Stardent

WINDOW
SYSTEM
MANUAL

Stardent Computer Inc. Part Number: 340-0114-01

Change History

340-0022-02 Original
340-0114-01 January, 1990

Copyright © 1985, 1986, Massachusetts Institute of Technology

Copyright © 1990
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permitted by the
agreement; or (c) used for any purpose not authorized by the agreement.

This document is a derivative work prepared by Stardent Computer Inc. based on pre-existing work of
Massachusetts Institute of Technology (MIT). Nothing in this notice or in the above-mentioned agreement with
Stardent Computer Inc. shall act to limit rights as to the pre-existing work. The pre-existing work of MIT
included the following restrictive legend:

Permission to use, copy, modify and distribute this document (the pre-existing work) for any purpose
and without fee is hereby granted, provided that the above copyright notice (Copyright © 1985, 1986,
Massachusetts Institute of Technology) appear in all copies, and that the name of Massachusetts
Institute of Technology not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. Massachusetts Institute of Technology makes no
representations about the suitability of the software described herein for any purpose. It is provided
“‘as is”’ without any express or implied warranty. (Italicized text added.)

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD
Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™, and Titan™ are trademarks of Stardent Computer Inc.

CONTENTS @

The Window System Manual contains:

Ardent X Server Private Extension

Ardent X Multiple Buffering/Stereo Library Extension

The following man pages:

awm
bdfres
bdftosnf
bitmap
cpicker
do.file
gnuplot
ico
kterm
mkfntdir
muncher
pixedit
plaid
puzzle
showsnf
uwm

X
Xserver
x10tox11
xbiff
xcalc
xclock
xdpr
xdpyinfo
xedit
xev

xfd

xfed

Contents [Release 3.0 preliminary: 10-5]

Window System Manual i

xhost
xinit
xload
xlogo
xIsfonts
xIswins
xmag
xman
xmh
xmodmap
xmore
Xpr
Xprop
xrdb
xrefresh
xset
xsetroot
xstart
xterm
xtitle
xwd
xwininfo
XWPpS
xwud

ii Window System Manual Contents [Release 3.0 preliminary: 10-5]

PRIVATE %
EXTENSIONS

CHAPTER ONE

Private Extensions [Release 3.0 preliminary: 10-6] Window System Manual 1-1

Ardent X Server Private Extension

Mark Patrick
Ardent Computer

1. Introduction

This document describes the C library interface to a set of X Server protocol requests which are private
to the Ardent X Server. These requests allow applications to inquire about the default colormaps on the
Titan to perform graphics operations in the Titan overlay planes, and to switch between the stereo and
mono screens under program control. Note these requests are specific to the Titan X server and clients
which depend upon them will not be portable to other X platforms.

Users desiring to use the functions described in this document should include the file <X11/XTitan.h>

in addition to the standard X include files. Client programs should be linked using a command line
such as:

¢C -0 myprog myprog.o -1Xtitan -1X11

2. Overlay Graphics on the Titan

This section describes how to use the X window system to perform graphics in the Titan’s 4 overlay
planes. We cover the following topics: basic structure of an X client, the different overlay modes sup-
ported by the Titan, and event handling for an X client. This document assumes you are already fami-
liar with writing application programs at the Xlib level.

Currently, the X window system standard does not define how overlay graphics should be supported. If
this is ever standardized the features described in this document may be changed to bring it into line
with the standard.

The Titan has 4 overlay planes which are used by the X server for the cursor and which can now be
used by an X client for drawing text, lines or any of the standard X primitives. Typically a client
would use the overlay planes for performing annotation of an image without damaging the underlying
image which has been drawn into a standard X window (either 8 or 24 bits).

2.1. Obtaining the Overlay Visual

The first step in using overlays is to obtain the overlay visual, this information is used in both creating
colormaps and windows. It describes to X what kind of colormap or window you want. The following
code fragment shows you how to get this information.

XVisuallnfo *visual_info, vinfo_template, *overlay_visual;

vinfo_template.visualid = XTitanOverlayVisualld(dpy, 0);

overlay_visual = XGetVisuallnfo(dpy, VisualIDMask, &vinfo_template, &nvisuals);

if (nvisuals == 0) {

printf("no overlay visual");
exit(1);

Ardent X Server Private Extension Release 3.0, Oct. ‘89

-2-

After executing this code overlay_visual points to a data structure which can be used in creating overlay
colormaps and windows. The extension function XTitanOverlayVisualld returns the visual ID for the
specified display and screen. It is declared as follows:

VisualID XTitanOverlayVisualld(display, screen_number)
Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number the screen whose overlay visual id is required

2.2. Creating an Overlay Colormap

When creating an overlay window an overlay colormap is required. Such a colormap contains 4
entries. Since color 0 is always interpreted as transparent only the color values specified by pixel
values 0, 1 and 2 are of interest. You can create a new overlay colormap using the standard X function
XCreateColormap:

ovérlay_colormap = XCreateColormap(dpy, XDefaultRootWindow(dpy),
overlay_visual, AllocNone);

Note that only one overlay colormap can be installed at any one time. Currently there is no way for a
window manager to automatically install a colormap for a subwindow. So to install this colormap the
client should call XInstallColormap:

XInstallColormap(dpy, overlay_colormap);

When the default overlay colormap is installed the X sever uses entries 0 and 1 to store the foreground
and background colors for the currently displayed cursor.

2.3. Creating an Overlay Window

To draw graphics into the overlay planes a client must first create an overlay window. This is done
using the standard XCreateWindow call or the extension XBCreateWindow or XBCreateStereoWindow
calls. In each case the visual passed into the create window call is the value of overlay_visual obtained
above.

The parent window in the create window call should be the window id of the window whose image you
wish to overlay. Typically the position of the overlay window would be 0,0 with respective to the
parent. By making the overlay window’s width and height the full size of the screen you won’t need to
worry about ever resizing the overlay window if the parent changes size. Typically the overlay
window’s borderwidth will be zero. The overlay windows background pixmap should be set to None
(to disable the window background).

attrMask = CWBackPixmap | CWColormap;

window_attributes.background_pixmap = None;
window_attributes.colormap = overlay_colormap;

overlay_win = XCreateWindow(dpy, win, 0, 0, 1280, 1024, 0, 8, InputOutput,
overlay_visual->visual, attrMask, &window_attributes);

if (loverlay_win){
fprintf(stderr, "could not create overlay window0);
fflush(stderr);
XCloseDisplay(dpy);

Ardent X Server Private Extension Release 3.0, Oct. ‘89

exit(1);

}

XMapWindow(dpy, overlay_win);

Since the overlay’s background pixmap has been set to none you cannot use XClearArea or
XClearWindow to clear some portion of the window. The best way to clear a portion of an overlay
window to some specified color is to set the desired pixel value as the foreground color in a gc and call
XFillRectangle. For example:

XSetForeground(dpy, overlay_gc, clear_color);
XFillRectangle(dpy, overlay_win, overlay_gc, 0, 0, 1280, 1024);

2.4. Drawing when using overlays

Basically drawing is the same as when not using overlays. However there are a few things to bear in
mind. First you should create a graphics context for drawing into the overlay window. This is done by
using the standard XCreateGC:

overlay_gc = XCreateGC(dpy, overlay_win, 0, 0);

You can of course set any of the gc values you wish using this call, using XChangeGC or any of the gc
convenience functions.

Since the overlay window overlays the entire regular window you must set the subwindow mode of the
parent window to Includelnferiors:

gevalues.subwindow_mode = Includelnferiors;
gc = XCreateGC(dpy, win, GCSubwindowMode, &gcvalues);

2.5. Handling Events

Since the overlay window overlays the entire regular window you should select for input events on the
overlay window rather than the parent window. Since you have positioned the overlay window at 0, 0
in the parent window’s coordinate system and since the overlay window has a zero width border all
coordinates reported are the same for either window. Finally note that since the overlay window

obscures the parent the background of the parent will not be repainted automatically by the X server.
You can clear the main window via a call to;

XFillRectangle(dpy, win, gc, 0, 0, 1280, 1024);

2.6. Setting the Overlay Mode

The Titan supports two different overlay modes. Independent of the overlay mode an area of the screen
where the overlay pixel has the value 0 will appear transparent, allowing the user to view what is
displayed in the underlying standard X window. If the overlay mode is XTitanRamdac3OverlayMode a

separate colormap (containing 4 entries) is used for the overlay planes, In this mode a client can use
three colors plus transparency.

If the overlay mode is XTitanBrooktreeOverlayMode and the underlying window is 8 bit pseudo color
the first 16 entries of the currently installed pseudo colormap are used for the overlay window, allowing
15 colors plus transparency. If the underlying window is 24 bit direct color then this mode behaves as
for XTitanRamdac3OverlayMode providing 3 colors plus transparency. Use XTitanSetOverlayMode to
set the overlay mode for a specified window.

Ardent X Server Private Extension Release 3.0, Oct. ‘89

-4.-

void XTitanSetOverlayMode(dpy, window, overlay_mode)
Display *display;
Window window;
int overlay_mode;

display Specifies the connection to the X server.
window Specifies the window whose overlay mode is being set.
overlay_mode the desired overlay_mode.

To obtain the current overlay mode of a specified window use:

int XTitanGetOverlayMode(dpy, window)
Display *display;
Window window;

display Specifies the connection to the X server.
window Specifies the window whose overlay mode is being set.

3. Obtaining the Default Color Map’s

Many applications runninng on the titan can share a common colormap. Sharing colormaps allows
more application windows to be shown in their correct colors.

Use XTitanDefaultDirectColormap to obtain the resource id of this default direct color colormap. The
definition of the function is:
Colormap XTitanDefaultDirectColormap(dpy, screen_number)

Display *dpy;

int screen_number,

dpy Specifies the connection to the X server.
screen_number Specifies the screen on which the colormap is needed

Use XTitanDefaultPseudoColormap to obtain the resource id of this default pseudo color colormap.
The definition of the function is: ,
Colormap XTitanDefaultPseudoColormap(dpy, screen_number)

Display *dpy;

int screen_number;

dpy ~ Specifies the connection to the X server.
screen_number Specifies the screen on which the colormap is needed

Use XTitanDefaultOverlayColormap to obtain the resource id of this default overlay color colormap.
The definition of the function is:

Colormap XTitanDefaultOverlayColormap(dpy, screen_number)
Display *dpy;
int screen_number;

dpy Specifies the connection to the X server.
screen_number Specifies the screen on which the colormap is needed

4. Swapping between Screens

When the -stereo option is used with the Titan X server the user can switch between the mono and
stereo screens using ALT-F2. The same effect can be achieved programatically using:

XTitanMapScreen(dpy, physical_screen, logical_screen)
Display *dpy;
int physical_screen, logical_screen;

Ardent X Server Private Extension Release 3.0, Oct. ‘89

-5.

dpy Specifies the connection to the X server.
physical_screen Specifies the physical screen
logical_screen Specifies the desired logical screen

The physical_screen parameter defines the physical hardware on which the X screen should be
displayed and currently this should be 0. The logical_screen specifies which X screen to display. If
the logical_screen is O then the mono screen will be displayed. If the logical_screen is 1 then the
stereo screen will be displayed. This function returns a BadMatch error if either the physical_screen or
logical screen numbers are invalid.

To determine which screen is currently being displayed use:

int XTitanGetMappedScreen(dpy, physical_screen)
Display *dpy;
int physical_screen;

dpy Specifies the connection to the X server.
physical_screen Specifies the physical screen

This request returns the currently displayed X screen number, or -1 if the physical_screen was invalid.

Ardent X Server Private Extension Release 3.0, Oct. ‘89

MULTIPLE @
BUFFERING

EXTENSIONS

CHAPTER TWO

Ardent X Multiple Buffering/Stereo Library Extension

Mark Patrick
Ardent Computer

1. Introduction

This document defines a multiple buffering/stereo extension for the low-level C language interface to
the X Window System protocol. This interface is specific to the Titan X server and will be replaced by
a standardized multiple buffering extension currently being defined by the X consortium.

Clients desiring to use the functions described in this document should include the file <X11/XB.h> in
addition to the standard X include files. Client programs should be linked using a command line such
as:

¢c -0 myprog myprog.o -IXtitan -1XB -1X11

Using this extension clients of the Ardent X window system can: inquire what if any multiple
buffering/stereo facilities are available; create one or more multiple buffered/stereo windows; select
which buffer they wish to draw into; and select which buffer to display from. Although stereo is not
supported (by the X window system) in the current release the programming interface has been defined
and is described below. Stereo is planned for the next release.

Once a multiply buffered/stereo window has been created the application can proceed to use standard
X11 graphics requests (or extended requests, for 3d images) to generate the individual frames of the
animation, switching between the frames once they have been generated, thus producing a smoothly
animated sequence.

All X11 InputOutput windows have at least one buffer. A normal X window has exactly one buffer
(buffer 0), this is used both to display from and to draw into. For normal animation two buffers are
used; one from which the display is currently being generated and one into which the next frame is
being rendered. For stereo each buffer consists of a left and right half which are synchronized together.
This extension places no restriction on how many buffers are available for display and for rendering, on
the current Titan hardware the maximum number of buffers is 2.

Ardent X Multiple Buffering/Stereo Library Extension Release 3.0 Oct. ‘89

2. Inquiring Stereo Facilities

To display a stereo image two synchronized images are required one for the left eye and one for the
right. This can be implemented either by two separate screens or by subdividing a single screen into
halves and viewing the screen through filters.

Use XBGetStereolnfo to determine what (if any) stereo facilities are supported by a server. The
definition of the function is:

unsigned char* XBGetStereoInfo(display, n_screens_return)
Display *display;
int * n_screens_return;

display Specifies the connection to the X server.
n_screens_return Returns the number of screens supporting stereo.

The XBGetStereoInfo function returns a list of screen numbers, listing each screen upon which the
server will support stereo. Currently stereo is not supported by the X window system this will be added
in the next release.

Ardent X Multiple Buffering/Stereo Library Extension Release 3.0 Oct. ‘89

3. Inquiring Multiple Buffering Facilities

The number of available buffers depends opon available hardware, the screen on which the window is
to be displayed, the depth of the window and its visual type.

Currently, on the Titan, there is a single screen, the number of available buffers depends upon the

window’s visual type and whether the system has a graphics expansion board. This is summarized in
the following table.

. Expansion Board
Vv T

isual Type No Yos
Pseudo Color | 2 2
Direct Color 1 2

The XBufferInfo structure defined in <X/XB.h> is used to determine what multiple buffering facilities
are provided by the server:

#define BufferNoMask 0x0
#define BufferScreenMask 0x1
#define BufferDepthMask 0x2
#define BufferClassMask 0x4

typedef struct {
unsigned char screen;
unsigned char depth;
unsigned char class;
unsigned char n_buffers;
} XBufferInfo;

Use XBGetBufferInfo to determine what double buffering facilities are available. The definition of the
function is:

XBufferInfo *XBGetBufferInfo(display, binfo_mask, binfo_template, nitems_return)
Display *display;
unsigned long binfo_mask;
XBufferInfo *binfo_template;
int *nitems_return;

display Specifies the connection to the X server.
binfo_mask Specifies the buffer information request mask.
bbinfo_template Specifies the buffer attributes that are to be used
in matching the buffer information structures.
nitems_return Returns the number of matching buffer information structures.

The function XBGetBufferInfo returns a list of all facilities which match the clients request. The client
can pass a template specifying which screen, depth and/or visual type is of interest. Exactly which, if
any, of these values is used to filter the list of buffering options is determined by the value of the
binfo_mask parameter. If there are no facilities matching the specified requirements then
XBGetBuffernfo returns NULL. Use XFree to free the data returned by this function.

The returned information specifies for each alternative which matches the specified template: the max-
imum number of buffers available for a specified screen, depth, and visual class.

Ardent X Multiple Buffering/Stereo Library Extension Release 3.0 Oct. ‘89

4. Creating a multiply buffered window

Use XBCreateWindow to create a window which provides multiple buffering. The definition of the
function is:

Window XBCreateWindow(display, parent, x, y, width, height,

borderWidth, depth, visual,
n_buffers, independent, valuemask, attributes)

Display *display;

Window parent;

int x, y;

unsigned int width, height, borderWidth;

int depth;

Visual *visual;

int n_buffers;

unsigned char independent;

unsigned long valuemask;

XSetWindowAuttributes *attributes;

display Specifies the connection to the X server.

parent Specifies the parent window ID.

x

y Specify the x and y coordinates. These coordinates are the top
left outside corner of the created window’s borders and are relative to
the inside of the parent window’s borders. :

width

height Specify the width and height. These are the created window’s

border_width

inside dimensions. These dimensions do not include the created window’s
borders, which are entirely outside the window. The dimensions must be
nonzero. Otherwise, a BadValue error is returned.

Specifies, in pixels, the width of the created window’s border.

depth A depth of CopyFromParent means the depth is taken from the parent.
visual Specifies the visual type. A visual of CopyFromParent means
that the visual type is taken from the parent.
n_buffers Specifies the number of buffers.
independent Specifies if the window is independently double buffered from the parent.
valuemask Specifies which window attributes are defined in the
attribute argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero (0), the rest is ignored, and
the attributes are not referenced.
attributes Attributes of the window to be set at creation time should be

set in this structure. The valuemask should have appropriate bits set to
indicate which attributes have been set in the structure.

The XBCreateWindow function creates a multiply buffered unmapped subwindow for a specified parent
window, retums the ID of the created window, and causes the server to generate a CreateNotify event.
The created window is placed on top in the stacking order with respect to siblings.

The ’independent’ parameter specifies whether the client wishes to switch buffers on this window
independently from the parent. If the independent parameter has the value False then the number of
buffers for this window must be the same as for the parent.

The errors that can be generated by XBCreateWindow are: BadAlloc, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow.

