Storagelek.

- .4400
Automated

| UNIX®Storage
Server

| »Programmer's.
Guide

PN 9036

PRELIMINARY

Information contained in this publication is
subject to change. In the event of changes,
the publication will be revised. Comments
concerning the contents of this manual
should be directed to Technical Publications
at the following address:

Storage Technology Corporation,
Technical Publications, 2270 South 88th
Street, Louisville, CO 80028-2286.

Ethernet™ is a trademark of Xerox Corp.

' HYPERchannel® is a registered trademark of Network Systems Corp.
- StorageTek® is a registered trademark of Storage Technology Corp.
-Sun™ is a trademark of Sun Microsystems, Inc.

_UNIX® is a registered trademark of AT&T.

Copyright © 1989
by
Storage Technology Corporation
All Rights Reserved

9036

DOCUMENTATION SURVEY

1. Rate the following documentation factors:

Excellent Good Fair Poor
Table of Contents [1] [1] [] [1]
Written material [1] [] (1 []
Organization [] [] [] [.]
lustrations | [] [] e 11 (1
Index [] [] 1] []

Suggestions for improvement:

2. Does this manual contain the necessary information and procedures for using this -
product?

If No, please explain:

3. How important is this manual as an aid in performing your job?
[] Very Important [] Important [] Somewhat Important [] Not Important

4. How often do you use this manual?
[] Daily [1 Weekly [] Monthly [1As needed [1 Never

9036 iii

5.

7.

iv

When have you consulted this manual? You may select more than one response.

[] For a product overview [1 For command syntax reference
[] For installation planning [] For maintenance procedures

[] For installation instructions [1 To answer a specific question
[] For operating instructions [1 During a training course

Other (please explain):

Do you know where your manual is right now? Yes [] No []
If No, please explain:

What is your position/title?

9036

TABLE OF CONTENTS

Section Page
PREFACE xxi
PURPOSE ... ieiectierereereeresrtestessessaessessessasssssassssssessesssssssssassssasessansessaessassessssssasssassessansassasses Xxi
AUDIENCEutteitieirteeiteeceneereesssaeessssssesessasssssssssssssssesssassssesssssssssssessasssassssessssssssssassnsssnssansss XXi
USING THIS MANUAL.......icteecieeetessetesieeestaesssesssesssassssessssassssessssasssssasssssssassssans eeeeseennnnns xxi
CONVENTIONS ... eeterenteereetesteeseerteseassassasssesaestassessesstastassansessssssssssantassasnsssasssesssasaassasss Xxii
CHAPTER 1: ACS LIBRARY OVERVIEW 1-1
INTRODUCGCTIONcoouiiriiteeceerenteeseseestesensaeseesaessessessesssessessessssssessassasssessasssssssssssssasssssasssssasss 1-1
ACS LIBRARY FUNCTIONS.co e etteecrrnreenteeeerseeeessseessssnssssssssessssssesssnsansssssesssssssesssssesssnsesns 1-1
BENEFITScocoieeecteeeetecteereetesteeseessessesessassessssssessessassssssessassasssessassssssssssnsessassssssaasasnsenssssaenes 1-4
ACS LIBRARY HARDWARE COMPONENTS........cccoiertereiennrnecrneeesaaesnees reveeeererereeternenseanans 1-4
Library Storage Module (LSM)couiviiiciinnininiiiininticinessssesssssssisissessssissssssssssssessases 1-5
Library Control Unit (LCU)......ccicuiirnieniiiieieneeneeerseeeseeesstesssaeesesessssessasssssssesssesssssessasssses 1-5
Library Management Unit (LMU)c.cooiiiniiiiininninircencetinteneeeeseesseesessacssssssssasessssssessessene 1-8
4480 Cartridge SUDSYSIEM ... ccccieceecersreeireaieeeseeereessecssessasssssessesssesssessssssasssssssssssasssassssessasses 1-8
4480 CONTOI UNILuvverererereieceeeneeesreereeeesseesseesuseeesssesssssssessessssesssssasssasssssessassanssassnnese 1-8

4480 Cartridge DIIVEcovieeeecrecrinieeiereecreeresseeeessesesssessessesssessessesssessessassasssassssssessassans 1-8

SEIVET SYSIEIMocueeneeeeeeereteeeeteseetee e ssestesaesssessesaeseesassessessesassassasastessesasssasassassannsesensersastases 1-9
ACS LIBRARY SOFTWARE COMPONENTScciciiiiienerenienreesraessessesseeseesssssnessassassssssase 1-9
Storage Server and Client SOftware INtETaCtiON.......cccevuereerrerrersteereseessessessuessesssanseessesasnees 1-9
StOTage SETVET SOFIWATEcccciieieierreiieniesaessaectesssessaesssessaesssensessssssssassasssassssensensssensannn 1-10
ACS Library Manager (ACSLM)cccuiiiienirreeneeneecntanseeeeasseseseesssessessssssssesnsassasenes 1-12

ACS Systern Administrator (ACSSA)uuioiiriinieniiniiinrnnreesecistceseesssessssssssssasssasessseses 1-12

Client System Interface (CSI).....cccoovuinirniinirneereeniinricistene et ee et s secssesessessesssasenes 1-13

ACS Event Logger (ACSEL).....ccoiiieiecieneesreeseesseessaesssesssssssesssasssessessssessasessasssnesee 1-13
Network INterface (INI)ccceeecieiieiiiiiieciecneseecteesseessessseeseeesseesaasssasssasssessassssasssassasannes 1-13

CHLENE SOFtWATEoccuveeereeieciierieeieseesreestaesaeessessaesssercasesessesenseassasssessssessessssssssssssessasssssnsanas 1-14
Network INterface (INI) ...coeeieeeiiieciiieceieeeesieeecreteecieteeesraees e s aesessasaesansansnsssasesnsanassnne 1-14

Server System INterface (SSI)...cueoviriinirieninirerieneeenteseenresressesseeseesesessssnesacsssssassacasaane 1-14

Client APPLCALIONSeeeiieeiieerieecitiiieeeseeeseeestteeeeeeseessssessssssssassssesesssssesessssnsasssassssas 1-14
STORAGE SERVER ARCHITECTUREoooceieeeereiececrieecreieseeaeseseassessassesssssessensaseenens 1-15
AAPLADILILY ..ccovieiiiiiiieitiieseeeseneesteeseseee st ereste e ssassesnnessesatsutessassesnaessasseesassaessssasesaesesnassnans 1-15
OPEN SYSTEMS INTERCONNECTION (OSI) MODEL........coteniirenenrecneeeeeseeceeuossesscesees 1-16
OVEIVIEW ...ttt et e re e et et sbeebessbe st aeessessbessee st e sbasssasssaessanssesssanssesssessssensasssansnees 1-16

9036 v

Table of Contents

Layers 1 and 2 — Physical and Data Link Layers...........cccocevuvuvuirnvcnerirunnscscssiissesesssassesnnnes 1=17
Layers 3 and 4 — Network and Transport Layers........ccccccevvennccinncnnnes ceeeesesessssssassasessssassnes 1217
Layers 5 and 6 — Session and Presentation Layerscccccccevieeeeiencnssecsncsessenscesuessessacsneess 1-1
Layer 7 — Application Layer.......c.ccocoevievinninninnnnscinninnnccnennsecns reeenesnsesassssssassnsesassonsnesass 171

7
8
CHAPTER 2: ACSLM PROCESSES 2-1
1
1
1
2

OVERVIEWuiiinieenrenninnesnsssessessassessasasssssesssssesssssessessssassssssessssssses reerenaeeenanneas ceeneneensesees 2
STORAGE SERVER INITIATIONccccectinininieisnmnanstesaesisseeseesssssssessssscesessensones cereeesseassssaes 27
OVEIVIEW ...uiiuiinirininntiniessnssssnsessontsasssssesssstsstsnsessontsassstssssessessonsesssssnes csssesessassassnssnsssssasess 2
INIHAON PrOCESS. ccvcoveessrrsicuicreesiesasnsesssesassssessasassstsssssassstessssssssssssesssossessassssssessssssessasssess creene 2
LIBRARY REQUEST PROCESSINGccccevieimersnnrinnoseesuesesssesesssesessesssossonsenses cvemeene veennennee 23
OVEIVIEWeerreererenenaeseessesesessesesessssesessssesesessssessssssssesssssssnsssssssssssssnssssasssssssssssssassssssssassseses 2=
ACSLM Processing States........ cereseesessserasentnnssassnteseenasas reeeeseeteeseesasassnsssaenaessansestessesssssesesase 273
ACSLM State TranSIitionS.......cccereererseeuecersaeceesasseenesssssessssassnsssssassssssssssssssssssssssssssasssosssssessssee 24
Interactions With Other Storage Server COMPONENLS...........coerereerereessecscsesereesessssssescsssaease 229
Client Application — ACSLM Interactionscoceeeeeecreececrceesensannes resrresseenesnssnsessesasosaeses 2
OVEIVIEW....ocuieeeenrenneneeerensesnereeeesesseesesssssssssesssssssessenes ceeerenenes treereseesaeseeeneessensesaans cereenns 275
ReESPONSE TYPES ..cveeceierienenrenrenneenrassrennesseeseessseseessessessassssessesssessesaesssssasonsosss cerenesenessesasene 229
Response Coordinationccoveeeveireceninnsensiincenstssseesnscsesanenns reeeenneennesaseasasassssasnsee 2-5
INtEraction PrOCESS.......cccccerteereeereeeseersreeseeeseeesseesesssnsessessnesssesesesssasanes cevesvaesrensssessansesnessass 2 1
ACSSA — ACSLM INteractionscceceeueereesseseesreessesesseessessesssesasesens cererennesnesnesnesnsnsensess 29
OVETVIEW ...eeiuirreiirniennereessereseenesassestesesssessssneseostossssssssssessosssnsestorssssesssstsusssnsnss ceresensseness 279
Interaction Process................. SRR ceeeeeseenaeeraesatese s te st st enae st ae e asasentestesssertsesaestae bt eraees .29
Programming Considerationsc..coecevcecessresesrenuesenseesessceeosens rreeseesseeseesatesassntesaasassnnses 2-12
Handling Outstanding Requests.......ccccoceerceeereereceneacenenes reveeereesseesssessassseanes crvesnresnennes 2712
Library Drive Addresses.......ccoeceevveereeeceenseeeceenceeeens reerereesesseesessessansassassessassassasassnasassnce 2713
STORAGE SERVER TERMINATIONcccocerienirineneeseennenseneeseesseseessonaesesnnesanans ceesrssnssnneees 2-13
OVEIVIEW....ceceurecrieeeneeeesreesessssessessesssessessessessassanns SR rereneenee et saesate st s seenas ceeresnereennenns 2213
Termination Process..........ceceeeeeiereecccrcenceneene ceetesreeeeeesessesesate st esssesaasasenes ceeeresresnensesensnnens 2713
STORAGE SERVER RECOVERYccccceecvrvuenenne reeteereetesaetete et e testeste st enaeseenassesasestesen ..2-14
OVEIVIEWcueviiereenneieeennaennncaennae ceenetenreeeneensenans ceeetereereeressessessessasasssssaeessasnsasssssassasase 2= 14
Storage Server RECOVETY PIOCESScccieruirrirnreerrereneiisieeneinnecenaeesneesncecnesseesnssessssssssssanes e 2-14
UNSOLICITED MESSAGEScoccoiininienenircnnnnesseiessssssenaesens reertestetesteneseeseseeasnessasannases 2-16
EVENT LOGGINGccccovcenernurnerneeseeeenesneesessesnsssesssssessesesaneneeneesene ceeereneseesassassassneassassassassane 2°18
Description.......... ceeeseteeateete et et et e et et st st st s s bt s e e st e st e st e sae creevesresressesnesnsssasnseness 2= 18
How Events Are Loggcd ceereeseenesaessessesaasasnssseassess 2518
Event Log Messagescceeeevenueene reeeeentesneentenesaeaseenaentantansenes reereeresneetesaeenaesaassens cveeneena 2-19

CHAPTER 3: ACSLM COMMON DATA STRUCTURES 3-1
OVERVIEWoiiiiiiininnieninienensessssntenesessesesestaseasessssessstssensessssesssesssnes ceetensenssssnssassesaseenes 3= 1
REQUESTSooiiiieiiieeeeneseceneneneesanenenns eeeeeeeee et ene et e sesaenae st e ee st ernenasnns ceeeeanas RSP ..3-1
Request FOrmat..........ccceivieinniieinenseeereceesees e cneseeesesnesnes reeeesneeteesesassasesaans veereerresassansesss 3-1
ipc_header....................................‘..... ettt st e s rae st e aa e cetrensernsssesessesses 372
MESSAZE_NEAdETcouiviriiiiiiiiniiiicn s ceeveeeassssssasnes 3-2
MESSAZE_AALA ..coonniieeiiinereneeeseeeseeesteeneseneeestee s e e et e et e e sanecnas reeeeeenenes ceeereseeasnanns weee 3-2
RESPONSES ...ttt stnnee s sneeasseesasceeneesesnessesssosesensessessesses cereseenenrnessssasaensesesees 373
DESCTIPHONcueeeererrirceeniernesnnsenseeanessnesessassassnsssasesssssasssssssssass trerresaesseesesnnessenssassnsessenasaes 373

vi . 9036

Table of Contents

General Response Format............ crerereenens eeeeeeuesaresneesreessessnassaaases ceveesseesaesseesssasseessnsssaesnense =4
ipc_header........ccecvvuiinnnnnnns eeteettestssstressretsrrrsrarrnsarsrrrsntsteseseeesererrsrrssrssrsnaressessesssarasaseane J=L

message_header reeentreteeaaas ceeeeseresareateetaesnaaene ceteeeresteesnaesaneeas cerenneenressesnesaneseesaes 34
..... reeteeteeestente et et e esaas st sete s ea e sesassseseasasssansesssssasesnestesesns 3D

Specific ResSponse FOIMALSccooiiiiiiiiinniinsiniiinttententinecesatesssesssssessssssssesssssessssssses 3-6
Acknowledge ReSponse........cccoieiecencennniniccnsencnecensceeeseenanes vrnenee ceeeesensesesaseseenassnassaes 3-0
Intermediate ReSPONSE.......cociviiuiiiiniiiiniieneientccecnecnccnecnenane ceveeresasssasesasssnnsssasasnasase 3= 1
Final Response — Successful Request 3-7
Final Response — Failed REQUESLcccccevuinerrnneenersneneeesessuesescnessosesesssssssasssassassasasoaes 3= 1

COMMON STATUSEScoirviiininninrirnssieissssssasssossensssssssssssssscssessssssesses creeeesssssssnanenseseesossase 31
COMMON VARIABLES........cccecinrnirninanecennanes ceeeenneneneesnaenaens cerevenaeneens cesssenesssnssnsensnssasees 3-10

ACS ..ttt sesstssssaesasesassesaessenesensasentstsssasssasantassssrssssssssssenssasssessosssssesesassssssss 3= 10
DESCTIPHOMNcceeeeeeecreeressresseesseessaesassssessessacsssessanssaressessess vreesveesneesaesssessnsssasssaessassanesses 3= 10
DEfINItioN ...cueiiieirirneiicnceniectineseissinesisessiesicscssisssessssssssssssosssnses cerensenessassassnsesaeses 3-10

CAPIDoootieiriininntenieneeestsnestsnsessssssssessssssssssessossnsssssssstsstsssssssasssssssstsssesesstssssssassssnees 3-10
Description........cccceeeceecnees ceeeeeeseesteesessasenssssassassssussatessessasessassasssasssssessassssssansssassassssassas 3= 10
Definition................ ceeeeeneeteasennteneenesananenaen reeetee et n et et e sa st sr b st sa b st sates cereeesseneens 3-10
DESCTIPHOMN ...c...cecevereteeeeeenireceeeeesteesateseessseestessesnssasasensesssssasaseeesareneesmsessasasssssssesssssassssesas 3-10
DefiNitiONccuveereeerinenriesnsrresisnesnestssesessesasssenses ceretestesesntetens st s snassnsastenas vereeeennenes 3-10

Description

scriptio
Definitionccuceeeeeeecernecreeserreseeneeteseeesesneesesnes RO tevereeseesseeseessesessesassassnasssssacsnassaess 3= 1 1

COMMAND........covtrnriireenrernenraeseenne crenetenaesnaennes ereesteeeteeseeeseeaassaesasessessssassaes veeenesnrenearens 3=11
DESCTIPLONcccuirtreecnienieriennientsnsseesssnssesnessanns reeresuetene st sanessestane s caeesasnssesassssssssnsasess 37 1 1
Values eeteessteeesessssesesesesseesssessssessssssestessesessseesstessstesestsesstessesesseessanene verveenneeenee 311

- cerennssneseennee 3-12

L
Description.........cccceeueunene ceeeresreseeraens trerrereesesaessesneseeteaersartesaesersesnensetensestessensasassassassesse 37 12
DEfINItON c.uvceveiviesiierenrneiniinsstesennsssessssssssssssssasessssassseses creereestennessasssssassnsesaasancas 3712

Description...... ceeeeraneerenenes ereeeesnnns eeteeesteanereseesneatensessssrrnasansiannernansnnen cevennene ceorsosssesannnes 3=12

D INIION c.ceeeeecceeectieieeeeeeeeeer e eeseeessssssssseseeseesscosssssssssssnsnnses reereesesareenanes eerenteennenens .3-12

FUNCTION .ueeiiieitteeeeeeiseeeeeesssrsnneesssssses rveeesannns erreeees reeesnenanaes etetsssesseersesensnsennssnnssannns 3-13

D ipti 3-13
ESCTIPtION......coconneees eterereeerenenanens ereeeseeraneennnns

LOCATION 0 00000000000000000000000000000000000006000000000000000000000000400000000000000tctsscctscctsaccesssssssccscsssssancs ceess 3 13
D ipti 3-13
CSCﬂpUOl’l..................................... ceceessearanane teteertetettceessttnrisoterttenasttnsartesssnannes s
VALUES ovveeeeeeiiiiiieeeieieceeeieereesareteeeesesecsesssssssssssssasassesesessssessssnssssnses seseee teseserestecssccnnnsenes 3-13
LSM]D .. essessssene .o 3"13
DCSCflpthl’l
Definiti 3-13
CIINITION ..uiniiiiiiiienrttnrteestncesscsessracacssane veserans teteretscestenttsaesrcsnracsenassen cessccerssscsssocess tescenne
MAX_ACS_DRIVES............... ceverreerennnnnns eereneereseensernresssene etrereersnssernenssses censeeenneseennressanes .3-14
D ipti 3-14
CSCTIPHION ...ttt ettt et ea i sae et stsa st sasesssassssesssssssstsssnsassssssssssnsesssassnnsannane
Definiti 3-14
CIINIILION ... e enininieenincncaceerecsencnsancnsacssssssrsssssnsnsaasnssnasnssnsnsesssssssssssssssssssesnsesssnssones cecevenee
MAX T o eeeeeteteetetee et tesssessesesssssssasasseassessssssssssssssnsnsssasnenes teessersccnnsae sssersatarsssescasese 3-14

9036 vii

Table of Contents

Description............... eeeeeesetseat et tesnstesase e et aessasesatessnasenastessasessaressasesssstassasssssssssassassascses 3= 14
o
DEfINItIONveveeeceeiereitcnieneeeeneetesesrestestesseseesasseesessessensessessesassneseeseessssassassessessassssnsssesss 3= 14
.
Description................ weesreesaeeesaesneens veeereesreessansranns etesseesseesseesssessaesseenseanssananenas cevennnennnes 3-14
.5
DEfINItIONcocuieirerinrennieniirinneestesessseestscasassesssssssstessessesssssssssassanssassssssesassassssssssssasssasess 3= 14
MAX _PORTScoceeetiienreseesenseenesiessssessessassessessessssssssasassessessessessessassessassessasnssssssassasaesans 3= 14
. .
DeSCIIPHONcccoerseinirvenseastenenressassosessasassasanes cetreneensesesneens cerensensenessseasonnesasssnscasses 3= 14
.
DEfINIHONcoeiriiiiiieiciaienticaesnesetssenteneesassstesssssessnessssssssassassssesassassssssnsassssasssassanasassas 3= 1D
MESSAGE _ID......cccccooutrmtrnnineeneecnisaesecesesseessesessaessens reveresneeeenns eeesveseenaans ceeeneseeseeeeneeseass 315
.
DesCription.......ccceveenneceeneesseccneneeneeaesenes cevesesanenee eevenesanensene crereesessensnssnsesassasscsssnassasse 3= 13
v
Definition.......ccccceeceerueceennen. ceveenreesanennsanns ceeeeeeeaens eerertesteeaneatessasntsnaesnsessasassnasnesssasaasaase 37 1D
-
DESCTIPHONcoveriueercneneiressteneasenneessensensssasaessasaesaesasnans veereesaennrennenes cterneeesensssessssasseses 315
e
DefINItiONccuviuiiiinintineseisinsieneessensesssessaessesaessessessssassessessessessessanes ceeseesensnesasesassnasanses 3= 15
.
DesCription......ccccceeeneencenenceceaeseeseeensenes ceveenenenne ceveareaeeeanas cresasessesssesresassnsesassssasaacnese 3= 10
o
Definitioncccooeeveeneecceenceenreereeneesseennes eeteeereesnreesaennnes eeeterresesaessasssasssaassssesarsssessaese 3= 10
STATE ...ccuiiiiiieniecentneesearesesssesessessessessessessessssssssssansessessassessersensessessessassessessassarsessassassass 37 10
.
Description........cocceevceeeveennnene rreeeeesseeeessaeesaessaesseeesaeenaan ereereesranssesseesaeesassessasnsesaassnasaes 3= 10
ValUes ..c.coeeneiinveeneneecrneeesaeaennne. teeeeuseesstaeaarasteesreeaasaeeateeastaenssaeanntannn eenteeeeeaseesessaaeens 3-16
SUBPANELID..........cccceruerreererrunnne eeteetesteeteueseee e resaea st e aesna et e searae st e e e seaebanaaastaeneessasaaeses 3-17
.
Description........cccceeevervecneneaenns cereereeeens treereeestesstesssesssesstassterssaestasessesssessaesssesssassanessass 3= 17
o
Definition.............. ceeresteesaeseseaesaeansanas ceeeersaeeesnaesanaanes eeveesneeeesaaesnnees ceererenaennns ceeteeeranannes 3-17
TYPE ..ottt e stsna e stestessstsnsssassstasesssssesassesassanssesesansenes ceveeveenenas verseenrenes 3-17
DESCTIPUONouviniiiiecteeninrecenaiasaeeeeseeasassnssssessssasssessessssessasssssessansns cerereeianens ceveeennene .3-17
Values creeenene cereeensesntasnresranasaasnes ceveereesreeseeesnaesanes rereesteeerassens ceeseresrennens cevesreereenans 3-17
VOLID......ccocovvemrrenranrennen reeeereeneenes eetesteanentestestasaaet e seesaetasseraanes creeeesnenaens rreeresensssesnansensess 3-18
.
DESCTIPHONccverveecrrinieseraeseiraesaenassessessensensessessessesnens creseenteranns reesssesveeneasasssssssneneanaes 3= 18
.
Definition......c.cooevceerneneenecrienraennennens cevesenenn ceentestesaeaasnnns ceesrenneenens reereeneas ceeeesenesnennes 3-18

CHAPTER 4: ACSLM COMMAND STRUCTURES 4-1
OVERVIEW eeeeennenes cereneennsaeanas reeenrentesresatanes eeeeetentenenaaanes eeeteseeneeeeasstaaeeansas cressereesnennes 41
AUDITcovriivinienennnenernnne ceeverensenesrannne eeetetenteseesae et e ta st et st ennns ceretensessesansresasssssnsnsnssassaess 42
Name......cocevievncencnae. reeeesraesaesasenaes reteeaeeesras st sranensnans RRTRRROR reesreeencesessssenuesacsnesanss 422
Description.......... reeenneeesaeensraaenans cereeeseeeenaeens eereeersseeeneeessaens cereeesraeennes ceeesaesnnsenasesasesasssanases 42
Requests....c.cccervereneecennnn.. teeeeueteseteesatenstee et aeataeeateeasaaennsaeanteenns creeeeeaenas cereeeeseennene ceareeneees 4-3
ReQUESE FOTMAL ..ottt steesteestaesaaessaestaeesseessae e s sseesaensaassssensassnsanen 4-3
ReQUESE VAIUES.....ccceoiriierrerentiteceetestntae e sree et eee st e e s ssae e sassssesasssssessesanesans R ..4-3
ReESPONSES...ccouianirnnenneeneeaeirnecnaaseeanaans eeeeetete et et et ee st e et et e e eraenns ceeeeeennene ceeenrestaeaenanes 4-3
Intermediate Response Format creresneereresnans reereerens reeerresresssesnesasesvasneacass 4-3
Intermediate Response Values............... ceerevesenresesenen crerererenatenens crevevenes vrererrreesnsnssnsneseness d-4

Final Response FOrmatcocoieeeeeenreereneeeeiesesseesaeeenessessessessessanes veeeneeseenanes rreeraaes .4-5

Final Response Values.......ccccceeeerereceeeieneeinenenreneseseenceneseseesaseseene ceveeerene RO veeeeeee 4-5

Final Response Values — Cancelled chuest crereteeteeeeeeaneennns ceenseeesessessasesnansessass 4T

NOLES ..covveiicreeereeeneeacenenraeens rreesten e et et e aeees ettt e e e e narenes cereerennesnensesassasssaesansnns =T
See AlSO ..cocieveneerernccnnnnes cereereaesneeaenenne eeeteteteae et sae e se et e saaeseenne reeeetenesteneestaraesesaseses 4-8

viii 9036

Table of Contents

Description.........cceceereenneenne. veveeereneens reeesseesneensesnsanes ceerareressessaennesaaans eeveesresrensneesnessassseens 4-9
Requests.................. rrereetereste et eranaessstsssnsesessssesantesssasaasassssssssassssssssassssssssessasassssssassessess F= 10
ReqUuest FOIMALcocuiiiiiniiiiiniiniininientioensstnniissstestisssssssssssssssssssssssesasssses Ss—- &3 (1)
Request Values........ccoieincnnccncnnnnnees cteateaeeae e e et st ea e st s et s et e saassnas cteserenanenes 4-10
RESPONSES....ccccveerreerrneseeesreensaessnesenssseessesassassssssassasssssssssesssessassssssssssases creeereessresseesnnesssesaranees 4-10
Intermediate Response Format ceereesenrassnaneaanes ceeveeenane ceeressasassssssasases ceressessssseseens 4-10
Final Response FOrmatcccccceeeceenenensinsnesecnnen reeeesteeseset et e s e te e sasaeerasasaserasesatas 4-10
Final Response Values.........ccccoieennrncncnnncniccneincenaens srertenesaesessessesnenssnensesssnssaessess 4210

