thus •ppcus to be in re2lit)' • 1·cry com­
plic2ted set of more elementary operations in re2I
machine code.

JI'. TME SIMrU: CODE MACHINE

When it operaces with Simple Code, ZEBRA con
be reg•rded •s a completdy different m.1chinc. We
shall now cn umcr.itc its most import.tnt p~rts tts
they will pby • role in the following choptcrs.

CONTROi.

(0) ~--''----.
(I.)

(1200.)

INSTflUC·

TION

STORE

INPUT
TAPE·

READER

KEV
BOAflO

1200

NUMBER

STORE

OUlPUT
PfllNTER

OUTPUT
PUNCH

I. The number score connining •bout 1200 lo­
ca<ions for floating numbers. The loc>tions ore
numbered from 0-1200. They ore c2lled
2ddresses.

2. The insrruction store contJining 2bou< 1200
locations for insrruccions. The locations need
not be n umbered but sometimes it is useful
to refer to them .1s 0·- 1200-.

H

DEEL IX No. ? HET l'TT·8EORIJF AUGUSTUS 1919

J. The accumulator. This is a special location with
a capacity of one number. Jn the accumulator
all a.rithmetic operations are performed. It will
be a.bbreviated b)• A. When we speak of the
con~ents of the accumulator we sh21l write chis
as (A). In the same way the contents of location
11 or wore denoted by (i>) or (n") respectively.

~. A number of small registers for counting ond
othe.r special purposes. They are denoted as
follows:

a

fJ
y

6

e

0

< :

main counting register

second counting register

increment of second count

sofety register for main
counting register

register for count limjc

return instruct.ion from
count cycle

return instruction from

"¢;,:: .s c: ><
~ c ~ o-g
~ 8 e:B ;,,Q
~ r: .a E ~ I
~ .5 ''O ~

jump !- ~ " ::; -:::

The manner in which all these registers can be
used is stated in the following paragraphs.

S. The input rape rcoder, a photoelccrric tape
reader for reoding data inro the mochine. This
re2dcr con accept rapes of the some kind as
normol 5-hole teleprinter tape. Instructions as
well 2s numerical information are fed into this
reader.

6. The output printer for printing the results of a
calcubtion. ft is a norm2l 7 char/s teleprinter,
used for slow output.

7. The output punch, required to punch the
resulcs of the machine in the form of teleprinter
tape, which is dooe at 5 O char/s. The resulting
cope con be printed off-line. (I.e. on a separate
printer, not directly connected to the machine.)
This is used for fast output. The subsequent
writi.ng out on off-line princers does not delay
the operation of che computer.

8. The control. This part is cbe central governing
organ. Its action consiscs of tak.ing consecutive
instntctlons out of the score :ind executing chem
in rhe accumu lator. Input and ou tput ore olso
under the direction of the control.

9. The !keyboard. This is in fact a monu.J conuol
of tb.e o perocor on the mocbine.

H

There are the following keys:

Clear Soop the machine •nd put it in the
position to receive :t ne\v problem or
a new batch of data.

Start

Key Ul

Key U2 :

Key UJ :

Key U4}
U5
U6

Key U6

Start programme or input of nu­
merical data or go on when the
machine has stopped because of a
stop instruction.

A key which can be given any
meaning by programming a branch
jnstruction asking for the position
of the key.
The s2me as for key U I.
Not in use.

Used for cutting open, • diagnostic
•id for prindng intermediote resulrs
necessary for error detection.

When put off, clearing and starting
will make the machine reod a new
insrrucrion tape.
When put on, clearing and Stc'lrti_ng
will make the machine re-begin its
last programme, which is still in the
m•chine. This is called restarting.

A tdepho11e diol for giving smoll integers co the
mochinc when the laner asks for them by stopping.

Many of these parts will be more thorougly
discussed in the appropriocc choprers.

v. THE DE"fM~EO INSTRUCTIONS

Before discussing tbc deuilcd list of instructions•
few general rcmorks ore appropriate. The different
cypes of instructions can be sub-divided into
difforent classes and they will be de•lr wich in the
same classes. They are:

:t. Arithmetic instructions, which are all operations
on the •ccumulator ond which all use some
address in the number srore. The generol address
will be writtro as 11. Addresses must never be
written with zeros preceding the signi.ficont
digirs. Even in the extreme case of address
iero nothing must be written!! This is very
useful because it economises on writing symbols
and also econc.mises on c:he time for the machine
for reading programmes. Therefore add ress zero
is used as the most frequent working register.

Exomples: A5 but not A005
A but not AO

(Loter on we shall see that for lack of different
symbols new types of inscrucrions ore devised
by adding one ot more zeros. For ex:imple .H
i.s different from HO but in both cases the
oddress is 0 and is not written down.)

b. Input and output instructions. They govern the
reading of numerical information from the
input tape or the printing ot punching of resulrs
on the output organs.

DEEL lX No. l HET PTT ·BEDIUJP AUGUSTUS lflf

c. Control instructions, which can make a pro­
gnmme deviate from strict sequential working
and jump to ·mother instruction, conditional or
uncondition•I. They do not refer to addresses
because they ore dealing with instructions in
the (non-numbered) instruction store. Instead
of it, they arc referring to instructions which
ore gi"en labt/1. These l2bels ore dcno«d in the
following cxplan2tory notes by p 10 distinguish
them from addresses 11.

d. Input indic•tions, which arc not instructions in
the strict sense but codes oppcoring on the cope
(o nd not going in the store) 10 direct the
instructions to go into the corrccc loc:acions, to
give I.bels, ecc.

c. Spcc-i:al in.suucrions or Z-instructions, which :a.re
me::a.nt for sp«ial o~ritions on the accumulator
such os log, sin, etc. They do not refer to 2
loc2tion in the store 2nd their .,2ddress" is only
ufCd to indicate the type of speciol operation
meant. They oll hove the form Zn.

f. Counting instrucrions, which con repeot o com­
plete set of instructions • number of times.

\'l THE ARITHMETIC INSTRUCTIONS

The 2ccion of a few instructions will be described
in a shonhand form.

instr. :action

I Hrt

m words

Toke chc number contained in location 11 of the
number store to the 2ccumul21or. The contents of
11 will not be destroyed by re2ding it out, but the
previous contents of A will be lost by reading in 2

new number.

instr. :action

I A11 : (A) + (11) - A I
in words

Add the contents of location /1 to the contenu
of the 2ccumul21or and ploce the result in the

accumulator. This ovcrwritcs the addend.
(11) is preserved.

instr. :action

(A) - (11)

in words

Subtract the contents of location " from the
contents of the accumulntor ond place the result

in the accumubtor.

Example: A simple progromme for c•lcul.cing
a+ b- c

Suppose (2)= •, (l) = b, and (4)=c.

Also wrinen

~ I ~
4 J c

Then the programme runs >s follows:

progr.
H2
A>
S4

commt nt
(2) - A
(2J + P>-A
(2) + (})-(4)-A
The result is left in A

To be able to put the result ag•in in the store
we have the instruetions

instr. :tction

i 11 words

Put <he number cont:tined in the accumuhtor into
location " in chc sto re1 overwriting the previous

contents of chat location. (A) is preserved.

instr.

I T11

I

:action

(A) -+11 1
0 -A

in words

Put the number cont:tincd in the accumulator into
loc•<ion 11. Then cleor the occumulator b y putting
"O" (= very small number l X 10-••') into the

'3ccumuL1tor.

In the explan2tion of following instructions "'•
shall not describe th_. action so much in detail os
has been done 2bove, because the same principles
apply, i.e. reading out does not disturb • register,
writing destroys the previous contents. The short­
hnnd form of the description sha ll he retained, only
supplemented by remarks when necessary.

II: (A) x (11) -A
N11 : - (A) X (11) -A

l D11 : (A) I (11) - A

Po.sirivc multiplic2tion
N cg.ativc multiplication
Di vision (only in posi­
tive v2ri2nt)

By means of these instructions we sh21l code
some examples.

ab + cd _ k
t•f - gh -

DEEL L'C t;o. 2 HET l"IT·IEDRIJF

H6 } V7

u {
HS } N9
A
u
H2 } v;
UI
H4 } vs
Al
D
UIO

t.f-A ~ ..
" u ~ ~ ~
~ - 0 .. " u

Store in zero ..0 u " ~ c-;; " temporarily! " u E
.::: 0 :>
0 u c

Form g . h ~ u "
·: .~ iS

Add ef -~

Store rf - gh ~o

ub

Store •bin

cd

•b ...!.. cd - A
Divide by tf - gh
Result to 10

Suppose
2 •
; b
4 c
s d
6 e
7 I

: ~
(lO k}

As formu lae of the form ob+ cd arc very
frequent • special provision h3s been made for
accumulative mu ltiplication. T h is is effected by
• pair of instructions of which. the first is •
K-instruction. In that case the next instruction
muse be :t V-instr-uction or an N-instruction.

K"} (A)+ (11) X (m) - A
Vm

K11
} (A)- (11) X (m}-A

Nm

The V must immediately follow the K-instruction.
The V- 2nd N-ins<ruction have a different meaning
when used :as second instruction in a KV or K1'' pair.
K can only be used before a V- or an N-i11Struc1ion.
In no c2sc it m•y precede anocher type of in­
struction. (Cf. Ch2 pter VIT for the use of K for
input of numbers during input of instructions.)

Now our previous example can be written much
shorccr as:

H6
V7
K8
N9
u
f/Z

v;
K4
vs

ef in the normal way

tf-gh by an
2ccumulative multiplicuion

Store tf - gb - O

D Divide
U I 0 Store result in IO

Ofrcn squares appear in formulae. For additive
squoring the followi ng instruction exisu:

[VOu (A)+(n)"-A i

Add the squue of (11) to the 2ccumul.ror.
Notie< that che O preceding the 2ddrcss does not
belong co the address (because an address m2y not
be preceded by zeros) but belongs to the type of

operation.

I N011 (A) - (11)1-A I
Example: (•' + b')'- location 4

H 2
V2

V03
u
v
U4

I
Because it is not known in
advance tbat (A) is clear,
the first multiplication
must be norm:al.
a'+ b'
(a' + b') - 0
(a' + b')'

If chis programme follows ;another piece of
programming which we have ended with 2 store
instruction, rhis can be done with T. In that case
the example can be abbreviated to:

T x of previous piece
V02 } a' + b' V03

~ } (a' + b')'

U4

For doing multiplications with factors of IO cwo
speci;al instructions exist.

DOt1 : Exponent (A } + exponent (t1) -
~exponent A

Add the <xponenc part of the number in location n
to the exponent port of the accumulator.
The mantissa of A will be undisturbed,

the mantissa of /1 wi ll be disregarded.

Ex•mple: Multiply (4) by IO'.
Suppose (2) = I X l O'.
fl4 Take (4)
D02 Add 6 co che exponent
U4 Store (4) X 10' - 4

This innruccion is quicker than • multiplication
with Io• and preserves better the precision of the
m:antiss:J.

.1\nother version of this instruction cx.ists:

00000011 : exponent (A) - exponent (11) -
- exponent A. Mantissa undisturbed

This instruction dh·ides by • factor of I 0 by
subcrocting something from the exponent.

Loter on special applications of Do and DOOOOO
will be given in the coun t instructions.

DEE.L IX No. 2 HET PTT -BEDR.TJF AUGUSTUS 1919

VII. INPUT AND OUTPUT INSTRUCTIONS

To bring numbers inco the machine, the pro­
gramme must ask for these numbers by t he follow­
ing instruc tions.

LTI : Read a number rom t e input
ta e :.ind lace it in loc'1cion 11.

The number is written on the cape by using the
symbols +, -, 0 co 9 and decimal poi nt. Numbers
need not be written in floating form buc can be
""iccen in fixed point form. T hey will be converted
into floating point aucomacicolly. A sign must
precede the number. Unsigned numbers are not
permitted.

Examples: + 3S
+OH

+ .3
+ 0.3

- 37.S68
+ 3000000

- 0.0005678912345670000

O nly t he 10 most significant digits (digits from
the left starting at rhe first digit =/= 0) will be taken
into account. T he resc will be skipped. Thus in the
lase example we could have written with the same
effect - 0.00056789 I 2345. At che beginning of a
number bbnk will be skipped until a sig n + or -
is seen. Then the actual reading scares. The end
of rhe number will be marked by the sign of t he
next number on che cape. The lase nu mber to be
read muse also be followed by + or - to stop
reading . T he tape reader will sec this next + or -
and finish che number just read, but the tape reader
will not make a step to the next symbol. Hence the
sign c:in be reread on the next L .. [nstructlon.

Also the symbol Y can be given as an end symbol
of a numb.,. In that case che Y will be stepped
over.

Sometimes a n umber must be given in floati ng
form because its exponen t is coo l2rge to be given
in the form of the n u mber of zeros of a fixed point
n umber. In chat case the exponent is written on che
tape as given by the examples.

Examples:
+ o.3E- H

-H.79E+ 20
(= 0.3 x 10- ")
(= -H.79 X 10+" =
= -0.3579 x 10")

For reading greater quantities of numbers chc
followi ng ins<ruction exists:

L011

I
Rea numbers rom tape and p ace chem
in 11 , 11 + I, 11 + 2 etc. until a Y is
encountered on the tape. The a111ounc of
numbers read is ploced i~. _____ __..

\11ich chis instruction a whole sering of numbers
can be read in one instruction -:and cou nted :tt the
s•me time in li. (Cf. Chapter XI, cou nting in­
structions.)

\\:Then an L-instcuction reads something else on
tbe cape chan numbers (e.g. instructions) the latter
will be accepted as such but chen che L-instruccion
will not return after reading and the m2chine will
go on reading ln instructions.

Input of numbers can not only~ effected in machine
code fixed point form, but also in teleprinter code,
flo.-iting form. Wben the teleprinter code input routine
(a programme belonging to the ser of mrogndc sub­
routines, cf. appendix t) is in the machine, f lo01tiog
numbers can be t:akcn in by L or l.O. These numbers
must have the form

± o.xxxxxxxxx ± xxx. - ----- --
m:antissa exp

This is the sa.me form as for floating output except
thac the mantissa nl:t.)' h;ive less th:an 9 dccim:a1s and the
exponent less th:in j dcc.im~b. The mantissa can ;1.)so be
::!; 1.0000.

A number t<tpc in telcprinlcr code nlu.sc be preceded by
T in teleprinter code. All carriage returns :and line feeds
will be skipped. After T all text will be skipped until •
figure shift is encountered. Afctr this the progr<tmmc "'ill
search for the first + or - Olod \viii re:ad the number.
Th• end of the number will be given by the sign of the
ne:<t number. A series of number$ re:ad \Vith LO can be
ended b)' blank tape (equivalent with Y in machine
code).

A letter shifc- 'v-lll correct that pare of the number
in which it appc-.:ars. Hence a !etc-er shift in che manciss:i
'viii only correct the m:anc-issi whit.::h must be repe:ated
in the correct form.

Bl:ink :after the mantissa without :in exponent fol·
lo\\•ing will stop the tape.

lnste·ad of beginning \\•ich T, celeprintec code t .. ipc
may also begin with bbnk followed by the sign of the
first number. There m:ay be no synlbol bct\\•ccn the blank
<tnd the first sign. This is the exact form in \vhich most
oucput is produced. Hence output c01pes in floating form
can in1n1cdiltely be used for subsequent input i.Dto the
m2chine.

Only + , - , . , O co 9 arc used for nu mbers.
Also E and Y are used for numbers. The rest is
used for instruction and addressing.

The correction symbol ;#: consists of all 5 holes
on a cape and can be used to overpunch an)' com­
bination (Cf. Appendix 4). The general rule for
che use of che correction sign, whether in n umbers
or instructions, will be:

a correction sign on die tape after a number or
Jn instruction wlll erase c:his word. The word rnust
then be repeated corrccdy. This repetition may be
preceded by an orbit.racy number of blanks.

37

OEEL IX No. Z HET PTT·BEORIJF AUCUSTUS I"'

Example:

+ H .56 punched as

+ H.57 _£_
wrong number

(bbnk optional)

corr.

+ 34.S6 + etc. ----correct number

The same holds for instruction

VOJOO punched as V0200 ff' (blonk optional)
VOJOO, ere.

Output of number in floating form is done by:

P11 : Print t e contents o ocation ,,_ i_n floating
form on the teleprinter. Lay-out:

± O.xxxx:xxxxx sp~tce ± xxx space space

1na1\c.issa exp. I
·~l_r _d_o_es_no~t~d~es~r_r0~}~·~(_11~)~n~o~r-"(A~l~· -------

ln the exponents the non-significant zeros wi ll
be suppressed except the last one.