Use XBCreateStereoWindow to create a multiply buffered stereo window. The definition of the function
is:

Ardent X Multiple Buffering/Stereo Library Extension Release 3.0 Oct. ‘89

-5-

Window XBCreateStereoWindow(display, parent, x, y, width, height,
borderWidth, depth, visual,
n_buffers, independent, valuemask, attributes)
Display *display;
Window parent;

int x, y;

unsigned int width, height, borderWidth;

int depth;

Visual *visual;

int n_buffers;

unsigned char independent;
unsigned long valuemask;
XSetWindowAttributes *attributes;

display
parent
X

y

width
height

border_width
depth
visual

n_buffers

independent
valuemask

attributes

The XBCreateStereoWindow function creates a multiply buffered unmapped stereo subwindow for a
specified parent window, returns the ID of the created window, and causes the server to generate a
CreateNotify event. The created window is placed on top in the stacking order with respect to siblings.

The ’independent” parameter specifies whether the client wishes to switch buffers on this window
independently from the parent. If the independent parameter has the value False then the number of

Specifies the connection to the X server.
Specifies the parent window ID.

Specify the x and y coordinates. These coordinates are the top
left outside corner of the created window’s borders and are relative to
the inside of the parent window’s borders.

Specify the width and height. These are the created window’s

inside dimensions. These dimensions do not include the created window’s
borders, which are entirely outside the window. The dimensions must be
nonzero. Otherwise, a BadValue error is returned.

Specifies, in pixels, the width of the created window’s border.

A depth of CopyFromParent means the depth is taken from the parent.
Specifies the visual type. A visual of CopyFromParent means

that the visual type is taken from the parent.

Specifies the number of buffers.

Specifies if the window is independently double buffered from the parent.
Specifies which window attributes are defined in the

attribute argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero (0), the rest is ignored, and

the attributes are not referenced.

Attributes of the window to be set at creation time should be

set in this structure. The valuemask should have appropriate bits set to
indicate which attributes have been set in the structure.

buffers for this window must be the same as for the parent.

The errors that can be generated by XBCreateStereoWindow are: BadAlloc, BadColor, BadCursor, Bad-

Match, BadPixmap, BadValue, and BadWindow.

Ardent X Multiple Buffering/Stereo Library Extension

Release 3.0 Oct. ‘89

5. Selecting Display and Draw Buffers
Use XBSetDrawBuffer to specify which buffer to draw into. The definition of the function is:
XBSetDrawBuffer(display, w, buffer_id, eye)

Display *display;

Window w;

int buffer_id,

unsigned char eye ;

display Specifies the connection to the X server.

w Specifies the window.
buffer_id Specifies the buffer.
eye Specifies which half of a stereo pair to draw into.

The XBSetDrawBuffer function selects which buffer output requests are directed to. Initially the draw
buffer and the display buffers are both 0. On a stereo screen eye specifes whether we want to draw into
the left eye (eye == XBLeftEye) or the right (eye == XBRightEye). If the screen is not stereo the eye
argument is not checked (but some value should be supplied).

The errors that can be generated by XBSetDrawBuffer are: BadWindow, BadValue
Use XBSetDisplayBuffer to specify which buffer to display from. The definition of the function is:

XBSetDisplayBuffer(display, w, buffer_id)
Display *display;

Window w;

int buffer_id,
display Specifies the connection to the X server.
w Specifies the window.

buffer_id Specifies the buffer.

The XBSetDisplayBuffer function selects which buffer is to be displayed from when the window is visi-
ble. Initially the draw buffer and the display buffers are both 0.

The errors that can be generated by XBSetDisplayBuffer are: BadWindow, and BadValue.

Use XBQueryBuffers to determine the query the additional state information associated with a multiply
buffered window. The definition of the function is:

XBQueryBuffers(display, w, n_buffers_return, stereo_return, eye_return,
display_buffer_return, draw_buffer_return)
Display *display;
Window w;
unsigned short *n_buffers_return;
unsigned char *stereo_return;
unsigned char *eye_return;
unsigned short *display_buffer_return;
unsigned short *draw_buffer_return;

display Specifies the connection to the X server.

w Specifies the window.

n_buffers_return Returns the number of available buffers for the specified window.
stereo_return Returns True if the window is stereo.

eye_return Returns which part of a stereo buffer is currently being drawn into.

If the window is not stereo the value is undefined.
display_buffer_return ~ Returns the current display buffer for the specified window.
draw_buffer_return Returns the current draw buffer for the specified window.

Ardent X Multiple Buffering/Stereo Library Extension Release 3.0 Oct. ‘89

-7 -

The XBQueryBuffers function returns the number of buffers provided by the window, whether the win-
dow is stereo and if so which part of the draw buffer is being drawn into, the current draw buffer and
the current display buffer.

The error that can be generated by XBQueryBuffers is: BadWindow

Ardent X Multiple Buffering/Stereo Library Extension Release 3.0 Oct. ‘89

CLIENT %
MAN PAGES

CHAPTER THREE

Client man Pages [Release 3.0 preliminary: 10-6] Window System Manual 3-1

23 Julz 1988

AWM(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

AWM(1)

awm - Window Manager X Client Application
awm [—f filename] [—e execfile] [-b] [-i]

The awm command is a window manager client application of the window server. It
is heavily based on an earlier work by M. Gancarz of Digital Equipment Corporation
(see the end of this document for appropriate acknowledgments).

When the command is invoked, it traces a predefined search path to locate any awm
startup files. If no startup files exist, awm initializes its built-in default file.

If startup files exist in any of the following locations, it adds the variables to the
default variables. In the case of contention, the variables in the last file found over-
ride previous specifications. Files in the awm search path are:

$LIBDIR /awm/system.awmrc
$HOME/.awmrc

To use only the settings defined in a single startup file, include the variables, reset-
bindings, resetmenus and resetgagdets at the top of that specific startup file.

~f filename
Names an alternate file as an awm startup file.
—e execfile
Names a file to exec (typically a shell script invoking other clients) after all

startup files have been loaded. This is useful for minimizing the number of
map/unmaps that occur when titlebars are added.

-b Causes awm to ignore the system startup file.

-i Causes awm to ignore $SHOME/ .awmrec.

STARTUP FILE VARIABLES

Variables are typically entered first, at the top of the startup file. Because of a merge
with the resource manager, very few variables are set here now. The directives reset-

bindings, resetmenus and resetgadgets are still allowed, as are gadget declarations
of the form:

gadgetlnl=expr

Where 7 is a positive integer indicating the gadget to initialize and expr is one of the
following;:

string or "string" [/ attributes]

Set the name of the gadget to string. The name will be painted in the gadget box
with the gadget.font resource or an overriding font attribute (see below). string
may contain embedded non-alphanumeric characters in the form of \# where #
is one or more decimal digits (i.e. \54) or \c where ¢ is a character in the stan-
dard C string literal set (i.e. n, r, t, f). This is useful if you've specified a gadget
font with glyphs in it (such as cursor) and you want to paint a specific glyph
from it in a gadget box. Many such glyphs are not represented by ascii charac-
ters.

(string) [M attributes]

Load a pixmap from the file named by string and tile the gadget with it (see
also: path).

Ardent Computer Corporation — Release 3.0 1

23 July 1988
AWM(1) AWM(1)

Additional attributes may be specified after a "’ (caret) character in the form:

offset | gravity | foreground | background | font
Any omitted parameters will be set to default values.

offset is an integer specifying how far to place this gadget from its nearest
neighbor (or an edge). Default offset is gadget.pad, or 2 if gadget.pad is not
defined.

gravity is one of NoGravity, LeftGravity, RightGravity or CenterGravity.
NoGravity specifies that the gadget is to be placed opposite of wherever the
last gadget was placed. LeftGravity specifies that the gadget should stick to
the left of the title bar, RightGravity to the right and CenterGravity to the
center.

foreground and background specify the colors used to tile the gadget or draw the
text.

font is the name of the font you want the gadget’s name drawn in. This over-
rides the gadget.font setting for this gadget.

The default values for attributes are 0, NoGravity, black (reverse: white) and
white (reverse: black), the setting of gadget.font.

It is important to note that in the absence of a gravity specification (i.e. we've
defaulted to NoGravity), the window manager will automatically place a gadget on
the side opposite of the last gadget placed. If it’s the first gadget placed, it will go to
the right. Thus in the absence of any gravity (or offset) specifications, the window
manager will place gadgets in a right-left-right fashion until all gadgets have been
placed.

For example:

gadget[0] = "die"

gadget[1] = (resize.b) A 2 | red | orange

gadget[2] = (iconbox.b) A | LeftGravity

gadget[3] = "\56" A | LeftGravity | green | black | cursor

These declarations will create 4 gadget boxes, situated in the following manner:

The first gadget box will be created wide enough to print the word "die" in it (in
whatever gadget font has been defined) and will be placed on the right side (since it
hasn’t chosen a gravity) against the edge (since it hasn’t chosen an offset). Back-
ground and foreground colors will be black and white (assignment depending on
whether reverse is set).

The second gadget box will be tiled with the contents of the file "resize.b" (assuming
that it’s a valid bitmap file) and will go on the left side (since it also has no gravity
and the last one went on the right). It will be offset from the edge by 2 pixels since
there was an offset for it. Foreground will be red, background will be orange.

The third gadget will be tiled with the contents of "iconbox.b" and will be placed
against the second gadget on the left hand side since we specified a gravity. Colors
will be black and white (depending on reverse).

The fourth gadget will display glyph #56 from the cursor font in green and black (it's
gumby of course).

IMPORTANT: Gadgets may be declared in any order, but you are not allowed to
leave gaps, i.e..it’s perfectly acceptable to declare gadgets in the order 0, 2, 3, 1, but
not legal to declare gadgets in the order 0, 3, 2, 4 as gadget #1 has been omitted. This
restriction may be removed in the future, but for now you’ll get a diagnostic and awm

2 Ardent Computer Corporation— Release 3.0

23 Julx 1988

AWM(1)

will exit.

AWM(1)

All other variables controlling window manager behavior are described in the X
DEFAULTS section of this man page.

BINDING SYNTAX

Mouse buttons may be bound to particular window manager functions with:

"function=[modifier key(s)]:[context]:mouse events:"” menu name "

or

“function=[modifier key(s)]:[context]:mouse events:" text action "

Function and mouse events are the only required fields. The menu name is required
with the fmenu function definition only. Similarly, text action is required only with
the f.action function definition.

Function
f.action

Invokes a text action. ‘text’ should be in quotes with a preceding "action” char-
acter (one of ‘A, ’l" or ’|”). The syntax is identical to menu text actions which
are discussed in greater detail under the Menus section of this document.

f.action=[modifier key(s)l:[context l:mouse events:action" text "

f.beep
f.circledown

f.circleup

f.continue
f.destroy

f.exit

f.focus

f.iconify

f.lower

f.menu

f.move

f.moveopaque

emits a beep from the keyboard. Loudness is determined by the
volume variable.

causes the top window that is obscuring another window to drop to
the bottom of the stack of windows.

exposes the lowest window that is obscured by other windows.

releases the window server display action after you stop action with
the f.pause function.

calls XKillClient on the selected window. Use with caution!! Binding
it to naked mouse buttons is probably not a good idea!

exits the window manager. If you've started awm from xinit (actu-
ally sort of useful now that the —e flag has been added), this will also
exit the window system.

directs all keyboard input to the selected window. To reset the
focus to all windows, invoke ffocus from the root window.

When implemented from a window, this function converts the win-
dow to its respective icon. When implemented from an icon,
f.iconify converts the icon to its respective window.

lowers a window that is obstructing a window below it.

invokes a menu. Enclose ‘menu name’ in quotes if it contains blank
characters or parentheses.

f.menu=[modifier key(s)):[context l:mouse events:" menu name "

moves a window or icon to a new location, which becomes the
default location.

moves a window or icon to a new screen location. When using this
function, the entire window or icon is moved to the new screen loca-
tion. The grid effect is not used with this function.

Ardent Computer Corporation — Release 3.0 3

23 Julx 1988

AWM(1) AWM(1)
f.neaten neatens the desktop using the RTL neaten package. See the X
DEFAULTS for the resources necessary to customize this somewhat
complex feature. This function only works if awm has been com-
piled with the -DNEATEN flag (which compiles in the neaten pack-
age). Invoking this function without this is a noop (though a warn-
ing diagnostic is printed to stderr). See the INSTALLATION section
of the README document for more details.
f.newiconify allows you to create a window or icon and then position the win-
dow or icon in a new default location on the screen.
f.pause temporarily stops all display action. To release the screen and
immediately update all windows, use the f.continue function.
f.pushdown moves a window down. The distance of the push is determined by
the push variables.
f.pushleft moves a window to the left. The distance of the push is determined
by the push variables.
f.pushright moves a window to the right. The distance of the push is deter-
mined by the push variables.
f.pushup moves a window up. The distance of the push is determined by the
push variables.
f.raise raises a window that is being obstructed by a window above it.
f.refresh results in exposure events being sent to the window server clients
for all exposed or partially exposed windows. The windows will
not refresh correctly if the exposure events are not handled prop-
erly.
f.resize resizes an existing window. Note that some clients, notably editors,
react unpredictably if you resize the window while the client is run-
ning.
f.restart causes the window manager application to restart, retracing the
awm search path and initializing the variables it finds.
f.[no]ldecorate adds or removes "decorations" on the selected window. What
decorations are added (or deleted) depends on the settings of vari-
ous booleans and client-specific resources (see: SPECIAL
RESOURCES).
The booleans titles, gadgets and borderContext.width currently
influence awm’s choice of default decorations.
Modifier Keys
It is preferable to use meta as a modifier key for awm (or any other window
manager, for that matter), but one may also use ctrl, shift, lock, or null (no modifier
key). Modifier keys must be entered in lower case, and can be abbreviated as: ¢, 1, m,
s for ctr], lock, meta, and shift, respectively. It's also permissible to refer to the the
modifier keys directly as "mod1, mod2, mod3, mod4 or mod5". A mouse button with
no modifier key(s) is often referred to as a "naked" mouse button.
You may bind any number of modifier keys to a function, use the bar (1) character to
combine them.
Context
4 Ardent Computer Corporation — Release 3.0

23 Julx 1088

AWM(1)

Mouse Buttons

AWM(1)

The context refers to the screen location of the cursor when a command is initiated.
When you include a context entry in a binding, the cursor must be in that context or
the function will not be activated. The window manager recognizes the following
seven contexts: icon, window, root, title, gadget[n] (where 7 is the gadget number),
border and (null).

The icon context refers to any icon and may be safely bound without interfering with
window events.

The window context refers to application windows and should be used carefully to
avoid usurping button events that applications may want for their own purposes.

The root context refers to the root, or background window.
The title context refers to the titlebar area of a window, if one exists.

The gadget context (with mandatory index) specifies a given gadget box. Binding to a
gadget that's undefined (not initialized to anything) is an error.

The border context refers to the artificial border area created when the resource
borderContext.width is defined (see borderContext.width under X DEFAULTS).
Using this context when no border area exists (i.e. borderContext.width is not
defined) is a noop.

A (null) context is indicated when the context field is left blank, and allows a function
to be invoked from any screen location. This is basically equivalent to specifying all
the possible contexts.

Combine contéxts using the bar (|) character.

Any of the following mouse buttons are accepted (in lower case) and may be abbrevi-
atedasl, m,orr, respectively: left, middle, right.

With the specific button, you must identify the action of that button. Mouse actions
can be:

down function occurs when the specified button is pressed down.
up function occurs when the specified button is released.
delta indicates that the mouse must be moved the number of pixels specified

with the delta variable before the specified function is invoked. The
mouse can be moved in any direction to satisfy the delta requirement.

MENU DEFINITION

After binding a set of function keys and a menu name to f.menu, you must define the
menu to be invoked, using the following syntax:
menu = (string) " menu name " {

"o,

"item name" : "action"

}

The string in parenthesis is an optional argument which names a pixmap file (see
also: path) to use as the menu title rather than just using the name of the menu. This
is generally only useful if you're using pixmaps for the menu panes as well (see
below). Though the menu name isn’t displayed when you specify string, you still need
to specify one for awm to use when looking up the binding to it.

Ardent Computer Corporation — Release 3.0 5

23 Julx 1988

AWM(1)

Menu Action

AWM(1)

Enter the menu name exactly the way it is entered with the f.menu function or the
window manager will not recognize the link. If the menu name contains blank
strings, tabs or parentheses, it must be quoted here and in the f.menu function entry.
If you haven’t chosen to display a pixmap title in string, the menu name will be
displayed at the top of the menu in whatever font has been chosen for
menu.boldFont (or its default).

You can enter as many menu items as your screen is long. You cannot scroll within
menus.

Any menu entry that contains quotes, special characters, parentheses, tabs, or strings
of blanks must be enclosed in double quotes. Follow the item name by a colon (:).

A special case is an item surrounded by parenthesis, which designates the item name
as the name of a pixmap file to tile the menu pane with. Given a pixmap for the
menu title as well (see above), it’s possible to create menus that are totally pictorial in
nature. There are, however, two caveats. Due to the fact that it’s easier to do, the pix-
maps are used as backgrounds for the menu panes rather than painting them on
whenever a given pane in exposed. This has rather ugly consequences if one of the
pixmaps (or a line of text if a pane is textual) is larger than the others. Since the
server replicates pixmaps over the entire window, it results in a "wallpaper" effect on
the smaller pixmaps. The solution is to make all the pixmaps the same size and/or
not mix in any text items that will need a wider pane.

The second problem is that the check marks and pull-right indicators are always
displayed in fixed positions on the right and left edges of menu panes. If your pix-
maps try to use this real-estate, they may be partially covered by a check mark or
pull-right pixmap. Design your menus with this in mind.

Window manager functions
Any function previously described, e.g., f.move or f.iconify. Using f.menu
results in a pull-right pane which you can use to "walk" between menus (see
below). A "walk" can be done by moving the cursor onto the pull-right arrow
displayed at the right edge of the pane, or by clicking another button in the
pane while holding the original one down.

