DEEL IX No 2

HET PTT-BEDRIJF

AUGUSTUS 1319

THE SIMPLE CODE FOR ZEBRA

Dr. ir. W. L. VAN DER POEL

L INTRODUCTION

ZEBRA is an electronic digital computer logically
designed in the Dr. Neher Laboratory of the Nether-
lands Postal and Telecommunications Services and
technically developed and constructed by Standard
Telephones and Cables Ltd, England, It has been
the object of the designers to build a machine of a
simple construction which is most reliable and re-
quires 2 minimum of service, while at the same time
a high speed and great flexibility of programming
are maintained. It is quite obvious that sacrifices
had to be made for this simplicity. Thus in general
it is true that programming (drawing up a list of
detailed instructions for the machine) is somewhat
more difficult for ZEBRA than for most other
machines. For example multiplication is not a built-
in feature of the machine. Thus even the elementary
arithmetic operation must be programmed. On the
other hand the flexibility of the basic programming
is very great and the speed which can be attained
by skilled programmers is relatively high. Never-
theless, programming in the real code of the
machine is still a job which requires a good deal of
very special training.

To make an automatic computer more easily
accessible to those who occasionally have calculations
to make and who do not want to devote too much
time to learning the real code of ZEBRA, another
code called SIMPLE CODE has been developed.

Machines like ZEBRA are not only able to make
calculations but they can also do all kinds of work
which can be expressed in formal logical rules, such
as translation of one code into another. In this way
complicated operations can e.g. be expressed in
Simple Code as one single instruction, while in the
machine this operation is translated into a whole set
of real code instructions, The code is translated
behind the scenes by a very complicated programme,
called an interpretive programme. In this article we
shall not deal with the real code nor with any of the
actual components of the machine, but we shall
exclusively treat the Simple Code as if it describes
the properties of quite another machine in which all
the features of Simple Code have been built in.
The user does not have to bother about the real
machine and when he keeps strictly to the rules
of Simple Code he can use the machine in a very
effective way after only few hours of study. In
view of the aforegoing it is hoped that many more

Overdruk wit et PTT-Bedvijf, Deel 1X, No. 2

681.142 ZEBRA

people can and will use ZEBRA, and keep a better
contact with the numerical results of their problems.

In some places of this article consideration will be
given to the co-operation between real code and
Simple Code, and for the sake of completencss
something will be said about the background of
real code, but occasional users can completely ignore
these points as they will only be needed for very
advanced programmers.

1. PROGRAMMING

Programming is drawing up a detailed list of in-
structions telling the computer what to do to solve
a problem. This does not only include instructions
for the effecting of the required arichmetical
operations but alse instructions to tell the machine
how many numbers are to be read, how the lay-out
of the printed results is to be made ete. This part
of a problem is sometimes far more difficult to
tackle than the actual arithmetic, but for the time
being we shall first devote our time to arithmetic
coding.

One of the first difficulties of using 2 computer
(not only electronic computers but also mechanical
desk calculators) is the problem of capacity of the
counters. Many computers require that all numbers
appearing in the calculation should lie in the range
— 1 <a<<-+1 and should have say 9 decimals
precision. It is quite a difficult task to secure that
all variables lie within this range. E.g. the number
2 = }.1415" cannot be represented but must be

expressed by giving * — 3 or il& a, This difficuley

can be overcome by using numbers in floating
point. In this system all numbers will be written

a5
a X 10"

where 0.1 << |a | = 1 and b is an integer. a is called
the mantissa and & the exponent.

E.g. 35.67 can be written as +-0.3567 % 10°
—0.0032 L " o " —0.3200 X (11] =

In the next paragraph a short account of arith-
metic in the floating system will be given.

A second difficulty of programming is the re-
petition of a process for a number of times together
with keeping track of running indices. In real code
this is often a point where mistakes can casily be

3l

DEEL IX Ne 2

made. Morcover, running indices require variable
instructions, i.c. calculation with the instructions
themselves, and this again is far beyond the scope of
occasional users. In Simple Code special provisions
have been made for repeating and counting, and
also for making variable instructions. In no case are
the instructions written down by the programmer
variable and he never has to make calculations with
instructions. Counting will be dealt with extensively
in the respective chaprers.

As no operations are done on instructions it was
thought better to separate the two kinds of infor-
mation. The Simple Code machine has a separate
store for numbers (about 1200) and a separate
store for instructions (also about 1200). This is
especially useful for the beginner. Later on it will
appear that in case of lack of capacity in the
number store, the instruction store can also be used
for numbers and inversely. The locations in the
number store can each contain one number (float-
ing). The locations are numbered from 0 onwards
and the numbers of these locations are called the
addresses of the respective locations. The location
n itself will often be referred to as the address .
The locations in the instruction store need not be
numbered as the instructions are put into this
store from the beginning, and they are executed
consecutively.

When the instruction store is used for numbers the
absolute addresses in the instruction store will be written
as m-; the point indicates that not address m in the
number store i3 meant, bur = in the instruction store.
Cf. Chapter XI1IL

An instruction consists of two parts: an operation
part specifying the type of operation to be effected
(addition, multiplication, etc.) and the address tel-
ling the machine where to find the operand in the
store. The operation is denoted by a letter and the
address follows the letter (e.g. A3L1 or H2). This
sort of code is called a one-address-code.

I, FLOATING NUMBERS

All numbers processed by the arithmetic in-
steuctions are floating numbers in the machine.
Some of the basic arithmetic rules for floating
numbers will be outlined in this chapter.

A number can of course be written as follows:

35.79 = + 0.003579 » 10°

In that case it is floating bur non-normalised.
Thus the available capacity of the mantissa will
not be used completely. The general rule is thae all
numbers within the machine will be automatically
normalised (0.1 << | mantissa | = 1). The appearance
of an unnormalised number on paper certainly

32

HET PTT-BEDRIJF

AUGUSTUS 1913

points to bad functioning of the machine or 2
mistake in the programme.

All numbers in the machine have a precision
of 9 decimal digits in the mantissa and 3 in the
exponent. When results are produced in floating
form the number will be printed as = D.xxxxxxxxx
=+ xxx, in which the signed fraction denotes
the mantissa and the signed integer denotes the
exponent.

Adding floating numbers is effected in the fol-
lowing way. First the exponents must be made
equal. Then the addition of mantissa can be effected.

Ez 22.67 =+ 0226700000 + 2

= + 0.114700000 + 1
LM = =+ 0iMio00000 + 1

+ 0.035 100000 + 2

+ 0299800000 + 2

In case thar the difference between two exponents
is more than 9, one of the mantissae is shifred over
more than 9 digits so that nothing is left for the
addition. Then the actual addition need nor be done
at all.

Another case arises in the following situation:

+ 0.570000000 + 1 (= $.7)
+ 0740000000 + 1 (=7.4)

== 1.310000000 <=1

Now the mantissa is too large and the number
must be shifted into the form

+ 0.131000000 +2 (= 13.1)

As can be seen in this example, one digit of
the precision is lost at the right hand side of this
number.

Loss of precision is even more apparent in cases
where one number is positive and the other is
negative, or in the case of subtraction of two
positive numbers.

E.g. - 0.632421111 —3
+ 0.632311111 —}
-+ 0.000110000 —3
normalised <+ 0.110000[000] — 6

The 3 zeros on the right hand side are shifted
into the register but they have no significance for
the precision of the number. This loss of precision
is one of the serious dangers of the floating number
system, Only a mathematical trcatment of the
problem can reveal this loss of precision.

For many practical cases the difficulty does
not arise at all and we shall not deal with the
mathematical difficulties of floating arithmetic in
the rest of this article any more.

DEEL IX Mo 2

HET PTT-BEDRIJF

AUGUSTUS 1939

A peculiar case is the subtraction of two equal
numbers.
1 0.632000000 -+ 3
4 0.632000000 + 3

=+ 0.000000000 -+ 3

The result can never be normalised. In other
words: the number 0 cannot be represented in the
floating system. In that case the machine will
automatically supply the number — 1.000000000
% 107", a very small number indeed, which plays
the role of 0 in an effective way. The result of
a subtraction of two equal numbers will always be
4+ 10-"", never — 10~"*". This is of importance
for the test instruction. (Cf. Chaprer VIIL)

Multiplication of two numbers in the floating
system is done in the following way:

+ 0350000000 +3 (= 350)
+ 0.440000000 +2 (= 44)
4 0.154000000 -5 (= 17400)

In words: The mantissae are multiplied while the
exponents are added. The product of the mantissae
could be smaller than 0.1. In that case the product
is normalised.

+ 0.350000000 -+ 3
+ 0.220000000 -+ 2
+ 0.077000000 + §

normalised <+ 0.770000000 <+ 4

Because in the multiplication a double length
product is formed from two single length numbers,
the normalisation does not result in a loss of
precision, Afrer the normalisation the product is
rounded off to 9 decimals.

In case of a division there is the same difficulty
before the actual division can be started. When the
dividend is greater than the divisor, the quotient
would be too large. Hence the dividend is first
shifted to the right in that case.

E.g.
-+ 0.300000000 <5 4 0.030000000 -4
<+ 0.200000000 -2 B <+ 0.200000000 -+ 2 i

= -+ 0.150000000 - 4

The mantissae are divided, the exponents are
subtracted,

Of course the user needs not know this because
all actions are automatic. Bur it can give some more

insight into the particular difficulties of calculation
in floating point. A single instruction for one
addition thus appears o be in reality a very com-
plicated set of more elementary operations in real
machine code.

IV, THE SIMPLE CODE MACHINE

When it operates with Simple Code, ZEBRA can
be regarded as a completely different machine. We
shall now enumerate its most important parts as
they will play a réle in the following chapters.

(R i i
|
CONTROL :
I
(0. I (] '
{1 1
. 5]
| |
: ! '
i L_ I
' |
} |
i | insTRUC :.- [} || numser
E TION | 1|
E STORE L = 1 STORE
.= 1 3
i | -
| S
{ 1200.) | 1200
! L4 =t |
OuUTPUT
I-;;? KEY PRINTER
- BOARD
READER C::;:;”J

1. The number store containing about 1200 lo-
cations for floating numbers. The locations are
numbered from 0—1200. They are called
addresses.

L

The instruction store containing about 1200
locations for instructions, The locations need
not be numbered but sometimes it is useful
to refer to them as 0-—1200-,

33

DEEL IX Mo, 2

HET PTT-REDRIJF

AUGUSTUS 1959

3.

34

The accumulator. This is a special location with
a capacity of one number. In the accumulator
all arithmetic operations are performed. It will
be abbreviated by A. When we speak of the
contents of the accumulator we shall write this
as (A). In the same way the contents of location
n or » are denoted by (n) or (#) respectively.

A number of small registers for counting and
other special purposes, They are denoted as
follows:

@ : main counting register

L]
: . 8 &
f : second counting register it T
e e Ly
] e LS o
y : increment of second count 28582
3 . . Z223<E
: safery register for main sacad
. g B T
counting register Z 8 g
e : register for count limit

. " b
: réeturn mmstruction frﬂm ,E'E é ﬂ'b‘?
count cycle 2 ‘éag‘g
- . E =.=2
r : return instruction from E b1 3=

p S
jump H&8mgS
The manner in which all these registers can be

used is stated in the fﬂ!luwing paragrnphs.

The input tape reader, a photoelectric tape
reader for reading data into the machine. This
reader can accept tapes of the same kind as
normal §-hole teleprinter rape. Instructions as
well as numerical information are fed into this
reader.

The output printer for printing the results of a
calculation, It is a normal 7 char/s teleprinter,
used for slow outpur.

The outpur punch, required to punch the
results of the machine in the form of teleprinter
tape, which is done at 50 char/s. The resulting
tape can be printed off-line. (Le. on a separate
princer, not directly connected to the machine.)
This is used for fast output. The subsequent
writing out on off-line printers does not delay
the operation of the compurter.

The control. This part is the central governing
organ, Its action consists of taking consecutive
instructions out of the store and executing them
in the accumulator, Input and output are also
under the direction of the control.

The keyboard. This is in fact a manual control
of the aperator on the machine.

There are the following keys:

Clear : Stop the machine and put it in the

position to receive a new problem or
a new bacrch of dara.

Start : Start programme or input of nu-
merical data or go on when the
machine has stopped because of a
stop instruction.

Key Ul : A key which can be given any
meaning by programming a branch
instruction asking for the position
of the key.

Key U2 : The same as for key Ul.

Eey U3 : Not in use,

Key U4 | Used for cutting open, a diagnostic

Us | aid for printing intermediate results
Ué | necessary for error detection.
Key Ué : When put off, clearing and starting

will make the machine read a new
instruction tape.

When put on, clearing and starting
will make the machine re-begin its
last programme, which is still in che
machine. This is called restarting.

A telephone dial for giving small integers to the

machine when the latter asks for them by stopping.

Many of these parts will be more thorougly

discussed in the appropriate chaprers.

¥V, THE DETAILED INSTRUCTIONS

Before discussing the detailed list of instructions a

few general remarks are appropriate. The different
types of instructions can be sub-divided into
different classes and they will be dealt with in the
same classes, They are:

a.

Arithmetic instructions, which are all operations
on the accumulator and which all use some
address in the number store. The general address
will be written as ». Addresses must never be
written with zeros preceding the significant
digits, Even in the extreme case of address
zero nothing must be written!! This is very
useful because it cconomises on writing symbols
and also econcmises on the time for the machine
for reading programmes. Therefore address zero
i5 used as the most frequent working register.

Examples: A5 but not A00S
A but not A0

(Later on we shall see that for lack of different
symbols new types of instructions are devised
by adding one or more zeros. For example H
is different from HO but in both cases the
address is 0 and is not written down.)

Input and output instructions. They govern the
reading of numerical information from the
input tape or the printing or punching of resules
on the output organs.

DEEL IX No. 2

HET PTT-BEDRIJF

AUGUSTUS 1919

¢. Control instructions, which can make a pro-
gramme deviate from strice sequential working
and jump to another instruction, conditional or
unconditional. They do not refer to addresses
because they are dealing with instructions in
the (non-numbered) instruction store. Instead
of it, they are referring to instructions which
are given labels. These labels are denoted in the
following explanatory notes by p to distinguish
them from addresses n.

d. Input indications, which are not instructions in
the strict sense but codes appearing on the tape
(and not going in the store) to direct the
instructions to go into the correct locations, to
give labels, etc.