Exomple: + 0.34S67890 l + O
- 0. 100000001- 12
+ J.00 0000000 - 999

(smallest number representing 0) .

The prtn ter works at a speed of about 7
characters/ s-econd (15 0 ms/ char.), hence printing
of • numbe.r t2kes 2870 ms.

A foster way of output is by the punch acruat·
ed by

P011 : PuBchthe contents of location 11 in I
floating form on the punch. Docs not
destroy (11).

The code: in which the number is punched is
teleprinter code, nor machine code. These tapes are
primarily nic:ant for reproduction on ;a separate
printer, not directly attached to the machine (it
rakes 400 ms/ number).

Apart from these P and PO instr. to print directly
from the Store, there ;ire 3 fC\V Special z .. instruct.ions
tO do the following:

Zs
Z22
Z9

Print () oat mg orm
Punch (A) in floating form
Print a c:.trriage return,

line feed, figure shift
Punch a c:irri:ige return,

line feed, figure shift

The number of chuacters on a line of the printer
i.s 69. Thorcfore no more than } floating numbers

;s

can be printed on one line. (The number of lines
on rhe height of an A4 format sheet is also 69.)

instructions to print in fixed-point form will
be discussed in Chapter X.

Example:

L2
L3
H2
V2
VOJ
P2
P3
Zs
Z9

Read x, y, form z = x' + y', print z.

Read x in 2
Read yin 3

} x'

x' + y'

}
Print x
Print y
Print x' +)''. still in the acc.
Give carriage return , line feed

VIII. CONTROL INSTRUCTIONS

Of course, it is not possible co make• programme,
on ly consisting of one sequence of instructions.
each executed once. An automatic computer derives
its power from the fact that it can repcor che 5'Jme
series of inscrucrions over aad over.

To m2ke possible a break in t he strictly sequential
execution of instructions we hJvc a jump in­
struction. But because: i.nstructions arc not num­
bered we do not jump to an address but to an
instruction specially provided with a label.

X[i : Jump to instruction, labelled p and proceed
from there serially. Store a jump to the in ­
struction following rhe present instruction I
inr . j!=0{1)99 I

The explanation of the second put of the des­
cription of Xp will be postponed to the instr. Xop.

Immediately in conjunction with using labels,
assignment of lobcls must be discussed.

Q/1 : The instruction ollowing chis indication I
will be labelled p. p = I I)99

This Qp is not a crue instruction but only an
indication on the programme sheer and on the cape.
Jn the n1acbine it will not be executed as an
instruction.

Example: Read two numbers, multiply chem and
print che resulc. Go on with a next set
of numbers etc.

Q6 L2 Read a•
L3 Read b.
H2

Ok , b, V}
Zg Print prod.
Z9 Cr. If
X6 Return co Q6

DEEL IX No. 2 KET PTT ·BEDIUJF AUGUSTUS I"'

Laboh uc rostric:ted to the unge 0 to 99 but
they can be a.uigned in my desired order.

The machine is safeguarded against assigning a
label twice. Of course two different poincs cannot
be given the ume name, the same l2bcl, because
the machine would not know which point to take.
The cape stops immediately during input of in­
structions when this situation occurs.

\\'/hen jumps ore referring to lnbd /1, but whe11
indication Q/I has 11ever been given, this will onl)•
be detected when the programme has started its
•Ction 2nd has arrivod at this jump. Then the
machine will Stop.

bbel 0 plays a special role. It is auromaticall)'
and permanently :assigned ro tho f irst instruction
in th~ in.struction store.

Hence the ilbel Q with no ' 2ddrcss" following
will certainly nop the cope. But the instruction X
without numcr2ls following will jump to the first
instr. of the programme. This exphins that in the
description of Xp t he p could run from O to 99
but for Q/I it can only have the values I to 99.

A label which h2s not been used before by an
X p or Qp is coiled dcarcd. Initially all l•bels I to
99 ore clc.red. In Xp there will be a label which at
that moment i.s not cleared 2D)' more but not yet
3Ssigned. The Qp will then 2ssign the bbel to the
2ctual valur.

It is irrelevant co the jump whether the label
is issued before the jump or 2ftcr. The ,.,hole
prognmme is first rud from the upc 2nd put into
the instruction Store and only then the progromme
is surted. M2ny jumps c2n jump to t he nmc point.

The ;adv.i.nt1gc of using l2bels inste3d of Jb1"olucc
addressing bocomc• clear when we think 0£ the following
sicu.ation. Suppose the instr. store w.t1 numbertd :lnd the
1umps v.•cre 1tbsoluu• jumps.

100·

101·
10 2·
10)·
10~·
101·

XIOI·

} in<tr.

r -~

I
~ g
c -
~

Suppose th:ac 2rfcerw11rds we see
that botween 102· •nd 10)·
a few instructions h:ave been
forgotten. lns~rting thct\ re­
quires 2 re· addressing of the
jump -and a complete renumber ..
ing of ill following irutructions.
This can bo • v.ry todious job
and it frequently gives rise to
ne•· erron.

Every iump h•s •pa.rt from the jumping •ctions
2lso the usk to pl.cc 2 jump in r. This (r) is used
ag>in in the following instruction:

XOJ! : (r) p Store the jump conuined in •
into the location bbelled fl. Between the
innr. Xop ond a preceding Xp instruction
no other instructions m:ay be executed
(exc~t + 0011 and XRRROp).

Often • prognmme conuins • put which
performs > speci2I •ccion th>t hos to be effected
repc3Cedly in different p>rts of the programme.
E.g. the calculation of y = a,x' + a,x + a, ha.s
co be effected in various pbccs of the progromme
with different values of x. In such n case we make
• sub-routine for the whole oction in such a way
th>t this sub-routine can be used by simply jumping
to ir.

E.g. The sub-routine for y = a,>'+ a,x + "•=
= (a,x + a,)x + a, con rc2d as follows:

QJ

Q4

X04
u

(A) = x Suppose 20
21

pl2ce -c in 0 22

a,

"•
~20}
A21
v
A22
x

} (a,x + a,)x

This will be rcpbced by t he return
jump and the programme returns
with (A) = y.

This sub-routine can be used by j11mping to it
with Xl:

I x; Jump to sub-routine for calculation
of y = a,x' + a,.-c + a0 •

The jump will score in r • rcrurn jump ro the
point following the instr. Xl. As the m2chinc docs
this completely automatically, no label need be
givm to that point. We sh21l s2y th2t C\•ery jump
hu remembered in r the pl.cc where it came from
in the form of l return jump.

The first instruction X04 of the sub-routine
stores this return instr. from 1 - 4 >t the end of
the sub-routine. Thus the action of the sub-routine
rakes place and at rhe end it returns to the instr.
following X3. In t his way X3 con be regarded as a
single instruction with on orbitrory 2nd possibly
very complie.>ted 2ction. This Xl can appear many
times in a progr3mme and every tin1e: the whole
sub-routine is executed. This is one of the most
powerful fearures of programming. (For more
details •bout sub-routines cf. Choptcr XIII.)

The instruction XO muse be the firsc 2ction of
the sub-routine bec2use most other instructions.
cspeci.allr of course o.nother jump, will destroy the
contents of r.

Of course it is very undesir.blc tu let a pro­
gr>mme go on indefinitely in rhe example of
forming "" . b<- Very often an oction must stop
.-ccording to :i cerc:ain crlcerion. \X'hen the criterion
is not yet fulfilled the progr>mmc must return and
repcot the occion, otherwise it must proceed. This
is effected by:

39

DECL IX No. 2 KET PTT ·BEDl\IJF AUGUSTUS U SJ

I Ep
I

I Eop
I

Jump to p only when the number in A is j
positive. OthcrwiR proceed to the next I
instruction. (

Jump top only when the num~r in A is I
neg21ive. OthcrwiR proceed to the ncitt
instruction. f

The (A) c•n nC\•cr be O. In flo.iing reprCRn­
ution 0 is still • very sm•ll number. The 0 resulting
from • subtnction o(two cqu•l numbers or re­
sulting from • r instruction is olways equ•l to
- I X Io-'" and hence positive.
Example: Rud two numbers 0£ which the fitsc

one is pos., then multiply them nnd princ
the result. Rcpe•t until a (irst numbcc
which is neg., is found.

l
--?Q6 L2 Rc•d a•

L3 Read b.
f/2
E.07 Test if a, is neg.

Vl
ZS
Z9
X6

etc.

Furm a4 • h.
Print prod.
er, I f.

IX. ll':PUT ll'>DICATION>

Until now it has been supposed that the in­
structions in the eumplc were 2lrc•dy pbced in
che instruction score in some w.iy. Bul something:
musr be done to bnng them in the store first. The
general procedure runs •S follows. The instructions
together with 211 indic><ions ore v.•riuen on p•pcr.
Then this is punched on the progumme upc •nd
fed into the machine. The input indic2cions uke
care of the correct positioning ol the programme
in the Store. When the complete progr;unmc bu
been re>d in. the bn input indication suns the
progr>mme. During this work the progrommc can
ask for numerical diu with L instructions.

The fim 9·pc of input indicotion is:

