PTT
&

STAATSBEDRIJF DER POSTERIJEN, TELEGRAFIE EN TELEFONIE

—

REPORT 164 MA

PROCHSS FOR AN ALGOL TRANSLATOR
- PART ZERO: ' .
INTRODUCTION

PART THREE:
THE TABLES

- DR.NEHER LABORATORIUM

REPORT 164 MA

PROC#SS FOR AN ALGOL TRANSLATOR
. PART ZERO: '
INTRODUCTION

'PART THREE:
THE TABLES

| | BY: G, VAN DER MEY
WITH THE CO-OPERATION OF: W.L. VAN DER POEL

P.A, WITMANS

G.G.M, MULDERS.

JULY. 1962

Preface

The present work is:a description of an ALGOL 60 compiler
for ZEBRA. However, the scope of the work has been made much
wider than a strict description of the action of the compiler
for the particular machine code of ZEBRA. We have tried to give
the description in ALGOL language itself and but for'insignificant
details the description is machine free, This means that the
system can be coded in any machine language. This was only possible
because this ALGOL compiler translates source language into an
intermediate interpretive code. This interpretive code 1s of course
. again machine free. So is the interpreter,

The compiler is of the load-and-go type. Pirst the translator
is put into the store;then the source program can be translated
and is directly put into the store, Secondly the interpretér is
put in on top of the tramslator and thekprogram can start working.

A few details have been omitted from the report on purpose.
The action of the arithmetics of real and integer is too well
" known to need description:; in some machines it is a built-in
function, in some it is not. The conversion from hardware input
language to identifiers, numbers and delimiters has also been
delegated to a procedure called "input" of which only a flow
diagram has been added for the ALCOR hardware conventions. The
same is true for "input1",for strings. No descriptionsof machine
code body procedureshave been added, as these differ too much
from machine to machine. However, it will be clear fron the report
how the same procedure heading can be used for machine code body
procedures.

As many features of ALGOL 60 have been incorporated as
possible with the exception of own dynamic arrays and subscripted
controlled variables in for statements.

Even a lot of extra features are incorporated such as
_ intermediate assignment, use of blocks as switch elements, implicit
assignment to procedure identifiers in type procedures.

The present work is distributed in the spirit of the ALGOL 60
report and is not copyrighted. In the machine free way it is
described it is thought to belong to the realm of pure mathematics.
However when used, please state the source expllcltly.

Ww,L., v.d., Poel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.10
0.11

0.12

0.13
0.14
0.15

0.16
0.17

0.18
0.19

0.20
0.21
0,22

Process for an ALGOL Translator.
Representations.

Workingvspace.

Relative addresses.

Absolute addresses.

Intermediate code,

Basic strings.

Identifiers.

The declaration pattern.

The list I of declarations.

Opening-, separation- and closing symbols.
The list L.

Translation of operators.

The rule of precedence.

Pre- and after-actions of opening symbols.
If-then-else.

Block.

Contra-declaration.

Switch.,

Procedure chain.

Rank. ,

The internal variables of a procedure.
Looking up deliberate variables.

Formal parameters representing procedures and
expressions.

Arrays.

For statement,

Verify instructions.

Contra-declarations made when actual parameters

translated,.

are

' 000010

0. Process for an ALGOL Translator,

The process described below has been developed for the
ZEBRA, which binary machine contains 8192 locations in its store.

Each location consists of 33 bits
bo, b1,b32.
b, is the sign digit: bo = 1 means that word is negative,

Within the store, the lpcations with addresses PO, PO + 1,
PO + 2, ..., Q0 are the working space of the translator, which
itself may occupy the addresses |
Q0 + 1, Q0 + 2, ...
In translation time, an ALGOL text being read from the tape, is
translated into a binary form which will be called below an object

programme, and the successive words of the object programme are

0

stored on the addresses
PO, PO + 1, PO + 2, ...

Each word of the object programme is either a programme
constant or an instruction, An instruction is either a ZEBRA jump
instruction which is always positive, and must be normally exe-
cuted, or it is negative, being written in a convenient interme-
diate code to be interpreted. In the operation time of the object
programme, the interpreter is supposéd to take the place which,
in translation time, is occupied by the translator,

0.1.1.

0.1 Representations,

Integer representation:
Integral values v, - 232 S v 232, can all be represented

by words

b = Eob1f"b32
in which bO is the sign digit.
The logical wvalues will be represented by integers:
true = 0, false =-1 ‘
The or operation performs the logical product and may also be
applied to integers. ‘
real representation:
When i is any fixed integer between 1 and 31, .a word b
defines, through the relations _
m = fraction by, . by _y; end e = integer Dy, _yeeeD3py & Vvalue

v' =mx 10°
However, v' = 0 will be represented by m = e = 0. For the mantissa

“and exponents of values v' # O
the following bounds are observed:
01 s x <1, -2tsec<c2t
Thus b32—i is the sign digit of e
"Accumulator",

For retaining the value accu obtained last in calculations,
the interpreter uses an accumulator consisting of the two varia-
‘bles mant and exp of table 4B, Either mant is the'integer repre-
sentation of accu and exp is = 0O, 6r when real representation is
feduired, mant is the mantissa of accu and exponent = 1 + 2 x the
exponent of aceu, Thus exp £ O indicates that accu is given in
real representation, Then exp, is the sign digit of the exponent.
Before storing, the mantissa of accu must be rounded to 31 - 1
digits behind the binary point and is joined by the exponent
which, of course, must be within the bounds mentioned above,

0.2.1.

0,2 ‘ Working space.

_ In an object programme, any instruction requiring a constant

is immediately followed by that constant. Thus the translator
does not assemble a list of programme constants,

Conveniently supposing that arrays with variable bounds are
not own, the translator reserves, within the object programme,
one or more fixed spaces for the own arrays and own variables
declared in the text being translated.

The completed object programme may occupy the addresses
PO to P1 - 1. Then the space

P1, P1 + 1, ... QO

is still available for the simple variables and arrays which are
not own. For an efficient use of relative addresses it is advan-
~ tageous to isolate, within the working space, the simple variables
from the arrays. Thus, at any moment of the operation fime,.the
space P1 ... Q0 is divided& into 3 ranges, P1 ... P -1, P ... Q,
and Q + 1 ... QO, so that the first range and the third range are
fully occupied by the arrays respectively the simple variables
which are still, or again, in use, while the middle range is not
occupied, Of course, the lower pointer P and the upper pointer
Q are no constants but variables of the interpreter (cf. table 4B).

063 - Relative addresses.

After readingva:simple variable i to be declared which
is nottgﬂg, the translator associates to i a fixed relative
-address y' which is the value of an address pointer q aad +he
variable q is decreased by 1. q has the initial value QO
(cf. table 44).

For enabling an object programme to handle arrsys with va-
riable bounds or to retain values of the pointers etc,, thes
translator must provide it with some internal simple variables
which are not declared in the text, When introducing an internal
variable i, the translator again associates a relative address
y = q +to i. Thus each of the relative addresses q + 1, q + 2,
ces Q0 dis occupied by either a declared simple variable being
not own, or an internal variable, Internal variables are intro-
duced>only when translating a block head or procedure heading.,
They may be regarded as being local to the block or procedufé
concerned. ‘ o '

~ After translating a block B, the translator assigns to vari-
able g the value which is the highest relative address docﬁpied
by a simple variable which is local to B. That value of q was
resident when B was going to be translated. The variable with
the relative address q + 1 1is not local to the translated
block B.

Before translating a procedure P, the translator assigns
to the variable q its initial value QO., If formal parameters
are present, the key (cf. table 3) of the first formal parameter
is given the relative addresses QO and QO - 1, etc. After
translating P, the translator again assigns to q the value
which was resident immediately before the translation of P was

beginning,

0.4.1.

0.4 Absolute addresses,

When, in operation time, the object programme of a block or
procedure B is going to operate, one-location L, with the
address p + y, is reserved for each local simple variable 1
of B, y being the relative address of 1 with respect to B.
Loéation L is at the disposal of variable i until ‘the opera-
tion of B finishes, The pre-value p is a variable of the
‘interprefer which is = O when no procedure is operating, Thus,
in the case of a block B which is not contained in any procedure
text; the relative address y of 1 1is in fact the absolute
address of the location occupied by 1i. |

When any procedure B 1is called, the value Q - 5 - QO
is éssigned to variable p, and this value is restored whenever, -
after an interruption, the operation of procedure B continues,
At the call of B +the space P,,.Q 1is not yet occupied. As the
relative address y of a local variable i is S QO0, the abso-
lute address p +y is 8 Q - 5 thus not yet occupied when 1
comes into process. The previous value of p is sfored on the
address '

Q-3=p+ Q0 + 2 \
thus‘being a "local simple variable” of procedure B with the
relative address Q0 + 2. Of course, the value of pointer Q

must be adjusted,

0.5.1.

0.5 Intermediate code.

When the interpreter (ef. label S105L2) extracts an instruction

from the object programme, the next word N of the object program-—
me is also extracted, If N is no programme constant and, in
addition, I does not make the interpreter perform a jump in,the
object programme, the interpreter augments its extraction:instrucﬂ

tion e by 1. -

If the bit Io = 0, then I 1is a machine code instructiqn.and
is executed normally.

If the bit IO =1, _
instruction I must be interpreted according to the intermediate
code to be described now., The instruction I consists of the o
‘follow1ng groups of bits:

1 IO"'I6 - the operatlon part.

In the intermediate code, every instruction I (adding, storing,
jumplng,.etc.) has a.number q, 64 S g < 128, 226 q is the
- operation part of TI. |

When, in table 1A, q is < 96, I 1is called a calculative'
instruction and requires, besides a value to be extracted, the
value accu contained in the accumulator of the 1nterpreter. In
table 1A only the "progres51ve" version of the calculatlve 1nstruc—
tions is listed, from which the "regressive” version is obtained
by 1pvert1ng the bit 16' Thus the regr, version of < is equal to
the progr. version of >.

When 96 £ ¢ < 104, (cf. table 1C) I is called an extractive
instruction and requires only the value to be extracted.

When 104 S q < 128 (cf. table 1D), I is called a non=—
extractive instruction.

2 17 - the type bit,
I. = 1 - the value to be extracted or stored by instr, I has the

real representation.
I. = 0 #+ - has the integer representation or is boolean.

3 Ig
If the address part (cf. 6) of I is 0, there are 2 possi-

bilities (cf. S10L6): \
18 = 0 The word N next to I and already extracted, is

a programme constant required by I.

005.20

The extraction instruction e is augmented by 2 instead of 1.
I is a calculative or extractive instruction,

18 = 1 Instruction I requires a partial result located
on addresses Q + 1 and Q + 2, and augments pointer Q by 2,

I dis calculative.

4 19 - formal bit.
19 =1
Instruction I does not refer to a parameter key.
I9 = 0, Then is also: 17 = I8 = 0,

Instruction I refers to the key (table 3) of a formal parameter,
The test on S10L13 succeeds and the parameter key is extracted.,
If there has been specified a type t for the parameter in the
text, there happens on S10L31:
17 : = type bit +t, and eventually bit 18 : = 1. If the formal
parameter represents a variable and instr. I is calculative or
extractive, the bit I8 = 1 dindicates, on S10L18, that the re-
presentation of the value just extracted from that variable, must
be changed before the value is used, If the'parameter is a function
or expression, the bit 18 is tested on S10L51,

5 110...119 - rank part.

In translation time, ranks are introduced:

Own declared identifiers have the rank O,

-A label, an identifier, or an intermal variable, defined or
introduced at a moment when no procedure of the text is translated,
has the rank O,

When a procedure identifier has the rank r, the procedure
concerned has the rank 1 + 1

A label, an identifier being not own, or an internal variable,
which is defined or introduced when the translation of a procedure
is running, has the rank r of that procedure.

R=213XI'
is a variable of the translator, in which r dis either the rank
of the procedure which is being translated, or O, when no proce-
dure is being translated.

In the rank part 213 x r of an instruction I, r 1is the
rank of the object (simple variable, label, etc,) to which I
refers.
- address part,

6 IZO"'I32
For the address part O confer 3 above.

0.5.3.

When the address part is an address y > 0 and if I is an
instruction for performing a jump, then the word {y} dis the in-
struction to be executed next.

Whnen I is no jumping instruction and if the rank part of
I is = 0, then § yf is the value required,

Otherwise the rank part of I -enables the interpreter toc
look up the pre-value pl to be added to the relative address
y contained in I (ef., S10L12). Then {p1 + y }is the required

value.

006.10

0.6 Basic strings.

In ALGOL there occur 3 kinds of basic strings: identifiers,
constants, and delimiters,

There may, and will, be supposed that a constant is an un-
signed number, The sign which may precede it in the text, is a
delimiter. ,

The basic strings true and false will be regarded as to be
constants,

Within the text, the beginning and the end of each identifier
or constant is marked by a neighbouring delimiter,

Disregarding comment and the string quotes, the delimiters
will now be divided up into 5 groups:

1 the arithmetic, relational and logical operators (table 14),
2 the declarators and specificators (table 2).
3 the colon (table 1B).
4 the opening symbols.,
Within a statement, the first delimiter differing from colon is
an opening symbol i.e. one of the delimiters begin for go 1o
if o= ([
(In the first column of table 1B, procedure and switch are
also listed as "opening symbols", but these delimiters are regar-

ded here as declarators).
5 the separation- and closing symbols:
comma semi-colon then else step until while ‘do end)]
The input part of the translator reads each time the trans-
lator goes to it, either a comment string (which will not be con-

sidered here) or one basic string s.

If s 1is an opening symbol or colon, the input part returns
to the entry mentioned for s in table 1B.

‘Otherwise the input part represents s by a single word f
(f is variable of the translator, cf. table 44) and returns to
either S1L1, for operators, separation- and closing symbols,

or S3all,for declarators and specificators,
or S4L1, for identifiers,
or S4all,for constants.

The delimiter := consists of 2 delimiters, There may, and
will, be supposed that the input part is able to be aware of the
whole of such a compound delimiter thus does not return to the
translator after reading only the first symbol contained in it,

0.6.2,

Two delimiters such as = -~ which immediately follow one
the other in the text without forming a compound delimiter, are
said to be "separated by the O-identifier". In this case, the
input part performs two returns to the translator, |

Oo7l16

0.7 ' Tdentifiers.

Identifiers consists of the decimal digits, and only one
kind of alphabet, which can be numbered O to 9, 10 to 35 respec-
tively. o
For retaining 6 characters (letters and digits) of an identi-
fier, 32 bits i1 to 132 of a word 1 are rpquired, while iO

is supposed to be = 0. This is done in such a way that the charac-
ters 0-9, 10-35 are converted as digits a radix 37 system into
binary. All overflow above 31 bits is removed and i, and i, are
made =1 as soon as more than 6 characters are read, Thus an
identifier of 6 characters or less can never be the same as another
of 6 or less. But two identifiers of more than 6 characters can

be the same although the chanceis very small,

28 that occurs as a label, will, in

An integer n, 02 n < 2
this quality, be represented by
i=n+ 230 X 3
which, differs from the representation of any identifier,
' To the representation 1 of a label or identifier corresponds

the (negative) contra-identifier

1" =3 + 232

008010 i

0.8 The declaration pattern.

The declaration pattern
D =' D0D1 e e .D32

(cf. table 2) is a variable of the translator which is positive
only when identifiers are being declared or specified.

~ After reading begin or a semi-colon occuring within a blook
"or compound statement, there happens on S3L1 resp. S3blL4:
' D:=1111111111 0...0 -
' When the next delimiter should be a declarator, the translator,
on S53aLll, replaces D by its logical product with the represen-
tation f of the declarator, which is positive. The positive
value of D indicates to scheme 4 that, and how, an identifier
just read must be declared. ' ‘ _

In a procedure declaration, the opening parenthesis of the

formal parameter part makes the translator proceed to S5L2, where

there happens:

D: =0 000011110 O...0,
This value indicates to scheme 4 that the identifier just read is
a formal parameter to be defined (declared). In this case, the
parenthesis is in fact a kind of declarator,

Semi-colons occuring in a procedure heading make the trans-

lator proceed to S84dL9, where there happens:

D: =1 000011111 0...0
This value is still negative, However, when the next delimiter
should be any declarator or specificator, the value of D is
modified such as to make the translator, after reading an iden-
tifier i , proceed to S4L6 for specifying parameter i 1in the
object programme,

009.1.