Walking menus
Select the function f.menu and separate it from the menu name with a colon ()

ie.
menu = "foo" {
Walking Menu: fmenu: "NextMenu"
}
Text actions
There are two kinds of special "actions" involving arbitrary strings of text.
These are:

Shell commands
Begin with an exclamation point (!) and set to run in background. You cannot
include a new line character within a shell command.

Text strings
Text strings are placed in the window server’s cut buffer.

Strings with a new line character must begin with an up arrow (*), which is
stripped during the copy operation.

Ardent Computer Corporation— Release 3.0

(

23 Julz 1988

AWM(1)

Color Defaults

AWM(1)

Strings without a new line must begin with the bar character (1), which is
stripped during the copy operation.

Booleans
Any boolean variable previously described, e.g., reverse or autoraise. The
current state of a boolean variable in a menu will be indicated with a check
mark (a check mark means the boolean is set to true).

SPECIAL NOTE:

Menus bound to title bars, gadget boxes or borders cause (where logical) the selected
menu action to occur automatically on the titled window as opposed to having to
select a window for the action. However, actions requiring mouse tracking (i.e. move,
resize) will usually not work well in this context. While this limitation will be elim-
inated in the near future, it is suggested that you use this feature to do things that do
not require mouse tracking, such as raise, lower, iconify, etc.

Colors default to the colors of the root window under any of the following condi-
tions:

1) If you run out of color map entries, either before or during an invocation of
awm.

2) If you specify a foreground or background color that does not exist in the RGB
color database ($LIBDIR/rgb.txt).

3) Ifyou omit a foreground or background color.

4) If you specify no colors in the resource database.

Ardent Computer Corporation — Release 3.0

23 Julx 1988

AWM(1)

X DEFAULTS

AWM(1)

A number of variables that were previously specified in the .uwmrc file have been
moved out of the .awmrc file and are now retrieved from the resource database.
When a value cannot be found, a default (compiled into awm) is substituted. The
resource database is also now queried to determine whether or not to title a given
window. See the end of this section for details.

In the descriptions below, variable names are listed in boldface, their type in
parenthesis, and their default value in double quotes.

autoraise (boolean) “off’”
Automatically raise a window to the top when it gains the input focus. See also:
raiseDelay

autoselect (boolean) “‘off"”
Specifies that the pointer be placed over the first item in a menu, rather than the
title, when the menu is popped up.

background (string)
The default background color for all other color choices in awm. If reverse is not
set, this defaults to white, otherwise it defaults to black. References to back-
ground in this document refer to this resource.

border.foreground (boolean) “foreground”
Specifies the border color to use for all windows (this color may be drawn solid
or stippled, depending on the window focus and the setting of border.hilite).

border.hilite (boolean) “‘on”
Specifies whether or not window border colors are to be changed on focus
changes. On focus in, the window border is changed to solid
border.foreground. On focus out, it is changed to a "gray" stipple.

borderContext.background (string) “background”
Background color to use for border context pixmap. Value is meaningless if
borderContext.width and borderContext.pixmap are undefined.

borderContext.boldPixmap (string) “none”
The name of a pixmap file to load and tile the border context area with when
the focus is in. If this is defined, and hilite is set, focus changes will cause the
border context background to alternate between borderContext.pixmap and
borderContext.boldPixmap. If borderContext.boldPixmap is defined, but
borderContext.pixmap is not, a blank pixmap will be used in place of
borderContext.pixmap.

borderContext.cursor (int) “XC_cross”
Glyph (in decimal) to retrieve from cursor font for use in border context.

borderContext.foreground (string) ““foreground”
Foreground color to use for border color pixmap. Value is meaningless if
borderContext.width and borderContext.pixmap are undefined.

borderContext.pixmap (string) “background
Pixmap to display as border context area background. Value is meaningless is
borderContext.width is undefined (or set to zero). Used exclusively as the
background unless borderContext.boldPixmap and hilite are defined.

borderContext.width (int) “0”
Number of pixels wide to make the border context. Though functions may be
bound to the border context (see: Context) without setting this, they will be
impossible to invoke due to the fact that there will be nothing to click on. The

Ardent Computer Corporation — Release 3.0

23 Julz 1988

AWM(1)

AWM(1)

border context should not be confused with the actual window border. It is an
artificial area around each window that resembles a border.

delta (int) “1”
Number of pixels that must be moved over before a "delta” action is taken (see:
BINDING SYNTAX).

foreground (string)
The default foreground color for all other color choices in awm. If reverse is not
set, this defaults to black, otherwise it defaults to white. References to fore-
ground in this document refer to this resource.

frameFocus (boolean) ““off”
[De]highlight when the pointer [leaves] enters the "frame" of the window (the
frame includes the client window, title bar and border context areas, if present).
Setting this option also causes the focus to follow the pointer so that keyboard
input will go the the client regardless of where the pointer is in the "frame".
freeze (boolean) “‘off”
Lock out all other clients during certain window manager tasks, such as move
and resize.
gadget.border (int) “1”
The width of all gadget borders in pixels.
gadget.font (string) ““fixed”
Which font to use for (textual) gadget labels.
gadget.pad (int) ““3”
The number of pixels to pad a gadget from its neighbor if it has no offset
defined.
gadgets (boolean) “off”
Display gadgets in title bars, if any are declared.
grid (boolean) “off”
Display a finely ruled grid when positioning or resizing windows/icons.
hilite (boolean) “off”
Causes the following actions to occur when a window gains the input focus:

1. If showName is on:

la. If title.boldFont is defined, the window name is redrawn
in this font.

1b. If it’s not, then the window name is redrawn in reverse video.

2. If title.boldPixmap is defined, the background of the title bar
is set to it.

3.If borderContext.boldPixmap is defined, the background of the border
context area is set to it.

On focus out, the window name is redrawn in title.font the title background to
title.pixmap and the border context to borderContext.pixmap, respectively.

If border.hilite is undefined, this variable will set it automatically.

Note that most icon variables only affect icons owned by awm. Except for fore-
ground and background colors, client created icons are left alone.

Ardent Computer Corporation — Release 3.0 9

23 Julz 1988

AWM(1)

AWM(1)

icon.background (string) “background”
Icon (pixmap) background color.

icon.border (string) “icon.foreground”
Color to use for icon borders.

icon.borderWidth (int) “2”
Width of icon border in pixels.

icon.font (string) “8x13”
Which font to use for icon text.

icon.foreground (string) “foreground”
Icon (pixmap) foreground color.

icon.hPad (int) “2”]

Number of pixels to pad icon text horizontally.
icon.vPad (int) “2”

Number of pixels to pad icon text vertically.

icon.text.background (string) “icon.background”
Background color to use for icon text.

icon.text.foreground (string) “icon.foreground”
Foreground color to use for icon text.
icon.pixmap (string) “grey”
Pixmap to display as icon background. Since this pixmap will be used to tile all
icons owned by awm, it’s probably not a good idea to put application specific
pictures in it. More typically, this will be a cross hatch pattern or some similar
background weave. See also: path, icon.foreground, icon.background.
installColormap (boolean) ““false”
Install a given window’s colormap when the pointer enters it. When the
pointer leaves, the default colormap is installed.

menu.background (string) ““background”
Menu background color.

menu.boldFont (string) “8x13bold”
Which font to use for (textual) menu panes. Currently, the only pane using this
font is the title pane (unless, of course, it’s a pixmap).

menu.border (string) “foreground”
Menu border color.

menu.borderWidth (int) “2”
Width of menu border in pixels.
menu.delta (int) “20”
Number of pixels to move on a "pull-right" pane before the submenu attached
to it is popped up.
menu.font (string) “8x13”
Which font to use in (textual) menu panes.

menu.foreground (string) “foreground”
Menu foreground color.

menu.itemBorder (int) “1”
Width of individual (menu) item borders.

10

Ardent Computer Corporation — Release 3.0

‘ 23 Julz 1988 . .

AWM(1) AWM(1)

menu.pad (int) “2”
Number of pixels to pad menu text/pixmaps vertically.

The following resources pertain only to the RTL Neaten package and are ignored if
awm has not been compiled with that option (see the INSTALLATION file).

neaten.absMinWidth (int) “64”
Indicates the amount of space in pixels, that is used as the absolute minimum
width of a window during the neaten operation.

neaten.absMinHeight (int) “64”
Indicates the amount of space in pixels, that is used as the absolute minimum
height of a window during the neaten operation.

neaten.retainSize (boolean) ““true”
Forces to windows to be at least their current size. Windows may overlap as a
side effect.

neaten.fill (boolean) “true”
Allows windows to grow to their maximum size during the neaten operation.
Normally a window will grow only to the maximum of its desired (based on
the WM_NORMAL_HINTS property) and current size.

neaten.fixTopOfStack (boolean) “true”
Fixes the size and location of the window at the top of the window hierarchy.
If necessary, this window will overlap even other windows which can not be
tiled.

neaten.keepOpen (boolean) ““true”
Constrains all windows to remain open during the neaten operation. No win-
dows will be iconized. This operation may cause windows to overlap.

neaten.usePriorities (boolean) “true”’
Assigns the windows priorities based on their stacking order (windows closer
to the top in the stacking order are given higher priorities). Priorities are used
when determining size and location of windows on the screen.

neaten.primaryIconPlacement (string) “Top”’
Selects the side of the screen where icons are first placed. Legal values are:
Top, Left, Bottom, Right and Closest (to its current position).

neaten.secondarylconPlacement (string) ““Left”
Determines where along the specified primary side the icon should be placed.
Legal values are those for neaten.primarylconPlacement plus Center. Not
used if neaten.primaryIconPlacement is Closest

normali (boolean) “on”
Make sure that icons created with f.newiconify stay wholly within the root

window (on screen), regardless of attempted placement. If off, put icons wher-
ever the cursor is placed.

normalw (boolean) “on”
Make sure that windows mapped with f.newiconify are placed on-screen,

regardless of cursor position. If off, put windows wherever the cursor is
placed.

path (string) “null”
A number of items (titles, menus, etc) now allow you to specify a pixmap file,
rather than just a text string to display. Since it would be tedious to type in full
pathnames for these files if they all lived in the same places, the directory(s)
named by path are searched if the pixmap file’s pathname does not begin with
a slash (/) or tilde (~) and is not found in the current directory.

Ardent Computer Corporation — Release 3.0 11

23 July 1988

AWM(1) AWM(1)
path is a white-space separated list of one or more directories to search, much
like that used by the Unix C-shell. The ~ notation used to designate your (or
someone else’s) home directory is supported, but wildcards are not.

popup.background (string) “background”
Background color to use for pop-up text.

popup.borderWidth (int) *2”
Width of pop-up window border in pixels.

popup.font (string) “9x15"”
Which font to use for popup window text.

popup.foreground (string) */
Foreground color to use for pop-up text.

popup.pad (int) “4”
Number of pixels to pad pop-up text horizontally.

pushRelative (boolean) “on”
When a window is pushed, push 1/push of the window. If off, move window
push pixels.

pushDown (boolean) “false”
When adding a title bar or border context to a window, put the border or title
bar area at the current x, y position and "push” the window down to make
room. For windows with an upper edge at or near the top of the screen, this
gives the most asthetically pleasing results. For windows near the bottom, it
does not. If set to false, the title bar/border will be added "on top" and the win-
dow will not be moved down. Note that the setting of this resource also affects
how the window is maniplated during resizes, title removals, etc.

raiseDelay (int) 100"
Amount of time in milliseconds to wait (while window has focus) before rais-
ing. If pointer leaves window before time elapses, raise is not performed.

reverse (boolean) “on”
Reverse background/foreground colors for titles, menus, gadget windows,
popup windows, etc. In the absence of any color specifications, this results in
black-on-white.

rootResizeBox (boolean) “on”
Put the resize (popup) window in the upper left corner of the root window,
rather than on the window being resized. This saves a potentially expensive
refresh that would occur when the popup was unmapped. If your server sup-
ports save-unders, it's generally (but not always) better to turn saveUnder on
instead.

saveUnder (boolean) “off”
Use save-unders for menus and pop-up windows. If the server does not sup-
port save-unders, this action does nothing.

showName (boolean) “on”
Display the window name in a title (assuming that the window is titled in the
first place).

title.background (string) “background”
Background color to use for title pixmap.

title.boldFont (string) “none”
Which font to use for titlebar labels if focus is and hilite is enabled. If this isn’t
set, and hilite is, the title text will be displayed with title.font in reverse video.

12

Ardent Computer Corporation — Release 3.0

(

23 Julz 1988

AWM(1)

AWM(1)

title.boldPixmap (string) “‘none”
The name of a pixmap file to load and tile titlebars with when the focus is in. If
this is defined, and hilite is set, focus changes will cause title backgrounds to
alternate between title.pixmap and title.boldPixmap. If title.boldPixmap is
defined, but title.pixmap is not, a blank pixmap will be used in place of
title.pixmap.

title.cursor (int) “XC_left_ptr”’
Glyph (in decimal) to retrieve from cursor font for use in title bar.

title.font (string) “vtsingle”
Which font to use for titlebar labels. Used exclusively unless title.boldFont and
hilite are set.

title.foreground (string) “foreground”
Foreground color to use when drawing background (both normal and bold)
pixmaps.

title.pad (int) 2"
Number of pixels to pad title bar text vertically.

title.pixmap (string) “none”
The name of a pixmap file to load and tile titlebars with. This background is
use exclusively unless the title.boldPixmap is defined and hilite is set.

title.text.background (string) “title.background”
Background color to use when drawing title bar text.

title.text.foreground (string) “title.foreground”
Foreground color to use when drawing title bar.

titles (boolean) “off”

Put title bars on all windows (both existing windows and new ones as they’re
created. See also: f.title

volume (int) *2”
Specifies the bell volume (delta on volume set with xset).

wall (boolean) ““off”
Restrict window movement to edges of screen (rootwindow). This feature is

fairly handy and should probably be bound to a menu so that it can readily be
turned on and off.

warpOnDelconify (boolean) “‘off’”
Warp pointer to upper right corner of window on de-iconify.

warpOnlIconify (boolean) “off”
Warp pointer to center of icon on iconify.

warpOnRaise (boolean) “off”
Warp pointer to upper left corner of window on raise.

windowName.offset (int) ““0”

Number of pixels from the right or left edge of a titlebar to print the window
name (assuming that showName is set). If this value is negative, the name will
be offset nameOffset (plus the name length) pixels from the right edge. If the
value is positive, then the name will be offset nameOffset pixels from the left
edge. If the value is zero, the name will be centered. Since the length of a win-
dow name can vary dynamically, this value will be adjusted, when necessary,
to ensure that the name is visible in the title bar.

Ardent Computer Corporation — Release 3.0 13

23 July 1988
AWM(1) '

AWM(1)

zap (boolean) “‘off”
Causes ghost lines to follow the window or icon from its previous location to its
new location during a move, resize or iconify operation.

SPECIAL RESOURCES

name.wm_option.autoRaise (boolean)
name.wm_option.borderContext (boolean)
name.wm_option.gadgets (boolean)
name.wm_option.title (boolean)

These resources determine whether or not a given application really wants a
title, gadgets, border context area or to be auto-raised. The application’s
CLASS and NAME (in the WM_CLASS property) are checked against the
string supplied for name (for example: Xclock*wm_option.title: off).

Specifying one of these resources overrides any other boolean settings (LE.
awm.titles or awm.gadgets) and may be used to turn things on and off at the
application and/or class level for applications, regardless of awm’s settings.

Note: Both class and name resources are checked, and in that order. Thus
specific applications may override settings for their class, if desired.

These resources are “special” as they are checked for under the application’s
name, not awm'’s; LE. xclock.wm_option.autoRaise is not
awm.xclock.wm_option.autoRaise as one might think.

14

Ardent Computer Corporation— Release 3.0

(

23 Julz 1988

AWM (1)

EXAMPLES

Global variables

#

resetbindings

resetmenus

#

Mouse button/key maps

#

FUNCTION KEYS CONTEXT BUTTON MENU(f any)
fmenu= meta: :leftdown "WINDOW OPS"

fmenu= meta : :middledown "EXTENDED WINDOW OPS"

fmove= meta :wli :right down
f.circleup = meta :root :right down
#

Menu specifications

#

menu = "WINDOW OPS" {
"(De)lconify": f.iconify

Move: f.move
Resize: f.resize
Lower: f.lower
Raise: f.raise

}

menu = "EXTENDED WINDOW OPS" {

Create Window: "xterm &"
Iconify at New Position: f.lowericonify
Focus Keyboard on Window: f.focus
Freeze All Windows: f.pause
Unfreeze All Windows: f.continue
Circulate Windows Up: f.circleup
Circulate Windows Down: f.circledown

}

AWM(1)

The following sample startup file shows the default window manager options:

Ardent Computer Corporation —Release 3.0

15

AWM(1)

RESTRICTIONS

FILES

SEE ALSO

AUTHOR

23 July 1988
AWM(1)

The color specifications have no effect on a monochrome system. There’s currently
no way to specify a keysym in place of a button (up/down/delta) specification. This
restriction will be removed in the near future.

$LIBDIR/rgb.txt
$LIBDIR/font
/usr/skel/.awmrc
$LIBDIR/awm/system.awmrc
$HOME/.awmrc

X(1), X(8C)

Copyright 1988
Ardent Computer Corporation
Sunnyvale, Ca

All Rights Reserved Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the
name of Ardent Computer Corporation or the author not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission.

COPYRIGHT 1985, 1986
DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS
ALL RIGHTS RESERVED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION. DIGITAL MAKES NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THIS SOFTWARE FOR ANY PURPOSE. IT IS SUP-
PLIED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.

IF THE SOFTWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE
COPYRIGHT RIGHTS, APPROPRIATE LEGENDS MAY BE PLACED ON THE
DERIVATIVE WORK IN ADDITION TO THAT SET FORTH ABOVE.

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copy-
right notice appear in all copies and that both that copyright notice and this permis-
sion notice appear in supporting documentation, and that the name of Digital Equip-
ment Corporation not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission.