¢. Special instructions or Z-instructions, which are
meant for special operations on the accumulator
such as log, sin, etc. They do not refer to a
location in the store and their ,,address” is only
used to indicate the type of special operation
meant. They all have the form Zn.

f. Counting instructions, which can repeat a com-
plete set of instructions a number of times.
VL THE ARITHMETIC INSTRUCTIONS

The action of a few instructions will be described
in a shorthand form.

Instr.

| Hn :

action

(n) = A|

in words

Take the number contained in location » of the

number store to the accumulator. The contents of

n will not be destroyed by reading it out, burt the

previous contents of A will be lost by reading in 2
new number,

instr. action
l4n : (A) 4+ (n)—= A
in words

Add the contents of location » to the contents
of the accumulator and place the result in the
accumulator, This overwrites the addend.

(m) is preserved.
action
(A) — (m) = A]

instr.
LS# :

in words

Subtract the contents of location # from the
contents of the accumulator and place the result
in the accumulator.

Example: A simple programme for calculating

a+b—c

Suppose (2)=a, (3)=25, and (4)=c.
Also written

2|«

ilé

4| ¢

Then the programme runs as follows:
| progr. comment

| Hz ()= A
A3 (2) + (3)—~A
54 (2) 4+ (3)—(4) > A

The result is lefr in A

To be able to put the result again in the store
we have the instructions

action

(A)—=n|

instr,

]_U.': ’

in words

Put the number contained in the accumulator into
location » in the store, overwriting the previous
contents of that location. (A) is preserved.

instr. acuon

[T : (A) = n |

i D —-A
in words

Put the number contained in the accumulator into

location n. Then clear the accumulator by putting

"0" (= very small number 1 ¢ 10°"") into the
accumulator,

In the explanation of following instructions we
shall not describe the action so much in detail as
has been done above, because the same principles
apply, i.e. reading out does not disturb a register,
writing destroys the previous contents. The short-
hand form of the description shall be retained, only
supplemented by remarks when necessary.

| Vm: (A) X (n) —A | Positive multiplication

| Nu:—(A) X (u) —A | Negative multiplication

| Dn: (A) / (n) —A| Division (only in posi-
tive variant)

By means of these instructions we shall code
some examples.

ab 4 od 2
—h =

35

DEEL IX No. 2 HET PTT-BEDRIJF AUGUSTUS 1319
Suppose Add the square of (#) to the accumulator.
Heé } f=A no— 2| a Notice that the 0 preceding the address does not
vz ¢ 25k 3| & belong to the address (because an address may not
. ZB8¢F 4 | ¢ be preceded by zeros) but belongs to the type of
v Store i zerg | i g 5| d operation.
temporarily! | 2 g3 B 14 G) A
9 "o — (n)*—
i{: }Furmg..& 2 4.8 ; :: : ",{) f::l
A Add of =S 9| b Example: (a° ++ £°)° == location 4
U Store ef — gh —0 (10 | k) I Because it is not known in 2|a
H2 ab H2 advance that (A) is clear, i b
Vi | V2 I the first multiplication
U1 Store ab in 1 | R ——
H4 | ed | Vo3 &5
Vs U (@ + b) =0
Al ab + cd — A | v (& + b)°
| D Divide by ef — gh | U4
| U0 Resulc to 10

As formulae of the form ab <4 cd are very
frequent a special provision has been made for
accumulative multiplication. This is effected by
a pair of instructions of which the first is a
K-instruction, In that case the next instruction
must be a V-instruction or an N-instruction,

Kn =5
o} A+ () X (m) = A

' Kn ==y
S b @@= X (m—a

The V must immediately follow the K-instruction.
The V- and N-instruction have a different meaning
when used as second instruction in a KV or KN pair.
K can only be used before a V- or an N-instruction.
In no case it may precede another type of in-
struction. (Cf. Chapter VII for the use of K for
input of numbers during inpur of instructions.)

Now our previous example can be written much
shorter as:

Hé ef in the normal way
't4

Ks ¢f — gh by an

N9 accumulative multiplication
U Store ef —gh— 0
H2 l

Vi

K4 ’ ab 4+ od

Vs

D Divide

Ulo Store resule in 10

Often squares appear in formulae. For additive
squaring the following instruction exists:

[Von : (A) + (n)"—= A

If this programme follows another piece of
programming which we have ended with a store
instruction, this can be done with 7. In that case
the example can be abbreviated to:

Tx of previous picce
et e

v | @+&r

U4

For doing multiplications with factors of 10 two
special instructions exist.

Don : Exponent (A) + exponent (n) —
| — exponent A

Add the exponent part of the number in location n
to the exponent part of the accumulator.
The mantissa of A will be undisturbed,
the mantissa of » will be disregarded.

Example: Multiply (4) by 10"
Suppose (2) = 1 X 10
H4 Take (4)
D02 Add 6 to the exponent
U4 Score (4) ¥ 10" — 4

This instruction is quicker than a multiplication
with 10° and preserves better the precision of the
mantissa.

Another version of this instruction exists:

D00000n : exponent (A) — exponent (n) —
- exponent A. Mantissa undisturbed

This instruction divides by a factor of 10 by
subtracting something from the exponent.

Later on special applications of D0 and D00000
will be given in the count instructions.

DEEL IX Ne. 2

HET PTT-BEDRIJF

AUGUSTUS 1359

Vil INPUT AND QUTPUT INSTRUCTIONS

To bring numbers into the machine, the pro-
gramme must ask for these numbers by the follow-
ing instructions.

Ln : Read a number from the input
tape and place it in location .

The number is written on the tape by using the
symbols 4+, —, 0 to 9 and decimal point. Numbers
need not be written in floating form but can be
written in fixed point form. They will be converted
into floating point automatically. A sign must
precede the number. Unsigned numbers are not
permitted.,

435
+ 035
-+ .3
+ 0.3
— 37.568
-+ 3000000
— 0.0005678912345670000

Examples:

Only the 10 most significant digits (digits from
the left starting at the first digit = 0) will be taken
into account. The rest will be skipped. Thus in the
last example we could have written with the same
effect — 0.0005678912345. At the beginning of a
number blank will be skipped until a sign + or —
is seen. Then the actual reading starts. The end
of the number will be marked by the sign of the
next number on the tape. The last number to be
read must also be followed by 4+ or — to stop
reading. The tape reader will see this next + or —
and finish the number just read, but the tape reader
will not make a step to the next symbol. Hence the
sign can be reread on the next L-instruction.

Also the symbol Y can be given as an end symbol
of a number. In that case the ¥ will be stepped
over.

Sometimes a number must be given in floating
form because its exponent is too large to be given
in the form of the number of zeros of a fixed point
number, In that case the exponent is written on the
tape as given by the examples.

Examples:
+ 0.3E— 15§ =03 3010~
—'35.79]:_—'— 0 (=—35.79 ¢ 10+ —

= —0.3579 ¥ 10%)

For reading greater quantities of numbers the
following instruction exists:

['Lon : Read numbers from tape and place them |

| in n, n-+1, w+2 etc. until a Y is|
encountered on the tape. The amount of
numbers read is placed in 8. '

With this instruction a whole string of numbers
can be read in one instruction and counted at the
same time in 4. (Cf. Chapter XI, counting in-
structions.)

When an L-instruction reads something else on
the tape than numbers (e.g. instructions) the latter
will be accepted as such but then the L-instruction
will not return after reading and the machine will
go on reading in instructions,

Inpur of numbers can not only be effected in machine
code fixed point form, but also in teleprinter code,
floating form. When the teleprinter code input routine
{a programme belonging to the set of rerrograde sub-
routines, cf. appendix 1) is in the machine, floating
numbers can be taken in by L or L0. These numbers
must have the form

& DLAXEXXXXXX XXX
e e Ele
mantissa exp

This is the same form as for floating outpur excepr
that the mantissa may have less than 9 decimals and the
exponent less than 3 decimals. The mantissa can also be
= 1.0000.

A number tape in teleprinter code must be preceded by
T in teleprinter code. All carriage returns and line feeds
will be skipped. Afeer T all text will be skipped until a
figure shift is encountered. Afcer chis the programme will
search for the first + or — and will read the number,
The end of the number will be given by the sign of the
next number. A series of numbers read wich L0 can be
ended by blank tape (equivalent with Y in machine
code).

A lecter shift will correcr that part of the number
in which it appears. Hence a letter shift in the mantissa
will only correct the mantissa which must be repeated
in the correct form.

Blank afrer the mantissa without an exponent fol-
lowing will stop the tape.

Instead of beginning with T, teleprinter code tape
may also begin with blank followed by the sign of the
first number. There may be no symbol between the blank
and the first sign. This is the exact form in which most
output is produced. Hence output tapes in floating form
can immediately be used for subsequent input into the
machine.

Only 4+, —, ., 0 to 9 are used for numbers.
Also E and Y are used for numbers. The rest is
used for instruction and addressing.

The correction symbol # consists of all § holes
on a tape and can be used to overpunch any com-
bination (Cf. Appendix 4). The general rule for
the use of the correction sign, whether in numbers
or instructions, will be:

a correction sign on the tape affer a number or
an instruction will erase this word. The word must
then be repeated correctly. This repetition may be
preceded by an arbitrary number of blanks.

37

AUGUSTUS 1959

DEEL IX Ne. Z HET PTT-BEDRIJF
Example: can be printed on one line. (The number of lines
+ 34.56 punched as on the height of an A4 format sheet is also 69.)
' g Instructions to print in fixed-point form will
+ 3457 A be discussed in Chapter X.
wrong number corr. E — ‘ Bt e
] xample: Read x orm z = x : t 2.
{blank optional) P i SOLER TR e
| L2 Read x in 2
_+i4l i L3 Read y in 3
correct number
H2 | .-
; ; va | *
The same holds for instruction Vo3 g
V0300 punched as V0200 % (blank optional) P2 Piine =
V0300, ete. P3 I‘ Print y
Outpur of ber in floiting form is done by: Z8 Print x* + 57 still in the ace.
i l_n W RRE Z9 Give carriage return, line feed
| Pn : Prinx the contents of location # in floating
form on the teleprinter. Lay-out: VIIl. CONTROL INSTRUCTIONS

| = (.XXXXXXXXX space = XXX

mantissa exp. ‘
| It does not destroy (n) nor (A).

space Spﬂﬂf

In the exponents the non-significant zeros will
be suppressed except the last one.

Example: -+ 0.345678901 4+ 0
—0.100000001 — 12
- L.000000000 — 999

{ smallest number representing 0),

The printer works at a speed of about 7
characters ‘second (150 ms/char.), hence printing
of a number takes 2870 ms.

A faster way of output is by the punch actuat-
ed by

| floating form on the punch. Does not |
| destroy (n). |

The code in which the number is punched is
teleprinter code, not machine code. These tapes are
primarily meant for reproduction on a separate
printer, not directly attached to the machine (it
takes 400 rms number),

Apart from these P and PO instr. to print directly
from the store, there are a few special Z-instructions
to do the following:

|Z8 : Print (A) in_flna:ing torm P

| Z22 : Punch (A) in floating form | 2T

Z9 : Print a carriage return, | "8 2
line feed, figure shift 2

Z23 : Punch a carriage return, EE

e ~_ line feed, figure shift |

The number of characters on a line of the printer
is 69. Therefore no more than 3 floating numbers

it

Of course, it is not possible to make a programme,
only consisting of one sequence of instructions,
each executed once. An automatic computer derives
its power from the fact that it can repeat the same
series of instructions over and over.

To make possible a break in the strictly sequential
execution of instructions we have a jump in-
struction. But because instructions are not num-
bered we do not jump to an address but to an
instruction specially provided with a label.

| Xp : Jump to instruction, labelled p and proceed |
| from there serially. Store a jump to the in- |
| struction following the present instruction |
| int. p=0(1)99 |

The explanation of the second part of the des-
cription of Xp will be postponed to the instr. X0p.

Immediately in conjunction with using labels,
assignment of labels must be discussed.

| Qp : The instruction following this indication

| will be labelled p. p = 1(1)99

This Qp is not a true instruction but only an
indication on the programme sheet and on the tape.
In the machine it will not be executed as an
instruction.

Example: Read two numbers, multiply them and
print the result. Go on with a next set
of numbers etc,

=4 L2 Read ae
L3 Read &
H2
Vj il . 51._
| Zs Print prod.
Z9 Cr. If
= X6 Return to Q6

DEEL IX Na 2

HET PTT-BEDRIJP

AUGUSTUS 1959

Labels are restricted to the range 0 to 99 but
they can be assigned in any desired order.

The machine is safeguarded against assigning a
label twice. Of course two different points cannot
be given the same name, the same label, because
the machine would not know which point to take.
The tape stops immediately during input of in-
structions when this situation occurs.

When jumps are referring to label p, but when
indication Qp has never been given, this will only
be derected when the programme has started its
action and has arrived at this jump. Then the
machine will stop.

Label 0 plays a special réle. It is automatically
and permanently assigned to the first instruction
in the instruction store.

Hence the label Q with no “address” following
will certainly stop the tape. But the instruction X
without numerals following will jump to the first
instr. of the programme. This explains that in the
description of Xp the p could run from 0 to 99
but for Qp it can only have the values | to 99.

A label which has not been used before by an
Xp or Qp is called cleared. Initially all labels 1 to
99 are cleared. In Xp there will be a label which at
that moment is not cleared any more but not yet
assigned. The Qp will then assign the label to the
actual value.

It is irrelevant to the jump whether the label
is issued before the jump or after. The whole
programme is first read from the tape and put into
the instruction store and only then the programme
is started. Many jumps can jump to the same point.

The advantage of using labels instead of absolute
addressing becomes clear when we think of the following
situation. Suppose the inste. store was numbered and the
jumps were absolute jumps.

|
} instr,

Suppose that afterwards we see
that between 102 and 103
a few instructions have been
forgotten. Inserting then re-

1006- | X10§- quires a3 re-addressing of the
101 | — B g Jjump and a complete renumber-
102 = l £ ing of all following instructions.
0% | — £S5 This can be 2 very tedious job
104 = [€2 andit frequently gives rise to
05 | — 2 new errors.

Every jump has apart from the jumping actions
also the task to place a jump in v. This (r) is used

again in the following instruction:
[X0p: (r) = p Store the jump contained in |
| into the location labelled p. Berween the
| instr. X0p and a preceding Xp instruction |

no other instructions may be executed |
(except 4 00n# and XRRROp). |

Often a programme contains a part which
performs a special action that has to be effected
repeatedly in different parts of the programme.
E.g. the calculation of y = a:x* + a,x + 4, has
to be effected in various places of the programme
with different values of x. In such a case we make
a sub-routine for the whole action in such a way
that this sub-routine can be used by simply jumping
Lo,

E.g. The sub-routine for ¥y = a.x* 4 ayx 4+ a, =
= (a.x 4+ a,)x + a, can read as follows:

(A) = x Suppose 20 | a
Q3 | Xos4 21 | &
U place x in 0 22 | a
| H20 \
% ™
;‘21 } (a:x 4 a,)x
A22
This will be replaced by the return

o4 | X
jump and the programme returns
with (A) = »y.