See AlSO ...ccovuiinvrnnenensneesacnnnns vetsseesnessnsessisestessesesenttetesnrtsatatt sttt st st esissnsesbassebtsstsnttanatsen 4-11
DISMOUNTcocioieientincnniensesacsteesssnsssssnsenes reeestenneataananaesnaassaens ceeeesaeessssnssnesnnsnnessessssasosaess G212
NAIDIE ...cceveeeieenreeniereeseseeseseeeesessessestesesessessssesnsssesssssssessessessessesssssesesasassssssnssassassssssssesssesess G 12
Description.........cccceeeeee. reeestessseesseeessseesneeessteestaeestaestaesnaeastaesteenattesntesasasaaseratas cveenneesanes 4-12
Unforced Dismount........... teteestesteetesstesaeenterasennesanesaaessassatesiesasass ceressreesanaessssssasassasese =12
Forced Dismount..........ccceceeceeenenseeereecssanscnnas eeteeeteesaeaateesesenasansaesnntsesaneeaseesnnes ceveenes 4-12
Requests................ ceeseseseesnaesnsasnasenanas reveeans ceeesrteesnaeenressaanasaesesanesnses creeenaeensas vereerrenneennns 4-13
Request Format..........cocceeireennencecccenenn. rereeseassnestsesaee s s anes ertesstesneesanessaasanssnaenas ceeeeen 4-13
Request Values......cccecveeveeeveeneeerncanne reerteeteaseaeeasenaesnanasaes
RESPONSES.....ooeereeeeeteette et .
Intermediate Response Format reeerreseeseesreeaeenesresnnesrsessanensasaraase creerernennerennaenens 413
Final Response FOrmatccoceereeninninncnninniinnnnsinnccsneanncenessscisesnas ceesesessesneseansenas 4-13
Final Response ValUes........c.ccceciriiereenerneneeenenneessenesesseessesneoseesassans veerersesnnesessesomnceses 413
Final Response Values — Cancelled Request..........c.ccccceniinieninnienincnnee eerteresessanasesens 4-15
NOLES ...eireeeiereentenenerrenreesaeecneeesneassneens et

Name........ reeesseentenenenrenes reeerresaeeaeaesesneressenbesaeses reertee e b s ae s saaaas ceeernreesserestenaasaes 4-16
Description..........cevereesneenne ceeeesneresteesrareseeesnasenasasssanss reteerereesteesssseesnatesstaeeratessaaesstsseraseses 4-16
Requests......ccceceeuene rrteeereeeesarerneeaesraeenne creeseeesteessessaenssenaansaanes ereereeeessersesssessensesssessasssssaeces 317
Request Format..........ccovveveicuinnncne. ceteessnnteesasessnaes reveeessasessrsesensesesnaee ceerecessnstnessstsiinas 4-17
Request Values........ccccceverueeuenne veeenenenne 4-17
RESPONSES....ccneeiiicieeecerreecerneeesertreesraeeessaseessseasssseeesssnessessnees cerenneeesseessnesessasessaassansessasossass $=17
Intermediate Response Formatcccocvviviniiniinnininnnnennecseenecnsennnns ceeeeeeenne reverneeaeas 4-17
Final Response Formatcccccocvieeveecnecnnecnsennesecennes teeeesrseeeessraresessaeeessnnneesssatesessasases 4-17
Final Response Values.........ccccoceeverinencnnencnes reererereae st reeveenesnsarssnsseseenserssnseseeses 4217
Final Response Values — Cancelled REQUESTccoueeueeveriineeesennueneieniesiecienecnsessuesscnnes 4-19
NOtES ..eeeeiieciiereereeeee ceeeeennaenne

DESCTIPHONctiecieectecctee ettt ceee e e e e sreeeae e e eestas e seasssesansnesssnassseas reeerreeeeaaes vveeseeeesnnaees 4-21
Requestsccoeeeeueenne ceveeereeeesrte st eesaaesas e srasensasns treetereeraessersessesssessessaessessessaessessessasssssnsenaes 422
Request Format............... eeeeesteeeriteesraeeateetee sttt et aeshae e et e s et e st e sane e atassasssssans cerveerenennnens 422

9036 ix

Table of Contents

Request Values............. ceeesareeaaens eerveesessesnnesaranes ceveenane S, cereresensessnnessssesssanssssesesaes S22
Responses........ reeveenens rrerenenens erereeseneereraeresaesananan rereerereenesseseneneanans creeeeresssseenensesessensesesesasanes 322
Intermediate Response FOImatcccoceciiiennnineicincncnninnecsciinnccsssensenssssessesscssssscesesss 422
Final Response FOrmatcococeeinieinnineineninsecsceseescncsesecnessessessosaene reeneeranessensnanes 4-22
Final ReSPONSE VAlUES.......c.ccceeeureenereneneerersesessesconessssessesssasnessssassassesesasesssssssssassssscensss F=22
Final Response Values — Cancelled Request......... resetetete sttt ae bt s erassnrenne JRSR——" =
INOLES ..cneninenicrnecinennnecsuctsnessscssssesennensscssssssentnsssssassssssssncesessssssssssssssssssssssassesssssassasssnssesces F= 24
See AlSOuiinverereectinnicnncnenneeeeananenne cressatessensasesasenns rrearesaeeaeenaee reeerereetesannes cerrensennenens 4-24
IDLE ...ooiiriiiitiesctinninacsesteaesacnssnsnnssssnsessensessensnssinsssnsanssssnaessensones creenerassntsanencssssnsessesseseeass 428
NamEcoticiiiinirinetteneeccrsrsneeenenns rveenens ceeseseneens ceeresseeesateesanees cevenens ceveesanensssansssassnssanes $-25
DESCTIPHONoeeineccninnancencsneensesesessassasesssessensssessassassesssasaesssnesssssessssnsssssssssssasssssassnsansesssscosss $=20
Unforced Idle ettt e st st st sa e st s bt sa e e s s saaseanasane eeernesertaeaasenaeenaas 4-25
FOTCEA IAIEccuvieiniiiiieiactnieiinteineiescatnnnsscsessensesssssssssssssssnsessasssssssssssonssssassonsoscasss =29
REQUESLS ...ttt cetneeeneen reeensensesesasenees ceeestestenseanane ceeseereenseasens cvereens 425
Request Format.......... cteestee et te st e st et s st ea e e et e be s e e st enata ceeeettesaseenaeas ceeeeeesaeas 4-25
Request Values......ccceevireniienecnnninncierenennncnesssansnees ceveeennens cevees rereesseeessrsesaaees crreessneseneess 425
Responses.......ccceeeceeecreenannen. ceeeeteeseanenneas ervrereseens eeeeerreesreeesaaens ceeeeenneereteeans veveeeeneas creeeeenne. 4-26
Intermediate Response FOrmatcccoveeiiiiceninninennienenensencesecessasassecessessncsneseessss 426
Final Response Format ceeseseaens ervesterenensaaeens rerenseneessessssasessssssennssassasesaese =20
Final RESPONSE VAlUES.......cccruivieninerrecnenrenriienseeeresseseesessessssesessensesssssnsesssssssssassssassssses 420
Final Response Values — Cancelled Request.............c.......... creesnsennesseesnasnssseessassessascanes 420
INOLES ottt ss s e st saessessssenessssssssssssssncssssassasasssssssasssssssasss F=20
See AlSO ...cciviieciicencircncnnee ettt ettt s saae e e s saaeens ceeterreeenteeaaeennas ceeeeseanesaaans veeesaes 4-27
MOUNT ...uititienieetcsneeeseseenrenesesnssasssnene eereeeeestasanaeneens reeteseeresaesseesesnessnesesasanessssasansanesscanes $-28
NAMEcceiirireniirneeneneeceteseeeeneesasessessessassaensens ORI JRORRR creenanens eeteeseeesreesateesaa st et s aaan 4-28
DeSCTIPHONcccvevuieerreeeseesreneeeesecnnnseenes
REQUESL....ciiiiiiiiiiennistinntensen e sseest e ssassaesaseseesaessssssessanssanseesaassanns ceesresasennesaassessases 428
Request Format ..., e eaaates creverenns vereranens e 4-28
REQUESE VALUES.....ccoiuimireriinrrnrnieaerenenineerecssienesssseressssessssssesessssssssassesssassessssssassosasssessess F=28
Responses.........ccceeeene SR ceeenneraens cereeseneneenas ceveennees ceeenceane ceeeeneeas ceveenens cereanens cereeneearnenes 4-29
Intermediate Response Formatc.ccucuu..... reteesreeestenraesaes ceveenees creeenaens creeeneees .. 4-29
Final Response Format cevereeneeneeesannes creereeereseesarensssssensesasssesnssasasencesces F-29
Final Response Values.........c.occecerereeeeercneernenenns ceteneseeetenaannes creenrenseneessasssscsaasassacssesces 429
Final Response Values — Cancelled REQUESL.......ccceccerrreeeirennnneccseesnennnecsesseeeneesesaees 4-30
NOLES ...cvotiriiiiitineneecsrisnnaeesesstsnessenesesnesessessaenens cteeeeenreneeeaenes ceeeeeesensnnensssscensonsassaesess 4230
See Also.......... eeeteeneeesesnteeatensteeesnranssaeseas ceeseseanens ereeseensenetennnees rresreesessssesaessussasessesseessessees =30
QUERY .ottt tsscstesssscssesesessessessesassesessesssesesssnsenes ceeseenenennenae ceererresnanensens 4232
NAME ..ottt seeaesesneeneas verveenenas creereeesretaanas ceerereseeseseeneessssenesesassnesess 432
DESCTIPHON ...ucviuiriicnireierireeceeeeesssneaesesane ceseeasassaeaearens crereaenrenans ceesveenes ceesveenssvessenaens 432
Requests........... creeneeenns rereesteeeraenees rrveeeesaennnns rreerreeraesaanns creereeseraesseseraenns ceerenesreesaaesessnessensns 432
Request Format............ cereeenaes cereeenees erteesseeeseeeeseeanes ceereenne ceveenns ceveeenes ceeeeene cvreeeeesnans 4-32
Request Values............... teeeeeteeiteestesstaesaeestaessaennes reeeressresrasreestaenrans rrrerresnressesneessassansanes $=33
RESPOMSES.....coriiuiiiiiieeiinenruiinieseentinnesteeesaessasseessesssssasssessessaessessasssasssssssssuessassssssasssossassasss 4= 33
Response Format........... eeeeteeesesteeestessaesesestessteeteebeebaenseesseerseaaseansarastannes cereeeraesraensennns 4233
Intermediate RESPONSE VAIUES.....c.cccvirererinrerieenrirenirenreinesessessesesscssesssssseesssnessescsnsss $=39
Final Response — Fixed Portion...........c.ceceeeeveveevencreerueneceennenee verrreeeseessesresaesaesesassassessnes 4= 35

X 9036

Table of Contents

Final Response — ACS Status retreteenene e sate et aes eetreteetesaesaesaansnaeens ceresnrennenenss 4-36
Final Response — CAP Status ceereesttessat el sr s e se s anasees crseeessanttesassesenes veeee 4-37
Final Response — Drive Statusccceeveeeereenesrecnesecnnenes ceeerereeeseeensesenneesnnes ceereeeeneeneee 4-38
Final Response — LSM Status.........ccccceueeeee. ceeeesneestenanesasenanenneenaasanes retreeteneassaasensesns 4-39
Final Response — MOUNt SLAUScovueiiniemieiinineseenesietineeiisesesessssesssesesssssessssssanes 4-40
Final Response — Port Status cesseeesssteessanesssansenes creseeeesentesssesssesansanes crrnneessaneeacenes 4-41
Final Response — Request Statuscocceveeneecuensenseeceseenaenas creneessesanensosssessonasnsessaseeses =41
Final Response — Server Status..........ccovcenieninnnccnccnncnnen. ceeretee et satsaaaens R =0 ¥}
Final Response — VoIUume Statuscccceeeveeeereeeseeecrneersreesnesesssessasessssens eeeereeeaaeeaennnns 4-43
Final Response Values — Cancelled Request..........cccccceruenuennen. ceernesreesssnsencesannasnaeneanees 444
NOLES ...coueerrnriiranstiieeeneesseneaesaenees ceerteennesanaseeneanes reessteseaeneasasanas cersrsnnsssssssseneessansesseees 444

START......... cererenteennes ceessenestensesentassennans eeresersneasssens s atesaesesaees reereereseteae e sasenens creencenerceeees 4-45
NAIME ...vviiriiirntitinecetteisssisae st s sssseesssssssssssessssssessenses cevsstesteaessessesssesssssesassasensesaess o4
Description........ccceecueenersaecenes creestent et snasssaes creeeessaesteanenaranes cevesensessasasensannes cevreneeses 4-45
Requests......... eeeestesseetaeatesseetaeteaa st e st e te st e te et e st este s e et eaa e et b e st astestesseennesnarans ceenresreeeeneanns 4-45

ReqUESt FOIMIALcciiuireireniiiiinnienieiennceeeneestenssesescssusssssscossosssssssssossassesassssasssssnosss F-4
Request Values................. ettt ettt st s e st es b snas s b sb b saassa s sraes eevrsssenseassasaanane creessesses 4-45
ReESPONSES....cccuiuiererninnieneireeentenecaceneesnee reertseseaseanens reereeaeeaseesasns cereesreeasessesteaes ceveeess 4-45
Intermediate Response Format reeeneseeesneatetenresaeseenans ceeereareananes reesssesteanenenes ceeeneees 4-45
Final Response Formatcooceiiininnrnnnenennceninnccnncieneenenene ctrseereesseesessessessesaesseess 445
Final Response Values.......ccceoveviinniccencnnisecsienecscesuessennes ceeeeeesesasesasosasenias cresveenseneess 4-46
Final Response Values — Cancelled Request........ T rereesese e ssanes crnesrsseaeeeness 4-46
INOLES «.coviniiieitticettnt ettt ee s st e seaesae s sate s ae s s aesnessrne s snsesensanesaes ceerereressraeees ceeeereeens 4-46

Name......cocvvinieviiirenceeecenene reererseeeeeteenennenaaas reenteeensseaesnens veecneeeenanns SRUSRURURRRRRONY - = ¥
Description.........ccceceeeuennee ceeveennessttessasesasnns reveesesesnsesataebassranensne ceeteeasesasesnns ceeeesesaeearens 4-47
Device States........ccceeeveeeereenernercencens reeteteatente e te st en et eaante e enae e enenanenennene ceeveeeeeeneens .4-47
Device State TTansitionscceceeeereeeseesueseeresueceeseesenas rerereeesnnrans rerecsuesaesssstesesasesesacess 448
Requests........ ceteesteeereeeeseannnens ereeseeestesstennenaessaenasanneenes reeeeeseeeananes erererenseanenaes cerereerenenenes 4-49
Request Format eeteseesentesaeesteestaesanesaseneans ceeeeesenestessaeenaesnnenn ceeseesetesatesaaesaeesanenne 4-49
Request Values...........ccoeueene eeeeeeteeeeeesstessaeeeaeeeeeestaees st tesabe e atessaaeeastaeeraneenans eeveeeneaenne 4-49
Responses................ reereereetesaetenteeenaneenen eeeteeeteetest et e seenae st et st sane s esenesnernsatens veeerevetenes ..4-50
Intermediate Response Formatcccovceeecruennene. ceeesttesraneeereereeeaessasse s sban cevervansees 4-50
Final Response Format eereeteesaeeressaeese et ete s nt e st ennaesaaenane creerteeaeaeens eeveeeenenaes .4-50
Final Response ValUes.......cccceueveiruiniennerneeneneneentenueseeesensuesecsncsseessenes cerrreeseensnesnesneenees 4-50
Final Response Values — Cancelled Request rereveennenees veeneeresneenssnesassaenaaseaseees 452

CHAPTER 5: CSI PROCESSES 5-1
OVERVIEWoieeieereereereeereeveennens teerteeaeeressaesaretaeseetaeaanans rereeveerraenne eeereens vrreereeenn -1
CSIFUNCTIONS ... eeeeeecetecttentreceresssesseesesssesssesssssesssesssesssesssesssesssesnnssssesssnns
CSI ARCHITECTURE.........oootiiietietienteeeriee et ceeerseessessseseessecssesssesssesssessssensessssesssenseessssssases
OVEIVIEW ... cteeteeteeteeteestee e ee et ee s e s et e sesnsessbesssasssesssessaesssensaeasaesssessaenses terrreeenaees reereeeans 5-3

9036 xi

Table of Contents

OSIMoOdEl....uconiriiirenrernnrenereriesesennesennes reetenttets et a st e saen b shea b s snens SRR . |
COMMUNICATIONS METHODOLOGYocovvveririnenisriniisissisissessisisnesessessessssessessenens ceerseerens <5

iew 5-5
OVEIVIEW c..eeeeeeeeeneneeereesssessissosassssesosessssssssssssssssnssssessssssssesssssssnnnnnns e ceeeneeveennensenneanenane

Data Stream Representation...........cocceeerececeseeseenseessessccssessssssesssssssssees cvessesesensesassssscsees -0
Session CONNECHON......cocceeeeeerecrueeecreecreessaenesnnens teeeesreeessaeesasaasnns reeeesaeessnresarensraeassseanan 5-6

RPC Service Registrationcceevueeeueeennee cesestessatesssssaetessetesssnastesanns ceresessssssssssesasesesses I= 71

RPC Program Numbers and Port Mappings.........cccceceeeereniecrnscsensessessescsssssssesssssssessesesss 9= 1

CSI REGISITALION......ccuecreenerrenaeseeraecensessessessessessessessessesesssessssesassssanessssssssssssssssasnssssessssesses =8

SSI REZISITALIONceueeeerrerereeseereeessensessereessentessssassessassessesessesaessessessessssessassassssssssassasses I=9
CSTINTITIATION.......outeiceeeceeereeeeaeessssesseesssnssssssssssessasesssssessasessasessssssssssessssensessssasassns cereereneee -9
OVETIVIEW.....veeneerrererriessaesseseesessassessessessessessassessessssassassessassonsessesssssessssesssesssssasssssansessanessssssanss =9
Environment VariabIEscccceeciveereinireeersesenssesssasesssessssaesssessssassssssssssssssassssassssssassssssssans .59
Network Buffer ALIOCAtIONveveeieerrrrrrneerrecessveneeesssssssssesasassssssresessssssssssssssssssssnssssasasssnsnes 5-9
RPC Service INTHAONccoveerreeereerrrerieersrerseesssessaesssesssessasessesssessssessasassossaassssessasssssssssssaasss 9= 10
CSI MESSAGE PROCESSINGcccontiiieeinnesirreesseessseeessesssssssssasesssssesssesssssassssans rerresseesnenss 3-13

Application-Level Messaging Protocolccoviiveninnicnns cesesnesnreaeaans reerasenasentesseenssanes 5-13
Interprocess COMMUNICALIONS........ccceeruerreeereesreeersessaesseeasenssnsessessasassassnees vrersreesraesssesnsesseness 9= 10
Message Handling........cccovvieerieenninnneeeineeenneeesnneesneecsseeesascessessssassanses creesrressesssasssseasenss 3= 10
MESSAZE SIZE...cccceerrrrrceereerrreerreessrsesseessesssesseesssasssessasessassasessassnass reverreernessesssesssessassassaces =10
Network Communications.............. cereeeteesaeenesanen ceeeenenes reereseeneenesesseasssssesassssnsnasssssssssesses I= 10
Functions Calledccccoveeeeirieienencnae cereernereanenns reeterreseesteseesaeseessesaanassassnssssssesseassesss 9= 10
MesSage ROULNG......ccoccuiiereierniiniiecciiecneeeseeecaeeesaasssssaessaseesenssssasesssssessasass rereesaeessaaeeas 5-17
Timing Considerations...........ccceeveveereerenreesesrenessesseseeseeseenes reeeeesteneeeeneenenaesesanes vererene 3-17
Message Packet DECOAINEccceviruirienieeiinieneirieiestieceetesece st sseeeee st e sesassenesasenssnssssssses ...5-18
XDR Translation FUNCHONScccceeeveerineirunnieraencssesseeieseescnes cevereeenees reresassasneesesaaes .5-18
csi_xdrrequest() Functioncceeeeueuennen. bttt et esesan s anes rereverersaeaereseseaesesaas 5-18
csi_xdrresponse() Function................. eeeteeeeersteeesssesessssetesesssesesesseeeesssseseeessnanesasnenes e 3-19
Calling the Supplied Functions.......c.cccccocevueevinvuencnrennunnen. reeertesteeteas et st s e e e sntesrastane 5-19
Duplicate Packet Detection................. cetesaeeatesteaeenteeeans trerreeereessesseseseesesssasessassasassasses 3= 19

Packet Tracingccccceuevcrrvercncnncncn. reeteteteate ettt st st st sa e e sr et er b e sa e e sas verennenes 9-19
Request Processing Summary........ccccecevvveveeevcereececnen. ceveenes treereeresrennessesessessessersessessessessesaeasss 9-20
ERROR DETECTION AND RECOVERYccociirininineenrenteseesesaesssssesessesssssesssssssssssessessosss 92 1
OVETVIEW ... ereceeeteeceenneceestesecnesraessessesntesaensassasssassaesssssassasnsessassasssssssesnsessassesen cevennesaeennnes 3-21
External Errors........ccccevceeeencnnnene reseeeeananne ceesneeens teeteeseresteeesseeesseeesnasesseasassaans creeranevesssseenss 9-21
CSI Error Handlingcccceeveeeneeenreeneenennseeeceeeseesassssessasssnsnne rreeeteesseeseeeaeasasennnansasanns e 3-22
IPC Failure.......ccooeeeceeeneeeneeeceenenennnene eteeesttesteaeteesaeeesaneesstaessasessnsasssnans ceveeteeatesaaeenrens .5-22

CSI Process FailUre........cecceiieeienieienietenenteesteienete st e e eseestessessaeseeessassesnsesessacesssnasnes 5-22
Operating System Failureccoceeverieneinennenrenreneesrenceeseeenes crrenreneesaesaessessasseaess 9-22
Network Transmission Failure..........coccoeenienienienieneenceneneeenn. rreeerseessesaeesnassnnens ceeneens 3-23
Network Message Translation Failure............ccccoceenvennennen. eeeeesttet e ente et s assaaesasenes ..5-23
Duplicate Network PacKets........ccccerreienernnniecssereceenssseeenne cereresnessnesasssusensesasssassassnseees 924

CSI Request / Return Address Agingcceeeeveeveeneneereruecnenees ceeeeeeaeeeeneentenaensenaeneane ..5-24

CSI TERMINATION.......cccenurenimuinnensenssssiessessesuessassessasssscseenes ceeetereetaeaenaesesseenesnaesasnnes ceerennens 3-24

. 9036

- Table of Contents

CHAPTER 6: SSI REQUIREMENTS 6-1
OVERVIEW. ceeteeetenteseereae st eaae st s e s e enaese st srnestsasete s en e st et e se e sassaenassssarasen ceerteeensnssnsonsses 6-1
DESIGNING AN SS1...uuiiiiriinineineereecsieseeneesessennesesseeseesensesssnsesssasessessassssnsesesssssessans 6-1
OVETVIEW ...tiiiiireeseiesecesttesten st e e st s aeasasssnsssesssassatessesssasstanssesstsssensassssssnsassesessanssassnssssanes .6-1
Required FUNCHONALILYc.covecieuiiieeririerietieiesteiieieeteee st eaeessaesassessessesassassassassensassensessasasessen 6-2
ATCHItECTUTAL NOLESocveuieceenieieieeentiiesterertesteteseesessesteaessesassessasseseassasassassessessestastessassnsansennenes 6-2
ArChiteCtural CONSITAINLSccccveverereeeeuerereresaessnssenessesesseseessssssensessssssssessasessesassesassasassessasesss 6-2
SSI— CSI Architectural COMPATISONSccovereeeierueruessecsstarascacessssssssssssssssssessssnssssssessassases 6-3
OVEIVIEW....ccniitieiineenetntereesecsaecneesesaesstesaenesssensesseestsessssanssessasassseeseessessssseestansesesessases 6-3
Sending Messages DOWN-LAYETccccveeniinenerinrensersenisseessenassesssessasssssasssessasssessassasss 6-3
Sending Messages UP-Layerocviiiiieninrininiiieceriieienienessesssseuesesssscssssesseessssesses 6-4

