Stardent

PROGRAMMER’S
REFERENCE
MANUAL, VOL. II

Stardent Computer Inc. Part Number: 340-0122-01



Change History

340-0021-02  Original '
340-0021-03  Software Release 2.0
340-0122-01  January, 1990

Copyright © 1990
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from
the Regents of the University of California. Additional acknowledgments appear on appropriate pages of the
documentation.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permitted by the
agreement; or (c) used for any purpose not authorized by the agreement.

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD
Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) -through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™, and Titan™ are trademarks of Stardent Computer Inc. UNIX® is a registered trademark of
AT&T. VAX® is a registered trademark of Digital Equipment Corporation.



CONTENTS

2. System Calls

INTO(2) oo introduction to system calls
ACCEPL2) wrrerermrietrne e accept a connection on a socket
ACCESS(2) wvvrrrrrrrirercrniiiree s determine accessibility of file
0304V 1¢7)) SR UR U bind a name to a socket
CONNECH2) wvcvevrrriririitrieseneriesenesse s initiate a connection on a socket
AUP(2) et duplicate a descriptor
AUp2(2)(AUP) et duplicate a descriptor
flock(2) woovvervvenereriiinnns apply or remove an advisory lock on an open file
5372 16 7) O synchronize a file’s in-core state with that on disk
getdtablesize(2) ... get descriptor table size
getegid(2)(getgid) .o get group identity
SetIA(2) e s get group identity
getitimer(2) oo get/set value of interval timer
getrusage(2) ...iencriennenna, get information about resource utilization
getsOCKOPH(2) vt get and set options on sockets
KIIIPE(2) coeeerrerirreereeetesis s send signal to a process group
HSEN(2) ot listen for connections on a socket
TECV(2) vttt receive a message from a socket
recvirom(2Nrecy) ..cererersnnseesesieesennes receive a message from a socket
SElEeCt(2) v synchronous I/O multiplexing
SENA(2) wvvviririirviriiree e send a message from a socket
sendto(2)(Send) .....cceerereviiririierenieneenesnnnes send a message from a socket
setitimer(2)(getitimer) .......coevevviniiiinnenennnes get/set value of interval timer
Setregid(2) ..o set real and effective group ID
SEHIEUIA(2) .ovverreirieeirreceeree e e e eeresaaeens set real and effective user ID’s
setsockopt(2)(getsockopt) .......eveeriiivnanenns get and set options on sockets
shutdown(2) ......eeeeeeeererennn. shut down part of a full-duplex connection
SIEDIOCK(2) weviiuiiiterieieirei s block signals
sigpause(2) ....... atomically release blocked signals and wait for interrupt
SIGTEtUTIU2) wovvrriiinerereeritirer et return from signal
sigsetmask(2) ...cceereiiereenenineniee set current signal mask
SIZSLACK(2) wevecuirieirciieireteseie i set and/or get signal stack context
SIGVEC(2) wvverreerrierieie ettt software signal facilities
SOCKEH(2) wvvvvimiiriiiciisiesrrenenis create an endpoint for communication

NOTE

Entries of the form dup2(2)(dup)
indicate that the function listed
first is described in the entry for
the function given in parentheses.

Programmer’s Reference, Volume 2

Contents iii



3. Library Subroutines

INO(3) v introduction to C library functions
ADOTE(3) vt generate a fault
ADS(3) vt e ene integer absolute value
alphasort(3)(scandir) .......cieniiiveenniseniseseeeneeieeseseseenes scan a directory
ascimeB3)(Ctime) .......cuiineesenisesiissannns convert date and time to ASCII
ASSETT(3) wevverrrrnrerietenr s program verification
atof(3) v convert ASCII to numbers
atoi(3)(@tof) i convert ASCII to numbers
atol(3)(Atof) o convert ASCII to numbers
bempBHDCOPY) wvververerrrererrninerenrisseiesnneaens bit and byte string operations
bCOPY(3) et bit and byte string operations
bzero(BXDCOPY) .vvvvvvnniveriiririiiisiiiseiesiseannes bit and byte string operations
%11 Lo Tl(6) 16 o =1 (oY) NP USRI memory allocator
closedir(3)(opendir) ... directory operations
closelog(3)(SYSIOE) .t control system log
CIYPLB) vt DES encryption
CHME(3) weiriviciiiii e convert date and time to ASCII
CEYPE(3) e character classification macros
dbm_clearerr(3)(NAbm) .....ccceevivvrerreerierrererreerierneereennes data base subroutines
dbm_close(3)MAbM) .....cccvveveenenrirnrierenrecneeneneeerenes data base subroutines
dbm_delete(3)(NADMY) ..ccovvevreerereerrecererecreeeereearenees data base subroutines
dbm_error(3Y(ndbm) .......ceeeuuueee rreerrerereenr e erneraereaeene data base subroutines
dbm_fetch(3)(NADM) ..cccevvevvnerrrerereniereeenenree e seenerees data base subroutines
dbm_firstkey(3)(ndbm) .....cccovuvirrrrrvcrirniiniiiriiinnns data base subroutines
dbm_nextkey(B)(ndbm) .....ccoeeiverineniniieenes data base subroutines
dbm_open(3)(ndbm) ............. S SRS R data base subroutines
dbm_store(3)(NAbm) ......cccviveiveneenerrneienrncneeneneneennens data base subroutines
dn_compBHIESOIVEL) ..cvvevereiierieierircenintsteienenissesenns resolver routines
dn_expand(3)(reSOlVer) ...t resolver routines
ECVH(3) ittt output conversion
edata3)(_end) ..ccccenevnesernnienneesescesenesessennennens last locations in program
eNCIYPLBNCIYPL) wovveviviiiicireinirirsiiesensssssseseseans DES encryption
—€NA(B) e last locations in program
endgrent(3)(getgrent) .. get group file entry
endpwent(3)(ZetPWent) ......cceveeerirneeeiinisnssensnnnne get password file entry
endusershell(3)(getusershell) ......cooeeeinrnnrreninrnnrennnn. get legal user shells
environ(3Y(eXecl) ..ot execute a file
_etext(3)(end) i last locations in program
exec(3)execl) ..iiiinnninens prresessrsietisiasasessssdasarssnsessaresnssssssaines execute a file
EXECL(3) it e execute a file
execle(B)(EXEC]) e execute a file
eXECIPBNEXECL) vttt s execute a file
EXECHB)(EXECD) ot esa e execute a file
EXECV(B)(EXECL) wiiirvriirirreirrernrieesraeeseeesseeesaressessssessssesssnesssesssaessenens execute a file
EXECVE(B)(EXECL) cvviiierierierrenrreseeieseerreresseessesassessessessesssesssessesses execute a file

iv Contents

Programmer’s Reference, Volume 2



EXECVPBNEXEC]) currurrrieiieirecs e execute a file
exit(3) «oeverreivenenens terminate a process after flushing any pending output
FOVEBIECTVE) ceeeevrerrrrrreeiesieereecseneseesneestessnesaesssessnsssesaassasssenne output conversion
FESBHDCOPY) ceerrrrerrrenreeeineieieirrsisesees e bit and byte string operations
free(3)(MAllOC) ..vicverreneenrerrre et ene st s saeanens memory allocator
frEXP(3) covrererrrerernereisi e split into mantissa and exponent
ZEVHBNEEVE) coureertiiree s output conversion
GLENV(3) wurrrrertrrinise i value for environment name
ZEtBENt(3) ouueeererierrieer s get group file entry
getgrgid(B)(Getgrent) .o, get group file entry
getgrnam(3)(getgrent) ... get group file entry
ZEtIOZIN(B) wevveiriiieirene s get login name
GELOPH(B) wrvrre it get option letter from argv
GEPASS(3) werrrrerrirrsirnsissnr s e read a password
GEPWENL(3) coorvreerrnrierier st get password file entry
getpwnam@)(getpwent) ... get password file entry
getpwuid(3)(GetpWent) ... get password file entry
getusershell(3) c e get legal user shells
ZEtWd(3) oo get current working directory pathname
gmMtme3)(Ctime) .eevevercrmeiciiriinicinens convert date and time to ASCII
INAEX(B)(SLICAL) ..vvvirirrreerereiersrssr s string operations
initstate(3)(random) .....c.eccerecceinneennnean better random number generator
INSQUE(3) coervreeerrrrrrrresereiseise e insert/remove element from a queue
isalnum(3)(CLYPe) covvvrevererrrnnestseseneneisiseane character classification macros
15aSCIB)(CLYPE) wvvrrerrerrermmrerersiiisesisesesenenns character classification macros
FEETEA (137 F:1 11 1C) S TR find name of a terminal
Tl 0 g UC) [ (o137 o1=) RO character classification macros
SETe o 11(C)1 (17 o) OO character classification macros
isgraph(3)(CtyPe) ceveeeseesesesmscncnsencisininins character classification macros
T (0)T75 (€)1 (el 37 o =) OO PP character classification macros
iSPrint(3(CLYPe) cvovvveerrsrssesesesisercnecrsissiasisins character classification macros
IE7o100aTal{(E) (ol o) RO character classification macros
iSSPaceB)(CLYPE) wveesrerenecieiinsiisnsiisinininins character classification macros
TP eJolS () (of 4740 =) LR character classification macros
S5 Te =4 1{(C)1(¢1 7 o <) IO OO character classification macros
(6 [S1o(C)165 (51'c) RIS split into mantissa and exponent
localtime(3)(Ctime) ...coeeerneierereneienisencnnaene convert date and time to ASCII
1ongJmMP(3)(SEHMP) covvvvriusererisinsceminniisisssinissss s enssess non-local goto
MAIIOC(B) crevevererenereinrerriineritsrsiebeer sttt memory allocator
1501515 101 1(C) LTRSS make a unique file name
19 0(oTe {(C) 167 (514 o) LR UR RPN split into mantissa and exponent
moncontrol(3)(IMONILOT) ..ccvvvcrerieieirnrsrseseseasenes prepare execution profile
MONILOT(3) cvvereririiirirerrriesesnterse st es prepare execution profile
monstartup3)IMONItOr) ...cvveeeeseneivisiisinerieninnns prepare execution profile
NADINB) weiveireeereriererreneresesreseessteecaesesssssssrssssssensssessens data base subroutines
Q11511 (C ) SOOI U TSP O PP get entries from name list

Programmer’s Reference, Volume 2

Contents v



OPENir(3) ettt directory operations
openlog(3)(SYSIOE) ...euveririenrresinsarnrnsrireninssesesssenes s control system log
pclose(3)(Popen) ......eenenireeenninenenennnn. initiate I/O to/from a process
1215 8 0] (€ ) PP R system error messages
popen(3) ...ccun. et en et ensanas initiate I/O to/from a process
PSIZNAL(3) eceeerrcncesitensctonsensssennustesusassusnssassasasssnsensnenes system signal messages
GSOTE(3) critirrviniire et e e quicker sort
random(3) ... better random number generator
remd(3) .oeeeneniinnes routines for returning a stream to a remote command
readdir(3)(0pendir) ......c.coeeenieinenrnnsinnnenen directory operations
realloc(3)(Malloc) ...ceereenrninriineeee e memory allocator
re_cOmMpP(3)IEZEXP) weuvrerrrrrrerrsrsnssesssrsssssssssssananns regular expression handler
re_exec(3)(FeZEXP) wvererrerersrersresssnsnsssssnnsssassessnans regular expression handler
remque(3)(insque) ......ovevereereenennns insert/remove element from a queue
1€S_INit(B)(FESOIVEL) ..uviverrereererreeeerererceenteieeeenenene e essessennes resolver routines
res_mkquery(3)resolver) .......iniinenessneissnsissennnns resolver routines
res_SeNd(B)(IESOIVET) ...cvceeverrrieeereresrisesresreeseeensressssnseseeseses resolver routines
rewinddir(3)(Opendir) ... directory operations
FEXEC(3) crvineerinirienrsiiinenen et bensnsenes return stream to a remote command
FINAEX(B)(SHCAL) ..vovvvreiierinrcrnriiirciie e sesenes string operations

rresvport(3)(remd) routines for returning a stream to a remote command
ruserok(3)(rcmd) .. routines for returning a stream to a remote command

SCANAIT(3) ovuviiiriii e scan a directory
seekdir(3)(Opendir) ... e directory operations
setegid (3)(setttid) .oeveveeeinirinee set user and group ID
seteuid(3)(settid) ....cvmminrinienieniirc s set user and group ID
setgid(3)(setttid) «ovvvrirerrereenrieertinee e set user and group ID
setgrent(3)(ZLGIent) .....wevervcicereniesininssee st get group file entry
SEHIMNP(3) cieverieisesssasismsenesssionssmssasasenssasnassessessasssnsanssasssssssssssossne non-local goto
SEtKEY(B)(CIYPL) covvvveriirirmnitcisnsisisnesse s s ssesssssans s srees DES encryption
setlogmask(3)(SYSIOg) ...cvveueimninsninisiinieiste e control system log
setpwent(3)(ZetPWent) ......ecemeneenenninnnsinssesseenns get password file entry
setpwfile(3)(getpwent) ...coeerenenneieene get password file entry
setrgid(3)(Setuid) ....couirerrereernerniiienee e set user and group ID
setruid(3)(setuid) w....evevirerieerieeeenee e set user and group ID
setstate(3)(random) .......ceevericnieninn, better random number generator
SEtUIA(B) v e set user and group ID
setusershell(3)(getusershell) ......coiirveniveneininenenennnnns get legal user shells
siginterrupt(3) «.oooevverveieniseneennnnnens allow signals to interrupt system calls
S1EEP(3) wivriirerirrre e suspend execution for interval
srandom(3)(random) .......cceverereurrsnrrennn. better random number generator
SHCAL(3) vvreiririreriririitcie s bt string operations
SEECIP(B)(SEICAL) wovvvvrrerecrerrnireresre ettt string operations
5181 o) C) (12 (1) OISO string operations
strlen(3)(strcat) ....ooevenreerensnesenennn. et string operations
SEINCAL(3)(SLICAL) vvvieririiricrecreereeteieererse e eesererresaeeraesseeseens string operations

vi Contents

Programmer’s Reference, Volume 2



StrNCMPBHSLICAL) vvvvevrrieirieere e string operations
SENCPYBNSLICAL) vttt string operations
SWAD(B) evereirereciensiieisi s s et swap bytes
8yS_errlist(3)(PError) et system error messages
S)7£:) (0124 (C ) OSSPV OO control system log
SYS_NEIT(3)(PEITOT) wvverrrririerirsrsnse st sesesseses system error messages
sys_siglist(3)(psignal) ....cccoveorrninniiinenisecisencisensinnnes system signal messages
SYSEIMUB) wevrvverrreriieisisist et issue a shell command
telldir(3)(OPendir) ..o directory operations
timezone(3)(Ctime) .....o.eeveerererercrisnienennes convert date and time to ASCII
t0ascii(3)(CtyPe) «vvveveeereereerrrieeee e character classification macros
tOlOWEr(B)(CLYPE) wevveverreerirnreerereinsesrsnesisrsnsans character classification macros
10]07e) oS3 {(€)1(cl 5% o1 SRRSO character classification macros
HYNAME(3) ceviverciiiernerte s find name of a terminal
ttyslot(3)(HtyNamMe) ....oeveerereeerireiisisieissisiseseseieees find name of a terminal

3C. Compatibility Functions

AlarmMBQC) v schedule signal after specified time
FHMEBC)HIME) wevviveirirererereieirersterss st sevenenes get date and time
ZEtPW(BC) et FRRRR R get name from uid
Fann € {@HI(:11 37 RO set and get terminal state(defunct)
NICE(BC) it set program priority
PAUSE(BC) vttt stop until signal
FANA(BC) v random number generator
“SIgNALBC) v simplified software signal facilities
srandBO)Tand) ... random number generator
SLEY(BC) wurrerettneer e set and get terminal state(defunct)
HME(BC) vt get date and time
HMES(BC) cevevvrrveriniriiiinterer sttt sbseasees get process times
UHMEBC) crvevere vttt s b s s asn st snsnsnaes set file times
VallOC(BC) eooiieveieieeeecireerteeeeeese e etesaessvaesrnessnasnns aligned memory allocator
vHMES(3C) oovrvivciriieriiieienereienns get information about resource utilization

3N. Networking Functions

endhostent(3N)(gethostbyname) ...........ooueveeernenees get network host entry
endnetent(BN)(getnetent) ........ooevineeseneineeineniinens get network entry
endprotoent(BN)(getprotoent) ........ercnesciiisinnens get protocol entry
endservent(3N)(ZEtSEIVent) ....uweeirecennisessescsenenes get service entry
gethostbyaddr(3N)(gethostbyname) ........ccocvveeeeee get network host entry
gethostbynameBN) ..o get network host entry
gethostent(3N)(gethostbyname) .......ccoccvvirinninncs get network host entry
getnetbyaddr(3N)(getnetent) ............................................ get network entry

Programmer’s Reference, Volume 2

Contents vii



getnetbyname(BN)(getnetent) ........ccvveeenereeneinineienieennns get network entry
getnetent(BN) .....ococvvverenenas ererebe st s et rane e bs s s get network entry
getprotobyname(3N)(getprotoent) .........cceceervcrnresnnneens get protocol entry
getprotobynumber(3N)(getprotoent) .......ccoveervercirnennns get protocol entry
getprotoent(3N) ..ot get protocol entry
getservbyname(BN)(getservent) ......ovvcvnneneinesessinensinens get service entry
getservbyport(3N)(getservent) ................. et anns get service entry
getserVeNt(BN) ...cvcvieierenriristsse it e get service entry
htonl(BN) ....cccevenevee convert values between host and network byte order
htons(3N)(htonl) .... convert values between host and network byte order
INEBN) i, Internet address manipulation routines
inet_addr(3N)(inet) .....cccoeerereernn. Internet address manipulation routines
inet_Inaof(3N)(inet) .......ccocevvrennee. Internet address manipulation routines
inet_makeaddr(3N)(inet) .............. Internet address manipulation routines
inet_netof(BN)(net) ......cccceurreunne Internet address manipulation routines
inet_network(3N)(inet) ................. Internet address manipulation routines
inet_ntoa(BN)(net) .....ccoevervvnnee Internet address manipulation routines
ntohl(3N)(htonl) ..... convert values between host and network byte order
ntohs(3N)(htonl) .... convert values between host and network byte order
sethostent(3N)(gethostbyname) .......cccoeevvveriennece get network host entry
setnetent(BN)(getnetent) .......ccvvevveeerinirirersenesneieiesesennns get network entry
setprotoent(3N)(Zetprotoent) ........oencvennsnieniae get protocol entry
setservent(3N)(getservent) ......... e S6L SEIVICE ENtTY

3S. Standard I/0 Functions

clearerr(3S)(ferror) ..t stream status inquiries
£ClOSE(3S) vttt s close or flush a stream
fdopen(3S)(fOPEN) ..cccrecieiireiriissis st open a stream
feOf(BS)(FEITOT) wouvvirreririnrrrirnrerenstsrtetss s stream status inquiries
fEITOT(3S) vttt s stream status inquiries
fIuSh(3S)(fClOSE) .evvvrerrrrenrrrereressie st close or flush a stream
3551 (ol (G 15)[€=(5170) N get character or word from stream
f2etS(BS)(GELS) wrnerrermrrrnersinrrisisisisesrseier s get a string from a stream
fileno(BS)(fErTOr) ..cvvivvvrriiririniireinstress s assnes stream status inquiries
fOPEN(3S) wovverrrrerreseersntssisssnsssssssssnssnssassnssesssssssessonssnsssssassassens open a stream
fprintf(3S)(Printf) .....ovvvvevveeneieniieieiseieenas formatted output conversion
fputc(BSHPULC) weverververrerseisesisierserseenes put character or word on a stream
fputs(BS)(PULS) cvuvvererrreieieirres i put a string on a stream
fread(3S) .. buffered binary input/output
freopen(BSYIOPEN) ucvicirrererersse s open a stream
fscanf(3S)(Scant) ...ceeerrerererereinicrriniiiessesnenee formatted input conversion
£SEEK(3S) .oeuviiriciiiriii s reposition a stream
FLEll(BS)(FSLEK) cvervirerrierereenrrrrsresseeserssessensesssessessasssasssasaness reposition a stream
fwrite(3S)(fread) .....overemrennsnsrsnnenseinesinens buffered binary input/output

viii Contents

Programmer’s Reference, Volume 2



ZEtC(3S) et get character or word from stream
getchar(3S)(gete) ...owereeeireiesinecieene get character or word from stream
BEtS(3S) e get a string from a stream
ZetW(BS)HZELC) cuverreerrerrrreienretenisrnesieienes get character or word from stream
Printf(3S) o formatted output conversion
PULC(3S) et put character or word on a stream
putchar(BS)(Putc) ..eevevecececncencneisicinnnns put character or word on a stream
PULS(3S) ettt s put a string on a stream
PUtW(BS)PULC) e put character or word on a stream
rewind(3S)HESEEK) ...covvvumrriieieiieseen et reposition a stream
SCANS(3S) weevieiiicriirceee e formatted input conversion
SEDUF(BS) .eovvevrrcriiireiisesetcrereese et assign buffering to a stream
setbuffer(3S)(Setbuf) ...cveeeeecvcrricerireeeineeseeenene assign buffering to a stream
setlinebuf(3S)(setbuf) ......ccevevemeininiinicninineens assign buffering to a stream
sprintf(3S)(Printf) ...c.eeveveeveveeeriircresicicnenes formatted output conversion
sscanf(3S)(Scant) ....cocevvierererenininenininennsineseens formatted input conversion
100 HoT( 1) TR RO R standard buffered input/output package
18831=051 (1) P ORI push character back into input stream

3X. Miscellaneous Functions

curses(3X) ..cvernennrnineenns screen functions with “optimal”” cursor motion
Abminit(3X) eeevvirviiiiireririi et data base subroutines
delete@X)(ADMUNIL) oo data base subroutines
fetch(3X)(ADMUINIL) ..vevreerrerreererreereesrenereesresesnessessaenns data base subroutines
firstkey(3X)(AbMINIt) ....oveeevrreiiricscnns data base subroutines
nextkey(3X)Abminit) ....coveeeeemoniieerinciscrniiiiiiinins data base subroutines
store(BX)(ADMmInit) ...cevevverereriviereienneesen e data base subroutines
tgetent(3X) ..o terminal independent operation routines
tgetflag(3X)(tgetent) .....cccevvveneee. terminal independent operation routines
tgetnum(3X)(tgetent) ......ccoeeeeee terminal independent operation routines
tgetstr(3X)(tgetent) ......oovveeneeee. terminal independent operation routines
tgoto(3X)(tgetent) ...ccceeeeeveeneene. terminal independent operation routines
tputs(3X)(tgetent) ...ovvevervnnncnee. terminal independent operation routines

Programmer’s Reference, Volume 2

Contents ix






PERMUTED

abs(3) integer

accept(2)

a socket

of file

access(2) determine
/inet_netof(3n) Internet
flock(2) apply or remove an
specified time

valloc(3C)

valloc(3C) aligned memory
realloc(3) calloc(3) memory
calls siginterrupt(3)

scandir(3)

sigstack(2) set

on an open file flock(2)
getopt(3) get option letter from
convert date and time to
atof(3) atoi(3) atol(3) convert
ctime(3) localtime(3) gmtime(3)

/setbuffer(3S) setlinebuf(3S)
ASCII to numbers

numbers atof(3)

atof(3) atoi(3)

signals and wait for/ sigpause(2)
dbm_error(3) dbm_clearerr(3) data
firstkey(3X) nextkey(3X) data
byte string operations bcopy(3)
bit and byte string operations
/initstate(3) setstate(3)

fread(3S) fwrite(3S) buffered
bind(2)

beopy(3) bemp(3) bzero(3) ffs(3)
sigblock(2)

sigpause(2) atomically release
fread(3S) fwrite(35)

stdio(35) standard
/setlinebuf(3S) assign

values between host and network
bemp(3) bzero(3) ffs(3) bit and

INDEX

abort(3) generate a fault .......ccoveineveneneneisnienne, abort(3)
abs(3) integer absolute value ..... s abs(3)
absolute ValUe ......ccieeeieiineiiessne e snsss s s abs(3)
accept a connection on a socket accept(2)
accept(2) accept a connection on accept(2)

access(2) determine accessibility access(2)
accessibility of file .......cverieniiniinnns access(2)
address manipulation routines ..........c.cvevvenena. inet(3n)

advisory lock on an open file ......c.coovuivenevsinnnnnns flock(2)
alarm(3C) schedule signal after ........cccceuuee alarm(3C)

aligned memory allocator valloc(3C)
allocator ....cvvveiieneinenecnennieaas valloc(3C)
allocator malloc(3) free(3) ......couvevverneresereerenens malloc(3)
allow signals to interrupt system ............ siginterrupt(3)
alphasort(3) scan a directory ........ceeeenncs scandir(3)
and /or get signal stack context ........cecourveunen. sigstack(2)
apply or remove an advisory 10cK .....c.ceouiiinnne flock(2)
20 4 S O PR getopt(3)

ASCII' /asctime(3) timezone(3) ctime(3)
ASCII to NUMDELS .oveeerceieeecrcreiene e e srsssresee e snenes atof(3)
asctime(3) timezone(3) convert/ ......ceeerrreenees ctime(3)
assert(3) program verification ........cevreinennn. assert(3)
assign buffering to'a stream ........coceeverrereinnnes setbuf(35)
atof(3) atoi(3) atol(3) CONVErt ......ccoccevvvreeeveereerenenns atof(3)
atoi(3) atol(3) convert ASCII to .......civieeee atof(3)
atol(3) convert ASCII to numbers atof(3)
atomically release blocked ........ccoevveniinrnennnns sigpause(2)
base subroutines /dbm_nextkey(3) ......... dbm_open(3)
base subroutines /delete(3X) ....ccccevvvvvevrnen. dbminit(3X)
bemp(3) bzero(3) ££5(3) bit and .......cweverrrieinece. bcopy(3)
beopy(3) bemp(3) bzero(3) ffs(3) .......... veeens DCOPY(3)
better random number generator;/ random(3)
binary input/output ... fread(35)
bind a name to a SOCKEt ...cvvveereeserriinieiciinnenenes bind(2)
bind(2) bind a name to a socket ......ccoevceeriinnnnene bind(2)
bit and byte string operations .......c.ccosceveeeune. bcopy(3)
block signals ....c.ceeieieieiiininie s sigblock(2)
blocked signals and wait for/ ....... sigpause(2)
buffered binary input/output ....ccveevcieirisnnn fread(3S)
buffered input/output package .......c.coveesennunee. stdio(35)
buffering to a Stream ......cccnecnnnnniessnienns setbuf(3S)
byte order /ntohs(3n) convert ........cocovveurennes htonl(3n)
byte string operations bcopy(3) ......cccvrrrrrennen. bcopy(3)

Programmer’s Reference, Volume 2

Permuted Index xi



swab(3) swap

string/ bcopy(3) bemp(3)
intro(3) introduction to
malloc(3) free(3) realloc(3)
intro(2) introduction to system
allow signals to interrupt system
number generator; routines for
ungetc(3S) push

/toupper(3) tolower(3) toascii(3)
/fgetc(3S) getw(3S) get
/fputc(3S) putw(3S) put
tolower(3) toascii(3) character
status/ ferror(3S) feof(3S)
fclose(3S) fflush(3S)

/seekdir(3) rewinddir(3)

system log syslog(3) openlog(3)
system(3) issue a shell

return stream to a remote
returning a stream to a remote
socket(2) create an endpoint for
on a socket

accept(2) accept a

connect(2) initiate a

shut down part of a full-duplex
listen(2) listen for

set and /or get signal stack
closelog(3) setlogmask(3)
ecvt(3) fevt(3) gevt(3) output
sprintf(3S) formatted output
sscanf(3S) formatted input
atof(3) atoi(3) atol(3)
/gmtime(3) asctime(3) timezone(3)
/htons(3n) ntohl(3n) ntohs(3n)
communication socket(2)
encryption

asctime(3) timezone(3) convert/
sigsetmask(2) set

pathname getwd(3) get
optimal cursor motion

screen functions with optimal
/dbm_error(3) dbm_clearerr(3)
firstkey(3X) nextkey(3X)
time(3C) ftime(3C) get
asctime(3) timezone(3) convert
/dbm_nextkey(3) dbm_error(3)
dbm_store(3)/ dbm_open(3)
/dbm_fetch(3) dbm_store(3)
/dbm_firstkey(3) dbm_nextkey(3)
dbm_open(3) dbm_close(3)
/dbm_store(3) dbm_delete(3)
delete(3X) firstkey(3X)/
/dbm_delete(3) dbm_firstkey(3)
dbm_fetch(3) dbm_store(3)/
/dbm_close(3) dbm_fetch(3)

set and get terminal state
dbminit(3X) fetch(3X) store(3X)