This sub-routine can be used by jumping to it
with X3:
X3 Jump to sub-routine for calculation
‘ of y = a® + a;x + a,.

The jump will store in t a return jump to the
point following the instr. X3. As the machine does
this completely automarically, no label need be
given to that point. We shall say that every jump
has remembered in r the place where it came from
in the form of a return jump.

The first instruction X04 of the sub-routine
stores this return instr. from r— 4 at the end of
the sub-routine. Thus the action of the sub-routine
takes place and at the end it returns to the instr.
following X3, In this way X3 can be regarded as a
single instruction with an arbitrary and possibly
very complicated action, This X3 can appear many
times in a programme and every time the whole
sub-routine is executed. This is one of the most
powerful features of programming. (For more
details about sub-routines cf. Chaprer XIII.)

The instruction X0 must be the first action of
the sub-routine because most other instructions,
especially of course another jump, will destroy the
contents of r.

Of course it is very undesirable to let a pro-
gramme go on indefinitely in the example of
forming a: . bi. Very often an action must stop
according to a certain criterion, When the criterion
is not yer fulfilled the programme must return and
repeat the action, otherwise it must proceed. This
is effected by:

39

DEEL IX No. 2

HET PTT-BEDRIJF

AUGUSTUS 1919

TEp : Jump to p only when the number in A is |
| positive. Otherwise proceed to the next |
! instruction.

and

TE0p : Jump to p only when the number in A is |
i negative. Otherwise proceed to the next|
instruction,

The (A) can never be 0. In floating represen-
tation 0 is still a very small number. The 0 resulting
from a subtraction of two equal numbers or re-
sulting from a T instruction is always equal to
+ 1 % 107™" and hence positive.

Example: Read two numbers of which the firse
one is pos., then multiply them and prine
the resule. Repeat until a first number
which is neg., is found.

—Q6 | L2 Read a
L}y Read b
H2
—— | E07 Tesc if a: is neg.
Vi Formay .l
Z8 Print prod.
L3 er, lf.

T =
Q7 | etc.
IX. INPUT INDICATIONS

Until now it has been supposed that the in-
structions in the example were already placed in
the instruction store in some way. But something
must be done to bring them in the store first. The
general procedure runs as follows. The instructions
together with all indications are written on paper.
Then this is punched on the programme tape and
fed into the machine. The input indications take
care of the correct positioning of the programme
in the store. When the complete programme has
been read in, the last input indication starts the
programme. During this work the programme can
ask for numerical dara with L instructions.

The first type of input indication is:

| Y : Clear all labels 1T to 99. Start input of |
instructions at the beginning of the in- |
struction store. 0 ==y |

The Y has this action only when it is im-
mediately followed by the first instruction or in
any case by an opening symbol *).

*) A wwmbol which beginy 3 new item, a new instruction of a
number, is called an opening swmbal, They are A, D, E, H, K. L, N,
B, Q8 T, UV, X, ¥, &, =, — , All other symbols are
swpplementary iymbals, They are 0, 1, 3, 8, 4, 1, 6, 7, 1, 9, point,
R, correction, .

40

Szcondly this Y must have been read as first symbol
after the computer has been started from clear or it must
have been read by an L instruction. In the middle of an
instruction tape a2 Y will act as input indication for
starting at the beginning of the store but it will not
clear labels any more,

The Y may be preceded by an arbitrary number
of blanks which are ignored by the tape reader.

Another type of input indication is:

| Yp : Start input of instructions beginning at
| label p. p = 1(1)99. Label p must be
| :ssisned already.

This input indication can only overwrite a piece
of the programme because it can only start at a
labelled location, a location that has been reached

already before.

Y00 : When read during the nput of in-
structions: Start the execution of the
programme from the point where the
last ¥ or Yp started putting in in-
structions.

When read as first item from a cleared
start: Start the execution of programme
at the first instruction in the store.

Y00 is generally used in conjunction with ¥ p in
the form: YpY00. That Yp has never acrually
taken in any instructions, does not matter. The last
point where input of instructions was started, was
label p and there the programme will be started. Tt is
general practice to use only Y00 when the piece of
programming between the Yp and Y00 is short.
Otherwise it is better to give in full YpY00 ro
avoid mistakes.

=
Example: Programme to calculate e = 3 1’_!
0

The programme can stop when the terms
give no contribution any more.

| ¥ Start input at beginning of instr.
store. Clear labels
Q1 L1 Temporary programme. Read con-
stant 1. Instr. is labelled 1
| L Read following instr, !
Y00 Scart execution of temporary
programme
41 Constant -+ 1 read by the L1
instr. and placed in 1
Y Closing symbol after the number
—+ 1. This could also have been
+ =

DEEL IX Na 2

HET PTT-BEDRIJF

AUGUSTUS 1319

' Y1 This Y1 is read by L and recogni-
sed as being not a number but an
input indication. Begin input again
at label 1 (beginning of instr.
store), overwriting instr. Ll and L

| H1

U2 Place 1 as first sum u—l‘ in 2

| T3 Place 1 also as first k ! in 3.

Clear A

4 Place first & = 0 in 4. Will be
augmented before use. All these
actions are necessary to make the
programme restartable. The re-
startability is a very important
feature,

Q2 | H4
IAI) Augment & by 1

U4

g: : Form next & !

gf } Place old sum in § for later test

H1 1

ps | Form g

gi } Add j:‘i to sum already formed

Hs 1 1

52 } F“"“Z{T_nl -2 5
This will be neg. as long as the
terms give a contribution, but will
be 0 (positive because 0 is in
reality 4+ 1 % 10°*") as soon as
the 2's are equal

Eo2 Return to label 2 as long as the
terms still give a contribution

lz,'; } Give cr, If and print the result

X3 Make a loop stop. (We have not

Q3 yet learned the stop instruction.)

The programme remains jumping
to the same point.

Y1Y00 Start execution of this programme
at label 1

To be able to start input at any point in the
store an input indication of the form YO0 exists:

YOn : Start input of instructions at address n
in the number store

Remark that now » is an address in the number
store, not a label. By means of this indication the
numb:?r store can be used as extra space for in-
structions,

Example: Arrange a programme of 2000 instructiony
needing 200 working registers
| ¥
— instructions
— {about 1200, hence instr. store
— is full)
— | Xj0 Jump to the other store
Yozoo Start input at 200 of number store

[—r{?iu

: } Rest of instr.

Whether in the number store or in the instruction
store, locations still can be labelled.

It is appropriate to discuss another facilicy in this
place.

A point wnitten after an address in the number store
will designate a corresponding address in the instruction
store.

In this way the instruction store becomes addressable
by addresses n-. By means of this facility we are able to
keep a number of places free in the instruction store,

Example:
| “¥

Clear labels

- Instructions

Y0200- Start input 0Y instr. at 200-

etic.

| —

The point can be attached to all addresses in the
number store. By means of this the instruction store
can be used for numbers when the number store is too
small. E.g. A200- means: add number from location 200
in the instruction store (henceforth called 200-.) (See
Chapter XIIL)

All input indications Y have the following
properties:
they restore the key-address to restart a programme
in 0 with Ué = 1 and start;
they clear the y-register (see count instructions,
Chapter XI).

The Qf also belongs to the class of input in-
dications. It was needed already in a previous
chapter. The first single Y clears the labels, Qp
issues the labels, Xp, X0p, Ep, E0p, Y} use labels.
Individual labels can be cleared by:

[Q0p : clear Tabel pl

It must not be given when a label has been used
already by an Xp buc has not yer been assigned by

41

DEEL TX No. 2

HET PTT-BEDRIJF

AUGUSTUS 1859

the corresponding Qp. In that case Q0p will clear
the label before Xp has been adjusted to its proper
value. Labels above 99 can be used when necessary,
provided they are cleared initially by a correspond-

ing Q0p (Cf. Appendix 2).

Sometimes an error is made while the tape is being
punched. There is a way of correcting this on the punch
by giving the combination correction on the tape after
the word. This symbol consists of all § holes on the
tape and will be denoted by the symbol & in written
text, The symbol 2= will wipe out the preceding in-
struction or number. The complete correct number or
instruction must be repeated after . An arbitrary
number of blanks may follow after .

Examples:

A0 AN In A300 one zero was punched
too much. A30 was the correct
word

K133 H13 K13 was punched instead of
H13s

43315 + 3515 +33.15 was punched instead of
+35.1%

But not:

+33.13Y 2 435.15Y The Y has finished the number
+33.15 already and the
comes too lare,

Alsa:

+33.152Y s wrong. The 2% has finished the number
already and Y will not be read 25 ¢losing symbol but as
new opening symbol.

The symbol # can be used for making breakpoints
in the tape. A breakpoint is a piece of blank tape often
inserted between two sections which are rather inde-
pendent or where a sub-routine musc be inserted. This
cannot be done by simply leaving blank afrer the last
instruction of the first section. Suppose this last in-
struction would have been Al. By giving blanks after
this Al it would become A10000....0 etc. By giving
AlZz the breakpoint can be realised. The Z will be
corrected and blanks may be inserted. The tape does not
stop. Of course it is irrelevant which opening symbol
is given before .

[Wordz : the word is taken away and an arbitrary

number of blinks may follow.

A way of making a scopping breakpoint is by giving:

QZ : Stop input of tape. With the starr key the]
tape can be restarted and goes on where it was

| stopped. An arbitrary number of blanks may
follow QZ.

This combination can be used for making a breakpoint
where a separate tape must be inserted. This tape is put
into the tape reader on blank and is also ended with QZ.

The action of QZ can be understood by remembering
that Q followed by an instruction (eg. Z) will try to
assign label 0. But this has been done already and there-
fore the tape stops. The Z only serves to indicate the

42

end of Q. In fact any other opening letter will do.
Also the Q may be Qp where p is an assigned label.

In a previous example the necessary numerical
constant was fed into the machine during input of
instruction by the help of a temporary programme.
Often it is necessary to put in a few constants
during input of programme. There is a way of
doing this without a temporary programme by
preceding the set of numbers by K and ending it
with Y.

Example:
Y0200 Prepare input of numbers in 200
200 | K41 Start input of numbers 4+ 1200
200 | 2 +2--201
202 | +46Y + 6202
203 instr, The machine will go on putting
instr. in 203 etc. unless a new
input indication is given.

Also in the middle of instructions constants can be
given.

Example:
] i
| X3 Jump over the set of constants
Q3 K—23 Put in constants —23, +32,
412 +17.6 into locations 0- §, 1- §, 2-§
, +17.6Y (Cf. poinr facilicy, Chaprer XIII).
Q3 | Hl-% Take const. 4 32—+ A
etc.

The K is wmitially read as if it were a K-instruction,
but as K can only be followed by a2 V- or an N-instruc-
tion it will be detecred that numbers are following.

In fact the number will be read by the same picce of
programme 3s for L0. Hence the same closing symbol Y.
The first number will overwrite the K initially puc in
as instruction K.

There is 2 way to start the operation of simple code
on any simple code address. This can be done by dialling
a key address 44 or starting the machine with X44Z in
normal code.

When the machine is started on 44 with Ul = 0 a
start address in the instruction store can be dialled and
the machine will start immediately.

When the machine is started on 44 with 'l = 1 a
start address in the number store can be dialled.

When the machine is started on 44 with U2 = 1 a
start label can be dialled.

X SPECIAL INSTRUCTIONS

There are many useful actions that need not refer
to an address. They are incorporated into Z-
instructions, The "address™ of a Z-instruction is not
a label nor an address in the proper sense but is

DEEL X Na. 1

HET PTT-BEDRIJF

AUGUSTUS 1939

only an indication for the type of special operation
wanted. A list of Z-instructions will be given
below.

Of these Z-sub-routines Z, Z7, Z8, Z9, Z1s,
Z17, Z18, 219, Z20, Z21, Z22, Z23, Z27 are
permanently built into the system. All others are
separate sub-routines of which only those, which
are necessary, need be pur into the computer. Buc
in general they will all be kept in the store when
there is room enough. In that case 1235 locations
are available in the instruction store and 1235 in
the number store. With none of the extra Z-instr.
1492 locations in each store are available. All Z-
instructions below Z32 have a fixed meaning. There
is room for special Z-programmes from Z32 to
Z250 to be made by the programmer himself.

Z : Stop programme. 'Prcmng the start kt}r'
starts the programme on the next instruc-
. tion. A second way of starting is by using
the telephone dial. The dialled inveger mll[
be placed in e« (and old (a) — &) and the
| next instruction will be executed,

The machine has two stop states. One state is
attained after the clear button is pressed or after a
mistake has been made in the programme. Then the
machine can be restarted (when U6 is off) to read
programme tape and it can also be restarted (when
U6 is on) on the first instruction in the instruction
store (on 0-). The other stop state is attained on a
Z-instruction. The machine can now be restarted
by pressing the start button or operating the dial.

Z1 : V(A) — A | Take the square root of the
number in A and put the
result in A,

When (A) <0 the machine skips the next
instruction.

L2 : exp (A) —

[Z3 :Tn (A) = A] (A) must be pos. When
(A) << 0 the machine stops
on a clear stop.

Angle in radians

When (A) is very large the
sin and cos programme will
cast off all whole revolu-
tions of the angle, and the
remaining precision in the
fractional part can be very
low or non-existent accord-
ingly. The same holds for
¢ with Z2. This is one of
the dangers of working in
floating point.

[Z4 :sin (A) = A |

Z5 : cos (A)— A |
| Z6 : arctan(A) —~ A |

Angle in radians

The angle # (in radians)

will be —3x<<¢ < &a. For

the other two quadrants the

programme must make its

OWn Tests.

Example: Given a complex number x + iy
Determine modulus r and argument ¢.

(2) =% () =y (8) =
| Hz
V2
Vos
Z1
Ut ViFy—4
H3 | y
D2 arctan —=— = @
zé | 2
Us p—- 5
| H2
E1l Test x. If pos.: proceed
Hs
E12 subtract
| S8 a when ¢ is neg.
X13
Q12 | As
Q13 Us Add 7 when ¢ is pos.
Q11 etc.
'Z7 : Proceed to the next instruction when |

i switch U1 on the keyboard is off. Skip the |
next instruction when U1 is on. |

By means of this instruction a bifurcation can be
made in the programme depending on an externally
controlled switch. This is useful for suppressing
intermediate results, and for making many other
external decisions.

