Stardent

WINDOW
SYSTEM
TOOLKIT

tttttttttttttttttttt

Change History

340-0035-02 Original (;
340-0112-01 January, 1990

Copyright © 1985, 1986, Massachusetts Institute of Technology

Copyright © 1990 |
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permitted by the
agreement; or (c) used for any purpose not authorized by the agreement.

This document is a derivative work prepared by Stardent Computer Inc. based on pre-existing work of
Massachusetts Institute of Technology (MIT). Nothing in this notice or in the above-mentioned agreement with
Stardent Computer Inc. shall act to limit rights as to the pre-existing work. The pre-existing work of MIT
included the following restrictive legend:

Permission to use, copy, modify and distribute this document (the pre-existing work) for any purpose

and without fee is hereby granted, provided that the above copyright notice (Copyright © 1985, 1986, (
Massachusetts Institute of Technology) appear in all copies, and that the name of Massachusetts -
Institute of Technology not be used in advertising or publicity pertaining to distribution of the

software without specific, written prior periission. Massachusetts Institute of Technology makes no

representations about the suitability of the software described herein for any purpose. It is provided

‘‘as is’” without any express or implied warranty. (Italicized text added.)

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD
Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™ | and Titan™ are trademarks of Stardent Computer Inc.

CONTENTS %

The Window System Toolkit manual contains:

X Toolkit Athena Widgets — C Language Interface

The following Intrinsics man pages:

XtTransC
XtStrCW
XtSetVal
XtSetSns
XtSetKTr
XtSetKFc
XtSetArg
XtRealze
XtQryGeo
XtPrTTab
XtPrATab
XtPpdown
XtPopup
XtOwnSel
XtOffset
XtNmTWd
XtMnChld
XtMkGReq
XtMapWid
XtMalloc
XtGtRLst
XtGetSrs
XtGetSV1
XtDsplyl
XtGetGC
XtDsplay
XtCreWin
XtCreWid
XtCrePSh
XtCrACon

Contents [Release 3.0 preliminary: 10-6]

Window System Toolkit i

XtCnvert
XtCnfWid
XtClass
XtCICbks
XtClAFoc
XtBEMask
XtAppNEv
XtAppGDB
XtAppGTO
XtAppEM
XtAppE
XtAppCSh
XtAppAWP
XtAppATO
XtAppAl
XtAppAC
XtAppAAc
XtAddGrb
XtAddCbk
XtAdETRg
XtAdEHnd

* The following Widgets man pages:

XwArrow
XwBBoard
XwButton
XwCascade
XwCreateTi
XwForm
XwFrame
XwImageEdi
XwlList
XwManager
XwMenuBtn
XwMenuMgr
XwMenuPane
XwMenuSep
XwMoveFocu
XwPButton
XwPanel
XwPopupMgr
XwPrimitiv
XwPulldown
XwRCManage
XwRegister
XwSash

ii Window System Toolkit Contents [Release 3.0 preliminary: 10-6]

XwScrollBa
XwScrollW
XwStaticR
XwStaticT
XwTextEdit
XwTitleBar
XwToggle
XwVPW
XwValuator
XwWorkSpac

Contents [Release 3.0 preliminary: 10-6]

Window System Toolkit iii

ATHENA %
WIDGETS

CHAPTER ONE

Athena Widgets [Release 3.0 preliminary: 10-6] Window System Toolkit 1-1

The X Window System is a trademark of MIT.

Copyright © 1985, 1986, 1987, 1988 Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital
Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of M.L.T. or Digital not be used in in advertising or
publicity pertaining to distribution of the software without specific, written prior permission. M.LT and Digital
makes no representations about the suitability of the software described herein for any purpose. It is provided *‘as
is’” without express or implied warranty.

Table of Contents

ACKNOWISAGIMEIILS ...eeouiieiiiiieeieeie sttt ettt st b eetee et seeseeesaeesaeeraesbaesresbs e s s e besaasshas b iii
Chapter 1 — Athena Widgets and The INtrinsiCs ..c.ccevvevevrieviiiininiiiinn e 1
1.1. Introduction to the X T0OIKit LIDIaryccccecvireiimnieiiiinie e 1
1.2, TEIMINOIOZY cvveeiieeeiitieitie ettt st e s e s st sr e st bae s srae s b s sbaeesant s snn e e saassane s 2
1.3. Underlying MOGELccooiiiviiriirriie e itersree st sttt et srae b b as e 3
1.4. Design Principles and PhilOSOPHYccccccvivvriiiiiiiiniiiiii i 3
Chapter 2 — USINZ WIAZELS ...eiiiiiriieiiiie ettt ettt e s s saas s e 5
2.1, Initializing the TOOLKILccecievieeriecieeeree et sie sttt e e e e s emaes e seneemeeses e cone 5
2.2, CreatiNg @ WIAZEL ...oovvveirieeieiee st st ceee e eie e be ettt e s e se e ses st e sseessseent e eaesaeennesasesas 5
2.4. Realizing @ WIAZEL ..coveriiiiiieeienieie ettt st s b e st b s 7
2.5. Standard Widget Manipulation FUNCHONScccevverieriiiieieciieieiecrere e s 7
2.6. Using the Client Callback INtEIfaCecccceeiiiinieriiiiiiiriinee et s 9
2.7. Programming CONSIAETATIONScceervurrrueerneirieerieerientieee ettt srre s srsesaassns s senesnes 11
Chapter 3 - Athena WIidZEE SELeoviiiiiiiiieeie ettt st e s 15
3.1, Command WIAZELceorviviieerieriieritet ettt ettt ettt et seae s s sn e sresaaesanen 15
3.2, Label WIAZEL .eeiiiiiiieiie ettt ettt st et st et et en e e e e e sene st e a e 20
3.3, TEXL WIAZEL oveeiiiiie ettt ettt et et et st st sb e sab e srae s sabesnaesamseesre e 21
3.4, SCTOIIDAT WIAZEL .vvveevireiiiieeeeiiie ettt ettt st e sttt eesatesssaesaaeeesabes sebeesanaesneas 32
3.5, VIEWPOTE WIAZEL ...evviieiiiiiiiiiire ettt st ettt sebe et ee et e e saees s e sbbnees st e seaesaneesaseennsens 37
3.0, BOX WIAZEL .oveieiiiie ettt st ettt ettt st sh e st et st et et e e et sneeseeenneene 38
3.7, VPANEA WIAZEL ..ovvecvviieeeieeteese ettt et st saeeve e e s te e et e ba e saesssessaesbesnbesnnesueens 39
3.8, FOIM WIAZEL ..vveiiiieieeiiicieie sttt sttt e ettt sttt et st ettt eabesbesareeneenbenaeene 41
3.9, DHAlOZ WIAZEL ..eeiviieiiieieiiiesiie et eee e st st e sttt essteesteesabeesbbeeaeaesbe s sbeesnsesssesnnseesneessrenens 43
310, LISE WIAZET .oevveeeeeieetieiee ettt et sttt et et est s e bt e e et seesban e se e st entesse st anbesbeebesnennene 44
311, GIIP WIAZEL vttt ettt ettt e st sttt eb b et b st e e e e e seesanene 47
3.12. TOZEIE WIAZEL oveeiiie ettt ettt e sre s 48
3.13. Template Widget - Creating A Custom WIAZELccceverereiirenirirnieece e 53

Acknowledgments

The implementation of the Athena Widgets was the responsibility of Ralph Swick, Ron New-
man (Project Athena), and Mark Ackerman (Project Athena). Additional contributions to their
implementation was made by:

Rich Hyde (Digital WSL)

Terry Weissman (Digital WSL)
Mary Larson (Digital UEG)

Joel McCormack (Digital WSL)
Jeanne Rich (Digital WSL)

Charles Haynes (Digital WSL)
Loretta Guarino-Reid (Digital WSL)

The contributors to the X10 toolkit also deserve much of the credit for this work. The Athena

Widgets borrow heavily on the their counterparts in the X10 toolkit. The design and implemen-
tation of the X10 toolkit were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Ram Rao (Digital UEG)

Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to Chris Peterson of Project Athena for testing the many versions
of the code and reviewing this document.

Ralph R. Swick

Digital Equipment Corporation
External Research Group

MIT Project Athena

Chapter 1
Athena Widgets and The Intrinsics

The Athena widget set and the Intrinsics make up the X Toolkit. In the X Toolkit, a widget is
the combination of an X window or subwindow and its associated input and output semantics.
The Athena widgets provide the base functionality necessary to build a wide variety of applica-
tion environments. Because the Intrinsics mask implementation details from the widget and
application programmer, the Athena widgets and the application environments built with them
are fully compatible with the other widget sets built with the Intrinsics. For information about
the Intrinsics, see the X Toolkit Intrinsics — C Language Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib. This layer
extends the basic abstractions provided by X and provides the next layer of functionality pri-
marily by supplying a cohesive set of sample widgets.

To the extent possible, the X Toolkit is policy free. The application environment, not the X
Toolkit, defines, implements, and enforces:

o Policy

. Consistency

. Style

Each individual widget implementation defines its own policy. The X Toolkit design allows for

but does not necessarily encourage the free mixing of radically differing widget implementa-
tions.

1.1. Introduction to the X Toolkit Library

The X Toolkit library provides tools that simplify the design of application user interfaces in the
X Window System programming environment. It assists application programmers by providing
a set of common underlying user-interface functions. It also lets wid get programmers modify
existing widgets or add new widgets. By using the X Toolkit library in their applications, pro-
grammers present a similar user interface across applications to all workstation users.

The X Toolkit consists of:

. A set of Intrinsics functions for building widgets
* An architectural model for constructing widgets
e A sample interface (widget set) for programming

While the majority of the Intrinsics functions are intended for the widget programmer, a subset
of the Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics —
C Language Interface). The architectural model lets the widget programmer design new wid-
gets by using the Intrinsics and by combining other widgets. The application interface layers
built on top of the X Toolkit include a coordinated set of widgets and composition policies.
Some of these widgets and policies are specific to an application domain, and others are com-
mon across a number of application domains.

The X Toolkit also can implement one or more application interface layers to:
. Verify the toolkit architecture

. Provide a base set of widgets and composition policies that can be incorporated in other
application interface layers

. Make the X Toolkit immediately usable by those application programmers who find that a
supplied application interface layer meets their needs

X Toolkit Athena Widgets X11, Release 3

The remainder of this chapter discusses the X Toolkit:
o Terminology

° Model

° Design principles and philosophy

1.2. Terminology

In addition to the terms already defined for X programming (see Xlib — C Language X Inter-
face), the following terms are specific to the Intrinsics and used throughout this book.

Application programmer
A programmer who uses the X Toolkit to produce an application user interface.

Child '
A widget that is contained within another ("parent") widget.

Class
The general group to which a specific object belongs.

Client
A function that uses a widget in an application or for composing other widgets.

Full name
The name of a widget instance appended to the full name of its parent.

Instance
A specific widget object as opposed to a general widget class.

Method
The functions or procedures that a widget class implements.

Name
The name that is specific to an instance of a widget for a given client.

Object
A software data abstraction consisting of private data and private and public functions that
operate on the private data. Users of the abstraction can interact with the object only
through calls to the object’s public functions. In the X Toolkit, some of the object’s pub-
lic functions are called directly by the application, while others are called indirectly when
the application calls the common Intrinsics functions. In general, if a function is common
to all widgets, an application uses a single Intrinsics function to invoke the function for all

types of widgets. If a function is unique to a single widget type, the widget exports the
function as another ‘‘Xt’’ function.

Parent

A widget that contains at least one other ("child") widget. A parent widget is also known
as a composite widget.

Resource

A named piece of data in a widget that can be set by a client, by an application, or by user
defaults.

Superclass

A larger class of which a specific class is a member. All members of a class are also
members of the superclass.

User
A person interacting with a workstation.

X Toolkit Athena Widgets X11, Release 3

Widget
An object providing a user-interface abstraction (for example, a Scrollbar widget).
Widget class

The general group to which a specific widget belongs, otherwise known as the type of the
widget.

Widget programmer
A programmer who adds new widgets to the X Toolkit.

1.3. Underlying Model
The underlying architectural model is based on the following premises:
Widgets are X windows

Every user-interface widget is contained in a unique X window. The X window ID for a
widget is readily available from the widget ID, so standard Xlib window manipulation
procedures can operate on widgets.

Information hiding

The data for every widget is private to the widget and its subclasses. That is, the data is
neither directly accessible nor visible outside of the module implementing the widget. All
program interaction with the widget is performed by a set of operations (methods) that are
defined for the widget.

Widget semantics and widget layout geometry

Widget semantics are clearly separated from widget layout geometry. Widgets are
concerned with implementing specific user-interface semantics. They have little control
over issues such as their size or placement relative to other widget peers. Mechanisms are
provided for associating geometric managers with widgets and for widgets to make
suggestions about their own geometry.

1.4. Design Principles and Philosophy

The X Toolkit follows two design principles throughout, which cover languages and language
bindings as well as widget IDs.

1.4.1. Languages and Language Bindings

The X Toolkit facilitates access from objective languages. However, the X Toolkit library is
conveniently usable by application programs written in nonobjective languages. Procedural
interface guidelines are required when the X Toolkit is used with nonobjective languages.

The guidelines for the procedural interfaces are:
e Strings are passed as null-terminated character arrays.

. Most other arrays are passed using two parameters: a size and a pointer to the first ele-
ment.

. Most numeric arguments are passed by value.

o Structures as arguments are avoided, unless a method for building them is provided for
languages without pointers. Pointers embedded in structures are allowed, but they should
be avoided if an equivalent alternative is available.

. Pointers are not recommended as return arguments, unless they will never have to be
dereferenced by the caller. If they need to be dereferenced, the caller should allocate
storage and pass the address to the procedure to fill in.

N Procedures can be passed as parameters.

° The ownership of dynamically allocated storage is determined on a case-by-case basis.
The application is also permitted to replace the standard memory allocation and freeing

X Toolkit Athena Widgets X11, Release 3

routines used by the library at build time.

1.4.2. Widget IDs

All references to widgets use a unique identifier that is known as the widget ID. The widget ID
is returned to the client by the XtCreateWidget function. From an application programmer’s
perspective, a widget ID is an opaque data type; no particular interpretation can be assigned to
it. Given a widget ID, you can retrieve the corresponding X window ID, the Display and
Screen structures, and other information by using Intrinsics functions.

From a widget programmer’s perspective, the widget ID actually is a pointer to a data structure
known as the widget instance record. Several parts of the data structure are common to all wid-
get types, while other parts are unique to a particular widget type. The widget’s private data
that is associated with a particular widget instance normally is included directly in the widget
instance record.

X Toolkit Athena Widgets X11, Release 3

Chapter 2
Using Widgets

Widgets serve as the primary tools for building a user interface or application environment. The
widget set consists of primitive widgets (for example, a command button) and composite wid-
gets (for example, a Dialog widget).

The remaining chapters of this guide explain the widgets and the geometry managers that work
together to provide a set of user-interface components. These user-interface components serve
as a default interface for application programmers who do not want to implement their own wid-
gets. In addition, they serve as examples or a starting point for those widget programmers who,
using the Intrinsics mechanisms, want to implement alternative application programming inter-
faces.

This chapter discusses the common features of the X Toolkit widgets.

2.1. Initializing the Toolkit

You must invoke the toolkit initialization function XtInitialize before invoking any other
toolkit routines. XtInitialize opens the X server connection, parses standard parts of the com-
mand line, and creates an initial widget that is to serve as the root of a tree of widgets that will
be created by this application.

Widget XtInitialize(shell - name, application_class, options, num_options, argc, argv)
String shell_name,
String application_class,
XrmOptionDescRec options(];
Cardinal num_options;
Cardinal *argc;
String argv[l;
shell_name Specifies the name of the application shell widget instance, which usually is
something generic like ‘‘main’’.

application_class
Specifies the class name of this application, which usually is the generic name
for all instances of this application. By convention, the class name is formed by
reversing the case of the application’s first significant letter. For example, an
application named ‘‘xterm’’ would have a class name of ‘‘XTerm’’.

options Specifies how to parse the command line for any application-specific resources.
The options argument is passed as a parameter to XrmParseCommand. For
further information, see XIib — C Language X Interface.

num_options Specifies the number of entries in the options list.

argce Specifies a pointer to the number of command line parameters.
argv Specifies the command line parameters.

For further information about this function, see the Intrinsics.

2.2. Creating a Widget

Creating a widget is a three-step process. First, the widget instance is allocated, and various
instance-specific attributes are set by using XtCreateWidget. Second, the widget’s parent is
informed of the new child by using XtManageChild. Finally, X windows are created for the
parent and all its children by using XtRealizeWidget and specifying the top-most widget. The

X Toolkit Athena Widgets X11, Release 3

first two steps can be combined by using XtCreateManagedWidget. In addition, XtReal-
izeWidget is automatically called when the child becomes managed if the parent is already real-
ized.

To allocate and initialize a widget, use XtCreateWidget.

Widget XtCreateWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent,
ArgList args;
Cardinal num_args;,
name Specifies the instance name for the created widget that is used for retrieving
widget resources.
widget_class Specifies the widget class pointer for the created widget.
parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-length list composed
of name and value pairs that contain information pertaining to the specific wid-
get instance being created. For further information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. When the num_args is
zero, the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is returned to the applica-
tion. If an error is encountered, the XtError routine is invoked to inform the user of the error.

For further information, see the Intrinsics.

2.3. Common Arguments in the Widget Argument List

Although a widget can have unique arguments that it understands, all widgets have common
arguments that provide some regularity of operation. The common arguments allow arbitrary
widgets to be managed by higher-level components without regards to the individual widget
type. All widgets ignore any argument that they do not understand.

The following resources are retrieved from the argument list or from the resource database by
all X Toolkit widgets:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of the border in pixels
XtNdestroyCallback XtCallbackList NULL Callback for XtDestroyWidget
XtNheight Dimension Widget dependent Height of the widget
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True ‘Whether widget should receive input
XtNtranslations TranslationTable None Event-to-action translations
XtNwidth Dimension Widget dependent Width of the widget

XtNx Position 0 x coordinate within parent

XtNy Position 0 y coordinate within parent

The following additional resources are retrieved from the argument list or from the resource
database by many X Toolkit widgets:

Name Type Default Description

XtNcallback XtCallbackList NULL Callback functions and client data

(

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description
XtNcursor Cursor None Pointer cursor
XtNforeground Pixel XtDefaultForeground Foreground color

The value for the XtNcursor resource can be specified in the resource database as a string,
which can be specified as one of the following:

. A standard X cursor name from <X11/cursorfont.h>
. FONT font-name glyph-index [[font-name] glyph-index]
. A relative or absolute file name

The first font and glyph specify the cursor source pixmap. The second font and glyph specify
the cursor mask pixmap. The mask font defaults to the source font, and the mask glyph index
defaults to the source glyph index.

If a relative or absolute file name is specified, that file is used to create the source pixmap.
Then the string "Mask" is appended to locate the cursor mask pixmap. If the "Mask" file does
not exist, the suffix "msk" is tried. If "msk" fails, no cursor mask will be used. If a relative file
name is used, the directory specified by the resource name bitmapFilePath or class Bitmap-
FilePath is added to the beginning of the file name. If the bitmapFilePath resource is not
defined, the default directory on a UNIX-based system is /usr/include/X11/bitmaps.

2.4. Realizing a Widget
The XtRealizeWidget function performs two tasks:

. Creates an X window for the widget and, if it is a composite widget, for each of its
managed children.

o Maps each window onto the screen.
void XtRealizeWidget(w)
Widget w;
w Specifies the widget.
For further information about this function, see the X Toolkit Intrinsics — C Language Interface.

2.5. Standard Widget Manipulation Functions

After a widget has been created, a client can interact with that widget by calling either of the
following:

o One of the standard widget manipulation routines that provide functions that all widgets
support

. A widget class-specific manipulation routine

The X Toolkit provides generic routines to provide the application programmer access to a set
of standard widget functions. These routines let an application or composite widget manipulate

widgets without requiring explicit knowledge of the widget type. The standard widget manipu-
lation functions let you:

. Control the location, size and mapping of widget windows
o Destroy a widget instance

o Obtain an argument value

* Set an argument value

X Toolkit Athena Widgets X11, Release 3

2.5.1. Mapping Widgets

By default, widget windows automatically are mapped (made viewable) by XtRealizeWidget.
This behavior can be changed by using XtSetMapped WhenManaged, and it then is the
client’s responsibility to use the XtMapWidget function to make the widget viewable.
void XtSetMapped WhenManaged(w, map_when_managed)

Widget w;

Boolean map_when_managed,

w Specifies the widget.

map_when_managed
Specifies the new value. If map_when_managed is True, the widget is mapped
automatically when it is realized. If map_when_managed is False, the client
must call XtMapWidget or make a second call to XtSetMappedWhen-
Managed to cause the child window to be mapped.

The definition for XtMapWidget is:
XtMapWidget(w)

Widget w;
w Specifies the widget.

When you create several children in sequence for a common parent after it has been realized, it
is generally more efficient to construct a list of children as they are created and use
XtManageChildren to inform their parent of them all at once, instead of causing each child to
be managed separately. By managing a list of children at one time, the parent can avoid waste-
ful duplication of geometry processing and the associated "screen flash".

void XtManageChildren(children, num_children)
WidgetList children;
Cardinal num_children;
children Specifies a list of children to add.
num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that
the minimum amount of visible window reconfiguration is performed.

For further information about these functions, see the Intrinsics.

2.5.2. Destroying Widgets
To destroy a widget instance of any type, use XtDestroyWidget.
void XtDestroyWidget(w)
Widget w;
w Specifies the widget.

XtDestroyWidget destroys the widget and recursively destroys any children that it may have,
including the windows created by its children. After calling XtDestroyWidget, no further
references should be made to the widget or to the widget IDs of any children that the destroyed
widget may have had.

X Toolkit Athena Widgets X11, Release 3

2.5.3. Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instance, use
XtGetValues.

void XtGetValues(w, args, num_args)

Widget w;
ArglList args;
Cardinal num_args;
w Specifies the widget.
args Specifies a variable-length argument list of name and address pairs that contain

the resource name and the address into which the resource value is stored.
num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that
the caller is responsible for allocating space into which the returned resource value is copied;
the ArgList contains a pointer to this storage. The caller must allocate storage of the type as
represented in the widget. For example, x and y must be allocated as Position and so on. For
further information, see the X Toolkit Intrinsics — C Language Interface.

2.5.4. Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget instance, use
XtSetValues.

void XtSetValues(w, args, num_args)
Widget w;
Arglist args;
Cardinal num_args;

w Specifies the widget.

args Specifies a variable-length argument list of name and value pairs that contain
the arguments to be modified and their new values.

num_args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list depend on the widget being modified.
Some widgets may not allow certain resources to be modified after the widget instance has been
created or realized. No notification is given if any part of a XtSetValues request is ignored.

For further information about these functions, see the Intrinsics.

Note

The argument list entry for XtGetValues specifies the address to which the caller
wants the value copied. The argument list entry for XtSetValues, however, con-
tains the new value itself if the size of value is less than sizeof(XtArgVal) (architec-
ture dependent, but at least sizeof(long)); otherwise, it is a pointer to the value.
String resources are always passed as pointers, regardless of the length of the string.

2.6. Using the Client Callback Interface

Widgets communicate changes in their state to their clients by means of a callback facility. The
format for a client’s callback handler is:

X Toolkit Athena Widgets X11, Release 3

void CallbackProc(w, client_data, call_data)
Widget w;
caddr_t client_data,
caddr_t call data;

w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should pass back to the
client when the widget executes the client’s callback procedure. This is a way
for the client registering the callback to also register client-specific data: a
pointer to additional information about the widget, a reason for invoking the
callback, and so on. It is perfectly normal to have client_data of NULL if all
necessary information is in the widget. This field is also frequently known as
the closure.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its jumpProc callback list, it passes the
current position of the thumb in the call_data argument.

Callbacks can be registered with widgets in one of two ways. When the widget is created, a
pointer to a list of callback procedure and data pairs can be passed in the argument list to
XtCreateWidget. The list is of type XtCallbackList:

typedef struct {
XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling XtCreateWidget. The end of
the list is identified by an entry containing NULL in callback and closure. Once the widget is
created, the client can change or de-allocate this list; The widget itself makes no further refer-
ence to it. The closure field contains the client_data passed to the callback when the callback
list is executed.

The second method for registering callbacks is to use XtAddCallback after the widget has been
created.

void XtAddCallback(w, callback_name, callback, client_data)

Widget w;

String callback_name;

XtCallbackProc callback;

caddr_t client_data;
w Specifies the widget to add the callback to.
callback_name Specifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is invoked.
XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named XtNdestroyCallback where clients can register pro-
cedures that are to be executed when the widget is destroyed. The destroy callbacks are exe-
cuted when the widget or an ancestor is destroyed. The call_data argument is unused for des-
troy callbacks. : : : '

The X Toolkit Intrinsics provide additional functions for further manipulating a callback list.
For information about these functions, see XtCallCallbacks, XtRemoveCallback,

10

X Toolkit Athena Widgets X11, Release 3

XtRemoveCallbacks, and XtRemoveAllCallbacks in the X Toolkit Intrinsics — C Language
Interface.

2.7. Programming Considerations

This section provides some guidelines to set up an application program that uses the X Toolkit.
This section discusses:

* Writing applications
. Creating argument lists

2.7.1. Writing Applications

When writing an application that uses the toolkit, you should make sure that your application
performs the following:

1. Include <X11/Intrinsic.h> in your application programs. This header file automatically
includes <X11/Xlib.h>, so all Xlib functions also are defined.

2. Include the widget-specific header files for each widget type that you need to use. For
example, <X11/Label.h> and <X11/Command.h>.

3. Call the XtInitialize function before invoking any other toolkit or Xlib functions. For
further information, see Section 2.1 and the X Toolkit Intrinsics — C Language Interface.

4. To pass attributes to the widget creation routines that will over-ride any site or user cus-
tomizations, set up argument lists. In this document, a list of valid argument names that
start with XtN is provided in the discussion of each widget.

For further information, see Section 2.7.2.

5. When the argument list is set up, create the widget by using the XtCreateWidget func-
tion. For further information, see Section 2.2 and the X Toolkit Intrinsics — C Language
Interface.

6. If the widget has any callback routines, which are usually defined by the XtNcallback
argument or the XtAddCallback function, declare these routines within the application.

7. After a widget has been created, use XtManageChild to manage it. If there is no mani-
pulation of the widget between XtCreateWidget and XtManageChild, you can do this
in a single step by using XtCreateManagedWidget. For further information about these
functions, see the Intrinsics.

8. After creating the initial widget hierarchy, windows must be created for each widget by
calling XtRealizeWidget on the top level widget.

9. Most applications now sit in a loop processing events using XtMainLoop, for example:

XtCreateManagedWidget(name, class, parent, args, num_args);
XtRealizeWidget(parent);
XtMainLoop();

For information about this function, see the X Toolkit Intrinsics — C Language Interface.

10. Link your application with libXaw.a (the Athena widgets), libXmu.a (miscellaneous
utilities), libXt.a (the X Toolkit Intrinsics), and libX11.a (the core X library). The fol-
lowing provides a sample command line:

cc -0 application application.c —-1Xaw —1Xmu —1Xt -1X11

11

X Toolkit Athena Widgets X11, Release 3

2.7.2. Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you can use one of
the four approaches discussed in this section. You should use whichever approach fits the needs
of the application and you are most comfortable with, In general, argument lists should be kept
as short as possible to allow widget attributes to be specified through the resource database.
Whenever a client inserts a specific attribute value in an argument list, the user is prevented
from customizing the behavior of the widget. Resource names in the resource database, by con-
vention, correspond to their symbolic names that are used in argument list without the XtN
prefix. For example, the resource name for XtNforeground is ‘‘foreground’’. For further
information, see the Intrinsics. '

The Arg structure contains:

typedef struct {
String name;
XtArgVal value;
} Arg, *ArgList;

The first approach lets you statically initialize the argument list. For example:
static Arg arglist[] = { ,
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) 300},
b
This approach makes it easy to add or delete new elements. The XtNumber macro can be used

to compute the number of elements in the argument list, thus preventing simple programming
errors. The following provides an example:

XtCreateWidget(name, class, parent, arglist, XtNumber(arglist));

The second approach lets you use the XtSetArg macro. For example:
Arg arglist[10];

XtSetArg(arglist[1], XtNwidth, 400);

XtSetArg(arglist[2], XtNheight, 300);

To make it easier to insert and delete entries, you also can use a variable index, as in this exam-
ple:

Arg arglist[10];

Cardinal i=0;

XtSetArg(arglist[i], XtNwidth, 400); i++;

XtSetArg(arglist[i], XtNheight, 300); i++;

The i variable can then be used as the argument list count in the widget create function. In this
example, XtNumber would return 10, not 2, and therefore is not useful.
Note

You should not use auto-increment or auto-decrement within the first argument to
XtSetArg. As it is currently implemented, XtSetArg is a macro that dereferences
the first argument twice.

The third approach lets you individually set the elements of the argument list array, one piece at
a time. For example:

12

(\,

X Toolkit Athena Widgets X11, Release 3

Arg arglist[10];

arglist[0].name = XtNwidth;
arglist[0].value = (XtArgVal) 400;
arglist[1].name = XtNheight;
arglist[1].value = (XtArgVal) 300;

Note that in this example, as in the previous example, XtNumber would return 10, not 2, and
therefore is not useful.

The fourth approach lets you use a mixture of the first and third approaches: you can statically
define the argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
{XtNwidth, (XtArgVal) 400},
{XtNheight, (XtArgVal) NULL},
b
arglist[1].value = (XtArgVal) 300;

In this example, XtNumber can be used, as in the first approach, for easier code maintenance.

2.7.3. Sample Program

The following program creates one command button that, when pressed, causes the program to
exit. This example is a complete program that illustrates:

. Toolkit initialization

. Optional command-line arguments
. Widget creation

. Callback routines

13

X Toolkit Athena Widgets X11, Release 3

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/Command.h>

static XrmOptionDescRec options[] = {
{"~label", "*button.label", XrmoptionSepArg, NULL}

b
Syntax(call)
char *call;
{
fprintf(stderr, "Usage: %s\n", call);
}
void Activate(w, client_data, call_data)
Widget w;
caddr_t client_data; /* unused */
caddr_t call_data; /* unused */
{
printf("button was activated.\n");
exit(0);
}

void main(argc, argv)
unsigned int argc;
char **argv;

Widget toplevel;
static XtCallbackRec callbacks[] = {
{ Activate, NULL },
{ NULL, NULL },
b
static Arg args[] = {
{ XtNcallback, (XtArgVal)callbacks },
b

toplevel = XtInitialize("main", "Demo", options, XtNumber(options), &argc, argv);
if (argc != 1) Syntax(argv[0]);

XtCreateManagedWidget("button",commandWidgetClass,toplevel,args, X tNumber(args));

XtRealizeWidget(toplevel);
XtMainLoop();

14

—

X Toolkit Athena Widgets

Chapter 3

Athena Widget Set

This chapter describes the following Athena widgets:

e Command
° Label
. Text

° Scrollbar
o Viewport

L Box

. VPaned
e Form

. Dialog
. List

° Grip

. Toggle

3.1. Command Widget

X11, Release 3

The Command widget is a rectangular button that contains a text or pixmap label. When the
pointer cursor is on the button, the button border is highlighted to indicate that the button is
available for selection. Then, when a pointer button is pressed and released the button is
selected, and the application’s callback routine is invoked.

The class variable for the Command widget is commandWidgetClass.

When creating a Command widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbitmap Pixmap None Pixmap to display in place of the label
XtNborderColor Pixel XtDefaultForeground =~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of button border

XtNcallback XtCallbackList NULL Callback for button select

XtNcursor Cursor None Pointer cursor

XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Label font

XtNforeground Pixel XtDefaultForeground Foreground color

XtNheight Dimension Text height Button height

XtNhighlightThickness Dimension 2 Width of border to be highlighted
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 Internal border height for highlighting
XtNinternalWidth

15

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Dimension

16

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Internal border width for highlighting

17

X Toolkit Athena Widgets

X11, Release 3

Name Type Default Description

XtNjustify Xtlustify XtlustifyCenter Type of text alignment

XtNlabel String Button name Button label
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNresize Boolean True Whether to auto-resize in SetValues
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable see below Event-to-action translations
XtNwidth Dimension Text width Button width

XtNx Position 0 x coordinate

XtNy Position 0 y coordinate

The new resources associated with the Command widget are:

XtNbitmap

XtNheight

XtNinternalHeight

XtNinternal Width

XtNjustify

XtNlabel

XtNresize

XtNsensitive

XtNwidth

Specifies a bitmap to display in place of the text label. See the
description of this resource in the Label widget for further
details.

Specifies the height of the Command widget. The default value
is the minimum height that will contain:

XtNinternalheight + height of XtNlabel + XtNinternalHeight

If the specified height is larger than the minimum, the label
string is centered vertically.

Represents the distance in pixels between the top and bottom of
the label text or bitmap and the horizontal edges of the Com-
mand widget. HighlightThickness can be larger or smaller than
this value.

Represents the distance in pixels between the ends of the label
text or bitmap and the vertical edges of the Command widget.
HighlightThickness can be larger or smaller than this value.

Specifies left, center, or right alignment of the label string
within the Command widget. If it is specified within an
ArgList, one of the values XtJustifyLeft, XtJustifyCenter, or
XtJustifyRight can be specified. In a resource of type
“‘string’’, one of the values ‘‘left’’, ‘‘center’’, or ‘‘right’’ can be
specified.

Specifies the text string that is to be displayed in the Command
widget if no bitmap is specified. The default is the widget
name of the Command widget.

Specifies whether the Command widget should attempt to resize
to its preferred dimensions whenever XtSetValues is called for
it. The default is True.

If set to False, the Command widget will change its window
border to XtNinsensitiveBorder and will stipple the label
string.

Specifies the width of the Command widget. The default value

18

X Toolkit Athena Widgets X11, Release 3

is the minimum width that will contain:

XtNinternalWidth + width of XtNlabel + XtNinternal Width

If the width is larger or smaller than the minimum, XtNjustify
determines how the label string is aligned.

The Command widget supports the following actions:
® Switching the button between the foreground and background colors with set and unset

° Processing application callbacks with notify
® Switching the internal border between highlighted and unhighlighted states with highlight

and unhighlight
The following are the default translation bindings that are used by the Command widget:
<EnterWindow>: highlight()
<LeaveWindow>: reset()
<Btn1Down>: set()
<Btn1Up>: notify() unset()

With these bindings, the user can cancel the action before releasing the button by moving the
pointer out of the Command widget.

3.1.1. Command Actions
The full list of actions supported by Command is:

highlight(condition) Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that contrasts with the interior color of the Command
widget. This action procedure takes one of the following conditions:
WhenUnset and Always. If no argument is passed then WhenUnset is
assumed, this maintains backwards compatibility.

unhighlight() Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that matches the interior color of the Command wid-
get.

set() Enters the "set" state, in which notify is possible and displays the inte-

rior of the button in the XtNforeground color. The label is displayed
in the XtNbackground color.

unset() Cancels the "set" state and displays the interior of the button in the
XtNbackground color. The label is displayed in the XtNforeground
color.

reset() Cancels any set or highlight and displays the interior of the button in

the XtNbackground color, with the label displayed in the XtNfore-
ground color.

notify() Executes the XtNcallback callback list if executed in the set state. The
value of the call_data argument is undefined.

To create a Command widget instance, use XtCreateWidget and specify the class variable
commandWidgetClass.

To destroy a Command widget instance, use XtDestroyWidget and specify the widget ID of
the button.

The Command widget supports two callback lists: XtNdestroyCallback and XtNcallback.
The notify action executes the callbacks on the XtNcallback list. The call_data argument is
unused.

19

X Toolkit Athena Widgets

3.2. Label Widget

X11, Release 3

A Label is an noneditable text string or pixmap that is displayed within a window. The string is
limited to one line and can be aligned to the left, right, or center of its window. A Label can
neither be selected nor directly edited by the user.

The class variable for the Label widget is labelWidgetClass.

When creating a Label widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbitmap Pixmap None Pixmap to display in place of the label
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Border width in pixels

XtNcursor Cursor None Pointer cursor

XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Label font

XtNforeground Pixel XtDefaultForeground Foreground color

XtNheight Dimension text height Height of widget
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 See note

XtNinternalWidth Dimension 4 See note

XtNjustify XtJustify XtJustifyCenter Type of text alignment

XtNlabel String label name String to be displayed
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNresize Boolean True Whether to auto-resize in SetValues
XtNsensitive Boolean True Whether widget receives input
XtNwidth Dimension text width Width of widget

XtNx Position 0 x coordinate in pixels

XtNy Position 0 y coordinate in pixels

The new resources associated with Label are:

XtNbitmap

XtNheight

Specifies a bitmap to display in place of the text label. The bit-
map can be specified as a string in the resource data base. The
StringToPixmap converter will interpret the string as the name
of a file in the bitmap utility format that is to be loaded into a
pixmap. The string can be an absolute or a relative file name.
If a relative file name is used, the directory specified by the
resource name bitmapFilePath or the resource class Bitmap-
FilePath is add to the beginning of the specified file name. If
the bitmapFilePath resource is not defined, the default direc-
tory on a UNIX-based system is /usr/include/X11/bitmaps.

Specifies the height of the Label widget. The default value is
the minimum height that will contain;

XtNinternalheight + height of XtNlabel + XtNinternalHeight
If the specified height is larger than the minimum, the label
string is centered vertically.

20

X Toolkit Athena Widgets X11, Release 3

XtNinternalHeight Represents the distance in pixels between the top and bottom of
the label text or bitmap and the horizontal edges of the Label
widget.

XtNinternalWidth Represents the distance in pixels between the ends of the label

text or bitmap and the vertical edges of the Label widget.

XtNjustify Specifies left, center, or right alignment of the label string
within the Label widget. If it is specified within an ArgList,
one of the values XtJustifyLeft, XtJustifyCenter, or XtJus-
tifyRight can be specified. In a resource of type ‘‘string’’, one
of the values “‘left’’, “‘center’’, or ‘‘right’’ can be specified.

XtNlabel Specifies the text string that is to be displayed in the button if
no bitmap is specified. The default is the widget name of the
Label widget.

XtNresize Specifies whether the Label widget should attempt to resize to

its preferred dimensions whenever XtSetValues is called for it.

XtNsensitive If set to False, the Label widget will change its window border
to XtNinsensitiveBorder and will stipple the label string.

XtNwidth Specifies the width of the Label widget. The default value is
the minimum width that will contain:
XtNinternal Width + width of XtNlabel + XtNinternal Width
If the width is larger or smaller than the minimum, XtNjustify
determines how the label string is aligned.

To create a Label widget instance, use XtCreateWidget and specify the class variable
labelWidgetClass.

To destroy a Label widget instance, use XtDestroyWidget and specify the widget ID of the
label.

The Label widget supports only the XtNdestroyCallback callback list.

3.3. Text Widget

A Text widget is a window that provides a way for an application to display one or more lines
of text. The displayed text can reside in a file on disk or in a string in memory. An option also
lets an application display a vertical Scrollbar in the Text window, letting the user scroll
through the displayed text. Other options allow an application to let the user modify the text in
the window.

The Text widget is divided into three parts:

e Source

° Sink

. Text widget

The idea is to separate the storage of the text (source) from the painting of the text (sink). The
Text widget coordinates the sources and sinks. Clients usually will use AsciiText widgets that
automatically create the source and sink for the client. A client can, if it so chooses, explicitly
create the source and sink before creating the Text widget.

21

X Toolkit Athena Widgets X11, Release 3

The source stores and manipulates the text. The X Toolkit provides string and disk file sources.
The source determines what editing functions may be performed on the text.

The sink obtains the fonts and the colors in which to paint the text. The sink also computes
what text can fit on each line. The X Toolkit provides a single-font, single-color ASCII sink.

If a disk file is used to display the text, two edit modes are available:

. Append

o Read-only

Append mode lets the user enter text into the window, while read-only mode does not. Text
may only be entered if the insertion point is after the last character in the window.

If a string in memory is used, the application must allocate the amount of space needed. If a
string in memory is used to display text, three types of edit mode are available:

o Append-only

. Read-only

. Editable

The first two modes are the same as displaying text from a disk file. Editable mode lets the user
place the cursor anywhere in the text and modify the text at that position. The text cursor posi-
tion can be modified by using the key strokes or pointer buttons defined by the event bindings.
Many standard keyboard editing facilities are supported by the event bindings. The following
actions are supported:

Cursor Movement Delete
forward-character
backward-character
forward-word
backward-word
forward-paragraph

delete-next-character
delete-previous-character
delete-next-word
delete-previous-word
delete-selection

backward-paragraph

beginning-of-line

end-of-line Selection

next-line select-word
previous-line select-all
next-page select-start

previous-page
beginning-of-file
end-of-file
scroll-one-line-up
scroll-one-line-down

New Line

newline-and-indent

select-adjust
select-end
extend-start
extend-adjust
extend-end

Miscellaneous

redraw-display

newline-and-backup insert-file
newline insert-char
insert-string
do-nothing
Kill Unkill
kill-word unkill
backward-kill-word stuff

22

X Toolkit Athena Widgets X11, Release 3

kill-selection insert-selection
kill-to-end-of-line
kill-to-end-of-paragraph

Note

1. A page corresponds to the size of the Text window. For example, if the Text win-
dow is 50 lines in length, scrolling forward one page is the same as scrolling for-
ward 50 lines.

2. The insert-char action may only be attached to a key event. It calls XLookup-
String to translate the event into a (rebindable) Latin-1 character (sequence) and
inserts that sequence into the text at the current position. The insert-string action
takes one or more arguments and inserts the arguments into the text at the current
position. An argument beginning with the characters "0x" and containing only
valid hexadecimal digits in the remainder is interpreted as a hexadecimal constant
and the corresponding single character is inserted instead.

3. The delete action deletes a text item. The Kill action deletes a text item and puts
the item in the kill buffer (X cut buffer 1).

4. The unkill action inserts the contents of the kill buffer into the text at the current
position. The stuff action inserts the contents of the paste buffer (X cut buffer 0)
into the text at the current position. The insert-selection action retrieves the value

of a specified X selection or cut buffer, with fall-back to alternative selections or cut
buffers.

The default event bindings for the Text widget are:
char defaultTextTranslations[] = ‘\

Ctrl<Key>F: forward-character() \n\
Ctrl<Key>B: backward-character() \n\
Ctrl<Key>D: delete-next-character() \n\
Crl<Key>A: beginning-of-line() \n\
Ctrl<Key>E: end-of-line() \n\
Ctrl<Key>H: delete-previous-character() \n\
Ctrl<Key>J: newline-and-indent() \n\
Curl<Key>K: kill-to-end-of-line() \n\
Cul<Key>L: redraw-display() \n\
Cul<Key>M: newline() \n\
Ctrl<Key>N: next-line() \n\
Ctrl<Key>0: newline-and-backup() \n\
Ctrl<Key>P: previous-line() \n\
Ctrl<Key>V: next-page() \n\
Ctri<Key>W: kill-selection() \n\
Ctrl<Key>Y: unkill() \n\

Cul<Key>Z: scroll-one-line-up() \n\
Meta<Key>F: forward-word() \n\
Meta<Key>B: backward-word() \n\
Meta<Key>I: insert-file() \n\
Meta<Key>K: kill-to-end-of-paragraph() \m\
Meta<Key>V: previous-page() \n\
Meta<Key>Y: stuff() \n\

23

X Toolkit Athena Widgets X11, Release 3

Meta<Key>Z.: scroll-one-line-down() \n\
:Meta<Key>d: delete-next-word() \n\
:Meta<Key>D: kill-word() \n\
‘Meta<Key>h: delete-previous-word() \n\
‘Meta<Key>H: backward-kill-word() \n\
‘Meta<Key>\<: beginning-of-file() \n\
:Meta<Key>\>: end-of-file() \n\
:Meta<Key>]: forward-paragraph() \n\
‘Meta<Key>[: backward-paragraph() \n\
~Shift Meta<Key>Delete: delete-previous-word() \n\

Shift Meta<Key>Delete:

~Shift Meta<Key>Backspace:

Shift Meta<Key>Backspace:
<Key>Right:

backward-kill-word() \n\
delete-previous-word() \n\
backward-kill-word() \n\
forward-character() \n\

<Key>Left: backward-character() \n\

<Key>Down: next-line() \n\

<Key>Up: previous-line() \n\

<Key>Delete: delete-previous-character() \n\
<Key>BackSpace: delete-previous-character() \n\
<Key>Linefeed: newline-and-indent() \n\

<Key>Retumn: newline() \n\

<Key>: insert-char() \n\

<FocusIn>: focus-in() \n\

<FocusOut>: focus-out() \n\

<Btnl1Down>; select-start() \n\

<Btn1Motion>: extend-adjust() \n\

<Btn1Up>: extend-end(PRIMARY, CUT_BUFFERO) \n\
<Btn2Down>: insert-selection(PRIMARY, CUT_BUFFERO) \n\
<Btn3Down>: extend-start() \n\

<Btn3Motion>: extend-adjust() \n\

<Btn3Up>: extend-end(PRIMARY, CUT_BUFFEROQO) \

A user-supplied resource entry can use application-specific bindings, a subset of the supplied
default bindings, or both. The following is an example of a user-supplied resource entry that
uses a subset of the default bindings:

Xmh*Text. Translations: \

<Key>Right: forward-character() \n\
<Key>Left: backward-character() \n\
Meta<Key>F: forward-word() \n\
Meta<Key>B: backward-word() \n\
:Meta<Key>]: forward-paragraph() \n\
:Meta<Key>[: backward-paragraph() \n\
<Key>: insert-char()

An augmented binding that is useful with the xclipboard utility is:

*Text. Translations: #override \

Button1 <Btn2Down>: extend-end(CLIPBOARD)

A Text widget lets both the user and the application take control of the text being displayed.
The user takes control with the scroll bar or with key strokes defined by the event bindings.
The scroll bar option places the scroll bar on the left side of the widget and can be used with

24

X Toolkit Athena Widgets

X11, Release 3

any editing mode. The application takes control with procedure calls to the Text widget to:

° Display text at a specified position

. Highlight specified text areas

o Replace specified text areas

The text that is selected within a Text widget may be assigned to an X selection or copied into a
cut buffer and can be retrieved by the application with the Intrinsics XtGetSelectionValue or

the Xlib XFetchBytes functions respectively. Several standard selection schemes (e.g.
character/word/paragraph with multi-click) are supported through the event bindings.

The class variable for the Text widget is textWidgetClass.

To create a Text string widget, use XtCreateWidget and specify the class variable asciiS-

tringWidgetClass.

To create a Text file widget, use XtCreateWidget and specify the class variable asci-

iDisk WidgetClass.

Note

If you want to create an instance of the class textWidgetClass, you must provide a
source and a sink when the widget is created. The Text widget cannot be instan-

tiated without both.

When creating a Text widget instance, the following resources are retrieved from the argument

list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 4 Border width in pixels
XtNcursor Cursor XC_xterm Pointer cursor
XtNdialogHOffset int 10 Offset of insert file dialog
XtNdialogVOffset int 10 Offset of insert file dialog
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNdisplayPosition int 0 Character position of first line
XtNeditType XtEditType XttextRead Edit mode (see note)

XtNfile char* tmpnam() File for asciiDiskWidgetClass
XtNforeground Pixel Black Foreground color

XtNfont XFontStruct* Fixed Fontname

XtNheight Dimension Font height Height of widget
XtNinsertPosition int 0 Character position of caret
XtNleftMargin Dimension 2 Left margin in pixels

XtNlength int String length Size of the string buffer
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNselectTypes XiTextSelectType* See below Selection units for multi-click
XtNsensitive Boolean True Whether widget receives input
XtNstring char* Blank String for asciiStringWidgetClass
XtNtextOptions int None See below

XtNtextSink XtTextSink None See below

XtNtextSource XtTextSource None See below

XtNtranslations TranslationTable See above event-to-action translations
XtNwidth Dimension 100 Width of widget (pixels)

XtNx Position 0 x coordinate in pixels

XtNy Position 0 y coordinate in pixels

25

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Note
1. You cannot use XtNeditType, XtNfile, XtNlength, and XtNfont with the
XtTextSetValues and the XtTextGetValues calls.

2. The XtNeditType attribute has one of the values XttextAppend, XttextEdit, or
XttextRead.

3. If asciiStringWidgetClass is used, the resource XtNstring specifies a buffer con-
taining the text to be displayed and edited. AsciiStringWidget does not copy this
buffer but uses it in-place.

The options for the XtNtextOptions attribute are:

Option Description

editable Whether or not the user is allowed to modify the text.

resizeHeight ~ Makes a request to the parent widget to lengthen the widget if all the
text cannot fit in the window.

resizeWidth Makes a request to the parent widget to widen the widget if the text
becomes too long to fit on one line. ‘

scrollOnOverflow Automatically scrolls the text up when new text is entered below the
bottom (last) line.

scrollVertical Puts a scroll bar on the left side of the widget.

wordBreak Starts a new line when a word does not fit on the current line.

These options can be ORed together to set more than one at the same time.

XtNselectionTypes is an array of entries of type XtTextSelectType and is used for multiclick.
As the pointer button is clicked in rapid succession, each click highlights the next “‘type’’
described in the array.

XtselectAll Selects the contents of the entire buffer.

XtselectChar Selects text characters as the pointer moves over them.

XtselectLine Selects the entire line.

XtselectNull Indicétes the end of the selection array.