CSI and SSI INitialiZAtIONcoveeueeerrreeecterieneaeenentereeseenesseseesesssessesessessessasasassassessassesace 6-4
PORTING STORAGETEK XDR ROUTINES.......cocooririnieninireneineessenessscssensesessesssnsssnsnssns 6-4
Serialization Of REQUESLS.........cccueceeeieenrerniereeseestaesessassasesessasseessessassssssassassssssassasssssnessanes 6-5
Deserialization Of RESPONSESccevireeiireeetiniereierenstirrteeseessteeseessssaesesesssesssassesossansesen 6-5
PROGRAMMING AN SSIiiiiiiieenenienieeseeaestsseesessetessessesessessassessessessassssesssssansassansassases 6-6
Initializing the SSI as @ Callback SETVET.......cccoviriiirnirienerieieseecireenecseeneessesseneessessasssenee 6-6
Obtaining a Unique Program NUMDETccccevierurniinrinmnntensessieneescsonnseesssssasseessssssnsene 6-7
Initializing the SST — Application INtErfacecccovueveniiicirneniiiniiciescreere st seceneseeenenes 6-7
Allocating the Network BUSTercc.coviiiiviicinieiceecticsee sttt e e sne s e e snesaes e ansesees 6-9
Polling for Application OF NI INPULc.eevreeeeucuererererisesesesesesesesessesesesesesesesessssssssssssesesesesses 6-9
ReECEIVING @ REGUESL.....cuiceieirietieirieteerece et cteseen e s stae e st seesasesessasanesnsosasnsessassssnsanns 6-10
Formatting a Request Into a Storage Server Packet...........ccoviiiviiiiiiiiriniecceneccieeceenen 6-10
Sending a Storage Server Packet on the NI.................. eeeteeteste et e nesaes e sanesaes st sauesnestenanns 6-11
Initializing the CSI_HEADER.......ccuioiiviritiirineneestere et eeaesseesesnsessassessseesasssesnsans 6-11
Initializing the Network Buffer Structure...........ccocovievenininennnentiinereneecassessssessesecanaens 6-12
Obtaining the Network Address of the CSI......cooiviirininnicnninniereeeneere e neee e reencees 6-12
Implementing a Timeout—-Retry Algorithmccccciiiiiiieciiniinnniiiieesiestnrnceseeesaeenee 6-12
Initiating @ Connection to the CSI ...ttt rreeeeeesres e sseseessesassesaannes 6-14
Sending a Request t0 the CSI ...ttt e sres e sae e st easesaesassassens 6-14
Invoking XDR TTanslationccceoueeeereeinrinrnseneninneeseneeseesressessesssessesseensassessessssnes 6-14
Reading a Response From the NL.........cccviiininiinereetrnteieseisseeseeseesssesssessassassessessaans 6-15
Detection Of NEtWOTK INPULccvevveversuerrerieessesssesiessesseessessssssssssssessassesssssssessessansses 6-15
Invoking RPC Handling of INPUL........c.coceetiienrininennrerinrececnrenteraeseneeseesessesneesecsesenes 6-16
Invoking the RPC DiSPAtChercccoieuieieinireinecieriieeseseesieestssesesessesssnssssessssesessanens 6-16
Invoking XDR Translationccccceeeeeenrueeccseeneesiseeesseennne reeeeesseeeesaaeeesantaeasasasesnasanas 6-16
Detecting DUpPliCate PACKELSc.ccveriiereereeneneenienesreeseriesteseserestessesseessseseesesssasssssessans 6-16
Determining the Destination Application Address........oceeeveerenenneerseneereccrenreeseessernnes 6-17
Formatting the Storage Server RESPONSE.........cccoiieiiiieriienieiieeticteeseeeeae s e e e esse e nannes 6-17
Sending the Response to the APPHCAtIONc.cceieereivierentreerieieneseaeieressesesaesssseseessssesensesaoes 6-17
Request Processing SUMMATYccccevuirirrenieninirninenteseenenreeseessenseestessesnsesseesesnsesssssessasse 6-17
CHAPTER 7: CSI DATA STRUCTURES........ 7-1
OVERVIEWutiiriintenereiieseeeeesestestesessassestesessassensessansssessessessassentensesesnessessassassensessesesssasenes 7-1
EXTERNAL INTERFACGESocoteteenteiesiereniestenteseereneesteste st eseesessensestensesssneestsutosesssnsesesses 7-1
OVETVIEW ... iiuiiiriieiieieseete st esce e stees st ssessessesseseesasessensesesnesssssensestensesssnsentssaesesstsseesensessarassaons 7-1
9036 xiii

Table of Contents

Software Libraries........cccooveeerrrneeeccsenecesneeesnnens teeereeeeessseeessnneeessnsananannns SR SRR) |
Communications Protocol Interfaces..........ccceeceeeerrveeccreenecrnenens treessaresaeesssnessrsessanesssnesrsnans 172
Functions and Variables...........ccueeeeeeeeeireeeeenneeecssseecnsseeeeennes teeeessseesssaeessesessaeessrasersassssresssnes 172
ENVIRONMENT VARIABLES..........teereereeeneeessanesaeenens rveeereeesrueeessaeessansnnessssaessssassanace 73
INPUT TO THE CSI FROM THE SSI reeereseessasesssaeersanesnans teveeesnresssaessanessntasanne ceveeane e 1-5
REQUESE SITUCUTEccouiereieeetiiniistinietssttsestesassstossesssesessasssasssssssssasssssssessssssssssosssrasesssnes .7-5
csi_header StrUCtUTe........ceveeeeeecrecreeceecreecetee e eeeraeensnnees R rrreeseessresssesssassaasssessassasesse 1=0
DESCTIPHOMccveeeerenrernererreseeneseeassassassesssssesssssessesassesncssssssessssssssensessssssssssassansssssesassss 10
Format.........ceeeeuveeennnne. tetesstessseessesesessseessesssressaessaesnrens teeereeessessaeessessesssaessnesssassnasssassaaes 1-0
VALUES .uvveenreeireesteeseeesseessaessaeesaessaessaesssesssessassssssssesssessassssesssansssnsasssassssesssassssassassssasssasse 10
CSI_XI SEIUCLUTEveeerreirienieeieeeeenieesseeseeseesseesseessessseesssssssssssessssssaessssessaessessssassssssssessasases 1=8
DIESCIIPHONceeetieneeraeseeesreenisaesseeeessessesseessessassssssessssssassessesssssssesnessasssassssassnsessasasonsosssss 7-8

Format.........cccoovimmvenivenccirnnnnns sesersesesestastesscsesesersisssnanse treeererteesseessesssessasesanesranassessasesnases 1= 8

VALUESoveoreereeeeeitecreenseneesaessesssessessasssessasssessensasssessessssssesnssssensessasssasssessassasssessssssessassasse 1=8

csi_handle_rpe SIUCTUTE.......cocceerrirerteerrenrtrereensereseesseeesssosneesenssneesanssanes ceerssneessassasesnsessssasases 1=9
DESCTIPHON ...c..ceeeeeeeeeeneeseeererressesseesessesseeasssasseesesssestessessesssesseessassessasssane ceereenarevsnaesenes 19
Format.......cocceivennneninenecnseneennnnnee ceetetentententntanenanasnes reererseneansseaessesasssesasssssasssssnessere 129
VLUES ...oeeecreeeieteeeeesteeestesseesesaesses st eaessessaensessasssessesssessesseensesssessansesassasns ceeeenenaesneeses 19
SOCKAAAr_in SIUCTUTEccoeeviieirieceireeeeceeeeeeeseeseeaessesseseessesseensessssseans ceressessnesansssssnscanees 1=10
DESCTIPHOMNccuveeteiresreresretesseseseeassessassessassessensessasaessssaesassanss cesressessessessessesasssesnssanses 1=10
FOTMAL ... eireeceeeneecneeeereese s e ese s ae s seenss s sassssesnesssanseansnessesssasssassnens ceeeesraenaneas .. 7-10
VALUES .ccviiiniiiinicsiiintncetnsee et e s sanscne st smassnc s esasensensenanes ceereesressessessasessassassassascass 1= 10
INPUT TO THE CSI FROM THE ACSLMcccccoeeeeunen teersrsrersnsasernanannans cerreesssansasssssansesesesse 1=11
RESPONSE SIUCLUTE.......ccoueeirerirrintiiinsitisiensestssissessessesssssssssssesssssessessessessessossessesssssensessssaes 171
ipc_header Structurec......... reeeeete sttt st e s et e aaesaas s seaes cretseseressaesstaserbesssnasessane e 1-1
Description............. ceveneens etetestte ettt e aeesae st e asenae st et esbe st e seanstesaasasns ceernrereessessesneens =1
Format.......ccccceveeeeuennnee. eeteeseteseeesaeasatetaa e e saea st ae st st aeen e sateesasenneesasanaresananas creesreensessneenanes 171
Values ...cooevveeveeveceennenene reereetere ettt saae e saenes eeeesteeesareteanenee e s ssssnsntasaeranentss R £ |
OUTPUT FROM THE CSITO THE SSIcccevueveeeevenrecnene eteeresteteseeseesseseesesseeseessesssssssessasses 171
RESPONSE SITUCLUTE.......ccoriiecteerrieireesieseresteesteessaeessessaessaesssessasensesssesssessseessassssannes ceveeeransennees 1-13
MESSAGE TRANSLATION STRUCTUREScc....... veeresseressesessessessssessesassasaessssessasesss 1= 14
csi_msgbuf Structure ettt e te st st e et et sa s sa e se b srassnasenns eeeeseseentesaaesnteentren 7-14
DIESCTIPHONecuereeeerreenenreenisreeressessessessesaessesessessessessessessessensesseneesessassssnsessessosssasesssnsnes 7-14
Format............... rtteeeeett et te e saasse s bats s b as e seaae s suntaesestbesssnstes creveessnans certeeesssaseesssasenans 7-14
Valuescocceeeeecceeccnennnens eeeeesseeessteessetesstesstee taearatastaseneeesaaeeretaesrasessnasesanesnass ceeeeennns 1-14

APPENDIX A: EVENT LOG MESSAGES A-1
EVENT LOG FORMAToiimmnrimnimnsssnisssmssmssssasesssssssssssssssssssssssssssssssess R O |
EVENT LOG ENTRIES........oocuniumnrinsisnssinsisssssisssssssssssns s sssnsssssssssnsssssssssasssssssssssssess e A2
COMMON ENTRIES — UNSOLICITED MESSAGES e s b A2
COMMON ENTRIES................... st st e saa i Y. ¢
ACSLH oot ssssssssssssnsssssssssssssssnes e e saa s rae A-5
ACSLM....ooicitceinsisssansssssssass s sssssssssssssssssssssssssssmsssssssssssessses e aneesraeees ceeernnens AT
ACSSA. ...ttt st p e crensinessinsssneessinssssassreenses A9
AUDITovvrrrmerinnrinnes eesraenersnsins s b cnveernsesnsessrnessnssssnesssasnns A9
(61] SRR e R R R coneerressineseraenes e snsrans .G V)

W NN NN -

xiv 9036

Table of Contents

db_defs.h HEADER FILEeeeieeecteencnteesesaeesssaeessvnsssssseessssasessanns
defSh HEADER FILEciieeeeeeeeceeecteecsaeeseeeeaessaasenaaesssssssssanssassnnans
identifier.h HEADER FILEuuiiiioiiiiececnreeeecesensaeeceesseneesssesssesesesesssssssanes
structs.h HEADER FILE ... ceiecereccrnecccsnaeeesesecesseassssasnessasessssanns

APPENDIX C: XDR TRANSLATION FUNCTIONS

OVERVIEW ...t rtteseneeestesssse st ssstaessssessaasssanssssssssanssssssssasssassessasas
csi_xdrrequest() FUNCTIONcoociiininriiininicnintecesnsisnssesssnsssesseessesssssses
csi_xdrresponse() FUNCTION.......cociviriniennninnrnenceneneesteeiesetescaeesesssenneens

APPENDIX D: CSI AND SSI REQUIRED FILES

OVERVIEWiiitieciiciteeeseeesstesssesssasessasssssssssessssassssssssasssassssassssssnsaes
csi_header.h HEADER FILE...........ouuivioiieeeeirreeecseereesecnsnnasesesessnesssessssannas
csi.h HEADER FILE terteeerseestessiaeeseessteessasesatentaeesteestanaseeestanan
csi_structs.h HEADER FILE.............oeiieeriecieeceenecesstesesnnsassessaesessasssannas
csi_msg.h HEADER FILE ..ottt eeesiecneeetnsseeseesasesssenns
csi_getmsg.c SOURCE FILEciiiiniiiiniiiisncseesssisessessssnses

GLOSSARY OF TERMS

INDEX

9036

XV

Table of Contents

(INTENTIONALLY LEFT BLANK)

XVi 9036

Figure

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure A-1.

9036

LIST OF ILLUSTRATIONS

Title Page

4400 Automated Cartridge SYSIEML......cceveirriirrrniiricrenraiesseenassessesansssessasssssssaeess 1-2
4400 ACS Library Control/Data Pathsccccceeciereercrnrcnrieserescssaesecsseesaeseesnsnns 1-3
4400 ACS HardwWare.........cccccvierienueneirnencestenueseensssseesscsssossssssesssssessessssssessossssnsssns 1-6
LSM Cartridge Storage CellS.......cccevuereererrerneenrerscerersnesmeseesseeeseesseasesssssnsssasssens 1-7
Storage Server / Client Software COMPONENLScccevueeerererreeesneersasessesseessses 1-11
Storage Server Component Relationship to OSI Model..........cccvvveevviinniincenncae 1-16
Client Application — ACSLM Message FIOWcccccoviiviiininiinniincsinnnninncsnenanee 2-6
Request With @ SYntax EITOTc.ucveeviniiniionninneceniesenenee st seessessecseeneessennens 2-7
Request With No Intermediate RESPONSEcccuereiienieiirnnenneneensessacesscsasns 2-8
Request With Intermediate RESPONSES......cccceoveevriiiirecnuiinetircnatsenssssssesasesenns 2-8
ACSSA — ACSLM Message Flow.......cccccoceeruereccene rressssesnsnassessennesesisnsansaiane 2-10
Request Containing a SYNtax EITOT...........oeueveveuevereseseseseeessessssesesesesssssssesesens 2-11
Request With No Intermediate RESPONSEcccceeererieveeniererncesennenreceenseseencenes 2-11
Request With Intermediate RESPONSES.......ccceveeverericieneerinrennenrensesneenessesssscensens 2-12
Overview of the Client System Interface..........ccccvevceciniiiicninneceencnneninsennnenne 5-2
Mapping to the OST MOdELcccoviriiniiniiniecicnenrincciestenteee et et sesssessens 5-4
Initializing the CSI SEIVETccoiririeriiiiiientcierece ettt e sase st s resreeseenesnsenes 5-10
CSI RPC Service Initiation LOZIC.....cccceeeiieriiieieienieeeecteenieecceeesee e saeeesseensvesens 5-11
Sending a Request From an Application to the CSIccccoviviniiennncnnicnnenes 5-14
Sending a Request From the CSI to the ACSLMccccovevinninnnneenenseccesecnnes 5-14
Sending a Response From the ACSLM to the SSI.....cccovivinninvinivrnnnncninenennnes 5-15
Sending a Response From the SSI to the Application................. vt 5-15
Sample Packet TTACE......c.cccvuviuirinerineiciciiecseenirescse ettt esesesessessnseses 5-20
Layering of Calls — Request Serializationccccecvereeveenencenteneneeseesscsansccens 6-5
Layering of Calls — Response Deserializationcccueeveeeeeenveeceeenencsescnesaesenens 6-5
Initializing the SST SEIVeT.....cuv it e 6-6
Code for Obtaining a Transient Program Number.......c.cccoeceveeveninnnreneesennncne 6-8
Sample EVENt LOZ.....cccvviirneniiniiiiiiiiicitnic ettt snessaessssssassssssssssasssseans A-1
xvii

List of lllustrations

(INTENTIONALLY LEFT BLANK)

xviii . 9036

Table

Table 1-1.
Table 2-1.
Table 3-1.
Table 4-1.

9036

LIST OF TABLES

Title Page

4480 Performance SpeCifiCationsccccceeceereenreirsiienccnseississsiescesssssseessesessesens 1-9
Library Commands and ACSLM Statescccccoviruiercnnicsenrueccnsesccsnsssseessesssens 2-4
ACSLM Response Message OPHONS.......ovecueeriereenteneeceseesseeseeseassassesssssssoscssssss 3-5
Valid DEVICE SLALES....cceiurrerreererrerreessenreesersanssenscereessenseeseesassnsossossassesssessssssensas 4-48
xix

XX

(INTENTIONALLY LEFT BLANK)

List of Tables

9036

PREFACE

PURPOSE
This manual provides the following information:
» Functional description of the StorageTek 4400 Automated Cartridge
System and the UNIX Storage Server
» Functional descriptions of the Storage Server software components
and the required Server System Interface (SSI)
+ Format and contents of data structures used by the Storage Server,
an SSI, and a client application
AUDIENCE
The UNIX Storage Server Programmer’s Guide is written for the
designer and programmer of a Server System Interface (SSI) and a
client application. The reader must have a working knowledge of the
following:
+ UNIX Operating System
« “C” programming language
USING THIS MANUAL

9036

This manual is organized as follows:
e Chapter 1: ACS Overview. Describes the 4400 ACS hardware
components and the UNIX Storage Server software components.

» Chapter 2: ACSLM Processes. Describes the primary functions of
the ACS Library Manager (ACSLM) software component.

* Chapter 3: ACSLM Common Data Structures. Describes the format
and content of ACSLM request and response messages. Defines
common status codes and common variables.

» Chapter 4: ACSLM Command Structures. Describes the specific
format and content of each ACSLM command.

» Chapter 5: CSI Processes. Describes the primary functions of the
Client System Interface (CSI).

xXi

Conventions Preface

* Chapter 6: SSI Requirements. Describes specific functional
requirements of the Storage Server Interface (SSI) and instructions
for programming.

* Chapter 7: CSI Data Structures. Describes the format and content
of data structures used by the CSI and the SSI. Identifies common
environment variables and external software libraries.

e Appendix A: Event Log Messages. Identifies and describes
messages written to the Event Log by all Storage Server software
components.

» Appendix B: ACSLM Header Files. Includes listings of system-
wide header files required for ACSLM processing.

» Appendix C: XDR Translation Functions. Includes listings of the
StorageTek-supplied XDR translation functions.

» Appendix D: CSI and SSI Required Files. Includes listings of files
used by the CSI and the SSI.

CONVENTIONS

The following conventions are used throughout this manual for library
and UNIX commands.

command Literal user entries are shown in Courier bold type.

variable_entry Variable entries (text that may vary each time it is
entered) are shown in bold italic type. Do not enter the
actual characters shown.

message System messages are shown in Courier plain type.

variable_msg Variable messages (text that may vary each time the
message is displayed) are shown in italic type.
The text immediately preceding the ellipsis may be
entered or displayed multiple times. Do not enter the
ellipsis itself.

[optional] Text presented between square brackets is optional. Do
not enter the brackets themselves. Text that is not in
brackets is always required.

textl | text2 The vertical bar represents “or”. Only one of the text
strings separated by a vertical bar can be entered or
displayed. Do not enter the vertical bar itself.

All library commands and parameters are shown in lowercase letters.
User entries can be any combination of lowercase and uppercase
letters, however.

xxii 9036

INTRODUCTION

CHAPTER 1:
ACS LIBRARY OVERVIEW

The StorageTek® UNIX® Storage Server / 4400 Automated Cartridge
System (ACS) is a fully automated, cartridge-based, 18-track storage
and retrieval system. It provides automated tape cartridge library
services to a network of heterogeneous client systems. The client
systems may range from workstations to supercomputers. They may
be located in the same data center or spread across multiple locations.

The basic hardware component of the system is a Library Storage
Module (LSM), a 12-sided structure containing the following:

o Storége cells for approximately 6000 tape cartridges.

* A robot that retrieves and moves the cartridges.

» Apertures in the walls of the structure, through which cartridges
can be passed to load and unload cartridge drives outside the LSM.

Figure 1-1 shows an LSM with associated electronic modules and
attached cartridge drives.

The system is controlled by the Storage Server software residing on a
server system. The Storage Server receives mount and dismount
messages from client systems or library operators and translates them
into robot movement commands. '

Figure 1-2 illustrates how an ACS is divided in terms of function.

ACS LIBRARY FUNCTIONS

9036

The ACS library performs automated mounts and dismounts of tape
cartridges in response to requests received from client applications or
library users. The ACS library controls only the movement and
locations of tape cartridges, not the data recorded on them. The library
identifies cartridges by their external bar-coded labels; it does not
verify the external labels against magnetically-recorded internal labels.

ACS Library Overview

ACS Functions

wielsAs ebpuue) pslewoiny oovy “1L-1 04nbiy

9036

9€06

2

NOTES:

LSM
Lcu
LMU
Ccb

SS

= LIBRARY STORAGE MODULE LEGEND:

= L IBRARY CONTROL UNIT

= LIBRARY MANAGEMENT UNIT msmmm L IBRARY CONTROL PATH

= CARTRIDGE DRIVE (AUTOMATED MOUNTS/DISMOUNTS)
= CONTRO |

v ———7 DATA PATH (READ/WRITE)

= STORAGE SERVER

29047 A

Figure 1-2. 4400 ACS Library Control/Data Paths

MIIAIDNO Ateiqi SOV

suoidung sQV

Benefits

BENEFITS

ACS Library Overview

Client applications determine when automated tape handling is
required. They allocate specific library tape drives and resolve any
resource deadlocks. The Storage Server software controlling the ACS
library rejects any requests that specify cartridges or tape drives
outside of the library.

The client applications control the library tape drives, including transfer
of data to and from a cartridge, detecting and recovering from tape data
transfer errors, and determining write protection for a cartridge.

Storage Server control of tape drives is restricted to forcing rewinds
and unloads.

The 4400 ACS provides the following benefits:

e Storage capacity is available in increments of approximately 6000
cartridges. The maximum capacity of a library is approximately 24
million cartridges. .

» Faster tape access time than manual systems. Cartridge select and
mount time averages 11 seconds for a cartridge in the same LSM
as the cartridge drive.

* More dependable tape operations. Automated cartridge handling
reduces the potential of human error. Newer technology is less
prone to the mechanical alignment problems of older automated
tape libraries. '

o Less expensive tape operations. Automated cartridge handling
reduces the need for manual labor to handle tapes. Reduced floor
space, power, and air conditioning requirements generate additional
cost savings.

* Broader access to ACS library services. The Storage Server permits
systems with appropriate data paths and software to store, mount,
dismount and retrieve tape cartridges automatically.

e Darkened data center. The Storage Server can be located in a
remote, “darkened,” data center with entry by personnel required
only for maintenance and entry and ejection of cartridges.

ACS LIBRARY HARDWARE COMPONENTS

14

A 4400 ACS consists of the following hardware components:
» Library Storage Module (LSM)

» Library Control Unit (LCU)

+ Library Management Unit (LMU)

» 4480 Cartridge Subsystem

» Server system

9036

ACS Library Overview ACS Hardware Components

Library Storage Module (LSM)

The LSM (Figure 1-3) consists of the tape cartridge storage area and
an internal robot for moving the cartridges. Each LSM provides
storage cells for approximately 6000 cartridges and connections for up
to 16 cartridge transports. Up to 16 LSMs can be interconnected
through Pass-Thru Ports (PTPs) in adjacent LSM walls.

The robot can retrieve any cartridge in the LSM and deliver it to
another cell, a transport, or a Pass-Thru Port (PTP). The robot has an
optical system that identifies the correct cartridge by its external bar-
code label and an electro-mechanical system that picks up the cartridge
and delivers it to the correct location. Cartridges can be passed from
one LSM to another through the Pass-Thru Ports.

Each LSM has doors in the outer and inner walls allowing access to
the interior. The access door in the outer wall contains a cartridge
access port (CAP) which is used to enter cartridges into and eject
them from the LSM without opening the door. The CAP holds 21
cartridges at a time.

Cartridges are stored in cells located on both the outer and inner LSM
walls. The outside wall contains twelve panels, while the inner wall
contains eight panels. Figure 1-4 illustrates two typical panels with
cartridge storage cells. Each panel is divided into columns and rows for
cartridge storage. Cartridges are placed into a library location defined
by an ACS identifier, an LSM number, a panel number, a row number,
and a column number.

Pass-Thru Ports are also shown in Figure 1-3. Each PTP occupies half
of two rows at the base of a special wall panel. A PTP is installed by a
Customer Services Engineer in a master/slave relationship. In
addition, circuitry to control the PTP is connected to the master. As
viewed from inside the LSM, the master side of the PTP is on the right,
while the slave side is on the left. In Figure 1-3, the LSM on the left is
the master side of the PTP, while the LSM on the right is the slave.

On the PTP panel, the half-rows adjacent to the PTP are used for
storing cartridges. Each LSM can have up to four PTPs.

Library Control Unit (LCU)

9036

The LCU is a microprocessor that controls the robot’s movements.
There is one LCU per LSM. It is attached to the panel immediately to
the left of the LSM access door.

The LCU translates gross movement requests received from the LMU
into the discrete servo commands required to control the robot.

ACS Library Overview

ACS Hardware Components

\
\
\

P29
g5z3
33
o<
o
\/g.
%
2
L
<
Y
=
L \2
</
\
\
\
/ \,/

ADDITIONAL

Sgggss CARTRIDGE CARTRIDGE DR
ACCESS CARTRIDGE DRIVE
PORT (CAP)

CONTROL
UNIT

—~——_ LIBRARY

MANAGEMENT

CARTRIDGE
STORAGE
CELLS
HAND — —
ASSY O i
P\ 2 >
ROBOT N /\\\\\\\\
S
S W
AL
WIS S
=\ s\/
S ;.! %\ PASS-THRU
/\§ ~ =) PORT (PTP)
. S Se <
Z LS \\\\ S \Z 7
C s §F ¢
\Z% S
N\ S
2
/) \\\\\\ \

IVE

|
I c
0
|
|
d

UNIT (LMW

ADDITIONAL
NIT

ONTROL

29048 A

Figure 1-3. 4400 ACS Hardware

9036

ACS Library Overview ACS Hardware Components

DIAGNOSTIC
OSTIC CELLS
T:EER[D}IAAEEQUEST STANDQRBEL (ROW 0, COLUMNS 0.1)
CELL WALL PA ADDITIONAL
(ROW 0, COLUMN 11) CD WALL PANEL
v|@

\
i
]
]

=
=
I

000 000 000 600

g0 o)

]

=
IS NSNS
ISENSENE]

==
==

=
R e S e B e

|
&\ UL J-d 0
N [N n | /'
AR :
[« JIL
9 ° P
%\5)
9 a/
FREE DIAGNOSTIC DIAGNOSTIC SLOTS
WALL PANEL INTERIM REQUEST ~ (ROW 14, COLUMNS 0,1)
CALIBRATION CELL
LOCATION (ROW 14, COLUMN 12)

(ROW 7, COLUMN 6)

29049

Figure 1-4. LSM Cartridge Storage Cells

9036 1-7

ACS Hardware Components ACS Library Overview

Library Management Unit (LMU)

The LMU manages all the LSMs in an ACS. There is one LMU per
ACS. The LMU receives cartridge movement requests from the
Storage Server, translates them into robot movement instructions, and
relays these instructions to the correct LCU. The LMU also passes
ending status from the LCU back to the Storage Server. The LMU
allocates LSM resources (robot, CAP, ports, etc.) to optimize and
coordinate cartridge movement within and among LSMs.