Example:
| —
N
— | Z7 Test Ul
~| P} Print (3) only when U1l is off
(U1 = 0)
—~ | ete. Skip P} when Ul =1
J
Z3 : Print (A)

9 : Print carriage return, line feed, figure shifc
(The figure shift s a teleprinter symbol for
shifting the case from letters to figures. It is given
as a precaution. As in Simple Code no letters can
be printed, it is of no concern to us in this article.)

43

DEEL IX Mo, 2

HET PTT-BEDRIJF

AUGUSTUS 1958

[Z10 : logw(A) — A (A) must be pos. When
(A) <0 the machine stops on a clear |

stop.
: = |
[Z11 ; arccos(A) ~ A | These sub-routines are of
Z12 :sinh(A)] — A | |the so-called interpreted
[(4)
* |type and are much slower
| Z13 : cosh(A) — Al tﬁan all m‘l]:er]s.-lub—muﬁ
tines. Possibly they wi
| Z14 : arcosh(A) — A be replaced by faster ones
| Z15 : artanh(A)—= A [|'® the future.
1 [These are faster than the cor-
[Z16:2(4) —A] responding multiplications
Z17 :8(A) —+ A||by 2 and 3 and they do not
require a constant,
1Z13 : [(A) [= A] Modulus of (A) = A
Z1% : An instr. for changing from simple code to real

machine code. This is of no concern for the
purposes of this arricle. A similar inste. exists in
real code to change over to simple code Ses

appendix 2.
220 : Will be treated together with the counting in-
structions,
[Z21 : — (A) — A |
Z22 : Punch (A)
Z23 : Punch carr. ret., line feed, figure shifc.
Z24 Change “triple length” number into | ™
floating l o
215 Change floating number into “triple I -
lengch™ &
: Print or punch | (a) | spaces. Print when

| Z£26
| (a) << 0, punch when (a) >0

| Z27 : Proceed to next instr. when U2 = 0. Skip
' next instr. when /2 =— 1

This is an instruction analogous to Z7 but now
testing the switch U2,

| Z28 : 1/(A) = A |

Z29 : (Belong together and are used for printing/
Z30 : { punching floating numbers in fixed point
Z31 : | form.

With Z30 a lay-out pattern can be set up.
This pattern is telling che instr, Z29 and
Z31 how a number must be outpur. The
pattern once set up will remain until the
next Z30 instr, is encountered. Z30 sets the
pattern to output sign when (4) >0 and
suppressing sign when () << 0. Before the
decimal point | (4) | digits will be outpur,

44

This may be at most 10, at least 0. After
the decimal point (a) digits will be output.
This may be at most 9, at least 0. In case
no digits after the point are output the
point is also suppressed. Of course in no
case does the precision of the floating number
cover more than nine digits in total, hence
it does not make much sense to print
for example 7 digits before and 7 after
the point unless the range of the numbers
is greatly different. All numbers will be
rounded off to the required number of
places.

Thus:

Z30 : Set up pattern with | (4) | digits bcfore[
and (a) digits after the point. Suppress

sign when (4) << 0. |

Example:

| iggi Set pattern to 3 digits before
730 and 4 digits after point
Once a pattern is set numbers can be printed
with

|Z31 : Print (A) according to pattern and fol- |
| lowed by two spaces.

When the number is too large to be printed,
the integer part will be printed as 2?2 when
it is <<10". When it is =10" the complete
number will be printed as (%£) TOO
LARGE.

Punch (A) according to pattern and fol- |
lowed by two spaces. |

|229 H

The same rules as for Z31 hold here.

XL COUNTING INSTRUCTIONS

The a-cotnt

For easy repetition of a set of instructions the
count instructions are devised. A process which has
to be repeated » times must be preceded by a
prepare instruction which sets the count and must
be ended with an instruction doing and testing the
count. In its simplest forms these instructions are:

-+ 0n :

+ m : Count with m at a time. When » has not
vet been reached, repeat the instructions
starting at the instruction following the
prepare instruction. When # has been
reached, proceed.

Prepare a count to n and

DEEL IX No. 2

HET FTT-BEDRIJF

AUGUSTUS 1959

For example: Repeat a set of instructions 10 times.
4+ 010 : Set the count to 10

Instructions to be repeated 10 times

1 Count with 1 until 10 is reached. Then
go on.
The arrow indicates to where the counting in-

struction returns, when the required number of
times has not yet been done,

+

Of course the above-mentioned description of the basic
COUNT iASTruction is COO Vague TO SErve as a rigorous
definition. Therefore we shall first go a liztle bit further
into che action of the count instructions.

Preparing a count is in fact doing three things:
a. setting the runnming connt to zero as starting value,
b. setting the count limit to n,

€. remembering the return instruction to enable the
counting instruction to find its way back to the
beginning of the loop.

The three components of a count, namely: the running
count, the count limit and the loop return instruction,
are stored in the special counting registers mentioned
already in Chapter IV.

a is used for the running count,
¢ is used for the count limit,

is used for the loop return instruction. (Do not
confuse the return instruction from a sub-routine
stored in v with che special loop return instruetion
stored in £.)

is used for storing the previous (a).

Now a more accurate description of - Om can be
given:

f+ﬂ‘n:

lfm=0: (a) =D 0—=a n—¢ loop

return jumping to the next instruction — 8. |
Execute next instruction.

‘ If » = 0: skip next instruction and do
nothing else.

In the description of the count order also reg. # and ¢
appear. They will be disregarded for the present.

[+w: (a) +n—a (F) + (y) =7
When (a2} #= (£) : execute loop return in 8
When (2} = (#): 0 — y and proceed wo

next instr.

The register & 15 used for preserving the old contents
of e It is called che safecy register. 7 is nor changed in
general because any previous <+ instr. has cleared 4.
o is mot descroyed after the count is completed and
can still be used.

The count limit must be reached exactly. A count
prepared with 4 021 and counted with 4 2 will never
go on but will repear indefinitely. A count can be
prepared to 20 and counted with 2 at a time. In 10 rimes
the count will be ready.

Observe that m is not an address in the proper sense:
it does not refer to 2 number store location but is used
as the number itself. This is always a non negative
integer. The registers a, 8, v, & and ¢ can only contain
integers, not floating numbers.

The case that in + 0n the # = 0 will be treated with
the — 0 orders. As + 0 it does not make much sense
as a preparation but often it is a wseful instr. to skip
one instruction. It does not change any of the count
registers whatever and does not require a label otherwise
needed when the skip is done by a jump.

It is not always known in advance how many
times a process must be repeated. E.g. it can be the
result of a calculation. Therefore the following

prepare instruction is provided.

Prepare a count to (#) (insteadof ton
itself for -+ On),

| =0

Now the # 1s a number address and (n) is a
floating number. This floating number is converted
into fixed point forms and rounded by adding 3.
Only the integer part of this is retained and used
as count.

Written in shorthand this can be expressed by
[(m) +3]

| denotes the entier function.

where [

One can also say that [(n) < & is the integer
nearest to the floating number,

E.g. 2.99 is rounded up to 3.49, then .49 is dropped
resulting in 3.
2.5 is also treaved in the same way, giving

[3.0] =3
[249 + 3] = [299] = 2
[—249 + &] = [—199] = —2!! The

next lower integer of — 1.99 js — 2
|—251 + 8] = [—201)] = —}

In general the counts are written as floating numbers
to enable the programmer to effect arichmetical
operations on them and in that case 2.008 X 2.00 can
be 3.99 which is rounded to 4 on 2 — instruction.

The exact description of — 0 now becomes

tH [(m)+4A)] %5 0t (a) =& 0—a]
[(m) + &] — ¢, loop return to nexc instr,
— f. Execute next instruction.

IE[(n) + 8] = 0: skip next instruction
and do nothing else.

| — O

45

DEEL 1X No. 2

HET PTT-BEDRIJF

AUGUSTUS 13319

The same variant exists of 4+ n, the counting
instruction.

|—n: (@) +[(n) +2]=>a (B)+(1)~F|
When (a) 5 (¢) : execute loop return |
in # '
When (2) = (£) : 0=y and proceed

to next instr. |

Before giving examples a very powerful feature
must be mentioned. Often a programme contains
an instruction which must be varied according to
the count. This can be done by adding a suffix R
to the instr. to make it relative to the count.

[ARn = An+ (a)]

ARn acts as if it were an A-instr. with an address
n augmented by the present count (a). The instr.
AR#n is not modified in the store but the address »
is augmented by (a) just before execution.

An R can be attached to the following types of
insee. HLA S, U,T,V,N,K, D, Vo,NO, X, E, L,
Lo, P, PO, E0. No R can be attached o DO, HO, U0,
all + and all —instr,, Y, Q, D0000O.

Example: Form the sum of the numbers in locations

200—300.
i T Clear accumulator
4+ 0101 Prepare count to 101
AR200 Form variable instr. A200-+A
where £ = 0(1)100
| 4+ 1 Count with 1

The same can be done with every other location
instead of every consecutive location.

Example: Form the sum of the numbers in locations
200, 202, 204 ... 400

T Clear accumulator

~+ 0202 DPrepare count to 202
AR200 Add (200 + 2£)
where £ = 0(1)100
-+ 2 Count with 2 at a time
The prepare instruction — 0 serves for cases

where the number of times is not known in advance.
This shall be elucidated by means of a very im-
portant example.

We shall make a sub-routine for the calculation
of a polynomial

n

EA=10

We assume that the dcgree will be in 100 and the
coefficients in the order a4, a.-; etc. in
location 101, 102 ete. x will be in the accumulator
on entering the sub-routine,

k

J=dn X" ey X" L Ay = ar X

46

The formula can be rewritten as:

Y=(((((X + @u-1) X T an-2) X T 85-3) X
Toiviaa)xtom

Now the programme reads

Q2 | X03 Place return instr. in location
labelled 3. The sub-routine itself
15 labelled 2
| U Place x in 0
| H1o1l Take a. = Acc
| — 0100 Prepare count to (100) times.
This need not be known to the
programmer
v Multiply by x
E AR102 Add nexr coefficient
+1 Count
Qi | Z When ready: return to main

routine, A dummy Z is placed
here to keep free the place for
the return instruction. In case the
machine or the programmer fails
to put the return instruction in its
place, the machine stops.

The outward effect of this sub-routine is that
the single instruction X2 forms y = f(x) = & axx*
irrespective of degree and coefficients. Also compare
this programme with the example stated in Chapter
VIII. With as many instructions as given there a far
more gﬂnf‘rﬂ.l Prﬂgramme 1133 now bE'e‘.ﬂ. prﬂdutﬂd.

Sometimes it is necessary to count backwards. This
can be accomplished by —instructions as in the follow-
ing example.

Example: Calculate y = X awv® where a, = (100),
gy—y = (99) erc.
u Store ¥ in 0 Suppose (2) =—mn
Hioo dy = A (3) =—1
| —0z2 Prepare count (A) ==
ta (2) = —m=n
I8 Muleiply with x

AR99

i Add next coefficient
—3

Count with — 1 at a time

As to the number of times, it does not matter whether
counting is effected upward or downward, but for the
variable instructions it differs a greac deal,

It will be clear to the careful reader why the count
must reach the count limit exactly. When the criterion
would have been: repear when {a) <2 (&) and go on
as soon as (a) = (), then counts running backward
would not have worked ac all,

Now we shall give an example of a sub-routine
doing a process p times where p will be given in
the accumulator. p can be any number of times but
also 0. In that case the process must be skipped
altogether.

DEEL IX No. 2

HET PTT-BEDRIJF

AUGUSTUS 1359

Q2 | Xo} Place return instr. in 3
U Store p = number of
times in 0. p must be
stored before 2 —0
instr. can set & count
Prepare count to
times
Do nothing but skip
next instr.!
When p = 0 jump
over whole process
Instr, for doing process

p 0

-+ 0 jo5p = 0
—1: X3
&

Q3

Return to main pro-
gramme

The instr. + 0 has helped in jumping over the
X3. It does not destroy any counts,

It is not necessary to finish a count cycle by
applying a counting instruction. A count can also
serve to make variable addresses.

Example: Look up the first positive number in the
locations 100, 101 ecc.

+ 010000 Set dummy count to a high

number
| HR100 Take (100 + &)
E2 If number is pos., jump out
——— of the cycle
P | If number is neg., count and
repeat
=2 | etc

The place where a series of numbers is starting
in the store is not always known or sometimes the
programme must be gener:ll enough o operate on
several different sets of numbers in different places.
In that case the count must be given a starting
value and counted from there onwards instead of
counting from 0 to #. The count must run from
a to @ + n For this purpose the following in-
structions are available,

r—[—ﬂﬂn:[a}-ﬂ-d 7n—a

In words: put previous (a) in safety in 4 and put
n in the count reg. .

In the same way the corresponding-order exists:

[(n) +2]—a

—00n : (a)—=4d

These orders are sufficient for setting the count
itself, bur they do nothing to the count limit or
the loop return. Therefore a prepare instr. must

follow. This prepares the count limit, puts (2) = 4
and makes (a) = 0. Now the following instr. puts
the count in a.

220 : (a) 4+ (4) =+ a (a) + (9) + (&) —~ &,
loop return — # The instruction must
immediately follow the prepare instruc-
tion to which it belongs.

As will be seen from the description the sum of
a and 4 is put in a. But after a preparation of a
count @ is cleared. Hence it simply means that
(¢) - @ and (d) + (&) = =
Example: Form sum of consecutive numbers
n—1
5 == Z ai where a, is contained in a
k=10
location of which the address is given
in 1, » is given in 2.

n—1

%3
k=0
ax = (m + k), (1) =m

k = running count, # = count limit

(m <+ £)

Hence we can write § =

| —001 m—a 1|m
|—El2 m—434 0—~a n—e¢ 2ln
ret. instr, —= 0
220 m+0—=a mt+n—=¢
| ret. inser, == 4
~ | AR Executed as Am -+ k. Add term a,
s ! —+1 Count

Remark that the loop is not closed to Z20 but to
the instr. following Z20, because the latter has set
a new return instr. For the above mentioned pur-
pose Z20 must follow the —0 order.

There is one exception to this rule. A jump X may
be between the — 0 and the Z20. It will only be used
for programming tricks and normal programmes should
never deviate from the rule.

There is another application of Z20. Ie adds (a) two
{d) and places the result in g. The addition is a fixed
point algebraic addition of two integers. By its use
something can be added o a.

