
StorageTe~.~
r;uI" ~------------~-­~- .J

I'

,4400
Automated··
Cartridge
Syste·m

, '.. ~~

UNIX@Storage
Server

. Programmer's·
Guide'

PN 9036

PRELIMINARY

.. : " .. j

Information contained in this publication is
subject to change. In the event of changes,
the publication will be revised. Comments
concerning the contents of this manual
should be directed to Technical Publications
at the following address:

Storage Technology Corporation,
Technical Publications, 2270 South 88th
Street, Louisville, CO 80028-2286.

Ethernet™ is a trademark of Xerox Corp.
; HYPERchannel® is a 'registered trademark of Network Systems Corp.
, Storage Tek® is a r~istered trademark of Storage Technology Corp .
. Sun™ is a trademark of Sun Microsystems, Inc.
,.UNIX® is a registered trademark of AT&T.

ii

Copyright © 1989

by
Storage Technology Corporation

All Rights Reserved

9036

DOCUMENTATION SURVEY

1. Rate the following documentation factors:

Excellent Good Fair

Table of Contents [] [] []

Written material [] [] []

Organization [] [] []

Illustrations [] [] :r. []
,.~ ~ ...

Index [] [] []

Suggestions for improvement:

2. Does this manual contain the necessary information and procedures for using this
product?

Poor

[]

[]

L]
, "

[]
[]

If No, please explain: ______________________ _

3. How important is this manual as an aid in performing your job?

[] Very Important [] Important [] Somewhat Important [] Not Important

4. How often do you use this manual?

[] Daily [] Weekly [] Monthly [] As needed [] Never

9036 Iii

5. Whe~ have you consulted this manual? You may select more than one response.

[] For a product overview [] For command syntax reference

[] For installation planning [] For maintenance procedures

[] For installation instructions

[] For operating instructions

[] To answer a specific question

[] During a training course

Other (please explain): ______________________ _

6. Do you know where your manual is right now? Yes [] No []
If No, please explain: _______________________ _

7. What is your position/title? ______________________ _

iv 9036

TABLE OF CONTENTS

Section Page

PREFACE ..•....••............••.•..••••...................•.•.............................•........•..••..•.........• xxi
PURPOSE .. xxi
AUDIENCE ... xxi
USING TIIIS MANUAL ... ' xxi
CONVENTIONS .. xxii

CHAPTER 1: ACS LmRARY OVERVIEW ... 1-1
INTR.ODUCI'ION ... 1-1
ACS LIBRARY FUNCI'IONS .. 1-1
BENEFITS ... 1-4
ACS LIBRARY HARDWARE COMPO~NTS .. ~ 1-4

Library Storage Mod.ule (LSM} ... 1-5
Library Control Unit (LCU) ... 1-5
Library Management Unit (LMU) ... 1-8
4480 Cartridge Subsystem ... 1-8

4480 Control Unit .. 1-8
4480 Cartridge Drive ... 1-8

Server System .. 1-9
ACS LIBRARY SOFIWARE COMPC>NENTS .. 1-9

Storage Server and Client Software Interaction ... 1-9
Storage Server Software .. 1-10

ACS Library Manager (ACSLM) ... 1-12
ACS System Administrator (ACSSA) ... 1-12
Client System Interface (CSI) .. 1-13
ACS Event Logger (ACSEL) ... 1-13
Network Interface (NI) .. 1-13

Client Software .. 1-14
Network Interface (NI) .. 1-14
Server System Interface (SSI) .. 1-14
Client Applications .. 1-14

STORAGE SERVER ARCHI1'EcruRE ... 1-15
Adaptability ... 1-15

OPEN SYS1'EMS INTERCONNECfION (OSI) MODEL .. 1-16
Overview .. 1-16

9036 v

Table of Contents

Layers 1 and 2 - Physical and Data Link Layers ... 1-17
Layers 3 and 4 - Network and Transport Layers ... 1-17
Layers 5 and 6 - Session and Presentation Layers .. 1-17
Layer 7 - Application Layer .. 1-18

CHAPTER 2: ACSLM PROCESSES .•..•.....•...........•.••.........•.•...•••••••••••••••.•••••• 2·1
OVERVIEW .. 2-1
STORAGE SERVER INITIATION .. 2-1

Overview .. 2-1
Initiation Process .. 2-2

LmRARY REQUEST PROCESSING ... 2-3
Overview .. 2-3
ACSLM Processing States ... 2-3
ACSLM State Transitions .. 2-4
Interactions With Other Storage Server Components .. 2-5
Client Application - ACSLM Interactions .. 2-5

Overview .. 2-5
Response Types ... 2-5
Response Coordination .. 2-5
Interaction Process ... 2-7

ACSSA - ACSLM Interactions ... 2-9
Overview .. 2-9
Interaction Process ... 2-9

Programming Considerations .. 2-12
Handling Outstanding Requests ... 2-12
Library Drive Addresses .. 2-13

STORAGE SERVER "fERMINATION .. 2-13
Overview .. 2-13
~rennination Process ' ' ... 2-13

STORAGE SERVER RECOVERY .. 2-14
Overview .. 2-14
Storage Server Recovery Process ~ .. 2-14

UNSOLICITED MESSAGES ... 2-16
EVENT LOGGING ... 2-18

Description ... 2-18
How Events Are Logged .. 2-18
Event Log Messages .. 2-19

CHAPTER 3: ACSLM COMMON DATA STRUCTURES ...•..................•.... 3-1
OVERVIEW .. 3-1
REQUESTS ... 3-1

Request Fonnat .. 3-1
ipc_header .. 3-2
message_header ... 3-2
message_data ... 3-2

RESroNSES ... 3-3
Description ... 3-3

vi 9036

Table of Contents

General Response Fonnat .. 3-4
ipc_header .. 3-4
message_header ... 3-4
response_status .. 3-5
Parameters .. 3-6

Specific Response Fonnats .. 3-6
Acknowledge Response ... 3-6
Intennediate Response ... 3-7
Final Response - Successful Request .. 3-7
Final Response - Failed Request ... 3-7

COMMON STATUSES .. 3-7
COMMON VARIABLES .. 3-10

ACS .. 3-10
Description ... 3-10
Definition ... 3-10

CAPID ... 3-10
Description ... 3-10
Defmition ... 3-10

CAP_SIZE ... 3-10
Description ... 3-10
Definition .. 3-10

CELLID ... 3-11
Description ... 3-11
Definition .. 3-11

COMMAND ..•... 3-11
Description .. 3-11
Values .. : 3-11

DRIVEID ... 3-12
Description ... 3-12
Definition ... 3-12

FREECELLS ... 0 ••• 3-12
Description ... 3-12
Definition ~ ... 3-12

FUNCfION ... 3-13
Description ... 3-13
Values .. 3-13

LOCATION ... 3-13
Description ... 3-13
Values .. 3-13

LSMID ... 3-13
Description ... 3-13
Definition ... 3-13

MAX_ACS_DRIVES .. 3-14
Description ... 3-14
Definition ... 3-14

MAX_ID .. 3-14

9036 vii

Table of Contents

Description ... 3-14
Definition ... 3-14

MAX_MESSAGE_SIZE ... 3-14
Description ... 3-14
Definition ... 3-14

MAX_roRTS .. 3-14
Description ... 3-14
Defmition ... 3-15

MESSAGE_ID ... 3-15
Description ... 3-15
Definition ... 3-15

P ANELID .. 3-15
Description ... 3-15
Definition ... 3-15

PORTID ... 3-16
Description ... 3-16
Definition ... 3-16

STATE ... 3.-16
Description ... 3-16
Values .. 3-16

SUBP ANELID ... 3-17
Description ... # ••• 3-17
Definition ... 3-17

TYPE ... 3-17
Description :; ~ .. 3-17
Values .. 3-17

VOLID ... 3-18
Description ~ .. 3-18
Definition ... 3-18

CHAPTER 4: ACSLM COMMAND STRUCTURES 4-1
OVERVIEW .. 4-1
AUDIT ... 4-2

Name .. 4-2
Description ... 4-2
Requests ... 4-3

Request Format .. 4-3
Request Values ... 4-3

Responses ... 4-3
Intermediate Response Format .. 4-3
Intermediate Response Values ... 4-4
Final Response Format .. 4-5
Final Response Values ... 4-5
Final Response Values - Cancelled Request ... 4-7

Notes .. 4-7
See Also ... 4-8

viii 9036

Table of Contents

CANCEL ... 4-9
Name .. 4-9
Description ... 4-9
Requests ... 4-10

Request Fonnat .. 4-10
Request Values ... 4-10

Responses ... 4-10
Intennediate Response Fonnat .. 4-10
Final Response Fonnat .. 4-10
Final Response Values ... 4-10
Final Response Values - Cancelled Request ... 4-11

Notes .. 4-11
See Also .. 4-11

DISMOUNT ... 4-12
Name .. 4-12
Description ... 4-12

Unforced Dismount .. 4-12
Forced Dismount .. 4-12

Requests ... 4-13
Request Fonnat .. 4-13
Request Values ... 4-13

Responses ... : ... 4-13
Intermediate Response Format .•... , 4-13
Final Response Format .. 4-13
Final Response Values .. 4-13
Final Response Values - Cancelled Request ... 4-15

Notes .. 4-15
See Also ... 4-15

EJECf .. 4-16
Name .. 4-16
Description ... 4-16
Requests ... 4-17

Request Fonnat .. 4-17
Request Values ... 4-17

Responses ... 4-17
Intennediate Response Fonnat .. 4-17
Final Response Fonnat .. 4-17
Final Response Values ... 4-17
Final Response Values - Cancelled Request ... 4-19

Notes .. 4-20
See Also ... 4-20

EN'IER ... 4-21
Name .. 4-21
Description ... 4-21
Requests ... 4-22

Request Fonnat .. 4-22

9036 ix

Table of Contents

Request V alues ... 4-22
Responses ... 4-22

Intennediate Response FOfIIlat .. 4-22
Final Response FOfIIlat .. 4-22
Final Response V alues ... 4-22
Final Response Values - Cancelled Request ... 4-24

Notes .. 4-24
See Also ... 4-24

IDLE ..•... 4-25
Name .. 4-25
Description ... 4-25

Unforced Idle ... 4-25
Forced Idle ... 4-25

Requests ... 4-25
Request FOfIIlat .. 4-25
Request Values ... 4-25

Responses ... 4-26
IntefIIlediate Response FOfIIlat .. 4-26
Final Response FOfIIlat .. 4-26
Final Response Values ... 4-26
Final Response Values - Cancelled Request ... 4-26

Notes .. 4-26
See Also ~ ... 4-27

MOUNT .. 4-28
Name .. 4-28
Description ... 4-28
Request ... 4-28

Request FOfIIlat ... 4-28
Request V alues 4-28

Responses 4-29
IntefIIlediate Response FOfIIlat .. 4-29
Final Response FOfIIlat .. 4-29
Final Response Values ... 4-29
Final Response Values - Cancelled Request ... 4-30

Notes .. 4-30
See Also ... 4-30

QUERy 4-32
Name 4-32
Description 4-32
Requests ... 4-32

Request FOfIIlat .. 4-32
Request V alues 4-33

Responses ... 4-33
Response Fonnat .. 4-33
IntefIIlediate Response Values 4-35
Final Response - Fixed Portion 4-35

x 9036

Table of Contents

Final Response - ACS Status .. 4-36
Final Response - CAP Status : ~ .. 4-37
Final Response - Drive Status ... 4-38
Final Response - LSM Status .. 4-39
Final Response - Mount Status ... 4-40
Final Response - Port Status ... 4-41
Final Response - Request Status ... 4-41
Final Response - Server Status .. 4-42
Final Response - Volume Status ... 4-43
Final Response Values - Cancelled Request ... 4-44

Notes .. 4-44
See Also ... 4-44

START ... 4-45
Name .. 4-45
Description ... 4-45
Requests ... 4-45

Request Fonnat .. 4-45
Request Values ... 4-45

Responses ... 4-45
Intermediate Response Format .. 4-45
Final Respons.e Fonnat .. 4-45
Final Response Values ... 4-46
Final Response Values - Canc~lled Request .. 4-46

Notes ... 4-46
. See Also ... 4-46

VARY .. 4-47
Name .. 4-47
Description ... 4-47

Device States .. 4-47
Device State Transitions .. 4-48

Requests ... 4-49
Request Format .. 4-49
Request Values ... 4-49

Responses ... 4-50
Intennediate Response Format .. 4-50
Final Response Format .. 4-50
Final Response Values ... 4-50
Final Response Values - Cancelled Request ... 4-52

Notes .. 4-52
See Also ... 4-53

CHAPTER 5: CSI PROCESSES ... 5-1
OVERVIEW .. 5-1
CSI FUNCTIONS .. 5-1
CSI ARCHI1'ECTURE .. 5-3

Overview .. 5-3

9036 xi

Table of Contents

OSI Model .. 5-3
COMMUNICA nONS METIiODOLOGY .. 5-5

Overview .. 5-5
Interprocess Communications .. 5-6
Network Communications ... 5-6

Data Stream Representation ... 5-6
Session Connection .. 5-6
RPC Service Registration .. 5-7
RPC Program Numbers and Port Mappings .. 5-7
CSI Registration ... 5-8
SSI Registration ... 5-9

CSI INITIATION ... 5-9
Overview .. 5-9
Environment Variables .. 5-9
Network Buffer Allocation .. 5-9
RPC Service Initiation ... 5-10

CSI MESSAGE PROCESSING .. 5-13
Overview .. 5-13
Application-Level Messaging Protocol ... 5-13
Interprocess Communications .. 5-16

Message Handling ... ~ 5-16
Message Size .. 5-16

Network Communications ... 5-16
Functions Called .. 5-16
Message Routing .. 5-17
Timing Considerations ... 5-17

Message Packet Decoding ... 5-18
:xDR Translation Functions ... 5-18
csi_xdrrequest() Function .. 5-18
csi_xdrresponse() Function .. 5-19
Calling the Supplied Functions .. 5-19
Duplicate Packet Detection .. 5-19
Packet Tracing ... 5-19

Request Processing Summary .. 5-20
ERROR DETECfION AND RECOVERy ... 5-21

Overview .. 5-21
External Errors ~ .. 5-21
CSI Error Handling .. 5-22

!PC Failure ... 5-22
CSI Process Failure .. 5-22
Operating System Failure .. 5-22
Network Transmission Failure ... 5-23
Network Message Translation Failure ... 5-23
Duplicate Network Packets ~ .. 5-24
CSI Request/ Return Address Aging .. 5-24

CSI TERMINATION ... 5-24

xii 9036

· Table of Contents

CHAPTER 6: SSI REQUIREMENTS .. 6-1
OVERVIEW .. 6-1

DESIGNING AN SSI .. 6-1
Overview .. 6-1
Required Functionality 6-2

Architectural Notes .. 6-2
Architectural Constraints ... 6-2
SSI - CSI Architectural Comparisons ... 6-3

Overview .. 6-3
Sending Messages Down-Layer .. 6-3
Sending Messages Up-Layer ... 6-4
CSI and SSI Initialization .. 6-4

PORTING STORAGE1EK XDR ROUTINES ... 6-4
Serialization of Requests .. 6-5
Deserialization of Responses ... 6-5

PROORAMMING AN SSI ... 6-6
Initializing the SSI as a Callback Server 6-6

Obtaining a Unique Program Number ... 6-7
Initializing the SSI - Application Interface ... 6-7
Allocating the Network Buffer 6-9
Polling for Application or NI Input ... 6-9
Receiving a Request ... 6-10
Formatting a Request Into a Storage Server Packet 6-10
Sending a Storage Server Packet on the NI 6-11

Initializing the CSI_fIEADER 6-11
Initializing the Network Buffer Structure .. 6-12
Obtaining the Network Address of the CSI ... 6-12
Implementing a Timeout-Retry Algorithm ... 6-12
Initiating a Connection to the CSI ... 6-14
Sending a Request to the CSI .. 6-14
Invoking XDR Translation 6-14

Reading a Response From the NI .. 6-15
Detection of Network Input ... 6-15
Invoking RPC Handling of Input ... 6-16
Invoking the RPC Dispatcher 6-16
Invoking XDR Translation 6-16
Detecting Duplicate Packets .. 6-16
Determining the Destination Application Address 6-17

Formatting the Storage Server Response 6-17
Sending the Response to the Application .. 6-17
Request Processing Summary 6-17

CHAPTER 7: CSI DATA STRUCTURES ... 7-1
OVERVIEW .. 7-1
EXTERNAL INTERFACES ... 7-1

Overview 7-1

9036 xiii

Table of Contents

Software Libraries .. 7-1
Communications Protocol Interfaces ... 7-2
Functions and Variables ... 7-2

ENVIR.ONMENT VARIABLES ... 7-3
INPUT TO TIm CSI FROM TIm SSI ... 7-5

Request Structure ... 7-5
csi_header Structure ... 7-6

Description ... 7-6
Fonnat .. 7-6
Values .. 7-6

csi_xid Structure .. 7-8
Description ... 7-8
Fonnat .. 7-8
Values .. 7-8

csi_handle_rpc Structure .. 7-9
Description ... 7-9
Fonnat .. 7-9
Values .. 7-9

sockaddr_in Structure .. 7-10
Description ... 7-10
Fonnat .. 7-10
Values ... 7-10

INPUT TO TIIE CSI FROM TIIE ACSLM ... 7-11
Response Structure ... 7-11
ipc_header Structure ... , .. ~ 7-12

Description ... 7-12
Fonnat .. 7-12
Values .. 7-12

OUTPUT FROM mE CSI TO TIlE SSI ... 7-13
Response Structure ... 7-13

?vIESSAGE TRANSLATION STRUcruRES ... 7-14
csi_msgbuf Structure ... 7-14

Description ... 7-14
Fonnat .. 7-14
Values .. 7-14

APPENDIX A: EVENT LOG MESSAGES•.....•...•....•.....•.••..•.... A·1
EVENT LOG FORMAT ... A-I
EVENT LOG ENTRIES ... A-2
COMMON ENTRIES - UNSOLICITED MESSAGES .. A-2
COMMON ENTRIES ... A-5
ACSLH ... A-5
ACSLM ... A-7
ACSSA .. A-9
AUDIT .. A-9
CSI .. A-12

xiv 9036

Table of Contents

DISMOUNT ... A-19
EJECf ... A-19
EN1ER .. A-20
MOUNT .. A-20
STORAGE SERVER INITIATION ... A-21
STORAGE SERVER RECOVERY ... A-22
VARY ... A-27

APPEND:IX. B: ACSLM HEADER FILES •••••••..•.•.••••••..••.•••••.••.•.••••••....•.•••••••• B-!
OVERVIEW ... B-1
db_defs.h lIEADER FII...E .. B-2
defs.h lIEADER FII...E .. B-7
identifier.h lIEADER FII...E .. B-13
structs.h lffiADER FII...E .. B-15

APPENDIX C: XDR TRANSLATION FUNCTIONS •••••••••••••••••••..•••••••.•••.••. C·l
OVERVIEW ... C-l
csi_xdrrequest() FUNCTION ... C-2
csi_xdrresponse() FUNCfION ... C-5

APPENDIX D: CSI AND SSI REQUIRED FILES••.......••.•..........•.•....... D-l
OVERVIEW ... D-l
csi_header.h lIEADER FIl..E .. D-2
csi.h lIEADER FII...E .. ~ .. D-4
csi_structs.h lIEADER FILE .. D-IO
csi_msg.h lIEADER FII...E ... : D-15
csi~etmsg.c SOURCE FIl..E ... D-17

GLOSSARY OF TERMS .•.......•.•.......•.........•....................•..•....•...••••••.•..•.•••.•.• GI-l

IND EX••.•.....•....••..•.•...••.•......•...•....•..•.....••......................••........•..•...•......•• Index-l

9036 xv

Table of Contents

(INTENTIONALL Y LEFf BLANK)

xvi 9036

Figure

Figure I-I.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
·Figure 2-7.
Figure 2-8.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure A-I.

9036

LIST OF ILLUSTRATIONS

Title Page

4400 Automated Cartridge System .. 1-2
4400 ACS Library Control!Data Paths .. 1-3
4400 ACS Hardware .. 1-6
LSM Cartridge Storage Cells ... 1-7
Storage Server / Client Software Components .. 1-11
Storage Server Component Relationship to OSI Model. 1-16
Client Application - ACSLM Message Flow .. 2-6
Request With a Syntax Error ... 2-7
Request With No Intermediate Response .. 2-8
Request With Intermediate Responses ... 2-8
ACSSA - ACSLM Message Flow · 2-10
Request Containing a Syntax Error .. 2-11
Request With No Intermediate Response .. 2-11
Request With Intermediate Responses ... 2-12
Overview of the Client System Interface ... 5-2
Mapping to the OSI Model .. 5-4
Initializing the CSI Server ... 5-10
CSI RPC Service Initiation Logic .. 5-11
Sending a Request From an Application to the CSI .. 5-14
Sending a Request From the CSI to the ACSLM .. 5-14
Sending a Response From the ACSLM to the SSI .. 5-15
Sending a Response From the SSI to the Application 5-15
Sample Packet Trace .. 5-20
Layering of Calls - Request Serialization ... 6-5
Layering of Calls - Response Deserialization ... 6-5
Initializing the SSI Server .. 6-6
Code for Obtaining a Transient Program Number ... 6-8
Sample Event Log ... A-I

xvii

List of Illustrations

(INTENTIONALL Y LEFT BLANK)

xviii 9036

Table

Table I-I.
Table 2-I.
Table 3-1.
Table 4-1.

9036

LIST OF TABLES

Title Page

4480 Pertol1Ilance Specifications .. 1-9
Library Commands and ACSLM States .. 2-4
ACSLM Response Message Options ... 3-5
Valid Device States .. 4-48

xix

List of Tables

(INTENTIONALL Y LEFf BLANK)

xx 9036

PURPOSE

AUDIENCE

PREFACE

This manual provides the following information:

• Functional description of the StorageTek 4400 Automated Cartridge
System and the UNIX Storage Server

• Functional descriptions of the Storage Server software components
and the required Server System Interface (SSn

• Fonnat and contents of data structures used by the Storage Server,
an SSI, and a client application

The UNIX Storage Server Programmer's Guide is written for the
designer and programmer of a Server System Interface (SSI) and a
client application. The reader must have a working know ledge of the
following:

• UNIX Operating System

• "c" programming language

USING THIS MANUAL
This manual is organized as follows:

• Chapter 1: ACS Overview. Describes the 4400 ACS hardware
components and the UNIX Storage Server software components.

• Chapter 2: ACSLM Processes. Describes the primary functions of
the ACS Library Manager (ACSLM) software component.

• Chapter 3: ACSLM Common Data Structures. Describes the fonnat
and content of ACSLM request and response messages. Defines
common status codes and common variables.

• Chapter4: ACSLM Command Structures. Describes the specific
fonnat and content of each ACSLM command.

• Chapter 5: CSI Processes. Describes the primary functions of the
Client System Interface (CSI).

9036 xxi

Conventions Preface

CONVENTIONS

xxii

• Chapter 6: SSI Requirements. Describes specific functional
requirements of the Storage Server Interface (SSI) and instructions
for programming.

• Chapter 7: CSI Data Structures. Describes the format and content
of data structures used by the CSI and the SSI. Identifies common
environment variables and external software libraries.

• Appendix A: Event Log Messages. Identifies and describes
messages written ~ the Event Log by all Storage Server software
components.

• Appendix B: ACSLM Header Files. Includes listings of system­
wide header files required for ACSLM processing.

• Appendix C: XDR Translation Functions. Includes listings of the
StorageTek-supplied XDR translation functions.

• Appendix D: CSI and SSI Required Files. Includes listings of files
used by the CSI and the SSI.

The following conventions are used throughout this manual for library
and UNIX commands.

command Literal user entries are shown in Courier bo~d type.

variable_entry Variable entries (text that may vary each time it is
entered) are shown in bold italic type. Do not enter the
actual characters shown.

message System messages are shown in Courier plain type.

variable _ msg Variable messages (text that may vary each time the
message is displayed) are shown in italic type.

The text immediately preceding the ellipsis may be
entered or displayed multiple times. Do not enter the
ellipsis itself.

[optional] Text presented between square brackets is optional. Do
not enter the brackets themselves. Text that is not in
brackets is always required.

textll text2 The vertical bar represents "or". Only one of the text
strings separated by a vertical bar can be entered or
displayed. Do not enter the vertical bar itself.

All library commands and parameters are shown in lowercase letters.
User entries can be any combination of lowercase and uppercase
letters, however.

9036

CHAPTER 1:

ACS LIBRARY OVERVIEW

INTRODUCTION

The StorageTek® UNIX® Storage Server /4400 Automated Cartridge
System (ACS) is a fully automated, cartridge-based, 18-track storage
and retrieval system. It provides automated tape cartridge library
seIVices to a network of heterogeneous client systems. The client
systems may range from workstations to supercomputers. They may
be located in the same data center or spread across multiple locations.

The basic hardware component of the system is a Library Storage
Module (LSM), a 12-sided structure con~ing the following:

•. Storage cells for approximately 6000 tape cartridges.

• A robot that retrieves and moves the cartridges.

• Apertures in the walls of the structure, through which cartridges
can be passed to load and unload cartridge drives outside the LSM.

Figure 1-1 shows an LSM with associated electronic modules and
attached cartridge drives.

The system is controlled by the Storage Server software residing on a
server system. The Storage SeIVer receives mount and dismount
messages from client systems or library operators and translates them
into robot movement commands.

Figure 1-2 illustrates how an ACS is divided in tenns of function.

ACS LIBRARY FUNCTIONS

9036

The ACS library perfonns automated mounts and dismounts of tape
cartridges in response to requests received from client applications or
library users. The ACS library controls only the movement and
locations of tape cartridges, not the data recorded on them. The library
identifies cartridges by their external bar-coded labels; it does not
verify the external labels against magnetically-recorded internal labels.

1-1

ACS Functions ACS Library Overview

1-2 9036

NOTES:

LSM .. LIBRARY STORAGE MODULE
LCU • LIBRARY CONTROL UNIT
LMU II LIBRARY MANAGEMENT UNIT
CD • CARTRIDGE DRIVE
CU II CONTROL UNIT
SS • STORAGE SERVER

LEGEND:

LIBRARY CONTROL PATH
(AUTOMATED MOUNTS/DISMOUNTS)

DATA PATH (READ/WRITE)

Fi_gure 1-2. 4400 ACS Library Control/Data Paths

290·47 A

l> o en
c:
C" ..
m
-<
o
<
CD ..
<
iii" =:

Benefits

BENEFITS

ACS Library Overview

Client applications determine when automated tape handling is
required. They allocate specific library tape drives and resolve any
resource deadlocks. The Storage Server software controlling the ACS
library rejects any requests that specify cartridges or tape drives
outside of the library.

The client applications control the library tape drives, including transfer
of data to and from a cartridge, detecting and recovering from tape data .
transfer errors, and detennining write protection for a cartridge.
Storage Server control of tape drives is restricted to forcing rewinds
and unloads.

The 4400 ACS provides the following benefits:

• Storage capacity is available in increments of approximately 6000
cartridges. The maximum capacity of a library is approximately 24
million cartridges.

• Faster tape access time than manual systems. Cartridge select and
mount time averages 11 seconds for a cartridge in the same LSM
as the cartridge drive.

• More dependable tape operations. Automated cartridge handling
reduces the potential of human error. Newer technology is less
prone to the mechanical alignment problems of older automated
tape libraries. .

• Less expensive tape operations. Automated cartridge handling
reduces the need for manual labor to handle tapes. Reduced floor
space, power, and air conditioning requirements generate additional
cost savings.

• Broader access to ACS library services. The Storage Server pennits
systems with appropriate data paths and software to store, mount,
dismount and retrieve tape cartridges automatically.

• Darkened data center. The Storage Server can be located in a
remote, "darkened," data center with entry by personnel required
only for maintenance and entry and ejection of cartridges.

ACS LIBRARY HARDWARE COMPONENTS
A 4400 ACS consists of the following hardware components:

• Library Storage Module (LSM)

• Library Control Unit (LCU)

• Library Management Unit (LMU)

• 4480 Cartridge Subsystem

• Server system

1-4 9036

ACS Library Overview ACS Hardware Components

Library Storage Module (LSM)

The LSM (Figure 1-3) consists of the tape cartridge storage area and
an internal robot for moving the cartridges. Each LSM provides
storage cells for approximately 6000 cartridges and connections for up
to 16 cartridge transports. Up to 16 LSMs can be interconnected
through Pass-Thru Ports (PTPs) in adjacent LSM walls.

The robot can retrieve any cartridge in the LSM and deliver it to
another cell, a transport, or a Pass-Thru Port (PTP). The robot has an
optical system that identifies the correct cartridge by its external bar­
code label and an electro-mechanical system that picks up the cartridge
and delivers it to the correct location. Cartridges can be passed from
one LSM to another through the Pass-Thru Ports.

Each LSM has doors in the outer and inner walls allowing access to
the interior. The access door in the outer wall contains a cartridge
access port (CAP) which is used to enter cartridges into and eject
them from the LSM without opening the door. The CAP holds 21
cartridges at a time.

Cartridges are stored in cells located on both the outer and inner LSM
walls. The outside wall contains twelve panels, while the inner wall
contains eight panels. Figure 1-4 illustrates two typical panels with
cartridge storage 'cells. Each panel is divided into columns and rows for
cartridge storage. Cartridges are placed into a library location defined
by an ACS identifier, an LSM number, a panel number, a row number, .
and a column number.

Pass-Thru Ports are also shown in Figure 1-3. Each PTP occupies half
of two rows at the base of a special wall panel. A PTP is installed by a
Customer Services Engineer in a master/slave relationship. In
addition, circuitry to control the PTP is connected to the master. As
viewed from inside the LSM, the master side of the PTP is on the right,
while the slave side is on the left. In Figure 1-3, the LSM on the left is
the master side of the PTP, while the LSM on the right is the slave.
On the PTP panel, the half-rows adjacent to the PTP are used for
storing cartridges. Each LSM can have up to four PTPs.

Library Control Unit (LCU)

9036

The LCU is a microprocessor that controls the robot's movements.
There is one LCU per LSM. It is attached to the panel immediately to
the left of the LSM access door.

The LCU translates gross movement requests received from the LMU
into the discrete servo commands required to control the robot.

1-5

ACS Hardware Components

\
\
\

CARTRIDGE
STORAGE
CELLS

I
I ,
I

\ \ \
\
\

\ \

v' \\ "\'> \ ,

ADDITIONAL

ACS Library Overview

PASS-THRU
-1---- PORT (PTP)

CARTRIDGE CARTRIDGE DRIVE
ACCESS CARTRIDGE DRIVE
PORT (CAP)

LIBRARY
MANAGEMENT
UNIT (LMU)

CONTROL
UNIT

---....... -----,
I ADDITIONAL
!---- CONTROL
I UNIT
I
I
I

...... __I-_____ .J

29048 A

Figure 1-3. 4400 ACS Hardware

1-6 9036

ACS Library Overview

FREE DIAGNOSTIC
INTERIM REQUEST
CELL
(ROW O. COLUMN t 1)

WALL PANEL
CALIBRATION
LOCATION
(ROW 7. COLUMN 6)

ACS Hardware Components

DIAGNOSTIC
CELLS
(ROW O. COLUMNS 0.1)

~

o E3~
§

i~·~
~

o ~

~

t::::J ~

t::::J 0 ~

FREE DIAGNOSTIC DIAGNOSTIC SLOTS
INTERIM REQUEST (ROW 14. COLUMNS 0.1>
CELL
(ROW 14. COLUMN 12)

,

•

,
,

tI

m

29049

Figure 1-4. LSM Cartridge Storage Cells

9036 1-7

ACS Hardware Components ACS Library Overview

Library Management Unit (LMU)

The LMU manages all the LSMs in an ACS. There is one LMU per
ACS. The LMU receives cartridge movement requests from the
Storage Server, translates them into robot movement instructions, and
relays these instructions to the correct LCU. The LMU also passes
ending status from the LCU back to the Storage Server. The LMU
allocates LSM resources (robot, CAP, ports, etc.) to optimize and
coordinate cartridge movement within and among LSMs.

The LMU communicates with the LSMs through a Local Area Network
(LAN). It communicates with the Storage Server through an RS423
interface.

4480 Cartridge Subsystem

1-8

The StorageTek 4480 Cartridge Subsystem consists of a control unit
(CU) and at least one cartridge drive (CD) containing either two or four
transports. There can be up to four cartridge drive units attached to
each LSM. See the 4480 Cartridge Subsystem Operator's Manual for
details on the 4480 cartridge drives and CU s.

4480 Control Unit

The 4480 CU is the controller/interface between the client systems and
up to eight transports. The CU s are connected to client systems either
directly via I/O channels or indirectly via a data network. Each CU is
controlled by dual microprocessors and contains a data buffer which is
used to maximize transfer rates at the channel interface.

The CU interprets and distributes commands to the appropriate
transport, provides data formatting (including error correction and
detection) for the subsystem, and reports CU and transport status.

A CU coupler feature is available. This feature, along with two CU s
and a maximum of sixteen transports (four cartridge drives), enables a
configuration in which each CU is capable of directly addressing any of
the sixteen transports, since each transport is attached by cables to
both CUs.

4480 Cartridge Drive

The cartridge drive units contain two or four transports each, along with
the supporting pneumatic equipment and power supplies. Library
drives differ from manual drives only in that they are attached to an
LSM and are controlled by the Storage Server rather than by an
operator. All transports in a library drive can be operated concurrently.

9036

ACS Library Overview ACS Software Components

Server System

Each transport performs the following functions:

• ReadlWrite functions (using a standard 18-track cartridge)

• Automatic threading and positioning of the tape

• Status reporting to the CU

The drive mechanism moves tape across the head at a precise speed
through servo-driven motors. Rewind speed is also controlled by the
servo electronics and drive motors.

Table 1-1. 4480 Performance Specifications

Tape Speed:

Tape Density:

70 IPS (2 meters/sec)
158 IPS (4 meters/sec)

37,871 bytes/inch
1,491 bytes/millimeter

ReadlWrite
Rewind & Search

The server system hardware is the residence for the Storage Server
software. The server system consists of a UNIX -based processor, a
network adaptor, one 1/4t1 cartridge tape drive, one hard disk, and a
terminal. The network adaptor acts as a buffered communications
controller to move messages between the server and the client
systems. Examples of network adaptors include Ethemet™ controllers
and HYPERchannel® processor adaptors.

The server system is the interface between any number of
heterogeneous client systems and one library. No other system can be
connected to the library. The server system is connected directly to
each LMU through an RS423 connection. At least two connections
between the server system and LMU are recommended for
redundancy.

Data path connections between the server system and library drives
are not supported.

ACS LIBRARY SOFTWARE COMPONENTS

Storage Server and Client Software Interaction

9036

The client software resides on any number of distributed,
heterogeneous client systems. This software manages tape cartridge
contents, generates requests for cartridges, and transfers data to and
from cartridges. The client software is not part of the Storage Server

1-9

ACS Software Components ACS Library Overview

product. It must meet certain requirements, however, in order to be
able to communicate with the Storage Server.

The Storage Server software resides on the server system. It
manages the storage and movement of tape cartridges and the use of
library resources. It translates requests for tape cartridges, received
from the client software, into cartridge movement requests for the LMU.

Figure 1-5 illustrates the Storage Server and client system software
components and their interfaces. These components are described in
detail in the paragraphs that follow.

A client application generates cartridge movement requests which are
translated by the client Storage Server Interface (SSI) into a format
that can be interpreted by the Storage Server. The requests are then
passed from the client system to the server system via the network
interfaces.

The Client System Interface receives the requests from the network
interface, reformats them, and passes them to the A CS Liprary
Manager. The ACSLM validates the requests, then translates and
routes them to the LMU. If either the CSI or ACSLM encounters any
errors, they are sent to the Event Logger. After the request is
completed, a response is returned, through the same channels, to the
client application. .

Storage Server Software.

1-10

The Storage Server software executes within a UNIX System
environment that complies with the System V Interface Definition
(SVID). One exception to SVID compliance is the use ofBSD sockets
as the interprocess communications mechanism.

The Storage Server consists of the following major components:

• ACS Library Manager (ACSLM)

• ACS System Administrator (ACSSA)

• Client System Interface (CSI)

• ACS Event Logger (ACSEL)

• Network Interface (NI)

• Storage Server data base

All of these components reside on one server system; distribution of
these components across multiple server systems is not supported.

9036

ACS Library Overview ACS Software Components

9036

LEGEND:
,...-...... STANDARD
"---'" INTERFACE

r--,;----, r--,~---'

-- CONTROL PATH CLIENT I
APPLI~TlON 1

CLIENT I
APPLICATION 1

- DATA PATH
~I
~J

" -f 1 en
SSI
A' ~: ...

~

u_ 17\:::J1
(~ \.!.; 1
-"

NI
n

1
1
1

G

SSI
a

~I
~I

~, -f I
en
~I

~I
A~ _I
(~--"""'I'")0 I

" 1
NI I
1 1

L~· __ ~_..J
NETWORK BOUNDARY

L-T----..J

-----------~ ~--.--

r------------ ,r -;;--,

..

DISPLAY &
KEYBOARD

f·
111""1 ACS SYSTEM

r---I ADMIN

NETWORK 1
INTERFACE 1

I
1

() <D I
l""'--_""'I" 1

, r

~, I
I
I

... I
(=~®I

I

ACS
LIBRARY

EVENT
LOGGER

DATABASE
L.. '----_...I,.

CSI

I
..J - ACS ~i--------~

LIBRARY .. I
I MANAGER -,.1-+,--------------'

.4~ I
I
I
I L ________________ ~

SERVER SYSTEM

NOTE;

(!) NETWORK DATA REPRESENTATION

® IPC

Figure 1-5. Storage Server I Client Software Components

29052 A

1-11

ACS Software Components ACS Library Overview

1-12

ACS Library Manager (ACSLM)

The ACSLM processes library requests originating from client
applications (through the CSI) or library users (through the ACSSA).
It validates these requests and routes valid ones to the LMU. When
responses are returned from the LMU, the ACSLM routes them to the
appropriate requestor (either the ACSSA or the CSI).

If the ACSLM encounters errors, it routes event messages to the
Event Logger. Additionally, the ACSLM routes unsolicited messages
to the ACSSA when it is notified of a significant event occurring in the
library.

The ACSLM also maintains the configuration and cartridge location
data base. The data base supports checkpointing and journaling to
facilitate recovery from errors. See the UNIX Storage Server System
Administrator's Guide for details.

The ACSLM performs the following functions to recover from errors
with little or no operator intervention:

• Detects, notifies, and recovers from library failures. These include
the loss of an LMU, LSM component, etc.

• Works with the LMU to recover an LSM after it has failed. In
particular, this includes determining that there are volumes in­
transit, discovering their extemallabels, and disposing of them
properly.

• Detects, isolates, reports, and recovers from communication line
failures (for example, loss of terminal port).

• Attempts to reestablish data paths if a communications failure
occurs with a CSI or the ACSSA.

• Detects, isolates, reports, and recovers from software errors (for
example, program interrupts, operator cancellations, process
terminations).

ACS System Administrator (ACSSA)

The ACSSA provides a screen interface that enables library operators
and users to monitor and control Storage Server operations. The
screen interface is referred to as the Command Processor.

The Command Processor receives requests from a user and performs
basic syntax validations on the input. If it detects errors in a request,
the Command Processor displays error messages and prompts for the
correct entry. If a request has no errors, the ACSSA passes it to the
ACSLM for further processing.

The ACSSA also receives and processes responses from the ACSLM;
resulting error messages are displayed by the Command Processor.

9036

ACS Library Overview ACS Software Components

9036

When the ACSLM returns more than one response for a request, the
ACSSA displays each one as it is received.

The ACSSA supports multiple Command Processors. That is, several
users can be entering requests at one time through separate tenninals
or Command Processor windows.

See the UNIX Storage Server System Administrator's Guide for the
specific commands supported by the Command Processor.

Client System Interface (CSI)

The CSI serves as the interface between the ACSLM and the Storage
Server Interfaces (SSls). The CSI presents a network- and host­
independent control path message format to client applications. It
receives requests from an SSI and translates them into a format that
can be interpreted by the ACSLM. It also translates ACSLM
responses and routes them to the appropriate SSI. The CSI
communicates with the SSls through the network interfaces.

The CSI attempts to reestablish communication paths if a
communication failure occurs between the ACSLM and CSI or between
the CSI and NI. The CSI can control the flow of messages when
network or processor congestion occurs. It also routes error messages
to the Event Logger.

ACS Event Logger (ACSEL)

The ACSEL records messages describing library errors and software
errors not normally tracked by the operating system. This data can be
used for later tracking and analysis.

The ACSLM and CSI independently notify the ACSEL of abnonnal
events. The ACSEL writes records of these events to a centralized file
known as the Event Log. See the Event Logging section in Chapter 2
for details.

Network Interface (NI)

The NI implements a customer-specified network communications
protocol. The NI resident on the server system interacts with the Nls
on the client systems to maintain connections, control the flow of
requests and responses, and perfonn error recovery as necessary.

1-13

ACS Software Components ACS Library Overview

Client Software

1-14

The client system software components described below are supplied
by the customer and are not part of the Storage Server product. Their
descriptions are provided only to clarify the differences between
Storage Server and client application functions.

• Network Interface (NI)

• Storage Server Interface (SSI)

• Client applications

Network Interface (NI)

The NIs on the client systems function in the same manner as the NI
on the server system. They implement a customer-specified network
communications protocol to allow for the transfer of messages between
the server and client systems.

Server System Interface (SSI)

Each SSI serves as the interface between the CSI and the client
applications residing on that client system. Any number of client
applications can issue Storage Server requests. The SSI processes
these requests in the order that it receives them. It translates the
requests into a format that can be interpreted by the CSI, and sends
them to the CSI through the network interfaces.

The SSI also receives response messages from the CSI, translates
them, and sends them to the appropriate client applications.

Client Applications

Any number of client applications can manage volumes contained in the
ACS library. A Tape Library Management System (TLMS) is one
example of a client application that would interact with the library.
Consistency between multiple applications is maintained by the
applications themselves, not by the Storage Server.

The client applications manage cartridge contents, whereas the Storage
Server manages cartridge locations. The only information provided to
client applications by the Storage Server are lists of volumes entered,
ejected, or currently residing in the library.

Client applications gain access to tape cartridges by interacting with
the Storage Server through the control path. They read and write data
on tape cartridges by interacting directly with a cartridge drive through
the data path. Data path interactions do not affect Storage Server
operations. For example, an application issuing an unload request to a
cartridge drive does not cause the Storage Server to move the unloaded

9036

ACS Library Overview Storage Server Architecture

cartridge to a library storage cell; the application must issue a separate
request across the control path to move the cartridge.

STORAGE SERVER ARCHITECTURE

Adaptability

9036

The Storage Server software can run within any environment compliant
with UNIX System V Interface Definition (SVID), as defined for UNIX
System V Release 2. The environment must also allow for the BSD
implementation of sockets. The software has the following
characteristics which allow it to be run on a variety of hardware
platfonns.

• Adaptability. The software is written using replaceable modules
with well-defined interfaces isolating system dependent features.

• Consistent user interface. Command arguments and options that
are common to more than one command have the same syntax and
meaning.

• Modularity. The architecture allows for future variability in
hardware and software, including different kinds of connections
between the server system and the LMU, different data base
management systems, different network protocols, different
interprocess communication methods, and different library
authorization methods.

• Portability. The Storage Server software allows porting to other
server system environments, both hardware and software. This
requirement is accomplished with the following design
characteristics:

- The software is modular and based on an object-oriented
design. The software incorporates object-oriented techniques
including data encapsulation.

- All software modules comply with the System V Interface
Definition, as defmed for UNIX System V Release 2.

- All operating system calls are isolated in replaceable software
modules.

- All software modules are written in the "C" source language.

1-15

051 Model ACS Library Overview

OPEN SYSTEMS INTERCONNECTION (OSI) MODEL

Overview

The International Standards Organization (ISO) Open Systems
Interconnection (OSI) model describes the functions required to
reliably transmit data between two applications on different host
systems. This model uses a seven-layer architecture, as follows:

1. Physical layer

2. Data link layer
3. Network layer

4. Transport layer

5. Session layer

6. Presentation layer

7. Application layer

The Storage Server software components can be applied to the OSI
model. Figure 1-6 illustrates how they are applied, and the following
sections provide supporting discussions.

OS I MODEL LAYERS CL lENT SYSTEMS ACS STORAGE SERVER
STORAGE SERVER MODEL

CLIENT I STORAGE
SERVER

USER INTERFACE ACS SYSTEM ADMIN
4~

APPLICATION
LAYER 7 ~ - - - - - - - - -- I- ~ - - - - - - -

CLIENT APPLICATION

PRESENTATION R R
LAYER 6

ACS LIBRARY
MANAGER

STORAGE SERVER E E CLIENT SYSTEM
- - - - - - - - - -~ - INTERFACE _.- _1.- - INTERFACE--

SESSION Q S
LAYER 5 U P

I-----------+-------E- --01-1---------1
TRANSPORT S N

LAYER ~ NETWORK T S NETWORK
~ - - - - - - - - I- - INTERF ACE- - 1- -I- E- - -INTERF ACE- -

NETWORK
LAYER J

DATA LINK
LAYER 2

CUSTOMER'S CUSTOMER'S
~ - - - - - - - - ~ - NETWORK - - ,- -I- ,... ~ - NETWORK --

PHYSICAL \.. '-f-')
LAYER 1 "V

CLIENT APPLICATIONS
AND

STORAGE SERVER

COMMUNICATION
SERVICE

29050 A

Figure 1-6. Storage Server Component Relationship to OSI Model

1-16 9036

ACS Library Overview OSI Model

Layers 1 and 2 - Physical and Data Link Layers
Layers 1 and 2 provide for the physical transfer of messages between
network nodes. The customer's network provide these layers between
the client systems and the server system.

Layers 3 and 4 - Network and Transport Layers
Layers 3 and 4 provide for the transfer of data between network nodes
and perform any necessary error recovery and flow control. The
Network Interfaces (NIs) on the client systems and the server system
fulfill these layers. Each NI implements the same customer-specified
network protocol, therefore they cooperate to establish, maintain, and
tenninate connections between client systems and the Storage Server
network nodes.

Examples of Layer 3 - Network Layer protocols are:

• Internet Protocol (IP)

• ISO Connectionless Network Service (CLNS)

Examples of Layer 4 - Transport Layer protocols are:

• Transmission Control Protocol (TCP)

• User Datagram Protocol (UDP)

• ISO Connectionless Transport

Layers 5 and 6 - Session and Presentation Layers

9036

Layers 5 provides for the control of application interactions, and
Layer 6 provides for the exchange of messages between those
applications. The CSI and SSIs fulfill these layers.

At Layer 5, the CSI and SSIs cooperate to control the exchange of
client application requests and ACSLM responses. They interact with
the NIs to receive requests from and send responses to one another,
thereby insulating the client and Storage Server applications from the
NIs. CSI and SSIs ensure that the ACSLM and client applications
receive complete messages from the lower layers.

At Layer 6, each SSI and the CSI implement the same network-and
host-independent message format for exchanging requests and
responses across the network. They translate control path messages
from the network message format to the internal message format and
data representation of their respective host systems, and vice versa.
The requests and responses defined by the ACSLM programmatic
interface dictate the contents of control path messages. The Layer 6
protocol dictates the format and encoding of those messages.

1-17

OSI Model ACS Library Overview

Different SSIs are used for different client operating systems and
network protocols. Different CSIs are used for different network
protocols.

An example of Layer 5 - Session Layer protocols is:

• Sun Microsystems™ Remote Procedure Call (RPC)

Examples of Layer 6 - Presentation Layer protocols are:

• Sun Microsystems External Data Representation (XDR)

• ISO Abstract Syntax Notation One (ASN.l)

A matched pair of session and presentation layers defme a particular
CSI. Changing either layer defines a new CSI.