I Y Cloor 211 b es I to 99. urc input o

I insrru~tions >t the beginning of the in­
struction store. O - r

~~~~~~~~~-' 

The Y has chis action only when it is im­
medinrdy followed by the first instru<tion or in 
any case by on opening symbol •). 

•) A iymbol .,, hid1 beJ[in' • new 1t<n,, J. nev.. inutt.1\;t.io~ (Ir a 
number, i1 c.tllt'd 1n op•ning 1ymbol. Tln)' 1rf ll, .0, IJ. JI, K, L, :•.t, 
/>, Q, S, 1", U. V, ."(, Y, Z. +. - . All orhtr 1ymboh Jr<' 

1upple1YUnf.U)' ,yrnhl1I, rhey Jf( 0, I, ': , ). 4, f , ,, 1, I, 9, puinc, 
A, cotr«t1on, I . 

40 

S:condl)' this Y must h•v< bctn rc•d ., first symbol 
after the computer bis bttn started from clear or it muJt 
hiv< been rcid by •n L instruction. In th: middl< of an 
instruction tape :a Y will act as input indic:1tion for 
starting at the beginning of the store but it will not 
<l<n bbcls •ny mor<. 

The Y may be preceded by 2n orbitrur number 
of bl2nks "·hich are ignored by the upc re2der. 

Another type of input indicJtion is: 

Yp : Sure input of instructions beginning ot 
lobe! p. p = I { I )99. Lobel p muse be 
assigned 2lrea<ly. 

This cnput indication C•n only overwrite • piece 
of the programme bec2use it c:tn only surt or • 
labelled loc2tion, a location tho< h•s been reached 
al ready before. 

YOO : uring t e input o in-
structions: Stare the execution of the 
programme from t he point where the 
bsc Y or Y p sta rted putting in in­
structions. 
When read as first item from a cleorcd 
start: Stnrc the execution of programme 
:ac the firsc instruction ln che store. 

YOO is generally used in conjunccion with Y p in 
the form: YpYOO. That Yp h.s never 2ccually 
taken in any instructions, does not mauer. The last 
point "'here input 0£ instructions 9"'3S st:artcd, w:as 
bbel p and there the programme will be started. It is 
generol proctice to use only YOO when the piece of 
programmtng between the Yp and YOO is short. 
OthenviR it is better to give in full Y p YOO to 
avoid mistakes. ... 
Example: Programme to colcubtc ~ = >' I 

£,,, L I 
0 "'· 

The programme can stop when the terms 
give no contribution any more. 

Y Sure input at beginning of instr. 
store. Cleor lobels 

QI LI Temporary progromme. Reid con­
sunt I. Instr. is I.belled 1 

L Read following instr. ! 

YOO Starr execution of temponry 
progtJmme 

+ I Constant + I rcJd by the LI 
instr. nnd pbccd in I 

Y Closing symbol ofter the number 
+ I. This could also h•ve been 
+ .;,: 



DEEL IX No.: HET PTT.aEORIJF At:GUSTUS lflJ 

Q2 

YI This YI is read by L and recogni· 
sed as being not • number buc •n 
input indic2tio11. Begin input again 
at bbel I (beginning of instr. 
nore),ov<rwriting instr. LI and L 

HI 
U2 

TJ 

U4 

H4 
Al 
U4 
VJ 
u; 
H2 
us 
HI 
DJ 
A2 
U2 
Hs 
S2 

Pia~ 

Place 
Cle>r 
Place 

f I . 2.S 1rst sum QT" 1n 2 

I also as fim k ! in ;. 
A 
first It. = 0 in 4. Will be 

augmented before use. All these 
:ictlons ~re necessary co make the 
progromme rcsrorcablc. The re· 
stortobility is a very important 
fc>ture. 

} Augment It. by I 

} 
} 
} 
} 
} 

Form next It. ! 

Pince old sum in 

1 
Form k! 

! for hcer test 

l 
Add k ! to sum already formed 

I 1 
Form L (k - l ) l - L k ! 

This will be neg. as long as the 
terms give o. contribution, but will 
be 0 (positive because 0 is in 
reality + I X Io-"') as soon os 
the .!'s are equal 

~-.... £02 Recurn to lobel 2 as long as the 
terms srill give • contriburion 

QJ 

Z9 
P2 
x; 

} Give er, If and print the result 

Make a loop stop. (We have not 
yet le>rncd cht Stop instruction.) 

The programme remains jumping 
to the some poin c. 

YtYOO Stare execution of this programme 
•t label I 

To be •ble to surt input ot •ny poinc in the 
score an input indk2tion of the form YO exists: 

011 St:lirt input o instructions at :lddress n 
in the number store 

Rcmuk that now 11 is •n oddress in che number 
store, noc a lobe\. By mcons o( this indicocion the 
number store can be used :1$ extra space for in .. 
srruccions . 

Ex.mple: J\_rr.lngc a progr1n1mc of 2000 lnstruction~ 
needing 200 working: registers 

y 

} 
instructioni 
(•bout 1200, hence instr . .score 
is full) 

L.QIO 
XIO jump to tht oLhcr store 

Y0200 St:art input .at 200 of number store 

I Rest o( inH:r. 

J 

Whelhcr in Lhc number store or in the ins1ruction 
1toro, locations still can be l>bcll«i. 

It is appropriitc to ducws another facility in t.hii 
place. 

A point •·ritte.n after :i.n :address in the num~r store 
will designate :i corresponding .1;ddrcss in the in.struction 
store. 

In thi.s \v;ay the in5truction store becomes :iddress:ablc 
by :tddrcsscs 11·. By mc:ans of this f:acility "'t: arc :tblc to 
keep a nul'nbcr o! places (rc."C in the instrucrion score. 

Clear !abet. 

Jnstructions 

YOZOO· Start input OY instr. at 200· 

etc. 

The point can be 2 t t.ich«I to all :id dresses in the 
num~r store. By mc1ru of this the instruction store 
can be ui.cd for numbers "'hen the number store is too 
small. E.g. AlOO· mc1ns: 1dd number from locnion 200· 
on the •rutruction store (henceforth called ZOO-.) (Sec 
Ch1ptu xm. > 

All input indications Y hove the following 
properties: 

they restore the ke)'-oddress to restart a progrornrne 
in 0· with U6 = l •nd srnrr; 
they clear the r -register (sec counc instructions, 
Chapter XI ). 

The Qp 2lso belongs to the d21s of input in­
dic>tions. I c '"•s needed 2lrc.dy in 2 previous 
chapcer. The first single Y deors rhe l2bds, Qp 
issues the t.bels, Xp, Xop, E.p, E.Op, Yp use labels. 
Indi vidual labels can be clurcd by: 

I Qop :· clear lobel /J l 
le must nor be gi,·en when a label hos been used 

alreody by an xp but has not yet been assigned by 

41 



OEEl. rx No. Z HET PIT-BEDRIJF AUGUSTUS 111~ 

the corresponding Qp. Jn rhot case QOp will clear 
rhe label before Xp has been adjusted to its proper 
value. labels above 99 can be used when necessary, 
provided they are cleared initially by a correspond­
ing QOp (Cf. Ap~ndix 2) . 

Sometimes 210 error ls m.1de while the tape j5 being 
punched. There is ;i v.•21y of correcting this on the punch 
by giving the combio:1tion correction on the ripe after 
the word. This S)rmbol consists of :all S holes on the 
upe 1nd will be denorcd by rhe symbol ;#: in written 
cexc. The: $ymbol # will \Yipe out the pr~ceding ln­
struction or num~t. The complete cotrect number or 
instruction OlUSt be repc1tcd after .;.+.. An ;arbitr1ry 
nun1ber of bl.inks 1nay follov.• :ifter ..;.;... 

Examples: 
AJoo.:;;: Mo 

But not: 

Io A; 00 one zero wu punched 
too mucb. 1t}O was the correct 
word 
1(1; w1s punched instead of 
HD 
+ H. 1 I was punched instead of 
+ H. IS 

+iJ.Hl':F, +H.llY The)' bas finished che number 
+ H. IS alrcJdy ond the # 
COIUC'S coo late. 

Also: 

+ H. IS ,·; l' is wrong. The # h>s finished che number 
•lre•dy •nd Y will nor be read 1s dosing symbol buc 1s 
new opening symbol. 

The symbol ;#: crn be used for m•king bre•kpoints 
in the tlpc. A brc2 kpoi_nt is a piece of blank r:ipc of ten 
inserted between. rwo sections "'hich :are rAthcr jodc­
pendenc or \\•here a sub-routine muse be in«!rted. This 
c:annot be don~ by simply lc:iving blank after the lase 
instruction of the fi.rst .section. Suppose chis l:ast in· 
scrucrion would hJJvt: been Al. By giving bl2nks :after 
this A I it would become 1\10000 .... 0 ttc. By giving 
A I Zr rhe brukpoinc c•n be realised. The Z will be 
corre~ced •nd bl•nks m•y be inserted. The cape does nor 
stop. 0£ cour$e it i$ irrclc,·:inc which opening symbol 
is glve_n before 77". 

\'<lord~ : t e word is ca en :away 3.n 2n arbitr.,.ry 
number of bl>nks m•y follow. 

A way of n1aking :a stopping breakpoint is by giving: 

QZ : Scop input of rape. With. Che SClrt key we 
tape c2n be rest-arced and goes on "'here it wi.s 
stopped. An :1rbitr:ary number o( bbnks m:iy 
follow QZ. 

·rhis combination can be used (or mlklng 1 brelkpoint 
"'here :a sep:ar:atc t:ipe must be insetted. This t:ape is put 
inco the tape reader O!l blank and ls :also ended with QZ. 

The 2ccion of QZ c1n be understood by r<membering 
ch.c Q followed by 2.n insrrucrion (e.g. Z) will cry to 
as$lgn l.tbel 0. But c:hi-$ h:is been done alre:ady 2nd there­
fore the t:ape stops. The Z only sc.rva to indic::atc the 

42 

end of Q. In face ony other opening ltner will do. 
Also che Q m1y be Qp where p is on >1signcd hbcl. 

In a previous example che necessary numerical 
constant was fed in co cbc machine during input of 
instruction by the help of a temporary programme. 
Often ir is necessary to put in a few constancs 
during input of programme. There is a way of 
doing chis wirhour • temporary progr1rnmc by 
preceding rhe sec of numbers by K and endi ng it 
with Y. 

Example: 

Y0200 
200 K+1 

Prepare input of numbers in 200 
Start input of numbers + I ~ 200 

+z-•201 
+ 6-202 

201 +2 
202 +6 y 
203 instr. T he mochine will go on purring 

instr. in 203 etc. unless a new 
inpuc indication is given. 

Also in the middle of instructions con.stant5 cart be 
given. 

Exlmplc: 

XJ Jump over the set of const01ncs 
K-23 Puc i.n constants -2}, + 32, 

+H + 17.6 into loc1tions O· I, I·!, 2· ! 
+ 17.6Y (Cf. point focility, Chapter XIII ). 

HI· S Take const. + n- A 
etc. 

The K i$ initially read as i£ it were :a K-instruction. 
but a5 K c:an only be follo\\'Cd by 1 V- or an 1\1.lnstruc· 
tion ic wil1 be: detected th:it numbers arc following. 

In £.ice the number v.·ill be re1d by the s:imc piece of 
prognmme 1S for LO. Hence che s2me closing symbol Y. 
The fitst number will ovett\'rite the K initially put in 
as instruction K. 

1'hert i.$ 11 w:iy to sta.rt the opef;ltion of limple code 
on ony simple code oddms. This un be done by di21ling 
a key address 4-4 or starting the m:.ichine with X44Z in 
normal tode. 

When the machine is st2-rted on 44 with U I = 0 2 

scare :tddress in the instruction store can be di:.illed .:ind 
the machine 'viii st-art intmedi:itcly. 

Whtn the 01achinc 's surted on 44 l':ich U 1 = 1 :i. 

st-art 11ddress in the nun1bcr store can be dialled. 
\X'bcn the rn:ichinc is srarccd on 44 '"irh U2 = l :i 

mrt label can be di1lled. 

X. SPECIAL lNSTRUCTtONS 

There are many usefu l actions that need not refer 
to an address. They arc incorporored inro Z­
instructions. The "addressu of a Z·ln.struccion is not 
• label nor an address in the proper sense bu t is 



DEEL IX No. l HET PTT -BEORIJF A UC UST US 1'19 

only •n indicuion for the type of spcci2l opcruion 
w2nrcd. A list of Z-instructions will be given 
below. 

Of these Z-sub-routincs Z, Z7, ZS, Z9, Zl6, 
Z l 7, ZIS, Zl9, Z20, Z21 , Z22, Z23 , Z27 are 
permanencly built into the system. All others are 
separate sub-routines of which only those, which 
are necesury, nttd be put into the computer. But 
in genenl they will all be kept in che store when 
there is room enough. In that case 12 JS locations 
:ire av3iJablc in t·hc instruction store :and l 2) S in 
the number store. With none of che extrn Z-instr. 
1492 loc21ions in each store arc 2''>il>blc. All z. 
instructions below Z32 h2vc a fixed meaning. There 
is room for special Z-programmes from Z32 to 
Z2SO to be made by the prognmmer himself. 

Z : Stop programme. Pressing chc surt Tcy 
starts the programme on the next instruc­
tion. A second w2y of starting is by using 
the telephone diol. The dialled integer will 
be pl•ced in « (2nd old (a) - <l) 2nd the 
next instruction will be executed. 

The machine has two stop suces. One state is 
attained 2ftcr the clear button is pressed or 2ftcr • 
m1st2h has been m2de in the progromme. Then the 
machine c•n be r<starttd ( when U6 is off) to read 
programme t2pe and it c2n 2lso be restarted ( when 
U6 is on) on t he first instruction in the in struction 
store (on O·). The other stop state is attained on a 
Z-inscruccion. The m achine c:an no\v be restarted 
by pressing the start button or operating the dial. 

ZI : \/(A) A j T 2ke the square root of the 
number in A md put the 
result in A. 

When (A) < 0 the machine skips the nexc 
inscruction. 

I Z2 exp (A) - A! 
1...::z:..:.3...:...:;ln"-l(.:..A:LJ_-__;A:..:.....il (A) muse be pos. When 

(A) < 0 the m achi11c stops 

sin (A) - A 

on • c:lcar stop. 

A nglc in radians 

When (A) is very large the 
sin and cos progrommc will 
case o£f oil whole revolu­
tions of t he onglc, ond che 
ren1:aining precision in chc 
fnctionol p2rr can be very 
low or non-existent accord­
ingly. The same holds for 
r Al with Z2. This is one of 
the dangers of working itt 
flo><ing point. 

Z! : cos (A) - A I Angle in radions 

I Z6: orct2n(A)-A I The angle <p (in udi2ns) 

will be - ~" < <p ~ ~"· For 
the othertwo quadrants the 
programme muse make its 
own tests. 

Example: Given • complex number x + i;. 

Ql2 
Ql3 
Q l l 

Determine modulus r 2nd orgument rr. 
(2) =.\' (3) =y ( 8) = " 

H2 
V2 
V03 
Zl 
U4 
f H 
D2 
Z6 
U! 
H2 
£11 
HI 
£12 
SS 
X13 

AS 
us 
etc. 

v.~' + y' - 4 

1{ arcto n .J.. - <p 
x 

'(' - j 

Test .•. If pos.: proceed 

subtract 
:i when <p is neg. 

Add :t when <p is pos. 

Z7 ProceCcf ro the next instruction ;Jlen 
S'll'itch UI on the keyboard is off. Skip the 
next instruction when U l is on. 

By mcons of this instruction • bifurcation can be 
mode in che programme depe.nding on nn externally 
controlled swicch. This is useful for suppressing 
intermediate results, 2nd for making many ocher 
extern•! decisions. 

Example: 

[ 
Z7 
P3 

etc. 

ZS : Prine (A ) 

Test UI 
Print (3) only when Ul is off 
( Ul = 0) 
Skip P3 when UI =I 

Z9 : Prine c>rri•ge return, line fttd, figure shift 
(The ligure shift IS a teleprinter symbol for 

shifting the c•SC from letters to figures. It is given 
as • precaution. As in Simple Code no let ters can 
be printed, ic is of no concern co us in this article. ) 

43 



0££L IX No.. Z HET l"TT-BEDRIJF 

ZIO og,.(A) - A 
( A)< 0 the 
sro . 

I Zl 1 : arccos(A) -+A I 
I Zl2: sinh(A) -A I 
I ZlJ : cosh( A) A I 
I Zl4: orcosh(A) -A I 
1 Zl S : >r<anh{I\)-+ A I 

These sub-routines are of 
the s<>-called interpreted 
type and ue much slower 
t han ~ll ocher sub-rou­
tines. Possibly they will 
be replaced by faster ones 
in che future. 

_ A I {These a~e faster ~ha~ t~e cor­
,_I _Z_l.;..6_:_2_,(_A_,)'-----'· responding multtphcauo1\s 
-1 Z~l7-: ~-(-A-)---+-A~! by z. and ~ and they do not 
'-----'"-'--'---- -' require a constant. 

I ZlS : I (A) ] -A I Modulus of (A)-+ A 

Zl 9 : }\n instr. for ch:1nging from simple code to re'31 
m2chinc code. Th.is is of no concern £or che 
purposes of this 2cticlc. 1\ similar insrr. exists in 
real code to change over co simple code. See 
1ppendix 2. 

Z20 : Will be: treated together l\•ith the counting in­
struction$. 

I Z2 l : - (A} - A I 
Z22 : Punch (A) 

Zn : Punch carr. rec., line feed, figure shift. 

Z24 

Z2S 

Z26 

Z27 

£1oacing ?t 
[ 

Change ucriple length'' number into } ~ 

Change floating number into utriplc ~ 
length" VI 

Print or pu nc I (a) spaces. Print when 
(a < 0, unch when a) > O 

Proceed co acxr insrr. w en U2 = 0. S 1p 
next instr. when U2 = 1 

T his is an inscruction analogous to Z7 but now 
resting the swirch U2. 

I Z28 : l / (A) -+ A I 
Z29 {Belong rogether and ><C used for printing/ 
ZJO punching floating numbers in fixed point 
ZJ 1 form. 

Wirh Z30 a by-out panern c•n be set up. 
This pattern is telling che instr. Z29 and 
Z3 l how a number must be output. The 