0.9 The list I of declarations.

To any identifier 1 having just been declared in the text,
the translator associates an internal equivalent e, stores
f =i and e on the addresses T and T - 1 as indicated by
its variable T, and decreases T by 2 (cf. procedure SO0e as
invoked on S4L20), Variable T takes only values QO, Q0 - 2,

Q) - 4, etc., Thus a list I of declarations is formed.
Mostly, e has the form (cf. table 2):
e =y + 213 x5+ D
in which D is the declaration pattern as left by the combination
of declarators preceding the identifier list in which i 1is con-
tained, y and r are the address and the rank given to i,

If i dis an own variable (cf., the failing test on S4I19),
then a location with the address y 1is reserved for i within
the space of the object programme, and r = 0, If 1 1is a simple
variable not being own, then y is the relative address as indi-
cated by the variable q, and 213 x r 1is the current value of
variable R, r Ybeing either the rank of the procedure which is
being translated, or = O (when no procedure is being translated),

If a variable i 1is referred to within a statement or ex-
pression, the translator proceeds to S4L22 and looks up i end
e 1in the list I. y, r, and the tits ery €gy €g are included
in the instruction to be formed, :

After translating a block or procedure B, on S3bL14 the
value T' = e = = 2 + (lowest address where an identifier being
not local to B is located in the list I) is assigned to varia-
ble T, Thus the identifiers which are local to the translated
block or procedure (in the case of a procedure, only its formal
parameters and eventual labels are meant), are no longer retained
in the l1ist I, 1In most cases, T' is the value variable T had

when B was going to be translated.

When an identifier 1 is referred to in the text, the trans-
lator (cf., S4L22 and the more complicated case of S3bL13 where at
first a contra-identifier is extracted) looks for the lowest
address where 1 occurs in the list I, by comparing 1 succes-
sively with the identifiers |
{r + 2%, fo+4}, {r+6},

The internal equivalent is extracted, Thus the identifiers which

0.9.2,

are not local to the - youngest block or procedure B whose
translation is not yet completed, are considered only when i
is not found among the locai identifiers of B. Thus the trans-
lator is not confused, when an identifier which is local to B,
has outside the text of B another significance. As a local
significance of i 1is not yet, or no longer, listed in I before,
or after, translating B, no reference may be made %o that signi-
ficance of i outside the text of B,

The declarations of the h standard functions may be inclu-
ded in the translator programme on the addresses
Q0 + 1, Q0 + 2, ... Q0 + 2xh - 1, Q0 + 2Zxh.
They are permanent and immediately join the list I so that they
are available at any stage of a translation. They refer to fixed
programmes of standard functions which are sections-of the_ inter-

preter programme,

0.10.1,

0.10 Opening-, separation- and closing symbols.

The definition of opening symbol as given on page 0.6.1,.
rar. 4 is sufficient for input purposes. For unterstanding the
translator a better formulation is required:

Opening symbols are: .

1 the delimiters begin for go to if [
2 the parenthesis (unless preceding a list of formal para-

meters to be defined
3 the declarators procedure and switch unless used in the
quality of specifier '
4 = unless contained in a for statement or switch declaration,
In the context, an opening symbol is followed by a piece of
text which is called its court and is largely characterized by it,
As an array declaration is already characterized by the ope-
ning bracket together with the declaration pattern, the declara-—
tor array will not be treated below'as opening symbol.
The delimiter s' marking the end of the court of an opening
symbol s, is the closing symbol of the court of s, Unless s
and s' are a pair of bracket-like delimiters, s' does not at

all characterize the court of s,
For dividing up courts of opening symbols into pieces, the

following separation symbols are provided:

opening symbol:. ‘separation symbol:
begin : , 3
for =, do step until while
g0 %o ,
then else

i I

(’

[’ :
procedure s 3)
switch =,

After begin and procedure, the separation symbol comma
occurs only in lists of identifiers to be defined or specified,

As the colon may also occur in the quality of a "declarator"
of labels, it has the individual entry S3CL1 for return after
reading. ‘ ’

The closing symbol s' of the court of an opening symbol
s may combine this quality with that of separation-or closing
symbol of the court of another opening symbol,

0.11.1,

0.11 The list L.

The variables SO and S of the translator point to the
first and last locations of a list L, When a translation is
beginning, there happens in scheme entry:

SO := L0 S :=I10+ 1 {80} :=0,
L0 being a fixed address somewhere in the mid between PO and
QO.

When the translator has read an operator or opening symbol
f, there happens:

S =5 +2 {s-2}:=f f{S-1] :=g:
(cf. procedure SOc and label S1L28).

However, in many cases of f being an opening symbol at
" first S is increased by 1, 2 or 4 so that in L to the left
of f there are 1 + 1 instead of 1 location available for

il
)

storing information for the opening symbol,

Ofteh, when f is an operator, at first some operators
{s -2} Is- 4%}, ... are translated, before f is listed in L.

After listing a delimiter f in L, input continues and 3
may be considerably increased. However, when f is on the point
of being translated, variable S has again the value 2 + (address
where f is listed in I).

Immediately are translating f, variable S is decreased by
2 or 2 + 1 so that f and the information accompanying f are
no longer listed in L.

When, in the text, an operator or opening symbol f is
followed by a ﬁrogfdmﬁe‘constént C, the translator replaces, on
S4al2, the word {S - 1} =0 <following s -2} =f by C,
while the input part has already replaced the value O of g by

0 000000t01 0,,.0Q
in which bit t indicates the representation of C:
t =1 =2Cis real t =0 ~C is integer or boolean.

When, in the text, f dis followed by an identifier i,
there happens, on S4L22 and 23:

s -1} : =

if i is a simple variable or formal parameter then the internal

equivalent of 1 else the contra-identifier T 0...0 + 1 . Unless
i is an array identifier which always assigns a negatlve arl
jnstruction as value to variable g, the value O of g 1is not

changed,

0,11.2.

The additional assignment {S} : =i is useful only when i must
be contra-declared.

Thus g> O means that the operator or opening symbol fs - 2}
= d is followed by a constant, while {8 - 1] = g = 0 means that
d is followed by the O-identifier i.e, neither a constant nor an
identifier,

Separation- and closing symbols, declarators differing from
procedure and switch, specificators, and lists of identifiers to
be defined or specified, are not listed in L, Thus, after reading

| begin real a: a: = function -
the list L contains on the address S = 4 +to S: begin, the
internal equivalent of a, :=, 1 0,..0 + function, and function
which looks as if a were the identifier immediately following

begi in the text,

When translating an actual parameter part, a switch list,
or an own array declaration, variable SO is decreased for tem-
porarily storing a list of constants or instructions in L.

Within the store, the list L resides between the declara-
tion list I in the upper area and the object programme being
formed in the lower area, When necessary, shifting L is perfor-
med by procedure S0g,

n be the number of locations contained in L on adresses
S-2, S-4, S-6, ... Delimiter {5 - 2} and the word
respectively.

{S - 1] may be indicated now by d, and i

0,12,1,

0.12 | Translation of operators.
The rule of precedence,.

By applying the traditional rule of precedence to the opera-
_tors of a text as taken in the order of readlng, the order of
translating them is obtalned

When assigning ranks from 1 to 9 to the various operators
as indicated in table 1A, the rule of precedence implies that an
operator d with rank r which, in the text, is preceded by an
operator d' with rank 1!, is earlier translated than 4! only
when is: r < r'., In the table, d 1is given in the form

o —32xr+ 20 x q '
the latter term belng the operatlon part of the 1nstruct10n concer-
ned, The instruction resultlng from d and the internal equivalent
e of a simple variable or formal parameter, has the form (cf.

VS1L14):

26 26

2 X q+e -2 111111
‘Also parentheses and brackets etc, participate 1n the game'
Each opening symbol is provided with 2 ranks,

the rank r = O on its left-hand side, and
the rank r = 10 on its right-hand side, |
Separation- and closing symbols are provided with the rank r = 10,

The values listed in table 1B have the form
32 x 10 + s with 0 Ss < 32, ’ _ |

After reading an operator, separation- or closing symbol, 32
x the rank of it is assigned to variable a on S1L1 by procedure
SOa. Opening symbols do not go to the collective entrance S1L1
but have individual entrances which fact is in accordance with
their unconditioned precedence in translation,

Definition,

In the text, d ©be any operator or opening symbol, and f
be the next delimiter which is either an operator or opening-,
separation- or closing symbol,

If the right-hand rank T3 of 4 is not greater than the
left~hand rank T, of f, operator or opening symbol ’

d is called progrcssive,
If) is greater than Ty

d is called regressive.
When, for example, f 1is a separation- or closing symbol,
then 4 is certainly progressive (rp, = 10 2 rd).

0.12.2,

When f is an opening symbol, then d 1is regressive
(re =0 <ry).

An operator d of the text is never translated immediately
after reading it. After reading d, the translator also reads the
constant or identifier i next to 4 (which may also be the
O-identifier) and the delimiter f next to i. When f is Being
read, d and the appropriate representation of 1 are already
listed in L as -
fs -2l =a, ana {5 -1} =1,

If f 1is an opening symbol, then dn is regressive, f 1is
also listed in L and reading continues (after the so-called
pre-action of the opening symbol has been completed),

If f is either an operator or separation— or closing symbol,
then, on S1L1, dn and in "are extracted from(L, and the ranks
of dn and f, each multiplied by 32, are assigned to the varia-

bles a and b, On S1L4, the rank r of dn is compared with

the rank re of f: '

It T, > Tey then operator dn is regressive, (operator)
f is listed too, and reading continues, 7

If T, = Tey then operator dn is progressive and must be
translated, When v. (j $ n) dis the value which, in operation
time, corresponds to the element i. of the list L, the opera-
tion to be translated may be indicated here by -

accu := accu d Vv, v
which is eventually preceded, in the object programme, by the
operation | ’

accu = Vv, _q .
for storing a first value in the accumulator of the interpreter,
(When i _, 1is the O-identifier preceding d, = not or minus,
no previous assignment to accu takes place).

After translating operator dn’ in-1’ dn and in are no
longer retained., Thus, on S1L17, variable S 1is decreased by
2, However, in the discussion, n is not repiaced by n - 1,
On S1L18, i, , and 4, 4 are extracted from L.

If the (right-hand) rank of d,_, n-1
an operator (:lc'n._1 ¢ 10), that operator must be translated now
(compare the minus sign contained in p - g X r + 8).

As dn~1 has not been translated immediately after reading dn’

it is regressive., There must be translated the operation:

< is

is < rf and d

0312030
accu := VvV, _o d,.q accu. _ A
When operator - 4 is commutative, the operation has the same
- effect as

n-1

accu := accu dn__1 VDo
Then the operation part 226 4 q@ as contained in 4, _, =d 1is
used for translation, When dn_1 = d is not commutative, the bit
d6 of d is inverted on S1L24, In operation time, on S10L20,
the bit I6 of the instruction to be interpreted is examined by
testing J32: If I6 = 1, then accu and the value v just ex-
tracted are interchanged, before the computation is performed.

After translating operator dn~1’ S dis again decreased by
2, and i, 3 and d, , are extracted from L. If 4, _»
- operator and has a rank Sr,, dn—2 is translated as explained
for dn—1’ etc.

The cycle for translating operators goes on, shortening the
list 1L, until a delimiter dm_1 is extracted which is not an

S Tre. Then there are only 2 possibi-

is an

operator having a rank r 4
lities:
either

1 delimiter f is an operator,
“or ' a

2 dm_1 is an opening symbol, and

f is a separation- or closing symbol,

For, in L there are listed no delimiters but operators and
opening symbols, and there has already been found above:
To > Th ? 0., Thus the consequence of o1 > Tp is: O « Ty < 10
and the consequenoe of Tmeq S Tp while dm_1 is no operator,
can only be: dm_1 is opening symbol and left-hand rank Tp = 10,

In the case 1 there happens the following: ~
St := {s}:=f S =8 +2 ‘
Thus operator f is listed as the element dm on the place of
the operator translated last, and the index m is retained by
' the variable S', Reading begins again and continues, until an
operator or opening symbol d, = {s - 2} is found to be progres-
sive. ' ‘

If n=m thus S = S' + 2, operator d itself is pro-
gressive so that only one constant or identifier im and one
delimiter f have been read, Then the operation to be translated

next is:

0.12.4.

accu := accu dn i ' ‘

If n> m thus S» S' + 2, then, in operation time, the
value accu as formed by the operator qm translated last, is
required later by the regressive operator dm still to be trans-
lated, Meanwhile a new calculation must be performed, Thus, on
S1L7, the translator inserts the machine code instruction partres
of table 1E which makes, in operation'time, the interpreter g0 to
S10L0 for storing a partial result as follows:
Q:=Q -2 {Q+ 1}:=mant {Q + 2}:= exp
In addition, the translator replaces the obsolete element i

by

m~-1

. .23 .
ipq = 2 x 0 111111QTT.

Thus, when 226 x q dis the operation part of the regressive
operator dm’ dm and im_1 will later givé rise to. the instruc—
tion _
226 v g 4+ 293 x 3
with the address part O, which instruction makes, in operatioh
time, the interpreter proceed to S10L7 for extracting the par-
tial result as stored by the corresponding instruction partres.
There happens:
:={Q+ 1} BE:={Q+ 2} Q :=Q + 2,

Loss of accuracy by rounding the mantissa has been avoided by
occupying 2 locations, Partial results, stored one after the other,
are extracted in the opposite order so that, before each extrac-
tion, pointer Q has the required value, |

When being an operator, dn is translated now as mentioned
above:

accu := vV, _,

accu := accu dn Vi

Example 1,
pand q orr + s x t > u?2 implies ...

in which p and q are boolean and the other variables are real
and/or integer, is read and listed in L, and the text as arran-~
ged in L is translated. In each paragraph below, the first line
shows the contents of L and is followed by the operations to be
translated. Dashes indicate internal equivalents,

e. = 223 x O TTTTTT0T]

i
concerns the partial result number i,

p' and q' f =or

0.12,5.

accu = accu := accu and g
p' or r' + s' x t! f=>
first partres := accu '
accu := accu := accu x t
gq or r' + 8! f=>

accu := r + accu
. s .
e, or r's> uf2 f = implies
second partres := accu :
accu := u accu := accul2

. s .
€4 0L E5> U f = implies
accu := second partres > accu
€4 O &) f = implies

accu := first partres or accu
€4 implies etc.
Inversion of the "gression" bit takes place only when trans-

lating
accu := second partres > accu,

The translator regards the progressive version of the opera-
tors < and S as to be the same as the regressive version of >
and 2 (cf. table 14).

0013.1.

0.13 Pre-~ and after-actions of opening symbols.

An opening symbol s just read makes the input part go o
the entrance of s as indicated in table 1B. The action performed
there will be called the pre-action of s, However, the pre-actions
of procedure and switch begin on S4L24 and S4L37, when also
the procedure~ or switch identifier is being declared. The infor-
mation needed by opening symbol s, and the word f correspomding
to s, are listed in L, The pre-action of (depsnds on (
being preceded in the text by the O-identifier or not.

After the pre-action of any opening symbol s, the translator
goes to input. s remains ir the list L as long as the trans-
lation of its court is not yet completed, Separation symbols are
not listed in L. E1, E2, ... which are the pieces into which the
court of s is divided up by its separation symbols, are read and

translated one by one,

There may be, and is, supposed that, after translating each
E; (i =1, 2, ...), the variable S takes again the value it
had immediately before reading and translating Ei to that S - 2
is again the address where opening symbol s is listed in L,
and that the separation- or closing symbol which is next to Ei
in the text, is still available as the value of variable £, This
is exactly the situation as found on page 0.,12,3., case 2,

The action performed now by the translator, will be called an
after-action of the opening .symbol s = §{S - 2} and depends also
on the separation- or closing symbol £,

If Ei is but a single constant or an identifier referred to,

then opening symbol s is called progressive with respect to its
after-action with f. The after-action begins immediately after
reading Ei and f and the translator proceeds to S1L6 with
:d = value of s as indicated in table 1B. Then the constant or

identifier Ei must still be translated,

Otherwise s is called regressive with respect to its after-
action with f and the translator proceeds to S1L21, Then, in
most cases, Ei has already been translated.