Layer 7 - Application Layer

1-18

Layer 7 provides application functionality to system users. The
ACSLM, ACSSA, and client system applications fulfill this layer.
Client system applications interact with the ACSLM, through the lower
OSI layers, to provide users with access to ACSLM functions.

9036

7

OVERVIEW

CHAPTER 2:

ACSLM PROCESSES

This chapter describes the primary functions of the ACSLM, which are
as follows:

• Storage Server initiation

• Storage Server termination

• Library request processing

• Routing of unsolicited messages

• Event logging
.• Storage Server recovery

STORAGE SERVER INITIATION

Overview

9036

Storage Server software initiation involves starting the ACSLM,
ACSSA, and CSI components on the server system.

The Storage Server initiation command file is automatically installed as
part of the Storage Server installation. The command fIle is called

acsss_home/ rc. acsss

where acsss _home is the directory in which the Storage Server software
was installed, usually /usr/ACSSS.

The command fIle can be invoked in two ways:

• Manually by invoking the command file at a server system tenninal.

• Automatically at system IPL by referencing the initiation command
file in the system startup file.

Storage server initiation can only be invoked by the Storage Server
user ID, acsss, or the server system superuser.

2-1

Storage Server Initiation ACSLM Processes

Normally, the ACSLM automatically enters the STATE_RUN state after
initiation is complete. To automatically put the ACSLM in the
STATE_IDLE state after initiation, the IDLE qualifier can be included in
the invocation command. If initiation is invoked manually, the IDLE

qualifier must be typed as part of the request:

/usr/ACSSS/rc.acsss IDLB

If initiation is invoked as part of system IPL, the acsss_home/ rc. acsss
file must be modified to include the IDLE qualifier.

Initiation Process

2-2

During initiation, the ACSLM perfonns the following functions:

• Ensures that only one copy of the Storage Server software is
running at any given time.

• Establishes the Storage Server infrastructure. The CSI establishes
communication paths with the NI and the ACSLM, and the ACSSA
establishes communication paths with the ACSLM. Any failures in
this process will halt initiation.

• Confrrms the integrity of the data base. This includes examining
the table structures and contents for consistency. It also includes
checking for correct data base file access permissions and the
existence and state of journal files. Any structural or access
problems with the data base will halt initiation.

• Verifies the library configuration recorded in the LMU against that
recorded in the data base. Inconsistencies will halt initiation.

• Performs Storage Server recovery procedures to bring the library to
an operable state. This includes attempting to recover from CPU or
operating system failures. See the Storage Server Recovery section
in this chapter for details.

• Attempts to put all library components online. Failure of a library
component to go online is noted in the Event Log and initiation
continues. If the data base indicates that a library component is in
the offline or diagnostic state, no attempt is made to put that
component online, or change its state.

Error messages will be generated for any LMU requests outstanding at
the time of initiation.

9036

ACSLM Processes Library Request Processing

,,- LIBRARY REQUEST PROCESSING

Overview

The ACSLM receives requests from the following sources:

• A system user through the ACSSA Command Processor

• A client application through the CSI

The ACSLM returns responses to the appropriate request originator.
Following are the requests that the ACSLM processes:

audit
cancel
dismount
eject
enter
idle
mount
query
start
vary

See Chapter 4: ACSLM Command Structures for the structure and
contents of ACSLM requests and responses.

ACSLM Processing States

9036

The ACSLM can be in one of four states, as described below:

• STATE_RUN. The normal operating state. The ACSLM processes all
library requests received from a CSI or the ACSSA.

• STATE_IDLE. The ACSLM rejects all requests involving library
operations. Only the following requests are processed: cancel,

idle, query, start, and vary.

• STATE IDLE PENDING. A transition state that occurs when the - -
Storage Server is taken from run to idle. All new requests involving
library operations are rejected, but current and pending requests are
processed to completion. Only the following new requests are
processed: cancel, idle, query, start, and vary.

• STATE_RECOVERY. A transition state that occurs when the Storage
Server is taken from idle to run. The only request that will be
processed is query server. All other requests are rejected while
recovery processing takes place.

Table 2-1 identifies which requests the ACSLM processes when it is
in each of the four states.

2-3

Library Request Processing ACSLM Processes

Table 2-1. Library Commands and ACSLM States

Request RBCOV'JUlY RON IDLE IDLE PENDING

audit X

cancel X X

dismount X

enter X

eject X

idle X X

mount X

query X X X

start X X

vary X X

ACSLM State Transitions
The start and idle requests move the ACSLM between these
states. These transitions occur as follows:

X

X

X

X

X

• The start request causes the ACSLM to go into STATE_RECOVERY

while it performs recovery procedures on the library (see the
Storage Server Recovery section in this chapter for details). When
all recovery procedures have been completed successfully, the
ACSLM moves into STATE RUN.

• An unqualified idle request (that is, without the force option)
causes the ACSLM to go into STATE_IDLE_PENDING initially. The
ACSLM processes all current and pending requests to completion
before entering STATE_IDLE.

• An idle request with the force option puts the ACSLM in
STATE_IDLE immediately, causing any current or pending requests
to be aborted.

2-4 9036

ACSLM Processes Library Request Processing

Interactions With Other Storage Server Components
Requests are passed from either the ACSSA or a CSI to the ACSLM.
The ACSLM returns responses to the appropriate request originator,
either the ACSSA or a CSI. The following subsections summarize how
requests and responses are passed between these components. See
Chapter 3 and Chapter 4 for details on request and response fonnats.

Client Application - ACSLM Interactions

9036

Overview

Client system users can issue library requests through client
applications which may be system commands, procedures, utilities, or
interactive scripts. The applications generate ACSLM requests which
must pass across the network and through several software layers
(that is, SSI, NIs, and CSn before being processed by the ACSLM.

For each request, the ACSLM generates one or more responses which
must pass through the same software layers before being received by
the client application originating the request. These software layers
generally are transparent to the ACSLM and the client applications.

Response Types

There are three response types generated by the ACSLM:

• Acknowledge. An acknowledge response is returned for each
syntactically correct request. It indicates that the request has been
received.

• Intermediate. An intennediate response is returned if interim
infonnation must be returned to the requestor, or if all necessary
response information cannot fit in a single response message.

• Final. A final response is returned for each request. It indicates
the success or failure of the request.

Response Coordination

Any number of client applications can exist in a network, and each
application asynchronously sends multiple requests to the ACSLM.
All requests are queued and processed by the ACSLM in First In First
Out (FIFO) order. The ACSLM attempts to maximize library resource
usage by processing as many requests as possible. As a result, the
ACSLM may intermix responses to different requests from a single
client application.

2-5

Library Request Processing ACSLM Processes

Client
User AppIlC· A SSI Z NI NI CSI ACSLM

Request
•

Enters Generates Adds applic. Transfers Receives Removes Checks
application library prefIX. msg across msg& SSI prefix syntax. If
request request Translates network. passes it to & adds CSI OK: Copies

with msgto CSI. prefIX. CSIpreflX,
unique network Translates applic. ID,
application format. msgto & unique
ID. server requestID

formal toacknow-
Passes msg ledging
to ACSLM. response.

Queues
request

•
Acknowledging Response

Extracts Removes Receives Transfers Removes Passes
applic.ID SSI prefIX. msg& msg across CSI prefIX acknow~edge
& request Translates passes it to network. & adds SSI response to
ID. msgto SSIZ' prefIX. CSI.
Matches client Translates
response to system msgto Processes
request. format. network request.
May notify Passes msg format.
user of to Client
request Applic. A'
status.

Final Response
•

Extracts Removes . Receives Transfers Removes Passes final
applic.ID SSI prefIX. msg& msg across CSI prefIX response to
& request Translates passes it to network. & adds SSI CSI.
ID. msgto SSIZ' prefIX.
Matches client Translates
response to system msgto
request. format. network
May notify Passesmsg format.
user of to Client
request Applic. A'
status.

Figure 2-1. Client Application - ACSLM Message Flow

2-6 9036

ACSLM Processes Library Request Processing

For example, if an application issues, in order, an audit, a mount, and a
query request, the acknowledging responses will be received in the
same order, but the intennediate and fmal responses will probably be
intermixed. The final responses may be returned in a different order
due to the processing time required for each request. Only the order of
responses within request is guaranteed.

Interaction Process

Client
Application

Request

•

9036

Figure 2-1 summarizes how a request is sent from a user to the
ACSLM through a client application. It also shows how acknowledging
and final responses are returned to the client application. The arrows
in the figure indicate the message flow direction.

Figure 2-2 through Figure 2-4 show the possible message flows
between a client application and the ACSLM. Figure 2-2 shows how
only a final response is returned from the ACSLM if it finds a syntax
error in the request. ® indicates that message processing occurs at
the indicated layer.

SSI NI NI CSI ACSLM

® ® ® ® •

® ® ® ®
Final Response

Figure 2-2. Request With a Syntax Error

2-7

Library Request Processing ACSLM Processes

2-8

An acknowledging response is always returned for syntactically correct
requests. Figure 2-3 shows such a request with no intennediate
responses. @ indicates that message processing occurs at the
indicated layer.

Client
Application SSI NI NI CSI ACSLM

Request

----------~------ ------~~------~.~

Ac/cnowledging Response

I------~~-------

Final Response

~.~-------~------~------~------~I---------

Figure 2-3. Request With No Intermediate Response

Figure 2-4 shows a syntactically correct request with one or more
intennediate responses. @ indicates that message processing occurs
at the indicated layer.

Client
Application SSI NI NI CSI ACSLM

Request

~ ~ ~ ~ •
Acknowledging Response

• ~ ~ ~ ~

Intp.nnediate Response

• ® ® ® ~
. .. repeated for each intermediate response

Final Response

• ~ ~ ~ ~

Figure 2-4. Request With Intermediate Responses

9036

ACSLM Processes Library Request Processing

ACSSA - ACSLM Interactions

9036

Overview

Server system users can access ACSLM services through the ACSSA
Command Processor. The ACSSA translates commands from each
user to equivalent ACSLM requests and multiplexes the requests to
the ACSLM. The ACSSA ensures that the responses to each request
are returned to the correct user.

Users must log into the special user identifier, acssa, to access the
Command Processor. Any number of users can be using Command
Processors at one time. The Command Processor ensures that each
user issues only one command at a time; this prevents responses to
several requests from being intermixed on the same terminal display.

The interaction between the ACSSA and ACSLM is the same as that
between a client application and the ACSLM, but without the
intervening software layers. The ACSSA appears as a CSI to the
ACSLM since the ACSSA uses the same ACSLM programmatic
interface that the CSls use.

The ACSSA generally has no more, or less, privilege than a client
application. The one exception is that ACSSA users are allowed to
perform library operations on components in the diagnostic state. This
feature allows maintenance personnel to exercise components without
interference from client system users.

Interaction Process

Figure 2-5 summarizes how a request is sent from a user to the
ACSLM through the ACSSA. It also shows how acknowledging and
final responses are returned to the ACSSA. The arrows in the figure
indicate the message flow direction.

2-9

Library Request Processing

User

Enters library request through
Conunand Processor.

..

..

ACSSA

Request

Checks syntax. If OK: Sends
request to ACSLM. Blocks
additional requests from this
Command Processor.

Acknowledging Response

Extracts and saves application
ID & request ID. Matches the
response to the Command
Processor. Does not display
acknow ledgment

Final Response

Extracts and saves application
ID & request ID. Matches the
response to the Command
Processor & displays response.
Prompts user for new request

ACSLM Processes

ACSLM

Checks syntax. If OK: Copies
request ID to acknowledging
response. Queues request

Passes acknowledging response
to ACSSA.

Processes request.

Passes final response to
ACSSA.

Figure 2-5. ACSSA - ACSLM Message Flow

2-10 9036

ACSLM Processes

ACSSA

Request

II

ACSSA

Request

II

II

9036

Library Request Processing

Figure 2-6 through Figure 2-8 show the possible message flows
between the ACSSA and ACSLM. Figure 2-6 shows how only a final
response is returned from the ACSLM if it finds a syntax error in the
request.

ACSLM

•
Final Response

Figure 2-6. Request Containing a Syntax Error

An acknowledging response is always returned for syntactically correct
requests. Figure 2-7 shows such a request with no intennediate
responses.

ACSLM

Acknowledging Response

Final Response

Figure 2-7. Request With No Intermediate Response

2-11

Library Request Processing ACSLM Processes

ACSSA

Request

•

•

•

Figure 2-8 shows a syntactically correct request with one or more
intermediate responses.

ACSLM

•
Acknowledging Response

Intermediate Response

. .. repeated for each intermediate response

Final Response

Figure 2-8. Request With Intermediate Responses

Programming Considerations

2-12

The following are special considerations for designing client
applications that will submit requests to the ACSLM.

Handling Outstanding Requests

A client application must be able to handle situations where it sends a
request to the ACSLM but never receives a response. These errors
may be the result of communications or software failures. The method
of handling the outstanding request depends on whether an
acknowledge response was received, as outlined below.

• If the application never received an acknowledge response: The
application should issue a query server request to determine
whether the Storage Server is still functioning. If the Storage
Server is functioning, the application should reissue the request. .

• If the application received an acknowledge, but not a final
response: The application should issue a query request request
using the request ID received in the acknowledge response. If the
request is still pending, the application should wait for some
predefined period of time before timing out. If the request is not
current or pending, the application should issue a query on some
component of the request (such as a drive or volume) to determine
whether the request has been completed successfully. If the
request has not been completed, the application should reissue it.

9036

ACSLM Processes Storage Server Termination

See Chapter 4: ACSLM Command Structures for the fonnat and
contents of the query request.

Library Drive Addresses
Library drive locations are unique within an ACS. The Storage Server
uses a physical identifier to locate library drives. If client systems
elect to use logical drive identifiers, it is the responsibility of the client
systems to map the logical drive identifier to the physical drive
identifier prior to issuing a Storage Server request

STORAGE SERVER TERMINATION

Overview
Storage Server software termination involves tenninating the ACSLM,
ACSSA and CSI components on the server system. The Storage
Server is tenninated through a command file which must be invoked
manually from the server system console.

The Storage Server tennination command file is automatically installed
as part of the Storage Server installation. The command file is called

acsss_home/kill. acsss

where acsss _ home is the directory in which the Storage Server software
was installed, usually /usr/ACSSS. .

Termination Process

9036

Storage Server termination perfonns the following functions:

• All current and pending library requests are aborted. New requests
are ignored.

• All data base files and the Event Log file are closed.

• All Storage Server processes are destroyed.

The ACSLM should be in the idle state when the Storage Server is
tenninated, otherwise data base inconsistencies and unrecoverable in­
transit cartridges may result.

It is also recommended that all LSMs be in the online state when the
Storage Server is tenninated; this will enable LSM and drive
configurations and reserved cell contents to be verified completely
when the Storage Server is reinitiated. See the Storage Server
Recovery section in this chapter for details.

2-13

Storage Server Recovery ACSLM Processes

STORAGE SERVER RECOVERY

Overview
Storage Server recovery procedures take place automatically under the
following circumstances:

• The Storage Server is initiated. See the Storage Server Initiation
section in this chapter for details.

• A major Storage Server failure occurs.

Recovery processing does not need to be initiated by the System
Administrator.

During Storage Server recovery, the ACSLM performs the following
processes for each ACS in the library:

• Verifies that all online ports can communicate with the ACS.

• Verifies that the library configuration recorded in the data base
matches that recorded in the LMU.

• If possible, varies each ACS and its LSMs online, and marks them
online in the data base.

• Directs the LSM robot to scan the physical contents of each of the
following locations, and updates the data base to match:

- Reserved storage cells

- Cartridge drives

- Last known location of each cartridge selected for use

Once these processes are completed successfully, request processing
can resume.

Storage Server Recovery Process

2-14

The following are the steps the A CSLM goes through in performing
Storage Server recovery. All data base changes that occur as a result
of this procedure are logged in the Event Log. If the recovery fails,
additional error messages detailing the reasons for the failure will also
be found in the Event Log. See Appendix A: Event Log for the Event
Log entries that may be made during recovery.

Note: The ACSLM will not be able to verify configuration or contents
of LSMs that were in the offline or diagnostic state at the time the
Storage Server failed or was terminated. This is because an offline
LSM is unable to provide configuration data and the LSM robot is
unable to scan storage cells and tape drives for their contents. The
ACSLMwill perfonn as much of the recovery procedure as possible
and will note in the Event Log that the LSM is offline.

9036

ACSLM Processes

9036

Storage Server Recovery

1. Issues the following unsolicited message to the Display Area of the
Command Processor:

Server system recovery started

2. Updates all ACS records in the data base as follows:

ACSs in the recovery state are changed to online.

- ACSs in the diagnostic or offline-pending states are changed to
offline.

3. Attempts to communicate with each ACS, using each port that the
data base indicates is online. The ACSLM must find at least one
port that can successfully communicate with the library in order for
recovery processing to continue.

4. Verifies that the LSM and drive configurations in the Storage
Server data base match those defined in the LMU. Discrepancies
are noted in the Event Log.

5. Varies online all LSMs attached to an online ACS, if possible.
Cartridge recovery is performed as part of this step.

6. Directs the LSM robot to scan the contents of all cell locations
marked "reserved" in the data base. These are locations that tape
cartridges were being moved either to or from at the time the
system failure occurred. The ACSLM updates the data base to
reflect the actual physical contents of these cells, as determined by
the robot.

7. Updates the data base to reflect the true status of all library tape
drives (that is, available, in use, offline).

8. Directs the LSM robot to scan the contents of all library drives that
the data base indicates are in use. Updates the data base to reflect
the, true physical contents.

9. Directs the LSM robot to scan the contents of the last known
location of each cartridge selected for use at the time of the system
failure. Updates the data base with the true contents of these
cells. If a cartridge is not found in its last known location it is
deleted from the data base.

10. Displays either of the following unsolicited messages in the
Display Area of the Command Processor, based on whether the
recovery process was successful or not.

Server system recovery complete

-or-
Server system recovery failed

2-15

Unsolicited Messages ACSLM Processes

UNSOLICITED MESSAGES
The ACSLM sends an unsolicited message to the ACSSA whenever
an event requiring operator or System Administrator action occurs.
The ACSSA, in turn, displays the message in the Display Area of the
Command Processor screen and sends the message to the Event
Logger. The Event Log entry may show additional detail concerning
the event. See Appendix A: Event Log for the specific entries that
may be written to the Event Log.

Unsolicited messages are "asynchronous," meaning that their timing
is not necessarily related to the processing of a particular request.
Most unsolicited messages indicate an error, although some
(particularly those related to CAP processing) serve to notify the
library operator when a particular routine action can be taken.

The status codes for all unsolicited messages are listed below in
alphabetical order.

• STATUS_ACSLM_IDLE if the ACSLM has l;>een placed in the idle state
and is therefore unavailable for requests using library resources.
See Library Request Processing in this chapter for details on
ACSLM states.

• STAT.US_ACTIVITY_START when the ACSLM has been placed in the
run state.

• STATUS_CARTRIDGES_IN_CAP if cartridges are detected in the CAP
and need to be removed by the operator.

• STATUS CLEAN DRIVE if a drive needs to be cleaned. - -
• STATUS_CONFIGURATION_ERROR if the library configuration specified

in the Storage Server data base is not the same as that defined in
the LMU by a Customer Services Engineer, or if a component
appears in the data base but fails to respond to LMU commands.

• STATUS DATABASE ERROR if the ACSLM is unable to access the - -
data base.

• STATUS_DEGRADED_MODE if the library hardware is operable, but with
degraded performance.

• STATUS_DIAGNOSTIC if the specified device has been varied to the
diagnostic state and is therefore available for requests submitted
through the Command Processor only. See the vary command
description in Chapter 4 for additional details.

• STATUS_EVENT_LOG_FAILURE if the Event Logger is unable to open
or write to the Event Log file.

2-16 9036

ACSLM Processes Unsolicited Messages

• STATUS_EVENT_LOG_FULL if the Event Log has reached the
maximum size defined during installation. This unsolicited
message will be sent at one minute intexvals until the size of the
Log is reduced. See the Event Logging section in this chapter for
details.

• STATUS_IDLE_PENDING if the ACSLM is in an idle-pending state
and is therefore unavailable for requests using library resources.
See the Library Request Processing section in this chapter for
details on ACSLM states.

• STATUS_INPUT_CARTRIDGES if a CAP is ready to receive cartridges.

• STATUS IPC FAILURE if the ACSLM or CSI cannot communicate
with another Storage Server process.

• STATUS_LIBRARY_FAILURE if a library hardware error occurred while
the ACSLM was processing a request.

• STATUS NI TIMEDOUT if the CSI is unable to establish a connection
with the Network Interface. Data may have been lost.

• STATUS_OFFLINE if a device has been varied offline. See the vary

command description in Chapter 4 for additional details.

• STATUS_ONLINE if a device has been varied online. See the vary

command description in Chapter 4 for additional details.

• STATUS_RECOVERY_COMPLETE when Storage Sexver recovery ·has
been completed successfully. See the Storage Server Recovery
section in this chapter for details. .

• STATUS_RECOVERY_FAILED if Storage Server recovery has failed.
See the Storage Server Recovery section in this chapter for details.

• STATUS_RECOVERY_INCOMPLETE if the specified LSM has failed to
recover in-transit cartridges during Storage Server recovery. See
the Storage Server Recovery section in this chapter for details.

• STATUS_RECOVERY_STARTED when Storage Sexver recovery has
been initiated. See the Storage Server Recovery section in this
chapter for details.

• STATUS_REMOVE_CARTRIDGES if a CAP contains cartridges and is
ready for the operator to remove them.

• STATUS RPC FAILURE if the CSI has encountered a Remote
Procedure Call (RPC) failure. Data may have been lost.

9036 2-17

Event Logging ACSLM Processes

EVENT LOGGING

Description
One system-wide Event Log contains infonnation about library events
and errors. All Storage Server software components log events to the
Log through the centralized Event Logger.

The infonnation in this Log permits later analysis and tracking of
nonilallibrary events as well as errors. Logged events include:

• Library errors. Both fatal and nonfatal hardware and software
errors are logged. Examples include LSM .failures, problems with
cartridges, data base errors, interprocess and library
communications failures, and software failures not normally handled
by the operating system.

• Significant events. These are normal events that may be of
significance in monitoring library operations. For example, events
are logged when an audi t is initiated or terminated, a device
changes state, or a CAP is opened or closed.

The Event Log is automatically created when the Storage Server
software is installed. The Log exists in the file

acsss_home/log/acsss_event .log

where acsss_home is the directory in which the Storage Server software
was installed, usually /usr/ACSSS.

How Events Are Logged

2-18

To log an event, a Storage Server component such as the ACSLM,
ACSSA, or CSI, sends a message to the centralized Event Logger.
The Event Logger accepts the message and updates the Event Log in
the following manner.

1. Reformats the message by applying a standard prefix.

2. Opens the Event Log file, or creates it if it does not already exist

3. Appends the Event Log message to the end of the fue.

4. Checks the current file size against the limit parameter specified at
installation. If the current size exceeds the specified limit, the
Event Logger sends an unsolicited message to the ACSSA to alert
the System Administrator.

5. Closes the Event Log file.

Updating the Event Log in this manner keeps the Log entries
sequential and allows the System Administrator to truncate or delete
the file at any time during system operation.

9036

ACSLM Processes Event Logging

Event Log Messages

9036

See Appendix A: Event Log Messages for significant Event Log
messages, as well as a description of how Event Log entries are
fonnatted.

2-19

Event Logging ACSLM Processes

(INTENTIONALL Y LEFf BLANK)

2-20 9036

OVERVIEW

REQUESTS

Request Format

9036

CHAPTER 3:

ACSLM COMMON DATA STRUCTURES

This chapter describes the general request, response, and data
structure fonnats that a client application must be able to generate for
the ACSLM or interpret from the ACSLM.

See Chapter 2: ACSIM Processes for a description of how the ACSLM
processes requests. See Chapter 4: ACSLM Command Structures for
the structure and contents of specific ACSLM commands.

Request messages are sent to the ACSLM from either a CSI or the
ACSSA. The fonnat of a request is:

struct {

} ;

IPC HEADER
MESSAGE HEADER

message _data

ipc _header;
message _header;

The IPC_HEADER and MESSAGE_HEADER are thefued portions of the
request; this infonnation must appear in every request. The
message_data is the variable portion of the request; its appearance and
length is dependent on the specific request.

If the ACSLM finds an error in the fixed portion of a request, it will
reject it immediately, without checking the variable portion. If the
ACSLM finds an error in the variable-length portion, it will note the
error and continue validating the entire variable-length portion; the
ACSLM will reject the request, but the response will indicate all
elements that are invalid.

3-1

Requests

3-2

ACSLM Common Data Structures

ipc_header

The IPC_HEADER is generated by a CSI or the ACSSA and contains
infonnation specific to the particular operating environment. See
Chapter 7: CSI Data Structures for the IPC_HEADER fonnat currently
used. The ACSLM does not use the IPC_HEADER, but preserves it and
includes it in associated responses.

message_header

The MES SAGE_HEADER is generated by the client application (or
ACSSA) and specifies ACSLM request infonnation. The
MESSAGE_HEADER has the following fonnat:

typedef struct {
unsigned short
COMMAND
unsigned char

MESSAGE_HEADER;

packet_id;
command;
message_options ;

packet _ id is a unique identifier generated arid used by the client
application to synchronize on a forthcoming response. The packet _ id is
not used by the ACSLM, but is preserved by the ACSLM and included
in its responses.

command designates the action to be perfonned by the ACSLM. See .
Chapter 4: ACSLM Command Structures for details about these actions.

message_options are request qualifiers generated by the client
application. FORCE is the only valid message_option for requests. The
commands that can use the FORCE message _option are:

dismount
idle
vary

message_data

The message_data is generated by the CSI or the ACSSA and varies
based on the request. message_data may contain a repeated group of
infonnation with the fonn:

TYPE type;
unsigned short count;

(information)

type deImes the nature of the repeated infonnation. Only one type of
infonnation may appear in a message.

9036

ACSLM Common Data Structures Responses

RESPONSES

Description

9036

count is the number of times the information is repeated. For some
commands, count can be set to 0, which indicates that the request to be
performed on all objects of the specified type. See Chapter 4: ACSLM
Command Structures for the individual command descriptions.

information is the repeated data. The maximum number of times it can
be repeated is MAX _ ID. See the Common Variables section in this
chapter for the defmition of MAX _ ID.

The different possibilities for repeated infonnation are represented as a
"C" union declaration. This syntax is used only to denote a choice in
this usage. The contents and memory allocation for a particular request
or response are based not on the typical allocation rules for "C"
unions, but on the information type and the count occurrences of it. See
Chapter 4: ACSLM Command Structures for the union declarations.

The ACSLM generates at least one response for each request it
receives. Following are the three types of responses the ACSLM can

. generate:

• Acknowledge. An acknowledge response is returned only for
requests with a valid fIXed-length portion. This response indicates
that the request has been received and verified. It includes a
request ID, generated by the ACSLM, which the user can use to
perfonn queries on the request or to cancel it.

• Intermediate. An intennediate response is returned only for valid
requests and only if it is required by the particular request. It is
required if interim infonnation must be returned to the requestor, or
if all necessary information cannot fit in a single response.

• Final. A final response is returned for all requests. This response
indicates whether the request succeeded or failed. If the request
failed, this response indicates the nature of the error. If there are
errors in the variable-length portion of the request, all errors will be
noted in the final response.

3-3

Responses ACSLM Common Data Structures

General Response Format

3-4

The general fonnat of a response is:

ipc_header

struct response {
IPC HEADER
MESSAGE HEADER
RESPONSE STATUS

(parameters)

} ;

ipc _header;
message_header;
message_status ;

The IPC_HEADER is preserved from the request by the ACSLM. It
provides information that assists the requesting process in
synchronizing requests and responses. See Chapter 7: CSI Data
Structures for the IPC_HEADER fonnat.

message_header

The MESSAGE_HEADER has the same general format as the
MES SAGE_HEADER in the request. The format is as follows:

typedef struct {
unsigned short
COMMAND
unsigned char

MESSAGE_HEADER;

packet id;
command;
message_options ;

Note: The message_options is the only part of the response
MESSAGE_HEADER that differs from the request.

The packet_id is preserved from the request by the ACSLM. It is
returned in the response in order for the client application to be able to
match the request to a response.

The command is also preserved from the request by the ACSLM and
returned in the response. See Chapter 4: ACSLM Command Structures
for details about these actions. .

message_options can have the following values in the response:

ACKNOWLEDGE
FORCE
INTERMEDIATE

9036

ACSLM Common Data Structures Responses

9036

Table 3-1 lists which response message_options are valid for each
command 'response:

Table 3-1. ACSLM Response Message Options

~ommand In'~DD~diD'~
audit X

Force Acknowledge

X

cancel X X

dismount X X X

enter X X

eject X X

idle X X X

mount X X

query X X

start X X

vary X X X

. response_status

The RESPONSE_STATUS defmes the completion status of the request.
The format is as follows:

typedef struct
STATUS status;
TYPE rypei
IDENTIFIER identifier;

RESPONSE_STATUS;

status values vary by request. See Chapter 4: ACSLM Command
Structures for details.

rype indicates the type of identifier that the status refers to. When no
identifier is appropriate, the value TYPE_NONE is used and the contents of
identifier are undefined.

~5

Responses ACSLM Common Data Structures

identifier specifies the device or object to which the status refers. identifier
is defmed as:

typedef union
ACS acs_id;
CAPID capJd;
CELLID cellJd;
ORIVEIO drive_id;
LSMID lsm_id;
PANELID panetid;
PORTID port_id;
SUBPANELID subpanel_id;
VOLID votid;
cha r socut _ name [14] ;

IDENTIFIER;

See the Common Variables section in this chapter for the definitions
and formats of each IDENTIFIER.

Parameters

The parameters vary depending upon the nature of the response. See
Chapter 4: ACSLM Command Structures for the possible parameters.

Specific Response Formats

3-6

All of the possible response fonnats and their contents are described
below.

Acknowledge Response

The fonnat of an acknowledge response is:

struct acknowledge_response {
I PC_HEADER ipc_header;
MESSAGE_HEADER message_header;
RESPONSE STATUS message_status;
MESSAGE 10 message_id;

} ;

Within MESSAGE_HEADER, message_options is set to ACKNOWLEDGE.

Within RESPONSE_STATUS, message_status is set to STATUS_VALID, type is
set to TYPE_NONE, and identifier is not used.

The message _id is generated by the ACSLM and uniquely identifies the
request. The requestor can use this value to query the status of the
request or to cancel the request.

9036

ACSLM Common Data Structures Common Statuses

Intermediate Response

Within MESSAGE_HEADER, message_options is set to INTERMEDIATE.

See the individual request descriptions in Chapter 4 to detennine if the
ACSLM returns an intermediate response for a request, and for a
description of the specific format of the responses.

Final Response - Successful Request

See the individual request descriptions in Chapter 4 for the fonnat of
each fmal response.

Final Response - Failed Request

When the ACSLM fmds a syntax error in the fixed-length portion of a
request, the final response has the following fonnat:

struct final_response {
I PC_HEADER ipc_header;
MESSAGE HEADER message_header;
RESPONSE STATUS message_status;
TYPE ~pe;

unsigned short coum;
} ;

Within RESPONSE_STATUS, message_status identifies the syntax error. type
indicates the type of idemifier that the status refers to; if no identifier is
appropriate, TYPE_NONE is used and the contents of identifier are
undefined.

Within MESSAGE_HEADER, no message_options qualifiers are set. For
example, if an invalid value is specified for the type field of a query
request, the final response is returned to the requestor with a status of
STATUS_INVALID_TYPE, type of TYPE_NONE, and identifier undefined.

TYPE and count are included for certain commands only; they are omitted
from the response if they were not required in the request. See
Chapter 4: ACSLM Command Structures for the individual command
descriptions.

This form of a final response is also returned for a cancelled a udi t,

eject, enter, or query request that was p"ending in the ACSLM. All
fields through count are returned for these commands.

COMMON STATUSES

9036

This section identifies the status values that are common to all
requests. These statuses can appear in either the fixed portion or the
variable portion of a response. The statuses are listed in alphabetical
order. (See the db _de/s.h Header File in Appendix B for the "C"
enumeration values.)

3-7

Common Statuses ACSLM Common Data Structures

3-8

• Any of the following:

STATUS_ACS_NOT_IN_LIBRARY
STATUS_LSM_NOT_IN_LIBRARY
STATUS_DRIVE_NOT_IN_LIBRARY
STATUS_PORT_NOT_IN_LIBRARY

if the respective identifier values are not found in the data base.

For example, if LSM 5 was not configured in ACS 1, any
IDENTIFIER specifying LSM 5 causes a status value of
STATUS_LSM_NOT_IN_LIBRARY to be returned, with type set to
TYPE_LSM, and IDENTIFIER set to an LSMID with an acs_number of 1

and an Ism _number of 5.

• STATUS_AUDIT_IN_PROGRESS (in the message_status or status) if
another request attempts to access a cell locked by a current a udi t
request.

• STATUS_CONFIGURATION_ERROR, and an unsolicited message is
issued, if the ACSLM detects an inconsistency between the data
base and the physical library configuration.

• STATUS_COUNT_TOO_LARGE if the count is greater than allowed.

• STATUS_COUNT_TOO_SMALL if the count is less than allowed.

• . STATUS_DATABASE_ERROR if the ACSLM detects a data base
consistency error during request processing.

• Either of the following:

STATUS_DRIVE_OFFLINE
STATUS LSM OFFLINE

if the specified component is in the STATE_OFFLINE_PENDING or
STATE_OFFLINE states, or in the STATE_DIAGNOSTIC state and the
request originated from a CSI.

For example, if volume ABC123 is specified in a mount request and
the LSM it resides in is STATE_OFFLINE, a STATUS_LSM_OFFLINE

status value is returned.

• Any of the following:

STATUS_INVALID_ACS
STATUS INVALID LSM - -
STATUS INVALID PANEL - -
STATUS INVALID DRIVE - -
STATUS INVALID ROW - -
STATUS INVALID COLUMN - -
STATUS INVALID VOLUME - -
STATUS INVALID PORT - -
STATUS INVALID MESSAGE - -

if any of the variables in the IDENTIFIER have incorrect syntax.

9036

ACSLM Common Data Structures Common Statuses

For example, if the LSM identifier in a panel_ill exceeds MAX _ LSM, a
STATUS_INVALID_LSM value is returned in status, type is set to
TYPE_LSM, and IDENT!FIER Contains an LSMID.

• STATUS_INVALID_COMMAND if command is not COMMAND_AUDIT,

COMMAND_CANCEL, COMMAND_DISMOUNT, COMMAND_EJECT,

COMMAND_ENTER,COMMAND_IDLE,COMMAND_MOUNT,COMMAND_QUERY,

COMMAND START or COMMAND VARY. - -
• STATUS_INVALID_OPTION if a value other than FORCE, is set in

message_options.

• STATUS_INVALID_TYPE if the request specifies a device or object
type that is not valid for any command.

• STATUS_IPC_FAILURE if the CSI IPC communication mechanism
cannot accept a pending message from the A CSLM after an
appropriate number of retries with timeouts.

• STATUS LIBRARY BUSY if the ACSLM is unable to communicate - -
with the library after retries and time-outs.

• STATUS_LIBRARY_FAILURE, and an unsolicited message is issued, if
request processing fails due to failure of a library component. If a
tape cartridge is involved, it is returned to an available location.

• STATUS_LIBRARY_NOT_AVAILABLE if a request other than a query

server is received while the ACSLM is in the STATE RECOVERY

state, or if a request requiring library resources is received while
the ACSLM is in the STATE_IDLE or STATE_IDLE_PENDING states.

• STATUS_MESSAGE_NOT_FOUND if the message_id is not a current or
pending request.

• STATUS_MESSAGE_TOO_LARGE if the message size calculated by the
ACSLM exceeds the received number of bytes.

• STATUS_MESSAGE_TOO_SMALL if the message size calculated by the
ACSLM is less than the received number of bytes.

• STATUS_PROCESS_FAILURE if the ACSLM cannot spawn a process
to handle a request, or a spawned process fails.

• STATUS_UNSUPPORTED_OPTION if FORCE is set in message_options for a
command that does not support it.

• STATUS_UNSUPPORTED_TYPE if the request specifies a device or
object type that is not supported for a particular command.

• STATUS_VOLUME_NOT_IN_LIBRARY (in message_status or
identifier _status) if the specified volume identifier is not found in the
data base.

9036 3-9

Common Variables ACSLM Common Data Structures

COMMON VARIABLES

ACS

CAPID

This section describes common variables used by the ACSLM.
Minimums and maximums define the range of possible values for a
variable.

Descript.ion

ACS uniquely identifies an ACS within a library.

Definition

ACS is defined as:

typedef unsigned char ACS;

ACS has a range from MIN_ACS to MAX_ACS which are defmed as:

tdefine MIN ACS 0
'define MAX_ACS 255

Description

CAPID uniquely identifies a CAP within a library. The CAP identifier
has the same value as the LSM identifier to which the CAP is
attached.

Definition

CAPID is defined as:

typedef LSMID CAPID;

CAP SIZE

3-10

Description

CAP _SIZE is the number of storage cells in a CAP.

Definition

The CAP storage cells are arranged in three rows of seven columns.
Therefore, CAP _ SIZE is defined as:

tdefine CAP SIZE 21

9036

ACSLM Common Data Structures Common Variables

CELLID

Description

CELLID uniquely identifies a storage cell within an ACS.

Definition

CELLID contains an ACS identifier, an LSM number, a panel number, a
panel row number, and a panel column number.

typedef struct {
PANELID panel_id;
ROW row;
COL col;

CELLID;

row is defined as:

typedef unsigned char ROW;

row has a range from MIN_ROW to MAX_ROW which are defined as:

tdefine MIN ROW 0
fdefine MAX ROW 14

col is defined as:

typedef unsigned char COL;

col has a range from MIN_COLUMN to MAX_COLUMN which are defined as:

fdefine MIN COL 0
tdefine MAX COL 23

COMMAND

9036

Description

Values

COMMAND uniquely identifies an operation to the ACSLM.

COMMAND can be any of the following. (See the de/s.h Header File in
Appendix B for the "C" enumeration values.)

COMMAND ABORT
COMMAND AUDIT
COMMAND CANCEL
COMMAND DISMOUNT
COMMAND EJECT
COMMAND ENTER
COMMAND IDLE
COMMAND MOUNT
COMMAND_QUERY

3-11

Common Variables ACSLM Common Data Structures

COMMAND_RECOVERY
COMMAND START
COMMAND_TERMINATE

COMMAND_VARY

COMMAND_ABORT, COMMAND_RECOVERY, COMMAND_TERMINATE, and
COMMAND_UNSOLICITED_EVENT are for ACSLM internal use only. All
other COMMAND values can be generated by a client application.

DRIVEID

Description
DRIVEID uniquely identifies a library drive within the library.

Definition

DRIVEID contains an ACS identifier, an LSM number, a panel number,
and a drive number:

typedef struct {
PANELID panel_id;
DRIVE drive_number;

DRIVEIDi

drive_number is defined as:

typedef unsigned char DRIVE;

drive_number has a range from MIN_DRIVE to MAX_DRIVE which are
defined as:

idefine MIN DRIVE 0
idefine MAX DRIVE 3

FREECELLS

Description
FREECELLS is the number of unoccupied cells in an ACS or LSM.

Definition

FREECELLS is defined as:

typedef unsigned long FREECELLSi

3-12 9036

ACSLM Common Data Structures

FUNCTION

Description

Values

LOCATION

FUNCTION is an action performed by the ACSLM.

FUNCTION can have the following values:

audit
cancel
dismount
eject
enter
idle
initiation
mount
query
recovery
start
termination

Description

LOCATION describes the class of storage location.

Values

Common Variables

LOCATION can be any of the following. (See the db _de/s.h Header File
in Appendix B for the "C" enumeration values.)

LSMID

9036

LOCATION CELL
LOCATION DRIVE

Description

LSMID uniquely identifies an LSM within a library.

Definition

LSMID contains an ACS identifier and an LSM number.

typedef struct {
ACS acs _number;
LSM Ism_number;

LSMID;

3-13

Common Variables ACSLM Common Data Structures

MAX 10

3-14

Ism number is defined as:

typedef unsigned char LSM;

Ism_number has a range from MIN_LSM to MAX_LSM which are defined as:

#define MIN LSM 0
#define MAX_LSM 15

Description

MAX_ACS_DRIVES is the maximum number of drives in the library.

Definition

MAX ACS DRIVES is defined as:

#define MAX ACS DRIVES 128

Description

MAX _ ID is the maximum number of identifiers that can be specified in a
request.

Definition

MAX ID is defined as:

#define MAX ID 21

Description

MAX_MESSAGE_SIZE is the maximum size of an IPC request or response
packet

Definition

MAX MESSAGE SIZE is defined as: - -

Description

MAX_PORTS is the maximum number of ports per ACS.

9036

ACSLM Common Data Structures Common Variables

Definition

MAX PORTS is defined as:

fdefine MAX PORTS 16

MESSAGE 10

Description

MESSAGE_ID is a unique number generated and used by the ACSLM to
identify a specific request from a CSI or the ACSSA.

Definition

MESSAGE_IO is defined as:

typedef unsigned short MESSAGE_IO;

MESSAGE_IO has a range from MIN_MESSAGE to MAX_MESSAGE which are
defined as:

fdefine MIN MESSAGE 1
fdefine MAX MESSAGE 65535

PANELIO

9036

Description

PANELIO uniquely identifies a storage panel within an ACS.

Definition

The panel identifier contains an ACS identifier, an LSM number, and a
panel number:

typedef struct {
LSMIO lsmjd;
PANEL panel_number;

PANELIO;

panetnumber is defined as:

typedef unsigned char PANEL;

panetnumber values can range from MIN_PANEL to MAX_PANEL which are
defined as:

fdefine MIN PANEL 0
fdefine MAX PANEL 19

3-15

Common Variables ACSLM Common Data Structures

PORTIO

STATE

3-16

Description

PORTIO uniquely identifies a single communication line between a
server system communications port and an LMU host interface. The
ACSLM uses the communication line to interact with an ACS.

Definition

PORT _ ID contains an ACS identifier and a port number:

typedef struct {
ACS acs_id;
PORT port_number;

PORTIO;

port_number is defined as;

typedef unsigned char PORTi

port_number values can range from MIN_PORT to MAX_PORT which are
defined as:

fdefine MIN PORT 0
fdefine MAX PORT 15

Description

Values

STATE describes the characteristics that a device or Storage Server
component can take.

STATE can be any of the following. (See the db _de/s.h Header File in
Appendix B for the "C" enumeration values.)

STATE CANCELLED
STATE DIAGNOSTIC
STATE IDLE
STATE IDLE PENDING - -
STATE OFFLINE
STATE_OFFLINE_PENDING
STATE ONLINE
STATE RECOVERY
STATE RUN

STATE_CANCELLED describes a state of a request.

STATE ONLINE,STATE OFFLINE,STATE OFFLINE_PENDING, and
STATE_DIAGNOSTIC describe the different states of an ACS, LSM, or
library drive.

9036

ACSLM Common Data Structures Common Variables

STATE_ONLINE and STATE_OFFLINE describe the different states of a
port:

STATE_RUN,STATE_IDLE,STATE_IDLE_PENDING,andsTATE_RECOVERY
describe the different states of the ACSLM.

SUBPANELID

TYPE

9036

Description

SUBPANELID uniquely identifies a subset of cells within a panel. It
specifies the upper-left corner (startrow, startcolumn) and lower-right
comer (endrow, endcolumn) of a rectangular area wholly contained in a
single panel.

Definition

SUBPANELID contains an ACS identifier, an LSM number, a panel
number, a starting row number, a starting column number, an ending
row number, and an ending column number:

typedef struct {
PANELID panel_id;
ROW begin_row;
COL begin_col;
ROW end_row;
COL end_col;

SUBPANELID;

Description

Values

TYPE identifies a class of devices, Storage Server software
components, or commands.

Valid TYPE values and their defmitions are as follows. (See the defs.h
Header File in Appendix B for the "c" enumeration values.)

TYPE ACS
TYPE AUDIT
TYPE CAP
TYPE CELL
TYPE CP
TYPE CSI
TYPE DISMOUNT
TYPE EJECT
TYPE EL
TYPE ENTER

ACS
a udi t request process
Cartridge Access Port (CAP)
Cell identifier
ACSSA command process
CSI
dismount request process
eject request process
Event Logger
enter request process

3-17

Common Variables ACSLM Common Data Structures

VOllD

3-18

Description

TYPE DRIVE

TYPE IP
TYPE LH

TYPE LM

TYPE LSM
TYPE MOUNT

TYPE NONE

TYPE PANEL

TYPE PORT

TYPE_QUERY

TYPE RECOVERY

TYPE_REQUEST

TYPE_SA

TYPE SERVER

TYPE SUBPANEL

TYPE VARY

TYPE VOLUME

Library tape drive
Interprocess communication
ACS Library Handler
ACS Library Manager (ACSLM)
LSM
mount request process
no identifier specified
LSMpanel
ACS communication port
query request process
Storage Server recovery process
Storage Server request
ACS System Administrator (ACSSA)
Storage Server
LSM subpanel
vary request process
Tape cartridge

VaLID is the external tape cartridge label which uniquely identifies a
tape cartridge within an ACS.

Definition

VaLID is defined as:

typedef struct
char external_label[EXTERNAL LABEL SIZE+l];

} VaLID;

EXTERNAL LABEL SIZE is defined as:

VaLID is a string of characters less than or equal to
EXTERNAL_LABEL_SIZE characters long and null tenninated. The
uppercase characters ("A" through "Z"), digits ("0" through "9"),
and blank (" ") are valid. VOLIDs containing embedded blanks are
reserved for diagnostic and maintenance cartridges only; leading and
trailing blanks are ignored.

9036

OVERVIEW

9036

CHAPTER 4:

ACSLM COMMAND STRUCTURES

This chapter illustrates the data structures for each command
processed by the ACSLM. The ACSLM supports the following
commands:

audit
cancel
dismount
eject
enter
idle
mount
query
start
vary

For each command, the following data structures are shown:

• Request structures and values

• Intennediate response structures and values, where applicable

• Final response structures and values

• Final response structures and values for cancelled requests, where
applicable

See Chapter 2: ACSLM Processes for a description of how the ACSLM
processes requests. See Chapter 3: ACSLM Common Data Structures
for data structures that are common to all requests and responses.

audit

AUDIT

Name

Description

4-2

. :~

ACSLM Command Structures

a udi t - Perfonns a physical inventory on the tape cartridges in a
library, ACS, LSM, panel, or subpanel.

The audit request perfonns a physical inventory of one or more
specified ACSs, LSMs, LSM panels, or LSM subpanels. It can be
used to resolve inconsistencies between the data base and the
physical contents of the library. These inconsistencies may be the
result of a person physically entering the LSM and manually adding,
removing, or moving cartridges in the storage cells.

Only one device type at a time can be audited. Within that type, up to
MAX _ ID different devices can be specified in each request.

The LSM robot physically scans e'ach cell in the specified object The
cell contents are compared with the contents recorded in the data
base. If there is a difference, or if the robot finds a duplicate or
unreadable external label, the physical contents of the cell are
rechecked. If there is still a discrepancy, the data base is corrected and
a record of the change is written to the Event Log. Through this
process, the data base is updated to reflect the observed contents in
cell storage. It is recommended that the data base be backed up after
the completion of an audit.

Any cartridges with duplicate or unreadable external labels are ejected
through the specified CAP. The CAP is reserved for the entire audit.
The audit process does not begin ejecting cartridges until after it has
made all necessary data base updates.