pattern once set up ""'ill remain until the 
next ZJO instr. is encountered. ZJO sets the 
pattern to output sign '"hen (6) > 0 and 
suppressing sign when (cl) < 0. Before rhe 
decimal point I ( 6) I digits will be output. 

Z30 

This may be ac mosr 10, ot leasr O. After 
the decimal point (a) digits wi ll be output. 
This may be at most 9, u lease O. In case 
no digits after the point are outpur the 
Poinr is also suppressed. Of course in no 
case does the precision of the floaring number 
cover more than nine digie:s in tOt:ll, hence 
it does not make much sense to print 
for example 7 digics before and 7 after 
rhe poinr unless rhe r>nge of rhc numbers 
is g re•dy different. All numbers will be 
rounded off to the required number of 
places. 

Thus: 

Set up patter a wit 
and (a) digits after 
si n when (~) < 0. 

(6) digits before 
the point. Suppress 

Example: 

+oo; 
+004 
Z30 

} 
Set pattern to 3 digits before 
and 4 digirs after point 

Once a pattern is ser numbers c•n be prin ted 
with 

Z3 I : Print (A) accor ing to panern 2nd fol­
lowed b 

\'i-'hen the number is too large to be printed, 
the integer part will be printed as ??? when 
it is < Io•. When it is >lo• the complete 
number will be printed as ( +) TOO 
LARGE. 

Z29 : Punch ( A) according to pattern and fol ­
lowed by two s aces. 

The same rules as for Z3 l hold here. 

XI. COUNTING JNSTRUCTIONS 

The a-cou11t 

For easy rep<ti tion of a sec of instrucrions the 
count instructions are devised. A process which has 
to be repeated n. times must be preceded by • 
prepare instruction which sets the count and must 
be ended with an instrucrion doing and testing the 
count. In lcs slmplest forms these lnscructions al'e: 

+ On. Prep3rc a count to 11 and 
+ 11t : Count with m at a time. When 11 has not 

yet been reached, repeat the inStructions 
srarting at the instruction following the 
prepare instruction. \'i-'hea tz. has beoa 
reached, proceed. 



DEEL IX So. l H£T PTT-8£01'.IJP AUGUSTUS "'' 

For example: Repeat • s.:< of instruccions 10 times. 
+ 01 O : Sec the coun t to 10 

] 1-0!00• ~ "' "'""' " ••• 

+ I Count with I until I 0 is ruched. Then 
go on. 

The arrow indicates co where t he coundng in­
struction returns, when the requLred number of 
rimes hos no< yet been done. 

Of cou.rsc the :ibovc·mcntioncd description of the bisic 
count instruction is too \'ague to Krve as a rigorou.s 
definitio~ The.re.fore we stull first go .i little bit further 
into the Jcrion of the count insrructioru. 

Prep.iring 2 count it in fict doing three thing$: 

:a. setting: the r-11nning t'Ounl to zero u st:arting v:1lut1 

b. setting the t'OUnl limU to n, 

c. rcmcn1bcring the return instruction to cniblc chc 
counting instruction to find its waiy b1ck to chc 
bcgi nning of the loop. 

The three components of a count, namely: the running 
counc, tht count limjt and the loop ~tum instruction. 
Jrc stored in the spcci21 counting ttg:isttn me:ncionN 
.ilre"Jd)' in Chipttr rv. 
o is ~d for the running count, 

t is u1cd for the count limit, 

6 i1 used for the loop return instruction. (Do not 
<:onCuse t he return instruction from a sub·rout-ine 
St()rcd in r with chc special loop return instruccion 
scored in 6.) 

l> is wed for storing the previous (a) . 

Now a more accur.ice description of + On c1n be 
givt.n: 

+ C>n : If n .., 0: ( a) - l> 0 - a n ~ t, loop 
return jumping to the next irutruccion - 8. 
Execute next tn.struction. 
l f n = 0: skip next inJtructioo 2.nd do 
rlothi~ else. 

In the description of the count order :also reg. p :ind y 
appear. They will be disregarded for the prcsen<. 

+ n : (o) + n - a fl!> + (y) - iJ 
When (a) =r= (t) : execute loop rcrucn in 8 
When (<Z) = (t) : 0 - y and procttd ro 
next instr. 

The register cl it ustd for pre.serving che old conttnu 
o( Cf, It is c:illed the s:1£ct}' register. JI 1s not ch:ingcd ln 
gencr;al bec::iusc :iny pr~\dous + instr. h:u c1eared y. 
r.1 iJ U\Ot d~troyed after chi: count is conlpletcd >lnd 
<•n still be used. 

The tount limit mu.st be reached exactly. A c:ount 
prep•rcd with + 021 and counted with + Z will never 
go on but \\•ill repe:at indc!lnitcly. A count c2n be 
prepared co 20 :ind counted 'vith 2 at a ti.me. In 10 times 
the counc will be rcady. 

Observe that n i.s not an 2ddrcss in the proper sense: 
it doa not refer to :i number Storr location but is used 
.it the number itsdi. This is al,..•ays a non negative 
integer. Tb.r: registers o, /J. y. 6 and t c:an only conti.in 
integers, not floating numbers. 

The case th.at in + On the n. = 0 will be tre3tcd wlth 
the - 0 ordus. As + 0 lt docs not mike much sense 
2s 2. preparation but often it is .i useful instr. to skip 
one instruction. lt doe.s not ch:ingc any of the count 
registcn wh<ltcvcr 2nd doc.s not require a l21xl otherwise 
needed when the >kip u done by • jump. 

It is nor always known in :advance hov.-r m:iny 
rimes • process must be re~21ed. E.g. ic cw be the 
result of • calcul21ion. Therefore the following 
prepare instruction is pr'lvided. 

I - 011 : Prepare • cou n< to ( 11 ) ( insce2d o to 11 
icself for + 011). 

Now the " is a number •ddress and (11) is • 
floating number. This floacing number is converted 
into fixed point forms 2nd rounded by adding a. 
Only the integer put of this is reuined and ustd 
as count . 

W'ricccn in shotth2nd this c-an be expres<Std by 

I (n) + a I 
v.•hc.rc ( J denotes the entier function. 

One can 2lso s1y thl< [ ( 11) + ~ J is the inreger 
l\e.trest to the flo3ting number. 

E.g. Z.99 is rounded up to J.49, then .H is dropped 
resulting in l. 

2.f is also tented in the s:ame way, giving 
I J.o I :;= l 

l 2_4, + ! J = I 2.99 1 = z 
I - z.49 + ~ I = I - 1,99 I = - 2 ! ! The 
next lower integer of - 1.99 ~J - 2 

J-z.s t + ~] = l -2.01 J = -J 

Jn general the counts .Jtc written :lS floating numbers 
to enable the prognmmer <O effect >tithroctital 
opeutions on them 1nd in th11 tue 2.00 X 2.~~ can 
be }.~, v.·hich is rounded to 4 on> - instruction. 

Th.e c..~.ict description of - 0 no•• b:come:s 

- 011 ; If [ (n) + A I 7 0: (ll) - 6 0 - a I 
[ ( 11 ) + ! ] - t, loop return to next instr. 
- 9. Execute next instruction. 
If I (") + ~ I = 0: skip next in>truction 
a.nd do nothin clst. 



DEEL IX No. 2 HET PTT-BEDRIJF AUCUSTUS 1919 

The same \'ari::inc exists of + n, the cou_nting 
instruction. 

-n: (a)+!(n)+~J-+a (P)+(y)-+P 
When (a) ¥-- ( t ) : execute loop return 
in 0 
When (a) = ( t) : 0 -+ r and proceed 
to next instr. 

Before giv ing examples a very powerful feature 
must be mentioned. Often a p rogramme contains 
an instruction which must be varied according to 
the count. T his can be done by adding a su ffix R 
to the instr. to make it relative to the count. 

J AR11 - A"+ (a) I 
A Rn acts as if it were an A-instr. with an address 

"augmented by t he present count (er). The instr. 
AR11 is not modified in t he store but the address n 
is augmented by (a) just before execution. 

A n R can be attached to the following types of 
instr. H, A, S, U, T, V, N, K, D, VO, NO, X, E, L, 
LO, P, PO, £0. No R can be >ttached to DO, HO, UO, 
all + and all -instr., Y, Q, 000000. 

Example: Form the sum of the numbers in locations 
200-300. 

T 
+ 0101 
AR.200 

+ 1 

Cleor 2ccumulltor 
Prepare count to I 0 I 
Form variable instr. A2oo+k 
where k = 0 ( 1)100 
Count with I 

The same can be done with every other )()Cation 
insread of ever.y consecutive location. 

Example: Form the sum of the numbers in locations 
200, 202, 204 ... 400 

T 
+ 0202 
AR 200 

Clear accumulator 
P repare count to 202 
Add (200 + 2k.) 
where k = 0(1)100 
Count with 2 at a time 

T he prepare instruction - O serves for cases 
where the number of times is not kno~rn in advance. 
This shall be elucidated by means of a very im­
portant example. 

\'ifc shall make • sub-ro utine for the calculation 
of• polynomial 

" 
y = 11 .. x" + a 11 - i ,\'•-s .. . . + a o = }; ak x '° 

k = O 
\'ifc 3SSumc thar rhe degree will be in I 00 and the 

coefficiencs i_n rhe order a,,, a,, _ 1 •••• etc. in 
location IOI, l02 etc. x will be in t he accu mulator 
on entering the sub-routine. 

46 

The formula can be rewritten as: 

)' = ( ( ( ( (a.x + a •. 1 ) x + • n-2) x + a. _.) x 
+ .... •1) x + •o 

Now the programme reads 

Q2 X03 

u 
HIOl 
-0100 

[ v 
AR I 02 

+ • 
Q3 z 

Place return instr. in location 
labelled ;. The sub-routine icself 
is labelled 2 
Place x in 0 
Take a. -+ Ace 
Prepare count to (I 00) times. 
This need not be known to the 
programmer 
Multiply by x 
Add next coefficient 
Count 
When ready : return to main 
routine. A dummy Z is placed 
here ro keep free the place for 
rhe return instruction. Io case the 
m•chine or t he programmer fails 
co put che return lnscruccion in its 
place, t he m•chine stops. 

The outward effect of this su b- routine is that 
t he single instruction X2 forms y = f(x) =:Ea._-.:• 
irrespective of degree and coefficients. Also compare 
t his programme with the example stated in C hapter 
VIII. \Vith 35 many instructions as given there a far 
more general programme has now been produced. 

Sometimes it is ncccss:iry co count b1ck\\•2rds. This 
can be 3CCon1pli.shcd b}' -instructions as ln the follow­
ing ex.ample. 

Ex•mple: Calcul>te y = :E a.x" where a. = (100), 
••-• = (99) etc. 

u 
HI OO 
-02 

v 
/\R99 
- } 

Store :!: in 0 
a" - A 
Prepare count 

Supposo (2) =-lf 
(})=- • 
(A)= x 

co (2) = - n 
Multiply with .< 

Add next coefficitnc 
Count wich - 1 ic ;i cimc 

As to the number of times, it dol!s not macter Vi.1hcthcr 
cou nting is effected upw:trd or downward, buc for the 
V.lriJble instructions it differs a great de:il. 

lt will be clcJ.r co che careful reader \vhy the CO\ll'\t 

must re1ch the count lin1it ex;iccly. When the criterion 
would have been: repeat when (a) < (£) and go on 
as soon ., (a) ~ (t), then counts running backward 
l\•ould noc h;ive worked :it :all. 

Now wo shall give •n example of • sub-routine 
doing a process p times where p will be given in 
t he accumulotor. p can be 31\Y number of times but 
also o. rn t hat case the process must be skipped 
altogether. 



DEEL lX No. l HET PTT·BWR(JF AUGUSTUS ijJ9 

Q i 

QJ 

XOI 
u 

-o~p * o 
+ o p=O 
XJ 

+ z 

} loop 

Place return instr. in 3 
Store p = number of 
times in O. p must be 
stored before a -0 
instr. can set a count 
Prepare count to p 
time-s 
Do nothing but skip 
next instr.! 
When p = 0 jump 
over whole process 
Instr. for doing process 

Return to main pro­
gramme 

The instr. + 0 has helped in jumping over the 
Xl. It does not destroy any counts. 

It is not necessary ro finish a count cycle by 
applying a counting instruction. A count can also 
serve to make variable addresses. 

Example: Look up the first positive number in the 
locations l 00, I 0 I etc. 

+ 010000 Ser dummy count to a high 
number 

HRlOO Take (100 + k) 
El If number is pos., jump out 

of the cycle II + 1 If number is neg., count and 
repe>< 

->-Q2 etc. 

The place where a series of numbers is Starting 
in the store is not always kno,vn or sometimes the 
programme must be general enough to operate on 
several different sets of numbers in different places. 
In thoc case rhe count must be given a starring 
value and counted from there onw,.ds instead of 
counting from 0 ro n. The count must run from 
a to a + n. for rhjs purpose rhc following in­
structions -are available. 

I + OOn : (o) - o 

In words: put previous (a) in safety in d and put 
11 in the count reg . . 

[n the same way the corresponding-otder exists: 

1 -oOn : (a)-<l 

These orders are sufficient for serting the count 
itself, but they do nothing to the count limit or 
the loop return. Therefore a prepare instr. must 

follow. This prepores the count limit, puts (a) - <I 
and makes (a) = O. Now the following instr. puts 
the count in a. 

Z20 : (a) + (3) ~a (a) + (6) + (e) - c, 
loop return - 0 The instruction must 
immediately follow the prepare instruc­
tion to which it belongs. 

As will be seen from the description the sum of 
a 2nd o is put in a . But after a preparation of a 
count a is cleared. Hence it simply means that 
(<l) - a and (6) + (t) - t . 

Example: Form sum of consecutive numb<!rs 

11 - l 

s - _E 11~ where tt0 is concnined in a 

k=O 
location of which the oddress is given 
in J. /1 is given in 2. 

1t- l 

Hence we c•n write s = J; (m + k) 

k = O 

'---

at = ( 111 + k), ( I ) = m 
k. = running count, 11. = count l imit 

- 001 
- 02 

Z20 

AR 
+ 1 

Ill - a 
111. -6 0- a 1i.- t 

rct. instr. -- fJ 

·m+o-a m+ 11 -c 
rec. instr. - 8 

l 1111 
2 n 

Executed as Am + k. Add term at 
Count 

Remark rhat rhe loop is not closed to 220 but to 
the instr. following Z20, because the loner has set 
a new return instr. For the above mencioned pur­
pose Z20 muse follow the - o order. 

There is one exception to chis rule. A jump X m:ay 
be between the - 0 •nd the Z20. It will only be used 
for programming tricks and normal progranlmes should 
never devi;ite fcom the rule. 

1'herc is another application of Z20. 1t ;idds (a) to 
{ o) and placos the result in <I· The addition is • fixed 
point ;algebraic :i.ddition of tv.•o integers. By its use 
something cln be added to a. 

Ex1mplc: Add ( n ) 

1

-0011 {a) 
Z20 (a) 

to a 

- o I {11) + ! l ..... a 
+ (11 ) - a 

The operation on i m;ikes no sense in this case, as 
Z2 0 is not given immedi;;i.tely after :a + 0 or - 0. 
Register € i~ destroyed in thi$ c"mplc •s well » 8. 

47 



DEEL IX No. 2 
H.ET PTT-BEDRl]F AUGUSTUS 19S9 

f the applications of this f:acility i.s to recover 
Oneo dd · h Lo · · . for CX\lmplc nee e \V1t an 1n.strucuon, 

(o) , ash" ~ount of numbers read muse be counted. 
v.•hen t c "'" 

o ead :a n unkno"'" ;amount of oumbers into 
Example: "' Tb f b location 100, 101 e.tc. e ;Jmount o num ers 

re1d muse be put in a. 

+oO Clear a beforehand. le can not be done 
:aftct\V"J.rds :as in th;at case fl, "'·ill be lost 

LO 1 oo Read • series of numbers in I 00, IO I etc. 
Count i.n ~ 

z 20 (b) + 0 - a 

"-'C sh1 11 sec how v.•e c.a n ph~cc (a) in thC': 
Lat<r on Id h b k · The count of LO cou not :ave ecn . ept 

~tor'c 2 Sh"'1"· •se it could ne\•er ha\•e been a rel:acive instr. 
1n '1 ot . erw 1 

itself. 
With the orders + 00 a~d - 00 we are now 

bl 
~akc the preparation for ZJO, and the 

a e to ... . f 
. . in fi:<ed poanr orm. 

pr1nnng · 

E I . Print ( A) with sign, 2 digits before •nd 
xomp • · . 

5 ofter the point 

+ 002 
+ oos 
Z30 

-
ZJ I 

Set up pattern 

orher i11scr. 

Prine ( /\ ) accord ing to p.rtern, 
previously set up. 

Example: Print (i\} in integer form wit hout sign 
in 4 digits. Suppose ( 10) = - 4. 

_ 00 Io } Prepare pattern co 4 digits before 
+ 00 and 0 digits after the points. No 
Z30 sign. (<l) = - 4 (<>) = 0 

Thr P-cou11t 
0 casionall)' the p-count has been mentioned 

l cdy in the text. It is •pplied in the double 
a re• I · h' h · countS, coun ting eye es, w i t 1n other coun~1ng 

cycles ond in doing two count~ ~~ t e sabme come. 
Th. sinlplcst case is a count w it 1n a not _ er count. 

Su :se we ,v3nc co produce a r:iblc consis ting of 
,/6iocks of S lines eoch. Every time the line count 

h- •ched 5 the block count must be increased. 
as rc. ' . h b d 

Th is only one count register t at can e teste 
ere 1· · d h · H for re:aching the cou.nt. im1t 3n t at is a. _ e11ce 