The LMU communicates with the LSMs through a Local Area Network
(LAN). It communicates with the Storage Server through an RS423
interface.

4480 Cartridge Subsystem

1-8

The StorageTek 4480 Cartridge Subsystem consists of a control unit
(CU) and at least one cartridge drive (CD) containing either two or four
transports. There can be up to four cartridge drive units attached to
each LSM. See the 4480 Cartridge Subsystem Operator’s Manual for
details on the 4480 cartridge drives and CUs.

4480 Control Unit

The 4480 CU is the controller/interface between the client systems and
up to eight transports. The CUs are connected to client systems either
directly via I/O channels or indirectly via a data network. Each CU is
controlled by dual microprocessors and contains a data buffer which is
used to maximize transfer rates at the channel interface.

The CU interprets and distributes commands to the appropriate
transport, provides data formatting (including error correction and
detection) for the subsystem, and reports CU and transport status.

A CU coupler feature is available. This feature, along with two CUs
and a maximum of sixteen transports (four cartridge drives), enables a
configuration in which each CU is capable of directly addressing any of
the sixteen transports, since each transport is attached by cables to

both CUs.

4480 Cartridge Drive

The cartridge drive units contain two or four transports each, along with
the supporting pneumatic equipment and power supplies. Library
drives differ from manual drives only in that they are attached to an
LSM and are controlled by the Storage Server rather than by an
operator. All transports in a library drive can be operated concurrently.

9036

ACS Library Overview ACS Software Components

Server System

Each transport performs the following functions:

* Read/Write functions (using a standard 18-track cartridge)

* Automatic threading and positioning of the tape

» Status reporting to the CU

The drive mechanism moves tape across the head at a precise speed

through servo-driven motors. Rewind speed is also controlled by the
servo electronics and drive motors.

Table 1-1. 4480 Performance Specifications

Tape Speed: 70 IPS (2 meters/sec) Read/Write
158 IPS (4 meters/sec) Rewind & Search

Tape Density: 37,871 bytes/inch
1,491 bytes/millimeter

The server system hardware is the residence for the Storage Server
software. The server system consists of a UNIX-based processor, a
network adaptor, one 1/4" cartridge tape drive, one hard disk, and a
terminal. The network adaptor acts as a buffered communications
controller to move messages between the server and the client
systems. Examples of network adaptors include Ethernet™ controllers

and HYPERchannel® processor adaptors.

The server system is the interface between any number of
heterogeneous client systems and one library. No other system can be
connected to the library. The server system is connected directly to
each LMU through an RS423 connection. At least two connections
between the server system and LMU are recommended for
redundancy.

Data path connections between the server system and library drives
are not supported. ‘

ACS LIBRARY SOFTWARE COMPONENTS

Storage Server and Client Software Interaction

9036

The client software resides on any number of distributed,
heterogeneous client systems. This software manages tape cartridge
contents, generates requests for cartridges, and transfers data to and
from cartridges. The client software is not part of the Storage Server

ACS Software Components ACS Library Overview

product. It must meet certain requirements, however, in order to be
able to communicate with the Storage Server.

The Storage Server software resides on the server system. It

manages the storage and movement of tape cartridges and the use of
library resources. It translates requests for tape cartridges, received
from the client software, into cartridge movement requests for the LMU.

Figure 1-5 illustrates the Storage Server and client system software -
components and their interfaces. These components are described in
detail in the paragraphs that follow.

A client application generates cartridge movement requests which are
translated by the client Storage Server Interface (SSI) into a format
that can be interpreted by the Storage Server. The requests are then

passed from the client system to the server system via the network
interfaces.

The Client System Interface receives the requests from the network
interface, reformats them, and passes them to the ACS Library
Manager. The ACSLM validates the requests, then translates and
routes them to the LMU. If either the CSI or ACSLM encounters any
errors, they are sent to the Event Logger. After the request is
completed, a response is returned, through the same channels, to the
client application.

Storage Server Software

The Storage Server software executes within a UNIX System
environment that complies with the System V Interface Definition
(SVID). One exception to SVID compliance is the use of BSD sockets
as the interprocess communications mechanism.

The Storage Server consists of the following major components:
* ACS Library Manager (ACSLM)

* ACS System Administrator (ACSSA)

* Client System Interface (CSI)

+ ACS Event Logger (ACSEL)

¢ Network Interface (NI)

» Storage Server data base

All of these components reside on one server system; distribution of
these components across multiple server systems is not supported.

1-10 9036

ACS Library Overview ACS Software Components

LEGEND: 1_ l_

STANDARD -———— R

O INTERFACE :_ jl 'l" 1I
CLIENT CLIENT

~——— CONTROL PATH | APPLICATION | | APPLICATION |
amme DATA PATH A J

| 2l I 2l

c C

1l T 1:

| - l w!

I ssi =l l ss| al

' A :l...l a r-,"l

| S 2l

n -

Het | He

I I I !

| NI I | NI |
n 1

[I I l

LA [_1 L:T———-—-J

DISPLAY & NETWORK
KEYBOARD INTERFACE

T 3

Pl ACS SYSTEM @
ADMIN

T «

EVENT
LOGGER [csi

Bl as

ACS
LIBRARY

@ 9P | o[Acs
DATABASE LIBRARY
i¢——| MANAGER |¢

SERVER SYSTEM

NOTE:
(1) NETWORK DATA REPRESENTATION

@ 1ec

29052 A

Figure 1-5. Storage Server / Client Software Components

9036 1-11

ACS Software Components ACS Library Overview

ACS Library Manager (ACSLM)

The ACSLM processes library requests originating from client
applications (through the CSI) or library users (through the ACSSA).
It validates these requests and routes valid ones to the LMU. When
responses are returned from the LMU, the ACSLM routes them to the
appropriate requestor (either the ACSSA or the CSI).

If the ACSLM encounters errors, it routes event messages to the

Event Logger. Additionally, the ACSLM routes unsolicited messages
to the ACSSA when it is notified of a significant event occurring in the
library.

The ACSLM also maintains the configuration and cartridge location
data base. The data base supports checkpointing and journaling to
facilitate recovery from errors. See the UNIX Storage Server System
Administrator’s Guide for details.

The ACSLM performs the following functions to recover from errors
with little or no operator intervention:

» Detects, notifies, and recovers from library failures. These include
the loss of an LMU, LSM component, etc.

» Works with the LMU to recover an LSM after it has failed. In
particular, this includes determining that there are volumes in-
transit, discovering their external labels, and disposing of them
properly.

» Detects, isolates, reports, and recovers from communication line
failures (for example, loss of terminal port).

* Attempts to reestablish data paths if a communications failure
occurs with a CSI or the ACSSA.
» Detects, isolates, reports, and recovers from software errors (for

example, program interrupts, operator cancellations, process
terminations).

ACS System Administrator (ACSSA)

The ACSSA provides a screen interface that enables library operators
and users to monitor and control Storage Server operations. The
screen interface is referred to as the Command Processor.

The Command Processor receives requests from a user and performs
basic syntax validations on the input. If it detects errors in a request,
the Command Processor displays error messages and prompts for the
correct entry. If a request has no errors, the ACSSA passes it to the
ACSLM for further processing.

The ACSSA also receives and processes responses from the ACSLM;
resulting error messages are displayed by the Command Processor.

1-12 9036

ACS Library Overview ACS Software Components

When the ACSLM returns more than one response for a request, the
ACSSA displays each one as it is received.

The ACSSA supports multiple Command Processors. That is, several
users can be entering requests at one time through separate terminals
or Command Processor windows.

See the UNIX Storage Server System Administrator’s Guide for the
specific commands supported by the Command Processor.

Client System Interface (CSl)

The CSI serves as the interface between the ACSLM and the Storage
Server Interfaces (SSIs). The CSI presents a network- and host-
independent control path message format to client applications. It
receives requests from an SSI and translates them into a format that
can be interpreted by the ACSLM. It also translates ACSLM
responses and routes them to the appropriate SSI. The CSI
communicates with the SSIs through the network interfaces.

The CSI attempts to reestablish communication paths if a
communication failure occurs between the ACSLM and CSI or between
the CSI and NI. The CSI can control the flow of messages when
network or processor congestion occurs. It also routes error messages
to the Event Logger.

ACS Event Logger (ACSEL)

The ACSEL records messages describing library errors and software
errors not normally tracked by the operating system. This data can be
used for later tracking and analysis.

The ACSLM and CSI independently notify the ACSEL of abnormal
events. The ACSEL writes records of these events to a centralized file
known as the Event Log. See the Event Logging section in Chapter 2
for details.

Network Interface (NI)

The NI implements a customer-specified network communications
protocol. The NI resident on the server system interacts with the NIs
on the client systems to maintain connections, control the flow of
requests and responses, and perform error recovery as necessary.

9036 1-13

ACS Software Components ACS Library Overview

Client Software

The client system software components described below are supplied
by the customer and are not part of the Storage Server product. Their
descriptions are provided only to clarify the differences between
Storage Server and client application functions.

* Network Interface (NI)
» Storage Server Interface (SSI)
* Client applications

Network Interface (NI)

The NIs on the client systems function in the same manner as the NI
on the server system. They implement a customer-specified network
communications protocol to allow for the transfer of messages between
the server and client systems.

Server System Interface (SSl)

Each SSI serves as the interface between the CSI and the client
applications residing on that client system. Any number of client
applications can issue Storage Server requests. The SSI processes
these requests in the order that it receives them. It translates the
requests into a format that can be interpreted by the CSI, and sends
them to the CSI through the network interfaces.

The SSI also receives response messages from the CSI, translates
them, and sends them to the appropriate client applications.

Client Applications

Any number of client applications can manage volumes contained in the
ACS library. A Tape Library Management System (TLMS) is one
example of a client application that would interact with the library.
Consistency between multiple applications is maintained by the
applications themselves, not by the Storage Server.

The client applications manage cartridge contents, whereas the Storage
Server manages cartridge locations. The only information provided to
client applications by the Storage Server are lists of volumes entered,
ejected, or currently residing in the library.

Client applications gain access to tape cartridges by interacting with
the Storage Server through the control path. They read and write data
on tape cartridges by interacting directly with a cartridge drive through
the data path. Data path interactions do not affect Storage Server
operations. For example, an application issuing an unload request to a
cartridge drive does not cause the Storage Server to move the unloaded

1-14 - 9036

ACS Library Overview Storage Server Architecture

cartridge to a library storage cell; the application must issue a separate
request across the control path to move the cartridge.

STORAGE SERVER ARCHITECTURE

Adaptability

9036

The Storage Server software can run within any environment compliant
with UNIX System V Interface Definition (SVID), as defined for UNIX
System V Release 2. The environment must also allow for the BSD
implementation of sockets. The software has the following
characteristics which allow it to be run on a variety of hardware
platforms.

Adaprability. The software is written using replaceable modules
with well-defined interfaces isolating system dependent features.
Consistent user interface. Command arguments and options that
are common to more than one command have the same syntax and
meaning.
Modularity. The architecture allows for future variability in
hardware and software, including different kinds of connections
between the server system and the LMU, different data base
management systems, different network protocols, different
interprocess communication methods, and different library
authorization methods.
Portability. The Storage Server software allows porting to other
server system environments, both hardware and software. This
requirement is accomplished with the following design
characteristics: |
—~ The software is modular and based on an object-oriented
design. The software incorporates object-oriented techniques
including data encapsulation.

— All software modules comply with the System V Interface
Definition, as defined for UNIX System V Release 2.

— All operating system calls are isolated in replaceable software
modules.

— All software modules are written in the “C” source language.

1-15

OSI Model ACS Library Overview

OPEN SYSTEMS INTERCONNECTION (OSI) MODEL

Overview
The International Standards Organization (ISO) Open Systems
Interconnection (OSI) model describes the functions required to
reliably transmit data between two applications on different host
systems. This model uses a seven-layer architecture, as follows:
1. Physical layer
2. Data link layer
3. Network layer
4. Transport layer
5. Session layer
6. Presentation layer
7. Application layer
The Storage Server software components can be applied to the OSI
model. Figure 1-6 illustrates how they are applied, and the following
sections provide supporting discussions.
STORAGE SERVER MODEL
0S| MODEL LAYERS CLIENT SYSTEMS [ACS STORAGE SERVER STORAGE
. . ‘ CLIENT SERVER
USER INTERFACE ACS SYSTEM ADMIN
APE'AIYCE?‘T!ION _______ _‘ 1 | CLIENT A::%ICATIONS
RVER
CLIENT APPLICATION A AR STORAGE SERVE
PRESENTATION |]
LAYER 6 R R
___________ STORAGE SERVER _g_I | F | _ CLIENT SYSTEM _|
INTERF ACE INTERF ACE
SESSION Q S
LAYER 5 V] P
E o
TﬁAr;gPORT S N
AYER 4 T] COMMUNICATION
NETWORK NETWORK
————————— — " INTERFACE™ T E-]— —nTerFace™ SERVICE
NETWORK
LAYER 3 |
DATA LINK
LAYER 2 . .
_________ | __CUSTOMERS __ _| "ti | __CUSTOMERS __ _|
veionL NETWORK \ / NETWORK
LAYER 1

29050 A

Figui-e 1-6. Storage Server Component Relationship to OSI Model

1-16 9036

ACS Library Overview OSI Model

Layers 1 and 2 — Physical and Data Link Layers

Layers 1 and 2 provide for the physical transfer of messages between
network nodes. The customer’s network provide these layers between
the client systems and the server system.

Layers 3 and 4 — Network and Transport Layers

Layers 3 and 4 provide for the transfer of data between network nodes
and perform any necessary error recovery and flow control. The
Network Interfaces (NIs) on the client systems and the server system
fulfill these layers. Each NI implements the same customer-specified
network protocol, therefore they cooperate to establish, maintain, and
terminate connections between client systems and the Storage Server
network nodes.

Examples of Layer 3 — Network Layer protocols are:

¢ Internet Protocol (IP)
* ISO Connectionless Network Service (CLNS)

Examples of Layer 4 — Transport Layer protocols are:

+ Transmission Control Protocol (TCP)
» User Datagram Protocol (UDP)
» ISO Connectionless Transport

Layers 5 and 6 — Session and Presentation Layers

Layers 5 provides for the control of application interactions, and
Layer 6 provides for the exchange of messages between those
applications. The CSI and SSIs fulfill these layers.

At Layer 5, the CSI and SSIs cooperate to control the exchange of
client application requests and ACSLM responses. They interact with
the NIs to receive requests from and send responses to one another,
thereby insulating the client and Storage Server applications from the
NIs. CSI and SSIs ensure that the ACSLM and client applications
receive complete messages from the lower layers.

At Layer 6, each SSI and the CSI implement the same network- and
host-independent message format for exchanging requests and
responses across the network. They translate control path messages
from the network message format to the internal message format and
data representation of their respective host systems, and vice versa.
The requests and responses defined by the ACSLM programmatic
interface dictate the contents of control path messages. The Layer 6
protocol dictates the format and encoding of those messages.

9036 1-17

OSI Model ACS Library Overview

Different SSIs are used for different client operating systems and

network protocols. Different CSIs are used for different network
protocols.

An example of Layer 5 — Session Layer protocols is:

* Sun Microsystems™ Remote Procedure Call (RPC)

Examples of Layer 6 — Presentation Layer protocols are:
* Sun Microsystems External Data Representation (XDR)
» ISO Abstract Syntax Notation One (ASN.1)

A matched pair of session and presentation layers define a particular
CSI. Changing either layer defines a new CSL

Layer 7 — Application Layer

Layer 7 provides application functionality to system users. The
ACSLM, ACSSA, and client system applications fulfill this layer.
Client system applications interact with the ACSLM, through the lower
OSI layers, to provide users with access to ACSLM functions.

1-18 9036

OVERVIEW

CHAPTER 2:
ACSLM PROCESSES

This chapter describes the primary functions of the ACSLM, which are
as follows:

» Storage Server initiation

» Storage Server termination

» Library request processing

* Routing of unsolicited messages

» Event logging

- » Storage Server recovery

STORAGE SERVER INITIATION

Overview

9036

Storage Server software initiation involves starting the ACSLM,
ACSSA, and CSI components on the server system.

The Storage Server initiation command file is automatically installed as
part of the Storage Server installation. The command file is called

acsss_home/rc.acsss

where acsss_home is the directory in which the Storage Server software
was installed, usually /usr/acsss.

The command file can be invoked in two ways:

* Manually by invoking the command file at a server system terminal.

» Automatically at system IPL by referencing the initiation command
file in the system startup file.

Storage server initiation can only be invoked by the Storage Server
user ID, acsss, or the server system superuser.

2-1

Storage Server Initiation ACSLM Processes

Normally, the ACSLM automatically enters the STATE_RUN state after
initiation is complete. To automatically put the ACSLM in the
STATE_IDLE state after initiation, the IDLE qualifier can be included in
the invocation command. If initiation is invoked manually, the IDLE
qualifier must be typed as part of the request:

/usr/ACSSS/rc.acsss IDLE

If initiation is invoked as part of system IPL, the acsss_home/rc.acsss
file must be modified to include the IDLE qualifier.

Initiation Process

During initiation, the ACSLM performs the following functions:

» Ensures that only one copy of the Storage Server software is
running at any given time.

« Establishes the Storage Server infrastructure. The CSI establishes
communication paths with the NI and the ACSLM, and the ACSSA
establishes communication paths with the ACSLM. Any failures in
this process will halt initiation.

» Confirms the integrity of the data base. This includes examining
the table structures and contents for consistency. It also includes
checking for correct data base file access permissions and the
existence and state of journal files. Any structural or access
problems with the data base will halt initiation.

» Verifies the library configuration recorded in the LMU against that
recorded in the data base. Inconsistencies will halt initiation.

» Performs Storage Server recovery procedures to bring the library to
an operable state. This includes attempting to recover from CPU or
operating system failures. See the Storage Server Recovery section
in this chapter for details.

+ Attempts to put all library components online. Failure of a library
component to go online is noted in the Event Log and initiation
continues. If the data base indicates that a library component is in
the offline or diagnostic state, no attempt is made to put that
component online, or change its state.

Error messages will be generated for any LMU requests outstanding at
the time of initiation.

9036

ACSLM Processes

Library Request Processing

LIBRARY REQUEST PROCESSING

Overview

The ACSLM receives requests from the following sources:

A system user through the ACSSA Command Processor
A client application through the CSI

The ACSLM returns responses to the appropriate request originator.
Following are the requests that the ACSLM processes:

audit
cancel
dismount
eject
enter
idle
mount
query
start
vary

See Chapter 4: ACSLM Command Structures for the structure and
contents of ACSLM requests and responses.

ACSLM Processing States
The ACSLM can be in one of four states, as described below:

STATE_RUN. The normal operating state. The ACSLM processes all
library requests received from a CSI or the ACSSA.

sTATE_IDLE. The ACSLM rejects all requests involving library
operations. Only the following requests are processed: cancel,
idle, query, start, and vary.

STATE_IDLE_PENDING. A transition state that occurs when the
Storage Server is taken from run to idle. All new requests involving
library operations are rejected, but current and pending requests are
processed to completion. Only the following new requests are
processed: cancel, idle, query, start, and vary.
STATE_RECOVERY. A transition state that occurs when the Storage
Server is taken from idle to run. The only request that will be
processed is query server. All other requests are rejected while
recovery processing takes place.

Table 2-1 identifies which requests the ACSLM processes when it is
in each of the four states.

9036

2-3

Library Request Processing ACSLM Processes

Table 2-1. Library Commands and ACSLM States

Request RECOVERY IDLE IDLE_PENDING

audit

cancel
dismount

enter

eject

idle

mount

query X
start

xxxxxxxxxxg

vary

ACSLM State Transitions

The start and idle requests move the ACSLM between these
states. These transitions occur as follows:

» The start request causes the ACSLM to go into STATE RECOVERY
while it performs recovery procedures on the library (see the
Storage Server Recovery section in this chapter for details). When
all recovery procedures have been completed successfully, the
ACSLM moves into STATE_RUN.

* An unqualified idle request (that is, without the force option)
causes the ACSLM to go into STATE_IDLE_PENDING initially. The
ACSLM processes all current and pending requests to completion
before entering STATE_IDLE.

* An idle request with the force option puts the ACSLM in
STATE_IDLE immediately, causing any current or pending requests
to be aborted.

2-4 9036

ACSLM Processes Library Request Processing

Interactions With Other Storage Server Components

Requests are passed from either the ACSSA or a CSI to the ACSLM.
The ACSLM returns responses to the appropriate request originator,
either the ACSSA or a CSI. The following subsections summarize how
requests and responses are passed between these components. See
Chapter 3 and Chapter 4 for details on request and response formats.

Client Application — ACSLM Interactions

Overview

Client system users can issue library requests through client
applications which may be system commands, procedures, utilities, or
interactive scripts. The applications generate ACSLM requests which
must pass across the network and through several software layers
(that is, SSI, NIs, and CSI) before being processed by the ACSLM.

For each request, the ACSLM generates one or more responses which
must pass through the same software layers before being received by
the client application originating the request. These software layers
generally are transparent to the ACSLM and the client applications.

Response Types
There are three response types generated by the ACSLM:

* Acknowledge. An acknowledge response is returned for each
syntactically correct request. It indicates that the request has been
received.

o Intermediate. An intermediate response is returned if interim

information must be returned to the requestor, or if all necessary
response information cannot fit in a single response message.

» Final. A final response is returned for each request. It indicates
the success or failure of the request.

Response Coordination

Any number of client applications can exist in a network, and each
application asynchronously sends multiple requests to the ACSLM.
All requests are queued and processed by the ACSLM in First In First
Out (FIFO) order. The ACSLM attempts to maximize library resource
usage by processing as many requests as possible. As a result, the
ACSLM may intermix responses to different requests from a single
client application.

9036 2-5

Library Request Processing

ACSLM Processes

Client
User Applic. A SSl z NI NI CSi ACSLM
Request R
Enters Generates Adds applic. Transfers Receives Removes Checks
application library prefix. msg across msg & SSI prefix syntax. If
request. request Translates network., passes it to & adds CSI OK: Copies
with msg to CSL prefix. CSI prefix,
unique network Translates applic. ID,
application format. msg to & unique
ID. server request ID
format. to acknow-
Passes msg ledging
to ACSLM. response.
Queues
request.
A Acknowledging Response
Extracts Removes Receives Transfers Removes Passes
applic. ID SSI prefix. msg & msg across CSI prefix acknowledge
& request Translates passes it to network. & adds SSI response to
ID. msg to SSlIy. prefix. CSL
Matches client Translates
response to system msg to Processes
request. format. network request.
May notify Passes msg format.
user of to Client
request Applic. 4.
status.
Final Response
Extracts Removes Receives Transfers Removes Passes final
applic. ID SSI prefix. msg & msg across CSI prefix response to
& request Translates passesitto network. & adds SSI CSL
ID. msg to SS15. prefix.
Matches client Translates
response to system msg to
request. format. network
May notify Passes msg format.
user of to Client
request Applic. 5.
status.

2-6

Figure 2-1. Client Application — ACSLM Message Flow

9036

ACSLM Processes Library Request Processing

For example, if an application issues, in order, an audit, a mount, and a
query request, the acknowledging responses will be received in the
same order, but the intermediate and final responses will probably be
intermixed. The final responses may be returned in a different order
due to the processing time required for each request. Only the order of
responses within request is guaranteed.

Interaction Process

Figure 2-1 summarizes how a request is sent from a user to the

ACSLM through a client application. It also shows how acknowledging
and final responses are returned to the client application. The arrows

in the figure indicate the message flow direction.

Figure 2-2 through Figure 2-4 show the possible message flows
between a client application and the ACSLM. Figure 2-2 shows how
only a final response is returned from the ACSLM if it finds a syntax

error in the request. @ indicates that message processing occurs at

the indicated layer.
Client
Application SSI NI NI Csl ACSLM
Request
| ® ® &® ® >
Final Response
- & ® ® &

Figure 2-2. Request With a Syntax Error

9036 -7

Library Request Processing

ACSLM Processes

An acknowledging response is always returned for syntactically correct

requests. Figure 2-3 shows such a request with no intermediate
responses. ® indicates that message processing occurs at the

indicated layer.
Client
Application SSI NI NI Csl ACSLM
Request
7N\ 70\ N\ N .
&) & & & -
Acknowledging Response
- ® ® ® &
. . . — Final Response
N % %Y %Y %Y
Figure 2-3. Request With No Intermediate Response
Figure 2-4 shows a syntactically correct request with one or more
intermediate responses. ® indicates that message processing occurs
at the indicated layer.
Client
Application SSI NI NI Csli ACSLM
Request — PR - —
%Y %Y %% %Y —
Acknowledging Response
- X ® ® ®
Intermediate Response
- 2y X ® ®
... repeated for each intermediate response
Final Response
- N 1N\ LN\ 1N\
- %Y Y (%Y %Y

2-8

Figure 2-4. Request With Intermediate Responses

9036

ACSLM Processes

Library Request Processing

ACSSA — ACSLM Interactions

9036

Overview

Server system users can access ACSLM services through the ACSSA
Command Processor. The ACSSA translates commands from each
user to equivalent ACSLM requests and multiplexes the requests to
the ACSLM. The ACSSA ensures that the responses to each request
are returned to the correct user.

Users must log into the special user identifier, acssa, to access the
Command Processor. Any number of users can be using Command
Processors at one time. The Command Processor ensures that each
user issues only one command at a time; this prevents responses to
several requests from being intermixed on the same terminal display.

The interaction between the ACSSA and ACSLM is the same as that
between a client application and the ACSLM, but without the
intervening software layers. The ACSSA appears as a CSI to the
ACSLM since the ACSSA uses the same ACSLM programmatic
interface that the CSIs use.

The ACSSA generally has no more, or less, privilege than a client
application. The one exception is that ACSSA users are allowed to
perform library operations on components in the diagnostic state. This
feature allows maintenance personnel to exercise components without
interference from client system users.

Interaction Process

Figure 2-5 summarizes how a request is sent from a user to the
ACSLM through the ACSSA. It also shows how acknowledging and
final responses are returned to the ACSSA. The arrows in the figure
indicate the message flow direction.

2-9

Library Request Processing

ACSLM Processes

additional requests from this
Command Processor.