Usually the after-action itself, of s with £, is called
progressive or regressive. Thus, when translating f(x, 100, x + 1).
The first and second after-actions of (are progressive, and the

last after-action is regressive.

O-1>3020

The way an after-action of an openlng symbol s {S - 2}
'flnishes, depends on the other delimiter, f. There are 3 possi-
“bilitis: ' o , , ' o A
1 f is one of the separation symbols in the court of s,

There happens: ‘ ')
S := 8191
and the translator goes to input. As the varlable S is not de-
creased, opening symbol s remains in L. Separation symbol f -
is obsolete.. The value of S' prevents the translator of inser-.
ting an instruction partres not required in the object programme
- (ef, S1L7).

2 s and f form a pair

either () or [] or begin end.

There happens:
S?' := 35 := 2 + address
where delimiter 4 preceding s in L, is listed in 'L, and
the translator goes to input, Thus s and f are both obsolete,
.If the right-hand rank T3 of the regressive opening symbol or
operator d should not be greater than the left—-hand rank re
of the delimiter f to be read next, d seems to be progressive,
as will be shown in example 2. Then it is the test on S1L5 that
makes the translator proceed to the treatment of regressive deli-
miters. (As, in the case of f = end, the input part must be aware
‘of comment, leaving the normal course, It may itself choose the
rlght return so that the value of S' 1is no more important).

3 f which is the closing symbol of the court of opening

" symbol s, is superior to s.

There happens:
S := as indicated in case 2
and the translator proceeds to S1L18 for extracting d from L,
Thus opening symbol s is obsolete, When the ALGOL .text is correct,
d cannot be an operator. Thus d 1is an openlng symbol and f is
a separation symbol or the closing symbol of the court of 4.
The after—action of 4 with f is carrled out.

Thus "an opening symbol s 1is retalned in the 1list L untill
its court has been translated. s wafter-actS'succe381vely with
each separation symbol, and closing symbol of its court.

0.13.3.

_Example 2,

p-(g+1r) + ...
with real variables.
For the notations below confer example 1 on page 0,12.5.

p' - O-ident. f = (
pre-action of (preceded by O-identifier.
p' - 0-id (q* + ' f =) with S' = 8191
accu := q accu := acéu + r :
p' - 0-id (q! £ =)

regressive after-action of (with) of the above type 2.
Thus St' := Sv:= address where (has been listed in L.

p' - O-id ' f =+ S =9
Operator minus is regressive, but seems to be progressive, For-
tunately the test on S1L5 succeeds and there is translated:
accu := p - accu

p' + etc,

Example 3.

p=(q+2) X8 + oo

After the after-action of (mentioned in example 2, the
translator continues as follows:

p' - 0-id x s! f =+ with S = S*' + 2
operator x 1is progressive and there is translated:
accu := accu X S

p! - 0O-id f =+
accu := p - accu

p' + ete,

Example 4.

p-(q+1r) x 842 + ...
After the after-action of (mentioned in example 2, the
translator continues as follows:
p' - 0-id x s ¢t 2 f =+ with S = S' + 4
thus test in S1L7 succeeds and that in S1L10 fails,

partres := accu accu := 8 accu := accut?
p' = € x 8 f =8 +
accu := partres x accu

in which x 1s commutative

p' - € f =+
accu := p - accu

p' + etc.

0.13.4.

When translating
begin real a: 4 A

the declarator real is not listed in L. Thus, when semi-colon
is read, begin is still listed on address S - 2 and is on the
point of after—acting'with semi-colon, as happens also in the
progressive case, Yet scheme 4 has»alfeady declared identifier .a
so that a need not pé‘considered when Dbegin = is after-—acting.

Therefore after-actions of begin and procedure with
commas and semi-colons occuring in resp., after the lists of iden-
tifiers to be defined, will be regérded as being regressive.'
Therefore, after reading a declarator or specificator, there hap--
pens on S3al4: S' := S . Then the test on S1L5 securés that
a regr. after-action is performed, and the corresponding test in
S1L2 avoids testing for a O-identifier,

0.14.1,
0.14 If=-then-else,

When X is a piece of text, then |X| be the address where
the object programme of X begins.
The expression -
E= if B then E1 else E2
in which B' is a boolean expression, and E1 and E2 are ex-
pressions, gives rise to the following object programme:

object programme of B

226 ¥ 111 + 223 4+ |E2| (cf. test in table 1D)
object programme of E1

226 3 121 + 223 4lete] (cf. pass in table 1D)
object programme of 2

object programme of etc.

When interpreted,
the pass instruction introduces its address part jete | into the
extraction instruction e of the interpreter (cf. S10L58). The
test instruction introduces its address part | B2] into e only,
when accu has the value false = - 1 (cf. S10L130).

B, E1, and E2 and their constituents may have the same
structure as E. above. Then enclosing them within parentheses
is not required. The meaning of E 1is always clear.

Proof. k be the number of triplets if-then-else contained
in the text of B. If k = 0, then E has a fixed meaning. '
Suppose: every expression of the above structure containing less
than k triplets, has a fixed meaning beingkindependent of which
delimiter with 1eft—hand‘rank 10 follows it. Then B, E1, and E2
have fixed meanings. When expression B 1is opened by"igB, the
delimiter then of the outer triplet closes the court of 1ifg.
The last after-action of iﬁB is of the type 3 of page 0.13.2,
Then ifp 1is obsolete and if, starts to after-act with the
separation symbol then as intended. Then if o remains in L,
f = then is obsolete, and the translation of E1 begins, Ete,
Immediately after its pre-action (scheme $2), opening syumbol

fs = 2} is preceded in L by {8 - 3} =0,
When iiE is after-acting after-acting with f = then and
the translator has arrived on S2alL21, expression B has just
been translated also in the case of progressive afterfaction of

ify =

ifp.

0.14.2,

Then {5 -3}=0 is replaced by = P, and P is increased by 1.
The separation symbol f = then. is obsolete,

When if., 1is after-acting with f = else, thus E1 has been
translated, there happens:

{={s - 3} F:=2%0 x 111+ 223 4 p 41,
{s -3} :=+ P, and P :=P + 1
Thus the test instruction is inserted and a place for the pass
instruction is reserved.
f = else 1is obsolete.
When ;gE is after-acting with the closing symbol of its
court (thus E2 having been translated) there happens:
({5 -3} 1:=2%0x 121 +2% 4+ 2,
Thus the pass instruction is inserted. This time, ify itself is
obsolete,
 Thus, by testing { S - 3}, which is either O or negative or

positive, the translator knows which after-action of if must be
pefformed. The separation- or closing symbol f is useful only
through its left-hand rank 10 which has stimulated the translation
of the expression preceding delimiter f in the text, Thus, in
table 1B, if, then, and else may be represented by the same
value 326, '

The iﬁ statements must still be considered.

Within the text, never a statement "

| if boolean then statement
in which else is absent, is immediately followed by a delimiter
then or else, Thus, when in the second after-action of if de-
limiter f is found to be different from else, then f 1is the
closing symbol of the above instruction, Then P instead of
P + 1 is the address part of the test instruction, and P is not
increased, and the after-action has the type 3 instead of 1.

0.15.1.

0.15 Block, contra-declaration,
A block
B = begin D1: D2 .o Dk: <compound tail> end gives rise

to the following object programme: ' N
: 526 ,23 13
27 x 127 + 2 +2°xXr+q
(cf. adjust in table 1D), r = rank of, and q + 1 =
lowest address occupied by, local simple variable of B
object programme of declaration D1
object programme of declaration D2

obﬁect programme of declaration Dk
the instruction retain of table 1E
object programme of the compound tail
26 23 13 '
2 x 119 + 2 + 2 XTr+q
(ef., restore in table 1D), q' = highest address occupied
by a local simple variable of B.

The dynamic introduction of the block B consists of the
adjust instruction, the object programmes of the declarations Dk
(1 £ 18 k) of local arrays being not own, and the instruction
retain, which constituents are, in the object programme of B,
linked together by appropriate pass instructions for passing by
the object programmes of the other declarations Di

The "object programme" of each declaration Di of simple
variables being not own, is empty. The object programmes of gwn
variables are single locations, The object programmes of own array
declarations consists of fixed spaces and fixed series of constants,
Of course, all these object programmes may join one the other,

- At a moment the object programme of the block B is going
to operate,“P', Q', and p be the values of the variables P,
Q, and p of the interpreter. q' and q as mentioned above,
are the highest and lowest (relative) addresses occupied by a lo-
cal variable of B,
Then Q' is =p + q! '
and the dynamic'introduction of B must assign the value p + q
to Q, which value is the highest address not occupied by a local
variable of B, ' A
_ Therefore the above adjust instruction makes the interpreter
act, on S10L100, as follows:
_ =+ q

0.15.2,

When there are local arrays being not own, the dynamic intro-
duction of B resérves a space P' ,.. P" - 1 for them, assig-
ning the value P" to variable P, Then P ... Q. 1is again the
space not yet used. - -

At the end of the dynamic introduction of B, the instruction
retain makes the interpreter jump to S10L99, where thereé happens:

fQ + 1} := P
Thus the relative address q + 1 1is occupied by a local internal
variable of B which is used for retaining the value of P for-
med last, Thus this value is still known when P should temporily
take another value,

As, with respect to the block (or procedure) in the text of
which B occurs, the address q' + 1 has the same destiny as
q + 1 has with respect to B,

. {p +q' + 11 - :
is the value P had when the obaect programme of B was going
to operate. ‘

At the end of the object programme of the block: B, the res-
tore instruction makes the interpreter, on S10L102, act as fol-
lows:) - B '

Q :=p + q' := {Q + 1}
Then the values P! and Q which were resident when the object
programme of B was going tovoperate, are re—assigned to P and
Q. | -
 ‘As the dynamic introduction of a block B reserves space
for all simple variables and arrays which are local to B, the
pointer values P" and Q" introduced by it are resident during
the further oourse of the object’programme of B, When S' is
the object programme of any statement contained in the compound
tail of B, the pointers P and Q may take- other values while
S' is acting; however, as soon as S! jumps to the obaect pro-
gramme of any statement contained in the compound tail of B,
the values P" and Q" must be restored. Above this restoration
has been secured only in the case of S beihg a block‘left
through end, or an assignment statement involving evaluations of
expressions with storing partial results, |

When the opening symbol begin, in front of any block or
compound statement B, is.pre-actingg there happens in scheme S3:
S =S +2 S =23} := {S -2} := begin {S - 1} := 0,

0.15.3.

When B is a block, the declarator occuring next to begin
finds (cf. S3aL2) in the list L ' :
{S~-31 =0 {8 -2} = begin
indicating that the translation of the block B must still be
prepared in L., Then there happens: '
S :=8 + 4
fS - 7} is already = 0
fS - 6} = begin 1is no more important
fS = 51 := P which is the address P!
where the object programme of B must begin
{s - 4} := q = highest relative address gq' to be
occupied by a local simple variable of B .

It

fs = 3} := T = highest address T' where an identifier
declared in B will be listed in I

iS -2} = begi

{s =1} := o,

As an adjust instruction must be stored later on address
P', variable P is increased. The other declarators of
the block B find in L '
s -3} =1 £0 {S -2} = begin
indicating that the translation of B has already been prepared
in L. _ '

When the opening symbol begin of B is after-acting with
end, {8 - 3} 'is assigned to variable ¢ on S1L1, Then, on
S3bL6, B is found to be a block and no compound statement. Thus,
on S3bL9, the information listed for B by scheme BS3a, is ex-
tracted from L, and the beginning value q' of q is re-as=-
signed to q on S3bL12, As a similar re-assignment takes place
too when the translation of any block contained in the text of B
is finishing, the variable ¢q has, on S3bL10, still, or- again,
the value
- 1 + (lowest address occupied by a local variable of B) so that
the adjust- and restore instructions as required for B, can now
be inserted in the object programme,

The identifiers defined in B, and the required contra-iden-
tifiers as will be discussed below, are listed in I on the
addresses
T+2, T+ 4, T+ 6, ... T',

0015‘4'

At: the end of the after-action, on S3bL14, the value: e -is assig-
ned to variable T, which value is the highest address where either
an identifier defined in B: 'or an obsolete contra-identifier is
listed in I. When no contra-identifiers are present, then:e = T!
is assigned to T. ‘ : L
When declaring the identifier of a local procedure, sw1tch
own variable or own array, the translator has reached an address
P which either precedes, or is contained in, an interruption of
the dynamic introduction of the block B. Therefore, on S4L 24,
37, 10 and 14,.there is tested by procedure S0L if { S - 7} is
still = O or not. If so, then {S - 7} =0 is replaced by P and
P is increased. Thus, at the beginning of each interruption, a
‘place is reserved for a pass instruction to be inserted later by
procedure SOh, Before translating a declaration of local arrays
being not own, on S4L17, {S - 7 }is tested by procedure SOh,
If > 0, then {S - 7} is an address, and the. addresses {5 - 7} + 1
to- P - 1 do not belong to the dynamic introduction of B, and
there happens: :
{{s - 171} =226 3 121 4+ 223 4B |
which is a bridging pass instruction, and 48 = T} is set to 0,
When the statement being next to the heading of B 1is going: to
be translated, again a bridging pass instruction may be requireds
Then procedure SOh inserts also the instruction retain and
assigns a negative value instead of O to {S - T} (ef., for in-
stance S2L1, S3L2 and S3bL1). o o
A label x 1is either an identifier or an integfal number
being-not negative. The latter is supposed to be < 224- and- is
internally represented by X +'2~2'4 x 63, The colon, inserted be-
tween x -and the statement to be labelled, is a sort of declara-
tor of x. _ S s
Label x be local to a block B, After reading the colon ‘
declaring . x, the input part goes to S3cLl. On S3ecl5, x ~and its
internal equivalent : ' o : T
e = 223 x 127 + 213 XxXr+ P
are listed in I. The restore instruction
226 4 119 # 223 1 2V xr 4+ a. .
explained above, is inserted on address P. When there is a referen-
ce to label x, within a designational ‘rexpression -the resulting
jump instruction

0.15.5.

226 y 122 + 223 1 23 xr 4 2
jumps in operation time to the above address P, supposing that
it also restores the needed pre~value p. Then the restore
instruction {P} re-assigns to the pointers P and Q the values
as calculated by the dynamic introduction of B,

When a label x is referred to within the text of a
designational expression E, then the label x is meant, which
is defined in the text of the smallest block containing expression
E in its.interior, Thus, in begin D1; ...; x: S1; begin Dj ...;
g0 t0 X ..; x: S end end go to x jumps to the second label x.

. Thus a reference to a label x may not be translated immediately
after reading that reference, but must be delayed until the whole
block in which x "is defined, has been read,

After reading a reference to a label or a switch identifier
x, the translator contra-declares x by listing in Is
the contra-identifier x' = 232 c
and its "internal equivalent" e' = 2°3 x 127 + P in which P
is the address where to insert a jump instruction later. Of course,
P is increased. This happens on S8al2, S8bL2 and S2al17, by
calling procedure SO01,

Making contra-declarations is necessary too, when translating
procedure statements. Table 2A shows all types of contra=-

declarations.

Thus, while translating a block B, identifiers as well as
contra-identifiers are listed in I, When the opening symbol
begin of B is after-acting with end, the cycle prepared on
S3bL13 looks for the addresses where jump instructions etc, must
still be inserted in the object programme of B, The cycle looks
as follows:

a =

cycles

Look up next address a + 2 or .a + 4, ... T where a
contra-identifier it! is listed in I,

If not present, then object programme of B 1is xready.,

If 4i* dis found, then a Dbe its address.

e! = {a - 1} is extracted from I

i =22 4 it is a normal identifier,

Look up address T + 2 or T + 4, ... T' where i is listed
in I,

If i dis found, its internal equivalent e is extracted.

0.15.6.

When, for example, e' is = 223 x 127 + P', then i may only
represent a label Qf switch, e being either 223 x 127 + 213 xXTr
+ P or the internal equivalent of a formal parameter i. Then the
contra-declaration i', e' can be satisfied and there happens:
fPr} := 226 3 122 + the logical product of e and 226 _ 1 &0
that a jump instruction is inserted on address P', Going back. to
cycle, the next contra-identifier is looked up..