Concurrent audits are allowed as long as they do not overlap one
another. They are not recommended, however, when duplicate volumes
are suspected.

9036

ACSLM Command Structures

Requests

Request Format

struct audit_request
IPC HEADER

} ;

MESSAGE_HEADER
CAPID
TYPE
unsigned short
union {

ACS
LSMID
PANELID
SUBPANELID

identifier;

Request Values

ipc _header;
message_header;
cap_id;
type;
count;

acsjd;
Ism_ill;
panel_id;
subpanel_id;

Within MESSAGE_HEADER, command is set to COMMAND_AUDIT.

cap _id is the CAP used for ejection of cartridges.

type is the type of object to audit. Only one type can be specified in a
single request. type is one of the following:

TYPE SERVER
TYPE ACS
TYPE LSM
TYPE PANEL
TYPE SUBPANEL

count is the number of identifiers that follows. For TYPE_SERVER,

count must equall. For all other types, count must equal 1 to MAX_ID.

audit

Within identifier, acs_iIl, Ism_id, panel_ill, or sub panel_ill is the unique ID
of the object to be audited.

Responses

Intermediate Response Format

9036

Part of audit processing is ejection of tape cartridges. The ACSLM
returns an intermediate response when a tape cartridge is added or
deleted from the data base. In the case of duplicate or unreadable
labels, the tape cartridge is also physically ejected from the library
through the CAP specified in the request.

4-3

audit ACSLM Command Structures

The fonnat of the intennediate response is:

struct eject_enter {
IPC HEADER
MESSAGE_HEADER
RESPONSE STATUS

} ;

CAPID
unsigned short
struct {

VOLID
RESPONSE_STATUS

volume_status;

Intermediate Response Values
Within MESSAGE HEADER:

• command is COMMAND _ AUDI T.

ipc _header;
message_header;
message_status ;
cap_id;
count;

votid;
status;

• message_options is set to INTERMEDIATE, indicating a partial response
to the a udi t request.

Within RESPONSE_STATUS, status is STATUS_AUDIT_ACTIVITY.

cap _id is the identifier of the CAP, specified in the request, that is used
to eject cartridges.

count is the number of tape cartridges added, deleted, or ejected
associated with this response. The number ranges from 1 to MAX_ID.

See the Common Variables section in Chapter 3 for a description of
MAX ID.

Within volume_status, vol_id is the external tape cartridge label.

Within volume_status, status is the disposition of each vol_ide
Following are status values specific to this command.

• STATUS_DUPLICATE_LABEL if the robot finds a tape cartridge with a
duplicate external label; the cartridge is ejected from the·LSM.

• STATUS_VOLUME_ADDED if the robot finds a tape cartridge that is not
listed in the data base; the votid is added to the data base.

• STATUS_VOLUME_NOT_IN_LIBRARY if a tape cartridge listed in the
data base is not found in the library; the vol_ id is deleted from the
data base.

• STATUS_UNREADABLE_LABEL if the robot finds a tape cartridge with
an unreadable external label; the cartridge is ejected from the
library. Within votid question marks (?) are substituted for the
characters that the robot was unable to read.

4-4 9036

ACSLM Command Structures

Final Response Format

struct audit_response
IPC HEADER
MESSAGE HEADER
RESPONSE STATUS
CAPID

} ;

TYPE
unsigned short
union {

struct {
ACS
RESPONSE STATUS
acs_status;

struct {
LSMID
RESPONSE_STATUS
Ism_status;

struct {
PANELID
RESPONSE STATUS

panel_status;
struct {

SUBPANELID
RESPONSE STATUS
subpanel_status;

identifier_status;

Final Response Values

ipc _header;
message_header;
message_status ;
cap_id;
type;
count;

panel_id;
status;

subpanel_id;
status;

Within MESSAGE_HEADER, command is COMMAND AUDIT.

audit

Within RESPONSE_STATUS, status is the disposition of the entire request.
Following are status values specific to this command.

• STATUS_AUDIT_FAILED if the request fails during audit processing.
See the identifier_status for the nature of the failure.

• STATUS_AUDIT_IN_PROGRESS, for TYPE_SERVER only, if another in­
process audit is already auditing the library.

• STATUS_CANCELLED if the request is cancelled. See Final Response
Values - Cancelled Request.

• STATUS_CAP_IN_USE if the specified CAP is being used by an eject,

enter, or another audit request.

• STATUS_MULTI_ACS_AUDIT if the request identifier list spans more
than one ACS.

• STATUS_NOT_IN_SAME_ACS if the cap_id and the identifier do not
specify the same ACS.

• STATUS_SUCCESS if the audit completed successfully.

9036 4-5

audit ACSLM Command Structures

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS_ACS_NOT_IN_LIBRARY

• STATUS_LSM_NOT_IN_LIBRARY

• STATUS_CONF I GURATI ON_ERROR

• STATUS_COUNT_TOO_LARGE

• STATUS_COUNT_TOO_SMALL

• STATUS_DATABASE_ERROR

• STATUS_INVALID_ACS

• STATUS_INVALID_LSM

• STATUS_INVALID_OPTION

• STATUS_INVALID_TYPE

• STATUS_LIBRARY_BUSY

• STATUS LIBRARY FAILURE - -
• STATUS_LIBRARY_NOT_AVAILABLE

• STATUS_LSM_OFFLINE

• STATUS_MESSAGE_TOO_LARGE

• STATUS_MESSAGE_TOO_SMALL

• STATUS_PROCES S_FAI LURE

• STATUS UNSUPPORTED OPTION - -
• STATUS_UNSUPPORTED_TYPE

cap _id is the identifier of the CAP, specified in the request, that is used
to eject cartridges.

type is the type of object being audited, as indicated in the request.

count is the number of IDENTIFIERS, as indicated in the request. For
TYPE_SERVER, count is always o.
Within identifier_status, acs_id, lsm_id, panel_id, or subpanel_id is the
unique ID of the object being audited, as indicated in the request.

Within identifier_status, status is the disposition of the identifier.
Following are status values specific to this command.

• STATUS_AUDIT_IN_PROGRESS if another in-process audit is already
auditing the LSM specified in identifier. Only one audit may be
active on any single LSM.

• STATUS_CANCELLED if the request is cancelled. See Final Response
Values - Cancelled Request.

• STATUS_DUPLlCATE_IDENTIFIER if the IDENTIFIER duplicates or
overlaps a previous IDENTIFIER in the list.

4-6 9036

ACSLM Command Structures audit

Notes

• STATUS_INVALID_SUBPANEL if the subpanel is not correctly
specified. A subpanel identifier indicates the upper-left and lower­
right corners of a panel subsection. The ending row must be > the
beginning row, and the ending column must be> the beginning
column. This status is returned if these conditions are not met.

• STATUS_VALID if the IDENTIFIER was successfully validated.

Following are common identifier_status status values. See the
Common Statuses section in Chapter 3 for a description.

• STATUS_INVALID_ACS

• STATUS_INVALID_COLUMN

• STATUS_INVALID_LSM

• STATUS_INVALID_PANEL

• STATUS INVALID ROW - -
• STATUS_LSM_OFFLINE

• STATUS_LSM_NOT_IN_LIBRARY

Final Response Values - Cancelled Request

Within MESSAGE_HEADER, command is COMMAND_AUDIT.

Within RESPONSE_STATUS, the status is STATUS_CANCELLED.

cap _id is the identifier of the CAP, specified in the request, that is used
to eject cartridges.

type is the type of object being audited, as indicated in the request.

count is the number of identifiers that were validated prior to the
cancel. For a cancelled pending request count is 0 and no
identifier_status records follow. For a cancelled current request,
count ranges from 1 to MAX_ID. See Common Variables section in
Chapter 3 for a definition of MAX_ID.

Within identifier_status, the status for each identifier is set to
STATUS VALID.

• Messages are written to the Event Log whenever an audit starts,
terminates, or is cancelled.

• A STATUS_REMOVE_CARTRIDGES unsolicited message is sent to the
ACSSA if the CAP becomes full during audit processing. Audit
processing is suspended until the CAP is unloaded and resumes
when the CAP is closed.

9036 A-7

audit ACSLM Command Structures

See Also

• A STATUS_REMOVE_CARTRIDGES unsolicited message is sent to the
ACSSA if a cancel request is issued against a current audit
request while it is ejecting cartridges. An a udi t cannot be
cancelled once this message has been issued.

• The cancel command for details on cancelling a pending or current
audi t request.

• Appendix A for entries that may be written to the Event Log.

4-8 9036

ACSLM Command Structures cancel

CANCEL

Name

Description

cancel- Tenninates a current or pending audit, eject, enter, or
que ry request.

The cancel request tenninates current or pending query, eject, enter,

or audit activity. A cancellation function is provided for these requests
because they can take an extended period of time to complete.

The cancelled request may continue to run while it releases allocated
resources. Activity is tenninated before the next LMU command is
issued. Current LMU commands are processed to completion. No
attempt is made to undo any activity that was completed before the
cancel request was received by the ACSLM.

The requestor must know the request ID of the request to cancel. The
request ID is included in the acknowledging response. It can also be
determined by issuing a query request, which returns a list of all
current and pending requests.

When pending requests are cancelled they are removed from the
ACSLM's request queue and are not processed.

When current requests ate cancelled the following activities occur:

• Cancelling a current audit - The audit halts, and, if cartridges have
been moved to the CAP, a message to remove the cartridges is
displayed. Cartridges already ejected are not reentered. Cancelling
a current audit may result in inconsistencies between the data base
and the actual physical contents of the LSM.

• Cancelling a current eject - The eject is halted, and a message to
remove the cartridges is displayed. After the CAP is emptied and
closed, a message indicating the number of cartridges acted on is
displayed. Cartridges already ejected are not reentered.

• Cancelling a current enter - The enter is halted. If cartridges are in
the CAP, a message to remove the cartridges is displayed. After
the CAP is emptied, a message indicating the number of cartridges
acted on is displayed. Cartridges already entered into the LSM are
not ejected.

• Cancelling a current query - The processing of status information is
aborted.

9036 4-9

cancel ACSLM Command Structures

Requests

Request Format

struct cancel_request
IPC HEADER
MESSAGE_HEADER
MESSAGE ID

} ;

ipc _header;
message_header;
request_idi

Request Values

Responses

Within MESSAGE_HEADER, command is COMMAND_CANCEL.

request Jd is the message ID of the request to cancel.

Intermediate Response Format

Not applicable.

Final Response Format

struct cancel_response
IPC HEADER
MESSAGE_HEADER
RESPONSE_STATUS
MESSAGE_ID

} ;

Final Response Values

ipc _header;
message_header;
message_status i
requestJdi

Within MESSAGE_HEADER, command is COMMAND CANCEL.

Within RESPONSE_STATUS, status is the disposition of the entire request.
Following are status values specific to this command.

• STATUS_INVALID_MESSAGE if the value of request_id is outside the
range of valid values, as defined by MESSAGE_ID, or if the request_id
specified designates a command that is not an audit, eject, enter,
or query. See Common Variables in Chapter 3 for a definition of
MESSAGE ID.

• STATUS_MESSAGE_NOT_FOUND if request_id is valid but is not a current
or pending request.

• STATUS_SUCCESS if the request_id was cancelled successfully.

4-10 9036

ACSLM Command Structures cancel

Notes

Following are common RESPONSE_STATUS status values. See the
'Common Statuses section in Chapter 3 for their descriptions.

•
•
•
•

STATUS_INVALID_OPTION

STATUS MESSAGE TOO LARGE - --
STATUS_MESSAGE_TOO_SMALL

STATUS_UNSUPPORTED_OPTION

request _id is the request ID, as indicated in the cancel request.

Final Response Values - Cancelled Request
Not applicable.

• A query server request cannot be cancelled.

• A cancelled request may continue to run while it releases allocated
resources. Refer to the descriptions of the audit, eject, enter,

and que ry requests for additional information on the effects of a
cancel request. In all cases, the specified request is cancelled and
the RESPONSE_STATUS status STATUS_SUCCESS is immediately
returned to the request originator.

See Also
• The query, eject, enter, and audit commands for details on their

functions.

• Appendix A for entries that may be written to the Event Log.

9036 4-11

---_ ... --------

dismount

DISMOUNT

Name

Description

ACSLM Command Structures

dismount - Dismounts a tape cartridge from a library drive.

The dismount request dismounts a tape cartridge from a library drive.

The message_option FORCE is used to automatically dismount the tape
cartridge from the specified library drive, even if its vol Jd does not
match that in the drive, and even if the drive is not unloaded.

Upon receipt of a dismount request, the LSM robot does the following:

1. Moves to the specified drive and validates the external tape
cartridge label.

2. Dismounts the tape cartridge from the drive.

3. Returns the tape cartridge to an available storage cell in the library.

Once the dismount is completed, the data base is updated with the new
location of the cartridge.

Unforced Dismount

All of the following conditions must be met for a successful unforced
dismount:

• Both the cartridge and the drive must be in the library

• The library drive must be online to ACSLM control

• The cartridge must be in the specified library drive

• The drive must be unloaded

Forced Dismount

When the FORCE message_option is used, the system does not verify the
tape cartridge label or data base information. It also does not require
that the library drive be ready for dismounting. The Storage Server
automatically rewinds, unloads, and dismounts whatever tape cartridge
is found in the specified library drive.

This option can be used to dismount a cartridge with an unreadable or
unknown label, or a cartridge that, for some reason, did not get
unloaded by the client application system.

The following conditions must be met for a successful forced dismount:

• The drive must be in the library configuration

• The library drive must be currently online to ACSLM control

4-12 9036

ACSLM Command Structures dismount

Requests

Request Format

struct dismount_request
IPC HEADER
MESSAGE HEADER
VOLID
DRIVEID

} ;

Request Values

Within MESSAGE HEADER:

• command is COMMAND DISMOUNT.

ipc _header;
message_header;
votill;
drivejd;

• message_options can be FORCE. When this is used, the ACSLM does
not verify tape cartridge labels or data base infonnation. The
ACSLM rewinds, unloads, and dismounts the tape cartridge found
in the requested library drive. Therefore, this message_option can
dismount a cartridge with an unreadable label.

vol_ill is the extemallabel of the tape cartridge to be dismounted.

drive _id is the library drive containing the tape cartridge.

Responses

9036

Intermediate Response Format

Not applicable.

Final Response Format

struct dismount_response
IPC HEADER

} ;

MESSAGE HEADER
RESPONSE STATUS
VOLID
DRIVEID

Final Response Values

ipc _header;
message_header;
message_status ;
vol_ill;
drive_id;

Within MESSAGE_HEADER, command is COMMAND_DISMOUNT.

.4-13

dismount

4-14

ACSLM Command Structures

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command:

• STATUS ACS FULL if an available cell location cannot be found in the
data base to dismount the cartridge into. The cartridge is left in the
tape drive.

• STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to all available cell records in the data base.

• STATUS_DRIVE_AVAILABLE if the library drive does not contain a
tape cartridge.

• STATUS_DRIVE_IN_USE if the dismount fails because the cartridge
was not unloaded on the library drive.

• STATUS_MISPLACED_TAPE if the external tape cartridge label of the
tape cartridge in the library drive does not match the volume
identifier of the tape cartridge in the request. The data base is
updated with the volume identifier of the tape cartridge in the library
drive.

• STATUS_NOT_IN_SAME_ACS if the tape cartridge and the library drive
are not in the same ACS.

• STATUS_SUCCESS if the tape cartridge was dismounted successfully.

• STATUS _UNREADABLE_LABEL if the tape cartridge label is
unreadable. H this is an unforced dismount, the request is rejected,
and a message is issued to the Event Log. If this is a forced
dismount, the cartridge is successfully dismounted. Within vol_id,
questions marks (?) are substituted for the characters that the
robot was unable to read.

• STATUS_VOLUME_NOT_IN_DRIVE if the data base shows that the
requested volume identifier is not in the requested drive.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS_ACS_NOT_IN_LIBRARY

• STATUS_LSM_NOT_IN_LIBRARY

• STATUS_DATABASE_ERROR

• STATUS_DRIVE_NOT_IN_LIBRARY

• STATUS DRIVE OFFLINE - -
• STATUS_INVALID_ACS

• STATUS_INVALID_DRIVE

• STATUS INVALID LSM - -
• STATUS_INVALID_OPTION

• STATUS_INVALID_VOLUME

• STATUS_LIBRARY_BUSY

9036

ACSLM Command Structures dismount

Notes

• STATUS_LIBRARY_FAILURE

• STATUS LIBRARY NOT AVAILABLE - --
• STATUS_LSM_OFFLINE

• STATUS_MESSAGE_TOO_LARGE

• STATUS_MESSAGE_TOO_SMALL

• STATUS_PROCES S_FAI LURE

• STATUS_UNSUPPORTED_OPTION

• STATUS_VOLUME_NOT_IN_LIBRARY

vol_ill is the tape cartridge identifier, as indicated in the request.

drive Jd is the library tape drive, as indicated in the request.

Final Response Values - Cancelled Request
Not applicable.

None.

See Also
• The mount command for details on mounting a cartridge on a library

drive.

• Appendix A for entries that may be written to the Event Log.

9036 4-15

eject

EJECT

Name

Description

4-16

ACSLM Command Structures

eject - Ejects from one to MAX_ID tape cartridges from an LSM.

The eject request ejects tape cartridges from the library, removing
them from library control. Cartridges are ejected through a specified
CAP. From one to MAX_ID cartridges can be ejected at a time. See
Chapter 3: ACSLM Common Data Structures for a definition OfMAX_ID.

For each cartridge to be ejected, the LSM robot does the following:

1. Moves to the cell location indicated in the data base.

2. Reads the external label of the cartridge and verifies that it is the
specified cartridge,

3. Moves the cartridge to an available cell in the specified CAP.

When the specified cartridges have been moved to the CAP, the cell
locations of the ejected cartridges are deassigned, and the cartridges
are removed from the data base. The Command Processor then
displays an unsolicited message in the Displa:y Area to remove the
cartridges from the CAP.

After the cartridges are removed and the CAP door is closed, the
Command Processor displays one message in the Command Area for
each cartridge designated for ejection. In each message, the status
indicates whether or not the cartridge was actually ejected.

If, for any reason, a specified cartridge cannot be ejected, an error
message is displayed in the Command Area, and an entry is made in
the Event Log.

9036

ACSLM Command Structures eject

Requests

Request Format

struct eject_request
IPC HEADER
MESSAGE HEADER
CAPID

} ;

unsigned short
VOLID

Request Values

ipc _ header;
message_header;
cap_id;
count;
vol)d;

Within MESSAGE_HEADER, command is set to COMMAND EJECT.

cap _id is the CAP used to eject the tape cartridge.

count is the number of vol_ids to eject. count has a range of 1 to MAX _ ID.

Each votid is the external label of a tape cartridge to be ejected.

Responses

9036

Intermediate Response Format

Not applicable.

Final Response Format

struct eject_response
IPC HEADER
MESSAGE HEADER
RESPONSE STATUS

} ;

CAPID
unsigned short
struct {

VOLID
RESPONSE STATUS

volume_status;

Final Response Values

ipc _header;
message_header;
message_status ;
cap_id;
count;

Within MES SAGE_HEADER, command is COMMAND_EJECT.

Within RESPONSE_STATUS, status indicates the disposition of the entire
request. Following are status values specific to this command.

• STATUS_CANCELLED if the request is cancelled. See Final Response
Values - Cancelled Request.

4-17

eject ACSLM Command Structures

• STATUS_CAP _IN_USE if the request cannot be processed because the
CAP is being used by an audit, an enter, or another eject

request.

• STATUS_SUCCESS if the fixed portion of the request is correct.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS_ACS_NOT_IN_LIBRARY

• STATUS COUNT TOO LARGE - --
• STATUS COUNT TOO SMALL - --
• STATUS DATABASE ERROR - -
• STATUS_INVALID_ACS

• STATUS_INVALID_LSM

• STATUS_INVALID_OPTION

• STATUS_LIBRARY_NOT_AVAILABLE

• STATUS_LSM_BUSY

• STATUS LSM NOT IN LIBRARY - - --
• STATUS LSM OFFLINE

• STATUS_MESSAGE_TOO_LARGE

• STATUS MESSAGE TOO SMALL - --
• STATUS PROCESS FA LURE - -
• STATUS UNSUPPORTED OPTION - -
cap _id is the CAP used to eject the tape cartridge.

count is the number of tape cartridges that the ACSLM attempted to
eject.

Within volume_status, voCid is the extemallabel of each tape
cartridge the ACSLM attempted to eject.

Within volume_status, status is the disposition of each vol_id.
Following are status values specific to this command.

• STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to a cell record in the data base. The cartridges are not
ejected. This status is issued only after the data base has attempted
retries on the cell record.

• STATUS_CAP_FULL if the CAP is full before all vol_ids have been
processed. Remaining vol_ids are not ejected.

• STATUS_MISPLACED_TAPE if a different tape cartridge is in the
location specified by the data base. The data base is updated with
the external tape cartridge label of the tape cartridge found in the
storage location.

4-18 9036

ACSLM Command Structures

• STATUS_NOT_IN_SAME_ACS if the CAP identifier and volume
identifier are not in the same ACS.

• STATUS_SUCCESS if the tape cartridge was ejected successfully.

eject

• STATUS_VOLUME_IN_DRIVE if the tape cartridge is in a library drive.
The cartridge is not ejected.

• STATUS_VOLUME_IN_USE if the tape cartridge is in use by another
request. The cartridge is not ejected.

• STATUS_VOLUME_NOT_IN_LIBRARY if the vol_ill does not exist in the
data base, or if the tape cartridge has already been ejected as part
of this request. If no tape cartridge is in the location specified by
the data base and the volume is not in transit or in a library drive,
the data base entry is removed.

Following are common volume_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

• STATUS INVALID VOLUME - -
• STATUS LIBRARY FAILURE - -
• STATUS LIBRARY BUSY - -
• STATUS LSM OFFLINE

Final Response Values - Cancelled Request

Within MES SAGE_HEADER, command is COMMAND_EJECT.

Within RESPONSE_STATUS, status is STATUS_CANCELLED.

cap _id is the CAP used to eject the tape cartridges.

count is the number of tape cartridges to be ejected, as specified in the
request.

Within volume_status, vol_id is the external label of each tape
cartridge the ACSLM attempted to eject.

Within volume_status, status is as follows:

• STATUS_CANCELLED if the tape cartridge was not processed before
the request was cancelled.

• Any valid status value if the tape cartridge was processed before the
request was cancelled. See Final Response Values above for the
valid final response status values.

9036 4-19

eject

Notes

See Also

ACSLM Command Structures

• If all voCids have been processed and at least one cartridge has
been moved to the CAP, or the CAP is full, a
STATUS_REMOVE_CARTRIDGES unsolicited message is sent to the
ACSSA. The fmal response is not returned until the CAP is
closed.

• The cancel command for details on cancelling a current or pending
eject request.

• The enter command for details on entering cartridges into the ACS.

• Appendix A for entries that may be written to the Event Log.

4-20 9036

ACSLM Command Structures enter

ENTER

Name

Description

9036

enter - Enters one to MAX_ID tape cartridges into an LSM.

The enter request enters tape cartridges into the ACS, placing them
under library control. The cartridges are entered through a specified
CAP. From one to MAX _ ID cartridges can be entered at a time.

Upon receiving an enter request, the CAP is unlocked, and an
unsolicited message is displayed, instructing the operator to place the
cartridges in the CAP.

The cartridges should be loaded from left to right, top to bottom,
starting with the upper left-most CAP cell. The first row should be
filled completely before beginning with the next row, etc. The robot
stops looking for cartridges in the CAP once it encounters an empty
CAP cell, so skipping CAP cells will cause all cartridges after the
empty cell not to be entered into the LSM.

After the CAP is closed, the LSM robot does the following for each
cartridge in the CAP: .

1. Verifies that the extemallabel is readable.

2. Verifies that the "label is not a duplicate.

3. Moves the cartridge from the CAP to an unassigned cell in the ACS.

4. Assigns the location to the cartridge and adds the cartridge to the
data base.

Once the robot has finished unloading the CAP, the external label of
each cartridge found in the CAP is displayed in the Command Area.
For each cartridge in the list, the status indicates whether or not the
cartridge was actually entered into the LSM.

If any cartridges have unreadable or duplicate labels, the CAP is
unlocked, and an unsolicited message is displayed, instructing the
operator to remove the cartridges from the CAP; this is done after all
cartridges that could be successfully entered are moved into the LSM.

4-21

enter ACSLM Command Structures

Requests

Request Format

struct enter_request
IPC HEADER
MESSAGE HEADER
CAPID

} ;

ipc _header;
message_header;
cap_id;

Request Values

Responses

Within MESSAGE_HEADER, co"wnand is COMMAND_ENTER.

cQ{J_id is the CAP used to enter the tape cartridges.

Intermediate Response Format

Not applicable.

Final Response Format

struct enter_response
IPC HEADER
MESSAGE HEADER
RESPONSE_STATUS

} ;

CAPID
unsigned short
struct {

VOLID
RESPONSE STATUS

volume_status;

Final Response Values

ipc _header;
message_header;
message_status ;
cap_id;
count;

Within MESSAGE_HEADER, command is COMMAND ENTER.

Within RESPONSE_STATUS, status indicates the disposition of the entire
request. Following are status values specific to this command.

• STATUS_CANCELLED if the request is cancelled. See Final Response
Values - Cancelled Request.

• STATUS_CAP_IN_USE, if the CAP is being used by an audit, an
eject, or another enter request.

• STATUS_SUCCESS, if the fixed portion of the request is correct.

4-22 9036

ACSLM Command Structures

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS_ACS_NOT_IN_LIBRARY

• STATUS_LSM_NOT_IN_LIBRARY

• STATUS_DATABASE_ERROR

• STATUS_INVALID_ACS

• STATUS_INVALID_LSM

• STATUS_INVALID_OPTION

• STATUS_LIBRARY_NOT_AVAILABLE

• STATUS_LSM_OFFLINE

• STATUS_MESSAGE_TOO_LARGE

• STATUS_MESSAGE_TOO_SMALL

• STATUS PROCESS FAILURE - -
• STATUS UNSUPPORTED OPTION - -
cap _id is the CAP used to enter the tape cartridges.

count is the number of tape cartridges that the A CSLM attempted to
enter into the library. The value is the same as for the request. count
has a range from 1 to MAX_ID (see the Common Variables section in
Chapter 3 for a definition of MAX_ID).

Within volume_status, each yol)d is the external label of the tape
cartridge that the ACSLM attempted to enter.

Within volume_status, status indicates the disposition of each yol_id.
Following are status values specific to this command:

enter

• STATUS_ACS_FULL, if there are no storage cells available in the
library for the tape cartridge. The tape cartridge is left in the CAP.

• STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to a cell record in the data base. The cartridges are left in
the CAP. This status is issued only after the data base has
attempted retries on the cell record.

• STATUS_DUPLICATE_LABEL, if the external label on the tape
cartridge is a duplicate of one that already exists in the library. The
tape cartridge is left in the CAP and is not entered into the library.

• STATUS_SUCCESS, if the tape cartridge was entered successfully.

• STATUS_UNREADABLE_LABEL, if the external tape cartridge label is
unreadable. The tape cartridge is left in the CAP and is not entered
into the library. Within Yol_iIl, question marks (?) are substituted
for the characters the robot was unable to read.

9036 4-23

enter ACSLM Command Structures

Following are common volume_status status values. See the Common

Statuses section in Chapter 3 for their descriptions.

•
•
•
•

STATUS_INVALID_VOLUME

STATUS_LIBRARY_BUSY

STATUS LIBRARY FAILURE - -
STATUS LSM OFFLINE

Final Response Values - Cancelled Request

Notes

See Also

Within MES SAGE_HEADER, command is COMMAND_ENTER.

Within RESPONSE_STATUS, status is STATUS_CANCELLED.

cap _id is the CAP used to enter the tape cartridges.

count is the number of tape cartridges that the A CSLM acted upon
before receiving the cancel request. Any cartridges not processed are
not included in the response.

Within volume_status, each votid is the external label of the tape
cartridge that the ACSLM processed.

Within volume_status, status can be any of the values that are valid for
a final response.

• When the ACSLM begins processing the request, it sends a
STATUS_INPUT_CARTRIDGES unsolicited message to the ACSSA.

• If the ACSLM does not enter all cartridges in the request,
cartridges remain in the CAP. The ACSLM sends a
STATUS_REMOVE_CARTRIDGES unsolicited message to the ACSSA.

• If a cancel request is issued against a current enter request, enter
processing is halted for that request.

• If any cartridges are left in the CAP after a request is cancelled, the
ACSLM issues a STATUS_REMOVE_CARTRIDGES unsolicited message
to the ACSSA and waits for the operator to remove the cartridges
before returning the final response.

• The cancel command for details on cancelling a current or pending
enter request.

• The eject command for details on removing cartridges from the
ACS.

• Appendix A for entries that may be written to the Event Log.

4-24 9036

ACSLM Command Structures idle

IDLE

Name

idle - Stops ACSLM request processing.

Description
The idle request is used to place the Storage Server in a quiescent
state prior to maintenance activity. It will remain in that state until it
receives a start request.

The Storage Server can be in one of the four following states:
STATE_RUN,STATE_IDLE,STATE_IDLE_PENDING,andsTATE_RECOVERY.
See the Library Request Processing section in Chapter 2 for details on
these states.

Unforced Idle

Upon receipt of an unforced idle request, the Storage Server is
immediately placed in STATE_IDLE_PENDING. While the Storage Server
is in this state, new requests involving library operations are rejected,
and current and pending requests are processed to completion. The
Storage Server is not placed in STATE_IDLE until all current and pending
requests have been completed.

Forced Idle

An idle request with the FORCE message_option abruptly puts the
Storage Server in STATE_IDLE. Current and pending requests are
aborted, not processed to completion. New requests are rejected.

Requests

9036

Request Format

struct idle_request
IPC HEADER
MESSAGE HEADER

} ;

Request Values

ipc _header;
message_header;

Within MESSAGE_HEADER, command is COMMAND IDLE.

4-25

idle ACSLM Command Structures

Responses

Notes

Intermediate Response Format

Not applicable.

Final Response Format

struct idle_response
I PC_HEADER
MESSAGE HEADER
RESPONSE_STATUS

} ;

Final Response Values

ipc _header;
message_header;
message_status ;

Within MESSAGE_HEADER, command is COMMAND IDLE.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

• STATUS_IDLE_PENDING if the ACSLM is processing a previous idle

request, and the Storage Server is therefore already in
STATE IDLE PENDING. - -

• STATUS_LIBRARY_NOT_AVAILABLE if the Storag~ Server is in
STATE RECOVERY.

• STATUS_SUCCESS if the Storage Server was successfully put in.
STATE IDLE.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

•
•
•
•

STATUS INVALID OPTION - -
STATUS_MESSAGE_TOO_LARGE

STATUS_MESSAGE_TOO_SMALL

STATUS UNSUPPORTED OPTION - -

Final Response Values - Cancelled Request

Not applicable.

• The ACSLM sends a STATUS_IDLE_PENDING unsolicited message
to the ACSSA when the Storage Server is put in the
STATE IDLE PENDING state. - -

• The ACSLM sends a STATUS_ACSLM_IDLE unsolicited message to
the ACSSA when the Storage Server is put in the STATE_IDLE

state.

4-26 9036

ACSLM Command Structures idle

See Also

9036

• The que ry command for details on displaying the current state of
the Storage Server.

• The start command for details on bringing an idle Storage Server
into the STATE RUN.

• Appendix A for entries that may be written to the Event Log.

4-27

mount

MOUNT

Name

Description

Request

ACSLM Command Structures

mount - Mounts a tape cartridge onto a specified library drive.

The mount request mounts a specified tape cartridge on a specified
library drive.

Upon receipt of a mount request, the LSM robot does the following:

1. Moves to the appropriate cell location and validates the external
label of the tape cartridge.

2. Mounts the tape cartridge on the drive.

Once the cartridge is successfully mounted, the data base is updated
with the status of the drive and the current location of the cartridge.

If for any reason the mount cannot be completed, the tape cartridge is
returned to its original location, if possible, or to another available
storage cell.

All of the following conditions must be met for a successful mount:

• Both the cartridge and the drive must be in the library

• The library drive must be online to ACSLM control and unloaded

• The cartridge must be available

Request Format

4-28

struct mount_request
IPC HEADER

MESSAGE HEADER

} ;

VOLID
unsigned short
DRIVEID

Request Values

ipc _header;
message_header;
vol_ill;
count;
drive_id;

Within MESSAGE_HEADER, command is COMMAND_MOUNT.

vol_ill is the external label of the tape cartridge to be mounted.

count is the number of library drives eligible for mounting tape
cartridges. Currently, count must equal 1.

drive Jd is a library drive on which the tape cartridge is to be mounted.

9036

ACSLM Command Structures mount

Response~

Intermediate Response Format

Not applicable.

Final Response Format

struct mount_response
IPC HEADER

MESSAGE_HEADER
RESPONSE STATUS
VOLID
DRIVEID

} ;

Final Response Values

. ipc _header;
message_header;
message_status ;
vol_wi
drive_id;

Within MESSAGE_HEADER, command is COMMAND_MOUNT.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

• STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to the specified cartridge's cell record in the data base. This
status is issued only after the data base has attempted retries on the
cell record.

• STATUS_DRIVE_IN_USE if the requested library drive already
contains a tape cartridge.

• STATUS_MISPLACED_TAPE if the external tape cartridge label of the
tape cartridge found in the location indicated by the data base does
not match the vol_id in the request. The data base is corrected and a
message is written to the Event Log.

• STATUS_NOT_IN_SAME_ACS if the tape cartridge and the tape drive
are not in the same ACS.

• STATUS_SUCCESS if the tape cartridge was successfully mounted on
the drive.

• STATUS_UNREADABLE_LABEL if the tape cartridge found in the
location indicated by the data base has an unreadable external
label. A message is written to the Event Log. Within vol_id,
question marks (?) are substituted for the characters that the robot
was unable to read.

• STATUS_VOLUME_IN_DRIVE if the tape cartridge is already mounted
in a library drive.

• STATUS_VOLUME_IN_USE if the tape cartridge is marked in the data
base as reserved by another request.

9036 4-29

------- ---.~----.-- .•.

mount ACSLM Command Structures

Notes

• STATUS_VOLUME_NOT_IN_LIBRARY if the vol_id specified in the
request is not found in the data base.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS_ACS_NOT_IN_LIBRARY

• STATUS DRIVE NOT IN LIBRARY - - --
• STATUS_LSM_NOT_IN_LIBRARY

• STATUS COUNT TOO LARGE - --
• STATUS COUNT TOO SMALL - --
• STATUS_DATABASE_ERROR

• STATUS DRIVE OFFLINE - -
• STATUS_LSM_OFFLINE

• STATUS_INVALID_ACS

• STATUS INVALID DRIVE - -
• STATUS_INVALID_LSM

• STATUS INVALID OPTION - -
• STATUS_INVALID_VOLUME

• STATUS_LIBRARY_BUSY

• STATUS LIBRARY FAILURE - -
• STATUS_LIBRARY_NOT_AVAILABLE

• STATUS_MESSAGE_TOO_LARGE

• STATUS_MESSAGE_TOO_SMALL

• STATUS_PROCES S_FAI LURE

• STATUS UNSUPPORTED OPTION - -

vol_ id is the extemallabel of the tape cartridge, as indicated in the
request.

drive _id is the library drive used to mount the tape cartridge, as
indicated in the request.

Final Response Values - Cancelled Request

Not applicable.

None.

See Also
• The dismount command for details on dismounting a cartridge from

a library drive.

ACSLM Command Structures mount

9036

• The query command for details on displaying the closest library
drive to a specified tape cartridge.

• Appendix A for entries that may be written to the Event Log.

4-31

query

QUERY

Name

Description

Requests

ACSLM Command Structures

query - Displays infonnation about the Storage Server, an ACS, an
LSM, a port, a CAP, a library drive, a tape cartridge, or a request.

The query request returns status infonnation for one or more of the
following object types:

• The Storage Server

• ACS

• LSM

• CAP

• Library tape drive

• Tape cartridge

• Port

• Library request

• Tape cartridge mount status

The user can specify more than one object in a single request, as long
as they all have the same type. For example, a single request can
specify tWo ACSs, but not an ACS and a library drive. From 1 to
MAX_ID objects can be specified in a single request.

Request Format

4-32

struct query_request
IPC HEADER

} ;

MESSAGE HEADER
TYPE
unsigned short
union {

ACS
LSMID
CAPID
DRIVEID
VOLID
MESSAGE ID
PORTID

identifier;

ipc _header;
message_header;
type;
count;

acs_id;
Ism_w;
cap_id;
drivejd;
vol_wi
requestjd;
port id;

9036

ACSLM Command Structures query

Request Values

Within MESSAGE_HEADER, command is COMMAND QUERY.

type is one of the following:

TYPE ACS
TYPE CAP
TYPE DRIVE
TYPE LSM
TYPE MOUNT
TYPE PORT
TYPE_REQUEST
TYPE SERVER
TYPE VOLUME

count is the number of items that follow in identifier. The maximum
number of identifier items in a single request is MAX_ID (see the
Common Variables section in Chapter 3 for a description OfMAX_ID).

Each item in identifier is one of the following, based on type:

acs id
Ism id
cap_id
drive id
port_id
request_id
vol id

Only one type of identifier can .be specified in a single request. If
count = 0, the request is performed on all items in the data base
matching the specified type. count cannot be 0 if type is TYPE_MOUNT.
count must be 1 if type is TYPE_SERVER.

Responses

9036

Response Format

struct query_response
IPC HEADER
MESSAGE HEADER
RESPONSE STATUS
TYPE
unsigned short
union {

struct {
STATE
FREE CELLS
unsigned short
server_status;

struct {
ACS
STATE

ipc _header;
message_header;
message_status ;
type;
count;

state i
freecellsi
requests[MAX_COMMANDS] [2];

acs_id:
state;

4-33

query

} ;

4-34

FREECELLS
unsigned short
STATUS

acs_status;
struct {

LSMID
STATE
FREECELLS
unsigned short
STATUS

Ism_status;
struct {

CAPID
STATUS

cap_status;
struct {

DRlVEID
STATE
VOLID
STATUS

drive_status;
struct {

VOLID
LOCATION
union {

DRIVEID
CELLID
location;

STATUS
volume_status;

struct {
VOLID
STATUS
unsigned short
DRIVEID

mount_status;
struct {

PORTID
STATE
STATUS

port_status;
struct {

MESSAGE_ID
COMMAND
STATUS
request_status;

status_response;

ACSLM Command Structures

freecells;
requests [MAX_COMMANDS] [2] ;
status;

lsm_id;
state;
freecelis;
requests [MAX_COMMANDS] [2] ;

status;

drive)d;
state;
votid;
status;

votid;
location_type;

drive_id;
celtid;

status;

vol_id;
status;
drive_count ;
drive_id[MAX_ACS DRIVES];

port id;
state;
status;

request;
command;
status;

9036

ACSLM Command Structures query

9036

Intermediate Response Values

If the response is greater than MAX_MESSAGE_SIZE, the ACSLM breaks
the response into one or more intermediate responses, containing
MAX_ID status_responses, and a fmal response containing MAX_ID or
less status_responses. See the Common Variables section in
Chapter 3 for a definition of MAX_ID and MAX_MESSAGE_SIZE.

Each intermediate response has the same format and values as the
final response, with the following exception:

• Within MESSAGE_HEADER, message_options is set to INTERMEDIATE.

See the Final Response sections below for the other values in the
intermediate response.

Note: Because of the complexity of this response format, the fixed
portion of the response and the individual status_response structures
are described separately in the following sections.

Final Response - Fixed Portion

Within MES SAGE_HEADER, command is COMMAND_QUERY.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

• STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to a cell record in the data base. This status is issued only
after the data base has attempted retries on the cell record.

• STATUS_CANCELLED if the request is cancelled. See Final Response
Values - Cancelled Request.

• STATUS LIBRARY NOT AVAILABLE if the ACSLM is in the - --
STATE_RECOVERY state and a query request is received specifying a
type other than TYPE_SERVER.

• STATUS_SUCCESS if the request is executed successfully.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS COUNT TOO LARGE - --
• STATUS_COUNT_TOO_SMALL

• STATUS_DATABASE_ERROR

• STATUS INVALID OPTION - -
• STATUS INVALID TYPE - -
• STATUS_MESSAGE_TOO_LARGE

• STATUS_MESSAGE_TOO_SMALL

• STATUS_PROCESS_FAILURE

• STATUS_UNSUPPORTED_OPTION

4-35

query

4-36

ACSLM Command Structures

•

type is one of the following, as indicated in the request:

TYPE_ACS
TYPE_CAP
TYPE DRIVE
TYPE LSM
TYPE MOUNT
TYPE PORT
TYPE_REQUEST
TYPE SERVER
TYPE VOLUME

count is the number of status_response entries in the response. There
is one status_response entry for each identifier item that was
processed. The maximum number of status_response entries in a
single response is MAX_ID.

Final Response - ACS Status

Within status_response, acs_status fonnat and values are as
follows:

struct
ACS acs_id;

state;
freecells;

STATE
FREECELLS
unsigned short
STATUS

requests [MAX_COMMAND S] [2] ;
status;

acs_status;

type is TYPE_ACS.

acsJd is the ACS identifier, as indicated in the request.

state is the current state of the ACS and is one of the following:

STATE_ONLINE
STATE OFFLINE
STATE OFFLINE PENDING - -
STATE_DIAGNOSTIC

freecells is the total number of unoccupied storage cells in the ACS.

requests is a two-dimensional array of numbers describing the
distribution of requests for the ACS. The array has MAX_COMMANDS

columns and two rows. MAX COMMANDS is defined as:

#define MAX COMMANDS 5

Each column is a command (audit, mount, dismount, enter, and eject).
Each row is the processing status of the request (current, pending).

9036

ACSLM Command Structures

Both current and pending requests are returned in the requests array.
These requests are defmed as follows:

Current

Pending

Executing.

Received by the ACSLM, but not yet executed.

status is the disposition of each acs _ ide Following are status values
specific to this command.

query

• STATUS_SUCCESS if status information was successfully retrieved for
this ACS.

Following are common acs_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

•
•
•

STATUS ACS NOT IN LIBRARY - - --
STATUS_DATABASE_ERROR

STATUS INVALID ACS - -

Final Response - CAP Status
Within status_response, cap_status format and values are as
follows:

struct
CAPID
STATUS

cap_status;

type is TYPE_CAP.

cap _id is the CAP identifier, as indicated in the request.

status is the disposition of each cap _ide Following are status values
specific to the cap_status.

• STATUS_AUDIT_ACTIVITY if the CAP is reserved by an audit.

• STATUS_CAP_AVAILABLE if the CAP is not being used for any
activity.

• STATUS_EJECT_ACTIVITY if cartridges are being ejected from the
CAP.

• STATUS_ENTER_ACTIVITY if cartridges are being entered into the
CAP.

Following are common cap_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

• STATUS ACS NOT IN LIBRARY - - --
• STATUS LSM NOT IN LIBRARY - - --
• STATUS DATABASE ERROR - -

9036 4-37

query

•
•

STATUS_INVALID_ACS

STATUS_INVALID_LSM

Final Response - Drive Status

ACSLM Command Structures

Within status_response, drive_status format and values are as
follows:

struct
DRIVEID
STATE
VOLID
STATUS

drive_status;

type is TYPE_DRIVE.

drive_id;
state;
vol_id;
status;

drive _id is the drive identifier, as indicated in the request.

state is the current state of the drive and is one of the following:

STATE ONLINE
STATE OFFLINE
STATE_DIAGNOSTIC

vol_ id is the volume identifier of the tape cartridge in the drive. If no
volume is in the drive, vol_id is null.

status is the disposition of each drive _ide Following are status values
specific to the drive_status.

• STATUS_DRIVE_AVAILABLE if the drive does not contain a tape
cartridge.

• STATUS_DRIVE_IN_USE if the drive contains a tape cartridge or is
reserved for a mount.

Following are common drive_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

• STATUS ACS NOT IN LIBRARY - - --
• STATUS LSM NOT IN LIBRARY - - --
• STATUS DATABASE ERROR - -
• STATUS DRIVE NOT IN LIBRARY - - --
• STATUS INVALID ACS - -
• STATUS INVALID DRIVE - -
• STATUS INVALID LSM - -

4-38 9036

ACSLM Command Structures

Final Response - LSM Status

Within status_response, 1sm_status fonnat and values are as
follows:

struct

LSMID Ism_id;
state;
freecells;

query

STATE
FREECELLS

unsigned short
STATUS

requests [MAX_COMMAND S] [2] ;
status;

Ism_status;

type is TYPE_LSM.

Ism _ id is the LSM identifier, as indicated in the request.

state is the current state of the LSM and is one of the following:

STATE ONLINE

STATE OFFLINE
STATE OFFLINE PENDING - -
STATE DIAGNOSTIC

freecells is the total number of unoccupied storage cells in the LSM.

requests is a two-dimensional array of numbers describing the
distribution of requests for the LSM. The array has MAX_COMMANDS

columns and two rows. MAX COMMANDS is defined as: . -
#define MAX COMMANDS 5

Each column is a command (audit, mount, dismount, enter, and eject).
Each row is the processing status of the request (current, pending).

Both current and pending requests are returned in the requests array.
These requests are defined as follows:

Current

Pending

Executing.

Received by the ACSLM, but not yet executed.

status is the disposition of each Ism _id. Following are status values
specific to the Ism_status.

• STATUS_AUDIT_ACTIVITY if the LSM is being audited.

• STATUS_CAP_AVAILABLE if the LSM is not being used for any
activity.

• STATUS_EJECT_ACTIVITY if cartridges are being ejected from the
LSM.

• STATUS_ENTER_ACTIVITY if cartridges are being entered into the
LSM.

9036 4-39

query

4-40

ACSLM Command Structures

Following are common Ism_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

•
•
•
•
•

STATUS_ACS_NOT_IN_LIBRARY

STATUS_LSM_NOT_IN_LIBRARY

STATUS_DATABASE_ERROR

STATUS_INVALID_ACS

STATUS_INVALID_LSM

Final Response - Mount Status

Within status_response, mount_status fonnat and values are as
follows:

struct {
VOLID
STATUS
unsigned short
DRIVEID
} mount_status;

The type is TYPE_MOUNT.

vol_iii;
status;
drive_count ;
drivejd[MAX_ACS_DRIVES] ;

vol_ id is a tape cartridge, as indicated in the request.

status is the disposition of each vol_id. Following are status values
specific to the mount_status.

• STATUS_INVALID_VOLUME if the volume identifier is invalid.

• STATUS_VOLUME_HOME if the cartridge is in a storage cell.

• STATUS_VOLUME_IN_DRIVE if the cartridge is in a library drive.

• STATUS_VOLUME_IN_TRANSIT if the cartridge is being moved from
one location to another or has been selected by another request.

• STATUS_VOLUME_NOT_IN_LIBRARY if the volume identifier is not
listed in the data base.

Following are common mount_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

•

drive count indicates the number of drive ids to follow. - -
The drive _ id list specifies online, available library tape drives, ordered
by proximity to the current location of the tape cartridge. Proximity is
defined in relation to the number ofPass-Thru Ports (PTPs) between
the cartridge and the drive, therefore all drives in an LSM are
considered equal in proximity. There can be up to MAX_ACS_DRIVES in

9036

ACSLM Command Structures query

9036

the list. See the Common Variables section in Chapter 3 for a definition
of MAX_ACS_DRIVES.

Final Response - Port Status

Within status_response, port_status fonnat and values are as
follows:

struct
PORTID
STATE
STATUS

} port_status;

type is TYPE_PORT.

port_id;
state;
status;

port_id is the port identifier, as indicated in the request.

state is the current state of the port and can be one of the following:

STATE ONLINE
STATE OFFLINE

status is the disposition of each port _ ide Following are status values
specific to the port_status.