XtselectParagraph Selects the entire paragraph (delimited by newline characters).

XtselectPosition Selects the current pointer position.

XtselectWord Selects whole words (delimited by whitespace) as the pointer moves
onto them.

The default selectType array is:
{XtselectPosition, XtselectWord, XtselectLine, XtselectParagraph, XtselectAll, XtselectNull}

26

X Toolkit Athena Widgets X11, Release 3

For the default case, two rapid pointer clicks highlight the current word, three clicks highlight
the current line, four clicks highlight the current paragraph, and five clicks highlight the entire
text. If the timeout value is exceeded, the next pointer click retumns to the first entry in the
selection array. The selection array is not copied by the Text widget. The client must allocate
space for the array and cannot deallocate or change it until the Text widget is destroyed or until
a new selection array is set.

3.3.1. Selection Actions

The Text widget fully supports the X selection and cut buffer mechanisms. The following
actions can be used to specify button bindings that will cause Text to assert ownership of one or
more selections, to store the selected text into a cut buffer, and to retrieve the value of a selec-
tion or cut buffer and insert it into the text value.

insert-selection(name([,name,...])
Retrieves the value of the first (left-most) named selection that exists or the cut
buffer that is not empty and inserts it into the input stream. The specified name
can be that of any selection (for example, PRIMARY or SECONDARY) or a

cut buffer (i.e. CUT_BUFFERO through CUT_BUFFER7). Note that case
matters.

select-start() Unselects any previously selected text and begins selecting new text.

select-adjust()
extend-adjust()
Continues selecting text from the previous start position.

start-extend() Begins extending the selection from the farthest (left or right) edge.

select-end(namel,name,...])

extend-end(name[,name,...])
Ends the text selection, asserts ownership of the specified selection(s) and stores
the text in the specified cut buffer(s). The specified name can be that of a selec-
tion (for example, PRIMARY or SECONDARY) or a cut buffer (i.e.
CUT_BUFFERO through CUT_BUFFER?7). Note that case is significant. If

CUT_BUFFERQO is listed, the cut buffers are rotated before storing into buffer
0.

3.3.2. Selecting Text
To enable an application to select a piece of text, use XtTextSetSelection.
typedef long XtTextPosition,;

void XtTextSetSelection(w, left, right)
Widget w;
XtTextPosition left, right;

w Specifies the widget ID.
left Specifies the character position at which the selection begins.
right Specifies the character position at which the selection ends.

If redisplay is not disabled, this function highlights the text and makes it the PRIMARY selec-
tion.

27

X Toolkit Athena Widgets X11, Release 3

3.3.3. Unhighlighting Text
To unhighlight previously highlighted text in a widget, use XtTextUnsetSelection.

void XtTextUnsetSelection(w)
Widget w;

3.3.4. Getting Selected Text Character Positions

To enable the application to get the character positions of the selected text, use XtTextGet-
SelectionPos.

void XtTextGetSelectionPos(w, posl, pos2)
Widget w;
XtTextPosition *posl, *pos2;

w Specifies the widget ID.

posl Specifies a pointer to the location to which the beginning character position of
the selection is returned.

pos2 Specifies a pointer to the location to which the ending character position of the
selection is returned.

If the returned values are equal, there is no current selection.

3.3.5. Replacing Text
To enable an application to replace text, use XtTextReplace.
int XtTextReplace(w, start_pos, end_pos, text)

Widget w;

XtTextPosition start pos, end_pos;,

XtTextBlock *text,

w Specifies the widget ID.

start_pos Specifies the starting character position of the text replacement.
end_pos Specifies the ending character position of the text replacement.
text Specifies the text to be inserted into the file.

The XtTextReplace function deletes text in the specified range (startPos, endPos) and inserts
the new text at startPos. The return value is XawEditDone if the replacement is successful,
XawPositionError if the edit mode is XttextAppend and startPos is not the last character of
the source, or XawEditError if either the source was read-only or the range to be deleted is
larger than the length of the source.

The XtTextBlock structure (defined in <X11/Text.h> contains:

typedef struct {
int firstPos;
int length;
char *ptr;
Atom format;
} XtTextBlock, *TextBlockPtr;

The firstPos field is the starting point to use within the ptr field. The value is usually zero. The
length field is the number of characters that are transferred from the ptr field. The number of
characters transferred is usually the number of characters in ptr. The format field is not
currently used, but should be specified as FMTSBIT. The XtTextReplace arguments

28

X Toolkit Athena Widgets X11, Release 3

start_pos and end_pos represent the text source character positions for the existing text that is
to be replaced by the text in the XtTextBlock structure. The characters from start_pos up to
but not including end_pos are deleted, and the characters that are specified by the text block are
inserted in their place. If start_pos and end_pos are equal, no text is deleted and the new text is
inserted after start_pos.

Note

Only ASCII text is currently supported, and only one font can be used for each Text
widget.

3.3.6. Redisplaying Text
To redisplay a range of characters, use XtTextInvalidate.

void XtTextInvalidate(w, from, to)

Widget w;

XtTextPosition from, to;
The XtTextInvalidate function causes the specified range of characters to be redisplayed
immediately if redisplay is enabled or the next time that redisplay is enabled.

To enable redisplay, use XtTextEnableRedisplay.
void XtTextEnableRedisplay(w)
Widget w;

The XtTextEnableRedisplay function flushes any changes due to batched updates when
XtTextDisableRedisplay was called and allows future changes to be reflected immediately.

To disable redisplay while making several changes, use XtTextDisableRedisplay.
void XtTextDisableRedisplay(w)
Widget w;

The XtTextDisableRedisplay function causes all changes to be batched until XtTextDisplay
or XtTextEnableRedisplay is called.

To display batched updates, use XtTextDisplay.
void XtTextDisplay(w)
Widget w;
The XtTextDisplay function forces any accumulated updates to be displayed.

To notify the source that the length has been changed, use XtTextSetLastPos.

void XtTextSetLastPos(w, last);
Widget w;
XtTextPosition last;

The XtTextSetLastPos function notifies the text source that data has been added to or removed
from the end of the source.

29

X Toolkit Athena Widgets X11, Release 3

3.3.7. Changing Resources

The following procedures are convenience procedures that replace calls to XtSetValues or
XtGetValues when only a single resource is to be modified or retrieved.

To assigns a new value to XtNtextOptions resource, use XtTextChangeOptions.

void XtTextChangeOptions(w, options)
Widget w;
int options;

To obtain the current value of XtNtextOptions for the specified widget, use XtTextGetOptions.

int XtTextGetOptions(w)
Widget w;

To obtain the character position of the left-most character on the first line displayed in the wid-
get (that is, the value of XtNdisplayPosition), use XtTextTopPosition.

XtTextPosition XtTextTopPosition(w)
Widget w;

To move the insertion caret to the specified source position, use XtTextSetInsertionPoint.
void XtTextSetInsertionPoint(w, position)

Widget w; ~

XtTextPosition position;
The text will be scrolled vertically if necessary to make the line containing the insertion point
visible. The result is equivalent to setting the XtNinsertPosition resource.

To obtain the current position of the insertion caret, use XtTextGetInsertionPoint.
XtTextPosition XtTextGetlnsertionPoint(w)

Widget w;
The result is equivalent to retrieving the value of the XtNinsertPosition resource.

To replace the text source in the specified widget, use XtTextSetSource.

void XtTextSetSource(w, source, position)
Widget w;
XtTextSource source;
XtTextPosition position;

A display update will be performed if redisplay has not been disabled.
To obtain the current text source for the specified widget, use XtTextGetSource.

XtTextSource XtTextGetSource(w)
Widget w;

30

X Toolkit Athena Widgets X11, Release 3

3.3.8. Creating Sources and Sinks

The following functions for creating and destroying text sources and sinks are called automati-
cally by AsciiStringWidget and AsciiDiskWidget and it is therefore only necessary for the
client to use them when creating an instance of textWidgetClass.

To create a new ASCII text sink, use XtAsciiSinkCreate.

XtTextSink XtAsciiSinkCreate(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args,

The resources required by the sink are qualified by the name and class of the parent and the
sub-part name XtNtextSink and class XtCTextSink.

To deallocate an ASCII text sink, use XtAsciiSinkDestroy.
void XtAsciiSinkDestroy(sink)
XtTextSink sink;

The sink must not be in use by any widget or an error will result.

To create a new text disk source, use XtDiskSourceCreate.
XtTextSource XtDiskSourceCreate(w, args, num_args)
Widget w;
ArgList args;
Cardinal num_args,

The resources required by the source are qualified by the name and class of the parent and the
sub-part name XtNtextSource and class XtCTextSource.

To deallocate a text disk source, use XtDiskSourceDestroy.
void XtDiskSourceDestroy(source)
XtTextSource source;

The source must not be in use by any widget or an error will result.

To create a new text string source, use XtStringSourceCreate.

XtTextSource XtStringSourceCreate(w, args, num_args)
Widget w;
ArglList args;
Cardinal num_args,

The resources required by the source are qualified by the name and class of the parent and the
sub-part name XtNtextSource and class XtCTextSource.

To deallocate a text string source, use XtStringSourceDestroy.

void XtStringSourceDestroy(source)
XtTextSource source;

31

X Toolkit Athena Widgets X11, Release 3

The source must not be in use by any widget or an error will result.

3.4. Scrollbar Widget

The Scrollbar widget is a rectangular area that contains a slide region and a thumb (slide bar).
A Scrollbar can be used alone, as a valuator, or it can be used within a composite widget (for
example, a Viewport). A Scrollbar can be aligned either vertically or horizontally.

When a Scrollbar is created, it is drawn with the thumb in a contrasting color. The thumb is
normally used to scroll client data and to give visual feedback on the percentage of the client
data that is visible.

Each pointer button invokes a specific scroll bar action. That is, given either a vertical or hor-
izontal alignment, the pointer button actions will scroll or return data as appropriate for that
alignment. Pointer buttons 1 and 3 do not perform scrolling operations by default. Instead,
they return the pixel position of the cursor on the scroll region. When pointer button 2 is
clicked, the thumb moves to the current pointer position. When pointer button 2 is held down
and the pointer pointer is moved, the thumb follows the pointer.

The cursor in the scroll region changes depending on the current action. When no pointer but-
ton is pressed, the cursor appears as an arrow that points in the direction that scrolling can
occur. When pointer button 1 or 3 is pressed, the cursor appears as a single-headed arrow that
points in the logical direction that the client will move the data. When pointer button 2 is
pressed, the cursor appears as an arrow that points to the thumb.

While scrolling is in progress, the application receives notification from callback procedures.

For both scrolling actions, the callback returns the Scrollbar widget ID, the client_data, and the

pixel position of the pointer when the button was released. For smooth scrolling, the callback

routine returns the scroll bar widget, the client data, and the current relative position of the

thumb. When the thumb is moved using pointer button 2, the callback procedure is invoked (
continuously. When either button 1 or 3 is pressed, the callback procedure is invoked only

when the button is released and the client callback procedure is responsible for moving the

thumb.

The class variable for the Scrollbar widget is scrollbarWidgetClass.

When creating a Scrollbar widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNbackground Pixel white Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground Window border color

XtNborderPixmap Pixmap None Window border pixmap

XtNborderWidth Dimension 1 Width of button border

XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNforeground Pixel black Thumb color

XtNheight Dimension See below Height of scroll bar

XtNjumpProc XtCallbackList NULL Callback for thumb select

XtNlength Dimension None Major dimension (height of XtorientVertical)
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNorientation XtOrientation XtorientVertical Orientation (vertical or horizontal)
XtNscrollDCursor Cursor XC_sb_down_arrow Cursor for scrolling down

XtNscrollHCursor Cursor XC_sb_h_double_arrow Idle horizontal cursor

XtNscrollLCursor Cursor XC_sb_left_arrow Cursor for scrolling left

XtNscrollProc XtCallbackList NULL Callback for the slide region
XtNscrollRCursor (

32

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

Cursor

XC_sb_right_arrow

33

X Toolkit Athena Widgets

X11, Release 3

Name

Type

Default

Description

34

Cursor for scrolling right

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description
XtNscrollUCursor Cursor XC_sb_up_arrow Cursor for scrolling up
XtNscrollVCursor Cursor XC_sb_v_double_arrow Idle vertical cursor
XtNsensitive Boolean True Whether widget receives input
XtNshown float NULL Percentage the thumb covers
XtNthickness Dimension 14 Minor dimension (height if XtorientHorizontal)
XtNthumb Pixmap Grey Thump pixmap

XtNtop float NULL Position on scroll bar
XtNtranslations TranslationTable See below Event-to-action translations
XtNwidth Dimension See below Width of scroll bar

XtNx Position NULL X position of scroll bar

XNy Position NULL y position of scroll bar

The class for all cursor resources is XtCCursor.

You can set the dimensions of the Scrollbar two ways. As for all widgets, you can use the
XtNwidth and XtNheight resources. In addition, you can use an alternative method that is
independent of the vertical or horizontal orientation:

XtNlength Specifies the height for a vertical Scrollbar and the width for a horizon-
tal Scrollbar.
XtNthickness Specifies the width for a vertical Scrollbar and the height for a horizon-

tal Scrollbar.

To create a Scrollbar widget instance, use XtCreateWidget and specify the class variable
scrollbarWidgetClass.

To destroy a Scrollbar widget instance, use XtDestroyWidget and specify the widget ID for the
Scrollbar.

The arguments to the XtNscrollProc callback procedure are:

void ScrollProc(scrollbar, client_data, position)
Widget scrollbar,
caddr_t client_data,
caddr_t position; /* int */

scrollbar Specifies the ID of the Scrollbar.
client_data Specifies the client data.
position Returns the pixel position of the thumb in integer form.

The XtNscrollProc callback is used for incremental scrolling and is called by the NotifyScroll
action. The position argument is a signed quantity and should be cast to an int when used.
Using the default button bindings, button 1 returns a positive value, and button 3 returns a nega-
tive value. In both cases, the magnitude of the value is the distance of the pointer in pixels
from the top (or left) of the Scrollbar. The value will never be less than zero or greater than the
length of the Scrollbar.

The arguments to the XtNjumpProc callback procedure are:

35

X Toolkit Athena Widgets X11, Release 3

void JumpProc(scrollbar, client_data, percent)
Widget scrolibar;
caddr_t client_data;
caddr_t percent ptr; [* float* */
scrollbar Specifies the ID of the scroll bar widget.
client_data Specifies the client data.
percent_ptr Specifies the floating point position of the thumb (0.0 — 1.0).

The XtNjumpProc callback is used to implement smooth scrolling and is called by the
NotifyThumb action. Percent_ptr must be cast to a pointer to float before use; i.e.

float percent = *(float*)percent_ptr;

With the default button bindings, button 2 moves the thumb interactively, and the
XtNjumpProc is called on each new position of the pointer.

Note

An older interface used XtNthumbProc and passed the percentage by value rather
than by reference. This interface is not portable across machine architectures and
therefore is no longer supported but is still implemented for those (non-portable)
applications which used it.

To set the position and length of a Scrollbar thumb, use XtScrollbarSetThumb.
void XtScrollbarSetThumb(w, top, shown)

Widget w;
float top;
float shown;
w Specifies the Scrollbar widget ID.
top Specifies the position of the top of the thumb as a fraction of the length of the
Scrollbar.
shown Specifies the length of the thumb as a fraction of the total length of the
Scrollbar.

XtScrollbarThumb moves the visible thumb to position (0.0 — 1.0) and length (0.0 — 1.0).
Either the top or shown arguments can be specified as —1.0, in which case the current value is
left unchanged. Values greater than 1.0 are truncated to 1.0.

If called from XtNjumpProc, XtScrollbarSetThumb has no effect.

The actions supported by the Scrollbar widget are:

StartScroll(vaiue)
The possible values are Forward, Backward, or Continuous. This must be the
- first action to begin a new movement.

NotifyScroll(value)
The possible values are Proportional or FullLength. If the argument to
StartScroll was Forward or Backward, NotifyScroll executes the XtNscrollProc
callbacks and passes either the position of the pointer if its argument is Propor-
tional or the full length of the scroll bar if its argument is FullLength. If the
argument to StartScroll was Continuous, NotifyScroll returns without executing
any callbacks.

36

X Toolkit Athena Widgets X11, Release 3
EndScroll()
MoveThumb() Repositions the scroll bar thumb to the current pointer location.

NotifyThumb()
Calls the XtNjumpProc callbacks and passes the relative position of the
pointer as a percentage of the scroll bar length.

This must be the last action after a movement is complete.

The default bindings for Scrollbar are:

<Btn1Down>: StartScroll(Forward)

<Btn2Down>; StartScroll(Continuous) MoveThumb() NotifyThumb()
<Btn3Down>: StartScroll(Backward)

<Btn2Motion>: MoveThumb() NotifyThumb()

<BtnUp>: NotifyScroll(Proportional) EndScroll()

Examples of additional bindings a user might wish to specify in a resource file are:

*Scrollbar. Translations: \
~Meta<KeyPress>space:
Meta<KeyPress>space:

StartScroll(Forward) NotifyScroll(FullLength) \n\
StartScroll(Backward) NotifyScroll(Fulll.ength) \n\
EndScroll()

3.5. Viewport Widget

The Viewport widget consists of a frame window, one or two Scrollbars, and an inner window.

The frame window is determined by the viewing size of the data that is to be displayed and the

dimensions to which the Viewport is created. The inner window is the full size of the data that
is to be displayed and is clipped by the frame window. The Viewport widget controls the scrol-
ling of the data directly. No application callbacks are required for scrolling.

When the geometry of the frame window is equal in size to the inner window, or when the data
does not require scrolling, the Viewport widget automatically removes any scroll bars. The for-

ceBars option causes the Viewport widget to display any scroll bar permanently.

The class variable for the Viewport widget is viewportWidgetClass.

When creating a Viewport widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNallowHoriz Boolean False Flag to allow horizontal scroll bars
XtNallowVert Boolean False Flag to allow vertical scroll bars
XtNbackground Pixel XtDefaultBackground =~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of the border in pixels
XtNdestroyCallback XtCallbackList NULL Callback for XtDestroyWidget
XtNforceBars Boolean False Flag to force display of scroll bars
XtNheight Dimension height of child Height of the widget
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True Whether widget should receive input
XtNtranslations TranslationTable None Event-to-action translations
XtNuseBottom Boolean False Flag to indicate bottom/top bars
XtNuseRight Boolean False Flag to indicate right/left bars
XtNwidth Dimension width of child Width of the widget

XtNx Position 0 x coordinate within parent

XtNy Position 0 y coordinate within parent

37

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

(
The Viewport widget manages a single child widget. When the size of the child is larger than
the size of the Viewport, the user can interactively move the child within the Viewport by repo-

sitioning the Scrollbars.

The default size of the Viewport before it is realized is the width and/or height of the child.
After it is realized, the viewport will allow its child to grow vertically or horizontally if XtNal-
lowVert or XtNallowHoriz were set, respectively. If the corresponding vertical or horizontal
scrolling were not enabled, the viewport will propagate the geometry request to its own parent
and the child will be allowed to change size only if the (grand) parent allows it. Regardless of
whether or not scrolling was enabled in the corresponding direction, if the child requests a new
size smaller than the viewport size, the change will be allowed only if the parent of the viewport
allows the viewport to shrink to the appropriate dimension.

To create a Viewport widget instance, use XtCreateWidget and specify the class variable
viewportWidgetClass.

To insert a child into a Viewport widget, use XtCreateWidget and specify the widget ID of the
previously created Viewport as the parent.

To remove a child from a Viewport widget, use XtUnmanageChild or XtDestroyWidget and
specify the widget ID of the child.

To delete the inner window, any children, and the frame window, use XtDestroyWidget and
specify the widget ID of the Viewport widget.

3.6. Box Widget

The Box widget provides geometry management of arbitrary widgets in a box of a specified (
dimension. The children are rearranged when resizing events occur either on the Box or when

children are added or deleted. The Box widget always attempts to pack its children as closely

as possible within the geometry allowed by its parent.

Box widgets are commonly used to manage a related set of Command widgets and are fre-
quently called ButtonBox widgets, but the children are not limited to buttons.

The children are arranged on a background that has its own specified dimensions and color.

The class variable for the Box widget is boxWidgetClass.

When creating a Box widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Border width on button box
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNhSpace Dimension 4 Pixel distance left and right of children
XtNheight Dimension see below Viewing height of inner window
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XitNtranslations TranslationTable None Event-to-action translations
XtNvSpace Dimension 4 Pixel distance top and bottom of children
XtNwidth Dimension width of widest child Viewing width of inner window

XtNx Position 0 Widget location x coordinate

XNy Position 0 Widget location y coordinate

38

X Toolkit Athena Widgets X11, Release 3

Name Type Default

Description

The Box widget positions its children in rows with XtNhSpace pixels to the left and right of
each child and XtNvSpace pixels between rows. If the Box width is not specified, the Box
widget uses the width of the widest child. Each time a child is managed or unmanaged, the Box
widget will attempt to reposition the remaining children to compact the box. Children are posi-
tioned in order left to right, top to bottom. When the next child does not fit on the current row,
a new row is started. If a child is wider than the width of the box, the box will request a larger
width from it parent and will begin the layout process from the beginning if a new width is
granted. After positioning all children, the Box widget attempts to shrink its own size to the
minimum dimensions required for the layout.

To create a box widget instance, use XtCreateWidget and specify the class variable
boxWidgetClass.

To add a child to the Box, use XtCreateWidget and specify the widget ID of the Box as the
parent of the new widget.

To remove a child from the Box, use XtUnmanageChild or XtDestroyWidget and specify the
widget ID of the child.

To destroy a Box widget instance, use XtDestroyWidget and specify the widget ID of the Box
widget. All the children of this box are automatically destroyed at the same time.

3.7. VPaned Widget

The VPaned widget manages children in a vertically tiled fashion. A region, called a grip,
appears on the border between each child. When the pointer is positioned on a grip and
pressed, an arrow is displayed that indicates the significant pane that is being resized. While
keeping the pointer button down, the user can move the pointer up or down. This, in turn,
changes the window borders, causing one pane to shrink and some other pane to grow. The
cursor indicates the pane that is of interest to the user; some other pane in the opposite direction
will be chosen to grow or shrink an equal amount. The choice of alternate pane is a function of
the XtNmin, XtNmax and XtNskipAdjust constraints on the other panes. With the default
bindings, button 1 resizes the pane above the selected grip, button 3 resizes the pane below the
selected grip and button 2 repositions the border between two panes only.

The class variable for the VPaned widget is vPanedWidgetClass.

When creating a VPaned widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbetweenCursor Cursor XC_sb_left_arrow Cursor for changing the boundary
between two panes
XtNborderColor Pixel XtDefaultForeground Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Border width (pixels)
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNforeground Pixel Black Pixel value for the foreground color
XtNgripCursor Cursor XC_sb_v_double_arrow Cursor for grip when not active
XtNgripIndent Position 10 Offset of grip from margin (pixels)
XtNgripTranslations TranslationTable internal button bindings for grip
XtNheight Dimension sum of child heights Height of vPane

39

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

XtNlowerCursor Cursor XC_sb_down_arrow Cursor for resizing pane below grip
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNrefigureMode Boolean On Whether vPane should adjust children
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNupperCursor Cursor XC_sb_up_arrow Cursor for resizing pane above grip
XtNwidth Dimension width of widest child Width of vPane

XtNx Position 0 X position of vPane

XtNy Position 0 y position of vPane

To create a VPaned widget instance, use XtCreateWidget and specify the class variable
vPanedWidgetClass.

Once the parent frame is created, you then add panes to it. Any type of widget can be paned.

To add a child pane to a VPaned frame, use XtCreateWidget and specify the widget ID of the
VPaned widget as the parent of each new child pane.

During the creation of a child pane, the following resources, by which the VPaned widget con-
trols the placement of the child, can be specified in the argument list or retrieved from the
resource database:

Name Type Default Description

XtNallowResize Boolean False If False, ignore child resize réquesrs
XtNmax : Dimension unlimited Maximum height for pane

XtNmin Dimension 1 Minimum height for pane
XtNskipAdjust Boolean False True if VPaned widget should not

automatically resize pane

To delete a pane from a vertically paned window frame, use XtUnmanageWidget or XtDes-
troyWidget and specify the widget ID of the child pane.

To enable or disable a child’s request for pane resizing, use XtPanedAllowResize.
void XtPanedAllowResize(w, allow_resize)
Widget w;
Boolean allow_resize;
w Specifies the widget ID of the child widget pane.
allow_resize Enables or disables a pane widget for resizing requests.

If allow_resize is True, VPane allows geometry requests from the child to change the pane’s
height. If allow_resize is False, VPane ignores geometry requests from the child to change the
pane’s height. The default state is True before the VPane is realized and False after it is real-
ized. This procedure is equivalent to changing the XtNallowResize resource for the child.

To change the minimum and maximum height settings for a pane, use XtPanedSetMinMax.

void XtPanedSetMinMax(w, min, max)
Widget w;
int min, max;

w Specifies the widget ID of the child widget pane.

40

X Toolkit Athena Widgets X11, Release 3

min New minimum height of the child, expressed in pixels.
max New maximum height of the child, expressed in pixels.
This procedure is equivalent to setting the XtNmin and XtNmax resources for the child.

To enable or disable automatic recalculation of pane sizes and positions, use
XtPanedSetRefigureMode.

void XtPanedSetRefigureMode(w, mode)
Widget w;
Boolean mode;

w Specifies the widget ID of the VPaned widget.
mode Enables or disables refiguration.

You should set the mode to FALSE if you add multiple panes to or remove multiple panes from
the parent frame after it has been realized, unless you can arrange to manage all the panes at
once using XtManageChildren. After all the panes are added, set the mode to TRUE. This
avoids unnecessary geometry calculations and ‘‘window dancing’’.

To delete an entire VPaned widget and all associated data structures, use XtDestroyWidget and
specify the widget ID of the VPaned widget. All the children of the VPaned widget are
automatically destroyed at the same time.

3.8. Form Widget

The Form widget can contain an arbitrary number of children or subwidgets. The Form pro-
vides geometry management for its children, which allows individual control of the position of
each child. Any combination of children can be added to a Form. The initial positions of the
children may be computed relative to the positions of other children. When the Form is resized,
it computes new positions and sizes for its children. This computation is based upon informa-
tion provided when a child is added to the Form.

The class variable for a Form widget is formWidgetClass.

When creating a Form widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of border in pixels
XtNdefaultDistance int 4 Default value for XtNhorizDistance
and XtNvertDistance
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNheight Dimension computed at realize Height of form
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNwidth Dimension computed at realize Width of form
XtNx Position NULL x position of form
XNy Position NULL y position of form

To create a Form widget instance, use XtCreateWidget and specify the class variable
formWidgetClass.

41

X Toolkit Athena Widgets X11, Release 3

To add a new child to a Form, use XtCreateWidget and specify the widget ID of the previ-
ously created Form as the parent of the child.

When creating children that are to be added to a Form, the following additional resources are
retrieved from the argument list or from the resource database:

Name Type Default Description

XtNbottom XtEdgeType XtRubber See text

XtNfromHoriz Widget NULL See text

XtNfromVert Widget NULL See text
XtNhorizDistance int XtdefaultDistance See text

XtNleft XtEdgeType XtRubber See text

XtNresizable Boolean FALSE TRUE if allowed to resize
XtNright XtEdgeType XtRubber See text

XtNtop XtEdgeType XtRubber See text

XtNvertDistance int XtdefaultDistance See text

When a widget is added to a Form, constraints can be specified to the Form to indicate where
the child should be positioned within the Form.

The resources XtNhorizDistance and XtNfromHoriz let the widget position itself a specified
number of pixels horizontally away from another widget in the form. As an example, XtNhor-
izDistance could equal 10 and XtNfromHoriz could be the widget ID of another widget in the
Form. The new widget will be placed 10 pixels to the right of the widget defined in
XtNfromHoriz. If XtNfromHoriz equals NULL, then XtNhorizDistance is measured from
the left edge of the Form.

Similarly, the resources XtNvertDistance and XtNfromVert let the widget position itself a
specified number of pixels vertically away from another widget in the Form. If XtNfromVert
equals NULL, then XtNvertDistance is measured from the top of the Form. Form provides a
StringToWidget conversion procedure. Using this procedure, the resource database may be used
to specify the XtNfromHoriz and XtNfromVert resources by widget name rather than widget
id. The string value must be the name of a child of the same Form widget parent.

The XtNtop, XtNbottom, XtNleft, and XtNright resources tell the Form where to position
the child when the Form is resized. XtEdgeType is defined in <X11/Form.h> and is one of
XtChainTop, XtChainBottom, XtChainLeft, XtChainRight or XtRubber.

The values XtChainTop, XtChainBottom, XtChainLeft, and XtChainRight specify that a
constant distance from an edge of the child to the top, bottom, left, and right edges respectively
of the Form is to be maintained. The value XtRubber specifies that a proportional distance
from the edge of the child to the left or top edge of the Form is to be maintained when the form
is resized. The proportion is determined from the initial position of the child and the initial size
of the Form. Form provides a StringToEdgeType conversion procedure to allow the resize con-
straints to be easily specified in a resource file.

The default width of the Form is the minimum width needed to enclose the children after com-
puting their initial layout, with a margin of XtNdefaultDistance at the right and bottom edges.
If a width and height is assigned to the Form that is too small for the layout, the children will
be clipped by the right and bottom edges of the Form.

To remove a child from a Form, use XtUnmanageChild or XtDestroyWidget and specify the
widget ID of the child widget.

To destroy a Form widget instance, use XtDestroyWidget and specify the widget ID of the
Form. All children of the Form are automatically destroyed at the same time.

42

X Toolkit Athena Widgets X11, Release 3

When a new child becomes managed or an old child unmanaged, Form will recalculate the posi-
tions of its children according to the values of the XtNhorizDistance, XtNfromHoriz,
XtNvertDistance and XtNfromVert constraints at the time the change is made. No re-layout
is performed when a child makes a geometry request.

To force or defer a re-layout of the Form, use XtFormDoLayout.

void XtFormDoLayout(w, do_layout)
Widget w;
Boolean do_layout,

w Specifies the Form widget.
do_layout Enables (if True) or disables (if False) layout of the Form widget.

When making several changes to the children of a Form widget after the Form has been real-
ized, it is a good idea to disable re-layout until all changes have been made, then allow the lay-
out. Form increments an internal count each time XtFormDoLayout is called with do_layout
False and decrements the count when do_layout is True. When the count reaches 0, Form per-
forms a re-layout.

3.9. Dialog Widget

The Dialog widget implements a commonly used interaction semantic to prompt for auxiliary
input from a user. For example, you can use a Dialog widget when an application requires a
small piece of information, such as a file name, from the user. A Dialog widget is simply a spe-
cial case of the Form widget that provides a convenient way to create a ‘ ‘preconfigured form”’.
The typical Dialog widget contains three areas. The first line contains a description of the func-
tion of the Dialog widget, for example, the string ‘‘Filename:’’. The second line contains an
area into which the user types input. The third line can contain buttons that let the user confirm
or cancel the Dialog input.

The class variable for the Dialog widget is dialogWidgetClass.

When creating a Dialog widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description

XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of border in pixels
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNheight Dimension computed at create Height of dialog

XtNlabel String Label name String to be displayed
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNmaximumLength int 256 Maximum number of input characters
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNvalue char* NULL Pointer to default string

XtNwidth Dimension computed at create Width of dialog

XtNx Position NULL x position of dialog

XtNy Position NULL y position of dialog

The instance name of the label widget within the Dialog widget is ‘‘label’’, and the instance
name of the Dialog value widget is *‘value’’.

43

X Toolkit Athena Widgets

X11, Release 3

To create a Dialog widget instance, you can use XtCreateWidget and specify the class variable

dialogWidgetClass.

To add a child button to the Dialog box, use XtCreateWidget and specify widget ID of the
previously created Dialog box as the parent of each child. When creating buttons, you do not
have to specify form constraints. The Dialog box will automatically add the constraints.

To return the character string in the text field, use XtDialogGetValueString. .
char *XtDialogGetValueString(w)

Widget w;

w Specifies the widget ID of the Dialog box.
If a string was specified in the XtNvalue resource, Dialog will store the input directly into the

string.

To remove a child button from the Dialog box, use XtUnmanageChild or XtDestroyWidget
and specify the widget ID of the child.

To destroy a Dialog widget instance, use XtDestroyWidget and specify the widget ID of the
Dialog widget. All children of the Dialog are automatically destroyed at the same time.

3.10. List Widget

The List widget is a rectangle that contains a list of strings formatted into rows and columns. -
When one of the strings is selected, it is highlighted, and an application callback routine is

invoked.

The class variable for the List widget is listWidgetClass.

When creating a List widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNborderColor Pixel XtDefaultForeground =~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of border
XtNcallback XtCallbackList NULL Selection callback function
XtNcolumnSpacing Dimension 6 Space between columns in the list
XtNcursor Cursor left_ptr Pointer cursor
XtNdefaultColumns int 2 Number of columns to use
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Font for list text
XtNforceColumns Boolean False Force the use of XtNdefaultColumns
XtNforeground Pixel XtDefaultForeground - Foreground (text) color
XtNheight Dimension Contains list exactly Height of widget
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 Spacing between list and widget edges
XtNinternalWidth Dimension 4 Spacing between list and widget edges
XtNlist String * List name An array of strings that is the list
XtNlongest int Longest item Length of the longest list item in pix-
els
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNnumberStrings int Number of strings Number of items in the list
XtNpasteBuffer Boolean False Copy the selected item to cut buffer 0

44

X Toolkit Athena Widgets

X11, Release 3

Name Type Default Description

XtNrowSpacing Dimension 4 Space between rows in the list
XtNsensitive Boolean True Whether widget receives input
XtNtranslations TranslationTable None Event-to-action translations
XtNverticalList Boolean False Specify the layout of list items
XtNwidth Dimension Contains list exactly Width of widget

XtNx Position 0 Widget x coordinate

XtNy Position 0 Widget y coordinate

The new resources associated with the List widget are:

XtNcolumnSpacing
XtNrowSpacing

XtNdefaultColumns

XtNforceColumns

XtNheight

XtNinternalHeight

XtNinternalWidth

XtNlist

XtNlongest

XtNnumberStrings

XtNpasteBuffer

XtNsensitive

Specify the amount of space between each of the rows and
columns in the list.

Specifies the default number of columns, which is used when
neither the width nor the height of the List widget is specified
or when XtNforceColumns is True.

Specifies that the default number of columns is to be used no
matter what the current size of the List widget is.

Specifies the height of the List widget. The default value is the
minimum height that will contain the entire list with the spacing
values specified. If the specified height is larger than the
minimum, the list is put in the upper left comer.

Represents a margin, in pixels, between the top and bottom of
the list and the edges of the List widget.

Represents a margin, in pixels, between the left and right edges
of the list and the edges of the List widget. :

Specifies the array of text strings that is to displayed in the List
widget. If the default for XtNnumberStrings is used, the list
must be null-terminated. If a value is not spccilied for the list,
the number of strings is set to 1, and the namc of the widget is
used as the list.

Specifies the length of the longest string in the current list in
pixels. If the client knows the length, it should specify it. The
List widget will compute a default length by searching through
the list.

Specifies the number of strings in the current list. If a value is
not specified, the list must be null-terminated.

If this is True, then the value of the string selected will be put
into X cut buffer 0.

If set to False, the List widget will change its window border
to XtNinsensitiveBorder and display all items in the list as
stippled strings. While the List widget is insensitive, no item in

45

X Toolkit Athena Widgets ' X11, Release 3

the list can be selected or highlighted.

XtNverticalList If this is True, the elements in the list are arranged vertically;
if False, the elements are arranged horizontally.

XtNwidth Specifies the width of the List widget. The default value is the
minimum width that will contain the entire list with the spacing
values specified. If the specified width is larger than the
minimum, the list is put in the upper left corner.

The List widget has three predefined actions: Set, Unset, and Notify. Set and Unset allow
switching the foreground and background colors for the current list item. Notify allows pro-
cessing application callbacks.

The following is the default translation table used by the List Widget:
<Btm1Down>,<Btn1Up>: Set() Notify()

To create a List widget instance, use XtCreateWidget and specify the class variable
listWidgetClass.

To destroy a List widget instance, use XtDestroyWidget and specify the widget ID of the List
widget.

The List widget supports two callback lists:

. XtNdestroyCallback

o XtNcallback

The notify action executes the callbacks on the the XtNcallback list.

The call_data argument passed to callbacks on the XtNcallback list is a pointer to an XtLis-
tReturnStruct structure, defined in <X11/List.h>:

typedef struct _XtListReturnStruct {
String string; /* string shown in the list. */
int index; /* index of the item selected. */
} XtListReturnStruct;

3.10.1. Changing the List
To change the list that is displayed, use XtListChange.
void XtListChange(w, list, nitems, longest, resize)
Widget w;
String * list;
int nitems, longest,
Boolean resize;

w Specifies the widget ID.

list Specifies the new list for the list widget to display.

nitems Specifies the number of items in the list. If a value less than 1 is specified, list
must be null terminated.

longest Specifies the length of the longest item in the list in pixels. If a value less than

1 is specified, the List widget calculates the value for you.

resize Specifies a Boolean value that indicates whether the List widget should try to
resize itself (True) or not (False) after making the change. Note that the

46

(

X Toolkit Athena Widgets X11, Release 3

constraints of the parent of this widget are always enforced, regardless of the
value specified.

XtListChange changes the list of strings that the List widget is to display.

3.10.2. Highlighting an Item
To highlight an item in the list use, XtListHighlight
void XtListHighlight(w, item);

Widget w;
int item;
w Specifies the widget ID.
item Specifies the index into the current list that indicates the item to be highlighted.

Only one item can be highlighted at a time. If an item is already highlighted when
XtListHighlight is called, the highlighted item is immediately unhighlighted and the new item
is highlighted.

3.10.3. Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XtListUnhighlight
void XtListUnhightlight(w);

Widget w;

w Specifies the widget ID.

3.10.4. Retrieving the Currently Selected Item
To retrieve an item in the list use, XtListShowCurrent
XtListReturnStruct *XtListShowCurrent(w);
Widget w;
w Specifies the widget ID.

The XtListShowCurrent function returns a pointer to an XtListReturnStruct structure, con-
tains the currently highlighted item. If the value of the index member is XT_LIST_NONE, the
string member is undefined, which indicates that no item is currently selected.

3.11. Grip Widget

The Grip widget provides a small region in which user input events (such as ButtonPressor
ButtonRelease) may be handled. The most common use for the grip is as an attachment point
for visually repositioning an object, such as the pane border in a VPaned widget.

The class variable for the Grip widget is gripWidgetClass.

When creating a Grip widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Type Default Description

XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 0 Width of the border in pixels
XtNcallback XtCallbackList None Action routine

XtNcursor Cursor None Cursor for the grip
XtNdestroyCallback XtCallbackList NULL Callback for XtDestroyWidget

47

X Toolkit Athena Widgets X11, Release 3

Name Type Default Description

XtNforeground Pixel XtDefaultForeground =~ Window background color
XtNheight Dimension 8 Height of the widget
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNsensitive Boolean True Whether widget should receive input
XtNtranslations TranslationTable None Event-to-action translations
XtNwidth Dimension 8 Width of the widget

XtNx Position 0 . x coordinate within parent

XtNy Position 0 y coordinate within parent

Note that the Grip widget displays its region with the foreground pixel only.

The Grip widget does not declare any default event translation bindings, but it does declare a
single action routine named GripAction in its action table. The client specifies an arbitrary
event translation table giving parameters to the GripAction routine.

The GripAction action executes the callbacks on the XtNcallback list, passing as call_data a
pointer to a GripCallData structure, defined in <X11/Grip.h>

typedef struct _GripCallData {
XEvent *event;
String *params;
Cardinal num_params;

} GripCallDataRec, *GripCallData;

In this structure, the event field is a pointer to the input event that triggered the action, and
params and num_params give the string parameters specified in the translation table for the par-
ticular event binding.

The following is an example of a GripAction translation table:

<Btn1Down>: GripAction(press)
<Btn1Motion>: GripAction(move)
<Btn1Up>: GripAction(release)

For a complete description of the format of action routines, see the X Toolkit Intrinsics — C
Language Interface.

To create a Grip widget instance, use XtCreateWidget and specify the class variable
gripWidgetClass.

To destroy a Command button widget instance, use XtDestroyWidget and specify the ID of the
Grip widget.

3.12. Toggle Widget

The Toggle widget is a rectanglular button that contains a text label or pixmap. This widget
maintains a Boolean state (e.g. True/False or On/Off) and changes state whenever it is selected.
When the pointer cursor is on the Toggle it highlights to indicate that the Toggle is available for
selection. When the pointer button is pressed the Toggle is selected. This causes the state of the
Toggle to reverse and its callback routine to be invoked.

Toggle buttons may also be part of a radio group. A radio group is a list of Toggle buttons in
which only one Toggle may be set at any time. A radio group is identified by giving the widget
id of any one of its members. There is a convenience routine, XtToggleGetCurrent that will
return information about the Toggle in the radio group that is currently set. More information
on radio groups is presented below.

48

X Toolkit Athena Widgets

The class variable for the Toggle widget is toggleWidgetClass.

X11, Release 3

When creating a Toggle widget instance, the following resources are retrieved from the argu-
ment list or from the resource database:

Name Type Default Description
XtNbackground Pixel XtDefaultBackground ~ Window background color
XtNbackgroundPixmap Pixmap None Window background pixmap
XtNbitmap Pixmap None Pixmap to display in place of the label
XtNborderColor Pixel XtDefaultForeground ~ Window border color
XtNborderPixmap Pixmap None Window border pixmap
XtNborderWidth Dimension 1 Width of button border
XtNcallback XtCallbackList NULL Callback for button select
XtNcursor Cursor None Pointer cursor
XtNdestroyCallback XtCallbackList NULL Callbacks for XtDestroyWidget
XtNfont XFontStruct* XtDefaultFont Label font
XtNforeground Pixel XtDefaultForeground Foreground color
XtNheight Dimension Text height Button height
XtNhighlightThickness Dimension 2 Width of border to be highlighted
XtNinsensitiveBorder Pixmap Gray Border when not sensitive
XtNinternalHeight Dimension 2 Internal border height for highlighting
XtNinternalWidth Dimension 4 Internal border width for highlighting
XtNjustify Xtlustify XtJustifyCenter Type of text alignment
XtNlabel String Button name Button label
XtNmappedWhenManaged Boolean True Whether XtMapWidget is automatic
XtNradioData Pointer Name of widget Value that will be returned by XtToggleGetCurrent
XtNradioGroup Widget NULL Any other widget in the Toggle’s radio group
XtNresize Boolean True Whether to auto-resize in SetValues
XtNsensitive Boolean True Whether widget receives input
XtNstate Boolean Off State of the Toggle widget
XtNtranslations TranslationTable see below Event-to-action translations
XtNwidth Dimension Text width Button width
XtNx Position 0 x coordinate
XtNy Position 0 y coordinate
XtNbitmap Specifies a bitmap to display in place of the text label [See the
description of this resource in the Label widget for further
details].
XtNcallback Specifies the callback list of functions to be called when the
Toggle widget changes state. This usually occurs when the
Toggle widget’s notify action is called, but when a toggle is in
a radio group it may change state at other times. The places
where this can occur include: XtToggleSetCurrent, XtTog-
gleUnsetCurrent, XtToggleChangeRadioGroup, the set
action, XtSetValues, and XtCreateWidget.
XtNheight Specifies the height of the Toggle widget. The default value is

the minimum height that will contain:

XtNinternalheight + height of XtNlabel + XtNinternalHeight
If the specified height is larger than the minimum, the label
string is centered vertically.

49

X Toolkit Athena Widgets

XtNinternalHeight

XtNinternalWidth

XtNjustify

XtNlabel

XtNradioData

XtNradioGroup

XtNresize

XtNsensitive

XtNstate

XtNwidth

X11, Release 3

Represents the distance in pixels between the top and bottom of
the label text or bitmap and the horizontal edges of the Toggle
widget. HighlightThickness can be larger or smaller than this
value.

Represents the distance in pixels between the ends of the label
text or bitmap and the vertical edges of the Toggle widget.
HighlightThickness can be larger or smaller than this value.

Specifies left, center, or right alignment of the label string
within the Toggle widget. If it is specified within an ArgList,
one of the values XtJustifyLeft, XtJustifyCenter, or XtJus-
tifyRight can be specified. In a resource of type ‘‘string’’, one
of the values ‘‘left”’, ‘‘center’’, or ‘‘right’’ can be specified.

Specifies the text string that is to be displayed in the Toggle
widget if no bitmap is specified. The default is the widget
name of the Toggle widget.

Specifies the data that will be returned from a call to XtTog-
gleGetCurrent if this widget is the one that is set in a radio
group. This data is also used to identify the toggle that will be
set by a call to XtToggleSetCurrent. The value NULL is
returned by XtToggleGetCurrent if no widget is set in a radio
group. Programmers not specify NULL as XtNradioData, if
they intend to use XtToggleGetCurrent

Specifies another Toggle widget which is in the radio group to
which this Toggle widget should be added. A radio group is a
group of Toggle widgets, only one of which may be "set" at a
time. If this value is NULL (the default) then the Toggle will
not be part of any radio group and can change state without
effecting any other Toggle widgets. If the widget specified in
this resource is not already in a radio group then a new radio
group will be created containing these two Toggle widgets. No
Toggle widget can be in multiple radio groups.

Specifies whether the Toggle widget should attempt to resize to
its preferred dimensions whenever XtSetValues is called for it.
The default is True.

If set to False, the Toggle widget will change its window
border to XtNinsensitiveBorder and will stipple the label
string.

Specifies whether the Toggle widget is set (True/On) or unset
(False/Off).

Specifies the width of the Toggle widget. The default value is
the minimum width that will contain:

XtNinternalwidth + width of XtNlabel + XtNinternalWidth
If the width is larger or smaller than the minimum, XtNjustify

50

X Toolkit Athena Widgets X11, Release 3

determines how the label string is aligned.

The Toggle widget supports the following actions:

. Switching the button between the foreground and background colors with set, unset and
toggle

o Processing application callbacks with notify.
. Switching the internal border between highlighted and unhighlighted states with highlight

and unhighlight
The following are the default translation bindings that are used by the Toggle widget:
<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()

<Btn1Down>,<Bm1Up>: toggle() notify()

With these bindings, the user can cancel the action before releasing the button by moving the
pointer out of the Toggle widget.

3.12.1. Toggle Actions
The full list of actions supported by the Toggle widget is:

highlight(value) Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that contrasts with the interior color of the Toggle
widget. This action procedure takes one of the following conditions:
WhenUnset and Always. If no argument is passed then WhenUnset is
assumed, this maintains backwards compatibility.

unhighlight() Displays the internal highlight border in the color (XtNforeground or
XtNbackground) that matches the interior color of the Toggle widget.
set() Enters the "set" state, in which notify is possible and displays the inte-

rior of the button in the XtNforeground color. The label is displayed
in the XtNbackground color. If the widget to be set is in a radio
group then this procedure may unset another widget, which will cause
all routines on its callback list to be invoked. Since only one toggle in
a radio group may be set at a time the callback routines for the toggle
that is to be unset will be called before the one that is to be set.

unset() Cancels the "set" state and displays the interior of the button in the
XtNbackground color. The label is displayed in the XtNforeground
color.

toggle() Changes the current state of the Toggle widget, causing to be set if it

was previously unset, and unset if it was previously set. If the widget is
to be set, and is in a radio group then this procedure may unset another
widget, which will cause all routines on its callback list to be invoked.
Since only one toggle in a radio group may be set at a time the callback
routines for the toggle that is to be unset will be called before the one
that is to be set.

reset() Cancels any set or highlight and displays the interior of the button in
the XtNbackground color, with the label displayed in the XtNfore-
ground color.

notify() Executes the XtNcallback callback list. The call_data contains a
Boolean which is the current state of the widget.

51

X Toolkit Athena Widgets X11, Release 3

To create a Toggle widget instance, use XtCreateWidget and specify the class variable tog-
gleWidgetClass.

To destroy a Toggle widget instance, use XtDestroyWidget and specify the widget ID of the
Toggle widget.

The Toggle widget supports two callbacks: XtNdestroyCallback and XtNcallback. The
notify action executes the callbacks on the the XtNcallback list.

Changing the Toggle’s Radio Group.

To enable an application to change the Toggle’s current radio group, add the Toggle to a radio
group, or remove the Toggle from a radio group, use XtToggleChangeRadioGroup.

void XtToggleChangeRadioGroup(w, radio_group)
Widget w, radio_group;,

w Specifies the widget ID of the Toggle widget.

radio_group This should be any Toggle on the new radio group. If NULL then the Toggle
will be removed from any radio group of which it is a member.

If a toggle is already in the set state in the new radio group, and the toggle to be added is also
set then the previously set toggle in the new radio group is unset and its callback procedures are
invoked.

Finding the Currently selected Toggle in a radio group of Toggles

To find the currently selected Toggle in a radio group of Toggle widgets use XtTog-
gleGetCurrent.

caddr_t XtToggleGetCurrent(radio_group);
Widget radio_group;

radio_group Specifies the widget ID of any Toggle in the radio group.

The value returned by this function is the data pointed to by XtNradioData, for the Toggle in
the radio group that is currently set. The default value for XtNradioData is the name of that
Toggle widget. If no Toggle is set in the radio group specified then NULL is returned.