M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire, using
some algorithms originally by Bob Scheifler, MIT Laboratory for Computer Science

J. Hubbard, U.C. Berkeley, Berkeley, Ca. Ardent Computer, Sunnyvale, Ca. Various
modifications and enhancements using code developed by M. Gancarz and Digital
Equipment Corp.

16

Ardent Computer Corporation— Release 3.0

BDFRESIZE (1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SEE ALSO

AUTHOR

20 August 1988
BDFRESIZE (1)

bdfresize — Resize BDF Format Font
bdfresize [-w factor] [-h factor] [-f factor] [bdf-file]

Bdfresize is a command to magnify or reduce font which is described with the stan-
dard BDF format. If bdf-file is not specified, it reads from stdin. Bdfresize outputs the
result to stdout in BDF format. A few COMMENT lines are inserted to the result
font. FONT, ATTRIBUTES, STARTCHAR and ENCODING lines are copied from

source font. If a syntax error occurs in source font, bdfresize stop its process.

-w factor
Specifies resize factor for the font width.

~h factor Specifies resize factor for the font height.
—f factor Same as specifying both -w and -h with same factor.

factor is described either of following forms.
<digits>
<digits>/<digits>

Character Bitmap Distribution Format 2.1 (Adobe Systems, Inc.)

Copyright (C) 1988 by Hiroto Kagotani.
kagotani@cs.titech.junet

Everyone is permitted to do anything on this program including copying, transplant-
ing, debugging, and modifying.

Ardent Computer Corporation — Release 3.0 17

26 October 1988

BDFTOSNF(1) BDFTOSNF (1)
NAME
bdftosnf - BDF to SNF font compiler for X11
SYNOPSIS ‘
bdftosnf [-p#] [-s#] [-m] [-1] [-M] [-L] [-w] [-W] [-] [-] [bdf-file]
DESCRIPTION
bdftosnf reads a Bitmap Distribution Format (BDF) font from the specified file (or
from standard input if no file is specified) and writes an X11 server normal font
_ (SNF) to standard output.
OPTIONS ' '
-p# Force the glyph padding to a specific number. The legal values are 1, 2, 4,
and 8. —s# Force the scanline unit padding to a specific number. The legal
values are 1,2, and 4.
-m Force the bit order to most significant bit first.
-1 Force the bit order to least significant bit first.
-M Force the byte order to most significant bit first.
-L Force the byte order to least significant bit first.
-w Print warnings if the character bitmaps have bits set to one outside of their
defined widths.
-W Print warnings for characters with an encoding of -1; the default is to
silently ignore such characters.
~t Expand glyphs in "terminal-emulator” fonts to fill the bounding box.
-i Don’t compute correct ink metrics for "terminal-emulator” fonts.
SEE ALSO
X(1), Xserver(1)
"Bitmap Distribution Format 2.1"
18

Ardent Computer Corporation— Release 3.0

BITMAP (1)

NAME

SYNOPSIS

DESCRIPTION

USAGE

OPTIONS

28 October 1988
BITMAP (1)

bitmap, bmtoa, atobm - bitmap editor and converter utilities for X

bitmap [-options ...] filename WIDTHXHEIGHT
bmtoa [-chars ...] [filename]

atobm [-chars cc] [-name variable] [-xhot number] [-yhot number] [filename]

The bitmap program is a rudimentary tool for creating or editing rectangular images
made up of 1’s and 0’s. Bitmaps are used in X for defining clipping regions, cursor
shapes, icon shapes, and tile and stipple patterns.

The bmtoa and atobm filters convert bitmap files (FILE FORMAT) to and from ASCII
strings. They are most commonly used to quickly print out bitmaps and to generate
versions for including in text.

Bitmap displays grid in which each square represents a single bit in the picture being
edited. Squares can be set, cleared, or inverted directly with the buttons on the
pointer and a menu of higher level operations such as draw line and fill circle is pro-
vided to the side of the grid. Actual size versions of the bitmap as it would appear
normally and inverted appear below the menu.

If the bitmap is to be used for defining a cursor, one of the squares in the images may
be designated as the hotspot. This determines where the cursor is actually pointing.
For cursors with sharp tips (such as arrows or fingers), this is usually at the end of
the tip; for symmetric cursors (such as crosses or bullseyes), this is usually at the
center.

Bitmaps are stored as small C code fragments suitable for including in applications.
They provide an array of bits as well as symbolic constants giving the width, height,
and hotspot (if specified) that may be used in creating cursors, icons, and tiles.

The WIDTHxXHEIGHT argument gives the size to use when creating a new bitmap
(the default is 16x16). Existing bitmaps are always edited at their current size.

If the bitmap window is resized by the window manager, the size of the squares in the
grid will shrink or enlarge to fit.

Bitmap accepts the following options:

-help
This option will cause a brief description of the allowable options and parame-
ters to be printed.

—display display
This option specifies the name of the X server to used.

—geometry geometry
This option specifies the placement and size of the bitmap window on the
screen. See X for details.

-nodashed
This option indicates that the grid lines in the work area should not be drawn

using dashed lines. Although dashed lines are prettier than solid lines, on some
servers they are significantly slower.

Ardent Computer Corporation — Release 3.0 19

BITMAP(1)

28 October 1988
BITMAP (1)

-name variablename
This option specifies the variable name to be used when writing out the bitmap
file. The default is to use the basename of the filename command line argument.

-bw number
This option specifies the border width in pixels of the main window.

~fn font
This option specifies the font to be used in the buttons.

—£g color
This option specifies the color to be used for the foreground.

-bg color
This option specifies the color to be used for the background.

~hl color
This option specifies the color to be used for highlighting.

-bd color 1
This option specifies the color to be used for the window border.

-ms color
This option specifies the color to be used for the pointer (mouse).

Bmtoa accepts the following option:

—chars cc
This option specifies the pair of characters to use in the string version of the bit-
map. The first character is used for 0 bits and the second character is used for 1
bits. The default is to use dashes (-) for 0’s and sharp signs (#) for 1’s.

Atobm accepts the following options:

~chars cc
This option specifies the pair of characters to use when converting string bit-
maps into arrays of numbers. The first character represents a 0 bit and the
second character represents a 1 bit. The default is to use dashes (-) for 0’s and
sharp signs (#) for 1s.

-name variable
This option specifies the variable name to be used when writing out the bitmap
file. The default is to use the basename of the filename command line argument
or leave it blank if the standard input is read.

-xhot number
This option specifies the X coordinate of the hotspot. Only postive values are
allowed. By default, no hotspot information is included.

-yhot number
This option specifies the Y coordinate of the hotspot. Only postive values are
allowed. By default, no hotspot information is included.

CHANGING GRID SQUARES

Grid squares may be set, cleared, or inverted by pointing to them and clicking one of
the buttons indicated below. Multiple squares can be changed at once by holding the
button down:and dragging the cursor across them. Set squares are filled and
represent 1’s in the bitmap; clear squares are empty and represent 0’s.

Button 1
This button (usually leftmost on the pointer) is used to set one or more
squares. The corresponding bit or bits in the bitmap are turned on (set
to 1) and the square or squares are filled.

20

Ardent Computer Corporation— Release 3.0

BITMAP(1)

28 October 1988
BITMAP (1)

Button 2
This button (usually in the middle) is used to invert one or more
squares. The corresponding bit or bits in the bitmap are flipped (1’s
become (s and 0’s become 1’s).

Button 3
This button (usually on the right) is used to clear one or more squares.
The corresponding bit or bits in the bitmap are turned off (set to 0) and
the square or squares are emptied.

MENU COMMANDS

To make defining shapes easier, bitmap provides 13 commands for drawing whole
sections of the grid at once, 2 commands for manipulating the hotspot, and 2 com-
mands for updating the bitmap file and exiting. A command buttons for each of
these operations is located to the right of the grid.

Several of the commands operate on rectangular portions of the grid. These areas are
selected after the command button is pressed by moving the cursor to the upper left
square of the desired area, pressing a pointer button, dragging the cursor to the
lower right hand corner (with the button still pressed) , and then releasing the but-
ton. The command may be aborted by pressing any other button while dragging or
by releasing outside the grid.

To invoke a command, move the pointer over that command and click any button.

Clear All
This command is used to clear all of the bits in the bitmap as if Button 3
had been dragged through every square in the grid. It cannot be
undone.

Set All
This command is used to set all of the bits in the bitmap as if Button 1

had been dragged through every square in the grid. It cannot be
undone.

Invert All
This command is used to invert all of the bits in the bitmap as if Button 2
“had been dragged through every square in the grid.

Clear Area
This command is used to clear a region of the grid as if Button 3 had
been dragged through each of the squares in the region. When this com-
mand is invoked, the cursor will change shape to indicate that the area
to be cleared should be selected as outlined above.

Set Area
This command is used to set a region of the grid as if Button 1 had been
dragged through each of the squares in the region. When this command
is invoked, the cursor will change shape to indicate that the area to be
set should be selected as outlined above.

Invert Area
This command is used to inverted a region of the grid as if Button 2 had
been dragged through each of the squares in the region. When this com-
mand is invoked, the cursor will change shape to indicate that the area
to be inverted should be selected as outlined above.

Copy Area
This command is used to copy a region of the grid from one location to
another. When this command is invoked, the cursor will change shape
to indicate that the area to be copied should be selected as outlined

Ardent Computer Corporation — Release 3.0 21

BITMAP (1)

28 October 1988
' BITMAP (1)

above. The cursor should then be clicked on the square to which the
upper left hand corner of the region should be copied.

Move Area
This command is used to move a region of the grid from one location to
another. When this command is invoked, the cursor will change shape
to indicate that the area to be moved should be selected as outlined
above. The cursor should then be clicked on the square to which the
upper left hand corner of the region should be moved. Any squares in
the region’s old position that aren’t also in the new position are cleared.

Overlay Area

This command is used to copy all of the set squares in a region of the
grid from one location to another. When this command is invoked, the
cursor will change shape to indicate that the area to be copied should be
selected as outlined above. The cursor should then be clicked on the
square to which the upper left hand corner of the region should be over-
laid. Only the squares that are set in the region will be touched in the
new location.

Line
This command will set the squares in a line between two points. When

this command is invoked, the cursor will change shape to indicate that
the pointer should be clicked on the two end points of the line.

Circle
This command will set the squares on a circle specified by a center and a
point on the curve. When this command is invoked, the cursor will
change shape to indicate that the pointer should be clicked on the center
of the circle and then over a point on the curve. Small circles may not
look very round because of the size of the grid and the limits of having
to work with discrete pixels.

Filled Circle
This command will set all of the squares in a circle specified by a center
and a point on the curve. When this command is invoked, the cursor
will change shape to indicate that the pointer should be clicked on the
center of the circle and then over a point on the curve. All squares side
and including the circle are set.

Flood Fill
This command will set all clear squares in an enclosed shape. When this
command is invoked, the cursor will change shape to indicate that the
pointer should be clicked on any empty square inside the shape to be
filled. All empty squares that border horizontally or vertically with the
indicated square are set out to the enclosing shape. If the shape is not
closed, the entire grid will be filled.

Set Hot Spot
This command designates one square in the grid as the hot spot if this
bitmap to be used for defining a cursor. When the command is invoked,
the cursor will change indicating that the pointer should be clicked on
the square to contain the hot spot.

Clear Hot Spot
This command removes any designated hot spot from the bitmap.

22

Ardent Computer Corporation— Release 3.0

28 October 1988
BITMAP (1) BITMAP(1)

Write Output
This command writes a small fragment of C code representing the bit-
map to the filename specified on the command line. If the file already
exists, the original file will be renamed to filename~ before the new file is
created. If an error occurs in either the renaming or the writing of the
bitmap file, a dialog box will appear asking whether or not bitmap
should use /tmp/filename instead.

Quit
This command causes bitmap to display a dialog box asking whether or
not it should save the bitmap (if it has changed) and then exit. Answer-
ing yes is the same as invoking Write Output; no causes bitmap to simply
exit; and cancel will abort the Quit command so that more changes may
be made.

FILE FORMAT :
The Write Output command stores bitmaps as simple C program fragments that can
be compiled into programs, referred to by X Toolkit pixmap resources, manipulated
by other programs (see xsetroot), or read in using utility routines in the various pro-
gramming libraries. The width and height of the bitmap as well as the hotspot, if
specified, are written as preprocessor symbols at the start of the file. The bitmap
image is then written out as an array of characters:

#define name_width 11
#define name_height 5
#define name_x_hot 5
#define name_y_hot 2

static char name_bits[] = {
0x91, 0x04, Oxca, 0x06, 0x84,
0x04, 0x8a, 0x04, 0x91, 0x04

};

The name prefix to the preprocessor symbols and to the bits array is constructed
from the filename argument given on the command line. Any directories are stripped
off the front of the name and any suffix beginning with a period is stripped off the
end. Any remaining non-alphabetic characters are replaced with underscores. The
name_x_hot and name_y_hot symbols will only be present if a hotspot has been desig-
nated using the Set Hot Spot command.

Each character in the the array contains 8 bits from one row of the image (rows are
padded out at the end to a multiple of 8 to make this is possible). Rows are written
out from left to right and top to bottom. The first character of the array holds the
leftmost 8 bits of top line, and the last characters holds the right most 8 bits (includ-
ing padding) of the bottom line. Within each character, the leftmost bit in the bitmap
is the least signficant bit in the character.

This process can be demonstrated visually by splitting a row into words containing 8
bits each, reversing the bits each word (since Arabic numbers have the significant
digit on the right and images have the least significant bit on the left), and translating
each word from binary to hexidecimal.

In the following example, the array of 1’s and 0’s on the left represents a bitmap con-
taining 5 rows and 11 columns that spells X11. To its right is is the same array split
into 8 bit words with each row padded with 0’s so that it is a multiple of 8 in length
(16):

Ardent Computer Corporation —Release 3.0 23

28 October 1988

ﬁ

BITMAP (1)

BITMAP (1)
10001001001 10001001 00100000
01010011011 01010011 01100000
00100001001 00100001 00100000
01010001001 01010001 00100000
10001001001 10001001 00100000

Reversing the bits in each word of the padded, split version of the bitmap yields the
left hand figure below. Interpretting each word as hexidecimal number yields the
array of numbers on the right:

10010001 00000100 0x91 0x04

11001010 00000110 Oxca 0x06
10000100 00000100 0x84 0x04
10001010 00000100 0x8a 0x04

10010001 00000100 0x91 0x04

* The character array can then be generated by reading each row from left to right, top

to bottom:

static char name_bits[] = {
0x91, 0x04, Oxca, 0x06, 0x84,
0x04, 0x8a, 0x04, 0x91, 0x04

1

The bmtoa program may be used to convert bitmap files into arrays of characters for
printing or including in text files. The atobm program can be used to convert strings
back to bitmap format.

USING BITMAPS IN PROGRAMS

The format of bitmap files is designed to make bitmaps and cursors easy to use within
X programs. The following code could be used to create a cursor from bitmaps
defined in this.cursor and this_mask.cursor:

#include "this.cursor”
#include "this_mask.cursor"

XColor foreground, background; .

/* fill in foreground and background color structures */

Pixmap source = XCreateBitmapFromData (display, drawable,
this_bits, this_width, this_height);

Pixmap mask = XCreateBitmapFromData (display, drawable,
this_mask_bits, this_mask_width, this_mask_height);
Cursor cursor = XCreatePixmapCursor (display, source, mask,

foreground, background, this_x_hot, this_y_hot);

Additional routines are available for reading in bitmap files and returning the data in
the file, in Bitmap (single-plane Pixmap for use with routines that require stipples),
or full depth Pixmaps (often used for window backgrounds and borders). Applica-
tions writers should be careful to understand the difference between Bitmaps and
Pixmaps so that their programs function correctly on color and monochrome
displays.

For backward compatibility, bitmap will also accept X10 format bitmap files. How-
ever, when the file is written out again it will be in X11 format

24

Ardent Computer Corporation— Release 3.0

BITMAP (1)

X DEFAULTS

SEE ALSO

BUGS

COPYRIGHT

AUTHOR

28 October 1988
BITMAP (1)

Bitmap uses the following resources:

Background
The window’s background color. Bits which are 0 in the bitmap are displayed in
this color. This option is useful only on color displays. The default value is
white.

BorderColor
The border color. This option is useful only on color displays. The default value
is black.

BorderWidth
The border width. The default value is 2.

BodyFont '
The text font. The default value is variable.

Foreground
The foreground color. Bits which are 1 in the bitmap are displayed in this color.
This option is useful only on color displays. The default value is black.

Highlight
The highlight color. bitmap uses this color to show the hot spot and to indicate
rectangular areas that will be affected by the Move Area, Copy Area, Set Area, and
Invert Area commands. If a highlight color is not given, then bitmap will
highlight by inverting. This option is useful only on color displays.

Mouse
The pointer (mouse) cursor’s color. This option is useful only on color displays.
The default value is black.

Geometry
The size and location of the bitmap window.

Dimensions
The WIDTHxHEIGHT to use when creating a new bitmap.

X(1), XIib - C Language X Interface (particularly the section on Manipulating Bitmaps),
XmuReadBitmapDataFromFile

The old command line arguments aren’t consistent with other X programs.

If you move the pointer too fast while holding a pointer button down, some squares
may be missed. This is caused by limitations in how frequently the X server can sam-
ple the pointer location.

There is no way to write to a file other than the one specified on the command line.
There is no way to change the size of the bitmap once the program has started.
There is no undo command.

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

bitmap by Ron Newman, MIT Project Athena; documentation, bmtoa, and atobm by
Jim Fulton, MIT X Consortium.

Ardent Computer Corporation — Release 3.0 25

CPICKER (1)

NAME

SYNTAX

OPTIONS

DESCRIPTION

SEE ALSO

AUTHOR

BUGS

CPICKER (1)

cpicker - colormap editor for X11
fasr/bin/X1V/cpicker [-id id] [-root] [-wname name] [-display display]

-idid This option allows the user to specify a target window id on the command
line rather than using the mouse to select the target window.

-wname name
This option allows the user to specify that the window named name is the
target window on the command line rather than using the mouse to select
the target window.

-root This option specifies that X’s root window is the target window.