DYLES oottt swab(3)

bzero(3) ffs(3) bit and byte ............. beopy(3)
C library functions ... mseeeescensesersessenns intro(3)
calloc(3) memory allocator .........ceceeerrrenuns malloc(3)
<Y ) intro(2)

calls siginterrupt(3) ......cocoeverineirinccennenne siginterrupt(3)
changing generators /random .........cccoveuuee. random(3)
character back into input stream ..... vernennes UNGeELC(3S)
character classificatio ......c.cceeeeervereennreeresnseennnns isalpha(3)
character or word from stream ......... werrerennn. GELC(3S)
character or word on a stream .........cccecevverennnen. putc(35)
classificatio /toupper(3) ......cceuue... <eeneenenns iS21Pha(3)
clearerr(35) fileno(3S) stream ..........ccoeerervrunene ferror(3S)
close or flush a stream .......ccccceeceerrevevrncrnsnneennn. fclose(3S)
closedir(3) directory operations ............ceeeuue. opendir(3)
closelog(3) setlogmask(3) control .........ccereueee syslog(3)
command ....ceenennieennnes system(3)

command rexec(3) rexec(3)

command /ruserok(3) routines for rcmd(3)
COMMUNICAtION wreereereeenrcereerereseeeeseeersesese e ssnene socket(2)

c¢onnect(2) initiate a connection ..........o.euue... connect(2)
connection on a socket accept(2)
connection on a SOCKEt .....cuceevecerverrerrseererensennen connect(2)
connection shutdown(2) ......ccceeeeemeerennnen. shutdown(2)
connections on a SOCKet ......ccvvevierevnenreneeeseeceenns listen(2)
context sigstack(2) ......eeeeeiiciiririninensnsiniacans sigstack(2)

control system log /openlog(3) ........coueerurennen. syslog(3)
(<103 N77=) 530 ( LR ecvt(3)

conversion /fprintf(3S) ......ccvvveninircernnnee. printf(3S)
conversion scanf(3S) fscanf(39) .... weeneenns SCANF(3S)
convert ASCII to nUMDErS ....cceerreeeerneeecseereneennes atof(3)
convert date and time to ASCII ..........ccceerurnnneee ctime(3)
convert values between host and/ ........c........ htonl(3n)
create an endpoint for ..., socket(2)
crypt(3) setkey(3) encrypt(3) DES .........cceeeuenne crypt(3)
ctime(3) localtime(3) gmtime(3) .......cvvrvrvrunns ctime(3)
current signal Mask ......cccoeveencenecnseinenns sigsetmask(2)
current working directory ..........onvenecenene. getwd(3)
curses(3X) screen functions with curses(3X)
cursor motion curses(3X) ......ceeerenns curses(3X)
data base subroutines ........cocoecvsnreriieneen. dbm_open(3)
data base subroutines /delete(3X) ............. dbminit(3X)
date and time ......c.cceeevveeenvernvciennnseenee e time(3C)

date and time to ASCII /gmtime(3) ........ceeeuee. ctime(3)
dbm_clearerr(3) data base/ ....... dbm_open(3)
dbm_close(3) dbm_fetch(3) ...oveeeeeeeereemeenee dbm_open(3)
dbm_delete(3) dbm_firstkey(3)/ .............. dbm_open(3)
dbm_error(3) dbm_clearerr(3) data/ ........ dbm_open(3)
dbm_fetch(3) dbm_store(3)/ .....cceveeriunen. dbm_open(3)
dbm_firstkey(3) dbm_nextkey(3)/ ........... dbm_open(3)
dbminit(3X) fetch(3X) store(3X) .......ccivuruune. dbminit(3X)
dbm_nextkey(3) dbm_error(3)/ ............... dbm_open(3)
dbm_open(3) dbm_close(3) .......ocrverieneens dbm_open(3)
dbm_store(3) dbm_delete(3)/ dbm_open(3)
(defunct) stty(3C) gtty(BC) ..cvvvvrvvrrcrercrcrennes stty(3C)
delete(3X) firstkey(3X)/ .uvvrvirrereireneneennenens dbminit(3X)

xii Permuted Index

Programmer’s Reference, Volume 2

('



crypt(3) setkey(3) encrypt(3)
dup(2) dup2(2) duplicate a
getdtablesize(2) get

access(2)

scandir(3) alphasort(3) scan a
rewinddir(3) closedir(3)
getwd(3) get current working
files in-core state with that on
routines /res send(3) res_init(3)
/res_init(3) dn_comp(3)
descriptor

dup(2)

dup(2) dup2(2)

conversion

program _end(3) _etext(3)
setregid(2) set real and
setreuid(2) set real and

insque(3) remque(3) insert/remove
crypt(3) setkey(3)

crypt(3) setkey(3) encrypt(3) DES
locations in program
/getgrnam(3) setgrent(3)
/gethostent(3n) sethostent(3n)

/ getnetbyname(3n) setnetent(3n)
socket(2) create an

entry /setprotoent(3n)
password/ /getpwnam(3) setpwent(3)
/ getservbyname(3n) setservent(3n)
getusershell(3) setusershell(3)
nlist(3) get

endgrent(3) get group file
endhostent(3n) get network host
endnetent(3n) get network
endprotoent(3n) get protocol
setpwfile(3) get password file
endservent(3n) get service
/exec(3) execve(3) exect(3)
getenv(3) value for

sys_errlist(3) sys_nerr(3) system
locations in program _end(3)
/execle(3) execlp(3) execvp(3)
execlp(3) execvp(3) exec(3)/
exec(3)/ execl(3) execv(3)
execl(3) execv(3) execle(3)

file /execvp(3) exec(3) execve(3)
execve(3) exect(3) environ(3)
sleep(3) suspend

moncontrol(3) prepare
execvp(3) exec(3)/ execl(3)
/execlp(3) execvp(3) exec(3)
/execv(3) execle(3) execlp(3)
flushing any pending output
modf(3) split into mantissa and
re_comp(3) re_exec(3) regular
sigvec(2) software signal
simplified software signal

DES encryption ... crypt(3)

deScriptor i dup(2)

descriptor table size getdtablesize(2)
determine accessibility of file ........cornrninnens access(2)
AITECLOTY oviiicictn e s scandir(3)

directory operations /seekdir(3) ........coeoveuu opendir(3)
directory pathname .........oeeesisnessesnesessesnnens getwd(3)
disk fsync(2) synchronize @ ......cveeeeeensrenceneinns fsynce(2)
dn_comp(3) dn_expand(3) resolver ...... res_mkquery(3)
dn_expand(3) resolver routines ............ res_mkquery(3)
dup(2) dup2(2) duplicate @ ....ccceenrsrsersersersessenns dup(2)
dup2(2) duplicate a descriptor ......coeseuserecsineans dup(2)
duplicate a descriptor ... dup(2)
ecvt(3) fevt(3) gevt(3) outPut wvvveceerescesiriessisinniene ecvt(3)
_edata(3) last 10cations iN .....ccevrenriresernnesinnnnns _end(3)
effective group ID setregid(2)
effective USEr IDS ...ccvvviiirerenreeseec st setreuid(2)
element from a QUEUE .....ceeeeerecernrnnseseesesensenens insque(3)
encrypt(3) DES encryption c crypt(3)
ENCIYPHON vt crypt(3)

_end(3) _etext(3) _edata(3) last ......cccccevereriniennns _end(3)
endgrent(3) get group file entry .......coccevvunee. getgrent(3)
endhostent(3n) get network host/ . gethostbyname(3n)
endnetent(3n) get network entry .............. getnetent(3n)
endpoint for communication ........comveeeisiinns socket(2)
endprotoent(3n) get protocol ................ getprotoent(3n)
endpwent(3) setpwfile(3) get ....ovvvrrerennn. getpwent(3)
endservent(3n) get service entry ........... getservent(3n)
endusershell(3) get legal user/ ............... getusershell(3)
entries from name list ....ccceevevvreinincrninnnninnnen, nlist(3)
entry /getgrnam(3) setgrent(3) getgrent(3)
entry /sethostent(3n) .....coeeveeennne gethostbyname(3n)
entry /setnetent(3n) ......oeiiinnenennnnes getnetent(3n)
entry /setprotoent(3n) .........oeeeeeniens getprotoent(3n)
entry /setpwent(3) endpwent(3) ................ getpwent(3)
entry /setservent(3n) .......eeninnns getservent(3n)
environ(3) execute a file ....cevevercniinnnininennne, execl(3)
EeNVIironment NAME .....cceevieieriinsssesnsnsene ... getenv(3)
error messages perror(3) ........ ... perror(3)
_etext(3) _edata(3) last ...cccerenee. rreerernrnee——— _end(3)
exec(3) execve(3) exect(3)/ ccovrrrerrneniirieeneennens execl(3)
execl(3) execv(3) execle(3) ...oevrreinninininiininnnene execl(3)
execle(3) execlp(3) execvp(3) execl(3)
execlp(3) execvp(3) exec(3)/ .oveureunns execl(3)
exect(3) environ(3) eXecute @ ....c.coceeniiiiniiiniienne execl(3)
execute a file /execvp(3) exec(d) ...ooierirenenne execl(3)
execution for interval ... sleep(3)

execution profile /monstartup(3) ... monitor(3)
execv(3) execle(3) execlp(3) .ovninineineinisennianes execl(3)
execve(3) exect(3) environ(3)/ ...cceeverernrenesnrennes execl(3)
execvp(3) exec(3) execve3)/ .wiiiiiniinitieien: execl(3)
exit(3) terminate a process after ..o exit(3)
exponent frexp(3) 1dexp(3) ..eeemernerninsernncnnns frexp(3)
expression handler ..., re_comp(3)
faCIliIES ot sigvec(2)

facilities signal(3C) signal(3C)

Programmer’s Reference, Volume 2

Permuted Index xiii



abort(3) generate a

flush a stream

ecvt(3)

fopen(3S) freopen(3S)

stream status/ ferror(3S)
fileno(3S) stream status/
firstkey(3X)/ dbminit(3X)
stream fclose(35)

bcopy(3) bemp(3) bzero(3)

or word/ getc(3S) getchar(3S)
stream gets(3S)

determine accessibility of
setpwfile(3) get password
setgrent(3) endgrent(3) get group
exect(3) environ(3) execute a

an advisory lock on an open
mktemp(3) make a unique
utime(3C) set

ferror(35) feof(3S) clearerr(3S)
disk fsync(2) synchronize a
ttyname(3) isatty(3) ttyslot(3)
/fetch(3X) store(3X) delete(3X)
advisory lock on an open file
fclose(35) fflush(3S) close or
exit(3) terminate a process after
open a stream

scanf(35) fscanf(3S) sscanf(35)
/fprintf(3S) sprintf(3S)

output conversion printf(3S)

or word on/ putc(3S) putchar(3S)
stream puts(3S)

binary input/output

memory allocator malloc(3)
stream fopen(3S)

into mantissa and exponent
input conversion scanf(35)
reposition a stream

in-core state with that on disk
stream fseek(3S)

: time(3C)
shutdown(2) shut down part of a
introduction to C library
motion curses(3X) screen
input/output fread(35)

ecvt(3) fevt(3)

abort(3)

rand(3C) srand(3C) random number
/ setstate(3) better random number
generator; routines for changing
getw(35) get character or word /
get character or word/ getc(3S)
table size

getgid(2)

name

“identity

getgrnam(3) setgrent(3)/

FAUI oo e s abort(3)
fclose(3S) fflush(3S) close Or .....cocveuen. fclose(3S)
fcvt(3) gevt(3) output CONVErSion .........veeceeeens ecvt(3)

fdopen(3S) open a stream ......c.oovinrisiiiisiseanes fopen(3S)
feof(3S) clearerr(3S) fileno(3S) ferror(3S)

ferror(3S) feof(35) clearerr(3S) ferror(3S)
fetch(3X) store(3X) delete(3X) .....c.couurernnnuie. dbminit(3X)
fflush(3S) close or flush a .....cccoveeeeerieriiricinnanes fclose(3S)
ffs(3) bit and byte string/ ......ccccivverevcnesnerccnnee bcopy(3)
fgetc(3S) getw(3S) get character .......ccoevennnnnee. getc(35)
fgets(3S) get a string from a ....ccevvvvevrecericccennens gets(3S)
file 2CCESS(2) .vvrvrrrerriririrrinirc s access(2)
file entry /endpwent(3) .......oceeecrecenrunennen getpwent(3)
file entry /getgrnam(3) .......ocvcriereirisscinns getgrent(3)
file /execvp(3) exec(3) execve(3d) ....covrrirerenens execl(3)
file flock(2) apply or remove .......ccoooee... cerennenn. flOCk(2)
file NAME ..ovurecrreeetcrernsrsns s mktemp(3)
file times veersnens utime(3C)
fileno(35) stream status/ ......ceereeiiciicnennes ferror(3S)
files in-core state with that On ........ccceceemerercrenece. fsync(2)
find name of a terminal ......cccoomeniivinciiniennas ttyname(3)
firstkey(3X) nextkey(3X) data/ .......c.oeeruu.e. dbminit(3X)
flock(2) apply Or remOoOVe an .......commimersnssissesens flock(2)
flush @ SEream ....cvvecrerereieieeretnersees s fclose(3S)
flushing any pending output .......ceceevvevcrveirennnn. exit(3)
fopen(3S) freopen(3S) fdopen(3S) ........oeuvveuenes fopen(3S)
formatted input conversion ...........,... scanf(3S)
formatted output CONVErSIoN ......e.emeeeeeeernnne printf(3S)
fprintf(3S) sprintf(3S) formatted .........ccoveuneneee. printf(3S)
fpute(3S) putw(3S) put character ........ocoueereneee. putc(3S)
fputs(3S) put a string on a ......eeeereerceeinenens puts(3S)
fread(3S) fwrite(3S) buffered ......... ... fread (35)
free(3) realloc(3) calloc(3) ......eu... ... malloc(3)
freopen(3S) fdopen(3S) open a .........veunieenenns fopen(3S)
frexp(3) Idexp(3) modf(3) split .....ccrvrvererrerurinnnen frexp(3)
fscanf(3S) sscanf(35S) formatted .........cocvvuurenneee. scanf(3S)
fseek(3S) ftell(3S) rewind(3S) fseek(3S)
fsync(2) synchronize a files ........cocovveirvevnencccrnens fsync(2)
ftell(3S) rewind(3S5) reposition a fseek(3S)
ftime(3C) get date and time ......ccoeevemverrecenrnnes time(3C)
full-duplex connection shutdown(2)
functions iNtro(3) ....ccveeeereeneveenirecnieeneeies intro(3)
functions with optimal cursor ..........coceuueneee. curses(3X)
fwrite(3S) buffered binary ........ccviniiinnne. fread(35)
gcvt(3) output CONVEISION ....cvvcvcviecrienssiereesensesnns ecvt(3)
generateé a fault .......... e abort(3)
2050 (T3 10 OO rand(3C)
generator; routines for changing/ ................. random(3)
generators /better random number ............. random(3)
getc(3S) getchar(35) fgetc(3S) .....ovuneveeereneennnas getc(3S)
getchar(35) fgetc(3S) getw(3S). ...uuvervevvenerenennnnas getc(35)
getdtablesize(2) get descriptor .............. getdtablesize(2)
getegid(2) get group identity ........cccveervrenninees getgid(2)
getenv(3) value for environment cerennenns g€LENV(3)
getgid(2) getegid(2) get group ...ovriveenerenes getgid(2)
getgrent(3) getgrgid(3) ...ooreevenrirercnnrenncn, getgrent(3)

xiv Permuted Index

Programmer’s Reference, Volume 2

(



setgrent(3)/ getgrent(3)

getgrent(3) getgrgid(3)
sethostent(3n)/ gethostbyname(3n)
gethostbyaddr(3n) gethostent(3n)/
endhostent(3n)/ /gethostbyaddr(3n)
value of interval timer

setnetent(3n)/ getnetent(3n)
getnetent(3n) getnetbyaddr(3n)
getnetbyname(3n) setnetent(3n)/
argv

/ getprotobynumber(3n)
getprotoent(3n)
getprotobynumber(3n)/

getpwnam(3) setpwent(3)/
getpwent(3) getpwuid(3)
setpwent(3)/ getpwent(3)

about resource utilization

from a stream

getservent(3n) getservbyport(3n)
getservbyname(3n)/ getservent(3n)
getservbyname(3n) setservent(3n)/
getitimer(2) setitimer(2)

and set options on sockets
endusershell(3) get legal user/
getc(3S) getchar(35) fgetc(3S)
directory pathname

convert/ ctime(3) localtime(3)
setjmp(3) longjmp(3) non-local
setgrent(3) endgrent(3) get
setrgid(3) set user and

set real and effective

getgid(2) getegid(2) get

send signal to a process

state (defunct) stty(3C)

re_exec(3) regular expression
/ntohs(3n) convert values between
endhostent(3n) get network
ntohs(3n) convert values between/
convert values between/ htonl(3n)
setrgid(3) set user and group

set real and effective group
getgid(2) getegid(2) get group

set real and effective user

fsync(2) synchronize a files
/tgoto(3X) tputs(3X) terminal
/strcpy(3) strnepy(3) strlen(3)
inet_network(3n) inet_ntoa(3n)/
inet_ntoa(3n)/ inet(3n)
/inet_ntoa(3n) inet_makeaddr(3n)
/inet_network(3n) inet_ntoa(3n)
/inet_makeaddr(3n) inet_Inaof(3n)
inet(3n) inet_addr(3n)
/inet_addr(3n) inet_network(3n)

getgrgid(3) getgrnam(3) ......eeeenieinnnnnenns getgrent(3)
getgrnam(3) setgrent(3)/ ...cvennnenenninnns getgrent(3)
gethostbyaddr(3n) gethostent(3n) .. gethostbyname(3n)
gethostbyname(3n) .....ccceverecnecnece. gethostbyname(3n)
gethostent(3n) sethostent(3n) .......... gethostbyname(3n)
getitimer(2) setitimer(2) get/set .....cccccnuuuuee getitimer(2)
getlogin(3) get login name .......ccocvereirnnrenens getlogin(3)
getnetbyaddr(3n) getnetbyname(3n) ........ getnetent(3n)
getnetbyname(3n) setnetent(3n)/ ............. getnetent(3n)
getnetent(3n) getnetbyaddr(3n) ............... getnetent(3n)

getopt(3) get option letter from .......cccccveurrun. getopt(3)
getpass(3) read a password ........coeeeieenenns getpass(3)
getprotobyname(3n)/ ........ooueeuee .... getprotoent(3n)
getprotobynumber(3n)/ .....coeeeereinennene getprotoent(3n)
getprotoent(3n) ........verreerneneeeresenns getprotoent(3n)
getpw(3C) get name from uid .....cccoeeereenennnns getpw(3C)
getpwent(3) getpwuid(3) ....cccirrerinininnnns getpwent(3)
getpwnam(3) setpwent(3)/ ......cccvvurerreninnn. getpwent(3)
getpwuid(3) getpwnam(3) ....coveineininnnns getpwent(3)
getrusage(2) get information ....................... getrusage(2)
gets(35) fgets(3S) get @ String ...oveeoveveseeerseinnns gets(3S)
getservbyname(3n) setservent(3n)/ ........ getservent(3n)
getservbyport(3n) ....weneinsenesnnrensienns getservent(3n)
getservent(3n) getservbyport(3n) ........... getservent(3n)
get/set value of interval timer .........cccceeeee... getitimer(2)
getsockopt(2) setsockopt(2) get ......coerennne getsockopt(2)
getusershell(3) setusershell(3) ........ .. getusershell(3)
getw(3S) get character or word/ ...c.ccveierncn. getc(35)
getwd(3) get current working ........cceeeeeneennns getwd(3)
gmtime(3) asctime(3) timezone(3) ..........cevvvnenees ctime(3)
GOLO e setjmp(3)

group file entry /getgrnam(3) ........cccecvvennens getgrent(3)
group ID /setgid(3) setegid(3) .......ccoumrrvrrirrnas setuid(3)
group ID setregid(2) setregid(2)
group identity ..o getgid(2)
23 Co1CN o 111 of -4 72 OO killpg(2)

gtty(3C) set and get terminal .......coeueceviiinneens stty(3C)
handler re_comp(3) ....cccouvinnirinnriesennnnennns re_comp(3)
host and network byte order ........cceerverernennn htonl(3n)
host entry /sethostent(3n) .............. gethostbyname(3n)
htonl(3n) htons(3n) ntohl(3n) .......ccccvmevvrvenenas htonl(3n)
htons(3n) ntohl(3n) ntohs(3n) ......ccccervervrenennes htonl(3n)
ID /setgid(3) setegid(3) .....cveererverserenserersnnnns setuid(3)
ID setregid(2) setregid(2)

1Ta 1341514 VS PSPPI getgid(2)

IDs setretid(2) ....oeeoemeereinrnsssesscssissiscisne e setreuid(2)

in-core state with that on disk ....c.ccceevveiriniiennnnns fsync(2)
independent operation routings ...........eu... tgetent(3X)
index(3) rindex(3) string/ ....oucvseriesrrenesesins strcat(3)
inet(3n) inet_addr(3n) ..., inet(3n)
inet_addr(3n) inet_network(3n) .......ccocevveeveens inet(3n)
inet_Inaof(3n) inet_netof(3n)/ .....cceceverevrrerrcneenn inet(3n)

inet_makeaddr(3n) inet_Inaof(3n)/ ......ccvveene inet(3n)
inet_netof(3n) Internet address/ ...........ceewenn.. inet(3n)
inet_network(3n) inet_ntoa(3n)/ .......... weeeens INEL(3N)
inet_ntoa(3n) inet_makeaddr(3n)/ ......ccocevuruuene. inet(3n)

Programmer’s Reference, Volume 2

Permuted Index xv



utilization getrusage(2) get
utilization vtimes(3C) get
connect(2)

popen(3) pclose(3)

random/ random(3) srandom(3)
fscanf(35) sscanf(35) formatted
push character back into
fwrite(3S) buffered binary
stdio(3S) standard buffered
fileno(3S) stream status

queue insque(3) remque(3)
element from a queue

abs(3)

/inet_lnaof(3n) inet_netof(3n)
blocked signals and wait for
siginterrupt(3) allow signals to
sleep(3) suspend execution for
setitimer(2) get/set value of
calls

library functions

functions intro(3)

intro(2)

select(2) synchronous

popen(3) pclose(3) initiate
/islower(3) isdigit(3) isxdigit(3)
isdigit(3) isxdigit(3)/
/isprint(3) isgraph(3) iscntrl(3)
a terminal ttyname(3)
/ispunct(3) isprint(3) isgraph(3)
isalpha(3) isupper(3) islower(3)
/isspace(3) ispunct(3) isprint(3)
isalnum(3)/ isalpha(3) isupper(3)

/isalnum(3) isspace(3) ispunct(3).

/isxdigit(3) isalnum(3) isspace(3)
/isdigit(3) isxdigit(3) isalnum(3)
system(3)

isxdigit(3)/ isalpha(3)
/isupper(3) islower(3) isdigit(3)
process group

mantissa and exponent frexp(3)
/endusershell(3) get

getopt(3) get option

intro(3) introduction to C
nlist(3) get entries from name
socket listen(2)

on a socket

timezone(3) convert/ ctime(3)
_end(3) - etext(3) _edata(3) last
apply or remove an advisory
setlogmask(3) control system
getlogin(3) get

setjmp(3)

calloc(3) memory allocator
/inet_netof(3n) Internet address
1dexp(3) modf(3) split into
sigsetmask(2) set current signal

information about resource getrusage(2)
information about resource .........ccocoervverienne vtimes(3C)
initiate a connection on a socket .......cccceeerennnne connect(2)
initiate I/O to/from a process ..........ceeveruerenn. popen(3)
initstate(3) setstate(3) better ........ocerevvrienennns random(3)
input conversion scanf(3S) ........coeerrrerrererinrunns scanf(35)

input stream ungetc(35) ungetc(3S)
input/output fread(3S) fread(3S)
input/output package .......ccouernerenrenrerssensessnnnns stdio(3S)
inquiries /feof(35) clearerr(3S) ferror(3S)

insert/remove element from a insque(3)
insque(3) remque(3) insert/remove ................. insque(3)
integer absolute Value .......coeirecnnivennncnennnns abs(3)
Internet address manipulation/ .......ccooenenene inet(3n)
interrupt /atomically release .........ccceeenuues sigpause(2)
interrupt system calls siginterrupt(3)
INEEIVAL ottt s sleep(3)
interval timer getitimer(2) ......cococvvreeernnnne. getitimer(2)
intro(2) introduction to system ........ccceceuiurernnnnes intro(2)

intro(3) introduction to C intro(3)
introduction to C library ‘ intro(3)
introduction to system calls ........ccovvremreeeieecnnns intro(2)
I/0 multipleXing .....ovuiveennnreernessirensness e select(2)
[/0 to/from a process ......ccovnecssessnsesassnnenns popen(3)
isalnum(3) isspace(3) ispunct(3)/ isalpha(3)
isalpha(3) isupper(3) islower(3) ........ isalpha(3)
isascii(3) toupper(3) tolower(3)/ isalpha(3)
-isatty(3) ttyslot(3) find name of .......ccovueunnees ttyname(3)
isentrl(3) isascii(3) toupper(3)/ ....coverereennnns isalpha(3)
isdigit(3) isxdigit(3) isalnum(3)/ .......cccvimumneee. isalpha(3)
isgraph(3) iscntrl(3) isascii(3)/ ........cservsrennennsn isalpha(3d)
islower(3) isdigit(3) isxdigit(3) ......creeirrrrinruns isalpha(3)
isprint(3) isgraph(3) isentrl(3)/ ...occceevrvcrrenenns isalpha(3)
ispunct(3) isprint(3) isgraph(3)/ ........ce.c.eeun... isalpha(3)
isspace(3) ispunct(3) isprint(3)/ ....cueeverrennenns isalpha(3)
issue a shell command .......cvuveecincncnns — system(3)
isupper(3) islower(3) isdigit(3) ............... .... isalpha(3)
isxdigit(3) isalnum(3) isspace(3)/ .......... .... isalpha(3)
killpg(2) send signal to @ .....coevevvncrsenssenienenes killpg(2)

1dexp(3) modf(3) split into ......ccverveevecnrcreniarinnne frexp(3)
legal user shells ......cooerieesseseisninisiinnns getusershell(3)
letter frOM ArGV ..cvreeirreeerecreeees s getopt(3)
library functions ........eeeceeeissnsssesssnnee s intro(3)
TSt ciecinccics R (13 -1 {(C)]
listen for connections ON a ......ce.ceeeeeeseeenns ... listen(2)

listen(2)

listen(2) listen for connections .
... ctime(3)

localtime(3) gmtime(3) asctime(3) .......

locations in Program ..., _end(3)
lock on an open file flock(2) .....cccccveirrieneeniescncnnes flock(2)
log /openlog(3) closelog(3) .........cc.ce.. JET—— syslog(3)
1OGIN NAME ..t getlogin(3)
longjmp(3) non-local §oto ...ccvrierriresseirissrnsenes setjmp(3)
malloc(3) free(3) realloc(3) ........ «.... malloc(3)
manipulation routines ......uveocnsnnincn inet(3n)
mantissa and exponent frexp(3) .......ccooeeeeinernnns frexp(3)
MASK eovrereiisissstnn s sigsetmask(2)

xvi Permuted Index

Programmer’s Reference, Volume 2

(



valloc(3C) aligned

free(3) realloc(3) calloc(3)
recv(2) recvfrom(2) receive a
send(2) sendto(2) send a
sys_siglist(3) system signal
sys_nerr(3) system error

exponent frexp(3) ldexp(3)
profile monitor(3) monstartup(3)
moncontrol(3) prepare execution/
prepare execution/ monitor(3)
functions with optimal cursor
select(2) synchronous I/O
getenv(3) value for environment
getlogin(3) get login

mktemp(3) make a unique file
getpw(3C) get

nlist(3) get entries from

isatty(3) ttyslot(3) find

bind(2) bind a

convert values between host and
setnetent(3n) endnetent(3n) get
/sethostent(3n) endhostent(3n) get
/store(3X) delete(3X) firstkey(3X)

list

setjmp(3) longjmp(3)

values/ htonl(3n) htons(3n)
htonl(3n) htons(3n) ntohl(3n)
rand(3C) srand(3C) random
/setstate(3) better random
atoi(3) atol(3) convert ASCII to
fopen(3S) freopen(3S) fdopen(3S)
or remove an advisory lock on an
seekdir(3) rewinddir(3)/
setlogmask(3) control/ syslog(3)
tputs(3X) terminal independent
ffs(3) bit and byte string
closedir(3) directory

index(3) rindex(3) string
curses(3X) screen functions with
getopt(3) get

setsockopt(2) get and set
between host and network byte
ecvt(3) fevt(3) gevt(3)

fprintf(3S) sprintf(3S) formatted
after flushing any pending
standard buffered input/output
shutdown(2) shut down
getpass(3) read a

endpwent(3) setpwfile(3) get

get current working directory

process popen(3)
a process after flushing any
sys_nerr(3) system error/

memory allocator ..., valloc(3C)
memory allocator malloc(3) ......eviieerennes malloc(3)
message from a SOCKet w....cvveercereercrnisinisessesnsans recv(2)
message from a socket ..., send(2)
messages psignal(3) .......... e psignal(3)
messages /sys_errlist(3) .....cvveveriennrinnesennens perror(3)
mktemp(3) make a unique file name ............ mktemp(3)
modf(3) split into mantissa and .........ceeerreernnnnn frexp(3)
moncontrol(3) prepare execution ...........ee... monitor(3)
monitor(3) monstartup(3) «.ccceeveverervernninienens monitor(3)
monstartup(3) moncontrol(3) ......ceeeeeereens monitor(3)
motion curses(3X) screen ........cueees vereeennns CUrses(3X)
MUIIPIEXING vveerrirerireeee st select(2)
(F=Y (OO getenv(3)
name getlogin(3)
name mktemp(3)
name from Uid ....eennenresnines s getpw(3C)
NAME JISt vttt nlist(3)
name of a terminal ttyname(3) ......ccovvevrnnene ttyname(3)
Name t0 @ SOCKEL ...ccviivcereinerirriirensivensessnsessssesnsens bind(2)
network byte order /ntohs(3n) ......cevureeeereen. htonl(3n)
network entry /getnetbyname(3n) .......... getnetent(3n)
network host entry ..., gethostbyname(3n)
nextkey(3X) data base subroutines ............. dbminit(3X)
nice(3C) set program priority ....oceeosesvesssessenses nice(3C)
nlist(3) get entries from NAME .....cccvrverirerenseinnnenne nlist(3)
NOoN-10cal GOt . e setjmp(3)
ntohl(3n) ntohs(3n) CONVErt .....ccevvreevrieecrenes htonl(3n)
ntohs(3n) convert values between/ .......ccceevune htonl(3n)
NUMDET GENETALOL ..vvvveererereersisstsnsssssssssssnesens rand(3C)
number generator; routines for/ ................ random(3)
numbers atof(3) ... atof(3)
OPEN @ SITEAIMN w.vuvreiecinerenser s beessssssssessssssas fopen(3S)
open file flock(2) apply ..cceevvereerrrcririrenrsnesnsnanens flock(2)
opendir(3) readdir(3) telldir(3) ........... .... opendir(3)
openlog(3) closelog(3) ...cummmneeinrinrseinissienenns syslog(3)
operation routines /tgoto(3X) .......cceceserrenn. tgetent(3X)
operations /bemp(3) bzero(3) ......ceeeeeiveurenrennes bcopy(3)
operations /rewinddir(3) .....cccoeeinminesnisnine opendir(3)
operations /strncpy(3) strlen(3) ......ccovirnenees strcat(3)
optimal cursor Motion .....uecnnnincsnesninns curses(3X)
option letter from argyv .....cvenneserneisssnns getopt(3)
options on sockets getsockopt(2) ............. getsockopt(2)
order /ntohs(3n) convert values .......ccceeeevennee htonl(3n)
OUtPUL CONVEISION ovvrrenecrsrinnrernnrresessessessesessasenssins ecvt(3)
output conversion printf(3S) printf(35)
output /terminate a Process ........cuemsiniine exit(3)
package stdio(35) . stdio(3S)
part of a full-duplex connection ................. shutdown(2)
PASSWOI covvvieririsere st st getpass(3)
password file entry /setpwent(3) getpwent(3)
pathname getwd(3) .omrrnrnnennerisesisesseses getwd(3)
pause(3C) stop until signal ......coeveeneeeernecnnns pause(3C)
pclose(3) initiate I/O to/from a .....cccovercevenvrnnes popen(3)
pending output exit(3) terminate .........owreeenees exit(3)
perror(3) sys_errlist(3) ...ocorenenniisinsniniinenns perror(3)