Acknowledging Response

User ACSSA ACSLM
Request
Enters library request through Checks syntax. If OK: Sends Checks syntax. If OK: Copies
Command Processor. request to ACSLM. Blocks request ID to acknowledging

response. Queues request.

Extracts and saves application
ID & request ID. Maiches the
response to the Command
Processor. Does not display
acknowledgment.

Final Response

Passes acknowledging response
to ACSSA.

Processes request.

[§

Extracts and saves application
ID & request ID. Matches the
response to the Command
Processor & displays response.
Prompts user for new request.

Passes final response to
ACSSA.

Figure 2-5. ACSSA — ACSLM Message Flow

2-10

9036

ACSLM Processes Library Request Processing

Figure 2-6 through Figure 2-8 show the possible message flows
between the ACSSA and ACSLM. Figure 2-6 shows how only a final
response is returned from the ACSLM if it finds a syntax error in the
request.

ACSSA ACSLM

Request

Final Response

Figure 2-6. Request Containing a Syntax Error

An acknowledging response is always returned for syntactically correct
requests. Figure 2-7 shows such a request with no intermediate
responses.

ACSSA ACSLM

Request

P
L

Acknowledging Response

A

Final Response

Figure 2-7. Request With No Intermediate Response

9036 2-11

Library Request Processing ACSLM Processes

Figure 2-8 shows a syntactically correct request with one or more
intermediate responses.

ACSSA

Request

ACSLM

o

Acknowledging Response

A

Intermediate Response

.. repeated for each intermediate response

Final Response

A

Figure 2-8. Request With Intermediate Responses

Programming Considerations

The following are special considerations for designing client
applications that will submit requests to the ACSLM.

2-12

Handling Outstanding Requests

A client application must be able to handle situations where it sends a
request to the ACSLM but never receives a response. These errors
may be the result of communications or software failures. The method
of handling the outstanding request depends on whether an
acknowledge response was received, as outlined below.

If the application never received an acknowledge response: The
application should issue a query server request to determine
whether the Storage Server is still functioning. If the Storage
Server is functioning, the application should reissue the request. -

If the application received an acknowledge, but not a final
response: The application should issue a query request request
using the request ID received in the acknowledge response. If the
request is still pending, the application should wait for some
predefined period of time before timing out. If the request is not
current or pending, the application should issue a query on some
component of the request (such as a drive or volume) to determine
whether the request has been completed successfully. If the
request has not been completed, the application should reissue it.

9036

ACSLM Processes Storage Server Termination

See Chapter 4: ACSLM Command Structures for the format and
contents of the query request.

Library Drive Addresses

Library drive locations are unique within an ACS. The Storage Server
uses a physical identifier to locate library drives. If client systems
elect to use logical drive identifiers, it is the responsibility of the client
systems to map the logical drive identifier to the physical dnve
identifier prior to issuing a Storage Server request.

STORAGE SERVER TERMINATION

Overview

Storage Server software termination involves terminating the ACSLM,
ACSSA and CSI components on the server system. The Storage
Server is terminated through a command file which must be invoked
manually from the server system console.

The Storage Server termination command file is automatically installed
as part of the Storage Server installation. The command file is called

acsss_home/kill.acsss

where acsss_home is the directory in which the Storage Server software
was installed, usually /usr/Acsss. '

Termination Process
Storage Server termination performs the following functions:

« All current and pending library requests are aborted. New requests
are ignored.

« All data base files and the Event Log file are closed.
» All Storage Server processes are destroyed.

The ACSLM should be in the idle state when the Storage Server is
terminated, otherwise data base inconsistencies and unrecoverable in-
transit cartridges may result.

It is also recommended that all LSMs be in the online state when the
Storage Server is terminated; this will enable LSM and drive
configurations and reserved cell contents to be verified completely
when the Storage Server is reinitiated. See the Storage Server
Recovery section in this chapter for details.

9036 2-13

Storage Server Recovery ACSLM Processes

STORAGE SERVER RECOVERY

Overview

Storage Server recovery procedures take place automatically under the
following circumstances:

» The Storage Server is initiated. See the Storage Server Initiation
section in this chapter for details.

* A major Storage Server failure occurs.

Recovery processing does not need to be initiated by the System
Administrator.

During Storage Server recovery, the ACSLM performs the following
processes for each ACS in the library:

 Verifies that all online ports can communicate with the ACS.

* Verifies that the library configuration recorded in the data base
matches that recorded in the LMU.

» If possible, varies each ACS and its LSMs online, and marks them
online in the data base.

» Directs the LSM robot to scan the physical contents of each of the
following locations, and updates the data base to match:

— Reserved storage cells
— Cartridge drives
— Last known location of each cartridge selected for use

Once these processes are completed successfully, request processing
can resume.

Storage Server Recovery Process

The following are the steps the ACSLM goes through in performing
Storage Server recovery. All data base changes that occur as a result
of this procedure are logged in the Event Log. If the recovery fails,
additional error messages detailing the reasons for the failure will also
be found in the Event Log. See Appendix A: Event Log for the Event
Log entries that may be made during recovery.

Note: The ACSLM will not be able to verify configuration or contents
of LSMs that were in the offline or diagnostic state at the time the
Storage Server failed or was terminated. This is because an offline
LSM is unable to provide configuration data and the LSM robot is
unable to scan storage cells and tape drives for their contents. The
ACSLM will perform as much of the recovery procedure as possible
and will note in the Event Log that the LSM is offline.

2-14 . 9036

ACSLM Processes

9036

Storage Server Recovery

. Issues the following unsolicited message to the Display Area of the

Command Processor:

Server system recovery started

. Updates all ACS records in the data base as follows:

— ACSs in the recovery state are changed to online.

— ACSs in the diagnostic or offline-pending states are changed to
offline.

. Attempts to communicate with each ACS, using each port that the

data base indicates is online. The ACSLM must find at least one
port that can successfully communicate with the library in order for
recovery processing to continue.

. Verifies that the LSM and drive configurations in the Storage

Server data base match those defined in the LMU. Discrepancies
are noted in the Event Log.

. Varies online all LSMs attached to an online ACS, if possible.

Cartridge recovery is performed as part of this step.

. Directs the LSM robot to scan the contents of all cell locations

marked “reserved” in the data base. These are locations that tape
cartridges were being moved either to or from at the time the
system failure occurred. The ACSLM updates the data base to
reflect the actual physical contents of these cells, as determined by
the robot.

. Updates the data base to reflect the true status of all library tape

drives (that is, available, in use, offline).

. Directs the LSM robot to scan the contents of all library drives that

the data base indicates are in use. Updates the data base to reflect
the true physical contents.

. Directs the LSM robot to scan the contents of the last known

location of each cartridge selected for use at the time of the system
failure. Updates the data base with the true contents of these

cells. If a cartridge is not found in its last known location it is
deleted from the data base.

10. Displays either of the following unsolicited messages in the

Display Area of the Command Processor, based on whether the
recovery process was successful or not.

Server system recovery complete
Server system recovery failed

2-15

Unsolicited Messages ACSLM Processes

UNSOLICITED MESSAGES

2-16

The ACSLM sends an unsolicited message to the ACSSA whenever
an event requiring operator or System Administrator action occurs.
The ACSSA, in turn, displays the message in the Display Area of the
Command Processor screen and sends the message to the Event
Logger. The Event Log entry may show additional detail concerning
the event. See Appendix A: Event Log for the specific entries that
may be written to the Event Log.

Unsolicited messages are “asynchronous,” meaning that their timing
is not necessarily related to the processing of a particular request.
Most unsolicited messages indicate an error, although some
(particularly those related to CAP processing) serve to notify the
library operator when a particular routine action can be taken.

The status codes for all unsolicited messages are listed below in
alphabetical order.

» staTus_acsiM_IDLE if the ACSLM has been placed in the idle state
and is therefore unavailable for requests using library resources.
See Library Request Processing in this chapter for details on
ACSLM states.

e STATUS_ACTIVITY_START when the ACSLM has been placed in the
run state.

* STATUS_CARTRIDGES_IN_CAP if cartridges are detected in the CAP
and need to be removed by the operator.

* STATUS_CLEAN_DRIVE if a drive needs to be cleaned.

* STATUS_CONFIGURATION_ERROR if the library configuration specified
in the Storage Server data base is not the same as that defined in
the LMU by a Customer Services Engineer, or if a component
appears in the data base but fails to respond to LMU commands.

* STATUS_DATABASE_ERROR if the ACSLM is unable to access the
data base.

* STATUS_DEGRADED_MODE if the library hardware is operable, but with
degraded performance.

+ sTaTus_DpIaGNosTIC if the specified device has been varied to the
diagnostic state and is therefore available for requests submitted
through the Command Processor only. See the vary command
description in Chapter 4 for additional details.

* STATUS_EVENT_LOG_FAILURE if the Event Logger is unable to open
or write to the Event Log file.

9036

ACSLM Processes

9036

Unsolicited Messages

STATUS_EVENT_LOG_FULL if the Event Log has reached the
maximum size defined during installation. This unsolicited
message will be sent at one minute intervals until the size of the
Log is reduced. See the Event Logging section in this chapter for
details.

STATUS_IDLE_PENDING if the ACSLM is in an idle-pending state
and is therefore unavailable for requests using library resources.
See the Library Request Processing section in this chapter for
details on ACSLM states.

STATUS_INPUT_CARTRIDGES if a CAP is ready to receive cartridges.
sTATUS_IPC_FAILURE if the ACSLM or CSI cannot communicate
with another Storage Server process.

STATUS_LIBRARY FAILURE if a library hardware error occurred while
the ACSLM was processing a request.

status_NI_tiMEDOUT if the CSI is unable to establish a connection
with the Network Interface. Data may have been lost.
STATUS_OFFLINE if a device has been varied offline. See the vary
command description in Chapter 4 for additional details.
STATUS_ONLINE if a device has been varied online. See the vary
command description in Chapter 4 for additional details.
STATUS_RECOVERY COMPLETE when Storage Server recovery has
been completed successfully. See the Storage Server Recovery
section in this chapter for details. _
STATUS_RECOVERY_FAILED if Storage Server recovery has failed.
See the Storage Server Recovery section in this chapter for details.
STATUS_RECOVERY INCOMPLETE if the specified LSM has failed to
recover in-transit cartridges during Storage Server recovery. See
the Storage Server Recovery section in this chapter for details.
STATUS_RECOVERY_STARTED when Storage Server recovery has
been initiated. See the Storage Server Recovery section in this
chapter for details.

STATUS_REMOVE_CARTRIDGES if a CAP contains cartridges and is
ready for the operator to remove them.

sTaTUS_RPC_FAILURE if the CSI has encountered a Remote
Procedure Call (RPC) failure. Data may have been lost.

2-17

Event Logging ACSLM Processes

EVENT LOGGING

Description

One system-wide Event Log contains information about library events
and errors. All Storage Server software components log events to the
Log through the centralized Event Logger.

The information in this Log permits later analysis and tracking of
normal library events as well as errors. Logged events include:

e Library errors. Both fatal and nonfatal hardware and software
errors are logged. Examples include LSM failures, problems with
cartridges, data base errors, interprocess and library
communications failures, and software failures not normally handled
by the operating system.

» Significant events. These are normal events that may be of
significance in monitoring library operations. For example, events
are logged when an audit is initiated or terminated, a device
changes state, or a CAP is opened or closed.

The Event Log is automatically created when the Storage Server
software is installed. The Log exists in the file

acsss_home/log/acsss_event.log

where acsss_home is the directory in which the Storage Server software
was installed, usually /usr/acsss.

How Events Are Logged

To log an event, a Storage Server component such as the ACSLM,

ACSSA, or CSI, sends a message to the centralized Event Logger.

The Event Logger accepts the message and updates the Event Log in
~ the following manner.

1. Reformats the message by applying a standard prefix.

2. Opens the Event Log file, or creates it if it does not already exist.
3. Appends the Event Log message to the end of the file.
4

. Checks the current file size against the limit parameter specified at
installation. If the current size exceeds the specified limit, the
Event Logger sends an unsolicited message to the ACSSA to alert
the System Administrator.

5. Closes the Event Log file.

Updating the Event Log in this manner keeps the Log entries
sequential and allows the System Administrator to truncate or delete
the file at any time during system operation.

2-18 9036

ACSLM Processes Event Logging

Event Log Messages

See Appendix A: Event Log Messages for significant Event Log
messages, as well as a description of how Event Log entries are
formatted.

9036 2-19

Event Logging ACSLM Processes

(INTENTIONALLY LEFT BLANK)

2-20 . 9036

OVERVIEW

REQUESTS

Request Format

9036

CHAPTER 3:
ACSLM COMMON DATA STRUCTURES

This chapter describes the general request, response, and data
structure formats that a client application must be able to generate for
the ACSLM or interpret from the ACSLM.

See Chapter 2: ACSLM Processes for a description of how the ACSLM
processes requests. See Chapter 4: ACSLM Command Structures for
the structure and contents of specific ACSLM commands.

Request messages are sent to the ACSLM from either a CSI or the
ACSSA. The format of a request is:

struct {
IPC_HEADER ipc_header;
MESSAGE_HEADER message_header;

message_data

}s;

The 1pC_HEADER and MESSAGE_HEADER are the fixed portions of the
request; this information must appear in every request. The
message_data is the variable portion of the request; its appearance and
length is dependent on the specific request.

If the ACSLM finds an error in the fixed portion of a request, it will
reject it immediately, without checking the variable portion. If the
ACSLM finds an error in the variable-length portion, it will note the
error and continue validating the entire variable-length portion; the
ACSLM will reject the request, but the response will indicate all
elements that are invalid.

31

Requests ACSLM Common Data Structures

ipc_header

The 1Pc_HEADER is generated by a CSI or the ACSSA and contains
information specific to the particular operating environment. See
Chapter 7: CSI Data Structures for the 1pc_HEADER format currently
used. The ACSLM does not use the IPC_HEADER, but preserves it and
includes it in associated responses.

message_header

The MESSAGE_HEADER is generated by the client application (or
ACSSA) and specifies ACSLM request information. The
MESSAGE_HEADER has the following format:

typedef struct {
unsigned short packet_id;
COMMAND command;
unsigned char message_options;
} MESSAGE_HEADER;

packet_id is a unique identifier generated and used by the client
application to synchronize on a forthcoming response. The packer_id is
not used by the ACSLM, but is preserved by the ACSLM and included
in its responses.

command designates the action to be performed by the ACSLM. See
Chapter 4: ACSLM Command Structures for details about these actions.

message_options are request qualiﬁers generated by the client
application. FORCE is the only valid message_option for requests. The
commands that can use the FORCE message_option are:

dismount
idle
vary

message_data

The message_data is generated by the CSI or the ACSSA and varies
based on the request. message_data may contain a repeated group of
information with the form:

TYPE type;
unsigned short count;

(information)

type defines the nature of the repeated information. Only one type of
information may appear in a message.

3-2 9036

ACSLM Common Data Structures Responses

RESPONSES

Description

9036

count is the number of times the information is repeated. For some
commands, count can be set to 0, which indicates that the request to be
performed on all objects of the specified rype. See Chapter 4: ACSLM
Command Structures for the individual command descriptions.

information is the repeated data. The maximum number of times it can
be repeated is MAx_1D. See the Common Variables section in this
chapter for the definition of MaX_1D.

The different possibilities for repeated information are represented as a
“C” union declaration. This syntax is used only to denote a choice in
this usage. The contents and memory allocation for a particular request
or response are based not on the typical allocation rules for “C”
unions, but on the information type and the count occurrences of it. See
Chapter 4: ACSLM Command Structures for the union declarations.

The ACSLM generates at least one response for each request it
receives. Following are the three types of responses the ACSLM can

. generate:

* Acknowledge. An acknowledge response is returned only for
requests with a valid fixed-length portion. This response indicates
that the request has been received and verified. It includes a
request ID, generated by the ACSLM, which the user can use to
perform queries on the request or to cancel it.

o Intermediate. An intermediate response is returned only for valid
requests and only if it is required by the particular request. It is
required if interim information must be returned to the requestor, or
if all necessary information cannot fit in a single response.

» Final. A final response is returned for all requests. This response
indicates whether the request succeeded or failed. If the request
failed, this response indicates the nature of the error. If there are
errors in the variable-length portion of the request, all errors will be
noted in the final response.

Responses ACSLM Common Data Structures

General Response Format
The general format of a response is:

struct response {
IPC_HEADER ipc_header;
MESSAGE_HEADER message_header;
RESPONSE_STATUS message_status;

(parameters)

}:

ipc_header

The 1pC_HEADER is preserved from the request by the ACSLM. It
provides information that assists the requesting process in
synchronizing requests and responses. See Chapter 7: CSI Data
Structures for the 1pc_HEADER format.

message_header

The MESSAGE_HEADER has the same general format as the
MESSAGE_HEADER in the request. The format is as follows:

typedef struct {
unsigned short packet_id;
COMMAND command;
unsigned char message_options;
} MESSAGE_HEADER;

Note: The message_options is the only part of the response
MESSAGE_HEADER that differs from the request.

The packet_id is preserved from the request by the ACSLM. It is
returned in the response in order for the client application to be able to
match the request to a response.

The command is also preserved from the request by the ACSLM and
returned in the response. See Chapter 4: ACSLM Command Structures
for details about these actions. '

message_options can have the following values in the response:

ACKNOWLEDGE
FORCE
INTERMEDIATE

3-4 9036

ACSLM Common Data Structures Responses

Table 3-1 lists which response message_options are valid for each
command Tesponse:

Table 3-1. ACSLM Response Message Options

Command Intermediate Korce Acknowledge
audit X - X
cancel X - X
dismount X X X
enter X - X
eject X - X
idle X X X
mount X - X
query X - X
start X - X
vary X X X

- response_status

The RESPONSE_STATUS defines the completion status of the request.
The format is as follows:

typedef struct ({
STATUS status;
TYPE type;
IDENTIFIER identifier;
} RESPONSE_STATUS:

status values vary by request. See Chapter 4: ACSLM Command
Structures for details.

type indicates the type of identifier that the status refers to. When no
identifier is appropriate, the value TYPE_NONE is used and the contents of
identifier are undefined.

9036 3-5

Responses ACSLM Common Data Structures

identifier specifies the device or object to which the status refers. identifier

is defined as:
typedef union {

ACS acs_id;
CAPID cap_id;
CELLID cell_id;
DRIVEID drive_id;
LSMID Ism_id;
PANELID panel_id;
PORTID port_id;
SUBPANELID subpanel_id;
VOLID vol_id;
char socket_name[14] ;

} IDENTIFIER;

See the Common Variables section in this chapter for the definitions
and formats of each IDENTIFIER.

Parameters

The parameters vary depending upon the nature of the response. See
Chapter 4: ACSLM Command Structures for the possible parameters.

Specific Response Formats

All of the possible response formats and their contents are described
below.

Acknowledge Response
The format of an acknowledge response is:

struct acknowledge_response {
IPC_HEADER , ipc_header;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;
MESSAGE_ID message_id;

}i

Within MESSAGE_HEADER, message_options is set t0 ACKNOWLEDGE.

Within RESPONSE_STATUS, message_status is set t0 STATUS_VALID, fype is
set to TYPE_NONE, and identifier is not used.

The message_id is generated by the ACSLM and uniquely identifies the
request. The requestor can use this value to query the status of the
request or to cancel the request.

3-6) 9036

ACSLM Common Data Structures Common Statuses

Intermediate Response

Within MESSAGE_HEADER, message_options iS S€t t0 INTERMEDIATE.

See the individual request descriptions in Chapter 4 to determine if the
ACSLM returns an intermediate response for a request, and for a
description of the specific format of the responses.

Final Response — Successful Request

See the individual request descriptions in Chapter 4 for the format of
each final response.

Final Response — Failed Request

When the ACSLM finds a syntax error in the fixed-length portion of a
request, the final response has the following format:

struct final response {
IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header;
RESPONSE_STATUS message_status;
TYPE type;
unsigned short count;

};

Within RESPONSE_STATUS, message_status identifies the syntax error. type
indicates the type of identifier that the status refers to; if no identifier is
appropriate, TYPE_NONE is used and the contents of identifier are
undefined.

Within MESSAGE_HEADER, NO message_options qualifiers are set. For
example, if an invalid value is specified for the rype field of a query
request, the final response is returned to the requestor with a status of
STATUS_INVALID_TYPE, fype of TYPE_NONE, and identifier undefined.

TYPE and count are included for certain commands only; they are omitted
from the response if they were not required in the request. See

Chapter 4: ACSLM Command Structures for the individual command
descriptions.

This form of a final response is also returned for a cancelled audit,
eject, enter, OF query request that was pending in the ACSLM. All
fields through count are returned for these commands.

COMMON STATUSES

9036

This section identifies the status values that are common to all
requests. These statuses can appear in either the fixed portion or the
variable portion of a response. The statuses are listed in alphabetical
order. (See the db_defs.h Header File in Appendix B for the “C”
enumeration values.)

3-7

Common Statuses

ACSLM Common Data Structures

Any of the following:

STATUS_ACS_NOT_IN_LIBRARY
STATUS_LSM_NOT_IN_LIBRARY
STATUS_DRIVE_NOT_IN_LIBRARY
STATUS_PORT_NOT_IN_LIBRARY

if the respective identifier values are not found in the data base.

For example, if LSM 5 was not configured in ACS 1, any
IDENTIFIER specifying LSM 5 causes a status value of
STATUS_LSM_NOT_IN_LIBRARY to be returned, with fype set to
TYPE_LSM, and IDENTIFIER Set tO an LSMID with an acs_number of 1
and an Ism_number of 5.

STATUS_AUDIT_IN_ PROGRESS (in the message_status or status) if
another request attempts to access a cell locked by a current audit
request.

STATUS_CONFIGURATION_ERROR, and an unsolicited message is
issued, if the ACSLM detects an inconsistency between the data
base and the physical library configuration.

STATUS_COUNT_TOO_LARGE if the count is greater than allowed.
STATUS_COUNT_TOO_SMALL if the count is less than allowed.

" STATUS_DATABASE_ERROR if the ACSLM detects a data base

consistency error during request processing.
Either of the following:

STATUS_DRIVE_ OFFLINE
STATUS_LSM_OFFLINE

if the specified component is in the STATE_OFFLINE_PENDING OF
STATE_OFFLINE states, or in the STATE_DIAGNOSTIC state and the
request originated from a CSL.

For example, if volume ABC123 is specified in a mount request and
the LSM it resides in is STATE_OFFLINE, a STATUS_LSM_OFFLINE
status value is returned.

Any of the following:

STATUS_INVALID_ACS
STATUS_INVALID_ LSM
STATUS_INVALID_ PANEL
STATUS_INVALID DRIVE
STATUS_INVALID_ROW
STATUS_INVALID_COLUMN
STATUS_INVALID VOLUME
STATUS_INVALID_PORT
STATUS_INVALID_ MESSAGE

if any of the variables in the IDENTIFIER have incorrect syntax.

9036

ACSLM Common Data Structures Common Statuses

For example, if the LSM identifier in a panel_id exceeds MAX_LsSM, a
STATUS_INVALID_LSM value is returned in status, type is set to
TYPE_LSM, and IDENTIFIER contains an LSMID.

* STATUS_INVALID_COMMAND if command is not COMMAND_AUDIT,
COMMAND_CANCEL, COMMAND DISMOUNT, COMMAND EJECT,
COMMAND_ENTER, COMMAND IDLE, COWAND_MOUNT, COMMAND_QUERY,
COMMAND_START OF COMMAND_VARY.

* STATUS_INVALID_OPTION if a value other than FORCE, is set in
message_options.

* STATUS_INVALID_TYPE if the request specifies a device or object
type that is not valid for any command.

» starus_ipC_FAILURE if the CSI IPC communication mechanism
cannot accept a pending message from the ACSLM after an
appropriate number of retries with timeouts.

* STATUS_LIBRARY_BUSY if the ACSLM is unable to communicate
with the library after retries and time-outs.

* STATUS_LIBRARY_FAILURE, and an unsolicited message is issued, if
request processing fails due to failure of a library component. If a
tape cartridge is involved, it is returned to an available location.

* STATUS_LIBRARY_NOT_AVAILABLE if a request other than a query
server is received while the ACSLM is in the STATE_RECOVERY
state, or if a request requiring library resources is received while
the ACSLM is in the STATE_IDLE Or STATE_IDLE_PENDING States.

* STATUS_MESSAGE_NOT_FOUND if the message_id is not a current or
pending request.

* STATUS_MESSAGE_TOO_LARGE if the message size calculated by the
ACSLM exceeds the received number of bytes.

* STATUS_MESSAGE_ToO_SMALL if the message size calculated by the
ACSLM is less than the received number of bytes.

* STATUS_PROCESS_FAILURE if the ACSLM cannot spawn a process
to handle a request, or a spawned process fails.

* STATUS_UNSUPPORTED_OPTION if FORCE is set in message_options for a
command that does not support it.

* STATUS_UNSUPPORTED_TYPE if the request specifies a device or
object rype that is not supported for a particular command.

* STATUS_VOLUME_NOT_IN_LIBRARY (in message_status Or
identifier_status) if the specified volume identifier is not found in the
data base.

9036 3-9

Common Variables ACSLM Common Data Structures

COMMON VARIABLES

This section describes common variables used by the ACSLM.
Minimums and maximums define the range of possible values for a
variable.

ACS

Description
ACs uniquely identifies an ACS within a library.

Definition
ACs is defined as:

typedef unsigned char ACS;

Acs has a range from MIN_aAcs to Max_acs which are defined as:

#define MIN ACS 0
#define MAX ACS 255

CAPID

Description
' cap1D uniquely identifies a CAP within a library. The CAP identifier
has the same value as the LSM identifier to which the CAP is
attached.
Definition
capr1D is defined as:

typedef LSMID CAPID;

CAP_SIZE

Description
cap_sIzE is the number of storage cells in a CAP.
Definition

The CAP storage cells are arranged in three rows of seven columns.
Therefore, cap_s1zE is defined as:

#define CAP_SIZE 21

3-10 9036

ACSLM Common Data Structures Common Variables

CELLID

Description
CELLID uniquely identifies a storage cell within an ACS.