-display display
This option allows you to specify the server to connect to; see X(1).

Cpicker makes temporary changes to the installed colormap, allowing the user to
observe the effects. It's useful for trying to pick that perfect color or find the
appropriate color combination for an application.

When cpicker first starts, it either uses the colormap of the window specified, or asks
you to click on the window whose colormap you wish to edit. Then, it displays a
grid of the color cells in the installed colormap. Click on the cell you wish to edit.
Then, in the upper right there will be a box containing the current color along with a
label showing the current RGB values in X11 hex format.

To adjust the current color you can use one of the nine sliders, each controlling one of
the RGB, HSV, or CMY values for the current color. Or you can click on a cell
displayed in the palette to use its color. The button underneath the hex label
switches between the three palettes: range, narrow, and wide.

The "select" button allows you to choose another cell to edit, the "cancel” button
restores the current color to its original value, the "restore” button restores all the
cells of the colormap to their original value, and the "quit" button exits out of cpicker.

pixedit(1)
Mike Yang

When clicking in a window to select its colormap, be sure to click in the window con-
tents. Clicking in window manager real estate may or may not result in the correct
colormap.

26

Ardent Computer Corporation— Release 3.0

15 October 1987

“

Gnuplot (1)

NAME

SYNOPSIS

DESCRIPTION

HARD COPY

Gnuplot (1)

Gnuplot —a command driven interactive plotting program.
gnuplot [options]

Gnuplot is a command driven, interactive plotting program which can draw graphs
either an X11 window or into a Postscript file which can then be printed on a
Postscript-using printer. Output drivers for several other kinds of hardcopy plotters
and personal computer graphic displays are also available.

It is extremely simple to display graphs of mathematical functions using gnuplot.
For example, if you want to view the parabola defined by the equation:

y =x"2
then, after entering gnuplot and receiving the prompt "gnuplot>", simply type:
plot x*#*2

(gnuplot, like Fortran, uses the syntax x**y to denote exponentation).

The X values plotted range by default from -10 to +10. The graph scaling in both the
X and Y directions is done automatically according to the values that need to be plot-
ted.

Different commands exist to change the plotting style, manually set ranges and scal-
ing, change output devices, etc. Also, there is a fairly good library of mathematical
functions. All of these functions work in the complex plane, as gnuplot does all of its
calculations using complex numbers. (Only real numbers actually get plotted,
though. Complex domain plotting waits for a future enhancement).

There is a built in help system which you can access by typing "help" to the "gnu-
plot>" prompt. Typing "help ?" lists all the topics that the help system knows about.
Examining the help for each of the topics, in the order that "help ?" lists them, shows
you all of the material in the printed gnuplot manual.

gnuplot was written by Thomas Williams and Colin Kelley at Villanova University in
Pennsylvania. The X window driver and some other features were added at MIT.
There is at the moment no connection between the original gnuplot authors and the
GNU project of the Free Software Foundation Inc. gnuplot’s name might have been
chosen because the authors intend to contribute the program to the GNU project
someday, or it might be a coincidence. All attempts to date to get in touch with them
and get this question answered have failed.

Gnuplot will can formats plots for a postscript printer and send them to a file, the
commands to do this are:

gnuplot> set terminal postscript
gnuplot> set output "<filename>"
gnuplot> replot

gnuplot> set terminal xwindow

The quotation marks are important. You may now simply print the file on a
postscript printer.

Ardent Computer Corporation — Release 3.0 27

15 October 1987

Gnuplot (1) Gnuplot(1)
OPTIONS
host:display »
Normally, Gnuplot gets the host and display number to use from the
environment variable “DISPLAY”. One can, however specify them expli-
citly. The host specifies which machine to create the window on, and the
number argument specifies the display number. For example, “orpheus:1”
creates a shell window on display one on the machine orpheus.
—d print standard .Xdefaults
The ’default’ .Xdefaults will be printed to standard out. You may then
change the values to suit your particular needs.
—f fontname Set the Font
This sets the font used for the text.
~T reverse video
The foreground and background colors will be switched. The default colors
are black on white.
X DEFAULTS
Gnuplot uses a number of standard default values.
ReverseVideo
If “on’, reverse the definition of foreground and background color.
Geometery
This uses a standard geometry string to set the position of the window that
contains the plot. The height and width fields are ignored.
Font '
The font to be used for all text in the plot window.
BUGS
There probabally are some.
AUTHOR
Thomas Williams, Colin Kelley
Copyright (C) 1986, 1987 Thomas Williams, Colin Kelley.
X Window Driver added by Paul Ruben (MIT - Project Athena).
X Defaults and command line options added by Chris Peterson (MIT - Project
Athena).
28

Ardent Computer Corporation— Release 3.0

ICO(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

1 March 1988
ICO(1)

ico —animate an icosahedron or other polyhedron

ico [-display display] [-geometry geometry] [-r] [-d pattern] [-i] [-dbl] [-faces] [-
noedges] [-sleep n] [-obj object] [-objhelp] [-colors color-list]

Ico displays a wire-frame rotating polyhedron, with hidden lines removed, or a
solid-fill polyhedron with hidden faces removed. There are a number of different
polyhedra available; adding a new polyhedron to the program is quite simple.

-r Display on the root window instead of creating a new window.

-d pattern
Specify a bit pattern for drawing dashed lines for wire frames.

-1 Use inverted colors for wire frames.

-dbl Use double buffering on the display. This works for either wire frame or solid
fill drawings. For solid fill drawings, using this switch results in substantially
smoother movement. Note that this requires twice as many bit planes as
without double buffering. Since some colors are typically allocated by other
programs, most eight-bit-plane displays will probably be limited to eight colors
when using double buffering.

-faces
Draw filled faces instead of wire frames.

-noedges
Don’t draw the wire frames. Typically used only when -faces is used.
-sleep n
Sleep n seconds between each move of the object.
-obj object
Specify what object to draw. If no object is specified, an icosahedron is drawn.
-objhelp
Print out a list of the available objects, along with information about each
object.
-colors color color ...

Specify what colors should be used to draw the filled faces of the object. If less
colors than faces are given, the colors are reused.

ADDING POLYHEDRA

SEE ALSO

If you have the source to ico, it is very easy to add more polyhedra. Each polyhedron
is defined in an include file by the name of objXXX.h, where XXX is something
related to the name of the polyhedron. The format of the include file is defined in the
file polyinfo.h. Look at the file objcube.h to see what the exact format of an objXXX.h
file should be, then create your ob XXX h file in that format.

After making the new objXXX h file (or copying in a new one from elsewhere), sim-
ply do a ‘make depend’. This will recreate the file allobjs.h, which lists all of the
objXXXh files. Doing a “make’ after this will rebuild ico with the new object infor-
mation.

X1

Ardent Computer Corporation — Release 3.0 29

1 March 1988

D A B S N R S S R

IcO(1) ICO(1)

BUGS
A separate color cell is allocated for each name in the -colors list, even when the same
name may be specified twice.

COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

30 Ardent Computer Corporation— Release 3.0

KTERM (1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

X DEFAULTS

6 Sept 1988
KTERM (1)

kterm — terminal emulator for X
kterm [-toolkitoption ...] [-option ...]

The kterm program is a Kanji terminal emulator for the X Window System. It pro-
vides DEC VT102 and Tektronix 4014 compatible terminals for programs that can’t
use the window system directly. It comes from xterm in the core programs of the dis-
tribution of the X Window System. The most of the functions are the same as origi-
nal xterm’s, however, it has capabilities of displaying Kanji strings and handling of
the status line, if compiled with -DKAN]JI or -DSTATUSLINE compile time options.

The kterm terminal emulator accepts all of the standard xferm command line options
along with the additional options listed below (if the option begins with a ‘+ instead
of a ‘~/, the option is restored to its default value):

~fk kanji-font
This option specifies a Kanji font to be used when displaying Kanji text. This
font must be the same height and width as the ascii font. The default is
Ila14'll

—fkb kanji-font
This option specifies a Kanji bold font to be used when displaying bold text.
This font must be the same height and width as the kanji font. If no Kanji
bold font is specified, it will be used as the normal font and the bold font
will be produced by overstriking this font. The default is not specified.

~fk kana-font
This option specifies a Kana font, which may be used as GR in 8bit environ-
ment. This font is used if “ESC (I”” is appeared in JIS Kanji mode, SS2
(Ox8e) is appeared in EUC Kanji mode, and not used so frequntly in normal
Japanese text. The default is “’kanal4.”

—fkb kana-font
This option specifies a Kana bold font.

—km kanji-mode

This option specifies the Kanji code from the pty output. If kanji-mode is
“jis”, then it assumes the output is coded by JIS code, i.e., each Kaniji string
is proceeded by ESC-$-B or ESC-$-@ and each ascii string is proceeded by
ESC-(-B or ESC-(-]. This mode does not require 8 bit passing tty modele
because 7 bit encoding with appropriate escape sequences is used. If kanji-
mode is “euc”, then it assumes the output is coded by EUC. If kanji-mode
is “sjis”, then it assumes the output is coded by Shift-JIS code (which is the
same as MicroSoft Kanji code). The default mode is “jis.””

—-sn By default, the status line is in reverse-video (relative to the rest of the win-
dow). This option causes the status line to be in normal video (the status
line is still enclosed in a box).

-st This option causes the status line to be displayed on startup.

The program understands all of the core xterm resource names and classes as well as:

kanjiFont (class KanjiFont)
Specifies the name of the kanji font. The default is “a14.”

Ardent Computer Corporation — Release 3.0 31

6 SeEt 1988

KTERM(1) KTERM(1)
kanjiboldFont (class KanjiFont)
Specifies the name of the bold font. The default is not specified.
kanaFont (class KanaFont)
Specifies the name of the kana font. The default is “kanal4.”
kanaboldFont (class KanaFont)
Specifies the name of the bold font. The default is not specified.
kanjiMode (class KanjiMode)
Specifies the Kanji code of pty output. The default is “jis.”
statusLine (class StatusLine)
Causes the status line to be displayed on startup.
statusNormal (class StatusNormal)
Specifies whether or not the last column bug in cursor should be worked
around. The default is “false.”
EMULATIONS
The VT102 emulation is fairly complete, but does not support the blinking character
attribute nor the double-wide and double-size character sets. Termcap(5) entries that
work with xterm include “kterm”, “xterm”, “vt102”, “vt100” and “ansi”, and xterm
automatically searches the termcap file in this order for these entries and then sets
the “TERM” and the “TERMCAP” environment variables.
POINTER USAGE
Kterm converts the specified text by the cut operation into JIS code regardless of the
Kanji mode and then saves it to the Xserver. This convention allows us to cut and
paste between different kterm’s with differecnt Kanji mode.
SEE ALSO
xterm(1), resize(1), X(1), pty(4), tty(4)
"“Xterm Control Sequences”
BUGS
Xterm will hang forever if you try to paste too much text at one time. It is both pro-
ducer and consumer for the pty and can deadlock.
Variable-width fonts are not handled reasonably.
This program still needs to be rewritten. It should be split into very modular sec-
tions, with the various emulators being completely separate widgets that don’t know
about each other. Ideally, you’d like to be able to pick and choose emulator widgets
and stick them into a single control widget.
The focus is considered lost if some other client (e.g., the window manager) grabs the
pointer; it is difficult to do better without an addition to the protocol.
There needs to be a dialog box to allow entry of log file name and the COPY file
name.
Many of the options are not resettable after xterm starts.
All programs should be written to use X directly; then we could eliminate this pro-
gram.
Current kterm does not support the designate sequence of KANJI as “ESC $ (B” but
“BESC $ B” which is still valid sequence in ISO 2022 (even if it seems to be historical
reason :-) ‘
COPYRIGHT
Copyright 1988, XXI working group in Japan Unix Society Japan.
See X(1) for a full statement of rights and permissions.
32 Ardent Computer Corporation— Release 3.0

6 Sept 1988
KTERM (1) KTERM(1)

AUTHORS
Far too many people, including:

Katsuya Sano (Tokyo Inst. of Tech.), Michael Irie (Sony Corp.), Akira Kato (Tokyo
Inst. of Tech.), Michiharu Ariza (Software Research Associates), Makoto Ishisone
(Software Research Associates)

Ardent Computer Corporation — Release 3.0 33

MKFONTDIR (1)

NAME
SYNOPSIS

DESCRIPTION

2 September 1988
MKFONTDIR (1)

mkfontdir — create fonts.dir file from directory of font files.
mkfontdir [directory-names]

Mkfontdir For each directory argument, mkfontdir reads all of the font files in the
directory searching for properties named "FONT", or (failing that) the name of the
file stripped of its suffix. These are used as font names, which are written out to the
file "fonts.dir" in the directory along with the name of the font file.

The kinds of font files read by mkfontdir depends on configuration parameters, but
typically include SNF (suffix ".snf"), compressed SNF (suffix ".snf.Z"), BDF (suffix
"bdf"), and compressed BDF (suffix ".bdf.Z"). If a font exists in multiple formats, the
most efficient format will be used.

FONT NAME ALIAES

USAGE

SEE ALSO

The file "fonts.alias" which can be put in any directory of the font-path is used to map
new names to existing fonts, and should be edited by hand. The format is straight
forward enough, two white-space separated columns, the first containing aliases and
the second containing font-name patterns.

When a font alias is used, the name it references is search for in the normal manner,
looking through each font directory in turn. This means that the aliases need not
mention fonts in the same directory as the alias file.

To embed white-space in either name, simply enclose them in double-quote marks, to
embed double-quote marks (or any other character), preceed them with back-slash:

"magic-alias with spaces"” "\"font\name\" with quotes"
regular-alias fixed

If the string "FILE_NAMES_ALIASES" stands alone on a line, each file-name in the
directory (stripped of it’s .snf suffix) will be used as an alias for that font.

Xserver(1) looks for both "fonts.dir" and "fonts.alias" in each directory in the font
path each time it is set (see xset(1)).

X(1), Xserver(1), xset(1)

34

Ardent Computer Corporation— Release 3.0

MUNCHER (1)

NAME

SYNOPSIS

OPTIONS

DESCRIPTION

SEE ALSO

BUGS

COPYRIGHT

1 March 1988
MUNCHER (1)

muncher — draw interesting patterns in an X window
muncher [-option ...]

-r display in the root window

—s seed seed the random number seed

-v run in verbose mode
-q run in quite mode
—geometry geometry

define the initial window geometry; see X(1).
~display display

specify the display to use; see X(1).
Muncher draws some interesting patterns in a window.
X(1)

There are no known bugs. There are lots of lacking features.

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

Ardent Computer Corporation — Release 3.0 35

PIXEDIT (1)

NAME

SYNTAX

DESCRIPTION

SEE ALSO

AUTHOR

PIXEDIT(1)

pixedit — pixel color editor for X11
lusr/bin/X11/pixedit

Pixedit makes temporary changes to the installed colormap, allowing the user to
observe the effects. It’s useful for trying to pick that perfect color or find the
appropriate color combination for an application.

When pixedit first starts, the cursor changes to a crosshair. Click on the screen pixel
whose color and whose colormap you wish to edit. Then, in the upper right there
will be a box containing the current color along with a label showing the current RGB
values in X11 hex format.

To adjust the current color you can use one of the nine sliders, each controlling one of
the RGB, HSV, or CMY values for the current color. Or you can click on a cell
displayed in the palette to use its color. The button underneath the hex label
switches between the three palettes: range, narrow, and wide.

The "select" button allows you to choose another cell to edit, the "cancel" button
restores the current color to its original value, the "restore” button restores all the
cells of the colormap to their original value, and the "quit" button exits out of pixedit.

cpicker(1)

Mike Yang

36

Ardent Computer Corporation— Release 3.0

18 August 1988 ,
PLAID (1) PLAID (1)

NAME
plaid - paint some plaid-like patterns in an X window
SYNOPSIS
plaid [-option ...]
OPTIONS
-b enable backing store for the window
~fg color This option specifies the color to use for the foreground of the window. The
default is “white.”
-bg color
This option specifies the color to use for the background of the window. The
default is “black.”
-bd color
This option specifies the color to use for the border of the window. The
default is “white.”
-bw number
This option specifies the width in pixels of the border surrounding the win-
dow.

—geometry geometry
define the initial window geometry; see X(1).
~display display
specify the display to use; see X(1).
DESCRIPTION
Plaid displays a continually changing plaid-like pattern in a window.
SEE ALSO
XM
BUGS
There are no known bugs. There are lots of lacking features.
COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

Ardent Computer Corporation — Release 3.0 37

1 March 1988

PUZZLE(1) PUZZLE(1)
NAME
puzzle — 15-puzzle game for X
SYNOPSIS
puzzle [-option ..]
OPTIONS
~display display
This option specifies the display to use; see X(1).
—geometry geometry '
This option specifies the size and position of the puzzle window; see X(1).
—size WIDTHxHEIGHT
This option specifies the size of the puzzle in squares.
—-speed num
This option specifies the speed in tiles per second for moving tiles around.
~picture filename
This option specifies an image file containing the picture to use on the tiles.
Try “mandrill.em.” This only works on 8-bit pseudo-color screens.
—colormap
This option indicates that the program should create its own colormap for
the picture option.
DESCRIPTION
Puzzle with no arguments plays a 4x4 15-puzzle. The control bar has two boxes in it.
Clicking in the left box scrambles the puzzle. Clicking in the right box solves the
puzzle. Clicking the middle button anywhere else in the control bar causes puzzle to
exit. Clicking in the tiled region moves the empty spot to that location if the region
you click in is in the same row or column as the empty slot.
SEE ALSO
X(1)
BUGS
The picture option should work on a wider variety of screens.
COPYRIGHT
Copyright 1988, Don Bennett.
AUTHOR
Don Bennett, HP Labs
38 Ardent Compuler Corporation — Release 3.0

SHOWSNF (1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

SEE ALSO

BUGS

COPYRIGHT

28 October 1988
SHOWSNF (1)

showsnf - print contents of an SNF file

showsnf [-v] [-g] [-m] [-M] [-1] [-L] [-p#] [-u#]

The showsnf utility displays the contents of font files in the Server Natural Format
produced by bsdtosnf. It is usually only to verify that a font file hasn’t been corrupted
or to convert the individual glyphs into arrays of characters for proofreading or for
conversion to some other format.