Programmer’s Reference, Volume 2

Permuted Index xvii



to/from a process
/monstartup(3) moncontrol(3)
sprintf(3S) formatted output/
nice(3C) set program

pending/ exit(3) terminate a
killpg(2) send signal to a
pclose(3) initiate /O to/from a
times(3C) get

moncontrol(3) prepare execution
endprotoent(3n) get

signal messages

stream ungetc(3S)

puts(3S) fputs(35)

/putchar(3S) fputc(3S) putw(3S)
putw(3S) put character or word/
put character or word/ putc(35)
on a stream

a/ putc(3S) putchar(3S) fpute(3S)

insert/remove element from a
gsort(3)

generator

rand(3C) srand(3C)

/initstate(3) setstate(3) better
setstate(3) better random number/
routines for returning a stream/
getpass(3)

rewinddir(3)/ opendir(3)
setregid(2) set

setreuid(2) set

allocator malloc(3) free(3)
recv(2) recvirom(2)

expression handler

message from a socket

from a socket recv(2)

handler re_comp(3)
re_comp(3) re_exec(3)

for/ sigpause(2) atomically
rexec(3) return stream to a

for returning a stream to a

open file flock(2) apply or

from a queue insque(3)
fseek(3S) ftell(3S) rewind(35)
res_mkquery(3) res_send(3)
res_init(3) dn_comp(3)/
dn_comp(3) dn_expand(3)

/get information about
vtimes(3C) get information about
dn_comp(3)/ res_mkquery(3)
sigreturn(2)

rexec(3)

command /ruserok(3) routines for
fseek(3S) ftell(3S)

/readdir(3) telldir(3) seekdir(3)
remote command

. /strncpy(3) strlen(3) index(3)

popen(3) pclose(3) initiate I/O oo popen(3)
prepare execution profile monitor(3)
printf(3S) fprintf(3S) ..mmeviinner e printf(3S)
2251 15 2 OO nice(3C)

process after flushing any ... exit(3)
PIOCESS GIOUD wevurncurevssssssessessenseseass killpg(2)
process popen(3) popen(3)
PrOCess tMES .ucverirvrinsee s times(3C)
profile monitor(3) monstartup(3) ........ccoeeunees monitor(3)
protocol entry /setprotoent(3n) ........... getprotoent(3n)
psignal(3) sys_siglist(3) system .........coovuenenns psignal(3)
push character back into input ungetc(35)
put a string on a Stream ........cooevenesisiinninssinnns puts(3S)
put character or word on a stream putc(3S)
putc(3S) putchar(3S) fputc(3S) putc(3S)
putchar(3S) fpute(3S) putw(3S) putc(3S)
puts(3S) fputs(3S) put a String .....cecverecessinrnniens puts(3S)
putw(3S) put character or word on .......coovueueen. putc(3S)
gsort(3) quicker SOTt ... gsort(3)

queue insque(3) remque(3) ... insque(3)
1o 1LV 53 f8-To) o Z RO PP gsort(3)

rand(3C) srand(3C) random number ............... rand (3C)
random number generator .........rssseeenes rand(3C)
random number generator; routines/ ........... random(3)
random(3) srandom(3) initstate(3) ........cecevee. random(3)
remd(3) rresvport(3) ruserok(3) ........... remd(3)
read a passWord .....eeeressninnnes N getpass(3)
readdir(3) telldir(3) seekdir(3) ......ccoceerrerennne. opendir(3)
real and effective group ID ......cceu.e.e. setregid(2)
real and effective user IDs ................... setreuid(2)
realloc(3) calloc(3) MEemMOrY .....ecvveerernennnseenenes malloc(3)
receive a message from a socket .....oerveirncnennn. recv(2)
re_comp(3) re_exec(3) regular ......... .. re_comp(3)
recv(2) recvirom(2) receive a ......wvevesesnisensiesenens recv(2)
recvirom(2) receive a MeSSage .....ovvuerssesssesseseas recv(2)
re_exec(3) regular expression ...... weuee T&_comp(3)
regular expression handler ........c.cccuuenians re_comp(3)
release blocked signals and wait ........cccoeune. sigpause(2)
remote COMMAN ..covierereenererensnraseiessseeen s sssnns rexec(3)
remote command /routines ... remd(3)
remove an advisory lock on an .........eerennns flock(2)
remque(3) insert/remove element .....cocveeeninees insque(3)
TEPOSItION & SLICAM .evvvvseusesreserssnssrssissssissssssesens fseek(3S)
res_init(3) dn_comp(3)/ .ccoeveenmrernnrreneneans res_mkquery(3)
res_mkquery(3) res_send(3) .......cueeens res_mkquery(3)
resolver routines /res_init(3) .......ccveune res_mkquery(3)
resource Utilization ..., getrusage(2)
resource utilization ..., cererennninn VEINES(3C)
res_send(3) res_init(3) res_mkquery(3)
return from signal e sigreturn(2)
return stream to a remote command ................. rexec(3)
returning a stream t0 a reMOte ...occvevvrrrcccsnriinans remd(3)
rewind(3S) reposition a stream ..........ouicnens fseek(3S)
rewinddir(3) closedir(3)/ ....ccveerrrrerrnrecrrsrnsinns opendir(3)
rexec(3) return Stream to @ .......cociecernnsesisennennens rexec(3)
rindex(3) string operations ........ueesieneens strcat(3)

xviii Permuted Index

Programmer’s Reference, Volume 2



/better random number generator;
remd(3) rresvport(3) ruserok(3)
Internet address manipulation
dn_comp(3) dn_expand(3) resolver
terminal independent operation
for returning a stream/ remd(3)

a stream to/ rcemd(3) rresvport(3)
scandir(3) alphasort(3)

directory

formatted input conversion

time alarm(3C)

cursor motion curses(3X)
opendir(3) readdir(3) telldir(3)
multiplexing

send(2) sendto(2)

killpg(2)

from a socket

socket send(2)

setservent(3n) endservent(3n) get
(defunct) stty(3C) gtty(3C)
context sigstack(2)

sigsetmask(2)

utime(3C)

/setsockopt(2) get and

nice(3C)

setregid(2)

setreuid(2)

setgid(3) setegid(3) setrgid(3)
setlinebuf(35) assign buffering/
assign buffering to a/ setbuf(35)
/seteuid(3) setruid(3) setgid(3)
setegid(3) setrgid(3)/ setuid(3)
setuid(3) seteuid(3) setruid(3)
file/ /getgrgid(3) getgrnam(3)

/ gethostbyaddr(3n) gethostent(3n)
interval timer getitimer(2)

goto

encryption crypt(3)

to a/ setbuf(3S) setbuffer(3S)
syslog(3) openlog(3) closelog(3)
/getnetbyaddr(3n) getnetbyname(3n)
get protocol/ /getprotobyname(3n)
/getpwuid(3) getpwnam(3)

entry /setpwent(3) endpwent(3)
effective group ID

effective user IDs

/setruid(3) setgid(3) setegid(3)
setrgid(3)/ setuid(3) seteuid(3)
service entry /getservbyname(3n)
on sockets getsockopt(2)
random(3) srandom(3) initstate(3)
setgid(3) setegid(3) setrgid(3)/
get legal user/ getusershell(3)
system(3) issue a

endusershell(3) get legal user
connection shutdown(2)

routines for changing generators ........c.cccuuu. random(3)
routines for returning a stream/ remd(3)
routines /inet netof(3n) ......ceevvveveenerenne. inet(3n)
routines /res_send(3) res_init(3) .......... res_mkquery(3)
routines /tgoto(3X) tputs(3X) .....ceerrcvrennunes tgetent(3X)
rresvport(3) ruserok(3) routines ..........ccceverereen. remd(3)
ruserok(3) routines for returning .........cooeveeuue. remd(3)
sCan @ dir€CtOTY wovvevireerrirereceers e e scandir(3)
scandir(3) alphasort(3) scan a ......ccccvceivirunans scandir(3)
scanf(3S) fscanf(3S) sscanf(3S) .......cccovveverinnenns scanf(3S)
schedule signal after specified .......c.ccccoverinnan. alarm(3C)
screen functions with optimal .........ccccccoeeue. curses(3X)
seekdir(3) rewinddir(3)/ ..cocveeeveiveeeieeeene opendir(3)
select(2) synchronous I/O ..., select(2)
send a message from a SOcKet .......c.cccovevrrverserinns send(2)
send signal to a process group .........ceeeeeeeesernenns killpg(2)
send(2) sendto(2) send a message ..........ceeeereren. send(2)
sendto(2) send a message from a .......ccceeueeuvereunes send(2)
service entry /getservbyname(3n) ......... getservent(3n)
set and get terminal state ..., stty(3C)
set and/or get signal stack .......cccceceereeeciennns sigstack(2)
set current signal mask sigsetmask(2)
set file times ... utime(3C)
set options on sockets getsockopt(2)
set program Priority .. nice(3C)
set real and effective group ID .........ccceuuuneee. setregid(2)
set real and effective user IDs ........ccoevvirinnnne setreuid(2)
set user and group ID /setruid(3) ........ccvuinee. setuid(3)
setbuf(3S) setbuffer(3S) ......cvvvnvcivicriininns setbuf(35)
setbuffer(3S) setlinebuf(3S) setbuf(3S)
setegid(3) setrgid(3) set user/ ... setuid(3)
seteuid(3) setruid(3) setgid(3) ......couvvivrirennes setuid(3)
setgid(3) setegid(3) setrgid(3)/ .....cccovvrvirrrrunne setuid(3)
setgrent(3) endgrent(3) get group ......eccvennee getgrent(3)

sethostent(3n) endhostent(3n) get/ gethostbyname(3n)

setitimer(2) get/set value of ......................... getitimer(2)
setjmp(3) longjmp(3) non-local ........ccecvevennee. setjmp(3)
setkey(3) encrypt(3) DES ......covvrvcrvvvircninnens crypt(3)
setlinebuf(3S) assign buffering ............. setbuf(35)
setlogmask(3) control system 10g ......cccceevcueens syslog(3)
setnetent(3n) endnetent(3n) get/ ............. getnetent(3n)
setprotoent(3n) endprotoent(3n) ........... getprotoent(3n)
setpwent(3) endpwent(3)/ .....ccccvvuervrrunnen. getpwent(3)
setpwfile(3) get password file .......ccccecenuee. getpwent(3)
setregid(2) set real and ..........oceveereniciiininenns setregid(2)
setreuid(2) set real and .......cccceeveveeieirerecreene setreuid(2)
setrgid(3) set user and group ID setuid(3)
setruid(3) setgid(3) setegid(3) .....cccevvrvrrrrrerirnne setuid(3)
setservent(3n) endservent(3n) get ........... getservent(3n)
setsockopt(2) get and set options .............. getsockopt(2)
setstate(3) better random number/ ............... random(3)
setuid(3) seteuid(3) setruid(3) ..ccvvvvivrvreriernnns setuid(3)
setusershell(3) endusershell(3) .......cuc..... getusershell(3)
shell command .....ccoevvevrevieine e system(3)
shells /setusershell(3) .vvveeveeevcerereenenee getusershell(3)
shut down part of a full-duplex ................. shutdown(2)

Programmer’s Reference, Volume 2

Permuted Index xix



full-duplex connection

interrupt system calls
pause(3C) stop until
sigreturn(2) return from
alarm(3C) schedule
signal(3C) simplified software
sigvec(2) software
sigsetmask(2) set current
psignal(3) sys_siglist(3) system
sigstack(2) set and/or get
killpg(2) send

signal facilities

sigblock(2) block

/atomically release blocked
siginterrupt(3) allow

blocked signals and wait for/

mask

stack context

facilities

facilities signal(3C)

get descriptor table

interval

bind(2) bind a name to a

accept a connection on a
initiate a connection on a

listen for connections on a
receive a message from a
sendto(2) send a message from a
communication

get and set options on
signal(3C) simplified

sigvec(2)

gsort(3) quicker

alarm(3C) schedule signal after
frexp(3) ldexp(3) mod£(3)
printf(3S) fprintf(3S)

rand(3C)

setstate(3) better/ random(3)
conversion scanf(3S) fscanf(35)
sigstack(2) set and /or get signal
package stdio(35)

clearerr(3S) fileno(3S) stream
input/output package
pause(3C)

dbminit(3X) fetch(3X)
strnemp(3) strepy(3) strnepy(3)/
strncpy(3)/ strcat(3) strncat(3)
/strncat(3) stremp(3) strnemp(3)
fflush(35) close or flush a

get character or word from
freopen(3S) fdopen(3S) open a
put character or word on a
ftell(3S) rewind(3S) reposition a
fgets(3S) get a string from a

shutdown(2) shut down part of a .............. shutdown(2)

sigblock(2) block signals ........ccceerearessenreans sigblock(2)
siginterrupt(3) allow signals to ............... siginterrupt(3)
SIGNAL cocvrrrneceresri s pause(3C)
5373 (F- 1 PRV sigreturn(2)

signal after specified time ......ccccocoeinerecrerennne alarm(3C)

signal facilities .........ccoennenens SR signal(3C)
signal facilities ........ccoueunuce. SR, sigvec(2)
signal mask .......c.......... vereeseresn st aerssnerans sigsetmask(2)
signal messages .......... et psignal(3)
signal stack context ............... S sigstack(2)
signal to @ process Group ......oesesmssssssssesivsesnenns killpg(2)
signal(3C) simplified software .........cccceuveeee. signal(3C)
SIZNALS weeeeesen et sigblock(2)
signals and wait for interrupt sigpause(2)
signals to interrupt system calls .............. siginterrupt(3)
sigpause(2) atomically release sigpause(2)
sigreturn(2) return from signal sigreturn(2)
sigsetmask(2) set current signal ................ sigsetmask(2)
sigstack(2) set and /or get signal ..........coccvunee sigstack(2)
sigvec(2) software signal ........ceereecnensennnnennns sigvec(2)
simplified software signal .........cccocomieieincrnns signal(3C)
size getdtablesize(2) .....covvevivecrenenenne getdtablesize(2)
sleep(3) suspend execution for ........ceomresesseencs sleep(3)
10 Te] OO bind(2)
socket acCePt(2) ...ouveeerrenecimrnensininen s accept(2)
socket connect(2) connect(2)
socket LSten(2) ....ueemrrnnnnmnessssnnsenenseenecnse listen(2)
socket recv(2) recvfrom(2) recv(2)
socket SENA(2) w.cvrirrnsesnsnesisnsessesseseens send(2)
socket(2) create an endpoint for .......coeereeenrnens socket(2)
sockets /setsockopt(2) ..occcvevrsiiesrrsesencnne. getsockopt(2)
software signal facilities .........cooovoveereercinnennns signal(3C)
software signal facilities .......ocecvvsisneesnsnenescnnns sigvec(2)
10} o SISO gsort(3)
specified tme .....overineininesnnieesn e alarm(3C)
split into mantissa and exponent ..........coeeruuse. frexp(3)
sprintf(3S) formatted output/ ....ocovecreeueens printf(3S)
srand(3C) random number generator .............. rand(3C)
srandom(3) initstate(3) ......cceeseisereesiisenes random(3)
sscanf(3S) formatted input .......coevvvveeencricrinnn scanf(3S)
StaCK CONLEXL .ovurrcrenernrnrnsre st st sigstack(2)
standard buffered input/output .....ccccereerene.. 5tdio(35)
status inquiries /feof(3S) ....vvriirniniinnninnes ferror(3S)
stdio(3S) standard buffered ........ccccccovvvrviiianicnn. stdio(3S)
Stop UNtil SIGNAL wuuurrevvrerrressrs s sessss e essenees pause(3C)
store(3X) delete(3X) firstkey(3X)/ .ccoverrernae dbminit(3X)
strcat(3) strncat(3) stremp(3) cuveeneeeerereeninnneuiennens strcat(3)
stremp(3) strnemp(3) Strepy(3) weoeeeevneneniinsinnnnnns strcat(3)
strepy(3) strncpy(3) strlen(3)/ wcveeveosvisissiiis strcat(3)
stream fcloSe(3S) .urmmmnmminrnninisenninenensenenas fclose(35)
stream /fgetc(3S) getw(3S) .o getc(35)
stream fOPen(3S) .ot fopen(3S)
stream /fputc(3S) putw(3S) putc(35)
stream fSeek(3S) ...cvmrimrenresrinrienisineen e fseek(3S)
stream ets(3S) ...vvermenensie it gets(3S)

xx Permuted Index

Programmer’s Reference, Volume 2



fputs(3S) put a stringon a
assign buffering to a

/feof(3S) clearerr(35) fileno(35)
/routines for returning a
rexec(3) return

push character back into input
gets(3S) fgets(3S) get a

puts(3S) fputs(3S) put a
bzero(3) ffs(3) bit and byte
strlen(3) index(3) rindex(3)
/strnemp(3) strepy(3) strncpy(3)
strepy(3) strnepy(3)/ strcat(3)
strcat(3) strncat(3) stremp(3)
/stremp(3) strnemp(3) strepy(3)
terminal state (defunct)
dbm_clearerr(3) data base
nextkey(3X) data base

sleep(3)

swab(3)

with that on disk fsync(2)
select(2)

error messages perror(3)
setlogmask(3) control system log
perror(3) sys_errlist(3)

messages psignal(3)

intro(2) introduction to

allow signals to interrupt
sys_errlist(3) sys_nerr(3)
closelog(3) setlogmask(3) control
psignal(3) sys_siglist(3)

getdtablesize(2) get descriptor
opendir(3) readdir(3)
/tgetstr(3X) tgoto(3X) tputs(3X)
stty(3C) gtty(3C) set and get
ttyslot(3) find name of a
flushing any pending/ exit(3)
tgetflag(3X) tgetstr(3X)/
tgetent(3X) tgetnum(3X)
tgetstr(3X)/ tgetent(3X)
/tgetnum(3X) tgetflag(3X)
/tgetflag(3X) tgetstr(3X)

time

get/set value of interval
times(3C) get process
utime(3C) set file

/localtime(3) gmtime(3) asctime(3)
isascii(3) toupper(3) tolower(3)
popen(3) pclose(3) initiate I/O
/isentrl(3) isascii(3) toupper(3)

/isgraph(3) iscntrl(3) isascii(3)
operation/ /tgetstr(3X) tgoto(3X)
find name of a terminal

terminal ttyname(3) isatty(3)

stream puts(3S) .o puts(3S)
stream /setlinebuf(3S) ....cceevneerivcercennecennennne setbuf(3S)
stream status INQUITIES ......oeeevevnrieeiiesivninicnnene ferror(3S)
stream to a remote command .......ceeererierseeneens remd(3)

stream to a remote command .....cceverrerereenenes rexec(3)

stream ungetc(3S) ...oeevrieriennns .... ungetc(3S)
string from a Stream .......cccovnicnnnnesneeens gets(35)
String On a Stream ......ceecinesnmne s puts(3S)
string operations /bemp(3) ...ceeiinineisiininnenenns bcopy(3)
string operations /strncpy(3) c..eeeveiresiscennnes strcat(3)
strlen(3) index(3) rindex(3)/ strcat(3)
strncat(3) stremp(3) strnemp(3) .oveeevveenennneneenes strcat(3)
strnemp(3) strepy(3) strncpyB)/ woevveveeiiennnes strcat(3)
strnepy(3) strlen(3) index(3)/ wovvvevveeenieniereereenes strcat(3)
stty(3C) gtty(3C) set and get ..cceerirecrrnenereneeens stty(3C)
subroutines /dbm_error(3) .......cocerenenes dbm_open(3)
subroutines /firstkey(3X) .....ccvvuvierreninnens dbminit(3X)
suspend execution for interval ........ccoviensesnenns sleep(3)
swab(3) sSwap Dytes ......cwiivnininninnnscneenes swab(3)
SWAP DYLES ottt swab(3)
synchronize a files in-core state ...........cc.... fsync(2)
synchronous I/O multiplexing .......... select(2)
sys_errlist(3) sys_nerr(3) system ..........coccreerenees perror(3)
syslog(3) openlog(3) closelog(3) .....ouvereriuen. syslog(3)
sys_nerr(3) system error messages <vnene pPerTOr(3)
sys_siglist(3) system signal ......cocoucvesinienens psignal(3)
SYStem Calls ..o intro(2)
system calls siginterrupt(3) .......cceeveenee siginterrupt(3)
system error messages perror(3) ... perror(3)
system log syslog(3) openlog(3) ............ ... syslog(3)
system signal mMessages .........euenrserisesserennnnes psignal(3)
system(3) issue a shell command ........ccceeenee system(3)
table SiZe ..o getdtablesize(2)
telldir(3) seekdir(3)/ .coenrirvrierenirereiinnes opendir(3)
terminal independent operation/ tgetent(3X)
terminal state (defunct) ......ceeveinnniinenenn stty(3C)
terminal ttyname(3) isatty(3) ttyname(3)
terminate a process after ... exit(3)
tgetent(3X) tgetnum(3X) tgetent(3X)
tgetflag(3X) tgetstr(3X)/ tgetent(3X)
tgetnum(3X) tgetflag(BX) .ovevirienirneininninne tgetent(3X)
tgetstr(3X) tgoto(3X) tputsBX)/ evvereriereinns tgetent(3X)
tgoto(3X) tputs(3X) terminal/ ....coevmeunsens tgetent(3X)
time(3C) ftime(3C) get date and .......coveeveereenees time(3C)
timer getitimer(2) setitimer(2) .....c.coeeveues getitimer(2)
times wereennnee times(3C)
HINMES oottt e utime(3C)
times(3C) get process times .......cveereeriesennes times(3C)
timezone(3) convert date and time/ .....ccccceeeucee ctime(3)
toascii(3) character/ /iscntrl(3) ....cccoeeennne isalpha(3)
£0/frOM @ PrOCESS wovvrmrriaesrsessersesseisesssssesessne popen(3)
tolower(3) toascii(3) character/ ......ccevveveeennne isalpha(3)
toupper(3) tolower(3) t0ascii(3)/ ....cveereneen. isalpha(3)
tputs(3X) terminal independent ... ... tgetent(3X)
ttyname(3) isatty(3) ttyslot(3) .......... ..... ttyname(3)
ttyslot(3) find name of @ ...ovvviviiesisiecennc ttyname(3)

Programmer’s Reference, Volume 2

Permuted Index xxi



getpw(3C) get name from

into input stream

mktemp(3) make a

pause(3C) stop

setegid(3) setrgid(3) set

set real and effective
endusershell(3) get legal

get information about resource
get information about resource

allocator

abs(3) integer absolute
getenv(3)

getitimer(2) setitimer(2) get/set
byte/ /ntohl(3n) ntohs(3n) convert
assert(3) program

resource utilization

release blocked signals and
getw(3S) get character or
putw(3S) put character or
getwd(3) get current

15 L R ST getpw(3C)
ungetc(3S) push character back ungetc(35)

unique file name mktemp(3)
until signal ... pause(3C)
user and group ID /setgid(3) ......cocoeurerrreenee. setuid(3)
user IDs setretid(2) .....ccocvrencenniiincnsennenenns setreuid(2)
user shells /setusershell(3) ........cccoouesuuns getusershell(3)
utilization getrusage(2) .......ccoverienenrennne. getrusage(2)
utilization vtimes(3C) ....vvveviiiiriiiienniincnns vtimes(3C)
utime(3C) set file times ........... SO, utime(3C)
valloc(3C) aligned memory .... IR valloc(3C)
ValUe ..ottt renr s s abs(3)
value for environment name ..........oe.oeeveeueereens. getenv(3)
value of interval tmer ......ccvvvererererereeriesnnens getitimer(2)
values between host and network .........ceeeuee htonl(3n)
Verfication ..euceevescerceteeee e assert(3)
vtimes(3C) get information about .........c....... vtimes(3C)
wait for interrupt /atomically ........cocverunnen. sigpause(2)
word from stream /fgetc(3S) .....cocoeerinreineenennnns getc(3S)
word on a stream /fputc(35) .ueeeveesererssnnenens putc(3S)
working directory pathname .......cccceconurnnnnae. getwd(3)

xXii

Permuted Index

Programmer’s Reference, Volume 2

()



sttem Calls—BSD

INTRO(2) INTRO(2)
NAME
intro — introduction to system calls
SYNOPSIS
#include <sys/errno.h>
DESCRIPTION
This section describes some of the 4.3BSD system calls. The calls listed below have
been incorporated in Volume 1 (in section 2) of the Programmer’s Reference Manual.
Most of these calls have one or more error returns. Anerror condition is indicated by
an otherwise impossible return value. This is almost always —1; some of the BSD sys-
tem calls are implemented in the library. Note that a number of system calls over-
load the meanings of these error numbers, and that the meanings must be interpreted
according to the type and circumstances of the call.
acct.2 getpid.2 read.2
brk.2 gettimeofday.2 - readlink.2
chdir.2 getuid.2 rename.2
chmod.2 ioctl.2 rmdir.2
chown.2 kill.2 setpgrp.2
chroot.2 link.2 stat.2
close.2 Iseek.2 symlink.2
creat.2 mkdir.2 sync.2
execve.2 mknod.2 truncate.2
exit.2 mount.2 umask.2
fentl.2 open.2 unlink.2
fork.2 pipe.2 wait.2
gethostname.2 profil.2 write.2
getpgrp.2 ptrace.2
SEE ALSO
intro(3), perror(3)

Stardent 1500/3000 1



ACCEPT(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

SEE ALSO

v System Calls—BSD
ACCEPT(2)

accept — accept a connection on a socket

#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
intns, s;

struct sockaddr *addr;

int *addrlen;

The argument s is a socket that has been created with socket(2), bound to an address
with bind(2), and is listening for connections after a listen(2). Accept extracts the first
connection on the queue of pending connections, creates a new socket with the same
properties of s and allocates a new file descriptor, ns, for the socket. If no pending
connections are present on the queue, and the socket is not marked as non-blocking,
accept blocks the caller until a connection is present. If the socket is marked non-
blocking and no pending connections are present on the queue, accept returns an
error as described below. The accepted socket, ns, may not be used to accept more
connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the con-
necting entity, as known to the communications layer. The exact format of the addr
parameter is determined by the domain in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of space
pointed to by addr; on return it will contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for
read.

The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a
descriptor for the accepted socket.

accept fails if:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.