If i is not found, contra-declafation- i', e' can not yet
be satisfied and will 'thus be satisfied later, Thus i' must be
regarded further on as to be not~lo¢almto the translated block B,
Therefore there happens: : .
fa}s={1'}] fa-1} := {T'=1} {T'} :=4i' [T'-1} :=e' a:=a -2
£ 2= Tt - 2, | |
Going back .to cycle, the next contra-identifier is looked up.

Thus, when B 1is contained in the block or procedure BT,
the contra-declarations which cannot be satisfied while translating
B, are adopted as "locals" by B1 when the translation of B is

ready.

0.16.1,

0.16 Switch.

B be again the above block, and gq + 1 ©be the lowest address
occupied by a local variable of B,

A local switch declaration
switch i (= F, G, ..., d with k entries
gives rise to the following object programme:

object programme of F
object programme of G

obsect programme of H
226‘x 121 + 223 4 | 5]

: for || cf. page 0.14.1,: if-then-else,
26 ¢ 121 + 223 4 g
226 ¢ 121 4+ 223 4 7]
226 ¢ 112 + 223 + 213 x v + ¢ (switch in t. 1D)
constant k

2

and a switch designator i[E] gives rise to:
object programme of arithmetic expression E
226 x 122 + 223 + 213 Xr+ X
{ x} being the switch instruction.

In operation time, the latter object programme assigns the
value of E +to accu and goes to the switch instruction,

The switch instruction secures that accu has the integer
representation,
There are 2 cases:

1 0 < accu s k
Then the switch instruction acts like the restore instruction, but
jumps in addition to the pass instruction { x - accu}l, Variable
e2 1is not changed.

2 accu is "out of capacity":
The values of chain2, p2, Q2 and {Q2 + 1} as left by the jump
instruction on the address 2z = e2 - EO, are re-assigned to the
variables chain, p, Q and P, e2 is cleared, and instr. {z + 1}
is executed.

e2 is cleared also by every restore instruction (cf. S10L101),
and in the scheme ENTRY,

Jump instructions lead to either restore- or switch instruc-
tions, Variables e2 etc. are changed only when e2 = O,

0.16.2.

Then there happens on S10L56:
chain?2 := chain e2 i=e p2 :=p Q2 :=Q

For the translation of a.switch declaration confer S4L37
and S8bL1., The list of pass instructions is at first arranged in
the list I, decreasing variable S0, and is later stored in the
object programme, when all switch list elements have beeﬁ trans-
lated.

The switch list elements may be deliberate compound statements
and blocks instead of designational expressions. In:operation time,
they join one the other, when no jump instructions are included.
Thus an ssignment statement may be admitted only when enclosed
within statement brackets,

0.17.1.

0.17 Procedure chain, rank,
<main particle of a statement
=<each statement of the compound -tail of a block or compound
statement S»>
| <the statement to be repeated in a for statement S>
| <each of the two or one statements to be selected in a conaitional-~
or if statement >
Fact 1. .
If the statements S and S' have a main particle P in
common, then S dis equal to =S',.
(If, for instance, S is a block, then P is not preceded by a
for clause, thus S' is no for statement, Ete.)
<particle of & statement S>
= 5 | <main particle of a particle of S>
Pact 2.
If the statements S and 5' have a particle P in common,
then either S' is a particle of S, or S 1is a particle of ©S°t,
Proof: If P =8 or P =8S', then S or 3' is indeed a
particle of S' or S, If P £S5 and P #S', then P is a main
particle of particles Q and Q' of S and S', According %o
fact 1 Q dis equal to Q' so that S and S' have the particle
Q in common, Etc, ‘
Fact 3.
" Within a text, each statement P determines a most containing
statement M(P) of which P is a particle, |
Proof: U, V, W, ..., Z Dbe all statements of which P 1is a
particle. According to fact 2 U and V are particles of the
statement UV which is either U or V; thus U, V ~and W are
particles of the statement UVW which is either UV or W; etc,
Then UVW...Z is exactly the statement M(P). ‘
Fact 4.
If a statement P occurs within the text of any procedure
Q', then the statement M(P) is the body of a procedure Q.
Procedure Q is contained in the text of Q' and may be equal
to Q'.
Proof: If M(P) #Z P, then P is a main particle of a particle
S of M(P). Then M(S) is equal to M(P), and it is easily verified
that S occurs within the text of Q'; etc.

0.17.2.

Thus statement M(P) occurs within the text of Q'., As M(P) is
not main particle of any statement, M(P) must be the body of a.
procedure Q which, of course, is contained in the text of Q'. -

A chain of procedures “Qq, Qoy seey Q (k » 1) satisfies the
following conditions:
I Procedure Q1 is not contained in the text of any other.
procedure,
; (1 ¢is ¥) is local to a block which
is any particle of the body of procedure Qi-1‘

II Each procedure Q.

Fact 5.
Within a text, each procedure Q determines a proceduré chain

Q1, ceny Qk = Q The number k of chain elements be the rank‘of
procedure Q.

, Proof: If Q itself satisfies condition I, then the chain
of Q has only 1 element. If Q does not satisfy condition I,
Q 1is contained in the text of any procedure Q'., Then the block
B to which Q is local, is also contained in the text of Q'.
According to fact 4, statement M(B) dis the body of a procedure
R, and Q and - R together satisfy condition II, If R satisfies
condition I, a chain has been found. Otherwise there exists a
chain element preceding R. Ete. ..., R, Q@ and ..., R', Q@ may
be two chains which have the element Q 1in common, The bodies 8
and S' of R and R' have the above particle B in common,
According to fact 2, either S 1is particle of §', or S' is
particle of S; and in addition, neither S rnor S' is main par-
ticle of any Stafement. Thus S must be equal to J' thus proé
cedure R = R', etc. Thus there exists only one chain having Q

as its last element.

Rank, .
own declared identifiers have the rank r = O,

An identifier i whose definition does not belong to the
text of any procedure, has the rank T = 0.

An identifier i which is local to any particle B of : the
body of a procedure Q, is a body identifier of Q. Unless 1 is
‘"declared own, i is regarded as to have the rank r of Q. When
i is no label, particle B is, of course, a block. Though i
is called "body identifier", its significance declared in B doesa
not hold in the body outside B. Labels may occur everywhere in
the body, even when that is no block,

0.17.3.

When i 1is a procedure identifier, the procedure concerned has the
rank r + 1 which is in accordance with condition II of procedure
chains. Otherwise the item represented by I has the rank r of i,
The formal parameters of procedure Q are also regarded as to be
body identifiers of Q. Thus all identifiers of rank r defined

in the text of procedure Q are body identifiers of Q,

Fact 6. _

A reference to an identifier i occurs in either a for- or
if clause, ,an assignment-, go to- or procedure statement, or an
array-, switch- or procedure declaration which declaration is
local to a block, thus corresponds to one fixed statement iref.

When a body identifier i of a procedure Q 1is referred to,
statement iref is, of course, contained in the text of Q. Proce-
dure Q is an element of the chain Q1,..., Qk whose last elementy
has the body M(iref).

Proof: According to facts 4 and 5, the procedure Qk and its

chain exist. Qk is contained in the text of Q. If Qk = Q, the
proof is ready. Otherwise j be the smallest index for which the
‘procedure Qj is contained in the text of @ and is also # Q.
As Q1 is not contained in the text of another procedure, index
j is s> 1. Then the block B to which procedure Q. is local is
also contained in Q as is ppocedure Qj—1 whose body is M(B).
As Qj—1 cannot be #£ Q, Qj—1 must be = Q, g.e.d. Object pro-
grammes of procedures and procedure statements,

A procedure
procedure f(x1, «.vy X); <specification parts;
<value part>; body (k > 0)
gives rise to the object programme:

instruction X of table 1E

1
specification patterns

tHees 5

k13
- 2 x rank of procedure f

object programme of body
instruction extract procedure of table 1E

(is present only in object programme of type proc.,)
instruction Y of table 1E

Machine code jump instruction X jumps to label S11L0 of
the "big transporter",

001?.4‘0

Each constant 'Dj has the form -

| D3 =223 x70 G000 TER0

If bit v = O, then parameter x. 1is value, which is stated in
'operatlon time on S11L35 If bit x = O, then there is spe01f1ed
in the text a type t for parameter XJ
t = 1 - parameter is real

t = 0 - parameter is integer or boolean. .
In operation time, bit t is tested on $S11L25. When calculating
the formal parameter keys of a procedure to be called, the trans-
porter S11 extracts one constant D, after the other, untill the
negative constant -~ 213 X r is foung, at the beginning of the

body's object programme.

Machine code instruction Y makes the interpreter jump to
S11al1 and the "restorer" prepares the return from the object
programme of the procedure.

For the translation of a procedure confer S4L24 ff and com-
pound statement - S 8d. The constants Dj are stored on S4L7
and are eventually modified-on S4L32 ff.

‘When there are no formal parameters thus k is = O, the ob-
ject programme of procedure f *has the form: :

instruction X1 instead of X (cf. 88dL6)

-2 x 1 ete. as above.

Machine code instruction X1 makes the interpreter jump to the

"small transporter" of scheme S12,

A procedure statementv(or function designator)

f(y19 eo ey yk) (k> O)
gives rise to the object programme:

instruction F for calling the procedure
key address s '
object programme of parameter ¥q

L 4
.

obaect programme of parameter R
constant O ,

key by-word [of actual parameter ¥y
key main word : _ _

L]
L4

key by-word .:} of actual parameter ¥,
key main word ” o

0.17.5.

If actual parameter yj is an identifier or a constant, the
object programme of y. is empty.

When the procedure, called in, does not return to a label, it
returns to the instruction {s} which is next to the object program--
me of the procedure statement.

The key (table 3) of actual parameter yj occupies the address-
es 8 - 2xj and s - 2xj + 1. The key main word differs from O,
The constant O occupies the address s - 2xk. Because the keys
appear in the reversed order k, k-1, ... i, the key address s
can be easily used for two different purposes.

If identifier f preceding the parenthesis (is a procedufe
identifier, then P is a machine code jump instruction leading to
the object progfamme of procedure f. In operation time, instruc-
tion F and the next word s are extracted on S10L2- and
assigned to the variables I and N, Instruction F jumps nor-
mally to instruction X which is the first word in the object
programme of procedure f, and instruction X jumps normally to
the transporter S11. The values of I and N inform about the
beginnings of the mentioned lists of specification patterns anc
actual parameter keys.

Identifier f may also be a formal parameter of any procedure
Q'. Then parameter f may, in operation time, only represent
procedures. In this case instruction F 1is a prostate instruction
(cf., table 1D) having the form:

P =220 5100423 x4y
in which r' and y' are the rank and the relative address of the
internal variable which is the key by-word of formal parameter f£f.
When procedure Q' is called, the transporter calculates the key
of parameter f which parameter must represent a procedure Q,
and stores the key in the working space of Q' according to v
and r'. Whenever the above instruction F occurs in the object
programme of Q', the interpreter proceeds via S10L13 and ex-
traction of the key of parameter f to S10L40. The key of f
reveals the address where the object programme of procedure Q
begins,., Compound statement S11 1s joined for calling procedure Q,

The above procedure statement is translated under direction
of compound statements S5 and S5a. As identifier f may be the
identifier of a procedure, which, at that moment of the translation
time, has not yet been translated, identifier £ 1is contra-de- .
clared, and the instruction F is inserted in the object programme

0'17.6'

as late as on S3bL40 ff. As the list of actual parameter keys
may not be stored in the object programme, unless the object
programmes of all actual parameters have been completed, the list
" is at first assembled on addresses SO0 - 1, SO - 2, ,.. of the
list L, by which intermediate storing the order of the keys is
automatically reversed. |

4

- When there are no actual parameters thus k is = 0, the
function designator f 1is not characterized as such by a pair
of parentheses in the text. The object programme of f reduces
(cf. for instance S1L13) to the machine code jump instruction |
F leading to the instruction X1 in the object programme of a
procedure f having no formal param. No key address s is
present, and the object programme of procedure f returns to
the word next to F,.

0.18.1.

0.18 The internal variables of a procedure,

When, in operation time, a procedure f dis going to be called,
the space P...Q as shown by the pointers is available for storing
information. | |

When procedure f is called directly i.e. not thfough any
formal parameter representing f, a machine code jump instruction
F leads to the object programme f' of f, |

When procedure f has no formal parameters, f' jumps, by the
instruction X1, to scheme S12, A key address s which may, in
this case, be any address > 1, is introduced, , - -

e + 1 is assigned to {Q - 2}, being the (negative) extraction
instruction for the return to the word which is next to instruc-
tion ' F, The further call is obtained from the description below
by taking k = O,

When procedure f has formal parameters " Xqy eeey Xy object
programme f' jumps, by the instruction X, to compound statement
S1{;-The key address s to be introduced is the word next to F
in the object programme of the procedure statement f£(yy, ..., ¥y).
F and s have already been extracted from the object programme.
The call of procedure f 1is performed by the transporter.

There happens the following: '
fQ - 21 :=
{Q -3} :=p
{Q - 41 := chain
f{Q - 5} := key main word
fQ - 6} := key by-word
{Q - 2xk - 3] := key main word
fQ - 2xk - 4} := key by-word
the value of a value parameter which is no array, is stored
as the by-word of its key.
When value arrays are present, they are stored on address-
es P, P+1, P+2, ... and pointer P must be adjusted,

=Q-Q0 -5

chain := s + 213
--213 X r being found in object programme £

Q :=Q - 2xk - 6

fQ + 11 := present value of P
as happens also at the end of the dynamic introduction of
a block '

} of formal param, X4

}‘ of param. Xy

xXr

0.18.2.

the object programme following the constant -213 X r is
executed,
The transporter has derivied the keys of the parameters X from
those of the corresponding parameters y (cf. table 3). Again
P...Q is the free space, '
Variable chain does not change its value, unless a procedure
is called or returning., When no procedure is operating, the value

of chain is not important.

As QO + p is the address where the key main word of the
above parameter x4 has been listed in the working space of pro-
cedure f, the relative addresses

Q0 - 2xj + 1 and Q0 - 2xj + 2

have been reserved for parameter Xj in translation time (cf. S4L29
and 8). An instruction referring to parameter x. has the form

I = 226 X o.0 *+ 213 x r + Q0 - 2xj + 1?
thus pointing to the key by-word. r is the rank of procedure f,.
The bits 17 to 19 are O, When I is interpreted, the test on
S10L13 succeeds and the key of parameter Xj is extracted from
the working space of procedure f,

At the call of procedure f, the previous value of variable
chain is stored on address QO + 1 + p and may thus be regarded
as an internal variable with relative address QO + 1 and rank

r of procedure f.

The internal variables with relative addresses QO + 4 and
Q0 + 5 are occupied only in the case of a type procedure £, for
retaining the values of variabies mant and exp when assignment to
the function name f is required., In the object programme f'
the assignment += accu is represented by the store procedure
instruction

226 ¢ 113 + 223 x T07 + 213 x r + Q0 + 3

which joins the partres instruction, therefore having the address
"part QO + 3 instead of QO + 4, In the object programme of a
type procedure f the second last word is the instruction extract
procedure of table 1E. Before the return, it assigns to accu the
value earlier assigned to the function name. There happens:
mant ¢+ = {p+ Q0 + 4} exp := {p + Q0 + 5}, '

When a procedure f does not return to a label, it returns
normally through the instruction Y which is the last word in the
object programme f' "and jumps to the restorer Silla,

0.18.3,

There the return is arranged. When procedure f has formal para-
meters, there happens: ‘
e := BEO + address s taken from the value of variable

chain
Q :=p+ Q0 + 5
P:={Q -2}
p:={Q - 3}

chain := {Q - 4}

and the instruction §s} is executed. When procedure f
has no formal parameters, the value of {Q - 2} is assigned to e
for the return, while the value ofv P is not changed, ’

" In both cases, after a normal return from a procedure f
the variables P, Q, p and chain have again the values they had
immediately before the call of f. The whole range P ...Q is
again free,

0.19.1.

0.19 Looking up delibefate'Variables.
Formal parameters repreSeﬁting procedures and expressions,
The base of a procedure Q be the remainder (body of Q

minus procedures declared in the body). _
Basis instruction of Q be each instruction contained in

the object programme of the base of Q. .