-V

This option indicates that character bearings and sizes should be printed.
This option indicates that character glyph bitmaps should be printed.

This option indicates that the bit order of the font is MSBFirst (most
significant bit first).

This option indicates that the bit order of the font is LSBFirst (least
significant bit first).

This option indicates that the byte order of the font is MSBFirst (most
significant bit first).

This option indicates that the byte order of the font is LSBFirst (least
significant bit first).

This option specifies the glyph padding of the font (# is a number).
This option specifies the scanline unit of the font (# is a number).

X(1), Xserver(1), bdftosnf(1)

There is no way to just print out a single glyph.

Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.

Ardent Computer Corporation — Release 3.0 39

UWM(1)

NAME

SYNTAX

DESCRIPTION

OPTIONS

26 October 1988
UWM(1)

uwm - a window manager for X
uwm [-display display] [-f filename]

The uwm program is a window manager for X.

When uwm is invoked, it searches a predefined search path to locate any uwm startup
files. If no startup files exist, uwm initializes its built-in default file.

If startup files exist in any of the following locations, it adds the variables to the
default variables. In the case of contention, the variables in the last file found over-
ride previous specifications. Files in the uwm search path are:

fusr/lib/X11 [uwm/system.uwmrc
$SHOME|/.uwmrc

To use only the settings defined in a single startup file, include the variables reset-
bindings, resetmenus, resetvariables at the top of that specific startup file.

-f filename
Names an alternate file as a uwm startup file.

STARTUP FILE VARIABLES

Variables are typically entered first, at the top of the startup file. By convention,
resetbindings, resetmenus, and resetvariables head the list.

autoselect/noautoselect
places the menu cursor in the first menu item. If unspecified, the
menu cursor is placed in the menu header when the menu is
displayed.

background=color
specifies the default background color for popup sizing windows,
menus, and icons. The default is to use the WhitePixel for the
current screen.

bordercolor=color
specifies the default border color for popup sizing windows, menus,
and icons. The default is to use the BlackPixel for the current screen.

borderwidth=pixels
specifies the default width in pixels for borders around popup siz-
ing windows, menus, and icons. The default is 2.

delta=pixels indicates the number of pixels the cursor is moved before the action
is interpreted by the window manager as a command. (Also refer to
the delta mouse action.)

foreground=color
specifies the default foreground color for popup sizing windows,
menus, and icons. The default is to use the BlackPixel for the
current screen.

freeze/nofreeze
locks all other client applications out of the server during certain
window manager tasks, such as move and resize.

40

Ardent Computer Corporation— Release 3.0

26 Qctober 1988
UWM(1) UWM(1)

grid/nogrid displays a finely-ruled grid to help you position an icon or window
during resize or move operations.

hiconpad=pixels
indicates the number of pixels to pad an icon horizontally. The
default is five pixels.

hmenupad=pixels
indicates the amount of space in pixels that each menu item is pad-
ded to the left and to the right of the text.

borderwidth=pixels
indicates the width in pixels of the border surrounding icons.

iconfont=fontname
names the font that is displayed within icons. Font names for a
given server can be obtained using xIsfonts(1).

maxcolors=number
limits the number of colors the window manager can use in a given
invocation. If set to zero, or not specified, uwm assumes no limit to
the number of colors it can take from the color map. maxcolors
counts colors as they are included in the file.

mborderwidth=pixels
indicates the width in pixels of the border surrounding menus.

normali/nonormali
places icons created with f.newiconify within the root window,
even if it is placed partially off the screen. With nonormali the icon
is placed exactly where the cursor leaves it.

normalw/nonormalw
places window created with f.newiconify within the root window,
even if it is placed partially off the screen. With nonormalw the
window is placed exactly where the cursor leaves it.

push=number ~ moves a window number pixels or 1/number times the size of the
window, depending on whether pushabsolute or pushrelative is
specified. Use this variable in conjunction with f.pushup,
f.pushdown, f.pushright, or f.pushleft.

pushabsolute/pushrelative
pushabsolute indicates that the number entered with push is
equivalent to pixels. When an f.push (left, right, up, or down) func-
tion is called, the window is moved exactly that number of pixels.

pushrelative indicates that the number entered with the push vari-
able represents a relative number. When an f.push function is
called, the window is invisibly divided into the number of parts you
entered with the push variable, and the window is moved one part.

resetbindings, resetmenus, and resetvariables
resets all previous function bindings, menus, and variable entries,
specified in any startup file in the uwm search path, including those
in the default environment. By convention, these variables are
entered first in the startup file.

resizefont=fontname
identifies the font of the indicator that displays dimensions in the
corner of the window as you resize windows. See xIsfonts(1) for
obtaining font names.

Ardent Computer Corporation — Release 3.0 41

26 October 1988

B N N A s

UWM(1)

UWM(1)

resizerelative/noresizerelative
indicates whether or not resize operations should be done relative
to moving edge or edges. By default, the dynamic rectangle uses
the actual pointer location to define the new size.

reverse/noreverse
defines the display as black characters on a white background for
the window manager windows and icons.

‘viconpad=pixels indicates the number of pixels to pad an icon vertically. Default is

five pixels.

vmenupad=pixels
indicates the amount of space in pixels that the menu is padded
above and below the text.

volume=number
increases or decreases the base level volume set by the xset(1) com-
mand. Enter an integer from 0 to 7, 7 being the loudest.

zap/nozap causes ghost lines to follow the window or icon from its previous
default location to its new location during a move or resize opera-
tion.

BINDING SYNTAX

function=[control key(s)]:[context]:mouse events:" menu name "

Function and mouse events are required input. Menu name is required with the
f-menu function definition only.

Function

f.beep emits a beep from the keyboard. Loudness is determined by the
volume variable.

f.circledown causes the top window that is obscuring another window to drop to
the bottom of the stack of windows.

f.circleup exposes the lowest window that is obscured by other windows.

f.continue releases the window server display action after you stop action with
the f.pause function.

f.focus directs all keyboard input to the selected window. To reset the
focus to all windows, invoke f.focus from the root window.

f.iconify when implemented from a window, this function converts the win-
dow to its respective icon. When implemented from an icon,
f.iconify converts the icon to its respective window.

£.kill kills the client that created a window.

f.lower lowers a window that is obstructing a window below it.

f.menu invokes a menu. Enclose ‘menu name’ in quotes if it contains blank
characters or parentheses.

f.menu=[control key(s)l:[context l:mouse events:"” menu name "

f.move moves a window or icon to a new location, which becomes the
default location.

f.moveopaque movesa window or icon to a new screen location. When using this
function, the entire window or icon is moved to the new screen loca-
tion. The grid effect is not used with this function.

42 Ardent Computer Corporation— Release 3.0

26 October 1988
L]
UWM(1) UWM(1)

f.newiconify allows you to create a window or icon and then position the win-
dow or icon in a new default location on the screen.

f.pause temporarily stops all display action. To release the screen and
immediately update all windows, use the f.continue function.

f.pushdown moves a window down. The distance of the push is determined by
the push variables.

f.pushleft moves a window to the left. The distance of the push is determined
by the push variables.

f.pushright moves a window to the right. The distance of the push is deter-
mined by the push variables.

f.pushup moves a window up. The distance of the push is determined by the
push variables.

f.raise raises a window that is being obstructed by a window above it.

f.refresh results in exposure events being sent to the window server clients

for all unobscured or partially obscured windows. The windows
will not refresh correctly if the exposure events are not handled

properly.

f.resize resizes an existing window. Note that some clients, notably editors,
react unpredictably if you resize the window while the client is run-
ning.

f.restart causes the window manager application to restart, retracing the

uwm search path and initializing the variables it finds.
Control Keys

By default, the window manager uses meta as its control key. It can also use ctrl,
shift, lock, or null (no control key). Control keys must be entered in lower case, and
can be abbreviated as: ¢, 1, m, s for ctrl, lock, meta, and shift, respectively.

You can bind one, two, or no control keys to a function. Use the bar (|) character to
combine control keys.

Note that client applications other than the window manager use the shift as a con-
trol key. If you bind the shift key to a window manager function, you can not use
other client applications that require this key.
Context

The context refers to the screen location of the cursor when a command is initiated.
When you include a context entry in a binding, the cursor must be in that context or
the function will not be activated. The window manager recognizes the following
four contexts: icon, window, root, (null).

The root context refers to the root, or background window, A (null) context is indi-
cated when the context field is left blank, and allows a function to be invoked from
any screen location. Combine contexts using the bar (1) character.

Mouse Buttons

Any of the following mouse buttons are accepted in lower case and can be abbrevi-
ated as 1, m, or r, respectively: left, middle, right.

With the specific button, you must identify the action of that button. Mouse actions
can be:

down function occurs when the specified button is pressed down.

Ardent Computer Corporation — Release 3.0 43

UWM(1)

26 October 1988
UWM(1)

up function occurs when the specified button is released.

delta indicates that the mouse must be moved the number of pixels specified
with the delta variable before the specified function is invoked. The
mouse can be moved in any direction to satisfy the delta requirement.

MENU DEFINITION

Menu Action

Color Menus

After binding a set of function keys and a menu name to f.menu, you must define the
menu to be invoked, using the following syntax:
menu =" menu name " {

"o,on

"item name" : "action"

}

Enter the menu name exactly the way it is entered with the f.menu function or the
window manager will not recognize the link. If the menu name contains blank
strings, tabs or parentheses, it must be quoted here and in the f.menu function entry.
You can enter as many menu items as your screen is long. You cannot scroll within
menus.

Any menu entry that contains quotes, special characters, parentheses, tabs, or strings
of blanks must be enclosed in double quotes. Follow the item name by a colon (:).

Window manager functions
Any function previously described. E.g., f.move or f.iconify.

Shell commands
Begin with an exclamation point (!) and set to run in background. You
cannot include a new line character within a shell command.

Text strings
Text strings are placed in the window server’s cut buffer.

Strings starting with an up arrow (") will have a new line character
appended to the string after the up arrow (") has been stripped from it.

Strings starting with a bar character (1) will be copied as is after the bar
character (1) has been stripped.

Use the following syntax to add color to menus:

menu = "menu name" (color1:color2:color3:colord) {
"item name" : (color5 :color6) :"action"

colorl Foreground color of the header.
color2 Background color of the header.

color3 Foreground color of the highlighter, the horizontal band of color that
moves with the cursor within the menu.

44

Ardent Computer Corporation — Release 3.0

UWM(1)

Color Defaults

EXAMPLES

26 October 1988
UWM(1)

color4 Background color of the highlighter.
color5 Foreground color for the individual menu item.

color6 Background color for the individual menu item.

Colors default to the colors of the root window under any of the following condi-
tions: ’

1) If you run out of color map entries, either before or during an invocation of uwm.

2) If you specify a foreground or background color that does not exist in the RGB
color database of the server (see [ust/lib/X11/rgb.txt for a sample) both the foreground
and background colors default to the root window colors.

3) If you omit a foreground or background color, both the foreground and back-
ground colors default to the root window colors.

4) If the total number of colors specified in the startup file exceeds the number
specified in the maxcolors variable.

5) If you specify no colors in the startup file.

The following sample startup file shows the default window manager options:

Global variables

#

resetbindings;resetvariables;resetmenus

autoselect

delta=25

freeze

grid

hiconpad=5

hmenupad=6

iconfont=oldeng

menufont=timrom12b

resizefont=9x15

viconpad=5

vmenupad=3

volume=7

#

Mouse button/key maps

#

FUNCTION KEYS CONTEXT BUTTON MENUC(f any)
=_——====== ==== = == = ===
fmenu= meta: :leftdown :"WINDOW OPS"
fmenu= meta: :middledown "EXTENDED WINDOW OPS"

fmove= meta :wli right down
f.circleup = meta :root :right down
#

Menu specifications

4 ,

menu = "WINDOW OPS" {
"(De)lconify™: f.iconify
Move: f.move

Ardent Computer Corporation — Release 3.0 45

26 October 1988

e =

UWM(1) UWM(1)
Resize: f.resize
Lower: flower
Raise: f.raise
}
menu = "EXTENDED WINDOW OPS" {
Create, Window: "xterm &"
Iconify at New Position: f.lowericonify
Focus Keyboard on Window: f.focus
Freeze All Windows: f.pause
Unfreeze All Windows: f.continue
Circulate Windows Up: f.circleup
Circulate Windows Down: f.circledown
}
RESTRICTIONS
The color specifications have no effect on a monochrome system.
FILES
/usr/lib/X11/uwm/system.uwmrc
$HOME/.uwmrc
SEE ALSO
X(1), Xserver(1), xset(1), xIsfonts(1)
COPYRIGHT
COPYRIGHT 1985, 1986, 1987, 1988
DIGITAL EQUIPMENT CORPORATION
MAYNARD, MASSACHUSETTS
ALL RIGHTS RESERVED.
THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION. DIGITAL MAKES NO REPRESENTATIONS
ABOUT THE SUITIBILITY OF THIS SOFTWARE FOR ANY PURPOSE. IT IS SUP-
PLIED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
IF THE SOFTWARE IS MODIFIED IN A MANNER CREATING DERIVATIVE
COPYRIGHT RIGHTS, APPROPRIATE LEGENDS MAY BE PLACED ON THE
DERIVATIVE WORK IN ADDITION TO THAT SET FORTH ABOVE.
Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copy-
right notice appear in all copies and that both that copyright notice and this permis-
sion notice appear in supporting documentation, and that the name of Digital Equip-
ment Corporation not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission.
AUTHOR
M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire, using
some algorithms originally by Bob Scheifler, MIT Laboratory for Computer Science.
46 Ardent Computer Corporation— Release 3.0

31 March 1988

O P

X11(1)

NAME

SYNOPSIS

X11(1)

X11 - a portable, network transparent window system

X+ is the Ardent implementation of the X window system for the Titan computer. X
is a network transparent window system developed at MIT which runs under a wide
variety of operating systems. The standard distribution from MIT works on Ultrix-32
Version 1.2 (and higher), 4.3BSD Unix, SunOS 3.2 (and higher), HP-UX 6.01, and
DOMAIN/IX 9.7. In addition, many vendors support the X Window System under
other operating systems.

THE OFFICIAL NAMES

DESCRIPTION

The official names of the software described herein are:

X
X Window System
X Version 11
X Window System, Version 11
X11

Note that the phrases X.11, X-11, X Windows or any permutation thereof, are expli-
city excluded from this list and should not be used to describe the X Window System
(window system should be thought of as one word).

X Window System is a trademark of the Massachusetts Institute of Technology.

X window system servers run on computers with bitmap displays. The server distri-
butes user input to, and accepts output requests from various client programs
through a variety of different interprocess communication channels. Although the
most common case is for the client programs to be running on the same machine as
the server, clients can be run transparently from other machines (including machines
with different architectures and operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics operations,
on both monochrome and color displays. For a full explanation of functions, see the
Xlib - C Language X Interface manual, the X Window System Protocol specification, and
various toolkit documents.

When you first log in on a display running X, you are usually using the xterm(1) ter-
minal emulator program. You need not learn anything extra to use a display run-
ning X as a terminal beyond moving the mouse cursor into the login window to log
in normally.

The core X protocol provides mechanism, not policy. Windows are manipulated
(including moving, resizing and iconifying) not by the server itself, but by a separate
program called a “window manager” of your choosing. This program is simply
another client and requires no special privileges. If you don’t like the ones that are
supplied (see awm(1) and uwm(1)), you can write your own.

The number of programs that use X is growing rapidly. Of particular interest are: a
terminal emulator (xterm(1)), window managers (awm(1) and wwm(1)), a mailer
reader (xmh(1)), a bitmap editor (bitmap(1)), an access control program (xhost(1)), user
preference setting programs (xset(1), xsetroot(1), and xmodmap(1)), a load monitor
(xload(1)), clock (xclock(1)), a font displayer (xfd(1)), and a protocol translator for run-
ning X10 programs (x10tox11(1)).

Ardent Computer Corporation — Release 3.0 47

31 March 1988

w

X11(1)

X11(1)

DISPLAY SPECIFICATION

When you first log in, the environment variable DISPLAY will be set to a string
specifying the name of the machine on which the server is running, a number indicat-
ing which of possibly several servers to use, and possibly a number indicating the
default screen of the server (usually this is omitted and defaults to 0). By convention,
servers on a particular machine are numbered starting with zero. The format of the
DISPLAY string depends on the type of communications channel used to contact the

server.

The following connection protocols are supported:

TCP/TP
DISPLAY should be set to “host:dpy.screen”” where host is the symbolic name
of the machine (e.g. expo), dpy is the number of the display (usually 0), and
screen is the number of the screen. The screen and preceding period are
optional, with the default value being zero (0). Full Internet domain names
(e.g. expo.lcs.mit.edu) are allowed for the host name.

Unix domain
DISPLAY should be set to “unix:dpy.screen”, where dpy is the display
number and screen is the screen number; screen and the preceding period are
optional, with the default value being zero (0).

Most programs accept a command line argument of the form “-display display” that
can be used to override the DISPLAY environment variable.

GEOMETRY SPECIFICATION

One of the advantages of using window systems over hardwired terminals is that
applications don’t have to be restricted to a particular size or location on the screen.
Although the layout of windows on a display is controlled by the window manager
that the user is running, most applications accept a command line argument that is
treated as the prefered size and location for this particular application’s window.

This argument, usually specified as ‘-geometry WxH+X+Y,” indicates that the win-
dow should have a width of W and height of H (usually measured in pixels or char-
acters, depending on the application), and the upper left corner X pixels to the right
and Y pixels below the upper left corner of the screen (origin (0,0)). “WxH” can be
omitted to obtain the default application size, or ““+X+Y” can be omitted to obtain
the default application position (which is usually then left up to the window
manager or user to choose). The X and Y values may be negative to position the win-
dow off the screen. In addition, if minus signs are used instead of plus signs (e.g.
WxH-X-Y), then (X,Y) represents the location of the lower right hand corner of the
window relative to the lower right hand corner of the screen.