Definition
CELLID contains an ACS identifier, an LSM number, a panel number, a
panel row number, and a panel column number:

typedef struct ({
PANELID panel_id;
ROW row;
COL col;

} CELLID;

row is defined as:
typedef unsigned char ROW;

row has a range from MIN_ROW to MAX_Row which are defined as:

#define MIN_ROW 0
#define MAX ROW 14

col is defined as:

typedef unsigned char COL;
col has a range from MIN_COLUMN to MAX_COLUMN which are defined as:

#define MIN_COL 0
#define MAX COL 23

COMMAND

Description
coMMAND uniquely identifies an operation to the ACSLM.

Values

COMMAND can be any of the following. (See the defs.h Header File in
Appendix B for the “C” enumeration values.)

COMMAND_ABORT
COMMAND_AUDIT
COMMAND_CANCEL
COMMAND_DISMOUNT
COMMAND_EJECT
COMMAND_ENTER
COMMAND_IDLE
COMMAND_MOUNT
COMMAND_QUERY

9036 311

Common Variables ACSLM Common Data Structures

COMMAND_RECOVERY
COMMAND_START
COMMAND_TERMINATE
COMMAND_UNSOLICITED_EVENT
COMMAND_VARY

COMMAND_ABORT, COMMAND RECOVERY, COMMAND_TERMINATE, and
COMMAND_UNSOLICITED_EVENT are for ACSLM internal use only. All
other coMMaND values can be generated by a client application.

DRIVEID

Description
DRIVEID uniquely identifies a library drive within the library.

Definition

DRIVEID contains an ACS identifier, an LSM number, a panel number,
and a drive number:

typedef struct {
PANELID panel_id;
DRIVE drive_number;
} DRIVEID;
drive_number is defined as:
typedef unsigned char DRIVE;

drive_number has a range from MIN_DRIVE to MAX_DRIVE which are
defined as:

#define MIN DRIVE 0
#define MAX DRIVE 3

FREECELLS

Description

FREECELLS is the number of unoccupied cells in an ACS or LSM.
Definition

FREECELLS is defined as:

typedef unsigned long FREECELLS;

3-12 . 9036

ACSLM Common Data Structures Common Variables

FUNCTION

Description
FUNCTION is an action performed by the ACSLM.

Values

FUNCTION can have the following values:

audit
cancel
dismount
eject
enter

idle
initiation
mount
query
recovery
start
termination

LOCATION

Description
LOCATION describes the class of storage location.

Values

LOCATION can be any of the following. (See the db_defs.h Header File
in Appendix B for the “C” enumeration values.)

LOCATION_CELL
LOCATION_DRIVE

LSMID

Description
LsMID uniquely identifies an LSM within a library.

Definition
LsMID contains an ACS identifier and an LSM number.

typedef struct {
ACS acs_number ;
LSM Ism_number;
} LSMID;

9036 313 .

Common Variables ACSLM Common Data Structures

Ism_number is defined as:
typedef unsigned char LSM;
Ism_number has a range from MIN_LSM to MAX_LsM which are defined as:

#define MIN_LSM 0
#define MAX LSM 15

MAX_ACS_DRIVES

Description
MAX_ACS_DRIVES is the maximum number of drives in the library.

Definition
MAX_ACS_DRIVES is defined as:

#define MAX ACS_DRIVES 128

MAX_ID

Description

MAxX_ID is the maximum number of identifiers that can be specified in a
request. :

Definition
Max_1ID is defined as:

#define MAX ID 21

MAX_MESSAGE_SIZE

Description

MAX_MESSAGE_SIZE is the maximum size of an IPC request or response
packet.

Definition
MAX MESSAGE_SIZE is defined as:

#define MAX MESSAGE_SIZE 4096

MAX_PORTS

Description
MAX_PORTS is the maximum number of ports per ACS.

3-14 9036

ACSLM Common Data Structures Common Variables

Definition
MAX_PORTS is defined as:

#define MAX PORTS 16

MESSAGE_ID

Description
MESSAGE_ID is a unique number generated and used by the ACSLM to
identify a specific request from a CSI or the ACSSA.

Definition
MESSAGE_1D is defined as:

typedef unsigned short MESSAGE_ID;

MESSAGE_ID has a range from MIN_MESSAGE to MAX_MESSAGE which are
defined as:

#define MIN MESSAGE 1
#define MAX MESSAGE 65535

PANELID

Description
PANELID uniquely identifies a storage panel within an ACS.
Definition

The panel identifier contains an ACS identifier, an LSM number, and a
panel number:

typedef struct {
LSMID Ism_id;
PANEL panel_number ;
} PANELID;
panel_number is defined as:

typedef unsigned char PANEL;

panel_number values can range from MIN_PANEL to MAX_PANEL which are
defined as:

#define MIN_PANEL 0
#define MAX_PANEL 19

9036 3-15

Common Variables ACSLM Common Data Structures

PORTID

Description

PORTID uniquely identifies a single communication line between a
server system communications port and an LMU host interface. The
ACSLM uses the communication line to interact with an ACS.

Definition
~ PORT_ID contains an ACS identifier and a port number:

typedef struct ({
ACS acs_id;
PORT port_number;
} PORTID;

port_number is defined as:

typedef unsigned char PORT;

port_number values can range from MIN_PORT to MAX_PORT which are
defined as:

#define MIN_PORT 0
#define MAX PORT 15

STATE

Description

sTATE describes the characteristics that a device or Storage Server
component can take.

Values

STATE can be any of the following. (See the db_defs.h Header File in
Appendix B for the “C” enumeration values.)

STATE_CANCELLED
STATE_DIAGNOSTIC
STATE_IDLE

STATE_IDLE PENDING
STATE_OFFLINE
STATE_OFFLINE_PENDING
STATE_ONLINE
STATE_RECOVERY
STATE_RUN

STATE_CANCELLED describes a state of a request.

STATE_ONLINE, STATE OFFLINE, STATE_OFFLINE PENDING, and
STATE_DIAGNOSTIC describe the different states of an ACS, LSM, or
library drive.

3-16 9036

ACSLM Common Data Structures Common Variables

STATE_ONLINE and STATE_OFFLINE describe the different states of a
port.’

STATE_RUN, STATE_IDLE, STATE_IDLE_PENDING, and STATE_RECOVERY
describe the different states of the ACSLM.

SUBPANELID

Description

SUBPANELID uniquely identifies a subset of cells within a panel. It
specifies the upper-left corner (startrow, startcolumn) and lower-right
corner (endrow, endcolumn) of a rectangular area wholly contained in a
single panel.

Definition

SUBPANELID contains an ACS identifier, an LSM number, a panel
number, a starting row number, a starting column number, an ending
row number, and an ending column number:

typedef struct {
PANELID panel_id;

ROW begin_row;
CoL begin_col;
ROW end_row;
COL end_col;

} SUBPANELID;

TYPE

Description
TYPE identifies a class of devices, Storage Server software
components, or commands.

Values

Valid TypE values and their definitions are as follows. (See the defs.h
Header File in Appendix B for the “C” enumeration values.)

TYPE_ACS ACS

TYPE_AUDIT audit request process
TYPE_CAP Cartridge Access Port (CAP)
TYPE_CELL Cell identifier

TYPE_CP ACSSA command process
TYPE_CSI CSI

TYPE_DISMOUNT dismount request process
TYPE_EJECT eject request process
TYPE_EL Event Logger

TYPE ENTER enter Tequest process

9036 3-17

Common Variables

TYPE_DRIVE
TYPE_IP
TYPE_LH
TYPE_LM
TYPE_LSM
TYPE_MOUNT
TYPE_NONE
TYPE_PANEL
TYPE_PORT
TYPE_QUERY
TYPE_RECOVERY
TYPE_REQUEST
TYPE_SA

ACSLM Common Data Structures

Library tape drive

Interprocess communication
ACS Library Handler

ACS Library Manager (ACSLM)
LSM

mount request process

no identifier specified

LSM panel

ACS communication port

query request process

Storage Server recovery process
Storage Server request

ACS System Administrator (ACSSA)

TYPE_SERVER Storage Server
TYPE_SUBPANEL LSM subpanel
TYPE_VARY vary request process
TYPE_VOLUME Tape cartridge
VOLID
Description
voLID is the external tape cartridge label which uniquely identifies a
tape cartridge within an ACS.
Definition

voLID is defined as:

typedef struct ({

char external_ label [EXTERNAL LABEL SIZE+1];

} VOLID;

EXTERNAL_LABEL_ SIZE is defined as:

#define EXTERNAL_LABEL SIZE 6

VOLID is a string of characters less than or equal to
EXTERNAL_LABEL_SIZE characters long and null terminated. The
uppercase characters (“A” through “Z”), digits (“0” through “9”),
and blank (““) are valid. voLIDs containing embedded blanks are
reserved for diagnostic and maintenance cartridges only; leading and
trailing blanks are ignored.

3-18

9036

CHAPTER 4:
ACSLM COMMAND STRUCTURES

OVERVIEW

This chapter illustrates the data structures for each command
processed by the ACSLM. The ACSLM supports the following
commands:

audit

cancel

dismount

eject

enter

idle

mount

query
start
vary

For each command, the following data structures are shown:

» Request structures and values
+ Intermediate response structures and values, where applicable
+ Final response structures and values

 Final response structures and values for cancelled requests, where
applicable

See Chapter 2: ACSLM Processes for a description of how the ACSLM
processes requests. See Chapter 3: ACSLM Common Data Structures
for data structures that are common to all requests and responses.

9036 4-1

audit

AUDIT

Name

Description

4-2

ACSLM Command Structures

audit — Performs a physical inventory on the tape cartridges in a
library, ACS, LSM, panel, or subpanel.

The audit request performs a physical inventory of one or more
specified ACSs, LSMs, LSM panels, or LSM subpanels. It can be
used to resolve inconsistencies between the data base and the
physical contents of the library. These inconsistencies may be the
result of a person physically entering the LSM and manually adding,
removing, or moving cartridges in the storage cells.

Only one device type at a time can be audited. Within that type, up to
mMax_1D different devices can be specified in each request.

The LSM robot physically scans each cell in the specified object. The
cell contents are compared with the contents recorded in the data

base. If there is a difference, or if the robot finds a duplicate or
unreadable external label, the physical contents of the cell are
rechecked. If there is still a discrepancy, the data base is corrected and
a record of the change is written to the Event Log. Through this
process, the data base is updated to reflect the observed contents in
cell storage. It is recommended that the data base be backed up after
the completion of an audit.

Any cartridges with duplicate or unreadable external labels are ejected
through the specified CAP. The CAP is reserved for the entire audit.
The audit process does not begin ejecting cartridges until after it has
made all necessary data base updates.

Concurrent audits are allowed as long as they do not overlap one
another. They are not recommended, however, when duplicate volumes
are suspected.

9036

ACSLM Command Structures audit

Requests

Request Format

struct audit_request {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
CAPID cap_id;
TYPE type;
unsigned short count;
union {
ACS acs_id;
LSMID Ism_id;
PANELID panel_id;
SUBPANELID subpanel_id;

} identifier;
}s

Request Values
Within MESSAGE_HEADER, command is set to COMMAND_AUDIT.
cap_id is the CAP used for ejection of cartridges.

nype is the type of object to audit. Only one rype can be specified in a
single request. rype is one of the following:

TYPE_SERVER
TYPE_ACS
TYPE_LSM
TYPE_PANEL
TYPE_SUBPANEL

count is the number of identifiers that follows. For TYPE_SERVER,
count must equal 1. For all other sypes, count must equal 1 to MAX_1ID.
Within identifier, acs_id, Ism_id, panel_id, Or subpanel_id is the unique ID
of the object to be audited.

Responses

Intermediate Response Format

Part of audit processing is ejection of tape cartridges. The ACSLM
returns an intermediate response when a tape cartridge is added or
deleted from the data base. In the case of duplicate or unreadable
labels, the tape cartridge is also physically ejected from the library
through the CAP specified in the request.

9036 4-3

audit ACSLM Command Structures

The format of the intermediate response is:

struct eject_enter {

IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;
CAPID cap_id;
unsigned short count;
struct {
VOLID vol_id;
RESPONSE_STATUS status;

} volume status;
}i

Intermediate Response Values
Within MESSAGE_HEADER:

* command is COMMAND_ AUDIT.

* message_options is set to INTERMEDIATE, indicating a partial response
to the audit request.

Within RESPONSE_STATUS, status iS STATUS_AUDIT ACTIVITY.

cap_id is the identifier of the CAP, specified in the request, that is used
to eject cartridges.

count is the number of tape cartridges added, deleted, or ejected
associated with this response. The number ranges from 1 to Max_1ID.
See the Common Variables section in Chapter 3 for a description of
MAX_ID.

Within volume_status, vol_id is the external tape cartridge label.

Within volume_status, status is the disposition of each vol_id.
Following are status values specific to this command.

* STATUS_DUPLICATE_LABEL if the robot finds a tape cartridge with a
duplicate external label; the cartridge is ejected from the LSM.

* STATUS_VOLUME_ADDED if the robot finds a tape cartridge that is not
listed in the data base; the vol_id is added to the data base.

* STATUS_VOLUME_NOT_IN_LIBRARY if a tape cartridge listed in the
data base is not found in the library; the vol_id is deleted from the
data base.

* STATUS_UNREADABLE_ LABEL if the robot finds a tape cartridge with
an unreadable external label; the cartridge is ejected from the
library. Within vol_id question marks (?) are substituted for the
characters that the robot was unable to read.

44 9036

ACSLM Command Structures

9036

Final Response Format

struct audit_response {
IPC_HEADER
MESSAGE_HEADER
RESPONSE_STATUS
CAPID
TYPE
unsigned short
union {
struct {
ACS
RESPONSE_STATUS
} acs_status;
struct {
LSMID
RESPONSE_STATUS
} lsm_status;
struct {
PANELID
RESPONSE_STATUS
} panel_status;
struct {
SUBPANELID
RESPONSE_STATUS
} subpanel_status;
} identifier_ status;
)i

Final Response Values

audit

ipc_header;
message_header ;
message_status;
cap_id;

type;

count;

acs_id;
status;

Ism_id;
status;

panel_id;
status;

subpanel_id;
status;

Within MESSAGE_HEADER, command is COMMAND AUDIT.

Within RESPONSE_STATUS, status is the disposition of the entire request.
Following are status values specific to this command.

» STATUS_AUDIT_FAILED if the request fails during audit processing.
See the identifier_status for the nature of the failure.

* STATUS_AUDIT IN_PROGRESS, for TYPE_SERVER only, if another in-
process audit is already auditing the library.

» STATUS_CANCELLED if the request is cancelled. See Final Response

Values — Cancelled Request.

e staTtus_capr_iN_UsE if the specified CAP is being used by an eject,

enter, or another audit request.

e STATUS_MULTI_ACS_AUDIT if the request identifier list spans more

than one ACS.

e STATUS_NOT_IN SAME_ACS if the cap_id and the identifier do not

specify the same ACS.

» STATUS_sUCCESS if the audit completed successfully.

4-5

audit

ACSLM Command Structures

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.
* STATUS_ACS_NOT_IN LIBRARY

* STATUS_LSM_NOT_IN_ LIBRARY

* STATUS_CONFIGURATION_ ERROR

* STATUS_COUNT_TOO_LARGE

* STATUS_COUNT_TOO_SMALL

* STATUS_DATABASE_ERROR

e STATUS_INVALID_ACS

* STATUS_INVALID LSM

* STATUS_INVALID_OPTION

* STATUS_INVALID_ TYPE

* STATUS_LIBRARY_BUSY

* STATUS_LIBRARY_FAILURE

* STATUS_LIBRARY_ NOT_ AVAILABLE
* STATUS_LSM_OFFLINE

* STATUS_MESSAGE_TOO_LARGE

* STATUS_MESSAGE_TOO_SMALL

* STATUS_PROCESS_FAILURE

* STATUS_UNSUPPORTED OPTION

* STATUS_UNSUPPORTED_TYPE

cap_id is the identifier of the CAP, specified in the request, that is used
to eject cartridges.

nype is the type of object being audited, as indicated in the request.

count is the number of IDENTIFIERS, as indicated in the request. For
TYPE_SERVER, count is always 0.

Within identifier_ status, acs_id, Ism_id, panel_id, OT subpanel_id is the
unique ID of the object being audited, as indicated in the request.

Within identifier_status, status is the disposition of the identifier.
Following are status values specific to this command.

* STATUS_AUDIT_IN_PROGRESS if another in-process audit is already
auditing the LSM specified in identifier. Only one audit may be
active on any single LSM.

* sTATUS_CANCELLED if the request is cancelled. See Final Response
Values — Cancelled Request.

* STATUS_DUPLICATE_IDENTIFIER if the IDENTIFIER duplicates or
overlaps a previous IDENTIFIER in the list.

9036

ACSLM Command Structures audit

Notes

9036

e STATUS_INVALID_SUBPANEL if the subpanel is not correctly
specified. A subpanel identifier indicates the upper-left and lower-
right corners of a panel subsection. The ending row must be > the
beginning row, and the ending column must be > the beginning
column. This status is returned if these conditions are not met.

¢ sTAaTuS_VALID if the IDENTIFIER was successfully validated.

Following are common identifier_status stamus values. See the
Common Statuses section in Chapter 3 for a description.

* STATUS_INVALID_ACS

* STATUS_INVALID_COLUMN

* STATUS_INVALID_LSM

* STATUS_INVALID_ PANEL

* STATUS_INVALID_ROW

* STATUS_LSM OFFLINE

* STATUS_LSM_NOT_IN_LIBRARY

Final Response Values - Cancelled Request

Within MESSAGE_HEADER, command is COMMAND _AUDIT.
Within RESPONSE_STATUS, the status is STATUS_CANCELLED.

cap_id is the identifier of the CAP, specified in the request, that is used
to eject cartridges.

nype is the type of object being audited, as indicated in the request.

count is the number of identifiers that were validated prior to the
cancel. For a cancelled pending request count is 0 and no
identifier_status records follow. For a cancelled current request,
count ranges from 1 to Max_1p. See Common Variables section in
Chapter 3 for a definition of MAX_1ID.

Within identifier status, the status for each identifier is set to
STATUS_VALID.

* Messages are written to the Event Log whenever an audit starts,
terminates, or is cancelled.

* A STATUS_REMOVE_CARTRIDGES unsolicited message is sent to the
ACSSA if the CAP becomes full during audit processing. Audit
processing is suspended until the CAP is unloaded and resumes
when the CAP is closed.

4-7

audit ACSLM Command Structures

* A STATUS_REMOVE_CARTRIDGES unsolicited message is sent to the
ACSSA if a cancel request is issued against a current audit
request while it is ejecting cartridges. An audit cannot be
cancelled once this message has been issued.

See Also

* The cancel command for details on cancelling a pending or current
audit request. '

* Appendix A for entries that may be written to the Event Log.

4-8 9036

ACSLM Command Structures cancel

CANCEL

Name
cancel — Terminates a current or pending audit, eject, enter, O
query request.

Description

The cancel request terminates current or pending query, eject, enter,
or audit activity. A cancellation function is provided for these requests
because they can take an extended period of time to complete.

The cancelled request may continue to run while it releases allocated
resources. Activity is terminated before the next LMU command is
issued. Current LMU commands are processed to completion. No
attempt is made to undo any activity that was completed before the
cancel request was received by the ACSLM.

The requestor must know the request ID of the request to cancel. The
request ID is included in the acknowledging response. It can also be
determined by issuing a query request, which returns a list of all
current and pending requests.

When pending requests are cancelled they are removed from the
ACSLM’s request queue and are not processed.

When current requests are cancelled the following activities occur:

* Cancelling a current audit — The audit halts, and, if cartridges have
been moved to the CAP, a message to remove the cartridges is
displayed. Cartridges already ejected are not reentered. Cancelling
a current audit may result in inconsistencies between the data base
and the actual physical contents of the LSM.

* Cancelling a current e ject — The eject is halted, and a message to
remove the cartridges is displayed. After the CAP is emptied and
closed, a message indicating the number of cartridges acted on is
displayed. Cartridges already ejected are not reentered.

* Cancelling a current enter — The enter is halted. If cartridges are in
the CAP, a message to remove the cartridges is displayed. After
the CAP is emptied, a message indicating the number of cartridges
acted on is displayed. Cartridges already entered into the LSM are
not ejected.

e Cancelling a current query — The processing of status information is
aborted.

9036 4-9

cancel

Requests

Responses

4-10

ACSLM Command Structures

Request Format

struct cancel_request {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
MESSAGE_ID request_id;

}i

Request Values

Within MESSAGE_HEADER, command is COMMAND_CANCEL.

request_id is the message ID of the request to cancel.

Intermediate Response Format

Not applicable.

Final Response Format

struct cancel_response {

IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;
MESSAGE_ID request_id;

}:

Final Response Values

Within MESSAGE_HEADER, command is COMMAND _CANCEL.

Within RESPONSE_STATUS, status is the disposition of the entire request.
Following are status values specific to this command.

* STATUS_INVALID MESSAGE if the value of request_id is outside the
range of valid values, as defined by MESSAGE_ID, or if the request_id
specified designates a command that is not an audit, eject, enter,
or query. See Common Variables in Chapter 3 for a definition of
MESSAGE_ID.

* STATUS_MESSAGE_NOT_FOUND if request_id is valid but is not a current
or pending request.

» STATUS_SUCCESS if the request_id was cancelled successfully.

9036

ACSLM Command Structures cancel

Following are common RESPONSE_STATUS status values. See the

‘Common Statuses section in Chapter 3 for their descriptions.

* STATUS_INVALID_OPTION
* STATUS_MESSAGE_TOO_LARGE
e STATUS_MESSAGE_TOO_SMALL
* STATUS_UNSUPPORTED_OPTION

request_id is the request ID, as indicated in the cancel request.

Final Response Values — Cancelled Request

Notes

"See Also

9036

Not applicable.

* A query server request cannot be cancelled.

* A cancelled request may continue to run while it releases allocated
resources. Refer to the descriptions of the audit, eject, enter,
and query requests for additional information on the effects of a
cancel request. In all cases, the specified request is cancelled and
the RESPONSE_STATUS status STATUS_SUCCESS is immediately
returned to the request originator.

e The query, eject, enter, and audit commands for details on their
functions.
» Appendix A for entries that may be written to the Event Log.

4-11

dismount

DISMOUNT

Name

Description

ACSLM Command Structures

dismount — Dismounts a tape cartridge from a library drive.

The dismount request dismounts a tape cartridge from a library drive.

The message_option FORCE is used to automatically dismount the tape
cartridge from the specified library drive, even if its vol_id does not
match that in the drive, and even if the drive is not unloaded.

Upon receipt of a dismount request, the LSM robot does the following:

1. Moves to the specified drive and validates the external tape
cartridge label.
2. Dismounts the tape cartridge from the drive.

3. Returns the tape cartridge to an available storage cell in the library.

Once the dismount is completed, the data base is updated with the new
location of the cartridge.

Unforced Dismount

All of the following conditions must be met for a successful unforced
dismount:

* Both the cartridge and the drive must be in the library

¢ The library drive must be online to ACSLM control

» The cartridge must be in the specified library drive

* The drive must be unloaded

Forced Dismount

4-12

When the FORCE message_option is used, the system does not verify the
tape cartridge label or data base information. It also does not require
that the library drive be ready for dismounting. The Storage Server
automatically rewinds, unloads, and dismounts whatever tape cartridge
is found in the specified library drive.

This option can be used to dismount a cartridge with an unreadable or
unknown label, or a cartridge that, for some reason, did not get
unloaded by the client application system.

The following conditions must be met for a successful forced dismount:

» The drive must be in the library configuration
e The library drive must be currently online to ACSLM control

9036

ACSLM Command Structures dismount

Requests

Request Format

struct dismount_request {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
VOLID vol_id;
DRIVEID drive_id;

}:

Request Values

Within MESSAGE_HEADER:

* command iS COMMAND_DISMOUNT.

* message_options can be FORCE. When this is used, the ACSLM does
not verify tape cartridge labels or data base information. The
ACSLM rewinds, unloads, and dismounts the tape cartridge found
in the requested library drive. Therefore, this message_option can
dismount a cartridge with an unreadable label.

vol_id is the external label of the tape cartridge to be dismounted.
drive_id is the library drive containing the tape cartridge.
Responses

Intermediate Response Format
Not applicable.

Final Response Format

struct dismount_response {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;
VOLID vol_id;
DRIVEID : drive_id;

}s

Final Response Values
Within MESSAGE_HEADER, command iS COMMAND_DISMOUNT.

9036 . 4-13

dismount

4-14

ACSLM Command Structures

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command:

STATUS_ACS_FULL if an available cell location cannot be found in the
data base to dismount the cartridge into. The cartridge is left in the
tape drive.

STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to all available cell records in the data base.

STATUS_DRIVE_AVAILABLE if the library drive does not contain a
tape cartridge.

STATUS_DRIVE_IN_USE if the dismount fails because the cartridge
was not unloaded on the library drive.

STATUS_MISPLACED_TAPE if the external tape cartridge label of the
tape cartridge in the library drive does not match the volume
identifier of the tape cartridge in the request. The data base is
updated with the volume identifier of the tape cartridge in the library
drive.

STATUS_NOT_IN_SAME_ACS if the tape cartridge and the library drive
are not in the same ACS.

STATUS_SUCCESS if the tape cartridge was dismounted successfully.

STATUS_UNREADABLE_LABEL if the tape cartridge label is
unreadable. If this is an unforced dismount, the request is rejected,
and a message is issued to the Event Log. If this is a forced
dismount, the cartridge is successfully dismounted. Within vol_id, .
questions marks (?) are substituted for the characters that the

robot was unable to read.

STATUS_VOLUME_NOT IN_DRIVE if the data base shows that the
requested volume identifier is not in the requested drive.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

STATUS_ACS_NOT_IN_LIBRARY
STATUS_LSM_NOT_IN_LIBRARY
STATUS_DATABASE_ERROR
STATUS_DRIVE NOT IN_LIBRARY
STATUS_DRIVE_OFFLINE
STATUS_INVALID_ACS
STATUS_INVALID_DRIVE
STATUS_ INVALID_LSM
STATUS_INVALID_OPTION
STATUS_INVALID_ VOLUME
STATUS_LIBRARY_BUSY

9036

ACSLM Command Structures dismount

* STATUS_LIBRARY_FAILURE

e STATUS_LIBRARY NOT AVAILABLE
* STATUS_LSM_OFFLINE

* STATUS_MESSAGE_TOO_LARGE

* STATUS_MESSAGE_TOO_SMALL

* STATUS_PROCESS_FAILURE

* STATUS_UNSUPPORTED_OPTION

* STATUS_VOLUME_NOT_IN_LIBRARY

vol_id is the tape cartridge identifier, as indicated in the request.
drive_id is the library tape drive, as indicated in the request.