• STATUS_SUCCESS if status information was successfully retrieved for
this port.

Following are common port_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

• STATUS ACS NOT IN LIBRARY - - --
• STATUS PORT NOT IN LIBRARY - - --
• STATUS DATABASE ERROR - -
• STATUS INVALID ACS - -
• STATUS INVALID PORT - -

Final Response - Request Status

Within status_response, request_status format and values are as
follows:

struct {
MESSAGE ID
COMMAND
STATUS

request_status;

type is TYPE_REQUEST.

request_id;
command;
status;

4-41

query

4-42

ACSLM Command Structures

request is the ACSLM request identifier, as indicated in the request.

command is the command associated with the request.

status is the disposition of each request _ide Following are status values
specific to the request_status.

• STATUS_CURRENT if the request is being executed.

• STATUS_INVALIO_MESSAGE if the fonnat of the request_id specified in
the query request is invalid.

• STATUS_MESSAGE_NOT_FOUND if the request_id specified in the query

request is not a current or pending request.

• STATUS_PENDING if the request has been received by the ACSLM,
but has not been executed.

Final Response - Server Status

Within status_response, server_status fonnat and values are as
follows:

struct
state;
freecells;

STATE
FREECELLS
unsigned short . requests [MAX_COMMAND S] [2] ;

server_status;

type is TYPE_SERVER. count is 1.

freecells is the number of unoccupied storage cells in the library.

state is the current state of the ACSLM and is one of the following:

STATE RECOVERY
STATE RUN
STATE IDLE
STATE_IDLE_PENDING

requests is a two-dimensional array of numbers describing the
distribution of requests for library resources. The array has
MAX COMMANDS columns and two rows. MAX COMMANDS is defmed as: - -

Each column is a command (audit, mount, dismount, enter, and eject).
Each row is the processing status of the request (current, pending).

Both current and pending requests are returned in the requests array ..
These requests are defined as follows:

Current
Pending

Executing.

Received by the ACSLM, but not yet executed.

9036

ACSLM Command Structures query

Final Response - Volume Status

Within status_response, volume_status fonnat and values are as
follows:

struct
VOLID
LOCATION

union {
DRIVEID

CELLID
} location;
STATUS

volume_status;

type is TYPE_VOLUME.

vol_id;
location_type;

drive_id;
cell_id;

status;

vol_ill is the tape cartridge volume identifier, as indicated in the
request.

location_type is the type of location where the cartridge is currently
located, according to the data base. It is one of the following:

LOCATION CELL
LOCATION DRIVE

Within location, either drive_id or cell_id has a value, depending on the
location_type:

• drive _id is the library drive where the cartridge is located.

• cell_id is the location of the storage cell where the cartridge is
located.

status is the disposition of each votid. Following are status values
specific to the volume_status.

• STATUS_VOLUME_HOME if the cartridge is in a storage cell. location

is a cell id.

• STATUS_VOLUME_IN_DRIVE if the cartridge is in a library drive.
location is a drive id.

• STATUS_VOLUME __ IN_TRANSIT if the cartridge is being moved from
one location to another or has been selected by another request. In
this case, location indicates the last location of the cartridge and
can be either a drive id or a cell id. - -

• STATUS_VOLUME_NOT_IN_LIBRARY if the cartridge is not listed in the
data base.

9036 4-43

query ACSLM Command Structures

Following are common volume_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

•
•

STATUS_INVALID_VOL~

STATUS_DATABASE_ERROR

Final Response Values - Cancelled Request

Notes

Se"e Also

Within MESSAGE_HEADER, command is COMMAND_QUERY.

Within RESPONSE_STATUS, status is STATUS_CANCELLED.

type is the type of identifier being queried, as indicated in the request.

count is the number of identifiers processed prior to the cancel
request. identifiers not processed are not included in the response.

Within status_response, values are assigned according to the type of
identifier in the request. See the Final Response sections for the
fonnats and values.

• A query server request cannot be cancelled.

• The cancel command for details on canceling a current or pending
query request.

• Appendix A for entries that may be written to the Event Log.

4-44 9036

ACSLM Command Structures start

START

Name

start - Initiates ACSLM request processing.

Description
The start request places the ACSLM in STATE_RUN, enabling
processing of Storage Server requests. The start command has no
options.

If the start is successful, the Storage Server becomes ready to receive
requests. If the start is unsuccessful, the Storage Server does not
become ready to receive requests.

See the Library Request Processing section in Chapter 2 for details on
the possible Storage Server states.

Requests

Request Format

struct start_request { .

} ;

IPC HEADER

MESSAGE HEADER

Request Values

ipc _header;
message_header;

Within MESSAGE_HEADER, command is COMMAND START.

Responses

9036

Intermediate Response Format
Not applicable.

Final Response Format

struct start_response
IPC HEADER
MESSAGE HEADER
RESPONSE STATUS

} ;

ipc _header;
message_header;
message_status ;

4-45

start

Notes

ACSLM Command Structures

Final Response Values
Within MESSAGE_HEADER, command is COMMAND_START.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

• STATUS_SUCCESS if the Storage Server was successfully put in
STATE RUN.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

•
•
•
•
•

STATUS INVALID OPTION - -
STATUS LIBRARY NOT AVAILABLE - --
STATUS_MESSAGE_TOO_LARGE

STATUS_MESSAGE_TOO_SMALL

STATUS UNSUPPORTED OPTION - -

Final Response Values - Cancelled Request
Not applicable.

None.

See Also
• The idle command for infonnation on placing the Storage Server in

STATE IDLE.

• The query command for details on displaying the current state of
the Storage Server.

• Appendix A for entries that may be written to the Event Log.

4-46 9036

ACSLM Command Structures vary

VARY

Name

Description

vary - Changes the state of an ACS, LSM, library drive or port.

The vary request changes the state of an ACS, LSM, library drive, or
port. Only one device type at a time can be varied. Within that type,
from one to MAX _ ID different devices can be specified in each request.

The message_option FORCE changes the state of the device abruptly.
FORCE is valid only when the device is an ACS or an LSM and it device
varied offline.

An ACS, LSM, or library drive can be changed to online, offline, or
diagnostic. A port can be changed to online or offline.

Device States

9036

A device can be in one of five states, as described below:

~ STATE_ONLINE. The nonnal operating state. The device is available
for library processing.

• STATE_OFFLINE. A state in which the device is'logically disabled.
Requests involving offline devices are rejected.

• STATE OFFLINE PENDING. A transition state that occurs when an - -
ACS or LSM is taken from online or diagnostic to offline. All new
requests for the device are rejected, but current and pending
requests are processed to completion. This state is not valid for
cartridge drives or ports.

• STATE RECOVERY. A transition state that occurs when an ACS or
LSM is taken from omine to diagnostic or online. A recovery
process is perfonned. New requests are rejected while the device
is in this state. This state is not valid for cartridge drives or ports.

• STATE DIAGNOSTIC. A state in which the device is not available to
client application requests, but is available to operator requests
from the Command Processor. This state allows for diagnostic
activity to be perfonned on the device without interference from
client applications. This state is not valid for ports.

4-47

vary ACSLM Command Structures

Table 4-1 identifies which states are valid for each device.

Table 4-1. Valid Device States

Devic~ Online Qmin~ Omine-Pend. Recover!

ACS x x x x
LSM x x x x
Drive x x
Port x x

Device State Transitions

The vary request moves a device between these states. The
transitions occur as follows:

Diag.

x
x
x

• A vary online request on a drive or port immediately places the
device in the STATE ONLINE state.

• An vary online request on an ACS or LSM places the device in
the STATE_RECOVERY state while it attempts to recover in-transit
cartridges. When this recovery process has been completed
successfully, the device is placed in the STATE_ONLINE state.

• A vary offline request with the force message_option puts the
device in the STATE_OFFLINE state immediately, causing any
current or pending requests for the device to be aborted.

• An unqualified vary offline request (that is, without the force

message_option) is processed according to the type of device:

- For an ACS or an LSM, the request causes the device to go into
the STATE_OFFLINE_PENDING state initially. The ACSLM
processes all current and pending requests for the device to
completion before placing it in the STATE_OFFLINE state.

- For a cartridge drive, the request is rejected if the drive is in
use. If the drive is available, it is placed in the STATE_OFFLINE

state immediately.

- For a port, the request is rejected if the ACS it is connected to
is online and it is the only online port for that ACS. If the ACS
is in the STATE_OFFLINE state, or if there are other ports in the
STATE_ONLINE state for that ACS, the port is placed in the
STATE_OFFLINE state immediately.

• A vary diagnostic request places the device in
STATE_DIAGNOSTIC. The ACSLM processes all current and pending
requests for the device to completion. It accepts new requests from
the ACSSA, but rejects new requests from a CSI. A port cannot be
varied to the STATE_DIAGNOSTIC state, but all other devices can.

4-48 9036

·ACSLM Command Structures vary

Requests

9036

Request Format

struct vary_request
IPC HEADER
MESSAGE_HEADER
STATE

} ;

TYPE
unsigned short
union {

ACS
PORTID
LSMID
DRIVEID

identifier;

Request Values

ipc _header;
message_header;
state;
type;
count;

acs;
port id;
Ism_id;
drive_id;

Within MESSAGE_HEADER, command is COMMAND_VARY.

Within MESSAGE_HEADER, message_options can be FORCE if the state is
STATE_OFFLINE. This causes request processing for the requested
ACS or LSM to be stopped immediately. The specified component's
state is marked STATE OFFLINE in the data base.

state is one of the following:

STATE ONLINE
STATE OFFLINE
STATE DIAGNOSTIC

state STATE_DIAGNOSTIC cannot be used when type is TYPE_PORT.

type is one of the following:

TYPE ACS
TYPE LSM
TYPE PORT
TYPE DRIVE

Only one type is allowed in a single request.

count is the number of identifier entries that follow. count must be 1

to MAX ID.

Within identifier, the device ID is one of the following, based on type:

acs
Ism id
port id
drive id

4-49

vary ACSLM Command Structures

Responses

Intermediate Response Format

Not applicable.

Final Response Format

struct vary_response
IPC_HEADER
MESSAGE HEADER
RESPONSE_STATUS
STATE

} ;

TYPE
unsigned short
union {

struct {
ACS
RESPONSE STATUS
acs_status;

struct {
PORTIO
RESPONSE STATUS
port_status;

struct {
LSMID
RESPONSE STATUS

1sm_status;
struct {

DRIVEID
RESPONSE STATUS
drive_status;

device_status;

Final Response Values

ipc _header;
~ssage_header;

~ssage _status ;
state;
type;
count;

acs)d;
status;

drive)d;
status;

Within MESSAGE_HEADER, command is COMMAND_VARY.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

• STATUS_SUCCESS if the fixed portion of the request was correct.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

• STATUS CONFIGURATION ERROR - -
• STATUS COUNT TOO LARGE - --
• STATUS COUNT TOO SMALL - --
• STATUS DATABASE ERROR - -

4-50 9036

ACSLM Command Structures

• S TATUS_INVALID_OPTI ON

• STATUS INVALID STATE - -
• STATUS_INVALID_TYPE

• STATUS_LIBRARY_BUSY

• STATUS_LIBRARY_FAILURE

• STATUS_LIBRARY_NOT_AVAILABLE

• STATUS_MESSAGE_TOO_LARGE

• STATUS_MESSAGE_TOO_SMALL

• STATUS_PROCES S_FAI LURE

• STATUS UNSUPPORTED OPTION - -
• S TATUS_UNSUPPORTED_S TATE

• STATUS UNSUPPORTED TYPE - -

state is one of the following:

STATE ONLINE
STATE OFFLINE
STATE DIAGNOSTIC

type is one of the following:

TYPE ACS
TYPE LSM'
TYPE PORT
TYPE DRIVE

vary

count is the number of device status entries that follow. count must be
1 to MAX ID.

Within device_status, the device identifier is one of the following,
based on type:

acs
Ism id
port id
drive id

Within device_status, status is the disposition of the particular device.
Following are status values specific to this command:

• STATUS_RECOVERY_INCOMPLETE if recovery of in-transit cartridges is
unsuccessful while varying an LSM or ACS online. The LSM is
marked STATE_ONLINE in the data base, but the unrecorded in­
transit cartridges may restrict use of PTPs or the robot's hands.
An unsolicited message is sent to the ACSSA.

• STATUS_STATE_UNCHANGED if the device is already in the requested
state.

9036 4-51

vary ACSLM Command Structures

Notes

• STATUS_SUCCESS if the device was successfully varied to the
specified state.

• STATUS_VARY_DISALLOWED for any of the following conditions:

- The request specifies an ACS or LSM that is currently in the
STATE_OFFLINE_PENDING or STATE_RECOVERY state. These are
transition states which are one-way only and indicate a vary
request in progress.

The request specifies. an ACS, LSM, or library drive be varied to
or from STATE_DIAGNOSTIC and the originator is not the ACSSA.

- The request is to vary an LSM online, but the ACS to which the
LSM is attached is offline.

- IT the request is to vary an ACS, but not all LSMs within the
ACS can be varied accordingly. The entire request fails, and all
LSMs are left in their original state.

Following are common device_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

• STATUS_ACS_NOT_IN_LIBRARY

• STATUS_DRIVE_NOT_IN_LIBRARY

• STATUS_LSM_NOT_IN_LIBRARY

• STATUS_PORT_NOT_IN_LIBRARY

• STATUS INVALID ACS· -
• STATUS INVALID DRIVE -
• STATUS INVALID LSM -
• STATUS_INVALID_PORT

• STATUS_LIBRARY_BUSY

• STATUS LIBRARY FAILURE - -

Final Response Values - Cancelled Request

Not applicable.

• A vary request for an ACS is applied to all LSMs belonging to that
ACS. IT an LSM is not available, an error status value will be
returned in the Ism_status status.

• When a device changes state, a STATUS_DIAGNOSTIC,

STATUS_ONLINE, or STATUS_OFFLINE unsolicited message is sent to
the ACSSA.

• If during recovery of in-transit cartridges either no available storage
cells can be found or a cartridge label fails to validate, the cartridge
is moved to the CAP. A STATUS_CARTRIDGES_IN_CAP unsolicited

4-52 9036

ACSLM Command Structures vary

See Also

message is sent to the ACSSA to notify the operator to empty the
CAP. IT the CAP is full or cannot accept all in-transit cartridges,
recovery of in-transit cartridges is unsuccessful.

• The query command for details or displaying the current state of a
library device.

• Appendix A for entries that may be written to the Event Log.

9036 4-53

vary ACSLM Command Structures

(INTENTIONALL Y LEFf BLANK)

4-54 9036

OVERVIEW

CHAPTER 5:
CSIPROCESSES

This chapter describes the basic functions perfonned by the CSI. It
also identifies function calls and common data structures used by the
CSI. See Appendix C: XDR Translation Functions for listings of
StorageTek-supplied functions. See Chapter 7: CSI Data Structures
for the fonnats and contents of the data structures.

Note: Since the functions of the SSI are essentially reciprocal to those
of the CSI, an understanding of CSI functionality is required in order to
derive SSI requirements. See Chapter 6: SSI Requirements for specific
details on SSI requirements and programming.

This chapter covers the following topics:

• CSI Functions

• CSI Architecture

• Communications Methodology

• CSI Initiation

• Message Processing

• Error petection and Recovery

• Tennination

CSI FUNCTIONS

9036

The CSI essentially functions as an asynchronous communications
switchboard for the ACSLM. It receives input from both the ACSLM
and an SSI via the Network Interface (NI). This input consists of
Storage Server request and response packets.

5-1

CSI Functions CSI Processes

5-2

CLIENT
APPLICATION

~~

Working together with the client system SSls, the CSI provides a
programmatic interface to the Storage Server that allows client
applications to request remote tape service by executing librmy
commands in a location-independent manner. The only restrictions on
client application architecture are:

• Communications protocol. The client application must use a
predefmed communications protocol to send requests and receive
responses.

• The Storage Server command set. The client application must
format library requests according to the ACSLM command
structures. It also must be able to interpret ACSLM responses.
See Chapter 3 and Chapter 4 for these formats.

Figure 5-1 is a diagram of how library requests and responses are
passed between a client application and the Storage Server.

STORAGE
SERVER

~~

NI
RESPONSE RESPONSE

SSI
~.

CSI r---
REQUEST REQUEST --..

29053 A

Figure 5-1. Overview of the Client System Interface

9036

CSI Processes CSI Architecture

CSI ARCHITECTURE

Overview

OSI Model

9036

The CSI communicates with the client system SSls on a peer-to-peer
basis, using a client-server model. The CSI conforms to the OSI
layering model for peer-to-peer communications.

Within the client-server model, the CSI is the server, while the SSls
are clients. Following is a summary of request and response
processing perfonned by the CSI and the SSls.

A client application sends a Storage Server request through its SSI
communications layer to a CSI server on the network. The SSI uses
XDR library functions to encode, or serialize, the request into a host­
independent data format, and then perfonns RPC calls to send the
request across the network.

The CSI passively listens on the network for requests. It uses RPC
functions to receive requests, uses XDR functions to deserialize them
from host-independent to host-dependent fonnat, and then passes
them to the ACSLM.

After the ACSLM perfonns the designated function it issues one or
more request responses·, routing them back to the client through the
CSI. The CSI keeps track of the routing pertaining to a particular
request. When the CSI receives a response from the ACSLM, it
matches the response to a particular client SSI and establishes the
routing (address) from internal tables. Then the CSI uses an XDR
function to serialize the response, and executes an RPC callback to
send the response across the network to the SSI.

Meanwhile, the SSI passively listens for responses to its requests. It
uses RPC calls to retrieve the responses from the network, uses XDR
functions to deserialize them, and then passes them up to the client
application.

See Chapter 1: ACS Overview for a summary of the Open Systems
Interface (OSI) model.

In the overall Storage Server software communications model, the CSI
represents the following two OSI layers:

• Layer 6 - Presentation Layer

• Layer 5 - Session Layer

Figure 5-2 illustrates how the Storage Server and client system
components map onto the OSI model.

5-3

CSI Architecture

051 MODEL LAYERS

APPLICATION
LAYER 7

PRESENTATION
LAYER 6

CSI Processes

Almost all CSI programming represents Presentation Layer
functionality. Presentation Layer programming focuses on the following:

• Storage of SSI return addresses

• Packet conversion, using XDR translation services

• Network output queueing

• Duplicate packet detection

Session Layer communications programming focuses on making
system calls to detect and multiplex module interprocess
communications (IPC) and network connections. Session Layer
network functionality is accomplished through calls to Sun
Microsystems Remote Procedure Call (RPC) functions.

Transport Layer (Layer 4) functionality is accomplished through
UDP/IP or TCP/IP, or both running concurrently. This layer of software
is transparent to the programmer, as it is supported entirely by RPC
and the SunOS implementation of sockets. No TCP or UDP
programming is needed.

STORAGE SERVER MODEL
CLIENT SYSTEMS ACS STORAGE SERVER STORAGE CLIENT SERVER

USER INTERFACE
4~ ~~

ACS SYSTEM ADMIN ? ACSSA

~------- - I- - I-- ------- ----------
CLIENT APPLICATION ACS LIBRARY ? ACSLM MANAGER

XDR R R XDR

----------~---------E- ~ . -E_ ------- SSI CSI
SESSION RPC/MUL TIPLEXING

Q S
RPC/MUL TIPLEXING LAYER 5 U P

E- - -0
TRANSPORT TCP S N TCP LAYER 4- T S

~-------- -------- - H:- -------
NETWORK IP IP LAYER 3

NI NI

DATA LINK ETHERNET ETHERNET LAYER 2

~--------. ~-------,- - ~~-------
PHYSICAL NETWORK HARDWARE ~ ~ NETWORK HARDWARE LAYER 1

29051 A

Figure 5-2. Mapping to the OSI Model

5-4 9036

CSI Processes Communications Methodology

COMMUNICATIONS METHODOLOGY

Overview

9036

The standard client-server architecture is based on synchronous
communications. Essentially, this means that the client issues a
request and then blocks until it receives an acknowledge that the
requested operation has been perfonned.

The CSl's communications methodology uses asynchronous
communications at the Applications Layer and synchronous
communications at the Session Layer. The CSI receives an arbitrary
number of requests from an arbitrary number of SSIs. After the
ACSLM processes the requests, it returns one or more responses to
the appropriate SS!. As a result, the CSI cannot block indefinitely to
complete a network transmission because at any given moment it may
have another task to perfonn, such as servicing new NI RPC
connections, SSI Storage Server requests, or ACSLM responses.

There are several RPC methodologies for asynchronous
communications. The CSI and SSI use the callback model. In this
model, the requestor includes in its requests a return address where
responses are to be sent. In the case of the Storage Server, the SSI
includes its return address in the CS I _HEADER portion of the request;
the CSI theh sends responses to that address. See Chapter 7: CSI
Data Structures for the fonnat and content of the CSI HEADER structure.

In order to employ the asynchronous model, Storage Server requests
employ an application-level protocol made up of groups of discrete,
synchronous transactions. Within this protocol, the CSI and the SSI
must immediately acknowledge all messages, and they must be able to
match responses to a particular request. A request is a distinct
synchronous transaction, and a response is a separate distinct
synchronous transaction. All RPC calls are immediately acknowledged
and carry no response data.

The asynchronous nature of the model is accomplished through the
high-level RPC protocol employed by the CSI and the SSIs. A Storage
Server request from an SSI initiates a series of synchronous
transactions which lead to the completion of an entire Storage Server
operation. After the SSI initiates the request, it is free to perfonn other
work, if so designed. After the CSI sends a request or response to the
appropriate destination, it is free to perfonn other work. The entire
storage server operation is complete when the SSI receives a/inal
response from the CS!.

5-5

Communications Methodology CSI Processes

Interprocess Communications
CSI - ACSLM and CSI - ACSSA communications are accomplished
through BSD datagram sockets.

The CSI, ACSLM, and ACSSA each create and maintain a single,
named input socket used to receive messages from the other
processes. This simplifies initialization and error recovery in each
process. These sockets are defined at initiation.

Network Communications

Data Stream Representation

The data stream representation supported for the CSI is XDR. The
XDR fonnat for data is a host-independent serial byte stream. All data
transmitted across the network is serialized to XDR fonnat,
transmitted, and then deserialized on the receiving end. See CSI
Message Processing in this chapter for descriptions of the XDR
translation routines.

The only portion of a message going to or from the NI that the CSI
interprets is the CSI_HEADER. The CSI does, however, parse all
infonnation in a message as part of the serializationldeserialization
process.

Session Connection

Communications services are solely for connection and data transfer.
These two operations are encapsulated into a single, brief operation; a
connection is closed immediately after data transfer is complete. This
design is necessary because of the following constraints:

• Network interruptions. With current technology, network service
tends to be interrupted periodically. When this happens the
network connections are no longer valid. Limiting connection time
reduces the chances of losing a connection.

• Limited number offile descriptors that can be held at one time.
Maintenance of a TCP/IP connection on UNIX systems requires
holding one or more open file descriptors. Limiting the time that
connections are held reduces the chances of running out of available
file descriptors.

5-6 9036

CSI Processes Communications Methodology

9036

RPC Service Registration

Within the callback model, both a primary client-server relationship
and a temporarily inverted client-server relationship are defined. The
primary relationship exists when the SSI requests tape services of the
ACSLM via the CSI:

• The SSI functions as primary client when it makes RPC calls to
transmit requests to the CSI.

• The CSI functions as primary server when it receives and
processes the requests and passes them to the ACSLM.

This relationship is inverted, however, when responses are transmitted:

• Effectively, the CSI briefly functions as a client when it makes an
RPC callback to the SSI.

• The SSI has a role as a secondary server in order to receive the
callback.

Since both the CSI and SSI have server roles, they must each register
as RPC servers at initiation. Client SSIs must interface with the RPC
layer of the CSI. The descriptions below will clarify some of the
processes documented in the Sun Network Programming Manual.

RPC Program Numbers and Port Mappings

A port mapping uniquely identifies a logical path that RPC uses in
executing a remote function. The port mapping is initialized by making
RPC calls to the RPC portmapper program. Each RPC procedure is
identified by:

• A unique program number, used to interrelate various procedures
(function calls) that are remotely executed.

• One or more version numbers, assigned to each program number so
that the program number does not need to change when the service
is changed.

• A procedure number.

In order to program the call for a particular remote procedure, the
programmer looks up these numbers in a published list, and codes them
as is appropriate on the function call interface. The Sun Network
Programming Manual ("Remote Procedure Call Programming Guide";
"Higher Layers of RPC", "Assigning Program Numbers") defines the
following categories of program numbers:

• Sun-Defined Program Numbers. Sun-defined program numbers
exist in the following range:

OxO-OxIfffffff

5-7

Communications Methodology CSI Processes

5-8

Ultimately, the CSI program number will be derived from within this
range by Sun, after StorageTek applies for a program number for the
Storage Server product. It is not yet known when the CSI will
begin using a Sun-registered program number.

• User-Defined Program Numbers. Until Sun-registered program
numbers are employed, StorageTek will use user-defined program
numbers for the CSI. Permanent CSI service program numbers
should exist in the following range:

Ox20000000-0x3fffffff

The program number currently used for the CSI is defined in csi. h

as CS I _PROGRAM. See Appendix D for a listing of the csi . h header
fue.

The SSI callback service could register within this range, but this
might limit the number of SSls that could run on a single host.

• Transient Program Numbers. Transient, or temporary, program
numbers are primarily intended to exist only for the life of a
particular execution of an application, barring a software error that
prevents their deletion from the portmapper. These numbers should
be dynamically assigned at program startup time, and unmapped
with the port-mapper upon program shutdown. The SSI should use
this category of program. numbers.

The transient program number is passed in the program variable in
the CSI_HANDLE_RPC structure. See the Input to the CSI From the
SSI section in Chapter 7 for the format and content of this structure.

The range of transient program numbers is:

Ox40000000-0xSfffffff

The gettransient () function, which is shown in Figure 6-4, can be
used to obtain the mapping.

CSI Registration

The CSI is the primary server; therefore it registers as the primary
server at a permanent, advertised port/program number. It registers by
calling the svc_register () RPC function; the parameters and values
passed, as defined in the csi. h header file, are as follows.

• The transport handle:

xprt

• The program number of the CSI server:

.define CSI PROGRAM Ox200000fe

• The version number of the CSI:

.define CSI UDP VERSION 1

.define CSI TCP VERSION 2

9036

CSI Processes CSllnltiation

• A procedural dispatching routine:

'define CSI_ACSLM_PROC 1000

• A parameter that respecifies this as a TCPIIP or UDPIIP based
service:

IPPROTO TCP
IPPROTO UDP

551 Registration

CSIINITIATION

Overview

When the SSI receives responses from the CSI it functions as a server,
apart from its normal role as primary client. This provides the CSI with
port, program number, and procedure number mapping used to direct an
RPC callback. An integral part of this process is obtaining a transient
port/program number. See the Initializing the SSI as a Callback Server
topic in the Programming an SSI section in Chapter 6 for details on SSI
registration.

The Storage Server daemon, rc. acsss, initiates the CSI; it can also
reinitiate the CSI when necessary. CSI initiation performs the
following functions:

• Establishes an interprocess communications input endpoint to
receive messages from the ACSLM and the ACSSA.

• Establishes itself as an RPC network communications server.

The CSI writes entries to the Event Log when initiation begins and
ends. See Appendix A: Event Log Messages for these messages.

Environment Variables

The rc. acsss startup script sets and exports the CSI environment
variables. See the Environment Variables section in Chapter 7 for a list
of these variables.

Network Buffer Allocation

9036

Upon startup, the CSI allocates a single network buffer into which the
XDR interface functions place data during deserialization. The network
buffer is allocated within the CSI_MSGBUF global message buffer
description structure as an array called data. This array is at least
MAX_MESSAGE_SIZE bytes long. See Message Translation Structures in
Chapter 7 for the format and contents of the CSI_MSGBUF structure. See
Common Variables in Chapter 3 for a definition of MAX_MESSAGE_SIZE.

5-9

CSllnitiation CSI Processes

RPC Service Initiation

socket

pmap _unset ()
svctcp_create()

svc_register ()

csiyrocess ()

svc_destroy ()

5-10

At initiation, the CSI establishes communications with the NI by
calling RPC library functions. Figure 5-3 identifies the functions and
the order in which they are called. Nonnally, the CSI server is
established before the SSI attempts to send calls to it.

Note: Figure 5-3 calls the svctcp_create () function to establish
TCP/IP connections. To establish UDP/IP connections, the
svcudp_create () function would be called instead.

/* CSI non-communications Initialization */

/* establish ACSLM IPC or other connections */

/* unmap residual port mappings */
/* establish CSI server and port connection */

/* register CSI service with portmapper */

/* enter main CSI processing loop */

/* de-allocate the service transport resources */

Figure 5-3. Initializing the CSI Server

Figure 5-4 is a fragment of pseudocode that provides additional detail
to the functions in Figure 5-3. The numerical references in the
illustration are explained following the figure.

Note: The pseudocode in Figure 5-4 calls the svctcp_create ()

function to establish TCP/IP connections. To establish UDP/IP
connections, the svcudp_create () function would be called instead.

9036

CSI Processes CSI Initiation

9036

1

2

3

4

5

#include <rpc/rpc.h>
tinclude <stdio.h>
tinclude <sys/socket.h>
tinclude "csi.h"

main (argc, argv)
int argc;
char **argv;

/* number of command line arguments */
/* command line arguments */

{
SVCXPRT *xprt; /* transport service handle */

/*
* init log file, perfor.m other Initialization
*/

/*
general, module-reillted initialization········

* unmap from the portmapper if already mapped
*/

pmap_unset(CSI_PROGRAM, CSI_TCP_VERSION);

/* csi to acslm socket */
if «cs sock = socket(AF UNIX, SOCK_DGRAM, 0» < 0)

handle erro,.······· -

/* csi rpc socket */
if «cs rcvsock socket (AF_INET, SOCK_STREAM, 0» < 0)

handle mo,.······· .

/* reserve a port for the csi server rpc service */
if (NULL == (xprt svctcp_create(cs_rcvsock, 0, 0) »

-or-
if (NULL == (xprt svctcp_create(RPC_ANYSOCK, 0, 0) »

handle error········

/* register the service */
if (0 == svc_register(xprt, CSI PROGRAM, CSI TCP VERSION,

aiIdress_of_dispatchyrogrom, IPPROTO _ TCP))
/*

* enter main processing-loop
*/
main processing loop

csyrocess ()

/*
* termination, unmap from the portmapper
*/

6 pmap unset (CSI PROGRAM, CSI_VERSION);
} - -

Figure 5-4. CSI RPC Service Initiation Logic

5-11

----.-----".-~---------------------------.--------

CSI Initiation

5-12

CSI Processes

1. pmap_unset () is called to deregister the server with the
portmapper. Unsetting the port mapping guarantees port mapping
cleanup in case the registration from a previous initiation was not
removed because the CSI terminated in an unplanned manner.
Without this cleanup, the call to svc_register () could fail.

2. An NI socket is initialized. This is an Internet domain socket, of
family AF_INET, and TCP/IP stream sockets of type SOCK_STREAM.

The cs_rcvsock socket is the main RPC service socket for
accepting client connections and receiving request packets from,
and sending response packets to, the SSI. Either of the following
two methods can be used to initialize the socket: 1) the socket can
be created by the CSI/SSI, or 2) the cs_rcvsock variable can be
initialized to RPC_ANYSOCK, causing RPC to initialize the socket in
svctcp_create (). The CSI uses the second method.

3. svctcp_create () is called, reserving a port for TCP/IP
communications. This function returns the transport handle, xprt,
which is a structural representation of the service environment. It
is passed to svc_register () for service registration.

The parameters in this call should be set as follows:

The frrst parameter is the input socket. It can be set to an
already opened socket or to RPC_ANYSOCK, causing RPC to
initialize it.

- The second parameter defines the send buffer size and should
be set to CSI_DEF_TCPSENDBUF. Only very unusual applications
of the CSI will require this parameter to be changed, since RPC
can handle this buffering.

- The last parameter defines the receive buffer size and should be
set to CSI_DEF_TCPRECVBUF. Only very unusual applications of
the CSI will require this parameter to be changed, since RPC
can handle this buffering.

4. svc_register () is called to register the CSI with the portmapper.
This allows incoming RPC calls from the SSI to be multiplexed to
the correct socket, program number, version number, and procedure
number. See the Communications Methodology section in this
chapter for details on RPC registration.

5. The CSI enters a main processing loop which listens for client
connections and data transfers, and multiplexes the input and
output accordingly. See the CSI Message Processing section in this
chapter for details on these processes.

6. At tennination, pmap _unset () is called to deregister the CSI from
the portmapper.

9036

CSI Processes CSI Message Processing

CSI MESSAGE PROCESSING

Overview
In acting as a communications switchboard between the SSIs and the
ACSLM, the CSI perfonns the following activities:

• Application-Level Messaging Protocol. The CSI employs a high­
level RPC protocol for message translation and transmission.

• Interprocess Communications. The CSI sends requests to and
receives responses from the A CSLM.

• Network Communications. The CSI and the SSIs receive and send
messages to one another via the NI.

• Message Packet Decoding. The CSI serializes message packets to
be sent over the network and deserializes message packets read
from the network.

Application-Level Messaging Protocol

9036

Figure 5-5 through Figure 5-8 are sample RPC protocol sets
describing the basic function calls and transactions necessary to
initiate a Storage Server operation and carry it to completion. The
protocol samples are listed as transaction pairs, two per page. On
each page, the frrst figure represents the initiator of a particular
transaction, and the second figure represents the response.

5-13

CSI Message Processing CSI Processes

LOOP {

Entering its main processing loop, and blocking on select () , the SSI
receives a Storage Server request from a client application and makes
an RPC call to send it to the CSI.

/* merge RPC (svc_fds global) and other file descriptors into mask */

select() /* block, waiting for application or RPC input */

/* determined that input is from application */

read() /* read application request from application socket */

/* initialize CSI_HEADER structure, build request packet */

/* set csi-proto to CSI_PROTOCOL_TCP */

/* set csi_ctype to CSI_CONNECT_RPCSOCK */

gethostbyname() /* get address of this SSI host */

/* set csi_handle(program) to transient program. */

/* set csi_handle(version) to callback version. */

/* set csi_handle(proc) to callback proceduret */
/* set csi_handle(raddr) to struct sockaddr_in

returned from gethostbyname() */
gethostbyname() /* get the address of the remote CSI host */

bcopy() /* copy remote host address to a sockaddr_in structure */

clnttcp_create()/* connect to the remote CSI server at CSI_PROGRAM */

clnt_call() /* issue an RPC call to the CSI server at CSI_ACSLM_PROC */

csi_xdrrequest()/* clnt_call() calls XDR serialization function */
clnt_destroy() /* close TCP/IP connection to CSI */
} END

LOOP {

Figure 5-5. Sending a Request From an Application to the CSI

The CSI server receives the request on one of its RPC sockets and
repackages it for transmission to the ACSLM.

/* merge RPC (svc_fds global) and other file descriptors into mask */

select() /* block, waiting for ACSLM or RPC input */

/* determined that input is RPC */

svc_getreq() /* handle rpc input, calls CSI dispatcher CSI_ACSLM_PROC */

dispatcher() /* svc_getreq() invokes dispatcher */

svc_getargs() /* dispatcher gets data off network */

csi_xdrrequest()/* called to () deserialize request */

xdr_??() /* csi_xdrrequest calls XDR primitives */
svc_sendreply(); /* ACK SSI telling it received request */

/* strip off CSI_HEADER and store in connection table */

/* put IPC_HEADER into request packet */

write () /* send request packet to ACSLM */

} END

Figure 5-6. Sending a Request From the CSI to the ACSLM

5-14 9036

C51 Processes CSI Message Processing

LOOP

Later, the CSI receives a response from the ACSLM, repackages it and
issues an RPC callback to the destination SSI server at the designated
remote transient program number and dispatching procedure number.

/* merge RPC (svc_fds global) and AC5LM file descriptors into mask */

select() /* block, waiting for AC5LM or RPC input */

read ()

/* determined that input is from AC5LM*/

/* read storage server request from AC5LM socket */

/* get csi_header from connect table key=ipc_identifier */

/* extract sockaddr_in from client handle in csi_header */

/* extract transient programt, versiont, proceduret

/* strip IPC_HEADER, add C5I_HEADER to response packet */

clnttcp~create()/* create a connection to the remote 55I server */

clnt_call() /* make RPC call to 55I at transient programt/proceduret */

csi_xdrresponse() /* clnt_call() calls XDR serialization function */

clnt_destroy() /* close TCP/IP connection to 55I */
}

LOOP {

Figure 5-7. Sending a Response From the ACSLM to the SSI

Finally,' the SSI callback server dispatch function receives the response
packet input on its RPC input socket and repackages it for transmission
to the client application. .

/* merge RPC (svc_fds global) and other file descriptors into mask */

select() /* block, waiting for application or RPC input */

/* determined that input is RPC */
svc_getreq() /* handle rpc input, calls 55I RPC callback dispatcher */

} END

dispatcher() /* svc_getreq() invokes dispatcher */

svc _getargs () /* dispatcher gets data off network */

csi_xdrresponse()/* called to deserialize response */

xdr_??() /* csi_xdrresponse calls XDR primitives */

svc_sendreply(); /* ACK C5I telling him received packet */

/* strip C5I_HEADER from packet */

/* process response, repackage into application format */

/* send response to client application */

Figure 5-8. Sending a Response From the 551 to the
Application

9036 5-15

CSI Message Processing CSI Processes

Interprocess Communications

Message Handling

All IPC messages between the CSI and the ACSLM have a common
top layer containing a MESSAGE_HEADER and an IPC_HEADER, which
together make up a REQUEST_HEADER.

The client application creates the MESSAGE_HEADER, describing the
ACSLM command request, for each Storage Server request it
generates. See the Requests section in Chapter 3 for details on the
fonnat and contents of the MESSAGE HEADER.

The CSI creates an IPC_HEADER for each request sent to the ACSLM.
The contents of the IPC_HEADER structure are specific to the IPC
mechanism being used. See Input to the CSI From the ACSLM in
Chapter 7 for the current fonnat of this structure.

The IPC_HEADER contains application IPC return address infonnation
and a unique identifier that allows responses to be matched to a
request. When the CSI receives a response from the ACSLM, it uses
the request identifier in the IPC_HEADER to match the response to the
request and to futer out any duplicate packets that may have been
generated. The CSI strips the IPC_HEADER from the response before
passing it on to the SS!.

Message Size

The datagram communication style ensures that messages are sent
and received atomically, eliminating the need for processes to deal with
partial messages. The size of individual datagrams (requests or
responses) is limited to MAXlMUM_MESSAGE_SIZE bytes, which is
defined as:

Network Communications

Functions Called

The CSI calls the following RPC functions to establish network
communications and to send and receive messages:

• clnttcp_create (), to create TCP/IP connections.

• clntudp_create (), to create UDP/IP connections.

• clnt_call (), to serialize and send a message across the network.

• svc_getreq () or svc_getreqset (), to receive and deserialize a
message from an SS!.

5-16 9036

CSI Processes CSI Message Processing

• svc_sendreply (), to acknowledge receiving an SSI message;
xdr _void is passed as one or the parameters to indicate that the
acknowledge carries no data.

Message Routing
All messages between the SSI and the CSI have a common header,
CSI_HEADER. The SSI creates a CSI_HEADER for each request. The
CS I _HEADER contains the return address for callback responses to the
SS!.

When the CSI receives a request, it strips the CSI_HEADER from the
packet and stores it in its return address queue. When the CSI
receives a response from the ACSLM, it retrieves the CSI_HEADER from
the queue by using the ipc_identifleT in the IPC_HEADER. It then adds the
CSI_HEADER to the response and sends the response to the indicated
SSI network address.

See the Input to the CSI From the SSI section in Chapter 7 for the
fonnat of the cs I HEADER.

Timing Considerations

After the CSI sends a message across the network it blocks on input
until it receives an RPC acknowledge that the message has been
receivoo. A network transmission timeout will occur if the CSI does
not receive the acknowledge within the time period defmed by the
CSI RETRY TIMEOUT environment variable. - -
When a timeout occurs, the CSI saves the unacknowledged message in
its network output queue. The CSI maintains one output queue for all
messages to be sent to all SSls. The messages are sequenced
according to the order in which they were received from the ACSLM by
the CSI. The cs I XID in the cs I HEADER is used to indicate the - -
sequence (see Chapter 7: CSI Data Structures for the format and
contents of these structures). The network output queue frees the CSI
to process new input without losing output that has. not been
acknowledged and must therefore be transmitted again.

Once a message is saved after a timeout, the CSI checks for new input
from the ACSLM and proceeds as follows:

• If there is new input, the CSI services it immediately. This ensures
that input is not lost.

• If there is no new input, the CSI checks its network output queue
and transmits any messages intended for other SSls.

9036 5-17

CSI Message Processing CSI Processes

• Once all messages for other SSIs are flushed from the queue and
after a waiting period greater than CSI_SELECT_TlMEOUT, the eSI
retries the original message for the fust SS!. The CSI will attempt
as many retries as are specified by the CSI_RETRY_TRIES

environment variable.

Despite a timeout by the CSI, the SSI may still receive the original
message, although later than expected. The SSI must therefore
identify the retry message(s) as duplicates and discard them.

Message Packet Decoding

5-18

XDR Translation Functions

The eSI serializes and deserializes message packets by applying XDR
primitives to the message structures. The CSI calls high-level
routines which control complex translations by calling a series of lower­
level routines dedicated to data conversion.

StorageTek supplies two high-level XDR translation interface routines,
csi_xdrrequest () and csi_xdrresponse () , as well as supporting
functions, in "C" source code format. They can be ported,. by customer
option, to the client host and called from eSIs and SSIs. These
routines call the lower-level supporting translation routines which, in
turn, call XDR primitives.

If the supplied routines are not used by the client SSI, they can be used
as a template for creating custom SSI XDR translation routines. Any
custom routines must preserve the order and functionality of the
serialization and de serialization processes in the supplied routines,
however.

See Appe1tdix C: XDR Translation Functions for listings of these
functions and details on what they do.

csi_xdrrequestO Function

The csi_xdrrequest () function handles the serialization and
deserialization of Storage Server requests, as follows:

• For an SSI sending a request, the routine converts a request packet
from host-specific format to XDR stream format for transmission
across the NI.

• For a CSI receiving a Storage Server request, the routine converts
the input from XDR stream format to a host-specific format request
packet

See the Input to the CSIFrom the SSI section in Chapter 7 for
information on the structure of request packets.

9036

CSI Processes CSI Message Processing

9036

csi_xdrresponse() Function

The csi _xdrresponse () function handles the serialization and
deserialization of Storage Server responses as follows:

• For a CSI sending a Storage Server response packet to an SSI, the
routine converts the packet from host-specific format to XDR
stream format for transmission across the NI.

• For an SSI receiving a response, it converts the XDR data stream
received across the NI to a Storage Server response packet

See the Output From the CSI to the SSI section in Chapter 7 for
infonnation on the format of response packets.

Calling the Supplied Functions

The csi_xdrresponse () and csi_xdrrequest () routines have
identical interfaces. They are usually called from the svc_getargs () or
clnt_call () RPC library routines. On call, they are passed an XDR
handle (a client handle or transport handle), as well as a message
buffer description structure (CSI_MSGBUF). See the Message
Translation Structures section in Chapter 7 for the CSI_MSGBUF format.

• Following is an example of a call to csi_xdrresponse () on
client_call():

clnt_call (client_handle, procedure_number, csi_xdrresponse,
msg_buffer _desc,xdr _void, NULL) ;

csi_xdrresponse () parses the message contents at the address
called data specified in the msg_buffer _desc structure; it also calls its
own sub-library of XDR translation routines which, in tum, call
XDR translation primitives. As each low-level XDR primitive is
called, the resulting serialized data stream is placed into the
client_handle for subsequent transmission across the NI.

• Following is an example of a call to csi_xdrrequest () on
svc_getargs ():

svc_getargs (transport_handle, csi_xdrrequest,msg_buffer_desc) ;

Duplicate Packet Detection

The XDR functions detect duplicate message packets. See Error
Detection and Recovery in this chapter for details.

Packet Tracing

The CSI is able to trace message packets and their contents. When
packet tracing is enabled, the CSI logs an ASCII dump of packets in the
execution trace log as they are processed. The log entry includes a
formatted header showing the critical elements of the CS I _HEADER and

5-19

CSI Message Processing CSI Processes

the message_options from the MESSAGE_HEADER. The output indicates the
source of the message (either ACSLM or NI).

Figure 5-9 is an example of a packet trace.

Packet source: ACSLM
ssi identifier: 39 message options: 0
ssi-client addr: 129.80.32.3 ssi client port: 255
Message contents (hex bytes) :
0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00

Figure 5-9. Sample Packet Trace

Packet tracing is enabled by setting the trace environment variable,
TRACE_VALUE, to 00800000 before initiating the CSI.

Request Processing Summary

5-20

The following series of steps outlines the interaction between an SSI
and the CSI to process a Storage Server request. Only the steps
performed by the CSI are detailed. See the Programming an SSI
section in Chapter 6 for details on the steps performed by the SS!.

SSI: 1. Receives a request from one of its client applications, translates it,
and sends it to the CSI.

CSI: 2. Calls either the svc_getreq () or svc_getreqset () RPC function to
receive the message. The following occurs:

2.1 The svc _get req () or svc _get reqset () function calls
csi_rpcdisp () , the dispatching service that was registered
during initiation.

2.2 csi_rpcdisp () calls svc_getargs () to get the data off the
network.

2.3 svc_getargs () calls a de serialization function to convert the
response into host-dependent format. See the Message
Packet Decoding topic in this section for a description of the
StorageTek-supplied XDR translation functions.

3. Immediately acknowledges receipt of the message by calling the
svc _ sendreply () RPC function, passing no data.

4. Modifies the request header into a format that can be interpreted by
the ACSLM:

- Strips off and stores the CSI_HEADER which contains SSI return
address information.

Adds an IPC_HEADER containing Storage Server IPC "return
address" information.

9036

CSI Processes Error Detection and Recovery

See the Interprocess Communications topic in this section.

5. Sends the request packet to the ACSLM.

6. Receives a response from the ACSLM.

7. Modifies the response header into a format that can be interpreted
by the SSI:

- Strips off the IPC_HEADER.

- Retrieves and adds the CSI_HEADER which contains the SSI's
CSI HEADER return address.

8. Calls either the clnttcp_create () or the clntudp_create () RPC
function to establish a TCP/IP or UDP/IP connection with the SSI at
the transient port/program number indicated in the CSI_HEADER.

See the Communications Methodology section in this chapter.

9. Calls the clnt_call () RPC function to send the response
message.

10. clnt_call () calls a serialization function to convert the response
into XDR format. See the Message Packet Decoding topic in this
section for a description of the StorageTek-supplied XDR
translation functions.

11. If this is afinal response, deletes the SSI's return address from the
connect queue.

SSI: 12. Receives the message, translates it, and routes it to the
appropriate application.

ERROR DETECTION AND RECOVERY

Overview

External Errors

9036

The CSI can detect, isolate, report, and recover from various internal
software errors. All errors that the CSI encounters are handled in the
following manner:

• All errors are logged to the Event Log. See Appendix A: Event
Log Messages for the error text and their explanations.

• Selected errors are also sent as unsolicited messages to the
ACSSA. This messages are displayed in the Display Area of the
Command Processor window. See the Common Statuses section in
Chapter 3 for the message statuses.

The CSI only tracks errors within its domain. This is because the CSI
does not interpret the content of messages passed between the client
and the Storage Server. All errors, except those sensed internally, are
treated as application errors. Any error messages or responses

>-21

Error Detection and Recovery CSI Processes

passed from the Storage Server to the client application are treated as
data.