By combining plus and minus signs, the window may be place relative to any of the
four corners of the screen. For example:

555x333+11+22
This will request a window 555 pixels wide and 333 pixels tall, with the
upper left corner located at (11,22).

300x200-0+0
This will request a window measuring 300 by 200 pixels in the upper right
hand corner of the screen.

48x48--5-10
This will request a window measuring 48 by 48 pixels whose lower right

hand corner is 5 pixel off the right edge and the screen and 10 pixels off the
bottom edge.

48

Ardent Computer Corporation— Release 3.0

31 March 1988
X11(1) X11(1)

COMMAND LINE ARGUMENTS
Most X programs attempt to use a common set of names for their command line
arguments. The X Toolkit automatically handles the following arguments:

~bg color, -background color
Either option specifies the color to use for the window background.

-bd color, ~bordercolor color
Either option specifies the color to use for the window border.

~bw number, -borderwidth number

Either option specifies the width in pixels of the window border.
~display display

This option specifies the name of the X server to use.

~fg color, -foreground color
Either option specifies the color to use for text or graphics.

—fn font, -font font
Either option specifies the font to use for displaying text.

—geometry georetry
This option specifies the initial size and location of the window.

—iconic
This option indicates that application should start out in an iconic state.

Note that how this state is represented is controlled by the window
manager that the user is running,

-name
This option specifies the name under which resources for the application
should be found. This option is useful in shell aliases to distinguish
between invocations of an application, without resorting to creating links to
alter the executable file name.

~Iv, —reverse
Either option indicates that the program should simulate reverse video if
possible, often by swapping the foreground and background colors. Not all
programs honor this or implement it correctly. It is usually only used on
monochrome displays.

+1V
This option indicates that the program should not simulate reverse video.

This is used to override any defaults since reverse video doesn’t always
work properly.
—-synchronous

This option indicates that requests to the X server should be sent synchro-
nously, instead of asynchronously. Since XIib normally buffers requests to
the server, errors do not necessarily get reported immediately after they
occur. This option turns off the buffering so that the application can be
debugged. It should never be used with a working program.

~title string
This option specifies the title to be used for this window. This information
is sometimes used by a window manager to provide some sort of header
identifying the window.

—-Xrm resourcestring
This option specifies a resource name and value to override any defaults. It
is also very useful for setting resources that don’t have explicitly command

Ardent Computer Corporation — Release 3.0 49

X11(1)

RESOURCES

31 March 1988
X11(1)

line arguments.

To make the tailoring of applications to personal preferences easier, X supports
several mechanisms for storing default values for program resources (e.g. back-
ground color, window title, etc.) Resources are specified as strings of the form
“name*subname*subsubname...: value’’ (see the XIlib manual section Using the Resource
Manager for more details) that are loaded into a client when it starts up. The XIib rou-
tine XGetDefault(3X) and the resource utilities within the X Toolkit obtain resources
from the following sources:

RESOURCE_MANAGER root window property
Any global resources that should be available to clients on all machines
should be stored in the RESOURCE_MANAGER property on the root win-
dow using the xrdb(1) program.

application-specific directory
Any application- or machine-specific resources can be stored in the class
resource files located in the directory /usr/X11/app-defaults in the stan-
dard distribution).

XENVIRONMENT
Any user- and machine-specific resources may be specified by setting the
XENVIRONMENT environment variable to the name of a resource file to be
loaded by all applications. If this variable is not defined, the X Toolkit looks
for a file named .Xdefaults-hostname, where hostname is the name of the host
where the application is executing,.

—Xrm resourcestring
Applications that use the X Toolkit can have resources specified from the
command line. The resourcestring is a single resource name and value as
shown above. Note that if the string contains characters interpreted by the
shell (e.g., asterisk), they must be quoted. Any number of —xrm arguments
may be given on the command line.

Program resources are organized into groups called “classes,” so that collections of
individual “instance’ resources can be set all at once. By convention, the instance
name of a resource begins with a lowercase letter and class name with an upper case
letter. Multiple word resources are concatentated with the first letter of the succeed-
ing words capitalized. Applications written with the X Toolkit will have at least the
following resources:

background (class Background)
This resource specifies the color to use for the window background.

borderWidth (class BorderWidth)
This resource specifies the width in pixels of the window border.

borderColor (class BorderColor)
This resource specifies the color to use for the window border.

Most X Toolkit applications also have the resource foreground (class Foreground),
specifying the color to use for text and graphics within the window.

By combining class and instance specifications, application preferences can be set
quickly and easily. Users of color displays will frequently want to set Background
and Foreground classes to particular defaults. Specific color instances such as text
cursors can then be overridden without having to define all of the related resources.

50

Ardent Computer Corporation —Release 3.0

X11(1)

DIAGNOSTICS

SEE ALSO

COPYRIGHT

AUTHORS

31 March 1988
X11(1)

When a named resource is unavailable (for example, a color named chartrusse or a
font named teeneyweeney), normally no error message will be printed; whether or
not useful results ensue is dependent on the particular application. If you wish to see
error messages (for example, if an application is failing for an unknown reason), you
may specify the value “‘on’” for the resource named “‘StringConversionWarnings.” If

you want such warnings for all applications, specify
“+StringConversionWarnings:on” to the resource manager. If you want warnings
only for a single application named “zowie”, specify

“zowie*StringConversionWarnings:on” to the resource manager.

The default error handler uses the Resource Manager to build diagnostic messages
when error conditions arise. The default error database is stored in the file XErrorDB
in the directory /usr/X11. If this file is not installed, error messages will tend to be
somewhat cryptic.

xterm(1), bitmap(1), awm(1), uwm(1), x10tox11(1), xcale(1), xclock(1), xedit(1), xfd(1),
xhost(1), xinit(1), xload(1), xlogo(1), xlsfonts(1), xmh(1), xmodmap(1), xpr(1),
xprop(1), xrdb(1), xrefresh(1), xset(1), xsetroot(1), xwd(1), xwininfo(1), xwud(1), X(1).
Xlib - C Language X Interface, X Toolkit Intrinsics - C Language X Interface

The following copyright and permission notice outlines the rights and restrictions
covering most parts of the standard distribution of the X Window System from MIT.
Other parts have additional or different copyrights and permissions; see the indivi-
dual source files.

Copyright 1984, 1985, 1986, 1987, 1988, Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copy-
right notice appear in all copies and that both that copyright notice and this permis-
sion notice appear in supporting documentation, and that the name of M.LT. not be
used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. M.L.T. makes no representations about the suita-
bility of this software for any purpose. It is provided "as is" without express or
implied warranty.

This software is not subject to any license of the American Telephone and Telegraph
Company or of the Regents of the University of California.

It is no longer feasible to list all people who have contributed something to X, but see
doc/contributors in the standard sources.

Ardent Computer Corporation — Release 3.0 51

XSERVER (1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

17 November 1988
XSERVER(1)

X = X Window System server
X displaynumber [-option ...]

X is the Ardent window system server. Normally it is started from the xstart(1) com-
mand. The displaynumber argument is used by clients in their DISPLAY environment
variables to indicate which server to contact. Currently the only valid value for
displaynumber is 0.

The Ardent X+ server has support for the following protocols:

TCP/IP
The server listens on port htons(6000+N), where N is the display number.

Unix Domain
The name for the socket is X11-unix:0.

When the Ardent X+ server starts up, it takes over the display. Normally when the
server is started an xterm is used to display messages directed to the console. While
the X server is running you cannot log into the console.

The following options can be given on the command line to the X+ server:

—a number
sets pointer acceleration (i.e. the ratio of how much is reported to how much
the user actually moved the pointer).

~base use base graphics board only.

-bs disables backing store support on all screens.
- turns off key-click.

¢ volume sets key-click volume (allowable range: 0-8).

~f volume
sets feep (bell) volume (allowable range: 0-7).

-logo turns on the X Window System logo display in the screen-saver. There is
currently no way to change this from a client.

nologo turns off the X Window System logo display in the screen-saver. There is
currently no way to change this from a client.

—p minutes
sets screen-saver pattern cycle time in minutes.

—pseudo
set default visual class to PseudoColor (and default depth to 8).

-r turns off auto-repeat.
r turns on auto-repeat.

-8 minutes
sets screen-saver timeout time in minutes.

—Ssp specify screen-saver program.
—stereo enable stereo screen.

-su disables save under support on all screens.

52

Ardent Computer Corporation — Release 3.0

XSERVER (1)

SECURITY

SIGNALS

FONTS

17 November 1988
XSERVER (1)

~t numbers
sets pointer acceleration threshold in pixels (i.e. after how many pixels
pointer acceleration should take effect).

~to seconds

sets default screensaver timeout in seconds.
v sets video-on screen-saver preference.
-V sets video-off screen-saver preference

-wm WhenMapped default backing-store

—co filename
sets name of RGB color database

-help prints a usage message

~fp fontPath
sets the search path for fonts

~fc cursorFont -
sets default cursor font

~fn font sets the default font

-bp pixel-value
set default black-pixel color

-wp pixel-value
set default white-pixel color

X uses an access control list for deciding whether or not to accept a connection from a
given cleint. This list initially consists of the machine on which the server is running,
and any hosts listed in the file /etc/X*.hosts (where # is the display number). This file
should contain one line per host name, with no white space.

The user can manipulate a dynamic form of this list in the server using the xhost(1)
program from the same machine as the server.

Unlike some window systems, X does not have any notion of window operation per-
missions or place any restrictions on what a client can do; if a program can connect to
a display, it has full run of the screen.

The X server attaches special meaning to the following signals:

SIGHUP
This signal causes the server to close all existing connections, free all
resources, and restore all defaults. It is sent by the display manager when-
ever the main user's main application (usually an xterm or window
manager) exits to force the server to clean up and prepare for the next user.

SIGTERM
This signal causes the server to exit cleanly.

Fonts are usually stored as individual files in directories. The list of directories in
which the server looks when trying to open a font is controlled by the font path.
Although most sites will choose to have the server start up with the appropriate font
path (using the -fp option mentioned above), it can be overridden using the xset pro-
gram. The default font path for the Ardent X server contains the single directory:
Jusr/X11/fonts.

Ardent Computer Corporation — Release 3.0 53

XSERVER(1)

17 November 1988
XSERVER(1)

Font databases are created by running the mkfontdir program in the directory con-
taining the compiled versions of the fonts (the .s#f files). Whenever fonts are added
to a directory, mkfontdir should be rerun so that the server can find the new fonts. If
mkfontdir is not run, the server will not be able to find any fonts in the directory.

PROGRAMMABLE SCREEN SAVER

The Ardent X server provides support for programmable screen savers. The -ssp
option allows you to set the screen saver program used by the server. The currently
available options are ardentlogo which moves the Ardent logo around the screen and
stringart which draws some nice vector patterns. You can also define your own.

A screen saver program is invoked with two arguments: the window id in the form
Oxhhhh and the screen saver interval in milliseconds. The window passed to the
screen saver program will cover the entire screen and will either be a 24 bit direct
color window or an 8 bit pseudo color window. The program should be able to han-
dle both cases.

STEREO
The Ardent X Server provides support for stereo graphics. If the -stereo option is
used then pressing the ALT and F2 keys on the titan keyboard will display the stereo
screen. Applications wishing to display on the stereo screen should create windows
on screen 1. This screen does not have a square aspect ratio (since half the y resolu-
tion is used for the left eye and half for the right). Pressing ALT F2 key toggles
between the stereo and normal screens. Stereo viewing requires special hardware
see your local Ardent representative for details.

DIAGNOSTICS
Too numerous to list them all. If run from start(1), errors are logged in the file
Justjadm|X*msgs,

FILES
/etc/X*.hosts Initial access control list
/usr/X11/fonts Font directory
/usr/X11/rgb/rgb.txt Color database
/usr/adm/X*msgs Error log file

SEE ALSO
X11(1), xstart(1), xinit(1), xterm(1), awm(1), xhost(1), xset(1), xsetroot(1).

BUGS
The option syntax is inconsistent with itself and xset(1).
The acceleration option should take a numerator and a denominator like the proto-
col.
If X dies before its clients, new clients won’t be able to connect until all existing con-
nections have their TCP TIME_WAIT timers expire.
The color database is missing a large number of colors. However, there doesn’t seem
to be a better one available that can generate RGB values tailorable to particular
displays.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
Copyright 1988, Ardent Computer.
See X(1) for a full statement of rights and permissions.

AUTHORS
The sample server was originally written by Susan Angebranndt, Raymond Drewry,
Philip Karlton, and Todd Newman, with support from a cast of thouands.

54 Ardent Computer Corporation —Release 3.0

XSERVER (1)

17 November 1988
XSERVER(1)

The Ardent X+ server was implemented by: Mark Patrick and John Reiser.

Ardent Computer Corporation — Release 3.0 55

X10TOX11(1)

NAME

SYNOPSIS

DESCRIPTION

TYPICAL USAGE

OPTIONS

21 October 1988
X10TOX11(1)

x10tox11 - X version 10 to version 11 protocol converter
x10tox11 [-display host:display]

x10tox11 masquerades as an X Window System Version 10 server. It enables an X
Version 10 client to run unchanged under X Version 11 by converting Version 10
requests into appropriate Version 11 requests, and by converting all Version 11
events received from the server into Version 10 events. From the perspective of Ver-
sion 10 clients, all Version 11 clients look like Version 10 clients; and from the per-
spective of Version 11 clients, all Version 10 clients just look like Version 11 clients.
Hence, a Version 11 window manager can manipulate Version 10 clients.

This program does NOT use the X10 libnest ddX library. It does actual protocol
translation, rather than simply using X11 graphics calls to implement X10 low level
operations. As a result, it is both faster and more robust than the X10 Xnest server.

The protocol converter must be run after the X11 server is running and should be run
in the background:

x10tox11 &

The program will continue to run until you intentionally kill it or the X11 server is
shut down.

-display host:display

Standard option for specifying the X11 display to which you wish to be con-
nected. By default, it uses unix:0.0. Note that xI0tox11 will always pretend
to be an X10 server with the same display number as the X11 server to which
it connects. For example, if the DISPLAY environment variable or the
-display option specifies fizzle:1.0, then x10tox11 will connect to the X11 server
on host fizzle for display 1 and then will pretend to the the X10 server for
display 1. Consequently, your X10 clients will expect to have the environ-
ment variable DISPLAY set to fizzle:1 (but they should still work even if your
X10 clients use fizzle:1.0).

MinimumTileSize=n
Set minimum acceptable tile size to n. There is a difference in semantics
between X10’s XQueryShape and X11’s XQueryBestSize such that X11 will
allow any tile size but will return the optimum whereas X10 enforced a
minimum tile size. Usually this minimum tile size was 16 and this is the
default for x10tox11. If you find that this makes your X10 clients break, then
you can override it with this option.

help
This prints out a usage message and exits.

NoOverrideRedirect
This instructs x10tox11 to make every effort not to use OverrideRedirect
when creating and mapping windows. Normally, x10tox11 creates all win-
dows with the OverrideRedirect attribute set to true. Placing this option on
the command line will cause x10tox11 not to use OverrideRedirect except for
windows that look like they might be menus. This will allow window
managers that provide title bars to do so. Unfortunately, it is impossible to
determine ahead of time what an X10 client intends to do with windows. In
addition, X10 clients are known to spontaneously unmap their windows

56

Ardent Computer Corporation — Release 3.0

X10TOX11(1)

SEE ALSO

BUGS

COPYRIGHT

AUTHOR

21 QOctober 1988
X10TOX11(1)

which upsets X11 window managers unless the OverrideRedirect attribute is
true. Further, some X11 window managers may refuse to resize or move
windows that are marked with OverrideRedirect. This may can be fixed to
some extent when an Inter Client Communications Convention Manual
(ICCCM) is adopted by the X11 community.

X(1), Xserver(1)

There are limitations with respect to emulating Version 10 through a Version 11
server. See the file /usr/lib/X/x10tox11.help for more details.

Some window managers may refuse to move, resize or perform any operations on
X10 client windows because, by default,

If the source is compiled with certain flags, there are significant debugging facilities
available. Using the help option will tell you whether debugging facilities are avail-
able. x10tox11 marks them with OverrideRedirect. See OPTIONS above.

Copyright 1988, Tektronix Inc.

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copy-
right notice appear in all copies and that both that copyright notice and this permis-
sion notice appear in supporting documentation.

Todd Brunhoff, Visual Systems Laboratory, Tektronix.

Ardent Computer Corporation — Release 3.0 57

XBIFF (1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

30 September 1988
XBIFF(1)

xbiff — mailbox flag for X
xbiff [-toolkitoption ...] [-option ...]

The xbiff program displays a little image of a mailbox. When there is no mail, the flag
on the mailbox is down. When mail arrives, the flag goes up and the mailbox beeps.
By default, pressing any mouse button in the image forces xbiff to remember the
current size of the mail file as being the “empty’’ size and to lower the flag.

This program is nothing more than a wrapper around the Athena Mailbox widget.

Xbiff accepts all of the standard X Toolkit command line options along with the addi-
tional options listed below:

-help This option indicates that a brief summary of the allowed options should be
printed on the standard error.

—update seconds
This option specifies the frequency in seconds at which xbiff should update
its display. If the mailbox is obscured and then exposed, it will be updated
immediately. The default is 60 seconds.

~file filename
This option specifies the name of the file which should be monitored. By
default, it watches /usr/spool/mail / username, where username is your login
name. :

-volume percentage

This option specifies how loud the bell should be rung when new mail
comes in.

The following standard X Toolkit command line arguments are commonly used with
xbiff:
~display display

This option specifies the X server to contact.

—-geometry geometry
This option specifies the prefered size and position of the mailbox window.
The mailbox is 48 pixels wide and 48 pixels high and will be centered in the
window.