Example: Add (#) o «a

—0on (a) — &
£20

[(#) + &] =+ a
(a} + (#) — a

The operation on ¢ makes no sense in this case, as

Z20 is not given immediately after a + 0 or — 0.
Register ¢ is destroyed in this example as well as £

47

HET PTT-BEDRIJF

AUGUSTUS 1959

DEEL IX Ne. 2

-

lications of this facility 1s to recover

One of che apP needed with an L0 instruction,

(), as is for example

he amount of numbers read muse be counted.
the

when
Read an unknown amount of numbers into

Esample: location 100, 101 etc. The amount of numbers
read must be put in @
+i;|"l'.l Clﬁr I bﬁfﬂfchﬂﬂ.d. It can not be done

afterwards as in that case & will be lost
| L0100 Read 2 series of numbers in 100, 101 etc.

Count in 0
| 200 {d).+ 0@

we shall see how we can place (a) in the
Later on The count of LU could not have been kept

in. S
store aga could never have been a relative instr.

in it ut]‘lﬂ'l‘“’ist it
itself. :

st the orders + 00 and —00 we are now
;h;f I:: :nake the preparation for Z30, and the

g in fixed point form.

printin
Example: Princ (4) with sign, 2 digits before and
d 5 after the point
o002
i 005 | Set up pattern
230 I
> other instr.
| — ‘
Zil Print (A) according to pattern,
] previously set up.
Example: Print (A) in integer form withour sign

in 4 digits. Suppose (10) = —4.

| 0010 Prepare pattern to 4 digits before

| 4+ 00 and 0 digits after the points. No
730 sign. () = —4 (a) =0

L}

T!ﬁi" J"L('UMHE

Occasionally the J-count 1'13? been mentioned
;lrg;dy in the text It s A‘PP!ltd in the duu.b]e
counts, counting c}'t'ESi within other cnunF|nE
cyeles and in doing tWO counts at the same time.

The simplest case is 2 count within ano:hulzr count.
Suppose We want to produce a table consisting of
20 blocks of § lines each. Every time the I!ne count
has reached §, the block count must be increased.
There is only one count register that can be tested
for reaching the counr‘hmtt and that is . Hence
for doing counts within counts, the outer count
must be saved before the inner count can use the
same register. For that purpose there exist the

following instr.

48

‘_Uﬂn : Save count in n. (a) — [and — exponent
partof m. (f) — a. (#) and (¢) packed
! together — mantissa of n.

HOn : Restore count from n. (a) = f, exponent
’ (n) — a, mantissa (#) unpacked — @
and «.

Together with storing the three components of
a count, also @ and § are interchanged. The use of
this will be clear from the examples.

Example: Make counts for 20 blocks of § lines

-+ 020 Prepare outer count to 20
| e
== ' Other instr. in outer cycle
Uoz Save outer count in 2
| - 0F Prepare inner count to §
oo (W
—_ Process
-J £9 Carr. ret., line feed
| 1 Count inner cycle
| 79 Give extra carr. ret,,
line feed per block
Hoz2 Bring back outer count in n
—- Other instr. in outer cycle
L— | +1 Count outer cycle

As the outer count is not only saved in n, but
also put in /4, it can be used for the process in the
inner cycle by the following relative instruction.

| ARRn = An + (3) | An instruction with RR

will be executed as having an address » <+ (7).

ARRRn = An + (a) + (§) | The same, buc
then with an address » 4+ (2) + (f). RR and

RRR can be attached to instructions of the fol-
lowing types: H, A, 5, U, T, V, N, K, Vo, No, D,
L, Lo, P, P0. They cannot be used afrer X, X0, E
or E0, except XRR which exists.

In the case of XRp, XORp, ERp or EORp the
meaning is that the location used is (a) places after
the location labelled p. XRRp is jumping (#) places
beyond label p.

DEEL IX No 2

HET PTT-BEDRIJF

AUGUSTUS 1959

The special instructions XERRO and — RR have a
completely different meaning,

Examples of RR and RRR will be given in the
matrix programme. The order in which the address,
the R’s and che 0's are given, is irrelevant, provided
that the 0’s are preceding the address.

For example:

LRR021 = LORR2l = L02IRR = LR021R =
= LOR21R = LOR2RI1 ete.

Another use of the f-count is doing a simul-
taneous count. We then need a separate increment
for the f-count. As can be seen from the description
of the count instruction + and —, 7 i5 counted
with (¥). The increment y can be set with the
instructions:

J -+ 000 : b Set y o n]
I —000n : [(#) +3]—7 Sety to (n) ‘

n =

Examp]c:

Form the scalar product of two vectors a. and b
of n elements, The elements of both vectors will be
placed in consecutive locations, vector 4y starting in
a location of which the address is given in 2, vector
by starting in a location of which the address is
given in 3. » is given in 1.

We must form

n—I1 n—1
P= 2 ab= J (b+h.(¢+h
k=0 k=10
T Clear acc. beforehand 1| n
—00) g—n=n 21 p
Uo Transfer ¢ — . 3| q
Otherwise UD is a
dummy save instr.
—002 p—a Sl (f) =¢q
-+ 0001 Set increment y of P | 4
fl-count to 1 Eil | o
| —01 Prepare count to . Pl | e
| p—=+84 0—~+a n—+e
| Z20 P+ Eh—-a |
I+ n — & where g | be
A=0(1)n—1 g+1]|4
ete.
KR Take ax from p + £
according to « count
VRR Multiply with & from ¢ + £
according to # count
— | 41 Count (a) +1—a (3) +1— 4
! | Test if count is ready
| 7 (A) =P =Za. b

When the location of the vectors would have

been fixed, everything would have been much
simpler, but the unknown locations make two
COUNts necessary.
Example: Take from a series of numbers a: all
positive numbers bw and place them in consecutive
locations. The initial address of 4 will be in 2. The
initial address of b will be in 3. The cycle must be
stopped when n items bn have been reached.

=-0001 Set increment y to 1 l|n
— 002 a—+a 2l
vo Interchange(a)and (8) 3 |b
| — 003 b—a a— 3
| EZ-IZ?I } Prepare count for bnto n
—% | HRR Take ac = (a+-k) (8) =atk
‘ L E2 If a; is pos., go to 2
+ If neg., count in # but not in a
Qi | UR If pos., store 4. as bm in
| m(a) =b+m
— | +1 Count in 2 and in # with 1,

When a is counted n times,
leave process.

Example: Now the same problem, but with a
counting cycle that stops when # items
of ay have been processed.

— (03
U0
— 002 a—=a b—=p
— 01 Prepare for ax to n
Z20
—+ | HR Take ax = {a 4+ k)
i () =a + &
Ez — Test a.
‘ ‘ 4+ 000 <« If neg., make (y) = 0
= 41 | Count with linaand 0in
T X3 | If ready: jump to 3
| Q2| 4-0001 < If pos, make (y) = 1
URR Store b & 4+ m
(BHr=bt+m
L |1 Count
03 | etc.

Not only can arithmetic instructions be made
relative to counts buc also jumps can be made
relative, which is done to make so-called mulciple
switches. Depending on the contents of a a jump
of the form XRp can be made to jump to location
p+ so many places more as (a) indicates. Often a
relative jump is used to advantage at the beginning
of a programme.

49

DEEL IX No. 2 HET PFTT-BEDRIJF AUGUSTUS 1919
Y This instruction is only to be used before Udn and it
=+ 00 Clear a beforehand enables us to make really (a) into the exponent of a

Z Stop. Wait for dialling.
Dialled number is placed ina

XRS5 :I Make relative jump to § etc.
Qs | Xa - Jump to @ when 0 is dialled
e or when nothing is dialled
but the start key pressed.
That is the reason why a had
to be cleared

Xb
B A

Jump to & when 1 is dialled

4

Jump to ¢ when 2 is dialled

¥
2
-~

etc.

Part a of programme

Part b of programme

Tests can also be made relative. In case they fail
to jump, the next instruction is taken. Only when
they are successful they make a relative jump.
Motice that only a single R can be used with X0,
E, E0, and a single and double R with X.

On the instr. UOn and HO#x the count is put into
safety and restored. Something will be said abour the
way the three components are stored in the respective
registers.

Each floating number has a separate register in the
machine for the mantissa and for the exponent. Although
the exponent is not printed in more than 3 decimal digits,
it is stored in the machine in about 9 digits. The
mantissa occupics a full register. On storing a count with
U0n the address part of the return jump is rerained
(it is in any case certain that a jump is meant), This
leaves enough room for storing the count limit (£} in
the same register, but an upper limit is imposed upon
the capacity of the count limit in that case. The count
limic may not exceed 10" This is pracrically never
the case.

The packed return address + count limit are stored
in the mantissa part of 2 location. The count (a) is
stored in the exponent part of the same register. The
n has the complete exponent available.

Internally all counts are kepe in 4-fold. This is of no
concern to the programmer except in the case of storing
counts, where it must be clearly remembered that also
this 4-fold will be puc into the exponent.

Example: {(a) = 3, then after storing with U'0n the
contents of # will have an exponent part of
4+ % 3= 1

Later on we shall see some special applications for
separating a number into its mantissa and exponent by
using the HOn and Udn instructions for this purpose.
Sometimes it ¢an be troublesome to have the 4 fold in
the exponent and therefore a special instruction exists:

i@—a |

TRERO :

50

number.
In connection with this it must be remembered that

calculations on the exponents can be done with DO and
Do0G00,

Example: Read floating number from dial by dialling
first the mantissa and then the exponent,
Z7 indicates the sign of manrtissa.
Exponent always pos,

A Dial digits of mantissa,
taken as integer
— RR Store this in 0
H Manrtissa — A
FI Z7 Supply mantissa with sign
= | =0

L i Z21
Doogo0 Remove exponent part, leaving digits
| of mantissa behind the point
£
TRRD Make % (a)
o Store this as exponent part in 0
Do Supply mantissa with exponent
o Store number in 0

The instruction — 00n transforms (») into a
fixed point number by taking [(#) 4+ 2] and it
places this in @. Often the reverse process will be
required and a special instruction exists for this
action:

— RR#n : Make (2) floating and place this in # |

The RR has nothing to do with relative in-
structions, as R’s cannot be used with counting
instruction.

One of the most important applications of this
instruction is the production of an argument from
the count. Suppose that a table of a certain function
¥ = f(x) must be calculated for x = 0(0.03)3
{x running from 0 to 3 with increments of 0.03).
The argument x might of course be calculated by
adding 0.03 to the previous x in each cycle. But
in that case an intolerably large accumulation of
errors would occur, because 0.03 is not an exact
number but a recurrent fraction of a precision of
about 9 decimals (internally the machine works in
the binary system). Moreover the printed argument
with an error growing gradually larger and larger
depending on whether 0.03 is represented by a
number which is a little bit too large or too small,
will produce unsightly tables. This can be prevented
by calculating the argument from the count by
— RR. As the count is kept as an integer which
always is an exact number, there will be no
accumulation of error in this case,

DEEL IX Ne. 2

HET PTT-BEDRIJF

AUGUSTUS 1959

Example: Make a table with argument
x = 0(0.03}3.
There are 101 items to be printed.
Suppose (1) = 0.03.

—* | 4~ 0101 Prepare count to 101
—RR Puctthecountkin0 A=0(1)101
H Take £ as floating number in A
Vi Form x = 0.03 & x = 0(0.03)3
U Store x in 0
_} Caleulate f(x) ete.

— | +1
Another application is the separation of mantissa and

exponent of a number.

Example: (2) = ¢ X 10% Put a in 3 as 2 floating
number and put & in 4 as a floating number

H?2 Take a 3 10°

D0o0o0o2 Subtrace & from exponent (divide
through 10*) leaving o % 10

Ui Store & — 3

g;z }Doublc exponent

u Store number with 2& in 0

Do Form number with exponent 44

u Store a ¥ 104

Huo Take ¢ % 10*" in count registers as
if it were a count, Then & — a
{Remember that counts are kepr in
4-fald)

— RR4 Store & floating — 4

A similar sort of operation is the separation of the
integer part and fractional part of a number.

Esxample: (2) =2 = T.y' Purxin 3, yin 4
H2 Take x5 — A

— 002 Put x in a

— RR3 Store x in 3
| 83 Subtract x from x,y leaving 0.y
| U4 Store this in 4

It must be realised that now y has not necessarily the
sign of x, because — 002 tock the nearest integer
value to the number x,y. E.g. 4.7 will be split up into
+ § and — 0.3, To prevent this, 3 must be first sub-
tracted before applying — 00.

A single instruction belonging to the family
of counting instructions still remains to be
mentioned. It has appeared already that of che
three components of a count, the count limit and
the count itself can be set independently. The order
—+ 0 (— 0) sets the count limit and <+ 00 (— 00)
can separately set the count, Z20 can add something
to the count. Only the loop return instruction is
always coupled to setting the count limic or Z20.
In some applications it is necessary to set the loop
return instruction independently of setting the
count.

JER.RROP : Jump to label p and pur a jump,
the loop return instruction, to
the next instruction, in 7.

A characteristic example of application is the
case where the first few cycles and the last few
cycles of a loop process are different from the
general cycle, Suppose a loop must be done »n times,
where the first two and the last two cycles are
different.

(5} =m—2
— 0%

-— Instr. of the first different process

XRERO02 Jump to the count instr. As count
is not yet ready, it returns to the
next instr.

Prepare count to #— 2 times

Instr. of the second different
process

XRRR02 Jump to the count instr., count
and return to the nexr instr.

cosg | s
I e Instr. of the main cycle
—2 -I-—l- Count
: Instr, of the penultimate different
—_ process
XERRGE Count. As count is finished on

I leaving the main cycle, (a) & (£)
on this occasion and instr. returns
on next one

— l Instr. of last process

S

XRRR02 When necessary the count can still
be augmented

| ete.

Sometimes XRRROp is useful as a jump to a
sub-routine. When no count has to be kept and
the sub-routine itself does not use #, the jump
XRRRop will remember the return to the main
programme in #, The sub-routine can return with
a count order. It does not matter how much it
counts, provided that the count is not just finished.
In that case the instr. following the + would be
executed. In general (@) and (2) will stll contain
the variables of the last finished count and a 41
order will certainly return to the main programme.

il

DEEL IX Ne 2

HET PTT-BEDRIJF

AUGUSTUS 1959

An XRRRO order does not destroy the return instr,
in 1. Hence it can be used as one of the very few types
of orders which may stand between an Xp and the
corresponding QpX0q.

XII. TIMES OF EXECUTION

Until now we have not spoken about the times
of execution of a programme in simple code. Very
simple rules can be given.

| For input of programme tapes and number tapes:
10 ms per symbol < 20 ms per complete
instr. or number.

f
For execution of programmes:

30 ms per executed instruction.