Changing the Toggle that is set in a radio group.
To change the Toggle that is currently set in a radio group use XtToggleSetCurrent.

void XtToggleSetCurrent(radio_group, radio_data);
Widget radio_group;
caddr_t radio_data;

radio_group Specifies the widget ID of any Toggle in the radio group.

radio_data Specifies the XtNradioData identifying the Toggle that should be set in the
radio group specified by the radio_group argument.

XtToggleSetCurrent locates the Toggle widget to be set by matching radio_data against the
XtNradioData for each Toggle in the radio group. If none match XtToggleSetCurrent returns
without making any changes. If more than one Toggle matches, XtToggleSetCurrent will
choose a Toggle to set arbitrarily. If this causes any Toggle widgets to change state all routines
in their callback lists will be invoked. Since only one toggle in a radio group may be set at a
time the callback routines for a Toggle that is to be unset will be called before the one that is to
be set.

52

X Toolkit Athena Widgets X11, Release 3

Unsetting all Toggles in a radio group.
To unset all Toggle widgets in a radio group use XtToggleUnsetCurrent.
void XtToggleUnsetCurrent(radio group);
Widget radio_group;
radio_group Specifies the widget ID of any Toggle in the radio group.
If this causes a Toggle widget to change state all routines on its callback list will be invoked.

3.13. Template Widget - Creating A Custom Widget

Although the task of creating a new widget may at first appear a little daunting, there is a basic
simple pattern that all widgets follow. The Athena widget library contains three files that are
intended to assist in writing a custom widget.

Reasons for wishing to write a custom widget include:

¢ Convenient access to resource management procedures to obtain fonts, colors, etc., even if
user customization is not desired.

e Convenient access to user input dispatch and translation management procedures.
e Access to callback mechanism for building higher-level application libraries.

* Customizing the interface or behavior of an existing widget to suit a special application
need.

e Desire to allow user customization of resources such as fonts, colors, etc., or to allow con-
venient re-binding of keys and buttons to internal functions.

e Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget is to "subclass” an existing
one. If the desired semantics of the new widget are similar to an existing one, then the imple-
mentation of the existing widget should be examined to see how much work would be required
to create a subclass that will then be able to share the existing class methods. Much time will
be saved in writing the new widget if an existing widget class Expose, Resize and/or
GeometryManager method can be shared by the subclass.

Note that some trivial uses of a ‘‘bare-bones’’ widget may be achieved by simply creating an
instance of the Core widget. The class variable to use when creating a Core widget is
widgetClass. The geometry of the Core widget is determined entirely by the parent widget.

It is very often the case than an application will have a special need for a certain set of functions
and that many copies of these functions will be needed. For example, when converting an older
application to use the Toolkit, it may be desireable to have a "Window Widget" class that might
have the following semantics:

e Allocate 2 drawing colors in addition to a background color.

e Allocate a text font.

e Execute an application-supplied function to handle exposure events.
e Execute an application-supplied function to handle user input events.

It is obvious that a completely general-purpose WindowWidgetClass could be constructed that
would export all class methods as callbacks lists, but such a widget would be very large and
would have to choose some arbitrary number of resources such as colors to allocate. An appli-
cation that used many instances of the general-purpose widget would therefore un-necessarily
waste many resources.

53

X Toolkit Athena Widgets X11, Release 3

In this section, an outline will be given of the procedure to follow to construct a special-purpose
widget to address the items listed above. The reader should refer to the appropriate sections of
the X Toolkit Intrinsics — C Language Interface for complete details of the material outlined
here. Section 1.4 of the Intrinsics should be read in conjunction with this section.

All Athena widgets have three separate files associated with them:

* A "public" header file containing declarations needed by applications programmers

e A "private" header file containing additional declarations needed by the widget and any sub-
classes

* A source code file containing the implementation of the widget

This separation of functions into three files is suggested for all widgets, but nothing in the
Toolkit actually requires this format. In particular, a private widget created for a single applica-
tion may easily combine the "public" and "private" header files into a single file, or merge the
contents into another application header file. Similarly, the widget implementation can be
merged into other application code.

In the following example, the public header file <X11/Template.h>, the private header file
<X11/TemplateP.h> and the source code file <X11/Template.c> will be modified to produce
the "WindowWidget" described above. In each case, the files have been designed so that a glo-
bal string replacement of ‘‘Template’’ and ‘‘template’’ with the name of your new widget, using
the appropriate case, can be done.

3.13.1. Public Header File

The public header file contains declarations that will be required by any application module that
needs to refer to the widget; whether to create an instance of the class, to perform an XtSet-
Values operation, or to call a public routine implemented by the widget class.

The contents of the Template public header file, <X11/Template.h>, are:

#include <X11/copyright.h>

/¥ XConsortium: Template.h,v 1.2 88/10/25 17:22:09 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

#ifndef _Template_h
#define _Template_h

/**
*

* Template widget
*

stttk sk ke ok s ke skttt el ekt ool ook ok o stk ok s koo ok ook

/* Resources:

Name Class RepType Default Value
background Background Pixel XtDefaultBackground
border BorderColor Pixel XtDefaultForeground
borderWidth BorderWidth Dimension 1

destroyCallback Callback Pointer NULL

height Height Dimension 0
mappedWhenManaged MappedWhenManaged Boolean True

sensitive Sensitive Boolean True

width Width Dimension 0

X Position Position 0

54

X Toolkit Athena Widgets X11, Release 3

y Position Position 0

*/

/* define any special resource names here that are not in <X11/StringDefs.h> */
#define XtNtemplateResource "templateResource"

#define XtCTemplateResource "TemplateResource"

/* declare specific TemplateWidget class and instance datatypes */

typedef struct _TemplateClassRec* TemplateWidgetClass;
typedef struct _TemplateRec* TemplateWidget;

/* declare the class constant */
extern WidgetClass templateWidgetClass;

#endif _Template_h

You will notice that most of this file is documentation. The crucial parts are the last 8 lines
where macros for any private resource names and classes are defined and where the widget class
datatypes and class record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a callback list for user input and an
XtNexposeCallback callback list, and we will declare three convenience procedures, so we
need to add

/* Resources:

callb.;ck Callback Callback NULL
drawingColorl Color Pixel XtDefaultForeground
drawingColor2 Color Pixel XtDefaultForeground
exposeCallback Callback Callback NULL
font Font XFontStruct* XtDefaultFont
*/

#define XtNdrawingColorl "drawingColor1"

#define XtNdrawingColor2 "drawingColor2"

#define XtNexposeCallback "exposeCallback"

extern Pixel WindowColorl(/* Widget */);
extern Pixel WindowColor2(/* Widget */);
extern Font WindowFont(/* Widget */);

Note that we have chosen to call the input callback list by the generic name, XtNcallback,
rather than a specific name. If widgets that define a single user-input action all choose the same
resource name then there is greater possibility for an application to switch between widgets of
different types.

3.13.2. Private Header File

The private header file contains the complete declaration of the class and instance structures for
the widget and any additional private data that will be required by anticipated subclasses of the
widget. Information in the private header file is normally hidden from the application and is
designed to be accessed only through other public procedures; e.g. XtSetValues.

55

X Toolkit Athena Widgets X11, Release 3

The contents of the Template private header file, <X11/TemplateP.h>, are:

#include <X11/copyright.h>

/* XConsortium: TemplateP.h,v 1.2 88/10/25 17:31:47 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

#ifndef _TemplateP_h
#define _TemplateP_h

#include "Template.h"
[* include superclass private header file */
#include <X11/CoreP.h>

/* define unique representation types not found in <X11/StringDefs.h> */
#define XtRTemplateResource "TemplateResource"

typedef struct {
int empty;
} TemplateClassPart;

typedef struct _TemplateClassRec {
CoreClassPart core_class;
TemplateClassPart template_class;
} TemplateClassRec;

extern TemplateClassRec templateClassRec;

typedef struct {
/* resources */
char* resource;
[* private state */
} TemplatePart;

typedef struct _TemplateRec {
CorePart core;
TemplatePart template;
} TemplateRec;

#endif _TemplateP_h

The private header file includes the private header file of its superclass, thereby exposing the
entire internal structure of the widget. It may not always be advantageous to do this; your own
project development style will dictate the appropriate level of detail to expose in each module.

The "WindowWidget" needs to declare two fields in its instance structure to hold the drawing
colors, a resource field for the font and a field for the expose and user input callback lists:

typedef struct {
/* resources */
Pixel color_1;
Pixel color_2;
XFontStruct* font;
XtCallbackList expose_callback;
XtCallbackList input_callback;
[* private state */
/* (none) */

} WindowPart;

56

X Toolkit Athena Widgets

3.13.3. Widget Source File

The source code file implements the widget class itself. The unique part of this file is the
declaration and initialization of the widget class record structure and the declaration of all
resources and action routines added by the widget class.

#include <X11/copyright.h>

The contents of the Template implementation file, <X11/Template.c>, are:

/* XConsortium: Template.c,v 1.2 88/10/25 17:40:25 swick Exp $ */
/* Copyright Massachusetts Institute of Technology 1987, 1988 */

#include <X11/IntrinsicP.h>
#include <X11/StringDefs.h>

#include "TemplateP.h"

static XtResource resources[] = {
#define offset(field) XtOffset(TemplateWidget, template.field)

/* {name, class, type, size, offset, default_type, default_addr}, */
{ XtNtemplateResource, XtCTemplateResource, XtRTemplateResource, sizeof(char*),

#undef offset
|5

static void TemplateAction(/* Widget, XEvent*, String*, Cardinal* */);

offset(resource), XtRString, "default" },

static XtActionsRec actions[] =

{
/¥ {name,
{"template",

1

static char translations[] =
" <Key>:

",
3

procedure}, */
TemplateAction},

template() \n\

TemplateClassRec templateClassRec = {

{ /* core fields */
/* superclass
/* class_name
[* widget_size
/* class_initialize

*/
*/
*/
*/

/* class_part_initialize */

/* class_inited

/* initialize

/* initialize_hook
/* realize

/* actions

/* num_actions

/* resources

/* num_resources

/* xrm_class

/* compress_motion

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/¥ compress_exposure */
/* compress_enterleave */

/* visible_interest

/* destroy

/¥ resize

/* expose

/* set_values

/* set_values_hook
/* set_values_almost
/* get_values_hook
/* accept_focus

*/
*/
*/
*/
*/
*/
*/
*/
*/

(WidgetClass) &widgetClassRec,

"Template",
sizeof(TemplateRec),
NULL,

NULL,

FALSE,

NULL,

NULL,
XtInheritRealize,
actions,
XtNumber(actions),
resources,
XtNumber(resources),
NULLQUARK,
TRUE,

TRUE,

TRUE,

FALSE,

NULL,

NULL,

NULL,

NULL,

NULL,

XtInheritSetValuesAlmost,

NULL,
NULL,

57

X11, Release 3

X Toolkit Athena Widgets X11, Release 3

/* version */ XtVersion,
[* callback_private */ NULL,
/* tm_table */ translations,
[* query_geometry */ XtlnheritQueryGeometry,
[* display_accelerator */ XtInheritDisplay Accelerator,
/* extension */ NULL

}’
{ /* template fields */
/* empty */ 0

b

WidgetClass templateWidgetClass = (WidgetClass)&teniplateClassRec;

The resource list for the "WindowWidget" might look like the following:

static XtResource resources[] = {
#define offset(field) XtOffset(WindowWidget, window.field)
/* {name, class, type, size, offset, default_type, default_addr}, */
{ XtNdrawingColorl, XtCColor, XtRPixel, sizeof(Pixel),
offset(color_1), XtRString, XtDefaultForeground },
{ XtNdrawingColor2, XtCColor, XtRPixel, sizeof(Pixel),
offset(color_2), XtRString, XtDefaultForeground },
{ XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
offset(font), XtRString, XtDefaultFont },
{ XtNexposeCallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
offset(expose_callback), XtRCallback, NULL },
{ XtNcallback, XtCCallback, XtRCallback, sizeof(XtCallbackList),
offset(input_callback), XtRCallback, NULL },
#undef offset
|8

The user input callback will be implemented by an action procedure which passes the event
pointer as call_data. The action procedure is declared as:

/* ARGSUSED */
static void InputAction(w, event, params, num_params)

Widget w;
XEvent *event;
String *params; /* unused */
Cardinal *num_params; /* unused */
{
XtCallCallbacks(w, XtNcallback, (caddr_t)event);
)
static XtActionsRec actions[] =
{
/* {name, procedure}, */
{"input", InputAction},
B

and the default input binding will be to execute the input callbacks on KeyPress and But-
tonPress:

static char translations[] =
" <Key>: input() \n\
<BtnDown>: input()\

",
>

In the class record declaration and initialization, the only field that is different from the Tem-
plate is the expose procedure:

58

X Toolkit Athena Widgets X11, Release 3

/* ARGSUSED */

static void Redisplay(w, event, region)
Widget w;
XEvent *event; /* unused */
Region region;

XtCallCallbacks(w, XtNexposeCallback, (caddr_t)region);
}

WindowClassRec windowClassRec = {

[* expose */ Redisplay,

The "WindowWidget" will also declare three public procedures to return the drawing colors and
the font id, saving the application the effort of constructing an argument list for a call to XtGet-
Values:

Pixel WindowColorl(w)
Widget w;

return ((WindowWidget)w)->window.color_1;

}

Pixel WindowColor2(w)
Widget w;
{

return ((WindowWidget)w)->window.color_2;
Font WindowFont(w)

‘Widget w;
{

return ((WindowWidget)w)->window.font->fid;

The "WindowWidget" is now complete. The application can retrieve the two drawing colors
from the widget instance by calling either XtGetValues, or the WindowColor functions. The
actual window created for the "WindowWidget" is available by calling the XtWindow function.

To test the new ‘‘“WindowWidget’’, you may substitute ‘‘window’’ for ‘‘command’’ in the sam-
ple program given in Section 2.7.3.

59

X Toolkit Widgets

, Table at line 3019 file Xtk.widgets is too wide -
4823 units, Table at line 5032 file Xtk.widgets is

too wide - 4942 units
/

/ust/include/X11/bitmaps, 7, 20

XtToggleChangeRadioGroup", 52

XtToggleGetCurrent", 52
XtToggleSetCurrent”, 52
XtToggleUnsetCurrent", 53

A

Application programmer, 2
Arg, 12

ArgList, 9, 12, 18, 20, 49
AsciiDiskWidget, 31
asciiDiskWidgetClass, 25
AsciiStringWidget, 26, 31
asciiStringWidgetClass, 25, 26
AsciiText, 21

B

BitmapFilePath, 7
bitmapFilePath, 7
BitmapFilePath, 20
bitmapFilePath, 20
Box widget, 38
adding children, 39
creating, 39
destroying, 39
removing children, 39
resources, 38
boxWidgetClass, 38, 39
ButtonPress, 47, 58
ButtonRelease, 47

C

CallbackProc, 9
Child, 2
Class, 2
Client, 2

Index

Command widget, 15
creating, 19
destroying, 19
resources, 15

commandWidgetClass, 15, 19

Creating widgets:
Box, 39
Command, 19
Dialog, 44
Form, 41
Grip, 48
Label, 21
List, 46
Scrollbar, 35
Text file, 25
Text string, 25
Toggle, 52
VPaned, 40

CUT_BUFFERO, 27

CUT_BUFFER7, 27

D

Destroying widgets:
Box, 39
Command, 19
Dialog, 44
Form, 42
Grip, 48
Label, 21
list, 46
Scrollbar, 35
toggle, 52
Viewport, 38
VPaned, 41
Dialog widget, 43
adding children, 44
creating, 44
destroying, 44
removing children, 44
resources, 43
dialogWidgetClass, 43, 44
Display, 4

E

. X11, Release 3

X Toolkit Widgets

editable, 26
F

False, 8, 18, 20, 40, 43, 45, 46, 49

FMTS8BIT, 28

forceBars, 37

Form widget, 41
adding children, 42
child resources, 42
creating, 41
deleting children, 42
destroying, 42
re-layout, 43
resources, 41

formWidgetClass, 41

Fullname, 2

G

Grip widget, 47
creating, 48
destroying, 48
GripAction table, 48

GripAction, 48

GripCallData, 48

GripCallDataRec, 48

gripWidgetClass, 47, 48

) |
Instance, 2

J

JumpProc, 35
K

KeyPress, 58
L

Label widget, 20
creating, 21
destroying, 21
resources, 20

labelWidgetClass, 20, 21

libX11l.a, 11

libXaw.a, 11

libXmu.a, 11

libXt.a, 11

List widget, 44

creating, 46

destroying, 46

resources, 44
listWidgetClass, 44, 46

M
Method, 2
N

Name, 2
O

Object, 2
P

Parent, 2
PRIMARY, 27

R

resizeHeight, 26
resizeWidth, 26
Resource, 2

S

Screen, 4
Scrollbar widget, 32
creating, 35
destroying, 35
resources, 32
setting thumb values, 36
scrollbarWidgetClass, 32, 35
scrollOnOverflow, 26
ScrollProc, 35
scrollVertical, 26
SECONDARY, 27
set, 49
Superclass, 2

T

Template widget, 53
Text widget, 21
creating, 25
default bindings, 23
edit modes, 22
resources, 25
textWidgetClass, 25, 31

X11, Release 3

X Toolkit Widgets

Toggle widget, 48

creating, 52

destroying, 52

resources, 49
toggleWidgetClass, 49, 52
True, 8, 18, 40, 43, 45, 46, 49

U
User, 2

v

Viewport widget, 37

creating, 38

destroying, 38

inserting a child, 38

removing a child, 38

resources, 37
viewportWidgetClass, 37, 38
VPaned widget, 39

adding pane, 40

change height settings, 40

child resources, 40

creating, 40

deleting pane, 40

destroying, 41

disable auto-reconfiguring, 41

disable pane resizing, 40

enable auto-reconfiguring, 41

enable pane resizing, 40

resources, 39
vPanedWidgetClass, 39, 40

\ul

Widget class, 3
Widget programmer, 3
Widget, 3
widgetClass, 53
wordBreak, 26

X

X11/Command.h, 11
X11/cursorfont.h, 7
X11/Form.h, 42
X11/Grip.h, 48
X11/Intrinsic.h, 11
X11/Label.h, 11
X11/List.h, 46
X11/Template.c, 54, 57
X11/Template.h, 54

X11, Release 3

X11/TemplateP.h, 54, 56
X11/Text.h, 28

X11/Xlib.h, 11

XawEditDone, 28
XawEditError, 28
XawPositionError, 28
XFetchBytes, 25
XrmParseCommand, 5
XtAddCallback, 10, 11
XtAsciiSinkCreate, 31
XtAsciiSinkDestroy, 31
XtCallbackList, 10
XtCallbackProc, 10
XiCallCallbacks, 10
X1CCursor, 35
XtChainBottom, 42
XtChainLeft, 42

XiChainRight, 42

XtChainTop, 42
XiCreateManagedWidget, 6, 11
XiCreateWidget., 49
X(CreateWidget, 4, 5, 6, 10, 11, 19, 21, 25, 35,
38, 39, 40, 41, 42, 44, 46, 48, 52
XtCTextSink, 31
XiCTextSource, 31
X(DestroyWidget, 6, 8, 15, 19, 20, 21, 25, 32, 35,
37,38, 39,40, 41, 42, 43, 44, 46, 47, 48, 49, 52
XtDialogGetValueString, 44
XtDiskSourceCreate, 31
XiDiskSourceDestroy, 31
X(EdgeType, 42

XtError, 6

XtFormDoLayout, 43
XiGetSelectionValue, 25
XtGetValues, 9, 30, 59
Xnitialize, 5, 11
XdustifyCenter, 18, 20, 49
XUustifyLeft, 18, 20, 49
XtJustifyRight, 18, 20, 49
Xi(ListChange, 46, 47
XtListHighlight, 47
XtListReturnStruct, 46, 47
XtListShowCurrent, 47
XtListUnhighlight, 47
XtMainLoop, 11
XtManageChild,, 11
XtManageChild, 5, 11
XManageChildren, 8, 41
XtMapWidget, 6, 8, 15, 20, 25, 32, 37, 38, 39, 41,
43,44, 47, 49

XN, 11, 12

XtNallowHoriz, 38
X(NallowResize, 40

X Toolkit Widgets

XtNallowVert, 38
XtNbackground, 19, 51
XtNbitmap, 18, 20, 49
XtNbottom, 42

XtNcallback, 11, 19, 46, 48, 49, 51, 52, 55
XtNcolumnSpacing, 45
XtNdefaultColumns, 45
XtNdefaultDistance, 42
XtNdestroyCallback, 10, 19, 21, 46, 52
XtNeditType, 26

XtNfile, 26

XtNfont, 26
XtNforceColumns, 45
XtNforeground, 12, 19, 51
XtNfromHoriz, 42, 43
XtNfromVert, 42, 43
XtNheight, 18, 20, 35, 45, 49
XtNhorizDistance, 42, 43
XtNhSpace, 39
XtNinsensitiveBorder, 18, 20, 45, 49
XtNinternalHeight, 18, 20, 45, 49
XtNinternalWidth, 18, 20, 45, 49
XtNjumpProc, 35, 36, 37
XtNjustify, 18, 20, 49
XtNlabel, 18, 20, 49

XtNleft, 42

XtNlength, 26, 35

XtNlist, 45

XtNlongest, 45

XtNmax, 39, 41

XtNmin, 39, 41
XtNnumberStrings, 45
XtNpasteBuffer, 45
XtNradioData,, 52
XtNradioData, 49, 52
XtNradioGroup, 49
XtNresize, 18, 20, 49
XNright, 42
XtNrowSpacing, 45
XtNscrollProc, 35, 36
XtNselectionTypes, 26
XtNsensitive, 18, 20, 45, 49
XtNskipAdjust, 39

XtNstate, 49

XtNstring, 26
XtNtextOptions, 26
XtNtextSink, 31
XtNtextSource, 31
XtNthickness, 35
XtNthumbProc, 36

XtNtop, 42

XtNumber, 12, 13

XtNvalue, 44

X11, Release 3

XtNvertDistance, 42, 43
XtNverticalList, 45
XtNvSpace, 39

XtNwidth, 18, 20, 35, 45, 49
XtPanedAllowResize, 40
XtPanedSetMinMax, 40
XtPanedSetRefigureMode, 41
XtRealizeWidget, 5, 6, 7, 8, 11
XtRemoveAllCallbacks, 11
XtRemoveCallback, 10
XtRemoveCallbacks, 10
XtRubber, 42
XtScrollbarSetThumb, 36
XtScrollbarThumb, 36
XtSetArg, 12
XtSetMappedWhenManaged, 8
XtSetValues,, 49

XtSetValues, 9, 18, 20, 30, 49, 54, 55
XtStringSourceCreate, 31
XtStringSourceDestroy, 31
XttextAppend, 26, 28
XtTextBlock, 28, 29
XtTextChangeOptions, 30
XtTextDisableRedisplay, 29
XtTextDisplay, 29

XttextEdit, 26
XtTextEnableRedisplay, 29
XtTextGetInsertionPoint, 30
XitTextGetOptions, 30
XiTextGetSelectionPos, 28
XtTextGetSource, 30
XtTextGetValues, 26
XtTextInvalidate, 29
XttextRead, 26
XtTextReplace, 28
XtTextSelectType, 26
XtTextSetInsertionPoint, 30
XtTextSetLastPos, 29
XiTextSetSelection, 27
XiTextSetSource, 30
XtTextSetValues, 26
XtTextTopPosition, 30
XtTextUnsetSelection, 28
XtToggleChangeRadioGroup., 52
XtToggleChangeRadioGroup, 49
XtToggleGetCurrent., 52
XtToggleGetCurrent, 48, 49
XtToggleSetCurrent., 49, 52
XtToggleSetCurrent, 49
XtToggleUnsetCurrent., 53
XtToggleUnsetCurrent, 49
XtUnmanageChild, 38, 39, 42, 44
XtUnmanageWidget, 40

X Toolkit Widgets X11, Release 3

XtWindow, 59
XT_LIST_NONE, 47

INTRINSICS 4
MAN PAGES

CHAPTER TWO

Intrinsics man Pages [Release 3.0 preliminary: 10-6] Window System Toolkit 2-1

1 September 1988

XtAddEventHandler (3Xt) XtAddEventHandler (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtAddEventHandler, XtAddRawEventHandler, XtRemoveEventHandler XtRemo-
veRawEventHandler — add and remove event handlers

void XtAddEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

void XtAddRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

void XtRemoveEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

void XtRemoveRawEventHandler(w, event_mask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask;
Boolean nonmaskable;
XtEventHandler proc;
caddr_t client_data;

client_data Specifies additional data to be passed to the client’s event handler.
event_mask Specifies the event mask for which to call or unregister this pro-
cedure.

nonmaskable Specifies a Boolean value that indicates whether this procedure
should be called or removed on the nonmaskable events (Gra-
phicsExpose, NoExpose, SelectionClear, SelectionRequest, Selec-
tionNotify, ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be added or removed.

w Specifies the widget for which this event handler is being registered.

The XtAddEventHandler function registers a procedure with the dispatch mechan-
ism that is to be called when an event that matches the mask occurs on the specified
widget. If the procedure is already registered with the same client_data, the
specified mask is ORed into the existing mask. If the widget is realized, XtAd-
dEventHandler calls XSelectInput, if necessary.

The XtAddRawEventHandler function is similar to XtAddEventHandler except that
it does not affect the widget’s mask and never causes an XSelectInput for its events.
Note that the widget might already have those mask bits set because of other nonraw
event handlers registered on it.

Ardent Computer Corporation — Release 3.0 1

1 September 1988

XtAddEventHandler (3Xt) XtAddEventHandler (3Xt)

The XtAddRawEventHandler function is similar to XtAddEventHandler except that
it does not affect the widget’s mask and never causes an XSelectInput for its events.
Note that the widget might already have those mask bits set because of other nonraw
event handlers registered on it.

The XtRemoveRawEventHandler function stops the specified procedure from
receiving the specified events. Because the procedure is a raw event handler, this
does not affect the widget’s mask and never causes a call on XSelectInput.

SEE ALSO
XtAppNextEvent(3Xt), XtBuildEventMask(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface
2 Ardent Computer Corporation — Release 3.0

(

1 September 1988

XtAddExposureToRegion (3Xt) XtAddExposureToRegion (3Xt)
NAME
XtAddExposureToRegion — merge exposure events into a region
SYNTAX
void XtAddExposureToRegion(event, region)
XEvent *event;
Region region;
ARGUMENTS
event Specifies a pointer to the Expose or GraphicsExpose event.
region Specifies the region object (as defined in <X11/Xutil.h>).
DESCRIPTION
The XtAddExposureToRegion function computes the union of the rectangle defined
by the exposure event and the specified region. Then, it stores the results back in
region. If the event argument is not an Expose or GraphicsExpose event, XtAddEx-
posureToRegion returns without an error and without modifying region.
This function is used by the exposure compression mechanism (see Section 7.9.3).
SEE ALSO

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 3

XtAddCallback (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

1 September 1988
XtAddCallback (3Xt)

XtAddCallback, XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks, XtRemo-
veAllCallbacks — add and remove callback procedures

void XtAddCallback(w, callback_name, callback, client_data)
Widget w;
String callback_name;
XtCallbackProc callback;
caddr_t client_data;

void XtAddCallbacks(w, callback_name, callbacks)
Widget w;
String callback_name;
XtCallbackList callbacks;

void XtRemoveCallback(w, callback_name, callback, client_data)
Widget w;
String callback_name;
XtCallbackProc callback;
caddr_t client_data;
void XtRemoveCallbacks(w, callback_name, callbacks)
Widget w;
String callback_name;
XtCallbackList callbacks;

void XtRemoveAllCallbacks(w, callback_name)
Widget w;
String callback_name;

callback Specifies the callback procedure.

callbacks Specifies the null-terminated list of callback procedures and
corresponding client data.

callback_name Specifies the callback list to which the procedure is to be appended
or deleted.

client_data Specifies the argument that is to be passed to the specified procedure
when it is invoked by XtCallbacks or NULL, or the client data to
match on the registered callback procedures.

w Specifies the widget.

The XtAddCallback function adds the specified callback procedure to the specified
widget’s callback list.

The XtAddCallbacks add the specified list of callbacks to the specified widget’s call-
back list.

The XtRemoveCallback function removes a callback only if both the procedure and
the client data match.

The XtRemoveCallbacks function removes the specified callback procedures from
the specified widget’s callback list.

The XtRemoveAllCallbacks function removes all the callback procedures from the
specified widget’s callback list.

Ardent Computer Corporation — Release 3.0

(

1 September 1988
XtAddCallback (3Xt) XtAddCallback (3Xt)

SEE ALSO
XtCallCallbacks(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 5

XtAddGrab (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtAddGrab (3Xt)

XtAddGrab, XtRemoveGrab — redirect user input to a modal widget

void XtAddGrab(w, exclusive, spring_loaded)
Widget w;
Boolean exclusive;
Boolean spring_loaded;

void XtRemoveGrab(w)
Widget w;

exclusive Specifies whether user events should be dispatched exclusively to
this widget or also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user
pressed a pointer button.

w Specifies the widget to add to or remove from the modal cascade.

The XtAddGrab function appends the widget (and associated parameters) to the
modal cascade and checks that exclusive is True if spring_loaded is True. If these are
not True, XtAddGrab generates an error.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user event.
When at least one modal widget is in the widget cascade, XtDispatchEvent first
determines if the event should be delivered. It starts at the most recent cascade entry
and follows the cascade up to and including the most recent cascade entry added
with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets
comprise the active subset. User events that occur outside the widgets in this subset
are ignored or remapped. Modal menus with submenus generally add a submenu
widget to the cascade with exclusive False. Modal dialog boxes that need to restrict
user input to the most deeply nested dialog box add a subdialog widget to the cas-
cade with exclusive True. User events that occur within the active subset are

delivered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where on the screen they occur, remap events are always delivered to
the most recent widget in the active subset of the cascade that has spring_loaded
True, if any such widget exists.

The XtRemoveGrab function removes widgets from the modal cascade starting at
the most recent widget up to and including the specified widget. It issues an error if
the specified widget is not on the modal cascade.

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation— Release 3.0

1 September 1988

XtAppAddActions (3Xt) XtAppAddActions (3Xt)
NAME
XtAppAddActions - register an action table
SYNTAX
void XtAppAddActions(app_context, actions, num_actions)
XtAppContext app_context;
XtActionList actions;
Cardinal num_actions;
ARGUMENTS
app_context Specifies the application context.
actions Specifies the action table to register.
num_args Specifies the number of entries in this action table.
DESCRIPTION
The XtAppAddActions function adds the specified action table and registers it with
the translation manager.
SEE ALSO

XtParseTranslationTable(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 7

XtAppAddConverter (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988

XtAppAddConverter - register resource converter

void XtAppAddConverter(app_context, from_type, to_type, converter, convert_args,
num_args)

XtAppContext app_context;
String from_type;

String to_type;

XtConverter converter;
XtConvertArgList convert_args;
Cardinal num_args;

app_context Specifies the application context.
converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter
or NULL.

from_type Specifies the source type.

num_args Specifies the number of additional arguments to the converter or
Zero.

to_type Specifies the destination type.
The XtAppAddConverter registers a the specified resource converter.

XtConvert(3Xt), XtStringConversionWarning(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0

XtAppAddConverter (3Xt)

1 September 1988
XtAppAddinput (3Xt) XtAppAddinput(3Xt)

NAME
XtAppAddInput, XtRemovelnput - register and remove an input source

SYNTAX
XtInputld XtAppAddInput(app_context, source, condition, proc, client_data)
XtAppContext app_context;
int source;
caddr_t condition;
XtInputCallbackProc proc;
caddr_t client_data;

void XtRemovelnput(id)
XtInputld id;

ARGUMENTS
app_context Specifies the application context that identifies the application.

client_data Specifies the argument that is to be passed to the specified procedure
when input is available.

condition Specifies the mask that indicates a read, write, or exception condition
or some operating system dependent condition.

id Specifies the ID returned from the corresponding XtAppAddInput
call.

proc Specifies the procedure that is to be called when input is available.

source Specifies the source file descriptor on a UNIX-based system or other
operating system dependent device specification.

DESCRIPTION
The XtAppAddInput function registers with the Intrinsics read routine a new source
of events, which is usually file input but can also be file output. Note that file should
be loosely interpreted to mean any sink or source of data. XtAppAddInput also
specifies the conditions under which the source can generate events. When input is
pending on this source, the callback procedure is called.

The legal values for the condition argument are operating-system dependent. Ona
UNIX-based system, the condition is some union of XtInputReadMask, XtInputWri-
teMask, and XtInputExceptMask. The XtRemoveInput function causes the Intrin-
sics read routine to stop watching for input from the input source.

SEE ALSO
XtAppAddTimeOut(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation —Release 3.0 9

1 September 1988

XtAppAddTimeOut (3Xt) XtAppAddTimeOut (3Xt)
NAME
XtAppAddTimeOut, XtRemoveTimeOut - register and remove timeouts
SYNTAX
XtIntervalld XtApp Add TimeOut(app_context, interval, proc, client_data)
XtAppContext app_context;
unsigned long interval;
XtTimerCallbackProc proc;
caddr_t client_data;
void XtRemoveTimeQut(timer)
XtIntervalld timer;
ARGUMENTS
app_context Specifies the application context for which the timer is to be set.
client_data Specifies the argument that is to be passed to the specified procedure
wheninput is available.
interval Specifies the time interval in milliseconds.
proc Specifies the procedure that is to be called when time expires.
timer Specifies the ID for the timeout request to be destroyed.
DESCRIPTION
The XtAppAddTimeQut function creates a timeout and returns an identifier for it.
The timeout value is set to interval. The callback procedure is called when the time
interval elapses, and then the timeout is removed.
The XtRemoveTimeOut function removes the timeout. Note that timeouts are
automatically removed once they trigger.
SEE ALSO
XtAppAddInput(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib~ C Language X Interface
10 Ardent Computer Corporation — Release 3.0

(

1 September 1988

XtAppAddWorkProc (3Xt) XtAppAddWorkProc (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtAppAddWorkProc, XtRemoveWorkProc — Add and remove background process-
ing procedures

XtWorkProcld XtAppAddWorkProc(app_context, proc, client_data)
XtAppContext app_context;
XtWorkProc proc;
caddr_t client_data;

void XtRemoveWorkProc(id)

XtWorkProcld id;
app_context Specifies the application context that identifies the application.
client_data Specifies the argument that is to be passed to the specified procedure
when it is called.
proc Specifies the procedure that is to be called when time expires.
id Specifies which work procedure to remove.

The XtAppAddWorkProc function adds the specified work procedure for the appli-
cation identified by app_context.

The XtRemoveWorkProc function explicitly removes the specified background work
procedure.

XtAppNextEvent(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 11

XtAppCreateShell (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988

XtAppCreateShell - create top-level widget instance

Widget XtAppCreateShell(application_name, application_class, widget_class, display,

args, num_args)

String application_name;

String application_class;

WidgetClass widget_class;

Display *display;

ArglList args;

Cardinal num_args;

application_class Specifies the class name of this application.

application_name
Specifies the name of the application instance.

args Specifies the argument list in which to set in the WM_COMMAND
property.

display Specifies the display from which to get the resources.

num_args Specifies the number of arguments in the argument list.

widget_class Specifies the widget class that the application top-level widget
should be.

The XtAppCreateShell function saves the specified application name and application
class for qualifying all widget resource specifiers. The application name and applica-
tion class are used as the left-most components in all widget resource names for this
application. XtAppCreateShell should be used to create a new logical application
within a program or to create a shell on another display. In the first case, it allows
the specification of a new root in the resource hierarchy. In the second case, it uses
the resource database associated with the other display.

Note that the widget returned by XtAppCreateShell has the WM_COMMAND pro-
perty set for session managers (see Chapter 4).

XtCreateWidget(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

12

Ardent Computer Corporation — Release 3.0

XtAppCreateShell (3Xt)

(|

(

1 September 1988
XtAppError (3Xt) XtAppError (3Xt)

NAME
XtAppError, XtAppSetErrorHandler, XtAppSetWarningHandler, XtAppWarning -
low-level error handlers
SYNTAX
void XtAppError(app_context, message)
XtAppContext app_context;
String message;

void XtAppSetErrorHandler(app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;

void XtAppSetWarningHandler(app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;

void XtAppWarning(app_context, message)
XtAppContext app_context;
String message;
ARGUMENTS
app_context Specifies the application context.

message Specifies the nonfatal error message that is to be reported.

handler Specifies the new fatal error procedure, which should not return, or
the nonfatal error procedure, which usually returns.

message Specifies the message that is to be reported.

DESCRIPTION
The XtAppError function calls the installed error procedure and passes the specified
message.

The XtAppSetErrorHandler function registers the specified procedure, which is
called when a fatal error condition occurs.

The XtAppSetWarningHandler registers the specified procedure, which is called
when a nonfatal error condition occurs.

The XtAppWarning function calls the installed nonfatal error procedure and passes
the specified message.
SEE ALSO
XtAppGetErrorDatabase(3Xt), XtAppErrorMsg(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation —Release 3.0 13

1 September 1988

XtAppErrorMsg (3Xt) XtAppErrorMsg (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtAppErrorMsg, XtAppSetErrorMsgHandler, XtAppSetWarningMsgHandler,
XtAppWarningMsg — high-level error handlers

void XtAppErrorMsg(app_context, name, type, class, default, params, num_params)
XtAppContext app_context;
String name;
String type;
String class;
String default;
String *params;
Cardinal *num_params;
void XtAppSetErrorMsgHandler(app_context, msg_handler)

XtAppContext app_context;
XtErrorMsgHandler msg_handler;

void XtAppSetWarningMsgHandler(app_context, msg_handler)
XtAppContext app_context;
XtErrorMsgHandler msg_handler;

void XtAppWarningMsg(app_context, name, type, class, default, params, num_params)
XtAppContext app_context;
String name;
String type;
String class;
String default;
String *params;
Cardinal *num_params;

app_context Specifies the application context.

class Specifies the resource class.

default Specifies the default message to use.
name Specifies the general kind of error.

type Specifies the detailed name of the error.

msg_handler ~ Specifies the new fatal error procedure, which should not return or
the nonfatal error procedure, which usually returns.

num_params Specifies the number of values in the parameter list.

params Specifies a pointer to a list of values to be stored in the message.

The XtAppErrorMsg function calls the high-level error handler and passes the
specified information.

The XtAppSetErrorMsgHandler function registers the specified procedure, which is
called when a fatal error occurs.

The XtAppSetWarningMsgHandler function registers the specified procedure,
which is called when a nonfatal error condition occurs.

The XtAppWarningMsg function calls the high-level error handler and passes the
specified information.

14

Ardent Computer Corporation— Release 3.0

1 Seetember 1988

XtAppErrorMsg (3Xt) XtAppErrorMsg (3Xt)

SEE ALSO
XtAppGetErrorDatabase(3Xt), XtAppError(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 15

1 September 1988

XtAppGetErrorDatabase (3Xt) XtAppGetErrorDatabase (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtAppGetErrorDatabase, XtAppGetErrorDatabaseText — obtain error database

XrmDatabase *XtAppGetErrorDatabase(app_context)
XtAppContext app_context;

void XtAppGetErrorDatabaseText(app_context, name, type, class, default, buffer_return,
nbytes, database)

XtAppContext app_context;

char *name, *type, *class;

char *default;

char *buffer_return;

int nbytes;

XrmDatabase database;

app_context Specifies the application context.
buffer_return Specifies the buffer into which the error message is to be returned.
class Specifies the resource class of the error message.

database Specifies the name of the alternative database that is to be used or
NULL if the application’s database is to be used.

default Specifies the default message to use.

name

type Specifies the name and type that are concatenated to form the
resource name of the error message.

nbytes Specifies the size of the buffer in bytes.

The XtAppGetErrorDatabase function returns the address of the error database. The
Intrinsics do a lazy binding of the error database and do not merge in the database
file until the first call to XtAppGetErrorDatbaseText.

The XtAppGetErrorDatabaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the error
database.

XtAppError(3Xt), XtAppErrorMsg(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

16

Ardent Computer Corporation —Release 3.0

1 September 1988

XtAppGetSelectionTimeout (3Xt) XtAppGetSelectionTimeout (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtAppGetSelectionTimeout, XtAppSetSelectionTimeout — set and obtain selection
timeout values

unsigned long XtAppGetSelectionTimeout(app_context)
XtAppContext app_context;

void XtAppSetSelectionTimeout(app_context, timeout)
XtAppContext app_context;
unsigned long timeout;

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

The XtAppGetSelectionTimeout function returns the current selection timeout
value, in milliseconds. The selection timeout is the time within which the two com-
municating applications must respond to one another. The initial timeout value is set
by the selectionTimeout application resource, or, if selectionTimeout is not
specified, it defaults to five seconds.

The XtAppSetSelectionTimeout function sets the Intrinsics’s selection timeout
mechanism. Note that most applications should not set the selection timeout.

XtOwnSelection(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 17

1 September 1988

XtAppNextEvent (3Xt) XtAppNextEvent (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtAppNextEvent, XtAppPending, XtAppPeekEvent, XtAppProcessEvent,
XtDispatchEvent, XtAppMainLoop — query and process events and input

void XtAppNextEvent(app_context, event_return)
XtAppContext app_context;
XEvent *event_return;

Boolean XtAppPeekEvent(app_context, event_return)
XtAppContext app_context;
XEvent *event_return;

XtInputMask XtAppPending(app_context)
XtAppContext app_context;

void XtAppProcessEvent(app_context, mask)
XtAppContext app_context;
XtInputMask mask;

Boolean XtDispatchEvent(event)
XEvent *event;

void XtAppMainLoop(app_context)
XtAppContext app_context;

app_context Specifies the application context that identifies the application .

event Specifies a pointer to the event structure that is to be dispatched to
the appropriate event handler.

event_return Returns the event information to the specified event structure.

mask Specifies what types of events to process. The mask is the bitwise
inclusive OR of any combination of XtIMXEvent, XtIMTimer, and
XtIMAlternateInput. As a convenience, the X Toolkit defines the
symbolic name XtIMALI to be the bitwise inclusive OR of all event

types.

If no input is on the X input queue, XtAppNextEvent flushes the X output buffer and
waits for an event while looking at the other input sources and timeout values and
calling any callback procedures triggered by them. This wait time can be used for
background processing (see Section 7.8).

If there is an event in the queue, XtAppPeekEvent fills in the event and returns a
nonzero value. If no X input is on the queue, XtAppPeekEvent flushes the output
buffer and blocks until input is available (possibly calling some timeout callbacks in
the process). If the input is an event, XtAppPeekEvent fills in the event and returns a
nonzero value. Otherwise, the input is for an alternate input source, and
XtAppPeekEvent returns zero.

The XtAppPending function returns a nonzero value if there are events pending
from the X server, timer pending, or other input sources pending. The value returned
is a bit mask that is the OR of XtIMXEvent, XtIMTimer, and XtIMAlternateInput

(see XtAppProcessEvent). If there are no events pending, XtAppPending flushes the

output buffer and returns zero.

The XtAppProcessEvent function processes one timer, alternate input, or X event. If
there is nothing of the appropriate type to process, XtAppProcessEvent blocks until
there is. If there is more than one type of thing available to process, it is undefined

18

Ardent Computer Corporation— Release 3.0

1 September 1988

XtAppNextEvent (3Xt) XtAppNextEvent (3Xt)

SEE ALSO

which will get processed. Usually, this procedure is not called by client applications
(see XtAppMainLoop). XtAppProcessEvent processes timer events by calling any
appropriate timer callbacks, alternate input by calling any appropriate alternate
input callbacks, and X events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls the
appropriate event handlers and passes them the widget, the event, and client-specific
data registered with each procedure. If there are no handlers for that event
registered, the event is ignored and the dispatcher simply returns. The order in
which the handlers are called is undefined.

The XtDispatchEvent function sends those events to the event handler functions that
have been previously registered with the dispatch routine. XtDispatchEvent returns
True if it dispatched the event to some handler and False if it found no handler to
dispatch the event to. The most common use of XtDispatchEvent is to dispatch
events acquired with the XtAppNextEvent procedure. However, it also can be used
to dispatch user-constructed events. XtDispatchEvent also is responsible for imple-
menting the grab semantics for XtAddGrab.

The XtAppMainLoop function first reads the next incoming X event by calling
XtAppNextEvent and then it dispatches the event to the appropriate registered pro-
cedure by calling XtDispatchEvent. This constitutes the main loop of X Toolkit
applications, and, as such, it does not return. Applications are expected to exit in
response to some user action. There is nothing special about XtAppMainLoop; it is
simply an infinite loop that calls XtAppNextEvent and then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some global ter-
mination flag or tests that the number of top-level widgets is larger than zero before
circling back to the call to XtAppNextEvent.

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 19

XtBuildEventMask (3Xt)

1 September 1988

NAME
XtBuildEventMask — retrieve a widget’s event mask

SYNTAX
EventMask XtBuildEventMask(w)

Widget w;

ARGUMENTS
w Specifies the widget.

DESCRIPTION
The XtBuildEventMask function returns the event mask representing the logical OR
of all event masks for event handlers registered on the widget with XtAd-
dEventHandler and all event translations, including accelerators, installed on the
widget. This is the same event mask stored into the XSetWindowAttributes struc-
ture by XtRealizeWidget and sent to the server when event handlers and translations
are installed or removed on the realized widget.

SEE ALSO
XtAddEventHandler(3Xt)
X Toolkit Intrinsics — C Language Interface
XIib - C Language X Interface

20 Ardent Computer Corporation —Release 3.0

XtBuildEventMask (3Xt)

1 Seetember 1988

XtCallAcceptFocus (3Xt) XtCallAcceptFocus (3Xt)
NAME
XtCallAcceptFocus - call a widget’s accept_focus procedure
SYNTAX
Boolean XtCallAcceptFocus(w, time)
Widget w;
Time *time;
ARGUMENTS
time Specifies the X time of the event that is causing the accept focus.
w Specifies the widget.
DESCRIPTION
The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure,
passing it the specified widget and time, and returns what the accept_focus pro-
cedure returns. If accept_focus is NULL, XtCallAcceptFocus returns False.
SEE ALSO

XtSetKeyboardFocus(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 21

XtCallCallbacks (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtCallCallbacks (3Xt)

XtCallCallbacks, XtHasCallbacks — process callbacks

void XtCallCallbacks(w, callback_name, call_data)
Widget w;
String callback_name;
caddr_t call_data;

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome}
XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback_name)
Widget w; ‘
String callback_name;

callback_name Specifies the callback list to be executed or checked.

call_data Specifies a callback-list specific data value to pass to each of the call-
back procedure in the list.

w Specifies the widget.

The XtCallCallbacks function calls each procedure that is registered in the specified
widget’s callback list.

The XtHasCallbacks function first checks to see if the widget has a callback list
identified by callback_name. If the callback list does not exist, XtHasCallbacks
returns XtCallbackNoList. If the callback list exists but is empty, it returns
XtCallbackHasNone. If the callback list exists and has at least one callback
registered, it returns XtCallbackHasSome.

XtAddCallback(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

22

Ardent Computer Corporation — Release 3.0

(

1 Seetember 1988

XtClass (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtClass (3Xt)

XtClass, XtSuperClass, XtIsSubclass, XtCheckSubclass, XtIsComposite, XtIsManaged
— obtain and verify a widget’s class

WidgetClass XtClass(w)
Widget w;

WidgetClass XtSuperclass(w)
Widget w;

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class;

void XtCheckSubclass(w, widget_class, message)
Widget w;
WidgetClass widget_class;
String message;

Boolean XtIsComposite(w)
Widget w;

Boolean XtlsManaged(w)
Widget w;

w Specifies the widget.

widget_class Specifies the widget class that the application top-level widget
should be.

message Specifies the message that is to be used.

The XtClass function returns a pointer to the widget’s class structure.

The XtSuperclass function returns a pointer to the widget’s superclass class struc-
ture.

The XtIsSubclass function returns True if the class of the specified widget is equal to
or is a subclass of the specified widget class. The specified widget can be any number
of subclasses down the chain and need not be an immediate subclass of the specified
widget class. Composite widgets that need to restrict the class of the items they con-
tain can use XtIsSubclass to find out if a widget belongs to the desired class of
objects.

The XtCheckSubclass macro determines if the class of the specified widget is equal
to or is a subclass of the specified widget class. The widget can be any number of
subclasses down the chain and need not be an immediate subclass of the specified
widget class. If the specified widget is not a subclass, XtCheckSubclass constructs an
error message from the supplied message, the widget’s actual class, and the expected
class and calls XtErrorMsg. XtCheckSubclass should be used at the entry point of
exported routines to ensure that the client has passed in a valid widget class for the
exported operation.

XtCheckSubclass is only executed when the widget has been compiled with the com-
piler symbol DEBUG defined; otherwise, it is defined as the empty string and gen-
erates no code.

The XtIsComposite function is a convenience function that is equivalent to XtIsSub-
class with compositeWidgetClass specified.

Ardent Computer Corporation — Release 3.0 23

XtClass (3Xt)

1 September 1988

XtClass (3Xt)
The XtIsManaged macro (for widget programmers) or function (for application pro-
grammers) returns True if the specified child widget is managed or False if it is not.
SEE ALSO
XtAppErrorMsg(3Xt), XtDisplay(3Xt)
X Toolkit Intrinsics — C Language Interface
X1ib — C Language X Interface
24

Ardent Computer Corporation— Release 3.0

(

1 September 1988
XtConfigureWidget (3Xt) XtConfigureWidget (3Xt)

NAME
XtConfigureWidget, XtMoveWidget, XtResizeWidget — move and resize widgets

SYNTAX
void XtConfigureWidget(w, x, y, width, height, border_width)

Widget w;

Position x;

Position y;

Dimension width;

Dimension height;

Dimension border_width;

void XtMoveWidget(w, x, y)
Widget w;
Position x;
Position ;

void XtResizeWidget(w, width, height, border_width)
Widget w;
Dimension width;
Dimension height;
Dimension border_width;

void XtResizeWindow(w)
Widget w;
ARGUMENTS
width
height
border_width ~ Specify the new widget size.

w Specifies the widget.

x
Y Specify the new widget x and y coordinates.