[EFAULT] The addr parameter is not in a writable part of the user address
space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are
present to be accepted.

bind(2), connect(2), listen(2), select(2), socket(2)

Stardent 1500/3000

('



RETURN VALUE

ERRORS

SEE ALSO

System Calls—BSD

R A ]
ACCESS(2) ACCESS (2)
NAME

access — determine accessibility of file
SYNOPSIS

#include <sys/file.h>

#define R_OK 4  /*test for read permission */

#define W_OK 2 /* test for write permission */

#define X_OK 1 /#* test for execute (search) permission */

#define F_OK 0  /*test for presence of file */

accessible = access(path, mode)

int accessible;

char *path;

int mode;
DESCRIPTION

access checks the given file path for accessibility according to mode, which is an
inclusive or of the bits R_OK, W_OK, and X_OK. Specifying mode as F_OK (i.e., 0)
tests whether the directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in
verifying permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by
access, but an attempt to open it for writing fails (although files may be created there);
a file may look executable, but execve fails unless it is in proper format.

If path cannot be found or if any of the desired access modes would not be granted,
then a -1 value is returned; otherwise a 0 value is returned.

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the path-
name.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that
is being executed.

[EACCES] Permission bits of the file mode do not permit the requested access,
or search permission is denied on a component of the path prefix.
The owner of a file has permission checked with respect to the
“owner”” read, write, and execute mode bits, members of the file’s
group other than the owner have permission checked with respect
to the “group”” mode bits, and all others have permissions checked
with respect to the “other” mode bits.

[EFAULT] path points outside the process’s allocated address space.

[EIO] An1/0O error occurred while reading from or writing to the file sys-
tem.

chmod(2), stat(2)

Stardent 1500/3000



BIND(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

SEE ALSO

System Calls—BSD
BIND (2)

bind - bind a name to a socket

#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
ints;

struct sockaddr *name;
int namelen;

bind assigns a name to an unnamed socket. When a socket is created with socket(2) it
exists in a name space (address family) but has no name assigned. Bind requests that
name be assigned to the socket.

The rules used in name binding vary between communication domains. Consult the
manual entries in section 4 for detailed information.

If the bind is successful, a 0 value is returned. A return value of -1 indicates an error,
which is further specified in the global errno.

The bind call fails if:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.
[EINVAL] The socket is already bound to an address.

[EACCES] The requested address is protected, and the current user has
inadequate permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address
space.

connect(2), listen(2), socket(2), getsockname(2)

Stardent 1500/3000

(



st’tem Calls—-BSD

CONNECT(2) CONNECT(2)
NAME

connect — initiate a connection on a socket
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

connect(s, name, namelen)

ints;

struct sockaddr *name;

int namelen;
DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies the
peer with which the socket is to be associated; this address is that to which
datagrams are to be sent, and the only address from which datagrams are to be
received. If the socket is of type SOCK_STREAM, then this call attempts to make a
connection to another socket. The other socket is specified by name, which is an
address in the communications space of the socket. Each communications space
interprets the name parameter in its own way. Generally, stream sockets may suc-
cessfully connect only once; datagram sockets may use connect multiple times to
change their association. Datagram sockets may dissolve the association by connect-
ing to an invalid address, such as a null address.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned,
and a more specific error code is stored in errno.

ERRORS
The connect call fails if:
[EBADF] s is not a valid descriptor.
[ENOTSOCK] s is a descriptor for a file, not a socket.
[EADDRNOTAVAIL]
The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with
this socket.
[EISCONN] The socket is already connected.
[ETIMEDOUT] Connection establishment timed out without establishing a
connection.
[ECONNREFUSED] The attempt to connect was forcefully rejected.
[ENETUNREACH] The network isn’t reachable from this host.
[EADDRINUSE] The address is already in use.
[EFAULT] The name parameter specifies an area outside the process
address space.
SEE ALSO

accept(2), select(2), socket(2), getsockname(2)

Stardent 1500/3000 5



sttem Calls-BSD

DUP(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

SEE ALSO

DUP(2)

dup, dup?2 - duplicate a descriptor

newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

Dup duplicates an existing object descriptor. The argument oldd is a small non-
negative integer index in the per-process descriptor table. The value must be less
than the size of the table, which is returned by getdtablesize(2). The new descriptor
returned by the call, newd, is the lowest numbered descriptor that is not currently in
use by the process.

The object referenced by the descriptor does not distinguish between references
using oldd and newd in any way. Thus if newd and oldd are duplicate references to an
open file, read (2), write(2) and Iseek(2) calls all move a single pointer into the file, and
append mode, non-blocking I/O and asynchronous I/O options are shared between
the references. If a separate pointer into the file is desired, a different object reference
to the file must be obtained by issuing an additional open(2) call. The close-on-exec
flag on the new file descriptor is unset.

In the second form of the call, the value of newd desired is specified. If this descriptor
is already in use, the descriptor is first deallocated as if a close(2) call had been done
first.

The value -1 is returned if an error occurs in either call. The external variable errno
indicates the cause of the error.

Dup and dup? fail if:
[EBADF] Oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

accept(2), open(2), close(2), fentl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

Stardent 1500/3000

(

(w



. sttem Calls-BSD
FLOCK(2) FLOCK (2)

NAME
flock — apply or remove an advisory lock on an open file

SYNOPSIS
#include <sys/file.h>

#define LOCK_SH
#define LOCK_EX

#define LOCK_NB
#define LOCK_UN

/* shared lock */

/* exclusive lock */

/* don’t block when locking */
[+ unlock */

DN

flock(fd, operation)
int £d, operation;

DESCRIPTION
flock applies or removes an advisory lock on the file associated with the file descriptor
fd. Alock is applied by specifying an operation parameter that is the inclusive or of
LOCK_SH or LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock opera-
tion should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files,
but do not guarantee consistency (i.e., processes may still access files without using
advisory locks possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks.
At any time multiple shared locks may be applied to a file, but at no time are multi-
ple exclusive, or both shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by speci-
fying the appropriate lock type; this results in the previous lock being released and
the new lock applied (possibly after other processes have gained and released the
lock).

Requesting a lock on an object that is already locked normally causes the caller to be

blocked until the lock may be acquired. If LOCK_NB is included in operation, then

this will not happen; instead the call will fail and the error EACCES will be returned.
NOTES

Locks are on files, not file descriptors. That is, file descriptors duplicated through

dup(2) or fork(2) do not result in multiple instances of a lock, but rather multiple

references to a single lock. If a process holding a lock on a file forks and the child
explicitly unlocks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE

Zero is returned if the operation was successful; on an error a -1 is returned and an
error code is left in the global location errno.

ERRORS
The flock call fails if:
[EACCES] The file is locked and the LOCK_NB option was specified.
[EBADF] The argument fd is an invalid descriptor.
[EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)

Stardent 1500/3000 7



FSYNC(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

System Calls—BSD
FSYNC(2)

fsync — synchronize a file’s in-core state with that on disk

fsync(fd)
int £d;

fsync causes all modified data and attributes of fd to be moved to a permanent
storage device. This normally results in all in-core modified copies of buffers for the
associated file to be written to a disk.

fsync should be used by programs that require a file to be in a known state, for exam-
ple, in building a simple transaction facility.

A 0 value is returned on success. A -1 value indicates an error.

ERRORS
The fsync fails if:
[EBADF] Fd is not a valid descriptor.
[EIO] An I/0O error occurred while reading from or writing to the file sys-
tem.
SEE ALSO
sync(2), sync(1M)
8 Stardent 1500/3000

(



System Calls—BSD

GETDTABLESIZE (2) GETDTABLESIZE (2)
NAME
getdtablesize — get descriptor table size
SYNOPSIS
nfds = getdtablesize()
int nfds;
DESCRIPTION
Each process has a fixed size descriptor table, which is guaranteed to have at least 20
slots. The entries in the descriptor table are numbered with small integers starting at
0. The call getdtablesize returns the size of this table.
SEE ALSO

close(2), dup(2), open(2), select(2)

Stardent 1500/3000 9



GETGID(2)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

System Calls—BSD
GETGID(2)

getgid, getegid — get group identity

#include <sys/types.h>

gid = getgid()
gid_t gid;

egid = getegid()
gid_t egid;

getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permis-
sion during execution of a “set-group-ID” process, and it is for such processes that
getgid is most useful.

getuid(2), setregid(2), setgid(3)

10

Stardent 1500/3000



GETITIMER(2)

NAME

SYNOPSIS

DESCRIPTION

'NOTES

RETURN VALUE

System Calls—-BSD

GETITIMER (2)
getitimer, setitimer — get/set value of interval timer
#include <sys/time.h>
#define ITIMER_REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

getitimer(which, value)
int which;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *#value, *ovalue;

The system provides each process with three interval timers, defined in <sys/time.h>.
The getitimer call returns the current value for the timer specified in which in the
structure at value. The setitimer call sets a timer to the specified value (returning the
previous value of the timer if ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
3
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is
non-zero, it specifies a value to be used in reloading it_value when the timer expires.
Setting it_value to 0 disables a timer. Setting it_interval to 0 causes a timer to be dis-
abled after its next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution (on the VAX, 10 milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered
when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the sys-
tem is running on behalf of the process. It is designed to be used by interpreters in
statistically profiling the execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROF signal is delivered. Because this signal
may interrupt in-progress system calls, programs using this timer must be prepared
to restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear
sets a time value to zero, timerisset tests if a time value is non-zero, and timercmp com-
pares two time values (beware that >= and <= do not work with this macro).

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is
returned, and a more precise error code is placed in the global variable errno.

Stardent 1500/3000

11



System Calls—BSD

GETITIMER(2) GETITIMER (2)
ERRORS
The possible errors are:
[EFAULT] The value parameter specified a bad address.
[EINVAL] A value parameter specified a time was too large to be handled.
SEE ALSO
sigvec(2), gettimeofday(2)
12

Stardent 1500/3000



GETRUSAGE(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls—BSD
GETRUSAGE (2)

getrusage — get information about resource utilization

#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0 /* calling process */
#define RUSAGE_CHILDREN -1 /* terminated child processes */

getrusage(who, rusage)
int who;
struct rusage *rusage;

getrusage returns information describing the resources utilized by the current process,
or all its terminated child processes. The who parameter is one of RUSAGE_SELF or
RUSAGE_CHILDREN. The buffer to which rusage points is filled in with the follow-
ing structure:

struct rusage {
struct timeval ru_utime;  /* user time used */
struct timeval ru_stime; ~ /* system time used */
int ru_maxrss;

int  ru_ixrss; /* integral shared text memory size */
int  ru_idrss; /* integral unshared data size */
int  ru_isrss; /* integral unshared stack size */
int  ru_minflt; /* page reclaims */

int  ru_maijflt; /* page faults */

int  ru_nswap; /* swaps */

int  ru_inblock; /* block input operations */

int ru_oublock; /* block output operations */

int  ru_msgsnd; /* messages sent */

int  ru_msgrev; /* messages received */

int ru_nsignals; /* signals received */

int  ru_nvecsw; /* voluntary context switches */
int ru_nivesw; /* involuntary context switches * /

b

The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode.

ru_stime the total amount of time spent in the system executing on behalf of
the process(es).

ru_maxrss the maximum resident set size utilized (in kilobytes).

ru_ixrss an “integral’” value indicating the amount of memory used by the

text segment that was also shared among other processes. This
value is expressed in units of kilobytes * seconds-of-execution and is
calculated by summing the number of shared memory pages in use
each time the internal system clock ticks and then averaging over 1
second intervals.

ru_idrss an integral value of the amount of unshared memory residing in the
data segment of a process (expressed in units of kilobytes *
seconds-of-execution).

Stardent 1500/3000

13



System Calls—BSD ‘
' GETRUSAGE(2)

GETRUSAGE(2)

ru_isrss an integral value of the amount of unshared memory residing in the
stack segment of a process (expressed in units of kilobytes *
seconds-of-execution).

ru_minflt the number of page faults serviced without any I/O activity; here
I/0 activity is avoided by “reclaiming’” a page frame from the list of
pages awaiting reallocation.

ru_maijflt the number of page faults serviced that required I/O activity.

ru_nswap the number of times a process was “swapped” out of main memory.

ru_inblock the number of times the file system had to perform input.
ru_outblock the number of times the file system had to perform output.
ru_msgsnd the number of IPC messages sent.

ru_msgrcv the number of IPC messages received.

ru_nsignals the number of signals delivered.

Iu_nvesw the number of times a context switch resulted due to a process
voluntarily giving up the processor before its time slice was com-
pleted (usually to await availability of a resource).

ru_nivesw the number of times a context switch resulted due to a higher prior-
ity process becoming runnable or because the current process
exceeded its time slice.

NOTES
The numbers ru_inblock and ru_outblock account only for real I/O; data supplied by
the caching mechanism is charged only to the first process to read or write the data.
ERRORS

The possible errors for getrusage are:

[EINVAL] The who parameter is not a valid value.

[EFAULT] The address specified by the rusage parameter is not in a valid part
of the process address space.

SEE ALSO
gettimeofday(2), wait(2)
BUGS

There is no way to obtain information about a child process that has not yet ter-

minated.

14 Stardent 1500/3000



GETSOCKOPT(2)

NAME

SYNOPSIS

DESCRIPTION

May 23, 1986 _
GETSOCKOPT(2)

getsockopt, setsockopt — get and set options on sockets

#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
ints, level, optname;

char *optval;

int optlen;

Getsockopt and setsockopt manipulate options associated with a socket. Options may
exist at multiple protocol levels; they are always present at the uppermost “socket”
level.

When manipulating socket options the level at which the option resides and the
name of the option must be specified. To manipulate options at the “socket” level,
level is specified as SOL_SOCKET. To manipulate options at any other level the pro-
tocol number of the appropriate protocol controlling the option is supplied. For
example, to indicate that an option is to be interpreted by the TCP protocol, level
should be set to the protocol number of TCP; see getprotoent (3N).

The parameters optval and optlen are used to access option values for setsockopt. For
getsockopt they identify a buffer in which the value for the requested option(s) are to
be returned. For getsockopt, optlen is a value-result parameter, initially containing the
size of the buffer pointed to by optval, and modified on return to indicate the actual
size of the value returned. If no option value is to be supplied or returned, optval
may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate pro-
tocol module for interpretation. The include file <sys/socket.h> contains definitions
for “socket” level options, described below. Options at other protocol levels vary in
format and name; consult the appropriate entries in section (4P).

Most socket-level options take an int parameter for optval. For setsockopt, the parame-
ter should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <sys/socket.h>, which specifies
the desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may
be examined with gefsockopt and set with sefsockopt.

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse

SO_KEEPALIVE  toggle keep connections alive

SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data present

SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

SO_SNDBUF set buffer size for output
SO_RCVBUF set buffer size for input
SO_TYPE get the type of the socket (get only)

Stardent 1500/3000

15



GETSOCKOPT(2)

RETURN VALUE

ERRORS

SEE ALSO

BUGS

May 23, 1986
- ' GETSOCKOPT(2)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the wunderlying protocol modules.
SO_REUSEADDR indicates that the rules used in validating addresses supplied in a
bind(2) call should allow reuse of local addresses. SO_KEEPALIVE enables the
periodic transmission of messages on a connected socket. Should the connected
party fail to respond to these messages, the connection is considered broken and
processes using the socket are notified via a SIGPIPE signal. SO_DONTROUTE indi-
cates that outgoing messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface according to the network
portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket
and a close(2) is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close attempt until it is
able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when
SO_LINGER is requested). If SO_LINGER is disabled and a close is issued, the system
will process the close in a manner that allows the process to continue as quickly as
possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on
the socket. Broadcast was a privileged operation in earlier versions of the system.
With protocols that support out-of-band data, the SO_OOBINLINE option requests
that out-of-band data be placed in the normal data input queue as received; it will
then be accessible with recv or read calls without the MSG_OOB flag. SO_SNDBUF
and SO_RCVBUF are options to adjust the normal buffer sizes allocated for output
and input buffers, respectively. The buffer size may be increased for high-volume
connections, or may be decreased to limit the possible backlog of incoming data. The
system places an absolute limit on these values. Finally, SO_TYPE and SO_ERROR
are options used only with setsockopt. SO_TYPE returns the type of the socket, such
as SOCK_STREAM; it is useful for servers that inherit sockets on startup.
SO_ERROR returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram sockets or for
other asynchronous errors.

A 0is returned if the call succeeds, -1 if it fails.

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT]  The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the

process address space. For getsockopt, this error may also be
returned if optlen is not in a valid part of the process address
space.

ioctl(2), socket(2), getprotoent(3N)

Several of the socket options should be handled at lower levels of the system.

16

Stardent 1500/3000



System Calls—BSD

KILLPG (2) KILLPG(2)
NAME
killpg — send signal to a process group
SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;
DESCRIPTION

killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective
user ID, or the sender must be the super-user. As a single special case the continue
signal SIGCONT may be sent to any process that is a descendant of the current pro-
cess.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and the global variable errno is set to indicate the error.

ERRORS

killpg fails and no signal is sent if any of the following occur:

[EINVAL] sig is not a valid signal number.

[ESRCH] No process can be found in the process group specified by pgrp.

[ESRCH] The process group was given as 0 but the sending process does not
have a process group.

[EPERM] The sending process is not the super-user and one or more of the
target processes has an effective user ID different from that of the
sending process.

SEE ALSO

kill(2), getpgrp(2), sigvec(2)

Stardent 1500/3000 17



sttem Calls—BSD

LISTEN(2) LISTEN(2)
NAME
listen — listen for connections on a socket
SYNOPSIS
listen(s, backlog)
int s, backlog;
DESCRIPTION
To accept connections, a socket is first created with socket(2), a willingness to accept
incoming connections and a queue limit for incoming connections are specified with
listen(2), and then the connections are accepted with accept(2). The listen call applies
only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.
The backlog parameter defines the maximum length the queue of pending connec-
tions may grow to. If a connection request arrives with the queue full the client may
receive an error with an indication of ECONNREFUSED, or, if the underlying proto-
col supports retransmission, the request may be ignored so that retries may succeed.
RETURN VALUE
A 0 return value indicates success; -1 indicates an error.
ERRORS
The call fails if:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that supports the operation listen.
SEE ALSO :
accept(2), connect(2), socket(2)
BUGS
The backlog is currently limited (silently) to 5.
18 Stardent 1500/3000



System Calls—BSD

RECV(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

SEE ALSO

RECV(2)

recv, recvfrom — receive a message from a socket

#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;

char *buf;

int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char *buf;

int len, flags;

struct sockaddr *from;

int *fromlen;

recv and recvfrom are used to receive messages from a socket.

The recv call is normally used only on a connected socket (see connect(2)), while
recvfrom may be used to receive data on a socket whether it is in a connected state or
not.

If from is non-zero, the source address of the message is filled in. fromlen is a value-
result parameter, initialized to the size of the buffer associated with from, and
modified on return to indicate the actual size of the address stored there. The length
of the message is returned in cc. If a message is too long to fit in the supplied buffer,
excess bytes may be discarded depending on the type of socket the message is
received from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking (see ioct/(2)) in which case a cc of -1 is
returned with the external variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

Thé flags argument to a recv call is formed by or’ing one or more of the values,
#define MSG_OOB 0x1  /#* process out-of-band data */

These calls return the number of bytes received, or -1 if an error occurred.

The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation
would block.

[EINTR] The receive was interrupted by delivery of a signal before any
data was available for the receive.

[EFAULT] The data was specified to be received into a non-existent or

protected part of the process address space.

fentl(2), read(2), send(2), select(2), getsockopt(2), socket(2)

Stardent 1500/3000

19



System Calls—BSD
SELECT(2) SELECT(2)

NAME (
select — synchronous I/O multiplexing :
SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set *readfds, *writefds, *exceptfds;

struct timeval *timeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD_ZERO(&fdset)
int £d;

fd_set fdset;

DESCRIPTION

select examines the 1/O descriptor sets whose addresses are passed in readfds, wri-
tefds, and exceptfds to see if some of their descriptors are ready for reading, are ready
for writing, or have an exceptional condition pending, respectively. The first nfds
descriptors are checked in each set; i.e. the descriptors from 0 through nfds-1 in the
descriptor sets are examined. On return, select replaces the given descriptor sets with
subsets consisting of those descriptors that are ready for the requested operation.
The total number of ready descriptors in all the sets is returned in nfound .

The descriptor sets are stored as bit fields in arrays of integers. The following macros
are provided for manipulating such descriptor sets: FD_ZERO(&fdset) initializes a (
descriptor set fdset to the null set. FD_SET(fd, &fdset) includes a particular descriptor

fd in fdset. FD_CLR(fd, &fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is nonzero

if fd is a member of fdset, zero otherwise. The behavior of these macros is undefined

if a descriptor value is less than zero or greater than or equal to FD_SETSIZE, which

is normally at least equal to the maximum number of descriptors supported by the

system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selec-
tion to complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a
poll, the timeout argument should be non-zero, pointing to a zero-valued timeval
structure.

Any of readfds, writefds, and exceptfds may be given as zero pointers if no descriptors
are of interest.

RETURN VALUE

select returns the number of ready descriptors that are contained in the descriptor
sets, or —1 if an error occurred. If the time limit expires then select returns 0. If select
returns with an error, including one due to an interrupted call, the descriptor sets are

not modified.
ERRORS
’ An error return from select indicates:
[EBADF] One of the descriptor sets specified an invalid descriptor.
[EINTR] A signal was delivered before the time limit expired and before any

of the selected events occurred.

20 Stardent 1500/3000



System Calls—BSD .

SELECT(2)

SEE ALSO

BUGS

SELECT(2)

[EINVAL] The specified time limit is invalid. One of its components is nega-
tive or too large.

accept(2), connect(2), read(2), write(2), recv(2), send(2), getdtablesize(2)

Although the provision of getdtablesize(2) was intended to allow user programs to be
written independent of the kernel limit on the number of open files, the dimension of
a sufficiently large bit field for select remains a problem. The default size
FD_SETSIZE (currently 256) is somewhat larger than the current kernel limit to the
number of open files. However, in order to accommodate programs which might
potentially use a larger number of open files with select, it is possible to increase this
size within a program by providing a larger definition of FD_SETSIZE before the
inclusion of <sys/types.h>.

select should probably return the time remaining from the original timeout, if any, by
modifying the time value in place. This may be implemented in future versions of
the system. Thus, it is unwise to assume that the timeout value is not modified by
the select call.

Stardent 1500/3000

21



sttem Calls-BSD

SEND(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

SEND(2)

send, sendto — send a message from a socket

#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
intcg, s;

char *msg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

send and sendto are used to transmit a message to another socket. send may be used
only when the socket is in a connected state, while sendto may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through the
underlying protocol, then the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate
some locally detected errors. :

If no messages space is available at the socket to hold the message to be transmitted,
then send normally blocks, unless the socket has been placed in non-blocking I/0
mode. The select(2) call may be used to determine when it is possible to send more
data.

The flags parameter may include one or more of the following:
#define MSG_OOB 0x1  /* process out-of-band data */

The flag MSG_OOB is used to send “out-of-band”” data on sockets that support this
notion (e.g. SOCK_STREAM); the underlying protocol must also support “out-of-
band” data.

The call returns the number of characters sent, or -1 if an error occurred.

[EBADF] An invalid descriptor was specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT] An invalid user space address was specified for a parameter.

[EMSGSIZE] The socket requires that message' be sent atomically, and the
size of the message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested opera-
tion would block.

[ENOBUFS] The system was unable to allocate an internal buffer. The
operation may succeed when buffers become available.

22

Stardent 1500/3000

(



sttem Calls-BSD
SEND(2) SEND (2)

[ENOBUFS] The output queue for a network interface was full. This gen-
erally indicates that the interface has stopped sending, but
may be caused by transient congestion.

SEE ALSO
fentl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

Stardent 1500/3000 23



System Calls—-BSD

SETREGID (2) SETREGID (2)
NAME
setregid — set real and effective group ID
SYNOPSIS
setregid(rgid, egid)
int rgid, egid; )
DESCRIPTION
The real and effective group ID’s of the current process are set to the arguments.
Unprivileged users may change the real group ID to the effective group ID and vice-
versa; only the super-user may make other changes.
Supplying a value of -1 for either the real or effective group ID forces the system to
substitute the current ID in place of the -1 parameter.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.
ERRORS
[EPERM] The current process is not the super-user and a change other than
changing the effective group-id to the real group-id was specified.
SEE ALSO
getgid(2), setreuid(2), setgid(3)
Stardent 1500/3000

og



System Calls—BSD

SETREUID (2) SETREUID (2)
NAME
setreuid — set real and effective user ID’s
SYNOPSIS
setreuid(ruid, euid)
int ruid, euid;
DESCRIPTION
: The real and effective user ID’s of the current process are set according to the argu-
ments. If ruid or euid is ~1, the current uid is filled in by the system. Unprivileged
users may change the real user ID to the effective user ID and vice-versa; only the
super-user may make other changes.
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.
ERRORS
[EPERM] The current process is not the super-user and a change other than
changing the effective user-id to the real user-id was specified.
SEE ALSO

getuid(2), setregid(2), setuid(3)

Stardent 1500/3000 25



System Calls—BSD

SHUTDOWN(2) SHUTDOWN (2)
NAME
shutdown — shut down part of a full-duplex connection
SYNOPSIS
shutdown(s, how)
ints, how;
DESCRIPTION , .
: The shutdown call causes all or part of a full-duplex connection on the socket associ-
ated with s to be shut down. If how is 0, then further receives are disallowed. If how
is 1, then further sends are disallowed. If how is 2, then further sends and receives
are disallowed.
DIAGNOSTICS
. A 0is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

- [EBADF] = sisnota valid descriptor.

[ENOTSOCK] s is a file, not a socket.

[ENOTCONN] The specified socket is not connected.
SEE ALSO

connect(2), socket(2)
26 . Stardent 1500/3000



SIGBLOCK( 2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

SEE ALSO

System Calls—BSD
SIGBLOCK (2)

sigblock — block signals

#include <signal.h>

sigblock(mask);
int mask;

mask = sigmask(signum)

sigblock causes the signals specified in mask to be added to the set of signals currently
being blocked from delivery. Signals are blocked if the corresponding bit in mask is a
1; the macro sigmask is provided to construct the mask for a given signum.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

The previous set of masked signals is returned.

kill(2), sigvec(2), sigsetmask(2)

Stardent 1500/3000

27



SIGPAUSE (2)

~ System Calls—BSD

SIGPAUSE (2)
NAME
sigpause — atomically release blocked signals and wait for interrupt
SYNOPSIS
sigpause(sigmask)
int sigmask;
DESCRIPTION

sigpause assigns sigmask to the set of masked signals and then waits for a signal to
arrive; on return the set of masked signals is restored. sigmask is usually 0 to indicate
that no signals are now to be blocked. sigpause always terminates by being inter-
rupted, returning -1 with errno set to EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, vari-
ables modified on the occurrence of the signal are examined to determine that there
is no work to be done, and the process pauses awaiting work by using sigpause with
the mask returned by sigblock.

SEE ALSO
sigblock(2), sigvec(2)
28 Stardent 1500/3000



SIGRETURN (2)

NAME

SYNOPSIS

DESCRIPTION

NOTES

RETURN VALUE

ERRORS

SEE ALSO

System Calls-BSD
SIGRETURN(2)

sigreturn — return from signal

#include <signal.h>
sigreturn(scp);
struct sigcontext *scp;

sigreturn allows users to atomically unmask, switch stacks, and return from a signal
context. The processes signal mask and stack status are restored from the context.
The system call does not return; the users stack pointer, frame pointer, argument
pointer, and processor status longword are restored from the context. Execution
resumes at the specified pc. This system call is used by the trampoline code, and
longjmp(3) when returning from a signal to the previously executing program.

This system call is not available in 4.2BSD, hence it should not be used if backward
compatibility is needed.

If successful, the system call does not return. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

sigreturn fails and the process context does not change if one of the following occurs.

[EFAULT] scp points to memory that is not a valid part of the process address
space.
[EINVAL] The process status longword is invalid or would improperly raise

the privilege level of the process.

sigvec(2), setjmp(3)

Stardent 1500/3000

29



System Calls—BSD

SIGSETMASK (2) SIGSETMASK (2)
NAME
sigsetmask — set current signal mask
SYNOPSIS
#include <signal.h>
sigsetmask(mask);
int mask;
: mask = sigmask(signum)
DESCRIPTION
sigsetmask sets the current signal mask (those signals that are blocked from delivery).
Signals are blocked if the corresponding bit in mask is a 1; the macro sigmask is pro-
vided to construct the mask for a given signum. ‘
The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.
RETURN VALUE
The previous set of masked signals is returned.
SEE ALSO

kill(2), sigvec(2), sigblock(2), sigpause(2)

30 Stardent 1500/3000



sttem Calls-BSD

SIGSTACK (2)

NAME

SYNOPSIS

DESCRIPTION

NOTES
RETURN VALUE

ERRORS

SEE ALSO

SIGSTACK (2)

sigstack — set and/or get signal stack context

#include <signal.h>

struct sigstack {
caddr_tss_sp;
int ss_onstack;

L

sigstack(ss, 0ss);
struct sigstack *ss, *0ss;

sigstack allows users to define an alternate stack on which signals are to be processed.
If ss is non-zero, it specifies a signal stack on which to deliver signals and tells the sys-
tem if the process is currently executing on that stack. When a signal’s action indi-
cates its handler should execute on the signal stack (specified with a sigvec(2) call),
the system checks to see if the process is currently executing on that stack. If the pro-
cess is not currently executing on the signal stack, the system arranges a switch to the
signal stack for the duration of the signal handler’s execution. If oss is non-zero, the
current signal stack state is returned.