Final Response Values — Cancelled Request

Notes

See Also

9036

Not applicable.
None.

¢ The mount command for details on mounting ‘a cartridge on a library
drive.
* Appendix A for entties that may be written to the Event Log.

4-15

eject

EJECT

Name

Description

4-16

ACSLM Command Structures

eject — Ejects from one to MAX_ 1D tape cartridges from an LSM.

The eject request ejects tape cartridges from the library, removing
them from library control. Cartridges are ejected through a specified
CAP. From one to Max_1D cartridges can be ejected at a time. See
Chapter 3: ACSLM Common Data Structures for a definition of Max_1D.

For each cartridge to be ejected, the LSM robot does the following:

1. Moves to the cell location indicated in the data base.

2. Reads the external label of the cartridge and verifies that it is the
specified cartridge,
3. Moves the cartridge to an available cell in the specified CAP.

When the specified cartridges have been moved to the CAP, the cell
locations of the ejected cartridges are deassigned, and the cartridges
are removed from the data base. The Command Processor then
displays an unsolicited message in the Display Area to remove the
cartridges from the CAP.

After the cartridges are removed and the CAP door is closed, the
Command Processor displays one message in the Command Area for
each cartridge designated for ejection. In each message, the status
indicates whether or not the cartridge was actually ejected.

If, for any reason, a specified cartridge cannot be ejected, an error
message is displayed in the Command Area, and an entry is made in
the Event Log.

9036

ACSLM Command Structures

Requests

Request Format

struct eject_request {

}:

IPC_HEADER
MESSAGE_HEADER
CAPID

unsigned short
VOLID

Request Values
Within MESSAGE_HEADER, command is set to COMMAND_EJECT.

Responses

Intermediate Response Format

ipc_header;
message_header ;
cap_id;

count;

vol_id;

cap_id is the CAP used to eject the tape cartridge.

eject

count is the number of vol_ids to eject. count has a range of 1 to Max_1ID.

Each vol_id is the external label of a tape cartridge to be ejected.

Not applicable.

Final Response Format

struct eject_response {

}i

IPC_HEADER
MESSAGE_HEADER
RESPONSE_STATUS
CAPID
unsigned short
struct {

VOLID

RESPONSE_STATUS

} volume_status;

Final Response Values
Within MESSAGE_HEADER, command iS COMMAND _EJECT.

9036

ipc_header;
message_header ;
message_status;
cap_id;

count;

vol_id;
status;

Within RESPONSE_STATUS, status indicates the disposition of the entire
request. Following are status values specific to this command.

sTATUS_CANCELLED if the request is cancelled. See Final Response

Values — Cancelled Request.

4-17

eject

4-18

L]

ACSLM Command Structures

STATUS_CAP_IN_USE if the request cannot be processed because the
CAP is being used by an audit, an enter, or another eject

request.
sTATUS_SUCCESS if the fixed portion of the request is correct.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

[

STATUS_ACS_NOT_IN_LIBRARY
STATUS_COUNT_TOO_LARGE
STATUS_COUNT_TOO_SMALL
STATUS_DATABASE_ERROR
STATUS_INVALID_ACS
STATUS_INVALID_LSM
STATUS_INVALID_OPTION
STATUS_LIBRARY_NOT_AVAILABLE
STATUS_LSM_BUSY
STATUS_LSM_NOT_IN_ LIBRARY
STATUS_LSM_OFFLINE
STATUS_MESSAGE_TOO_LARGE
STATUS_MESSAGE_TOO_SMALL
STATUS_PROCESS_FALURE
STATUS_UNSUPPORTED_OPTION

cap_id is the CAP used to eject the tape cartridge.

count is the number of tape cartridges that the ACSLM attempted to
eject.

Within volume_status, vol_id is the external label of each tape
cartridge the ACSLM attempted to eject.

Within volume_status, status is the disposition of each vol_id.
Following are status values specific to this command.

L]

STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to a cell record in the data base. The cartridges are not
ejected. This starus is issued only after the data base has attempted
retries on the cell record.

staTus_capr_ruLL if the CAP is full before all vol_ids have been
processed. Remaining vol_ids are not ejected.
STATUS_MISPLACED_TAPE if a different tape cartridge is in the
location specified by the data base. The data base is updated with

- the external tape cartridge label of the tape cartridge found in the

storage location.

9036

ACSLM Command Structures eject

9036

* sSTAaTUS_NOT_IN_SAME_ACS if the CAP identifier and volume
identifier are not in the same ACS.

* sSTATUS_sSUCCESS if the tape cartridge was ejected successfully.
* STATUS_VOLUME_IN_DRIVE if the tape cartridge is in a library drive.
The cartridge is not ejected.

* STATUS_VOLUME_IN_USE if the tape cartridge is in use by another
request. The cartridge is not ejected.

* STATUS_VOLUME_NOT_IN_LIBRARY if the vol_id does not exist in the
data base, or if the tape cartridge has already been ejected as part
of this request. If no tape cartridge is in the location specified by
the data base and the volume is not in transit or in a library drive,
the data base entry is removed.

Following are common volume_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_INVALID VOLUME
* STATUS_LIBRARY FAILURE
* STATUS_LIBRARY_ BUSY

* STATUS_LSM_OFFLINE

Final Response Values - Cancelled Request
Within MESSAGE_HEADER, command is COMMAND_EJECT.
Within RESPONSE_STATUS, status iS STATUS_CANCELLED.
cap_id is the CAP used to eject the tape cartridges.

count is the number of tape cartridges to be ejected, as specified in the
request.

Within volume_status, vol_id is the external label of each tape
cartridge the ACSLM attempted to eject.

Within volume_status, status is as follows:

* sTATUS_CANCELLED if the tape cartridge was not processed before
the request was cancelled.

* Any valid staws value if the tape cartridge was processed before the
request was cancelled. See Final Response Values above for the
valid final response status values.

4-19

eject ACSLM Command Structures

Notes
» If all vol_ids have been processed and at least one cartridge has
been moved to the CAP, or the CAP is full, a
STATUS_REMOVE_CARTRIDGES unsolicited message is sent to the
ACSSA. The final response is not returned until the CAP is
closed.
See Also

* The cancel command for details on cancelling a current or pending
eject request.

* The enter command for details on entering cartridges into the ACS.
* Appendix A for entries that may be written to the Event Log.

4-20 9036

ACSLM Command Structures enter

ENTER

Name

Description

9036

enter — Enters one to MAX_ID tape cartridges into an LSM.

The enter request enters tape cartridges into the ACS, placing them
under library control. The cartridges are entered through a specified
CAP. From one to MAx_ID cartridges can be entered at a time.

Upon receiving an enter request, the CAP is unlocked, and an
unsolicited message is displayed, instructing the operator to place the
cartridges in the CAP.

The cartridges should be loaded from left to right, top to bottom,
starting with the upper left-most CAP cell. The first row should be
filled completely before beginning with the next row, etc. The robot
stops looking for cartridges in the CAP once it encounters an empty
CAP cell, so skipping CAP cells will cause all cartridges after the
empty cell not to be entered into the LSM.

After the CAP is closed, the LSM robot does the following for each
cartridge in the CAP: '

1. Verifies that the external label is readable.

2. Verifies that the label is not a duplicate.

3. Moves the cartridge from the CAP to an unassigned cell in the ACS.
4

. Assigns the location to the cartridge and adds the cartridge to the
data base.

Once the robot has finished unloading the CAP, the external label of
each cartridge found in the CAP is displayed in the Command Area.
For each cartridge in the list, the status indicates whether or not the
cartridge was actually entered into the LSM.

If any cartridges have unreadable or duplicate labels, the CAP is
unlocked, and an unsolicited message is displayed, instructing the
operator to remove the cartridges from the CAP; this is done after all
cartridges that could be successfully entered are moved into the LSM.

4-21

enter

Requests

ACSLM Command Structures

Request Format

struct enter_request {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
CAPID cap_id;
}:
Request Values

Responses

Within MESSAGE_HEADER, command is COMMAND_ENTER.

cap_id is the CAP used to enter the tape cartridges.

Intermediate Response Format

Not applicable.

Final Response Format

struct enter_response {

IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;
CAPID cap_id;
unsigned short count;
struct {
VOLID vol_id;
RESPONSE_STATUS status;

} volume status;
}i

Final Response Values

4-22

Within MESSAGE_HEADER, command iS COMMAND_ENTER.

Within RESPONSE_STATUS, status indicates the disposition of the entire
request. Following are status values specific to this command.

» srtaTus_CancCELLED if the request is cancelled. See Final Response
Values — Cancelled Request.

* STATUS_CAP_IN_USE, if the CAP is being used by an audit, an
eject, or another enter request.

* STATUS_SUCCESS, if the fixed portion of the request is correct.

9036

ACSLM Command Structures enter

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.
¢ STATUS_ACS_NOT_IN_LIBRARY

* STATUS_LSM_NOT_IN_LIBRARY

* STATUS_DATABASE_ERROR

* STATUS_INVALID_ACS

* STATUS_INVALID_LSM

* STATUS_INVALID_OPTION

* STATUS_LIBRARY NOT_AVAILABLE

* STATUS_LSM_OFFLINE

* STATUS_MESSAGE_TOO_LARGE

* STATUS_MESSAGE_TOO_SMALL

* STATUS_PROCESS_FAILURE

* STATUS_UNSUPPORTED_OPTION

cap_id is the CAP used to enter the tape cartridges.

count is the number of tape cartridges that the ACSLM attempted to
enter into the library. The value is the same as for the request. count
has a range from 1 to Max_1D (see the Common Variables section in
Chapter 3 for a definition of MAX_ID).

Within volume_status, €ach wol_id is the external label of the tape
cartridge that the ACSLM attempted to enter.

Within volume_status, status indicates the disposition of each vol_id.
Following are status values specific to this command:

* STATUS_ACS_FULL, if there are no storage cells available in the
library for the tape cartridge. The tape cartridge is left in the CAP.

* STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to a cell record in the data base. The cartridges are left in
the CAP. This status is issued only after the data base has
attempted retries on the cell record.

* STATUS_DUPLICATE_LABEL, if the external label on the tape
cartridge is a duplicate of one that already exists in the library. The
tape cartridge is left in the CAP and is not entered into the library.

* STATUS_SUCCESS, if the tape cartridge was entered successfully.

* STATUS_UNREADABLE_LABEL, if the external tape cartridge label is
unreadable. The tape cartridge is left in the CAP and is not entered
into the library. Within vol_id, question marks (?) are substituted
for the characters the robot was unable to read.

9036 4-23

enter ACSLM Command Structures

Following are common volume_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_INVALID_VOLUME

* STATUS_LIBRARY_BUSY

* STATUS_LIBRARY_FAILURE

* STATUS_LSM_OFFLINE

Final Response Values — Cancelled Request
Within MESSAGE_HEADER, command iS COMMAND _ENTER.

Within RESPONSE_STATUS, status iS STATUS_CANCELLED.
cap_id is the CAP used to enter the tape cartridges.

count is the number of tape cartridges that the ACSLM acted upon
before receiving the cancel request. Any cartridges not processed are
not included in the response.

Within volume_status, each vol_id is the external label of the tape
cartridge that the ACSLM processed.

Within volume_status, status can be any of the values that are valid for
a final response.

Notes

* When the ACSLM begins processing the request, it sends a
STATUS_INPUT CARTRIDGES unsolicited message to the ACSSA.

» If the ACSLM does not enter all cartridges in the request,
cartridges remain in the CAP. The ACSLM sends a
STATUS_REMOVE_CARTRIDGES unsolicited message to the ACSSA.

» If a cancel request is issued against a current enter request, enter
processing is halted for that request.

 If any cartridges are left in the CAP after a request is cancelled, the
ACSLM issues a STATUS_REMOVE_CARTRIDGES unsolicited message
to the ACSSA and waits for the operator to remove the cartridges
before returning the final response.

See Also

e The cancel command for details on cancelling a current or pending
enter request.

e The eject command for details on removing cartridges from the
ACS.

¢ Appendix A for entries that may be written to the Event Log.

4-24 . 9036

ACSLM Command Structures idle

IDLE

Name
idle — Stops ACSLM request processing.

Description

The idle request is used to place the Storage Server in a quiescent
state prior to maintenance activity. It will remain in that state until it
receives a start request.

The Storage Server can be in one of the four following states:
STATE_RUN, STATE_IDLE, STATE_IDLE_PENDING, and STATE_RECOVERY.
See the Library Request Processing section in Chapter 2 for details on
these states.

Unforced Idle

Upon receipt of an unforced idle request, the Storage Server is
immediately placed in STATE_IDLE_PENDING. While the Storage Server
is in this state, new requests involving library operations are rejected,
and current and pending requests are processed to completion. The
Storage Server is not placed in sTATE_IDLE until all current and pending
requests have been completed.

Forced Idle

An idle request with the FORCE message_option abruptly puts the
Storage Server in sTaTE_IDLE. Current and pending requests are
aborted, not processed to completion. New requests are rejected.

Requests
Request Format

struct idle_request {
IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
}i '

Request Values

Within MESSAGE_HEADER, command 1S COMMAND_IDLE.

9036) 4-25

idle ACSLM Command Structures

Responses

Intermediate Response Format
Not applicable.

Final Response Format

struct idle_response {

IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;

}s

Final Response Values
Within MESSAGE_HEADER, command is COMMAND IDLE.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

* sTATUS_IDLE_PENDING if the ACSLM is processing a previous idle
request, and the Storage Server is therefore already in
STATE_IDLE_PENDING.

* STATUS_LIBRARY NOT AVAILABLE if the Storage Server is in
STATE_RECOVERY.

* STATUS_SUCCESS if the Storage Server was successfully put in.
STATE_IDLE.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

* STATUS_INVALID OPTION

* STATUS_MESSAGE_TOO_ LARGE

* STATUS_MESSAGE_TOO_SMALL

* STATUS_UNSUPPORTED_OPTION

Final Response Values — Cancelled Request
Not applicable.

Notes

» The ACSLM sends a STATUS_IDLE_PENDING unsolicited message
to the ACSSA when the Storage Server is put in the
STATE_IDLE_PENDING State.

» The ACSLM sends a STATUS_ACSLM_IDLE unsolicited message to
the ACSSA when the Storage Server is put in the STATE_IDLE
state.

4-26 9036

ACSLM Command Structures idle

See Also
» The query command for details on displaying the current state of
the Storage Server.

* The start command for details on bringing an idle Storage Server
into the STATE_RUN.

» Appendix A for entries that may be written to the Event Log.

9036 4-27

mount ACSLM Command Structures

MOUNT

Name
mount — Mounts a tape cartridge onto a specified library drive.

Description

The mount request mounts a specified tape cartridge on a specified
library drive.

Upon receipt of a mount request, the LSM robot does the following:

1. Moves to the appropriate cell location and validates the external
label of the tape cartridge.

2. Mounts the tape cartridge on the drive.

Once the cartridge is successfully mounted, the data base is updated
with the status of the drive and the current location of the cartridge.

If for any reason the mount cannot be completed, the tape cartridge is
returned to its original location, if possible, or to another available
storage cell.

All of the following conditions must be met for a successful mount:

» Both the cartridge and the drive must be in the library
* The library drive must be online to ACSLM control and unloaded
» The cartridge must be available

Request

Request Format

struct mount_request {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
VOLID vol_id;
unsigned short count;

DRIVEID drive_id;

};

Request Values
Within MESSAGE_HEADER, command iS COMMAND_MOUNT.
vol_id is the external label of the tape cartridge to be mounted.

count is the number of library drives eligible for mounting tape
cartridges. Currently, count must equal 1.

drive_id is a library drive on which the tape cartridge is to be mounted.

4-28 9036

ACSLM Command Structures mount

Responses

9036

Intermediate Response Format
Not applicable.

Final Response Format

struct mount_response {

}:

IPC_HEADER “ipc_header ;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;
VOLID vol_id;
DRIVEID drive_id;

Final Response Values

Within MESSAGE_HEADER, command is COMMAND_MOUNT.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

*

STATUS_AUDIT_ IN_PROGRESS, if an in-process audit has locked out
access to the specified cartridge’s cell record in the data base. This
status is issued only after the data base has attempted retries on the
cell record.

STATUS_DRIVE_IN_USE if the requested library drive already
contains a tape cartridge.

STATUS_MISPLACED_TAPE if the external tape cartridge label of the
tape cartridge found in the location indicated by the data base does
not match the vol_id in the request. The data base is corrected and a
message is written to the Event Log.

STATUS_NOT_IN_SAME_ACS if the tape cartridge and the tape drive
are not in the same ACS.

STATUS_SUCCESS if the tape cartridge was successfully mounted on
the drive.

STATUS_UNREADABLE_LABEL if the tape cartridge found in the
location indicated by the data base has an unreadable external
label. A message is written to the Event Log. Within vol_id,
question marks (?) are substituted for the characters that the robot
was unable to read.

STATUS_VOLUME_IN DRIVE if the tape cartridge is already mounted
in a library drive.

STATUS_VOLUME_IN_USE if the tape cartridge is marked in the data
base as reserved by another request.

4-29

mount ACSLM Command Structures

e STATUS_VOLUME_NOT_IN_LIBRARY if the vol_id specified in the
request is not found in the data base.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.
* STATUS_ACS_NOT_IN_LIBRARY

* STATUS_DRIVE NOT IN_LIBRARY
* STATUS_LSM_NOT_IN_ LIBRARY

* STATUS_COUNT TOO_LARGE

* STATUS_COUNT_TOO_SMALL

* STATUS_DATABASE_ERROR

* STATUS_DRIVE_OFFLINE

* STATUS_LSM OFFLINE

* STATUS_INVALID_ACS

* STATUS_INVALID DRIVE

* STATUS_INVALID_ LSM

* STATUS_INVALID_OPTION

* STATUS_INVALID VOLUME

* STATUS_LIBRARY_BUSY

* STATUS_LIBRARY_FAILURE

* STATUS_LIBRARY_NOT_ AVAILABLE
* STATUS_MESSAGE_TOO_LARGE

* STATUS_MESSAGE_TOO_ SMALL

* STATUS_PROCESS_FAILURE

* STATUS_UNSUPPORTED_OPTION

vol_id is the external label of the tape cartridge, as indicated in the
request.

drive_id is the library drive used to mount the tape cartridge, as
indicated in the request.

Final Response Values — Cancelled Request
Not applicable.

Notes

None.

See Also

+ The dismount command for details on dismounting a cartridge from
a library drive.

4-30 . 9036

ACSLM Command Structures mount

* The query command for details on displaying the closest library
drive to a specified tape cartridge.

» Appendix A for entries that may be written to the Event Log.

9036 . 4-31

query ACSLM Command Structures
QUERY
Name |
query — Displays information about the Storage Server, an ACS, an
LSM, a port, a CAP, a library drive, a tape cartridge, or a request.
Description
The query request returns status information for one or more of the
following object types:
» The Storage Server
« ACS
« LSM
« CAP
» Library tape drive
¢ Tape cartridge
* Port
» Library request
» Tape cartridge mount status
The user can specify more than one object in a single request, as long
as they all have the same type. For example, a single request can
specify two ACSs, but not an ACS and a library drive. From 1 to
Max_1D objects can be specified in a single request.
Requests
Request Format
struct query request {
IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header ;
TYPE type;
unsigned short count;
union {
ACS acs_id;
LSMID Ism_id;
CAPID cap_id;
DRIVEID drive_id;
VOLID vol_id;
MESSAGE_ID request_id;
PORTID port_id;
} identifier;
}:
4-32

9036

ACSLM Command Structures

Request Values

query

Within MESSAGE_HEADER, command is COMMAND _QUERY.

type is one of the following:

TYPE_ACS
TYPE_CAP

TYPE DRIVE
TYPE_LSM
TYPE_MOUNT
TYPE_PORT
TYPE_REQUEST
TYPE_SERVER
TYPE_VOLUME

count is the number of items that follow in identifier. The maximum
number of identifier items in a single request is MaAx_1D (see the
Common Variables section in Chapter 3 for a description of MAX_1ID).

Each item in identifier is one of the following, based on rype:

acs_id
Ism_id
cap_id
drive_id
port_id
request_id
vol_id

Only one nype of identifier can be specified in a single request. If
count = 0, the request is performed on all items in the data base
matching the specified rype. count cannot be 0 if type is TYPE_MOUNT.

count must be 1 if rype is TYPE_SERVER.

Responses

Response Format

struct query_ response {
IPC_HEADER
MESSAGE_HEADER
RESPONSE_STATUS
TYPE
unsigned short
union {
struct {
STATE
FREECELLS
unsigned short
} server_ status;
struct {
ACS
STATE

9036

ipc_header ;
message_header ;
message_status;
type;

count;

state;
freecells;
requests [MAX_COMMANDS] (2] ;

acs_id;
state;

query

4-34

FREECELLS
unsigned short
STATUS
} acs_status;
struct ({
LSMID
STATE
FREECELLS
unsigned short
STATUS
} lsm_status;
struct {
CAPID
STATUS
} cap_status;
struct {
DRIVEID
STATE
VOLID
STATUS
} drive_status;
struct {
VOLID
LOCATION
union ({
DRIVEID
CELLID
} location;
STATUS
} volume status;
struct
VOLID
STATUS
unsigned short
DRIVEID
} mount_status;
struct {
PORTID
STATE
STATUS
} port_status;
struct {
MESSAGE_1ID
COMMAND
STATUS
} request_status;

} status_response;

ACSLM Command Structures

freecells;

requests [MAX_ COMMANDS] [2];

status;

Ism_id;
state;
freecells;

requests [MAX COMMANDS] [2] ;

status;

cap_id;
status;

drive_id;
state;
vol_id;
status;

vol_id;
location_type:;

drive_id;
cell_id;

status;
vol_id;

status;
drive_count;

drive_id[MAX ACS_DRIVES];

port_id;
state;
status;

request;
command;
status;

9036

ACSLM Command Structures query

Intermediate Response Values

If the response is greater than MAX_MESSAGE_SIZE, the ACSLM breaks
the response into one or more intermediate responses, containing
MAX_ID status_responses, and a final response containing MAX_ID or
less status_responses. See the Common Variables section in
Chapter 3 for a definition of MAX_1D and MAX_MESSAGE_SIZE.

Each intermediate response has the same format and values as the
final response, with the following exception:

» Within MESSAGE_HEADER, message_options is Set t0 INTERMEDIATE.

See the Final Response sections below for the other values in the
intermediate response.

Note: Because of the complexity of this response format, the fixed
portion of the response and the individual status_response structures
are described separately in the following sections.

Final Response — Fixed Portion
Within MESSAGE_HEADER, command is COMMAND_QUERY.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

* STATUS_AUDIT_IN_PROGRESS, if an in-process audit has locked out
access to a cell record in the data base. This status is issued only
after the data base has attempted retries on the cell record.

» sTATUS_CANCELLED if the request is cancelled. See Final Response
Values — Cancelled Request.

* STATUS_LIBRARY NOT_AVAILABLE if the ACSLM is in the
STATE_RECOVERY state and a query request is received specifying a
type other than TYPE_SERVER.

e STATUS_SUCCESS if the request is executed successfully.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.
* STATUS_COUNT TOO_LARGE

* STATUS_COUNT_TOO_SMALL

* STATUS_DATABASE_ERROR

* STATUS_INVALID_OPTION

* STATUS_INVALID_TYPE

* STATUS_MESSAGE_TOO_LARGE

* STATUS_MESSAGE_TOO_SMALL

* STATUS_PROCESS_FAILURE

* STATUS_UNSUPPORTED_OPTION

9036 4-35

query ACSLM Command Structures

* STATUS_UNSUPPORTED_TYPE

type is one of the following, as indicated in the request:

TYPE_ACS
TYPE_CAP
TYPE_DRIVE
TYPE_LSM
TYPE_MOUNT
TYPE_PORT
TYPE_REQUEST
TYPE_SERVER
TYPE_VOLUME

count is the number of status_response entries in the response. There
is one status_response entry for each identifier item that was
processed. The maximum number of status_response entries in a
single response is MAX_ID.

Final Response — ACS Status

Within status_response, acs_status format and values are as

follows:
struct { .
ACS acs_id;
STATE state;
FREECELLS freecells;
unsigned short requests [MAX COMMANDS] [2];
STATUS status;

} acs_status;

type is TYPE_ACS.
acs_id is the ACS identifier, as indicated in the request.
state is the current state of the ACS and is one of the following:

STATE_ONLINE
STATE_OFFLINE
STATE_OFFLINE_PENDING
STATE_DIAGNOSTIC

freecells is the total number of unoccupied storage cells in the ACS.

requests is a two-dimensional array of numbers describing the
distribution of requests for the ACS. The array has MAX_COMMANDS
columns and two rows. MAX_COMMANDS is defined as:

#define MAX_ COMMANDS 5

Each column is a command (audit, mount, dismount, enter, and eject).
Each row is the processing status of the request (current, pending).

4-36 . 9036

ACSLM Command Structures query

Both current and pending requests are returned in the requests array.
These requests are defined as follows:

Current Executing.
Pending Received by the ACSLM, but not yet executed.

status is the disposition of each acs_id. Following are status values
specific to this command.

* STATUS_SUCCESS if status information was successfully retrieved for
this ACS.

Following are common acs_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_ACS_NOT_IN_LIBRARY
* STATUS_DATABASE_ERROR
* STATUS_INVALID_ACS

Final Response — CAP Status

Within status_response, cap_status format and values are as
follows:

struct {
CAPID cap_id;
STATUS status;
} cap_status;

type is TYPE_CAP.
cap_id is the CAP identifier, as indicated in the request.

status is the disposition of each cap_id. Following are status values
specific to the cap_status.

e STATUS_AUDIT ACTIVITY if the CAP is reserved by an audit.
« staTus_car AvAILABLE if the CAP is not being used for any

activity.

e STATUS_EJECT_ACTIVITY if cartridges are being ejected from the
CAP. '

s STATUS_ENTER ACTIVITY if cartridges are being entered into the
CAP.