DESCRIPTION
The XtConfigureWidget function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtConfigureWidget writes the new

X, y, width, height, and border_width values into the widget and, if the widget is
realized, makes an Xlib XConfigureWindow call on the widget's window.

If either the new width or height is different from its old value, XtConfigureWidget

calls the widget’s resize procedure to notify it of the size change; otherwise, it simply
returns.

The XtMoveWidget function returns immediately if the specified geometry fields are
the same as the old values. Otherwise, XtMoveWidget writes the new x and y values
into the widget and, if the widget is realized, issues an Xlib XMoveWindow call on
the widget’s window.

The XtResizeWidget function returns immediately if the specified geometry fields
are the same as the old values. Otherwise, XtResizeWidget writes the new width,
height, and border_width values into the widget and, if the widget is realized, issues
an XConfigureWindow call on the widget’s window.

If the new width or height are different from the old values, XtResizeWidget calls
the widget’s resize procedure to notify it of the size change.

The XtResizeWindow function calls the XConfigureWindow Xlib function to make
the window of the specified widget match its width, height, and border width. This
request is done unconditionally because there is no way to tell if these values match

Ardent Computer Corporation — Release 3.0 25

, 1 September 1988
XtConfigureWidget (3Xt) XtConfigureWidget (3Xt)

the current values. Note that the widget’s resize procedure is not called.

There are very few times to use XtResizeWindow; instead, you should use
XtResizeWidget.
SEE ALSO
XtMakeGeometryRequest(3Xt), XtQueryGeometry(3Xt)
X Toolkit Intrinsics — C Language Interface
XIib — C Language X Interface

26 Ardent Computer Corporation— Release 3.0

1 Seetember 1988

XtConvert (3Xt) XtConvert (3Xt)
NAME
XtConvert, XtDirectConvert — invoke resource converters
SYNTAX
void XtConvert(w, from_type, from, to_type, to_return)
Widget w;
String from_type;
XrmValuePtr from;
String to_type;
XrmValuePtr to_return;
void XtDirectConvert(converter, args, num_args, from, to_return)
XtConverter converter;
XrmValuePtr args;
Cardinal num_args;
XrmValuePtr from;
XrmValuePtr to_return;
ARGUMENTS
args Specifies the argument list that contains the additional arguments
needed to perform the conversion (often NULL).
converter Specifies the conversion procedure that is to be called.
from Specifies the value to be converted.
from_type Specifies the source type.
num_args Specifies the number of additional arguments (often zero).
to_type Specifies the destination type.
to_return Returns the converted value.
w Specifies the widget to use for additional arguments (if any are
needed).
DESCRIPTION
The XtConvert function looks up the type converter registered to convert from_type
to to_type, computes any additional arguments needed, and then calls XtDirectCon-
vert.
The XtDirectConvert function looks in the converter cache to see if this conversion
procedure has been called with the specified arguments. If so, it returns a descriptor
for information stored in the cache; otherwise, it calls the converter and enters the
result in the cache.
Before calling the specified converter, XtDirectConvert sets the return value size to
zero and the return value address to NULL. To determine if the conversion was suc-
cessful, the client should check to_return.address for non-NULL.
SEE ALSO

XtAppAddConverter(3Xt), XtStringConversionWarning(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 27

1 September 1988

XtCreateApplicationContext (3Xt) XtCreateApplicationContext (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtCreateApplicationContext, XtDestroyApplicationContext, XtWidgetToApplica-
tionContext, XtToolkitInitialize — create, destroy, and obtain an application context

XtAppContext XtCreateApplicationContext()

void XtDestroyApplicationContext(app_context)
XtAppContext app_context;

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

void XtToolkitInitialize()

app_context Specifies the application context.

w Specifies the widget to use for additional arguments (if any are
needed).

The XtCreateApplicationContext function returns an application context, which is an
opaque type. Every application must have at least one application context.

The XtDestroyApplicationContext function destroys the specified application con-
text as soon as it is safe to do so. If called from with an event dispatch (for example, a
callback procedure), XtDestroyApplicationContext does not destroy the application
context until the dispatch is complete.

The XtWidgetToApplicationContext function returns the application context for the
specified widget.

The semantics of calling XtToolkitInitialize more than once are undefined.
XtDisplaylInitialize(3Xt)

X Toolkit Intrinsics — C Language Interface
X1ib — C Language X Interface

28

Ardent Computer Corporation — Release 3.0

1 September 1988

XtCreatePopupShell (3Xt) XtCreatePopupShell (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtCreatePopupShell - creates a popup shell

Widget XtCreatePopupShell(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArglList args;
Cardinal num_args;

args Specifies the argument list to override the resource defaults.
name Specifies the text name for the created shell widget.
num_args Specifies the number of arguments in the argument list.
parent Specifies the parent widget.

widget_class Specifies the widget class pointer for the created shell widget.

The XtCreatePopupShell function ensures that the specified class is a subclass of
Shell and, rather than using insert_child to attach the widget to the parent’s children
list, attaches the shell to the parent’s pop-ups list directly.

A spring-loaded pop-up invoked from a translation table already must exist at the
time that the translation is invoked, so the translation manager can find the shell by
name. Pop-ups invoked in other ways can be created “on-the-fly”” when the pop-up
actually is needed. This delayed creation of the shell is particularly useful when you
pop up an unspecified number of pop-ups. You can look to see if an appropriate
unused shell (that is, not currently popped up) exists and create a new shell if
needed.

XtCreateWidget(3Xt), XtPopdown(3Xt), XtPopup(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 29

1 September 1988

XtCreateWidget (3Xt) XtCreateWidget (3Xt)

NAME (|
XtCreateWidget, XtCreateManagedWidget, XtDestroyWidget — create and destroy
widgets

SYNTAX

Widget XtCreateWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArglList args;
Cardinal num_args;

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
Arglist args;
Cardinal num_args;

void XtDestroyWidget(w)

Widget w;
ARGUMENTS
args Specifies the argument list to override the resource defaults.
name Specifies the resource name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as
any other widget that is a child of same parent.
num_args Specifies the number of arguments in the argument list. (
parent Specifies the parent widget.
w Specifies the widget.
widget_class Specifies the widget class pointer for the created widget.
DESCRIPTION

The XtCreateWidget function performs much of the boilerplate operations of widget
creation:

. Checks to see if the class_initialize procedure has been called for this class and
for all superclasses and, if not, calls those necessary in a superclass-to-subclass
order.

e Allocates memory for the widget instance.

. If the parent is a subclass of constraintWidgetClass, it allocates memory for the
parent’s constraints and stores the address of this memory into the constraints
field.

e Initializes the core nonresource data fields (for example, parent and visible).

e Initializes the resource fields (for example, background_pixel) by using the
resource lists specified for this class and all superclasses.

. If the parent is a subclass of constraintWidgetClass, it initializes the resource
fields of the constraints record by using the constraint resource list specified for
the parent’s class and all superclasses up to constraintWidgetClass.

* Calls the initialize procedures for the widget by starting at the Core initialize
procedure on down to the widget’s initialize procedure.

30 Ardent Computer Corporation — Release 3.0

1 September 1988
XtCreateWidget (3Xt) XtCreateWidget (3Xt)

. If the parent is a subclass of compositeWidgetClass, it puts the widget into its
parent’s children list by calling its parent’s insert_child procedure. For further
information, see Section 3.5.

o If the parent is a subclass of constraintWidgetClass, it calls the constraint ini-
tialize procedures, starting at constraintWidgetClass on down to the parent’s
constraint initialize procedure.

Note that you can determine the number of arguments in an argument list by using
the XtNumber macro. For further information, see Section 11.1.

The XtCreateManagedWidget function is a convenience routine that calls
XtCreateWidget and XtManageChild.

The XtDestroyWidget function provides the only method of destroying a widget,
including widgets that need to destroy themselves. It can be called at any time,
including from an application callback routine of the widget being destroyed. This
requires a two-phase destroy process in order to avoid dangling references to des-
troyed widgets.

In phase one, XtDestroyWidget performs the following:
e If the being_destroyed field of the widget is True, it returns immediately.

e Recursively descends the widget tree and sets the being_destroyed field to
True for the widget and all children.

e Adds the widget to a list of widgets (the destroy list) that should be destroyed
when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the des-
troy list then w2 is not a descendent of w1. (A descendant refers to both normal and
pop-up children.)

Phase two occurs when all procedures that should execute as a result of the current
event have been called (including all procedures registered with the event and trans-
lation managers), that is, when the current invocation of XtDispatchEvent is about to
return or immediately if not in XtDispatchEvent.

In phase two, XtDestroyWidget performs the following on each entry in the destroy

list:

o Calls the destroy callback procedures registered on the widget (and all descen-
dants) in post-order (it calls children callbacks before parent callbacks).

. If the widget’s parent is a subclass of compositeWidgetClass and if the parent
is not being destroyed, it calls XtUnmanageChild on the widget and then calls
the widget’s parent’s delete_child procedure (see Section 3.4).

o If the widget’s parent is a subclass of constraintWidgetClass, it calls the con-
straint destroy procedure for the parent, then the parent’s superclass, until
finally it calls the constraint destroy procedure for constraintWidgetClass.

* Calls the destroy methods for the widget (and all descendants) in post-order.
For each such widget, it calls the destroy procedure declared in the widget
class, then the destroy procedure declared in its superclass, until finally it calls
the destroy procedure declared in the Core class record.

e Calls XDestroyWindow if the widget is realized (that is, has an X window).
The server recursively destroys all descendant windows.

e Recursively descends the tree and deallocates all pop-up widgets, constraint
records, callback lists and, if the widget is a subclass of compositeWidgetClass,
children.

Ardent Computer Corporation — Release 3.0 31

1 September 1988
XtCreateWidget (3Xt) XtCreateWidget (3Xt)

SEE ALSO (|
XtAppCreateShell(3Xt), XtCreatePopupShell(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

(|

32 Ardent Computer Corporation— Release 3.0

1 September 1988

XtCreateWindow (3Xt) XtCreateWindow (3Xt)
NAME
XtCreateWindow — window creation convenience function
SYNTAX
void XtCreateWindow(w, window_class, visual, value_mask, attributes)
Widget w;
unsigned int window_class;
Visual *visual;
XtValueMask value_mask;
XSetWindowAttributes *attributes;
ARGUMENTS
attributes Specifies the window attributes to use in the XCreateWindow call.
value_mask Specifies which attribute fields to use.
visual Specifies the visual type (usually CopyFromParent).
w Specifies the widget that is used to set the x,y coordinates and so on.
window_class Specifies the Xlib window class (for example, InputOutput, Inpu-
tOnly, or CopyFromParent).
DESCRIPTION
The XtCreateWindow function calls the Xlib XCreateWindow function with values
from the widget structure and the passed parameters. Then, it assigns the created
window to the widget’s window field. ,
XtCreateWindow evaluates the following fields of the Core widget structure:
e depth
i screen
o parent -> core.window
LI
¢y
o width
e height
o border_width
SEE ALSO

X Toolkit Intrinsics — C Language Interface
Xlib ~ C Language X Interface

Ardent Computer Corporation — Release 3.0 33

XtDisplay (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtDisplay (3Xt)

)
XtDisplay, XtParent, XtScreen, XtWindow — obtain window information about a (’
widget

Display *XtDisplay(w)
Widget w;

Widget XtParent(w)
Widget w;

Screen *XtScreen(w)
Widget w;

Window XtWindow(w)
Widget w;

w Specifies the widget.

XtDisplay returns the display pointer for the specified widget.
XtParent returns the parent widget for the specified widget.
XtScreen returns the screen pointer for the specified widget.

XtWindow returns the window of the specified widget.

XtClass(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface (

34

Ardent Computer Corporation— Release 3.0

1 September 1988
XtDisplaylnitialize (3Xt) XtDisplaylnitialize (3Xt)

NAME
XtDisplaylInitialize, XtOpenDisplay, XtDatabase, XtCloseDisplay — initialize, open, or
close a display

SYNTAX
void XtToolkitInitialize()

void XtDisplaylnitialize(app_context, display, application_name, application_class,
options, num_options, argc, argv)
XtAppContext app_context;
Display *display;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
Cardinal *argc;
String *argv;
Display *XtOpenDisplay(app_context, display_string, application_name,
application_class,
options, num_options, argc, argv)
XtAppContext app_context;
String display_string;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
Cardinal *argc;
String *argv;
void XtCloseDisplay(display)
Display *display;
XrmDatabase XtDatabase(display)
Display *display;
ARGUMENTS
arge Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.
app_context Specifies the application context.

application_class Specifies the class name of this application, which usually is the gen-
eric name for all instances of this application.

application_name
Specifies the name of the application instance.

display Specifies the display. Note that a display can be in at most one
application context.

num_options Specifies the number of entries in the options list.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand. For further information, see XIlib — C Language
X Interface.

DESCRIPTION

The XtDisplaylInitialize function builds the resource database, calls the Xlib XrmPar-
seCommand function to parse the command line, and performs other per display

Ardent Computer Corporation — Release 3.0 35

1 September 1988

XtDisplaylnitialize (3Xt) ‘ XtDisplaylnitialize (3Xt)

initialization. After XrmParseCommand has been called, argc and argv contain only
those parameters that were not in the standard option table or in the table specified
by the options argument. If the modified argc is not zero, most applications simply
print out the modified argv along with a message listing the allowable options. On
UNIX-based systems, the application name is usually the final component of argv[0].
If the synchronize resource is True for the specified application, XtDisplayInitialize
calls the Xlib XSynchronize function to put Xlib into synchronous mode for this
display connection. If the reverseVideo resource is True, the Intrinsics exchange
XtDefaultForeground and XtDefaultBackground for widgets created on this
display. (See Section 9.6.1).

The XtOpenDisplay function calls XOpenDisplay the specified display name. If
display_string is NULL, XtOpenDisplay uses the current value of the —display
option specified in argv and if no display is specified in argv, uses the user’s default
display (on UNIX-based systems, this is the value of the DISPLAY environment vari-
able).

If this succeeds, it then calls XtDisplayInitialize and pass it the opened display and
the value of the -name option specified in argv as the application name. If no name
option is specified, it uses the application name passed to XtOpenDisplay. If the
application name is NULL, it uses the last component of argv[0]. XtOpenDisplay
returns the newly opened display or NULL if it failed.

XtOpenDisplay is provided as a convenience to the application programmer.

The XtCloseDisplay function closes the specified display as soon as it is safe to do so.
If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that
applications need only call XtCloseDisplay if they are to continue executing after

closing the display; otherwise, they should call XtDestroyApplicationContext or just
exit.

The XtDatabase function returns the fully merged resource database that was built
by XtDisplaylInitialize associated with the display that was passed in. If this display
has not been initialized by XtDisplayInitialize, the results are not defined.

SEE ALSO
XtAppCreateShell(3Xt), XtCreate ApplicationContext(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface
36 Ardent Computer Corporation— Release 3.0

(

(

XtGetGC (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtGetGC (3Xt)

XtGetGC, XtReleaseGC — obtain and destroy a sharable GC

GC XtGetGC(w, value_mask, values)

Widget w;

XtGCMask value_mask;

XGCValues *values;
void XtReleaseGC(w, gc)

Widget w;

GC gc;
gc Specifies the GC to be deallocated.
values Specifies the actual values for this GC.
value_mask Specifies which fields of the values are specified.
w Specifies the widget.

The XtGetGC function returns a sharable, read-only GC. The parameters to this
function are the same as those for XCreateGC except that a widget is passed instead
of a display. XtGetGC shares only GCs in which all values in the GC returned by
XCreateGC are the same. In particular, it does not use the value_mask provided to
determine which fields of the GC a widget considers relevant. The value_mask is
used only to tell the server which fields should be filled in with widget data and
which it should fill in with default values. For further information about value_mask
and values, see XCreateGC in the XIib — C Language X Interface.

The XtReleaseGC function deallocate the specified shared GC.

X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 37

1 September 1988

XtGetSelectionValue (3Xt) XtGetSelectionValue (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtGetSelectionValue, XtGetSelectionValues — obtain selection values

void XtGetSelectionValue(w, selection, target, callback, client_data, time)
Widget w;
Atom selection;
Atom target;
XtSelectionCallbackProc callback;
caddr_t client_data;
Time time;

void XtGetSelectionValues(w, selection, targets, count, callback, client_data, time)
Widget w;
Atom selection;
Atom *targets;
int count;
XtSelectionCallbackProc callback;
caddr_t client_data;
Time time;

callback Specifies the callback procedure that is to be called when the selec-
tion value has been obtained.

client_data Specifies the argument that is to be passed to the specified procedure
when it is called.

client_data Specifies the client data (one for each target type) that is passed to
the callback procedure when it is called for that target.

count Specifies the length of the targets and client_data lists.

selection Specifies the particular selection desired (that is, primary or secon-
dary).

target Specifies the type of the information that is needed about the selec-
tion.

targets Specifies the types of information that is needed about the selection.

time Specifies the timestamp that indicates when the selection value is
desired.

w Specifies the widget that is making the request.

The XtGetSelectionValue function requests the value of the selection that has been
converted to the target type. The specified callback will be called some time after
XtGetSelectionValue is called; in fact, it may be called before or after XtGetSelec-
tionValue returns.

The XtGetSelectionValues function is similar to XtGetSelectionValue except that it
takes a list of target types and a list of client data and obtains the current value of the
selection converted to each of the targets. The effect is as if each target were specified
in a separate call to XtGetSelectionValue. The callback is called once with the
corresponding client data for each target. XtGetSelectionValues does guarantee that
all the conversions will use the same selection value becaues the ownership of the
selection cannot change in the middle of the list, as would be when calling XtGet-
SelectionValue repeatedly.

38

Ardent Computer Corporation— Release 3.0

1 September 1988
XtGetSelectionValue (3Xt) XtGetSelectionValue (3Xt)

SEE ALSO
XtAppGetSelectionTimeout(3Xt), XtOwnSelection(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 39

1 September 1988

XtGetSubresources (3Xt) XtGetSubresources (3Xt)

 NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtGetSubresources, XtGetApplicationResources — obtain subresources or application
resources

void XtGetSubresources(w, base, name, class, resources, num_resources, args, num_args)
Widget w;
caddr._t base;
String name;
String class;
XtResourceList resources;
Cardinal num_resources;
ArgList args;
Cardinal num_args;

void XtGetApplicationResources(w, base, resources, num_resources, args, num_args)
Widget w;
caddr_t base;
XtResourceList resources;
Cardinal num_resources;
Arglist args;
Cardinal num_args;

args Specifies the argument list to override resources obtained from the
resource database.

base Specifies the base address of the subpart data structure where the
resources should be written.

class Specifies the class of the subpart.

name Specifies the name of the subpart.

num_args Specifies the number of arguments in the argument list.
num_resources Specifies the number of resources in the resource list.
resources Specifies the resource list for the subpart.

w Specifies the widget that wants resources for a subpart or that
identifies the resource database to search.

The XtGetSubresources function constructs a name/class list from the application
name/class, the name/classes of all its ancestors, and the widget itself. Then, it
appends to this list the name/ class pair passed in. The resources are fetched from
the argument list, the resource database, or the default values in the resource list.
Then, they are copied into the subpart record. If args is NULL, num_args must be
zero. However, if num_args is zero, the argument list is not referenced.

The XtGetApplicationResources function first uses the passed widget, which is usu-
ally an application shell, to construct a resource name and class list, Then, it retrieves
the resources from the argument list, the resource database, or the resource list
default values. After adding base to each address, XtGetApplicationResources
copies the resources into the address given in the resource list. If args is NULL,
num_args must be zero. However, if num_args is zero, the argument list is not refer-
enced. The portable way to specify application resources is to declare them as
members of a structure and pass the address of the structure as the base argument.

40

Ardent Computer Corporation —Release 3.0

1 September 1988
XtGetSubresources (3Xt)

SEE ALSO
XtGetResourceList(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

XtGetSubresources (3Xt)

Ardent Computer Corporation — Release 3.0

41

1 September 1988

XtGetResourcelist (3Xt) XtGetResourceList(3Xt)
NAME
XtGetResourceList — obtain resource list
SYNTAX
void XtGetResourceList(class, resources_return, num_resources_return);
WidgetClass class;
XtResourceList *resources_return;
Cardinal *num_resources_return;
ARGUMENTS
num_resources_return
Specifies a pointer to where to store the number of entries in the
resource list.
resources_return Specifies a pointer to where to store the returned resource list. The
caller must free this storage using XtFree when done with it.
widget_class Specifies the widget class.
DESCRIPTION
If it is called before the widget class is initialized (that is, before the first widget of
that class has been created), XtGetResourceList returns the resource list as specified
in the widget class record. If it is called after the widget class has been initialized,
XtGetResourceList returns a merged resource list that contains the resources for all
superclasses.
SEE ALSO
XtGetSubresources(3Xt), XtOffset(3Xt)
X Toolkit Intrinsics — C Language Intetface
XIib — C Language X Interface
42 Ardent Computer Corporation—Release 3.0

(

XtMalloc (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

1 September 1988

XtMalloc (3Xt)

XtMalloc, XtCalloc, XtRealloc, XtFree, XtNew, XtNewString — memory management
functions

char *XtMalloc(size);
Cardinal size;

char #XtCalloc(num, size);
Cardinal num;
Cardinal size;

char *XtRealloc(ptr, num);
char *ptr;
Cardinal num;

void XtFree(ptr);
char #ptr;

type *XtNew(type);
type;

String XtNewString(string);
String string;

num Specifies the number of bytes or array elements.

ptr Specifies a pointer to the old storage or to the block of storage that is
to be freed.

size Specifies the size of an array element (in bytes) or the number of
bytes desired.

string Specifies a previously declared string.

type Specifies a previously declared data type.

The XtMalloc functions returns a pointer to a block of storage of at least the specified
size bytes. If there is insufficient memory to allocate the new block, XtMalloc calls
XtErrorMsg.

The XtCalloc function allocates space for the specified number of array elements of
the specified size and initializes the space to zero. If there is insufficient memory to
allocate the new block, XtCalloc calls XtErrorMsg.

The XtRealloc function changes the size of a block of storage (possibly moving it).
Then, it copies the old contents (or as much as will fit) into the new block and frees
the old block. If there is insufficient memory to allocate the new block, XtRealloc
calls XtErrorMsg. If ptr is NULL, XtRealloc allocates the new storage without copy-
ing the old contents; that is, it simply calls XtMalloc.

The XtFree function returns storage and allows it to be reused. If ptr isNULL,
XtFree returns immediately.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to
allocate the new block, XtNew calls XtErrorMsg. XtNew is a convenience macro that
calls XtMalloc with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type))

XtNewString returns a pointer to the allocated storage. If there is insufficient
memory to allocate the new block, XtNewString calls XtErrorMsg. XtNewStringisa
convenience macro that calls XtMalloc with the following arguments specified:

Ardent Computer Corporation — Release 3.0 43

1 September 1988
XtMalloc (3Xt) XtMalloc (3Xt)

(strepy(XtMalloc((unsigned) strlen(str) + 1), str))

SEE ALSO
X Toolkit Intrinsics — C Language Interface
X1ib - C Language X Interface

44 Ardent Computer Corporation — Release 3.0

1 September 1988

XtMapWidget (3Xt) XtMapWidget (3Xt)
NAME
XtMapWidget, XtSetMappedWhenManaged, XtUnmapWidget — map and unmap
widgets
SYNTAX ‘
XtMapWidget(w)
Widget w;
void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;
Boolean map_when_managed;
XtUnmapWidget(w)
Widget w;
ARGUMENTS
map_when_managed
Specifies a Boolean value that indicates the new value of the
map_when_managed field.
w Specifies the widget.
DESCRIPTION
If the widget is realized and managed and if the new value of map_when_managed
is True, XtSetMappedWhenManaged maps the window. If the widget is realized
and managed and if the new value of map_when_managed is False, it unmaps the
window. XtSetMappedWhenManaged is a convenience function that is equivalent
to (but slightly faster than) calling XtSetValues and setting the new value for the
mappedWhenManaged resource. As an alternative to using XtSetMappedWhen-
Managed to control mapping, a client may set mapped_when_managed to False and
use XtMapWidget and XtUnmapWidget explicitly.
SEE ALSO

XtManageChildren(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 45

1 September 1988

XtMakeGoeometryRequest (3Xt) XtMakeGeometryRequest (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtMakeGeometryRequest, XtMakeResizeRequest — make geometry manager request

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return)
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *reply_return;

XtGeometryResult XtMakeResizeRequest(w, width, height, width_return, height_return)
Widget w;
Dimension width, height;
Dimension *width_return, *height_return

reply_return Returns the allowed widget size or may be NULL if the requesting
widget is not interested in handling XtGeometryAlmost.

request Specifies the desired widget geometry (size, position, border width,
and stacking order).

w Specifies the widget that is making the request.

width_return
height_return Return the allowed widget width and height.

Depending on the condition, XtMakeGeometryRequest performs the following:

e If the widget is unmanaged or the widget’s parent is not realized, it makes the
changes and returns XtGeometryYes.

e If the parent is not a subclass of compositeWidgetClass or the parent’s
geometry_manager is NULL, it issues an error.

e If the widget’s being_destroyed field is True, it returns XtGeometryNo.

. If the widget x, y, width, height and border_width fields are all equal to the
requested values, it returns XtGeometryYes; otherwise, it calls the parent’s
geometry_manager procedure with the given parameters.

. If the parent’s geometry manager returns XtGeometryYes and if
XtCWQueryOnly is not set in the request_mode and if the widget is realized,
XtMakeGeometryRequest calls the XConfigureWindow Xlib function to

reconfigure the widget’s window (set its size, location, and stacking order as
appropriate).

e If the geometry manager returns XtGeometryDone, the change has been
approved and actually has been done. In this case, XtMakeGeometryRequest

does no configuring and returns XtGeometryYes. XtMakeGeometryRequest
never returns XtGeometryDone.

Otherwise, XtMakeGeometryRequest returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are always unmanaged; thus, XtMakeGeometryRe-
quest always returns XtGeometryYes when called by a child of a primitive widget.

The XtMakeResizeRequest function, a simple interface to XtMakeGeometryRe-
quest, creates a XtWidgetGeometry structure and specifies that width and height
should change. The geometry manager is free to modify any of the other window
attributes (position or stacking order) to satisfy the resize request. If the return value
is XtGeometryAlmost, width_return and height_return contain a compromise width
and height. If these are acceptable, the widget should immediately make an

46

Ardent Computer Corporation — Release 3.0

1 September 1988
XtMakeGeometryRequest (3Xt XtMakeGeometryRequest (3Xt
yheq (yheq

XtMakeResizeRequest and request that the compromise width and height be
applied. If the widget is not interested in XtGeometryAlmost replies, it can pass
NULL for width_return and height_return.

SEE ALSO

XtConfigureWidget(3Xt), XtQueryGeometery(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 .47

1 September 1988

R
XtManageChlldren (3Xt) XtManageChildren (3Xt)

NAME

XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild -
manage and unmanage children

SYNTAX
typedef Widget *WidgetList;
void XtManageChildren(children, num_children)
WidgetList children;
Cardinal num_children;
void XtManageChild(child)
Widget child;
void XtUnmanageChildren(children, num_children)
WidgetList children;
Cardinal num_children;
void XtUnmanageChild(child)
Widget child;
ARGUMENTS
child Specifies the child.
children Specifies a list of child widgets.
num_children Specifies the number of children.
DESCRIPTION
The XtManageChildren function performs the following;:
U Issues an error if the children do not all have the same parent or if the parent is
not a subclass of compositeWidgetClass.
® Returns immediately if the common parent is being destroyed; otherwise, for
each unique child on the list, XtManageChildren ignores the child if it already
is managed or is being destroyed and marks it if not.
e If the parent is realized and after all children have been marked, it makes some
of the newly managed children viewable:
- Calls the change_managed routine of the widgets’ parent.
- Calls XtRealizeWidget on each previously unmanaged child that is
unrealized.
— Maps each previously unmanaged child that has map_when_managed
True.
Managing children is independent of the ordering of children and independent of
creating and deleting children. The layout routine of the parent should consider chil-
dren whose managed field is True and should ignore all other children. Note that
some composite widgets, especially fixed boxes, call XtManageChild from their
insert_child procedure.
If the parent widget is realized, its change_managed procedure is called to notify it
that its set of managed children has changed. The parent can reposition and resize
any of its children. It moves each child as needed by calling XtMoveWidget, which
first updates the x and y fields and then calls XMoveWindow if the widget is real-
ized.
The XtManageChild function constructs a WidgetList of length one and calls
XtManageChildren.
48

Ardent Computer Corporation - Release 3.0

1 September 1988
L e o P
XtManageChildren (3Xt) XtManageChildren (3Xt)

The XtUnmanageChildren function performs the following;:

e Issues an error if the children do not all have the same parent or if the parent is
not a subclass of compositeWidgetClass.

. Returns immediately if the common parent is being destroyed; otherwise, for
each unique child on the list, XtUnmanageChildren performs the following:

- Ignores the child if it already is unmanaged or is being destroyed and
marks it if not.

- If the child is realized, it makes it nonvisible by unmapping it.

o Calls the change_managed routine of the widgets’ parent after all children have
been marked if the parent is realized.

XtUnmanageChildren does not destroy the children widgets. Removing widgets

from a parent’s managed set is often a temporary banishment, and, some time later,
you may manage the children again.

The XtUnmanageChild function constructs a widget list of length one and calls
XtUnmanageChildren.
SEE ALSO
XtMapWidget(3Xt), XtRealizeWidget(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 48

1 September 1988

XtNameToWidget (3Xt) XtNameToWidget (3Xt)

NAME (‘:
XtNameToWidget, XtWidgetToWindow - translating strings to widgets or widgets
to windows

SYNTAX

Widget XtNameToWidget(reference, names);
Widget reference;
String names;

Widget XtWindowToWidget(display, window)
Display *display;
; Window window;
ARGUMENTS
display Specifies the display on which the window is defined.

names Specifies the fully qualified name of the desired widget.
reference Specifies the widget from which the search is to start.

window Specify the window for which you want the widget.

DESCRIPTION
The XtNameToWidget function looks for a widget whose name is the first com-
ponent in the specified names and that is a pop-up child of reference (or a normal
child if reference is a subclass of compositeWidgetClass). It then uses that widget as
the new reference and repeats the search after deleting the first component from the
specified names. If it cannot find the specified widget, XtNameToWidget returns
NULL.

Note that the names argument contains the name of a widget with respect to the
specified reference widget and can contain more than one widget name (separated by :
periods) for widgets that are not direct children of the specified reference widget. (

If more than one child of the reference widget matches the name, XtNameToWidget
can return any of the children. The Intrinsics do not require that all children of a
widget have unique names. If the specified names contain more than one component
and if more than one child matches the first component, XtNameToWidget can
return NULL if the single branch that it follows does not contain the named widget.
That is, XtNameToWidget does not back up and follow other matching branches of
the widget tree.

The XtWindowToWidget function translates the specified window and display
pointer into the appropriate widget instance.

SEE ALSO
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

50 Ardent Computer Corporation-Felease 3.0

XtOffsat (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtOffset (3Xt)

XtOffset, XtNumber — determine the byte offset or number of array elements

Cardinal XtOffset(pointer_type, field_name)

Type pointer_type;
Field field_name;

Cardinal XtNumber(array)
ArrayVariable array;

array Specifies a fixed-size array.
field_name Specifies the name of the field for which to calculate the byte offset.
pointer_type Specifies a type that is declared as a pointer to the structure.

The XtOffset macro is usually used to determine the offset of various resource fields
from the beginning of a widget and can be used at compile time in static initializa-
tions.

The XtNumber macro returns the number of elements in the specified argument lists,
resources lists, and other counted arrays.

XtGetResourceList(3Xt), XtSetArg(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 51

1 September 1988 g

XtOwnSelection (3Xt) XtOwnSelection (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtOwnSelection, XtDisownSelection — set selection owner

Boolean XtOwnSelection(w, selection, time, convert_proc, lose_selection, done_proc)
Widget w;
Atom selection;
Time time;
XtConvertSelectionProc convert_proc;
XtLoseSelectionProc lose_selection;
XtSelectionDoneProc done_proc;

void XtDisownSelection(w, selection, time)
Widget w;
Atom selection;
Time time;

convert_proc Specifies the procedure that is to be called whenever someone
requests the current value of the selection.

done_proc Specifies the procedure that is called after the requestor has received
the selection or NULL if the owner is not interested in being called
back.

lose_selection Specifies the procedure that is to be called whenever the widget has
lost selection ownership or NULL if the owner is not interested in
being called back.

selection Specifies an atom that describes the type of the selection (for exam-
ple, XA_PRIMARY, XA_SECONDARY, or XA_CLIPBOARD).

time Specifies the timestamp that indicates when the selection ownership
should commence or is to be relinquished.

w Specifies the widget that wishes to become the owner or to relinqu-
ish ownership.

The XtOwnSelection function informs the Intrinsics selection mechanism that a
widget believes it owns a selection. It returns True if the widget has successfully
become the owner and False otherwise. The widget may fail to become the owner if
some other widget has asserted ownership at a time later than this widget. Note that
widgets can lose selection ownership either because someone else asserted later own-
ership of the selection or because the widget voluntarily gave up ownership of the
selection. Also note that the lose_selection procedure is not called if the widget fails
to obtain selection ownership in the first place.

The XtDisownSelection function informs the Intrinsics selection mechanism that the
specified widget is to lose ownership of the selection. If the widget does not
currently own the selection either because it lost the selection or because it never had
the selection to begin with, XtDisownSelection does nothing,.

After a widget has called XtDisownSelection, its convert procedure is not called
even if a request arrives later with a timestamp during the period that this widget
owned the selection. However, its done procedure will be called if a conversion that
started before the call to XtDisownSelection finishes after the call to XtDisownSelec-
tion.

52

Ardeni Computer Corporation —FAslease 315

1 September 1988

XtOwnSelection (3Xt)

SEE ALSO
XtAppGetSelectionTimeout(3Xt), XtGetSelectionValue(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

XtOwnSelection (3Xt)

Ardent Computer Corporation — Release 3.0

53

1 Seetember 1988

XtPopup (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

XtPopup (3Xt)

XtPopup, XtCallbackNone, XtCallbackNonexclusive, XtCallbackExclusive, Menu-
Popup - map a pop-up

void XtPopup(popup_shell, grab_kind)
Widget popup_shell;
XtGrabKind grab_kind;

void XtCallbackNone(w, client_data, call_data)
Widget w;
caddr_t client_data;
caddr_t call_data;

void XtCallbackNonexclusive(w, client_data, call_data)
Widget w;
caddr_t client_data;
caddr_t call_data;

void XtCallbackExclusive(w, client_data, call_data)
Widget w;
caddr_t client_data;
caddr_t call_data;

void MenuPopup(shell_name)
String shell_name;

call_data Specifies the callback data, which is not used by this procedure.
client_data Specifies the pop-up shell.

grab_kind Specifies the way in which user events should be constrained.
popup_shell Specifies the widget shell.

w Specifies the widget.

The XtPopup function performs the following:

e Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.
e Generates an error if the shell’s popped_up field is already True.

e (Calls the callback procedures on the shell’s popup_callback list.

e Sets the shell popped_up field to True, the shell spring_loaded field to False,
and the shell grab_kind field from grab_kind.

e If the shell’s create_popup_child field is non-NULL, XtPopup calls it with
popup_shell as the parameter.

. If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:
XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), False)

¢ Calls XtRealizeWidget with popup_shell specified.

¢ Calls XMapWindow with popup_shell specified.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions
call XtPopup with the shell specified by the client data argument and grab_kind set
as the name specifies. XtCallbackNone, XtCallbackNonexclusive, and
XtCallbackExclusive specify XtGrabNone, XtGrabNonexclusive, and XtGrabEx-
clusive, respectively. Each function then sets the widget that executed the callback
list to be insensitive by using XtSetSensitive. Using these functions in callbacks is

54

Ardent Computer Corporation — Release 3.0

()

1 September 1988

XtPopup (3Xt)

SEE ALSO

XtPopup (3Xt)

not required. In particular, an application must provide customized code for call-
backs that create pop-up shells dynamically or that must do more than desensitizing
the button.

MenuPopup is known to the translation manager, which must perform special
actions for spring-loaded pop-ups. Calls to MenuPopup in a translation specification
are mapped into calls to a nonexported action procedure, and the translation
manager fills in parameters based on the event specified on the left-hand side of a
translation.

If MenuPopup is invoked on ButtonPress (possibly with-modifiers), the translation
manager pops up the shell with grab_kind set to XtGrabExclusive and
spring_loaded set to True. If MenuPopup is invoked on EnterWindow (possibly
with modifiers), the translation manager pops up the shell with grab_kind set to
XtGrabNonexclusive and spring_loaded set to False. Otherwise, the translation

manager generates an error. When the widget is popped up, the following actions
occur:

. Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.
e Generates an error if the shell’s popped_up field is already True.
. Calls the callback procedures on the shell’s popup_callback list.

o Sets the shell popped_up field to True and the shell grab_kind and
spring_loaded fields appropriately.

e If the shell’s create_popup_child field is non-NULL, it is called with
popup_shell as the parameter.

¢ Calls:

XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), spring_loaded)
* Calls XtRealizeWidget with popup_shell specified.
¢ Calls XMapWindow with popup_shell specified.

(Note that these actions are the same as those for XtPopup.) MenuPopup tries to
find the shell by searching the widget tree starting at the parent of the widget in
which it is invoked. If it finds a shell with the specified name in the pop-up children
of that parent, it pops up the shell with the appropriate parameters. Otherwise, it
moves up the parent chain as needed. If MenuPopup gets to the application widget
and cannot find a matching shell, it generates an error.

XtCreatePopupShell(3Xt), XtPopdown(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

Ardent Computer Corporation — Release 3.0 55

XtPopdown (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

1 September 1988
XtPopdown (3Xt)

XtPopdown, XtCallbackPopdown, MenuPopdown — unmap a pop-up

void XtPopdown(popup_shell)
Widget popup_shell;

void XtCallbackPopdown(w, client_data, call_data)
Widget w;
caddr_t client_data;
caddr_t call_data;

void MenuPopdown(shell_name)
String shell_name;

call_data Specifies the callback data, which is not used by this procedure.
client_data Specifies a pointer to the XtPopdownID structure.

popup_shell Specifies the widget shell to pop down.

shell_name Specifies the name of the widget shell to pop down.

w Specifies the widget.

The XtPopdown function performs the following;:
* Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

¢ Checks that popup_shell is currently popped_up; otherwise, it generates an
error.

. Unmaps popup_shell’s window.

. If popup_shell’s grab_kind is either XtGrabNonexclusive or XtGrabExclusive,
it calls XtRemoveGrab.

* Sets pop-up shell’s popped_up field to False.
e Calls the callback procedures on the shell’s popdown_callback list.

The XtCallbackPopdown function casts the client data parameter to an XtPop-
downlID pointer:

typedef struct { Widget shell_widget; Widget enable_widget; }
XtPopdownIDRec, *XtPopdownID; The shell_widget is the pop-up shell to pop
down, and the enable_widget is the widget that was used to pop it up.

XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls
XtSetSensitive to resensitize the enable_widget.

If a shell name is not given, MenuPopdown calls XtPopdown with the widget for ~
which the translation is specified. If a shell_name is specified in the translation table,
MenuPopdown tries to find the shell by looking up the widget tree starting at the
parent of the widget in which it is invoked. If it finds a shell with the specified name
in the pop-up children of that parent, it pops down the shell; otherwise, it moves up
the parent chain as needed. If MenuPopdown gets to the application top-level shell
widget and cannot find a matching shell, it generates an error.

XtCreatePopupShell(3Xt), XtPopup(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

56

Ardent Computer Corporation - Release 3.0

1 September 1988

XtParseAcceleratorTable (3Xt) XtParseAcceleratorTable (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtParseAcceleratorTable, XtInstall Accelerators, XtInstallAllAccelerators — managing
accelerator tables

XtAccelerators XtParseAcceleratorTable(source)
String source;

void XtInstallAccelerators(destination, source)
Widget destination;
Widget source;

void XtInstallAll Accelerators(destination, source)
Widget destination;
Widget source;

source Specifies the accelerator table to compile.
destination Specifies the widget on which the accelerators are to be installed.-

source Specifies the widget or the root widget of the widget tree from which
the accelerators are to come.

The XtParseAcceleratorTable function compiles the accelerator table into the opaque
internal representation.

The XtInstallAccelerators function installs the accelerators from source onto destina-
tion by augmenting the destination translations with the source accelerators. If the
source display_accelerator method is non-NULL, XtInstallAccelerators calls it with
the source widget and a string representation of the accelerator table, which indicates
that its accelerators have been installed and that it should display them appropri-

ately. The string representation of the accelerator table is its canonical translation
table representation.

The XtInstallAllAccelerators function recursively descends the widget tree rooted at
source and installs the accelerators of each widget encountered onto destination. A
common use 0s to call XtInstallAllAccelerators and pass the application main win-
dow as the source.

XtParseTranslationTable(1)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 57

1 September 1988

XtParseTranslationTable (3Xt) XtParseTranslationTable (3Xt)

NAME

XtParseTranslationTable, XtAugmentTranslations, XtOverrideTranslations, XtUnin-
stallTranslations — manage translation tables

SYNTAX
XtTranslations XtParseTranslationTable(table)
String table;
void XtAugmentTranslations(w, translations)
Widget w;
XtTranslations translations;
void XtOverrideTranslations(w, translations)
Widget w;
XtTranslations translations;
void XtUninstallTranslations(w)
Widget w;
ARGUMENTS
table Specifies the translation table to compile.
translations Specifies the compiled translation table to merge in (must not be
NULL). »
w Specifies the widget into which the new translations are to be
merged or removed.
DESCRIPTION
The XtParseTranslationTable function compiles the translation table into the opaque
internal representation of type XtTranslations. Note that if an empty translation
table is required for any purpose, one can be obtained by calling XtParseTransla-
tionTable and passing an empty string,.
The XtAugmentTranslations function nondestructively merges the new translations
into the existing widget translations. If the new translations contain an event or
event sequence that already exists in the widget’s translations, the new translation is
ignored.
The XtOverrideTranslations function destructively merges the new translations into
the existing widget translations. If the new translations contain an event or event
sequence that already exists in the widget’s translations, the new translation is
merged in and override the widget’s translation.
To replace a widget’s translations completely, use XtSetValues on the XtNtransla-
tions resource and specifiy a compiled translation table as the value.
The XtUninstallTranslations function causes the entire translation table for widget
to be removed.
SEE ALSO
XtAppAddActions(3Xt), XtCreatePopupShell(3Xt), XtParseAcceleratorTable(3Xt),
XtPopup(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface
58

Ardent Computer Corporation —Release 3.0

1 September 1988
S S e P S U N P PR
XtQueryGeomatry (3Xt) XtQueryGeometry (3Xt)

NAME
XtQueryGeometry — query the preferred geometry of a child widget
SYNTAX
XtGeometryResult XtQueryGeometry(w, intended, preferred_return)
Widget w;
XtWidgetGeometry *intended, *preferred_return;
ARGUMENTS

intended Specifies any changes the parent plans to make to the child’s
geometry or NULL.

preferred_return Returns the child widget’s preferred geometry.

w Specifies the widget.

DESCRIPTION .
To discover a child’s preferred geometry, the child’s parent sets any changes that it
intends to make to the child’s geometry in the corresponding fields of the intended

structure, sets the corresponding bits in intended.request_mode, and calls XtQuer-
yGeometry. '

XtQueryGeometry clears all bits in the preferred_return->request_mode and checks
_the query_geometry field of the specified widget’s class record. If query_geometry is
not NULL, XtQueryGeometry calls the query_geometry procedure and passes as
arguments the specified widget, intended, and preferred_return structures. If the
intended argument is NULL, XtQueryGeometry replaces it with a pointer to an
XtWidgetGeometry structure with request_mode=0 before calling query_geometry.
SEE ALSO

XtConfigureWidget(3Xt), XtMakeGeometryRequest(3Xt)

X Toolkit Intrinsics — C Language Interface

Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 59

1 September 1988

XtRealizeWidget (3Xt) XtRealizeWidget (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtRealizeWidget, XtIsRealized, XtUnrealizeWidget - realize and unrealize widgets

void XtRealizeWidget(w)
Widget w;

Boolean XtIsRealized(w)
Widget w;

void XtUnrealizeWidget(w)
Widget w;

w Specifies the widget.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise, it per-
forms the following:

¢ Bindsall action names in the widget’s translation table to procedures (see Sec-
tion 10.1.2).

* Makes a post-order traversal of the widget tree rooted at the specified widget
and calls the change_managed procedure of each composite widget that has
one or more managed children.

* Constructs an XSetWindowAttributes structure filled in with information
derived from the Core widget fields and calls the realize procedure for the
widget, which adds any widget-specific attributes and creates the X window.

. If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget
returns; otherwise, it continues and performs the following:

- Descends recursively to each of the widget’s managed children and calls
the realize procedures. Primitive widgets that instantiate children are
responsible for realizing those children themselves.

- Maps all of the managed children windows that have
mapped_when_managed True. (If a widget is managed but
mapped_when_managed is False, the widget is allocated visual space but
is not displayed. Some people seem to like this to indicate certain states.)

If the widget is a top-level shell widget (that is, it has no parent), and
mapped_when_managed is True, XtRealizeWidget maps the widget window.

The XtIsRealized function returns True if the widget has been realized, that is, if the
widget has a nonzero X window ID.

Some widget procedures (for example, set_values) might wish to operate differently
after the widget has been realized.

The XtUnrealizeWidget function destroys the windows of an existing widget and all
of its children (recursively down the widget tree). To recreate the windows at a later
time, call XtRealizeWidget again. If the widget was managed, it will be unmanaged
automatically before its window is freed.

XtManageChildren(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

60

Ardent Computer Corporation — Release 3.0

1 Seetember 1988

XtSetArg (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

SEE ALSO

XtSetArg (3Xt)

XtSetArg, XtMergeArgLists — set and merge ArgLists

XtSetArg(arg, name, value)
Argarg;
String name;
XtArgVal value;

ArgList XtMergeArglLists(args1, num_argsl, args2, num_args2)
ArgList args1;
Cardinal num_args1;
Arglist args2;
Cardinal num_args2;

arg Specifies the name-value pair to set.

argsl Specifies the first ArgList.

args2 Specifies the second ArgList.

num_argsl Specifies the number of arguments in the first argument list.
num_args2 Specifies the number of arguments in the second argument list.
name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal or the
address.

The XtSetArg function is usually used in a highly stylized manner to minimize the
probability of making a mistake; for example:

Arg args[20]; int n;
n = 0; XtSetArg(args[n], XtNheight, 100); n++; XtSetArg(argsin],
XtNwidth, 200); n++; XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use
XtNumber:

static Args args[] = { {XtNheight, (XtArgVal) 100}, {XtNwidth,
(XtArgVal) 200}, }; XtSetValues(Widget, args, XtNumber(args));

Note that you should not use auto-increment or auto-decrement within the first argu-
ment to XtSetArg. XtSetArg can be implemented as a macro that dereferences the
first argument twice.

The XtMergeArgLists function allocates enough storage to hold the combined
ArgList structures and copies them into it. Note that it does not check for duplicate
entries. When it is no longer needed, free the returned storage by using XtFree.

XtOffset(3Xt)
X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 61

1 September 1988

XtSetKeyboardFocus (3Xt) XtSetKeyboardFocus (3Xt)

NAME \
XtSetKeyboardFocus - focus events on a child widget S

SYNTAX

XtSetKeyboardFocus(subtree, descendant)
Widget subtree, descendant;

ARGUMENTS
descendant Specifies either the widget in the subtree structure which is to
receive the keyboard event, or None. Note that it is not an error to
specify None when no input focus was previously set.

w Specifies the widget for which the keyboard focus is to be set.
DESCRIPTION
If a future KeyPress or KeyRelease event occurs within the specified subtree, XtSet-

KeyboardFocus causes XtDispatchEvent to remap and send the event to the
specified descendant widget.

When there is no modal cascade, keyboard events can occur within a widget W in
one of three ways:

* W has the X input focus.

. W has the keyboard focus of one of its ancestors, and the event occurs within
the ancestor or one of the ancestor’s descendants.

* Noancestor of W has a descendant within the keyboard focus, and the pointer
is within W.

When there is a modal cascade, a widget W receives keyboard events if an ancestor
of W is in the active subset of the modal cascade and one or more of the previous
conditions is True. (

When subtree or one of its descendants acquires the X input focus or the pointer
moves into the subtree such that keyboard events would now be delivered to sub-
tree, a FocusIn event is generated for the descendant if FocusNotify events have
been selected by the descendant. Similarly, when W loses the X input focus or the
keyboard focus for one of its ancestors, a FocusOut event is generated for descendant
if FocusNotify events have been selected by the descendant.