During the operation of a procedure Q the values, assigned
to the variables p. and chain at the call of Q, must still,
or again, be present whenever a base instruction I of Q 1is

on the point of being executed,

— How otherwise could the body variables of Q .be quickly acces-
sible? (If those values of p and chain are present before
executing g base instruction I which is a direct call of a pro-
cedure R, and R normally returns tc the base of Q, then the
required restoration is indeed performed by the restorer).

i be any item having the rank r' and being no procedure,
Then an instruction I which refers to i has the form:

I =y + 213
If r' = 0, then the pre-value 0 1is required for i,

xXr + ...

If r' > 0, the interpreter finds the values of p and chain
as required for the item i as follows (ecf. S10L9 to 11):
81 := chain

pl :=
cycle: if rank r' = rank r contained in
s1 = 213 X r + key address

then the cycle is ready.
otherwise there happens
s1 := {pl + Q0 + 1}
pl := {p1 + Q0 + 2}
and the cycle is repeated.
The values of pl and s1 as left by the cycle are the required
values.,
In compound statement S10 the cycle is still simplified by
the fact that never r' is greater than r,
When the above item i is a simple variable, it occupies the
absolute address pl + y.
When i is a label thus I is a jump instruction, the values
of p1 and s1 are assigned to p and chain on S10L57,

0.19.2.

Then instruction {y} to be executed next is a restore- or switch
instruction and assigns to pointers P and Q the values required.

Proof of the abové tracing process,

Wheﬁ a procedure Q 1is operating, an -instruction I1 must
have called Q for that operation, If I1 1is contained in the
object programme of any procedure, I1 1is a base instruction of
one procedure P2 and P2 was operating before instruction I1
called procedure P1 = Q. An instruction I2 has called P2 for
that operation, Etc. Thus procedure Q and its operation define
a chain of calling instructions and called procedures:

Ips Ppioeees Iny Pos Iy, Pyp=Q | '
Instruction Im is not contained in the object programme of a
procedure, Each instruction Ij calls procedure P. and is, when
j < m, a base instruction of procedure Pj+1' At the call Ij
there happens:

chain := cj
= Sj + 213 X rank rj of procedure Pj
P = pj (m2z jz1)

At first there be supposed that each procedure Pj is called
directly i.e., called without using a formal parameter representing
P.. Then all Ij are machine code jump instructions, and the
pairs Ciy Py (j =m+1 (=1) 1, p = 0) form a chain, defined

by the relations

m+1

Cj+1 ={_pj + Q0 + 13
Dy .= Py ¥ Q0 + 23} (1= j2 m)
As procedure Q is supposed to be operating, chain and p have
the values .c¢1 and pl, ' '
According to fact 5 on page 0.17.2. procedure Q defines a
procedure chain
Q1, coey Qk = Q

which, as will be shown, is contaihed in the row
Pm, ooy P1 = Q

but may differ from that row,

As procedure Q may not be directly called from outside the
text of Qk—1’ instruction I1 is contained in the object programme
of Qk-1 thus procedure P2 is contained in the text of Qk—1° It
P2 # Qk—1’ then P2 will be indicated now by Qk,1 and procedure
P, 1is contained in the text of Qg _4. If P3 # Qg_q, then P,
will be indicated by Qk,2 and P4 is contained in the text of
Q..q» Etc. Thus the row Py, ..., P takes the form:

Qk’ Qk,1' Qk,2’ sse Qk—1,1' ese§ osee} Qi1
in which the double subcripted symbols may be absent. .

0.19.3.

Each procedure Q3+1 n (0 <j<k, O<h) is oontained in the
text of procedure Q ., and 1ts rank r3+1 n is greater than the
rank J of QJ '

I be a base instruction of procedure Q referring to an item
i which is no procedure and has the rank 7r'. According to fact
6 on page 0.,17.3. identifier 1 is body identifier of element Q.,
of the procedure chain defined by Q. Within the row

k, rk 19 rk Dy ees k-1, Ty 1,17 coe

of the ranks, r' is indeed the flrst element which is not greater
than 7r', and it is extracted from the chain together with the

values ¢ and Pps corresponding to the considered operation of

I"
procedure Qr"

Up to now each Ij has been supposed to be direct oall'of
procedure Pj' '

In the general case, an instruction Ig may also, like the
prostate instruction, refer to a formal parameter of a procedure
Q', which parameter represents, from the moment Q' was called,
procedure P.. '

However, the above chain relations

Cip1 = {p g Q0 + 1} and Piyq = {pj + Q0 + 2_} |
may be applied only, when IJ is a direct call of procedure Pj'.

Proof,

Q1, Q2, Q3 ©be a procedure chain, The procedures Q1 and Q01 be
local to the same block, f be the formal parameter of procedure
Q01., A body variable v1 of Q1 be referred to in procedure Q2,
A procedure statement Q01(Q2) may occur in the text of Q3,
giving rise to a machine code jump 1nstruct10n I01. A procedure
statement f(...) din the text of QO1 glves rlse to a prostate
instruction I02 which calls procedure Q2. Now the follow1ng
calls are considered:

I1, Q1, I2, Q2, I3, Q3, I01, QO1, 102, Q2 ‘

in which each subsequent I is a base 1nstruct10n of the procedure
preceding it. Only I02 is no direct call When now the above
relations would be realized also for the call I02, a wrong
address would be formed. For the variable v2 is referred to also
during the "youngest" operation of Q2 thus after the call 102,
vl has the rank 1 of procedure Q1, and in the chain value cO1
extracted first, the rank 1 of procedure QO1 is found, Thus
the tracing process stops, delivering the pre-value pO1l
corresponding to the operation of Q01 instead of the required
pre-value pl1 corresponding to the operation of Q1. ‘

0.19.4.,

Thus the above relations may not be applied to the call 102,
q_a eodo

The following prescriptions serve for avoiding mistakes of
the above type and also for speeding up the tracing process:

1 In formal parameter keys may only occur absolute addresses,
Thus, when calling a procedure, the transporter must bring the
offered actual parameter keys to an "absolute" form,

2 When a formal parameter f of a procedure represents any
procedure Qr which, of course, defines a fixed procedure chain
Q1, "‘Qr’ the reference of f to Qr is possible only because,
at any time, procedure Qr—1 has already operated. When that
operation was interrupted, the corresponding values o and
P,._q Were stored on any addresses y and y + 1, and there is
supposed now that the address y 1s contained in the key main
word of parameter f. When r =1, then y is = Q0 + 1 while
§Q0 + 2} is understood to be a constant O of the interpreter,

3 When formal parameter f represents an expression E, then
E is contained in the base of a fixed procedure Q,_,. When the
operation of Qr—1 is interrupted by the designator of which E
is an actual parameter, the same happens as above in 2, and again
address y 1is contained in the key main word.

4 The formal parameter f occuring in a designator flo..)
represents nothing but procedures having formal parameters. The
prostate instruction concerned makes the interpreter proceed to
S10L40, where there happens:

{Q - 11 := the key address of the procedure stat.

fQ -2} =P

fQ -3} :=p

{g - 4} := chain
fQ -8} =1y + 1}

{Q -9} :=1{y}

which is joined by the formal parameter keys as described

on page
p := Q - Q0 - 10 instead of 5
chain := 13 x r + the key address O etc.
Thus, when procedure Qr is operating, fp+ Q0 + 1 } is the
value ¢ mentioned in 2 above, while the items of rank r - 1,

r-1
referred to in Qr’ are precisely the body items of the mentioned

procedure Q. 4.

0019.5.

When procedure Qr returns, the key address O contained
in the value of -<chain, makes compound statement S11a assign
the value p + Q0 + 10 to variable Q. chain, p, and P are
restored, and {Q - 1} is the key address for the return.

5 When an instruction I refers to a formal parameter £
which represents either an expression or a procedure having no
formal parameters, then, on S10L42, the information for the retumrn,
including the instruction I itself, is listed in 6 locations,
and Q is replaced by Q - 6.

When f Trepresents an expression, there happens also:

chain := {y}

p := {y + 1}
in accordance with 3 above. The expression object programme is
executed which, when it is not designational and the instruction
return of table 1E is the last word, jumps to S10L46 for the
return,

When f represents a function, there happens:

fQ =31 :={y+ 1}

Q-4 :={y}

Q :=Q-5 p ::=Q -Q0 chain := 213 xr + 1 ete.
When returning, the key addressl 1 makes compound statement S1la
jump to S10L46,

0.20.1,

0.20 - Arrays,

In an array declaration
array a, b, ..., ¢ [f31 84y Ty g &pqy -ovs g8 g1}, d, e, ...
[eee]s o--
the values of all bound expressions f and g, are either integers,
or must be rounded to integers. For each suffix i Sk fi must
be = 84 In operation time, the dynamic introduction of a block
B reserves space for each local array of B which is not own.
The bound values as calculated then are not changed during the
further operation of the object programme of B.
Bach of the above arrays a, b, ..., ¢ contains

Hk = h1 x h, x ces X hk
elements, in which each hj is equal to

hj = gj - fj + 1.
When the dynamic introduction of B 1is going to reserve space for
array a, the space P...Q 1s not yet occupied. The first and last
elements of a may'occupy the addresses P and P + Hk -1,
In general, for the subcripted variable

afxyy Xy 49 ooes x1]

the following address is reserved:

[a[xky Kp— 19 eeer Xy]]

k i-1
=P + 3 (X - f.) x I h.
i=1 j=1 J
Then is: [alfyy £, 40 cons f1] 1] =%,
[a[gk7 gk-1’ coey g1]] =P "’Hk" 1
k i-1 3
With u= 2 f; xI h, and [a] =P - u
i=1 j=1 9
the above address formula takes the form
k i-1
[alxe) ®eqs «oer 311 = (8} * 3% % 00y
= el Oy iy
+ T) X By
+ Xk‘-z] Xoooo
$1 x h,
+ ' : : xy o+ fo]

and a similar formula exists for u.

0.20.2,

[a] will be called the pre-value of array a. If the
array contains the element a[O, Oy eesy O], then [al is the
address reserved for that element.

[al, [b], ..., [cl,
He, U

and the k - 1, subscript factors

hk-1’ ceey h1
as calculated by the dynamic introduction of B are regarded now
as the values of the internal local integer variables of B
having the relative addresses

4, 9 = 1, «eey Q' + 2,

a' + 1, a', -

a' = 1, ooy ' =k + 1
If k = 1, then the subscript factors are absent.

v be an auxiliary variable, _

When applying the notation of a for statement, the calculations
to be performed by the dynamic introduction of B take the form:

u = fk

Hk =1 + g — U

for i := k - 1 step - 1 until 1 do
begi

v o= fi |

hi =1 + gy ~ V

Hk ¢ = Hk X hi

u :t=u X h. + v

i

end

[a] :=P -1

P =P + Hk

[b] := P -u

P :=P + Hk

[cj t= P - u

P :

=P + Hk

fi and gy are no subscripted variables but expressions, and
the object programme concerned is no cycle but a stretched pro-
gramme, in which the piecé of text obtained for J = 1 precedes
the one obtained for 2, etc., The variable v has been

replaced by variable [e]:

0.20.3.

object programme of expression fk
26 , 23 13
2 x 117 + 2 + 2 xr + q' + 1
i,e. instruction wu := accu
object programme of expression g — 4
26 23 13
2 x 115 + 2 + 2 xXr +q'
i.e., store factor Hk
constant O
object programme of expression fk-’
\ 26 23 13 J
27 x 117 + 2 + 2 xr+q' + 2
i.e., instruction [ec] := accu
obgeot programme of expression gk—j -fe]
22 x 115 + 223 + 213 xr +q' -
i.e. store factor hk-j~

constant j + 2

226 x 114 + 223 + 213 Xr +q
i.e. store pre-value [a]

constant q' - q + 1

A store factor instruction referring to the absolute address Yy,
operates as follows (cf. S10L91):

if accu is not yet an integer, then accu is rounded and
integer representation introduced.
- {y} := accu [= mant]
if N = next constant in the object programme differs
from O, then there happens in addition:
y =y + N which is the address of [c]
fy - 2 }:={y - 2} x mant
which is the next value of Hk
fy = 1} := {y = 1] x mant + {y}
which is the next value of u
and when y and N have the same meaning as above, the store
pre~-value instruction operates as follows (cf, S10L96):

N:=N+y which is the address of u
I:={N-1} which is H
J := {N} which is u
cycle: fy} :=P -4 |
P:=P+1
y t=y - 1

if y # N, then go back to cycle.

0.20.4.

In the list I, the above array declaration has the form

identifier a’
223 x TOTTITITOT + 2
identifier b
23 ey it 13
20 x D LT + 27 x4 —

L]
¢

1

()

identifier o
223 L TOTTITEOT + 212 x v + q' + 2
facvor identifierx 224 x 62

226 x 126 + 023 4 213 x 1 4 a' -1
(ef. ari in table 1D)

identifier 4

023 L TOTTTITS0T + 2 x v + ' ~ k

etc,

The factor identifier way be any other pcsgitive number differing
from identificrs =2nd numerical lebels so that procedure SO0f
cannot be disturbed by it when 1looking for an identifier. In the
above set of internal equivelents, the arl instruction can be
found by procedure S0f as the Tires negative word,

For the translation of an array declaration confer S4L11 to
20, S6L3 to S, and S6al3 to 42. cwn arrays are supposed to have
constant bounds, As “he translator calculates the pre~-values and
subscript factors concerned, treating them as programme constants,

these constents necd not be calculated in operation tins.
The address foimula of & subscriptsd variable
alxy, SHRTRPRY 7y] |
gives rise to the following ok ject programme { "e and ef Dbe
the internal csquivalents of array idenvifier = and the corres-
ponding factor identifier): '
object programme of expression X,
ef which arl instr, refers to first subscript factor
appropriave object programme o Ko
-
ef -- 1 —-~ second subscript factor
ef - k + 2 ~— last subscript factor
appropriate object programme of expression g
> - 2 . 5] ~26
2 6 x 125 + 2 3 z toi + 2 3 Zr + =2 X 94 -+ e
which 22 instruction refers to pre-valiue [a] and contains
the type indication of array a mnext word N, If k =1, this

0.20.5.

object programme reduces to the object programme of Xy and the
ar2 instruction.
If an expression X (i < k) is a simple variable, a for-
mal parameter, or a constant, then the appropriate object programme
of Xy is the single instruction
accu := accu + Xj

otherwise that appropriate object programme has the form:
instruction partres of table 1E
normal object programme of expression Xy
accu := accu + partial result,

Though ari- and ar2 instructions are in fact calculative,
they are yet listed in table 1D which corresponds to the switch
on. . S10L15, y be the absolute address of
the required subscript factor or pre-value., Then these instructions

make the interpreter act as follows:

arl instruction (ef. S10L62):
if accu has not yet the integer representation, it is
rounded to an integer and transferred.
mant := mant x {y}-
in which {y} is the required subscript factor.

ar2 instruction (cf, S10L65):

the same rounding and transfer as above.
y := accu + {y}
In which {y} is the required pre-value.
now y is address where subscripted variable is located.
If N =20
then return from the object programme of an actual para-
meter being a subscripted variable is arranged (ef. S10LT74).
If N# O and N # =1, then accu := {y] (cf. S10L68),
In this case N is no constant but an instruction and
requires the value of the subscripted variable.
if N =-1,
then the store accu instruction
226 ¥ 117 + 223 x TOT + y is formed and stored as a
"partial result". type indication +t 1is copied from the
ar? instruction. (cf. S10L69) thus assignment is prepared,
The object programme following the constant - 1 cal-
culates the value to be assigned to the subscripted vari-
able (and may also perform assignments).

O. 20'.6.

The next instruction, extract address of table 1E,
extracts the stpred store accu instruction for execution
(cf. S10L72).

In a subscripted variable
alXyy Xy g9 eoes x1]
identifier a may also be a formal parameter of any procedure Q.
Then the key by-word of parameter a 1is an internal body variable
of procedure Q with a relative address % and rank r, 0f course,
when Q 1is operating, parameter a represents an array. When E
is the key by-word and y is the address part of the key main word,
then {y} and {E + 1} are the pre-value and the number of elements
of that array (cf. table 3). In this case, the object programme has
~the form:
- . object programme of expression Xy
226 x 126 + 213 x r 4+ x
constant O
- appropriate object programme of Xyq a8 above
'226 x 126 + 213 x 1 + x '
constant 1

226‘x 126 + 213 x v + x

constant k - 2 '
appropriate object programme of X4
226 x 125 + 213 X Tr+ X

Thus all ar instructions refer to the key‘byéwora of parameter a,
On S10I30 to 33 the required addresses y and E are obtained,
The test on S10L36 succeeds. In the case of the ari instruction,
E minus the programme constant N is the address whers the required

subscript factor is listed.