for doing counts wJth1n ~ou ncs, the outer count 

be Saved before the inner count can use t he niusc . 
same 1-cgisrer. For th:it purpose there exist rhe 
following instr. 

48 

U011: Savecounc in 11. (a) - /J and- exponent 
part of '" (P) --> a. (8) and (t) packed 
together ~ m antissa of 11. 

HO" : Restore couot from 11. (a) - (J, exponent 
(n ) - <>, mantissa (n) unpacked -+ 8 
and e. 

Together with storing the three components of 
a count, olso Cl and P ore in terchonged. The use of 
this wUl be clear from the ex•mples. 

Example : Make coun<s for 20 blocks of S lines 

+ 020 Prepue ou ter count to 20 

uoz 
+ 0 5 

l Other instr. in outer cycle 

Save outer count ln 2 
Prepare inner counc to 5 

I·-· 
Z9 Corr. ret., line feed 
+ l Count inner cycle 
Z9 Give extra c:a..rr. ret., 

line feed per block 
H02 .Bring bock oucer count in a 

} Other inst r. in outer cycle 

+ I Coun t outer cycle 

As the ourer count is not only saved in 11, but 
also put in P. it can be used for t he process in the 
inner cycle by t he following rel21ive instruction . 

I AAAn = A1t + (/3) I An instruction wit h RR 

will be executed os hnving •n •ddress 11 + (/J) . 

I ARRRn = An + (!l) + (/1) I The same, but 

then with •n •ddress " + (a) + (P) . R.R and 
RRR can be attached to instructions of t he fol­
lowing types : H, A, S, U, T, V, N , K, VO, NO, D, 
L, LO, P, PO. They can not be used after X, XO, E 
or EO, except XRR which exists. 

In the case of XRp, XORp, ERp or EORp che 
meaning is th or the location used is (a) places ofter 
the location labelled p. XRRp is jumping (P) places 
beyond label p. 



DEEL IX No. 2 HET PTT-BEORIJF AUGUSTUS " " 

Tht spcci;:il irutructions XRRRO :ind - R.R have :i 

completely different me•ning. 

Examples of RR and RRR will be gi\'en in t he 
matrix programme. The order in which the address, 
che R's and che O's are given, is irrelevant, provided 
that the O's are preceding the address. 

For exomple: 

lRROZ I = LORR21 = l021RR = lR02 IR = 
= LOR2 IR = lORlRI etc. 

Another use of the P-counr is doing a simul­
taneous count. W c chen need ~ separate increment 
for t he P-count. As can be seen from the description 
of the count instruction + and -, {J is counted 
with (y) . The increment r can be set with the 
instructions: 

+ OOOn ,. -+ y Set i' to 11 

- 0001' [(11) + §)-+~ Set / to(n) 

Example: 

Form the scalar product of two vectors•• and b, 
of 11 elements. The clements of both vectors will be 
placed in consecutive locations, vecror a,,. starting in 
a location of which t he 2ddress is given in 2, vector 
b. Starting in a location of which the address is 
given in 3. n is given in I. 

\V/ e muse form 

P= 

[ 

11-I 

E 
k. = 0 

T 
-oo; 
uo 

-002 
+ 0001 

-01 

Z20 

KR 

VRR 

+ 1 

i 

11- 1 

•• b. = E (p + k.) . (q + k.) 

k. = 0 

Cle2r acc. beforehand 
q- a 2 
T ransfcr q - {J. 3 
Otherwise UO is a 
dun1my save lnsrr. 
p - o. Still (/1) = q 
Ser incremenc r of p + ~ 
/J-count to I 

2 Prep2re count to "· P + 
p- o o-o ,.~. 
P + k. -o 
p + 11 ~ < where 
k. =O( l)n- 1 

Take •• from p + k. 
according co a count 

q 
q+t 

" p 
q 

a• 
a, 
etc. 

b. 
b, 
etc. 

Multiply with b. from q + k 
•ccording co /J count 
Count (a) + l - a . (ii) + I-+ {J. 
Test if count is ready 
( II) = p =~ Dk . bo 

\V/hen che location of the vectors would hove 
been fixed, everything would have been much 
simpler, but the unknown locations make rwo 
counts necessary. 
Example: Take from a series of numbers •• all 
positive numbers bm and place them in consecutive 
locations. The initi:i.l address of • • will be in 2. The 
initial address of bm will be in 3. The cycle must be 
stopped when 11 items b .• have been reached. 

+0001 
-002 
uo 
-003 
-01 } 
Zzo 

r[ f'- ~ 
IQ, :~ 

Sec increment y to l t 11 

a~a 2 a 
Interchange(« )lnd (/J) 3 b 
b- o a -{J 

Prepare count for bm to " 

Take••= (a+ k.J (/J) = a+ k 
[f «• is p-0s., go to 2 

If neg., count in {J but not in o 
If pos .• store aA; as bm in 
"' (« ) = b + "' 
Count in i;i and in P with l. 
\V/hen a is counted n times, 
leave process. 

Example: Now the same problem, but with a 
counting cycle that stops when 11 items 
of • • have been proc.essed. 

-003 
uo 
-002 a-+ a b _,,. /] 
-01 Prepare for "• co JI 

z20 

1 
HR T ake•• = (a + k.) 

(a) =II + k 
E2 Test a, 

.. - - - -
+ 000 If neg., make (y) = 0 
+ 1 Count with I in a and 0 in fJ 
x; If re2dy: jump to 3 

Q2 + 0001 If pos., make ( y) -
URR Store bM b + 111 

(/J) = b + "' 
+ 1 Count 

Q3 etc. 

Not only C:l 1'\ arithmetic instrucclons be made 
relative co cou11 cs buc :tlso jumps can be made 
relative, which is done to make so-called multiple 
switch.es. Depending on the contents of a a jump 
of the form XRp Cln be made to jump co location 
P+ so many places more as (a) indicates. Often • 
rehcive jump is used to advant.age at the beginning 
of • programme. 

49 



DEEL IX No. 2 HET PTT-BEDRIJF AUGUSTUS 19!? 

Ql 

Qa 

Qb 

y 

+ 00 
z 

XRl 
Xa 

Xb 1 
1_X'-J 

etc. i 

Clear a beforehand 
Stop. Wait for dialling. 
Dialled number is placed in a 
Moke relative jump co l etc. 
Jump co a when 0 is dialled 
or when nothing is dialled 
buc che surt key pressed. 
Thar is che reason why a had 
co be de.red 

Jump to b when l is dialled 

Jump to c when 2 is djoUed 

Part a of programme 

P>rc b of programme 

Tests c;in also be made relative. In clSe they fail 
co jump, t he next instruction is coken. Only when 
they are successful they make a rebtive jump. 
Notice choc only a single R can be used with XO, 
E, EO, and a single and double R with X. 

On the instr. U0 11 :.nd HOn thl! count is put into 
safety ;tnd r«roccd. Something "'·ill be s:a id about the 
way the three components are stored ln the respective 
registe.rs. 

E2ch floating numbtr has '1 !epat.atc register in the 
machine for the mantissa :ind for the exponent. Although 
the exponen t is not printed in more th":ln 3 decim:al digits, 
it is stored in the m:achinc in :abou t 9 digits. The 
m:ant.Us:a occupies a full register. On storing a count "-1ith 
U011 the ldd.te.ss part of the return jump is ret-:iined 
(it is in :.tn}' case ctrtJin that a jump is me1nt) . This 
le:i.ves enough roo1n for scoring the count Jlmit (t) in 
the same register, but an upper Umlt is imposed upon 
the capacit}' of the count lin'lit lo that case. The count 
limic m:ay not exceed 109• This is pr:actically never 
the C.J SC. 

The packed return ,ddress + count lin'lit lre stored 
in the m1ntin2 pare of a locacion. The count (a) is 
stored in rhe exponent pare of the same register. The 
a h'ls the complete c:<poncnt :ivai111blc. 

lotcrn•ll)' ~u count.I arc kept in 4-fold. This is of no 
concern to the progr2mmer except in the case of storing 
counts, where it must be clearly remembered th;ic ;ilso 
this 4-fold will be put inco che exponent. 

Ex1mplc: (a) = 3, then 3.!ter storing ~·ith U0 11 the 
contents of 11 will have ln exponent pa.re of 
" x ; = 12. 

Later on we sh;ill see some .special :applic:i.cion.s for 
separating :a number into lts m:incissa ;tnd exponent by 
using the HOn ;ind UO,, instructions for this purpose. 
Sometimes it c:i.n be troublesome to ha.,•e che -l fold in 
che exponent mnd therefore a spcci:al instruccio11 exists: 

TRRO : a (a) - a 

This instruction is on_ly to be used bcfor~ UOn and it 
en•bles us co make re11ly (a) into the exponent of a 
number. 

In connection with this it muse be remembered th:ac 
c:a.lcu1.acions on the e:<ponent.s c.in be done with DOn 11nd 
DOOOOO>t. 

Ex1mplc: Rud floating number from dill by dialling 
firsc the mantissa and tbtn the exponent. 
Z7 indicat.es the sign 0£ manciss'3. 
Exponenc 1lw•ys pos. 

z 
- RR 
fl 
Z7 
+ o 
Z21 
DOOOOO 

z 
TRRO 
uo 
DO 
u 

Dial digits o f nl:antissa, 
caken as integer 
Store this in 0 
~1:anti.s.sa - A 
Supply mantissa with sign 

Rt'moYe c.:<pontnt p1rt, leaving dij!'its 
of mantissa behind the poinc 

~fake ! (a) 
Store this as exponent p2rt in 0 
Supply nl:antissa \vith exponent 
Store number in 0 

The insrruccion - 0011 transforms ( 11) into a 
fixed point number by caking [ ( 11) + ~ J and it 
places this in "· Often chc reverse process will be 
required and a special instruction exiscs for this 
action: 

- RRn. Make (a) floating and place this in 11 

The RR has nothing to do with rebtive in­
structions, as R's cannot be used with counting 
inscructlon. 

One of the most imponanc applicotions of this 
inst1·uction is che produccion of an a rgument from 
che count. Suppose choc a table of a certain function 
y = f(x) must be calculated for x = 0(0.03)3 
(,..: running from 0 to ; with incremencs of o.o; ). 
The argument .>: mig ht of course be calculated b)' 
adding 0.0) to che previous x in each cycle. But 
in that case an intolerably large accumulation of 
errors would occur, because 0.0} is not an exacc 
number buc • recurrent fraccion of a precision of 
about 9 decimal.s ( internally rhe machine works in 
rhe binary system ) . Moreover the prinlcd a rgument 
•virh ~n error growing gradually larger and brger 
depending on whether 0.0} is rcprc.s<nced by • 
number which is a little bit coo large or roo small, 
will produce unsightly cables. This can be prevenced 
by calculating the argument from che count by 
- RR. As t he count is kept as an integer which 
always is an exact number, cherc will be no 
accumulation of error in tMs case. 



DE£L IX No. 2 HET PTT ·BEORIJF AUGUSTUS 1'!' 

Example: Make a table with argument 
x = 0(0.03 p. 
There are I 0 I item.s to be printed. 
Suppose (I) = 0.03 . 

+ 0101 Prepare count to 101 
- AA Put the count k in 0 k = O ( I} I 0 I 
H Take k •s floating numbu in A 
VI Form x = O.OJ k x = 0 (0.03)3 
U Store .Y in 0 

_ __ } C•lcubte /(x) etc. 

Anochcr 1pplic1tion ls the separacion of m1ntissa 2nd 
e:<pontnt 0£ :a number. 

Example: (2) = a X 10•. Put a in l 2S a flo•ting 
number :and puc b in 4 ~ a flo;acing number 

H2 Take• X 10• 
D000002 Suber.ct b from exponent (divide 

UJ 
Hz 
Do2 
u 
Do 
u 
HO 

through IO') le.ving a X 10' 
Store a ....:.. ) 

} Double exponent 

Store number with zb in 0 
form numbtr with exponent 4b 
Score a X to'' 
Take a X I o~6 in counc registers as 
if it were a count. Then b ~ a 
(Re1nember that counts are ktpt in 
4-fold ) 

- RR4 Score b floating - 4 

A similar sort of oper.-.cion i.s the sep;iracion of chc 
integer plrt and fraccion1l pare of a number. 

Ex;implt: (2) = a = x,y Put x in .l, )' in 4 

H2 Take x,y - A 
- 002 Put .\." in a 
- RRJ Store .< in J 
Sl Subtract A' from x,y lttving O,y 
U -f Scott chit in 4 

le mu$t be rt1li$td th:ic nO\V )1 has not nccess:aril)' the 
sign oC x. bec:au.st - 002 took c.hc nearest intcg,er 
value to che number x,y. E.g. 4.7 \\•·ill be split up in to 
+ 5 and -0.}. To prevent this, ~ mun be first sub­
crocted before •pplying - 00. 

A single instruction belonging to che fami ly 
o f counting instructions still remains to be 
mentioned. le h •s appeared already that of the 
three components of a count, the count limit and 
the count itself can be set independentl y. The order 
+ 0 (- 0) sets the count limit and + 00 (-00) 
c1n separately sec the count. Z20 can add something 
co the count. On1y chc loop return instruction is 
•lways coupled to setting t he count limit or Z20. 
In some applications it is necessary to set t he loop 
return instruction independently of setting the 
count. 

XRRROp Jump to lobe! p and put 1 jump, 
the loop return instruction, to 
the next instruction, in 0. 

A characteristic example of application is the 
case where the first few cycles and the last few 
cycles of a loop process ore different from the 
ge.neral cycle. Suppose a loop must be done n times, 
where the first two and the last two cycles are 
different. 

(5} = tt - 2 

[ 

- 05 Prepare count to 11-2 times 

} Instr. of the first different process 

XRRR02 Jump to the count in.str. A s count 
is not yet ready, it returns to the 
next instr. 

} 
Instr. of the second different 
process 

XRRR02 Jump to t he count instr., count 
:and return to the next instr. 

} Ins er. of the main c ycle 

+ l Count 

} 

Instr. of the penultim•te different 
process 

XRRR02 Count. A s count is finished on 
leaving the main cycle, (a):? (t} 
on this occasion and instr. returns 
on next one 

} Instr. of last process 

XMR02 \Vhcn necessary the count can sti ll 
be augmented 

etc. 

Sometimes XRRR.Op is useful as a jump to a 
sub- routine. \Vhen no count has to be kept and 
the sub-routine itself does not use 0, the jump 
XAARO[J will remember the return co the moin 
progrommc in Q, The sub- routine can return with 
a count order. It does not matter how much it 
count5, provided t hat the count is not just finished. 
In thoc case the insrr. following the + would be 
executed. In general (a) and (e} will scill contain 
the variables of the last finished count and a + l 
order will certainly return to the main programme. 

5 I 



DEEL fX ~o. 2 HET Yl"T ·BEDRIJF Al.iGUSTUS ltU 

An ~'<llARO order does not destroy the return instr. 
in r. He.nee it c:in be used ;1,s one of the very fc.;v types 
o( ord•rs "·hich may s<0nd bc«ve<n >n Xp and the 
cormponding QpXOq. 

xn. Tl~IES OF EXECUTION 

Until nov.• we h2ve not spoktn 2bout the times 
of execution of • programme in simple code. Very 
simple rules can be given. 

For input of programme upcs and number tapes: 
I 0 ms per symbol + 20 ms per complete 
instr. or nun\bcr. 

' For execution of programmes: 
30 nu per executed instruction. 

For ouq>ut of results: 
On punch: 20 ms per symbol 

per number. 
On printer: 150 111s per symbol 

per numbcr. 

+ 30 111$ 

+ 30 1111 

Thos< rules have bttn <sublished by 3\'eraging 
the ro•I operation times over • great number of 
programmes for practicol problems. 

For those who wish to make • more precise 
calculation of times a d<tailcd list wi ll be given 
below. All v• lues will be rounded to an inregcr 
number of 111s, as all times 2rc 2verages. The ex::ict 
operation time of an order depends on iu e:uct 
location in the programme 2nd on the location of 
th< operand used. 

Arithmetic instructlons: 

ff 
A nnd S 

u 
T 
V and N 
D 
K 
V 2f«r K, 
N after K, 
VO and No 
DO and 000000 

S2 

20 ?fl,$ 

40 ms (25 ms when one of the 
terms is < 10 -• X the other 
term ) 
20 lllS 

22 lllS 

;s lllS 

SS lllS 

: 20 111$ 

:}16 111 s + time of A 

20 Ill .Ii 

Control instructions: 

x 
E •nd Eo 
XO 

I } ms 
I J ms 
21 I/IS 

Input and output instructions ace completely 
determined by the times of the tape r<ader, punch 
and printer. 

The tape reader relds I 00 chu•cters/ sec. 
The punch punches SO characters/ sec. 
The printer prinu 7 characters 'sec. 

Land LO : JO 'lllS + I 0 ms per character 
P } 0 nis .J.. I S 0 111 s per character 
PO >O ms + 20 ms per cbaract<r 

Count irutruccions: 

+ 
+ o 
+ oo 
+ 000 

zzo 
uo 
HO 
- RR 

ls ms when count is not ready; 
23 111S when re•dy 
IS lllS 

16 1115 

14 lllS 

All instr. cake 16 ms longer than cbe 
corresponding + instr. for t he first cwo 
digiu of { 11 ). When ( 11 ) > 100 10 ms 
for e.ch two digiu more. 
16 ms 
2S »IS 

24 ms 
4 S ms for counts of 0 or I digit, JO ms 
for <•ch digit more. This is a very time­
consu.ming instruction. 

Relati,·e in.scructions: 

z 
ZI 
Z2 
Zl 
Z4 
ZS 
Z6 
Z7 

} 

ZS, Z22 
Z9 
Z IO 

With H , A, S, K , V, N, VO, NO, D, P, PO 
the firsc R ukes 7 ms o,·er the normal 