SEE ALSO
XtCallAcceptFocus(3Xt)

- X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

62 Ardent Computer Corporation — Release 3.0

1 September 1988
XtSetKeyTranslator (3Xt) XtSetKeyTranslator (3Xt)

NAME
XtSetKeyTranslator, XtTranslateKeycode, XtRegisterCaseConverter, XtConvertCase
- convert KeySym to KeyCodes
SYNTAX
void XtSetKeyTranslator(display, proc)
Display *display;
XtKeyProc proc;

void XtTranslateKeycode(display, keycode, modifiers, modifiers_return, keysym_return)
Display *display;
KeyCode keycode;
Modifiers modifiers;
Modifiers *modifiers_return;
KeySym *keysym_return;
void XtRegisterCaseConverter(display, proc, start, stop)
Display *display;
XtCaseProc proc;
KeySym start;
KeySym stop;
void XtConvertCase(display, keysym, lower_return, upper_return)
Display *display;
KeySym keysym;
KeySym *lower_return;
KeySym *upper_return;
ARGUMENTS
display Specifies the display.
keycode Specifies the KeyCode to translate.
keysym Specifies the KeySym to convert.
keysym_return Returns the resulting KeySym.
lower_return Returns the lowercase equivalent of the KeySym.
upper_return Returns the uppercase equivalent of the KeySym.
modifiers Specifies the modifiers to the KeyCode.

modifiers_return Returns a mask that indicates the modifiers actually used to generate
the KeySym.

proc Specifies the procedure that is to perform key translations or conver-
sions.

start Specifies the first KeySym for which this converter is valid.

stop Specifies the last KeySym for which this converter is valid.
DESCRIPTION

The XtSetKeyTranslator function sets the specified procedure as the current key
translator. The default translator is XtTranslateKey, an XtKeyProc that uses Shift
and Lock modifiers with the interpretations defined by the core protocol. It is pro-
vided so that new translators can call it to get default KeyCode-to-KeySym transla-
tions and so that the default translator can be reinstalled.

The XtTranslateKeycode function passes the specified arguments directly to the
currently registered KeyCode to KeySym translator.

Ardent Computer Corporation — Release 3.0 63

1 September 1988

XtSetKeyTranslator (3Xt) ‘XtSetKeyTranslator (3Xt)

SEE ALSO

The XtRegisterCaseConverter registers the specified case converter. The start and
stop arguments provide the inclusive range of KeySyms for which this converter is to
be called. The new converter overrides any previous converters for KeySyms in that
range. No interface exists to remove converters; you need to register an identity con-
verter. When a new converter is registered, the Intrinsics refreshes the keyboard
state if necessary. The default converter understands case conversion for all
KeySyms defined in the core protocol.

The XtConvertCase function calls the appropriate converter and returns the results.
A user-supplied XtKeyProc may need to use this function.

X Toolkit Intrinsics — C Language Interface
Xlib — C Language X Interface

64

Ardent Computer Corporation — Release 3.0

-

1 September 1988
T 1 TS ¥ P T SN B P PR
XtSetSensitive (3Xt) XtSetSensitive (3Xt)

NAME
XtSetSensitive, XtIsSensitive - set and check a widget’s sensitivity state
SYNTAX
void XtSetSensitive(w, sensitive)
Widget w;
Boolean sensitive;
Boolean XtIsSensitive(w)
Widget w;
ARGUMENTS
sensitive Specifies a Boolean value that indicates whether the widget should
receive keyboard and pointer events.
w Specifies the widget.
DESCRIPTION
The XtSetSensitive function first calls XtSetValues on the current widget with an
argument list specifying that the sensitive field should change to the new value. It
then recursively propagates the new value down the managed children tree by cal-
ling XtSetValues on each child to set the ancestor_sensitive to the new value if the
new values for sensitive and the child’s ancestor_sensitive are not the same.
XtSetSensitive calls XtSetValues to change sensitive and ancestor_sensitive. There-
fore, when one of these changes, the widget’s set_values procedure should take
whatever display actions are needed (for example, greying out or stippling the
widget).
XtSetSensitive maintains the invariant that if parent has either sensitive or
ancestor_sensitive False, then all children have ancestor_sensitive False.
The XtIsSensitive function returns True or False to indicate whether or not user
input events are being dispatched. If both core.sensitive and core.ancestor_sensitive
are True, XtIsSensitive returns True; otherwise, it returns False.
SEE ALSO

X Toolkit Intrinsics — C Language Interface
Xlib ~ C Language X Interface

Ardent Computer Corporation — Release 3.0 65

XtSetValues (3Xt)

NAME

SYNTAX

ARGUMENTS

DESCRIPTION

1 September 1988
XtSetValues (3Xt)

XtSetValues, XtSetSubvalues, XtGetValues, XtGetSubvalues — obtain and set widget
resources

void XtSetValues(w, args, num_args)
Widget w;
Arglist args;
Cardinal num_args;

void XtSetSubvalues(base, resources, num_resources, args, num_args)
caddr_t base;
XtResourceList resources;
Cardinal num_resources;
Arglist args;
Cardinal num_args;

void XtGetValues(w, args, num_args)
Widget w;
Arglist args;
Cardinal num_args;

void XtGetSubvalues(base, resources, num_resources, args, num_args)
caddr_t base;
XtResourceList resources;
Cardinal num_resources;
ArglList args;
Cardinal num_args;

args Specifies the argument list of name/address pairs that contain the
resource name and either the address into which the resource value
is to be stored or their new values. .

base Specifies the base address of the subpart data structure where the
resources should be retrieved or written.

num_args Specifies the number of arguments in the argument list.
resources Specifies the nonwidget resource list or values.
num_resources Specifies the number of resources in the resource list.

w Specifies the widget.

The XtSetValues function starts with the resources specified for the Core widget
fields and proceeds down the subclass chain to the widget. At each stage, it writes
the new value (if specified by one of the arguments) or the existing value (if no new
value is specified) to a new widget data record. XtSetValues then calls the
set_values procedures for the widget in superclass-to-subclass order. If the widget
has any non-NULL set_values_hook fields, these are called immediately after the
corresponding set_values procedure. This procedure permits subclasses to set
nonwidget data for XtSetValues.

If the widget’s parent is a subclass of constraintWidgetClass, XtSetValues also
updates the widget's constraints. It starts with the constraint resources specified for
constraintWidgetClass and proceeds down the subclass chain to the parent’s class.
At each stage, it writes the new value or the existing value to a new constraint record.
It then calls the constraint set_values procedures from constraintWidgetClass down
to the parent’s class. The constraint set_values procedures are called with widget

66

Ardent Computer Corporation - Release 3.0

1 September 1988
T

L
XtSetValues (3Xt)

SEE ALSO

XtSetValues (3Xt)

arguments, as for all set_values procedures, not just the constraint record arguments,
so that they can make adjustments to the desired values based on full information
about the widget.

XtSetValues determines if a geometry request is needed by comparing the current
widget to the new widget. If any geometry changes are required, it makes the
request, and the geometry manager returns XtGeometryYes, XtGeometryAlmost, or
XtGeometryNo. If XtGeometryYes, XtSetValues calls the widget's resize procedure.
If XtGeometryNo, XtSetValues resets the geometry fields to their original values. If
XtGeometryAlmost, XtSetValues calls the set_values_almost procedure, which
determines what should be done and writes new values for the geometry fields into
the new widget. XtSetValues then repeats this process, deciding once more whether
the geometry manager should be called.

Finally, if any of the set_values procedures returned True, XtSetValues causes the
widget’s expose procedure to be invoked by calling the Xlib XClearArea function on
the widget’s window.

The XtSetSubvalues function stores resources into the structure identified by base.

The XtGetValues function starts with the resources specified for the core widget
fields and proceeds down the subclass chain to the widget. The value field of a
passed argument list should contain the address into which to store the correspond-
ing resource value. It is the caller’s responsibility to allocate and deallocate this
storage according to the size of the resource representation type used within the
widget.

If the widget’s parent is a subclass of constraintWidgetClass, XtGetValues then
fetches the values for any constraint resources requested. It starts with the constraint
resources specified for constraintWidgetClass and proceeds down to the subclass
chain to the parent’s constraint resources. If the argument list contains a resource
name that is not found in any of the resource lists searched, the value at the
corresponding address is not modified. Finally, if the get_values_hook procedures
are non-NULL, they are called in superclass-to-subclass order after all the resource
values have been fetched by XtGetValues. This permits a subclass to provide
nonwidget resource data to XtGetValues.

The XtGetSubvalues function obtains resource values from the structure identified
by base.

X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 67

XtStringConversionWarning (3Xt)

1 September 1988

NAME
XtStringConversionWarning — issue a conversion warning message
SYNTAX
void XtStringConversionWarning(src, dst_type)
String src, dst_type;
ARGUMENTS :
src Specifies the string that could not be converted.
dst_type Specifies the name of the type to which the string could not be con-
verted.
DESCRIPTION
The XtStringConversionWarning function issues a warning message with name
“conversionError”, type “string”, class “XtToolkitError, and the default message
string ““Cannot convert "src" to type dst_type”.
SEE ALSO
XtAppAddConverter(3Xt), XtAppErrorMsg(3t), XtConvert(3Xt)
X Toolkit Intrinsics — C Language Interface
XIib - C Language X Interface
68

Ardent Computer Corporation — Release 3.0

XtStringConversionWarning (3Xt)

(|

1 September 1988

N NSO S P s e]
XtTranslateCoordinates (3Xt) XtTranslateCoordinates (3Xt)
NAME
XtTranslateCoordinates — translate widget coordinates
SYNTAX
void XtTranslateCoords(w, x, y, rootx_return, rooty_return)
Widget w;
Position x, y;
Position *rootx_return, *rooty_return;
ARGUMENTS
rootx_return
rooty_return Returns the root-relative x and y coordinates.
x
¥ Specify the widget-relative x and y coordinates.
w Specifies the widget.
DESCRIPTION
While XtTranslateCoords is similar to the Xlib XTranslateCoordinates function, it
does not generate a server request because all the required information already is in
the widget's data structures.
SEE ALSO

X Toolkit Intrinsics — C Language Interface
Xlib - C Language X Interface

Ardent Computer Corporation — Release 3.0 69

WIDGETS 4@

MAN PAGE

S
S

CHAPTER THREE

Widgets man Pages [Release 3.0 preliminary: 10-6] Window System Toolkit 3-1

XWARROW (3Xh) XWARROW (3Xh)
NAME
XwarrowWidgetClass — the X Widget’s arrow drawing widget
SYNOPSIS
#include <X11/StringDefs.h>
#include <X1VIntrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Arrow.h>
CLASSES
The Arrow widget is built from the Core and XwPrimitive classes.
The widget class to use when creating an arrow is XwarrowWidgetClass. The class
name for this widget is Arrow.
DESCRIPTION
The Arrow widget supports drawing of an arrow within the bounds of its window. It
uses the primitive widget’s border highlighting routines.
The arrow can be drawn in the directions of up, down, left and right. The Arrow
widget also supports two types of callbacks: Button selections, and Button releases.
NEW RESOURCES
The Arrow widget defines a set of resources used by the programmer to specify the
data for the arrow. The programmer can also set the values for the Core and Primi-
tive widget classes to set attributes for this widget. To reference a resource in a .Xde-
faults file, strip off the XtN from the resource string. The following table contains the
set of resources defined by the Arrow widget.
Arrow Resource Set
Name Class Type | Default
XtNarrowDirection | XtCArrowDirection | int up
XtNarrowDirection
This resource is the means by which the arrow direction is set. It can be defined
in either of two ways: Through the .Xdefaults file by the strings "up", "down",
"left" and "right". Within an arg list for use in XtSetValues() by the defines
XwARROW_UP, XwARROW_DOWN, XwARROW_LEFT and
XwARROW_RIGHT.
INHERITED RESOURCES

The following resources are inherited from the named superclasses:

Ardent Computer Corporation — Release 3.0 1

XWARROW (3Xh)

XWARROW (3Xh)

XtNancestorSensitive XtCSenstitive Beoolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background (,
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL
KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight_traversal

(XwHIGHLIGHT_TRAVERSAL in an argument list) at create time or during a call to
XtSetValues, the XwPrimitive superclass will automatically augment the primitive
widget’s translations to support keyboard traversal. Refer to the XwPrimitive man
page for a complete description of these translations. Refer to the TRANSLATIONS
section in this man page for a description of the translations local to this widget.

2 Ardent Computer Corporation — Release 3.0

XWARROW (3Xh)

TRANSLATIONS

ACTIONS

ORIGIN

SEE ALSO

XWARROW (3Xh)

Input to the Arrow widget is driven by the mouse buttons. The Primitive class
resources of XtNselect and XtNrelease define the callback lists used by the Arrow
widget. Thus, to receive input from an arrow, the application adds callbacks to the
arrow using these two resource types. The default translation set for the Arrow
widget is as follows.

<Btn1Down>: select()

<Btn1Up>: release()

<EnterWindow>: enter()

<LeaveWindow>: leave()

<KeyDown>Select: select() HP "Select" key
<KeyUp>Select: unselect() HP "Select" key

select:
Selections occurring on an arrow cause the arrow to be displayed as selected
and its primitive XtNselect callbacks are called.

release:
Release redraws the arrow in its normal mode and calls its primitive
XtNrelease callbacks.

enter:
If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the arrow’s border will be highlighted. Otherwise no action is taken.

leave:

If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the arrow’s border will be unhighlighted. Otherwise no action is taken.

Hewlett-Packard Company.

CORE(@3X), XWPRIMITIVE(3X), XWCREATETILE(3X)

Ardent Computer Corporation — Release 3.0 3

XWBULLETIN (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XWBULLETIN (3Xh)

XwbulletinWidgetClass — the X Widgets bulletin board manager widget.

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/BBoard.h>

The bulletin board manager widget is built from the Core, Composite, Constraint
and XwManager classes. Note that the Constraint fields are not used in this widget
and so are not listed in the resource tables below. Also, since the Composite class
contains no resources that the user can set, there is no table for Composite class
resources.

The widget class to use when creating a bulletin board is XwbulletinWidgetClass.
The class name is BulletinBoard.

The bulletin board manager widget is a composite widget that enforces no ordering
on its children. It is up to the application to specify the x and y coordinates of the
children inserted into this widget, otherwise they will all appear at (0,0).

This manager widget supports 3 different layout policies: minimize (the default),
maximize and ignore. When the layout policy is set to minimize, the manager will
create a box that is just large enough to contain all of its children, regardless of any
provided width and height values. The ignore setting forces the manager to honor
its given width and height, it will not grow or shrink in response to the addition,
deletion or altering of its children. When set to the maximize setting, the
BulletinBoard widget will ask for additional space when it needs it, but will not give
up extra space.

The bulletin board manager also implements the X Widgets keyboard interface.
No callbacks are defined for this manager.

NEW RESOURCES

The bulletin board manager widget class does not define any additional resources; all
necessary resources are present in its superclasses. The programmer should refer to
the man pages for the bulletin board’s superclasses to determine the resources that
can be set and the defaults settings for these resources.

INHERITED RESOURCES

The following resources are inherited from the named superclasses:

Ardent Computer Corporation — Release 3.0

(

XWBULLETIN(3Xh) XWBULLETIN (3Xh)
Core Resource Set -- CORE(3X) _
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 10
XtNheight XtCHeight int 10
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANAGER(3X)

Name Class Type Default

XtNforeground XtCForeground Pixel Black

XtNbackgroundTile | XtCBackgroundTile | int background

XtNtraversalOn XtCTraversalOn Boolean | TRUE

XtNlayout XtCLayout int minimize

XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at create time or during a call to

XtSetValues, the XwManager superclass will automatically augment the bulletin
board manager widget’s translations to support keyboard traversal. Refer to the
XwManager man page for a complete description of these translations.

ORIGIN

SEE ALSO

Hewlett-Packard Company

CORE@BX), XWMANAGER(3X)

Ardent Computer Corporation — Release 3.0

—
XWARROW (3Xh) XWARROW (3Xh)

NAME
XwarrowWidgetClass — the X Widget's arrow drawing widget
SYNOPSIS ‘
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Arrow.h>
CLASSES
The Arrow widget is built from the Core and XwPrimitive classes.
The widget class to use when creating an arrow is XwarrowWidgetClass. The class
name for this widget is Arrow.

DESCRIPTION

The Arrow widget supports drawing of an arrow within the bounds of its window. It
uses the primitive widget’s border highlighting routines.

The arrow can be drawn in the directions of up, down, left and right. The Arrow
widget also supports two types of callbacks: Button selections, and Button releases.

NEW RESOURCES
The Arrow widget defines a set of resources used by the programmer to specify the
data for the arrow. The programmer can also set the values for the Core and
Primitive widget classes to set attributes for this widget. To reference a resource in a
Xdefaults file, strip off the XtN from the resource string. The following table
contains the set of resources defined by the Arrow widget.

Arrow Resource Set
Name Class Type | Default
XtNarrowDirection | XtCArrowDirection | int up
XtNarrowDirection

This resource is the means by which the arrow direction is set. It can be defined
in either of two ways: Through the Xdefaults file by the strings "up", "down",
"left" and "right". Within an arg list for use in XtSetValues() by the defines
XwARROW_UP, XwARROW_DOWN, XwARROW_LEFT and
XwARROW_RIGHT.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

6 Ardent Computer Corporation—Release 3.0

XWARROW ((3Xh)

XWARROW (3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT _TRAVERSAL in an argument list) at create time or during a call to
XtSetValues, the XwPrimitive superclass will automatically augment the primitive
widget’s translations to support keyboard traversal. Refer to the XwPrimitive man
page for a complete description of these translations. Refer to the TRANSLATIONS
section in this man page for a description of the translations local to this widget.

Ardent Computer Corporation — Release 3.0

XWARROW (3Xh)

TRANSLATIONS

ACTIONS

ORIGIN

SEE ALSO

XWARROW (3Xh)

Input to the Arrow widget is driven by the mouse buttons. The Primitive class
resources of XtNselect and XtNrelease define the callback lists used by the Arrow
widget. Thus, to receive input from an arrow, the application adds callbacks to the
arrow using these two resource types. The default translation set for the Arrow
widget is as follows.

<Btn1Down>: select()

<Btn1Up>: release()

<EnterWindow>: enter()

<LeaveWindow>: leave()

<KeyDown>Select: select() HP "Select" key

<KeyUp>Select: unselect() HP "Select" key

select:
Selections occurring on an arrow cause the arrow to be displayed as selected
and its primitive XtNselect callbacks are called.

release:

Release redraws the arrow in its normal mode and calls its primitive
XtNrelease callbacks.

enter:
If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the arrow’s border will be highlighted. Otherwise no action is taken.

leave:

If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the arrow’s border will be unhighlighted. Otherwise no action is taken.

Hewlett-Packard Company.

CORE(3X), XWPRIMITIVE(3X), XWCREATETILE(3X)

Ardent Computer Corporation — Release 3.0

(

S ——————————————— T e
XWBULLETIN (3Xh) XWBULLETIN (3Xh)

NAME
XwhbulletinWidgetClass — the X Widgets bulletin board manager widget.
SYNOPSIS
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/BBoard.h>
CLASSES
The bulletin board manager widget is built from the Core, Composite, Constraint
and XwManager classes. Note that the Constraint fields are not used in this widget
and so are not listed in the resource tables below. Also, since the Composite class
contains no resources that the user can set, there is no table for Composite class
resources.
The widget class to use when creating a bulletin board is XwbulletinWidgetClass.
The class name is BulletinBoard.
DESCRIPTION

The bulletin board manager widget is a composite widget that enforces no ordering
on its children. It is up to the application to specify the x and y coordinates of the
children inserted into this widget, otherwise they will all appear at (0,0).

This manager widget supports 3 different layout policies: minimize (the defauit),
maximize and ignore. When the layout policy is set to minimize, the manager will
create a box that is just large enough to contain all of its children, regardless of any
provided width and height values. The ignore setting forces the manager to honor
its given width and height, it will not grow or shrink in response to the addition,
deletion or altering of its children. When set to the maximize setting, the
BulletinBoard widget will ask for additional space when it needs it, but will not give
up extra space.

The bulletin board manager also implements the X Widgets keyboard interface.
No callbacks are defined for this manager.

NEW RESOURCES

The bulletin board manager widget class does not define any additional resources; all
necessary resources are present in its superclasses. The programmer should refer to
the man pages for the bulletin board’s superclasses to determine the resources that
can be set and the defaults settings for these resources.

INHERITED RESOURCES

The following resources are inherited from the named superclasses:

Ardent Computer Corporation — Release 3.0 9

XWBULLETIN (3Xh)

XWBULLETIN (3Xh)
Core Resource Set -- CORE(3X)

Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 10
XtNheight XtCHeight int 10
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile | XtCBackgroundTile | int background
XtNtraversalOn XtCTraversalOn Boolean | TRUE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the bulletin
board manager widget’s translations to support keyboard traversal. Refer to the
XwManager man page for a complete description of these translations.

ORIGIN
Hewlett-Packard Company.
SEE ALSO
: CORE@3X), XWMANAGER(3X)
10

Ardent Computer Corporation— Release 3.0

(

XWBUTTON(3Xh) XWBUTTON (3Xh)
NAME
XwbuttonWidgetClass — X Widget Button MetaClass
SYNOPSIS
#include <X11/StringDefs.h>
#include <X1VIntrinsic.h>
#include <Xw/Xw.h>
CLASSES
The XwButtonClass is built from the Core and XwPrimitive classes.
DESCRIPTION
The XwButton class is an X Widget meta class. It is never instantiated as a widget. It
provides a set of resources that are needed by a variety of other X Widgets (for
example: XwtoggleWidgetClass and XwpushButtonWidgetClass).
NEW RESOURCES

The XwButtonClass defines a set of resource types used by the programmer to
specify the data for widgets that are subclasses of XwButtonClass. To specify any of
these resources within the .Xdefaults file, drop the XtN prefix from the resource
name. For example, XtNfont becomes font.

Button Resource Set
Name Class Type Default
XtNfont XtCFont XFontStruct * | Fixed
XtNlabel XtCLabel caddr_t NULL
XtNlabelLocation | XtCLabelLocation | int right
XtNvSpace XtCVSpace int 2
XtNhSpace XtCHSpace int 2
XtNset XtCSet Boolean FALSE
XtNsensitiveTile XtCSensitiveTile int 75_foreground
XtNborderWidth | XtCBorderWidth int 0
XtNfont

The application may define the font to be used when displaying the button
string. Any valid X11 font may be used.
XtNlabel

The application may define the button label by providing a pointer to a null
terminated character string. If no label is provided the class name of the widget
will be used.

XtNlabelLocation
For those buttons that have a separate graphic, this field specifies whether the
label should appear to the left or to the right of that graphic. The acceptable
values are the defines XwRIGHT (the default) and XwLEFT.

XtNvSpace

The application may determine the number of pixels of space left between the

top of the button and the top of the button label, and between the bottom of the
label and the bottom of the button.

Ardent Computer Corporation — Release 3.0 11

XWBUTTON (3Xh)

XWBUTTON (3Xh)

XtNhSpace
The application may determine the number of pixels of space left between the
left side of the button and the leftmost part of the button label, and between the
rightmost part of the button label and the right side of the button.

XtNset
If set to true the button will display itself in its selected state. This is useful for
showing some conditions as active when a set of buttons appear.

XtNsensitiveTile
The application can determine the mix of foreground and background that will
be used to draw text to show insensitivity. The #defines for setting the values
through an arg list and the strings to be used in the .Xdefault file are described
in XwCreateTile(3X). The default is Xw75_FOREGROUND which is a 75/25
mix of foreground and background colors.

XtNborderWidth
This redefines the core class default border width from 1 pixel to 0 pixels.

ORIGIN

Hewlett-Packard Company.
SEE ALSO

XWPRIMITIVE(3X)
12

Ardent Computer Corporation— Release 3.0

(

“
XWCASCADE (3Xh) XWCASCADE (3Xh)

NAME
XweascadeWidgetClass — the X Widgets popup and pulldown menupane widget.

SYNOPSIS
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xw/Xw.h>
#include <Xw/Cascade.h>

CLASSES

The Cascade menupane widget is built from the Core, Composite, Constraint,
XwManager and XwMenuPane classes. Note that the Constraint fields are not used
in this widget and are not listed in the resource tables below. Also, since the
Composite class contains no resources that can be set by the user, there is no table for
Composite class resources.

The widget class to use when creating a cascading menupane is
XwcascadeWidgetClass. The class name is Cascade.

DESCRIPTION

The Cascade menupane widget is a composite widget which may be used by an
application when creating a set of menus.

The Cascade menupane widget always displays its managed children in a single
column, and always attempts to size itself to the smallest possible size, as described
by the children it contains; as the children grow or shrink in size, the menupane will
attempt to adapt its size accordingly.

The Cascade menupane widget allows a title to be displayed at the top of the
menupane, the bottom of the menupane, or at both places. Additionally, the title

may be either a text string or an image. The title is always centered horizontally
within the menupane.

Refer to the manual page for XwManager(3X) for a description of how to specify the
order in which menubuttons are inserted into a menupane.

NEW RESOURCES

The MenuPane defines a set of resource types used by the programmer to specify the
data for the menupane. The programmer can also set the values for the Core,
Composite Manager and MenuPane widget classes to set attributes for this widget.
To specify any of these resources within the .Xdefaults file, simply drop the XtN
prefix from the resource name. The following table contains the set of resources
defined by Cascade.

Cascade Resource Set
Name Class Type | Default
XtNtitlePosition | XtCTitlePosition | int top

XtNtitlePosition
This resource is used to control where the title is displayed within the
cascading menupane. To programmatically set this resource, use either the
XwTOP, XwBOTTOM or XwBOTH define. To set this resource using the
Xdefaults file, use one of the strings top, bottom or both.

Ardent Computer Corporation —Release 3.0 13

XWCASCADE (3Xh)

INHERITED RESOURCES

XWCASCADE (3Xh)

The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)

Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean FALSE
MenuPane Resource Set -- XWMENUPANE(3X)
Name Class " Type Default
XtNtitleShowing XtCTitleShowing | Boolean FALSE
XtngrTitleOverride XtCTitleOverride | Boolean FALSE
XtNtitleType XtCTitleType int XwSTRING
XtNtitleString XtCTitleString String widget name
XtNtitlelmage XtCTitlelmage XImage * NULL
XtNfont XtCFont XFontStruct * | "fixed"
XtNattachTo XtCAttachTo String NULL
XtNmnemonic XtCMnemonic String NULL
XtNselect XtCCallback Pointer NULL

Ardent Computer Corporation— Release 3.0

(

XWCASCADE (3Xh) XWCASCADE (3Xh)

TRANSLATIONS
The input to the Cascade menupane widget is driven by the mouse buttons. The
default translations set by this widget are as follows:
<Btn1Down>: select()
<LeaveWindow>: leave()
<visible>: visible()
<unmap>: unmap()
ACTIONS
select:

Informs the menu manager, if present, that a select occurred, and then invokes
the select callbacks, unless instructed not to by the menu manager. If no menu
manager is present, then the select callbacks will be invoked.
leave:
This routine overrides the leave action routine provided by the XwManager
meta class.
visible:
This action overrides the visible action routine provided by the XwManager
meta class.
unmap:
This action overrides the unmap action provided by the XwManager meta
class.
KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager
widget’s translations to support keyboard traversal. Refer to the XwManager man
page for a complete description of these translations.
ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(@3X), CONSTRAINT(3X), XWMANAGER(3X), XWMENUPANE(3X)

Ardent Computer Corporation —Release 3.0 15

A T s P T
XWCREATETILE (3Xh) XWCREATETILE (3Xh)

NAME '
XwCreateTile — create a tile suitable for area filling or patterned text.
SYNOPSIS '
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
Pixmap XwCreateTile (screen, foreground, background, tileType)
Screen * screen;
Pixel foreground;
Pixel background;
int tileType;
ARGUMENTS
screen
This parameter contains the screen for which the tile is to be created.
foreground
This is the foreground color to use for creating the tile.
background
This is the background color to use for creating the tile.
tileType
This is an integer value representing a particular pattern to use when creating
the tile.
DESCRIPTION
XwCreateTile is a function (not a widget) that creates and returns a pixmap of screen
depth, using the foreground and background colors specified. The tileType
parameter is used to select the particular tile to create. Duplicate requests for the
same tile, screen, foreground and background are cached to reduce overhead.
There are nine available tile types. They are defined by a set of #define statements in
the file Xw.h and are described in the following table.
Define Description
XwFOREGROUND A tile of solid foreground
XwBACKGROUND A tile of solid background
Xw25_FOREGROUND A tile of 25% foreground, 75% background
Xw50_FOREGROUND A tile of 50% foreground, 50% background
Xw75_FOREGROUND A tile of 75% foreground, 25% background
XwHORIZONTAL_TILE | A tile of horizontal lines of the two colors
XwVERTICAL_TILE A tile of vertical lines of the two colors
XwSLANT_RIGHT A tile of slanting lines of the two colors
XwSLANT_LEFT A tile of slanting lines of the two colors
To use a tile created by this function, the returned tile should be placed into the tile
field of a graphics context, and the fill_style should be set to FillTiled.
16

Ardent Computer Corporation— Release 3.0

XWCREATETILE (3Xh)

RESOURCES

XwCreateTile gives the application or widget writer an easy mechanism to specify
the tile type to use. The tile type can be specified within the .Xdefaults file or an

argument list. A resource converter is present to convert .Xdefault strings into the
matching defined value for each of the tiles. The strings to be contained within the

Xdefaults file are as follows.

XWCREATETILE (3Xh)

Xdefault String | Define
foreground XwFOREGROUND
background XwBACKGROUND

25_foreground

Xw25_FOREGROUND

50_foreground

Xw50_FOREGROUND

75_foreground

Xw75_FOREGROUND

horizontal_tile

XwHORIZONTAL_TILE

vertical_tile

XwVERTICAL_TILE

slant_right

XwSLANT _RIGHT

slant_left

XwSLANT_LEFT

For widget writers who wish to incorporate settable tiles within their resource set,
the representation member of the resource definition should be set to the define

XtRTileType.
RETURN VALUES

XwCREATETILE returns a pixmap if successful. If an invalid tile type or screen is

specified, 0 is returned.

ORIGIN
Hewlett-Packard Company.

SEE ALSO

Ardent Computer Corporation — Release 3.0

17

XWFORM(3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XWFORM (3Xh)

XwformWidgetClass — the X Widget’s general widget layout manager

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Form.h>

A Form widget is built from Core, Composite, Constraint and XwManager classes
The widget class to use when creating a form is XwformWidgetClass.

The class name of Form is Form.

The Form widget is a constraint based manager that provides a layout language used
to establish spatial relationships between its children and then manipulates these
relationships when the Form is resized, new children are added to the Form, or its
children are resized, unmanaged, remanaged or destroyed.

The following list highlights the types of layout control provided by the form widget.

Spanning Constraints ;
A widget can be created with a set of constraints such that it spans the width or
height of a form. This is often used for the layout of scrollbars and titlebars.
Constraints that cause a widget to span both the width and height of a form can
also be specified.

Row Constraints
Sets of widgets can be set up as a row so that resizing a form may increase or
decrease the spacing between the widgets. The form may also make the
widgets smaller if desired, but it will not allow the widgets to overlap.

Column Constraints
Sets of widgets can be displayed in a single column or in multiple columns.
The form may increase or decrease the spacing between widgets or resize the
widgets, but it will not allow the widgets to overlap.

Automatic Form Resizing
The form calculates new sizes or positions for its children whenever they
change size or position. The new orm size thus generated is passed as a
geometry request to the parent of the form. The parent can accept the request or
modify it and return it as a geometry almost. When a geometry almost is
returned by the parent, the form respecifies the constraints to match the
parent’s reply size.

Optimal Child Sizes and Positions
The Form widget also calculates the sizes and positions of its children to both
match the constraints defined and to match either the initial size of the widget
or the size given when the widget was modified through XtSetValues. These
values are further constrained to match a given form size only when the form’s
size is being explicitly changed through its resize procedure, or its parent
returns a geometry almost when the form makes a geometry request.

Managing, Unmanaging and Destroying Children
When a widget within a form is unmanaged or destroyed, it is removed from
the constraint processing and the constraints are reprocessed to reposition
and/or resize the form and its contents. Any widgets that referenced it are

18

Ardent Computer Corporation — Release 3.0

«

XWFORM(3Xh) XWFORM (3Xh)

rereferenced to the widget that it had been referencing. For the unmanaged
case, if the widget is remanaged, the widgets that were previously referencing
it are rereferenced to it, thus preserving the original layout.
NEW RESOURCES
The Form does not add any new resources. All of the functionality for the form is

tied to its constraint resources.

CONSTRAINT RESOURCES
The following resources are attached to every widget inserted into Form. To specify
an of these resources within a .Xdefaults file, drop the XtN from the resource name.

Refer to CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set -- Children of FORM(3X)
Name Class Type Default
XtNxRefName XtCXRefName String NULL
XtNxRefWidget XtCXRefWidget Widget | the parent form
XtNxOffset XtCXOffset int 0
XtNxAddWidth XtCXAddWidth Boolean | FALSE
XtNxVaryOffset XtCXVaryOffset Boolean | FALSE
XtNxResizable XtCXResizable Boolean | FALSE
XtNxAttachRight XtCXAttachRight Boolean | FALSE
XtNxAttachOffset XtCXAttachOffset int 0
XtNyRefName XtCYRefName String NULL
XtNyRefWidget XtCYRefWidget Widget | the parent form
XtNyOffset XtCYOffset int 0
XtNyAddHeight XtCYAddHeight Boolean | FALSE
XtNyVaryOffset XtCYVaryOffset Boolean | FALSE
XtNyResizable XtCYResizable Boolean | FALSE
XtNyAttachBottom [XtCYAttachBottom | Boolean | False
XtNyAttachOffset XtCYAttachOffset int 0

XtNxRefName XtNyRefName

When a widget is added as a child of the form its position is determined by the
widget it references. The reference widget must be created before the widget
which references it is created. These resources allow the name of the reference
widget to be given. The form converts this name to a widget to use for the
referencing. Any widget that is a direct child of the form or the form widget
itself can be used as a reference widget.

XtNxRefWidget XtNyRefWidget
The application can specify the reference widget as either a string representing
the name of the widget (as described above) or as the Widget ID value returned
from XtCreateWidget. This resource is the means by which a widget ID is
specified.

XtNxOffset XtNyOffset
The location of a widget is determined by the widget it references. As the
default, a widget’s position on the form exactly matches its reference widget's
location. There are two additional pieces of data used to determine the
location. This resource defines an integer value representing the number of
pixels to add to the reference widget’s location when calculating the widget's

Ardent Computer Corporation — Release 3.0 19

XWFORM(3Xh)

XWFORM (3Xh)

location.

XtNxAddWidth XtNyAddHeight
This resource indicates whether or not to add the width or height of the
reference widget to a widget’s location when determining the widget’s
position.

XtNxVaryOffset XtNyVaryOffset
When a form is resized, it processes the constraints contained within its
children. This resource allows the spacing between a widget and the widget it
references to vary (either increase or decrease) when a form'’s size changes. For
widgets that directly reference the form widget this resource is ignored. The
spacing between a widget and its reference widget can decrease to 0 pixels if
the XtNAddWidth resource is FALSE or to 1 pixel if XtNAddWidth is TRUE.

XtNxResizable XtNyResizable
This resource specifies whether the form can resize (shrink) a widget. When a
form’s size becomes smaller the form will resize its children only after all of the
inter-widget spacing of widget’s with their VaryOffset resource set to TRUE.
The form keeps track of a widgets initial size or size generated through
XtSetValues so that when the form then becomes larger the widget will grow to
it original size and no larger.

XtNxAttachRight XtNyAttachBottom
Widgets are normally referenced from "form left" to "form right" or from "form
top" to "form bottom." The attach resources allow this reference to occur on the
opposite edge of the form. These resources, when used in conjunction with the
varyOffset resources, allow a widget to float along the right or bottom edge of
the form. This is done by setting both the Attach and VaryOffset resources to
TRUE. A widget can also span the width and height of the form by setting the
Attach resource to TRUE and the VaryOffset resource to FALSE.

XtNxAttachOffset XtNyAttachOffset
When a widget is attached to the right or bottom edge of the form (through the
above resources), the separation between the widget and the form is defaulted
to 0 pixels. This resource allows that separation to be set to some other value.
Also, for widgets that are not attached to the right or bottom edge of the form,
this constraint specifies the minimum spacing between the widget and the
form.

INHERITED RESOURCES

The following resources are inherited from the indicated superclasses:

20

Ardent Computer Corporation -- Release 3.0

XWFORM(3Xh) XWFORM(3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive . Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile | XtCBackgroundTile | int background
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager
widget’s translations to support keyboard traversal. Refer to the XwManager man
page for a complete description of these translations.

EXAMPLES
The following examples list the desired layout of widgets within a form and the
constraints needed to achieve the layout.
TitleBar

Use the following constraints to get a titlebar widget to span the top of a form
the following constraints can be used. For a widget named title the .Xdefaults
file will contain.

Ardent Computer Corporation —Release 3.0 21

XWFORM(3Xh)

+title. xRefName: "form widget name”
stitle XOfffset: 5
title.xResizable: TRUE

*title.xAttachRight: TRUE

stitle.xAttachOffset: 5
title.yRefName: "form widget name"

Dynamic Scrolled Window

XWFORM(3Xh)

attach to the left edge of the
form

offset 5 pixels from the left edge
title is horizontally resizable
attach to the right edge of the
form

offset 5 pixels from right edge
attach to the top edge of the
form

The above constraints work generally for any widget type that is to span the
form and that need to be resized as the form increases or decreases in size. For
example, if the child widget is a scrolled window named sWin that dynamically
resizes as the form resizes in both the horizontal and vertical directions the

constraints are as follows.

*sWin.xRefName: "form widget name"
*sWin.xOffset: 5
*sWin.xResizable: TRUE

*sWin.xAttachRight: TRUE

*sWin.xAttachOffset: 5

*sWin.yRefName: "form widget name"
*sWin.yOffset: 5
*sWin.yResizable: TRUE

*sWin.yAttachRight: TRUE

*sWin.yAttachOffset: 5

Right or Bottom Attached Widgets

attach to the left edge of the
form

offset 5 pixels from the left edge
scrollWin is horizontally
resizable

attach to the right edge of the
form

offset 5 pixels from right edge

attach to the top edge of the
form

offset 5 pixels from the left edge
scrollWin is vertically resizable
attach to the bottom edge of the
form

offset 5 pixels from right edge

For a widget named widget to float along the right or bottom edge of the form
as it is resized the constraint set is the same as for the titlebar example with the

following changes.

*widget.xRefName: "any widget name"
*widget.varyOffset: TRUE

the widget to the left of this one
adjust the spacing with the
reference widget

22

Ardent Computer Corporation— Release 3.0

XWFORM(3Xh)

ORIGIN

SEE ALSO

*w(,0.xRefName:
*w0,0.xOffset:
*w0,0.xResizable:
*w0,0.yRefName:
*w0,0.yOffset:
*w0,0.yResizable:

*w0,1.xRefName:
*w(,1.xResizable:
*w0,1.yRefName:
*w0,1.yOffset:

*w(0,1.yAddHeight:

*w0,1.yResizable:

*w1,0.xRefName:
*w1,0.xOffset:
*w1,0.yAddWidth:
*w1,0.xResizable:
*w1,0.yRefName:
*w1,0.yOffset:

*w1,0.yAddHeight:

*w1,0.yResizable:

*wl,1.xRefName:
*w1,1.xResizable:
*w1,1.yRefName:
*w1,1.yOffset:

*w1,1.yAddHeight:

*wl,1.yResizable:

Hewlett-Packard Company.

"form widget name'
5

TRUE

"form widget name'
5

TRUE

widget0,0
TRUE
widget0,0
5

TRUE
TRUE

widget0,0
20

TRUE
TRUE
widget0,0
5

TRUE
TRUE

widget1,0
TRUE
widget1,0
5

TRUE
TRUE

XWFORM(3Xh)

CORE((3X), COMPOSITE(3X), CONSTRAINT(3X), XWMANAGERCLASS(3X)

Ardent Computer Corporation — Release 3.0

23

XWFRAME (3Xh) XWFRAME (3Xh)
NAME
XwframeWidgetClass — the X Widget’s frame widget
SYNOPSIS
#include <X11/StringDefs.h>
#include <X1VIntrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Frame.h>
CLASSES
The Frame widget is built from the Core, Composite, and XwManager classes.
The widget class to use when creating a frame is XwframeWidgetClass.
The class name for frame is Frame.
DESCRIPTION
The Frame widget is a very simple manager used to enclose a single child in a border
drawn by the Frame widget. It uses the XwManager class resources for border
drawing and performs geometry management such that its size will always match its
child size plus the highlightThickness defined for it.
Frame is most often used to enclose other managers when the application developer
desires the manager to have the same border appearance as the primitive widgets.
Frame can also be used to enclose primitive widgets that do not support the same
type of border drawing. This will give visual consistency when developing
applications using diverse widget sets.
NEW RESOURCES
The Frame widget does not define any resources.
INHERITED RESOURCES :
The following resources are inherited from the named superclasses:
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
24 Ardent Computer Corporation — Release 3.0

(

XWFRAME (3Xh) XWFRAME (3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive - Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManage Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness XtCHighlightThickness | int 0
XtNshadowOn XtCShadowOn Boolean | TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50_foreground
XtNbottomShadowColor | XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile | int foreground
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager
widget’s translations to support keyboard traversal. Refer to the XwManager man
page for a complete description of these translations.

ORIGIN

Hewlett-Packard Company.

SEE ALSO

CORE@BX), XWMANAGER(3X)

Ardent Computer Corporation — Release 3.0

25

T o 0 s s A T O S
XWIMAGEEDIT (3Xh) XWIMAGEEDIT (3Xh)

NAME _
XwimageEditWidgetClass — the X Widget's image editor widget
SYNOPSIS
#include <X11/StringDefs.h>
#include <X1VIntrinsic.h>
#include <Xw/Xw.h>
#include <Xw/ImageEdit.h>
CLASSES
ImageEdit is built from the Core and Primitive classes.
The widget class to use when creating an image editor is XwimageEditWidgetClass.
The class name is ImageEdit.
DESCRIPTION

The ImageEdit widget allows an image to be displayed in an enlarged format so that
it may be edited on a pixel-by-pixel basis. The specified image is displayed in a grid
structure so that a user may see and modify the composition.

To change the image, the user moves the mouse to the desired point and presses the
mouse button. The pixel under the cursor will change to the foreground color. If the
cursor is moved while the button is pressed, all pixels that are touched will change to
the foreground color.

NEW RESOURCES

The ImageEdit defines a set of resource types that can be used by the programmer to
control the appearance and behavior of the widget. The programmer can also set the
values for the Core and Primitive widget classes to set attributes for this widget. To

‘reference a resource in a .Xdefaults file, strip off the XtN from the resource string
name. The following table contains the set of resources defined by ImageEdit.

ImageEdit Resource Set
Name Class Type Default
XtNimage XtCImage XImage * | NULL
XtNpixelScale XtCPixelScale int 6
XtNegridThickness | XtCGridThickness | int 1
XtNdrawColor XtCBackground Pixel Black
XtNeraseColor XtCBackground Pixel White
XtNeraseOn XtCEraseOn Boolean True
XtNbackground XtCBackground Pixel Black
XtNimage

This is a pointer to the image that is displayed in the grid. It points to an
XImage structure.

XtNpixelScale

This resource defines the magnification factor to use when displaying the
expanded image.

XtNgridThickness
This resource defines the separation between the magnified pixels.

26 Ardent Computer Corporation — Release 3.0

XWIMAGEEDIT (3Xh) XWIMAGEEDIT (3Xh)
XtNdrawColor
This resource define the color to be used for drawing in the widget.
XtNeraseColor

This resource defines the color used for erasing in the widget. Erase is enabled
by the eraseOn resource. When selections occur on the widget, the widget
determines the color of the pixel selected. If the selected pixel is not the same
as the draw color, the draw color will be used to draw until the button release
occurs. If the selected pixel is the draw color, the erase color will be used for

drawing until the button release occurs.

XtNeraseOn

This resource is a boolean variable that indicates whether erasing is enabled or

not. If set to TRUE, drawing will occur as described above. If set to FALSE,

only the draw color will be used for drawing.

XtNbackground

ImageEdit redefines the core class background resource to default it to the color

black. This is then used as the background color for the widget’s window

which will be reflected in the grid color.

INHERITED RESOURCES

The following resources are inherited from the named superclésses:

Core Resource Set -- CORE(3X)
Name Class | Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

Ardent Computer Corporation — Release 3.0

27

XWIMAGEEDIT (3Xh) XWIMAGEEDIT (3Xh)
Primitive Resource Set -- XWPRIMITIVE(3X)

Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget’s translations to support keyboard traversal. Refer to the
XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local
to this widget.

TRANSLATIONS
The following translations are defined for the ImageEdit widget.
<BtnDown>: select()
<BtnUp>: release()
Button1<PtrMoved>: moved()
<EnterWindow>: enter()
<LeaveWindow>: leave()
ACTIONS
select: Selections occurring on an image edit cause drawing or erasing on the
selected pixel, activate the moved action for continuous drawing and invoke the
primitive class XtNselect callback functions.
release: Release concludes a drawing sequence and invokes primitive class
XtNrelease callbacks.
moved: Moved causes drawing or erasing to occur from the last cursor position to
the current cursor position.
enter: If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER
then the image edit’s border will be highlighted. Otherwise no action is taken.
leave: If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER
then the image edit’s border will be unhighlighted. Otherwise no action is taken.
ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE(3X), XWPRIMITIVE(3X)
28 Ardent Computer Corporation — Release 3.0

XWLIST (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XWLIST (3Xh)

XwlistWidgetClass — the X Widget's list manager widget

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/SWindow.h>
#include <Xw/List.h>

List is built from the Core, Composite, Constraint, XwManager and XwSWindow
classes.

The widget class to use when creating a list manager is XwlistWidgetClass. The class
name is List.

The List widget allows a two-dimensional set of widgets to be presented to the user
in a rows/columns fashion. The layout will typically consist of n columns, not all of
which need to be visible on the screen at one time. Each column will have some
number of objects, such as labels or icons, arranged vertically. Separate columns may
have unequal numbers of members--column A may have 10 elements, while column
B has 17 elements. All members of each column are not required to be visible on the
screen. The entire list window can be scrolled either vertically or horizontally, but
the individual columns cannot be individually scrolled. If an application needs to
have columnar scrolling, it may instanstiate multiple List widgets, each having only
one column.

By default, each column is wide enough to display the longest item in the data. A
resource is availible to allow each column to be a fixed width, with the excess
characters being clipped. When the List widget is shrunk by a Resize call, columns
that are beyond the right edge of the new size will be clipped. List elements are also
adjusted to force a common height, with each element being set to the height of the
tallest member of the column. This automatic sizing can be turned off through a
resource, or forced to an arbitrary height. If a constant height is selected, any
element that will not fit in the specified space will be clipped.

The List widget provides management and layout functions for its elements, as well
as a means for the user to choose elements, and allows an application to be notified
when those elements are selected. However, it is the responsibility of the application
to create the actual widgets that are to be inserted into the list. The widgets may be
of any type, but currently only Primitive class widgets will work correctly.

To construct a list, the application must create each element as a child of the List
widget. The row and column position of the element can be specified by means of a
constraint resource. If the row and column are not given, the list will be constructed
as a one column by n row structure. The List widget will fill in the position of the
element and store it in the constraint record so that it may be examined later.

The List widget supports two methods of choosing an item from its displayed list:
single and multiple. A resource controls which mode is currently active.

In single choice mode, the user may move the cursor onto any element in the list and
click the mouse button defined as "Begin Select." By default, this is the left button.
When the button is pressed, the list item is highlighted. If the user drags the mouse
with the button held down, the highlighted selection will track the pointer. If the
pointer moves off the currently highlighted item, it will become unselected,

Ardent Computer Corporation — Release 3.0 29

XWLIST (3Xh)

XWLIST (3Xh)

returning to its original state, and the item that the pointer has moved onto becomes
highlighted. When the user releases the button, the currently selected item becomes
the "choice," and the List widget invokes the select callback associated with the
chosen item. The application must take over the widget’s select callback in order to
be notified that the item has been selected.

Multiple item selection is designed to allow the user to easily select several
elements from the displayed list. When the user presses the mouse button bound to
"Begin Select,” the item currently under the pointer is highlighted to indicate that it
is included in the selection set. As the user drags the mouse with the button down,
the original choice remains highlighted, and any new items that the pointer touches
also becomes highlighted. At any time, the user can "back up" the selection by
leaving an item on the same side as it was entered. When the user finally releases the
button, all highlighted elements are marked as chosen, and the selection callback is
invoked for each item.

Selections can be either "sticky" or "instant.” The selection mode is set through a
resource. If set to sticky, the selection will remain highlighted after the user releases
the mouse button, and will not be cleared until the next button press. In instant
mode, the highlight will dissappear when the button is released.

The selection mechanism can be affected by a "bias" that is controlled through a
widget resource. The allowable bias types are row, column, and none (default). In
this mode only list items that are actually touched with the pointer are included in
the selection. In Row Bias mode. entire rows of items may be selected by moving the
pointer vertically within a column. For example, consider the following case:

1 o2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

If the user pressed the mouse button when the pointer was over item 3 and then
moved to item 9, items 4 thru 8 would also be highlighted. In Column Bias mode,
entire columns can be selected by movement between rows. Using the above

diagram, and assuming column bias, if the user clicked on item 2 and moved to item
3, elements 8 and 14 would also be selected.