0.21.1,

0,21 for statement.

When X is a piece of text, then [|X| be again the address
where the object programme of X begins.
The for statement
| for v i=e,, ...y, € do T
in which € represents the for list elements, gives rise to the

object programme:

-object programme of €,

226 124 + 223 & n|

which is a for instruction of table 1D
object programme of €5
same for instruction as above

obﬁect programme of €y

same for instruction as above
226 3 121 + 223 4 Jetc]

object programme of T

the instruction for0O of table 1E
object programme of etc

The object programme of a for list element
€ = F = expression:

object programme of v :=
the instruction for2 of table 1E

The object programme of a for list element.
€ = F while G:~
the instruction for2 of table 1E
object programme of v :=F
object programme of &

The object programme of a for list element
€ = F step G until H 3

object programme of P ,
226 x 123 + the logical product
of 226 ~ 1 and the internal equivalent of v (cf. forl in
table 1D) '
object word of wv:= accu
object programme of G
the instruction for3 of table 1E
object programme of H - v

0.21.2,

Interpretation of the above instructions:
A forl instruction -
prepares a cycle governed by a step element (cf. S10L106):
{P] := ‘
by which extraction instruction the for0O instruction can
return to the object word of v := accu next to the fort
instruction.
{P + 1} := object word of accu := accu + Vv to be
derived from the forl instruction itself. This is negative,
= §{Q +1} :=P + 4
thus cycle occupies 4 places in the working space.

The instruction for?2 _
prepares a cycle governed by either a while- or expression element
(cf, S10L105):
mant := any positive number
{P} := e (cf. forl above)
(P + 1} := {P + 2 }:= instruction for2
but may also be another positive number

P:={Q+1} :=P + 4

The instruction for3
stores increment of count (cf. S10L111) s
fP - 2} := mant
fP - 1] := exp

A for instruction
decides if the cycle concerned must still go on or not (cf. S10L108) ¢
if {P - 2 } <0, then mant := — mant
this test fails when for instruction is preceded by object
programme of while- or expression element.

If mant > O, then object programme of statement T is
executed. When for instruction is preceded by object progr.
of an expression element, the test succeeds only when for
instruction is executed first time,

P:=fQ+1} :=P -4
and instruction next to for instr, is executed. Addresses
P to P+ 3 are no longer occupied,

The instruction for0
preturns to the word succeeding either the forl instruction or

instruction for2 which has prepared the operating cycle (cf.
S10L112):

H o
i
Lot ana)
td Hd
(I |
w s
Sy

0.21.3.

mant := {P - 2}

exp := {P -1}

if I 1is negative:
then the cycle of a step element is operatlng. Then at
first the object word of accu s = accu + v 1s executed
for adding the increment to the count and extractlon
instruction e + 1 is introduced for extracting the object
word of wv:= accu,

If I is positive: _
then mant := any negative number which makes, in the case
of an expression element, the for instruction finish the
cycle. Extraction instruction e + 1 is introduced,

The translation of a for statement is directed by information
occupying the addresses S -5 tc S - 3 of the list L, which
precede the opening symbol {S - 2} (cf. compound statements 87
and S7a). These addresses are used as follows:

o S - 5
Pre-action of for:
{S-5}:=0 wsay A4
After-action of for with comma:
is—s}:=Aj | |
being the first address after the object programme of for
list element ¢y =Py . (3 # 1, 2, +..) just reed.
{A}._AJ1
thus the locations where to insert the requlred for in-
struction later, are linked together by an address chain,
of which AO = 0 is the last element,

After-action of for with do:
address |T] = P + 2 1is known now, The for instruction

226 x 124 + 023 |T| is inserted on the addresses Aj as
well as |T] - 2, - '

{8 =5} = |0 +1
so that {S - 5] is negative at the after—action of for
with the closing symbol. ’

A place is reserved for the pass instruction.

After—action of for with the closing symbol:
instruction for0 is added to the object programme,
The pass instruction 226 x 121 + 223 + P dis inserted

on the address -{ S = 5%.

0,.21.4.

S - 4:

Pre-action of for:
fs - 41 :=0
After-action of for with separation symbol := (cf. S9L4):
{s - 4} := internal equivalent of controlled variable
v for translating the store accu—'and for1l instructions,

S - 3:
Pre-action of for, and after-action of for with comma:
fs -3} := - 3B, |

which is the complement of the address where the object
programme of element €. to be read next must begin, Then

After-action of for with step or while:
| then {S§ - 3} = - By 1is negative,

{S—S}:=+Cj

which is the first address after the object programme of

expression F. just read.
fc.l := 3 :
eyl 1 3= 226 & (117 - 63) + {5 - 4}

= instruction v := accu

After-action of for with until:
then {8 - 3} = ¢y is positive.
s -3}:=0
fc,3 = 2% x (123 - 63) + (8 - 4]
which is the required for1l instruction. Instruction for3

is added to the object progr.

After-action of for with comma or do:
for the element Ej just read there are 3 possibilities:
1 {8 -3} =~ Bj is negative ‘
element €. 1is an expression.
The object word of +Vv:= accu, and the instruction for2
of table 1E, are added to the object programme,
2 {8 -3}=+ Cy > 0:
element Ej = Fj while Gj'
~ The object programme of expression Fj’ occupying the
addresses {C.} = B; ... O, - 1, is shifted over one place,
and the instruction for2 of table 1E 1is stored in front

of it on the address Bj'

0.21,5.

3 {8—3}=Oo
element Ej = Fj step Gj until Hj'
The object word of accu := accu - v 1is added to the

object programme of expression Hj

From the above sign indications it is clear that, in table

1B, the delimiters

| for step until while
méy be represented by the same value, for instance 324, without
disturbing the translator, The delimiters do and := have the

value 323,

0.22.1.

0.22 Verify instructions, Contra-declarations, made
when actual parameters are translated.

An actual paremeter i 'whichbis a single identifier, may
have the significance of a procedure, switch or label, and that
item may be defined or declared later in the text to be translated.
Thus, when 1 is read in the actual parameter list, the signifi-
cance of i need not yet be contained in the declaration list I.
Thus, instead of trying to form the parameter key, the translator
makes an approprlate contra-declaratlon of parameter 1 aocordlng
to the value = ‘5000000000 listed in table 2A together with
detailed informatlon. On the address x thus indicated, the key
main word is inserted later when the significance of parameter 1

has been found,

A constant actual parameter 1i' with integer representation
and being within the bounds O §i' < 2°%, may have the signifi-
cance of a label, and again that label may be defined later, As
i' can also be a constant for use in arithmetics, the translator
forms, and stores, the appropriate parameter key which contains
constant i' as its by-word, but makes also a contra-declaration
of a label i' to be expected according to the value p = T 000000000
listed in table 2A, When nn label 1i' is defined in
the text, the key of the arithmetic constant parameter i' is
maeintained in the object programme, and the contra-declaration
of i' , it has a negative internal equivalent , is never satis-
fied., Otherwise the key main word of parameter 1i' 1is replaced
by a special key main word

223 x TOOTOTTOON + ...
referring to the occurred label i' (cf. tabel 3).
| In operation time, a formal parameter f of any procedure
Q may represent an actual constant parameter 1' which might
be a label. When being executed, an instruction I referring to
parameter f, makes the interpreter proceed to S10L83 and is
examined there:
If I 4s found to be a jump instruction, apparently a jump to
label i' must be performed., Otherwise instruction I needs
constant 1i' for an arithmetic purpose. The interpreter can also
adjust the key of actual parameter 1' in the object programme,

which has a time saving effect.

0.22.2,

An actual parameter may nave the form'
~ E = if boolean then i else J
E' ~ be the object programme of expression E.

If i is an identifier, then again the significance of 1
need not yet be contained in I, when actual parameter E 1is
being translated.‘However, when i is a simple variable or a
formal parameter, its significance has already been recorded in I.
X be the address next to the test instruction contained in B!,

i is looked up, Depending on i having either the significance

of a Simple variable or formal parameter, or not, the translator
stores, on address x, either the extract rnormally- or verify
instruction referring to i, or O, A contra-declaration of 1
must refer to the address x, and is made according to the value
p =0 111111111 listed in table 2A. When later i is found to
be a local label or procedure, the approprlate Jump— or machine
code instruction is inserted on the address x as mark from the
contra-declaration of 1i, and may,'of course, destroy an extract
normally- or verify instruction referring to a non—local simple
variable or formal parameter i, Thus, ultlmately, fx} is either
an extract normally- or jump- or machine code- or verify instruc-

tion.
“ The instruction "verify formal parameter i" has the form
v o= 226 x 110 + 223 + 213 xr + Yy, containing the

bit Vg = 1, though y and r are the address and rank of a
formal parameter i, When being executed, .instruction v makes the
interpreter proceed to S10L140, before the key of parameter i
is extracted. In operation time, a formal parameter f of any
procedure Q may, from the moment Q is going to operate, re-
present the above expression E, When being executed, an instruc~
tion I which refers to parametef f, makes the interpreter
proceed to S10L42, Then the instruction I is temporarily stored
together with other information, and the object programme E'
is executed. At the time the operation of E' proceeds to 1nstruc-
tion v, E' is nearly on the point of returning, and

6 + value of pointer @ ' ”
is exactly the address Where instruction I has been stored.
Thus the instruction I can ‘be ‘examined on S10L140%
If I dis found to bé a jump 1nstruct10n, then the formal para-
metér i must apparently represent any label, and instruction
v must be interpreted as the jump'instruction‘referring to for-’
mal parameter i. In addition, that jump instruction can be

0.,22.3,

inserted in the object programme in the place of the slow verify
instruction v. If I is no jump instruction, expression E is
apparently supposed to supﬁly a value for an arithmetic purpose..
Then, however, that value must be supplied by the formal i, and
instruction v must be interpreted (and can, in the object
programme, be replaced by) the extract normally instruction
referring to formal parameter 1,

When, in the above expression L, 1 is a constant which
is suitable to be used as a label, the translator makes according
to the value p = 1 100000000 , listed in table 24, a contra-
declaration of the label i to be expected for reference to the
above address x., And there happens also:

fx} = 226x 98 + 223
{x+1} := the arithmetic constant 1

When no label i is defined in the text, the instruction {x} for
extracting the constant 1 is maintained, and the contra-declara-
tion of 1, having again a negative internal equi%alent, is never
satisfied. Otherwise the extract normally instruction is repladed
later by the Verify instruction

226 3 109 + 223 4+ L., | |
which refers to the occurred label i, so that, in operation time,
there can be decided if 1 1is an arithmetic constant or a nuﬁeri-
cal label.

Table 2A contains two types of contra-declaration with
negative internal equivalent, Both refer to label-like constants
occurring in actual parameters, and they need not be satisfied,
When, on the other hand, a contra-declaration with positive
internal equivalent can not be satisfied, the translated text is
wrong.

When, in the above expression E, J 1is an identifier or
label-like constant, j is treated quite similarly. Then x 1is
the address next to the pass instruction contained in the object
programme E',

An actual parameter may have the form

i[E] or if boolean then i[E] else etc,
X be the. address next to the cbject prrgramme of the subgcript
expression E, While translating 1{E], i 1is again looked up:
Depending on i having either the significance of an array or
a formal parameter, or not, either the ar2- or VERIFY instruction
referring to i, or O, .is stored on the address _X.

0.22,4,

A contra-declaration of i must refer to the address x, and is
made according to the value p = 0 b11111111 listed in table 2A,
When later 1 1is found to be a switch identifier, the appropriate
jump instruction is inserted on the address x,

In operating time, the VERIFY instruction
226 x 108 + 223 | .o
referring to a formal parameter i, examines if parameter i is
representing an array or a switch,

An actual parameter E which has the structure of a
designational expression, may yet be arithmetic or boolean,
Within an expression E, labels and switch identifiers may occur
only in certain "key positions". When the translation of E
proceeds to such a key position, the value 1 1s assigned to the
signal mark, as is shown in table 4C, Each identifier i occupying
a key position in E, is contra-declared and is definitively '
interpreted later, when the translation of the block or procedure
to which 1 is local, is finishing.

Table 1. . 3,01

Operators., S

When reading an operator, input goes to S1I41 after assigning

the operator's value to variable £ of table LA,

That value has the form: A : -

32 x1r + 226 xq (0<r<10, 64 S g <96 or a= 97)

(For the value g = 96 of minus cf, S1L3).

r is the rank of the operator, and 226 x q is the operational
part of the instruction resulting from the operator,

Below g is tabled only for the progressive version or
operators, from which the regressive version is obtained
by inverting the right-most bit of q. However, the progressive
version 22 x 97 of not (226 x 96 o6f - in thé extractive
gsense of S1L3) corresponds to the regressive form take inversion
of S1L22 (take complement of S1L23) (cf. tables 1C and 1E).

If q < 96, then the operator is calculative, requiring,
besides the value of a variable or constant extracted by the
instruction, also the value of accu. ’

The variable J of the interpreter . (table LB) takes the
values 2 x (q % 2) - 128 (ef. S10L 23, 26, 19, 15).
operator: ' r q

6L
66
68
70
72
74
96
76
L8

80
84

82
83
97 .
8L
86

88
90

L) . o e e o L o . e o o L] o e < L

o o © 3 a ° @ o . 6 ° < Qo L) e o o L

N
°
°
.
.
o
°
.
°
.
»
.
.
.
.
o
.

+
L]

L o ° L] o o L] L L L L] L] . L4

. < ° L © o L4 o L . ° L J [] o [L e -

or (cf, table 1C: extract complement)

L] o & o L] ° ° ° L o ¢ L] L4 o o o o

° L] L o o L2 ° L] L] L o o © L] o o L]

(ef. table 1C: extract inversion)

o]
o
ct

Q

an

L L] L] L] o ° o [] o ° L . L] L] o [[

@)

o o L] [] ° * 9 o L4 o * o o] o L L]

mglies L] L] * L] o o 0" ° o o o L (] L] L o L]
eguivale‘l}_t: L L] L] [4 ° L] ° L4 & 2 e L] 9 ° ‘O o

A IV A v NN
[]
L]
L]
L]
*
L]
O O ~N OV F FEFEFFFPFOUWWDODDODNO-=

Opening~, separation-~ and ‘closing symbols.

The delimiters occurring below in the first column are
opening symbols, having the ranks O and 10 on their left-
and right-hand sides respectively. The other delimiters listed
below'may have the significance of both separation— and closing
symbols, having only the rank 10,
In each line below, the number on the right-hand side 1is
the value of the delimiters occurring in the line.
It can be written as follows:
'S + 32 x rank 10 (0 S8 <.32). . o
After reading an opening symbol s, 1nput goes to the
compound statement metioned below to the right of s, for per-
”forming the pre-action of 8, . '
For progressive and redressive after—actions of opening symbols
, confer S1L6 and S1L21 respectively.
B After reading a colun, _input goes to compound statement S3e.
‘ After reading any other delimiters 1isted below, input
goes to S11L1 after assigning the value of 8 t¢ variable £,
as happens also in the case of an_ operator 3. T :

Opening symbols: bep&rationr'and*closing symbois: value:

(- s5 ERPAR S -1
[S6 e - I
begin S3 - 6D s s e e s e e s e e e s e 322
1= S9 S« L« O T 323
for 87 step until while ¢ « o o « ¢ o 324
go to S8 t e s e s e e & e o s o s e 325
if s2 then €1S€ o« « o o o o o o ¢ o o 326
procedure S3a % e o o o o o o o e s e o o 327
switch S3a =% 328
lsq S5b == J T I T
ey (comma) e e e e s e e 330
: - (colon) s s ¢ o o & o 331
: (semi-colon) .+ o o o o o 332

% After reading procedure or switch, input goes to compound
S3a, as happens also after reading any declarator (cf. table 2).
The pre-action of procedure (switeh) in its quality of vpening
symbol begins on Sh4L2h (SLL37) after reading the procedure
(switch) identifier. o

%% No value., Del, 1lsg is read and skipped by input 1.