operation time. The second and third JI, 
each take 0.6 ms more. 
With the instructionJ U, T, -, X, XO, E., 
EO, L, LO eoch R, •lso the first one, ukes 
0.6 ms. 

\'Vhen dialling, the diol waits for I.! s. 
after the last digit before starting action 

80 ms 
120 ms 
120 ms 

I 00 ms 

130 ms 
1 S ms 

Same •s P and PO 
470 ms 
I 00 'I/IS 



DEEL IX No. 2 H!T PTT-BEDRJJF AUGUSTUS m? 

Zl I 

I z12 
Not exactly determined, Z IJ 

Zl4 
but aU between 200 ms and 500 ·ms 

Z l 5 
ZI6 28 'I/IS 

Zl7 19 lllS 

Z L8 17 1111 

Z21 14 11/S 

Z23 80 111$ 

Z24 30 ms + 10 ms X exponent of 
resulting number 

Z25 Not yet known 
Z26 Same •s P or PO 
Z27 l 5 UI S 

Z28 45 lllS 

Z29 so I/IS + 20 'lllS per character 
ZJO H 111S 

Zll so ms + IS 0 ms per character 

Xlll. THF. POINT FACILITY' ANO SUB-ROUTINES 
IN SIMPLE CODE 

ln rx the baste meaning of :attaching ;a point :tftcr 
:in :address in the number store has been treated 2lready. 

A point written behind a number address changes 
chis :addrt.ss to che corresponding one in the in· 
srruction score. 

One of che wes of this f:aciility ls che :icc:es$ co che 
instruction score for numbers (with the dr:11wb:u:k chat 
:an absolute nun1bering system is now employed). With 
the input indicltion Y011 it ¥.·as :already pos.sible to 
St:ltt input of instructions ;ic :address 11 of the number 
store. And with Y011· lt is possible to .start input of 
Lnstrucrions ioto the instruction srore Jt the J:bsoluce 
address ,,. ins teJ.d of consecutively from the beginning. 

This point may onl)' be attached to genuine number 
addresses, not co l:ibels . Hence <to Xp·, Yp·, Zn· may 
never appe1r. Although the address in Zn is treated as 
a number address on input, it is interpreted completely 
different on execut ion. 

Fot multiple points and poin[S after some + in­
stn.u;cio11s see ap~ndix 1. 

Especially for self.concajncd sub· toutlncs :ind easy 
;assignment of space for working rcgl.scecs or consca.nts 
::a more el1bor:ite f1cility is pro\'idi!d :tfter point. 

:\n jnstruction of the form An· p ""ith 2 nu.n'lber 
:a.ddccs..s, a point and a.ftcr the point a lialxl has che 
follov.1ing meaning: 

J1n·P ls an i"nstruccion applying to .i loc:acion lying 
11 pllcc$ aft~t the loc:.ttion to 't!.•hich l:ibcl p has been 
given. Label Jt must h:.vc been :i.s.signed alrc:i.dy before 
using it wirh 11· p 

Suppose t.h:at we ~·:ant to wrice :a sub·routine for 
determining y = a, x• + a, x' + a: x' + a1 ;( + a0 , 

whcrcjn the tocfficicnt.s h:ave a definite ":aluc. We v;•ant 
to m:1kc chis sub·roucinc cornpletely self-contained and 
general. T har mc;ins that we must be able co place it 
anywhere in the store and th:i.t -;i_ll working registers :a.nd 
const:ints .ire cont:alned within the sub.routine. 

To en:iblc the programmer co jump to the sub-routine 
it 1nust be glve1'l 1 l~bc1. This cannot be a fixed number 
bcc.:iusc possibly another .sub-routine uses the same label. 
H'encc rhc l.1bcl by which it is called in, must be given 
externally before the sub- ro\1tinc t.lpc i$ run in. O n the 
ocher hand the coJing wii:hio th~ sub .. routinc itself must 
be done with a fixed l.tbcl. otherwise son1c instructions 
" 'ould have :a fornt dependent upon rhe externally given 
label. 

The way out ls to give lntero:illy a l:ibel to the 
beginning (t1su11ly > low l•bel), to let everything within 
the .sub-routine be addressed relative to the label v.·ith 
11• p lnd to cle:1r the in(<:rnal l:abel (s) at the end of the 
sub·routjnc cape. This m'1kcs the following convention 
necessary. 

\Vhen .i progr'1mn1e contiins 2 few sub ... routlnes they 
must be run in before the rn2io programme, so th::i.c 
chey c ao use a nd c lc:.1I l;tbcls, l.itc:r used in the n'lain 
programme. Only l>be1' 2-9 shall be employed for 
chis purpose. 

l 

Ex:a.mple: ~lake. :i sub-routine for ) ' = J; ...... 

(O· 2 J 
( l · 2) 
( 2· 2) 
( l · 2 J 
{4· 2) 
( S· 2) 
{ 6· 2) 
{7· 2) 
( S· 2) 
( 9· 2) 

( 10· 2) 
(11·2) 
( 12 · 2) 
( i; . 2) 
( 14· 2) 

Qp 

" = 0 
x i>.'ill be taken co che sub-routine in A. 
y is c:i rried btlck in A. 

External label tO be written 
by the user for every specific 
occasion 

--+-----
XOJ lnrern>lly used bbd Q2 

QJ 

US· 2 Place tetu.rn instr. in 3 
H9· 2 
+ Ol 
VS· 2 
ARIO· 2 
+ 1 
z 
z 
K a :1 

•• ., 
Return co 1n3in ptogramn1e 
Loc-ation for variable x 
St.art reading constants in ?· 2 
etc. 

a1 Con.st:an ts pl2ccd in 9· 2 tO 
., 14· z 
•• 
Y End symbol to stop reading 

Q02 QOJ 
A"" .,-

cons cants 
Cle>r bbcb 2 ond ; 
~1l:i.ke break point !or enabling 
copying with blank bct\veen 
$tctions. 



DEEL IX No. 2 HET PTT-BEDRl]F AUGUSTUS "" 

The make up of ;a complete programme needing t\VO 

of this sort of sub-routinc.s could be as follows: 

QI 

Q2 

y 
YOJ 
K-

y 
YO· 

XI 

Q IO A# 
(blank) 

1st subr. 

Ql l A :f;; 

2nd •ubr. 

XIO 

XI I 
YI YOO 

Smt input and clur labels 

} 

Con.sc:anu for m:iin pro­
g:r.imme re2d into S etc. 

Clos-ing Y of series of n umbe:cs 
St:irt putting in instruction 
No l3bels :.Jre c(t'lted " chis is 
not neces.s:a r-y 
Entr:ance point of progr-amme 
is chosen at the beginning of 
the 1.nstr. store to m:ake rc­
st:irting from 2 cle:a.red st-0p 
possible with U 6 = I 2nd 
St2rt. Jump co QI 
Assign l•bel IO to first sub­
routine and m2ke breakpoint 
with blanks for easy copying 
ln t.hc sub-roucjne tape 

First sub-routine copied in. 
Completely self-concained. 
Only labelled I 0 exc<rn•lly. 
Hence main·routine c2n c:ill 
it in by XIO 
Auign l>b<l 11 to second sub­
routine 
Second sub-routine ean be 
c•lled in with X 11 

l nscructions of cnJin pro­
gramme. Entt'3.nce is labelled 
QI, whereby Q2 •nd other 
low numbered labels t;:in b~ 

u5ed freely 

Sub-routine$ l and 2 ore called 
in by XIO and XI l 

Stare execution of m.3.io pro­
gr:.amme ac che beginning 

In rhe previous cx:amplc of maki.ng a gener<'l sub­
routlne it :ippe;ared thac the programmer h;id co coun t rho: 
number of instructions of che sub~ routinc co be able to 
determine the pl:aces for the const3nts and working 
register. 

With :i somewhat different 2rr.:ingemcnt chis could 
have been prcventt"d at the cost of one more instr. in 
the following way: 

(O· 2) Q2 
(I.- 2 ) 
( 2- 2) 
(} · 2) 
( 4· 2) 
( J- 2) 
(6· 2) 
(7· 2) 

QJ 

XRRROJ 
z 

Jump over che const,nt.s 
Keep free working sp•c< 

Ka, 
a, 
a, 
a, 
a, 

•• 

I ~ ...... 
y 

X04 
UI· 2 
HZ· 2 

C losing Y 

+ Oi Programme 
VI· 2 
ARl·2 
+ 1 

Q4 z 
Q02 QOJ Q04 C lcu labels 2, J and 4 

A# 

A fine ex4lm~e of the application of sub .. rout:i.nes of 
the general type is the use of them for calculation with 
complex quantities. Suppose we \!.':ant to make .sub· 
routines for the cornplex equivi.lents of the! orders- 1-1, 
A, S, U, T, V, N and D. The sub-routines will be given 
a fixed hbel for each type of operotion to be c .. Ued in. 
The address will be g iven in a . 

Thus + 0011 XIO will be the complc~ equivalent of 
H n. Alchough being t\\'O inscruccion5, they can be re­
garded as :a $ingle insuuction 'O>•ith an address part of 
the forni + OOn and an operation part of rhe fornt 
Xl 0. The real :and the imagin:ary components arc 
suppOScd to be :1h,•ays in t\VO t;Onsccutive locations o f 
which the address of t he first will be the ",ddrcss" of 
the complex "loc01rion-''. 

T he ocher operations will be denoted by: 

+ OOn X I l is cquivllcnt to An There will be • spe-
+ OOn XIZ 

" " " 
Sn ci"'I "complex accu-

+ OOn Xll 
" " " 

Un mul:icor" inside the 
+ OOn X l 4 .. .. Tn sub-routi.o.es with 
+ OOn XI J 

" .. " 
V11 :lddrcss L· LO 1nd also 

+ OOn Xt6 .. 
" " 

'l\'·n 2 const2nt I + O· I 
+ 0011 X17 ,. .. Dn tn l· I 0 

For the oper:1.tions KnVn: and KnNtt1 we can prcfer­
:ibly adopt 'l two :iddress code 

+ 0011 + 001u. X LS is equivalent co K'll-Vr1' 
+ 0011 + 001n X t9 " ,, ,. KnNn1 

All ocher oper2tioos c:1n be e.ffected in the norm.ii 
Si1nple Code. Of course it is not necess:iry co prepare 
t he 2ddress in a with a + 00 i;l:i;truction, for a relative 
instruction con be rc;i.lised as well, while the: count is 
kept in (l, Or prcpar:acion to :a varl:able address c:in be 
c((ccccd with - OOn etc. 

Sub-roucioes have been made fo.r all nornlotl funccions 
of t;Omp1ex v:idJb)es buc. they will not be trearcd here. 



DEEi. IX No. 2 

Q IO 
_Qz 

(I· 2) 
(2 · 2) 

P· 2) 
(4·2 ) 

Q; 
__ ,..Qo ) 

Q4 
QJ 

QI 
Q7 

I 

Q12 
QS 

Qll 

Q! 

QOl 
Qi4 

Qll 

Q6 

Qs 

XRRRO 

YOJ· 2 
K+I 
+o 
y 
Y07· 2 

XOJ 
HR 
UI· 2 
HRI 
U2· 2 
z 
xo; 
Hl·2 
AR 
U!·2 
H2·2 
ARI 
X4 

Xol 
HI· 2 
SR 
UI· 2 
H2·2 
SRI 
X4 

XOl 
HI· 2 
UR 
H2·2 
URI 
z 

XOJ 
Xll 

H4·2 
VI· 2 
X4 

XOl 
H1· 2 
VR 
K2·2 
NRI 
Ul· 2 
H1·2 
VRI 
Kl· 2 
VR 
Ul· 2 
H!· 2 
U1·2 
z 

liET PTT· BEDl\IJF 

J Jump to 3 over working reg· 

} 
Complex :accurnul:a.tor 

} Coruunt I + O· i 

} 
Keep l· 2 ond 6· 2 fn-e for working 
space 
Llbcl ; i$ issued, clelred and issued 
again. St;ore return 

} 
Ph1cc real part of Joc.irlon 
spccl£icd in a - I· 2 

} 
Pllcc i_mlgin1ry p:irt 
- 2· 2 
Return 

Place return instr. 
Add re>I part co 
Re( Ace) 

} 
Add imaginary p2rt to 
lni (Ace) 
and use piece of QI 0 programme 

Pl:u:c return instr. 

Suber. r~al p.arc Cron\ 
Re( A cc) 

} 
Suber. imaginary p:irc from 
lm ( Acc) 
and use piece of QIO programme 

Plac~ return instr. 

} Store Re(Acc) in {et) 

J Store Im ( Ace) in (a) + 
Label ! cio be clelr.d 

Store return instr. in } 
Use con1plcte Xll instr. for scoring 

} 

Fot storing 
Place 0 in Rr{Au} and 
lm(Acc) 

Store return instr. 

} 

Form 
ac-bJ 

{ A ) = a + bi 
(n) = c + di 

} Forn1 ad + be 

l 
Store this in 2· 2 2s /m (Aa) 

f Put Re( Ace) in iu place 

R.ecurn 

Q 16 

Q I7 
Q05 

Q06 
QIS 

Q19 

Ql 

Q6 

XO! 
HI· 2 
NR 
K2· 2 
VRI 
Ul· 2 
HI·2 
NRI 
K2· 2 
NR 
X6 

XO! 

HR 
VR 
VO RI 
U6· 2 
H1· 2 
VR 
K2· 2 
VRI 
D6·2 
Ul· 2 
H2· 2 
VR 
Kl· z 
NRI 
D6·2 
X6 

XOl 
Xl 

X7 

XOl 
X! 

XS 

X06 

HOJ· 2 
Z20 
HR 
VRR 
KR I 
NRRI 
U!· 2 
HR 
VRRI 
KR \ 
VRR 
U6· 2 
+ 005 · 2 

z 

P lace return instr. 

} E'orm - ac + bJ 

Place this in 5· l 

} F.orm -ad - be 

AUGUSTUS l~l9 

and (inisb -action in p;trt of sub­
routine Qtf 
Place return instr. in S 

L•bel 5 cm be dc"ed now 

} F.orm c' + ti' 
P lllc.e this in 6· 2 

I Form -·-:_+_b_a_ 
c- + "' 

1nd score chis in 5 · 2 

be - at! 
F.onn-----

c' + d' 

;and finish :iccion in QI$ progr2mmc 
l:abd 6 c:an be cleared now 
Pbce return instr. in > 
Jump to $peCial sub-routine for 
forming (11) X (m). Remark that 
label 5 must srill be issued •g2in. 
a.s the prc\'iO\JS S h25 been cleared 
Finish oprtltion in addition part 

Place recurn instr. 
Form (11 ) X (•11) 

finish o~r.ition in subtr:1ction p:1rt 

Sub-routine for (11} X (m). Pbcc 
return inscr. 

( o) - fJ O - a. (Exp of I is O!) 
( <I) - a. Hence (a) = 11 (/J) ="' 

Form Re( prod) of (11) X ( m) 

;and store this io 5 · 2 

} Form Tm (prod) 

:and score this i.11 6· 2 
Prepare now (a) = !· 2 
.Return and the :addition progr-ammc 
"'ill finish the >ddicion of !· z - 6· 2 
to the ":1cc'' 

55 



DEEL IX No. ? HET PTT-BEDRIJF AUGUSTUS 19l9 

Q02 QOJ Q04 Clnr all temporary bb<ls and 
make bre>kpoint in tape 

QoS Q06 Q07 
QOS A# 

\'Uith the h.elp of this general suberOutine optr:arions on 
complex numbers can be effected 'vi ch 1 coding :as 
simple as foe real numbers, but the operation time i$ 
considerably longer. 

Ex:tmple: Rc~d Z11 Z, from t:ape and calculate 
z, - z, 

Z, + Z, 
(Z , and z, arc complex numbers) 

y 

QI 

X l Jump co main progr:tnlme 
A # Make brukpoint 

Complex 
sub-r.outinc 

z 
LOZ 

Stop 
Re;ad Z1 and Z: in 1'2° and u4" 
resp. (in reality Re (Z,) _,. 2, 
lm (Z,) - J, Re (Z,) - -1, 
lm(Z,) - 5. 
T:akc Z1 

Add Z, 
Store Z, + z, in O 
Take Z, 
Subtract Z2 
Divide by Z, + Z, 

} Print Re ( Acc) and lm ( Acc) 

+ 002 XIO 
+ 004 X II 
+ 00 XU 
+ 002 XIO 
+ oo~ x12 
+ oo X17 
Pl· 10 
P2· JO 
Z9 
XI 

YIYOO 

Carr. rec., line feed 
Return co Start of programme for 
next p.1rt of Z 
Stare execucing of programme 

~J'he l:abels after point h:ave 101netinles another \1$Cful 
'.lpplic1cion. \'X1hen a large programme is n11dt, several 
sets of \vorking registers 2nd sets of constants Jte used. 
lt is not 2lw:iys known in 3dv:ancc ho\v m:any '"orking 
registers '"ill be nc.eded in a set, when the progr1rnmer 
,sr;trl'S writing the progr'<lmmc.". Therefore it is .,.ery 
convenient to assign 2 label to the beginning of a set 
ol working regiscer.s 2nd number from there onwards 
with •n addxess followed by this I.be!. 

E»mplc: 
Suppose chere ~re three ~t$ of working l'egi.sters, one 

for the incident:al inurmedi:atc results, ont for 11 ''CCtor 
:ind one sec for <l mJtrix. We sh;all denote these registers 
by n• S, n· 6 11nd 11· 1. Tbus the Jrd element of the vector 
is pl1ced in J• 6. It is not neccss2ry to know beforch.-nd 
where the libels \vill be placed ex:actly, but '"hen the 
whole progr::an1mc is finished the number of 1oc2tions 
in each set is knO\\•n. 

Suppose ic- 3ppe;irs th1c 1 S incidcnt:il \\'orking 
registers, 20 ''cct6r registers :and 400 matrix registers 
::a.re neccss:ary. Then the following prefix co the pro­
g<>mmc will •« the labels. 

y 
YOIO Ql 

YO l 5· ! Q6 

Y020· 6 Q7 

YO· 

etc. 

Clear all labels 
St:irt input 1t l 0 of number store and 
wign label 5 to d1is locnion (In hct 
input is never sc:arccd :at I 0 ) 
Start input :at l S locacions "Jfter label 
::a.nd assign label 6 co this location 
Start input at 20 loc:ations :after label 6 
and assign l:abe1 7 co this locition 
Sc:trt input of in$tructions :i.t O· in the 
normil "-':ty 

Programme cont.tins instr. nuaking refer .. 
cncc to ;. 6 

When some :alter:ation Ls m.1de, in the degree of the 
vector !or example, only the indication Y020· 6 Q7 need 
be changed and che t:.lpt CJn be run in :again. 

XIV, CUT'TING OPEN WITH THE / · FACILITY 

A somewhot more complicated programme is 
seldom compleccly correct the first time it is tried. 
We shall not discuss errors in punching the t•pe 
from the written documents. More of cen che pro­
grommer has made a slip in transcribing the formula 
into a list of inscrucrions. Some errors are :automat­
ically signollcd, as for example issuing a Qp twice or 
forgetting to give the corresponding Qp where Xp 
has been used already. Most errors ore due to mis­
take in rhoughc on the side of che programmer. 
When a progumme gives wrong results it is often 
difficult co see whac error has been made without 
knowing incer1nediate resulcs. To make intermediate 
results visible the so-called /-facility is provided. 

By placing an I after an instruction (e.g. 1120/). 
the machine can be made co cake away che instr. 
marked with 1 and co place a speci.al instr. instead. 
When the programme is working it will print our 
:1 few intermedi3te results as S<>On as it encounters 
che special instruction. It prints che >ddress of the 
location where che /-marked instruction is sunding, 
it prints the contents of A before che instruction 
is executed and ic prints ( A) after the execution 
of t he instruction. Also the machine can be made 
co print only the address. We thus say that the 
I-facility is working a.s tracer. This is very valuable 
when :Lil error is supposed to be present in che 
correct looping and flow of procedure. Acuching 
an I to an instruction is called cutting-open on 
that instruction. 



DEEL IX No. : H£T PTT0 BEDRIJF AUGUSTUS "" 
~~~~~~~~~~~~~~~-