For output of results:
On punch: 20 ms per symbol + 30 ms
per number.
On printer: 150 ms per symbol + 30 ms

per number,

These rules have been established by averaging
the real operation times over a great number of
programmes for practical problems.

For those who wish to make a more precise
calculation of times a detailed list will be given
below. All values will be rounded to an integer
number of ms, as all times are averages. The exact
operation time of an order depends on its exact
location in the programme and on the location of
the operand used.

Arithmetic instructions:

H : 20 ms

Aand§ : 40 ms (25 ms when one of the
terms is << 10~" % the other
term)

u : 20 ms

T 122 ms

Vand N : 35 ms

D r §5 ms

K : 20 mgy

V after K,

N after K, :]16 ms <+ time of A

Vi and NO

D0 and DO000O0 : 20 ms

52

Control instructions:

X : 13 ms
E and EO 13 ms
X0 : 21 ms

Input and output instructions are completely
determined by the times of the tape reader, punch
and printer.

The tape reader reads 100 characters/sec.
The punch punches §0 characters /sec.
The printer prints 7 characters, sec.

Land L0 : 30 ms - 10 ms per character
P : 30 ms -~ 150 ms per character
Po : 30 ms + 20 ms per character

Count instructions:

- : 15 ms when count is not ready;
23 ms when ready

+0 : 1% ms

-+ 00 : 16 ms

-+ 000 ¢ 14 ms

—_ : All instr. take 16 ms longer than the
corresponding -4 instr. for the first two
digits of (n). When (#) = 100 10 ms
for each two digits more.

Z20 : 16 ms
Uo : 25 ms
Ho t 24 ms
—RR : 45 ms for counts of 0 or 1 digit, 30 ms

for each digit more. This is a very time-
consuming instruction.

Relative instructions:

Wich H, A, 8, K,V,N, Vo, No,D, P, Po
the first R takes 7 ms over the normal
operation time. The second and third R
each take 0.6 ms more.

With the instructions U, T, —, X, X0, E,
E0, L, Lo each R, also the first one, takes
0.6 ms.

Z : When dialling, the dial waits for 1.5 5
after the last digit before starting action
Zl : 80 ms

Z2 : 120 ms
Z3 : 120 ms
g: } : 100 wms
Zé : 130 ms
z7 : 1§ s
Z8, 222 : Same as P and PO
29 : 470 ms
Z10 1 100 ms

DEEL IX No, 2

HET PTT-BEDRIJF

AUGUSTUS 1959

Z11 I

%:i : Not exactly determined,

714 I but all between 200 ms and 500 ms

Z15

Zla : 28 ms

Z17 : 19 ms

FAR: v 17 ms

£21 : 14 ms

Z23 2 B0 ms

L4 : 30 ms < 10 ms X exponent of
rzsulting number

Z25 : Not yet known

228 : Same as P or PO

£27 : 1§ ms

Z28 45 ms

Z29 50 ms -+ 20 ms per character

Z30 : 3 oms
Z31 : 50 ms -+ 150 ms per characrer

THE POINT FACILITY AND SUB-ROUTINES
IN SIMPLE CODE

XL

In IX the basic meaning of attaching a point after
an address in the number store has been treated already.

; : . .
A point written behind a number address changes |
this address to the corresponding one in the in-
struction store.

One of the uses of this facility is the access to the
instruction store for numbers (with the drawback that
an absolute numbering system is now employed). With
the input indication Y0m it was already possible to
start input of instructions at address » of the number
store. And with YO# it is possible to start input of
instructions into the instruction store at the absolute
address n- instead of consecutively from the beginning.

This point may only be attached to genuine number
addresses, not to labels. Hence an Xp, Y, Zn may
never appear. Alcthough the address in Zn is treated as
a number address on input, it 15 interpreted completely
different on execurion.

For multiple points and points afrer some <+ in-
structions see appendix 1.

Especially for self-contained sub-routines and easy
assignment of space for working registers or constants
a more elaborate facility is provided after point

An instruction of the form Amp with 2 number
address, a peint and after the point 2 label has the
following meaning:

Asf is an instruction applying to a location lying I
n places afrer the location to which label p has been i
given. Label p must have been assigned already before |
using it with np |

Suppose that we want to write a sub-routine for
determining y = o, x* + 4,8 + . % + 4, ¥ + 4,
wherein the coefficients have a definite value. We want
to make this sub-routine completely self-contained and
general. That means that we must be able to place it
anywhere in the store and that all working registers and
constants are contained within the sub-routine.

To enable the programmer to jump to the sub-routine
it must be given a label. This cannot be a fixed number
because possibly another sub-routine uses the same label.
Hence the label by which it is called in, must be given
externally before the sub-routine tape is run in. On the
other hand the coding within the sub-routine itself must
be done with a fixed label, otherwise some instructions
would have a form dependent upon the externally given
lakel,

The way out is o give internally a label to the
beginning (usually a low label), to let everything within
the sub-routine be addressed relative to the label with
n-p and to clear the internal label(s) at the end of the
sub-routine tape. This makes the following convention
necessary.

|
'} When a programme contains a few sub-routines they
|
|

must be run in before the main programme, so that
they can use and clear labels, later used in the main
programme. Only labels 2-9 shall be employed for
this purpose.

]

Z ay x".

k=10

Example: Make a sub-routine for y =

% will be raken to the sub-routine in A.
¥ is carried back in A,

Qp | External label to be written
| by the user for every specific
| occasion

{0-2) Q2| X03 Internally wsed label
{1-2) Urs- 2 Place return instr. in 3
(2:2) H9- 2
(3-2) + 0§
(4-2) Va2
(5-2) AR10-2
(6 2) +1
(7-2y O3 | Z | Return to main programme
(82) | Z | Lecation for variable x
(9-2) K a, Stare reading constants in 9- 2
(10-2) | a, | erc.
(11-2) | o,
(12:2) a, Constants placed in 9-2 o
(13-2) iy 14-2
{14-2) | ag
| ¥ End symbol to stop reading
| constants
Q02 Q03 Clear labels 2 and 3
A Make break poine for enabling
copying with blank between
. sections,

53

DEEL IX Ne. 2

HET PTT-BEDRIJF

AUGUSTUS 1359

The make up of a complete programme needing two
of this sort of sub-routines could be as follows:

Y Start input and clear labels
Yos
e

I Constants for main pro-
gramme read into § etc

Y Clesing Y of series of numbers
Start putting in instruction
No labels are cleared as this is
not necessary

Entrance point of programme
is chosen at the beginning of
the instr. store to make re-
starting from a cleared stop
possible with U6 = 1 and
start. Jump to Q1

Assign label 10 to first sub-
routine and make breakpoint
with blanks for easy copying
in the sub-routine tape

Q1o A #
{blank)

1st subr.

First sub-routine copied in.
Completely self-contained.
Only labelled 10 externally.
Hence main-routine can call
it in by X10

Assign label 11 to second sub-
routine

Second sub-routine can be
called in with X11

o11 A H

2nd subr. i

—+QI Instructions of main pro-
gramme. Entrance is labelled
Q1, whereby Q2 and other

low numbered labels can be

X10 used freely

Q2

—_— Sub-routines 1 and 2 are called
A in by X10 and X11

X11)
YiYoo

Start execution of main pro-
gramme at the beginning

In the previous example of making a general sub-
routine it appeared thar the programmer had to count ths
number of instructions of the sub-routine to be able to
determine the places for the constanes and working
register.

54

With a somewhat different arrangement this could
have been prevented at the cost of one more instr. in
the following way:

(0-2) ©2 | XRRR03 Jump over the constants
(1-2) | Z Keep free working space
(2-2) Ka,
(3-2) i,
::'I:‘ ié: :‘: Constants
(6-2) a,
(7-2) 4
Y Closing Y
Q3 | Xo4
| U2
| H2-2
+ 05§ » Programme
Vi-2
AR3-2
-+1
Q4 | Z
| Qo2 Q03 Q04 Clear labels 2, 3 and 4
| A

A fine example of the application of sub-routines of
the general type is the use of them for caleulation with
complex quantitics, Supposc we want to make sub-
routines for the complex equivalents of the orders H,
A S U, T,V, N and D. The sub-routines will be given
a fixed label for each type of operation to be called in.
The address will be given in a.

Thus + 00n X10 will be the complex equivalent of
Hn, Although being two instructions, they can be re-
garded as a single instruction with an address part of
the form + 00n and an operation part of the form
X10. The real and the imaginary components are
supposed to be always in two consecutive locations of
which the address of the firse will be the “address” of

the complex “location”,

The other operations will be denoted by:

+ 00r X11 is equivalent to An There will be a spe-

+ 00n X12 ,, - w Sn cial “complex accu-
+ 0on X153, r » Un mulator” inside the
+ 00m X14 ,, 5 w Tn sub-routines with
+ 00m X1IF ,, " w Vm address 1-10 and also
4+ 00n X186 ,, i »w MNm a constant 1 4 0.4
+ 00n X17 .. - w Dmin 3-10

For the operations KnVm and KnNm we can prefer-
ably adope a two address code

+ 00n + 00m X18 is equivalent to KnVm
+ 00w + O0m X19 ,, # w KnNm

All other operations can be effected in the normal
Simple Code. Of course it is not necessary to prepare
the address in e with ¢ + 00 instruction, for a relative
instruction can be realised as well, while the count is
kept in a. Or preparation to a variable address can be
effected with — 00n erc.

Sub-routines have been made for all normal functions
of complex variables butr they will not be treated here.

S

(1-2)
(2-2)

(3-2)
(4-2)

DEEL 1X Ne. 2

HET PTT-BEDRIJF

AUGUSTUS 195¢

Q10
2

Q3

03

24
Q3

Q11
Q7

Q12
Os

Q13

Qs

Qs |

QL4

oLs

Qs

Q5

Yo3-
K+
+ 0
¥

Yo7

X3
HR

HR1
Z
Xoi
AR
AR1
X4
Xo3
SR
SR1
X4
Xos
UR

UR1
z

X03
X13

X4
Xojs
VR

NR1

VR1
VR

| &

2
1

2

-2

Uz.2

H1-2

Ui-2
H2-2

Hl-2

Ui-2
H2-2

Hi-2

Hz2-2

H4 2
Ui-2

Hi-2
K22

Lrs-2
Hi-2

K2-2
Uz-2

Hjs-2
| L2

|
J
|
|

|

|
|
I

|

I
|

|
I

XRRR0} Jump to 3 over working reg:

Complex accumulator
Constant 1 + 04

Keep 5-2 and 62 free for working
space

Label 3 15 issued, cleared and issued
again. Store return

Place real part of location

specified in & — 12

Place imaginary part

s

Rerturn

Place return instr.
Add real part to
Re{Aec)

Add imaginary part to
Im{ Ace)
and use piece of Q10 programme

Place return instr,

Subtr. real parc from
Re(Ace)

Subtr. imaginary part from
Im({Acc)

and use piece of Q10 programme
Place return inste.

Store Re(Acc) in (a)

Store Im{Ace) in (a) + 1
Label § can be cleared

Store return instr, in 3
Use complete X135 instr. for storing

For storing
Place 0 in Re{Ace) and
Im{Ace)
Store return instr.

(A) = a + &i
Form (n} = ¢+ di
ac — bd
Form ad + be

Store this in 2- 2 as m(Aec)
Pur Re{Ace) in its place

Return

Q16

Q17
Qo3

Qo6
Q18

Q19

03

Q6

Xos
H1-2
NR
K2-2
VR1
Us-2
Hi2
NR1
K22
NR
Xé

Xos

HR
VR
VORI
Ueé-2
Hi1.2

K2-2
VR1

Deg- 2
Urs.2
Hz2.2

Ki-2
NR1
Deg-2
Xea

X03
X5

X7

X3
X5

| X8

Xoe

Ho3-2
L0

VRER
KR1
NRER1
Lrs-2

VRRI
KR1
VERR
Lg 2

+ 005-2

e —

—_—

Place return instr.
Form —ac + &d
Place this in §- 2

Form —ad — be

and finish action in part of sub-
routine Q1§

Flace return instr, in §

Label § can be cleared now

Form ¢* 4 d*
Place this in 6-2

ac 4 bd
Form
e+ d*

and store this in §-2

be — ad
Form ———————
e S

and finish action in Q1§ programme
Label 6 can be cleared now

Place return instr. in 3

Jump to special sub-routine for
forming (n) X (m). Remark thac
fabel § must still be issued again,
as the previous § has been cleared
Finish operation in addition part

Place return instr.
Form (m) % (m)

Finish operation in subtraction part
Sub-routine for (n) X (m). Place
return instr.

(a) = 3 0—+a (Expofliso0!)
fd) — o. Hence (a) =n (f)=m

Form Re(prod) of (m) 3 (m)
and store this in §-2

Form Im(prod)

and store this in 6-2

Prepare now (a}) = §-2

Return and the addition programme
will finish the addition of §-2 — 6-2
to the “acc”

5§

DEEL IX Neo. 2

HET PTT-BEDRIJF

AUGUSTUS 1959

| Qo2 Q03 Q04 Clear all temporary labels and
make breakpoint in tape

[Qo5 Qos Qo7

Qo8 A

With the help of this general sub-routine operations on
complex numbers can be effected with a coding as
simple as for real numbers, but the operation time is
considerably longer.

Example: Read Z,, Z, from tape and calculate

A
2, + Z,
(£, and Z, are complex numbers)
Y
X1 Jump to main programme
._A# Make breakpoint
| Complex I
| sub-routine
|z Stop
Loz Read Z, and Z, in “2" and “'4"
resp. (in reality Re(Z,) — 2,
Im(Z,) = 3, Re (Z,) — 4,
. Im{Z,) == §.
| 4 002 X10 Take Z,
+ 004 X11 Add Z,
+ 00 X1} Setore Z, + Z,in 0
+ 002 X10 Take Z,
4 004 X12 Subtract Z,
4 00 X17 Divide by Z;, + Z,
P1-10 .
P2- 10 } Print Re(Acc) and Im(Ace)
Z9 Carr. ret., line feed
X1 Return to stire of programme for
next part of 2
YiYoo Start executing of programme

The labels after point have sometimes another useful
application. When a large programme is made, several
sets of working registers and sets of constants are used.
It is not always known in advance how many working
registers will be needed in 2 set, when the programmer
starts writing the programme. Therefore it is very
convenient to assign a label to the beginning of a set
of working registers and number from there onwards
with an address followed by this label

Example:

Suppose there are three sers of working registers, one
for the incidental intermediare results, one for a vector
and one set for a matrix. We shall denote chese registers
by m 5, n 6 and n- 7. Thus the ird element of the vector
is placed in 3- 6. It is not necessary to know beforehand
where the labels will be placed exactly, bur when the
whole programme is finished the number of locations
in each set is known,

Suppose it appears thar 15 incidental working
registers, 20 vector registers and 400 matnix registers
are necessary. Then the following prefix to the pro-
gramme will set the labels.