Table 1C, - 3.2.1

Extractive instructions

These instructions have an operation part 226 X q with

9% = q < 10L.
For them, in operatioh time; the switch on S10L19 -succeeds,
using the variable J = g - 128 (ef. table 14).

To the right of each tabled name, there is mentioned
the jump performed on S10L19 for the instruction concerned,

and the value of q.

instruction goes to q
extract complement S101.88 96
extract inversion S410L87 a7
extract normally S10L81 98

-

g = 100 is reserved for transport of arrays (cf. S11LL3).
Then the switch on S10L49 goes tn S10IL126,

Table 1D.

3.3.1

Non-extractive instructions.

These instructions have an"dpératidn part 226‘x g with 104 =

q < 128,

For them, in operation time, the switch on S10L15 succeeds,

using the variable J =

q - 128

(cf. table 1A).

To the right of each tabled name, there is mentioned the
jump performed on S10I45 for the instruction concerned, and

the value of q.
instruction

adjust
ari
ar2
fur
for1
Jump
pass
pro{cedure) state(ment)
restere

store accu v
store address
store factor
store pre-value
store procedure
switch
test

verify
Verify
VERIFY

goes to

S10L100
S10L 62
S10L 65
S10L108
S10L4106

S10L b5

S10L 58
.

S510L104-

S1011 21
S10L 70
S10L A
S10L 96
5101120
8101128
S10L1 30
S10L140
8101442
5101435

q

127
126
125
124
123
122
121

120
119
118
117
116
115
1104
113
112
111

110
109
108

% a prostate instruction occurs only in connection with
a formal parameter which represents a function or procedure
having parameters, The interpreter does not proceed to the
switch on S10L15, but goes to S10L39.

Table 1E, 3eh.1
Special constants.

The identifiers listed below such as extract address are

- convenient names of constants depending on the hardware . -
programmes of the interpreter and translator. Whenever such an
identifier occurs in the translator text above, the mark + at
the end of the line indicates'that, in praxis, the identifier
is of course to be replaced by the corresponding constant,

The following Jump instructions which are written in
machine code, may occur in translated texts = object programmes.
When extracted in operation timegthey are executed normally on

S10L3% as indicated below:-

instruction goes to

extract address S10L 72 }
extract procedure S41 011 31
foro S10L11 2

) RSN
for2 5101105
for3 S10L111
part(ial) res{ult) S10L O
retain 340L 99
return S10L L6
take complement S10L 90
take inversion 84 0L 89
X S11L O
¥ s12L O
Y S11al 1
JO = jump instr, referring to abs. address O, and

extraction instr. referring to the ahs. address O,

i

EO
The following values are assigned to the address variables
of table LA (cf. compound entry): 2

PO
ale
LO = beginning adiress of the list L

for example: LO = (PO + Q0) +2
Q00 = Q0 + 2 x h

in which h is the number of the standard functions and -~

]

lowest address of the working Space
highest address of the working space

-procedures whose object programmes are included in the object
programme of the interpreter., These functions are permanently

Table 4E. 3.2

Special constants,

declared; their identifiers occur-as constants of the
transl, on addresses Q0+2, QO+4,....200,

30 5»1

Table 2.
Declarations.
. 03
Declaration pattern D = 2 X o ¢ o o o o o P
neutral (cf. S3I4 and S3bLL): - o LB EEEEEEE
before input of formal param.list (cf. S5L2): 0 0009TH{10 "
when value- or specif. list may occur (S8dL9): IooooT T T
Declarator or specificator = 223 X o o o o P
real CEEEEREEK]
own 0 110111907
boolean, integer [OEEEEEENoE
array - 0 011414107
label, string, switch P IEEEERED
procedure [Oe[X EEEEED
value 0 000001111

After reading a declarator or svecificator, input,
having assigned the required value 223 X p to variable f
of table LA, goes to 35517“%5855f5 is modified:
D : = logical product D or f
which is positive i.e. bit DO = 0,
When no identifiers are declared or swnecified, D is negative
so that the test on SLI1 succeeds.

Internal equivalent:

In general, the internal equivalent e of a declared identifier
i has the form:

e =y + R+ D
in which y is an address, while D and R = o5 Xr
are the values of the variables D and R of table LA which were
resident when i was being declared,

When i has the significance of a simple variable or array
cr type procedure, then the bit €qa is O, e7 being = 1 for the
type real, = O for the type integer or boolean.

When 1 is an own variable or - array, the bit e is yet =

3

1, though the pattern bit D
When 1 is & formal parameter, then
e =y + R+ 2% x 07711711000

which is not derived from D = 222 x 5 000611470,
The bits e, = eg = O do not refer toc a type. The bit eg = 0 is

is = 0.

characteristic for i = formal parameter,

Table 2. 3.5.2

Declarations.

When 1 is a procedure then r = - 1 + rank of that
procedure, and y 1s the address where the procedure has its
object programme beginning. . . v ,

When i is a switch, y is the address where the sw1tch
instruction occurs in the object programme of the switch,

When 1 is a label, then '

e =y + R+ 2% x 000TT4T11
(cf, compound S3c).(In which y is the address where a restore
instruction occurs in the object programme),

When i is either a simple variable or array of formal
parameter, then y is the (relative or absolute) address of
either the variable or the array pre-value or the key by-word

of the parameter,

When i1 is a simple.wvariable or formal parameter,
instructions are formed as folqus:
e + 226 x (q - 63),

the nunber q being taken from table 1 A or C or D,

The translator still accepts formal parameterAlists
having the following form-
i, real i, real i, integer i, real procedure 1, i, value i,
integer value t, ... in which a parameter is either individually
specified or unspecified. The corresvponding pattern values

D = 227 x O 0000VItx0

are listed in the procedure's object programme and can still
be modified according to specifications occurring in the text
after the formal parameter part.

Only type- and value specifications have internal effects,
When the bit v is = O, the parameter 1 concerned 1s value, A

When the bit x is 0, then the bit t indicates a type sPecified
for 1,

Table 2A. 3.6.1

Contra-declaratinns.

The internal equivalent

- A e = x + 223
of a contra-identifier
. 32
i+ 2

points to the word st[x] of the object programme which must

be adgusted later,
There are the following possibilities:

p =1 17100000000

S2alld: A constant i' has been read which, because of
its position within an actual parameter which is a non-trivial
expression, might be a reference to a 1abe1Q
There happens: -

Cstlx] := 223 x T+ 226 983 stlx+1] :=1'.

Thus, in operation tir:;“**“ISfjg{;ected by the extract
normally instruction preceding i' in the object programme.
If i' is suitable to be a label, which implies that the
reBresentation bit t = O, the contra-declaration of 1 = i' o+

X 6% is made according to x and p.

If i' really occurs as a label, the translator will proceed
later to S3bLL8 where the word stlx] is replaced by the
Verify instruction of the label.

In operation time, the Verify instruction is interpreted
on S10L4L2 according to the character of the instruction whose
formal parameter represents the actual parameter containing i'.

p = T GO0CCO" 0

S5aIl10: When a constant actual parameter with integer
representation has been read, then
stlx-1] :=i'; stlx]l :=x -1 + 023 x 5111111007,
the key main word being similar to the 1nterna1kequivalent

cf an integer variable located on abs. address x-1.
If i' is suitable to be a label, the contra-declaration of 1 =

i' o+ 22u x 63 is made according to x and p (cf. S5al 18-21).

If i' really occurs as a label, the translator will proceed
later to S3bLL8 where the word st[x] is replaced by the key
main word of a constant actual parameter which occurs also as a -
label (cf. table 3). _ ,

In operation time, on S10L82 the interpreter discovers, by
examining the instruction whose formal parameter represents thé

30 602
Table 2A,

Contra-declarations.

actual parameter concerned, if the actual parameter is a label
or not, and changes the key main word accordingly.

P =0 1141111111

S2al6:An identifier has been read which, because of its
position within an actual parameter which is a noh-trivial
expression, may be a reference to a label., i has been looked
up in the 1list I, and there happens: st[x] := either the verify
instruction of i being a formal parameter, or the extract |
normally instruction of 1 being a simple variabie, or O, 1 being
of another kind. |

The contra-declaratiun of i is made according to x and p.
Later the contra-declaration of i is found in the list I, and
the declaration of i isj;aoked up again. The translator proceeds
to S3bIL3. I

If i is again found to be a formal parameter or simple
variable, then the word st{x] need not be changed. |
If i is found to be a label, the appropriate jump instruction
is inserted on address Xx. ' ' |
Tf i is found to be a function or procedure (which, in this
case, may not have formal parameters), then the appropriate
code instruction is inserted. |

In operation time;'verify instructiors are interpreted on
S101140 depending on the character of the instruction whose
formal parameter represqnts the actual parameter which contains
the identifier i,

p = 0 011111194 ‘

S2al19, S5al273 i[..}] has been read which, because of
its position within én actual parametér, may be a switch
designator, -

If 1 is a formal parameter, then st[x] := the VERIFY
instruction of i. Otherwise st[x] is already either the ar2
instruction of i being an array identifier, or O, i being of
another kind (ef. 86aL61). The contra-declaration of 1 is made
according to x and p. Later the contra-declaration of i is found
in the list I and the declaration of i is looked up again.

The translator proceeds to S3bLL2, If i1 is again found to be
a formal parameter or array identifier, the word st[x] need
not be changed.

3.6.3
: Table 2A,

Contra-declarations.

If 1 is found to be a switch identifier, the appropriate Jjump
instruction is inserted on address x. In operation time, VERIFY
instructions are interpreted similarly on S1OL135 as are verify
instructions on s10L140,

p =0 001111411
S8alL2, S8bL2, S2all7
There has been read 1 or 1 [...] in a position in which 1
(which may also be a formal parameter) can only be a reference
to a label or switch. Procedure SOL makes the contra-declaration
of 1 according to p and pointing to the address x where the
required jump instruction must be inserted later (cf, S3bL45)

p = 0 0001111114 ~
" '85L63; There has been read i, which is the beginning of a
function designator or BSEEEQEEE_§;ain3ﬁt having actual para-

meters. Thus i indicates a function or procedure having formal
parameters and is eventually not yet declared. Of course
i may be a formal parameter too, The contra-declaration of 1
is made according to x and p. Later the contra-declaration of
i is found in the list I and the declaration of i is looked up
again, The translator proceeds to S3bLLO,

If 1 is found to be a function or procedure, the appro=
priate code instruction is inserted on address x. If 1 1is a
formal parameter, the prostateinstruction of 1 is insérted.

p = 0 000011411

S1112, S1113, S6al52 and procedure SOk
The identifier i considered is found to be no formal parameter
and no simple variable, Because of its position, 1 can then
only be a function having no formal parameters. The contra-
declaration is made for 1 according to p and the address X
where the appropriate code instruction must be inserted later
on S3bLLO,

On S3bI4 the identifier i considered can, because of its
position, only refer to a procedure having no parameters, but
may be a formal parameter. The same kind of contra-declaration
is_made., When, on S3bL4O, 1 is found to be a formal parameter,
" the extract normally instruction of i is inserted on address x,
which might as well be any other extractive or calculative

3. 60 LL
Table 2A.

Contra-declarations.

- instruction carrying the formal parameter i,

The case of a function designator implies a slight
restriction in the use of identifiers (which can be removed
only by general use of contra-declaration for all identifiers):
Given: any formal parameter or simple variable i being non-
local to a block B, When there is mno reference in the text of B
to 1, yet a local function ha#ing no formal parameters may not
have the same name i ﬁnless its declaration occurs earlier than
any reference to the function,

= 0 000000000

Shal8 The identifier 1 considered is an actual parameter
whose significance may, of course, be declared later in the text.
”'The contra—declaratlﬁﬁssr\iuls,mggg\ggcording to p and the
address x reserved for the key main word of parameter 1
(ef. S5al 18-21), '
Later the contra-declaration is found in the 1list I and the
declaration of i is looked up. oL
The translator proceeds'to S3bL24 for inserting the parameter
key on addresses x-1 and x according to table 3,

After translating a text, the contra-declarations listed
in T must have been satisfied with the only exception of those
containing negative internal equivalents,

The latter contra-declarations which refer to constants which
might be 1abels, have no -dmperative character (cf. S3bL18).

.~ In a text which is a compound statement instead of a block,
labels may yet be used freely.

30 Tu1
Table 3.

The keys of parameters,

;Below the keys of actual and formal parameters are listed
on the left-hand side and right-hand side respectively. Any key
consists of a main word, preceded by a by-word, These words
are programme constants or, when the parameter is formal, local
internal variables of the procedure, to which the parameter

belongs.
When a procedure (or function) is invoked, compound S11,

the transporter transforms the keys of the presented actual

parameters into those of the corresponding formal parameters,
the keys of the latter containing only absolute addresses and

stores the results.

parameter =

non-trivial expre831on

Y + B0 (cf. table 1E) .Y + BO (31mply copied)
223 x T TI1111004 223 ¥ TATTIT1%x1 + 2

Object programme of expression begins on address Y.

Each time an evalug™>n of the expression through the formal
parameter is going to be performed, the interpreter at first
restores the values st[Z] and st[Z+1] of the variables chain
and p of table 4B which were resident while the object programme
of the block to which the expression belongs was operatlng.

For t and x confer "procedure" below,

simple variable:

by-word not important ' by-word not important
22 x T +y + 20 x ¢ 223 x O THx1 + ¥

Y is the absolute address where the variable with relative
address y and rank r is located.

The bit t indicates the type of the varlable (table 2),

t =1 » real, O+ integer or boolean,

Mostly the bit x is O. However, when there has been
specified a type for the formal b&rameter and, in addition, that
type differs from the type t, the transporter sets x to 1.

Then, after any extraction of the parameter, the type t is
transferred on 810118,

array:
B z
23 x TOTTTITEOT + y + 2" x ¢ 223 x TOTTTi7tx1 + ¥

Table 3. 3.7.2

The keys of parameters

The pre-value of the array which is either a programme
~constant or an internal varlable of the object programme, has
~ the relative address y and rank r and is located on the absolute
address Y.
If there are k dlmen81ons, k > 1, the factor called hk 1
in the explanatlon is located on the absolute address Z = Y + B,
The number Hk of ﬁhe_array elements is located on address Z+1.
The translator calculates B as a difference of relative addresses.
For the bits and x confern"simpie variable" above.'

label and switch:

by-word not important z :
223 ¥ TOTITITT + X + 22 x ¢ 220 x TOOITHATIT + ¥

Y is the address corresponding to the label, or is the
address where the switch inlTot*t-=-is located in the object
programme of the switch. r is the rank of the label or switch
identifier. When any jump to the address Y is performed, the
interpreter restores the values st and st [Z+1] of the
variables chain and p of table LB, ’;%¥%Erwere resident while
the block to whlch the 1abe1 or switch is local was 0perating<\

~,

Constant occurring in the text ~.
as both actual parameter and label: >

B = constant actual parameter 7
223y 5O5i0TT00T + ¥ + 210 x v 222 x GGOIGIIOOT + U

Y, r, and Z have the significances mentioned above for
labels. The by-word B is located on gbsclute address u.

In operation time, on S10L82, the aetual parameter is
found to be either the label B or the "simple variable'" located
on address U, and the parameter key is adausted accordingly.

A constant actual parameter B which does not occur as a
label, is treated as the 'simple varlable" with pre-given
value B which is located oﬁ the‘addreSS U reserved for the key
by-word. | ‘ | '
Consequence°‘*ne value of a constant actual parameter ean
be changed in operation time by assignments.

procedure:

Y +1 Y + 1
223 x 000111007 + 22 x r 223 5 T000TTItxA + Z

Table 3. 3.7.3

The keys of parameters.

The procedure indicated by the parameter has its object
programme beginning on addressgeum.has the rank r+1. Before
any call of the procedure through the parameter is performed,
the interpreter at first restores the values st[Z] and st[Z+1]
of the variables chain and p of table 4B, which were resident
while the block to which the procedure is local was operating.
The transporter obtains absolute address Z by aid of r,

When no type is specified for the formal parameter, the
transporter sets the bits t and x to 0.,

When a type is specified in the text, the transporter sets
x to 1 and has t indicates the type specified.