Signal stacks are not grown automatically, as is done for the normal stack. If the
stack overflows unpredictable results may occur.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

sigstack fails and the signal stack context does not change if the following occurs:
[EFAULT] Either ss or oss points to memory that is not a valid part of the pro-

cess address space.

sigvec(2), setimp(3)

Stardent 1500/3000

31



SIGVEC(2)

NAME

SYNOPSIS

DESCRIPTION

System:Calls—BSD
SIGVEC(2)

sigvec — software sighal facilities

#include <signal.h>

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_{flags;

b

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurence of a hardware interrupt: the signal is blocked from
further occurrence, the current process context is saved, and a new one is built. A
process may specify a handler to which a signal is delivered, or specify that a signal is
to be blocked or ignored. A process may also specify that a default action is to be taken
by the system when a signal occurs. Normally, signal handlers execute on the
current stack of the process. This may be changed, on a per-handler basis, so that sig-
nals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused
their invocation blocked, but other signals may yet occur. A global signal mask defines
the set of signals currently blocked from delivery to a process. The signal mask for a
process is initialized from that of its parent (normally 0). It may be changed with a
sigblock(2) or sigsetmask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then it is
delivered to the process. When a signal is delivered, the current state of the process
is saved, a new signal mask is calculated (as described below), and the signal handler
is invoked. The call to the handler is arranged so that if the signal handling routine
returns normally the process will resume execution in the context from before the
signal’s delivery. If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration
of the process’ signal handler (or until a sigblock or sigsetmask call is made). This
mask is formed by taking the current signal mask, adding the signal to be delivered,
and or’ing in the signal mask associated with the handler to be invoked.

sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler
routine and mask to be used when delivering the specified signal. Further, if the
SV_ONSTACK bit is set in sv_flags, the system will deliver the signal to the process
on a signal stack, specified with sigstack(2). If ovec is non-zero, the previous handling
information for the signal is returned to the user.

The following list gives all signals with names as they appear in the include file
<signal.h>:

SIGHUP 1 hangup

SIGINT 2 interrupt (rubout)

SIGQUIT  3* quit (ASCII FS)

SIGILL 4% illegal instruction (not reset when caught)
SIGTRAP 5+ trace trap (not reset when caught)

32

Stardent 1500/3000

(»



SIGVEC(2)

NOTES

System Calls—BSD
SIGVEC(2)

SIGIOT 6+ IOT instruction (obsolete)

SIGABRT  6* used by abort, replaces SIGIOT
SIGEMT 7+ EMT instruction (obsolete)

SIGFPE 8+ floating point exception

SIGKILL 9  kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error

SIGSEGV 11 segmentation violation

SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1

SIGUSR2 17 user-defined signal 2

SIGCLD 18 e death of a child

SIGPWR 19 power-fail restart

SIGWIND 20 e window change

SIGURG 21 e urgent condition on an I/O channel
SIGIO 22 e pollable event occured

SIGSTOP 23t sendable stop signal, not from tty
SIGTSTP 24 1 stop signal from tty

SIGTTIN 25 1 process stop by background tty read
SIGTTOU 26t process stop by background tty write
SIGCONT 27 e continue a stopped process
SIGXCPU 28 exceeded CPU time limit

SIGXFSZ 29 exceeded file size limit

SIGVTALRM 30 virtual time alarm

SIGPROF 31 profiling time alarm

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is
made, or an execve(2) is performed. The default action for a signal may be reinstated
by setting sv_handler to SIG_DFL; this default is termination (with a core image for
starred signals) except for signals marked with e or . Signals marked with e are dis-
carded if the action is SIG_DFL; signals marked with t cause the process to stop. If
sv_handler is SIG_IGN the signal is subsequently ignored, and pending instances of
the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return by set-
ting the SV_INTERRUPT bit in sv_flags. The affected system calls are read(2) or
write(2) on a slow device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt flags.

execve(2) resets all caught signals to default action and resets all signals to be caught
on the user stack. Ignored signals remain ignored; the signal mask remains the same;
signals that interrupt system calls continue to do so.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT.
This is done silently by the system.

The handler routine to catch signals can be delared as follows:

handler(sig, code, junk, context)
int sig, code, junk
struct sigcontext *context;

Stardent 1500/3000

33



sttem Calls—-BSD

SIGVEC(2)

RETURN VALUE

SIGVEC (2)

Here, sig is the signal number. code is a value which further interprets sig; it may be
one of the following;:

SIGFPE
0: integer overflow
1: floating exception

SIGTRAP
CAUSESINGLE: single step
CAUSEBREAK: breakpoint instruction

The value of junk is the address of the handler routine itself. context is a pointer to
the machine state at the time of the exception. It is defined in /usr/include/sys/signal.h.

On floating point exceptions, the FPU is halted. Explicit user action of restarting the
FPU will be necessary.

A 0 value indicated that the call succeeded. A -1 return value indicates an error
occurred and errno is set to indicated the reason.

ERRORS
sigvec fails and no new signal handler is installed if one of the following occurs:
[EFAULT] Either vec or ovec points to memory that is not a valid part of the
process address space.
[EINVAL] sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP. ‘
[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).
SEE ALSO
kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), sigvec(2),
setjmp(3), siginterrupt(3), tty(7)
34 Stardent 1500/3000

(\



SOCKET(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls—BSD
SOCKET(2)

socket — create an endpoint for communication

#include <sys/types.h>
#include <sys/socket.h>

s = socket(domain, type, protocol)
int s, domain, type, protocol;

socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communica-
tion will take place; this selects the protocol family which should be used. The proto-
col family generally is the same as the address family for the addresses supplied in
later operations on the socket. These families are defined in the include file
<sys/socket.h>. The currently understood formats are

PF_UNIX (UNIX internal protocols),
PF_INET (ARPA Internet protocols),

The socket has the indicated type, which specifies the semantics of communication.
Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW

A SOCK_STREAM type provides sequenced, reliable, two-way connection based
byte streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). SOCK_RAW sockets provide access to
internal network protocols and interfaces. The type SOCK_RAW is available only to
the super-user.

The protocol specifies a particular protocol to be used with the socket. Normally only
a single protocol exists to support a particular socket type within a given protocol
family. However, it is possible that many protocols may exist, in which case a partic-
ular protocol must be specified in this manner. The protocol number to use is partic-
ular to the “communication domain” in which communication is to take place; see
protocols (3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data may be sent or received on
it. A connection to another socket is created with a connect(2) call. Once connected,
data may be transferred using read (2) and write(2) calls or some variant of the send (2)
and recv(2) calls. When a session has been completed a close(2) may be performed.
Out-of-band data may also be transmitted as described in send(2) and received as
described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then the
connection is considered broken and calls indicate an error with -1 returns and with
ETIMEDOUT as the specific code in the global variable errno. The protocols option-
ally keep sockets “warm’ by forcing transmissions roughly every minute in the
absence of other activity. An error is then indicated if no response can be elicited on
an otherwise idle connection for a extended period (e.g. 5 minutes). A SIGPIPE sig-
nal is raised if a process sends on a broken stream; this causes naive processes, which
do not handle the signal, to exit.

Stardent 1500/3000

35



SOCKET(2)

RETURN VALUE

System Calls—BSD
SOCKET(2)

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspon-
dents named in send(2) calls. Datagrams are generally received with recvfrom(2),
which returns the next datagram with its return address. ’

An fentl(2) call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. ‘

A -1 is returned if an error occurs, otherwise the return value is a descriptor referenc-
ing the socket.

ERRORS
The socket call fails if:
[EPROTONOSUPPORT]
The protocol type or the specified protocol is not supported
, within this domain.
[EMFILE] The per-process descriptor table is full.
[ENFILE] The system file table is full.
[EACCESS] Permission to create a socket of the specified type and/or pro-
tocol is denied. :
[ENOBUFS] Insufficient buffer space is available. The socket cannot be
created until sufficient resources are freed.
SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2),
read(2), recv(2), select(2), send(2), shutdown(2), write(2)
36 Stardent 1500/3000



INTRO(3)

NAME

DESCRIPTION

FILES

SEE ALSO

C Library Functions—BSD -

INTRO(3)

intro —introduction to C library functions

This section describes functions that may be found in the 4.3BSD libraries. The
library functions are those other than the functions which directly invoke operating
system primitives, described in section 2. Most of these functions are accessible from
the C library, libc, which is automatically loaded by the C compiler cc(1). The link
editor 1d(1) searches this library when the —43 option is invoked. The C library also
includes all the functions described in section 2.

Library functions available from FORTRAN are described separately in the Fortran
Reference Manual.

The functions described in this section are grouped into several sections:

(3) These functions are the standard C library functions. They correspond to the
System V Release 3.0 3C functions.

(3N) These functions constitute the Internet network library.

(3S) These functions constitute the ‘standard 1/O package’, see stdio(3S) for more
details. Declarations for these functions may be obtained from the include file
<stdio.h>.

(3C) These routines are included for compatibility with other systems. In particular,
a number of system call interfaces provided in previous releases of 4BSD have
been included for source code compatibility. Use of these routines should, for
the most part, be avoided. The manual page entry for each compatibility rou-
tine indicates the proper interface to use.

(3M) These functions, which constitute the math library libm, are listed in Volume 1
of the Programmer’s Reference Manual . They no longer appear in this manual.

(3X) These functions constitute minor libraries and other miscellaneous run-time
facilities. Most are available only when programming in C. These functions
include libraries that provide device independent plotting functions, terminal
independent screen management routines for two dimensional non-bitmap
display terminals, and functions for managing data bases with inverted
indexes. These functions are located in separate libraries indicated in each
manual entry.

/lib/libc.a the C library

/lib/bsd /libc.a the 4.3 BSD C library
/usr/lib/libm.a the math library

/usr/lib/libc_p.a the C library compiled for profiling

/usr/lib/libm_p.a the math library compiled for profiling
/usr/lib/bsd/libm_p.a the 4.3 BSD math library compiled for profiling

cc(1), intro(2), 1d(1), math(3M), nm(1), stdio(3S)

Stardent 1500/3000



ABORT(3)

C Library Functions—BSD

ABORT(3)
NAME
abort — generate a fault
DESCRIPTION
abort executes an instruction which is illegal in user mode. This generates a signal
that normally terminates the process with a core dump, which may be used for
debugging.
SEE ALSO
exit(2), sigvec(2)
DIAGNOSTICS
Usually “Illegal instruction — core dumped’” from the shell.
BUGS
abort does not flush standard I/O buffers. Use fflush (3S).
2 Stardent 1500/3000



C Librarz Functions—BSD

ABS(3) ABS(3)
NAME

abs - integer absolute value
SYNOPSIS

abs(i)

inti;
DESCRIPTION

abs returns the absolute value of its integer operand.
SEE ALSO

floor(3M)
BUGS

Applying the abs function to the most negative integer generates a result which is the
most negative integer. That is,

abs(0x80000000)
returns 0x80000000 as a result.

Stardent 1500/3000 3



ASSERT(3)

NAME

SYNOPSIS

DESCRIPTION

DIAGNOSTICS

C Library Functions—BSD
ASSERT(3)

assert — program verification

#include <assert.h>

assert(expression)

assert is a macro that indicates expression is expected to be true at this point in the pro-
gram. It causes an exit(2) with a diagnostic comment on the standard output when
expression is false (0). Compiling with the cc(1) option -DNDEBUG effectively deletes
assert from the program.

‘Assertion failed: file f line n.” f is the source file and n the source line number of the
assert statement.

Stardent 1500/3000

(



C Librarz Functions—BSD

ATOF(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

BUGS

ATOF (3)

atof, atoi, atol — convert ASCII to numbers

double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

These functions convert a string pointed to by nptr to floating, integer, and long
integer representation respectively. The first unrecognized character ends the string.

atof recognizes an optional string of spaces, then an optional sign, then a string of
digits optionally containing a decimal point, then an optional ‘e’ or ‘E’ followed by
an optionally signed integer.

atoi and atol recognize an optional string of spaces, then an optional sign, then a
string of digits.
scanf(35)

There are no provisions for overflow.

Stardent 1500/3000



C Library Functions—BSD

BSTRING(3) BSTRING (3)
NAME
bcopy, bemp, bzero, ffs - bit and byte string operations
SYNOPSIS
becopy(sre, dst, length)
char *src, *dst;
int length;
bemp(bl, b2, length)
char *b1, *b2;
int length;
bzero(b, length)
char *b;
int length;
ffs(i)
inti;
DESCRIPTION
- The functions becopy, bemp, and bzero operate on variable length strings of bytes. They
do not check for null bytes as the routines in string(3) do.
beopy copies length bytes from string src to the string dst.
bemp compares byte string b1 against byte string b2, returning zero if they are identi-
cal, non-zero otherwise. Both strings are assumed to be length bytes long.
bzero places length 0 bytes in the string b1.
ffs finds the first bit set in the argument passed it and returns the index of that bit.
Bits are numbered starting at 1. A return value of 0 indicates that the value passed is
ZEero.
BUGS
The beopy routine take parameters backwards from strcpy.
6 Stardent 1500/3000



C Librarz Functions—BSD
CRYPT(3) CRYPT(3)

NAME
crypt, setkey, encrypt — DES encryption

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, edflag)
char *block;

DESCRIPTION
crypt is the password encryption routine. It is based on the NBS Data Encryption
Standard (DES), with variations intended (among other things) to frustrate use of
hardware implementations of the DES for key search.

The first argument to crypt is normally a user’s typed password. The second is a 2-
character string chosen from the set [a-zA-Z0-9./]. The salt string is used to perturb
the DES algorithm in one of 4096 different ways, after which the password is used as
the key to encrypt repeatedly a constant string. The returned value points to the
encrypted password, in the same alphabet as the salt. The first two characters are the
salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The
argument of setkey is a character array of length 64 containing only the characters
with numerical value 0 and 1. If this string is divided into groups of 8, the low-order
bit in each group is ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 contain-
ing 0’s and 1’s. The argument array is modified in place to a similar array represent-
ing the bits of the argument after having been subjected to the DES algorithm using
the key set by setkey. If edflag is 0, the argument is encrypted; if non-zero, it is
decrypted.

SEE ALSO
passwd(1), passwd(5), login(1), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

Stardent 1500/3000 7



C Librarz Functions—BSD

CTIME(3) CTIME (3)
NAME
ctime, localtime, gmtime, asctime, timezone — convert date and time to ASCII
SYNOPSIS
char *ctime(clock)
long *clock;
#include <time.h>
struct tm *localtime(clock)
long *clock;
struct tm *gmtime(clock)
long *clock;
char *asctime(tm)
struct tm *tm;
char *timezone(zone, dst)
DESCRIPTION
ctime converts a time pointed to by clock such as returned by time(2) into ASCII and
returns a pointer to a 26-character string in the following form. All the fields have
constant width.
Sun Sep 16 01:03:52 1973\n\0
localtime and gmtime return pointers to structures containing the broken-down time.
localtime corrects for the time zone and possible daylight savings time; gmtime con-
verts directly to GMT, which is the time UNIX uses. asctime converts a broken-down
time to ASCII and returns a pointer to a 26-character string.
The structure declaration from the include file is:
struct tm {
int tm_sec; /*0-59 seconds */
int tm_min; /* 0-59 minutes */
int tm_hour; /*0-23 hour */
inttm_mday; /*1-31 day of month */
int tm_mon; /*0-11 month */
int tm_year; /*0- year — 1900 */
int tm_wday; /*0-6 day of week (Sunday = 0) */
int tm_yday;  /* 0-365 day of year */
inttm_isdst;  /*flag: daylight savings time in effect */
};
When local time is called for, the program consults the system to determine the time
zone and whether the U.S.A., Australian, Eastern European, Middle European, or
Western European daylight saving time adjustment is appropriate. The program
knows about various peculiarities in time conversion over the past 10-20 years; if
necessary, this understanding can be extended.
timezone returns the name of the time zone associated with its first argument, which
is measured in minutes westward from Greenwich. If the second argument is 0, the
standard name is used, otherwise the Daylight Saving version. If the required name
does not appear in a table built into the routine, the difference from GMT is pro-
duced; e.g., in Afghanistan timezone(-(60+4+30), 0) is appropriate because it is 4:30
ahead of GMT and the string GMT+4:30 is produced.
SEE ALSO
gettimeofday(2), time(3)
8 Stardent 1500/3000

(



C Library Functions —BSD '

CTIME(3) CTIME (3)

BUGS
The return values point to static data whose content is overwritten by each call.

Stardent 1500/3000 9



C Library Functions—BSD
CTYPE(3) CTYPE(3)

NAME '
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph,
iscntr], isascii, toupper, tolower, toascii — character classification macros

SYNOPSIS
#include <ctype.h>
isalpha(c)
DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate
returning nonzero for true, zero for false. isascii and toascii are defined on all integer
values; the rest are defined only where isascii is true and on the single non-ASCII
value EOF (see stdio(35)).
isalpha c is a letter
isupper c is an upper case letter
islower c is a lower case letter
isdigit c is a digit
isxdigit c is a hex digit
isalnum ¢ is an alphanumeric character
isspace c is a space, tab, carriage return, newline, vertical tab, or formfeed
ispunct c is a punctuation character (neither control nor alphanumeric)
isprint ¢ is a printing character, code 040(8) (space) through 0176 (tilde)
isgraph c is a printing character, similar to isprint except false for space.
iscntrl c is a delete character (0177) or ordinary control character (less than
040).
isascii c is an ASCII character, code less than 0200
tolower ¢ is converted to lower case. Return value is undefined if not
isupper(c).
toupper c is converted to upper case. Return value is undefined if not
islower(c).
toascii c is converted to be a valid ASCII character.
SEE ALSO
ascii(5)

10 Stardent 1500/3000



DIRECTORY (3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

C Library Functions—BSD
DIRECTORY (3)

opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations

#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

closedir(dirp)
DIR *dirp;

opendir opens the directory named by filename and associates a directory stream with it.
opendir returns a pointer to be used to identify the directory stream in subsequent
operations. The pointer NULL is returned if filename cannot be accessed, or if it can-
not malloc(3) enough memory to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reaching
the end of the directory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream. The new
position reverts to the one associated with the directory stream when the telldir opera-
tion was performed. Values returned by telldir are good only for the lifetime of the
DIR pointer from which they are derived. If the directory is closed and then reo-
pened, the telldir value may be invalidated due to undetected directory compaction.
It is safe to use a previous felldir value immediately after a call to opendir and before
any calls to readdir.

closedir closes the named directory stream and frees the structure associated with the
DIR pointer.

Sample code which searchs a directory for entry “name” is:

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))
if (dp->d_namlen == len && !strcemp(dp->d_name, name)) {
closedir(dirp);
return FOUND;
}
closedir(dirp);
return NOT_FOUND;

close(2), dir(4), 1seek(2), open(2), read(2)

Stardent 1500/3000

11



C Librarz Functions—BSD

ECVT(3) ECVT(3)
NAME
ecvt, fevt, gevt — output conversion
SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *gcvt(value, ndigit, buf)
double value;
char *buf;
DESCRIPTION
ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a
pointer thereto. The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the left of the returned
digits). If the sign of the result is negative, the word pointed to by sign is non-zero,
otherwise it is zero. The low-order digit is rounded.
fevt is identical to ecvt, except that the correct digit has been rounded for FORTRAN
F-format output of the number of digits specified by ndigits.
gevt converts the value to a null-terminated ASCII string in buf and returns a pointer
to buf. It attempts to produce ndigit significant digits in FORTRAN F format if possi-
ble, otherwise E format, ready for printing. Trailing zeros may be suppressed.
SEE ALSO '
printf(3)
BUGS

The return values point to static data whose content is overwritten by each call.

12 Stardent 1500/3000



C Librarz Functions—BSD '

END(3) END(3)
NAME
_end, _etext, _edata — last locations in program
SYNOPSIS
extern _end;
extern _etext;
extern _edata;
DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The
address of _etext is the first address above the program text, _edata above the initial-
ized data region, and _end above the uninitialized data region.
When execution begins, the program break coincides with _end, but it is reset by the
routines brk(2), malloc(3), standard I/0O (stdio(35)), the profile (-p) option of cc(1), etc.
The current value of the program break is reliably returned by ‘sbrk(0)’; see brk(2).
SEE ALSO

brk(2), malloc(3)

Stardent 1500/3000 13



C Library Functions—BSD

EXECL(3) EXECL(3)

NAME ( \
execl, execv, execle, execlp, execvp, exec, execve, exect, environ — execute a file i

SYNOPSIS

execl(name, arg0, argl, ..., argn, 0)
char *name, *arg0, *argl, ..., *argn;

execv(name, argv)
char *name, *argvl[];

execle(name, arg0, argl, ..., argn, 0, envp)
char *name, *arg0, *argl, .., *argn, *envpl[];

exect(name, argv, envp)
char *name, *argv[], *envpll;

extern char *+environ;

DESCRIPTION .
These routines provide various interfaces to the execve system call. Refer to execve(2)
for a description of their properties; only brief descriptions are provided here.

exec in all its forms overlays the calling process with the named file, then transfers to
the entry point of the core image of the file. There can be no return from a successful
exec; the calling core image is lost. ‘

The name argument is a pointer to the name of the file to be executed. The poihters
arg[0], arg[1] ... address null-terminated strings. Conventionally arg[0] is the name
of the file.

Two interfaces are available. exec! is useful when a known file with known argu-

ments is being called; the arguments to execl are the character strings constituting the

file and the arguments; the first argument is conventionally the same as the file name (
(or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance;
the arguments to execv are the name of the file to be executed and a vector of strings
containing the arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ptrace(2).
The program is forced to single step a single instruction giving the parent an oppor-
tunity to manipulate its state.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argg;
char #*argv, **envp;

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

afg’u is directly usable in another execv because argv[argc] is 0.

envp is a pointer to an array of strings that constitute the environment of the process.
Each string consists of a name, an “=", and a null-terminated value. The array of
pointers is terminated by a null pointer. The shell sh(1) passes an environment entry
for each global shell variable defined when the program is called. See environ(5) for
some conventionally used names. The C run-time start-off routine places a copy of
envp in the global cell environ, which is used by execv and execl to pass the environ-
ment to any subprograms executed by the current program. ( |

14 Stardent 1500/3000



C Librarz Functions—BSD

EXECL(3)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

EXECL(3)

execlp and execvp are called with the same arguments as execl and execv, but duplicate
the shell’s actions in searching for an executable file in a list of directories. The direc-
tory list is obtained from the environment.

/bin/sh  shell, invoked if command file found by execlp or execvp
csh(1) environ(5), execve(2), fork(2)

If the file cannot be found, if it is not executable, if it does not start with a valid magic
number (see a.04£(4)), if maximum memory is exceeded, or if the arguments require
too much space, a return constitutes the diagnostic; the return value is 1. Even for
the super-user, at least one of the execute-permission bits must be set for a file to be
executed.

If execop is called to execute a file that turns out to be a shell command file, and if it is
impossible to execute the shell, the values of argv[0] and argv[-1] are modified before
return.

Stardent 1500/3000

15



C Library Functions—BSD

EXIT(3) EXIT(3)
NAME
exit — terminate a process after flushing any pending output
SYNOPSIS
exit(status)
int status;
DESCRIPTION
exit terminates a process after calling the Standard I/0O library function _cleanup to
flush any buffered output. exit never returns.
SEE ALSO
exit(2), intro(3)
16 Stardent 1500/3000



FREXP(3)

NAME

SYNOPSIS

DESCRIPTION

C Library Functions—BSD
FREXP (3)

frexp, ldexp, modf — split into mantissa and exponent

double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

frexp returns the mantissa of a double value as a double quantity, x, of magnitude less
than 1 and stores an integer 7 such that value = x * 2" indirectly through eptr.

ldexp returns the quantity value * 267,

modf returns the positive fractional part of value and stores the integer part indirectly
through iptr.

Stardent 1500/3000

17



C Library Functions—BSD

GETENV(3) GETENV (3)
NAME
getenv — value for environment name
SYNOPSIS
char *getenv(name)
char *name;
DESCRIPTION
getenv searches the environment list (see environ(5)) for a string of the form
name=value and returns a pointer to the string value if such a string is present, other-
wise getenv returns the value 0 (NULL).
SEE ALSO
environ(5), execve(2)
18 Stardent 1500/3000



GETGRENT (3)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

C Library Functions—-BSD
GETGRENT(3)

getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry

#include <grp.h>

struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

setgrent()

endgrent()

getgrent, getgrgid and getgrnam each return pointers to an object with the following
structure containing the broken-out fields of a line in the group file.

struct group { /* see getgrent(3) */
char  *gr_name;
char  *gr_passwd;
int gr_gid;
char  **gr_mem;

I
struct group *getgrent(), *getgrgid(), *getgrnam();

The members of this structure are:

gr_ name  The name of the group.

gr_passwd The encrypted password of the group.

gr_gid The numerical group-ID.

gr_mem Null-terminated vector of pointers to the individual member names.

getgrent simply reads the next line while getgrgid and getgrnam search until a match-
ing gid or name is found (or until EOF is encountered). Each routine picks up where
the others leave off so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches.
endgrent may be called to close the group file when processing is complete.

/etc/ group

getlogin(3), getpwent(3), group(4)

A null pointer (0) is returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.

Stardent 1500/3000

19



GETLOGIN(3)

C Library Functions—BSD
GETLOGIN(3)

NAME
getlogin — get login name

SYNOPSIS
char *getlogin()

DESCRIPTION
getlogin returns a pointer to the login name as found in /efc/utmp. It may be used in
conjunction with gefpwnam to locate the correct password file entry when the same
userid is shared by several login names.
If getlogin is called within a process that is not attached to a terminal, or if there is no
entry in /etc/utmp for the process’s terminal, getlogin returns NULL. A reasonable pro-
cedure for determining the login name is to first call getlogin and if it fails, to call
getpwuid(getuid ().

FILES
/etc/utmp

SEE ALSO
getpwent(3), utmp(4), ttyslot(3)

DIAGNOSTICS
Returns NULL if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

20 Stardent 1500/3000



GETOPT(3)

NAME

SYNOPSIS

DESCRIPTION

DIAGNOSTICS

EXAMPLE

C Library Functions—BSD
GETOPT(3)

getopt — get option letter from argv

int getopt(argc, argv, optstring)
int argc;

char **argv;

char *optstring;

extern char *optarg;
extern int optind;

getopt returns the next option letter in argv that matches a letter in opstring. optstring
is a string of recognized option letters; if a letter is followed by a colon, the option is
expected to have an argument that may or may not be separated from it by white
space. optarg is set to point to the start of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to be processed. Because
optind is external, it is normally initialized to zero automatically before the first call to
getopt.

When all options have been processed (i.e., up to the first non-option argument),
getopt returns EOF. The special option —— may be used to delimit the end of the
options; EOF is returned, and — - skipped.

getopt prints an error message on stderr and returns a question mark (?) when it
encounters an option letter not included in optstring.

The following code fragment shows how one might process the arguments for a com-
mand that can take the mutually exclusive options a and b, and the options f and o,
both of which require arguments:

main(argc, argv)

int argc;

char **argv;

{
int c;
extern int optind;
extern char *optarg;

while ((c = getopt(arge, argv, "abf:0:")) I= EOF)
switch (¢) {
case ‘a”:
if (bflg)
errflg++;
else
aflg++;
break;
case ‘b”:
if (aflg)
errflg++;
else
bproc();

Stardent 1500/3000

21



C Library Functions—BSD
GETOPT(3) ) GETOPT(3)

break;
case ‘f":
ifile = optarg;
break;
case ‘0”:
ofile = optarg;
break;
case ‘?':
default:
errflg++;
break;
}
if (errflg) {
fprintf(stderr, "Usage: ...");
exit(2);
}
for (; optind < argc; optind++) {

}
HISTORY : ’
Written by Henry Spencer, working from a Bell Labs manual page. Modified by
Keith Bostic to behave more like the System V version.
BUGS

It is not obvious how ‘~’ standing alone should be treated; this version treats it as a
non-option argument, which is not always right.

Option arguments are allowed to begin with ‘~’; this is reasonable but reduces the
amount of error checking possible.

getopt is quite flexible but the obvious price must be paid: there is much it could do
that it doesn’t, like checking mutually exclusive options, checking type of option
arguments, etc.

22 Stardent 1500/3000

(



C Library Functions—BSD

GETPASS(3) : GETPASS (3)
NAME
getpass — read a password
SYNOPSIS
char *getpass(prompt)
char *prompt;
DESCRIPTION
getpass reads a password from the file /dev/tty, or if that cannot be opened, from the
standard input, after prompting with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters.
FILES
/dev/tty
SEE ALSO
crypt(3)
BUGS

The return value points to static data whose content is overwritten by each call.

Stardent 1500/3000 23



GETPWENT(3)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

C Library Functions—-BSD
GETPWENT(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile — get password file
entry

#include <pwd.h>

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

struct passwd *getpwent()
setpwent()
endpwent()

setpwfile(name)
char *name;

getpwent, getpwuid and getpwnam each return a pointer to an object with the following
structure containing the broken-out fields of a line in the password file.

struct passwd { /* see getpwent(3) */
char  *pw_name;
char  *pw_passwd;
int pw_uid;
int pw_gid;
int pw_quota;
char  *pw_comment;
char  *pw_gecos;
char  *pw_dir;
char  *pw_shell;

I

struct passwd *getpwent(), *getpwuid(), *getpwnam();

The fields pw_guota and pw_comment are unused; the others have meanings described
in passwd (4).