In the case of either a network or application module connection failure,
the CSI attempts to recover the connection. It does not inform the SSI
of these errors, except as provided for by the RPC mechanism. The
RPC mechanism for communicating RPC errors between a CSI and an
SSI is employed when the RPC routines prefixed "svcerr" are used
(see the Sun Network Programming Manual). The CSI performs error
recovery for its own connections to the ACSLM, the ACSSA, and
the NI.

CSI Error Handling

5-22

The following sections describe major error detection and recovery
processes of the CSI.

IPC Failure

IPC failures occur whenever the CSI is unable to perfonn one of the
following functions:

• Establish inter-module input communications endpoints during
initiation

• Read a message from the ACSLM

• Send a message to the ACSLM

• Send a message to the ACSSA

The CSI will attempt retries with timeouts and will issue error
messages if communications is still unsuccessful. See the
Environment Variables section in Chapter 7 for an explanation of how
the retries and timeouts are defined.

CSI Process Failure

A CSI process failure is a general error indicating a serious failure of
some internal mechanism. The Storage Server daemon, rc. acsss, may
attempt to reinitiate the CSI, depending on the nature of the failure.
The CSI will then attempt to reestablish itself as a network service,
using the same process employed during initiation. See CSI Initiation
in this chapter for a description of this process.

Operating System Failure

The CSI can indirectly detect some operating system errors. These
errors will be reported as IPC failures, process failures, or CSI-specific
error messages. Error messages caused by operating system failures
list a system error number. See your UNIX documentation for a
description of these error numbers.

9036

CSI Processes Error Detection and Recovery

9036

Network Transmission Failure

Depending on system state, there may be an arbitrary number of
instances over an arbitrary length of time in which connections and data
transfers will never complete. Both the CSI and the SSI must be able
to detect these as errors by using timeout and retry algorithms. It is
left up to the client application to designate the appropriate handling for
connection errors.

Response messages from outstanding ACSLM requests cause the CSI
to attempt to establish communications with the client system. If the
CSI is unsuccessful, it will attempt retries with timeouts, using a retry
algorithm The algorithm functionality is controlled by setting the
CSI_RETRY_TlMEOUT and CSI_RETRY_TRIES environment variables
before starting the CSI. If a connection still cannot be established, the
pending messages will be discarded and their intended destination
logged.

Network Message Translation Failure

Network message translation failures usually occur when a message of
incorrect fonnat or size is detected by the high-level CSI XDR
translation routines. The CSI logs all translation failures to the Event
Log. Translation failures may occur for a variety of reasons, as outlined
belo'Y:

• If the message has an incorrect format (that is, the
CSI_REQUEST_HEADER portion is missing or has an invalid
structure), the CSI is unable to deliver it and so discards it.

• The CSI must convert the message representation based on the
contents of the message. The contents of key fields (for example,
command, type, count, and message_options) determine how the
remainder of the message is interpreted. When the CSI detects a
message from the NI containing an invalid value in a key field, the
message is truncated to the field in error and passed to the ACSLM
for error processing.

• The CSI receives IPC input from the ACSLM only. The CSI will
discard messages with module_type set to something other than
TYPE LM.

• A network message translation failure may be logged if a failure
takes place in the Storage Server. The error is logged because a
packet of invalid size for the command type is detected in the CSI.
The packet is still transmitted in its (usually) truncated fonn.

The CSI will transmit a message as long as it can correctly translate
the CSI_REQUEST_HEADER portion, despite other translation errors.
Therefore the receiver of a message should always check the

5-23

CSI Termination CSI Processes

CSI_MSGBUF structure for either of the following conditions, both of
which indicate a message translation failure:

• packet_status is set to CSI_PAKSTAT_XLATE_ERROR.

• translated_size has an insufficient size for the command type.

Duplicate Network Packets

See the Timing Considerations topic in the CSI Message Processing
section in this chapter for an explanation of how duplicate packets may
be generated. The XDR translation functions will detect duplicate
message packets. Only the CSI_REQUEST_HEADER portion of the
message will be decoded, and the XDR translation routine will set the
packet_status in CSI_MSGBUF to CSI_PAKSTAT_DUPLICATE_PACKET. The
CSI discards duplicate packets.

CSI Request I Return Address Aging

The CSI's return address queue contains return addresses for requests
awaiting final response. When the CSI receives a final response for a
request, it deletes the return address from the queue. It is possible,
however, for some processing or system error to prevent the CSI from
receiving a final response. In order to maintain the queue, the CSI will
automatically delete all return addresses that are older than a
predefined maximum age. This age is defined in the
CSI CONNECT AGETlME environment variable which is defined at - -
initiation. See the Environment Variables section in Chapter 7 for
additional information about this variable.

CSI TERMINATION

5-24

Upon receipt of SIGTERM, the CSI immediately tenninates, perfonning
only the cleanup that is necessary to leave its files and connections in a
recoverable state.

During termination the CSI may detect entries in its return address
queue. This means that some Storage Server requests are still
pending on a final response. The CSI will log the return addresses of
these responses to the Event Log.

9036

OVERVIEW

CHAPTER 6:

SSI REQUIREMENTS

This chapter describes special functional requirements for SSI design.
Since the SSI essentially mirrors the CSI, it is intended that the
functional requirements for the SSI be derived from the functionality of
the CSI, specifically the CSI's interface requirements.

The following sections explain how to program an SS!. These sections
are intended as extensions to the previous sections on CSI design.
See Chapter 5: CSI Processes for details on CSI functionality. See
Chapter 7: CSI Data Structures for the format and contents of CSI data
structures used by the SSI and the CSI.

Note: Reference is made in this chapter to the StorageTek SS!. This
is not a StorageTek product, and it is not distributed to customers.
This SSI is referenced only in order to describe the strategies and
techniques that StorageTek has successfully used to create an SSI for
in-house use. This infonnation can serve to guide the SSI designer and
programmer in creating their own SSI.

DESIGNING AN SSI

Overview
The SSI, residing on a client host, functions as an communications
switchboard for client system applications issuing requests f<;>r tape
services to the Storage Server. Its primary functions are as follows:

• The SSI receives Storage Server requests as input from client
applications, serializes them, and sends them across the network
by making an RPC call to the CSI.

• The SSI receives Storage Server responses from the CSI via its
RPC dispatcher, de serializes them, then provides necessary
services to return the responses to the issuing applications.

9036 6-1

Designing an SSI SSI Requirements

Required Functionality
Any SSI implementation requires the following functionality:

• Porting and implementation of StorageTek's XDR translation
routines

• Initiation of the SSI as a transient network server so that
responses can be received

• Initiation of the interface between the SSI and an application
requesting network tape services of the Storage Server

• Allocation of a buffer for data transferred to or from the Network
Interface (NI)

• Ability to poll for both application and network input

• Ability to receive messages from applications using tape services

• Ability to format application requests into Storage Server request
packets

• Ability to send Storage Server request packets on the network via
XDRJRPC

• Ability to receive CSI response packets from the network via an
RPC dispatcher

• Ability to match ~ response received from the CSI to a particular
request and to route the response to the correct application

• Implementation of network-related error handling for timeouts,
transmission errors, and duplicate packets

Architectural Notes
The SSI can be implemented as an interface library linked to a client
application or as a separate executable module that communicates with
the client application via !PC mechanisms.

The functionality of an SSI can be viewed as a mirror image of the CSI.
If this approach is taken, then SSI source code can be derived directly
from CSI source code.

Architectural Constraints

6-2

The only constraints on SSI architecture are as follows:

• Communications and data translation protocols. The SSI must
employ the same protocols as the CSI for network connection and
data translation:

- XDR at the Presentation Layer

- RPC at the Session Layer

- TCP/IP or UDPIIP at the Transport Layer

9036

SSI Requirements Designing an SSI

• Application-level protocols. The SSI must confonn to application­
level protocols allowing for asynchronous transactions. See
Communications Methodology in Chapter 5.

• Data structures. The SSI must include the standard message
header, CSI_REQUEST_HEADER, and other predefined Storage Server
command data structures in all requests sent to the CSI. See the
Input to the CSI From the SSI section in Chapter 7 for the format
and content of this structure.

• Convention of maintaining only brief connections. It is
recommended that the SSI encapsulate network connection and
data transfer into one, brief operation, in a similar manner as the
CSI. See CSI Message Processing section in Chapter 5 for a
discussion of the reasons for this.

SSI - CSI Architectural Comparisons

9036

Overview

Depending on the nature of the client application, SSI functionality can
be seen as a mirror image of CSI functionality. For example when
Storage Server requests are processed, on the client side they are
passed down from the application layer to the SSI, while on the server
side they are passed up from the CSI to the application layer.

In order to simplify maintenance of CSls and SSls, StorageTek has
built both applications using the same body of sourCe code. Conditional
compilation statements are be used in areas of the CSI source code
where CSI and SSI functionality are inverse. Conditional compilation
statements are used in the following areas of the code:

• Sending messages down-layer

• Sending messages up-layer

• RPC initialization

The following discussion compares the differences between the
functionality of the StorageTek CSI and StorageTek SSI at points
where the functionality in each is a mirror image of the other.
Discussion centers on the handling of information as it crosses the
various OSI-modeled software layers.

Sending Messages Down-Layer

When sending messages down-layer, the CSI retrieves return
addresses, whereas the SSI stores them.

The CSI sends responses down-layer from the ACSLM to the NI.
When it receives the response, the CSI retrieves the RPC return
address information from the return address queue in order to be able

6-3

Porting StorageTek XDR Routines SSI Requirements

to return the response to the correct client. The data structure
retrieved is of type cs I_HEADER.

The SSI sends requests down-layer from a client application to the NI.
When it receives the request, the SSI stores the IPC return address
information in the return address queue. The data structure is of type
IPC HEADER.

The csi_lminput routine can be used by both the CSI and the SSI to
receive and process messages down-layer. The difference between
the CSI and SSI functions is accomplished with an tifdef statement
in the code.

Sending Messages Up-Layer

When sending messages up-layer, the CSI stores return addresses,
whereas the SS! retrieves them.

The CSI sends requests up-layer from the NI to the ACSLM. When it
sends requests up-layer, the CSI stores the network return address in
the return address queue. The data structure is of type cs I _HEADER.

The SSI sends responses up-layer from the NI to the client
application. When it sends responses up-layer, the SSI retrieves the
!PC address information structure from the return address queue. The
data structure is of type IPC_HEADER. The SSI uses the key value
ssi_identifier in th~ CSI_HEADER structure in order to direct the response
to the correct client application.

The csi_rpcdisp.c routine can be used by both the CSI and the SSI to
receive and process messages up-layer. The difference between the
CSI and SSI functions is accomplished with an tifdef statement in the
code.

CSI and SSllnitialization

During RPC initialization, the CSI registers as a permanent server at a
predefined permanent program number, whereas the SSI registers as a
transient server at a transient program number.

The csi_rpctinit. c routine can be used by both the CSI and the SSI
for RPC TCP initialization, and the csi_rpcuinit. c routine can used
for RPC UDP initialization. The difference between the initialization
sequences of the CSI and SS! is accomplished with an tifdef

statement in the code.

PORTING STORAGETEK XDR ROUTINES

6-4

StorageTek offers XDR translation functions in "C" source code
fonnat, either as a template for, or for direct porting to, client SSI
source code. These routines perform XDR serialization and

9036

551 Requirements XDR functions

9036

deserialization of Storage Server packets. These routines are
structured with a common'high-Ievel interface for the SS!. The
interface has the following two parameters:

• A pointer to the network packet buffer supplied by the programmer
(of type CSI_MSGBUF)

• A pointer to the XDR handle (of type XDR) supplied by RPC.

These XDR interfaces are never called directly by the programmer.
They are always indirectly called on behalf of the programmer via RPC
routines. When porting the StorageTek XDR routines to the customer
host system, the programmer must be careful to preserve the intrinsic
order and structure of translation.

Serialization of Requests

The SSI serializes message packets when it sends a request to the
CSI via the NI. The SSI calls clnt_call () , which in turn calls
csi_xdrrequest (). Figure 6-1 shows the layering of calls.

csi_xdrrequest ()

Figure 6-1. Layering of Calls - Request Serialization

Deserialization of Responses

The SSI deserializes message packets when it receives a response
from the CSI via the NI. The SSI calls the svc_getreq () routine,
which calls the SSI's RPC dispatcher function (defined by the SSI
programmer). The dispatcher function calls svc_getargs (), which in
turn calls csi_ xdrresponse (). Figure 6-2 shows the layering of these
calls.

rpc-dispatcher

csi_xdrresponse()

Figure 6-2. Layering of Calls - Response Deserialization

6-5

Programming an SSI SSI Requirements

PROGRAMMING AN 551

Initializing the 551 as a Callback Server
When the SSI receives responses from the CSI, it functions as a
server, apart from its normal role as primary client. This provides the
CSI with port, program number, and procedure number mapping to
direct an RPC callback.

gettransient ()

socket ()

Because the SSI functions as a transient server it must be assigned a
transient program number. The transient number is dynamically
assigned when the SSI is initiated and should be unmapped with the
portmapper when the SSI is terminated in an orderly manner. When
the SSI is restarted later, a new program number will be assigned.

Figure 6-3 depicts the process of initializing the SSI as a transient
server.

/* 55I non-communications Initialization */

/* establish application IPC or other connections */

/* unmap residual port mappings */

/* get transient RPC programt & socket */

/* create a TCP/IP callback socket */
bind() /* bind socket to get port */

getsockname() /* retrieve assigned port number */

loop {

pmap_set ()

/* count up from starting transient

program t, when pmap_set succeeds

you have a transient program number */
return (program-number) + socket file descriptor, by reference */

svctcp_create() /* establish callback service port */

svc_register ()

ssiyrocess ()

svc_destroy ()

6-6

/* register callback service with port mapper */

/* enter main 55I processing loop */

/* de-allocate the service transport resources */

Figure 6-3. Initializing the SSI Server

9036

SSI Requirements Programming an SSI

To initialize the SSI as a network service, the following is required:

• A unique transient program nwnber, which the CSI can use when
issuing an RPC callback to the SS!.

• A version number, assigned to each program number so that the
program number does not need to change when the NI transport
service is changed.

• A procedure number.

Obtaining a Unique Program Number

In order to obtain a unique transient program number, which the CSI
will use to issue an RPC callback to the SSI (for transmitting Storage
Server responses), the SSI programmer must code a function that
obtains a transient port mapping. The gettransient () function,
shown in Figure 6-4, is a sample of such a function.

The gettransient () function is derived from the following sources:

• A prototype application

• The Sun Network Programming Manual, "Remote Procedure Call
Programming Guide," (subsection: "More Examples/Callback
Procedures").

The number obtained by the function must be in the range for transient
program numbers. See Communications Methodology in Chapter 5 for
this range.

Initializing the SSI - Application Interface

9036

There are no constraints on the design of the interface between the SSI
and the application that it services. It is defined by the customer.

6-7

Programming an SSI SSI Requirements

tinclude <rpc/rpc.h>
tinclude <stdio.h>
tinclude <sys/socket.h>
tdefine START TRANSIENT Ox40000000
tdefine END TRANSIENT OxSffffffe

/* start number for transient progs' * /
/* last transient prog* available */

/*
* gettransient()
*
*
*
*
*
*
*
*
*

Description: Returns the next available RPC transient program number
Assign a socket if the contents of sockp RPC_ANYSOCK.

Returns:
On Call:

(int)

By Reference:
(int *)

- Next available transient program t
- 0 if ERROR

- new socket file descriptor
*/

gettransient(proto,
int proto;

vers, sockp)
/* socket protocol */
/* version number */ int vers;

int *sockPi /* pointer to socket */
{

static int prognum - START TRANSIENT;
int s, len, socktype; /* s-socket fd, len-size of addr */
struct sockaddr in addri /* internet type socket struct */

switch (proto) {
case IPPROTO UDP:

socktype-- SOCK DGRAMf
break; -

case IPPROTO TCP:
socktype-- SOCK STREAM;
break; -

default:
return(O);

/* end of switch */

if (RPC ANYSOCK -- *sockp) {
if «s - socket(AF INET, socktype, 0» < 0) {

return(O); -

}
else

*sockp - s;

s - *sockp;

addr.sin addr.s addr - INADDR ANY;
addr.sin-family-- AF INET;
addr.sin~ort - 0; -
len - sizeof(addr);

/* use the socket passed in */

bind(s, &addr, len); /* maybe already bound so don't check for error */
if (getsockname(s, &addr, &len) < 0)

return (0) ;

/*count up from first program number until find one that is available */
for (prognum - START TRANSIENT; prognum < END TRANSIENT; prognum++) {

if (pmap set(prognum, vers, proto, ntohs(addr.sin-port» > 0)
return(prognum);

}
return(O); /* error */

Figure 6-4. Code for Obtaining a Transient Program Number

6-8 9036

SSI Requirements Programming an SSI

Allocating the Network Buffer

The SSI must allocate a buffer for network input which both stores and
describes the state of network packets. This buffer is of type
CSI_MSGBUF. See Message Translation Structures in Chapter 7 for the
fonnat and content of this structure. For clarification, the defmition is
duplicated below.

typedef struct {
int
int
int
int
CSI_PAKSTAT
CSI_Q_MGMT
char

CSI_MSGBUF;

offset;
size;
maxsize;
translated_size;
packet status;
q_mgmt
data [1] ;

The network buffer is to be allocated to the size of the CSI MSGBUF data
structure (which is the size of the structure from offset through data),

plus the size of data for the maximum size of messages that are
expected. A "e" source code algorithm for this allocation is:

buffer yointer=malloc (name, sizeof (CSI_MSGBUF) +MAX_MESSAGE_SIZE)

The cha r data [1] "C" coding construct used in defining CS I _ MSGBUF,

allows the data area to be dynamically allocated at the same time as the
other portions of the buffer structure. See your UNIX documentation for
a description of the malloc () system routine.

Polling for Application or NI Input

9036

The SSI must poll for input from both the network and client
applications resident on the client host. The method of polling for
network and application input varies depending on the client host.
Under 4.3BSD UNIX the select () system call is employed, for
example.

The following are requirements for using select () :

• Establish a file descriptor from which the SSI can read application
input

• Establish the RPC input file descriptors used in managing RPC
network services

• Construct an input flie descriptor mask to be passed to select ()

• Upon return from select (), differentiate NI input from application
input and make the appropriate function call:

- Call svc _get req () network service function for network input

- Call a user function to process application input

6-9

Programming an SSI SSI Requirements

Receiving a Request
The SSI receives requests from client applications. There are no
constraints on the method the SSI uses to do this; the interface may be
either a function call or an IPC mechanism. There is an implied
constraint, however, in that the SSI must be able to relate a response
to a request so that the response can be sent to the appropriate
application.

The StorageTek. SSI communicates with an application via a BSD
socket IPC mechanism. In order to match a response with the
application that issued the original request, it employs a queueing
mechanism that stores the !PC return address of the application. In
this case, the IPC return address is an application input socket
number.

When the application request is frrst received, its return address is
placed on the queue. The location on the queue is described by an
integer returned from the queueing function. This integer is assigned to
the ssi_identifier in the CSI_HEADER structure and is preserved by the
CSI in its responses. When the SSI receives a Storage Server
response, it uses the ssi _identifier to retrieve the application's IPC
address from the queue, then it sends the response to the application
at that IPC address.

For an example of how this mechanism works in the StorageTek SSI,
see the CSI source file csi_lminput. c.

Formatting a Request Into a Storage Server Packet

6-10

Since there are no constraints with respect to the format and structure
of messages sent to the SSI by an application, this requirement is to be
defined by the customer.

The StorageTek SSI receives input as application-level Storage Server
packets. They are distinguished from SSI-CSI Storage Server packets
in that they have an IPC_HEADER at the topmost layer of the packet
instead of a CSI HEADER.

Since all packets sent from the SSI across the network must contain a
CSI_HEADER, the IPC_HEADER is stripped off and replaced by a
CSI_HEADER containing the RPC return address of the SSI. See Input
to the CS! From the SS! in Chapter 7 for a description of how to
initialize the CSI_HEADER. See the CSI "C" source fue csi_lminput. c

for a description of how the StorageTek SSI strips off the IPC _HEADER

and replaces it with a CSI_HEADER. See the CSI "e" source file
csi_rpccall. c for a description of how the CSI_HEADER is initialized
prior to making an RPC call to the CSI.

9036

SSI Requirements Programming an SSI

Sending a Storage Server Packet !In the NI

9036

The requirements for an SSI issuing an RPC call to the CSI are as
follows:

• The CSI HEADER must be initialized with the RPC return address of
the SSI so that the CSI can send responses back to the SSI.

• The network buffer structure state information must be initialized
properly before entry into xdrrequest () .

• The SSI must obtain the network address and, optionally, the port
number of the CSI.

• The SSI must implement an appropriate RPC timeout-retry
algorithm.

• The SSI must initiate a connection to the remote CSI via a call to
either clntudp_create () or clnttcp_create ().

• The SSI must call clnt_call () which sends the request packet to
the CSI's RPC dispatcher.

• The SSI must block while waiting for the CSI to send an
acknowledge via a svc _ sendreply () call.

• The SSI must call clnt_destroy () to terminate the connection to
the CSI.

Initializing the CSI_HEADER

The SSI must initialize the top layer of a request, which is the
CSI_HEADER, with its return address so that the CSI can use this
address in sending Storage Server responses to the SSI. See Input to
the CSI From the SSI in Chapter 7 for a description of how to initialize
the RPC return address.

The cs I _HEADER must also be stamped with a transaction ID (of type
CSI_XIO) consisting of the following:

• The SSI's return address (redundant for this implementation of the
SSI/CSI, but not for future extensions)

• The current process ID

• A packet sequence number

This architecture was chosen so that the CSI can not only identify
packet sequence, but also differentiate between SSIs running on
different hosts and multiple SSIs running on a single host. See Input to
the CSI From the SSI in Chapter 7 for a description of how to initialize
the CSI XID.

6-11

Programming an SSI SSI Requirements

6-12

Initializing the Network Buffer Structure

The SSI must initialize the network buffer structure (of type
CSI_MSGBUF) before calling the clnt_call () RPC routine, since
clnt_call () calls the XDR translation routine csi_xdrrequest ().

See Message Translation Structures in Chapter 7 for details on the
required state of the network buffer on entry to csi_xdrrequest ().

Obtaining the Network Address of the CSI

The SSI must obtain network address of the CSI before the SSI calls
clnt_call () in order to be able to properly initialize the frrst
parameter on the interface. This parameter is a pointer to an Internet
addressing structure (of type struct sockaddr_in).

The following are requirements for obtaining the remote address of the
CSI:

• Prior knowledge of the name of the CSI host

• An entry for the CSI host in the SSI host's / etc/hosts file (or its
equivalent)

• A system call, roughly equivalent to the UNIX system call
gethostbyname () , which returns the address for a remote host.

Note: If the sinyort variable (the CSI port number in the Internet
address structure used by the SSI on the clnt_call () interface) is set
to 0, the portmapper will always be consulted to obtain a target remote
CSI port number before packets are sent.

Implementing a Timeout-Retry Algorithm

It is necessary to implement a timeout and retry algorithm, due to
variations in the quality of network service and load on both the SSI
and Storage Server host. The SSI detects poor or failed network
service by exercising a timeout on a particular send attempt.
Functionality for a timeout-retry scheme is provided within RPC.
Depending on the nature of the client application, however, it may be
desirable to implement the timeout-retry algorithm at a higher level,
since once invoked, the built-in RPC method is outside of user control.

the RPC method of timeout-retry is specified by declaring a per-try
timeout when initiating a connection via the clntudp_create () RPC
call, and an overall timeout on the subsequent clnt _call () .
Effectively, the overall number of tries is equal to the overall timeout
divided by the per-tty-timeout. For example, if the per-try-timeout
passed to clntudp_create () is specified as 4 seconds, and the overall
timeout passed to clnt_call () is specified as 20 seconds, then five
tries at sending will be attempted within clnt_call (). If the
RPC_SUCCESS return status is not forthcoming and no other RPC error
condition exists, then an RPC _ TlMEDOUT error condition is returned after

9036

SSt Requirements

9036

Programming an SSI

the full timeout has been attempted. The timeout factors need to be
tailored to the individual computer installation.

The clnt_call () -embedded RPC retry scheme hypothetically could
have various negative consequences on an SS!. One major
consequence is that neither application input nor network input can be
detected until the call returns. Consequently, packets may be dropped
at either the application or the network input endpoints.

In order to enhance input detection and prevent the dropping of packets,
it may be desirable to implement the retry algorithm within the SSI
program code, rather than within the RPC call.

Following are the requirements for recovering from poor network
service:

• Specify a per-try timeout, either within SSI program code or within
RPC as a parameter to clntudp_create ().

• Specify an overall timeout, either within SSI program code or within
RPC as a parameter to clnt_call ().

• Provide a mechanism for RPC error detection and recovery in case
of RPC failures or RPC timeouts which prevents packets from being
dropped.

• Depending on the individual SSI application, provide a mechanism
whereby sending network output will not block the detection of
either application or network input.

In order to provide a robust system, StorageTek has chosen to favor
input over output in both its SSI and its CSI. If input is detected during
network transmissions, transmission is temporarily halted, and the
packet is placed on a network output queue. The CSI or SSI then
receives either application or network input. This prevents the
dropping of packets.

After input has been read, if no more input is pending, the StorageTek
SSI flushes its network output queue, sending currently queued
packets to the appropriate target SSI, and then sends the most recently
received packet.

In all cases, it is imperative that the ordering of packets between a
specified CSII SSI pair be preserved. Packets must be sent in the
correct order.

In the StorageTek SSI, environment variables are used to fine-tune the
retry algorithm so that the values for timeout and number-of-tries need
not be hard-coded. The StorageTek SSI has its retry algorithm
implemented outside of RPC. In general, the most successful timeout­
retry approach has been to increase the number of retries rather than
the duration of the timeout. StorageTek has successfully used a four
second timeout combined with five retries in in-house testing.

6-13

Programming an SSI SSI Requirements

6-14

Initiating a Connection to the CSI

The SSI initiates a connection to the CSI by calling either
clnttcp_create () or clntudp_create (). The parameters in this call
are set as follows:

• struct sockaddr in is initialized to the CSI Internet address. To
get the CSI address may require a call to gethostbyname () or its
equivalent. The /etc/hosts file must contain the CSI host network
address.

• The program number is set to CSI_PROGRAM.

• The version number is set to either CSI TCPVERSION or
CS I_UDPVERS ION.

• The socket pointer is set to an open socket of the appropriate
Internet family type, or to RPC_ANYSOCK which will cause RPC to
create the socket.

• If using clntudp_create (), the timing parameter is set as
discussed in the "Implementing a Timeout-Retry ~lgorithm" topic
in this section.

This call returns a client handle structure which will be used in the
subsequent invocation of clnt_call ().

Sending a Request to the CSI

The SSI sends a message packet to the CSI RPC dispatcher via a call
to clnt~call (). The parameters in this call are set as follows:

• The flISt parameter is set to the client handle returned from
clnttcp_create () or clntudp_create ().

• The procedure number is CSI_ACSLM_PROC.

• The XDR serialization procedure is csi_ xdrrequest () .

• The pointer to the network buffer is set to a structure of type
CSI MSGBUF.

• The XDR procedure for data returned is not used, therefore it is set
to xdr_void().

• The network buffer for data returned is not used, therefore it is set
to null.

• The overall timeout to be used is set as discussed in the Retry and
Timeout section.

Invoking XDR Translation

In order to translate the request, the SSI issues a call to
svc_getargs (). One of the parameters to this function is the XDR
translation function, in this case csi_xdrrequest (), and the other is
the network buffer where the serialized packet and information

9036

SSI Requirements Programming an SSI

describing its size and state will be placed. See CSI Message
Processing in Chapter 5 for a description of the operation of
csi_xdrrequest (). See Message Translation Structures in Chapter 7
for a description of the status information returned in the network buffer.

Reading a Response From the NI

9036

The SSI receives Storage Server responses via the NI. Input from the
network is detected when a poll of input file descriptors yields a
network file descriptor as being active.

Depending on the particular implementation of the SSI, this input will
usually be in the form and structure of an XDR-encoded Storage Server
response packet sent by the CSI. Typically, this means that one of the
file descriptors in the svc_fds global fue descriptor mask, defined in the
RPC library, has input pending. Following are the requirements for
processing this input within the SSI:

• Detect network input as a result of input file descriptor polling.

• Issue a call to svc _get req () which transparently further
demultiplexes the RPC input

• svc_getreq () calls the SSI's RPC dispatcher at a designated
proced~e number (the one originally specified by the SSI in the
CSI_HEADER portion of the request).

• Call svc_getargs () within the RPC dispatcher, to retrieve the
packet from the NI.

• svc_getargs () calls the XDR translation function passed to it, in
this case csi _ xdrresponse () to deserialize the packet.

• csi _ xdrresponse () decodes the packet and detennines if it is a
duplicate of a previous transmission.

• Drop duplicate packets.

• Determine the address of the application destined to receive the
packet

Detection of Network Input

As stated previously, the StorageTek SSI uses the select () system
call to detect network input. In this case, detection of network input
involves comparing the global RPC svc_fds mask of network­
dedicated file descriptors that are currently being used to the one(s)
returned from select (). If network input is active, the call to select ()

returns a file descriptor mask with one or more bits set, indicating RPC
input file descriptors.

6-15

.-----------------.-,-,,'.,."~

Programming an SSI SSI Requirements

6-16

Invoking RPC Handling of Input

Handling of RPC input is invoked by calling the svc_getreq () function.
This routine has no parameters and initiates handling of input in a
somewhat transparent manner, since it calls the SSl's RPC dispatcher
on behalf of the SSI. It knows which dispatcher to call because the SSI
previously registered its dispatcher during initiation on call to
svc_register ().

Invoking the RPC Dispatcher

If the switch and case "C" coding construct has been used in
construction of the SSI dispatcher, the switch trips on request­

handle-->procedure-number, and the case entered will be at the
value previously defined as the procedure number that the SSI
originally defined in the CSI_HEADER. See the Sun Network
Programming Manual for details on the switch and case construct.

Invoking XDR Translation

Within the procedure number specified by the SSl's RPC dispatcher,
the SSI issues a call to svc _getargs () in order to have the network
input translated and placed in the network buffer. One of the
parameters to this function is the XDR translation function, in this
case, csi_xdrresponse (), and the other is the network buffer where·
the deserialized packet and information describing its size and state
will be placed. See CSI Message Processing in Chapter 5 for a
description of the operation of csi_xdrresponse (). See Message
Translation Structures in Chapter 7 for a description of the status
information returned in the network buffer.

Detecting Duplicate Packets

The SSI must be able to identify and handle duplicate message
packets. Even if the SSI exercises a timeout, the original message
may still reach the CSI, although later than expected. If this happens,
it is likely that the CSlwill send a duplicate response to the request.
See the "Timing Considerations" topic in the CSI Message Processing
section in Chapter 5 for a more detailed explanation of how duplicate
packets occur.

csi_xdrresponse () detects duplicate packets using the CSI_XID in the
CSI_HEADER: the address, process ID, and sequence number of the
duplicate packet are identical to a previously received packet. Upon
return from csi_xdrresponse (), the packet_status in the CSI_MSGBUF

structure is set to CSI_PAKSTAT_DUPLICATE_PACKET for duplicate
packets.

Depending on the implementation of the SSI, it may be desirable to
drop duplicate packets. Currently csi_xdrresponse () detects a

9036

SSt Requirements Programming an SSI

duplicate packet in the initial phases of the de serialization process,
returning immediately' upon detecting the condition. Only the
CSI_REQUEST_HEADER has been de serialized at this point. H duplicate
packets are not to be dropped, then csi _xdrresponse () must be
changed to completely deserialize the packet before returning.

Determining the Destination Application Address

There is no constraint with respect to communications between the SSI
and the application. However there is a requirement that a response
be paired with a particular request in order that the response can be
sent to the appropriate application. See the "Receiving a Request"
topic in this section for details.

Formatting the Storage Server Response
The Storage Server packet received from the network must be
converted to a form that is intelligible by the client application. There is
no constraint with respect to communications between the SSI and the
application. The nature of this operation is detennined by the customer.

Sending the Response to the Application
There is no constraint on communications between the SSI and the

. application. The form and content of this transaction is determined by
the customer.

Request Processing Summary

9036

The following series of steps outlines the interaction between an SSI
and the CSI to process a Storage Server request. Only the steps
performed by the SSI are detailed. See the CSI Message Processing
section in Chapter 5 for details on the steps performed by the CSI.

SSI: 1. Receives a request from one of its client applications.

2. Calls either the clnttcp_create () or the clntudp_create () RPC
function to establish a TCP/IP or UDP/IP connection to the CSI at
its published RPC address.

3. Calls the clnt_call () RPC function to send the request across the
network.

4. clnt_call () calls a serialization function to convert the response
into XDR format. See the CSI Message Processing section in
Chapter 5 for a description of the StorageTek-supplied XDR
translation functions.

CSI: 5. Receives the request, translates it, and sends it to the ACSLM.
Then, receives and translates responses from the ACSLM, and
routes them to the appropriate SSI.

6-17

Programming an SSI SSI Requirements

6-18

SSI: 6. Calls the svc_getreq () or svc_getreqset () RPC function to
receive the message. The following occurs:
6.1 The svc_getreq () or svc_getreqset () function calls

csi_rpcdisp (), the dispatching service that was registered
during initiation.

6.2 csi_rpcdisp () calls svc_getargs () to get the data off the
network.

6.3 svc_getargs () calls a deserialization function to convert the
response into host-dependent format. See the CSI Message
Processing section in Chapter 5 for a description of the
StorageTek-supplied XDR translation functions.

7. Immediately acknowledges receipt of the message by calling the
svc_sendreply () RPC function, passing no data.

8. If this is afinal response, deletes the CSl's return address from the
connect queue.

9. Calls an RPC function to close the connection.

9036

OVERVIEW

CHAPTER 7:

CSI DATA STRUCTURES

This chapter describes the common data structures, variables, and
extemallibraries used by the CSI and the SSI. The use of common
structures supports both message decoding and extraction of routing
infonnation. Common elements consist of the following:

• External interfaces

• Environment variables

• Input to the CSI from the SSI

• Input to the CSI from the ACSLM

• Output from the CSI to the SSI

• Message translation data structures

EXTERNAL INTERFACES

Overview
This section identifies software libraries, functions, and variables that
are required for CSI and SSI operation. This software is not supplied
by StorageTek.

Software Libraries
The following software libraries, supplied with the Storage Server, are
required for the CSI:

• UNIX operating system

• Sun Microsystems Remote Procedure Call (RPC)

• Sun Microsystems External Data Representation (XDR)

9036 7-1

External Interfaces CSI Data Structures

Communications Protocol Interfaces
The following communications protocols are required for transmission
of data:

• TCP/IP (transparently handled by RPC)

• UDP/IP (transparently handled by RPC)

• Special application-level protocol superimposed on RPC protocol.
See the Communications Methodology section in Chapter 5.

Both the CSI and the SSI use the low-level RPC routines since TCP/IP
is not supported by the intermediate-level RPC calls.

Functions and Variables

7-2

The following RPC & UNIX functions and global variables are used in
the CSI:

svc getargs ()
svc -get req ()
clnt call ()
clnt -destroy ()
clnt - sperrno ()
clnttcp create()
clntudp-create()
pmap set ()
pmap - unset ()
svc destroy 0
svc -freeargs 0
svc - getargs ()
svc -register ()
svc - sendreply ()
svctcp create()
svcudp-create()
svcerr - noproc ()
svcerr-decode()
xdr array ()
xdr-bool ()
xdr -bytes ()
xdr-char ()
xdr=double 0

xdr enumO
xdr -float 0
xdr-free ()
xdr-int 0
xdr -long ()
xdr - opaque ()
xdr - short ()
xdr -string ()
xdr-u char()
xdr-u-int 0
xdr - u -long ()
xctr-u-short 0
xdr-vector 0
xdr-void ()
xdr - wrapstring ()
svc-fds (file descriptors)
cInt stat (data structure)
rpc createerr
gethostbyname() (UNIX 3N
gethostname() (UNIX 3N)

9036

CSI Data Structures Environment Variables

ENVIRONMENT VARIABLES

9036

The following environment variables are used by the CSI. They are
listed below as defmed in the csi . h header file.

#define CSI_TCP_RPCSERVICE "CSI TCP RPCSERVICE"
#define CSI UDP RPCSERVICE "CSI UDP RPCSERVICE"
idefine CSI CONNECT AGETlME "CSI CONNECT AGETlME" - - --
'define CSI_HOSTNAME "CSI HOSTNAME"
#define CSI_RETRY_TlMEOUT
#define CSI_RETRY_TRIES
#define CSI_TRACE_VALUE

"CSI_RETRY_TlMEOUT"
"CSI RETRY TRIES" - -
"TRACE VALUE"

• CSI TCP RPCSERVICE is used to define whether the CSI will
operate as a TCP RPC Server. This variable can be set as follows:

"TRUE"
"FALSE"

• CSI UDP RPCSERVICE is used to define whether the CSI will
operate as a UDP RPC server. This variable can be set as follows:

"TRUE"
"FALSE"

• CSI_CONNECT_AGETIME defines the value of the maximum age of
pen~ng requests in the CSI's request queue. This variable is
accessed as a "C" character array (string) datatype, expressed as
an integer number of seconds. For example, an entry of 172800

indicates two days.

Messages that are older than this value are removed from the
queue, as it is assumed that they will never be responded to. The
CSI sends an entry to the Event Log when this happens. See Error
Detection and Recovery in Chapter 5.

• CSI HOSTNAME defines for the SSI the hostname of its CSI server.
Defining this variable is optional.

• CSI_RETRY_TlMEOUT and CSI_RETRY_TRIES are used together to
determine the minimum total time over which the CSI will attempt
to send a message. Network transmission failures are detected
using a retry algorithm. While the algorithm itself is transparent to
the programmer, the functionality of the algorithm is controlled by
setting these two environment variables.

CSI_RETRY_TlMEOUT defines the minimum amount of time, in
seconds, that the CSI should wait between attempts at
establishing a network connection. Its value is placed in the
timeout variable used on either the clntudp_create () or
clnttcp_create () RPC library calls. See Error Detection and
Recovery in Chapter 5.

7-3

Environment Variables CSI Data Structures

- CSI_RETRY_TRIES defines the number of attempts the CSI
should make to transmit a message. Pending messages are
discarded if a connection cannot be established within the
number of tries defined.

Both of these variables can be set at Storage Server installation,
and reset at reconfiguration. See the UNIX Storage Server System
Administrator's Guide for details on Storage Server installation and
reconfiguration. If they are not set, defaults are supplied as defined
in the csi . h header file. Since the timeout chosen will be a factor of
system and network processing loads, these environment variables
can be used to tailor CSI response to expected system load before
the CSI is initiated.

• CSI_TRACE_VALUE is used to enable packet tracing by the CSI.
Setting trace to 00800000 before initiating the CSI will cause packet
tracing to be enabled. See the CSI Message Processing section in
Chapter 5.

7-4 9036

CSI Data Structures Input to the CSI From the SSI

INPUT TO THE CSI FROM THE SSI

Request Structure

9036

Input to the CSI from the NI is in the format of Storage Server request
packets which are deserialized from XDR format using the StorageTek­
supplied XDR interface function, csi_xdrrequest (). Use of this high­
level XDR interface makes de serialization transparent to the caller;
therefore, CSI input is discussed in terms of its format after
deserialization.

After being deserialized, CSI input has the following format, as defined
in the csi structs. h header file:

struct {

} ;

CSI HEADER

MESSAGE HEADER

csi _header;
message _header;

Note: CSI_HEADER and MESSAGE_HEADER together define the
• CSI_REQUEST_HEADER.

The structure of the CS I _HEADER is described in the following section.

The MESSAGE_HEADER specifies ACSLM request information according
to a predefined format. See the Requests section in Chapter 3 for the
structure and contents of MESSAGE HEADER.

7-5

Input to the CSI From the SSI CSI Data Structures

csi_header Structure

7-6

Description

Format

Values

CSI_HEADER specifies client system return address information, as
defined by a client. Both the CSI and the SSI function as clients, as
well as servers. When the CSI receives a message from the SSI, it
strips off the CSI_HEADER, saves it, and uses it to route response
messages. The values in the CSI_HEADER are returned to the SSI in the
CSl's responses.

The structure of the CSI_HEADER is defined in the csi_header. h header
file which is compiled directly into CSI program code. The CSI_HEADER

definitions are required for the SSI, but the csi_header. h file is not.

typedef struct {
CSI XID
unsigned long
CSI SYNTAX
CSI PROTOCOL
CSI CONNECT
CSI HANDLE RPC - -

CSI_HEADERi

:xid;
ssi _identifier i
csi_syntaxi
csiyrotoi
cstctypei
csi _handle _rpc i

xid serves as a transaction identifier. It is used by both the CSI and the
SSI to identify duplicate packets. Initialization of this variable is
required.

ssi_identifier is reserved for the exclusive use of the SSI and is
preserved by the CSI in its responses. It is intended to be a routing
identifier which the SSI can use to identify a particular client
application, if the client architecture allows multiple client applications
to use a single SSI for network services.

cstsyntax is a version-independent variable that specifies the
translation syntax the client SSI uses to communicate with the CSI.
The CSI uses this identifier to determine the particular type of byte
stream to be passed across the NI. It enables the CSI to apply the
correct de serialization routines when more than a single translation
syntax is supported. Currently only the XDR translation syntax is
supported. The csi _syntax variable should therefore be set to
CSI_SYNTAX_XDR, as defined in the ssi. h header file.

csiyroto is a version-independent variable that specifies the transport
protocol used between the SSI and CSI over the NI. The CSI uses this
identifier to make the appropriate type of connection when executing a

9036

CSI Data Structures Input to the CSI From the SSI

9036

callback to the client SSI. The current implementation employs TCPIIP
and UDP/IP as transport mechanisms. This variable should be set to
CSI_PROTOCOL_TCP or CSI_PROTOCOL_UDP, as defined in csi_header. h.

csi_ctype is a version-independent variable that specifies the type of the
session layer connection and data transfer interface between the SSI
and the CSI. It tells the CSI the structure of the client return address
handle, csi _handle _rpc. Therefore this variable should be set to
CSI_CONNECT_RPCSOCK.

csi _handle JPC contains version-specific return address infonnation that
enables the CSI to send responses to the SS!.

Note: Since IP is being used for the network software layers,
csthandle_rpc is a sockaddr_in Internet address structure. The
definition for this structure resides in netinet / in. h. The "C" include

statement for this header file should be:

#include <netinet/in.h>.

7-7

Input to the CSI From the SSI CSI Data Structures .

csi_xid Structure

7-8

Description

Format

Values

CSI_XID is used in CSI_HEADER to filter out duplicate packets. It
uniquely identifies a message by address, process, and sequence
number.

typedef struct {
unsigned char ~[CSI_NETADDR_SIZE];
unsigned int pw;
unsigned long seq_num;

CSI_XID;

~ is the SSI's host address.

pw is the SSI's process ID.

seq_num is a sequence number generated by the SSI that identifies the
sequencing of messages sent from a particular SSI.

9036

CSI Data Structures Input to the CSI From the SSI

9036

Description

Format

Values

CSI_HANDLE_RPC is used in CSI_HEADER. By defInition, the contents of
this structure are specifIc to the Session Layer network software
implementation. The fonnat shown below is used for UNIX operating
systems that support RPC and the implementation of 4.3BSD sockets.

typedef struct {
unsigned long program;
unsigned long version;
unsigned long proc;
struct sockaddr in raddr;

CS I_HANDLE _ RPC;

program is set to the transient port-mapped RPC program number for
the SSI, to which the CSI must return Storage Server responses.

version ~s set to the current version number of SSI server software, per .
RPC requirements for registration and port mapping. Per csi. h, the
TCP version is defmed as CSI_TCP_VERSION, and the UDP version is
defined as CSI UDP VERSION.

proc is set to the RPC procedure number to be executed by the client
SSI callback service dispatcher in response to a CSI RPC callback.

raddr is used for Internet addressing and varies according to the RPC
implementation. All of the raddr information can be directly set to the
values of the sockaddr_in structure established when making the
transient port-mapping for the client callback service. See
Communications Methodology in Chapter 5 for information on transient
port-mapping.

7-9

Input to the CSI From the SSI CSI Data Structures

sockaddr_in Structure

7-10

Description

Format

Values

The following is a defmition of the Internet addressing "C"
programming structure defined in the in. h header file.

stru~t sockaddr_in {
short nn-famiry;
u_short sinyort;
struct in_addr nn_~;
char

} ;

nn -family is the transport protocol family to be used in sending
responses from the CSI to the SSI. In the current implementation it
should be set to AF _ INET to indicate that Internet addressing is being
used.

sin JJort is set to the number of the port to which the CSI executes
callbacks. If this is 0, the CSI RPC mechanism will reference the RPC
port mapper before initiating network transfers in order to determine
the correct port number.

nn_addr is set to the Internet address of the SSI's host machine.

nn _zero should be zeroed out.

9036

CSI Data Structures Input to the CSI From the ACSLM

INPUT TO THE CSI FROM THE ACSLM

Response Structure

9036

Input from the ACSLM is detected on an ongoing basis when the active
file descriptor is of the ACSLM type. This input is always a Storage
Server response packet, and has the following structure, as defined in
the Im_structs . h header file.

struct {

} ;

IPC HEADER
MESSAGE HEADER

ipc _header;
message_header;

Note: IPC_HEADER and MESSAGE_HEADER together define the
REQUEST_HEADER.

The structure of the IPC_HEADER is described in the following section.

The MESSAGE_HEADER specifies ACSLM request information according
to a predefined format. See the Requests section in Chapter 3 for the
structure and contents of MESSAGE HEADER.

7-11

Input to the CSI From the ACSLM CSI Data Structures

ipc_header Structure

7-12

Description

Format

Values

IPC_HEADER provides IPC "return address" infonnation for requests
and responses between Storage Server processes. This allows the
number of input sockets for any process to be limited to one. The
fonnat shown is for the BSD socket IPC mechanism.

typedef struct {
unsigned long
TYPE
unsigned char
unsigned long
unsigned char
unsigned int
unsigned long

I PC_HEADER;

byte_count
module_type ;
options;
seq_num
return_socut[SOCKET_NAME_SIZE] ;

returnyid
ipc _identifier;

byte _count is the length of the message, including the header, in bytes.

module_type is a "e" enumeration that identifies the process sending
the message. See the Common Variables section in Chapter 3 for
definitions of these types.

seq_ num is a message sequence number used to verify message order
and identify duplicate message packets.

options currently has no defined use. It is reserved for future capabilities
and is maintained as a space filler.

return yid is the process ID generated by the sending process.

return_socket specifies the input socket name of the sending process. If
the message is a request, this is the socket name to which replies are
to be sent. The string size is limited to the file name size limitation of
non-BSD UNIX file systems.

ipc_identijier is used optionally by the requesting process for infonnation
to assist in synchronizing responses. This field is set by the process
originating the request message, and is copied by the receiving process
into its response message.

9036

CSI Data Structures Output From the CSI to the SSI

OUTPUT FROM THE CSI TO THE SSI

Response Structure

9036

CSI output to the SSI is in the fonnat of Storage Server response
packets which are serialized into XDR fonnat using the StorageTek­
supplied XDR interface function, csi_xdrresponse (). Use of this high­
level XDR interface makes serialization transparent to the caller;
therefore, CSI output is discussed in tenns of its fonnat before
serialization.

After being serialized, a response packet has the following fonnat, as
defmed in the csi_structs. h header file:

struct {

} ;

CSI HEADER
MESSAGE HEADER

(message data)

csi _header;
message_header;

Note: CSI_HEADER and MESSAGE_HEADER together define the
CSI_REQUEST_HEADER.