56

Y Clear all labels

Yolo Qf Start inpur at 10 of number store and
assign label § to this location (In facr
input is never started at 10)

Y015-§ Q6 Start input at 15 locations after label §
and assign label 6 to this location

Y020-6 QF Start input at 20 locations after label &
and assign label 7 to this location

Yo- Start input of instructions at 0O in the
normal way

Al-6 Programme contains instr. making refer-
ence to 3- 6

etc.

When some alteration is made, in the degree of the
vector for example, only the indication Y020 6 Q7 need
be changed and the tape can be run in again.

X1V, CUTTING OPEN WITH THE I-FACILITY

A somewhat more complicated programme is
seldom completely correct the first time it is cried.
We shall not discuss errors in punching the tape
from the written documents. More often the pro-
grammer has made a slip in transcribing the formula
into a list of instructions. Some errors are automat-
ically signalled, as for example issuing a Qp twice or
forgetting to give the corresponding Qp where X
has been used already. Most errors are due to mis-
take in thought on the side of the programmer.
When a programme gives wrong results it is often
difficule to see what error has been made withour
knowing intermediate results. To make intermediate
results visible the so-called [-facilicy is provided.

By placing an [after an instruction (e.g. A200),
the machine can be made to take away the instr.
marked with I and to place a special instr. instead.
When the programme is working it will print out
a few intermediate results as soon as it encounters
the special instruction. It prints the address of the
location where the I-marked instruction is standing,
it prints the contents of A before the instruction
is executed and it prints (A) after the execution
of the instruction. Also the machine can be made
to print only the address. We thus say thar the
I-facility 1s working as tracer. This is very valuable
when an error is supposed to be present in the
correct looping and flow of procedure. Attaching
an I to an instruction is called cutting-open on
that instruction.

|

DEEL IX Ne. 2

HET PTT-BEDRIJF

AUGUSTUS 1919

The rules for using I are:

I behind an instruction is disregarded completely ;
during input when Us = 0. When Us = 1 all
instr. marked with [are cut open.

During execution:

UVs=1, U4==1, U6=1:As soon as an instr. mark-

ed with [is encountered
print:
Carr. ret., line feed, ad-
dress where instr. is lo-
cated in the form n or n-,
(A) before execution in
floating form, (A) after
execution in floating form
and carr. ret., line feed.

U6=0:Same as above but only
print tracers: carr. ret.,
line feed, address of instr.
Do not print at all buc
retain the [-marks on the
instructions. Printing can
be resumed by putting
Us = 1.

U4=0:

Us=0: Print according to U4
and U6 as above. Restore
the original instr. afrer
printing (A) for the first

time.

As many I's may be attached as the store can
contain (cf. small print of this chapter). US
determines whether the I will be accepted during
input and it also determines whether [is taken
away during execution.

The | must always be ac the end of an in-
seruction (e.g. LOR200RI buc not LORI200R). It
can be corrected away by putting a correction
after | (e.g. LORR200I £). An I afrer I will also
be seen as a correction.

There is a class of instructions to which I must
be attached with care. These are all instructions
placing a return instruction, namely: Xp, XRRROp,
+ On, — On, Zn, Z20. When a simple jump Xp
{and also XRRROp used as jump only) are cut
open, then only the contents of A are printed before
execution of the jump. There is no come back after
the instruction because it jumps away. Bur when
with Xp, XRRROp or Zn a sub-routine is called in,
it comes back after return from the sub-routine
and prints for the second ume. This means that it
still has not finished the I on Xp as long as the
sub-routine has not returned. Within the sub-
routine no other instruction may be cut open.

The same appliss to -+ Om placing a loop return.
Within the loop no instruction may be cut open. And
as the loop returns many times it will print (A) after
the execution of -0 also many times. To avoid
mistakes it is better not to cut open - On, —0On or Z£20.

The instruction + or — is in effect a jump when
it returns to the beginning of the loop. In that
case | will only print (A) before the instruction.
The last time when + or — leaves the loop, it
will print (A) before and after the instruction.

Instructions cut open with [are taken away from the
place where they belong and in that place a blocking
instruction of special form is placed. The original in-
struction is placed in a list. The initial address of that
list is normally 1000, placed there by the initial Y
followed by an opening symbol, which effects the clearing
of the labels. All other input indications do not change
anything to the list. Even temporary programmes may
be executed without destroying the instruction, storing
in the I-list, provided that they do not use the g-count.
The store instruction for storing [-instruction in the
I-list is kept in .

It is not always possible to have the list of [-in-
struction, starting in 1000+, e.g. the programme can be
too long for that, In that case a special input indication
can bz given of the form

| Youl or You-! : Begin to store list of I-instructions
l at m or n resp.

Such an indication must always be followed by 2
normal inpur indication as, when US = 0, | would be
disregarded.

Example: Starc [-list ar 700 of number store instead of
at 1000-,

| Y Begin input at 0 and start list ac
1000, Clear labels

Yo7oo! Begin I-list ar 700

Y- Begin input of normal instr. at 0-.
| — \ Instr. of programme

AR AR} is stored at 700 instead of at
_— 1000,

etc.

In the library of sub-routines there exists a special
programme for introducing I's not previously
written. It is a real machine code programme which
must be run in somewhere in the real store (say at
address). After this programme has been started
at n, absolute addresses in the instruction store may
be dialled and these instr. will then be provided
with an I. The use of this I and its removal follows
the same rules as for a normal [.

XV. MATRIX 5UB-ROUTINES

As illustrative material a2 see of sub-routines for
matris calculation will be given. In all these routines

57

DEEL IX MNa 2

HET PTT-BEDRIJF

AUGUSTUS 1979

the essential difficulties lie in the handling of the count
instructions.

The simpler sub-routines for readimg, printing, or
transporting a matrix will not be discussed. In all
routines the matrix will be supposed to be square and
stored row by row in consecutive locations. The place
of the matrix is given by the address of the first location.
The location of a4 is @ + ni 4+ &

Sub-routine for pre-multiplication of a vector by a matrix

Before entering the sub-routine, the address @ of the
matrix will be given in 0, the address b of the given
vector in 1 and the address ¢ of the resulting vector
in 2. The degree of the matrix is taken to the sub-routine
in A,

The operation can be described by

n—1

(c+iy= ' (a+ mi+ k) (b+4k)

ha -
fon

k=20 i= 0{1)n—1
Q2 | Yo20-2Q5 Assign label 3 to working regiscers
at the end
Y2 Start input ar 2
Xo3 Place return instr.
T1:3 Place degree n — 1- 3. Clear A
— 00 g=r a
Uo2-3 Interchange @ and &
— 002 c—=+a (8) ==
— 01-3 | Prepare i-count to m
£20 | e —=aec -+ a— ¢ ret instr, — @
— | U033 Store f~count in 3-3 @ —a ¢ — fi
Uoz-3 Interchange & and f.
Later ¢ + 1 —a g8+ mi— g
- 0001 1 — s as increment of S-count
— 001 b — a
— 013 | Prepare k-count to m
720 b+ hk—a a+mni4+ k-
k= 0(1)n—1
— | KR Form (b + k) (2 + ni 4+ k) and
l— VRR add to sum in A
41 Count with 1 in a and . When count
is ready (8) — a8 + ni + n =
=adn(i+1)
Uoz-3 Interchange counts a + n (i 4+ 1) —a
H03. 3 Bring back f-count ¢ + §i— a
| ¢+ n(i41)=7
| TR Store Xinc¢ + § i= 0(l)n—1
e | Count 4 with | in a only
Z = location 20-2 = 0-3. Place of
return instr.
! = 1+3 working register for n
2-3 | working registers
343 | for storing counts
Y43 Keep working registers free
A3 Breakpoint for next programms

Sub-rontine for transposition of a matriv
Thez operation can be described by
(0 4 wi + &) — a 4+ ok 4+ i
(a 4 mk i) —a+ w4k
fori = 1(1)n—1 k= 0(1)i—1

and

i8

The elements for which i = & are left undisturbed.
This is the main diagonal. In this example we have an
outer count from 0 to » and an inner count with a
number of times, equal to the outer count. By a count
i = 1{1}n—1 is meant 2 count running from 1 to #—1
with 1 at a time. For the limit » the count leaves the
loop so that ¢ = # is not included in the process.
a will be given in a and n in A when jumping to the
sub-routine,

Q2 | XRRR03 Jump over the working registers
and do not destroy (r)
1-2 used for m
2.2 used for a
3- 2 used for storing ¢ -+ i count
4+ 2 used for storing {, floating
§-2 used for i-count
6-2 working register
Yor-2 Leave working registers free and
proceed input at 72
Xo4 Store return instr. in label 4
Q3 RR2:2 a-=2:2 (a) = a
ULz fn— -2
Uos: 2 ¢ — 7
— 01+ 2 Prepare i-count to n
— 00012 n—y
Q% | XRRR06 Jump to count instr. and return
when not ready. (a) = i
(f) =a 42 i=1(1}n—1
—RR4-2 i— 4-2 floating
Uos-2 f-count == 5+ 2 g+ mi—=a {— [
Uos- 2 ¢ <4 micount =+ 3-2 i—+ @
' a4+ ni—
—(02-2 | Add a to 2 count
Z20 | Thus: ¢ + i = a
Uos: 2 a4 ni—a a-+ i— f Storing
in 62 is not really necessary
| 04 2 Prepare k-count to § for inner cycle
|220 (y==n a4+ ni +L—a
| | g+ i+ nk—+f &£=0(1)i—1
| i (a4 mi 4 &) — 62 il
] Ug 2 | (o mi -4 &) temporarily
| gﬁk ll:{u—i—:'—i-—nf:}—-u-!r—ui—l—.&
|| ﬁ;é }Old{d+ni+k}wﬂ'+f—§u#.&
S Count & with | ina, #in g
! |HEIJI-2 4 -+ #i— q
Hos-2 fcount — @ & + mi — j
—] S Return to beginning of outer cycle.
Counting is done by XRRR08
Qs | 41 Count i, When not ready, return;
| when ready, proceed to next instr.
Q4 | Z Return to main programme
Qo2 | Q03 Q04 Q05 Q06 Clear all used labels
| & & Break point

Sub-ronting for the multiplication of two matrices
A multiplication of two matrices can be described by

u—l

= O

k=140

aix b]‘_‘,l

DEEL IX No. 2

HET PTT-BEDRIJF

AUGUSTUS 1959

Suppose that the address of the first location of ay
is o, the address of the first location of the second
factor is b and the address of the first location of
the product is ¢. Then we can rewrite the process as:

n—1
D a4+ nmi+ k) (b+j+ nk)—=c+nitj

k=10
for
i= 0(mjn’—n
j = 0(l)n—1

We shall suppose that (0) = o, (1) = &, (2) = ¢

and (A) = = on entering the sub-routine,
Q2 | XRRRO3 Jump over working registers and
do not destroy t 0| a
-2 used for » 1|6
2-2 used for w° 2le

32 used for c-a-b-n-n°
42 used for storing(s-+-mi)count
§-2 used for storing(b-+j)count

Yo6-2 Leave working registers free and
proceed with input at 6-2
Q3 | Xo4 Store return instr. in label 4
Ui-2 no=]2
Vi-2 Form n*
vz nt—-~ 2.2
s | Form — n*
51-2
S1
s Form c-a-b-n-n'
A2
T2 Store this = 3-2. Clear Ace
— 00 a—a
— 022 |Prepare f-count to & - mi — @
Z20 i= 0(n)n"—n
—r | LJ04-2 Stere (@ 4 i) count —+ 4-2
a4 ni—+ g
— ool b=
—01-2 }Prcpm j-count to b + j — a
Zz20 i=0{ljn—=1 (f) =a<ni
~— | U0s-2 Store (& + j) count — §5-2
e+ni+a b4j—+§
—0001-2 m —= ¥
—01-2 | Prepare k-count to s +mi+Lt—a
Z20 |b+j+nk—+§ k=0(1)n—1

VRR When the count is ready

41 (a)=a + ni+n ()=b+j+
—-EIIH-Z}A:H (32) to a-count giving
Z20 () = e-b-n® 4+ mi

[

KR }ann.z‘(¢+nf+i} (b+j+nk)

TRRR Store X in location mentioned in
(a) + (f) =c 4+ nmi +j
Ho4-2 a4 =+ ni—a
Hos-2 (b4 joount—=a a4+ ni—
— | +1 Do j-count
Ho4-2 (¢ + m) count — m
— | —]+ 2 Do i-count with # ac a time
Q4 | Z Return to main programme

Q02 | Q03 Q04 Clear labels 2, 3 and 4
A F Breakpoint

Sub-routine for the inversion of a matrix

The sub-routine treated here will be able to invert a
matrix in the same locations as the matrix occupies
without using any working registers outside the sub-
routine. It is 2 straight forward elimination method
derived from the Jordan process. Mo special care has
been taken to safeguard the programme againse ill-
conditioned or degenerate matrices. In critical cases 2
better process could be devised, if for example the
largese clement of a row would be taken as pivotal
element in the condensation.

The location of the first element of the macrix must
be given in a, the degree of the matrix in A. The
programme will return with det [a] in the Acc

The process used can be described as follows:

Be the given matrix @, . A sequence of intermediate
matrices 4/, is formed. At last @ will be equal to
leg]-".

The pivotal element of the intermediate matrix £ is
called by . The leading element of each row is called o

The process is:
For A =0(1)n—1: sflu-ﬂ-&g
For j=0(l)n—1: a}, /by—a}’' where af =

For i=+k+1(1)n—1 and i = 0(1)k—1: a¥, — ¢}

For j=0(1)n—2: af,., —e} a}' — al
For j= n—1: —c | /lh— ai}!,

During the outer cycle det [4] is accumulated ac-
cording to
n—1

i1 b,

=0

det [a] =

i?