Additional selections can be made without disturbing the original by following the
above procedures, by depressing the button bound to the "Begin Extended Choice"
function (which is defined as SHIFT + Left button in the default case).

The visual effect of highlighting can be accomplished in two ways: simple border
highlighting, and inverse video. This may be configured through a List widget
resource. Both styles are necessary--the inverse style of highlighting is by far the
most common and natural interface, but could possibly conflict with an application
or window manager that uses inverse to indicate the X11 "selection.” The default
highlighting style is inverse.

A user can select items that are not currently visible by simply extending the
selection out of the visible window in the desired direction. The list will
automatically scroll under the selection as needed, until there are no more list
elements availible in the given direction. For example, in single-selection mode, if
the user were to begin the selection on a visible element, and then drag the cursor

down the column past the last visible item, the window would scroll up to display
further choices.

30

Ardent Computer Corporation —Release 3.0

XWLIST(3Xh)

XWLIST (3Xh)

When a list element is destroyed, the list will be re-ordered according to the value of
the XtNdestroyMode resource. When it is XwSHRINK_COLUMN (the default), all
list elements below the affected widget and in the same column will be moved up
one row, and their row constraint resources will be updated to reflect the new
positioning. When this resource is set to XwSHRINK_ALL, the elements will be
moved in a row-wise fashion to fill the spot left by the affected element. The widget
to the right of the affected one will be moved to the left, and so on to the last column.
The first element of the next row will be moved into the last spot on the current
column. This process will continue for all remainin g rows in the list. If the value of
this resource is XwNO_SHRINK, the list will not change its ordering and a "hole "
will appear in the place of the affected element.

NEW RESOURCES

The List widget defines a unique set of resource types which can be used by the
programmer to control the appearence and behavior of the list. The programmer can
also set the values for the Core, Composite, Constraint, Manager and SWindow
widget classes to set attributes for this widget. To reference a resource in a .Xdefaults
file, drop the XtN from the resource name. The following table contains the set of
resources defined by List.

List Resource Set
Name Class Type Default
XtNnumColumns XtCNumColumns int 1
XtNcolumnWidth XtCColumnWidth int 0
XtNelementHeight XtCElementHeight int 0
XtNselectionStyle XtCSelectionStyle int XwINSTANT
XtNselectionMethod XtCSelectionMethod int XwSINGLE
XtNselectionBias XtCSelectionBias int XwNO_BIAS
XtNelementHighlight XtCElementHighlight int XwBORDER
XtNdestroyMode XtCDestroyMode int XwSHRINK_COLUMN
XtNnumSelectedElements | XtCNumSelectedElements | int 0 :
XtNselectedElements XtCSelectedElements WidgetList* | NULL
XtNnumColumns
The number of columns in the list.
XtNcolumnWidth
The width of each column. If the value is 0, the width defaults to the width of
the largest element.
XtNelementHeight

The height of each element. Zero implies that each element is resized to the
height of the tallest element.
XtNselectionStyle
Controls the type of selection - either XwINSTANT or XwSTICKY.
XtNselectionMethod
Controls the selection mode - either one element at a time (XwSINGLE) or
multiple XwMULTIPLE).
XtNselectionBias
Bias mode - either XwNO_BIAS, XwROW_BIAS or XwCOL_BIAS.

Ardent Computer Corporation — Release 3.0 31

L. -~~~ -~~~ . ° -~~~ -~~~ "]
XWLIST(3Xh) XWLIST (3Xh)

XtNelementHighlight
This controls the highlight mode on selection - either border highlighting
(XwBORDER) or inversion (XwINVERT).

XtNdestroyMode
Controls the visual appearance of the list when an element is deleted. One of
XwSHRINK_COLUMN, XwSHRINK_ALL or XwNO_SHRINK.

XtNSelectedElements
This is a list of the widgets currently marked as selected. An application
program can issue a call to XtGetValues on this resource at any time to query
the selected elements.

XtNnumSelectedElements
The number of widgets currently selected (in the list pointed to by
XtNselectedElements).

CONSTRAINT RESOURCES
The following resources are attached to every widget inserted into List. Refer to
CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set -- Children of XWLIST(3X)
Name Class Type | Default
XtNrowPosition XtCRowPosition int -1
XtNcolumnPosition | XtCColumnPosition | int -1

XtNrowPosition, Xt{NcolumnPosition
This is the row,column location of the element in the list. If these values are
greater than or equal to zero, the widget is inserted into the list at that position.
If the values are left at -1, the List widget will create a list with
XtNnumColumns number of columns, assigning row and column positions as
needed.

INCORPORATED RESOURCES
No incorporated resources are currently exported by the List widget.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

32 Ardent Computer Corporation— Release 3.0

XWLIST (3Xh) XWLIST(3Xh)
ScrolledWindow Resource Set - XWSCROLLEDWINDOW(3X)

Name Class Type Default

XtNvsbX XtCVsbX int -1

XtNvsbY XtCVsbY int -1

XtNvsbWidth XtCVsbWidth int 20

XtNvsbHeight XtCVsbHeight int 285

XtNhsbX XtCHsbX int -1

XtNhsbY XtCHsbY int -1

XtNhsbWidth XtCHsbWidth int 285

XtNhsbHeight XtCHsbHeight int 20

XtNforceHorizontalSB | XtCForceHorizontalSB | Boolean | FALSE

XtNforceVerticalSB XtCForceVerticalSB Boolean | FALSE

XtNvScrollEvent XtCCallBack Pointer | NULL

XtNhScrollEvent XtCCallBack Pointer | NULL

XtNinitialX XtClInitialX int 0

XtNinitialY XtClnitialY int 0

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Ardent Computer Corporation —Release 3.0 33

XWLIST(3Xh) XWLIST(3Xh)
Manager Resource Set
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL
KEYBOARD TRAVERSAL

TRANSLATIONS

ACTIONS

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget's translations to support keyboard traversal. Refer to the
XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local
to the list widget.

The translations used for List are as follows:

<EnterWindow>: enter()
<LeaveWindow>: leave()

enter: Enter window events occurring on the list window are handled by this action.

leave: Leave window events occurring on the list window are handled by this
action.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE@3X), COMPOSITE(3X), CONSTRAINT(3X), XWMANAGERCLASS(3X),
XWSCROLLEDWINDOW/(3X)

34 Ardent Computer Corporation— Release 3.0

XWMANAGER (3Xh) XWMANAGER (3Xh)
NAME
XwmanagerWidgetClass — X Widget Manager MetaClass
SYNOPSIS
#include <X11/StringDefs.h>
#include <X1V/Intrinsic.h>
#include <Xw/Xw.h>
CLASSES
The XwManagerClass is built from the Core, Composite and Constraint classes.
DESCRIPTION
The manager class is an X Widget meta class. It is never instantiated as a widget. Its
sole purpose is as a supporting superclass for other widget classes. It provides
methods (procedures) which handle keyboard traversal and border highlighting for
other manager widgets.
NEW RESOURCES

The manager class defines a set of resources used by the programmer to specify data
for widgets which are subclasses of Manager. The string to be used when setting any
of these resources in an application defaults file (like .Xdefaults) can be obtained by
stripping the preface "XtN" off the resource name. For instance, XtNtraversalOn
becomes traversalOn.

Manager Resource Set

Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

XtNforeground

This resource defines the foreground color for the widget. Widgets built upon
this class can use the foreground for their drawing.

XtNbackgroundTile
This resource defines the tile to be used for the background of the widget. It
defines a particular tile to be combined with the foreground and background
pixel colors. The #defines for setting the tile value through an arg list and the
strings to be used in the .Xdefaults files are described in XwCreateTile(3X).

XtNhighlightThickness
This resource specifies an amount of border spacing around the border of the
widget. It is typically used by managers to have padding space around their
children and to draw special borders. This highlight thickness is and an integer
value representing the width, in pixels, of the border area. This value must be
greater than or equal to 0.

XtNtraversalOn

The application can define whether keyboard traversal is active or not. The
default for this resource is typically FALSE.

Ardent Computer Corporation — Release 3.0 35

XWMANAGER (3Xh)

XWMANAGER (3Xh)

XtNlayout
This flag controls how the manager widget’s geometry deals with too little or
too much space. The valid settings for this field are X\wMINIMIZE,
XwMAXIMIZE and XwIGNORE. (The counterpart for these settings to be used
in resource files, like .Xdefaults, are: minimize, maximize and ignore.)
Typically, the XwMINIMIZE means to request the minimum amount of space
necessary to display all children. The XwMAXIMIZE means that if additional
space is given to the widget (i.e., at create time or set values time) then use the
additional space as padding between children widgets. The XwIGNORE
settings means, maintain the size set at create time or at set value time and
never change size in response to a child widget’s request (i.e.,
added/deleted/modified a child widget). Look at the description of the
individual manager widgets to see if this feature is supported.

XtNnextTop
This callback procedure is used by the applications programmer to move the
focus from one toplevel widget to another toplevel widget.

NOTE: The XwManagerClass provides a specialized insert child procedure.
Manager widgets for which ordering makes sense (such as the RowCol manager
widget) make use of the procedure. It allows an application to provide a special
argument list type XtNinsertPosition with an integer value. This value specifies
where in the child list the new widget is inserted.

KEYBOARD TRAVERSAL

If the traversalOn resource is TRUE (either when the widget is created or during a
call to XtSetValues) the manager widget’s translation table is augmented with the
following translations:

<EnterWindow>: enter()
<LeaveWindow>: leave()
<Visible>: visible()
<FocusIn>: focusIn()
ACTIONS
enter:
If the widget is a top level manager and traversal is on, then begin or resume
traversal.
leave:
If the widget is a top level manager and traversal is on, then suspend traversal.
visible:
If traversal is on for a widget of this class and the widget that is focused
becomes hidden (e.g. another window obscures its visibility), then the focus
moves to another visible widget.
focusIn:
If the widget is a top level manager and traversal is on, then begin traversal.
ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE(3X)
36 Ardent Computer Cotporation— Release 3.0

T T T L S P P
XWMENUBUTTON (3Xh) XWMENUBUTTON (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XwmenubuttonWidgetClass — the X Widgets menubutton widget.

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/MenuBtn.h>

The menubutton widget is built out of the Core, XwPrimitive, and XwButton classes.

The widget class to use when creating a menupane is XwmenubuttonWidgetClass.
The class name is MenuButton.

The menubutton widget is commonly used with menupane and menu manager
widgets to build a menu system. The menubutton consists of a single label, a mark
and a cascade indicator. The menubutton is broken into three areas. Starting from
the left border of the menubutton the areas are: the mark area, the label area and the
cascade area. By default, the mark area contains a checkmark image, the label area
contains the name of the menubutton widget and the cascade area contains an arrow
image. The label can be set to any string or image and the label area attempts to
grow or shrink to accommodate it. The mark and cascade can be set to an image,
although the width of the these areas remains fixed.

The default semantic for this button is that button 1 down causes the select call backs
to be invoked. When a menubutton is used in a menu manager, this may be
overridden by the menu manager. The select callbacks may also be invoked by a
keyboard accelerator or mnemonic, although, it is up to the menu manager to
determine whether the accelerator or mnemonic is active.

The menubutton is often used with a menupane and menu manager widget although
it is not necessary. The menubutton could simply be used as another button widget.

NEW RESOURCES

The MenuButton widget defines a set of resource types used by the programmer to
specify the data for the menubutton. The programmer can also set the values for the
Core, Primitive and Button widget classes to set attributes for this widget. The
following table contains the set of resources defined by MenuButton. To specify any
of these resources within the .Xdefaults file, simply drop the XtN prefix from the
resource name.

Ardent Computer Corporation — Release 3.0 37

D e ——————
XWMENUBUTTON((3Xh) XWMENUBUTTON (3Xh)

MenuButton Resource Set
Name Class Type Default
XtNlabelType XtCLabelType int XwSTRING
XtNlabellmage XtCLabellmage ' XImage * | NULL
XtNcascadelmage XtCCascadelmage XImage * | NULL
XtNcascadeOn XtCCascadeOn Widget NULL
XtNmarkImage XtCMarkImage XImage * | NULL
XtNsetMark XtCSetMark Boolean FALSE
XtNkbd Accelerator XtCKbdAccelerator String NULL
XtNmnemonic XtCMnemonic String NULL
XtNmgrOverrideMnemonic | XtCMgrOverrideMnemonic | Boolean TRUE
XtNmenuMgrld XtCMenuMgrld Widget NULL
XtNcascadeSelect XtCCallback Pointer NULL
XtNcascadeUnselect XtCCallback Pointer | NULL

XtNlabelType
Two styles of labels are supported by the MenuButton widget: text string
labels and image labels. The text string label is defined by the Button resource
XtNlabel and the image label is defined by the XtNlabellmage resource. To
programmatically set this resource, use either the XwSTRING define or the
XwIMAGE define. To set this resource using the .Xdefaults files, use one of the
strings string or image.

XtNlabellmage
If XtNlabel Type indicates that a label image should be displayed, then this
resource contains the image used. This is a pointer to an XImage structure
which describes the label image data. If the image is defined with XYBitmap
data, then the image is nicely inverted when the menubutton is highlighted.

XtNcascadeImage
This resource points to an XImage structure which describes the cascade image
data. The cascade area is a fixed size (16x16). If this resource is set to NULL,
then the default cascade image, an arrow, is used. The cascade indicator is not
displayed if the XtNcascadeOn resource is set to NULL. If the image is defined
with XYBitmap data, then the image is nicely inverted when the menubutton is
highlighted. :

XtNcascadeOn
This resource determines if the cascade indicator is displayed. Itis typically set
only by the menu manager and contains the widget ID of the menupane which
cascades as a submenu from this menubutton. This resource is set to NULL to
disable the display of the cascade indicator.

XtNmarkImage
This resource points to an XImage structure which describes the mark image
data. The mark area is a fixed size (16x16). If this resource is set to NULL, then
the default mark image is used. The mark is not displayed if the XtNsetMark
resource is set to FALSE. If the image is defined with XYBitmap data, then the
image is nicely inverted when the menubutton is highlighted.

XtNsetMark
This boolean resource determines whether the mark is displayed.

38

Ardent Computer Corporation — Release 3.0

(,

_
XWMENUBUTTON (3Xh) XWMENUBUTTON (3Xh)

XtNkbdAccelerator
This resource is a string which describe a set of modifiers and the key which
may be used to select this menubutton widget. The format for this string is
identical to that used by the translations manager, with the exception that only
a single event may be specified, and only KeyPress events are allowed. If the
menubutton does not have a menu manager associated with it, then this
resource is ignored. The menu manager determines when, and if, this
accelerator is available.

XtNmnemonic _
Certain menu managers allow the menubuttons to have a mnemonic.
Mnemonics provide the user with another means for selecting a menu button.
This resource is a NULL terminated string, containing a single character. The
menu manager determines if this mnemonic is available. If the
XtNmgrOverrideMnemonic resource is false and the mnemonic is found in the
label string, then that character is underlined when the menubutton is
displayed. Refer to XwPullDown(3X) man page for further discussion of
traversal.

XtNmgrOverrideMnemonic
This boolean resource determines if the mnemonic character is underlined in
the label string. If it is set to TRUE, then the mnemonic character is not
underlined. This resource is typically set only by menu managers.

XtNmenuMgrld
This resource is used only by menu managers to indicate to the menubutton
widget its menu manager. If this is set to NULL, then the menubutton checks if

it has a menu manager at the appropriate level in its parentage. This resource
should not be set by users.

XtNcascadeSelect
This resource provides the means for registering callback routines which are
invoked if a cascade indicator is displayed and the pointer moves into the
cascade area. In some cases, the menu manager suppresses the calling of these

callback routines. The menubutton does not pass any data in the call_data field
of the callback.

XtNcascadeUnselect
This resource provides the means for registering callback routines which are
invoked if a cascade indicator is displayed and the pointer moves out of the
cascade area. These callbacks are only invoked if the XtNcascadeSelect
callbacks have been previously invoked. The menubutton passes data in the

call_data field of the callback. Itisa pointer to the XwunselectParams data
structure shown below:

typedef struct
Dimension rootX;
Dimension rootY;
Boolean remainHighlighted;

} XwunselectParams;

The rootX and rootY parameters have the position of the pointer relative to the root
window when the event occurred which caused the XtNcascadeUnselect call backs to be
called. The remainHighlighted parameter is used by cascading submenus. It is set by the
menu manager’s call back routine to indicate that the pointer traversed from a cascade into
the submenu. If the boolean is set TRUE, then the menubutton does not unhighlight on

Ardent Computer Corporation — Release 3.0 39

XWMENUBUTTON((3Xh)

exit. It also sets up an event handler on its parent menupane so that it is notified if the

XWMENUBUTTON (3Xh)

pointer enters another menubutton, in which case the menubutton should then

unhighlight.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)

Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor _ Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmapped WhenManaged XtCMappedWhenManaged [Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

40

Ardent Computer Corporation — Release 3.0

XWMENUBUTTON (3Xh) XWMENUBUTTON (3Xh)
Button Resource Set -- XWBUTTON(3X)

Name Class Type Default

XtNfont XtCFont XFontStruct * | Fixed

XtNlabel XtCLabel caddr_t widget name

XtNlabelLocation | XtCLabelLocation | int XwRIGHT

XtNvSpace XtCVSpace int 2

XtNhSpace XtCHSpace int 2

XtNsensitiveTile | XtCSensitiveTile int 75_foreground

TRANSLATIONS
The default translations set by the menubutton widget are as follows:

<Btn1Down>: select()
<EnterWindow> enter()
<LeaveWindow>: leave()
<Motion>: moved()
<Key>Select: select()
<Key>Up: traverseUp()
<Key>Down: traverseDown()
<Key>Left: traverseLeft()
<Key>Right: traverseRight()
<Key>Next: traverseNext()
<Key>Prior: traversePrev()
<Key>Home: traverseHome()
<Visible>: visibility()
<Unmap>: unmap()
<Key>KP_Enter: traverseNexttop()

ACTIONS

select:

If a menu manager is present, then it is informed of the select event. The menu
manager indicates whether this select event should be processed or ignored. If
there is no menu manager, or if the menu manager indicates the event is to be
processed, then the select callbacks are called.

enter:

If a menu manager is present, then it is informed of the enter event. The menu
manager indicates whether this enter event should be processed or ignored. If
there is no menu manager present, or if the menu manager indicates the event
is to be processed, then the menubutton is highlightedi A processed enter
action also calls the moved action to determine if the pointer is in the cascade
indicator area.

leave:

If a menu manager is present, then it is informed of the leave event. The menu
manager indicates whether this leave event should be processed or ignored. If
there is no menu manager present, or if the menu manager indicates that the
leave event is to be processed, then the menubutton is unhighlighted. If the
XtNcascadeSelect callbacks have been called, the XtNcascadeUnselect callbacks
are called.

moved:

If this menubutton has cascading on, then this action determines if the pointer
is in the cascade area and calls the XtNcascadeSelect or XtNcascadeUnselect
callbacks if necessary.

Ardent Computer Corporation — Release 3.0 41

—
XWMENUBUTTON (3Xh) XWMENUBUTTON (3Xh)

traverseUp:
Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the menu button positioned above the current traversal item;
wrap to the bottom, if necessary.

traverseDown:
Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the menu button positioned below the current traversal item;
wrap to the top, if necessary.

traverseLeft:
Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the menupane cascading from this menubutton, if one is
present.

traverseRight:
Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the menupane from which the current one has cascaded.

traverseNext:

Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the next menu tree, if one is present.

traversePrev:

Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the previous menu tree, if one is present.

traverseHome:

Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the first menupane in the menu hierarchy.

visibility:

This action routine overrides the visibility action routine provided by the
XwPrimitive meta class.

unmap:

This action overrides the unmap action routine provided by the XwPrimitive
meta class.

traverseNexttop:

Inform the menu manager controlling this widget that it should transfer the
keyboard focus to the next top level menupane.

KEYBOARD TRAVERSAL '
If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget's translations to support keyboard traversal. See the XwPrimitive
man page for a complete description of these translations.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3), XWPRIMITIVE(3X), XWBUTTON(3X)

42 _ Ardent Computer Corporation — Release 3.0

XWMENUMGR (3Xh) XWMENUMGR (3Xh)
NAME
XwmenumgrWidgetClass — the X Widgets menu manager meta widget.
SYNOPSIS
#include <X1VIntrinsic.h>
#include <X11/StringDefs.h>
#include <Xw/Xw.h>
CLASSES
The menu manager class is built the Core, Composite, Constraint and XwManager
classes. ~
DESCRIPTION
The MenuMgr class is an X Widget meta class. It is never instantiated as a widget.
Its sole purpose is as a supporting superclass for other menu manager widget classes.
NEW RESOURCES

The menu manager defines a set of resource types which may be used by the
programmer to specify the data for widgets which are a subclass of MenuMgr. To
specify any of these resources within the .Xdefaults file, simply drop the XtN prefix
from the resource name. The following table contains the set of resources defined by
MenuMgr.

MenuMgr Resource Set

Name Class Type Default
XtNassociateChildren | XtCAssociateChildren | Boolean | TRUE
XtNmenuPost XtCMenuPost String "<Btn1Down>"
XtNmenuSelect XtCMenuSelect String "<Bm1Up>"
XtNmenuUnpost XtCMenuUnpost String NULL
XtNkbdSelect XtCKBDSelect String "<Key>Select"

XtNassociateChildren

This resource indicates whether the menu hierarchy controlled by the menu
manager is accessible only from within the associated widget, or from within
the widget and any of the widget’s children.

XtNmenuPost
This string resource describes the button event and any required modifiers
needed to post one of the top level menupanes controlled by the menu
manager. The string is specified using the syntax supported by the Xt
Intrinsic’s translation manager, with three exceptions. First, only a single event
may be specified. Secondly, the event must be a ButtonPress or ButtonRelease
event. Thirdly, all modifiers specified are interpreted as being exclusive; this
means that only the specified modifiers can be present when the button event
occurs.

XtNmenuSelect
This string resource describes the button event and any required modifiers
needed to select a menu button within any of the menupanes controlled by the
menu manager. The string is specified using the syntax supported by the Xt
Intrinsic’s translation manager, with three exceptions. First, only a single event
may be specified. Secondly, the event must be a ButtonPress or ButtonRelease
event. Thirdly, all modifiers specified are interpreted as being exclusive; this
means that only the specified modifiers can be present when the button event

Ardent Computer Corporation —Release 3.0

43

XWMENUMGR (3Xh)

XWMENUMGR (3Xh)

occurs.

XtNmenuUnpost

This string resource describes the key event and any required modifiers needed
to unpost the currently viewable set of menupanes controlled by the menu
manager. This provides the user with the means for unposting a menu
hierarchy from the keyboard, without selecting a menu button. The string is
specified using the syntax supported by the Xt Intrinsic’s translation manager,
with three exceptions. First, only a single event may be specified. Secondly, the
event must be a key event. Thirdly, all modifiers specified are interpreted as
being exclusive; this means that only the specified modifiers can be present
when the button event occurs.

XtNkbdSelect

This string resource describes the key event and any required modifiers needed
to select the currently highlighted menu button. This provides the user with the
means for selecting a menu item from the keyboard, without being required to
use the mouse. The string is specified using the syntax supported by the Xt
Intrinsic’s translation manager, with three exceptions. First, only a single event
may be specified. Secondly, the event must be a key event. Thirdly, all
modifiers specified are interpreted as being exclusive; this means that only the
specified modifiers can be present when the button event occurs.

ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE@3X), XWMANAGER(3X)
44 Ardent Computer Corporation —Release 3.0

L]
XWMENUPANE (3Xh) XWMENUPANE (3Xh)

NAME
XwmenupaneWidgetClass — the X Widgets menupane meta widget.

SYNOPSIS
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xw/Xw.h>

CLASSES
The menupane widget class is built from the Core, Composite, Constraint and
XwManager classes.

DESCRIPTION
The menupane class is an X Widget meta class. It is never instantiated as a widget.
Its sole purpose is as a supporting superclass for other menupane widget classes. It
provides a collection of resources which will be needed by most menupane
subclasses.

NEW RESOURCES

The MenuPane defines a set of resource types used by the programmer to specify the
data for widgets which are subclasses of MenuPane. To specify any of these
resources within the .Xdefaults file, simply drop the XtN prefix from the resource
name.

MenuPane Resource Set

Name Class Type Default
XtNtitleShowing XtCTitleShowing | Boolean TRUE
XtNmgrTitleOverride | XtCTitleOverride | Boolean FALSE
XtNtitleType XtCTitleType int XwSTRING
XtNtitleString XtCTitleString String widget name
XtNtitleImage XtCTitlelmage XImage * NULL
XtNfont XtCFont XFontStruct * | "fixed"
XtNattachTo XtCAttachTo String NULL
XtNmnemonic XtCMnemonic String NULL
XtNselect XtCCallback Pointer NULL

XtNtitleShowing

This resource may be used by the application to control the displaying of a title
within the menupane. This may be overridden, however, by a menu manager
using the XtNmgrTitleOverride resource.

XtNmgrTitleOverride
This resource is not intended to be used by applications; it should only be used
by a menu manager widget, for overriding the application, and forcing off the
menupane title. This is useful for those menu managers whose style dictates

_ that certain menupane should not have a title displayed.

XtNtitleType
Two styles of titles are supported by the MenuPane widget. They include text
string titles and image titles. To programmatically set this resource, use either
the XwSTRING define or the XWIMAGE define. To set this resource using the
Xdefaults file, use one of the strings string or image.

Ardent Computer Corporation — Release 3.0 45

i e T A 2
XWMENUPANE (3Xh) XWMENUPANE (3Xh)

XtNtitleString
If the title type resource indicates that a title string should be displayed, then
this resource will contain the title string which is to be used. In the case where
the application does not specify a title string, the name of the menupane widget
will be used. The title is displayed using the foreground color.

XtNtitleImage
If the title type resource indicates that a title image should be displayed, then

this resource will contain a pointer to an XImage structure; this structure
describes the title image data.

XtNfont

If the title type resource indicates that a title string should be displayed, then
this resource will describe the font used to draw the title string.

XtNattachTo
When used in conjunction with a menu manager, this resource provides the
means by which the menupane may be attached as a cascade to a menubutton.
The string which is specified represents the name of the menubutton to which
the menupane is to be attached; this provides the means by which the menu
manager is able to construct the menu tree. To specify that this menupane
should be treated as the top level menupane within the menu tree, this string
should contain the name of the menu manager widget, instead of a menubutton
widget. Specifying a NULL string indicates that the menupane will not be
presently attached to anything. If the menupane does not have a menu
manager associated with it, then this resource is unused.

XtNmnemonic
Certain menu managers allow some of their menupanes to have a mnemonic.
Mnemonics may be used to post a menupane using the keyboard, instead of
using the pointer device. This resource is a NULL terminated string, containing
a single character. Typically, the character is the same as one present in the
menupane title.

XtNselect

This resource provides the means for registering callback routines which will
be invoked when the menupane receives a select action.

ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE(3X), CONSTRAINT(3X), XWMANAGER(3X)
46

Ardent Computer Corporation— Release 3.0

(

(‘

]
XWMENUSEP (3Xh) XWMENUSEP (3Xh)

NAME

XwmenuSepWidgetClass — the X Widget’'s menu item separator widget.
SYNOPSIS

#include <X11/StringDefs.h>

#include <X1V/Intrinsic.h>

#include <Xw/Xw.h>

#include <Xw/MenuSep.h>

CLASSES
MenuSep is built from the Core, XwPrimitive, XwButton, and XwMenuBtn classes.
The widget class to use when creating a menu separator widget is
XwmenuSepWidgetClass.
The class name for this widget is MenuSep.

DESCRIPTION

The MenuSep widget is a primitive widget to be used as an item separator placed
between items in a menu. Several different line drawing styles are provided.

NEW RESOURCES

The MenuSep widget defines a one additional resource type. The programmer can
also set the values for the Core and Primitive resources to set attributes for this
widget. The Button and MenuButton resources are unused for this widget.

MenuSep Resource Set
Name Class Type | Default

XtNseparatorType | XtCseparatorType | int XwSINGLE_LINE

XtNseparatorType
This resource defines the type of line drawing to be done in the menu separator
widget. Five different line drawing styles are provided. They are single,
double, single dashed, double dashed and no line. The separator type can be
set through an argument list by using one of the defines: XwSINGLE_LINE,
XwDOUBLE_LINE, XwSINGLE_DASHED_LINE,
XwDOUBLE_DASHED_LINE, and XwNO_LINE. The separator type can be
set through the .Xdefaults file by using one of the following strings: single_line,
double_line single_dashed_line, double_dashed_line and no_line.

The line drawing done within the menu separator will be automatically centered
within the height of the widget.

The separator type of no_line is provided as an escape to the application
programmer who needs a different style of drawing. To create an alternate style, a
pixmap the height of the widget can be created. After the separator widget has been
created, this pixmap can be used as the background pixmap by building an argument
list using the XtNbackgroundPixmap argument type as defined by Core and setting
the widgets background through XtSetValues. Whenever the widget is redrawn its
background will be displayed which contains the desired separator drawing. Note
that the pixmap can only be set after the widget is created. If set when created, it will
be overridden by the normal background pixmap created by the Primitive class.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Ardent Computer Corporation —Release 3.0 47

XWMENUSEP (3Xh)

XWMENUSEP(3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL
TRANSLATIONS
The menu separator widget defines no translations.
ACTIONS
The menu separator widget defines no actions.
ORIGIN '
Hewlett-Packard Company.
SEE ALSO

CORE(3X), XWPRIMITIVE(3X)

Ardent Computer Corporation —Release 3.0

e e r—
XWMOVEFOCUS (3Xh) XWMOVEFOCUS (3Xh)

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

ORIGIN

SEE ALSO

XwMoveFocus — move the keyboard focus (and the pointer) to a new toplevel
widget.

#include <X11/Intrinsic.h>
#include <Xw/Xw.h>

void XwMoveFocus (w)
Widget w;

w Thisis the ID of the widget to which the application wishes to move the focus.
It should be the toplevel widget in a widget hierarchy and it should be a
subclass of XwManager.

XwMoveFocus is a very specialized function which can be used to move the
keyboard and pointer focus to another toplevel widget hierarchy. It is useful when
an application using keyboard traversal has multiple toplevel widget hierarchies and
wishes to be able to move between these hierarchies without using the pointer
device. Specifically, this function will warp the pointer to (1,1) in the specified
widget and will also make a call to XSetInputFocus (this is necessary for use with
window managers using an explicit listener mode).

Hewlett-Packard Company.

Ardent Computer Corporation — Release 3.0 49

0 P s S M S T
XWPUSHBUTTON (3Xh) XWPUSHBUTTON (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XwpushButtonWidgetClass — the X Widgets pushbutton widget.

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/PButton.h>

The pushbutton widget is built from the Core, XwPrimitive and XwButton classes.

The widget class to use when creating a pushbutton is XwpushButtonWidgetClass.
The class name is PushButton.

The pushbutton widget consists of a text label surrounded by a button border.

By default, button 1 down will invert the interior of the button: the background will
be filled with the foreground color and the text will be written in the background
color. Button 1 down also sets the button state to TRUE and issues any XtNselect
callbacks that have been registered. Button 1 up will repaint the button in the normal
state, set the button state to FALSE and issue any XtNrelease callbacks that have been
registered.

As mentioned above, the XtNselect and XtNrelease callbacks can be attached to this
widget. This widget can also be set to respond to Enter and Leave window events by
highlighting and unhighlighting the button. This widget is also capable of handling
keyboard traversal. See the translations below for the default traversal keycodes.

A final feature is that by setting the XtNtoggle resource to TRUE the pushbutton can
be made to act like a toggle button.

NEW RESOURCES

The pushbutton widget class defines a set of resource types that can be used by the
programmer to specify data for widgets of this class. Recall that the string to be used
when setting any of these resources in an application defaults file (like .Xdefaults)
can be obtained by stripping the preface "XtN" off of the resource name. For
instance, XtNfont becomes font.

PushButton Resource Set -- CORE(3X)
Name Class Type Default

XtNtoggle | XtCToggle | Boolean | FALSE

XtNtoggle
If set to TRUE makes the pushbutton act like a toggle button.

INHERITED RESOURCES

The following resources are inherited from the named superclasses. The defaults
used for the pushbutton when being created are as follows:

50

Ardent Computer Corporation —Release 3.0

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHTLIGHT_TRAVERSAL in an argument list) at either create time or during

a call to XtSetValues, the XwPrimitive superclass will automatically augment the

XWPUSHBUTTON (3Xh) XWPUSHBUTTON (3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor - Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL
Button Resource Set -- XWBUTTON(3X)
Name Class Type Default
XtNfont XtCFont XFontStruct * | Fixed
XtNlabel XtCLabel caddr_t NULL
XtNlabelLocation | XtCLabelLocation | int right
XtNvSpace XtCVSpace int 2
XtNhSpace XtCHSpace int 2
XtNset XtCSet Boolean FALSE
XtNsensitiveTile | XtCSensitiveTile int 75_foreground
KEYBOARD TRAVERSAL

primitive widget’s translations to support keyboard traversal. See the XwPrimitive

Ardent Computer Corporation — Release 3.0

51

R e
XWPUSHBUTTON(3Xh) XWPUSHBUTTON (3Xh)

TRANSLATIONS

ACTIONS

ORIGIN

SEE ALSO

man page for a complete description of these translations. See the TRANSLATIONS
section in this man page for a description of the translations local to the pushbutton
widget.

The input to the pushbutton is driven by the mouse buttons. The default translation
set defining this button is as follows:

<Btn1Down>: select()

<Btn1Up>: release()

<EnterWindow>: enter()

<LeaveWindow>: leave()

<KeyDown>Select: select() HP "Select” key
<KeyUp>Select: unselect() HP "Select" key

Note that this widget contains some actions which are not bound to any events by
the default translations. The purpose of these additional actions are to allow
advanced users to alter the button semantics to their liking.

toggle:
Toggle the set state of the button (make it TRUE if it was FALSE, FALSE if it
was TRUE). Redraw the pushbutton to reflect the current button setting (if set,
invert the button, otherwise draw normally). If the current state of the button
is set (TRUE) issue the XtNselect callbacks, if not set (FALSE) issue the
XtNrelease callbacks. No additional data beyond the widget id and the
specified closure is sent with these callbacks.

select:
Select sets the state of the button to TRUE. It also redraws the pushbutton to
reflect the current setting. It then issues any XtNselect callbacks which have

been registered. No additional data beyond the widget id and the specified
closure is sent with these callbacks.

unselect:
Release sets the state of the button to FALSE. It also redraws the pushbutton to
reflect the current setting. It then issues any XtNrelease callbacks which have
been registered. No additional data beyond the widget id and the specified
closure is sent with these callbacks.

enter:
If the XtNtraversalType resource has been set to XwWHIGHLIGHT_ENTER then
the button will be highlighted. Otherwise no action is taken.

leave:

If the XtNtraversalType resouces has been set to XwHIGHLIGHT_ENTER then
the button will be unhighlighted. Otherwise no action is taken.

Hewlett-Packard Company.

CORE@3X), XWPRIMITIVE(3X), XWBUTTON(3X)

52

Ardent Computer Corporation — Release 3.0

XWPANEL (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XWPANEL (3Xh)

XwPanelWidgetClass — An X Widget for creating panels.

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Panel.h>

A subclass of Core, Composite, Constraint and XwManagerClass.
The widget class to use when creating a Panel widget is XwpanelWidgetClass.
The class name of Panel is Panel.

Panel provides a simple creation mechanism for the creation of application windows
and associated menus. The panel widget is also appropriate for application sub-
windows.

Panel will manage three types of children. Panel may have at most one child of each
type. The types are titlebar, menu, and work space. Children are associated with

these types via constraint resources (see below). Panel ignores all extra or unknown
children.

Panel lays out its children such that the child of type titlebar is on the top, the child of
type menu is below, and the child of type work space is on the bottom. Display of
the titlebar child can be optionally inhibitted if the panel is under the control of a
window manager which provides titlebars.

When Panel has its width changed by its parent, the menu, if displayed, is allowed to
pick its own height, the title remains the same height and the work space is
diminished or enlarged to fill the remaining available space. When Panel has its
height reduced by its parent, space is taken from the work space until the work space
is completely hidden. Further reductions in the height of Panel are shared between
the title and the menu. When Panel has its height increased by its parent, if either the
title or the menu are less than their optimum height, they are given the space until
they reach their optimum height for the given width. If both the title and the menu
are at their optimum height all space is given to the work space.

The initial width of Panel is the widest of all its children (padding is taken into
account). The initial height of Panel is the sum of the heights of all its children and
their padding.

When an application is running in a Panel with a titling window manager, there is a
possibility of double titling. Unfortunately, the application writer cannot know at
the time of development whether or not the user will have a titling window manager.
Panel has two resources which together allow runtime decisions about titling. The
first, XtNtopLevel, indicates whether the Panel is a canidate for double titling. The
application must always set this variable appropriately. The second resource,
XtNdisplayTitle, indicates whether or not the Panel should display a title.

Ardent Computer Corporation —Release 3.0 53

XWPANEL (3Xh) XWPANEL (3Xh)

NEW RESOURCES :

To specify any of these resources within a resource defaults file, simply drop the X
prefix from the resource name. Panel defines the following new resources:

Panel Resource Set

Name Class Type Default
XtNtopLevel XtCTopLevel Boolean | TRUE
XtNdisplayTitle XtCDisplayTitle Boolean | TRUE
XtNvSpace XtCVSpace int 0
XtNhSpace XtCHSpace int 0
XtNtitleToMenuPad XtCTitleToMenuPad int 0
XtNworkSpaceToSiblingPad | XtCWorkSpaceToSiblingPad | int 0

XtNtopLevel
Indicates whether not the panel is a candidate for management by a window
manager. This should always be set by the application.

XtNdisplayTitle
Ignored if XtNtopLevel is FALSE.

Otherwise, if XtNdisplayTitle is TRUE, the titlebar child will be displayed. If
XtNdisplayTitle is FALSE, the titlebar child will not be displayed.

This resource should be set by the user in the resource defaults file. If the user
runs the application without a window manager or with a non-titling window
manager, this resource should be set to TRUE. If the user runs with a titling
window manager this resource should be set to FALSE.

XtNvSpace
Padding between the top of the Panel and the top child in pixels, and between
the bottom of the Panel and the bottom child in pixels.

XtNhSpace
Padding between the sides of the Panel and the sides of the displayed children.

XtNtitleToMenuPad
If both a title and a menu child are being displayed, the padding between them
in pixels.

XtNworkSpaceToSiblingPad
The padding between the work space child and the sibling above it. If there is
no title nor menu being displayed this resource is ignored.

CONSTRAINT RESOURCES

The following resources will be attached to every widget inserted into Panel. Refer
to CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set -- Children of PANEL(3X)
Name Class Type Default
XtNwidgetType | XtCWidgetType | XwWidgetType | XwWORK_SPACE
XtNcausesResize | XtCCausesResize | Boolean FALSE

54

Ardent Computer Corporation— Release 3.0

(

T
XWPANEL (3Xh) XWPANEL (3Xh)

XtNwidgetType
Indicates to Panel what type of child it is. The possible values are,
XwWORK_SPACE, specified in a resource defaults file as "work space”,
XwTITLE, specified in a resource defaults file as "title", and XwPULLDOWN,
specified in a resource defaults file as "pulldown".

XtNcausesResize
Controls whether changes in the child geometry can cause the Panel to make a
geometry request of its parent. If TRUE for only one child, Panel will request
changes whenever that child requests changes. If TRUE for multiple children,
Panel will request changes whenever any of that set of children grow, and
when all of that set of children have shrunk.

The behavior of this resource can be nullified by setting XwNLayout to XwIGNORE.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

Manager Resource Set
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile | XtCBackgroundTile | int background
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtClayout int minimize

Ardent Computer Corporation — Release 3.0 55

XWPANEL (3Xh) XWPANEL (3Xh)
TRANSLATIONS
The default translation set defining is as follows:
<EnterWindow>: enter()
<LeaveWindow>: leave()
ACTIONS
enter: If keyboard traversal is active (argument type XtNtraversalOn with argument
value TRUE), initiate keyboard traversal. -
leave: If keyboard traversal is active (argument type XtNtraversalOn with argument
value TRUE), terminate keyboard traversal.
ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE(3X), CONSTRAINT(3X), XWMANAGER(3X)
56

Ardent Computer Corporation — Release 3.0

O S
XWPOPUPMGR (3Xh) XWPOPUPMGR (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XwpopupmgrWidgetClass — the X Widgets popup menu manager widget.

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xw/Xw.h>
#include <Xw/PopupMgr.h>

The popup menu manager widget is built from the Core, Composite, Constraint,
XwManager and XwMenuMgr classes. Note that the Constraint fields are not used in
this widget and so are not listed in the resource tables below. Also, since the
Composite class contains no user settable resources, there is no table for Composite
class resources.

The widget class to use when creating an instance of the popup menu manager is
XwpopupmgrWidgetClass. The class name is PopupMgr.

The popup menu manager widget is a composite widget which is used by an
application to manage a collection of menupanes. Even though the popup menu
manager is a composite widget, it should never have any normal widget children.
Instead, all of its children are popup shell children; the child of each of the popup
shell widgets is a menupane. In addition, the parent of the popup menu manager
must be a popup shell widget, whose parent is the widget to which the menu tree is
being associated. .

The popup menu manager manages a collection of menupane widgets, which have
been organized into a hierarchical tree structure; the root of the tree is the top level
menupane. When the user requests that the menu be posted, by generating a post
event within the widget (or possibly one of the widget’s children), the top level
menupane is posted.

Once the menu manager has posted the top level menupane, it will remain posted
until the user generates a select action; at that point, the menupanes will be removed
from the display, and the selected menu button will perform any required actions. If
the select occurs outside of a menu button, or if the user issues the menu unpost
event, then the menupanes are simply unposted.

The menu manager supports a mode by which the menu hierarchy may be associated
only with the specified widget, or it may be associated with the widget and all of its
children (both present and future children). If the menu is associated with the
widget and its children, then a menu post event which occurs in either the widget or
one of its children, will cause the menu to be posted.

The menu manager also supports a commonly used menuing feature, referred to as
sticky menus. When operating in sticky menu mode, the menu manager will
remember the last menu button selected by the user. The next time the user requests
that the menu system be posted, all of the menupanes, up to the one containing the
previously selected menu button, will be posted.

The popup menu manager provides a keyboard interface to the menus, through the
use of keyboard accelerators, for posting the menu and for selecting a menubutton
from within one of the menupanes. This manager does not support keyboard
mnemonics. When traversal is enabled, the standard keyboard traversal keys are
also operational. Using the mouse, while traversal is enabled, may produce
confusing results for the user; thus, operating in this fashion is discouraged.

Ardent Computer Corporation — Release 3.0 57

XWPOPUPMGR (3Xh) XWPOPUPMGR (3Xh)

The popup menu manager provides the application writer with a global function
which may be used to programmatically post a top level menupane at a particular
position relative to a specified widget. The calling sequence and parameters are:
shown below:

XwPostPopup (menuMgr, relativeTo, x, y)
XwPopupMgrWidget menuMgr;

Widget relativeTo;

Position x,y;

XwPostPopup() posts the top level menupane associated with the specified menu
manager at the requested (x,y) position, relative to the specified widget. If the
relativeTo parameter is set to NULL, then the position is assumed to be relative to
the root window.

NEW RESOURCES
The popup menu manager defines a set of resource types used by the programmer to
specify the data for the menu manager. The programmer can also set the values for
the Core, Composite and Manager widget classes to set attributes for this widget. To
specify any of these resources within the .Xdefaults file, simply drop the XtN prefix
from the resource name. The following table contains the set of resources defined by
PopupMgr.

PopupMgr Resource Set
Name Class Type Default

XtNstickyMenus XtCStickyMenus Boolean | FALSE
XtNpostAccelerator | XtCPostAccelerator | String NULL

XtNstickyMenus

This resource controls whether the menu manager operates in sticky menu
mode.

XtNpostAccelerator
This resource indicates the keyboard event that can be used to post the top level
menupane. The string is specified using the syntax supported by the
translation manager, with three exceptions. First, only a single event may be
specified. Second, the event must be a KeyPress or KeyRelease event. Third,
all modifiers specified are interpreted as being exclusive; this means that only
the specified modifiers can be present when the key event occurs.

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

58 Ardent Computer Corporation— Release 3.0

XWPOPUPMGR (3Xh) XWPOPUPMGR (3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
Menu Manager Resource Set -- XWMENUMGR(3X)
Name Class Type Default
XtNassociateChildren | XtCAssociateChildren | Boolean | TRUE
XtNmenuPost XtCMenuPost String "<Btn1Down>"
XtNmenuSelect XtCMenuSelect String "<Bn1Up>"
XtNmenuUnpost XtCMenuUnpost String NULL
XtNkbdSelect XtCKbdSelect String "<Key>Select"
BUGS
Due to limitations within the Xt Intrinsics, keyboard accelerators for posting a menu
pane or for selecting a menu item do not work if the widget to which the menu
manager is attached has traversal enabled.
ORIGIN
Hewlett-Packard Company.
SEE ALSO

CORE(3X), XWMANAGER(3X), XWMENUMGR(3X)

Ardent Computer Corporation — Release 3.0

59

XWPRIMITIVE (3Xh)

XWPRIMITIVE (3Xh)
NAME

XwprimitiveWidgetClass — the X Widget’'s primitive widget meta class
SYNOPSIS

#include <X11/StringDefs.h>

#include <X1VIntrinsic.h>

#include <Xw/Xw.h>
CLASSES

The Primitive widget class is built out of the Core class.
DESCRIPTION

The Primitive class is an X Widget MetaClass. It is never instantiated as a widget. Its
sole purpose is as a supporting superclass for other widget classes. It handles border
drawing and highlighting, traversal activation and deactivation and various callback
lists needed by primitive widgets.

NEW RESOURCES

Primitive defines a set of resource types used by the programmer to specify the data
for widgets which are subclasses of Primitive.

Primitive Resource Set -- XWPRIMITIVE(3X)

Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

XtNforeground

This resource defines the foreground color for the widget. Widgets built upon
this class can use the foreground for their drawing.

XtNbackgroundTile
This resource defines the tile to be used for the background of the widget. It
defines a particular tile to be combined with the foreground and background
pixel colors. The #defines for setting the tile value through an arg list and the
strings to be used in the .Xdefaults files are described in XwCreateTile(3X).

XtNhighlightColor
This resource defines the color to be used in the highlighting drawn by
Primitive around the exterior of the widget.

XtNhighlightStyle '
Two styles of border highlighting are supported by Primitive. They include
drawing the highlighting with a pattern and widget specific border drawing.
To set the highlight style through an arg list, use the #define

XwPATTERN_BORDER. To set the highlight style through the .Xdefaults file,
use the string pattern_border.

60

Ardent Computer Corporation — Release 3.0

XWPRIMITIVE (3Xh)

XWPRIMITIVE (3Xh)

For Widget Writers: The highlighting style of XwWIDGET_DEFINED is used
exclusively by widgets with special highlighting requirements that need to
override the normal highlighting types. To use, the widget inserts a highlight
and unhighlight procedure into its primitive class and forces the highlightStyle
field in the primitive instance to the define XwWIDGET_DEFINED. The
primitive class will then make the appropriate calls to the highlight and
dehighlight functions.

XtNhighlightTile

When the highlight style is XWPATTERN_BORDER, one of several tiles can be
used for the drawing. The #defines for setting the values through an arg list
and the strings to be used in the .Xdefaults files are described in
XwCreateTile(3X).

XtNhighlightThickness

The width of the highlight can be set using this resource. It is specified as an
integer value representing the width, in pixels, of the highlight to be drawn.
This value must be greater than or equal to 0. Note that highlighting takes
place within the window created for a widget and is separate from the window
border.

XtNtraversalType

Three modes of border highlighting activation are supported by Primitive.
They are, no highlighting, highlight on the cursor entering the widgets window
and highlight for keyboard traversal. The last mode is used by the keyboard
traversal mechanism to indicate the widget that is to receive all input occurring
within the widget hierarchy. To set the traversal type through an arg list, one
of three defines can be used. They are X\wHIGHLIGHT_OFF,
XwHIGHLIGHT_ENTER and XwHIGHLIGHT_TRAVERSAL. The strings that
can be used to set this resource through the Xdefaults file are highlight_off,
highlight_enter, and highlight_traversal.

XtNrecomputeSize

This boolean resource indicates to a primitive widget whether it should
recalculate its size when an application makes a XtSetValues call to it. If set to
TRUE, the widget will perform its normal size calculations will may cause its
geometry to change. If set to FALSE, the widget will not recalculate its size.

XtNselect

This is a reserved callback list used by widget subclasses built upon Primitive
to implement there callback lists.

XtNrelease

This is a reserved callback list used by widget subclasses built upon Primitive
to implement there callback lists.