The CSI_HEADER is preserved by the CSI and passed back to the SSI
unaltered. The CSI matches one or more responses to the CSI_HEADER

address of the originating SSI, and sends the responses to the client
SSI. See the Input to the CSI From the SSI section in this chapter for
the structure and contents of cs I HEADER.

MESSAGE_HEADER specifies ACSLM request information generated by
the client application. The ACSLM generally copies this information
into its corresponding response messages. See the Requests section
in Chapter 3 for the structure and contents of MESSAGE_HEADER.

7-13

Message Translation Structures CSI Data Structures

MESSAGE TRANSLATION STRUCTURES

csi_msgbuf Structure

7-14

Description

Format

Values

CSI_MSGBUF defines the buffer for translated Storage Server message
packets. It is used in the clnt_call () and svc_getargs () calls to
csi_xdrrequest () and csi_xdrresponse (). See Appendix C: XDR
Translation Functions for details on these functions.

CS I _MSGBUF should be allocated for the size of its fields plus the size of
the data area desired. The minimum allocation size, described as a
"C" language expression, is

sizeof(CSI_MSGBUF)+MAX_MESSAGE_SIZE

MAX_MESSAGE_SIZE is defined in the defs. h header file.

typedef struct {
int
int
int
int
CSI_PAKSTAT
CSI_Q_MGMT
char

CSI_MSGBUF;

offset;
size;
maxsize;
translated_size;
packet status;
q_mgmt
data [1] ;

offset is the starting position of data in the buffer, expressed in bytes.
The packet data will start offset number of bytes from the start of data.
The CSI_PAK_NETDATAP, supplied in the csi. h header file, can be used
to calculate the starting byte of a packet in data. See Appendix D: CS]
and SS] Required Files for the csi • h header file.

size is the size of the message packet, in bytes, before serialization or
after de serialization.

maxsize is the maximum size of packet data in the buffer. It should
always equal the allocated size of data in bytes.

translated_size is the number of bytes successfully translated during
serialization or deserialization. Comparisons of size to translated_size are
useful for detecting certain error conditions: for example, translated_size
might be less than size during serialization if part of a Storage Server
packet could not be translated but was nevertheless sent

9036

CSI Data Structures Message Translation Structures

9036

packet _status is the status of the packet after decoding. Possible values
are:

• CSI_PAKSTAT_XLATE_COMPLETED, if packet translation was
successful.

• CSI_PAKSTAT_XLATE_ERROR, if there was a translation error.

• CSI_PAKSTAT_DUPLICATE_PACKET, if a duplicate packet was
detected; only the CSI request header will be translated.

q_ mgmt is a data structure dedicated to tracking the retry state of
network packet send attempts for packets residing on the CSI network
output queue. Currently, only the number of transmission attempts is
tracked in the structure variable xmit _tries. xmit _tries is incremented on
each invocation of clnt_call () .

data is an area of memory where the message packet is to be stored.
This should be allocated to an area of memory sized
MAX_MESSAGE_SIZE bytes or larger. See Common Variables in
Chapter 3 for a definition of MAX_MESSAGE_SIZE.

7-15

Message Translation Structures eSI Data Structures

(INTENTIONALLY LEFf BLANK)

7-16 9036

APPENDIX A:

EVENT LOG MESSAGES

EVENT LOG FORMAT

9036

Event Log entries are ASCn text, allowing the Log to be viewed at any
terminal or printed to any printer.

All Event Log entries have a consistent format. Each entry contains a
one-line preftx, followed by one or more lines of message text. Figure
A-I is an example of some Event Log entries.

mm-dd-yy hh:mm:ss component_name [nn] :
module_name: One or more lines o/message text ...

06-01-89 17:59:15 CSI[O]:
csi_init(); Initiation started

06-01-89 18:01:02 ACSSA[O]:
sa demux: CAP 0, 0: Place cartridges in CAP.

06-01-89 18:02:13 AUDIT[l]:
au initiate: audit started

Figure A-1. Sample Event Log

The one-line preftx is broken down as follows:

• mm-dd-yy hh:mm:ss are the date and time of entry.

• component_name is an abbreviation for the originating Storage Server
component. This could be ACSLM, ACSSA, CSI etc.

• [nn] is the request ID enclosed in square brackets. This ID is
generated by the ACSLM when it receives a valid request and is
displayed by a query request.

The module _name that precedes the message text is the name of the
Storage Server program module that generated the message. This is
included to help a Customer Services Engineer isolate the cause of the

A-1

Event Log Entries Event Log Messages

problem; it is not intended to be used by System Administrators or
library users.

EVENT LOG ENTRIES

The following Event Log messages are of particular interest to a
System Administrator or a programmer. They are not the only ones
that may be written to the Event Log, but they are ones most
frequently sent. Messages not listed here indicate a low-level error
and should be brought to the attention of a Software Support
Representative or a Customer Services Engineer.

The messages are grouped by the software component that generates
them (the component_name in the one-line message prefIX). Within
software component, the messages are listed alphabetically. Common
messages which may be generated by any component comprise the
frrst group.

COMMON ENTRIES - UNSOLICITED MESSAGES

A-2

The following are Event Log messages that can occur during Storage
Server processing. The component_name in their message prefix is the
Storage Server component that generated the message. The entries
are listed in alphabetical order. Note: These entries also appear in
the Display Area of the Command Processor as unsolicited messages.

• This message indicates that cartridges are detected in the CAP
during initiation or recovery.

CAP cap_id: Cartridges detected in CAP.

cap _id is the ID of the CAP.

• This message indicates that the specified CAP is ready to receive
cartridges. This message is repeated at approximately one minute
intervals until the CAP door is opened.

CAP cap_id: Place cartridges in the CAP.

cap _id is the ID of the CAP.

• This message indicates that the specified CAP contains cartridges
and is ready for the operator to remove them. This message is
repeated at approximately one minute intervals until the CAP door
is opened.

CAP cap_id: Remove cartridges from the CAP.

cap _id is the ID of the CAP.

9036

Event Log Messages Unsolicited Messages

9036

• This message indicates that the ACSLM is unable to access the
data base. A data base error code, indicating the reason for the
failure, will also be written to the Event Log.

Data Base Failure.
EXEC SQL sql_ command

sql_ command is the SQL statement on which the error occurred.
Note: The second line of the message is not included in the
Display Area message.

• This message indicates that the library hardware is operable, but
with degraded perfonnance.

type identifier: Degraded mode fault_symptom_code.

type is the device type. identifier is the device ID. fault_symptom _code
is a four-character hexadecimal code that provides a Customer
Services Engineer with infonnation needed to troubleshoot the
problem.

• This message indicates that the specified device has been varied to
the diagnostic state and is therefore available for requests
submitted through the Command Processor only.

type identifier: Diagnostic.

• This message indicates that the specified drive needs to be cleaned.

Drive drive)d: Clean drive.

drive _id is the ID of the library drive.

• This message indicates that the Event Logger is unable to open or
write to the Event Log file.

Event log access failed.

• This message indicates that the Event Log has reached the
maximum size defined during installation. This message will be
displayed at one minute intervals until you reduce the size of the
Event Log.

Event log is full.

• This message indicates that the ACSLM or ACSSA cannot
communicate with another Storage Server software component.

IPC failure on socket socket id.

socket _id is the ID of the failing socket.

A-3

Unsolicited Messages Event Log Messages

A-4

• This message indicates that a library hardware error occurred.
type identifier: Library error status.

type is the device type. identifier is the device ID. status'is an
explanation of the error.

• This message indicates that the library configuration specified in
the data base is not the same as that defined in the LMU by a
Customer Services Engineer, or if a component appears in the data
base but fails to respond to LMU commands. This error causes the
Storage Server to tenninate.

Library configuration error.

• This message indicates that the specified LSM has failed to recover
in-transit cartridges during Storage Server recovery.

LSM Ism_ill: In-transit cartridge recovery incomplete.

Ism_ill is the ID of the LSM containing the in-transit cartridges.

• This message indicates that the specified device has been varied
offline. See the vary command description for additional details.

type identifier: Offline.

type is"the device type. identifier is the device ID.

• This message indicates that the specified device has been varied
online. See the vary command description for additional details.

type identifier: Online.

type is the device type. identifier is the device ID.

• This message indicates that the ACSLM has been placed in the
idle state and is therefore unavailable for requests using library
resources.

Server System idle.

• This message indicates that the ACSLM is in an idle-pending state
and is therefore unavailable for requests using library resources.

Server system idle is pending.

• This message indicates that a timeout has occurred during network
data handling. Data may have been lost.

Server System network interface timeout.

• This message indicates that Storage Server recovery has been
completed successfully.

Server system recovery complete.

9036

Event Log Messages Common Entries

• This message indicates that Storage Server recovery has failed.
Server system recovery failed.

• This message indicates that Storage Server recovery has been
initiated.

Server system recovery started.

• This message indicates that the CSI has encountered a Remote
Procedure Call (RPC) failure. Data may have been lost

Server system RPC failure.

• This message indicates that the ACSLM has been placed in the run
state.

Server system running.

COMMON ENTRIES

ACSLH

9036

• This entry indicates that a process has received an invalid status
from another process.

callingJnodule: module_called unexpected status = status

calling_module is the software module making the call. module_called
. is the module that was called. status is the invalid status received.

The following messages are generated by the ACS Library Handler
(ACSLH) component of the ACSLM. The component_name in their
message prefix is ACSLH. The entries are listed in alphabetical order.

• This entry indicates that the ACSLH has detected an invalid CAP
door status value in an LSM status response from the LMU.

bad LSM STATUS cap door status value.

• This entry indicates that the ACSLH has detected an invalid LSM
door status value in an LSM status response from the LMU.

bad LSM STATUS door status value.

• This entry indicates that the ACSLH has detected an invalid hand
indicator value in an LSM status response from the LMU.

bad LSM STATUS hand n indicator value.

n is the number of the robot hand with the invalid indicator. n is
either 0 or 1.

A-5

ACSLH Event Log Messages

A-6

• This entry indicates that the ACSLH has detected an invalid hand
status value in an LSM status response from the LMU.

bad LSM STATUS hand n status value.

n is the number of the robot hand with the invalid status. n is either
o or 1.

• This entry indicates that the ACSLH has detected an invalid line
value in an LSM status response from the LMU.

bad LSM STATUS line value.

• This entry indicates that the ACSLH has detected an invalid ready
value in an LSM status response from the LMU.

bad LSM STATUS ready value.

• This entry indicates that the ACSLH has experienced an overflow
in its message buffer. The LMU will automatically resubmit the
message to the ACSLH, so there should be no loss of data. This
message should be a cause for concern only if it appears frequently,
in which case you should contact your Customer Services Engineer.

buffer overrun ... lmu messages will be lost.

• The ACSLH has received a message from the LMU that it is unable
to interpret. This may be a problem with the way the ACSLH is
handling LMU messages.

Invalid message code received: message_code.

message_code is the code received.

• The following entry indicates a problem with the RS423 line that
runs between the server system and the LMU. This message is
issued after the ACSLH has been unable to establish
communications with the LMU for approximately five minutes. It is
reissued every five minutes thereafter until communications are
reestablished.

LMU communication failure.

• The following entry indicates that the Storage Server data base·
indicates an LSM that does not appear in the library configuration
defined in the LMU. This error will most likely occur in response to
a library request.

lsm: Ism id not configured !!!

Ism id is the LSM ID from the data base.

• The following entry indicates that the number of circuits defined in
the library configuration exceeds the maximum limit.

maximum number of circuits are already open.

9036

Event Log Messages ACSLM

ACSLM

9036

• The following entry indicates that the library configuration defined in
the LMU indicates a Pass-Thru Port (PTP) that the LSM robot is
unable to locate. This error will most likely occur during Storage
Server initialization or recovery.

No Pass-Through ports exist.

• The following entry indicates a problem with the RS423 line that
runs between the server system and the LMU. This message is
issued after the ACSLH has been unable to establish
communications with the LMU for approximately one minute. It is
reissued every minute thereafter until communications are
reestablished.

possible LMU communication failure.

• This entry indicates that the ACSLH did not detect a "start of
frame" character at the beginning of a message from the LMU. The
LMU will automatically resubmit the message to the ACSLH, so
there should be no loss of data. This message should be of concern
only if it appears frequently, in which case you should contact your
Customer Services Engineer.

Start of frame character not found.

• This entry indicates that the ACSLH has detected an invalid error
response from the LMU.

unexpected LMU error response lmu_response.

lmu _response is the response received from the LMU.

• This entry indicates that the ACSLH has detected an invalid
response from the LMU.

unexpected response received (tran_code=lmu_response).

lmu _response is the response code received from the LMU.

The following messages are generated by the ACSLM. The
component_name in their message prefix is ACSLM. The entries are listed
in alphabetical order.

• This entry indicates that the ACSLM has received a message that
is too small from a CSI or the ACSSA. The ACSLM does not
attempt to interpret the message because it does not have enough
information.

byte count (byte_count) too small for min packet
size (min_size) ignored.

A-7

ACSLM

A-8

Event Log Messages

byte_count is the number of bytes in the message. min _size is the
minimum size of a valid, readable message.

• This entry indicates that the CAP door has been closed after having
been opened.

CAP Door Closed.

• This entry indicates that the CAP door has been opened.

CAP Door Opened.

• This entry indicates that the LSM access door has been closed
after having been opened.

LH_MSG_TYPE_DOOR_CLOSED received for I~ ~.

I~ _ ~ is the LSM that has been closed.

• This entry indicates that the LSM access door has been opened.

LH_MSG_TYPE_DOOR_OPENED received for Ism ~.

l~_~ is the LSM that has been opened.

• This entry indicates that an LMU has been placed online.

LH_MSG_TYPE_LMU_READY received for acsjd.

acs _id is the ACS to which the LMU is connected.

• This entry indicates that the LSM has been taken offline.

LH_MSG_TYPE_LSM_NOT_READY received for Ism ~.

I~ _ ~ is the LSM that has gone offline.

• This entry indicates that the LSM has been placed online.

LH_MSG_TYPE_LSM_READY received for Ism_~.

l~ _ ~ is the LSM that is online.

• This entry indicates that a port between the server system and the
LMU has been taken offline.

port _id is the identifier of the port that has gone offline.

• This entry indicates that the ACSLM has encountered a fatal error,
such as a data base failure or an inconsistency in the library
configuration. This is a fatal error to the ACSLM. The ACSLM will
automatically initiate recovery processing if it is able. If recovery
does not start automatically, the system must be rebooted.

Severe Error (status), Exiting to ACSSS.

status is a message indicating the nature of the severe error.

9036

Event Log Messages ACSSA

ACSSA

AUDIT

9036

• This entry indicates that the ACSLM has received a library
degraded mode message with an invalid device type.

Unexpected LH_ADDR_TYPE (device_type) received on
DEGRADED MODE Msg.

device_type is the invalid device type received in the message.

• This entry indicates that the ACSLM has detected a request with
an I PC_HEADER module_type not set to TYPE_CSI or TYPE_SA. The
ACSLM will only process requests received from a client
application through the CSI or from a user through the ACSSA.

Unsupported module type modUk_type detected: discarded

module_type is the invalid entry.

The following messages are generated by the ACSSA. The
component_name in their message prefix is ACSSA. The entries are listed
in alphabetical order.

• This entry indicates that the ACSSA has received a message
packet with an IPC identifier not found in the request queue. The
ACSSA is unable to process the message.

Unknown packet received, command = co~nd,
identifier = ipc_w.

command is the entry in the MESSAGE_HEADER. ipc_id is the identifier
assigned to this message (used to synchronize requests and
responses).

The following entries are generated by the a udi t request. The
component_name in their message prefix is AUDIT. The entries are listed
in alphabetical order.

• This entry indicates that audit processing has been cancelled. The
data base may have discrepancies or errant cartridges may not
have been ejected, therefore the a udi t should be rerun.

Audit cancelled

• This entry indicates that audit processing has completed
successfully.

Audit completed

A-9

AUDIT Event Log Messages

A-10

• This entry indicates that audit processing has tenninated due to
some error condition. The description of the error is displayed in
the Command Area. The data base may have discrepancies or
errant cartridges may not have been ejected, therefore the a udi t

should be rerun.

Audit failed

• This entry indicates that audit processing has begun.

Audit started

• This entry indicates that the robot has found a cartridge with a
duplicate external label.

Cartridge voCid ejected from location celCid,
duplicate label.

The voCid is the tape cartridge with the duplicate label. The cell_id
is the storage cell location where the cartridge was found.

• This entry indicates that the robot has en~ountered a cartridge with
an unreadable or nonexistent external label.

Cartridge votid ejected from location celtid,
unreadable label.

The·votid is the external label of the tape cartridge; question marks
(?) are substituted for the characters that the robot is unable to
read. The cell_ id is the storage cell location where the cartridge
was found.

• This entry indicates that a tape cartridge not listed in the data base
is found in the ACS. The cartridge is added to the data base.

Cartridge vol_id found at location cell_ide

The vol)d is the external label of the tape cartridge. The cell_ id is
the storage cell location where the cartridge was found.

• This entry indicates that a tape cartridge is not in the location
defined by the data base. The cartridge is not moved in the ACS;
instead, the data base is updated to the new storage location.

Cartridge vol_id, new location celtid

The vol_id is the external label of the tape cartridge. The celCid is
the assigned storage cell location of the cartridge.

• This entry indicates that a tape cartridge listed in the data base is
not found in the ACS. The cartridge is removed from the data base.

Cartridge vol_id not found

The vol)d is the external label of the tape cartridge.

9036

Event Log Messages AUDIT

9036

• This entry indicates that another process has reserved a cell record
in the data base and the a udi t process is unable to access it after
the appropriate number of retries and timeouts. The a udi t

continues with the next cell.

cell celCid reserved by another process.

celCid is the ID of the cell record.

• This entry indicates that the LSM robot has unexpectedly found a
cartridge in a CAP cell during ejection of cartridges. This will occur
if the operator did not completely empty the CAP during a previous
eject operation. The audit process will issue an unsolicited
message to empty the CAP, and will then resume ejecting
cartridges after the CAP door is closed.

Destination location full: CAP cell cell_ide

cell_id is the location of the CAP cell.

• This entry indicates that the LSM robot has detected that a storage
cell is missing from the LSM. This is a library configuration error
and causes the Storage Server to terminate. The audit should be
rerun after the error has been corrected and the Storage Server has
gone through recovery.

missing cell cell_id detected.

celCid is the location of the missing cell.

• This entry indicates that a spawned audit process has sent an
incomplete or unintelligible message to the parent a udi t process.
As a result, some errant cartridges may not be ejected. The audit

should be rerun, unless the audit _status is Audi t complete.

audit status.
Not all cartridges were ejected, messages lost.

audit _status can be either Audit cancelled, Audit complete, or
Audit failed.

• This entry indicates that the a udi t process is unable to eject
cartridges. Possible causes are the LSM being forced offline or
suffering a failure while the audit is ejecting cartridges. The audit

should be rerun, unless the audit _status is Audi t complete.

audit status.
Not all cartridges were ejected, status = status_msg.

audit _status can be either Audi t cancelled, Audi t complete, or
Audit failed. status_msg is the reason for the failure.

A-11

CSI Event Log Messages

CSI

A-12

• This entry indicates that a cartridge marked for ejection is no longer
found in its storage cell when the robot goes to move it to the CAP.
The a udi t terminates and should be rerun.

Source location empty: Cell celCid.

celCid is the assigned storage cell location of the cartridge.

The following messages are generated by the CSI. The component_name
in their message preflX is CS I. The entries are listed in alphabetical
order. Note: Since these messages are of special interest to SSI
programmers, the message status code for each is shown under the
message text.

• This entry indicates that the CSI has detected a message from the
ACSLM but is unable to read it.

Cannot read message from the ACSLM: discarded.
MSG_ACSLM_READ_FAILURE

• This entry indicates that the CSI is unable to reply to an RPC
message because the call to the svc_sendreply () function has
failed. See the Sun Network Programming Manual, "Remote
Procedure Call Programming Guide."

Cannot reply to RPC message.
MSG RPC CANT REPLY - - -

• This entry indicates that the ACSLM IPC mechanism is unable to
accept a message from the CSI. The CSI discards the message
after the appropriate number of retries with timeouts.

Cannot send message to ACSLM: discarded.
MSG ACSLM SEND FAILURE - - -

• This entry indicates that the CSI is unable to communicate with the
ACSSA. The CSI discards the message after the appropriate
number of retries with timeouts.

Cannot send message to ACSSA: discarded.
MSG_SEND_ACSSA_FAILURE

• This entry indicates that the NI's communications mechanism is
unable to accept a message from the CSI. The CSI discards the
message after the appropriate number of retries with timeouts.

Cannot send message to NI: discarded.
MSG_SEND_NI_FAILURE

9036

Event Log Messages CSI

9036

• This entry indicates that the CSI was unable to put a client's return
address on its queue because the call to the cl_qm_create ()

common library function has failed.

Can't add member to queue Q-id: queue_id.
MSG_QUEUE_MEMBADD_FAILURE

queue _id is the identifier of the CSI connection queue.

• This entry indicates that the CSI is unable to delete a message in
an internal queue. This is a problem with the cl_ qm _ mdelete ()

common library function.

Can't delete Q-id queue_id, Member: member_ill
MSG_DELETE_QMEMBER_FAILURE

queue _id is the identifier of the CSI connection queue. member Jd is
the ID of the queue member it is trying to delete.

• This entry indicates that the CSI is unable to get status information
because the call to the cl_qm_mstatus () common library function
has failed.

Can't get queue status Q-id: queue_id, Member: member_ill
MSG_QUEUE_STATUS_FAILURE

queue _id is the identifier of the CSI connection queue. member _id is
the ID of the queue member for which the CSI is seeking status
information.

• This entry indicates that the CSI is unable to find a specific member
in an internal queue. This is a problem with the cl_qm_maccess ()

common library function.

Can't locate queue Q-id queue_id, Member: member_id.
MSG_LOCATE_QMEMBER_FAILURE

queue _id is the identifier of the CSI connection queue. member _id is
the ID of the queue member it is trying to locate.

• This entry indicates that the call to the svc_register () function
has failed. See the Sun Network Programming Manual, "Remote
Procedure Call Programming Guide."

Can't register RPC TCP service.
MSG RPCTCP SVCREGISTER FAILED - - -

• This entry indicates that the call to the svc_register () function
has failed. See the Sun Network Programming Manual, "Remote
Procedure Call Programming Guide."

Can't register RPC UDP service.
MSG RPCUDP SVCREGISTER FAILED - - -

A-13

CSI Event Log Messages

A-14

• This entry indicates that the RPC call to the svctcp _create ()

function has failed. See the Sun Network Programming Manual,
"Remote Procedure Call Programming Guide."

Create of RPC TCP service failed,
Addre s s: address, Port: port
MSG_RPCTCP_SVCCREATE_FAILED

address is the address of the host, expressed as an unsigned long

integer. port is the port number of the client where a connection was
attempted.

• This entry indicates that the call to the svcudp_create () function
has failed. See the Sun Network Programming Manual, "Remote
Procedure Call Programming Guide."

Create of RPC UDP service failed,
Address: address, Port: port
MSG_RPCUDP_SVCCREATE_FAILED

address is the address of the host, expressed as an unsigned long

integer. port is the port number of the client where a connection was
attempted.

• This entry indicates that the CSI was ·unable to create the network
output queue which is used for messages between the CSI and the
SS!.

Creation of network output queue failed.
MSG_CREATE_NI_OUTQ_FAILURE

• This entry indicates that either the CSI has encountered a process
that is older than the connection time limit, or that the maximum
number of timeouts and retries has been applied to a packet on the
CSI network output queue. The connection limit is defined by the
CSI_CONNECT_AGETlME environment variable in the rc. acsss file.
The timeout and retry limits are defined by the CSI_RETRY_TlMEOUT

and CSI_RETRY_TRIES environment variables, also defined in the
rc. acsss file. The CSI drops the packet.

Dropping from Queue: Address: address, Port: port_id,
ssi_identifier: ssi_ili, Protocol: protocol
MSG_QUEUE_ENTRY_DROP

address is the return address of the requesting SSI, expressed as an
unsigned long integer. port_id is the identifier of the port on the
server system that provides communications with the SS!. ssi _iii is
the identifier for the SS!. protocol is type of network transmission
protocol.

9036

Event Log Messages CSI

9036

• This entry indicates that the CSI has received a duplicate IPC
packet It automatically drops the duplicate packet.

Duplicate packet from ACSLM detected: discarded.
MSG_DUPLICATE_ACSLM_PACKET

• This entry indicates that the CSI has received a duplicate packet
from the Network Interface. The duplicate is dropped.

Duplicate packet from Network detected: discarded
address: address, process-id: process_ill,
sequence_number: seq_ nbr
MSG_DUPLICATE_NI_PACKET

address is the return address of the packet. process _ id is the process
ID of the packet seq_ nbr defmes the ordering of packets sent via
!PC mechanisms.

• This entry indicates that the call to the cl_qrn_init () or
cl_qm_create () common library function has failed while trying to
create the internal SSI address connection queue.

Initialization of connect queue failed.
MSG_CREATE_CONNECTQ_FAILURE

• This entry indicates that CSI initiation has completed successfully.
Communications with the ACSLM have been successfully
established, and the CSI has been established as an RPC server.

Initiation Completed.
MSG INITIATION COMPLETED - -

• This entry indicates that CSI initiation has failed.

Initiation of CSI Failed.
MSG INITIATION FAILURE - -

• This entry indicates that CSI initiation has been started.

Initiation Started.
MSG INITIATION STARTED - -

• This entry indicates that the CSI has received a request packet
from the SSI with an unrecognizable command specified in the
MESSAGE_HEADER portion of the CSI_REQUEST_HEADER.

Invalid command.
MSG INVALID COMMAND - -

A-15

CSI Event Log Messages

A-16

• This entry may indicate that neither environment variable for the
two available communication services has been defmed; these
variables are CSI_TCP_RPCSERVICE and CSI_UDP_RPCSERVICE in the
rc. acsss file. This entry may also indicate that a request received
from the SSI has incorrect values specified in the protocol­
dependent portions of the CSI_HEADER.

Invalid communications service.
MSG_INVALID_COMM_SERVICE

• This entry indicates that the CSI has received a message that is
too small. The CSI is unable to use this message, therefore it
discards it.

Invalid message size, ~ze, from NI: discarded.
MSG_MESSAGE_SIZE

~ze is the size of the message received from the NI.

• This entry indicates that the CSI has received a message that too
large. The CSI truncates the message to a valid size and attempts
to use it

Invalid message size, size, from NI: truncated.
MSG MESSAGE SIZE TRUNC - --

~z~ is the size of the message received from the NI.

• This entry indicates that an unsupported network protocol has been
passed to the csi_rpccall () function.

Invalid network protocol.
MSG_INVALID_PROTO

• This entry indicates that the calculated network timeout is not a
usable number. The timeout is calculated by combining the figures
assigned to the CSI_RETRY_TIMEOUT and CSI_RETRY_TRIES
environment variables in the rc. acsss file.

Invalid network timeout value.
MSG_INVALID_NI_TIMEOUT

• This entry indicates that a program is trying to use the CSI but it is
not using one of the two valid procedure numbers.

Invalid procedure number.
MSG_RPC_INVALI D_PROCEDURE

• This entry indicates that the CSI has received a packet from the NI
with either an unrecognizable TYPE in the IPC_HEADER portion of the
CSI_REQUEST_HEADER or an unrecognizable IDENTIFIER type in the
message packet

Invalid type.
MSG INVALID TYPE - -

9036

Event Log Messages CSI

9036

• This entry indicates that the CSI has detected a message from the
ACSLM for an invalid or unknown SSI client. The message is
discarded.

Message for unknown client discarded.
MSG_UNDEF_CLIENT

• This entry indicates that the CSI has encountered an operating
system error. This message is indicative of a problem with the
operating system itself, not with the CSI or the Storage Server.

Operating system error. error _nbr
MSG SYSTEM ERROR - -

error _ nbr is the UNIX error number, see your UNIX documentation
for a description.

• This entry indicates that the attempted TCP connection is not
possible.

RPC TCP client connection failed: rpc_error_msg,
Addre s s: address, Port: port
MSG RPCTCP CLNTCREATE - -

rpc_error _msg is a detailed error message generated by the RPC
service itself. In most cases this message will be Program number

not registered, which indicates that either the CSI or the SSI is
not running. address is the address of the client host, expressed as
an unsigned long integer. port is the port number of the client
where a connection was attempted.

• This entry indicates that the attempted UDP connection is not
possible.

RPC UDP client connection failed: rpc_error_msg,
Addre s s: address, Port: port
MSG RPCUDP CLNTCREATE - -

rpc_error _msg is a detailed error message generated by the RPC
service itself. In most cases this message will be Program number

not registered, which indicates that the CSI or SSI is not
running. address is the address of the client host, expressed as an
unsigned long integer. port is the port number of the client where
a connection was attempted.

• This entry indicates that The CSI has begun the process of purging
old processes from its connection queue. The CSI routinely
searches for processes older than CSI_CONNECT_AGETlME and
purges them.

Starting cleanup of connection queue, Q-idqueue_w
MSG_QUEUE_CLEANING_START

A-17

CSI

A-18

Event Log Messages

queue _id is the identifier of the CSI connection queue.

• This entry indicates that CSI tennination has been completed
successfully.

Termination Completed.
MSG TERMINATION COMPLETED - -

• This entry indicates that CSI tennination has been started.

Termination Started.
MSG TERMINATION STARTED - -

• This entry indicates that the CSI has encountered a message from
the ACSLM or the NI that cannot be dellvered because of incorrect
message fonnat or a CSI failure. The message is discarded.

Undefined messaged detected: discarded.
MSG_UNDEF_MSG

• This entry indicates that the CSI has received a signal that it did
not expect.

Unexpected signal caught, value: signal.
MSG_UNEXPECTED_SIGNAL

signal is the signal value the CSI has received.

• This entry indicates that the CSI has been initiated. It notifies you
that an RPC number previously assigned to the CSI still exists.
The CSI unmaps this number and remaps to a new one as a nonnal
part of the initiation.

Unmapped previously registered RPC service.
MSG UNMAPPED RPCSERVICE - -

• This entry indicates that the TYPE in the IPC_HEADER is not
supported by the CSI. The CSI only recognizes IPC input from the
ACSLM, therefore it discards any messages where TYPE is not set
to TYPE LM.

Unsupported module type mwdUk detected: discarded.
MSG UNDEF MODULE TYPE - - -

mwdule is the TYPE value in the IPC HEADER.

• This entry indicates that a packet that the CSI XDR translation
routines are unable to translate a message completely because it
has been damaged. The CSI attempts to translate the message up
to the point where the error was detected. If at least the
CSI_REQUEST_HEADER portion of the message is translatable, the
message is forwarded, otherwise it is dropped.

XDR message translation failure.
MSG XDR XLATE FAILURE - - -

9036

Event Log Messages DISMOUNT

DISMOUNT

EJECT

9036

The following entries are generated by the di smoun t request. The
component_name in their message prefix is DISMOUNT. The entries are
listed in alphabetical order.

• This entry indicates that the storage cell to which a cartridge was
to be dismounted is full, although the data base indicates it was
empty. The robot will retry the dismount until it finds an available
cell.

Destination location full: cell_id

cell_id is the storage cell location indicated in the data base. An
a udi t should be performed on this cell location in order to reconcile
the data base with the physical contents of the cell.

• This entry indicates that the LSM robot was unable to find a tape
cartridge in a tape drive, although the data base indicates that it is
in the drive. The request fails.

Source location empty: drive_id

drive jd is the ID of the tape drive.

The following entries are generated by the eject request.. The
component_name in their message prefix is EJECT. The entries are listed
in alphabetical order.

• This entry indicates that the LSM robot unexpectedly found a
cartridge in a CAP cell. This will occur if the operator did not
completely empty the CAP during a previous eject operation. The
robot will attempt to place the cartridge in the next CAP cell. If it is
unable to find an available CAP cell, the eject process will issue
an unsolicited message to empty the CAP.

CAP cell destination location occupied.

• This entry indicates that a client application submitted an eject
request while the LSM was in the diagnostic state. The request is
rejected; only requests submitted from the Command Processor are
processed while the LSM is in the diagnostic state.

LSM Ism id STATE DIAGNOSTIC. - -

Ism id is the ID of the LSM.

• This entry indicates that the LSM is offline and is therefore
unavailable for ejecting tape cartridges.

LSM Ism id STATE OFFLINE. - -

A-19

ENTER

ENTER

MOUNT

A-20

Event Log Messages

Ism ill is the ID of the LSM.

• This entry indicates that the LSM robot was unable to find a tape
cartridge in the location indicated by the data base. The request
fails.

Source location empty: celtid

celtid is the storage cell location indicated in the data base. If you
suspect that the cartridge is in the library an a udi t should be
performed on the entire library in order to reconcile the data base
with the physical contents of the cell.

The following entries are generated by the enter request. The
component_name in their message prefix is ENTER. The entries are listed
in alphabetical order.

• This entry indicates that the LSM robot has found a tape cartridge
in a location that the data base indicated was empty. The tape
cartridge is not entered into the library.

Destination location full: cell W

celtid is the storage cell location indicated in the data base.

• This entry indicates that the LSM is offline and is therefore
unavailable for entering tape cartridges.

LSM Ism ill = STATE OFFLINE. - -

Ism ill is the ID of the LSM.

The following entries are generated by the mount request The
component_name in their message prefix is MOUNT. The entries are listed
in alphabetical order.

• This entry indicates that the LSM robot has found a cartridge in the
tape drive, although the data base indicates that the drive is
available. The request fails.

Destination location full: drive ide

drive_id is the ID of the tape drive. An audit should be performed in
order to reconcile the data base with the physical contents of the
library.

9036

Event Log Messages INITIATION

• This entry indicates that the LSM robot was unable to find the tape
cartridge in the location indicated by the data base. The request
fails.

Source location empty: celCid.

celt id is the storage cell location indicated in the data base. If you
suspect that the cartridge is in the library an a udi t should be
perfonned on the entire library in order to reconcile the data base
with the physical contents of the cell.

STORAGE SERVER INITIATION

9036

The following messages are generated by the Storage Server Initiation
process perfonned by the ACSLM. The component_name in their
message prefix is ACS S S _DAEMON. The entries are listed in alphabetical
order.

• This entry indicates that the daemon has received an unexpected
exit status from a Storage Server process.

exit status (status), status_code, received from process_ide

status is the numeric exit status from the process. status_code is the
Storage Server status code that was generated as a result of the
exit. process_id is the Storage Server process.

• This entry indicates that Storage Server initiation has completed
successfun y.

Initiation completed.

• This entry indicates that Storage Server initiation has begun.

Ini tiation started, acsss_version.

acsss_version is the version number of the Storage Server software.

• This entry indicates that a Storage Server process has been
automatically restarted.

process id restarted.

process_id is the Storage Server process.

• This entry indicates that a Storage Server process has been
terminated.

signal (signal) terminated process_ide

signal is the UNIX signal that caused the termination. process _id is
the Storage Server process that was terminated.

• This entry indicates that Storage Server termination has begun.

Termination invoked, status code.

A-21

RECOVERY Event Log Messages

status_code is the Storage Server status code which indicates the
reason for the tennination.

STORAGE SERVER RECOVERY

A-22

The following entries are generated by the Storage Server Recovery
process performed by the ACSLM. The component_name in their
message prefix is RECOVERY. The entries are listed in alphabetical
order.

• This entry indicates that the ACS configuration in the Storage
Server data base does not match the configuration defined in the
LMU. Recovery processing terminates.

ACS (acs_id) configuration failed to verify.

acs_id is the unique ID of the ACS.

• This entry indicates that an ACS status in the data base is changed
from the diagnostic state to offline. The ACS was in the diagnostic
state at the time the Storage Server went into recovery, but it will
be offline when recovery completes.

ACS acs_id in STATE_DIAGNOSTIC, marked STATE OFFLINE.

acs Jd is the ACS that was updated.

• This entry indicates that an ACS status in the data base is changed
from the recovery state to online. The ACS was in the recovery
state at the time the Storage Server went into recovery, but it will
be online when recovery completes.

ACS acs_id in STATE_RECOVERY, marked STATE ONLINE.

acs Jd is the ACS that was updated.

• This entry indicates that the server system is not able to
communicate with any ports for the specified ACS. Recovery will
continue, but the ACS and its LSMs are marked offline in the data
base.

ACS acs_id, no ports online, marked offline.

acs_id is the ACS that was updated.

• This entry indicates that the server system is not able to
communicate with a port to an ACS. The port is marked offline in
the data basel

ACS acs_id, port <port_id> failed to go online.

acsJd is the unique ID of the ACS. portJd is the port that failed to
go online.

9036

Event Log Messages RECOVERY

9036

• This entry indicates that the recovery process was unable to
successfully verify the drive configuration in the data base against
the configuration defined in the LMU. This may be because the
LSM is offline or because there is an actual configuration mismatch.

DRIVE configuration failed to verify.

• This entry indicates that a drive has a status of empty, but was
marked in use in the data base. The data base is updated to
indicate that the drive is available.

drive (drive_id) error, status unloaded, marked empty.

drive _id is the drive that was updated.

• This entry indicates that a drive for an online LSM has a status of
empty or not communicating, but was marked in use in the data
base. The data base is updated to indicate that the drive is
available, and any volume records referencing the drive are deleted
from the data base.

drive (drive _id) marked available.

drive Jd is the drive that was updated.

• This entry indicates that a drive for an offline LSM is updated in the
data base to indicate that it is available. The LMU cannot report
drive statuses for an offline LSM; therefore all drives for the LSM
are marked available in the data base.

drive (drive_id) marked available, LSM offline.

drive _id is the drive that was updated.

• This entry indicates that a drive has a status of loaded, but was
marked available in the data base. The data base is updated to
indicate that the drive is in use.

drive (drive_id) marked in use, loaded.

drive Jd is the drive that was updated.

• This entry indicates that a drive has a status of in use and
unloaded, but was marked available in the data base. The external
label of the cartridge in the drive is readable. The data base is
updated to indicate that the drive is in use.

drive (drive_id) readable, marked in use.

drive _id is the drive that was updated.

A-23

RECOVERY Event Log Messages

A-24

• This entry indicates that a drive has a status of in use and
unloaded, but was marked available in the data base. In addition,
the LSM robot is unable to read the extemallabel of the cartridge in
the drive. The data base is updated to indicate that the drive is in
use.

drive (drive_id) unreadable, marked in use.

drive _id is the drive that was updated.

• This entry indicates that a cartridge that was selected for use by a
request process is not physically located in the storage cell
indicated by the data base. The volume record is deleted from the
data base. .

in-transit volume (vol_id) deleted.

vol_ id is the volume record that was deleted.

• This entry indicates that a cartridge that was selected for use by a
request process is not physically located in the storage cell
indicated by the data base. In addition, the LSM is offline. The
volume record is deleted from the data base.

in-transit volume (vo~id) deleted from location cell
(cell_id), LSM offline.

vol_ id is the volume and cell_id is the cell location updated.

• This entry indicates that a cartridge that was selected for use by a
request process is not physically located in the tape drive indicated
by the data base. In addition, the LSM is offline. The volume
record is deleted from the data base.

in-transit volume <vol_id) deleted from location drive
(drive_id), LSM offline.

vol_id is the volume and drive_id is the tape drive updated.

• This entry indicates that a cartridge that was selected for use by a
request process is found in the storage cell indicated by the data
base. The volume record is updated to indicate that the cartridge is
in the storage cell, not in-transit.

in-transit volume (vol_id) marked home.

vol_ id is the volume record that was updated.

• This entry indicates that a cartridge with an unreadable label is
found in a storage cell location that the data base indicates contains
a cartridge that was reserved by a request process. The volume
record is updated to indicate that the selected (in-transit) cartridge
is in the storage cell.

in-transit volume (vol_id) unreadable, marked home.

9036

Event Log Messages RECOVERY

9036

vol_ id is the volume record that was updated.

• This entry indicates that the LSM configuration in the data base
does not match the configuration deImed in the LMU. Recovery
processing tenninates.

LSM configuration failed to verify.

• This entry indicates that an LSM status in the data base is changed
from the diagnostic state to offline. In addition, the ACS is online.
The LSM was in the diagnostic state at the time the Storage Server
went into recovery, but it will be offline when recovery completes.

LSM I~_id in STATE_DIAGNOSTIC, marked STATE OFFLINE.

I~ _ id is the LSM that was updated.

• This entry indicates that an LSM status in the data base is changed
from the recovery state to offline. In addition, the ACS is online.
The LSM was in the recovery state at the time the Storage Server
went into recovery, but it will be offline when recovery completes.

LSM I~_id in STATE_RECOVERY, marked STATE ONLINE.

Ism _ id is the LSM that was updated.

• This entry indicates that the server system is not able to
communicate with any ACS. Recovery continues, but all ACSs and
their LSMs are marked offline.

No server ports online.

• This entry indicates that a cell marked reserved in the data base is
found to be empty. The cell record is updated to empty.

reserved cell (cell_id) marked empty.

celtid is the cell record that was updated.

• This entry indicates that a cell marked reserved in the data base is
updated to empty because the LSM is offline. The recovery process
is unable to verify the cell-contents of an offline LSM.

reserved cell (cell_id) marked empty, LSM offline.

celCid is the cell record that was updated.

• This entry indicates that a cell marked reserved in the data base is
found to contain a cartridge with a readable label. The cell record is
updated to full.

reserved cell (cell_id) readable, marked full.

cell_id is the cell record that was updated.

A-25

RECOVERY Event Log Messages

A-26

• This entry indicates that a cell marked reserved in the data base is
found to contain a cartridge with an unreadable label. The cell
record is updated to full.

reserved cell (cell_id) unreadable, marked full.

celtid is the cell record that was updated.

• This entry indicates that recovery processing tenninates because
the ACSLM is unable to receive a response from the ACS Library
Handler (ACSLH).

timed out awaiting ACSLH response.

• This entry indicates that an LSM has failed to vary online.
unexpected identifier status - status_code for LSM lsmjd

status_code is the final status of the LSM. Ism _id is the unique ID for
theLSM.

• This entry indicates that a drive marked as containing a tape
cartridge is found to be empty. The volume record is deleted from
the data base.

volume (vol_id) not in drive (drive_id), deleted

vol_ id is the volume record that was deleted. drive _ id is the'tape
drive that the data base indicated contained the cartridge.

• This entry indicates that a cell or drive marked reserved is found to
contain a tape cartridge that does not exist in the data base. A
record is created for the new volume.

volume (vol_id) record created.

vot id is the volume record that was created.

• This entry indicates that a cell or drive marked reserved is found to
contain a different tape cartridge than the one indicated in the data
base. The data base is updated with the correct volume ID.

volume (voCid) record updated.

vol_id is the volume record that was updated.

9036

Event Log Messages VARY

VARY

9036

The following entries are generated by the vary request. The
component_name in their message prefix is VARY. The entries are listed in
alphabetical order.

• This entry indicates that a client application submitted a vary

request while the ACS was in the diagnostic state. The request is
rejected; only requests submitted from the Command Processor are
processed while the ACS is in the diagnostic state.

ACS acs_id incorrect requestor type: vary disallowed

acs _id is the ACS in the request.

• This entry indicates that a vary request was received while the
ACS was in the recovery or offline-pending state. The request is
rejected.

ACS acs id is in transitional state: vary disallowed

acs_id is the ACS in the request.

• This entry indicates that a vary offline request was received
while the ACS was already in the offline state. The request is
rejected.

ACS acs_id is offline: vary disallowed.

acs_id is the ACS in the request.

• This entry indicates that a request was received to vary offline the
last online port for an online A CS. The request is rejected. The
ACS must be varied offline before the last online port can be varied
offline.

Attempted to vary last port por~id for online ACS:
vary disallowed.

port _id is the port in the request.

• This entry indicates that a device was forced offline while it was in
the offline-pending state. The vary request that placed the device
in the offline-pending state is overridden.

Current vary request overidden by a vary with the
FORCE option.

• This entry indicates that a client application submitted a vary

request while the drive was in the diagnostic state. The request is
rejected; only requests submitted from the Command Processor are
processed while the drive is in the diagnostic state.

Dri ve drive id incorrect requestor type: vary
disallowed.

A-27

VARY Event Log Messages

A-28

drive_id is the drive in the request.

• This entry indicates that a vary request was received against a
tape drive that the data base indicates is in use.· The request is
rejected.

Drive drive id not available: vary disallowed.

drive Jd is the drive in the request.

• This entry indicates that a request to vary an LSM offline was
processed to completion, but the LSM failed to vary offline.

LSM: Ism_id failed to vary offline.

Ism_id is the LSM in the request.

• This entry indicates that a request to vary an LSM online was
processed to completion, but the LSM failed to vary online.

LSM: Ism_id failed to vary online after an online
request.

Ism _ id is the LSM in the request.

• This entry indicates that a client application submitted a vary
request while the LSM was in the diagnostic state. The request is

. rejected; only requests submitted from the Command Processor are
processed while the LSM is in the diagnostic state.

LSM Ism_id incorrect requestor type: vary disallowed.

Ism _ id is the LSM in the request.

• This entry indicates that a vary request was received while the
LSM was in the recovery or offline-pending state. The request is
rejected.

LSM Ism id is in transition state: vary disallowed.

Ism _ id is the LSM in the request.

• This entry indicates that in-transit cartridge recovery completed
successfully while an LSM was varied online.

LSM Ism_id: recovery complete.

Ism id is the LSM varied online.

• This entry indicates that the LSM robot was unable to dispose of
in-transit cartridges while an LSM was varied online. The LSM is
successfully brought online, but there may be cartridges left in the
robot's hands.

LSM Ism_id: recovery incomplete.

Ism _ id is the LSM varied online.

9036

Event Log Messages VARY

9036

• This entry indicates that, during LSM recovery, the robot finds a
cartridge in-transit, but the data base indicates that the cartridge is
not in-transit. The volume record is deleted from the data base,
and the robot places the cartridge in the Playground area of the
LSM. You must enter the LSM and remove the cartridge.

Misplaced tape. Removed volume record for volid
vol id from database.

vol_ id is the ID of the volume record deleted from the data base.

• This entry indicates that a vary request was received while all
ports to the ACS were offline. The request is rejected. At least
one port must be online in order for a vary request to be processed.

No port online for ACS acs_id: vary disallowed

acs Jd is the ACS in the request.

• This entry indicates that a request to vary a port offline was
processed to completion, but the port failed to vary offline.

port port_id failed to vary offline.

port _id is the port in the request.

• This entry indicates that a request to vary a port online ~as
processed to completion, but the port failed to vary online.

port port_id failed to vary online.

port _id is the port in the request.

A-29

VARY Event Log Messages

(INTENTIONALL Y LEFf BLANK)

A-30 9036

OVERVIEW

APPENDIX B:

ACSLM HEADER FILES

This Appendix includes the following header files which contain
definitions used for ACSLM processing:

• db defs. h - Contains definitions used for data base transactions.

• defs. h - Contains general, system-wide defmitions. Includes
db defs.h.

• identifier. h - Contains structure defmitions used for data base
transactions.

• structs. h - Contains general, system-wide data structure
definitions. Includes db defs. h and identifier. h.