The rules for usins I are:

I behind an instruction is disregarded completely
during input whe.n US = 0. When US = 1 oil
instr. marked with I •tc cut open.

During execution:
US = I, U4:: I, U6 = I :As soon •s an instr. mark­

ed with I is encountered
print:
Carr. ret., line feed, ad­
dress where instr. is lo­
cated in the form n or n·,
(A) before execution in
flolting fo~m. (A) 2frcr
execution in floating form
2nd carr. rec., line feed.

U6 = 0:$ame as 2bove bur only
print tracers: carr. rec.,
line feed, address of instr.

U4= 0: Do not print at 211 but
retain the / -marks on t he
instructions. Printi1'g can
be resumed by putting
U4 = 1.

US = O: Print accord ing ro U4
and U6 as above. Restore
the original instr. 2fter
printing (A) for the first
time.

As many l's m•r be attached as che score can
con'2in (cf. small print of this chapter). US
determines •vhether the I will be •ccepted during
input ond it olso determines whether I is token
owoy during execut ion.

The I must always be at the end of an in­
struction (e.g. LOR200RI but not LOR/ 200/t) . It
can be corrected oway by puning • correction
ofter I (e.g. LORR.2001 ;#:) .An I after I wil l also
be sten :ai :L correction.

There is a cla" of instructions tO which I must
be 2tuched with c;are. These >re 211 instructions
placing a return instruction, namely: Xp, XRRROp,
+ 011, - 011, Z11, Z20. When 2 simple jump Xp
(and 2lso XRRROp used as jump only) arc cut
open, then only 1he contents of A are printed before
exc:cution of the jump. There is no come back 2frer
the insiruc1ion bcc2usc ii jumps away. But when
wich Xp, XRRROp o r Ztt •sub-routine is cJllcd in,
ii comes bock •fter return from the sub-routine
ond prinis for the second rime. T his meons chat it
scill h.tS not finished the I on Xp as long •s t he
sub.routine has not returned. \Xlithin the i ll b ·

rl)utinc no ocher in.scruction n1ay be cut open.

The !la.me appha to T On pl.acing i loop rtturn.
\X'ithln the loop no in.struction Ml)' bt cut open. And
u 1hc loop returns m10y 1imts ii will prin1 (A) 1fter
the cxec-ution of + O 21.!o m~ny cimcJ. To avoid
mistakn it is better not to cut open + o,,, -Ott or Z20.

The instruction + or - is in effect a jump when
it rcrurns co the begin ning of 1he loop. In that
case I wi ll only prin1 (A) before the instruction.
The lo.st time "'hen + or - le•vcs the loop, it
will print (A) before •nd •f«r ihc instruction.

lnstruc;:tions cut open with 1 ire taken aw2y from the
pbcc wh.rc <hey belong and in that phcc 1 blocking
1n1truction of special form is pliccd. The original in·
scrucllon is placed in 1 list. The initial addrtU of th-at
lut " nomullr I 000·, phe«I thtrt by th< initid Y
follo"·«I by •n opening symbol, which tff<Cts 1.hc during
0£ the l.1Mls. All other input indicadons do not ch.toge
.ln)•thing to thr list. Evt.n temporary progrJmmcs mJf
be ~xe:cuted "O.'ithout destroying the ini truction. storing
10 the I .(Ut, provided th:it they do not uJc the fJ·count.
The store instruc.:tjon for storing /.instruction in the
/-lisr is kcpr in fl.

It is not Jlways possible to h:t\'C the list of / . in·
st ruction, sc;i rting in 1000·, e.g. chc llrogr.1n1111c: can be
too long for that. In th:at c:uc 1 sptcial input indication
c:1n b: gi vcn of the form

Y011l o:- ·y on· I : Begin to store Ii.st of / . in.strv.ccioru
:at n or n• resp.

Suc h .an indic.:.ition must alwiys be follo.,•ed by a
norm.al input ind!cation a.s, "''htn U S = 0, I would be
disrtglrd«I.

Eumplt: Sun /-list at 700 of number stort 1ns1<Jd of
at I 000·.

y

Y0700/
YO·

ARJ/

etc.

Begin input 2t 0 ;1nd stut list 2t

I 000·. Cl<ar l>bcb
Bogin /-lisr 11 700
Begin input of normal irutr. at O·.

1

lnstr. of progr.immc
ARJ is stored >t 700
I 000·.

innc::id of :it

In the libnry of sub-routines 1hcre exists• special
progrunme for introducing l's not previously
wriuen. It is a real machine code progumme which
must be run in somewhere in 1he rul siore (soy >I

•ddress 11) . Afrcr this progromme h2s been suned
.it 11 , .absolute addresses in che instructio n .store may
be: di•lled 2nd these inscr. will 1hen be provided
with on /. The use of chis I •nd its remov•l follows
chc s3me rules :i.s for a normal I.

XV. MATRIX SU8·ROUTINES

Ai illustr.itivc n1:a tcri:al ~, si:t of sub. routines for
n1:irri,.; c:1lcul:1tion Y.1ill be given. Jn ;ill these routines

S7

DEEL IX No. 2 HET PlT·BEDRIJF AUGUSTUS m9

the csscntiil difficulties lj~ io che handling of the count
instructions.

Tht s-imple.r sub.routines for reading, printing, or
tr;i;nsporcing !l m:acrix will nor be: discussed. In all
routi.ncs the matrix will be supposed t() be squ2rc and
$Cored rov.• b)1 row in consecutive loc:i'tions-. The place
of the matrix is given by the address of the first loc:icion.
The locn ion of a., is a + ni + k..

Sub-routint for pre·nt.11/tipliratiou of a rJrctor by a 111alrix

Before entering the sub-routine, the :address a of the
matrix ~·ill be given in 0, chc address b of the given
vector in I ~nd che .iddress c of the resulting vector
in 2. The degree of the matrix. is c:akcn co the sub-routine
in .11.

The oper.ttlon can be described by
11- l 0 I a

1 I ~ 2
(c+i) =: J; (a+ 11i +I:) (b + k)

k=:O i =: O(l) n-1

Qz Y020· ZQJ Assign bbel l co working rcgiste.N

Y2
XO}
Tt·;
-00
UOl·}
-002
-Oi·J}
Z20

,.---+ UOJ. 3
U02· J

+ 000 1
- 001
- 01.J }
ZlO

[KR } VRR.
+ 1

UOl·;
Ho;. J

TR
+ 1
z

ac the eod
Start input :it 2
Plice return instr.
Pl•cc degree " - l· 3. Clcu A
a - Cl

Jntcrchlngc a :and /1
c - (l (/J) = •
Prepare i-count to 11

e - a < + n ~ t rtt. instr. -- 8
Score i·counc ln 3· 3 a;;.. Cl r - ft
Tmerch20gc a and /J.
bter c + I - a • + ni - fJ
l ~ ;• :is incrcn1ent of fJ-count

b - Cl
PrcpJ.rc k-count to n

b + I: - a a + ni + k - fl
k = 0(1) 11-l
Forro (b + k.) (a + ni + k) 2nd
:tdd to sum in A
Count ~vic.h 1 in cc and jJ. When count
is rc>dy (/J) = a + 11i + n =
= a + 11 (i + 1)
lncerchange counts o + 11 (i + 1) - n
Bring back i-count c + i _. I'.'.!

a + /t (i + I) = fl
Store ;5; in c + i i = 0(I)11-I
Count i \vich J in a only = loc.cion 20· 2 = O·). Pl.1cc of
return irutr.
- I· J \vorking regi~rcr for n

2· J } \\'Otking registers
) ·) for scoring counts

Keep working reglscers free
Bre;1kpoinc for next progrlmme

Sub-rouli11r for lransposilio11 of a ,,,utrix
Th.: operation c.sn be Jes!'ribcd by

58

(• + 11i + k) - • + "" + i
>nd (• + 11/:. + i) - a + ,,; + k

fori= 1(1)11-l lt.=O(l)i-1

The <lcmcnts for which i = k. >re left undisturbed.
This is the main di2gond. In this cx•mple we h>vc an
outer count from 0 to 11 and Jn inner count with 2

number of times, equal co the outer count. By .i count­
i = J (I)n- 1 is rne2nt :i count running from 1 to n-l
\vith 1 at a time. For the limit 11- the count leaves the
loop so tb1c i = ,, is not included in the process.
11 will be give,1 in a ;;ind n in A when jun1ping to the
sub-routine.

Q2 I XRRROJ Jump over the working registers
and do not destroy {t)

QJ

Qs

_I

Q6

Q 4

Q02

Y Oi · 2

X04
-RR2·2
UI · 2
U06· 2
-O l· l
-000 1·2
XRR.R06

- RR4·2
UOS· 2
UOJ· 2

-00 2· 2
ZlO
U06· 2

-04·2
z20

HR
U6· 2
HRR
UR
H6· 2
URR
+ 1
HOJ. 2
H05· l
XS

+
z
QOJ Q04

A=

1·2 used for 11

2· 2 ~d for a
l· 2 u.scd for storlng .s + -11i couot
4· 2 u.sed for storing i, flo:ating
S • 2 used for i-count
6· 2 ~·orklng register
Leave working rcgisce.rs free 11nd
proceed input at 7· 2
Ston: rcturo iJlstr. in label 4

• - ·2·2 (al= •
,, - 1· 2

a - fl
Prepare i·c.ount co,,.

" ~ i'
Jump to count instr. :and return
wh•n not r.ady. (Cl) = i
(/J) = a + ni i = I (1) 11- I
i - 4· 2 f loating
i-count - l· 2 a + 11i- (I 1- fJ
a + 11i count -- l · 2 i - a
ti + Iii._ /1

I Add • to o count
I Thus: • + i -+ a

a + ni - a a + i - fl. Storing
in 6· 2 is not re:tlly nece$s:11:-y

}

Prep;are k.-count to i for i.nner cycle
(J = rr •+ni+k- a
a + i + 1tk.-+ fJ k. = O(l)i-1

) (a + ,,; + k) - 6· l tempomily

} (• + i + ,J,) - • + Iii + k

} Old (• + ,,; + k) -+ a + i + ,,J.
Count k with I in a, 11- in {J

" + ni - a
;.count - (.l a + 11i -- fJ
Ret·urn to beginning of outer cycle.
Counting is done by X RRR06
Count i. \\Vhcn not rc:.ldy, return;
.. ,•hen ready, proceed co next instr.
Return to m.1in programme

QOl Q06 C leor oil used labels
Break pol.nt

Sub-rouliur for lbr 11111l1iplicalio11 of tu ('> 111alricr1

/\ n1uhiplic:i,ion of t\\'O m:acrices cJn be described by
11- I

c,, = }; d jt b k)

k = O

0££1. IX No. 2 HET PTT-BEDUJF AUGUSTUS !flt

Suppose that the addreos of the first location of • ••
i1 •, the addrCM of the first locacion of che s<eond
f)ccor iJ b and the :addr(1s of the first location of
the product is c. Then we can rewrite the process 1s:

n-1

£ (• + ni + k} (b + j + nk) -+ c + ni + j

k=O
for

i = O(n}n'-n
j=O(l)11- 1

We shall suppose thac (0) = •, (I) = b, (2) = c
;ind (A) = 11 on entering the sub.routine.

Q2 XRRROJ Jump over working registers and
do not destroy r O /1

QJ

[

Q4
Q02

Y06·2

X04
Ul·Z
VI· 2
U2· 2
Z21
SI· 2
SI
s
112
r;.2
-00
-02-2
Z20
U04· 2

-001
-Ol·Z
zzo
U05·Z

I· 2 u.cd for n I b
2· 2 uu-d for n' 2 c
J· 2 used for c-•-b-n-n'
'4· 2 used for .stoting(tt+ni)counc
!· 2 wed for storing(b+i)count
L"vc working registers frtt ;and
proceed with input at 6· 2
Store return instr. in l:abel 4
,,_._ 1·2
Form 11'
,,t - 2· 2
Form - n2

l form c·•·b-n-n'

Score this - }- 2. Clcar Ace
• - a

}
Prcpire i·count to a + ni - a
i = O(n)n' - "
Score (< + 11i) count -+ 4· 2
• + 11/ - p
b - a

}
Prepare j-coune to b + j -+ a
i = O(l)n-1 (/J) =• + ni
Store (b + j) count - I· 2
• + m-o b+i - P

-0001·2 n - r
- 01· 2 I Prepare k-counc to• + ni +k- a
Z20 fb+f+nk-p k=O(l)n-1
KR } form.!' (a+ 11i+k) (b + j + nk)
VRR When chc count is ready
+ I (a)=• + ,,; + " <P> = b + i + ,,•
- 00}- 2} Add (J· 2) tO a-counc giving
Z20 (a) = c-b-11' + ni
TRR..R Store 5: in locJtion mentioned in

(a) + (p) = c + ni + j
• + ni-o H04·2

H01·2
~ I

H04·2
- 1·2
z
QoJ Q04
A -!-1-.,,.

(b + j) count - a • + ni - p
Do 1-count
(• + n/) counc - a
Do 1-count with /1 at o time
Return to mJin progrJmmc
Clcu bbds 2, } •nd 4
Bre.1kpoint

Sub-routinr for the in1.1crsion of " nralri.~

The sub-routine trc3Ccd here will be ,ble ro invcrc 1
m:atrix in the same locations ;it the matrix occupies
\\

1ithout using any working registers outside the sub­
routine. le is a itnighc forward elimination method
dtrivcd from <he Jordan process. No speci1I care has
betn t1kt.n co s1fegu1rd the progrimmc ag2inst jJI ..
conditioned or degener1te mitricf.S. In critic:1I C.1C 1

bccccr process could be d•vis<d, if for ex.ample di.
l1rgcst element of ;a row would be t.iken ;a.s pivot1I
element in the condcns-:ition.

The loc2tion of tht- f irst clement of the matrix mu.st
be given in a, the degree o(the matrix in A. The
progr:1n1n1c will return 'vith dt t [d) in the Ace.

The process used e:an be described 2.1 follows:
Be the given matrix o ~ . A sequence of inte:rmcdi~tc

m~tricct • ~ is formed. Ar l1st • ;; will be: cqu>l ro

1· ~1-•.
The pi\•otal clement of the inttrmcdi~te m.itrix .l is

called b• . The leading element o(••ch row i.s c•llcd c!.