When, in operation time, the type t should differ from the
representation of the value obtained through evaluation of the
function (or expression, see above), transfer is arranged on
S10L51.

string:
address B address B
address M e~ address M

In the object programme, the string consists of the words
st[i], M 1< B
actual parameter being an identifier 1
which is a formal parameters:

by-word not important stlY]
223 x 0 000041000 + y + 2'° x stlY + 1]

The by-word of the formal parameter i involved is locat=sd
on the absolute address Y obtained by aid of the relative gddress
y and rank r of i. The transporter simply copies the key of
parameter i, though a type specified for the formal parameter
and differing from that of i, is observed.

The value of a formal parameter f which is called by value
in the text, is calculated and stored in the working space of
the procedure to be called by the translator.

When f is no array, its key takes the form:
’ st[Y] = value of f

st [v+1]
= 223 x TIIT{IE01 + Y
If there has not been specified a type for parameter f, the
bit t indicates the representation of the value as obtained by

30 7:14-
Table 3,

The keys of pérameters.

the transporter, which is fhen cpnsequently considered to be
the type of the value parameter,

3-8'1
Table LA,

The variable of the translator,

In compound entry the address variables are initialized,
For the constants LO, PO, QO0, QOO (cf. table 1E).

D, the declaration pattern of table 2,

mark, the signal of table lLe.

P =7P0 (1) ‘ '
The object programme which is the result of transléting a text
is beginning on address PO,
P is the address where to store the next word.

a=Q0 (-1)
is the relative address reserved for the non-own simple variable
which the translator will next introduce to the organization
of the object programme. After translatingys&block or procedure,
the value of q resident pgﬁgre_ihne+TZE§I§€idh of the block
or procedure, is restored. '

R = 213 X resident rank = rank

cf the procedure whose translation is running,
R, initially Tomme o oo sioroEeed reST o based by 212 on
S4L26 and S84L3. |)

S and SO ,

In the 1list L, occupying the addresses SO0, SO0+1, ... S,
opening symbols and operators are listed together with additional
information. Initially there happens: SO := constant LO, S5 :=
L0 + 1, Procedures SO, SOc, SOe and SOm observe the inequalities
P+1<S0and S < T (for T see below), When, on S3bL7, S is
found to be = SO + 3, then translation is ready. |

During translation, st{S-2] is the delimiter (either an
operator or opening symbol (tables 1A and B)) listed last in L.
It has been stored by procedure S0c,

st[S-1] 1is either O, or a programme constant i, or the
internal equivalent (table 2) of a simple variabie or formal
parameter i, or the contra-identifier 1 + 232 of an identifier
i which is no simple variable and no formal parameter. Mostly,

1 is the constant or identifier which is, in the text, subsequent
to delimiter st[S-2] : when absent, then st[S-1] is = O, When,

on S4L23, the internal equivalent or contra-identifier of an
identifier i is -listed, 1 itself is stored on address S which

is occasionally required for making a cohtra-declaration.

3’832
Table LA,

The variable of the translator.

Sometimes the‘list L is extended by decreasing variable.
So for assembling a list of constants to be transplanted later
to the object programme,

S' = S accent ,

When st[S-2] is an operator which has just been translated,

then, on S1117, there happens:
S§':=8 =8 - 2.
When the test on S1L49 succeeds, the translator proceeds to
input,

~ When st[S -2] is an opening parenthesis or - bracket p
which is after-actlng w1th the corresponding closing symbol,
then, on S5al5 or ’6aL6O there happens:
S' =8 1= 2 + a%:tfeefwhereﬁjgeﬁhieifmiter precedent to p in
L is listed in L. o
Then the translator proceeds to input.

After reading a separation symbol witnin a list of A
identifiers to & pmome : 8 := 8,
and the transla\‘- proceeds to input,. R

When, in any other case of an after—actlng opening symbol,
the translator proceeds to input, there happens, on S6ald1:

S' 1= 8N, | | ‘

| During input, S' is not changed (with the only exception
that procedure Sog must shift the list L, in which case the .
difference S' - S is not changed). ‘

Oon S1L7, S5L4 and S6allly, comparing S with S'shows if
the object programme must “be equipped with storing and sub=-
sequent extracting a partial‘reshlt, or not.

~ On S116, ' = § indicates regressivity.
On S1L2, S' = S denotes that st[S-1] may not be examined.

= Q0 (~-2) is the address where the 1dent1fier i declared
next must be stored in the 1list I of declaratlons. The internal
equivalent (table 2) of i is listed on address T—j. After
translating a block or procedure, the value of T president
before the translation of the block resp. after the declaration
of the procedure identifier, is restored. |
On the addresses T1 + 2 (2) T2, procedure Sof 1oo trs up the
next identifier being equal to the value of variable f below.

Mostly ™ is = T and T2 = Q00.

. 3.8.3
Table LA,

The varable of the translator.

u and v
cf. own arrays, S56al29.

a, b, c, }d’ e, T, g
are used intensively.

Compound statemeht input assigns the valué of the
identifier, constant, or delimiter, Just read, to variable £
(which is not necessary in the case of a delimiter : :=
([begin for go to if Isa).

If £ is a constant, then g := 225 x G DO0000EOA
in which the btit t indicates the representation of the constant

f.

If £ is an array identifier read within

n expression or

actual parameter, then g -= ari instrucgg\a_taken from the

list I (cf. S4L22), »~—~*-~“*”’ﬂ7“~fé» :

If £ is an identifier being of another kind, then g := O.
Procedure SOa shows the main use of variables a,...€

during the translation of operators.

3' 901

Table L4B.

The variables of the interpreter.

In compound ENTRY a number of variables are 1n1tiallzed.

In the object nrogramme of any problem, the first word
i8 the beginning address P41 of the working space P41 ,.. QO of
the object programme (cf.S3bL8).

Chain has the form s + 213
in which r is the rank of the Operating procedure or function

f, and s 1s the key address presented when f was invoked.

When no procedure or ‘function is operating, the value of chain
is not important though, in theory, r has the value O in this

xXr

case.
Chain2

retains the valqe/ f chain (cf, e2),
e, the ex,f',tion ot ter, has the form:

Viavw e

current addresd + EO (cf, table 1E) which is supp:sed to be
negative, but is occasionally replaced by a code instruction

which is positive and is carried out_normally on S10L2.

e2 masambas on e A A all n w o Semacs el o eee

retalns the valu 'of e for return in the case that the sub-
script of a switch designator is outof capacity (cf. S10L56,
S10L401 and S10I1129).

exp, mant
When the contents accu of the phantom accumulator is an integer,

/‘

then mant = accu, exp = O.
When accu is real, then mant = mantissa, and exp =1 - 2 x
exponent of accu.

p, the current pre-value.
When no procedure is operating, tlen p = O.
When a prdcedure (or function) is invoked, compound 811 or S12
assigns the vaiue Q - Q0 - 5 to variable p, also changing the
values of chain, P, and Q (see below), retaining the previous
values of chain, p, and P on the addresses p + Q0 + i
1 =1, 2, 3).
When a simple variable with relative address ¥y has the rank r
of the operating procedure, f, contained in chain during the
operation of £, then the variable is located on the absolute

address P + Y.

Egb&ains the value of p (cf.ez)

3.9.2
Table LB, '

The variables of the interpreter.

P
Q upper bound
divide the working space P4 ,.. QO, at any moment of the
operation time of the ~roblem, into 3 ranges: '
The arrays which are in use at the moment, form, together,

lower bound, and

the range P4 ... P-4,
The simple variables which are used at the moment form, together,

the range P41 ... P-1. ‘
The simple variables which are used at the moment form, together,
the range Q@ + 1 ... QO.

The locations of the range P ... Q are QPt occupied at the

moment, ‘
Q2 j\\\\‘

retains the value of

-~

N "UL/'."

E, I, J, N, p1, s, ¥ _
are intensively used in various significances, for example:
N = word extracted through e + 1, . N
J=1x 2726, :
to be used on S10L 15, 19, 23, and 26,
81 = required (current or previous) value of chain,
p! = required value of p connected with S1

(ef. S10L 9 -11).

y = address part of I, a relative address- then
y = corresnonding absolute address.
N = value of required variable or constant, (ef. S10146),

which is broken up into N and E,
J = key main word, and E = key by-word of the formal

parameter, to which instruction, to which instruction I refers.

Table LC.

There are 2 possibilities:
1 mark = 2:
Then has been read a switch designator il[...]. The subscript
has already been translated., A special contra-declaration of
i = st[S] is made according to the value p = 0 0011414111 1listed
in table 2A,
2 mark = O
There has been read a conditional designational expression,
The identifiers contained in it which refer to labels and
switches, have already been contra-declared, as will be shown

below,

When the symbol (of an actual paramete: part)is after-acting

regressively, mark is tested on Sh5aL2l,

There are again 2 possibiliti _ T X
3 mark = 1 o R i)

There has been read a subscripted variable OP\QM%tch d681gnator

i[ese]. As the kind of i is to be regarded as not yet known,

NOW 8 Cuur. . e e oo TS e g to the constant
p = 0 011111111 of table 2A, \\ ;
4 mark = O | s J

There has been read an actual parameter, being a non-trivif
expression differing from i[...].

Only the instruction return of table 1E is added te™ ”‘ﬁo?
programme, '

When the opening symbol if of an expression;g
else E2 is regressively after-acting with else oj
closing symbol, there are 3 possibilities for

5 mark = 2 :] ;
Then E1 or B2 is a switch designator and is tre. ;indiéated

p

-,

in the case 1,

6 mark = 1 "\“%
Then F1 or E2 is either a subscripted variablé or a switch
designator and is treated as indicated in the case 3,

7 mark = O
Then the object programme of E1 or E2 has already been translated
with involved contra-declarations, .

For progressive after-actions of if cf, S2ali. Then, in
discussion, labels take the place of switeh identifiers.

3.10.3
. Table LC,

Mark,

During progressive after-actions of (, go to or switch,
the signal mark need not be consulted,

Labels

SOgL
SOLL
S1L2a
S1L3a

S51L3b
S3al2a
S3bL2a

S3b% Ha
S3b1 8a

S3bl4 8a
S3bL33a

S3bLlA a
S3bL1b
S3bLh2a
S3bLL42b
S3bLh43a
S3bLuLa
S3bLL4ba
S3cL3a
S3cL7a
SLL33

Shalla

85L1aA

Table 5.) N
of the translator corresponding to mistakes.
Translator is short of working space.

A 1sbel is referred to by an unsuitable constant,

Operator not- is preceded by a constant or identifier.
To the right of an arithmetic operator which do/\ not
precede an opening parenthesis, a constant or ntifler

has been omitted. : : . /

TIdentifier or constant has been omitted. P Tk
Declarator occurs in the wrong place. 'i B
In the compound tail of a block, or-commound sfatement,

a statement is followed by comma. _
ined in a compound

delimiter differing

A declaration or statement , con
statement or block, is followed by

from semi-colon anq_gggl*y/,rae—:f

——

ObJject programme is ready, wrong bell
One of the identifiers has not been dei , _

An identifier has been defined twice w1thin the same
side the blo:

contained in it. ' \\

Nonsense, invoked by a function des ¢or Oor procec
-) /!

statement,

A function designator or proceduré‘statémeq}*ﬁqzizé
actual parameters, invaokes a functionwﬁ-”; :
having no formal parameters. C

A subscript, attached to a simple var

A subscript, attached to a procedure :

An array identifier to which no subsc

oceurs within an expression. p

A function designator or procedure &

no actual parameters, invokes a funct -
having formal parameters. g f‘ 'ﬁ‘hﬁx“'
Nonsense, referred to in a designati _,xpression°
A label has been omitted. ™

A label, represented by an unsuitable constant,

One of the specified identifiers does not occur within
the formal paramcter list concerned. :
In a list of identifiers to be declared there occurs

a constant,
(Occurs within an identifier list of a block he

Table 5A. | B

Labeis-of thelinterpreter, cornesponding to mistakes.

S10LO

S10L35

s1oL38"

S10LL0
S10Ly2

 $10L50

S10L52
S10L6L
S10L92

S10L98

S10L100 No place can be reserved for the 1y

- n
S10L4107 There is no space enough to execut® the next for
l ~ . o :
S10I4126a Exponent of real value to be siored is :too great

S10L4126b Exponent of real value to b2 stored is too great
. s

No place available for storing a partial result,
obtained while evaluating an expression or execui _
an assignment statement ’
A formal parameter with the aooarent s1gn1f1ca/\\ of
a label or switch is found to represent a s1r ‘A
variable or a value parameter or a constant 1ch

/

is no label ! :

. t

F formal parameter representing a string is [sed ir ‘

an ALGOL-coded act., &)
1

A designator f(...), in which f is a formal | arame}
has no space:-enough for calling the procedure el

represented by parameter f. ,
No space available for obtaining e value of a I
parameter f which me==ecllits eltr ocedure ha
no formal parameters or an expressi\ \\
A formal parameter which, in the cunt&a.,, . si
significance of either an array or a label or-

“or -d-IelT Dart eiément ol an ass. {ent statm

is no function name, is found to . \\iher a f

having no formal parameter, or %p seon di
from a variable. t \\, <

A formal parameter representing
used in the text in an unde81gnc
A formal parameter representlng
that 31gniflcance in the context
Within a bound nalr, the upper bour
value than the lower bound. ‘
No place can be reserved for the f/
arrays of the block which must be €

well as internal) simple variable”
must be executed.

=
B

statement,

positive. .

negative. . - AR SRA AR

\\ o 3.12.2
&) * i i
Table 5A.
s of the inte:preter,vcofreSpending to mistakes.
. ALl Dummy elements in switch list: this case will never
o oceur. | - ' '
81}9135 A formal parameter f, contained in a designator f(f,.)
: . is found to represent anything else than a procedure’
' having formal parameters.
- S10I1. Incorrect use of real variables.
¥\\§11LOE ‘A designator f(...), in which f is a procedure name
o E "thus no formal parameter, has no spaceyenough for
. calling the procedure. | ' _
5}}A " No place available for storing the formal parameter
\ keys of the procedure which must be 1nvoked.
Actual pa

meter list of calling des1gnator contains

“t=~than does formal parameter 1ist of
"_\\
;’to be invoked.

s parameter list of calling designator contains

more elements than does formal parameter 1list of

proced J i e _
,6 A type / been spe01f1ed for a formal parameter
;r /;epr Ing a string.
7t 1, integer or boolean) has been specified
S/

1 narameter representing a label or switch,
ailable for storing the next value array
>dure which must be invoked.
_wsr fhaving no .actual Darameters has no snace
o call the procedure concerned.

	0.00.000
	0.00.001
	0.00.002
	0.00.003
	0.00.01
	0.01.01
	0.02.01
	0.03.01
	0.04.01
	0.05.01
	0.05.02
	0.05.03
	0.06.01
	0.06.02
	0.07.01
	0.08.01
	0.09.01
	0.09.02
	0.10.01
	0.11.01
	0.11.02
	0.12.01
	0.12.02
	0.12.03
	0.12.04
	0.12.05
	0.13.01
	0.13.02
	0.13.03
	0.13.04
	0.14.01
	0.14.02
	0.15.01
	0.15.02
	0.15.03
	0.15.04
	0.15.05
	0.15.06
	0.16.01
	0.16.02
	0.17.01
	0.17.02
	0.17.03
	0.17.04
	0.17.05
	0.17.06
	0.18.01
	0.18.02
	0.18.03
	0.19.01
	0.19.02
	0.19.03
	0.19.04
	0.19.05
	0.20.01
	0.20.02
	0.20.03
	0.20.04
	0.20.05
	0.20.06
	0.21.01
	0.21.02
	0.21.03
	0.21.04
	0.21.05
	0.22.01
	0.22.02
	0.22.03
	0.22.04
	3.00.01
	3.01.01
	3.02.01
	3.03.01
	3.04.01
	3.04.02
	3.05.01
	3.05.02
	3.06.01
	3.06.02
	3.06.03
	3.06.04
	3.07.01
	3.07.02
	3.07.03
	3.07.04
	3.08.01
	3.08.02
	3.08.03
	3.09.01
	3.09.02
	3.10.01
	3.10.03
	3.10.04
	3.12.01
	3.12.02