Searching the password file is done using the ndbm database access routines.
setpwent opens the database; endpwent closes it. getpwuid and getpwnam search the
database (opening it if necessary) for a matching uid or name. EOF is returned if there
is no entry.

For programs wishing to read the entire database, gefpwent reads the next line (open-
ing the database if necessary). In addition to opening the database, setpwent can be
used to make getpwent begin its search from the beginning of the database.

setpwfile changes the default password file to name thus allowing alternate password
files to be used. Note that it does not close the previous file. If this is desired,
endpwent should be called prior to it.

/etc/ passwd

getlogin(3), getgrent(3), passwd(4)

24

Stardent 1500/3000



GETPWENT(3)

DIAGNOSTICS

BUGS

C Library Functions—BSD
GETPWENT(3)

The routines getpwent, getpwuid, and getpwnam, return NULL on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.

Stardent 1500/3000

25



C Library Functions—BSD

GETUSERSHELL (3) GETUSERSHELL (3)
NAME
getusershell, setusershell, endusershell — get legal user shells
SYNOPSIS
char *getusershell()
setusershell()
endusershell()
DESCRIPTION
getusershell returns a pointer to a legal user shell as defined by the system manager in
the file Jetc/shells. If Jetc/shells does not exist, the two standard system shells /bin/sh
and /bin/csh are returned.
getusershell reads the next line (opening the file if necessary); setusershell rewinds the
file; endusershell closes it.
FILES
/etc/shells
DIAGNOSTICS
The routine getusershell returns a null pointer (0) on EOF or error.
BUGS
All information is contained in a static area so it must be copied if it is to be saved.
26 Stardent 1500/3000



GETWD(3)

NAME

SYNOPSIS

DESCRIPTION

LIMITATIONS

DIAGNOSTICS

C Library Functions—BSD
' GETWD (3)

getwd — get current working directory pathname

char *getwd(pathname)
char *pathname;

getwd copies the absolute pathname of the current working directory to pathname and
returns a pointer to the result.

Maximum pathname length is MAXPATHLEN characters (1024), as defined in
<sys/param.h>.

getwd returns zero and places a message in pathname if an error occurs.

Stardent 1500/3000

27



C Library Functions—BSD
INSQUE(3) INSQUE (3)

NAME
insque, remque — insert/remove element from a queue

SYNOPSIS

struct gelem {
struct gelem *q_forw;
struct qelem *q_back;
char q_datall;

17

insque(elem, pred)

struct gelem *elem, *pred;

remque(elem)
struct qelem *elem;

DESCRIPTION

insque and remque manipulate queues built from doubly linked lists. Each element in
the queue must in the form of “’struct qelem”. insque inserts elem in a queue immedi-
ately after pred; remque removes an entry elem from a queue.

28 Stardent 1500/3000



MALLOC (3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

‘C Library Functions—BSD
MALLOC (3)

mallog, free, realloc, calloc — memory allocator

char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size; .

char *calloc(nelem, elsize)
unsigned nelem, elsize;

malloc and free provide a general-purpose memory allocation package. malloc returns
a pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space
is made available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder results if the space assigned by malloc is overrun or if
some random number is handed to free.

malloc maintains multiple lists of free blocks according to size, allocating space from
the appropriate list. It calls sbrk (see brk(2)) to get more memory from the system
when there is no suitable space already free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents are not changed up to the lesser
of the new and old sizes.

In order to be compatible with older versions, realloc also works if ptr points to a
block freed since the last call of malloc, realloc or calloc; sequences of free, malloc and
realloc were previously used to attempt storage compaction. This procedure is no
longer recommended.

calloc allocates space for an array of nelem elements of size elsize. The space is initial-
ized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possi-
ble pointer coercion) for storage of any type of object. If the space is of pagesize or
larger, the memory returned is page-aligned.

brk(2), pagesize(2)

malloc, realloc and calloc return a null pointer (0) if there is no available memory or if
the arena has been detectably corrupted by storing outside the bounds of a block.
malloc may be recompiled to check the arena very stringently on every transaction;
those sites with a source code license may check the source code to see how this can
be done.

When realloc returns 0, the block pointed to by ptr may be destroyed.

The current implementation of malloc does not always fail gracefully when system
memory limits are approached. It may fail to allocate memory when larger free
blocks could be broken up, or when limits are exceeded because the size is rounded
up. It is optimized for sizes that are powers of two.

Stardent 1500/3000

29



C Library Functions—BSD

MKTEMP (3) ' MKTEMP (3)
NAME
mktemp — make a unique file name
SYNOPSIS
char *mktemp(template)
char *template;
mkstemp(template)
char *template;
DESCRIPTION
mktemp creates a unique file name, typically in a temporary filesystem, by replacing
template with a unique file name, and returns the address of the template. The tem-
plate should contain a file name with six trailing X’s, which are replaced with the
current process id and a unique letter. mkstemp makes the same replacement to the
template but returns a file descriptor for the template file open for reading and writ-
ing. mkstemp avoids the race between testing whether the file exists and opening it
for use.
SEE ALSO
getpid(2), open(2)
DIAGNOSTICS

mkstemp returns an open file descriptor upon success. It returns -1 if no suitable file
could be created.

30 Stardent 1500/3000




~ C Librarz Functions—BSD
MONITOR(3) MONITOR(3)

NAME
monitor, monstartup, moncontrol — prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
short buffer[];

monstartup(lowpc, highpc)
int (*lowpc)(), (+highpc)();

moncontrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program
created by:

c-p...

automatically includes calls for the prof(1) monitor and includes an initial call to its
start-up routine monstartup with default parameters; monitor need not be called expli-
citly except to gain fine control over profil(2) buffer allocation. An executable pro-
gram created by:

cc—pg...
automatically includes calls for the gprof(1) monitor.

monstartup is a high level interface to profil. lowpc and highpc specify the address
range that is to be sampled; the lowest address sampled is that of lowpc and the
highest is just below highpc. monstartup allocates space using sbrk(2) and passes it to
monitor (see below) to record a histogram of periodically sampled values of the pro-
gram counter, and of counts of calls of certain functions, in the buffer. Only calls of
functions compiled with the profiling option —p of cc(1) are recorded.

To profile the entire program, it is sufficient to use

extern etext();

.rl'.l(.)nstartup((int) 2, etext);

etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use
monitor(0);

then prof(1) can be used to examine the results.

moncontrol is used to selectively control profiling within a program. This works with
either prof(1) or gprof(1) type profiling. When the program starts, profiling begins.
To stop the collection of histogram ticks and call counts use moncontrol(0); to resume
the collection of histogram ticks and call counts use moncontrol(1). This allows the
cost of particular operations to be measured. Note that an output file is produced
upon program exit irregardless of the state of moncontrol.

monitor is a low level interface to profil(2). lowpc and highpc are the addresses of two
functions; buffer is the address of a (user supplied) array of bufsize short integers. At
most nfunc call counts can be kept. For the results to be significant, especially where
there are small, heavily used routines, it is suggested that the buffer be no more than
a few times smaller than the range of locations sampled. monitor divides the buffer
into space to record the histogram of program counter samples over the range lowpc
to highpc, and space to record call counts of functions compiled with the —p option to

Stardent 1500/3000 31



‘ C Library Functions—BSD
MONITOR(3) MONITOR(3)

cc(1).
To profile the entire program, it is sufficient to use
extern etext();

monitor((int) 2, etext, buf, bufsize, nfunc);
FILES
mon.out

SEE ALSO
cc(1), gprof(1), prof(1), profil(2), sbrk(2)

32 Stardent 1500/3000




C Librarz Functions—BSD

NDBM (3)

NAME

SYNOPSIS

DESCRIPTION

NDBM (3)

dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error, dbm_clearerr — data base subroutines

#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

. DBM #dbm_openlfile, flags, mode)

char *file;
int flags, mode;

void dbm_close(db)
DBM *db;

datum dbm_fetch(db, key)
DBM #*db;
datum key;

int dbm_store(db, key, content, flags)
DBM #*db;
datum key, content;
int flags;

int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm_firstkey(db)
DBM #*db;

datum dbm_nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm_clearerr(db)
DBM #db;

These functions maintain key/content pairs in a data base. The functions handle
very large (a billion blocks) databases and access a keyed item in one or two file sys-
tem accesses. This package replaces the earlier dbm (3X) library, which managed only
a single database.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings,
are allowed. The data base is stored in two files. One file is a directory containing a
bit map and has “.dir” as its suffix. The second file contains all data and has “.pag’ as
its suffix.

Before a database can be accessed, it must be opened by dbm_open. This opens or
creates the files file.dir and file.pag depending on the flags parameter (see oper(2)).

Once open, the data stored under a key is accessed by dbm_fetch and data is placed
under a key by dbm_store. The flags field can be either DBM_INSERT or
DBM_REPLACE. DBM_INSERT only inserts new entries into the database and does
not change an existing entry with the same key. DBM_REPLACE replaces an existing

Stardent 1500/3000

33



C Librarz Functions—BSD ;

NDBM(3)

DIAGNOSTICS

BUGS

SEE ALSO

NDBM(3)

entry if it has the same key. A key (and its associated contents) is deleted by
dbm_delete. A linear pass through all keys in a database may be made, in an
(apparently) random order, by use of dbm_firstkey and dbm_nextkey. dbm_firstkey
returns the first key in the database. dbm_nextkey returns the next key in the data-
base. This code traverses the data base:

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

dbm_error returns non-zero when an error has occurred reading or writing the data-
base. dbm_clearerr resets the error condition on the named database.

All functions that return an int indicate errors with negative values. A zero return
indicates ok. Routines that return a datum indicate errors with a null (0) dptr. If
dbm_store called with a flags value of DBM_INSERT finds an existing entry with the
same key it returns 1.

The “.pag’ file contains holes so that its apparent size is about four times its actual
content. Older UNIX systems may create real file blocks for these holes when
touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar) without
filling in the holes.

dptr pointers returned by these subroutmes point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 4096 bytes). Moreover all key/content pairs that hash together must fit on
a single block. dbm_store returns an error in the event that a disk block fills with
inseparable data.

dbm_delete does not physically reclaim file space, although it does make it available
for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a hashing
function, not on anything interesting.

dbm(3X)

34

Stardent 1500/3000




C Libraz Functions—BSD ’

NLIST(3) NLIST(3)
NAME
nlist — get entries from name list
SYNOPSIS
#include <nlist.h>
nlist(filename, nl)
char *filename;
struct nlist nl[];
DESCRIPTION
nlist examines the name list in the given executable output file and selectively
extracts a list of values. The name list consists of an array of structures containing
names, types, and values. The list is terminated with a null name. Each name is
looked up in the name list of the file. If the name is found, the type and value of the
name are inserted in the next two fields. If the name is not found, both entries are set
to 0. See a.out(4) for the structure declaration.
This subroutine is useful for examining the system name list kept in the file /unix. In
this way programs can obtain system addresses that are up to date.
SEE ALSO
a.out(4)
DIAGNOSTICS
If the file cannot be found or if it is not a valid namelist —1 is returned; otherwise, the
number of unfound namelist entries is returned.
The type entry is set to 0 if the symbol is not found.
Stardent 1500/3000 35



PERROR(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

C Library Functions—BSD
PERROR (3)

perror, sys_errlist, sys_nerr — system error messages

perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

perror produces a short error message on the standard error file describing the last
error encountered during a call to the system from a C program. First the argument
string s is printed, then a colon, then the message and a new-line. Most usefully, the
argument string is the name of the program which incurred the error. The error
number is taken from the external variable errno (see intro(2)), which is set when
errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is
provided; errno can be used as an index in this table to get the message string without
the newline. sys_nerr is the number of messages provided for in the table; it should
be checked because new error codes may be added to the system before they are
added to the table.

intro(2), psignal(3)

36

Stardent 1500/3000



C Library Functions—BSD

POPEN(3) POPEN (3)
NAME
popen, pclose — initiate I/O to/from a process
SYNOPSIS
#include <stdio.h>
FILE *popen(command, type)
char *command, *type;
pclose(stream)
FILE #*stream;
DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing respec-
tively a shell command line and an I/O mode, either "r" for reading or "w" for writ-
ing. It creates a pipe between the calling process and the command to be executed.
The value returned is a stream pointer that can be used (as appropriate) to write to
the standard input of the command or read from its standard output.
A stream opened by popen should be closed by pclose, which waits for the associated
process to terminate and returns the exit status of the command.
Because open files are shared, a type "r" command may be used as an input filter, and
a type "w" as an output filter.
SEE ALSO ,
fclose(3S), fopen(3S), pipe(2), sh(1), system(3), wait(2)
DIAGNOSTICS
popen returns a null pointer if files or processes cannot be created, or the shell cannot
be accessed.
pclose returns -1 if stream is not associated with a “popened” command.
BUGS
Buffered reading before opening an input filter may leave the standard input of that
filter mispositioned. Similar problems with an output filter may be forestalled by
careful buffer flushing, for instance, with fflush, see fclose(3S).
popen always calls sk, never calls csh.
Stardent 1500/3000 37



PSIGNAL(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

C Library Functions—BSD
PSIGNAL(3)

psignal, sys_siglist — system signal messages

psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist(];

psignal produces a short message on the standard error file describing the indicated
signal. First the argument string s is printed, then a colon, then the name of the sig-
nal and a new-line. Most usefully, the argument string is the name of the program

which incurred the signal. The signal number should be from among those found in
<signal.h>.

To simplify variant formatting of signal names, the vector of message strings
sys_siglist is provided; the signal number can be used as an index in this table to get
the signal name without the newline. NSIG defined in <signal.h> is the number of
messages provided for in the table; it should be checked because new signals may be
added to the system before they are added to the table.

perrorx(3), sigvec(2)

38

Stardent 1500/3000




C Librarz Functions—BSD

QSORT(3) QSORT(3)
NAME
gsort — quicker sort
SYNOPSIS
gsort(base, nel, width, compar)
char *base;
int (*compar)();
DESCRIPTION :
gsort is an implementation of the quicker-sort algorithm. The first argument is a
pointer to the base of the data; the second is the number of elements; the third is the
width of an element in bytes; the last is the name of the comparison routine to be
called with two arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0 according as the
first argument is to be considered less than, equal to, or greater than the second.
SEE ALSO

sort(1)

Stardent 1500/3000 39



RANDOM (3)

NAME

SYNOPSIS

DESCRIPTION

C Library Functions—BSD
RANDOM (3)

random, srandom, initstate, setstate — better random number generator; routines for
changing generators

long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;

char *state;

intn;

char *setstate(state)

char *state;

random uses a non-linear additive feedback random number generator employing a
default table of size 31 long integers to return successive pseudo-random numbers in
the range from 0 to 2 —1 The period of this random number generator is very large,
approximately 16x(2°1-1).

Random and srandom have (almost) the same calling sequence and initialization pro-
perties as rand and srand. The difference is that rand(3) produces a much less random
sequence — in fact, the low dozen bits generated by rand go through a cyclic pattern.
All the bits generated by random are usable. For example, “random()&01” produces
a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the
amount of state information used is much more than a single word. (Two other rou-
tines are provided to deal with restarting or changing random number generators).
Like rand(3), however, random produces by default a sequence of numbers that can be
duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate to decide how
sophisticated a random number generator it should use — the more state, the better
the random numbers. (Current "optimal" values for the amount of state information
are 8, 32, 64, 128, and 256 bytes; other amounts are rounded down to the nearest
known amount. Using less than 8 bytes causes an error). The seed for the initializa-
tion (which specifies a starting point for the random number sequence, and provides
for restarting at the same point) is also an argument. inifstate returns a pointer to the
previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. setstate returns a pointer to the previous state array; its argument
state array is used for further random number generation until the next call to init-
state or setstate.

Once a state array has been initialized, it may be restarted at a different point either
by calling initstate (with the desired seed, the state array, and its size) or by calling
both setstate (with the state array) and srandom (with the desired seed). The advan-
tage of calling both setstate and srandom is that the size of the state array does not
have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is
greater than 2%, which should be sufficient for most purposes.

40

Stardent 1500/3000

(



C Library Functions—BSD

P A L ]
RANDOM(3) RANDOM (3)
AUTHOR
Earl T. Cohen
DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if sefstate detects that
the state information has been garbled, error messages are printed on the standard
error output.
SEE ALSO
rand(3)
BUGS

About two-thirds the speed of rand (3C).

Stardent 1500/3000 41



RCMD (3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

C Library Functions—BSD
RCMD (3)

remd, rresvport, ruserok — routines for returning a stream to a remote command

rem = rcmd(ahost, inport, locuser, remuser, cmd, £d2p);
char **ahost;

int inport;

char *locuser, *remuser, *cmd;

int *fd2p;

s = rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;

int superuser;

char *ruser, *luser;

rcmd is a routine used by the super-user to execute a command on a remote machine
using an authentication scheme based on reserved port numbers. rresvport is a rou-
tine which returns a descriptor to a socket with an address in the privileged port
space. ruserok is a routine used by servers to authenticate clients requesting service
with rcmd. All three functions are present in the same file and are used by the
rshd (IM) server (among others).

remd looks up the host *ahost using gethostbyname(3N), returning -1 if the host does
not exist. Otherwise *ahost is set to the standard name of the host and a connection is
established to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If fi2p
is non-zero, then an auxiliary channel to a control process is set up, and a descriptor
for it is placed in *fd2p. The control process returns diagnostic output from the com-
mand (unit 2) on this channel, and also accepts bytes on this channel as being UNIX
signal numbers, to be forwarded to the process group of the command. If fd2p is 0,
then the stderr (unit 2 of the remote command) is made the same as the stdout and
no provision is made for sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd (1M).

The rresvport routine is used to obtain a socket with a privileged address bound to it.
This socket is suitable for use by rcmd and several other routines. Privileged Internet
ports are those in the range 0 to 1023. Only the super-user is allowed to bind an
address of this sort to a socket.

ruserok takes a remote host’s name, as returned by a gethostbyaddr(3N) routine, two
user names and a flag indicating whether the local user’s name is that of the super-
user. It then checks the files /etc/hosts.equiv and, possibly, .rhosts in the current work-
ing directory (normally the local user’s home directory) to see if the request for ser-
vice is allowed. A 0 is returned if the machine name is listed in the “hosts.equiv” file,
or the host and remote user name are found in the “.rhosts” file; otherwise ruserok
returns -1. If the superuser flag is 1, the checking of the “host.equiv” file is bypassed.
If the local domain (as obtained from gethostname(2)) is the same as the remote
domain, only the machine name need be specified.

intro(2), rexec(3), rexecd(1M), rlogin(1C), rlogind(1M), rsh(1C), rshd(1M)

42

Stardent 1500/3000




'RCMD (3)

DIAGNOSTICS

C Library Functions—BSD
RCMD(3)

rcmd returns a valid socket descriptor on success. It returns -1 on error and prints a
diagnostic message on the standard error.

rresvport returns a valid, bound socket descriptor on success. It returns ~1 on error
with the global value errno set according to the reason for failure. The error code
EAGAIN is overloaded to mean ““All network ports in use.”

Stardent 1500/3000

43



REGEX(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

C Library Functions—BSD
REGEX(3)

re_comp, re_exec — regular expression handler

char *re_comp(s)
char *s;

re_exec(s)
char *s;

re_comp compiles a string into an internal form suitable for pattern matching. re_exec
checks the argument string against the last string passed to re_comp.

re_comp returns 0 if the string s was compiled successfully; otherwise a string con-
taining an error message is returned. If re_comp is passed 0 or a null string, it returns
without changing the currently compiled regular expression.

re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the
string s failed to match the last compiled regular expression, and -1 if the compiled
regular expression was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded new-
line characters; they are terminated by nulls. The regular expressions recognized are
described in the manual entry for ed (1), given the above difference.

ed(1), egrep(1), ex(1), fgrep(1), grep(1)

re_exec returns —1 for an internal error.
re_comp returns one of the following strings if an error occurs:

No previous regular expression,
Regular expression too long,
unmatched \(,

missing ],

too many \(\) pairs,
unmatched \).

44

Stardent 1500/3000



RESOLVER(3)

NAME

SYNOPSIS

DESCRIPTION

C Library Functions—BSD
RESOLVER (3)

res_mkquery, res_send, res_init, dn_comp, dn_expand - resolver routines

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

res_mkquery(op, dname, class, type, data, datalen, newrr, buf, buflen)
int op;

char *dname;

int class, type;

char *data;

int datalen;

struct rrec *newrr;

char *buf;

int buflen;

res_send(msg, msglen, answer, anslen)
char *msg;

int msglen;

char *answer;

int anslen;

res_init()

dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
char *exp_dn, *comp_dn;

int length;

char **dnptrs, **lastdnptr;

dn_expand(msg, eomorig, comp_dn, exp_dn, length)
char *msg, *eomorig, *comp_dn, exp_dn;
int length; :

These routines are used for making, sending and interpreting packets to Internet
domain name servers. Global information that is used by the resolver routines is kept
in the variable _res. Most of the values have reasonable defaults and can be ignored.
Options stored in _res.options are defined in resolv.h as follows. Options are a simple
bit mask and are OR’ed in to enable.

RES_INIT
True if the initial name server address and default domain name are initialized
(i.e., res_init has been called).

RES_DEBUG
Print debugging messages.

RES_AAONLY
Accept authoritative answers only. res_send continues until it finds an authori-
tative answer or finds an error. Currently this is not implemented.

RES_USEVC
Use TCP connections for queries instead of UDP.

RES_STAYOPEN
Used with RES_USEVC to keep the TCP connection open between queries. This
is useful only in programs that regularly do many queries. UDP should be the
normal mode used.

Stardent 1500/3000

45



RESOLVER (3)

FILES

SEE ALSO

C Library Functions—BSD
RESOLVER(3)

RES_IGNTC
Unused currently (ignore truncation errors, i.e., don’t retry with TCP).

RES_RECURSE
Set the recursion desired bit in queries. This is the default. ( res_send does not
do iterative queries and expects the name server to handle recursion.)

RES_DEFNAMES
Append the default domain name to single label queries. This is the default.

Res_init reads the initialization file to get the default domain name and the Internet
address of the initial hosts running the name server. If this line does not exist, the
host running the resolver is tried. res_mkquery makes a standard query message and
places it in buf. res_mkquery returns the size of the query or -1 if the query is larger
than buflen. op is usually QUERY but can be any of the query types defined in
nameser.h. dname is the domain name. If dname consists of a single label and the
RES_DEFNAMES flag is enabled (the default), dname is appended to the current
domain name. The current domain name is defined in a system file and can be over-
ridden by the environment variable LOCALDOMAIN. newrr is currently unused but
is intended for making update messages.

res_send sends a query to name servers and returns an answer. It calls res_init if
RES_INIT is not set, send the query to the local name server, and handle timeouts
and retries. The length of the message is returned or -1 if there were errors.

dn_expand expands the compressed domain name comp_dn to a full domain name.
Expanded names are converted to upper case. msg is a pointer to the beginning of
the message, exp_dn is a pointer to a buffer of size length for the result. The size of
compressed name is returned or -1 if there was an error.

dn_comp compresses the domain name exp_dn and stores it in comp_dn. The size of
the compressed name is returned or -1 if there were errors. length is the size of the
comp_dn. dnptrs is a list of pointers to previously compressed names in the current
message. The first pointer points to to the beginning of the message and the list ends
with NULL. lastdnptr is a pointer to the end of the array pointed to dnptrs. A side
effect is to update the list of pointers for labels inserted into the message by dn_comp
as the name is compressed. If dnptr is NULL, we don’t try to compress names. If
lastdnptr is NULL, we don’t update the list.

/etc/resolv.conf see resolver(4)

named(1M), resolver($)

46

Stardent 1500/3000



REXEC(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

C Library Functions—BSD
REXEC (3)

rexec — return stream to a remote command

rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char **ahost;

int inport;

char *user, *passwd, *cmd;

int *£d2p;

rexec looks up the host *ahost using gethostbyname(3N), returning -1 if the host does
not exist. Otherwise *ahost is set to the standard name of the host. If a username and
password are both specified, then these are used to authenticate to the foreign host;
otherwise the environment and then the user’s .netrc file in his home directory are
searched for appropriate information. If all this fails, the user is prompted for the
information.

The port inport specifies which well-known DARPA Internet port to use for the con-
nection; the call “getservbyname("exec”, "tcp")"” (see getservent(3N)) returns a pointer
to a structure, which contains the necessary port. The protocol for connection is
described in detail in rexecd (1M).

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If fi2p
is non-zero, then an auxiliary channel to a control process is setup, and a descriptor
for it placed in *fd2p. The control process returns diagnostic output from the com-
mand (unit 2) on this channel, and also accepts bytes on this channel as being UNIX
signal numbers, to be forwarded to the process group of the command. The diagnos-
tic information returned does not include remote authorization failure, as the secon-
dary connection is set up after authorization has been verified. If fi2p is 0, then the
stderr (unit 2 of the remote command) is made the same as the stdout and no provi-
sion is made for sending arbltrary signals to the remote process, although you may
be able to get its attention by using out-of-band data.

remd(3), rexecd(1M)

Stardent 1500/3000

47



SCANDIR(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

C Library Functions—BSD
SCANDIR(3)

scandir, alphasort — scan a directory

#include <sys/types.h>
#include <sys/dir.h>

scandir(dirname, namelist, select, compar)
char *dirname;

struct direct *(*namelist[]);

int (*select)();

int (*compar)();

alphasort(di, d2)
struct direct #*d1, **d2;

scandir reads the directory dirname and builds an array of pointers to directory entries
using malloc(3). It returns the number of entries in the array and a pointer to the
array through namelist.

The select parameter is a pointer to a user supplied subroutine which is called by
scandir to select which entries are to be included in the array. The select routine is
passed a pointer to a directory entry and should return a non-zero value if the direc-
tory entry is to be included in the array. If select is null, then all the directory entries
are included.

The compar parameter is a pointer to a user supplied subroutine which is passed to
gsort(3) to sort the completed array. If this pointer is null, the array is not sorted.
alphasort is a routine which can be used for the compar parameter to sort the array
alphabetically.

The memory allocated for the array can be deallocated with free (see malloc(3)) by
freeing each pointer in the array and the array itself.

dir(4), directory(3), malloc(3), gsort(3)

Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allo-
cate enough memory to hold all the data structures.

48

Stardent 1500/3000

(



SETJMP(3)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

SEE ALSO

C Library Functions—BSD
SETJMP (3)

setjmp, longjmp — non-local goto

#include <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

_setjmp(env)
jmp_buf env;

_longjmp(env, val)
jmp_buf env;

These routines are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

setjmp saves its stack environment in env for later use by longjmp. It returns value 0.

longjmp restores the environment saved by the last call of setjmp. It then returns in
such a way that execution continues as if the call of setjmp had just returned the value
val to the function that invoked sefjmp, which must not itself have returned in the
interim. All accessible data have values as of the time longjmp was called.

setjmp and longjmp save and restore the signal mask sigmask(2), while _setjmp and
_longjmp manipulate only the C stack and registers.

If the contents of the jmp_buf are corrupted, or correspond to an environment that
has already returned, longjmp calls the routine longjmperror. If longjmperror returns,
the program is aborted. The default version of longjmperror prints the message
“longjmp botch” to standard error and returns. User programs wishing to exit more
gracefully can write their own versions of longjmperror.

signal(3), sigstack(2), sigvec(2)

Stardent 1500/3000

49



C Librarz Functions-BSD

SETUID(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

SETUID (3)

setuid, seteuid, setruid, setgid, setegid, setrgid — set user and group ID

#include <sys/types.h>

setuid(uid)
seteuid(euid)
setruid(ruid)

uid_t uid, euid, ruid;
setgid(gid)
setegid(egid)
setrgid(rgid)

gid_t gid, egid, rgid;

setuid (setgid) sets both the real and effective user ID (group ID) of the current process
as specified.

seteuid (setegid) sets the effective user ID (group ID) of the current process.
setruid (setrgid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effec-
tive ID.

getgid(2), getuid(2), setregid(2), setreuid(2)

Zero is returned if the user (group) ID is set; —1 is returned otherwise.

50

Stardent 1500/3000




SIGINTERRUPT(3)

NAME

SYNOPSIS

DESCRIPTION

NOTES

RETURN VALUE

SEE ALSO

C Library Functions—BSD

SIGINTERRUPT(3)

siginterrupt — allow signals to interrupt system calls

siginterrupt(sig, flag);
int sig, flag;

siginterrupt is used to change the system call restart behavior when a system call is
interrupted by the specified signal. If the flag is false (0), then system calls are res-
tarted if they are interrupted by the specified signal and no data has been transferred
yet. System call restart is the default behavior on 4.2BSD.

If the flag is true (1), then restarting of system calls is disabled. If a system call is
interrupted by the specified signal and no data has been transferred, the system call
returns -1 with errno set to EINTR. Interrupted system calls that have started
transferring data returns the amount of data actually transferred. System call inter-
rupt is the signal behavior found on 4.1BSD and AT&T System V UNIX systems.