Th~ process is:

For k = O(I) 11-I: • : .• -+ b•

For j = 0(1)11-l : aZ,1+ 1 /b1: - n ~j 1 where af,. = I

For l=k.+ I (l) n-1 •nd i = O(l)k-1 : • ;. - c:
for

for

j=0(1)~2: ·~J+• - cf o!1-• -

/·= n-1: -c • / b•- •'+' ' c.•-'

• t+i ,,

During the ouccr cycle Jrl (•I is •CCumuhccd ac­
cording co

,, _ l

tlrt (a] - /1 b•
k = O

!9

DEEL IX No. l HFT PTT·BEDU)f AUCUSTUS "''

The pro gr J.mmc no~· rads

60

Qz L2· 2
L

Q J
QOJ

y l \' 00
Y2
X RR.R.Ol

YOll· l
.\'Oi
- R{(l · l
u Jo 2
11 l· l
U I I· 2
11 l · l
S2 · 2
Tl l
\/OJ l
L'6· 2
+ uo
UOi · 2
- 001 l
-06· 2
Z2 0
+ 0 00
U06· 2
-RR7 l
U04· 2
SJ · l
US· 2
II R.
Ui· 2
VI I· 2
UI 1·2
-01· 2
Z20
HR.I
Di· 2
UR
+ 1

H2· 2
D4· 2
UR
-0001· 2
XR.RROJ

} T cmporary progr'lmme £or rcJ.ding constant 1

Execute temp-or:1ry progr:amm;i :and re~d l - 2· 2
St"2rt again a[l21bel 2
Jump over working regin~rs and do not destroy (t)

(1· 2) U$CJ fot• a
(2· l) = I
(3· 2) uS<d for "

(4· 2) b, = • ~ .•
(S·2) 11-I
(6· 2) n'. bt<r (• + nk) count
(7· 2) nk flouing
(8· 2) n (n-k - 1)

<'·2> -e~ = -•r.
(10·2) i-count
(11·2) 17b.
Le-ave working spJ.ce (rtt ,,nd proceN to input :at 12·2
Store return instr. in l.1bel 4
• - I· 2 Clc•r bb<I)
,, _,. ;. 2

} I - 11· 2 AS H>rting v•luc for <he accutnubtion of tlrl (a)

} form n-1

n-1 - S· 2
Form n:
n' - 6· 2

Cleu ti· 4· 2 used u rubbiJh dump
a-"

\ Prcpirc outer count to " - 11! - u k = 0 (I) 11 - I
I nk - iJ (nk = 0 1ntti>lly)

0- 7
Store (o + nk) count - ;;. 2 • + nk - {J nk - a
11k - 7· Z (floating)
• + .. k - (t 11k ..,. f]
Form 11(11-k - l)
11(11-k-l) _. 8·2

} • f., = b, = (• + "k) - i· 2 >S pivotal clement

}
I
I

}

Accumuht< /7 b• in 1 l • l

Prep.re count • + nk + j - a i = 0 (1) •-2

F l b - onn o t,J.-i 1t • tJ

Label J at issutd 2g.1in
When finished. the coun< r<Jds (ll) = • + nk + n - I

• - y

(b) = nit

By ex.curing • + l instr· a + 11k + 11 - « • + 11k. - fl
As ('t} r count limlc " + uk. + 11- L the + instr. 1·ccurns co the in$cruction
following XRRROJ

OEEL IX No. 2

QOJ
-08·2

~ -·----
+o

I'- Xi

rQJ '- I z20

~ HR
ZZ L
u,. 2

UOIO· Z
+ 0001
-Oi · l
Z20 .. HRRI
KR.
V9- 2
URR

'-1 + 1
-- -·--
H9· 2
D•· Z
URR.
H06· z
HO LO· 2

L__.' -)· z
.

UO LO· Z
XRRR06

UO LO· 2
Qi - 00 1 2

-07·2

Xl

+o
L---Q6 +

- 007· 2
HO&· 2
- OOOJ· 2
HS· Z
-)· 2

Hll·Z
Q• z

QOZ QOJ Q04
A~

HET PTT-BEORl)f AUGUSTUS 19J9

Cleor label J
lf 11 (11-k- I) > 0: prepare count a + 11i with i k + l { l)n-1

Skip next lnstr.
l£ 11 (11 - k - I) = 0: thert is no count i = k + I (I) " - I

Form a + 11k + n + ni' =a + ·11i i = k + l { I)11 - I or form count a + ni
i = 0 (I)k - I when coming from Xl

} Extr:ict leading <lcmcnc of row - e: = - a ~.u
Store - c ~ ~ 9· 2

Score (a + ni) counc ~ 1 O· 2 a + 1ti ~ fi a + 111~ - a
J-y

}
Prepare count a + 11k + j - u a + 11i ...; .. i ~ fl
wlch i = 0(J) " - 2. Count limit -= n- I

}

Inner cycle

f •+ • - • " "+• d h' Id " (+ . + ') orm a;; - a•./+ 1 - c, a l:J in .store t lS O\'Cr o a 11 = a 111 J

(o) + l - a CPl + I ... p

} Form for j = n-1: -c~ / b4

and store this over old element a ~n-t
a+?Jk. -a
" + 11i ~ a a + 11k. _,. p
(a} + 11 -+ er. After completion o{ count i = k + 1 (I)11- I:
(a) = a+ n~ >a + nk
After complcrion of count i = O(l)k - 1: (a)= a+ nk
a + nk. - a 1 O· 2 is used as i dummy store
Test which i·count his ended on 1 + Or'der

• + 11k ~ fl •gain
•- a

} If count limit nk > 0: prep1re i-count with i = 0(I)k- I and re-enter i-cycle

If 11.k = 0: skip second i-count
After completion of; = k + l (I)11- 1 and (a) if= c.ounc lirnic: retur'n co inscr.
following XRRR06
After completion of i = O(i).k -1 and (a) = a + 11k.: next instr. is executed
11k _. a
nk ->- p restore (• + 11k) count in a
n - r
11 (ti-k- I) --+A
a + 11 (k + I) --+ a 11 (k + I) -> p
Execute and test k-count
det [aj ~ A
Return co main progl"3mme

QO l Q06 Clear hbels
Break point

61

DE.EL TX No. l HET PTT·BEDRIJF AUGUSTUS 019

APPENDIX l

TtlE PLACING OF SIM PLE CODE JN THE MACHINE STORE
For odvanced programmers ic is necessary to

know how the Simple Code interpretation pro·
gramme is placed in the real machine code store, as
well as where the object programme resulting from
a source programme in Simple Code language is put.
For all derails about normal machine code the
re•der muH be referred co the ZEBRA handbook,
issued "' ith every machine.

The Simple Code progrommc consists of several
parts-, l.e. :

a. The operation part, in which the different types
of operations are execuced.

b. The input part, by which instructions are
taken in.

c. T he 1-parr, w hich functionally belongs co the
input pare.

d. T he L-part, in which all numbers are read.
e. The P-part, in which all output of floating

numbers is effected. (P, PO, Z8, Z9, Z22, Z23) .
f. The Z-lisc, in which the reference addresses

for all Z-sub-routines are kept.

These 6 pares just fir into rwo blocks of the
machine score. Norma lly chey will be p laced from
6144-7168. The placing of the 6 parts relative to
each ocher is rather irrelevant except for the Z-list.
This Z-list has been placed at the end o f t he two
blocks so that in the next block 7168-7680 there is
scill room for more Z- instr. As chis next block is
f illed with normal output programmes starting in
7368 there is space for about 250 more Z-orders.
(Often the Print Store programme is kept on 7 168
but chis is not necessary.)

The Simple Code instruction store and number
score are imbedded in the following way in the real
machine store:

17)

176
177
178
179

180
181
182

-

1

--175 and 177 form location 0
of the number score

- !--- 176 and 178 form location O·
~ of rhe instr. store

---- 179 and 18 1 form location I .1_ of the number store

-
I I 180 and 182 form location I·
~ of the instr. store

etc.

In che number score the ficst component is always
the mantissa, the second component the exponent.
Furthermore there is a list of labels. Label p is put
into 75 + p in the machine score. Some machine
addresses between SO and 75 are used >S live drum
working registers for Simple Code.

62

le now foUows how large the capacity will be
when che basic Simple Code is in rhe machine. We
find chac chere a re [Y,.(6144 - 17l)] = 1492
instr. addresses and 1492 number addresses. When
this is not enough the whole Simple Code programme
can be moved f urcher back in the score. In that case
normal input in block 7680-8192 can be removed
altogether. (It is nowhere needed in Simple Code,
except for teleprinter code input.) The standard
output, normall y in 7424-7680, can be moved up
to 7936-8192 and Simple Code can ultimately
moved up to 6944. Now the capacity in number
and instruction store becomes [Y. (6944
- 175)) = 1692.

When it is necessary to excend the list of labels
over I 00 it w ill be clear how chis can be done. In
foct the first component of 0 will be che same 3S

75 + 100. The easiest way co make a few more
labels avaib blc is to use I ·, 2· , etc. of the instruction
score.

1· = 176 and 178 in machine store=
= label 101and 103

2· = 180 and 182 [n machine store =
= label 105 and 107 ere.

These labels muse be cleared separately with
QO I 0 l etc. and can then be used in che normal way.

Until now only the basic Simple Code programme
was considered without the functions. The sc:rndard
function programmes such as for t he Zl , Z2 etc.
instr. :.tnd for teleprinter code input :ire organised
in a special way. They all belong co t he family of
retrograde subro utines 'vhich are pu t into che
m achine, filling the score from back co front. In
chis way only the strictly necessary sub-routines
could be fed in and a maximum free space is lefc
for number and instruction score. Normally when
there is room enough the following sub-routines are
permanently left in the store in the foUowing re­
trograde order. (The fi rst routine mentioned is
highest up in t he store.)

Teleprinter code input:

ZI
Z2
Z 3, ZIO, Z24
Z4, ZS
Z6
ZlltoZ15
ZZ6

In general cwo complete blocks are reserved for
chem from 5120-61 44. T his leaves a capacity of
number and instr. store of [Y. (5120 - 175)] =
= 1271.

DEEL 1X No. 1 MET PTT-BEDIUJF AUGUSTUS 1~19

For the actual location nnd coding we can again
best refer to the handbook of sub-rou tines.

The point facility can now be treated somewhat
more fully than was previously possible. A point
after the instr. adds unity (in machine code) co the
address. Hence ir shifts a number address 17S + 411,
l77 + 411 into the corresponding instruction ad­
dress 176 + 4n, 178 + 411. It is possible to add more
poincs. The effect will still be to shifr up the
address by unit y. E.g. HI - ·will rake 18 1 and 183
instead of 179 and l 81 . This is just the exponent of
(l) as mantissa and the mantissa of (2) as expo­
nent. In this wny fixed point operations can be
done on the man rissae of numbers by the DO and
DOOOOO instructions. In the same way a triple point
can be used. H-· - - = HI

Something must still be said about rhe use of t he
fast access working registers in Simple Code.

During execution of a programme the short
registers arc occupied as follows:

(4) = working register for miscellaneous purposes
(5) = ditco Mantissa of (11)

after K11 instr.
(6) = Usually X.1<3BD-X003B2. Modifier for re­

lative inst.r.
(7) = ALR for multiplication
(8) =Working register. Exponent of (11) after

Kn. Return instr.
after ALR

(9) =<>-register. Contains 4-fold
(l O) = u- register. Contoins 4-fold
(11) = 11-rcgister. Contains 4- fold
(12)= l Mantissa
(13) = f Accumulator Exponent
(1-1) = Extraction instr. of rhe form

ACE 176 + 4 111 for extr. of next instr.
fromm·+ I.

(15) = Usu•lly XKCDE002. Modifier for extrac­
tion process.

APPENDIX 2
tlNKS 8£T\\"IEEN Sl)tPLE CODE AND NOR~fAL CODE

Ir i$ not possible to do everything in Simple Code.
For ex•mple printing rei<t cannot be done in Simple
Code. So the experienced programmer will some·
t imes use Simple Code and normal code cogecher
and he muse be able co transfer the concrol from
noriml ro Simple Code :i.nd back.

One way of entering Simple Code from normal
code i> by using XJSP, in the following way:
X3SP: Jump to Simple Code instruct ion in the

location of which the address in che in­
struction store is men cioned in B.
A retu.rn instruction Ls kept co be used
by Zl9.

Example:

N

NKKBC} 140 - B + 140
X38P Jump co instr. in Simple Code in

inscr. score address 140·

From Simple Code we can return
here.

The same insrruccion XlSP can be used for
jumping to a label [> in Simple Code. In rhoc c~se
-p muse be put into B before using X3SP.

X38P: When (8) = n > 0: jump to address n
in cbe lnsrruction store.
When (8) = p < O: jump to label p.

The way co return from Simple Code co norm ol
code is by Zl9.

Z 19: Return to normal code on instruction
following X38P.

The Z 19 c•n ollly effect return to normal code
when first norm•I code has entered Simple Code by
•n XJ SP instruction.

A way of transferring control from Simple Code
to norm•! code without a previous jump of
norn13[code to Simple Code can be effected by 3

speci•lly made Z11, where" > 32. (All Zn with n
~ J2 have a fixed meaning.) The corresponding
outlet in the Z-lisc must then be filled with a nor­
mal jump co the normal code programme. Such a
rransfcr is very fasr. As long as (14) = ACEm' is
nor destroyed, che way back ro in terpretation :in
Simple Code can be made by X4JP.

X4lP: Resume interpretation on Simple Code
after last Simple Code instruction, which
jumped to normal Code.

A third w>y of transferring cont rol from Simple
Code to normal code is by:

URO: Jump to mochine code oddress n , when
(u) = w (1l) - a

Example:

+ 0020 20 - a
+ 0041JJ tJump to machine code •dd ress
URO f413J, but restore 20 - a

63

D!El IX No. 2 HET PTT-BEDRIJJ' AUGUSTUS 1919

A return to Simple Code can be made by giving
che inscr. X43P. Concrol returns co the Simple Code
instr. following URO.

Of course URO is useful when the address in a is
variable. When ic is fixed another way of jumping
ro normal code is :

I
Q00011: Jump to normal code address 11. Re- I

t urn can again be made by X43P.
- ---- - - --·---

Noc on ly t he control must be cransferred from
normal code w Simple Code, but often also num­
bers must be carried to Simple Code. These numbers
are in fixed point form in norm al code, but must be
converted to floating form in Simple Code. The
following order is present for this conversion:

224: Convert the number in short registers (12.
13 l) into a floating number ro be ploced
in 12 ond I J (=A in Simple Code)

The number to be converted can have one lengch
before the poinc in 12 ond one length after the
point in 13. \Vic then say thor in a double length
number the point is in the middle. (5) docs not
mat.ter in chat case. Or ir can be a double length
number, point to the left. In char case rhe sections
are placed in 13 and l a nd 12 must contain all zeros
or all ones dependent on the sign + or - resp. In
any case only t he nine most significmr digics will
be con verred co flolting point and placed in t he
flouing accumu lnors 12 and 13.

Example:

NE13 pre-instr.

NKKC }
head of tlke head of number before point
number

•1 f • npacet1s 1nl2 NKKCE12} d I h. .
"' o I ·1 . 3

b
p ace tai 1n I

num er

N+KKBC } jump to instr. 15 ill instr. score
15 of SC

X38 P

This instruction can then read:
(15') = Z24: convert {12. 13 l) to floating~ A
Z24 is• part of t he log, In sub-roudne 23 , 210.

The reverse operation is effected by:

225: Coovert (A) floating into a triple length
number in (12. 13 l)

This instruct ion has not been built in yec. It will
be a pare of a new sub-routine for sinb ond cosh.

64

In the same manner as QOOOn crnnsfers control
to normal code address 11 as an instr. chere exists an
input indication:

QOOn: Jump to machine code address " as
soon :is this indication is read during
input

Note carefully t he difference between Q00011
being an insnucrion in the store and Q0011 being
:in input indec~1rion.

APPENDI X;
SIMPLE CODE I Y, LENGTH

A precision of 9 decimals in che n1ancissa is not
always enough. As in the normal Simple Code (ab­
breviated SC) the exponent port of a number is
or,ly used for exponents between - 1000 a nd
+ I 000 t here is still room for more precision by
toking rhe tail of t he mantissa and purring it into
the exponent register. This has been done in Simple
Code one ond a half length (abbreviated SC 1 Y,) .

The code of SC I Y, is equal to the code of SC
with rhe following exceptions:

a. For numbers on rape the reader will accept up
to 17 significant digits instead of 1 O.

b. Numbers printed will appear as:
± 0.XXXXXXXXXXXXXXXXSp± XXXSpSp.

lnrernally the exponent b is , 1w,ys
-1024 ~ b < + 1023

bur rhe print part will automatically limit the
exponent co ± 999.

c. Buil t in sub-routines are:
Z, Z7, ZS, Z9, Zl6, Zl7, Zl8, 219, 220, 221 ,
Z22, 223, 227, 228.
The sub-<outines 2 I and Z26 are available in
normal code and are consequently very fast bu t
all ocher function sub-routines are in terpreted
2 -sub-rou tines, working in Simple Code them­
selves and are rather slow. No teleprinter code
input, or output in fixed point form with 229,
Z30, Z31 is lvailable.

d. The time~ of execution are obour I Y: times as
slow for A, $, V, N, and VO, NO. D is still
slower. ALI other times .re equal ro tbe corres­
ponding ones of SC. 0£ course input and out­
put arc slower, because rhere arc more c h:ir:ic­
tcrs to read or print. The programme for execu­
tion of SCI Y, is about 1350 instr. lon.g. Thus
"~ichour the function sub-rourine for Z 1 the
capacity 3vailable in number and instruction
store is abou t 1400 locations.