KEYBOARD TRAVERSAL

If the traversalType resource is set to highlight_traversal (either when the widget is
created or during a call to XtSetValues) the Primitive widget’s translation table is
augmented with the following translations:

Ardent Computer Corporation — Release 3.0 61

XWPRIMITIVE (3Xh) XWPRIMITIVE (3Xh)
<FocusIn>: focusIn()
<FocusOut>: focusOut()
<Visible>: visibility()
<Unmap>: unmap()
<Key>Up: traverseUp() HP Up arrow key.
<Key>Down: “traverseDown() HP Down arrow key.
<Key>Left: traverseLeft() HP Left arrow key.
<Key>Right: traverseRight() HP Right arrow key.
<Key>Next: traverseNext() HP "Next" key.
<Key>Prior: traversePrev() HP "Prev" key.
<Key>Home: traverseHome() HP Home arrow key.
<Key>KP_Enter: traverseNextTop() HP "Enter" key.
ACTIONS
focusIn:
If traversal is on for a widget of this class then accept the keyboard focus and
visually indicate it by highlighting the widget.
focusOut:
If traversal is on for a widget of this class then indicate that the widget no
longer has the focus by unhighlighting the widget.
visibility:
If traversal is on for a widget of this class and the widget that is focused
becomes hidden (e.g. another window obscures its visibility), then the focus
moves to another visible widget.
unmap:
If traversal is on for a widget of this class and the widget that is focused
becomes unmapped, then the focus moves to another mapped widget.
traverseUp:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the first widget above this one.
traverseDown:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the first widget below this one.
traverseLeft:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the first widget to the left of this one.
traverseRight:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the first widget to the right of this one.
traverseNext:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the next child in the parent’s list of children.
traversePrev:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the previous child in the parent’s list of children.
traverseHome:
Inform the parent of a widget of this class that it should transfer keyboard
focus to the child which is closest to the upper left hand corner of the parent. If
that child already has the keyboard focus, then ask the grandparent of the
widget to give the keyboard focus to whichever of its children which is closest
to the upper left hand corner.
62

Ardent Computer Corporation — Release 3.0

B o o
XWPRIMITIVE (3Xh) XWPRIMITIVE (3Xh)

traverseNextTop:
Find the topmost parent in a widget of this class hierarch which is a subclass of
XwManager and tell it to issues any XtNnextTop callbacks that have been
registered with it. The purpose of this callback is to allow applications to move
the keyboard focus between top level widget hierarchies of the same
application.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE@3X), XWCREATETILE(3X)

Ardent Computer Corporation — Release 3.0 63

XWPULLDOWN (3Xh) XWPULLDOWN (3Xh)

NAME (
XwpulldownWidgetClass - the X Widgets pulldown menu manager widget. :

SYNOPSIS
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xw/Xw.h>
#include <Xw/Pulldown.h>

CLASSES
The pulldown menu manager widget is built out of the Core, Composite, Constraint,
XwManager and XwMenuMgr classes. Note that the Constraint fields are not used in
this widget and so are not listed in the resource tables below. Also, since the
Composite class contains no user settable resources, there is no table for Composite
class resources.

The widget class to use when creating an instance of the pulldown menu manager is
XwpulldownWidgetClass. The class name is Pulldown.

DESCRIPTION
The pulldown menu manager widget is a composite widget which is used by an
application to manage a collection of menupanes. Even though the pulldown menu
manager is a composite widget, it should never have any normal widget children.
Instead, all of its children are popup shell children; the child of each of the popup
shell widgets is a menupane. In addition, the parent of the pulldown menu manager

must be a popup shell widget, whose parent is the widget to which the menu tree is
being associated. :

The pulldown menu manager manages a collection of menupane widgets, which (
have been organized into a hierarchical tree structure; the root of the tree is referred
to as the top level menupane. The pulldown menu manager creates a pulldown
widget as a child of the widget to which the menu tree is associated; as the menu tree
is constructed, titlebuttons will be added to the pulldown widget, thus providing the

“user with a means for posting a particular portion of the menu tree. As menupanes
are added to the menu tree, if cascading submenus are allowed, then only those
menupanes which cascade off of the top level menupane will be folded up as a first
level menupane with a new titlebutton within the pulldown widget. If cascading
submenus are not allowed, then all cascading menupanes will be folded up into a
first level menupane with a new titlebutton.

When the user requests that the menu be posted, by generating a post event within
one of the titlebuttons, the menupane associated with the indicated titlebutton is
posted. As soon as a select event or an unpost event is generated, the menupanes are
unposted.

Once the menu manager has posted a first level menupane, it will remain posted
until either the user generates a select action, the user generates an unpost action, or
the user moves the cursor into a different titlebutton. If the select action occurs, then
the menupanes will be removed from the display, and the appropriate menubutton
will perform any required actions. If the select action occurs outside of a
menubutton, or if the unpost action is generated, then the menupanes are simply
unposted. If the cursor was moved into a different titlebutton, then the menupanes
associated with the previous titlebutton will be unposted, and the first level
menupane for the new titlebutton will be posted.

only with the specified widget, or it may be associated with the widget and all of its

The menu manager supports a mode by which the menu hierarchy may be associated (
J
children (both present and future children). If the menu is associated with the

64 Ardent Computer Corporation— Release 3.0

e ————————————
XWPULLDOWN(3Xh) XWPULLDOWN (3Xh)

widget and its children, then a keyboard accelerator which occurs in either the
widget or one of its children, will cause the appropriate action to occur.

The pulldown menu manager provides a keyboard interface to the menus, through
the use of mnemonics and keyboard accelerators. A mnemonic may be used to post
any of the first level menupanes; a posting mnemonic is issued by typing the
appropriate mnemonic character in the presence of the modifiers specified by the
postAccelerator resource. Keyboard accelerators are supported for selecting a
menubutton from within any of the menupanes; accelerators are always active, even
if the corresponding menubutton is not currently displayed. Keyboard mnemonics
may also be used for selecting a menubutton; however, a menubutton’s mnemonic is
only active if the menupane in which it resides in is currently displayed. The
pulldown menu manager only allows the first level pulldown menupanes to have
keyboard mnemonics for posting,.

NEW RESOURCES
The pulldown menu manager defines a set of resource types which may be used by
the programmer to specify the data for the menu manager. The programmer can
also set the values for the Core, Composite and Manager widget classes to set
attributes for this widget. To specify any of these resources within the .Xdefaults file,
simply drop the XtN prefix from the resource name. The following table contains the
set of resources defined by Pulldown.

Pulldown Resource Set

Name Class Type Default
XtNallowCascades | XtCAllowCascades | Boolean | TRUE
XtNpostAccelerator | XtCPostAccelerator | String "Meta"
XtNpulldownBarld | XtCPulldownBarld | Widget | NULL

XtNallowCascades
This resource is used to control whether any of the top level pulldown
menupanes may have other menupanes cascading off of them. This resource
must be set to the desired value when the menu manager widget is first
created; it cannot be modified after the widget has been created.

XtNpostAccelerator
This resource is used to specify the keyboard modifiers which must be present
when one of the post mnemonics is issued by the user. This resource must be
set to the desired value when the menu manager widget is first created; it
cannot be modified after the widget has been created.

XtNpulldownBarld
This resource is a read-only resource, and provides the application with the
means for obtaining the widget Id for the frame widget which encloses the
pulldown menubar widget. Applications should not use this to modify the
attributes of the pulldown menubar. This resource is made available to allow
applications to obtain the pulldown menubar Id, which is needed when
attempting to add a pulldown menu to a widget which is not menu smart.

Ardent Computer Corporation — Release 3.0 65

XWPULLDOWN (3Xh)

INHERITED RESOURCES

XWPULLDOWN (3Xh)

The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANA GER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNshadowOn XtCShadowOn Boolean | TRUE
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50_foreground
XtNbottomShadowColor | XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile | int foreground
Menu Manager Resource Set -- XWMENUMGR(3X)
Name Class Type Default
XtNassociateChildren | XtCAssociateChildren | Boolean | TRUE
XtNmenuPost XtCMenuPost String "<Btn1Down>"
XtNmenuSelect XtCMenuSelect String "<Btn1Up>"
XtNmenuUnpost XtCMenuUnpost String NULL
XtNkbdSelect XtCKbdSelect String "<Key>Select"

66

Ardent Computer Corporation— Release 3.0

(

XWPULLDOWN (3Xh)

PULLDOWN BUTTON RESOURCES

The pulldown menu manager is responsible for managing the set of menupanes

XWPULLDOWN (3Xh)

specified by the application, and for creating pulldown buttons within the pulldown

menu bar, as needed. When creating the pulldown buttons, certain resources are
inherited from the menupane from which the pulldown button is derived, while

other resources are inherited from the menu manager. When an application modifies
one of these resources within the menupane or the menu manager, the attribute will

also be passed on to the associated pulldown button. The following tables outline
those resources which are inherited from the menupane and those which are
inherited from the menu manager:

Inherited MenuPane Resource Set
Name Class Type Default
XtNfont XtCFont XFontStruct * | "fixed"
XtNforeground XtCForeground Pixel Black
XtNbackground XtCBackground Pixel White
XtNbackgroundTile XtCBackgroundTile int background
XtNtopShadowColor XtCBackground Pixel White
XtNtopShadowTile XtCTopShadowTile int 50_foreground
XtNbottomShadowColor | XtCForeground Pixel Black
XtNbottomShadowTile XtCBottomShadowTile | int foreground
Inherited Menu Manager Resource Set
Name Class Type Default
XtNshadowOn | XtCShadowOn | Boolean | TRUE
BUGS
Due to limitations within the Xt Intrinsics, keyboard accelerators for posting a menu
pane or for selecting a menu item do not work if the widget to which the menu
manager is attached has traversal enabled.
The pulldown menu manager currently does not support keyboard traversal.
ORIGIN
Hewlett-Packard Company.
SEE ALSO

CORE@BX), XWMANAGER(3X), XWMENUMGR(3X)

Ardent Computer Corporation — Release 3.0

67

L - - -]
XWROWCOLUMN (3Xh) XWROWCOLUMN (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XwrowColWidgetClass — the X Widgets row/column manager widget.

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/RCManager.h>

The row column manager widget is built from the Core, Composite, Constraint and
XwManager classes. Note that the Constraint fields are not used in this widget and
so is not listed in the resource tables below. Also, since the Composite class contains
no user settable resources, there is no table for Composite class resources.

The widget class to use when creating a row column manager is
XwrowColWidgetClass. The class name is RowCol.

The row/column widget is a composite widget which supports 3 types of
row/column layouts for its children. They are: requested columns, maximum
columns, and maximum unaligned. With the first layout type, requested columns,
the application specifies the number of columns (the default is one) to be used in
laying out the data. The children are laid out rowwise. Columns are as wide as the
widest element in the column and all elements are left justified. Row height is
determined by the largest element in the row and all elements are centered in the
row. The second layout type, maximum columns, automatically calculates the
maximum number of columns that can fit within the manager and lays the children
out accordingly. The last layout type, maximum unaligned, does not force any
columnar alignment. A child being positioned is placed to the immediately right of
previous child until a row is full, then a new row is started at the left edge of the
manager immediately below the previous row.

In addition to the row/column ordering, this manager widget supports 3 different
layout policies: minimize (the default), maximize and ignore. When the layout policy
is set to minimize, the manager will create a box which is just large enough to contain
all of its children, regardless of any provided width and height values. When the
given width and height values would create a box larger than needed, the maximize
setting will use this additional space as padding between elements. Note that, with
the maximize setting, if one or both of the height/width values are too small, the box
will grow the manager to honor the given width and height, it will not grow or
shrink in response to the addition, deletion or altering of its children.

The row/column widget also implements two selection policies. The default is
n_of_many, and the alternative is one_of_many. The n_of_many policy does not
require any action on the part of the manager widget. It allows any or all of its
children to be selected and performs no action in response to their selection. The
one_of_many policy ONLY applies to to children widgets which are subclasses of the
XwPrimitive class. When one_of_many is the active policy, a callback (of type
XtNselect) is added to each child widget. Then, when a child is selected the manager
is informed. The manager keeps track of the previously active child and directly
invokes a release procedure in that child so that it becomes unselected. The
one_of_many mode will not activate a child if none are active and will not disallow
the selection of an active child causing it to become deactive. Thus, if a strict one of
many mode is desired, the application will have to enforce it.

68

Ardent Computer Corporation —Release 3.0

T
XWROWCOLUMN (3Xh) XWROWCOLUMN (3Xh)

NEW RESOURCES
The row/column manager defines a set of resource types used by the programmer to
specify data for the manager widget. The programmer can also set the values for the
Core, Composite and XwManager widget classes to set attributes for this widget.
The following table contains the settable resources defined by the row/column
manager. The string to be used when setting any of these resources in an application
defaults file (like .Xdefaults) can be obtained by stripping the preface "XtN" off of the
resource name. For instance, XtNvSpace becomes vSpace.

Row Column Resource Set

Name Class Type Default
XtNhSpace XtCHSpace int 4

XtNvSpace XtCVSpace int 4

XtNlayoutType | XtCLayoutType | int requested_columns
XtNcolumns XtCColumns int 1

XtNforceSize XtCForceSize Boolean | FALSE
XtNsingleRow XtCSingleRow Boolean | FALSE
XtNmode XtCMode int n_of_many

XtNhSpace
The application may determine the number of pixels of space left between each
element within a given row. This defines a minimum spacing.

XtNvSpace
The application may determine the number of pixels of space left between each
column. This defines a minimum spacing.

XtNlayoutType
The application can specify the type of layout the row column manager is to
perform. Allowable argument list settings are XwREQUESTED_COLUMNS,
XwMAXIMUM_COLUMNS and XwMAXIMUM_UNALIGNED. To set this
value in .Xdefaults or another resource file use the strings requested_columns,
maximum_columns and maximum_unaligned.

XtNcolumns
The application can specify the number of columns to be used when laying out
the widgets children.

XtNforceSize
The application has the option of forcing the widths of each widget in a column
and the heights of each widget in a row to be the same. This can be used, for
example to enforce an orderly layout for a group of buttons. For the layout
type of maximum unaligned, only the heights of the widgets in a row are
forced to the same size.

XtNsingleRow
For layout types of maximum columns and maximum unaligned, the
application has the option of having the row column manager to try to lay itself
out in a single row whenever one of its children makes a geometry request.

XtNmode
The application can specify whether the selection policy is n_of_many or
one_of_many. Allowable argument list settings are XwONE_OF_MANY and
XwN_OF _MANY. To set this value in .Xdefaults or another resource file use

Ardent Computer Corporation — Release 3.0 69

XWROWCOLUMN (3Xh)

the strings one_of_many and n_of_many.

INHERITED RESOURCES

XWROWCOLUMN (3Xh)

The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth _ XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
- XtSetValues, the XwManager superclass will automatically augment the manager

widget’s translations to support keyboard traversal. Refer to the XwManager man

page for a complete description of these translations.

ORIGIN
, Hewlett-Packard Company.
SEE ALSO
CORE@3X), XWMANAGER(3X), XWPRIMITIVE(3X)
70 Ardent Computer Corporation— Release 3.0

R T g
XWREGISTERCONVERTERS (3Xh) XWREGISTERCONVERTERS (3Xh)

NAME

SYNOPSIS

DESCRIPTION

ORIGIN

SEE ALSO

XwRegisterConverters — register all of the resource converters used by the X
Widgets.

#include <X11/Atoms.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>

void XwRegisterConverters ()

XwRegisterConverters is used by widget writers to register all of the resource type
converters used by the X Widgets. The call to this routine is made within a widget's
Classlnitialize procedure that has added a resource converter to the source file
containing this function. XwRegisterConverters ensures that resource converters it is
registering are only registered once.

Hewlett-Packard Company.

Ardent Computer Corporation — Release 3.0 71

XWSASH (3Xh)

XWSASH (3Xh)
NAME
XwsashWidgetClass — an X Widgets utility widget
SYNOPSIS
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Sash.h>
CLASSES
The sash widget is built from the Core and XwPrimitive classes.
The widget class to use when creating a sash is XwsashWidgetClass. The class name
is Sash.
" DESCRIPTION
The sash widget is a utility widget used by the vertical paned manager XwVPaned to
control the sizes of the individual panes. In its realized form it appears as a square
box of its background color. When the pointer is moved into the sash the cursor is
changed to the crosshair cursor.
Callbacks can be attached to the widget to report selection (XtNselect) and
unselection (XtNrelease). This widget can be set to respond to Enter and Leave
window events by highlighting and unhighlighting the sash. This widget is also
capable of handling keyboard traversal. (While you can traverse to the Sash in the
current widget library, Sash does not handle keyboard input.) See the translations
below for the default traversal keycodes.
NEW RESOURCES
The sash widget class defines one additional resource which is detailed in the table
below. The programmer should refer to the man pages for the sash’s superclasses to
determine available resources and their defaults.
Sash Resource Set
Name Class Type Default
XtNcallback | XtCCallback | caddr t | NULL
XtNcallback
This is used by the paned window widget to be informed of button presses and
mouse movement associated with the sash.
INHERITED RESOURCES
The following resources are inherited from the named superclasses: The defaults
used for the sash when being created are as follows:
72

Ardent Computer Corporation— Release 3.0

(

KEYBOARD TRAVERSAL

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHTLIGHT_TRAVERSAL in an argument list) at either create time or during

a call to XtSetValues, the XwPrimitive superclass will automatically augment the

XWSASH (3Xh) XWSASH (3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XNx XtCPosition int 0
XNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

primitive widget's translations to support keyboard traversal. See the XwPrimitive
man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local

to the sash widget.

TRANSLATIONS
The input to the sash is driven by the mouse buttons. The default translation set
defining this button is listed below. Note that for the specific key symbols used in

traversal, the HP Key Cap which corresponds to this key symbol appears to the right
of the definition.

Ardent Computer Corporation — Release 3.0 73

XWSASH (3Xh)

ACTIONS

ORIGIN

SEE ALSO

XWSASH (3Xh)
<Btn1Down>: SashAction(Start, UpperPane)
<Btn2Down>: SashAction(Start, ThisBorderOnly)
<Btn3Down>: SashAction(Start, LowerPane)
<Btn1Motion>: SashAction(Move, Upper)
<Btn2Motion>: SashAction(Move, ThisBorder)
<Btn3Motion>: SashAction(Move, Lower)
Any<BtnUp>: SashAction(Commit)

<EnterWindow>: enter()
<LeaveWindow>: leave()

SashAction(Start, UpperPane):
Change the cursor from the crosshair to an upward pointing arrow. Determine
the upper pane which will be adjusted (usually the pane to which the sash is
attached).

SashAction(Start, ThisBorderOnly):
Change the cursor from the crosshair to a double headed arrow. The panes that
will be adjusted are the pane to which the sash is attached and the first pane
below it that can be adjusted. Unlike the UpperPane and LowerPane mode,
only 2 panes will be affected. If one of the panes reaches its minimum or
maximum, adjustment will stop, instead of finding the next adjustable pane.

SashAction(Start, LowerPane):
Change the cursor from the crosshair to a downward pointing arrow.
Determine the lower pane which will be adjusted (usually the pane below the
pane to which the sash is attached).

SashAction(Move, Upper):
Draw a series of track lines to illustrate what the heights of the panes would be
if the Commit action were invoked. Determine which widget below the upper
pane can be adjusted and make the appropriate adjustments.

SashAction(Move, ThisBorder): :
Draw a series of track lines to illustrate what the heights of the panes would be
if the Commit action were invoked. Adjust as needed (and as possible) the
upper and lower panes selected when the SashAction(Start, ThisBorderOnly)
action was invoked.

SashAction(Move, Lower):
Draw a series of track lines to illustrate what the heights of the panes would be
if the Commit action were invoked. Determine which widget above the lower
pane can be adjusted and make the appropriate adjustments.

enter:
If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the button will be highlighted. Otherwise no action is taken.

leave:

If the XtNtraversalType resouces has been set to XwHIGHLIGHT _ENTER then
the button will be unhighlighted. Otherwise no action is taken.

Hewlett-Packard Company.

CORE(@3X), XWPRIMITIVE(3X), XWVPANED(3X)

74

Ardent Computer Corporation — Release 3.0

S
XWSCROLLBAR(3Xh) XWSCROLLBAR (3Xh)

NAME
XwscrollbarWidgetClass — the X Widget’s scrollbar widget

SYNOPSIS
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Valuator.h>
#include <Xw/Arrow.h>
#include <Xw/ScrollBar.h>

CLASSES
The ScrollBar is built from the Core, Composite, and XwManager classes.
The widget class to use when creating a scrollbar is XwscrollbarWidgetClass. The
class name for scrollbar is ScrollBar.

DESCRIPTION
The ScrollBar widget combines the Valuator and Arrow widgets to implement a
horizontal or vertical scrolling widget containing a valuator and an arrow on each
end of the valuator.
As with the Valuator, input is supported through interactive slider movement and
selections on the slide area not occupied by the slider. Both types of input have a
separate callback list for communicating with the application. The arrows on each
end of the valuator control additional input to the valuator. When an arrow is
selected, the slider within the valuator will be moved in the direction of the arrow by
an application supplied amount. If the button is held down, the slider will continue
to move at a constant rate.
The ScrollBar can be used by the application to attach to objects scrolled under
application control, or used by composite widgets to implement predefined scrolled
objects.

NEW RESOURCES

The ScrollBar defines a set of resource types used by the programmer to specify the
data for the scrollbar. The programmer can also set the values for the Core,
Composite and Manager widget classes to set attributes for this widget. To reference
a resource in a .Xdefaults file, strip off the XtN from the resource string. The
following table contains the set of resources defined by ScrollBar.

ScrollBar Resource Set
Name Class Type | Default
XtNinitialDelay | XtCinitialDelay | int 500
XtNrepeatRate | XtCRepeatRate | int 100
XtNgranularity | XtCGranularity | int 2

XtNinitialDelay
The ScrollBar supports smooth time sequenced movement of the slider when a
selection occurs on the arrows. This resource defines the amount of delay to
wait between the initial selection and the slider starting its repetitive
movement. The value is defined in milliseconds.

Ardent Computer Corporation — Release 3.0 75

A A
XWSCROLLBAR((3Xh) XWSCROLLBAR (3Xh)

XtNrepeatRate
This resource defines the continuous repeat rate to use to move the slider while

the button is being held down on an arrow. The value is also defined in
milliseconds.

XtNgranularity

This resource defines the increment in the valuator’s coordinate system to
move the slider while continuous scrolling.

INCORPORATED RESOURCES
The ScrollBar creates itself by internally creating two Arrow widgets and a Valuator.
As such, it uses a large number of the resources defined by these widgets. Many of
the attributes for these widgets can be set through the .Xdefaults file or by use of
XtSetValues() when communicating with the ScrollBar.

It should be noted, that only the resources within the following tables will have any
effect on the valuator or arrows. The other resource types defined by the Valuator
and Arrow widgets are either overridden or unused by ScrollBar.

The following tables list the resources incorporated by ScrollBar. For a complete
description of these resources, refer to the manual page listed in the table heading.

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type | Default
XtNhighlightColor | XtCForeground Pixel | Black
XtNhighlightStyle | XtCHighlightStyle | int pattern_border
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNtraversalType XtCTraversalType | int highlight_off

Valuator Resource Set -- XWVALUATOR(3X)
Name Class Type Default
XtNsliderMin XtCSliderMin int 0
XtNsliderMax XtCSliderMax int 100
XtNsliderExtent XtCSliderExtent int 10
XtNsliderOrigin XtCSliderOrigin int 0
XtNslideOrientation | XtCSlideOrientation | int vertical
XtNsliderMoved XtCCallback Pointer | NULL
XtNsliderReleased XtCCallback Pointer | NULL
XtNareaSelected XtCCallback Pointer | NULL
INHERITED RESOURCES

The following resources are inherited from the named superclasses:

76 Ardent Computer Corporation— Release 3.0

XWSCROLLBAR(3Xh) XWSCROLLBAR (3Xh)
Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback : Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

If the XtNtraversalOn resource is set to True at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager

widget’s translations to support keyboard traversal. Refer to the XwManager man
page for a complete description of these translations.

ORIGIN

Hewlett-Packard Company.

SEE ALSO

CORE(3X), XWMANAGER(3X), XWPRIMITIVE(3X), XWCREATETILE(3X),
XWVALUATOR3X), XWARROW(3X)

Ardent Computer Corporation — Release 3.0

77

XWSCROLLEDWINDOW (3Xh) XWSCROLLEDWINDOW (3Xh)

NAME (\
XwswindowWidgetClass — the X Widget's scrolled window widget

SYNOPSIS
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Valuator.h>
#include <Xw/Arrow.h>
#include <Xw/ScrollBar.h>
#include <Xw/SWindow.h>

CLASSES
The ScrolledWindow is built from the Core, Composite, and XwManager classes.

The widget class to use when creating a scrolled window is
XwswindowWidgetClass. The class name is ScrolledWindow.

DESCRIPTION

The ScrolledWindow widget combines the ScrollBar and BulletinBoard widgets to
implement a visible window onto some other (usually larger) data display. The
visible part of the window can be scrolled through the larger display by the use of
scroll bars.

To use the scrolled window, an application first creates a ScrolledWindow widget,

and then creates a widget capable of displaying the desired data as a child of the
ScrolledWindow. ScrolledWindow will position the child widget within its

BulletinBoard manager instance, and create scroll bars for the horizontal and vertical ~
dimensions. When the user performs some action on the scroll bars, the child widget (
will be repositioned accordingly within the bulletin board.

NEW RESOURCES

The ScrolledWindow widget defines a unique set of resource types which can be
used by the programmer to control the appearence and behavior of the scrolled
window. The programmer can also set the values for the Core, Composite and
Manager widget classes to set attributes for this widget. To reference a resource in a
Xdefaults file, strip off the XtN from the resource string. The following table
contains the set of resources defined by ScrolledWindow.

78 Ardent Computer Corporation — Release 3.0

e —————]
XWSCROLLEDWINDOW (3Xh) XWSCROLLEDWINDOW (3Xh)

ScrolledWindow Resource Set

Name Class Type Default
XtNvsbWidth XtCVsbWidth int 20
XtNhsbHeight XtCHsbHeight int 20

XtNforceHorizontalSB | XtCForceHorizontalSB | Boolean | FALSE
XtNforceVerticalSB XtCForceVerticalSB Boolean | FALSE

XtNvScrollEvent XtCCallBack Pointer | NULL
XtNhScrollEvent XtCCallBack Pointer NULL
XtNinitialX XtClnitialX int 0
XtNinitialY XtClInitialY int 0
XtNvScrollBarWidth
This is the width in pixels of the vertical scroll bar.
XtNhScrollBarHeight
This is the height in pixels of the horizontal scroll bar.
XtNforceHorizontalSB

When the child widget is created and positioned within the scrolled window,
its width and height are examined. If the entire child widget will fit within the
width of the scrolled window, the horizontal scrollbar will not be created, since
there is no need to scroll in that direction. Setting this resource to TRUE
disables this checking and will force a horizontal scrollbar to be attached to the
window regardless of the dimension of the child widget.

XtNforceVerticalSB
This resource controls the existence of the vertical scrollbar. As described
above, if this is set to TRUE a vertical scrollbar will always be created.

XtNvScrollEvent and XtNvScrollEvent
An application program may track the position of the child within the scrolled
window by linking into these callbacks. Whenever the user moves the valuator
in either scroll bar, ScrolledWindow moves the child accordingly and then calls
the appropriate callback. The call_data parameter is set to the new valuator
origin for the scrollbar.

XtNinitialX and XtNinitialY
The child widget is initially positioned at (0,0) within the bulletin board. This
positioning can be changed by specifying a new X and Y location. If a non-zero
value is given, that becomes the initial location, and the valuators inside the
scrollbars are adjusted to give a visual indication of the new offset. This value
should be negative to assure proper operation of the scrolled window. These
resources are only used at initialization time; they cannot be set through a call
to XtSetValues.

INCORPORATED RESOURCES
The ScrolledWindow widget is built from two ScrollBar widgets and a BulletinBoard
widget. As such, it uses a large number of the resources defined by these widgets.
Many of the attributes for these widgets can be set through the .Xdefaults file or by
use of XtSetValues() when communicating with the ScrolledWindow widget.

Only the resources within the following tables will have any effect on the scroll bars.
The other resource types defined by the ScrollBar widget are either overridden or
unused by ScrolledWindow.

Ardent Computer Corporation — Release 3.0 79

XWSCROLLEDWINDOW (3Xh)

XWSCROLLEDWINDOW (3Xh)

The following tables list the resources incorporated by ScrolledWindow. For a
complete description of these resources, refer to the manual page listed in the table

heading.

ScrollBar Resource Set -- XWSCROLLBAR(3X)
Name Class Type | Default
XtNinitialDelay XtCinitialDelay int 500
XtNrepeatRate XtCRepeatRate int 100
XtNgranularity XtCGranularity int 10
XtNforeground XtCForeground Pixel | Black
XtNhighlightColor XtCForeground Pixel | Black
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightTile XtCHighlightTile int 50%_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalType XtCTraversalType int highlight_off

INHERITED RESOURCES

The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition - int 10
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

Ardent Computer Corporation— Release 3.0

e T ————————————
XWSCROLLEDWINDOW (3Xh) XWSCROLLEDWINDOW (3Xh)

Manager Resource Set
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget’s translations to support keyboard traversal. Refer to the
XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local
to the scrolled window widget.

TRANSLATIONS ,
Input to the ScrolledWindow widget is driven by the mouse buttons. However the
translations driving the actions are defined by the ScrollBar widgets. The additional
translations used for ScrolledWindow are as follows:
<EnterWindow>: enter(),
<LeaveWindow>: leave(),
ACTIONS
enter: Enter window events occurring on the scrolled window are handled by this
action.
leave: Leave window events occurring on the scrolled window are handled by this
action.
ORIGIN
Hewlett-Packard Company.
SEE ALSO

CORE@3X), XWMANAGER(3X) XWPRIMITIVE(3X),
XWSCROLLBAR(3X),XWBULLETINBOARD(3X), XWVALUATOR(3X),
XWARROW(3X)

Ardent Computer Corporation — Release 3.0 81

e r——————
XWSTATICRASTER(3Xh) XWSTATICRASTER (3Xh)

NAME

XwstaticrasterWidgetClass — The HP X Widget's static image widget (
SYNOPSIS

#include <X11/StringDefs.h>

#include <X11/Intrinsic.h>

#include <Xw/Xw.h>

#include <Xw/SRaster.h>

CLASSES
The static raster widget is built from the Core, XwPrimitive and XwSRaster classes.

The widget class to use when creating a static raster is XwstaticrasterWidgetClass.
The class name is StaticRaster.

DESCRIPTION
~ The static raster widget provides an uneditable raster image. As a default, the image
is placed in a window that is exactly the size of the raster (plus the border width).
The image can be dynamically resized. If the window is enlarged from its original
size, the image will be redrawn in the center of the new window. If the window

shrinks below the size of the raster, the image is clipped on the right and bottom
sides as needed to fit within the new boundries.

The raster image is provided to the widget in the form of an XImage data structure.
New data can be displayed by specifing a new XImage structure, or by changing the
pointer to the bitmap data within that structure.

Callbacks can be attached to the widget to report selection (XtNselect) and

unselection (XtNrelease). This widget can be set to respond to Enter and Leave

window events by highlighting and unhighlighting the border. (
NEW RESOURCES

StaticRaster defines several new resources. (To reference a resource in a .Xdefaults
file, strip off the XtN from the resource string.)

StaticRaster Resource Set
Resource Class Type Default
XtNsRimage XtCSRimage XImage * | NULL
XtNinvertOnSelect | XtCInvertOnSelect | Boolean TRUE
XtNshowSelected XtCIShowSelected | Boolean TRUE

XtNset XtCSet Boolean FALSE
XtNsRimage

This is a pointer to an XImage data structure.
XtNinvertOnSelect

If this resource is TRUE, the raster image will invert its foreground and
background colors when selected, and return to normal when unselected.
XtNshowSelected
If TRUE, this will cause the image to appear to be indented when selected, and
raised when unselected.
XtNset

This is a Boolean resource which indicates whether the raster is currently .
selected (TRUE) or not (FALSE). o

82 Ardent Computer Corporation— Release 3.0

XWSTATICRASTER (3Xh)

INHERITED RESOURCES

XWSTATICRASTER (3Xh)

The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL
KEYBOARD TRAVERSAL

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget’s translations to support keyboard traversal. Refer to the
XwPrimitive man page for a complete description of these translations. See the
TRANSLATIONS section in this man page for a description of the translations local
to the static raster widget.

Ardent Computer Corporation — Release 3.0

83

o e —————
XWSTATICRASTER(3Xh) XWSTATICRASTER (3Xh)

TRANSLATIONS

The static raster is affected by the mouse buttons and cursor motion. The default
translation set is as follows:

<Btn1Down>: select(),
<Btn1Up>: release(),
<EnterWindow>: enter(),
<LeaveWindow>: leave(),

ACTIONS
select:
Allows an application to be notified of the event via the callback structure.
release:
Allows an application to be notified of the event via the callback structure.
enter:
Causes the border to be highlighted if enabled.
leave:
Causes the border to be highlighted if enabled.
NOTES
Error checking on the XImage structure is minimal, so weird rasters can result from
incorrect or incomplete data.
ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE(3X), XWPRIMITIVE(3X)
84 Ardent Computer Corporation— Release 3.0

XWSTATICTEXT(3Xh) XWSTATICTEXT (3Xh)
NAME
XwstatictextWidgetClass — An X Widget for displaying static text.
SYNOPSIS
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/SText.h>
CLASSES
A subclass of CoreClass and XwPrimitiveClass.
The widget class to use when creating a static text widget is
XwstatictextWidgetClass.
The class name for StaticText is StaticText.
DESCRIPTION
StaticText provides an uneditable block of text. Optionally StaticText will provide
simple heuristics to fit the text into arbitrarily sized windows. Imbedded new-line
characters in the string are always honored. Stripping of leading and trailing spaces
is optional.
If the static text widget is directed to become larger than is needed for the text, the
text will be centered in the window. The text will retain the specified alignment.
If the static text widget is directed to become narrower than is neccessary for the text,
the text may be wrapped (depending on XtNWrap) or clipped to the right and/or
left (depending on the XtNalignment).
If the static text widget is directed to become shorter than is neccessary for the text,
the text will be clipped on the bottom.
When the text is wrapped, StaticText will try to break lines on spaces. The space on
which the line is broken is temporarily converted to a newline.
NEW RESOURCES

To specify any of these resources within a resource defaults file, simply drop the XtN
prefis from the resource name. StaticText defines the following new resources:

StaticText Resource Set

Name Class Type Default
XtNhSpace XtCHSpace int 2
XtNvSpace XtCVSpace int 2
XtNalignment | XtCAlignment | XwAlignment | XwALIGN LEFT
XtNgravity XtCGravity int CenterGravity
XtNwrap XtCWrap Boolean TRUE
XtNstrip XtCStrip Boolean TRUE
XtNlineSpace | XtCLineSpace | int 0
XtNfont XtCFont XFontStruct * | Fixed
XtNstring XtCString char * NULL

XtNhSpace

This specifies the number of pixels to maintain between the text and the

highlight area to the right and left of the text.

Ardent Computer Corporation — Release 3.0

85

e L A
XWSTATICTEXT (3Xh) XWSTATICTEXT(3Xh)

XtNvSpace
This specifies the number of pixels to maintain between the text and the
highlight area to the top and bottom of the text.

XtNalignment
This specifies the alignment to be applied when drawing the text. The
alignment resource is interpreted without regard to case.

Alignment never causes leading or trailing spaces to be stripped.
Alignment may have the following values and effects:

XwALIGN_LEFT will cause the left sides of the lines will be
vertically aligned. Specified in resource default file as "Left".

XwALIGN_CENTER will cause the centers of the lines will be
vertically aligned. Specified in resource default file as "Center".

XwALIGN_RIGHT will cause the right sides of the lines will be
vertically aligned. Specified in resource default file as "Right".

XtNgravity
This resource controls the use of extra space within the widget.

CenterGravity will cause the string to be centered in the extra space.
Specified in the resource defaults file as "CenterGravity".

NorthGravity will cause the string to always to be at the top of the
window centered in any extra width. Specified in the resource
defaults file as "NorthGravity".

SouthGravity will cause the string to always to be at the bottom of
the window centered in any extra width. Specified in the resource
defaults file as "SouthGravity".

EastGravity will cause the string to always be at the right of the
window centered in any extra height. Specified in the resource
defaults file as "EastGravity".

WestGravity will cause the string to always be at the left of the
window centered in any extra height. Specified in the resource
defaults file as "WestGravity".

NorthWestGravity will cause the string to always be in the upper
left corner of the window. Specified in the resource defaults file as
"NorthWestGravity".

NorthEastGravity will cause the string to always be in the upper
right corner of the window. Specified in the resource defaults file as
"NorthEastGravity".

SouthWestGravity will cause the string to always be in the lower
left corner of the window. Specified in the resource defaults file as
"SouthWestGravity".

SouthEastGravity will cause the string to always be in the lower

86 Ardent Computer Corporation— Release 3.0

T e ———v—
XWSTATICTEXT (3Xh) XWSTATICTEXT(3Xh)

right corner of the window. Specified in the resource defaults file as
"SouthEastGravity".

XtNwrap
This resource controls the wrapping of lines within the widget. If XtNwrap is
TRUE, lines which are too long are broken on spaces. The spaces are converted
to new-lines to break the line. Imbedded new-lines are honored. If there is too
much text for the specified window size, it will be clipped at the bottom.

If XtNwrap is FALSE, lines which are too long will be clipped according to the
alignment. An XtNalignment value of XwALIGN_LEFT will cause lines which
are too long to be clipped to the right. An XtNalignment value of
XwALIGN_RIGHT will cause lines which are too long to be clipped to the left.
An XtNalignment value of XwALIGN_CENTER will cause lines to be clipped
equally on both the right and the left.

XtNstrip '

This resource controls the stripping of leading an trailing spaces during the
layout of the text string. If XtNstrip is FALSE, spaces are not stripped. If
XtNstrip is TRUE and XtNalignment is XwALIGN_LEFT, leading spaces are
stripped from each line. If XtNstrip is TRUE and XtNalignment is
XwALIGN_CENTER, both leading and trailing spaces are stripped from each
line. If XtNstrip is TRUE and XtNalignment is XwALIGN_RIGHT, trailing
spaces are stripped from each line.

XtNlineSpace
This resource controls the amount of space between lines. It is specified as a
percentage of the font height. This space is added between each line of text.
XtNlineSpace may be negative to a maximum of -100 (which causes all lines to
overwrite each other).

XtNfont
This resource controls which font the text will drawn in.

XtNstring
This resource is the string which will be drawn. The string must be null

terminated. If the string is given in a resource defaults file, newlines may be
specified by "\n" within the string.

Ardent Computer Corporation — Release 3.0 87

XWSTATICTEXT (3Xh)

INHERITED RESOURCES

XWSTATICTEXT (3Xh)

The following resources are inherited from the indicated superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

Ardent Computer Corporation — Release 3.0

(

B rr—ry—r—rrrrrrry
XWSTATICTEXT (3Xh) XWSTATICTEXT (3Xh)

TRANSLATIONS

ACTIONS

NOTES

ORIGIN

SEE ALSO

The input to the toggle is driven by the mouse buttons. The default translation set
defining this button is listed below. Note that for the specific key symbols used in
traversal, the HP Key Cap which corresponds to this key symbol appears to the right
of the definition.

<EnterWindow>: enter()
<LeaveWindow>: leave()
<KeyDown>Select: select() HP "Select" key
<KeyUp>Select: release() HP "Select” key

enter

If the XtNtraversalType resource has been set to XwHIGHLIGHT_OFF then the
StaticText will be highlighted. Otherwise no action is taken.

leave
If the XtNtraversalType resouces has been set to XwHIGHLIGHT_OFF then the
StaticText will be unhighlighted. Otherwise no action is taken.

select
Invokes the select callbacks.

release
Invokes the release callbacks.

The forced new line is the "\n’ character constant as defined by the C compiler. Fonts
which do not use that character constant for the newline will not be handled
correctly by StaticText.

StaticText will assume that the space is the ’’ character constant as defined by the C
compiler. Fonts which do not use that character constant for spaces will not be
handled correctly by StaticText.

Non-8-bit character representations have undefined effects on the operation of
StaticText.
Hewlett-Packard Company.

XWPRIMITIVE(3X)

Ardent Computer Corporation — Release 3.0 89

XWTEXTEDIT (3Xh)

NAME

SYNOPSIS

CLASSES

OVERVIEW

XWTEXTEDIT (3Xh)

XwtexteditWidgetClass — An X Widget for viewing and editing text.

#include <X11/StringDefs.h>
#include <X1VIntrinsic.h>
#include <Xw/Xw.h>
#include <Xw/TextEdit.h>

TextEdit is a subclass of CoreClass and XwPrimitiveClass.

The widget class record to use when creating a text edit widget is
XwtexteditWidgetClass.

The class name for TextEdit is TextEdit.

TextEdit provides a single and multi-line text editor which has both a customizable
user interface and a programmatic interface. It can be used for single-line string
entry, forms entry with verification procedures, multiple-page document viewing,
and full-window editing. It provides an application with a consistent editing
paradigm for entry of textual data.

The display of the textual data on the screen can be adjusted to the application
writer’s need based on four class resources, XtNwrap, XtNwrapBreak, XtNscroll, and
XtNgrow. XtNwrapP controls automatic line breaking for lines that extend off the
end of the screen. XtNscroll controls horizontal and vertical shifting of the text when
the insertion cursor moves off the screen. XtNgrow controls attempts by the widget
to resize its window to make more room for text that extends beyond the current
screen size. These resources are explained in detail below. .

TextEdit provides separate callback lists to verify insertion cursor movement,
modification of the text, and leaving the TextEdit widget. Each of these callbacks
provides the verification function with the widget instance, the event that caused the
callback, and a data structure specific to the verification type. From this information
the function can verify if the application considers this to be a legitimate state change
and signal the widget whether to continue with the action. The verification function
can also manipulate the widget through the class methods defined by the TextEdit
class. The verification callback lists are explained in detail below.

The user interface can be tailored by providing a new set of translations. The default
translations provide commands for movement, deletion, killing and selection with
key bindings similar to an EMACS style editor.

TextEdit allows the user to select regions of text. By using TextEdit’s selection
mechanism, application writers can easily fit instances of TextEdit into X11’s current
selection mechanism.

The TextEdit class controls the data structures for drawing the text on the screen and
defines the functions that manipulate that data. The storage of the text is provided
by a separate component called the Source. The Source provides the storage of the
textual data and a set of functions for querying and changing that data. The
application writer can provide a new source for the TextEdit widget. The details are
provided below.

NEW RESOURCES

TextEdit defines the following new resources:

90

Ardent Computer Corporation — Release 3.0

XWTEXTEDIT (3Xh) XWTEXTEDIT(3Xh)
TextEdit Resource Set
Name Class Type Default
XtNsourceType XtCSourceType |String "stringsrc”
XtNsource XtCTextSource |Pointer StringSrc
XtNdisplayPosition XtCTextPosition |XtTextPosition|0
XtNinsertPosition XtCTextPosition |XtTextPosition|0
XtNselectionLeft XtCSelectionLeft |XtTextPosition|0
XtNselectionRight XtCSelectionRight | XtTextPosition |0
XtNwrap XtCWrap XwWrap XwWrapOff
XtNwrapBreak XtCWrapBreak | XwWrapBreak | XwWrapWhiteSpace
XtNscroll XtCScroll XwScroll XwAutoScrollOff
XtNgrow XtCGrow XwGrow XwGrowOff
XtNleftMargin XtCMargin Dimension 3 See Note Below
XtNrightMargin XtCMargin Dimension 3 See Note Below
XtNtopMargin XtCMargin Dimension 3 See Note Below
XtNbottomMargin XtCMargin Dimension 3 See Note Below
XtNmotionVerification | XtCCallback XtRCallback |[NULL
XtNmodifyVerification | XtCCallback XtRCallback [NULL
XtNleaveVerification |XtCCallback XtRCallback |NULL
XtNexecute XtCallback XtRCallback |NULL
XtNtranslations

The set of default translations are described below.

XtNdisplayPosition

The position in the text source that will be displayed at the top of the screen.
The default is 0, or the start of the text source.

XtNinsertPosition

The posiiion in the text source of the insert cursor. The default is 0.

XtNselectionLeft

The starting position of the initial selection. The default is 0.

XtNselectionRight

The ending position of the initial selection. The default is 0.

XtNsourceType

This defines the type of the text source. It is one of "stringsrc," "disksrc" or

"progdefinedsource."

XtNsource

This specifies a new Source. The default is StringSrc.

XtNwrap

This resource specifies how the widget displays lines longer than the screen
width. When set to XwWrapOff, the lines may extend off screen to the right.
When set to XwSoftWrap, the lines will be wrapped at the right margin with
the actual position determined by the resource XtNwrapBreak.

XtNwrapBreak

This resource specifies how the wrap position is determined. When set to
XwWrapAny, the wrap will happen at the character position closest to the right
margin. When set to XwWrapWhiteSpace, the wrap will happen at the last
whitespace before the right margin. If the line does not have whitespace, it will
be wrapped as XwWrapAny.

Ardent Computer Corporation — Release 3.0 91

L " W To o S R e e e e .
XWTEXTEDIT (3Xh) XWTEXTEDIT (3Xh)

XtNscroll (
This resource controls the horizontal and vertical scrolling of lines longer than —~
the screen width. When set to XwAutoScrollOff the widget will not scroll.
When set to XwAutoScrollVertical, the widget will scroll lines vertically. When
set to XwAutoScrollHorizontal, the widget will scroll a single-line display
horizontally. Horizontal scrolling is not currently supported for multi-line
displays. Both horizontal and vertical scrolling can be set with
XwAutoScrollBoth (again, subject to the single-line horizontal restriction). The
default is XwAutoScrollOff. XtNscroll has lower priority than XtNwrap,
meaning if wrapping is enabled, the widget will attempt to wrap to the next
line before it will attempt to scroll horizontally.

XtNgrow
This resource controls if the widget will try to resize its window when it needs
more height or width to display the text. When set to XwGrowOff it will not
resize itself. When set to XwGrowHorizontal it will attempt to change its width
when lines are too long for the current screen width. When set to
XwGrowVertical it will attempt to resize its height when the number of text
lines is greater than can be displayed with the current screen height. When set
to XwGrowBoth, the widget will attempt resizes in both dimensions. Growth
attempts have higher priority than either wrapping or scrolling. If enabled, the
widget will always try to grow to display text before trying to wrap or scroll.
The default is XwGrowOff. The success of a resize request is determined by the
widget’s parent.

XtNleftMargin
The number of pixels used for the left margin.

NOTE: if TextEdit is embedded in a manager with keyboard traversal enabled, (
it will silently enforce the constraint that all margins must be at least 3 pixels
wider than the highlight border width.
XtNrightMargin
The number of pixels used for the right margin.
XtNtopMargin
The number of pixels used for the top margin.
XtNbottomMargin ‘
The number of pixels used for the bottom margin.

XtNmotionVerification
This verification callback list is called before the insertion cursor is moved to a
new position. The defaultis NULL. See the verification section below.
XtNmodifyVerification
This verification callback list is called before text is deleted from or inserted to
the text source. The defaultis NULL. See the verification section below.

XtNleaveVerification

This verification callback list is called before the widget loses input focus. The
defaultis NULL. See the verification section below.

XtNexecute
This callback list is similar to a selection function on a button. When the user
invokes an event that calls the "execute" function (see the translation table

below), this callback list will be executed. In the default translation table, this is
bound to the "enter" key. (

92 : Ardent Computer Corporation— Release 3.0

T e
XWTEXTEDIT (3Xh) XWTEXTEDIT (3Xh)

SUBCOMPONENT RESOURCES
StringSrc defines the following new resources. In a resource file they can be
specified by the name stringsrc under the name of the TextEdit widget, or through

the class StringSrc.

StringSrc Resource Set
Name Class Type Default
XtNstring XtCString char * NULL
XtNmaximumSize | XtCLength int NULL
XtNeditType XtCEditType | XtEditType | XwtextEdit
XtNstring

The initial string to be viewed and/or edited. The default is the empty string.
An XtGetValues call on this resource will return a copy of the internal buffer.
The application program is responsible for freeing the space allocated by the
copy. An XtSetValues call will copy the given string into the internal buffer.

XtNmaximumSize
The maximum number of characters that can be entered into the internal buffer.
If this value is not set then the internal buffer will increase its size as needed
limited only by the space limitations of the process.

XtNeditType
This resource controls the edit state of the source. It can be XttextRead, a read
only source, XttextAppend, a source than can only be appended to, and
XttextEdit, a fully editable source.

DiskSrc defines the following new resources. In a resource file they can be
specified by the name disksrc under the name of the TextEdit widget, or
through the class DiskSrc.

DiskSrc Resource Set
Name Class Type Default
XtNfile XtCFile char * NULL
XtNeditType | XtCEditType | XtEditType | XwtextEdit
XtNfile

The absolute pathname of a disk file to be viewed and/or edited. If no file is
given, a temporary file will be created.

XtNeditType
This resource controls the edit state of the source. It can be XttextRead, a read
only source, and XttextAppend, a source than can only be appended to.

Display defines the following new resources. In a resource file they can be
specified by the name display under the name of the TextEdit widget, or
through the class Display.

Ardent Computer Corporation — Release 3.0 93

XWTEXTEDIT (3Xh)

Display resource Set
Name Class Type Default
XtNfont XtCFont XFontStruct * | Fixed
XtNforeground | XtCForeground | XtRPixel Black
XtNfont

The font used to display the text. The default is fixed. There are currently

several display bugs associated with proportional fonts.

XtNforeground

The color for drawing the text. The default is black.

INHERITED RESOURCES
The following resources are inherited from the indicated superclasses:

XWTEXTEDIT(3Xh)

Core Resource Set -- CORE(3X)

Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE

XtNx XtCPosition int 0

XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0

XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

94

Ardent Computer Corporation— Release 3.0

XWTEXTEDIT (3Xh) XWTEXTEDIT(3Xh)
Primitive Resource Set -- XWPRIMITIVE(3X)

Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

TRANSLATIONS

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget's translations to support keyboard traversal. Refer to the
XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local
to the scrolled window widget.