Note that the new 4.2BSD signal handling semantics are not altered in any other way.
Most notably, signal handlers always remain installed until explicitly changed by a
subsequent sigvec(2) call, and the signal mask operates as documented in sigvec(2).
Programs may switch between restartable and interruptible system call operation as
often as desired in the execution of a program.

Issuing a siginterrupt(3) call during the execution of a signal handler causes the new
action to take place on the next signal to be caught.

This library routine uses an extension of the sigvec(2) system call that is not available
in 4.2BSD. It should not be used if backward compatibility is needed.

A 0 value indicates that the call succeeded. A -1 value indicates that an invalid sig-
nal number has been supplied.

sigblock(2), sigpause(2), sigsetmask(2), sigvec(2)

Stardent 1500/3000

51



SLEEP(3)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

C Library Functions—BSD
SLEEP(3)

sleep — suspend execution for interval

sleep(seconds)
unsigned seconds;

The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be up to 1 second less than that
requested, because scheduled wakeups occur at fixed 1-second intervals, and an arbi-
trary amount longer because of other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs.
The previous state of this timer is saved and restored. If the sleep time exceeds the
time to the expiration of the previous timer, the process sleeps only until the signal
would have occurred, and the signal is sent 1 second later.

setitimer(2), sigpause(2)

52

Stardent 1500/3000




STRING (3)

NAME

SYNOPSIS

DESCRIPTION

C Library Functions—BSD
STRING (3)

strcat, strncat, stremp, strncmp, strepy, strncpy, strlen, index, rindex — string opera-
tions

#include <strings.h>
char *strcat(s1, s2)
char *s1, *s2;

char *strncat(s1, s2, n)
char *s1, *s2;
stremp(s1, s2)

char *s1, *s2;
strnemp(sl, s2, n)
char *s1, *s2;

char *strcpy(sl, s2)
char *s1, *s2;

char *strncpy(sl, s2, n)
char *s1, *s2;

strlen(s)

char *s;

char *index(s, c)

char *s, ¢;

char *rindex(s, c)
char *s, c;

These functions operate on null-terminated strings. They do not check for overflow
of any receiving string.

strcat appends a copy of string s2 to the end of string s1. strncat copies at most n
characters. Both return a pointer to the null-terminated result.

strcmp compares its arguments and returns an integer greater than, equal to, or less
than 0, according as sI is lexicographically greater than, equal to, or less than s2.
strncmp makes the same comparison but looks at at most # characters.

strcpy copies string s2 to s1, stopping after the null character has been moved. strncpy
copies exactly n characters, truncating or null-padding s2; the target may not be
null-terminated if the length of s2 is n or more. Both return s1.

strlen returns the number of non-null characters in s.

index (rindex) returns a pointer to the first (last) occurrence of character ¢ in string s,
or zero if ¢ does not occur in the string.

Stardent 1500/3000

53



C Library Functions—BSD

SWAB(3) SWAB (3)
NAME
swab — swap bytes
SYNOPSIS
swab(from, to, nbytes)
char *from, *to;
DESCRIPTION
swab copies nbytes bytes pointed to by from to the position pointed to by to, exchang-
ing adjacent even and odd bytes. It is useful for carrying binary data between PDP-
11’s and other machines. nbytes should be even.
54 Stardent 1500/3000




SYSLOG(3)

NAME

SYNOPSIS

DESCRIPTION

C Library Functions—BSD
SYSLOG (3)

syslog, openlog, closelog, setlogmask — control system log

#include <syslog.h>

openlog(ident, logopt, facility)
char *ident;

syslog(priority, message, parameters ... )
char *¥message; '

closelog()

setlogmask(maskpri)

syslog arranges to write message onto the system log maintained by syslogd (IM). The
message is tagged with priority. The message looks like a printf(3) string except that
%m is replaced by the current error message (collected from errno). A trailing new-
line is added if needed. This message is read by syslogd (IM) and written to the sys-
tem console, log files, or forwarded to syslogd on another host as appropriate.

Priorities are encoded as a facility and a level. The facility describes the part of the
system generating the message. The level is selected from an ordered list:

LOG_EMERG A panic condition. This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a
corrupted system database.

LOG_CRIT Critical conditions, e.g., hard device errors.

LOG_ERR Errors.

LOG_WARNING  Warning messages.

LOG_NOTICE Conditions that are not error conditions, but should possibly be
handled specially.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when
debugging a program.

If syslog cannot pass the -message to syslogd, it attempts to write the message on
Jdev/console if the LOG_CONS option is set (see below).

If special processing is needed, openlog can be called to initialize the log file. The
parameter ident is a string that is prepended to every message. logopt is a bit field
indicating logging options. Current values for logopt are:

LOG_PID Log the process id with each message: useful for identifying
instantiations of daemons.

LOG_CONS Force writing messages to the console if unable to send it to sys-
logd. This option is safe to use in daemon processes that have no
controlling terminal since syslog forks before opening the con-
sole.

.LOG_NDELAY Open the connection to syslogd immediately. Normally the

open is delayed until the first message is logged. Useful for
programs that need to manage the order in which file descrip-
tors are allocated.

Stardent 1500/3000

55



SYSLOG(3)

EXAMPLES

SEE ALSO

LOG_NOWAIT

C Library Functions—BSD
SYSLOG(3)

Don'’t wait for children forked to log messages on the console.
This option should be used by processes that enable notification
of child termination via SIGCHLD, as syslog may otherwise
block waiting for a child whose exit status has already been col-
lected.

The facility parameter encodes a default facility to be assigned to all messages that do
not have an explicit facility encoded:

LOG_KERN
LOG_USER

LOG_MAIL
LOG_DAEMON
LOG_AUTH
LOG_LPR
LOG_LOCALO

Messages generated by the kernel. These cannot be generated
by any user processes.

Messages generated by random user processes. This is the
default facility identifier if none is specified.

The mail system. »

System daemons, such as ftpd (1IM), routed (1IM), etc.

The authorization system: login(1), su(1), getty (1IM), etc.

The line printer spooling system: Ipr(1), Ipc(IM), Ipd (1M), etc.

Reserved for local use. Similarly for LOG_LOCALI through
LOG_LOCAL?7.

closelog can be used to close the log file.

setlogmask sets the log priority mask to maskpri and returns the previous mask. Calls
to syslog with a priority not set in maskpri are rejected. The mask for an individual
priority pri is calculated by the macro LOG_MASK(pri); the mask for all priorities up
to and including toppri is given by the macro LOG_UPTO(toppri). The default allows
all priorities to be logged.

syslog(LOG_ALERT, "who: internal error 23");

openlog("ftpd", LOG_PID, LOG_DAEMON);
setlogmask(LOG_UPTO(LOG_ERR));
syslog(LOG_INFO, "Connection from host %d", CallingHost);

syslog(LOG_INFO | LOG_LOCAL2, "foobar error: %m");

logger(1), syslogd(1M)

56

Stardent 1500/3000




C Library Functions—~BSD

SYSTEM(3) SYSTEM(3)
NAME
system — issue a shell command
SYNOPSIS
system(string)
char *string;
DESCRIPTION
system causes the string to be given to sh(1) as input as if the string had been typed as
a command at a terminal. The current process waits until the shell has completed,
then returns the exit status of the shell.
SEE ALSO
execve(2), popen(3S), wait(2)
DIAGNOSTICS

Exit status 127 indicates the shell couldn’t be executed.

Stardent 1500/3000 57



TTYNAME (3)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

C Library Functions—BSD
TTYNAME (3)

ttyname, isatty, ttyslot — find name of a terminal

char *ttyname(filedes)
isatty(filedes)
ttyslot()

ttyname returns a pointer to the null-terminated path name of the terminal device
associated with file descriptor filedes (this is a system file descriptor and has nothing
to do with the standard I/O FILE typedef).

isatty returns 1 if filedes is associated with a terminal device, 0 otherwise.

ttyslot returns the number of the entry in the ttys(4) file for the control terminal of the
current process.

/dev/*
/ete/ttys

ioctl(2), ttys(4)

ttyname returns a null pointer (0) if filedes does not describe a terminal device in direc-
tory “/dev’.

ttyslot returns 0 if “/etc/ttys’ is inaccessible or if it cannot determine the control ter-

minal.

The return value points to static data whose content is overwritten by each call.

58

Stardent 1500/3000



Compatibility Functions —BSD

ALARM(3C) ALARM(3C)
NAME
alarm - schedule signal after specified time
SYNOPSIS
alarm(seconds)
unsigned seconds;
DESCRIPTION
This interface is superseded by setitimer(2).
alarm causes signal SIGALRM, see sigvec(2), to be sent to the invoking process in a
number of seconds given by the argument. Unless caught or ignored, the signal ter-
minates the process.
alarm requests are not stacked; successive calls reset the alarm clock. If the argument
is 0, any alarm request is canceled. Because of scheduling delays, resumption of exe-
cution of when the signal is caught may be delayed an arbitrary amount. The longest
specifiable delay time is 2147483647 seconds.
The return value is the amount of time previously remaining in the alarm clock.
SEE ALSO

signal(3C), sigpause(2), sigvec(2), sleep(3)

Stardent 1500/3000 1



GETPW (3C)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

Compatibility Functions—BSD
GETPW (3C)

getpw — get name from uid

getpw(uid, buf)
char *buf;

getpw is superseded by getpwuid (3).
getpw searches the password file for the (numerical) uid, and fills in buf with the

corresponding line; it returns non-zero if uid could not be found. The line is null-
terminated.

/etc/passwd
getpwent(3), passwd(4)

Non-zero return on error.

Stardent 1500/3000




Comeaﬁbilitz Functions—BSD

NICE (3C) NICE(3C)

NAME

nice — set program priority
SYNOPSIS

nice(incr)

DESCRIPTION
This interface is superseded by setpriority(2).

The scheduling priority of the process is augmented by incr. Positive priorities get
less service than normal. Priority 10 is recommended to users who wish to execute
long-running programs without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is
limited to the range —20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a privileged pro-
cess to return to normal priority from an unknown state, nice should be called succes-
sively with arguments —40 (goes to priority —20 because of truncation), 20 (to get to
0), then 0 (to maintain compatibility with previous versions of this call).

SEE ALSO
fork(2), nice(1), renice(1M), setpriority(2)

Stardent 1500/3000 3




ComEatibiIitx Functions—-BSD

PAUSE(3C) ' ’ PAUSE (3C)
NAME
pause — stop until signal
SYNOPSIS
pause()
DESCRIPTION
pause never returns normally. It is used to give up control while waiting for a signal
from kill(2) or an interval timer, see setitimer(2). Upon termination of a signal
handler started during a pause, the pause call returns.
RETURN VALUE
Always returns 1.
ERRORS
pause always returns:
[EINTR] The call was interrupted.
SEE ALSO

kill(2), select(2), sigpause(2)

4 Stardent 1500/3000



Compatibility Functions—BSD

RAND (3C) RAND (3C)
NAME
rand, srand - random number generator
SYNOPSIS
void srand(seed)
unsigned seed;
rand()
DESCRIPTION
The newer random(3) should be used in new applications; rand remains for compati-
bilty.
rand uses a multiplicative congruential random number generator w1th period 220
return successive pseudo-random numbers in the range from 0 to 251,
The generator is reinitialized by calling srand with 1 as argument. It can be set to a
random starting point by calling srand with whatever you like as argument.
SEE ALSO

random(3)

Stardent 1500/3000 5



Compatibility Functions—BSD

SIGNAL(3C) SIGNAL (3C)
NAME
signal — simplified software signal facilities
SYNOPSIS
#include <signal.h>
(+signal(sig, func))(
int (*func)();
DESCRIPTION
signal is a simplified interface to the more general sigvec(2) facility.
A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt, stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control terminal
while in the background (see tty(4)). Signals are optionally generated when a pro-
cess resumes after being stopped, when the status of child processes changes, or
when input is ready at the control terminal. Most signals cause termination of the
receiving process if no action is taken; some signals instead cause the process receiv-
ing them to be stopped, or are simply discarded if the process has not requested oth-
erwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows signals
either to be ignored or to cause an interrupt to a specified location. The following list
of all signals with names is given in the include file <signal.h>:
IGHUP 1  hangup
SIGINT 2 interrupt (rubout)
SIGQUIT 3 * quit (ASCII FS)
SIGILL 4 * illegal instruction (not reset when caught)
SIGTRAP 5 * trace trap (not reset when caught)
SIGIOT 6 * IOT instruction (obsolete)
SIGABRT 6 * used by abort, replaces SIGIOT
SIGEMT 7 * EMT instruction (obsolete)
SIGFPE 8 * floating point exception
SIGKILL 9  Kkill (cannot be caught, blocked, or ignored)
SIGBUS 10 * bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12 * bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18 e death of a child
SIGPWR 19 power-fail restart
SIGWIND 20 ¢ window change
SIGURG 21 e urgent condition on an I/O channel
SIGIO 22 e pollable event occured
SIGSTOP 23 t sendable stop signal, not from tty
SIGTSTP 24 1 stop signal from tty
SIGTTIN 25 t process stop by background tty read
SIGTTOU 26 1 process stop by background tty write
SIGCONT 27 e continue a stopped process
SIGXCPU 28 exceeded CPU time limit
SIGXFSZ 29 exceeded file size limit
SIGVTALRM 30 virtual time alarm
SIGPROF 31 profiling time alarm
6 Stardent 1500/3000

(




SIGNAL (3C)

RETURN VALUE

ERRORS

SEE ALSO

Compatibility Functions—BSD
SIGNAL (3C)

The starred signals generate a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termi-
nation (with a core image for starred signals) except for signals marked with e or t.
Signals marked with e are discarded if the action is SIG_DFL; signals marked with t
cause the process to stop. If func is SIG_IGN the signal is subsequently ignored and
pending instances of the signal are discarded. Otherwise, when the signal occurs
further occurrences of the signal are automatically blocked and func is called.

A return from the function unblocks the handled signal and continues the process at
the point it was interrupted. Unlike previous signal facilities, the handler func
remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate
prematurely, the call is automatically restarted. In particular this can occur during a
read or write(2) on a slow device (such as a terminal; but not a file) and during a
wait(2).

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. execve(2) resets all caught sig-
nals to the default action; ignored signals remain ignored.

The previous action is returned on a successful call. Otherwise, -1 is returned and
errno is set to indicate the error.

signal fails and no action takes place if one of the following occur:

[EINVAL] sig is not a valid signal number.

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).

kill(1), kill(2), ptrace(2), setjmp(3), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
sigvec(2), tty(7)

Stardent 1500/3000



Comeatibilitz Functions—BSD

STTY(3C) STTY(3C)
NAME
stty, gtty — set and get terminal state (defunct)
SYNOPSIS
#include <sgtty.h>
stty(fd, buf)
int £d;
struct sgttyb *buf;
gtty(fd, buf)
int £fd;
struct sgttyb *buf;
DESCRIPTION :
This interface is superseded by ioct(2).
stty sets the state of the terminal associated with fd. gtty retrieves the state of the ter-
minal associated with fd. To set the state of a terminal the call must have write per-
mission.
The stty call is actually “joctl(fd, TIOCSETP, buf)”’, while the gtty call is “ioctl(fd,
TIOCGETP, buf)”. See ioctl(2) and tty(7) for an explanation.
DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable
errno contains the reason for the failure.
SEE ALSO

ioctl(2), tty(7)

8 Stardent 1500/3000



TIME (3C)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Compatibility Functions—BSD
TIME (3C)

time, ftime — get date and time

long time(0)

long time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)

struct timeb *tp;

These interfaces are superseded by gettimeofday(2).
time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.
If tloc is nonnull, the return value is also stored in the place to which tloc points.

The ftime entry fills in a structure pointed to by its argument, as defined by
<sys/timeb.h>:

/*
* Structure returned by ftime system call
*/
struct timeb
{
time_t  time;
unsigned short millitm;
short timezone;
short dstflag;
Ip

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of
more-precise interval, the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time
applies locally during the appropriate part of the year.

ctime(3), date(1), gettimeofday(2), settimeofday(2)

Stardent 1500/3000



TIMES (3C)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Compatibility Functions —BSD
TIMES (3C)

times — get process times

#include <sys/types.h>
#include <sys/times.h>

times(buffer)
struct tms *buffer;

times returns time-accounting information for the current process and for the ter-
minated child processes of the current process. All times are in 1/HZ seconds, where
HZ is 60.

This is the structure returned by times:

/*
* Structure returned by times()
*/
struct tms {
time_t tms_utime; /* user time */
time_t tms_stime; /* system time */
time_t tms_cutime; /* user time, children */
time_t tms_cstime; /* system time, children */

|5

The children times are the sum of the children’s process times and their children’s
times.

getrusage(2), time(1), time(3), wait3(2)

10

Stardent 1500/3000




Comeatibilitz Functions—BSD

UTIME(3C) UTIME (3C)
NAME
utime — set file times
SYNOPSIS
#include <sys/types.h>
utime(file, timep)
char *file;
time_t timep[2];
DESCRIPTION
This interface is superseded by utimes(2).
The utime call uses the ‘accessed” and “‘updated’ times in that order from the timep
vector to set the corresponding recorded times for file.
The caller must be the owner of the file or the super-user. The ‘inode-changed’ time
of the file is set to the current time.
SEE ALSO

stat(2), utimes(2)

Stardent 1500/3000 11



Comeatibilitz Functions—BSD

VALLOC(3C) VALLOC (3C)
NAME
valloc — aligned memory allocator
SYNOPSIS
char *valloc(size)
unsigned size;
DESCRIPTION
valloc is superseded by the current version of malloc(3), which aligns page-sized and
larger allocations.
valloc allocates size bytes aligned on a page boundary. It is implemented by calling
malloc with a slightly larger request, saving the true beginning of the block allocated,
and returning a properly aligned pointer.
DIAGNOSTICS
valloc returns a null pointer (0) if there is no available memory or if the arena has
been detectably corrupted by storing outside the bounds of a block.
BUGS
vfree isn’t implemented.
12 Stardent 1500/3000




Comeatibilitz Functions—BSD
VTIMES (3C) VTIMES (3C)

NAME
vtimes — get information about resource utilization

SYNOPSIS
vtimes(par_vm, ch_vm)
struct vtimes *par_vm, *ch_vm;

DESCRIPTION
This facility is superseded by getrusage(2).

vtimes returns accounting information for the current process and for the terminated
child processes of the current process. Either par_vm or ch_vm or both may be 0, in
which case only the information for the pointers which are non-zero is returned.

struct vtimes {
int vm_utime; /* user time (*HZ) */
int vm_stime; /* system time (*HZ) */
/* divide next two by utime+stime to get averages */
unsigned vm_idsrss; /* integral of d+s rss */
unsigned vm_ixrss; /* integral of text rss */
int VIM_Mmaxrss; /* maximum rss */
int vm_majflt; /* major page faults */
int vm_minflt; /* minor page faults */
int vm_nswap; /* number of swaps */
int vm_inblk; /#* block reads */
int vm_oublk; /* block writes */

3

The vm_utime and vm_stime fields give the user and system time respectively in 60ths
of a second (or 50ths if that is the frequency of wall current in your locality.) The
vm_idrss and vm_ixrss measure memory usage. They are computed by integrating
the number of memory pages in use over CPU time. They are reported as though
computed discretely, adding the current memory usage (in 512 byte pages) each time
the clock ticks. If a process used 5 core pages over 1 CPU-second for its data and
stack, then vm_idsrss would have the value 5%60, where vm_utime+vm_stime would be
the 60. vm_idsrss integrates data and stack segment usage, while vm_ixrss integrates
text segment usage. vm_maxrss reports the maximum instantaneous sum of the
text+data+stack core-resident page count.

The vm_majflt field gives the number of page faults which resulted in disk activity;
the vm_minflt field gives the number of page faults incurred in simulation of refer-
ence bits; vm_nswap is the number of swaps which occurred. The number of file sys-
tem I/O events are reported in vm_inblk and vm_oublk These numbers account only
for real I/O; data supplied by the caching mechanism is charged only to the first pro-
cess to read or write the data.

SEE ALSO
getrusage(2), time(2), wait3(2)

Stardent 1500/3000 13






BYTEORDER (3N)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

BUGS

Network Library Functions —BSD
BYTEORDER (3N)

htonl, htons, ntohl, ntohs — convert values between host and network byte order

#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
u_long netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

These routines convert 16 and 32 bit quantities between network byte order and host
byte order. On machines such as the SUN these routines are defined as null macros
in the include file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports
as returned by gethostbyname(3N) and getservent (3N).
gethostbyname(3N), getservent(3N)

The VAX handles bytes backwards from most everyone else in the world. This is not
expected to be fixed in the near future.

Stardent 1500/3000



Network Library Functions —BSD

GETHOSTBYNAME (3N) GETHOSTBYNAME (3N)

NAME

gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent — get network
host entry

SYNOPSIS
#include <netdb.h>
extern int h_errno;
struct hostent *gethostbyname(name)
char *name;
struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;
struct hostent *gethostent()
sethostent(stayopen)
int stayopen;
endhostent()
DESCRIPTION
gethostbyname and gethostbyaddr each returns a pointer to an object with the following
structure. This structure contains either the information obtained from the name
server, named (8), or broken-out fields from a line in /efc/hosts. If the local name server
is not running these routines do a lookup in /etc/hosts.
struct hostent {
char  *h_name; / * official name of host */
char  *+*h_aliases; /* alias list */
int h_addrtype;  /*host'address type */
int h_length; /* length of address */
char  **h_addr_list; /* list of addresses from name server */
Y;
#define h_addr h_addr_list[0] /* address, for backward compatibility */
The members of this structure are:
h_name Official name of the host.
h_aliases = A zero terminated array of alternate names for the host.
h_addrtype The type of address being returned; currently always AF_INET.
h_length The length, in bytes, of the address.
h_addr_list A zero terminated array of network addresses for the host. Host
addresses are returned in network byte order.
h_addr The first address in h_addr_list; this is for backward compatiblity.
sethostent allows a request for the use of a connected socket using TCP for queries. If
the stayopen flag is non-zero, this sets the option to send all queries to the name
server using TCP and to retain the connection after each call to gethostbyname or
gethostbyaddr . '
: sndhostent closes the TCP connection.
DIAGNOSTICS
Error return status from gethostbyname and gethostbyaddr is indicated by return of a
null pointer. The external integer /_errno may then be checked to see whether this is
a temporary failure or an invalid or unknown host.
2 Stardent 1500/3000




Network Library Functions —BSD

GETHOSTBYNAME (3N) GETHOSTBYNAME (3N)

FILES

SEE ALSO

CAVEAT

BUGS

h_errno can have the following values:
HOST_NOT_FOUND No such host is known.

TRY_AGAIN This is usually a temporary error and means that the
local server did not receive a response from an authori-
tative server. A retry at some later time may succeed.

NO_RECOVERY This is a non-recoverable error.

NO_ADDRESS The requested name is valid but does not have an IP
address; this is not a temporary error. This means
another type of request to the name server will result in
an answer.

/etc/hosts
hosts(5), resolver(3), named(8)

gethostent is defined, and sethostent and endhostent are redefined, when libc is built to
use only the routines to lookup in /etc/hosts and not the name server.

gethostent reads the next line of /efc/hosts, opening the file if necessary.

gethostent is redefined to open and rewind the file. If the stayopen argument is non-
zero, the hosts data base will not be closed after each call to gethostbyname or gethost-
byaddr. endhostent is redefined to close the file.

All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet address format is currently understood.

Stardent 1500/3000



GETNETENT(3N)

NAME

SYNOPSIS

DESCRIPTION

FILES
SEE ALSO
DIAGNOSTICS

BUGS

Network Library Functions —BSD
GETNETENT(3N)

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get network entry

#include <netdb.h>
struct netent *getnetent()

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;

int type;
setnetent(stayopen)
int stayopen;

endnetent()

getnetent, getnetbyname, and getnetbyaddr each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the network data
base, Jetc/networks.

struct netent {
char *n_name; /* official name of net */
char *+n_aliases; /* alias list */
int n_addrtype;  /* net number type */
unsigned long n_net; /* net number */
L
The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the network.
n_addrtype The type of the network number returned; currently only AF_INET.

n_net The network number. Network numbers are returned in machine byte
order.

getnetent reads the next line of the file, opening the file if necessary.

setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base
is not closed after each call to getnetbyname or getnetbyaddr.

endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from the beginning of the file until
a matching net name or net address and type is found, or until EOF is encountered.
Network numbers are supplied in host order.

/etc/networks
networks(4)
Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only Internet network numbers are currently understood. Expecting network
numbers to fit in no more than 32 bits is probably naive.

Stardent 1500/3000

(w



Network Library Functions —BSD

GETPROTOENT(3N) GETPROTOENT (3N)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent — get
protocol entry

#include <netdb.h>
struct protoent *getprotoent()

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen

endprotoent()

getprotoent, getprotobyname, and getprotobynumber each returns a pointer to an object
with the following structure containing the broken-out fields of a line in the network
protocol data base, /etc/protocols.

struct protoent {
char  *p_name; /* official name of protocol */
char  **p_aliases; /* alias list */
int p_proto; /* protocol number */
Iy
The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero terminated list of alternate names for the protocol.
p_proto  The protocol number.
getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data
base is not closed after each call to getprotobyname or getprotobynumber.

endprotoent closes the file.

getprotobyname and gefprotobynumber sequentially search from the beginning of the
file until a matching protocol name or protocol number is found, or until EOF is
encountered.

/etc/protocols
protocols(4)
Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet protocols are currently understood.

Stardent 1500/3000



GETSERVENT(3N)

NAME

SYNOPSIS

DESCRIPTION

FILES
SEE ALSO
DIAGNOSTICS

BUGS

Network Library Functions-BSD
GETSERVENT (3N)

getservent, getservbyport, getservbyname, setservent, endservent — get service entry

#include <netdb.h>
struct servent *getservent()

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen

endservent()

getservent, getservbyname, and getservbyport each returns a pointer to an object with
the following structure containing the broken-out fields of a line in the network ser-
vices data base, Jetc/services.

struct servent {
char  *s_name; / * official name of service */
char  **s_aliases; /* alias list */
int s_port; /* port service resides at */
char  #*s_proto; /* protocol to use */

7
The members of this structure are:
s_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.

s_port  The port number at which the service resides. Port numbers are returned
in network byte order.

s_proto  The name of the protocol to use when contacting the service.
getservent reads the next line of the file, opening the file if necessary.

setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data
base is not closed after each call to gefservbyname or getservbyport.

endservent closes the file.

getservbyname and getservbyport sequentially search from the beginning of the file
until a matching protocol name or port number is found, or until EOF is encountered.
If a protocol name is also supplied (non-NULL), searches must also match the proto-
col.

/etc/services
getprotoent(3N), services(4)
Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Expecting port numbers to fit in a 32 bit quantity is probably naive.

Stardent 1500/3000



Network Libra:z Functions—BSD

INET(3N) INET(3N)
NAME
inet: inet_addr, inet_network, inet ntoa, inet_makeaddr, inet_Ilnaof, inet netof -
Internet address manipulation routines
SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
unsigned long inet_addr(cp)
char *cp;
unsigned long inet_network(cp)
char *cp;
char *inet_ntoa(in)
struct in_addr in;
struct in_addr inet_makeaddr(net, Ina)
int net, Ina;
int inet_lnaof(in)
struct in_addr in;
int inet_netof(in)
struct in_addr in;
DESCRIPTION
The routines inet_addr and inef_network interpret character strings representing
numbers expressed in the Internet standard ““.”” notation, returning numbers suitable
for use as Internet addresses and Internet network numbers, respectively. The rou-
tine inet_ntoa takes an Internet address and returns an ASCII string representing the
address in “”” notation. The routine inet makeaddr takes an Internet network
number and a local network address and constructs an Internet address from it. The
routines inet_netof and inet_Inaof break apart Internet host addresses, returning the
network number and local network address part, respectively. '
All Internet addressaes are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine format
integer values.
INTERNET ADDRESSES
Values specified using the “.”” notation take one of the following forms:
a.b.c.d
a.b.c
ab
a
When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address. Note that when an Internet
address is viewed as a 32-bit integer quantity on the VAX the bytes referred to above
appear as “d.cb.a”. Thatis, VAX bytes are ordered from right to left.
When a three part address is specified, the last part is interpreted as a 16-bit quantity
and placed in the right most two bytes of the network address. This makes the three
part address format convenient for specifying Class B network addresses as
*/128.net.host”.
When a two part address is supplied, the last part is interpreted as a 24-bit quantity
and placed in the right most three bytes of the network address. This makes the two
part address format convenient for specifying Class A network addresses as
Stardent 1500/3000 7



Network Librarx Functions —BSD

INET(3N)

SEE ALSO

DIAGNOSTICS

BUGS

INET(3N)

“net.host”.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as “parts” in a “.”” notation may be decimal, octal, or hexade-
cimal, as specified in the C language (i.e., a leading Ox or 0X implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise, the number is interpreted as decimal).

gethostbyname(3N), getnetent(3N), hosts(4), networks(4)
The value -1 is returned by inet_addr and inet_network for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A
simple way to specify Class C network addresses in a manner similar to that for
Class B and Class A is needed. The string returned by inef_ntoa resides in a static
memory area.

Inet_addr should return a struct in_addr.