9036 B-1

ACSLM Header Files

db_defs.h HEADER FILE

/* SccsId @(f)db_defs.h 1.4 5/18/89 (c) 1988 StorageTek */
fdefine DB DEFS 1
/*

*
*
*
*
*
*
*
*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

* Functional Description:

*
*
*
*
*
*
*
*
*
*
*

system-wide definitions used in data base transactions.
due to limitations of the INGRES embedded sql front-end,
it is necessary to separate definitions required by the
sql preprocessor because it does not handle all C preprocessor
statements. this file also gets included by defs.h if
_DB_DEFS_ is not yet defined, therefore any routine needing
both MUST include db_defs.h in a "sql declare" section before
the C finclude of defs.h.
NOTE: "unsigned" is not supported by INGRES esqlc

* Modified by:

*
Original. *

*
D. F. Reed
D. A. Beidle

06-0ct-1988
21-Apr-1989 Added DB_MULTI_ROW data base error

* code definition.
*/

/*
* Header Files:
*/

/*
* Defines, Typedefs and Structure Definitions:
*/

fdefine DATA_BASE "lib1" /* data base name */

typedef char ACS; /* acs number/identifier */
idefine MIN ACS 0
idefine MAX ACS 127 /* really 255, but not in a char */

typedef char LSM; /* lsm number */
idefine MIN LSM 0
idefine MAX LSM 15

typedef char PORT; /* server-acs communications line */
fdefine MIN PORT 0

B-2 9036

ACSLM Header Files

#:define MAX PORT 15
#:define PORT NAME_SIZE 32

typedef char PANEL;
:l/:define MIN PANEL 0
#'define MAX PANEL 19

typedef char DRIVE;
#:define MIN DRIVE 0
#'define MAX DRIVE 3

typedef char ROW;
:l/:define MIN ROW 0
:l/:define MAX ROW 14
#:define MIN CAP ROW 0
:l/:define MAX CAP ROW 2

typedef char COL;
#:define MIN COL 0
#:define MAX COL 23
:l/:define MIN CAP COL 0
#:define MAX CAP COL 6

#:define CAP SIZE 21

typedef long FREECELLS;

:l/:define EXTERNAL LABEL SIZE - -

#:define SOCKET NAME SIZE 14 - -

/* cell location codes */
typedef enum {

LOCATION FIRST = 0,
LOCATION_CELL,
LOCATION_DRIVE,

·LOCATION LAST
LOCATION;

/* state codes */
typedef enum {

STATE FIRST = 0,
STATE_CANCELLED,
STATE_DIAGNOSTIC,
STATE_IDLE,
STATE_IDLE_PENDING,

STATE_OFFLINE,
STATE_OFFLINE_PENDING,
STATE_ONLINE,
STATE_RECOVERY,
STATE_RUN,

9036

6

/* lsm panel number */

/* transport number */

/* row number within a Ism panel */

/* column number within a Ism panel */

/* cap cartridge capacity (row*col) */

/* count of unused cells within a */
/* server or acs Or Ism */

/* label characters */

/* max characters in socket name */

/* illegal */

/* illegal */

/* illegal */
/* process state only */

/* 5 */

B-3 .

STATE LAST
STATE;

/* status codes */
typedef enum {

8-4

STATUS SUCCESS = 0,
STATUS_ACS_FULL,
STATUS_ACS_NOT_IN_LIBRARY,
STATUS_ACS_OFFLINE,
STATUS_ACSLM_IDLE,

STATUS_ACTIVITY_END,
STATUS_ACTIVITY_START,
STATUS_AUDIT_ACTIVITY,
STATUS_AUDIT_IN_PROGRESS,
STATUS_CANCELLED,

STATUS_CAP_AVAILABLE,
STATUS_CAP_FULL,
STATUS_CAP_IN_USE,
STATUS_CELL_EMPTY,
STATUS_CELL_FULL,

STATUS_CELL_INACCESSIBLE,
S TATUS_CELL_RE SERVED ,
STATUS_CLEAN_DRIVE,
S TATUS_COMMUNI CAT I ON_FA I LED ,
STATUS_CONFIGURATION_ERROR,

STATUS_COUNT_TOO_SMALL,
STATUS_COUNT_TOO_LARGE,
STATUS_CURRENT,
STATUS_DATABASE_ERROR,
STATUS_DEGRADED_MODE,

STATUS_DONE,
STATUS_DOOR_CLOSED,
STATUS_DOOR_OPENED,
STATUS_DRIVE_AVAILABLE,
STATUS_DRIVE_IN_USE,

STATUS_DRIVE_NOT_IN_LIBRARY,
STATUS_DRIVE_OFFLINE,
S TATUS_DRIVE_RE SERVED ,
STATUS_DUPLICATE_LABEL,
STATUS_EJECT_ACTIVITY,

STATUS_ENTER_ACTIVITY,
STATUS_EVENT_LOG_FULL,
STATUS_IDLE_PENDING,
STATUS_INPUT_CARTRIDGES,
STATUS_INVALID_ACS,

ACSLM Header Files

/* illegal */

/* 5 */

/* 10 */

/* 15 */

/* 20 */

/* 25 */

/* 30 */

/* 35 */

/* 40 */

9036

ACSLM Header Files db_defs.h

STATUS_INVALID_COMMAND,
STATUS_INVALID_DRIVE,
STATUS_INVALID_LSM,
STATUS_INVALID_MESSAGE,

/* 45 */
STATUS_INVALID_OPTION,
STATUS_INVALID_PANEL,
STATUS_INVALID_PORT,
STATUS_INVALID_ROW,
S TATUS_INVALID_S TATE ,

/* 50 */
STATUS_INVALID_SUBPANEL,
STATUS_INVALID_TYPE,
STATUS_INVALID_VALUE,
STATUS_INVALID_VOLUME,
STATUS_IPC_FAILURE,

/* 55 */
STATUS_LIBRARY_BUSY,
STATUS_LIBRARY_FAILURE,
STATUS_LIBRARY_NOT_AVAILABLE,
STATUS_LOCATION_OCCUPIED,
STATUS_LSM_FULL,

/* 60 */
STATUS_LSM_NOT_IN_LIBRARY,
STATUS_LSM_OFFLINE,
STATUS_MESSAGE_NOT_FOUND,
STATUS_MESSAGE_TOO_LARGE,
STATUS_MESSAGE_TOO_SMALL,

/* 65 */
STATUS_MI SPLACED_TAPE ,
STATUS_MULTI_ACS_AUDIT,
STATUS_NORMAL,
STATUS_NONE,
STATUS_NOT_IN_SAME_ACS,

/* 70 */
STATUS_ONLINE,
STATUS_OFFLINE,
STATUS_PENDING,
STATUS_PORT_NOT_IN_LIBRARY,
STATUS_PROCESS_FAILURE,

/* 75 */
STATUS_RECOVERY_COMPLETE,
STATUS_RECOVERY_FAILED,
STATUS_RECOVERY_INCOMPLETE,
STATUS_RECOVERY_STARTED,
STATUS_REMOVE_CARTRIDGES,

/* 80 */
STATUS_RETRY,
STATUS_STATE_UNCHANGED,
STATUS_TERMINATED,
STATUS_VALID,
STATUS_VALUE_UNCHANGED,

/* 85 */
STATUS_VARY_DI SALLOWED ,

9036 8-5

/*

STATUS_VOLUME_ADDED,
STATUS_VOLUME_EJECTED,
STATUS_VOLUME_ENTERED,
STATUS_VOLUME_FOUND,

STATUS_VOLUME_HOME,
STATUS_VOLUME_IN_DRIVE,
STATUS_VOLUME_IN_TRANSIT,
STATUS_VOLUME_NOT_IN_DRIVE,
STATUS_VOL~_NOT_IN_LIBRARY,

STATUS_UNREADABLE_LABEL,
STATUS_UNSUPPORTED_OPTION,
STATUS_UNSUPPORTED_STATE,
STATUS_UNSUPPORTED_TYPE,
STATUS_VOLUME_IN_USE,

STATUS_PORT_FAILURE,
STATUS_MAX_PORTS,
STATUS_PORT_ALREADY_OPEN,
STATUS_QUEUE_FAILURE,
STATUS_RPC_FAILURE,

STATUS_NI_TIMEDOUT,
STATUS_INVALID_COMM_SERVICE,
STATUS_COMPLETE,
STATUS_AUDIT_FAILED,
STATUS_NO_PORTS_ONLINE,

STATUS_CARTRIDGES_IN_CAP,
STATUS_TRANSLATION_FAILURE,
STATUS_DATABASE_DEADLOCK,
STATUS_DIAGNOSTIC,
STATUS_DUPLICATE_IDENTIFIER,
STATUS_EVENT_LOG_FAILURE,

STATUS LAST
STATUS;

Database Dependent Constants
*define DB_SUCCESS 0
*define DB TIMEOUT -17702
*define DB_LOCK_TIMEOUT 10
*define DB NODATA 100
*define DB_DEADLOCK -17700
*define DB INCONSISTENT -38
*define DB_MULTI_ROW -1320

8-6

*/
/*
/*
/*
/*
/*
/*
/*
/*

ACSLM Header Files

/* 90 */

/* 95 */

/* 100 */

/* 105 */

/* 110 */

/* illegal */

successful completion */
timeout occurred */
system lock timeout period (sec.> */
no data was found */
deadlock was detected */
internal database inconsistency */
non-cursor select attempted to */
return more than one row */

9036

ACSLM Header Files

defs.h HEADER FILE

/* SccsId %W% %G% (c) 1988 StorageTek */
.fifndef DEFS
.fdefine
/*

- -
DEFS - -

* StorageTek SECRET

*
*

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

*
*
*
*

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

*
* Functional Description:

*
* system-wide definitions

* includes db_defs.h, unless already defined, to be complete.

*
* Modified by:

*
* D. F. Reed 19-5ep-1988 Original.
*/

/*
* Header Files:
*/

.fifndef DB DEFS - - -
#include "db defs.h"
.fendif DB DEFS - - -

/*

* Defines, Typedefs and Structure Definitions:
*/

.fdefine ACSSS VERSION "Version 1.0"

.fifndef TRUE

.fdefine FALSE o

.fdefine TRUE (! FALSE)

.fendif TRUE

.fifndef NULL
#define NULL «char*)O)
.fendif NULL

/* execution trace support definitions */
.fdefine TRACE ACSSS DAEMON Ox00000100L - -
.fdefine TRACE CSI Ox00000200L
.fdefine TRACE ACSLM
.fdefine TRACE MOUNT
.fdefine TRACE DISMOUNT

9036

Ox00000400L
Ox00000800L
Ox00001000L

defs.h

B-7

defs.h ACSLM Header Files

#define TRACE ENTER OxOOO02000L
#define TRACE EJECT OxOOO04000L
#define TRACE AUDIT OxOOO08000L
#define TRACE_QUERY OxOO010000L
idefine TRACE VARY OxOO020000L
#define TRACE RECOVERY OxOO040000L
idefine TRACE_ACSSA OxOO080000L
idefine TRACE_CP Ox00100000L
idefine TRACE_LIBRARY_HANDLER Ox00200000L
idefine TRACE_EVENT_LOGGER Ox00400000L
#define TRACE CSI PACKETS Ox00800000L - -
idefine TRACE(lev) «trace_value & trace_module) && «trace_value & Oxff) >=
lev))

/* well-known socket name definitions */
/* uses IP port numbers> 50000 (IPPORT_USERRESERVED) */
#define ACSEL "50001"
#define ACSLH "50002"
idefine ACSLM
idefine ACSSA
idefine ACSSS
idefine ANY PORT

"50003"
"50004"
"50005"
"0"

typedef unsigned intBOOLEAN; /* {TRUE, FALSE} */

typedef unsigned short MESSAGE_ID; /* request id assigned by acslm */

idefine MAX ID 21 /* max identifier count */
idefine MIN_MESSAGE 1 /* min message_id value */
idefine MAX MESSAGE 65535 /* max message_id value */
#define MAX MESSAGE SIZE 4096 /* max IPC message size */
idefine MAX RETRY 10 /* max retry Ih_request attempts */
#define RETRY TIMEOUT 2 /* time-out seconds between retries
idefine MAX ACS DRIVES 128 /* max drives per acs */ - -
idefine MAX LSM PTP 4 /* max pass-thru ports per Ism */ - -
idefine MAX PORTS 16 /* max acs communication ports */
idefine FD SETSIZE 32 /* max i file desc. for select */

/* IPC_HEADER option values (bit field) */
idefine RETRY Ox01

/* command codes */
typedef enum {

8-8

COMMAND FIRST = 0,
COMMAND_AUDIT,
COMMAND_CANCEL,
COMMAND_DISMOUNT,
COMMAND_EJECT,

COMMAND_ENTER,
COMMAND_IDLE,
COMMAND_MOUNT,
COMMAND_QUERY,

/* illegal */

/* 5 */

*/

9036

ACSLM Header Files

COMMAND _START,
COMMAND_VARY,
COMMAND_UNSOLICITED_EVENT,
COMMAND_TERMINATE,
COMMAND_ABORT,

COMMAND LAST
COMMAND;

/* ACSLM internal use only */
/* 10 */

/* ACSLM internal use only */
/* ACSLM internal use only */

/* illegal */

/* message_option qualifier codes (bit field) */
tdefine FORCE Ox01
tdefine INTERMEDIATE Ox02
tdefine ACKNOWLEDGE Ox04

/* log_option codes */
typedef enum {

LOG_aPTIaN_FIRST = 0,
LOG_aPTIaN_EVENT,
LOG_aPTIaN_TRACE,
LOG OPTION LAST - -

LOG_OPTION;

/* type codes */
typedef enum {

TYPE FIRST = 0,
TYPE_ACS,
TYPE_AUDIT,
TYPE_CAP,
TYPE_CELL,

TYPE_CP,
TYPE_CSI,
TYPE_DISMOUNT,
TYPE_EJECT,
TYPE_EL,

TYPE_ENTER,
TYPE_DRIVE,
TYPE_IPC,
TYPE_LH,
TYPE_LM,

TYPE_LSM,
TYPE_MOUNT,
TYPE_NONE,
TYPE_PANEL,
TYPE_PORT,

TYPE_QUERY,
TYPE_RECOVERY,
TYPE_REQUEST,
TYPE_SA,

9036

/* illegal */

/* illegal */

/* illegal */
/* automated cartridge system */
/* audit request process */
/* cartridge access port */
/* cell identifier */

/* 5 */
/* ACSSA command process */
/* client system interface */
/* dismount request process */
/* eject request process */
/* event logger */

/* 10 */
/* enter request process */
/* library drive */
/* inter-process communication */
/* library handler */
/* library manager (ACSLM) */

/* 15 */
/* library storage module */
/* mount request process */
/* no identifier specified */
/* LSM panel */
/* ACS communications line */

/* 20 */
/* query request process */
/* recovery request process */
/* storage server request */
/* system administrator (ACSSA) */

defs.h

8-9.

defs.h

TYPE_SERVER,

TYPE_SUBPANEL,
TYPE_VARY,
TYPE_VOLUME,

TYPE_LAST
TYPE;

/* data base field update codes */
typedef enum {

/*

/*
/*
/*

/*

ACSLM Header Files

storage server */
/* 25 */

LSM subpanel */
vary request process */
tape cartridge */

illegal */

FIELD_FIRST = 0, /* illegal */
FIELD_ACTIVITY,
FIELD_CAP,
FIELD_STATE,
FIELD_STATUS,
FIELD LAST /* illegal */

FIELD;

/* query type codes */
typedef enum {

QUERY_TYPE_FIRST 0,
QUERY_TYPE_ALL,

QUERY_TYPE_NEXT,
QUERY_TYPE_ONE,
QUERY_TYPE_LAST

QUERY_TYPE;

/* data base write_mode codes */
typedef enum {

WRITE_MODE_FIRST = 0,
WRITE_MODE_CREATE,
WRITE_MODE_UPDATE,
WRITE MODE LAST - -

WRITE_MODE;

/* volid volume_type codes */
typedef enum {

VOLUME_TYPE_FIRST = 0,
VOLUME_TYPE_DIAGNOSTIC,
VOLUME_TYPE_STANDARD,
VOLUME_TYPE_LAST

VOLUME_TYPE;

/* cell select option codes */
typedef enum {

SELECT_OPTION_FIRST = 0,
SELECT_OPTION_ACS,
SELECT_OPTION_LSM,
SELECT OPTION LAST - -

SELECT_OPTION;

/*

8-10

/* illegal */
/* init sequential read of table */
/* and return first record */
/* get hext sequential record */
/* get record keying off specified id */
/* illegal */

/* illegal */
/* create a new record */
/* update an existing record */
/* illegal */

/* illegal */
/* volid may contain blanks */
/* volid must be 6 chars, [A-Z] [0-9] */
/* illegal */

/* illegal */
/* if lsm full, try any lsm in acs */
/* try specified lsm only */
/* illegal */

9036

ACSLM Header Files

* Global Variable Declarations:
*/

extern int
extern int
extern int
extern int

extern char

errnoi /* system error number */
sd_in; /* module input socket descriptor */
n_fds; /* number of input descriptors */
fd list[FD_SETSIZE];

/* input descriptor list */
my_sock_name[SOCKET_NAME_SIZE);

defs.h

extern TYPE
extern TYPE
extern int

/* module input socket name */
my_module_type;/* executing module's type */
requestor_type;/* request originator's module type */
restart_count; /* process failed/restart count */

extern MESSAGE ID request_id; /* associated request rD, or 0 if */

extern STATE process_state;
extern unsigned long trace_module;
extern unsigned long trace_value;
extern int acs_count;
extern int

/*

*
*/

STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
int
char *
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
char *
STATUS
STATUS
STATUS
int

9036

Procedure Type Declarations:

cl_acs_destroy();
cl_acs_read () ;
cl_acs_update();
cl_acs_valid () ;
cl_acs_write () ;
cl_cap_eject () ;
cl_cap_release();
cl_cap_reserve();
cl_cap_valid () ;
cl_cel_destroy();
cl_cel_next () ;
cl_cel_read();
cl_cel_select () ;
cl_cel_update();
cl_cel_valid () ;
cl_cel_write () ;
cl_chk_input();
cl_command();
cl_db_connect();
cl_db_disconnect();
cl_drv_destroy();
cl_drv_list();
cl_drv _read () ;
cl_drv_update();
cl_drv_valid () ;
cl_drv_write () ;
cl_identifier();
cl_inform () ;
cl_ipc_create();
cl_ipc_destroy();
cl_ipc_open();

/* not associated with a request */
/* executing process' state flag */
/* module trace define value */
/* trace flag value */
/* number of ACSs configured */
/* number of ports configured */

8-11

defs.h

STATUS
STATUS
STATUS
STATUS
char *
char *
char *
void
void
void
void
void
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
int
TYPE
void
char *
STATUS
void
char *
STATUS
STATUS
STATUS
STATUS
STATUS

tendif

8-12

DEFS -

cl_ipc_read () ;
cl_ipc_send () ;
cl_ipc_write () ;
cl_ipc_xmit () ;
cl_lh_error();
cl_lh_identifier();
cl_lh_type();
cl_loq_db_error();
cl_loq_event();
cl_loq_trace();
cl_loq_lh_error();
cl_loq_unexpected();
cl_lsm_destroy();
cl_lsm_list();
cl_lsm_read () ;
cl_lsm_update();
cl_lsm_valid();
cl_lsm_write () ;
clynl_valid () ;
clyroc_init () ;
clyrt_destroy();
clyrt_read () ;
clyrt_update();
clyrt_validO;
clyrt_write 0 ;
cl_ reCL valid 0 ;
cl_rp_init () ;
cl_select_input();
cl_set_type();
cl_siq_hdlr 0 ;
cl_status();
cl_sub_valid () ;
cl_trace () ;
cl_type 0 ;
cl_vol_destroy();
cl_vol_readO;
cl_vol_update();
cl_vol_validO;
cl_vol_write () ;

ACSLM Header Files

9036

ACSLM Header Files identifier .h

identifier.h HEADER FILE

/* SccsId @(i)identifier.h 1.2 4/6/89 (c) 1988 StorageTek */
idefine IDENTIFIER 1
/*

*
*
*
*
*
*
*
*

- -
StorageTek SECRET

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

* Functional Description:

*
*
*
*

system-wide data structure definitions used in data base transactions.
due to limitations of the INGRES embedded sql front-end,
it is necessary to separate definitions required by the

*
*
*

sql preprocessor because it does not handle all C preprocessor
statements. this file also gets included by other header files if -
IDENTIFIERS is not yet defined.

*
*
*

NOTE: "unsigned" is not supported by INGRES esqlc
definitions of system data structures

* Modified by:

*
* D. F. Reed
*/

/*
* Header Files:
*/

/*

27-Jan-1989 Original.

* Defines, Typedefs and Structure Definitions:
*/

typedef struct {

ACS acs;
LSM Ism;

LSMID;

typedef LSMIDCAPID;

typedef struct
ACS acs;
PORT port;

PORTID;

typedef struct
LSMID lsm_id;

9036 8-13

identifier .h

PANEL
PANELID;

typedef struct
PANELID
ROW
COL
ROW
COL

SUBPANELID;

typedef struct
PANELID
DRIVE

DRIVEID;

typedef struct
PANELID
ROW
COL

CELLID;

typedef struct
char

} VaLID;

typedef union
ACS
CAPID
CELLID
DRIVEID
LSMID
PANELID
PORTID
SUBPANELID
VaLID
char
long

IDENTIFIER;

8-14

panel;

panel_id;
begin_row;
begin_col;
end_row;
end_cal;

panel_id;
drive;

panel_id;
row;
col;

acs_id;
cap_id;
cell_id;
drive_id;
lsm_id;
panel_id;
port_id;
subpanel_id;
vOl_id;
socket_name[SOCKET_NAME SIZE];
request;/* really a MESSAGE ID */

ACSLM Header Files

9036

ACSLM Header Files structs.h

structs.h HEADER FILE

/* SccsId @(t)structs.h1.2 4/3/89 (c) 1988 StorageTek */
fifndef _STRUCTS_
tdefine STRUCTS - -
/*

* StorageTek SECRET

*
*

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

*
*
*
*

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

*
* Functional Description:

*
*
*
*
*

definitions of system data structures. most of these structures
are common to csi and acslm, and are included by both header files.
includes "identifier.h", unless already defined, to be complete.
includes "db_structs.h", unless already defined, to be complete.

*
* Modified by:

*
* D. F. Reed
*/

/*
* Header Files:
*/

finclude "defs.h"
tifndef

22-Sep-1988

IDENTIFIER - -
finclude "identifier.h"
tendif IDENTIFIER
fifndef DB STRUCTS - - -
tinclude "db structs.h"
tendif DB STRUCTS - - -

Original.

/*

* Defines, Typedefs and Structure Definitions:
*/

typedef struct {

unsigned short packet_id; /* client-specified */
COMMAND command;
unsigned char message_options;

MES SAGE_HEADER;

typedef struct {

unsigned long byte_count; /* message length, including header */
TYPE module_type; /* sending module type */
unsigned char options; /* see defs.h */

9036 8-15

structs.h ACSLM Header Files

unsigned long
char

se~num; /* message sequence number */
return_socket[SOCKET_NAME_SIZE];

/* sender's input socket name */
unsigned int
unsigned long

I PC_HEADER;

return-pid; /* sender's PID */
ipc_identifier; /* used for message sync */

typedef struct
IPC HEADER ipc_header;
LOG OPTION log_options;
char event_message[MAX_MESSAGE_SIZE];

EVENT_LOG_MESSAGE;

typedef struct
STATUS
TYPE
IDENTIFIER

RESPONSE_STATUS;

typedef struct {

status;
type;
identifier;

IPC HEADER ipc_header;
MESSAGE HEADER message_header;
RESPONSE STATUS message_status;
unsigned short error;

UNSOLICITED_MESSAGE;

typedef struct {
VOLID vOl_id;
RESPONSE_STATUS status;

VOLUME_STATUS;

/* volume status s~b-structure */

/***
* AUDIT REQUEST/RESPONSE COMMON STRUCTURES *

***/

typedef struct {
ACS acs_id;
RESPONSE STATUS status;

AU_ACS_STATUS;

typedef struct {
LSMID
RESPONSE STATUS status;

AU _ LSM _STATUS;

typedef struct {
PANELID panel_id;
RESPONSE STATUS status;

AU_PNL_STATUS;

typedef struct {
SUBPANELID subpanel_id;
RESPONSE STATUS status;

8-16

/* audit ACS identifier status */

/* audit LSM identifier status */

/* audit panel identifier status */

/* audit subpanel identifier status */

9036

ACSLM Header Files structs.h

/***
* QUERY REQUEST/RESPONSE COMMON STRUCTURES *

**/

typedef enum {
AUDIT = 0,
MOUNT,
DISMOUNT,
ENTER,
EJECT,
MAX COMMANDS

QU _COMMANDS;

typedef enum {
CURRENT = 0,
PENDING,
MAX DISPOSITIONS

QU_DISPOSITIONS;

/* request summary commands */

/* request summary dispostions */

typedef struct
MESSAGE ID

} REQ_SUMMARY;

/* request summary matrix */
requests [MAX_COMMANDS] [MAX_DISPOSITIONS];

typedef struct
ACS
STATE
FREECELLS
REQ_SUMMARY
STATUS

QU_ACS_STATUS;

typedef struct
CAPID
STATUS

QU_CAP_STATUS;

typedef struct
DRIVEID
STATE
VOLID
STATUS

QU_DRV_STATUS;

typedef struct
LSMID
STATE
FREECELLS
REQ_SUMMARY
STATUS

QU_LSM_STATUS;

9036

acs_id;
state;
freecells;
requests;
status;

cap_id;
status;

drive_id;
state;
vol_id;
status;

ls~id;

/* ACS status (one/acs_id) */
/* ACS for status */
/* ACS state */
/* number of free cells in ACS */
/* request summary for ACS */
/* ACS status */

/* CAP status (one/cap_id) */
/* CAP for status */
/* CAP status */

/* drive status (one/drive_id) */
/* drive for status */
/* drive state */
/* volume if STATUS_DRIVE_IN USE */
/* drive status */

/* LSM status (one/lsm_id) */
/* LSM for status */

state; /*
freecells; /*
requests; /*
status; /*

LSM state */
number of free cells in LSM */
request summary for LSM */
LSM status */

8-17

structs.h

typedef struct
VOLID
STATUS
unsigned short
DRIVEID

typedef struct
PORTID
STATE
STATUS

QU_PRT_STATUS;

typedef struct
MESSAGE ID
COMMAND
STATUS

QU_REQ_STATUS;

typedef struct
STATE
FREECELLS
REQ_SUMMARY

QU_SRV_S'l'ATUS;

typedef struct
VOLID
LOCATION
union {

CELLID
DRIVEID

location;
STATUS

QU_VOL_STATUS;

ACSLM Header Files

vOl_id;
status;

/* drive proximity status (one/volid) */
/* volume for drive proximity list */
/* volume status */

drive_count;/* number of drive identifiers
drive id[MAX ACS_DRIVES];

port_id;
state;
status;

request;
command;
status;

/* drive list in proximity order

/* port status (one/port_id) */
/* port for status */
/* port state */
/* port status */

/* request status (one/request_id) */
/* request for status */
/* command from request-packet */
/* request status */

/* server status (one) */
/* ACSLM state */

*/

*/

state;
freecells;
requests;

/* number of free cells in library */
/* request summ~ry for library */

/* volume status (one/vol_id) */
vol_id; /* volume for status */
location_type; /* LOCATION_CELL or LOCATION_DRIVE */

/* current location of volume */
cell_id; /* if STATUS_VOLUME_HOME */
drive_id; /* if STATUS_VOLUME_IN_DRIVE */

/* undefined if none of above */
status; /* volume status */

/***
* VARY REQUEST/RESPONSE COMMON STRUCTURES *

***/

typedef struct {
ACS
RESPONSE STATUS

VA_ACS_STATUS;

typedef struct {
DRIVEID
RESPONSE STATUS

VA_DRV_STATUS;

typedef struct {
LSMID
RESPONSE STATUS

8-18

acs_id;
status;

drive_id;
status;

Ism_id;
status;

/* ACS status (one/acs_id) */

/* drive status (one/drive_id) */

/* LSM status (one/lsm_id) */

9036

ACSLM Header Files

typedef struct {
PORTIO

/*

RESPONSE STATUS
VA_PRT_STATUS;

port_id;
status;

* Procedure Type Declarations:
*/

#endif STRUCTS - -

structs.h

/* port status (one/port_id) */

9036 8-19

structs.h ACSLM Header Files

(INTENTIONALL Y LEFf BLANK)

8-20 9036

OVERVIEW

9036

APPENDIX C:

XDR TRANSLATION FUNCTIONS

This Appendix includes listings of the high-level XDR translation
routines supplied by StorageTek:

• csi_xdrrequest () - Used to serialize and deserialize Storage
Server request packets.

• csi_xdrresponse () - Used to serialize and deserialize Storage
Server response packets.

C-1

csi_xdrrequestO XDR Translation Functions

cSi_xdrrequestQ FUNCTION
/*

*
*
*
*
*
*
*
*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1989)
Storage Technology Corporation

All Rights Reserved

* Name:

*
*
*

csi_xdrrequest()

* Description:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CSI high level xdr based routine for serializing and deserializing
storage server request packets. The routines in this source and those
called from this source support a bi-directional protocol for either
encoding or decoding storage server request packets based on the value
of the XDR handle's "xdrsp->x_op" directional variable.

The data buffer passed, "bufferp->data", is encoded during serialization
for up to "bufferp->size" bytes beginning with the byte number specified
as "bufferp->offset". During deserialization, the XDR stream
is translated out of the xdr handle "xdrsp" into "bufferp->data"
beginning at the offset specified by "bufferp->offset".
The number of bytes of the packet that were successfully translated
is returned in "bufferp->translated_bytes".

* This routine will only return an error to the rpc layer (return 0)
* if the contents of the request header could not be translated.

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

C-2

If the request header was translated but there was a translation error
lower in the packet, "bufferp->packet_status" equals
CSI_PAKSTAT_XLATE_ERROR otherwise it equals CSI_PAKSTAT_XLATE_COMPLETED.

If a duplicate packet was detected during deserialization, this routine
returns "bufferp->packet_status" equal to CSI_PAKSTAT_DUPLICATE_PACKET.
In this case, upon return, only the CSI_REQUEST_HEADER portion of the
packet will have been translated.

SERIALIZATION:
For serialization of a request packet, xdrsp->x_op equals XDR_ENCODE.
Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry:
o bufferp->data - ptr to memory containing a request packet
o bufferp->offset - postion where data starts in buffer
o bufferp->size - size of entire request packet in buffer
o bufferp->translated_size - 0 or don't care
o bufferp->packet_status - don't care or CSI_PAKSTAT_INITIAL

9036

XDR Translation Functions csi_xdrrequestO

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o bufferp->maxsize

Upon Exit:
o bufferp->data
o bufferp->offset
o
o
o

o

bufferp->size
bufferp->translated_size
bufferp->packet_status

bufferp->maxsize

DE-SERIALIZATION:

- allocated size of bufferp->data

- unaltered
- unaltered
- unaltered
- bytes of request that xdr could translate
- CSI_PAKSTAT_XLATE_ERROR or

CSI_PAKSTAT_XLATE_COMPLETED
- unaltered

For deserialization of a request packet, xdrsp->x_op equals XDR_DECODE.
During deserialization, if "bufferp->data" is NULL, xdr will allocate
memory for the packet read in off of the wire. In this case it is
the responsibility of the caller to free that memory.

* Upon entry to this routine, the data buffer description structure of
* type CSI MSGBUF must be initialized as follows:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9036

Upon Entry:
o bufferp->data - memory where request packet will be put

OR - NULL for xdr to do allocation for caller
o
o'
o
o
o

bufferp->offset - start byte# where data is placed in buffer
bufferp->size - 0 or don't care
bufferp->translated_size - 0 or don't care
bufferp->paqket_status - don't care or CSI PAKSTAT INITIAL
bufferp->maxsize - allocated size of bufferp->data

Upon Exit:
o bufferp->data - contains the translated data
o bufferp->offset - unaltered
o
o
o

bufferp->size
bufferp->translated_size
bufferp->packet_status

- bytes of request that xdr could translate
- bytes of request that xdr could translate
- CSI PAKSTAT XLATE ERROR or - - -

CSI PAKSTAT XLATE COMPLETED or - - -
CSI PAKSTAT DUPLICATE PACKET - - -

o bufferp->maxsize - unaltered bufferp->data not null on entry
OR - if xdr allocated, bufferp->translated_size

ERROR CONDITIONS AND HANDLING DURING TRANSLATION:
During translation, portions of a packet might not be translatable
for numerous reasons following:

o xdr error,
o client packet format error,
o invalid command,
o invalid identifier type,
o invalid count,
o invalid packet size for designated storage server command
o duplicate packet

If at least the csi_request_header (type CSI_REQUEST_HEADER in
csi_structs.h) can be processed, then a partial packet is translated.

C-3

csi_xdrrequestO XDR Translation Functions

*
*
*
*
*
*
*

The receiver of the partial packet can determine what the attempted
operation was by analyzing the request header and the downstream
portions of the packet that were translated. The amount of the
packet that was actually translated and presumably sent on the wire
(barring a higher level Network layer error) is returned in
"bufferp->translated_size".

* Return Values:

*
*
*
*

(bool_t)
(bool_t)

* Implicit Inputs:

*
* NONE

*

1
o

- At least a partial conversion perfor.med.
- Conversion failed.

- buffer for packet data

*
bufferp->data
bufferp->offset byte. location of start of packet in buffer

*
* Implicit Outputs:

*
*
*
*

bufferp->data
bufferp->size
bufferp->packet_status
bufferp->translated_size

- data is placed here during deserialization.
- size of data placed during deserialization

*
*

- describes various translation errors
- bytes of data that could be. translated

* Considerations:

*
*
*
*

This routine may return a partial packet. Return code will be (1)
if at least a request header can be serialized/deserialized.

*
*
*

The value of size and translated_size is undefined when 0 return code
(error) is returned.

/*
* Header Files:
*/

#include <rpc/rpc.h>
#include "structs.h"
:If:include "defs.h"
:If:include "csi.h"
:If:include "csi xdr xlate.h - -

bool t
csi_xdrrequest(xdrsp, bufferp)
XDR *xdrspi /* XDR handle */
CSI_MSGBUF *bufferpi /* data buffer description structure */
{

C-4 9036

XDR Translation Functions csi_xdrresponseQ

csi_xdrresponseO FUNCTION
/*

*
*
*
*
*
*
*
*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1989)
Storage Technology Corporation

All Rights Reserved

* Name:

*
*csi_xdrresponse()

*
* Description:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9036

CSI high level xdr based routine for serializing and deserializing
storage server response packets. The routines in this source and those
called from this source support a bi-directional protocol for either
encoding or decoding storage server response packets based on the value
of the XDR handle's "xdrsp->x_op" directional variable.

The data buffer passed, "bufferp->data", is encoded during serialization
for up to "bufferp->size" bytes beginning with the byte number specified
as "bufferp->offset". During deserialization, the XDR stream
is translated out of the xdr handle "xdrsp" into "bufferp->data"
beginning at the offset specified by "bufferp->offset".
The number of bytes of the packet that were successfully translated
is returned in "bufferp->translated_bytes".

This routine will only return an error to the rpc layer (return 0)
if the contents of the request header could not be translated.

If the request header was translated but there was a translation error
lower in the packet, "bufferp->packet_status" equals
CSI_PAKSTAT_XLATE_ERROR otherwise it equals CSI_PAKSTAT_XLATE_COMPLETED.

If a duplicate packet was detected during deserialization, this routine
returns "bufferp->packet_status" equal to CSI_PAKSTAT_DUPLICATE_PACKET.
In this case, upon return, only the CSI_REQUEST_HEADER portion of the
packet will have been translated.

SERIALIZATION:
For serialization of a response packet, xdrsp->x_op equals XDR_ENCODE.
Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry:
o bufferp->data - ptr to memory containing a response packet
o bufferp->offset - postion where data starts in buffer
o bufferp->size - size of entire response packet in buffer
o bufferp->translated_size - 0 or don't care
o bufferp->packet_status - don't care or CSI_PAKSTAT_INITIAL

C-5

csi_xdrresponse() XDR Translation Functions

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o bufferp->maxsize - allocated size of bufferp->data

Upon Exit:
o bufferp->data - unaltered
o bufferp->offset - unaltered
o bufferp->size - unaltered
o bufferp->translated_size - bytes of response that xdr could translate
o bufferp->packet_status - CSI PAKSTAT XLATE ERROR or - - -

CSI_PAKSTAT_XLATE_COMPLETED
o bufferp->maxsize - unaltered

DE-SERIALIZATION:
For deserialization of a response packet, xdrsp->x_op equals XDR DECODE.
During deserialization, if "bufferp->data" is NULL, xdr will allocate
memory for the packet read in off of the wire. In this case it is
the responsibility of the caller to free that memory.

Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry:
o bufferp->data - memory where a response packet will be put

OR - NULL for xdr to do allocation for caller
o
o
o
o
o

bufferp->offset
bufferp->size
bufferp->translated_size
bufferp->packet_status
bufferp->maxsize

Upon Exit:
o bufferp->data
o bufferp->offset
o bufferp->size
o bufferp->translated_size
o bufferp->packet_status

- start byte# where data is placed in buffer
- 0 or don't care

o or don't care
- don't care or CSI_PAKSTAT INITIAL
- allocated size of bufferp->data

- contains the translated data
- unaltered
- bytes of response that xdr could translate
- bytes of response that xdr could translate
- CSI PAKSTAT XLATE ERROR or - - -

CSI PAKSTAT XLATE COMPLETED or - - -
CSI PAKSTAT DUPLICATE PACKET - - -

o bufferp->maxsize - unaltered bufferp->data not null on entry
OR - if xdr allocated, bufferp->translated_size

* ERROR CONDITIONS AND HANDLING DURING TRANSLATION:
* During translation, portions of a packet might not be translatable
* for numerous reasons following:

*
* 0 xdr error,
* 0 client packet format error,
* 0 invalid command,
* 0 invalid identifier type,
* 0 invalid count,
* 0 invalid packet size for designated storage server command
* 0 duplicate packet

*
*
*

If at least the csi_request_header (type CSI_REQUEST_HEADER in
csi_structs.h) can be processed, then a partial packet will be encoded.

C-6 9036

XDR Translation Functions csi_xdrresponseO

* The receiver of the partial packet can determine what the attempted
* operation was by analyzing the request header and the downstream
* portions of the packet that were translated. The amount of the
* packet that was actually translated and presumably sent on the wire
* (barring a higher level Network layer error) is returned in
* "bufferp->translated_size".
*
* Return Values:

*
*
*
*

bool t
bool t

- 1 successful xdr conversion
- 0 xdr conversion failed

* Implicit Inputs:

*
* NONE

*
* Implicit Outputs:

*
* bufferp->data

bufferp->size
bufferp->translated_size
bufferp->packet_status

- data is placed here during deserialization.

*
*
*
*
*
*

bufferp->data
bufferp->offset

* Considerations:

*

- size data put here during deserialization.
- bytes of data that could be translated.
- describes various translation errors

- buffer for packet data
byte# location of start of packet in buffer

* This routine may return a partial packet. Return code will be (1) if
* at least a request header can be serialized/deserialized.

*
* The value of packet size returned is undefined when 0 return code
* (error) is returned.

*

/*
* Header Files:

*
* See csi.h/rpc.h for other include files.
*/

#include <rpc/rpc.h>
#include "structs.h"
#include "defs.h"
#include "csi.h"
#include "csi xdr xlate.h

boo I t
csi_xdrresponse(xdrsp, bufferp)
XDR *xdrsp; /* XDR handle */
CSI_MSGBUF *bufferp;
*/

/* data buffer description structure

{

9036 C-7

csi_xdrresponse() XDR Translation Functions

(INTENTIONALL Y LEFf BLANK)

C-8 9036

OVERVIEW

APPENDIX D:

CSI AND SSI REQUIRED FILE.S

This Appendix includes the following files which are required by the
CSI and the SSI:

• csi header. h header file - Contains CSI HEADER defmitions. - -
• csi . h header file - Includes csi_header. h, csi_structs. h, and

csi_msg. h. This fue should be included or duplicated for CSIs and
SSIs.

• csi structs. h header file - Contains CSI data structure
defmitions. This file parallels the Im_structs. h header file, with

. the following differences:

- Im_structs. h uses the I PC_HEADER return address structure,
specifying a return socket name.

- csi_structs. h uses the CSI_HEADER return address structure,
specifying RPC and Internet return address infonnation.

Changes to this file must be reflected in Im_structs. h, and vice
versa.

• csi_msg. h header file - Defines access numbers to each CSI
message.

• csi_getmsg. c source file - Defines the contents of each CSI
message.

9036 0-1

CSI & SSI Required Files

csi_header.h HEADER FILE

/* Sccsld @<t)csi header.h 1.4 6/8/89 (c) 1988 StorageTek */
tifndef CSIHEADER -
#define =CSIHEADER=

/*
*
*
*
*
*
*
*
*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

* Functional Description:
*
*
*

Header file containing all CSI HEADER structure-specific definitions.

* Modified by:
*
*
*

J. w. wishner

INITIAL RELEASE
*/

/*
* Header Files:
*/

/*

30-Jan-1989.
J. A. Wishner

Original.
OS/01/89.TIME STAMP-POST CUSTOMER

* Defines, Typedefs and Structure Definitions:
*/

/*
* Procedure Type Declarations:
*/

tdefine CSI NETADDR SIZE - -
typedef struct {

unsigned long
unsigned long
unsigned long
struct sockaddr in

CSI_HANDLE_RPC; -

typedef enwn {
CSI SYNTAX NONE
CSI-SYNTAX-XDR,

} CSI_SYNTAX; -

typedef enwn {
CSI PROTOCOL TCP
CSI-PROTOCOL-UOP

} CSI_PROTOCOL; -

typedef enwn {
CSI CONNECT RPCSOCK

} CSI_CONNECT; -

typedef struct
unsigned char
unsigned int

0-2

6

program;
version;
proc;
raddr;

0,

1,
2,

1,

/* #of bytes in a network address */

/* callback program number */
/* version number */
/* procedure number to call back to */
/* return internet address */

/* default transfer syntax is none */
/* XDR used as transfer syntax */

/* transport protocol used is TCP/IP */
/* transport protocol used is TCP/IP */

/* type of connection defined by CSI */

addr[CSI NETADDR SIZE]; /* sender network address */
pid; - /* sender process id */

9036

CSI & SSI Required Files

/*

unsigned long
CSI_XIDi

se~num: /* sender sequence number */

* Note: the xid must stay at the very top of CSI HEADER in order for
* duplicate packet comparisons to work in csi_xdrrequest() &

csi xdrresponsed()
*/-

typedef struct {
CSI XID xidi
unsIgned long
CSI SYNTAX
CSI-PROTOCOL
CSI-CONNECT
CSI-HANDLE RPC

} CSI HEADER; -
#endif

9036

ssi_identifier;
csi syntax;
csiyroto:
csi ctype;
csi=handle;

/* transaction id=net address,pid,seq#*/
/* identifier for use by SSI */
/* type of transfer syntax */
/* protocol used */
/* type connection management used */
/* return handle of client */

D-3

csi.h C51 & 551 Required Files

csi.h HEADER FILE

/* SccsId
iifndef CSI
idefine -CSI-

@(i)csi.h 1.11 6/21/89 (c) 1988 StorageTek */

/*
*
*
*
*
*
*
*
*

- -

StorageTek SECRET
Property of Storage Technology Corporation.
Do not copy or distribute unpublished work.

Copyright (1988)
Storage Technology Corporation

All Rights Reserved
* Name:
* csi.h
*
* Functional Description:
*
*
*

CSI/SSI interface include file for the client system interface.

* Modified by:
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

J. A. Wishner
J. A. Wishner
J. A. Wishner

J. A. Wishner

J. A. Wishner

12/02/88.Created.
05/01/89.TIME STAMP-POST CUSTOMER INITIAL RELEASE
05/15/89.Added csi routine level tracing
CSI XDR TRACE LEVEL definition.
Cleaned-out redundant iincludes.
05/30/89Changed data portion allocation on
CSI MSGBUF. Was "char *", now data[l] .
External for csi netbuf goes to char *.
External for csi-netbuf data goes away.
06/16/89Took limits off-of queue sizes.

iinclude <sys/types.h>
iinclude <rpc/rpc.h>
iinclude "cl qm defs.h"
iinclude "cl-qm~h"
iinclude "lm-structs.h"/*includes defs.h structs.h db structs.h identifier.h*/
iinclude "csi header.h"
iinclude "csi-structs.h"
iinclude "csi=msg.h"
/*
iundef DEBUG
*/

/*
* IPC related definitions
* Including workaround (for common library) for Sun IPC bug
*/

iifndef
idefine
idefine
ielse
idefine
idefine
iendif

/*

D-4

INETSOCKETS
CSI INPUT SOCKET
CSI-ACSLM-SOCKET - -

"./to CSI"
"./to=ACSLM"

/* csi input socket name */
/* acslm input socket name */

CSI INPUT SOCKET ANY PORT
CSI-ACSLM-SOCKET ACSLM

/* csi input socket name */
/* see defs.h acslm input socket name */

9036

C51 & 551 Required Files csi.h

* MiscellaneousCSI definitions

5 /* xdr routine level tracing */
*/

#define
#define
#define
#define
#define
#define
#define

CSI XDR TRACE LEVEL
CSI-DEF-CONNECTQ AGETIME
CSI-SELECT TIMEOUT
CSI-DEF RETRY TIMEOUT
CSI-DEF-RETRY-TRIES

172800/* seconds time connection aging */
2 /* seconds time timeout */
3 /* seconds per network send try */
5 /* number of times network retry */
32 /* size of name of host csi is on */ CSI-HOSTNAMESIZE

CSI-NO CAL LEE (char *) NULL /* no fail function name passed to

typedef void (*CSI VOIDFUNC) ();
#define CSI NO LOGFUNCTION
#define CSI-NO-SSI IDENTIFIER a
#define CSI=ISFINALRESPONSE(opt)

* to csi logevent() */
/* function as a variable on call */

(CSI VOIDFUNC) NULL
/* csi-header-no value in ssi identifier */

(0 == (INTERMEDIATE & opt) && \

#define
a == (ACKNOWLEDGE & opt) ? TRUE : FALSE)

CSI_MAX_MESSAGE_SI ZEMAX_MES SAGE_S I ZE

/*-
* packet transfer direction used in packet tracing routine(s)
*/

#define CSI TO ACSLM
#define CSI=FROM_ACSLM

/*

a
1

/* packet direction csi-ptrace() */
/* packet direction csi-ptrace() */

* RPC variables specifically for a CSI. Note: The program numbers are
* effective until post-beta when numbers will be obtained from Sun.
*/

#define CSI PROGRAM
#define CSI-UDP VERSION
#define CSI-TCP-VERSION
#define CSI-ACSLM PROC
#define CSI-DEF TCPSENDBUFO
#define CSI=DEF=TCPRECVBUFO

/* network send options for
typedef enum {

CSI NORMAL SEND,
CSI-FLUSH OUTPUT QUEUE,

} CSI_NET_SEND_OPTIONS;

/*

Ox200000fe
1
2
1000

/* CSI RPC program number */
/* RPC UDP server version# */
/* RPC TCP server version# */
/* RPC server procedure# */
/* size tcp rpc send buffer */
/* size tcp rpc receive buffer*/

routine csi_net_send() */

/* regular send of packet */
/* flush network send queue */

* Environment Variables
*/

#define CSI TCP RPCSERVICE
#define CSI-UDP-RPCSERVICE
#define CSI-CONNECT AGETIME
#define CSI-HOSTNAME
#define CSI-RETRY TIMEOUT
#define CSI-RETRY-TRIES
#define CSI-TRACE-VALUE

"CSI_TCP_RPCSERVICE" /* registers as tcp server */
"CSI UDP RPCSERVICE" /* registers as udp server */
"CSI-CONNECT AGETIME"/* # secs connection aging */
"CSI-HOSTNAME" /* name of host csi is on */
"CSI-RETRY TIMEOUT" /* per try NI timeout */
"CSI-RETRY-TRIES" /* number of retrys */
"TRACE VALUE" /* trace label for getenv()*/

/*
*

csi header return
Connection queue related defines for saving

addresses
*/-

#define
#define
#define
#define
#define

9036

CSI MAXMEMB LM QUEUE a
CSI-MAXMEMB-NI-OUT QUEUE a
CSI-MAXQUEUES - - 2
CSI-CONNECTQ NAME "connection queue"
CSI=NI_OUTQ_NAME "network output queue"

/* unlimited size LM Q */
/* unlimited size NI out Q */
/* max # of csi queues */
/* name of connection Q */
/* name of net output Q */

0-5

csi.h CSI & SSI Required Files

"master control block" /* name of Q control block */

/*
*
*

csi message buffer description structure passed to csi_xdrrequest() and
csi_xdrresponse() XDR translation routines.