Since TextEdit has full editing functionality, it supports an elaborate set of
translations. The following table lists TextEdit’s default translations which are a
subset of key bindings from an EMACS editor. (An EMACS editor refers to a set of
editors based on the original design of R.M. Stallman at MIT for an extensible,
customizable self-documenting display editor.) TextEdit supports the concept of
delete and kill. Both delete and kill remove a unit of text from the text source, but
text that has been removed with a kill can be restored by an unkill action. Kills are
stored in the X Cutbuffer 1, so that a kill in one instance of a TextEdit widget can be
inserted into another instance of a TextEdit widget. TextEdit does not support a
history of kills in a kill ring, nor the appending of kills made in sequence. TextEdit
highlights the current selection by reversing the foreground and background color.
Text that has been copied from TextEdit into the current selection storage can be
inserted into the buffer with a stuff action.

Each of these functions can be rebound to a different key in the default translation
file set in .Xdefaults. The string to identify the function is identical to the function
name used below. An example line in that file to bind Control-I to move the
insertion point forward one word is:
Ctrl<Key>I: forward-word

See the Xt Intrinsics documention for more information on the Xdefaults file and
translations.

TextEdit works with keyboard traversal and defines the required actions.

Ardent Computer Corporation — Release 3.0 95

XWTEXTEDIT (3Xh) XWTEXTEDIT (3Xh)

DEFAULT KEY BINDINGS FOR TEXTEDIT

Movement
Ctrl F forward-character
Right Arrow | forward-character
Ctrl B backward-character
Left Arrow backward-character
Meta F forward-word
Meta B backward-word
Meta | forward-paragraph
Ctrl [backward-paragraph
Ctrl A beginning-of-line
Ctrl E end-of-line
Ctrl N next-line
Down Arrow | next-line

Ctrl P

previous-line

Up Arrow previous-line
CtrlV next-page
Next next-page
Meta V previous-page
Prev previous-page
Meta < beginning-of-file
Home beginning-of-file
Meta > end-of-file
Shift Home end-of-file
Ctrl Z scroll-one-line-up
Meta Z scroll-one-line-down
Delete Kill and Stuff
Ctrl D delete-next-character
Ctrl H delete-previous-character
Meta D: delete-next-word
Meta H delete-previous-word
Shift Meta D | kill-word
Shift Meta H | backward-kill-word
Ctrl W kill-selection
Ctrl K kill-to-end-of-line
Meta K kill-to-end-of-paragraph
Ctrl Y unkill
Meta Y stuff

Ardent Computer Corporation — Release 3.0

XWTEXTEDIT (3Xh)

XWTEXTEDIT (3Xh)

Miscellaneous
Ctrl] newline-and-indent
Ctrl O newline-and-backup
Ctrl M newline
<Btn1Down> select-start
Buttonl<PtrMoved> | extend-adjust
<Btn1Up> extend-end
<Btn2Down> stuff
<Btn3Down> extend-start
Button3<PtrMoved> | extend-adjust
<Btn3Up> extend-end
Ctrl L redraw-display
<Key> insert-char

KEYBOARD TRAVERSAL

The following table summarizes the keystrokes which (when keyboard traversal is
active) will move the focus. The keys used elsewhere in the X Widgets library for
keyboard traversal are used for other purposes in the text edit widget. Therefore, it
was necessary to define other keystokes to serve these functions. To minimize the
incompatibility the decision was made to use the same keys with the addition of the
Ctl modifier to implement keyboard traversal in this widget.

Keyboard Traversal
Ctrl Up traverse-up
Ctrl Down | traverse-down
Ctrl Left traverse-left
Ctrl Right | traverse-right
Ctrl Next traverse-next
Ctrl Prev traverse-prev
Ctrl Home | traverse-home
Enter traverse-next-top

traverse-up:

Inform the parent of this widget that it should transfer keyboard focus to the
first widget above this one.

traverse-down:
Inform the parent of this widget that it should transfer keyboard focus to the
first widget below this one.

traverse-left:
Inform the parent of this widget that it should transfer keyboard focus to the
first widget to the left of this one.

traverse-right:
Inform the parent of this widget that it should transfer keyboard focus to the
first widget to the right of this one.

traverse-next:

Inform the parent of this widget that it should transfer keyboard focus to the
next child in the parent’s list of children.

Ardent Computer Corporation —Release 3.0

97

XWTEXTEDIT (3Xh)

XWTEXTEDIT (3Xh)

traverse-prev:
Inform the parent of this widget that it should transfer keyboard focus to the
previous child in the parent’s list of children.

traverse-home:
Inform the parent of this widget that it should transfer keyboard focus to the
child which is closest to the uppper left hand corner of the parent. If that child
already has the keyboard focus, then ask the grandparent of this widget to give
the keyboard focus to whichever of its children which is closest to the upper left
hand corner.

traverse-next-top:
Find the topmost parent in this widget hierarch which is a subclass of
XwManager and tell it to issues any XtNnextTop callbacks that have been
registered with it. The purpose of this callback is to allow applications to move
the keyboard focus between top level widget hierarchies of the same
application.

DISPLAYING TEXT, WORD WRAP AND ACTIONS

Text is considered to be hierarchically composed of white space, words, lines and
paragraphs. These component concepts are currently hard-coded, but we intend that
future versions will support a more general version of the text composition
hierarchy. White space is defined as any non-empty sequence of the ASCII
characters space, tab, linefeed or carriage return (decimal values of 32,9, 10, 13,
respectively); a word is any non-empty sequence of characters bounded on both sides
by whitespace. A source line is any (possibly empty) sequence of characters bounded
by newline characters; a display line is any (possibly empty) sequence of characters
appearing on a single screen display line. A source paragraph is any sequence of
characters bounded by sets of two or more adjacent newline characters. a display
paragraph is any (possibly empty) sequence of characters bounded by newline
characters (NOTE: this is identical to the definition of a source line). In all cases, the
beginning or end of the edit text is an acceptable bounding element in the previous
definitions.

When making display decisions, TextEdit first determines whether all the text will fit
in the current display. If it does not, and growing is enabled, the widget will make
resize request of its parent. If the request is denied or only partially satisfied, no
future growth requests will be made unless there is an intervening resize operation
externally imposed. If any source line is still too long to fit in the display after
growing is attempted, wrapping is checked. If wrap is off (XwWrapOff), one display
line is drawn for each source line. If a source line is too long for the display, it is
truncated at the right margin after the last full character which fits. If wrapping is
enabled (XwSoftWrap), a new display line will be started with the first word which
doesn’t fit on the current line. If the wrap break option is XwWrapAny, as many
characters from that word as will fit before the right margin are written to the current
display line, then the next character starts at the left margin of the next display line.
If the wrap break option is XwWrapWhiteSpace, the line break is instead made after
the first whitespace character which follows the last full word which does fit on the
current display line. If, however, under white space break, the first full word which
does not fit is also the first word on the line, the wrap break is made as if
XwWrapAny were selected.

VERIFICATION CALLBACKS

Three types of verification callbacks are supported by TextEdit There is one for
motion operations, to verify a new insert position; there is one for modifying

98

Ardent Computer Corporation— Release 3.0

(

XWTEXTEDIT (3Xh)

XWTEXTEDIT (3Xh)

operations, to verify insertion, deletion or replacement of text; there is one for widget
exit, to verify state consistency on loss of focus by the widget. Each verification
callback procedure is of type XtCallbackProc, which defines the three arguments it
will be invoked with. These are the id of the widget making the callback, the client
data which was specified by the client application when the callback was registered
(see XtAddCallback), and a pointer (type XwTextVerifyPtr) to the verification
call_data structure. The C data types used here are:

typedef enum {motionVerify, modVerify, leaveVerify} opType ;

typedef struct {

XEvent *xevent ;
opType operation ;
boolean doit ;

XtTextPosition currlnsert, newlnsert ;
XtTextPosition startPos, endPos ;
XtTextBlock *text;

} XwTextVerifyCD, *XwTextVerifyPtr ;

Before the chain of verification callbacks is activated for any given operation, a
structure of type XtTextVerifyCD is initialized. The initial values are:

xevent:

operation:

doit:

currlnsert:

newlnsert:

startPos:

endPos:

text:

for a leave operation, the current event pointer

element of opType signifying the type of verification
operation

TRUE
current position of the insert point

for a motion operation, the position the user is
attempting to move the insert point to, otherwise, the
same value as currlnsert

for a modify operation, the beginning position in the
current source of the text about to be deleted or
replaced, or where new text will be inserted. If nota
modify operation, the same value as currlnsert.

for a modify operation, the ending position in the
current source of the text about to be deleted or
replaced. If no text is being removed, it will have the
same value as startPos. If not a modify operation, the
same value as currlnsert.

for a modify operation with new text to be inserted, a
pointer to a structure of type XtTextBlock, which
references the text to be inserted. Otherwise, NULL.

It is possible for the client to register more than one callback procedure for any of these callback types.
The order in which the callbacks will be invoked is described in the toolkit documentation. Since there
can be more than one callback, each verification procedure should first check the doit field. If it is false,

Ardent Computer Corporation — Release 3.0

99

———————— = ——— T TR R e
XWTEXTEDIT (3Xh) XWTEXTEDIT(3Xh)

someone else has already rejected the operation, so there is no need for further evaluation. On return
from invoking the chain of callbacks, the TextEdit widget will look at the doit member of the
XtTextVerifyCD structure. If it is still true, TextEdit will proceed with operation, otherwise it will not.
Any user feedback for the rejected operation is the responsibility of the verification procedure.
Verification callbacks are permitted to modify some of the data in the XtTextVerifyCD structure. The
TextEdit widget will only look at certain fields on return, though, according to the operation type. For a
motion operation, only the newlnsert position will be looked at. For a modify operation, only startPos,
endPos and text will be examined for changes. For leave operation, no fields will be examined. There is
no mechanism for preventing a verification callback from making other changes to the editing state
through the documented interface, but such behind-the-back actions are discouraged.

APPLICATION WRITER’S INTERFFACE
The state of TextEdit can be changed in through the normal functional interface to
widgets (XtSetValues and XtGetValues) or by exported external functions.

TextEdit’s resources can be queried and set through XtSetValues and XtGetValues.
The widget will maintain its display consistent with the new values. In particular
this is the method for changing the display options.

The internal buffer should be manipulated through the external functions that
follow.

This set of external functions is designed to allow the widget programmer to access
the internal buffer that TextEdit manages. For example, if the widget is being used to
enter a string, the program can get a copy of the string (i.e. the internal buffer) with
the function XwTextCopyBuffer or XwTextReadSubString. All of the following
functions that change the contents of the buffer, its selection, or insertion position,
will update the display after they are called. If the programmer needs to make a
sequence of these calls, the widget’s screen updating function should be turned off
with a call to XwTextUpdate(Off) to prevent screen flash. After the sequence of calls
the programmer must remember to call XwTextUpdate(On) to update the window
and resume normal updating. Note that it is not necessary to turn off the update
function for functions that only get values from the widget. Neither is it necessary to
use these calls if the programmer only makes one call that changes the widget.

Buffer Functions
void XwTextClearBuffer(w)
XwTextEditWidget w;
Clear the internal buffer. After this call all characters in the buffer have been
removed.

unsigned char *XwTextCopyBuffer(w)

XwTextEditWidget w;
This function uses XtMalloc to create space to make a copy of the internal
buffer and returns the pointer to that copy. The application writer is
responsible for freeing the space.

Read a Substring
int XwTextReadSubString(w, startpos, endpos, target, targetsize, targetused)
XwTextEditWidget w;
XwTextPosition startpos, endpos;
unsigned char *target;
int targetsize,

100 Ardent Computer Corporation— Release 3.0

XWTEXTEDIT (3Xh)

XWTEXTEDIT (3Xh)

*targetused;
This function will move characters from the buffer into the caller’s space. The
caller must provide the space to copy into and its size in bytes. The routine will
return the number of positions moved. The value of targetused returns the
number of bytes used in the target string by the move.

Selection

unsigned char *XwTextCopySelection(w)

XwTextEditWidget w;
This function uses XtMalloc to create space to make a copy of the current
selection and returns the pointer to that copy. The application writer is
responsible for freeing the space.

void XwTextUnsetSelection(w)
XwTextEditWidget w;
This function will clear the current selection.

void XwTextSetSelection(w, left, right)

XwTextEditWidget w;

XwTextPosition left, right;
This function sets the current selection to be between the character positions left
to right.

void XwTextGetSelectionPos(w, left, right)
XwTextEditWidget w;
XwTextPosition *left, *right;
This function returns the character positions of the current selection.

Insertion and Deletion

void XwTextInsert(w, string)

XwTextEditWidget w;

unsigned char *string;
This function inserts the string at the current insertion position and advances
the insertion position to the end of the string.

XwEditResult XwTextReplace(w, startPos, endPos, text)

XwTextEditWidget w;

XwTextPosition startPos,

endPos;

unsigned char *text;
Remove text in the source from startPos to endPos and insert the string text
starting at startPos. If startPos and endPos are the same the action is an
insertion. If text is the empty string, the action is a deletion.

Drawing and Updating

XwTextRedraw(w);
XwTextEditWidget w;
Refresh the widget screen.

void XwTextUpdate(w, status)

XwTextEditWidget w;

Boolean status;
This function turns the widget’s screen updating function on and off. Wrapping
these calls around a sequence of calls that change the content of the internal
buffer will prevent screen flash.

Ardent Computer Corporation —Release 3.0 101

XWTEXTEDIT (3Xh) : XWTEXTEDIT (3Xh)

End of Buffer
XwTextPosition XwTextGetLastPos (w, lastPos)
XwTextEditWidget w;
XwTextPosition lastPos;
This function returns the last character position in the buffer.

Insertion Position
void XwTextSetInsertPos(w, position)
XwTextEditWidget w;
XwTextPosition position;

XwTextPosition XwTextGetInsertPos(w)
XwTextEditWidget w;
These functions set and return the insertion position.

Setting the Source
void XwTextSetSource(w, source, startpos)
XwTextEditWidget w;
XwTextSourcePtr source;
XwTextPosition startpos;

SOURCE DEFINITION

The source provides textual data space and functions for manipulating that data.
The functions are defined below. An application can define its own source by
reimplementing these functions.

Read
XwTextPosition SourceRead(src, pos, text, maxread)
XwTextsource *src;
XwTextPosition pos;
XwTextblock *text;
XwTextPosition maxread;
This function returns a read-only text block in the src with maxread number of

characters starting from pos. The return value is the next character position
following the block.

Replace

XwEditResult SourceReplace(src, startpos, endpos, textblk, delta)
XwTextsource *src;

XwTextPosition startpos,

endpos;
XwTextBlock *textblk;
XwTextPosition *delta;

This function removes existing text in src between startpos and endpos and
inserts new text from textblk at startpos. delta is change in the size of the text
source. It returns XweditDone for a successful operation, XweditPosError for
positional errors when source is in XttextAppend mode, and XweditError when
the operation could not be performed.

SetLastPosition
XwTextPosition SourceSetLastPos(src, lastpos)
XwTextSource *src;
XwTextPosition lastpos;
This functions sets the last position in the source.

102 Ardent Computer Corporation— Release 3.0

XWTEXTEDIT (3Xh)

XWTEXTEDIT (3Xh)

XwTextPosition SourceScan(src, pos, scantype, dir, count, include)

XwTextsource *src;

XwTextPosition pos;

XwScanType scantype;

XwScanDirection dir;

int count;

Boolean include;
SourceScan searches in dir direction (XwsdLeft XwsdRight) for XwScantype
(XwstPositions, XwstWhiteSpace, XwstEOL, XwstParagraph, XwstLast). count
is the number of the given type it will scan over and include indicates whether
to count the item currently pointing at. It returns the starting position of the
item scanned for.

EditType

XtEdittype SourceEditType(src)
XwTextsource #*src;
Returns the edit type of source.

CURRENT LIMITATIONS

ORIGIN

SEE ALSO

The current default source is not optimized for large amounts of data. X11’s current
selection is not yet supported.

Digital Equipment Corporation. Massachusetts Institute of Technology. Hewlett-
Packard Company.

CORE(3X), XWPRIMITIVE(3X)

Ardent Computer Corporation — Release 3.0 103

XWTITLEBAR(3Xh) - XWTITLEBAR (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XwtitlebarWidgetClass — An X Widget for creating titlebars.

#include <X11/StringDefs.h>
#include <X1V/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/TitleBar.h>

A subclass of Core, Composite, Constraint and XwManagerClass.
The widget class to use when creating a TitleBar widget is XwtitlebarWidgetClass.
The class name of TitleBar is TitleBar.

TitleBar provides a flexible mechanism for creating titlebars containing text and
arbitrary widgets. Inputs are an optional text string and any number of widgets to
manage. The title string will be displayed in a StaticText widget (refer to
XWSTATICTEXT(3X)). Managed widgets may have optionally specified layout
information (see CONSTRAINT RESOURCES below).

When TitleBar is directed to become narrower than is neccessary to display all of its
interior widgets, some widgets may be hidden. The XtNprecedence resource in each
managed widget controls this feature.

As TitleBar is directed to become narrower and narrower, widgets whose sum of
XtNrPadding and XtNIPadding is greater than zero will have their padding
collapsed to one pixel. Widgets will have their padding stripped in order of
decreasing values of XtNprecedence.

If, after collapsing all of the widgets’ padding, TitleBar is still too narrow to display
all of its children widgets, widgets will be hidden. Widgets will be hidden in order

of decreasing values of XtNprecedence. TitleBar will try to always display a widget
of the highest priority (lowest value of XtNprecedence, even if it must be clipped.

Users of TitleBar should note that when children widgets are hidden they are
completely hidden. Additionally, users who wish to make extensive use of the
obscurability rules should read carefully the section on XtNprececence in the
CONSTRAINT RESOURCES section below.

104

Ardent Computer Corporation — Release 3.0

XWTITLEBAR(3Xh)

NEW RESOURCES

XWTITLEBAR (3Xh)

To specify any of these resources within a resource defaults file, simply drop the XtN
prefix from the resource name. TitleBar defines the following new resources:

TitleBar Resource Set
Name Class Type Default
XtNtitlePrecedence XtCTitlePrecedence | int 0
XtNtitleRegion XtCTitleRegion XwAlignment | XwALIGN_CENTER
XtNtitlePosition XtCTitlePosition int 0
XtNtitleRPadding XtCTitleRPadding int 1
XtNtitleLPadding XtCTitleLPadding int 1
XtNtitleForeground XtCForeground Pixel black
XtNtitleBackground XtCBackground Pixel white
XtNtitleHSpace XtNTitleHSpace int 2
XtNtitleVSpace XtVTitleHSpace int 2
XtNtitleBorderWidth | XtCBorderWidth int 0
XtNtitleSelect XtCCallback Pointer NULL
XtNtitleRelease XtCCallback Pointer NULL
XtNhSpace XtCHSpace int 2
XtNvSpace XtCVSpace int 2
XtNenter XtCCallback Pointer NULL
XtNleave XtCCallback Pointer NULL
XtNselect XtCCallback Pointer NULL
XtNrelease XtCCallback Pointer NULL
XtNtitlePrecedence
The value to be loaded into the constraint record of the optional StaticText
widget.
XtNtitleRegion

The value to be loaded into the XtNtitleRegion constraint resource of the
optional StaticText widget.

XtNtitlePosition
The value to be loaded into the XtNtitlePosition constraint resource of the
optional StaticText widget.

XtNtitleRPadding
The value to be loaded into the XtNtitleRPadding constraint resource of the
optional StaticText widget.

XtNtitleLPadding
The value to be loaded into the XtNtitleLPadding constraint resource of the
optional StaticText widget.

XtNtitleForeground
The value to be loaded into the XtNforeground resource of the optional
StaticText widget's core part.

XtNtitleBackground

The value to be loaded into the XtNbackground resource of the optional
StaticText widget's core part.

Ardent Computer Corporation — Release 3.0

105

XWTITLEBAR (3Xh)

XWTITLEBAR (3Xh)

XtNtitleHSpace
The value to be loaded into the XtNhSpace resource of the optional StaticText
widget.
XtNtitleVSpace
The value to be loaded into the XtNvSpace resource of the optional StaticText
widget.
XtNtitleBorderWidth
The value to loaded into the XtNborderWidth resource of the optional
StaticText widget.
XtNtitleSelect
The value loaded into the XtNselect resource of the optional StaticText widget.
XtNtitleRelease
The value loaded into the XtNrelease resource of the optional StaticText
widget.
XtNhSpace
The amount of space to maintain between the right and left of the titlebar and
the interior widgets.
XtNvSpace
The amount of space to maintain between the top and bottom of the titlebar
and the interior widgets.
XtNenter, XtNleave, XtNselect, and XtNrelease
Callbacks provided for control of TitleBar. The data parameter is unused.

INCORPORATED RESOURCES

The TitleBar creates an internal StaticText widget to handle the title string. In order
to provide the user some control over the appearance of this internal widget, the
following resources defined by StaticText are incorporated into TitleBar’s resource
list.

It must be noted that only the resources within the following tables will have any
effect on the internal StaticText widget. The other resources defined for StaticText
will be overridden by TitleBar.

For a complete description of the following resources, refer to the manual page given
in the table heading.

Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class - | Type | Default
XtNhighlightColor XtCForeground Pixel | Black
XtNhighlightStyle XtCHighlightStyle int XwPATTERN_BORDER
XtNhighlightTile XtCHighlightTile int XwBACKGROUND
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNtraversalType XtCTraversalType int HIGHLIGHT_OFF

106

Ardent Computer Corporation — Release 3.0

XWTITLEBAR (3Xh) XWTITLEBAR (3Xh)

Static Text Resource Set -- STATICTEXT(3X)

Name Class Type Default

XtNstring XtCString char * NULL

XtNalignment | XtCAlignment | XwAlignment | XwALIGN_CENTER

XtNwrap XwCWrap Boolean TRUE

XtNlineSpace | XtCLineSpace | int 0

XtNfont XtCFont XFontStruct * | Fixed

CONSTRAINT RESOURCES

The following resources will be attached to every widget inserted into TitleBar. See
CONSTRAINT(3X) for a general discussion of constraint resources.

TitleBar uses the constraint resources as hints during the layout of its managed
children. Under certain conditions, any of these resources except XtNprecedence can
(and will) be ignored by TitleBar.

Constraint Resource Set -- Children of TITLEBAR(3X)
Name Class Type Default
XtNregion XtCRegion XwAlignment | See below.
XtNposition XtCPosition int 0
XtNIPadding XtCLPadding int 2
XtNrPadding XtCRPadding int 2
XtNprecedence | XtCPrecedence | int 1
XtNregion

Associates a child with a region of the titlebar. The regions may be specified in
the resource default file as "left" for XwALIGN_LEFT, "center" for
XwALIGN_CENTER, and "right" for XwALIGN_RIGHT.

During layout widgets with XtNregion values of XwALIGN_LEFT grouped to
the left end of TitleBar. Widgets with XtNregion values of XwALIGN_LEFT
are grouped to the right of TitleBar. Widgets with XtNregion values of
XwALIGN_CENTER will be grouped between the left and right groups.
Additionally, TitleBar tries to center the center group within the TitleBar.

Widgeté for which XtNregion is unspecified or Xw ALIGN_NONE when
XtNstring is non-null, will be assigned one of the two regions not equal to
XtNtitleRegion in an alternating fashion.

Widgets for which XtNregion is unspecified or XwALIGN_NONE when
XtNstring is null, will be assigned a region. The first such widget will be
assigned to the left region, the next to the center region, the next to the right
region, the next to the left region, and so forth.

XtNposition

This resource gives the order of widgets within region. The left and the center
region are layed out with XtNposition values increasing from left to right. The
right region is laid out with XtNposition values increasing from right to left.

Position values are unique within a region. If two widgets are assigned the
same position, the widget which was assigned first gets the position. The
second widget gets the next available position. For example, widgetl and

Ardent Computer Corporation — Release 3.0

107

XWTITLEBAR(3Xh)

XWTITLEBAR (3Xh)

widget2 are the only widgets inserted in TitleBar. Widget1 is inserted befor
widget2. Widgetl and widget2 are both assigned a position of 4. Widget1 will
be given the position of 4, and widget2 will be assigned a position of 5.

XtNIPadding

The number of pixels that TitleBar should try to maintain between the left of
the widget and the right padding of the sibling widget to the left. For example,
widgetl is to the left of widget2 within TitleBar. Widget1 has a XtNrPadding
value of 5. Widget2 has a XtNIPadding value of 5. The borders of widget1 and
widget2 will be 10 pixels apart.

If TitleBar is too narrow to honor all of its children’s padding requests without
hiding some children, some, possibly all, padding requests will be collapsed.

XtNrPadding

The number of pixels that TitleBar should try to maintain between the right of
the widget and the left padding of the sibling widget to the right. For example,
widgetl is to the right of widget2 within TitleBar. Widget1 has a XtNIPadding
value of 5. Widget2 has a XtNrPadding value of 5. The borders of widgetl and
widget2 will be 10 pixels apart.

If TitleBar is too narrow to honor all of its children’s padding requests without
hiding some children, some, possibly all, padding requests will be collapsed.

XtNprecedence

When TitleBar is too narrow to display all of its children, this resource is used
to determine which children should be hidden. Widgets with high values of
XtNprecedence are hidden first. Precedence values are relative to all other
widgets within an instantiation of TitleBar. This means that all widgets,
regardless of their region, with high values of XtNprecedence will be hidden
before any widgets with the next lower values are hidden.

Values of XtNprecedence need not be unique. If values are unique, there is no
question about which widget is first to lose its padding, nor about which
widget is first to be hidden.

If values are not unique for all children of TitleBar, there need be no question
about which widget is acted on first, but it is dependent on both insertion order
and precedence. The last widget inserted in TitleBar of a given precedence is
the first to lose its requested padding (of widgets with that priority). Widgets
lose padding from last inserted to first inserted, within a given level of
precedence. When hiding widgets, widgets within a given precedence level are
hidden from last inserted to first inserted.

108

Ardent Computer Corporation — Release 3.0

XWTITLEBAR(3Xh)

INHERITED RESOURCES

XWTITLEBAR (3Xh)

The following resources are inherited from the indicated superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

The input to the toggle is driven by the mouse buttons. The default translation set
defining this button is listed below.

<EnterWindow>: enter()"
<LeaveWindow>: leave()"
<Btn1Down>: select()"
<Btn1Up>: release()"

Ardent Computer Corporation —Release 3.0

109

XWTITLEBAR (3Xh)

ACTIONS

ORIGIN

SEE ALSO

XWTITLEBAR (3Xh)

enter
If keyboard traversal is active (argument type XtNtraversalOn with argument
value TRUE) and the parent of this widget is not a subclass of XwManager,
initiate keyboard traversal. After this, the callback list is invoked.

leave
If keyboard traversal is active (argument type XtNtraversalOn with argument
value TRUE) and the parent of this widget is not a subclass of XwManager,
terminate keyboard traversal. After this, the callback list is invoked.

select
Invokes the select callback list.

release
Invokes the release callback list.

Hewlett-Packard Company.

CORE(3X), CONSTRAINT(3X), XWMANAGER(@3X), XWSTATICTEXT(3X),
XWCREATETILE(3X)

110

Ardent Computer Corporation —Release 3.0

(

XWTOGGLE (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XWTOGGLE (3Xh)

XwtoggleWidgetClass — the X Widgets toggle button widget

#include <X11/StringDefs.h>
#include <X1V/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Toggle.h>

The toggle widget is built from the Core, XwPrimitive and XwButton classes.

The widget class to use when creating a toggle is XwtoggleWidgetClass. The class
name is Toggle.

The toggle widget implements a button which consists of a graphic and a label. The
label can be positioned either to the right (the default) or the left of the graphic. The
size of the graphic is based on the height of the font used for the label. The space
between the graphic and the label is equal to 1/3 the font height. The default graphic
is a square box and this may be changed to a diamond shape. It is intended that
application writers can put a group of square buttons into a Row Column manager
with its mode set to the default n_of_many to get the checkbox, or N of Many,
selection semantic and then put a group of diamond buttons into a Row Column
manager with its mode set to one_of_many to get the radiobutton, or One of Many,
selection semantic.

The default semantic for this button is that button 1 down will toggle the state of the
toggle. When in a selected state, the interior of the graphic will be filled with the
foreground color; when not selected the interior of the graphic will be filled with the
background color; when insensitive, the label will be drawn with the patterned tile
(the default is a 75/25 mix of the foreground and background colors).

Callbacks can be attached to the widget to report selection (XtNselect) and
unselection (XtNrelease). This widget can be set to respond to Enter and Leave
window events by highlighting and unhighlighting the button. This widget is also
capable of handling keyboard traversal. See the translations below for the default
traversal keycodes.

NEW RESOURCES

The toggle widget class defines a set of resource types that can be used by the
programmer to specify data for widgets of this class. Recall that the string to be used
when setting any of these resources in an application defaults file (like .Xdefaults)
can be obtained by stripping the preface "XtIN" off of the resource name. For
instance, XtNfont becomes font.

Toggle Resource Set
Name Class Type Default
XtNsquare XtCSquare Boolean | True
XtNselectColor | XtCForeground | Pixel Black

XtNsquare
If True, forces the button to draw a square box, otherwise it will draw a
diamond shape box. One possible usage for this resource is to make the
convention that row column managers containing diamond shaped toggles

Ardent Computer Corporation — Release 3.0 111

XWTOGGLE (3Xh) XWTOGGLE (3Xh)

have their XtNmode resource set to one_of_many which will only allow one of
the buttons to be set at any one time, while row column managers containing
square buttons use the default mode setting of n_of_many which allows any or
all of the buttons to be set.

XtNselectColor
Allows the application to specify what color should be used to fill in the center
of the square (or the diamond) when it is set.

INHERITED RESOURCES
The following resources are inherited from the named superclasses: The defaults

used for the toggle when being created are as follows:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive | Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

Ardent Computer Corporation— Release 3.0

XWTOGGLE (3Xh) XWTOGGLE (3Xh)
Button Resource Set -- XWBUTTON(3X)
Name Class Type Default
XtNfont XtCFont XFontStruct * | Fixed
XtNlabel XtCLabel caddr t NULL
XtNlabellocation | XtCLabellLocation | int right
XtNvSpace XtCVSpace int 2
XtNhSpace XtCHSpace int 2
XtNset XtCSet Boolean False
XtNsensitiveTile XtCSensitiveTile int 75 foreground

KEYBOARD TRAVERSAL

TRANSLATIONS

ACTIONS

ORIGIN

SEE ALSO

If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget’s translations to support keyboard traversal. Refer to the
XwPrimitive man page for a complete description of these translations. Refer to the
TRANSLATIONS section in this man page for a description of the translations local
to the toggle widget.

The input to the toggle is driven by the mouse buttons. The default translation set
defining this button is listed below. Note that for the specific key symbols used in
traversal, the HP Key Cap which corresponds to this key symbol appears to the right
of the definition.

<Btnl1Down>: toggle()

<EnterWindow>: enter()

<LeaveWindow>: leave()

<Key>Select: toggle()) HP "Select" key

Note that this widget contains some actions which are not bound to any events by
the default translations. The purpose of these additional actions are to allow
advanced users to alter the button semantics to their liking,.

toggle:
Toggle the set state of the button (make it TRUE if it was FALSE, FALSE if it
was TRUE). Redraw only the toggle part (not the label) of the button. If the
current state of the button is set (TRUE) issue the XtNselect callbacks, if not set
(FALSE) issue the XtNrelease callbacks. No additional data beyond the widget
id and the specified closure is sent with these callbacks.

enter:

If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the button will be highlighted. Otherwise no action is taken.

leave:

If the XtNtraversalType resouces has been set to XwHIGHLIGHT_ENTER then
the button will be unhighlighted. Otherwise no action is taken.

Hewlett-Packard Company.

CORE(3X), XWPRIMITIVE(3X), XWBUTTON(3X)

Ardent Computer Corporation — Release 3.0

113

XWVPANED (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XWVPANED (3Xh)

XwvPanedWidgetClass - the X Widgets vertical paned manager widget.

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/VPW.h>

The vertical paned manager widget is built out of the Core, Composite, Constraint
and XwManager classes. Note that since the Composite class contains no user
settable resources, there is no table for Composite class resources.

The widget class to use when creating a vertical paned manager is
XwvPanedWidgetClass. The class name is VPanedWindow.

The vertical paned manager is a composite widget which lays children out in a
vertically tiled format. Children appear in a top to bottom fashion, with the first
child inserted appearing at the top of the paned widget and the last child inserted
appearing at the bottom of the paned widget. The vertical paned manager will grow
to match the width of its widest child and all other children are forced to this width.
The vertical paned mananger does not grow if setValues is performed on a child,
making it the widest child. It is clipped instead. The height of the vertical paned
manager will be equal to the sum of the heights of all its children and the (optional)
padding surrounding them.

It is also possible for the end user to adjust the size of the panes. To facilitate this
adjustment, a control widget (XwsashWidgetClass) is created for most children. The
control widget appears as a square box positioned on the bottom of the pane which it
controls. Using the mouse (see the description on translations below) a user can
adjust the size of a pane.

The vertical paned manager is a constraint widget, which means that it creates and
manages a set of constraints for each child. It is possible to specify a minimum and
maximum size for each pane. The vertical paned widget will not allow a pane to be
adjusted below its minimum nor beyond its maximum. Also, when the minimum
size of a pane is equal to its maximum then no control widget will be presented for
that pane. Nor will a control widget be presented for the bottom-most pane.

The vertical paned manager supports 2 presentation modes: framed and unframed.
When framed, each pane is offset from the edges of the vertical paned manager and
from other panes by a specified (and settable) number of pixels. In this mode the
entire borderwidth of each child is also visible. Note that the vertical paned manager
enforces a particular (and settable) border width on each pane. The second mode is
unframed where the edge of a pane exactly corresponds to the edge of the vertical
paned manager so that only a border between panes is visible.

No callbacks are defined for this manager.

114

Ardent Computer Corporation— Release 3.0

XWVPANED (3Xh) XWVPANED (3Xh)

NEW RESOURCES
The vertical paned manager defines a set of resource types used by the programmer
to specify data for the manager widget. The programmer can also set the values for
the Core and XwManager widget classes to set attributes for this widget. The
following table contains the settable resources defined by the vertical paned
manager. Recall that the string to be used when setting any of these resources in an
application defaults file (like .Xdefaults) can be obtained by stripping the preface
"tN" off of the resource name. For instance, XtNmin becomes min.

Vertical Paned Resource Set

Name Class Type Default

XtNsashIndent XtCSashIndent int -10

XtNborderFrame | XtCBorderWidth | int 1

XtNframed XtCBoolean Boolean | TRUE

XtNpadding XtCPadding int 3

XtNrefigureMode | XtCBoolean Boolean | TRUE
XtNsashIndent

This controls where along the bottom of the pane the control widget (the pane’s
sash) will be placed. A positive number will cause the sash to be offset from the
left side of the pane, a negative number will cause the sash to be offset from the
right side of the pane. If the offset specified is greater than the width of the
vertical paned manager, minus the width of the sash, the sash will be placed
flush against the left hand side of the paned manager.

XtNborderFrame
The application can specify the thickness of the borderwidth of all panes in the
paned manager. The value must be greater than or equal to 0.

XtNframed
The application can specify whether the panes should be displayed with some
padding surrounding each pane (TRUE) or whether the panes should be set
flush with the paned manager (FALSE).

XtNpadding
The application can specify how many pixels of padding should surround each
pane when it is being displayed in framed mode. This value must be greater
than or equal to 0.

XtNrefigureMode
This setting is useful if a large number of programmatic manipulations are
taking place. It will prevent the manager from recomputing and displaying
new positions for the child panes (FALSE). Once the changes have been
executed this flag should be set to TRUE to allow the vertical paned manager to
show the correct positions of the current children.

Ardent Computer Corporation — Release 3.0 115

hrrrrrrerr——————— L
XWVPANED (3Xh) XWVPANED (3Xh)

CONSTRAINT RESOURCES (\

The following resources are attached to every widget inserted into vertical paned
manager. See CONSTRAINT(3X) for a general discussion of constraint resources.

Constraint Resource Set -- Children of VPANEDWINDOW(3X)
Name Class Type Default
XtNmin XtCMin int 1
XtNmax XtCMax int 10000
XtNallowResize XtCBoolean Boolean FALSE
XtNskipAdjust XtCBoolean Boolean FALSE
XtNmin

Allows an application to specify the mimimum size to which a pane may be
resized. This value must be greater than 0.

XtNmax
Allows an application to specify the maximum size to which a pane may be
resized. This value must be greater than the specified minimum.

XtNallowResize
Allows an application to specify whether the vertical paned manager should
allow a pane to request to be resized. This flag only has an effect after the
paned manager and its children have been realized. If this flag is set to TRUE,
the manager will try to honor requests to alter the height of the pane. If false, it
will always deny pane requests to resize. (

XtNskipAdjust '
Allows an application to specify that the vertical paned manager should not
automatically resize this pane (flag set to TRUE).

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XtNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL

116 Ardent Computer Corporation —Release 3.0

XWVPANED (3Xh) XWVPANED (3Xh)
Manager Resource Set -- XWMANAGER(3X)
Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile | XtCBackgroundTile | int background
XtNtraversalOn XtCTraversalOn Boolean | FALSE
XtNlayout XtCLayout int minimize
XtNnextTop XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL
If the XtNtraversalOn resource is set to TRUE at either create time or during a call to
XtSetValues, the XwManager superclass will automatically augment the manager
widget’s translations to support keyboard traversal. Refer to the XwManager man
page for a complete description of these translations.

SASH TRANSLATIONS
The translations which control the sashes created for each adjustable pane are
replicated here for convenience.

<Btn1Down>: SashAction(Start, UpperPane)
<Btn2Down>: SashAction(Start, ThisBorderOnly)
<Btn3Down>: SashAction(Start, LowerPane)
<Btn1Motion>: SashAction(Move, Upper)
<Btn2Motion>: SashAction(Move, ThisBorder)
<Btn3Motion>: SashAction(Move, Lower)
Any<BtnUp>: SashAction(Commit)
<EnterWindow>: enter()

<LeaveWindow>: leave()

SashAction(Start, UpperPane):
Change the cursor from the crosshair to an upward pointing arrow. Determine
the upper pane which will be adjusted (usually the pane to which the sash is
attached).

SashAction(Start, ThisBorderOnly):
Change the cursor from the crosshair to a double headed arrow. The panes that
will be adjusted are the pane to which the sash is attached and the first pane
below it that can be adjusted. Unlike the UpperPane and LowerPane mode,
only 2 panes will be effected. If one of the panes reaches its minimum or
maximum, adjustment will stop, instead of finding the next adjustable pane.

SashAction(Start, LowerPane):
Change the cursor from the crosshair to a downward pointing arrow.
Determine the lower pane which will be adjusted (usually the pane below the
pane to which the sash is attached).

SashAction(Move, Upper):
Draw a series of track lines to illustrate what the heights of the panes would be
if the Commit action were invoked. Determine which widget below the upper
pane can be adjusted and make the appropriate adjustments.

SashAction(Move, ThisBorder):
Draw a series of track lines to illustrate what the heights of the panes would be
if the Commit action were invoked. Adjust as needed (and as possible) the
upper and lower panes selected when the SashAction(Start, ThisBorderOnly)
action was invoked.

Ardent Computer Corporation — Release 3.0 117

XWVPANED (3Xh)

XWVPANED (3Xh)

SashAction(Move, Lower): ()
Draw a series of track lines to illustrate what the heights of the panes would be -
if the Commit action were invoked. Determine which widget above the lower
pane can be adjusted and make the appropriate adjustments.

enter:
Enter window events occurring on the scrolled window are handled by this
action.
leave:
Leave window events occurring on the scrolled window are handled by this
action.
ORIGIN
Hewlett-Packard Company.
SEE ALSO
CORE@BX), XWMANAGER(3X), XWPRIMITIVE(3X), XWSASH(3X)
118 Ardent Computer Corporation— Release 3.0

B
XWVALUATOR(3Xh) XWVALUATOR (3Xh)

NAME

SYNOPSIS

CLASSES

DESCRIPTION

XwvaluatorWidgetClass — the X Widget’s valuator widget

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/Valuator.h>

The Valuator widget is built from the Core and XwPrimitive classes.

The widget class to use when creating a valuator is XwvaluatorWidgetClass. The
class name for Valuator is Valuator.

The Valuator widget implements a horizontal or vertical scrolling widget as a
rectangular bar containing a sliding box (slider). The Valuator widget supports input
through interactive slider movement and selections on the slide area not occupied by
the slider. Both types of input have a separate callback list for communicating with
the application. The Valuator widget can be used by the application to attach to
objects scrolled under application control, or used by composite widgets to
implement predefined scrolled objects.

NEW RESOURCES

The Valuator widget defines a set of resource types used by the programmer to
specify the data for the valuator. The programmer can also set the values for the
Core and Primitive widget classes to set attributes for this widget. To reference a
resource in a .Xdefaults file, strip off the XtN from the resource string. The following
table contains the set of resources defined by Valuator.

Valuator Resource Set
Name Class Type Default
XtNsliderMin XtCSliderMin int 0
XtNsliderMax XtCSliderMax int 100
XtNsliderExtent XtCSliderExtent int 10
XtNsliderOrigin XtCSliderOrigin int 0
XtNsliderTile XtCSliderTile int foreground
XtNslideOrientation | XtCSlideOrientation | int vertical
XtNsliderMoved XtCCallback Pointer | NULL
XtNsliderReleased XtCCallback Pointer | NULL
XtNareaSelected XtCCallback Pointer | NULL

XtNsliderMin, XtNsliderMax
The Valuator widget lets the application define its own coordinate system for

the valuator. Any integer values with sliderMin less than sliderMax can be

specified.
XtNsliderExtent

The size of the slider can be set by the application. The acceptable values are 0
< sliderExtent < (sliderMax - sliderMin).

Ardent Computer Corporation — Release 3.0

119

XWVALUATOR(3Xh) XWVALUATOR (3Xh)
Primitive Resource Set -- XWPRIMITIVE(3X)

Name Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL

KEYBOARD TRAVERSAL

If the XtNtraversalType resource is set to highlight_traversal

(XwHIGHLIGHT_TRAVERSAL in an argument list) at either create time or during a
call to XtSetValues, the XwPrimitive superclass will automatically augment the
primitive widget’s translations to support keyboard traversal. See the XwPrimitive
man page for a complete description of these translations. See the TRANSLATIONS
section in this man page for a description of the translations local this widget.

TRANSLATIONS
The input to the Valuator widget is driven by the mouse buttons. The default
translation is defined as follows:
<Btn1Down>: select(),
<Btn1Up>: release(),
Buttonl<PtrMoved>: moved(),
<EnterWindow>: enter(),
<LeaveWindow>: leave(),
Ctrl<Key>Left: left(), HP "Control Left Cursor" key
Ctrl<Key>Up: up(), HP "Control Up Cursor" key
Ctrl<Key>Right: right(), HP "Control Right Cursor" key
Ctrl<Key>Down: down(), HP "Control Down Cursor" key
ACTIONS

select:
Select processes the activation conditions within the valuator, both for
selections within the slider area and on the slider.

release:

Release handles the processing terminating conditions for selections on the
valuator.

moved:

Moved processes interactive movement of the slider following a selection upon
the slider.

enter:

If the XtNtraversalType resource has been set to XwHIGHLIGHT _ENTER then
the arrow’s border will be highlighted. Otherwise no action is taken.

leave:
If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the arrow’s border will be unhighlighted. Otherwise no action is taken.

Ardent Computer Corporation — Release 3.0) 121

e e A SNt
XWVALUATOR(3Xh) XWVALUATOR (3Xh)

left: If the valuator’s orientation is horizontal, this action will cause its slider origin
to be decremented by 1 unit and redisplayed.

up: If the valuator’s orientation is vertical, this action will cause its slider origin to
be decremented by 1 unit and redisplayed.

right: ;
If the valuator’s orientation is horizontal, this action will cause its slider origin
to be incremented by 1 unit and redisplayed.

down: :
If the valuator’s orientation is vertical, this action will cause its slider origin to
be incremented by 1 unit and redisplayed.

ORIGIN
Hewlett-Packard Company.

SEE ALSO
CORE(3X), XWPRIMITIVE(3X), XWCREATETILE(3X)

122 Ardent Computer Corporation— Release 3.0

]
XWWORKSPACE (3Xh) XWWORKSPACE (3Xh)

NAME
XwworkSpaceWidgetClass — the X Widget’s empty window widget.
SYNOPSIS
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#include <Xw/Xw.h>
#include <Xw/WorkSpace.h>
CLASSES
The WorkSpace widget is built from the Core and XwPrimitive classes.
The widget class to use when creating a workspace is XwworkSpaceWidgetClass.
The class name for this widget is WorkSpace.
DESCRIPTION

The WorkSpace widget provides the application developer with an empty primitive
widget. This widget can be used by the application as a non-widget graphics area.
Callback types are defined for widget exposure and resize to allow the application to
redraw or reposition its graphics. Keyboard, button press and button release
callbacks are also defined to provide the application an easy means of getting normal

input from the widget. Other types of input can be gathered from the widget by
adding event handlers.

If the workspace widget has a highlight thickness, the application should take care
not to draw on this area. This can be done by creating the graphics context to be
used for drawing in the widget with a clipping rectangle set to the size of the
widget’s window inset by the highlight thickness.

NEW RESOURCES

The WorkSpace widget defines a set of resource types used by the programmer to
specify the data for the workspace. The programmer can also set the values for the
Core and Primitive widget classes to set attributes for this widget.

WorkSpace Resource Set

Name Class Type Default
XtNexpose XtCCallback | Pointer | Null
XtNresize XtCCallback | Pointer | Null
XtNkeyDown | XtCCallback | Pointer | Null

XtNexpose
This resource defines a callback list which is invoked when an exposure event
occurs on the widget. The call_data parameter for the callback will contain a
Region structure containing the exposed region.

XtNresize
This resource defines a callback list which is invoked when the widget is
resized. The widget parameter can be accessed to obtain the new size of the
widget.

XtNkeyDown

This resource defines a callback list which is invoked when keyboard input

occurs in the widget. The call_data parameter for the callback will contain the
key pressed event.

Ardent Computer Corporation — Release 3.0 123

XWWORKSPACE (3Xh)

INHERITED RESOURCES
The following resources are inherited from the named superclasses:

XWWORKSPACE (3Xh)

Core Resource Set -- CORE(3X)
Name Class Type Default
XtNancestorSensitive XtCSenstitive Boolean TRUE
XtNx XtCPosition int 0
XNy XtCPosition int 0
XtNwidth XtCWidth int 0
XtNheight XtCHeight int 0
XtNdepth XtCDepth int 0
XtNbackground XtCBackground Pixel White
XtNbackgroundPixmap XtCPixmap Pixmap Unspecified
XtNborderWidth XtCBorderWidth int 1
XtNborderColor XtCBorderColor Pixel Black
XtNborderPixmap XtCPixmap Pixmap Unspecified
XtNsensitive XtCSensitive Boolean TRUE
XtNmappedWhenManaged | XtCMappedWhenManaged | Boolean TRUE
XtNdestroyCallback XtCCallback | Pointer NULL
XtNtranslations XtCTranslations XtTranslations | NULL
Primitive Resource Set -- XWPRIMITIVE(3X)
Name ‘ _Class Type Default
XtNforeground XtCForeground Pixel Black
XtNbackgroundTile XtCBackgroundTile int background
XtNtraversalType XtCTraversalType int highlight_off
XtNhighlightStyle XtCHighlightStyle int pattern_border
XtNhighlightColor XtCForeground Pixel Black
XtNhighlightTile XtCHighlightTile int 50_foreground
XtNhighlightThickness | XtCHighlightThickness | int 0
XtNrecomputeSize XtCRecomputeSize Boolean | TRUE
XtNselect XtCCallback Pointer | NULL
XtNrelease XtCCallback Pointer | NULL
KEYBOARD TRAVERSAL
If the XtNtraversalType resource is set to highlight_traversal
(XwHIGHLIGHT_TRAVERSAL in an argument list) at create time or during a call to
XtSetValues, the XwPrimitive superclass will automatically augment the primitive
widget’s translations to support keyboard traversal. Refer to the XwPrimitive man
page for a complete description of these translations. Refer to the TRANSLATIONS
section in this man page for a description of the translations local to this widget.
TRANSLATIONS

The following translations are defined for the WorkSpace widget.

124

Ardent Computer Corporation— Release 3.0

e P RO
XWWORKSPACE (3Xh) XWWORKSPACE (3Xh)

ACTIONS

ORIGIN

SEE ALSO

<KeyDown>: keydown()
<BtnDown>: select()
<BtnUp>: release()

<EnterWindow>: enter()
<LeaveWindow>: leave()

keydown:
Keyboard input occurring on a workspace invokes the workspace’s
XtNkeyDown callback list.

select:

Selections occurring on a workspace invokes the workspace’s primitive
XtNselect callback list.

release:
Release invokes the workspace’s primitive XtNrelease callback list.

enter:
If the XtNtraversalType resource has been set to XwHIGHLIGHT_ENTER then
the workspace’s border will be highlighted. Otherwise no action is taken.

leave:
If the XtNtraversalType resource has been set to XwWHIGHLIGHT_ENTER then
the workspace’s border will be unhighlighted. Otherwise no action is taken.

Hewlett-Packard Company.

CORE(3X), XWPRIMITIVE(3X)

Ardent Computer Corporation — Release 3.0 125