Stardent 1500/3000

(‘\



FCLOSE(3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

Standard I/O Library Functions -BSD
FCLOSE (3S)

fclose, fflush — close or flush a stream

#include <stdio.h>

fclose(stream)
FILE #stream;

fflush(stream)
FILE *stream;

fclose causes any buffers for the named stream to be emptied, and the file to be closed.
Buffers allocated by the standard input/output system are freed.

fclose is perforrhed automatically upon calling exit(3).

fflush causes any buffered data for the named output stream to be written to that file.
The stream remains open.

close(2), fopen(3S), setbuf(35)

These routines return EOF if stream is not associated with an output file, or if buffered
data cannot be transferred to that file.

Stardent 1500/3000



FERROR (3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Standard I/O Library Functions —BSD
FERROR(3S)

ferror, feof, clearerr, fileno — stream status inquiries

#include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr(stream)
FILE #stream

fileno(stream)
FILE *stream;

feof returns non-zero when end of file is read on the named input stream, otherwise
zero. Unless cleared by clearerr, the end-of-file indication lasts until the stream is
closed. :

ferror returns non-zero when an error has occurred reading or writing the named
stream, otherwise zero. Unless cleared by clearerr, the error indication lasts until the
stream is closed.

clearerr resets the error and end-of-file indicators on the named stream.
fileno returns the integer file descriptor associated with the stream, see open(2).

Currently all of these functions are implemented as macros; they cannot be rede-
clared.

fopen(3S), open(2)

Stardent 1500/3000



FOPEN (3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

Standard I/O Library Functions —BSD
FOPEN (3S)

fopen, freopen, fdopen — open a stream

#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

fopen opens the file named by filename and associates a stream with it. fopen returns a
pointer to be used to identify the stream in subsequent operations.

type is a character string having one of the following values:

Mt

r"  open for reading

"o, o1

w" create for writing

a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a "+" to have the file opened for reading
and writing. "r+" positions the stream at the beginning of the file, "w+" creates or
truncates it, and "a+" positions it at the end. Both reads and writes may be used on
read /write streams, with the limitation that an fseek, rewind, or reading an end-of-file
must be used between a read and a write or vice-versa.

freopen substitutes the named file in place of the open stream. It returns the original
value of stream. The original stream is closed.

freopen is typically used to attach the preopened constant names, stdin, stdout,
stderr, to specified files.

fdopen associates a stream with a file descriptor obtained from open, dup, creat, or
pipe(2). The type of the stream must agree with the mode of the open file.

fclose(3), open(2)

fopen and freopen return the NULL pointer if filename cannot be accessed, if too many
files are already open, or if other resources needed cannot be allocated.

fdopen is not portable to systems other than UNIX.

The read /write types do not exist on all systems. Those systems without read/write
modes probably treat the fype as if the "+" were not present. These are unreliable in
any event.

In-order to support the same number of open files as does the system, fopen must
allocate additional memory for data structures using calloc after 20 files have been
opened. This confuses some programs which use their own memory allocators. An
undocumented routine, f_prealloc, may be called to force immediate allocation of all
internal memory except for buffers.

Stardent 1500/3000



Standard I/O Library Functions —BSD

FREAD (3S) FREAD(3S)
NAME
fread, fwrite — buffered binary input/output
SYNOPSIS
#include <stdio.h>
fread(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;
fwrite(ptr, sizeof(+ptr), nitems, stream)
FILE *stream;
DESCRIPTION
fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the
named input stream. It returns the number of items actually read.
If stream is stdin and the standard output is line buffered, then any partial output line
will be flushed before any call to read(2) to satisfy the fread.
fwrite appends at most nitems of data of the type of *ptr beginning at ptr to the named
output stream. It returns the number of items actually written.
SEE ALSO
fopen(35), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S), read(2), scanf(3S), write(2)
DIAGNOSTICS
fread and fwrite return O upon end of file or error.
&
4 Stardent 1500/3000



FSEEK (3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

Standard I/O Library Functions —BSD
FSEEK (3S)

fseek, ftell, rewind — reposition a stream

#include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)

fseek sets the position of the next input or output operation on the stream. The new
position is at the signed distance offset bytes from the beginning, the current position,
or the end of the file, according as ptrname has the value 0, 1, or 2.

fseek undoes any effects of ungetc(3S).

ftell returns the current value of the offset relative to the beginning of the file associ-
ated with the named stream. It is measured in bytes on UNIX; on some other systems
it is a magic cookie, and the only foolproof way to obtain an offset for fseck.

rewind (stream) is equivalent to fseek(stream, OL, 0).

Iseek(2), fopen(3S)

fseek returns -1 for improper seeks, otherwise zero.

Stardent 1500/3000



Standard /0 Libram Functions —BSD

GETC(3S) GETC(3S)
NAME
getc, getchar, fgetc, getw — get character or word from stream
SYNOPSIS
#include <stdio.h>
int getc(stream)
FILE *stream;
int getchar()
int fgetc(stream)
FILE #stream;
int getw{stream)
FILE #*stream;
DESCRIPTION
getc returns the next character from the named input stream.
getchar() is identical to getc(stdin).
fgetc behaves like gefc, but is a genuine function, not a macro; it may be used to save
object text.
getw returns the next int from the named input stream. It returns the constant EOF
upon end of file or error, but since that is a good integer value, feof and ferror(3S)
should be used to check the success of gefw. gefw assumes no special alignment in
the file.
SEE ALSO
clearerr(3S), fopen(3S), fread(35), gets(3S), putc(3S), scanf(3S), ungetc(3S)
DIAGNOSTICS
These functions return the integer constant EOF at end of file, upon read error, or if
an attempt is made to read a file not opened by fopen. The end-of-file condition is
remembered, even on a terminal, and all subsequent attempts to read return EOF
until the condition is cleared with clearerr(3S).
BUGS
Because it is implemented as a macro, gefc treats a stream argument with side effects
incorrectly. In particular, ‘getc(+f++);” doesn’t work sensibly.
6 Stardent 1500/3000



Standard 1/0 Libram Functions —BSD

GETS(3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

GETS(3S)

gets, fgets — get a string from a stream

#include <stdio.h>

char *gets(s)
char *s;

char #fgets(s, n, stream)
char *s;
FILE *stream;

gets reads a string into s from the standard input stream stdin. The string is ter-
minated by a newline character, which is replaced in s by a null character. gefs
returns its argument.

fgets reads n—1 characters, or up through a newline character, whichever comes first,
from the stream into the string s. The last character read into s is followed by a null
character. fgefs returns its first argument.

ferror(3S), fread(3S), getc(3S), puts(3S), scanf(3S)
gets and fgets return the constant pointer NULL upon end of file or error.

gets deletes a newline, fgets keeps it, all in the name of backward compatibility.

Stardent 1500/3000



PRINTF(3S)

NAME

SYNOPSIS

DESCRIPTION

Standard I/0 Library Functions —BSD
PRINTF (3S)

printf, fprintf, sprintf — formatted output conversion

#include <stdio.h>

printf(format [, arg] ... )
char *format;

fprintf(stream, format [, arg] ... )
FILE *stream;
char *format;

sprintf(s, format [, arg] ... )
char *s, format;

_doprnt(format, args, stream)
char *format;

va_list *args;

FILE #*stream;

printf places output on the standard output stream stdout. fprintf places output on
the named output stream. sprintf places ‘output’ in the string s, followed by the char-
acter \0’". All of these routines work by calling the internal routine _doprnt, using
the variable-length argument facilities of varargs(3).

Each of these functions converts, formats, and prints its arguments after the first
under control of the first argument. The first argument is a character string which
contains two types of objects: plain characters, which are simply copied to the out-
put stream, and conversion specifications, each of which causes conversion and
printing of the next successive arg printf.

Each conversion specification is introduced by the character %. The remainder of the
conversion specification includes in the following order

. Zero or more of following flags:

*  a‘# character specifying that the value should be converted to an “alter-
nate form”. For ¢, d, s, and u, conversions, this option has no effect. For o
conversions, the precision of the number is increased to force the first
character of the output string to a zero. For x(X) conversion, a non-zero
result has the string 0x(0X) prepended to it. For e, E, £, g, and G, conver-
sions, the result always contains a decimal point, even if no digits follow
the point (normally, a decimal point only appears in the results of those
conversions if a digit follows the decimal point). For g and G conver-
sions, trailing zeros are not removed from the result as they would other-
wise be.

e a minus sign -’ which specifies left adjustment of the converted value in
the indicated field;

*  a’+’ character specifying that there should always be a sign placed before
the number when using signed conversions.

¢ a space specifying that a blank should be left before a positive number
during a signed conversion. A “+" overrides a space if both are used.

¢ an optional digit string specifying a field width; if the converted value has fewer
characters than the field width it is blank-padded on the left (or right, if the
left-adjustment indicator has been given) to make up the field width; if the field
width begins with a zero, zero-padding is done instead of blank-padding;

Stardent 1500/3000

g



Standard I/0 Library Functions —BSD

PRINTF (3S) PRINTF (3S)

e  an optional period ‘. which serves to separate the field width from the next
digit string;

. an optional digit string specifying a precision which specifies the number of
digits to appear after the decimal point, for e- and f-conversion, or the max-
imum number of characters to be printed from a string;

e the character 1 specifying that a following d, o, x, or u corresponds to a long
integer arg.

¢ acharacter which indicates the type of conversion to be applied.

A field width or precision may be ‘*" instead of a digit string. In this case an integer

arg supplies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respec-
tively.

f The float or double arg is converted to decimal notation in the style
‘[-lddd.ddd” where the number of d’s after the decimal point is equal to the
precision specification for the argument. If the precision is missing, 6 digits are
given; if the precision is explicitly 0, no digits and no decimal point are printed.

e  The float or double arg is converted in the style ‘[-]ld.dddetdd” where there is
one digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are pro-
duced.

g  The float or double arg is printed in style d, in style £, or in style e, whichever
gives full precision in minimum space.

¢ The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the
precision specification is reached; however if the precision is 0 or missing all
characters up to a null are printed.

u  The unsigned integer arg is converted to decimal and printed (the result will be
in the range 0 through MAXUINT, where MAXUINT equals 4294967295 on a
VAX-11 and 65535 on a PDP-11).

% Print a ‘%’; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; pad-

ding takes place only if the specified field width exceeds the actual width. Charac-

ters generated by printf are printed by putc(3S).

Examples

To print a date and time in the form ‘Sunday, July 3, 10:02, where weekday and month

are pointers to null-terminated strings:
printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 7t to 5 decimals:
printf("pi = %.5f", 4*atan(1.0));

SEE ALSO
ecvt(3), putc(3S), scanf(35)
BUGS

Very wide fields (>128 characters) fail.

Stardent 1500/3000 9



Standard I/0 Librarx Functions —BSD

PUTC(3S) PUTC(3S)
NAME
putc, putchar, fpute, putw — put character or word on a stream
SYNOPSIS
#include <stdio.h>
int putc(c, stream)
char ¢;
FILE *stream;
int putchar(c)
int fputc(c, stream)
FILE *stream;
int putw(w, stream)
FILE *stream;
DESCRIPTION
putc appends the character ¢ to the named output stream. It returns the character
written.
putchar(c) is defined as putc(c, stdout).
foutc behaves like putc, but is a genuine function rather than a macro.
putw appends word (that is, int) w to the output stream. It returns the word written.
putw neither assumes nor causes special alignment in the file.
SEE ALSO
fclose(39), fopen(3S), fread(3S), getc(3S), printf(3S), puts(3S)
DIAGNOSTICS : ’
These functions return the constant EOF upon error. Since this is a good integer,
ferror(3S) should be used to detect putw errors.
BUGS
Because it is implemented as a macro, pufc treats a stream argument with side effects
improperly. Inparticular
putc(c, *f++);
doesn’t work sensibly.
Errors can occur long after the call to putc.
10 Stardent 1500/3000



Standard 1/0 Library Functions —-BSD

PUTS(3S) PUTS(3S)
NAME
puts, fputs — put a string on a stream
SYNOPSIS
#include <stdio.h>
puts(s)
char *s;
fputs(s, stream)
char *s;
FILE *stream;
DESCRIPTION
puts copies the null-terminated string s to the standard output stream stdout and ap-
pends a newline character.
fputs copies the null-terminated string s to the named output stream.
Neither routine copies the terminal null character.
SEE ALSO
ferror(3S), fopen(3S), gets(3S), printf(3S), putc(3S)
fread(3S) for fwrite
BUGS

puts appends a newline, fputs does not, all in the name of backward compatibility.

Stardent 1500/3000 11



Standard 1/0 Librag Functions —BSD

SCANF(3S)

NAME

SYNOPSIS

DESCRIPTION

SCANF (3S)

scanf, fscanf, sscanf — formatted input conversion

#include <stdio.h>

scanf(format [, pointer]... )
char *format;

fscanf(stream, format [, pointer] ... )
FILE *stream;
char *format;

sscanf(s, format [, pointer]... )
char *s, *format;

scanf reads from the standard input stream stdin. fscanf reads from the named input
stream. sscanf reads from the character string s. Each function reads characters, inter-
prets them according to a format, and stores the results in its arguments. Each ex-
pects as arguments a control string format, described below, and a set of pointer argu-
ments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input
stream.

3. Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, and a
conversion character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until the field width, if
specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. The following
conversion characters are legal:

% asingle ‘%’ is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer
pointer.

o an octal integer is expected; the corresponding argument should be a integer
pointer.

x  a hexadecimal integer is expected; the corresponding argument should be an in-
teger pointer.

s a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and a
terminating ‘\0’, which is added. The input field is terminated by a space char-
acter or a newline.

¢ a character is expected; the corresponding argument should be a character
pointer. The normal skip over space characters is suppressed in this case; to
read the next non-space character, try ‘%ls’. If a field width is given, the

12

Stardent 1500/3000



SCANF (3S)

SEE ALSO

DIAGNOSTICS

BUGS

Standard I/0 Library Functions —BSD
SCANF (3S)

corresponding argument should refer to a character array, and the indicated
number of characters is read.

e a floating point number is expected; the next field is converted accordingly and

f stored through the corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is an optionally signed string
of digits possibly containing a decimal point, followed by an optional exponent
field consisting of an E or e followed by an optionally signed integer.

[ indicates a string not to be delimited by space characters. The left bracket is fol-
lowed by a set of characters and a right bracket; the characters between the
brackets define a set of characters making up the string. If the first character is
not circumflex (), the input field is all characters until the first character not in
the set between the brackets; if the first character after the left bracket is A, the in-
put field is all characters until the first character which is in the remaining set of
characters between the brackets. The corresponding argument must point to a
character array.

The conversion characters d, 0 and x may be capitalized or preceded by 1 to indicate
that a pointer to long rather than to int is in the argument list. Similarly, the conver-
sion characters e or f may be capitalized or preceded by 1 to indicate a pointer to
double rather than to float. The conversion characters d, o and x may be preceded
by h to indicate a pointer to short rather than to int.

The scanf functions return the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. The constant
EOF is returned upon end of input; note that this is different from 0, which means
that no conversion was done; if conversion was intended, it was frustrated by an
inappropriate character in the input.

For example, the call

int i; float x; char name[50];
scanf("%d %f%s", &i, &x, name);

with the input line
25 54.32E-1 thompson
assigns to i the value 25, x the value 5.432, and name contains ‘thompson\0’. Or,

int i; float x; char name[50];
scanf("%2d %f%*d %[1234567890]", &i, &x, name);

with input
56789 0123 56a72
assigns 56 to 7, 789.0 to x, skips ‘0123’, and places the string ‘56\0" in name. The next

call to getchar returns ‘a’.

atof(3), getc(3S), printf(3S)

The scanf functions return EOF on end of input, and a short count for missing or ille-
gal data items.

The success of literal matches and suppressed assignments is not directly determin-
able.

Stardent 1500/3000

13



SETBUF(3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Standard I/0O Library Functions —BSD
SETBUF(3S)

setbuf, setbuffer, setlinebuf — assign buffering to a stream

#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)
FILE #*stream;

char *buf;

int size;

setlinebuf(stream)
FILE *stream;

The three types of buffering available are unbuffered, block buffered, and line buf-
fered. When an output stream is unbuffered, information appears on the destination
file or terminal as soon as written; when it is block buffered many characters are
saved up and written as a block; when it is line buffered characters are saved up until
a newline is encountered or input is read from stdin. fflush (see fclose(3S)) may be
used to force the block out early. Normally all files are block buffered. A buffer is
obtained from malloc(3) upon the first gefc or putc(3S) on the file. If the standard
stream stdout refers to a terminal it is line buffered. The standard stream stderr is al-
ways unbuffered.

setbuf is used after a stream has been opened but before it is read or written. The
character array buf is used instead of an automatically allocated buffer. If buf is the
constant pointer NULL, I/O is completely unbuffered. A manifest constant BUFSIZ
tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuf, is used after a stream has been opened but be-
fore it is read or written. The character array buf whose size is determined by the size
argument is used instead of an automatically allocated buffer. If buf is the constant
pointer NULL, I/O is completely unbuffered.

setlinebuf is used to change stdout or stderr from block buffered or unbuffered to line
buffered. Unlike setbuf and setbuffer it can be used at any time that the file descriptor
is active.

A file can be changed from unbuffered or line buffered to block buffered by using
freopen (see fopen(3S)). A file can be changed from block buffered or line buffered to
unbuffered by using freopen followed by setbuf with a buffer argument of NULL.

fclose(39), fopen(3S), fread(3S), getc(3S), malloc(3), printf(3S), putc(3S), puts(3S)

14

Stardent 1500/3000

( \



STDIO(3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

Standard I/0 Library Functions —BSD
' STDIO(3S)

stdio — standard buffered input/output package

#include <stdio.h>

FILE #*stdin;
FILE *stdout;
FILE *stdert;

The functions described in section 35S constitute a user-level buffering scheme. The
in-line macros getc and putc(3S) handle characters quickly. The higher level routines
gets, fgets, scanf, fscanf, fread, puts, fputs, printf, fprintf, fwrite all use getc and putc;
they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a
defined type FILE. fopen(3S) creates certain descriptive data for a stream and returns
a pointer to designate the stream in all further transactions. There are three normally
open streams with constant pointers declared in the include file and associated with
the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant “pointer’ NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions
that deal with streams.

Any routine that uses the standard input/output package must include the header
file <stdio.h> of pertinent macro definitions. The functions and constants mentioned
in sections labeled 3S are declared in the include file and need no further declaration.
The constants, and the following ‘functions’ are implemented as macros; redeclara-
tion of these names is perilous: getc, getchar, putc, putchar, feof, ferror, fileno.

close(2), fread(3S), fseek(3S), f+(3S), open(2), read(2), write(2)

The value EOF is returned uniformly to indicate that a FILE pointer has not been ini-
tialized with fopen, input (output) has been attempted on an output (input) stream, or
a FILE pointer designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been
changed to line buffer output to a terminal by default and attempts to do this tran-
sparently by flushing the output whenever a read (2) from the standard input is neces-
sary. This is almost always transparent, but may cause confusion or malfunctioning
of programs which use standard I/O routines but use read(2) themselves to read
from the standard input.

In cases where a large amount of computation is done after printing part of a line on
an output terminal, it is necessary to fflush(3S) the standard output before going off
and computing so that the output will appear.

The standard buffered functions do not interact well with certain other library and
system functions, especially vfork and abort.

Stardent 1500/3000

15



Standard 1/0 Libraz Functions —-BSD

STDIO (3S) STDIO(3S)
LIST OF FUNCTIONS
Name Appears on Page Description
clearerr ferror.3s stream status inquiries
fclose fclose.3s close or flush a stream
fdopen fopen.3s open a stream
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fflush fclose.3s close or flush a stream
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
fopen fopen.3s open a stream
fprintf printf.3s formatted output conversion
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
freopen- fopen.3s open a stream
fscanf scanf.3s formatted input conversion
fseek fseek.3s reposition a stream
ftell fseek.3s reposition a stream
fwrite fread.3s buffered binary input/output
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
gets gets.3s get a string from a stream
getw getc.3s get character or word from stream
printf printf.3s formatted output conversion
putc putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream
putw putc.3s put character or word on a stream
rewind fseek.3s reposition a stream
scanf scanf.3s formatted input conversion
setbuf setbuf.3s  assign buffering to a stream
setbuffer setbuf.3s  assign buffering to a stream
setlinebuf ~ setbuf.3s  assign buffering to a stream
sprintf printf.3s formatted output conversion
sscanf scanf.3s formatted input conversion
ungetc ungetc.3s  push character back into input stream
16 Stardent 1500/3000

(



UNGETC(3S)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

Standard 1/O Library Functions —BSD
UNGETC (3S)

ungetc — push character back into input stream

#include <stdio.h>

ungetc(c, stream)
FILE #*stream;

ungetc pushes the character ¢ back on an input stream. That character is returned by
the next gefc call on that stream. ungefc returns c.

One character of pushback is guaranteed provided something has been read from the
stream and the stream is actually buffered. Attempts to push EOF are rejected.
fseek(3S) erases all memory of pushed back characters.

getc(35), fseek(35), setbuf(35)

ungetc returns EOF if it can’t push a character back.

Stardent 1500/3000

17






CURSES (3X)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

AUTHOR

FUNCTIONS

Miscellaneous Functions —BSD

CURSES (3X)

curses — screen functions with “optimal”” cursor motion

cc [ flags ] files —lcurses —ltermcap [ libraries ]

These routines give the user a method of updating screens with reasonable optimiza-
tion. They keep an image of the current screen, and the user sets up an image of a
new one. Then the refresh() tells the routines to make the current screen look like the
new one. In order to initialize the routines, the routine initscr() must be called before
any of the other routines that deal with windows and screens are used. The routine

endwin() should be called before exiting.

getenv(3), ioctl(2), termcap(5), tty(4)
Ken Arnold

addch(ch)

addstr(str)
box(win,vert,hor)
cbreak()

clear()
clearok(scr,boolf)
clrtobot()

clrtoeol()

delch()

deleteln()
delwin(win)

echo()

endwin()

erase()
flusok(win,boolf)
getch()

getcap(name)
getstr(str)

gettmode()
getyx(win,y,x)

inch()

initscr()

insch(c)

insertIn()
leaveok(win,boolf)
longname(termbuf,name)
move(y,x)
mvcur(lasty,lastx,newy,newx)
newwin(lines,cols,begin_y,begin_x)
nl()

nocbreak()

noecho()

nonl()

noraw()
overlay(winl,win2)
overwrite(winl,win2)

add a character to stdscr

add a string to stdscr

draw a box around a window
set cbreak mode

clear stdscr

set clear flag for scr

clear to bottom on stdscr

clear to end of line on stdscr
delete a character

delete a line

delete win

set echo mode

end window modes

erase stdscr

set flush-on-refresh flag for win
get a char through stdscr

get terminal capability name
get a string through stdscr

get tty modes

get (y,x) co-ordinates

get char at current (y,x) co-ordinates
initialize screens

insert a char

insert a line

set leave flag for win

get long name from termbuf
move to (y,x) on stdscr
actually move cursor

create a new window

set newline mapping

unset cbreak mode

unset echo mode

unset newline mapping
unset raw mode

overlay winl on win2
overwrite winl on top of win2

Stardent 1500/3000



Miscellaneous Functions —BSD

CURSES (3X) CURSES (3X)
printw(fmt,argl,arg2,...) printf on stdscr
raw() set raw mode
refresh() make current screen look like stdscr
resetty() reset tty flags to stored value
savetty() stored current tty flags
scanw(fmt,argl,arg2,...) scanf through stdscr
scroll(win) scroll win one line
scrollok(win,boolf) set scroll flag
setterm(name) set term variables for name
standend() end standout mode
standout() start standout mode
subwin(win,lines,cols,begin_y,begin_x) create a subwindow
touchline(win,y,sx,ex) mark line y sx through sy as changed
touchoverlap(winl,win2) mark overlap of winl on win2

as changed

touchwin(win) “change’” all of win
unctrl(ch) printable version of ch
waddch(win,ch) add char to win
waddstr(win,str) add string to win
wclear(win) clear win
weclrtobot(win) clear to bottom of win
weclrtoeol(win) clear to end of line on win
wdelch(win,c) delete char from win
wdeleteln(win) delete line from win
werase(win) erase win
wgetch(win) get a char through win
wgetstr(win,str) get a string through win
winch(win) get char at current (y,x) in win
winsch(win,c) insert char into win
winsertln(win) insert line into win
wmove(win,y,x) set current (y,x) co-ordinates on win
wprintw(win,fmt,argl,arg2,...) printf on win
wrefresh(win) make screen look like win
wscanw(win,fmt,argl,arg?,...) scanf through win
wstandend(win) end standout mode on win
wstandout(win) start standout mode on win

2 Stardent 1500/3000



Miscellaneous Functions —BSD

DBM(3X) DBM(3X)
NAME
dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines
SYNOPSIS
#include <dbm.h>
typedef struct {
char *dptr;
int dsize;
} datum;
dbminit(file)
char *file;
datum fetch(key)
datum key;
store(key, content)
datum key, content;
delete(key)
datum key;
datum firstkey()
datum nextkey(key)
datum key;
DESCRIPTION
Note: The dbm library has been superseded by ndbm(3), and is now implemented
using ndbm.
These functions maintain key/content pairs in a data base. The functions handle
very large (a billion blocks) databases and access a keyed item in one or two file sys-
tem accesses. The functions are obtained with the loader option ~1dbm.
keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings,
are allowed. The data base is stored in two files. One file is a directory containing a
bit map and has “.dir’ as its suffix. The second file contains all data and has “.pag’ as
its suffix.
Before a database can be accessed, it must be opened by dbminit. At the time of this
call, the files file.dir and file.pag must exist. (An empty database is created by creat-
ing zero-length “.dir’ and “.pag’ files.)
Once open, the data stored under a key is accessed by fetch and data is placed under
a key by store. A key (and its associated contents) is deleted by delete. A linear pass
through all keys in a database may be made, in an (apparently) random order, by use
of firstkey and nextkey. firstkey returns the first key in the database. With any key
nextkey returns the next key in the database. This code traverses the data base:
for (key = firstkey(); key.dptr = NULL; key = nextkey(key))
DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero return
indicates ok. Routines that return a datum indicate errors with a null (0) dptr.
SEE ALSO
ndbm(3)
BUGS
The “.pag’ file contains holes so that its apparent size is about four times its actual
content. Older UNIX systems may create real file blocks for these holes when
Stardent 1500/3000 3



DBM (3X)

Miscellaneous Functions —BSD
DBM(3X)

touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar) without
filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit on
a single block. store returns an error in the event that a disk block fills with insepar-
able data. '

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function,
not on anything interesting.

Stardent 1500/3000



TERMCAP (3X)

NAME

SYNOPSIS

DESCRIPTION

Miscellaneous Functions —BSD
TERMCAP (3X)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — terminal independent operation rou-
tines

char PC;

char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *rname;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *c¢m;

tputs(cp, affent, outc)
register char *cp;

int affent;

int (*outc)();

These functions extract and use capabilities from the terminal capability data base
termcap(4). These are low level routines; see curses(3X) for a higher level package.

tgetent extracts the entry for terminal name into the buffer at bp. bp should be a charac-
ter buffer of size 1024 and must be retained through all subsequent calls to tgetnum,
tgetflag, and tgetstr. tgetent returns —1 if it cannot open the fermcap file, 0 if the termi-
nal name given does not have an entry, and 1 if all goes well. It looks in the environ-
ment for a TERMCAP variable. If found, and the value does not begin with a slash,
and the terminal type name is the same as the environment string TERM, the
TERMCAP string is used instead of reading the termcap file. If it does begin with a
slash, the string is used as a path name rather than /efc/termcap. This can speed up
entry into programs that call fgetent, as well as to help debug new terminal descrip-
tions or to make one for your terminal if you can’t write the file /etc/termcap.

tgetnum gets the numeric value of capability id, returning 1 if is not given for the ter-
minal. tgetflag returns 1 if the specified capability is present in the terminal’s entry, 0
if it is not. fgetstr returns the string value of the capability id, places it in the buffer at
area, and advances the area pointer. It decodes the abbreviations for this field
described in fermcap(4), except for cursor addressing and padding information.
tgetstr returns NULL if the capability was not found.

tgoto returns a cursor addressing string decoded from cm to go to column destcol in
line destline. It uses the external variables UP (from the up capability) and BC (if be is
given rather than bs) if necessary to avoid placing \n, AD or A@ in the returned
string. (Programs which call tgoto should be sure to turn off the XTABS bit(s), since
tgoto may now output a tab. Note that programs using termcap should in general
turn off XTABS anyway since some terminals use control-I for other functions, such as
nondestructive space.) If a % sequence is given which is not understood, then fgoto

Stardent 1500/3000



Miscellaneous Functions —BSD

TERMCAP (3X) TERMCAP (3X)
returns “OO0OPS”.
tputs decodes the leading padding information of the string cp; affent gives the
number of lines affected by the operation, or 1 if this is not applicable, outc is a rou-
tine which is called with each character in turn. The external variable ospeed should
contain the output speed of the terminal as encoded by stty(3). The external variable
PC should contain a pad character to be used (from the pc capability) if a null (*@) is
inappropriate.

FILES
/usr/lib/libtermcap.a —ltermcap library
/etc/termcap data base

SEE ALSO
ex(1), curses(3X), termcap(4)

AUTHOR
William Joy

6 Stardent 1500/3000