*/
/* data offsets into packet buffer */
idefine CSI_PAK_NETOFFSET (sizeof(CSI HEADER) > sizeof(IPC HEADER»\

? 0 : sTzeof(IPC HEADER) - sTzeof(CSI HEADER)
idefine CSI_PAK_LMOFFSET (sizeof(CSI HEADER) > sizeof(IPC HEADER»'

? sizeof(CSI HEADER) - sizeof(IPC HEADER) : 0
idefine CSI_PAK_NETDATAP (bufp') «bufp) ->data) + «char *) CSI_PAK_NETOFFSET)
idefine CSI_PAK_LMDATAP(bufp) «bufp)->data) + «char *)CSI_PAK_LMOFFSET)

/* packet buffer status for buffer
typedef enum {

of type CSI_MSGBUF */

/* currently testing packet */
/* packet translation completed */

CSI PAKSTAT INITIAL = 0,
CSI-PAKSTAT-XLATE COMPLETED,
CSI-PAKSTAT-XLATE-ERROR,
CSI-PAKSTAT-DUPLICATE PACKET,

CSI_PAKSTAT; - -

/* translate error incomplete packet */
/* packet in buffer is duplicate */

/* queue management */
typedef struct csi_~mgmt {

unsigned short xmit tries; /* number of attempts at transmission */
} CSI_Q_MGMT; -

/* packet buffer */
typedef struct {

int
int
int
int
CSI PAKSTAT
CSI_Q MGMT
char -

CSI_MSGBUF;

offset; /* starting offset of packet data */
size; /* size of the data in buffer */
maxsize; /* maximum size of the data in buffer */
translated size;/* size valid data xdr translatable */
packet status; /* success/failure of translation */
~mgmt; /* for managment of queueing */
data[l]; /* starting address of data storage */

idefine CSI MSGBUF_MAXSIZE(sizeof(CSI_MSGBUF) + CSI MAX MESSAGE_SIZE)

/*
*
*
*
*/

Merged request/response types used so data structures can be accessed
at their top layer (common layered structure) to determine their type
and handling. Listed below, these are:

/*
* packet structure definitions for requests sent from csi to the acslm
*/

typedef union {
REQUEST HEADER
AUDIT REQUEST
ENTER-REQUEST
EJECT-REQUEST
VARY "REQUEST
MOUNT REQUEST
DISMOUNT REQUEST
QUERY REQUEST
CANCEL REQUEST
START "REQUEST
IDLE "REQUEST
EJECT ENTER

D-6

re~header;
audit req;
enter=req;
eject_req;
vary req;
mount req;
dismount_req;
query req;
canceT_req;
start req;
idle req;
eject_enter_req;

9036

CSI & SSI Required Files csLh

} CSI_LM_REQUEST;

/*
* packet structure definitions for responses sent from acslm to the csi
*/

typedef union {

/*

REQUEST HEADER
ACKNOWLEDGE RESPONSE
AUDIT RESPONSE
ENTER-RESPONSE
EJECT-RESPONSE
VARY RESPONSE
MOUNT RESPONSE
DISMOUNT RESPONSE
QUERY RESPONSE
CANCEL RESPONSE
START RESPONSE
IDLE RESPONSE
EJECT ENTER

CSI_LM_RESPONSE;

re<L,header;
ack res;
audit res;
enter-res;
eject=res;
vary res;
mount res;
dismount_res;
query res;
cancel res;
start res;
idle res;
eject_enter_res;

* packet structure definitions for requests sent from SSI/NI to the csi
*/

typedef union {

/*

CSI REQUEST HEADER
CSI-AUDIT REQUEST
CSI-ENTER-REQUEST
CSI-EJECT-REQUEST
CSI-VARY REQUEST
CSI-MOUNT REQUEST
CSI-DISMOUNT REQUEST
CSI-QUERY REQUEST
CSI-CANCEL REQUEST
CSI-START REQUEST
CSI-IDLE REQUEST
CSI-EJECT ENTER

CSI_REQUEST;

csi_re~header;
csi audit req;
csi-enter-req;
csi=eject=req;
csi vary req;
csi-mount req;
csi=dismount_req;
csi query req;
csi=cancel_req;
csi start req;
csi-idle req;
csi=eject_enter_req;

* packet structure definitions for responses sent from the csi to SSI/NI
*/

typedef union {

/*

CSI REQUEST HEADER
CSI-ACKNOWLEDGE RESPONSE
CSI-AUDIT RESPONSE
CSI-ENTER-RESPONSE
CSI-EJECT-RESPONSE
CSI-VARY RESPONSE
CSI-MOUNT RESPONSE
CSI-DISMOUNT RESPONSE
CSI-QUERY RESPONSE
CSI-CANCEL RESPONSE
CSI-START RESPONSE
CSI-IDLE RESPONSE
CSI-EJECT ENTER

CSI_RESPONSE;

csi_re~header;
csi ack res;
csi-audit res;
csi=enter=res;
csi eject res;
csi=vary_res;
csi mount res;
csi=dismount_res;
csi query res;
csi=cancel_res;
csi start res;
csi=idle_res;
csi_eject_enter_res;

* external declarations for global variables
*/

/* connection queue to acslm */

9036 0-7

csi.h

extern QM QID
extern long
extern long
extern int
extern int
extern BOOLEAN
extern BOOLEAN

csi ni out qid; /*
csi=lm~lastcleaned; /*
csi connect agetime; /*
csi-rpc tcpsock; /*
csi-rpc-udpsock; /*
csi-udp-rpcsvc; /*
csi-tcp-rpcsvc; /*

CSI & SSI Required Flies

network output queue */
time acslm connect queue cleaned */
aging time for connection */
rpc tcp service socket */
rpc udp service socket */

extern CSI MSGBUF *cs1 netbufp; /*

TRUE if using RPC UDP server */
TRUE if using RPC TCP server */
network packet buffer */

extern SVCXPRT *csi-udpxprt; /*
extern SVCXPRT *csi=tcpxprt; /*
extern QM QID csi_lm_qid; /*

CSI UDP transport handle */
CSI TCP transport handle */
ID of CSI connection queue */

extern CSI HEADER csi ssi address; /* CSI header to build ssi packets */
IPC header used to build packets */
seconds per network send try */
number of times network retry */
address of this host */

extern I PC-HEADER csi=ipc=header; /*
extern int csi retry timeout; /*
extern int csi-retry-tries; /*
extern unsigned char osi netaddr[]; /*

csi hostname[]; extern char /* name of this host */
extern int csiyid; /* process id this program */

/*
* external declarations for csi internal routines
*/

extern void
extern void
extern STATUS
extern char
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern void
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern STATUS
extern
extern int

csi_fmtlm~log();
csi_fmtni~log();
csi freeqmemO;
*cs1 getmsg();
csi getiaddr();
csi-hostaddr();
csi-init 0 ;
cSi-lminput();
csi-netbufinit();
csi-net sendO;
csiyrooess 0 ;
csiytrace 0 ;

extern unsigned long
extern STATUS

csi qclean();
cSi-qget();
cSi-qinit () ;
cSi-qput();
csi-rpccall();
cSi-rpctinit();
cSi-rpcdisp();
csi-rpcinput();
csi-rpctransient();
csi-rpcuinit 0;

extern int
extern int
extern STATUS
extern int

/*

csi - sighdlr () ;
csi-ssicmp();
csi-svcinit();
csi=xidcmp();

* external declarations for XDR conversion routines
*/

extern bool t csi _xackresponse();
extern bool - t csi _xacs();
extern bool t csi _xcap_ id () ;
extern bool -t csi xcell id () i
extern bool -t csi-xcol (fi
extern bool t csi -xcommand () ;
extern bool -t csi-xcsi hdr()i

bool - csi-xdrive id()i extern t
extern bool t csi-xdrrequest();
extern bool - t csi=xdrresponse();

~ 9036

CSI & SSI Required Files

extern bool t csi xeject();
extern beel t csi-xeject enter();
extern bool-t csi-xfreecells();
extern bool t csi-xidentifier();
extern beel-t csi-xipc hdr();
extern bool t csi-xlocation();
extern beel t csi-xlsm();
extern bool-t csi-xlsm id();
extern bool t csi-xmsg-hdr();
extern bool-t csi-xpnl();
extern bool t csi-xpnl id();
extern bool t csi-xport();
extern bool-t csi-xport id();
extern bool-t csi-xqu response();
extern bool-t csi=xre~hdr();
extern bool-t csi xreqsummary();
extern bool t csi-xres status();
extern bool t csi-xrow();
extern bool-t csi-xsockname();
extern bool t csi-xspnl id();
extern bool t csi-xstate();
extern bool-t csi-xstatus();
extern bool t csi-xtype();
extern bool t csi-xvol id();
extern bool-t csi-xvol=status();

#endif

9036

csi.h

0-9

cSi_structs.h CSI & SSI Required Files

cSi_structs.h HEADER FILE

/* Sccsld %W% %G% (c) 1988 StorageTek */
#ifndef CSI STRUCTS
#define =CSI=STRUCTS=
/*
* StorageTek SECRET
*
*
*
*
*
*
*

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

* Functional Description:
*

definitions of CSI data structures. *
*
*
*
*
*

includes "defs.h", unless already defined, to be complete.
includes "identifier.h", unless already defined, to be complete.
includes "db structs.h", unless already defined, to be complete.
includes "structs.h", unless already defined, to be complete.

* NOTE:
* the structures defined here have corresponding definibions for the
* ACSLM in 1m structs.h. any modifications to this file MUST be
* reflected in 1m structs.h as well.
* * Modified by:
*
*
*
*/

D. F. Reed
J. A. Wishner

/*
* Header Files:
*/

#include
#ifndef
#include
#endif
#ifndef
#include
#endif
#include
#include

/*

"defs.h"
IDENTIFIER

"identifier-:-h"
IDENTIFIER

-DB STRUCTS­
"db-structs-:-h"

DB-STRUCTS
"structs.h"­
"csi header.h"

29-Jan-1989
30-Jan-1989

Original.
Added definitions for CSI_HEADER.

* Defines, Typedefs and Structure Definitions:
*/

typedef struct { /* fixed portion of request-packet */
CSI HEADER csi header;
MESSAGE HEADER message_header;

} CSI_REQUEST_HEADER;

typedef struct { /* intermediate acknowledgment */
CSI REQUEST HEADER csi_request_header;
RESPONSE STATUS message status;
MESSAGE ID message-id;

CSI_ACKNOWLEDGE_RESPONSE; -

0-10 9036

CSI & SSI Required Files csi_ structs.h

/***
* AUDIT REQUEST/RESPONSE STRUCTURES

* **/

typedef struct {
*/

CSI REQUEST HEADER
CAPID -
TYPE

/* audit_request

csi request header;
cap-id; - /* CAP for ejecting cartridges
type; /* type of identifiers
count; /* number of identifiers

*/
*/
*/ unsigned short

union { /* list of homogeneous ids
acs id[MAX ID];

to audit */
ACS
LSMID
PANELID
SUBPANELID

identifier;
CSI_AUDIT_REQUEST;

lsm-id[MAX-ID];
panel id[MAx ID];
subpanel_id[MAx_ID];

typedef struct { /* audit response
CSI REQUEST HEADER csi request header; -
RESPONSE STATUS message status;

*/

CAPID - cap id;- /*
TYPE type; /*
unsigned short count; /*
union { /*

CAP for ejecting cartridges */
type of identifiers */
number of audited identifiers */
list of ids audited w/status */

AU ACS STATUS acs status[MAX ID];
AU-LSM-STATUS lsm-status[MAX-ID];
AU-PNL-STATUS panel_statUS[MAx_ID];
AU-SUB-STATUS subpanel status[MAX ID];

identifier. status; - -
CSI_AUDIT_RESPONSE;

typedef struct {
CSI REQUEST HEADER
RESPONSE STATUS
CAPID -
unsigned short
VOLUME STATUS

CSI_EJECT_ENTER;

/* eject enter i·ntermediate re.sponse * /
csi request header; -
message status;
cap id;- /* CAP for ejecting cartridges */
count; /* no. of volumes ejected/entered */
vOlume_status[MAX_ID];

/***
* EJECT REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER
CAPID -
unsigned short
VOLID

CSI_EJECT_REQUEST;

typedef CSI_EJECT_ENTER

/*
csi request header;
cap-id; - /*
count; /*
vol_id[MAX_ID]; /*

eject request */

CAP used for ejection */
Number of cartridges */
External tape cartridge label */

CSI EJECT_RESPONSE;

/***
* ENTER REQUEST/RESPONSE STRUCTURES *
**/

typedef struct { /* eject request */
CSI REQUEST HEADER csi request header;
CAPID - cap=id; - /* CAP used for entry */

CSI_ENTER_REQUEST;

9036 0-11

cSi_structs.h CSI & SSI Required Files

typedef CSI EJECT ENTER CSI ENTER RESPONSEi
/**
* MOUNT REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER
VOLID -
unsigned short
DRIVEID

CSI_MOUNT_REQUESTi

typedef struct
CSI REQUEST HEADER
RESPONSE STATUS
VOLID -
DRIVEID

CSI_MOUNT_RESPONSEi

csi request headeri
vol-idi -
counti
drive_id[l]i

csi_request_headeri
message statusi
vol idi-
drive_idi

/***
* DISMOUNT REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER csi request headeri
VOLID - vol-idi-
DRIVEID drive_idi

CSI_DISMOUNT_REQUESTi

typedef struct
CSI REQUEST HEADER csi_request_headeri
RESPONSE STATUS message status;
VOLID - vol id;-
DRIVEID drive_id;

CSI_DISMqUNT_RESPONSE;

/***
* QUERY REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER
TYPE -
unsigned short
union {
ACS
LSMID
CAPID
DRIVEID
VOLID
MESSAGE ID
PORTID -
} identifier;

CSI_QUERY_REQUEST;

typedef struct {
CSI REQUEST HEADER
RESPONSE STATUS
TYPE -
unsigned short
union {

0-12

QU SRV STATUS
QU-ACS-STATUS
QU=LSM=STATUS

/* query request */
csi request header; -
type; - /* type of query */
count; /* number of identifiers */

/* list of homogeneous ids to query */
acs id[MAX ID];
Ism -id[MAX-ID] ;
cap-id[MAX-ID];
drive id[MAX ID];
vol id [MAX IO];
request[MAX ID];
port_id[MAX=ID];

/ / query response
csi request header; -
message_status;
type; /* type of query */
count; /* number of identifiers */

/* list of ids queried w/status */
server status[MAX ID];
acs status[MAX IDT;
Ism=status[MAX=ID];

9036

C51 & 551 Required Files

QU CAP STATUS
QU-DRV-STATUS
QU-MNT-STATUS
QU-VOL-STATUS
QU-PRT-STATUS
QU-REQ-STATUS

status response;
CSI_QUERY_RESPONSE;

cap status[MAX ID];
drive status[MAX ID];
mount-status[MAX-ID];
volume status [MAX ID];
port status[MAX ID];
request_status[MAx_ID];

/***
* VARY REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER
STATE -

csi request header;
state; -

TYPE type;
count; unsigned short

union { /*
acs id [MAX ID];
Ism -id[MAX-ID] ;

list of homogeneous ids to vary */
ACS
LSMID
DRIVEID
PORTID
} identifier;

CSI_VARY_REQUEST;

typedef struct {
CSI REQUEST HEADER
RESPONSE STATUS
STATE -
TYPE
unsigned short
union {. .
VA ACS STATUS
VA-LSM-STATUS
VA-DRV-STATUS
VA-PRT-STATUS
} device status;

CSI_VARY_RESPONSE;

drive id[MAX ID];
port_id[MAX_ID];

csi request header;
message_status;
state;
type;
count;

/* list of ids varied w/status */
acs status[MAX ID];
lsm-status[MAX-ID];
drive status[MAX ID];
port_status[MAX_ID];

/***
* CANCEL REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER csi_request_header;
MESSAGE ID - request;

CSI_CANCEL_REQUEST;

typedef struct {
CSI REQUEST HEADER
RESPONSE STATUS
MESSAGE ID

CSI_CANCEL_RESPONSE;

csi request header;
message_status;
request;

/***
* START REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER csi_request_header;

} CSI_START_REQUEST;

typedef struct {

9036 0-13

cSi_structs.h CSI & SSI Required Files

CSI REQUEST HEADER csi request header;
RESPONSE STATUS message_status;

CSI_START_RESPONSE;

/***
* IDLE REQUEST/RESPONSE STRUCTURES *
**/

typedef struct {
CSI REQUEST HEADER csi_request_header;

} CSI_IDLE_REQUEST;

typedef struct {
CSI REQUEST HEADER csi request header;
RESPONSE STATUS message_status;

CSI_IDLE_RESPONSE;

/*
* Procedure Type Declarations:
*/

#endif CSI STRUCTS - - -

0-14 9036

CSI & SSI Required Files

csi_msg.h HEADER FILE

/* SccsId @(#)csi_msg.h 1.9 6/19/89 (c) 1988 StorageTek */
*ifndef CSIMSG
define -CSIMSG- / where MODULE == header module name */
/*
*
*
*
*
*
*
*
*

- -
StorageTek SECRET

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation

All Rights Reserved

* Functional Description:
*
*
*

functional description of objects defined in header file.

* Modified by:
*
*
*
*
*/

/*

J. A. Wishner
J. A. Wishner

18-Jan-1988. Created.
05/01/89.TIME STAMP-POST CUSTOMER INITIAL RELEASE

* Header Files:
*/

/*
*
*
*
*

Defines, Typedefs and Structure Definitions:

Enumerated type for csi messages.

* Considerations:
*
*
*
*/

Must be kept in sync with the message declarations in
csi_getmsg.c.

typedef enum {
MSG FIRST = 0,/* invalid */
MSG-UNMAPPED RPCSERVICE,
MSG-RPCTCP SVCCREATE FAILED,
MSG-RPCTC~-SVCREGISTER FAILED,
MSG-RPCUDP-SVCCREATE FAILED,
MSG-RPCUDP-SVCREGISTER FAILED,
MSG-INITIATION STARTED;
MSG-INITIATION-COMPLETED,
MSG-INITIATION-FAILURE,
MSG-CREATE CONNECTQ FAILURE,
MSG-CREATE-NI OUTQ FAILURE,
MSG-LOCATE-QMEMBER-FAILURE,
MSG-DELETE-QMEMBER-FAILURE,
MSG-SYSTEM-ERROR, -
MSG-UNEXPECTED SIGNAL,
MSG-RPC INVALID PROCEDURE,
MSG-RPC-INVALID-PROGRAM,
MSG-RPC-CANT REPLY,
MSG-RPCTCP CLNTCREATE,
MSG-RPCUDP-CLNTCREATE,
MSG-INVALID PROTO,
MSG=QUEUE_CREATE_FAILURE,

9036 0-15

MSG QUEUE STATUS FAILURE,
MSG-QUEUE-MEMBADD FAILURE,
MSG-QUEUE-CLEANING START,
MSG-UNDEF-MSG, -
MSG-UNDEF-MSG TRUNC,
MSG-UNDEF-MODULE TYPE,
MSG-UNDEF-CLIENT;
MSG-MESSAGE SIZE,
MSG-MESSAGE-SIZE TRUNC,
MSG-ACSLM SEND FAILURE,
MSG-ACSLM-READ-FAILURE,
MSG-SEND NI FAILURE,
MSG-SEND-ACSSA FAILURE,
MSG-INVALID COMM SERVICE,
MSG-XDR XLATE FAILURE,
MSG-RPC-CANT FREEARGS,
MSG-QUEUE ENTRY DROP,
MSG-UNDEF-HOST,-
MSG-TERMINATION STARTED,
MSG-TERMINATION-COMPLETED,
MSG-DUPLICATE ACSLM PACKET,
MSG-INVALID NI TIMEOUT,
MSG-DUPLICATE NI PACKET,
MSG-NI TIMEDOUT,­
MSG-UNEXPECTED FAILURE,
MSG-INVALID coMMAND,
MSG-INVALID-TYPE,
MSG-LAST, -

CSI_MSGNO;

/*
* Procedure Type Declarations:
*/

/* invalid */

/* external procedure declarations */
#'endif .cSIMSG - -

0-16

CSI & SSI Required Files .

9036

CSI & SSI Required Files csi~etmsg.c

cSi_getmsg.c SOURCE FILE

#ifndef lint
static char SccsId[]
#endif

"@(#)csi_getmsg.c 1.16 6/19/89 (c) 1989 StorageTek";

/*
* StorageTek SECRET
*
*
*

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

*
*
*
*
* Name:
*
*
* * Description:
*

Copyright (1989)
Storage Technology Corporation

All Rights Reserved

*
*
*

Functions returns a pointer to a csi message, accessed via defined
value (defined in csi_msg.h) .

* Return Values:
*
* (char *)- pointer to a static message string
* * Implicit Inputs:
*
*
*

st_msgtab- static message table

* Implicit Outputs:
*
*
* * Considerations:
* * Messages must be kept in sync with the enumerated type CSI MSGNO
* in csi msg.h. Also, table must be fully populated and messages must
* at least be defined as an empty string (at a minumum) .
*
* * Module Test Plan:
*
* NONE
* * Revision History:
*
*
*
*
*/

/*

J. A. Wishner

* Header Files:
*/

#include "csi.h"

/*

25-Jan-1989. Created.

* Defines, Typedefs and Structure Definitions:

9036 0-17

CSI & SSI Required Files

*/

/*
* Global and Static variable Declarations:
*/

static char
static char

static struct
CSI MSGNO
char

} st msgtab [] - {

*st src - FILE ;
*st=module-;; "cs-r=getmsg()";

st_msg
msgno;
*msg;

MSG FIRST, "Invalid Message MSG FIRST",
MSG-UNMAPPED RPCSERVICE, "Unmapped previously-registered RPC service.",
MSG-RPCTCP SVCCREATE FAILED, "Create of RPC TCP service failed",
MSG-RPCTCP-SVCREGISTER FAILED,"Can't register RPC TCP service",
MSG-RPCUDP-SVCCREATE FAILED, "Create of RPC UDP service failed",
MSG-RPCUDP-SVCREGISTER FAILED,"Can't register RPC UDP service",
MSG-INITIATION STARTED; "Initiation Started",
MSG-INITIATION-COMPLETED, "Initiation Completed",
MSG-INI TIATION-FAI LURE , "Initiation of CSI Failed",
MSG-CREATE CONNECTQ FAILURE, "Creation of connect queue failed",
MSG-CREATE-NI OUTQ FAILURE, "Creation of network output queue failed",
MSG-LOCATE-QMEMBER-FAILURE, "Can't locate queue Q-id:%d, Member:%d",
MSG-DELETE-QMEMBER-FAILURE, "Can't delete Q-id:%d, Member:%d",
MSG-SYSTEM-ERROR, - "Operating system error %d",
MSG-UNEXPECTED SIGNAL, "Unexpected signal caught, value:%d",
MSG-RPC INVALID PROCEDURE, "Invalid procedure number",
MSG-RPC-INVALID-PROGRAM, "Invalid RPC program number",
MSG-RPC-CANT REPLY, "Cannot reply to RPC message",
MSG-RPCTCP CLNTCREATE, "RPC TCP client connection failed,
%s\nAddress:%lu, Port:%d",
MSG RPCUDP CLNTCREATE,
%s\nAddress: %lu, Port: %d",
MSG INVALID PROTO,
MSG-QUEUE CREATE FAILURE,
MSG-QUEUE-STATUS-FAILURE,
MSG-QUEUE-MEMBADD FAILURE,
MSG-QUEUE-CLEANING START,
MSG-UNDEF-MSG, -
MSG-UNDEF-MSG TRUNC,
MSG-UNDEF-MODULE TYPE,
discarded", -
MSG UNDEF CLIENT,
MSG-MESSAGE SIZE,
MSG-MESSAGE-SIZE TRUNC,
MSG-ACSLM SEND FAILURE,
MSG-ACSLM-READ-FAILURE,
MSG-SEND NI FAILURE,
%s\nAddress :%lu, Port: %d",

"RPC UDP client connection failed,

"Invalid network protocol",
"Queue creation failure",
"Can't get queue status Q-id:%d, Member:%d",
"Can't add member to queue Q-id:%d",
"Starting cleanup of connection queue, Q-id %d",
"Undefined message detected: discarded",
"Invalid message contents from NI: truncated",
"Unsupported module type %d detected:

"Message for unknown client discarded",
"Invalid message size, %d, from NI: discarded",
"Invalid message size, %d, from NI: truncated",
"Cannot send message to ACSLM: discarded",
"Cannot read message from the ACSLM: discarded",
"Cannot send message to NI: discarded,

MSG SEND ACSSA FAILURE, "Cannot send message to ACSSA: discarded",
MSG-INVALID COMM SERVICE, "Invalid communications service",
MSG-XDR XLATE FAILURE, "XDR message translation failure",
MSG-RPC-CANT FREEARGS, "Cannot decode to free memory allocated by XDR",
MSG-QUEUE ENTRY DROP, "Dropping from Queue: Address:%lu, Port:%d,
ssi-identIfier:%d, Protocol:%d, Connect type:%d",
MSG-UNDEF HOST, "Undefined hostname",
MSG-TERMINATION STARTED, "Termination Started",
MSG-TERMINATION-COMPLETED, "Termination Completed",
MSG-DUPLICATE ACSLM PACKET, "Duplicate packet from ACSLM detected:
discarded", - -
MSG INVALID NI TIMEOUT, "Invalid network timeout value",
MSG-DUPLICATE NI PACKET, "Duplicate packet from Network detected:
discarded\naddress:%lu, process-id:%d, sequence number:%lu",

0-18 9036

CSI & SSI Required Files csi~etmsg.c

MSG NI TIMEDOUT, "Network timeout",
MSG-UNEXPECTED FAILURE, "Un,.expected failure detected: errno=%d",
MSG-INVALID coMMAND, "Invalid command",
MSG=INVALID=TYPE, "Invalid type",
MSG LAST, "Invalid Message MSG LAST"
}; 7* end of table declaration */

/*
* Procedure Type Declarations:
*/

char *
csi getmsg(msgno)
CSI-MSGNO msgno;
{ -

int i;

#ifdef DEBUG
if TRACE (0)

cl trace(st module,
1, - -
(unsigned long) msgno);

#endif DEBUG

i = (int) msgno;

/* message number */

/* message number */

/* routine name */
/* parameter count */
/* argument list */

/* make sure status if valid */
if (i <= (int) MSG FIRST I I i >= (int) MSG LAST) {

cl log unexpected(st module, st module, STATUS INVALID MESSAGE);
ret.urn("error: unknown message"); --

/* return valid message */
return (st_msgtab[i] .msg);

9036 0-19

CSI & SSI Required Files

(lNTENTIONALL Y LEFf BLANK)

0-20 9036

A

9036

GLOSSARY OF TERMS

AC- Alternating Current.

ACS - See Automated Cartridge System.

ACSEL - See ACS Event Logger.

ACS Event Logger (ACSEL) - The Storage Server software component
that receives messages from other Storage Server components and
writes them to an Event Log.

ACS ID - A unique identifier for an ACS.

ACSLH - See ACS Library Handler.

ACS library - A library is composed of one or more ACSs, attached
4480 tape cartridge drives, and cartridges residing in the ACSs.

ACS Library Handler (ACSLH) - The part of the ACS Library Manager
that communicates directly with the LMU.

ACS Library Manager (ACSLM) - The Storage Server software
component that validates and routes library requests and responses.

ACSLM - See ACS Library Manager.

ACSSA - See ACS System Administrator.

ACS System Administrator (ACSSA) - The Storage Server software
component that provides a screen interface enabling library operators
and users to monitor and control Storage Server operations.

Automated Cartridge System (ACS) - The library subsystem
consisting of one LMU, and one to sixteen LSMs connected to that
LMU.

Automated library - See Library.

GI-1

-_ .. _---_._-- -_ _ .. --.... _----------_._--------_._-

B

c

GI-2

Glossary

Bar code - A code consisting of a series of bars with varying widths.
This code appears on the external label attached to the spine' of a
cartridge, and its value is equivalent to the volume serial number. This
code is read by the robot's machine vision system.

Beginning of Tape - The location on a tape where written data begins.

BOT- See Beginning of Tape.

BSD - Acronym for Berkeley Software Distribution, a version of the
UNIX operating system.

CAP - See Cartridge Access Port.

CAP ID - A CAP ID uniquely identifies the location of a CAP by the
LSM on which it resides. A CAP ID consists of.the ACS ID and the
LSMnumber.

Cartridge - A plastic housing containing a length of data recording
tape. It is approximately 4 inches (l00mm) by 5 inches (125 mm) by 1
inch (25mm). The tape is threaded automatically when loaded in a
transport. A plastic leader block is attached to the tape for automatic
threading. The spine of the cartridge contains an OCR/Bar Code label
listing the volume ID.

Cartridge Access Port (CAP) - A bidirectional port, built into the door
panel of a LSM, which provides for the manual entry or automatic
ejection of tape cartridges.

Cartridge drive - A device containing two or four cartridge transports
and their associated power and pneumatic supplies.

Cartridge transport - An electromechanical device that moves tape
from a cartridge over a head that writes data on and reads data from
the tape. A transport is distinct from the power and pneumatic sources
that supply the electricity and air it needs to function. See Cartridge
drive.

Cell- A receptacle in the LSM in which a cartridge is stored.

Central Support Remote Center (CSRC) - An installation whose
operators can access and test StorageTek products over telephone
lines.

Channel- A device that connects the host and main storage with the
input and output control units.

Checkpoint- A static backup of a data base.

9036

Glossary

D

E

9036

Client applications - Software applications that manage tape cartridge
contents. They access tape cartridges by interacting with the Storage
Server. Any number of client applications can be resident on a client
system.

Client System Interface (CSI) - The Storage Server software
component that translates and routes messages between the ACS
Library Manager and the Storage Server Interfaces.

Client system user - A person who executes applications on a client
system.

Command Processor - The screen interface of the ACS System
Administrator. The Command Processor performs basic syntax
validations on user input.

Control Unit- A microprocessor-based unit logically situated
between a channel and up to sixteen cartridge transports. It translates
channel commands into transport commands and sends transport
status to the channel.

CSE - Acronym for Customer Services Engineer.

CSI - See Client System Interface.

CSRC - See Central Support Remote Center.

CU- See Control Unit.

Data base - A collection of interrelated data files.

Data base catalog - A file that keeps track of data base files.

Data base management system (DBMS) -The process that accesses,
controls, organizes, and modifies a data base.

DC - Direct Current.

EOT - Acronym for End of Tape.

EPO - Acronym for Emergency Power Off.

Event Log - A file, maintained by the ACS Event Logger, that
contains messages describing significant library and Storage Server
events; these events include errors.

External label identifier - A six-character alphanumeric label adhered
to an outside edge of a tape cartridge. It is used to identify a physical

GI-3

F

G

H

I

J

K

L

GI-4

tape volume. It may consist of upper case letters A through Z,
numerals 0 through 9, and blanks.

FIFO - First In/First Out

Glossary

Home location - The cell in an LSM in which a cartridge is currently
stored.

ID - Identifier or identification.

Initial Program Load (IPL) - A process that activates a machine
reset, initiates wake up diagnostics (from EPROMs) and, upon
completion of wake up, loads functional code from a floppy disk.

Inline diagnostics - Routines that test components of a subsystem
while operating on a time-sharing basis with the functional microcode
in the subsystem component.

I/O - Input/Output

IPC - Acronym for Interprocess Communication

IPL - See Initial Program Load.

lournal- A sequential log of changes made to the data base since the
last checkpoint. .

LAN - See Local Area Network.

LCU- See Library Control Unit.

9036

Glossary

M

N

9036

Library - A library is composed of one or more ACSs, attached 4480
cartridge drives, volumes placed in to the ACSs, the Storage Server
software that controls and manages the ACSs, and the data base that
describes the states of the ACSs.

Library Control Unit (LCU) - The portion of the LSM that controls the
picking, mounting, dismounting, and replacing of tape cartridges.

Library drive - A cartridge transport that is attached to an LSM and
is connected to, and controlled by, a client system. Library drives
interact with the LCU during automated tape cartridge mount and
dismount operations. Library drives interact with a client application
during tape data transfer operations. Library drives are individually
addressable by the ACSLM and are individually accessible by client
applications. See Cartridge Transport.

Library Management Unit (LMU) - The portion of an ACS that
manages the LSM, allocates its resources, and communicates with the
Storage Server.

Library Storage Module (LSM) - The portion of an ACS that provides
the storage area for cartridges and the robot necessary for moving them.

Light Emitting Diode (LED) - A light emitting device that uses little
energy and is used mainly to indicate on/off conditions.

LMU - See Library Management Unit.

Local Area Network (LAN) - A computer network in which any
component in the network can access any other component. This is the
type of interface between an LMU and attached LSMs.

LSM - See Library Storage Module.

LSM ID - A unique identifier for an LSM. The LSM ID consists of
the ACS ID and the LSM number.

Machine Initiated Maintenance (MIM) - A unique feature of the
4400 ACS in which an expert system monitors conditions and
performance of the subsystem and requests attention before a problem
becomes serious enough to impact operations. The customer can set
threshold levels.

MIM - See Machine Initiated Maintenance.

Network Adapter - Equipment that provides an electrical and logical
interface between a network and specific attached equipment

GI-5

o

p

Q

R

s

GI-6

Glossary

Network Interface (NI) - An interface between the server system
and the client systems that maintains network connections and
controls the exchange of messages. A Network Interface is resident
on the server system and each client system.

NI- See Network Interface.

OCR - Optical Character Recognition.

OCR label- An extemallabel attached to the spine of a cartridge that
is both human- and machine-readable.

OSI- Acronym for Open Systems Interconnection, a software
architecture model of the International Organization for
Standardization. The OSI model provides standards for the
interconnection of data processing systems.

Pass-Thru Port (PTP) - Mechanism that allows a cartridge to be
passed from one LSM to another in a multiple LSM ACS.

PTP - See Pass-Thru Pon.

Relational data base - A data base that is organized and accessed
according to relationships between the data items; relationships are
represented by tables.

RPC - Acronym for Remote Procedure Call.

Server system - The part of the library that is the residence for the
Storage Server software. The server system acts as an interface
between a library and any number of client systems.

Servo - A system that uses feedback to control a process.

Server system user- A person who invokes ACS Storage Server
commands, utilities or procedures, on the server system. Server
system users are generally site and maintenance personnel (for

9036

Glossary

T

u

9036

example, library operators, tape librarians, system administrators,
CSEs, and systems personnel).

SQL - See Structured Query Language.

SSI- See Storage Server Interface.

SSR - Acronym for Software Support Representative.

Storage Server - The software that interprets library commands from
client applications or library operators and routes them to the
appropriate LMU. The Storage Server consists of the following
software components: ACS Library Manager (ACSLM), ACS System
Administrator (ACSSA), Client System Interface (CSI), ACS Event
Logger (ACSEL), Network Interface (NI), and Storage Server data
base.

Storage Server data base - A data base used by the Storage Server to
track the library configuration and the locations and IDs of all tape
cartridges in the library.

Storage Server Interface (SSI) - A software component, resident on a
client system, that translates and routes messages between client
applications and the Client System Interface.

Structured Query Language (SQL) - A language used to define, access,
and update data in a data base.

SVID - Acronym for System V Interface Definition.

TCP - Acronym for Transport Connect Protocol.

TLMS - Acronym for Tape Library Management System, a type of
client application.

Transport - An electromechanical device capable of threading tape
from a cartridge, moving the tape across a read/write head, and writing
data onto or reading data from the tape.

UNIX - An operating system originally developed by Bell
Laboratories and used by a variety of computer systems.

UDP - Acronym for User Datagram Protocol.

GI-7

v

w

x

y

z

GI-8

Glossary

Volume ID - A six-character string that uniquely identifies a tape
cartridge to the data base.

Volume serial number - A synonym for external label identifier.

XDR - Acronym for External Data Representation.

9036

Numerics

4480
cartridge drive .. 1-8
cartridge subsystem 1-8
Control Unit ... 1-8

A

ACS
benefits ... 1-4
description .. 1-1
functions ... 1-1
hardware c~mponents· 1-4

ACS Event Logger, see Event Logger
ACS hardware

cartridge subsystem 1-8
LCU ... 1-5
LMU ... 1-8
LSM ... 1-5

ACS Library Manager, see ACSLM
ACS System Administrator, see ACSSA
ACSEL, see Event Logger
ACSLM

error recovery 1-12
functions ... 1-12
interactions with ACSSA 2-9-2-12
interactions with client applications 2-5-

2-8
mapping to OS! model 1-18
request processing 2-3-2-12
state transitions 2-4
states .. 2-3, 4-25

ACSSA
description .. 1-12
mapping to OSI model 1-18

audit command 4-2-4-8

9036

INDEX

B

BSD sockets 1-10, 6-10

c
cancel command 4-9-4-11
cancelled requests

audit ... 4-7
eject .. 4-19
enter ... 4-24
query .. 4-44

CAP
capacity .. 1-5
description ... 1-5

Cartridge Access Port, see CAP ~
cartridge drive .. 1-8
client applic~tions

interaction with ACSLM .. ~ 2-5-2-8
client software

client applications 1-4, 1-14
mapping to OS! model. 1-18
NI ... 1-14
SSI ... 1-14
TLMS .. 1-14

Client System Interface, see CSI
client-server relationship 5-3, 5-7
Command Processor 1-12
commands

audit .. 4-2-4-8
cancel .. 4-9-4-11
dismount 4-12-4-15
eject ... 4-16--4-20
enter .. 4-21-4-24
idle .. 4-25-4-27
mount .. 4-28-4-31
query ... 4-32-4-44
start ... 4-45-4-46
vary ... 4-47-4-53

Index-1

communications, asynchronous 5-5 drive, see cartridge drive
control path .. 1-14
Control Unit ... 1-8 E
count ... 3-3
CP, see Command Processor
CSI .. 1-13, 1-17

applied to Open Systems Interconnection
model .. 5-3--5-4

as primary selVer 5-7, 5-8, 6-4
communications retry 5-23
communications timeout 5-23
communications with ACSLM 5-6-5-16,

7-11
error handling 5-21-5-24
functions .. 5-1-5-2
global variables 7 -2
initiation 5-9-, 5-1 ~5-12
interaction with the SSI. 5-3
interprocess communications 5-16
message processing 5-13--5-20
network communications 5-16-5-18
RPC . . regtstratton 5-8, 5-12
t . . ermtnatton ... 5-24

csi~etmsg.c source file D-17
csi_handle_rpc '~ 7-7
csi_handle_rpc structure 7-9

sockaddr_in .. 7 -10
csi_header 5-17, 6-4, 6-10, 6-11, 7-13
csi_header structure 7-6

cs~_h~dle_rpc 7 -7, 7-9
CSl_Xld •••••••••••••••••••••••••••••••••••.•••••••••••••••• 7 -6

csi_msgbuf. 5-24, 6-9, 6-12, 6-16
csi_msgbuf structure 7 -14
c~i_request_header 5-23
csi_xdrrequest function 5-18, 7-5, C-2

eject command 4-16-4-20
enter command 4-21-4-24
environment variables

CSI_CONNECT_AGETIME 5-24, 7-3
CSI_HOSTNAME 7-3
CSI_RETRY_TIMEOUT 5-23, 7-3
CSI_RETR Y _TIMES 7-4
CSI_RETR Y _TRIES 5-23
CSI_TCP _RPCSERVICE 7-3
CSI_TRACE_ V ALUE 7-4
CSI_UDP _RPCSERVICE 7-3

Event Log ... 2-18-2-19
ACSLH ... A-5-A-7
ACSLM .. A-7-A-9
ACSSA ... A-9
audit .. A-9-A-12
common entties A-5
CSI .. A-12-A-18
dismount .. A-19
eject ... A-19
enter .. A-20
file .. 2-18
format .. A-I
mount .. A-20
Stora S ge erver Imttatton A-21
Storage SelVer recovery A-22-A-26
unsolicited messages 2-16-2-17, A-2-

A-5
vary ... A-27-A-29

Event Logger ... 1-13
External Data Representation, see XDR

csi_xdrresponse function 5-19, 7-13, C-5
csi_xid structure ... 7-8 F
CD, see Control Unit £ . orce message_optton 4-13, 4-25, 4-47

D H
data path ... 1-14 header files
device states 4-47-4-49 csi.h ... D-4
dismount command 4-12-4-15 csi_header.h .. D-2
dismount, forced .. 4-12 csi_msg.h .. D-15
drive addresses ... 2-13 csi_structs.h 7-5, D-I0

Index-2 9036

count .. 3-3

identifier ... 3-6
message_header 3-2, 3-4, 5-16, 7-5, 7-11,

7-13
idle command 4-25-4-27
initiation, CSI 5-9-5-12
initiation, Storage Server 2-1-2-2

command file ... 2-1
interactions with CSI 6-14
intermediate response

audit .. 4-3-4-4

message_options 3-2, 3-4
packet_id ... 3-2, 3-4

message_options .. 3-4
messages

Event Log A-I-A-29
unsolicited 2-16--2-1.1, A-2-A-5

mount command 4-28-4-31
query .. 4-35

Internet ... 1-17 N
interprocess communications, see !PC
IP, see Internet network adaptor ... 1-9

IPC Network Interface 1-13, 1-14, 1-17

failure ... 5-22 NI, see Network Interface
message handling 5-6--5-16
sockets .. 5-6 o

ipc_header3-2, 3-4, 5-16, 6-4, 6-10
ipc_header structure 7 -12

Open Systems Interconnection
application layer 1-18

L data link layer 1-17
description ... 1-16

LCU .. 1-5
Library'Control Unit, see LCU
Library Management Unit, see LMU
Library Manager, see ACSLM
Library Storage Module, see LSM
LMU ... 1-8

layers .. 1-16
network layer 1-17
physical layer ~ 1-17
presentation layer 1-17
session layer ... 1-17
transport layer 1-17

LSM OSI, see Open Systems Interconnection

description .. 1-5
panels ... 1-5 p
Pass-Thru Ports 1-5
robot ... 1-5
storage cells .. 1-5

packet_id ... 3-2, 3-4
Pass-Thru Ports .. 1-5
portability .. 1-15

M Q

message decoding 6-5,6-10,6-17
message packets

decoding 5-14, 5-15, 5-18, 6-10, 6-17,
7-14

duplicate 5-16, 5-24, 6-16
routing 5-14, 5-15, 5-17, 6-3-6-4, 6-11,

6-12,6-15,6-17, 7-6, 7-7
tracing .. 5-19

message_data

query command 4-32-4-44
ACS status ... 4-36
CAP status ... 4-37
drive status ... 4-38
LSM status ... 4-39
mount status ... 4-40
port status ... 4-41
request status .. 4-41
server status ... 4-42

9036 Index-3

volume status 4-43 sockets
Intemet 5-12, 7-9, 7-10

R IPC .. 5-6, 7-12

recovery, Storage Server 2-14-2-15
Remote Procedure Call, see RPC
request identifier .. 5-16
request structure 3-1-3-3

fIXed portion ... 3-1
ipc _header .. 3-2
message_data. ... 3-2

., message_header 3-2
. . variable portion 3-1

requests•... 2-3
outstanding ... 2-12

response structure3-4-3-7
acknowledge .. 3-6
final .. 3-7
intermediate .. 3-7
ipc_header .. 3-4
message_header 3-4
response_status 3-5

TCP/IP ... 5-12
SSI .. 1-14, 1-17

application interface 6-7, 6-17
architecture .. 6-2
as a secondary server 5-7, 6-4, 6-6
constraints 6-2-6-3
duplicate packet handling 6-16
'functions ... 6-1-6-2
interactions with CSI 2-5-2-8
message decoding 6-10, 6-17
message processing 6-14
message routing 6-10, 6-12, 6-17
network timeout. 6-12-6-13
polling for input. -... 6-9, 6-15
reciprocal to the CSI 6-3-6-4
RPC registration 5-9, 6-6-6-7
transient port mapping 5-9

start command 4-45-4-46
states

responses
acknowledge 2-5,2-12, 3-3
final 2-5, 2-12, 3-3
intermediate 2-5, 3-3

response_status .. 3-5
robot ... 1-5
routing message packets 5-14
routing messages 5-15, 5-17, 6-3-6-4, 6-10,

6-12,6-17,7-6,7-7
RPC .. 1-18
RPC functions

at CSI initiation 5-8, 5-10, 5-12, 6-4
at SSI initiation 5-9, 5-10, 6-4, 6-6-6-7
for network communications 5-14, 5-15,

5-16,6-5,6-14,6-15,6-16
required library 7 -2

RPC program numbers 5-7-5-8

ACSLM .. 4-25
device .. 4-47-4-49

status codes, common 3-7-3-9
storage cells ... 1-5
Storage Server

ACSLM ... 1-12
ACSSA .. 1-12
architecture•.................................. 1-15
client interaction 1-9-1-10
components .. 1-10
CSI ... 1-13
Event Logger 1-13
initiation ... 2-1-2-2
operating environment 1-10
recovery 2-14-2-15
termination ... 2-13

SVID, see System V Interface Definition

s System V Interface Definition 1-10, 1-15

server system T
connection to LMU 1-9
functions ... 1-9

Server System Interface, see SSI
sockaddr_in structure 7 -1 °

TCP lIP .. 1-17, 5-4
termination, Storage Server 2-13

command fue 2-13

Index-4 9036

TLMS ... 1-14 P ANELlO .. 3-15
trace log .. 5-19 PORTID ... 3-16
Transmission Control Protocol, see TCP........ .. STATE ... 3-16
transport SUBP ANELID 3-17

functions ... 1-9 TYPE ... 3-17
VaLID ... 3-18

U vary command 4-47--4-53

UDPIIP .. 1-17, 5-4 X
union declaration .. 3-3

XDR ... 1-18
v XDR functions 5-6,5-18-5-19,6-14

variables
ACS .. ' 3-10
CAPID · 3-10

csi_xdrrequest 5-18,:6-12, 7-5, C-2
csi_xdrresponse 5-19, .6-15,6-16, 7-13,:

C-5

CAP _SIZE ... 3-10
CELLID ... 3-11
COMMAND .. 3-11
DRIVEID ... 3-12
EXTERNAL_LABEL_SIZE 3-18
FREECELLS 3-12
FUNcrION ... 3-'13·
LOCATION ~ .. ~ 3-13
LSMID ... 3-13
MAX_ACS : ~ 3-10
MAX_ACS_DRIVES 3-14
MAX_COL .. 3-11
MAX_DRlVE 3-12
MAX_ID .. 3-14
MAXIMUM_MESSAGE_SIZE 5-16
MAX_LSM .. 3-14
MAX_:MESSAGE 3-15
MAX_MESSAGE_SIZE 3-14
MAX_PANEL 3-15
MAX_PORT .. 3-16
MAX_PORTS 3-14
MAX_ROW ... 3-11
:MESSAGE_ID 3-15
MIN_ACS .. 3-10
MIN_COL .. 3-11
MIN_DRIVE .. 3-12
MIN_LSM ... 3-14
MIN_MESSAGE 3-15
MIN_PANEL 3-15
MIN_PORT ... 3-16
MIN_ROW .. 3-11

9036 Index-5