-bg color
This option specifies the color to use for the background of the window. The
default is “white.”

-bd color
This option specifies the color to use for the border of the window. The
default is “black.”

—-bw number

This option specifies the width in pixels of the border surrounding the win-
dow.

~fg color This option specifies the color to use for the foreground of the window. The
default is “black.” '

-1v This option indicates that reverse video should be simulated by swapping
the foreground and background colors.

58

Ardent Computer Corporation— Release 3.0

30 September 1988

XBIFF (1)

X DEFAULTS

ACTIONS

ENVIRONMENT

XBIFF (1)

—Xrm resourcestring
This option specifies a resource string to be used. This is especially useful
for setting resources that do not have separate command line options.

This program uses the Mailbox widget in the X Toolkit. It understands all of the core
resource names and classes as well as:

checkCommand (class CheckCommand)
Specifies a shell command to be executed to check for new mail rather than
examining the size of file. The specified string value is used as the argu-
ment to a system(3) call and may therefore contain i/o redirection. A suc-
cessful (zero) exit status should indicate that new mail is waiting.

file (class File) :
Specifies the name of the file to monitor. The default is to watch
/usr/spool/mail/username, where username is your login name.

onceOnly (class Boolean)
Specifies that the bell is only rung the first time new mail is found and is not
rung again until at least one interval has passed with no mail waiting. The
window will continue to indicate the presence of new mail until it has been
retrieved.

width (class Width)
Specifies the width of the mailbox.

height (class Height)
Specifies the height of the mailbox.

update (class Interval)
Specifies the frequency in seconds at which the mail should be checked.

volume (class Volume)
Specifies how load the bell should be rung. The default is 33 percent.

foreground (class Foreground)
Specifies the color for the foreground. The default is “black” since the core
default for background is “white.”

reverseVideo (class ReverseVideo)
Specifies that the foreground and background should be reversed.

The Mailbox widget provides the following actions for use in event translations:

check() This action causes the widget to check for new mail and display the flag
appropriately.

unset() Thisaction causes the widget to lower the flag until new mail comes in.
set() This action causes the widget to raise the flag until the user resets it.

The default translation is

<ButtonPress>: unset()

DISPLAY
to get the default host and display number.

Ardent Computer Corporation —Release 3.0 59

30 September 1988

XBIFF (1) XBIFF (1)
XENVIRONMENT (|
to get the name of a resource file that overrides the global resources stored
in the RESOURCE_MANAGER property.
SEE ALSO
X(1), xrdb(1), stat(2)
BUGS
The mailbox bitmaps are ugly.
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.
AUTHOR

Jim Fulton, MIT X Consortium
Additional hacks by Ralph Swick, DEC/MIT Project Athena

60 Ardent Computer Corporation — Release 3.0

XCALC(1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

OPERATION

26 October 1988
XCALC (1)

xcalc - scientific calculator for X
xcalc [-display display] [-bw pixels] [-stip] [-rv] [-rpn] [-analog] [-geometry geometry]

Xcalc is a scientific calculator desktop accessory that can emulate a TI-30, an HP-10C,
and a slide rule.

—display displayname _
 This option specifies the X server to contact.

—-geometry geometry
This option specifies the size and placement of the top level window. By
default, the minimum size will be used. Note that your window manager
may require you to place it explicitly anyway.

—fg color This option specifies the foreground color to use.

-bg color

This option specifies the background color to use.
~bw pixels

This option specifies the border width in pixels.

-stip This option indicates that the background of the calculator should be drawn
using a stipple of the foreground and background colors. On monochrome
displays this makes for a nicer display.

-1v This option indicates that reverse video should be used.

-rpn This option indicates that Reverse Polish Notation should be used. In this
mode the calculator will look and behave like an HP-10C. Without this flag,
it will emulate a TI-30.

—analog This option indicates that a slide rule should be used.

Pointer Usage: Most operations are done with the Button1 (usually leftmost button on
the pointer). The only exception is that pressing the AC key on the TI calculator with
Button3 (usually on the right) will exit the calculator.

Key Usage (Normal mode): The number keys, the +/- key, and the +, -, *, /, and = keys
all do exactly what you would expect them to. It should be noted that the operators
obey the standard rules of precedence. Thus, entering "3+4*5=" results in "23", not
"35". The parentheses can be used to override this. For example, "(1+2+3)*(4+5+6)="
results in "6+15=90". The non-obvious keys are detailed below.

1/x replaces the number in the display with its reciprocal.
xA2 squares the number in the display.
SQRT takes the square root of the number in the display.

CE/C when pressed once, clears the number in the display without clearing the state
of the machine. Allows you to re-enter a number if you screw it up. Pressing it twice
clears the state, also.

AC clears everything, the display, the state, the memory, everything. Pressing it
with the right button “turns off’ the calculator, in that it exits the program. Some-
what more equivalent to throwing the calculator in the trash, if we were to pursue
the analogy.

Ardent Computer Corporation — Release 3.0 61

XCALC(1)

26 October 1988
XCALC(1)

INV inverts the meaning of the function keys. See the individual function keys for
details.

sin computes the sine of the number in the display, as interpreted by the current
DRG mode (see DRG, below). If inverted, it computes the arcsine.

cos computes the cosine, or arccosine when inverted.
tan computes the tangent, or arctangent when inverted.

DRG changes the DRG mode, as indicated by "‘DEG’, 'RAD’, or ‘GRAD’ at the bot-
tom of number window of the calculator. When in '‘DEG’ mode, numbers in the
display are taken as being degrees. In 'RAD’ mode, numbers are in radians, and in
‘GRAD’ mode, numbers are in gradians. When inverted, the DRG key has the nifty
feature of converting degrees to radians to gradians and vice-versa. Example: put
the calculator into 'DEG’ mode, and type "45 INV DRG". The display should now
show something along the lines of ".785398", which is 45 degrees converted to radi-
ans.

e the constant ’e’. (2.7182818...)

EE used for entering exponential numbers. For example, to enter "-2.3E-4" you’'d
type"2.3+/-EE4 +/-"

log calculates the log (base 10) of the number in the display. When inverted, it raises
"10.0" to the number in the display. For example, typing "3 INV log" should result in
"1000".

In calcuates the log (base e) of the number in the display. When inverted, it raises "e"
to the number in the display. For example, typing "e In" should result in "1"

y”x raises the number on the left to the power of the number on the right. For exam-
ple "2 y”x 3 =" results in "8", which is 2/3. For a further example, "(1+2+3) yx (1+2)
=" equals "6 y~x 3" which equals "216".

PI the constant "pi’. (3.1415927....)

x! computes the factorial of the number in the display. The number in the display
must be an integer in the range 0-500, though, depending on your math library, it
might overflow long before that.

STO copies the number in the display to the memory location.

RCL copies the number from the memory location to the display.

SUM adds the number in the display to the number in the memory location.
EXC swaps the number in the display with the number in the memory location.

Key Usage (RPN mode): The number keys, CHS (change sign), +, -, *, /, and ENTR
keys all do exactly what you would expect them to do. Many of the remaining keys
are the same as in normal mode. The differences are detailed below.

<-isa backsp;ace key that can be used while typing a number. It will erase digits
from the display.

ON clears everything, the display, the state, the memory, everything. Pressing it
with the right button “turns off’ the calculator, in that it exits the program. Some-
what more equivalent to throwing the calculator in the trash, if we were to pursue
the analogy.

INV inverts the meaning of the function keys. This would be the "f' key on an HP
calculator, but xcalc does not have the resolution to display multiple legends on each
key. See the individual function keys for details.

62

Ardent Computer Corporation— Release 3.0

26 October 1988
O T o O S O M U S SV
XCALC(1) XCALC(1)

107x raises "10.0" to the number in the top of the stack. When inverted, it calculates
the log (base 10) of the number in the display.

e/x raises "e" to the number in the top of the stack. When inverted, it calcuates the
log (base e) of the number in the display.

STO copies the number in the top of the stack to a memory location. There are 10
memory locations. The desired memory is specified by following this key with
pressing a digit key.

RCL pushes the number from the specified memory location onto the stack.

SUM adds the number on top of the stack to the number in the specified memory
location.

xty exchanges the numbers in the top two stack positions.
R v rolls the stack downward. When inverted, it rolls the stack upward.

blank these keys were used for programming functions on the HP11-C. Their func-
tionality has not been duplicated here.

KEYBOARD EQUIVALENTS :
If you have the pointer in the xcalc window, you can use the keyboard to speed
entry, as almost all of the calculator keys have a keyboard equivalent. The number
keys, the operator keys, and the parentheses all have the obvious equivalent. The
less-obvious equivalents are as follows:

n +/- I x!

p: PI e: EE

I'In Ay

i: INV s: sin

C: COS t: tan

d: DRG BS, DEL: CE/C ("<-"in RPN mode)

CR: ENTR q: quit

COLOR USAGE
Xcalc uses a lot of colors, given the opportunity. -In the default case, it will just use
two colors (Foreground and Background) for everything. This works out nicely.
However, if you're a color fanatic you can specify the colors used for the number
keys, the operator (+-*/=) keys, the function keys, the display, and the icon.

X DEFAULTS

The program uses the routine XGetDefault(3X) to read defaults, so its resource names
are all capitalized.

BorderWidth
Specifies the width of the border. The default is 2.

ReverseVideo
Indicates that reverse video should be used.

Stipple Indicates that the béckground should be stippled. The default is “‘on” for
monochrome displays, and “off” for color displays.

Mode Specifies the default mode. Allowable values are rpn, analog.

Foreground
Specifies the default color used for borders and text.

Background
Specifies the default color used for the background.

Ardent Computer Corporation — Release 3.0 63

26 October 1988

XCALC(1) XCALC (1)
NKeyFore, NKeyBack (\
Specifies the colors used for the number keys.)
OKeyFore, OKeyBack
Specifies the colors used for the operator keys.
FKeyFore, FKeyBack
Specifies the colors used for the function keys.
DispFore, DispBack
Specifies the colors used for the display.
IconFore, IconBack
Specifies the colors used for the icon.
EXAMPLES
If you're running on a monochrome display, you shouldn’t need any .Xdefaults
entries for xcalc. On a color display, you might want to try the following in normal
mode:
xcalc.Foreground: Black
xcalc.Background: LightSteelBlue
xcalc.NKeyFore: Black
xcalc.NKeyBack: White
xcalc.OKeyFore: Aquamarine
xcalc.OKeyBack: DarkSlateGray
xcalc.FKeyFore: White
xcalc.FKeyBack: #900
xcalc.DispFore: Yellow (,
xcalc.DispBack: #777 -
xcalc.IconFore: Red
xcalc.JconBack: White
SEE ALSO
X(1), xrdb(1)
BUGS
The calculator doesn’t resize.
The slide rule and HP mode may or may not work correctly.
This application should really be implemented with the X Toolkit. It would make a
very good example of a compound widget.
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.
AUTHORS
John Bradley, University of Pennsylvania
Mark Rosenstein, MIT Project Athena
64 Ardent Computer Corporation— Release 3.0

XCLOCK (1)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

13 October 1988
XCLOCK (1)

xclock —analog / digital clock for X
xclock [-toolkitoption ...] [-option ...]

The xclock program displays the time in analog or digital form. The time is continu-
ously updated at a frequency which may be specified by the user. This program is
nothing more than a wrapper around the Athena Clock widget.

. Xclock accepts all of the standard X Toolkit command line options along with the

additional options listed below:

-help This option indicates that a brief summary of the allowed options should be
printed on the standard error.

—analog This option indicates that a conventional 12 hour clock face with tick marks

and hands should be used. This is the default.
—digital This option indicates that a 24 hour digital clock should be used.

—chime This option indicates that the clock should chime once on the half hour and
twice on the hour.

-hd color

This option specifies the color of the hands on an analog clock. The default
is black.

~hl color This option specifies the color of the edges of the hands on an analog clock,
and is only useful on color displays. The default is black.

—update seconds
This option specifies the frequency in seconds at which xclock should update
its display. If the clock is obscured and then exposed, it will be updated
immediately. A value of less than 30 seconds will enable a second hand on
an analog clock. The default is 60 seconds.

-padding number
This option specifies the width in pixels of the padding between the win-
dow border and clock text or picture. The default is 10 on a digital clock
and 8 on an analog clock.

The following standard X Toolkit command line arguments are commonly used with
xclock:
-bg color
This option specifies the color to use for the background of the window. The
default is white.
-bd color
This option specifies the color to use for the border of the window. The
default is black.
-bw number

This option specifies the width in pixels of the border surrounding the win-
dow.

—fg color This option specifies the color to use for displaying text. The default is black.

~fn font This option specifies the font to be used for displaying normal text. The
default is 6x10.

Ardent Computer Corporation — Release 3.0 65

13 October 1988

XCLOCK (1) XCLOCK (1)
-Iv This option indicates that reverse video should be simulated by swapping
the foreground and background colors.
—-geometry geometry
This option specifies the prefered size and position of the clock window.
~display host:display
This option specifies the X server to contact.
—Xxrm resourcestring
This option specifies a resource string to be used.
X DEFAULTS
This program uses the Clock widget in the X Toolkit. It understands all of the core
resource names and classes as well as:
width (class Width)
Specifies the width of the clock. The default for analog clocks is 164 pixels;
the default for digital clocks is whatever is needed to hold the clock when
displayed in the chosen font.
height (class Height)
Specifies the height of the clock. The default for analog clocks is 164 pixels;
the default for digital clocks is whatever is needed to hold the clock when
displayed in the chosen font.
update (class Interval)
Specifies the frequency in seconds at which the time should be redisplayed.
foreground (class Foreground)
Specifies the color for the tic marks. The default is black since the core
default for background is white.
hands (class Foreground)
Specifies the color of the insides of the clock’s hands.
highlight (class Foreground)
Specifies the color used to highlight the clock’s hands.
analog (class Boolean)
Specifies whether or not an analog clock should be used instead of a digital
one. The default is True.
chime (class Boolean)
Specifies whether or not a bell should be rung on the hour and half hour.
padding (class Margin)
Specifies the amount of internal padding in pixels to be used. The defaultis
8.
font (class Font)
Specifies the font to be used for the digital clock. Note that variable width
fonts currently will not always display correctly.
reverseVideo (class ReverseVideo)
Specifies that the foreground and background colors should be reversed.
SEE ALSO
X(1), xrdb(1), time(3C), Athena Clock widget
BUGS
Xclock believes the system clock.
66 Ardent Computer Corporation — Release 3.0

13 October 1988
]
XCLOCK (1) XCLOCK (1)

When in digital mode, the string should be centered automatically.

When specifying a time offset, the grammar requires an hours field but if only
minutes are given they will be quietly ignored. A negative offset of less than 1 hour
is treated as a positive offset.

Digital clock windows default to the analog clock size.

Border color has to be explicitly specified when reverse video is used.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
See X(1) for a full statement of rights and permissions.
AUTHORS
Tony Della Fera (MIT-Athena, DEC)
Dave Mankins (MIT-Athena, BBN)
Ed Moy (UC Berkeley)

Ardent Computer Corporation — Release 3.0 67

XDPR (1)

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO
ENVIRONMENT

COPYRIGHT

AUTHOR

X Version 11
XDPR (1)

xdpr — dump an X window directly to the printer
xdpr [-option ...]

Xdpr runs the commands xwd(1), xpr(1),and Ipr(1) to dump an X window, process it
for a laser printer, and print it out. This is the easiest way to get a printout of a win-
dow. Xdpr by default will print the largest possible representation of the window on
the output page.
-Pprinter

This option specifies the name of the printer to be used.
~display display

This option specifies the X server to contact; see X(1).

Any other arguments will be passed as arguments to the xpr(1) command.
X(1), xwd(1), xpr(1), xwud(1)
DISPLAY - for which display to use be default.

Copyright 1988, Massachusetts Institute of Technology.
Copyright 1988, Ardent Computer.
See X(1) for a full statement of rights and permissions.

Michael R. Gretzinger, MIT Project Athena
Jim Gettys, MIT Project Athena
Extended for Ardent Printer Format by Mark Patrick

68

Ardent Computer Corporation —Release 3.0

1 October 1988

XDPYINFO(1) XDPYINFO (1)
NAME
xdpyinfo — display information utility for X
SYNOPSIS
xdpyinfo [-display displayname]
DESCRIPTION
Xdpyinfo is a utility for displaying information about an X server. It is used to exam-
ine the capabilities of a server, the predefined values for various parameters used in
communicating between clients and the server, and the different types of screens and
visuals that are available.
EXAMPLE

The following shows a sample produced by xdpyinfo when connected to display that
supports an 8 plane Pseudocolor screen as well as a 1 plane (monochrome) screen.
name of display: empire:0.0

version number: 11.0

vendor string: MIT X Consortium

vendor release number: 3

maximum request size: 16384 longwords (65536 bytes)

motion buffer size: 0

bitmap unit, bit order, padding: 32, MSBFirst, 32

image bytc order: MSBFirst

keycode range: minimum 8, maximum 129

default screen number: 0

number of screens: 2

screen #0:
dimensions: 1152x900 pixels (325x254 millimeters)
resolution: 90x90 dots per inch
root window id: 0x8006d
depth of root window: 1 plane
number of colormaps: minimum 1, maximum 1
default colormap: 0x80065
default number of colormap cells: 2
preallocated pixels: black 1, white 0
options: backing-store YES, save-unders YES
current input event mask: 0x1b8003c
ButtonPressMask ButtonReleaseMask EnterWindowMask
LeaveWindowMask SubstructureNotifyMask SubstructureRedirectMask
FocusChangeMask ColormapChangeMask ~ OwnerGrabButtonMask
number of visuals: 1
default visual id: 0x80064
visual:
visualid: 0x80064
class: StaticGray
depth: 1 plane
size of colormap: 2 entries
red, green, blue masks: 0x0, 0x0, 0x0
significant bits in color specification: 1 bits

screen #1:
dimensions: 1152x900 pixels (325x254 millimeters)
resolution: 90x90 dots per inch
root