DEEL IX Ne. 2 HET FTT-BEDRIJF AUGUSTUS 1959

The programme now reads

2.
o i' . | Temporary programme for reading constant 1 i :
Y2You Execute temporary programma and read | — 2.2
Y2 Start again at label 2
XRRRU) Jump over working registers and do not destroy (r)
{(1:2) used for o
(2-2) = 1
(3-2) used for m
{4 2) by = o},
(§-2) n—1
(6 2) n®, later (@ < mk) count
(7-2) mk floating
(8-2) ninm—k—1)
{9 2) '—-r:' — -—--.I:"Iﬂ
(10-2) i-count
(11-2) 11k
Y122 Leave working space free and proceed to input ac 122
Q3| Xod4 Store return instr. in label 4
Qoi| — RRL-2 d— 12 Clear label 3
Uiz o= 32
:_::lezz } 1 == 11-2 as starting value for the accumulation of det [a]
Hi- 2 } o
§2-2
Ts-2 #—1 — §-2
Vo 2 Form n°
Ue-2 n— 62
400
Uo4- 2 Clear 3. 4 2 used as rubbish dump
| — 001 2 ¢—a
— 042 | Prepare outer count to & + nk — « k=o0(1)n—1
Z0] nk— g {nk = 0 initially)
| 4= 000 0—y
L'o6 2 Store (¢ 4+ nmk)count - 62 a4+ nk—F nk — a
— RR7 1 mnh — 7.2 (floating)
U4 2 a + nk—a nik —
532 Form n{n—k —1)
Us: 2 win—k—1) =381
Ef‘z } e}, = by = (4 + nk) —= 42 as pivotal element
EiL; } Accumulate [T by in 11-2
5:1-1 : Pmmt'.}.'*-}-fqu f:ﬂ[l]#—"z
HRI
Ll |t
Q3| +1 Label 3 is wssued again
When finished, the count reads (a) = a + nk + w—1 (L) = nk
H2 2 |
D42 1/b, — ﬁf:"
UR I
— 00012 o=
XRRRO3 By executing a + 1 instrat <+ nk + 0 —a a+ nk—= ff
I ——— As (i) == count limit @ < wh <= n—1 the +4 instr. returns to the instruction
following XRRRO}

60

DEEL IX Nao. 2

HET FTT-REDRIJF AUGUSTUS 1919

I Q03

[

k

(8]

_...Q5

Qo2

KR Y

— 007-2

Huos- 2

— 0003- 2
Hg-2
33l

Q03 Qo4
A F

Clear label 3
If wim—k—1) > 0: prepare count ¢ + m withi = & 4+ 1{ljn—1

Skip next instr.
If m{n—k—1) = 0: there is no count i = & + 1{1}n—1

Forma Lt nk 4+ nd-ni' =a+ni

i=k 4+ 1{1)yn—1I or form count a + i
i = 0{1)k— 1 when coming from X}

Extrace leading element of row —cf=—a},

Smrt—{':' — 5.7

Store (@ + mi) count — 10- 2
p——

Prepare count @ + wk + j — «

a 4 wi—+fi a4+ nk—u

P T S e]

with j = 0(1)n — 2. Count limit = n— 1

Inner cycle

Form af*' —af . —ef af’* and store this over old af, = (a 4 ni + j)
(o) 12 {fYLT %3

Form for j = n—1: —¢} / by

and store this over old element 4} |

a 4 nk — a

a + mi—a a4+ nk—f

(a) + n — a After completion of count i = & + 1(1)n—1:
(a) =a+n'>a -+ nk

Afrer completion of count i = 0(1)k—1: (a) = & + nk

@+ nk—a 10- 2 15 used as a2 dummy store

Test which i-count has ended on 2 <+ order

a 4+ nk— Jagain

d— a

If count limit nk => 0: prepare f~count with i = 0({1}k—1 and re-enter i-cycle

If nk = 0: skip second i-count

After completion of i = & + 1(1)n—1 and (a) 5= count limit: return to instr.
following XRRR06

Afrer completion of i = 0(1)f—1 and (a) = a -+ mk: next instr. is executed
nk — a
nk —+ §
b
nn—Ek—1) = A
a4+ nlk+1)—a
Exccute and test &-count
det [a] = A

Return to main programme

restore (a4 + nmk) count in a

nik+1)—=g

Q05 Q08 Clear labels

Break point

61

DEEL IX Ne. 2

HET PTT-BEDRIJF

AUGUSTUS 1919

APPENDIX 1

THE PLACING OF SIMPLE CODE IN THE MACHINE STORE

For advanced programmers it is necessary to
know how the Simple Code interpretation pro-
gramme is placed in the real machine code store, as
well as where the object programme resulting from
a source programme in Simph: Caode langungc is put.
For all derails about normal machine code the
reader must be referred to the ZEBRA handbook,

issued with every machine.

The Simple Code programme consists of several
parts, i.e.:

a. The operation part, in which the different types
of operations are executed.

f. The input part, by which instructions are
taken in.

¢. The I-part, which functionally belongs to the
input part.

d. The L-part, in which all numbers are read.

¢. The P-part, in which all output of floating
numbers is effected. (P, PO, Z8, 29, Z22, Z23).

f. The Z-list, in which the reference addresses
for all Z-sub-routines are kept.

These 6 parts just fic into two blocks of the
machine store. Normally they will be placed from
6144-7168. The placing of the 6 parts relative to
each other is rather irrelevant except for the Z-list.
This Z-list has been placed at the end of the two
blocks so that in the next block 7168-7680 there is
still room for more Z-instr, As this next block is
filled with normal output programmes starting in
7368 there is space for aboutr 250 more Z-orders.
(Often the Print Store programme is kept on 7168
but chis is not necessary.)

The Simple Code instruction store and number
store are imbedded in the following way in the real
machine store:

175 | — 175 and 177 form location 0
| of the number store

176 | ———176 and 178 form location ©-

177 _ of the instr, store

178

179 179 and 181 form location 1
\ of the number store

180 | ———180 and 182 form location 1

181 [— | of the instr, store

182 | —— ete.

In the number store the first component is always
the mantissa, the second component the exponent.
Furthermore there is a list of labels. Label p is put
into 75 + p in the machine store. Some machine
addresses between 50 and 7§ are used as live drum
working registers for Simple Code.

62

It now follows how large the capacity will be
when the basic Simple Code is in the machine. We
find that there are [V;(6144 — 175)] = 1492
instr. addresses and 1492 number addresses. When
this is not enough the whole Simple Code programme
can be moved further back in the store. In that case
normal input in block 7680-8192 can be removed
altogether. (It is nowhere needed in Simple Code,
except for teleprinter code input.) The standard
output, normally in 7424-7680, can be moved up
to 7936-8192 and Simple Code can ultimately
moved up to 6944. Now the capacity in number
and instruction store becomes [14 (6944 —
— 175)] = 1692.

When it is necessary to extend the list of labels
over 100 it will be clear how this can be done. In
fact the first component of 0 will be the same as
75 4 100. The easiest way to make a few more
labels available is to use 1+, 2+, etc. of the instruction
store.

1- = 176 and 178 in machine store =
= label 101 and 103

2-= 1380 and 182 in machine store =
= Jabel 105 and 107 etc.

These labels must be cleared separately with
Q0101 etc. and can then be used in the normal way.

Until now only the basic Simple Code programme
was considered without the functions. The standard
function programmes such as for the Z1, Z2 etc.
instr. and for teleprinter code input are organised
in a special way. They all belong to the family of
retrograde subroutines which are put into che
machine, filling the store from back to front. In
this way only the strictly necessary sub-routines
could be fed in and a maximum free space is left
for number and instruction store. Normally when
there is room enough the following sub-routines are
permanently left in the store in the following re-
trograde order. (The first routine mentioned is
highest up in the store.)

Teleprinter code input:

Z1

Z2

L3, Ziv; Z24
Z4, I5

Za

Z11 to Z15
726

In general two complete blocks are reserved for
them from 5120-6144, This leaves a capacity of
number and instr. store of [1§ (7120 — 173)] =
= 1271.

DEEL 1X No. 2

For the actual location and coding we can again
bese refer to the handbook of sub-routines,

The point facility can now be treated somewhat
more fully than was previously possible. A point
after the instr. adds unity (in machine code) to the
address. Hence it shifts 2 number address 175 -+ 4n,
177 - 4n into the corresponding instruction ad-
dress 176 - 4n, 178 -+ 4n. It is possible to add more
points. The effect will still be to shift up the
address by unity. E.g. H1 -- will take 181 and 183
instead of 179 and 181, This is just the exponent of
(1) as mantissa and the mantissa of (2) as expo-
nent. In this way fixed point operations can be
done on the mantissae of numbers by the D0 and
DO0000 instructions. In the same way a triple point
can be used. H---- = H1

Something must stll be said about the use of the
fast access working registers in Simple Code.

During execution of a programme the short
registers are occupied as follows:

(4) = working register for miscellaneous purposes
(§) = ditto Mantissa of ()
after Kn instr,
(6) = Usually XK3BD-X003B2. Modifier for re-
lative instr.
(7) = ALR for multiplication
(8) = Working register. Exponent of (n) after
K. Return instr.
after ALR
(9) = d-register. Contains 4-fold
(10) = a-register. Contains 4-fold
(11) = f-register. Contains 4-fold
(12 ="} Mantissa
(13)=:J Exponent
(14) = Extraction instr, of the form

Accumulator

ACE 176 + 4 m for extr. of next instr.

from m- -4 1.
(15) = Usually XKCDE002. Modifier for extrac-
tion process.

APPENDIX 2
LINKS BETWEEN SIMPLE CODE AND NORMAL CODE

It is not possible to do everything in Simple Code.
For example printing text cannot be done in Simple
Code. So the experienced programmer will some-
times use Simple Code and normal code together
and he must be able to transfer the control from
normal to Simple Code and back.

One way of entering Simple Code from normal
code is by using X38P, in the following way:
X38P: Jump to Simple Code instruction in the

location of which the address in the in-
struction store is mentioned in B.

A return instruction is kept to be used
by Z19.

HET PTT-BEDRIJF

AUGUSTUS 1919

Example:
N
NKKBC } "
-+ 140 e
X38P Jump to instr. in Simple Code in

instr, store address 140

From Simple Code we can return
here,

The same instruction X38P can be used for
jumping to a label p in Simple Code. In that case
-p must be put into B before using X38P.

X38P: When (B) = # = 0: jump to address » |
in the instruction store.
When (B) = p << 0: jump to label p.

The way to return from Simple Code to normal
code is by Z19.

Z19: Return to normal code on instruction
following X38P,

The Z19 can only effect return to normal code
when first normal code has entered Simple Code by
an X38P instruction,

A way of transferring control from Simple Code
to normal code withour a previous jump of
normal code to Simple Code can be effected by a
specially made Zn, where # => 32, (All Zn with n
= 32 have a fixed meaning.) The corresponding
outlet in the Z-list must then be filled with a nor-
mal jump to the normal code programme. Such a
transfer is very fast. As long as (14) = ACEm’ is
not destroyed, the way back to interpretation in
Simple Code can be made by X43P.

Resume interpretation on Simple Code
after last Simple Code instruction, which |
jumped to normal Code.

K43iP:

A third way of I:r:lnsferring control from Simple
Code to normal code is by:

URO: Jump to machine code address n, when
(a) =m (0) = a

Exam ple:

| +0020 20—a
4+ 004133 |Jump to machine code address
URo j4133, but restore 20 — a

63

DEEL IX Neo. 2

HET PTT-BEDRIJF

AUGUSTUS 1959

A return to Simple Code can be made by giving
the instr. X43P. Control returns to the Simple Code
instr, following URD.

Of course URO is useful when the address in a is
variable. When it is fixed another way of jumping
to normal code is:

| Q000n: Jump to normal code address m. Re- |
turn can again be made by X43P, |

Not only the control must be cransferred from
normal code to Simple Code, but often also num-
bers must be carried to Simple Code. These numbers
are in fixed point form in normal code, but must be
converted to floating form in Simple Code. The
following order is present for this conversion:

Z24:
13 §) into a floating number to be placed
in 12 and 13 (= A in Simple Code)

Convert the number in short registers {IE.J'

The number to be converted can have one length
before the point in 12 and one length after the
point in 13. We then say that in a double length
number the point is in the middle. () does not
matter in that case. Or it can be a double length
number, point to the left. In that case the sections
are placed in 13 and § and 12 must contain all zeros
or all ones dependent on the sign + or — resp. In
any case only the nine most significant digits will
be converted to floating point and placed in the
floating accumulators 12 and 13.

Example:
| NE13 pre-instr.
NEKEKC
head of take head of number before point
number
NE'K?EIZ and place chis in 12
:‘:mier place tail in 13
NKKBC jump to instr. 1§ in instr. store
XisP

This instruction can then read:
{15-) = Z24: convert (12, 13 §) to floating — A
Z24 is a part of the log, In sub-routine Z3, Z10.
The reverse operation is effected by:

Z25: Convert (A) floating into a triple length
siumber in (12. 13 §)

This instruction has not been built in yer. It will
be a part of a new sub-routine for sinh and cosh.

64

In the same manner as Q000#n transfers control
to normal code address # as an instr. there exists an
input indication:

| Q00n: Jump to machine code address = a4
soon as this indication is read during
input

Note carefully the difference between QO000n
being an instruction in the store and Q00n being
an input indication.

APPENDIX 3
SIMPLE CODE 1% LENGTH

A precision of 9 decimals in the mantissa is not
always enough. As in the normal Simple Code (ab-
breviated SC) the exponent part of a number is
ordy used for exponents between — 1000 and
+ 1000 there is still room for more precision by
taking the tail of the mantissa and putting it into
the exponent register. This has been done in Simple
Code one and a half length (abbreviated SC 1%4).

The code of SC 1V is equal to the code of 5C
with the following exceptions:

a. For numbers on tape the reader will accept up
to 17 significant digits instead of 10.

£, Numbers printed will appear as:
+ 0. XXXXNXXX XXXXXXXX Sp==XXX SpSp.
Internally the exponent b is always
—1024 < b < + 1023

but the print part will automatically limit the
exponent to = 999,

¢. Built in sub-routines are:

Z,Z7, 28, 79, 716, 217, Z18, Z19, 220, Z21,
222,723, 227, 728.

The sub-routines Z1 and Z26 are available in
normal code and are consequently very fast but
all other function sub-routines are interpreted
Z-sub-routines, working in Simple Code them-
selves and are rather slow. No teleprinter code
input, or output in fixed point form with Z29,
230, Z31 is available,

d. The times of execution are about 113 times as
slow for A, §, V, N, and V0, N0O. D is still
slower. All other times are equal to the corres-
ponding ones of SC. Of course input and out-
put are slower, because there are more charac-
ters to read or print. The programme for execu-
tion of SC11% is abour 1350 instr. long. Thus
without the function sub-routine for Z1 the
capacity available in number and instruction
store is about 1400 locations.