Following are common cap_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_ACS_NOT_IN_LIBRARY
¢ STATUS_LSM NOT_IN_LIBRARY
* STATUS_DATABASE_ERROR

9036 , 4-37

query ACSLM Command Structures

e STATUS_INVALID_ACS
* STATUS_INVALID_LSM

Final Response — Drive Status

Within status_response, drive_status format and values are as

follows:

struct {
DRIVEID drive_id;
STATE state;
VOLID vol_id;
STATUS status;

} drive_status;

type is TYPE_DRIVE.
drive_id is the drive identifier, as indicated in the request.
state is the current state of the drive and is one of the following:

STATE_ONLINE
STATE_OFFLINE
STATE_DIAGNOSTIC

vol_id is the volume identifier of the tape cartridge in the drive. If no
volume is in the drive, vol_id is null.

status is the disposition of each drive_id. Following are status values
specific to the drive_status.

* STATUS_DRIVE_AVAILABLE if the drive does not contain a tape
cartridge.

* STATUS_DRIVE_IN_USE if the drive contains a tape cartridge or is
reserved for a mount.

Following are common drive_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_ACS_NOT_IN_ LIBRARY

* STATUS_LSM NOT_IN_ LIBRARY

* STATUS_DATABASE ERROR

* STATUS_DRIVE NOT_IN_LIBRARY

* STATUS_INVALID_ACS

* STATUS_INVALID_DRIVE

* STATUS_INVALID_LSM

4-38 9036

ACSLM Command Structures query

Final Response — LSM Status

Within status_response, 1sm_status format and values are as
follows:

struct {

LSMID Ism_id;

STATE state;

FREECELLS [freecells;

unsigned short requests [MAX COMMANDS] [2];
STATUS status;

} lsm_status;

type is TYPE_LSM.
Ism_id is the LSM identifier, as indicated in the request.
state is the current state of the LSM and is one of the following:

STATE_ONLINE
STATE_OFFLINE
STATE_OFFLINE_PENDING
STATE_DIAGNOSTIC

freecells is the total number of unoccupied storage cells in the LSM.

requests is a two-dimensional array of numbers describing the
distribution of requests for the LSM. The array has MAX_COMMANDS
columns and two rows. MAX_COMMANDS is defined as:

#define MAX COMMANDS 5

Each column is a command (audit, mount, dismount, enter, and eject).
Each row is the processing status of the request (current, pending).

Both current and pending requests are returned in the requests array.
These requests are defined as follows:

Current Executing.

Pending Received by the ACSLM, but not yet executed.
status is the disposition of each Ism_id. Following are status values
specific to the 1sm_status.

* STATUS_AUDIT ACTIVITY if the LSM is being audited.
» sTaTus_CAP_AVAILABLE if the LSM is not being used for any

activity.

* STATUS_EJECT ACTIVITY if cartridges are being ejected from the
LSM.

* STATUS_ENTER ACTIVITY if cartridges are being entered into the
LSM.

9036 4-39

query

ACSLM Command Structures

Following are common 1sm_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_ACS_NOT_IN_ LIBRARY
* STATUS_LSM_NOT_ IN_LIBRARY
* STATUS_DATABASE_ERROR

* STATUS_INVALID_ACS

* STATUS_INVALID_LSM

Final Response — Mount Status

Within status_response, mount_status format and values are as

follows:
struct {
VOLID vol_id;
STATUS status;
unsigned short drive_count;
DRIVEID drive_id[MAX_ACS_DRIVES];

} mount_status;

The type is TYPE_MOUNT.

vol_id is a tape cartridge, as indicated in the request.

status is the disposition of each vol_id. Following are status values

specific to the mount_status.

* STATUS_INVALID_ VOLUME if the volume identifier is invalid.

* STATUS_VOLUME_HOME if the cartridge is in a storage cell.

* STATUS_VOLUME_IN DRIVE if the cartridge is in a library drive.

* STATUS_VOLUME_IN_TRANSIT if the cartridge is being moved from
one location to another or has been selected by another request.

* STATUS_VOLUME NOT_IN_LIBRARY if the volume identifier is not
listed in the data base.

Following are common mount_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_DATABASE ERROR

drive_count indicates the number of drive_ids to follow.

The drive_id list specifies online, available library tape drives, ordered
by proximity to the current location of the tape cartridge. Proximity is
defined in relation to the number of Pass-Thru Ports (PTPs) between
the cartridge and the drive, therefore all drives in an LSM are
considered equal in proximity. There can be up to MAX_ACS_DRIVES in

9036

ACSLM Command Structures query
the list. See the Common Variables section in Chapter 3 for a definition
of MAX_ACS_DRIVES.

Final Response — Port Status

Within status_response, port_status format and values are as

follows:

struct {
PORTID : port_id;
STATE state;
STATUS status;

} port_status;

type is TYPE_PORT.
port_id is the port identifier, as indicated in the request.
state is the current state of the port and can be one of the following:

STATE_ONLINE
STATE_OFFLINE

status is the disposition of each port_id. Following are status values
specific to the port_status.

‘e STATUS_SUCCESS if status information was successfully retrieved for

this port. ;
Following are common port_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.
* STATUS_ACS_NOT_IN_LIBRARY
* STATUS_PORT NOT_IN_LIBRARY
* STATUS_DATABASE_ERROR
* STATUS_INVALID_ACS
* STATUS_INVALID_ PORT

Final Response — Request Status

Within status_response, request_status format and values are as

follows:

struct {
MESSAGE_ID request_id;
COMMAND command;
STATUS stawus;

} request_status;

type is TYPE_REQUEST.

9036 4-41

query ACSLM Command Structures

request is the ACSLM request identifier, as indicated in the request.
command is the command associated with the request.

status is the disposition of each request_id. Following are status values
specific to the request_status.
* STATUS_CURRENT if the request is being executed.

* STATUS_INVALID_MESSAGE if the format of the request_id specified in
the query request is invalid.

* STATUS_MESSAGE_NOT_FOUND if the request_id specified in the query
request is not a current or pending request.

* STATUS_PENDING if the request has been received by the ACSLM,
but has not been executed.

Final Response — Server Status

Within status_response, server_status format and values are as
follows:

struct {

STATE , state;
FREECELLS freecells;
unsigned short " requests [MAX COMMANDS] [2];

} server_status;

type is TYPE_SERVER. count 1S 1.
freecells is the number of unoccupied storage cells in the library.
state is the current state of the ACSLM and is one of the following:

STATE_RECOVERY
STATE_RUN
STATE_IDLE
STATE_IDLE_PENDING

requests is a two-dimensional array of numbers describing the
distribution of requests for library resources. The array has
MAX_COMMANDS columns and two rows. MAX COMMANDS is defined as:

#define MAX COMMANDS 5

Each column is a command (audit, mount, dismount, enter, and eject).
Each row is the processing status of the request (current, pending).

Both current and pending requests are returned in the requests array.
These requests are defined as follows:

Current Executing.
Pending Received by the ACSLM, but not yet executed.

4-42 . 9036

ACSLM Command Structures

9036

query

Final Response — Volume Status

Within status_response, volume_status format and values are as
follows:

struct {

VOLID vol_id;
LOCATION location_type ;
union {
DRIVEID drive_id;
CELLID cell_id;
} location;
STATUS status;

} volume_status;

type is TYPE_VOLUME.

vol_id is the tape cartridge volume identifier, as indicated in the
request.

location_type is the type of location where the cartridge is currently
located, according to the data base. It is one of the following:

LOCATION_CELL
LOCATION DRIVE

Within location, either drive_id or cell_id has a value, depending on the
location_type:

* drive_id is the library drive where the cartridge is located.

» cell_id is the location of the storage cell where the cartridge is
located.

status is the disposition of each vol_id. Following are status values
specific to the volume_status.

* STATUS_VOLUME_HOME if the cartridge is in a storage cell. location
is a cell_id.

* STATUS_VOLUME_IN_DRIVE if the cartridge is in a library drive.
location is a drive_id.

* STATUS_VOLUME_IN_TRANSIT if the cartridge is being moved from
one location to another or has been selected by another request. In
this case, location indicates the last location of the cartridge and
can be either a drive_id or a cell_id.

* STATUS_VOLUME NOT_IN_LIBRARY if the cartridge is not listed in the
data base.

query

ACSLM Command Structures

Following are common volume_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

* STATUS_INVALID_VOLUME
* STATUS_DATABASE_ERROR

Final Response Values — Cancelled Request

Notes

See Also

Within MESSAGE_HEADER, command iS COMMAND_QUERY.
Within RESPONSE_STATUS, status is STATUS_CANCELLED.
type is the type of identifier being queried, as indicated in the request.

count is the number of identifiers processed prior to the cancel
request. identifiers not processed are not included in the response.

Within status_response, values are assigned according to the type of
identifier in the request. See the Final Response sections for the
formats and values.

* A query server request cannot be cancelled.

* The cancel command for details on canceling a current or pending
query request. :
Appendix A for entries that may be written to the Event Log.

9036

ACSLM Command Structures start

START

Name
start — Initiates ACSLM request processing.

Description

The start request places the ACSLM in STATE_RUN, enabling
processing of Storage Server requests. The start command has no
options.

If the start is successful, the Storage Server becomes ready to receive
requests. If the start is unsuccessful, the Storage Server does not
- become ready to receive requests.

See the Library Request Processing section in Chapter 2 for details on
the possible Storage Server states.

Requests

Request Format

struct start_request {-
IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
bi

Request Values
Within MESSAGE_HEADER, command iS COMMAND _START.

Responses

Intermediate Response Format
Not applicable.

Final Response Format

struct start_response {

IPC_HEADER ipc_header ;
MESSAGE_HEADER message_header ;
RESPONSE_STATUS message_status;

}s

9036 4-45

start

ACSLM Command Structures

Final Response Values

Within MESSAGE_HEADER, command is COMMAND _START.

Within RESPONSE_STATUS, status is the disposition of the request.
Following are status values specific to this command.

sTATUS_SUCCESS if the Storage Server was successfully put in
STATE_RUN.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

L]

[]

STATUS_INVALID_OPTION
STATUS_LIBRARY_NOT_AVAILABLE
STATUS_MESSAGE_TOO_LARGE
STATUS_MESSAGE_TOO_SMALL
STATUS_UNSUPPORTED_OPTION

Final Response Values — Cancelled Request
Not applicable.

Notes

See Also

None.

The idle command for information on placing the Storage Server in
STATE_IDLE.

The query command for details on displaying the current state of
the Storage Server.

Appendix A for entries that may be written to the Event Log.

9036

ACSLM Command Structures vary

VARY

Name
vary — Changes the state of an ACS, LSM, library drive or port.

Description

The vary request changes the state of an ACS, LSM, library drive, or
port. Only one device type at a time can be varied. Within that type,
from one to Max_1p different devices can be specified in each request.

The message_option FORCE changes the state of the device abruptly.
FORCE is valid only when the device is an ACS or an LSM and it device
varied offline.

An ACS, LSM, or library drive can be changed to online, offline, or
diagnostic. A port can be changed to online or offline.

Device States
A device can be in one of five states, as described below:

¢ STATE_ONLINE. The normal operating state. The device is available
for library processing.

* STATE_OFFLINE. A state in which the device is logically disabled.
Requests involving offline devices are rejected.

* STATE_OFFLINE_PENDING. A transition state that occurs when an
ACS or LSM is taken from online or diagnostic to offline. All new
requests for the device are rejected, but current and pending
requests are processed to completion. This state is not valid for
cartridge drives or ports.

* STATE_RECOVERY. A transition state that occurs when an ACS or
LSM is taken from offline to diagnostic or online. A recovery
process is performed. New requests are rejected while the device
is in this state. This state is not valid for cartridge drives or ports.

* STATE DIAGNOSTIC. A state in which the device is not available to
client application requests, but is available to operator requests
from the Command Processor. This state allows for diagnostic
activity to be performed on the device without interference from
client applications. This state is not valid for ports.

9036 4-47

vary ACSLM Command Structures

Table 4-1 identifies which states are valid for each device.

Table 4-1. Valid Device States

Device Online Offline Offline-Pend. Recovery Diag.

ACS X X X X X
LSM X X X X X
Drive X X X
Port X X

Device State Transitions

The vary request moves a device between these states. The
transitions occur as follows:

* A vary online request on a drive or port immediately places the
device in the STATE_ONLINE state.

* Anvary online request on an ACS or LSM places the device in
the STATE_RECOVERY state while it attempts to recover in-transit
cartridges. When this recovery process has been completed
successfully, the device is placed in the STATE_ONLINE state.

* A vary offline request with the force message_option puts the
device in the STATE_OFFLINE state immediately, causing any
current or pending requests for the device to be aborted.

* Anunqualified vary offline request (that is, without the force
message_option) is processed according to the type of device:

— For an ACS or an LSM, the request causes the device to go into
the STATE_OFFLINE_PENDING state initially. The ACSLM
processes all current and pending requests for the device to
completion before placing it in the STATE_OFFLINE state.

— For a cartridge drive, the request is rejected if the drive is in
use. If the drive is available, it is placed in the STATE_OFFLINE
state immediately.

— For a port, the request is rejected if the ACS it is connected to
is online and it is the only online port for that ACS. If the ACS
is in the STATE_OFFLINE state, or if there are other ports in the
STATE ONLINE state for that ACS, the port is placed in the
STATE_OFFLINE state immediately.

* A vary diagnostic request places the device in
STATE_DIAGNOSTIC. The ACSLM processes all current and pending
requests for the device to completion. It accepts new requests from
the ACSSA, but rejects new requests from a CSI. A port cannot be
varied to the STATE_DIAGNOSTIC state, but all other devices can.

4-48 . 9036

-ACSLM Command Structures vary

Requests

9036

Request Format

struct vary_request {

IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
STATE State;
TYPE type;
unsigned short count;
union {
ACS acs;
PORTID port_id;
LSMID Ism_id;
DRIVEID drive_id;

} identifier;
}s

Request Values

Within MESSAGE_HEADER, command is COMMAND_VARY.

Within MESSAGE_HEADER, message_options can be FORCE if the state is
STATE_OFFLINE. This causes request processing for the requested
ACS or LSM to be stopped immediately. The specified component’s
state is marked STATE_OFFLINE in the data base.

state is one of the following:

STATE_ONLINE
STATE_OFFLINE
STATE_DIAGNOSTIC

state STATE_DIAGNOSTIC cannot be used when fype is TYPE_PORT.
type is one of the following:

TYPE_ACS
TYPE_LSM
TYPE_PORT
TYPE DRIVE

Only one type is allowed in a single request.

count is the number of identifier entries that follow. count must be 1
to MAX_ID.

Within identifier, the device ID is one of the following, based on type:

acs
Ism_id
port_id
drive_id

vary

Responses

4-50

Intermediate Response Format
Not applicable.

Final Response Format

struct vary_response {
IPC_HEADER
MESSAGE_HEADER
RESPONSE_STATUS
STATE
TYPE
unsigned short
union {
struct
ACS
RESPONSE_STATUS
} acs_status;
struct {
PORTID
RESPONSE_STATUS
} port_status;
struct {
LSMID
RESPONSE_STATUS
} lsm_status;
struct {
DRIVEID
RESPONSE_STATUS
} drive_status;
} device_status;
}i

Final Response Values

ipc_header ;
message_header;
message_status;
state;

type:

count;

acs_id;
status;

port_id;
status;

Ism_id;
status;

drive_id;
status;

Within MESSAGE_HEADER, command is COMMAND_VARY.

Within RESPONSE_STATUS, status is the disposition of the request.

Following are status values specific to this command.

» sTaTUS_SUCCESS if the fixed portion of the request was correct.

Following are common RESPONSE_STATUS status values. See the
Common Statuses section in Chapter 3 for their descriptions.

* STATUS_CONFIGURATION_ERROR
* STATUS_COUNT_TOO_LARGE

* STATUS_COUNT_TOO_SMALL

* STATUS_DATABASE_ERROR

ACSLM Command Structures

9036

ACSLM Command Structures vary

9036

* STATUS_INVALID_OPTION

* STATUS_INVALID_STATE

* STATUS_INVALID_TYPE

* STATUS_LIBRARY_BUSY

* STATUS_LIBRARY_ FAILURE

* STATUS_LIBRARY NOT_AVAILABLE
* STATUS_MESSAGE_TOO_LARGE

* STATUS_MESSAGE_TOO_SMALL
* STATUS_PROCESS_FAILURE

* STATUS_UNSUPPORTED_OPTION
* STATUS_UNSUPPORTED_STATE
¢ STATUS_UNSUPPORTED_TYPE

state is one of the following:

STATE_ONLINE
STATE_OFFLINE
STATE_DIAGNOSTIC

type is one of the following:

TYPE_ACS
TYPE_LSM
TYPE_PORT
TYPE_DRIVE

count is the number of device_status entries that follow. count must be
1 to MAX_ID.

Within device_status, the device identifier is one of the following,
based on type:

acs
Ism_id
port_id
drive_id

Within device_status, status is the disposition of the particular device.
Following are status values specific to this command:

e STATUS_RECOVERY INCOMPLETE if recovery of in-transit cartridges is
unsuccessful while varying an LSM or ACS online. The LSM is
marked STATE_ONLINE in the data base, but the unrecorded in-
transit cartridges may restrict use of PTPs or the robot’s hands.

An unsolicited message is sent to the ACSSA.

* STATUS_STATE_UNCHANGED if the device is already in the requested
state.

vary

Notes

4-52

ACSLM Command Structures

STATUS_SUCCESS if the device was successfully varied to the
specified state.

STATUS_VARY_DISALLOWED for any of the following conditions:

— The request specifies an ACS or LSM that is currently in the
STATE_OFFLINE_PENDING OTf STATE_RECOVERY state. These are
transition states which are one-way only and indicate a vary
request in progress.

— The request specifies an ACS, LSM, or library drive be varied to
or from STATE_DIAGNOSTIC and the originator is not the ACSSA.

— The request is to vary an LSM online, but the ACS to which the
LSM is attached is offline.

— If the request is to vary an ACS, but not all LSMs within the
ACS can be varied accordingly. The entire request fails, and all
LSMs are left in their original state.

Following are common device_status status values. See the Common
Statuses section in Chapter 3 for their descriptions.

STATUS_ACS_NOT_IN_LIBRARY
STATUS_DRIVE NOT_IN_LIBRARY
STATUS_LSM_NOT_IN_LIBRARY
STATUS_PORT_NOT_IN_LIBRARY
STATUS_INVALID_ACS .
STATUS_INVALID DRIVE
STATUS_INVALID_LSM
STATUS_INVALID_PORT
STATUS_LIBRARY_BUSY
STATUS_LIBRARY FAILURE

Final Response Values — Cancelled Request

Not applicable.

A vary request for an ACS is applied to all LSMs belonging to that
ACS. If an LSM is not available, an error status value will be
returned in the 1sm_status status.

When a device changes state, a STATUS_DIAGNOSTIC,
STATUS_ONLINE, OF STATUS_OFFLINE unsolicited message is sent to
the ACSSA.

If during recovery of in-transit cartridges either no available storage
cells can be found or a cartridge label fails to validate, the cartridge
is moved to the CAP. A STATUS_CARTRIDGES_IN_CAP unsolicited

9036

ACSLM Command Structures vary

See Also

9036

message is sent to the ACSSA to notify the operator to empty the
CAP. If the CAP is full or cannot accept all in-transit cartridges,

recovery of in-transit cartridges is unsuccessful.

The query command for details or displaying the current state of a
library device.
Appendix A for entries that may be written to the Event Log.

vary ACSLM Command Structures

(INTENTIONALLY LEFT BLANK)

4-54 . 9036

OVERVIEW

CHAPTER 5:
CSI PROCESSES

This chapter describes the basic functions performed by the CSI. It
also identifies function calls and common data structures used by the
CSI. See Appendix C: XDR Translation Functions for listings of
StorageTek-supplied functions. See Chapter 7: CSI Data Structures
for the formats and contents of the data structures.

Note: Since the functions of the SSI are essentially reciprocal to those
of the CSI, an understanding of CSI functionality is required in order to
derive SSI requirements. See Chapter 6: SSI Requirements for specific
details on SSI requirements and programming.

This chapter covers the following topics:

*
L]
.
L]
L]
[

CSI FUNCTIONS

CSI Functions

CSI Architecture
Communications Methodology
CSI Initiation

Message Processing

Error Detection and Recovery
Termination

The CSI essentially functions as an asynchronous communications
switchboard for the ACSLM. It receives input from both the ACSLM
and an SSI via the Network Interface (NI). This input consists of
Storage Server request and response packets.

9036

5-1

CSIl Functions

Working together with the client system SSIs, the CSI provides a
programmatic interface to the Storage Server that allows client
applications to request remote tape service by executing library

csl Processes

commands in a location-independent manner. The only restrictions on

client application architecture are:

* Communications protocol. The client application must use a

predefined communications protocol to send requests and receive

responses.

* The Storage Server command set. The client application must
format library requests according to the ACSLM command
structures. It also must be able to interpret ACSLM responses.

See Chapter 3 and Chapter 4 for these formats.

Figure 5-1 is a diagram of how library requests and Tesponses are

passed between a client application and the Storage Server.

CLIENT
APPLICATION

REQUEST

RESPONSE

STORAGE
SERVER

Ssi

| N1 |

csl

| RESPONSE

REQUEST

29053 A

52

Figure 5-1. Overview of the Client System Interface

9036

CSl Processes CSI Architecture

CSI ARCHITECTURE

Overview

The CSI communicates with the client system SSIs on a peer-to-peer
basis, using a client—server model. The CSI conforms to the OSI
layering model for peer-to-peer communications.

Within the client—server model, the CSI is the server, while the SSIs
are clients. Following is a summary of request and response
processing performed by the CSI and the SSIs.

A client application sends a Storage Server request through its SSI
communications layer to a CSI server on the network. The SSI uses
XDR library functions to encode, or serialize, the request into a host-
independent data format, and then performs RPC calls to send the
request across the network.

The CSI passively listens on the network for requests. It uses RPC
functions to receive requests, uses XDR functions to deserialize them
from host-independent to host-dependent format, and then passes
them to the ACSLM.

After the ACSLM performs the designated function it issues one or
more request responses, routing them back to the client through the
CSI. The CSI keeps track of the routing pertaining to a particular
request. When the CSI receives a response from the ACSLM, it
matches the response to a particular client SSI and establishes the
routing (address) from internal tables. Then the CSI uses an XDR
function to serialize the response, and executes an RPC callback to
send the response across the network to the SSI.

Meanwhile, the SSI passively listens for responses to its requests. It
uses RPC calls to retrieve the responses from the network, uses XDR
functions to deserialize them, and then passes them up to the client
application.

OSI Model

See Chapter 1: ACS Overview for a summary of the Open Systems
Interface (OSI) model.

In the overall Storage Server software communications model, the CSI
represents the following two OSI layers:

» Layer 6 — Presentation Layer
» Layer 5 — Session Layer

Figure 5-2 illustrates how the Storage Server and client system
components map onto the OSI model.

9036 5-3

CSI Architecture

csl

Almost all CSI programming represents Presentation Layer
functionality. Presentation Layer programming focuses on the following:

Storage of SSI return addresses
Packet conversion, using XDR translation services
Network output queueing

Duplicate packet detection

Processes

Session Layer communications programming focuses on making
system calls to detect and multiplex module interprocess
communications (IPC) and network connections. Session Layer
network functionality is accomplished through calls to Sun
Microsystems Remote Procedure Call (RPC) functions.

Transport Layer (Layer 4) functionality is accomplished through
UDP/IP or TCP/IP, or both running concurrently. This layer of software
is transparent to the programmer, as it is supported entirely by RPC

and the SunOS implementation of sockets. No TCP or UDP

programming is needed.

0S| MODEL LAYERS

CLIENT SYSTEMS

STORAGE SERVER MODEL

ACS STORAGE SERVER

STORAGE
CLIENT SERVER
USER INTERFACE A ACS SYSTEM ADMIN ? ACSSA
APPLICATION | 1 TIlqyrooo
L A, M e 77
CLIENT APPLICATION MANAGER ? ACSLM
PRESENTATION | |
LAYER 6 XDR R R XDR
————————————————— —g—. ; —_—— e — —] sl csl
SESSION
LAYER 5 RPC/MULTIPLEXING | p RPC/MULTIPLEXING
E (o]
TRANSPORT S N
LAYER 4 TCP T S TCP
———————————————— E —E— — s e e — —e wpe
NETWORK
LAYER 3 1P I 1P
NI NI
DATA LINK
LAYER 2 ETHERNET ETHERNET
B PHYSICAL N
NETWORK HARDWARE NETWORK HARDWARE
LAYER 1
29051 A
Figure 5-2. Mapping to the OSI Model
5-4 9036

CSI Processes Communications Methodology

COMMUNICATIONS METHODOLOGY

Overview

The standard client—server architecture is based on synchronous
communications. Essentially, this means that the client issues a
request and then blocks until it receives an acknowledge that the
requested operation has been performed.

The CSI's communications methodology uses asynchronous
communications at the Applications Layer and synchronous
communications at the Session Layer. The CSI receives an arbitrary
number of requests from an arbitrary number of SSIs. After the
ACSLM processes the requests, it returns one or more responses to
the appropriate SSI. As a result, the CSI cannot block indefinitely to
complete a network transmission because at any given moment it may
have another task to perform, such as servicing new NI RPC
connections, SSI Storage Server requests, or ACSLM responses.

There are several RPC methodologies for asynchronous
communications. The CSI and SSI use the callback model. In this
model, the requestor includes in its requests a return address where
responses are to be sent. In the case of the Storage Server, the SSI
includes its return address in the cs1_HEADER portion of the request;

the CSI then sends responses to that address. See Chapter 7: CSI
Data Structures for the format and content of the CS1_HEADER structure.

In order to employ the asynchronous model, Storage Server requests
employ an application-level protocol made up of groups of discrete,
synchronous transactions. Within this protocol, the CSI and the SSI
must immediately acknowledge all messages, and they must be able to
match responses to a particular request. A request is a distinct
synchronous transaction, and a response is a separate distinct
synchronous transaction. All RPC calls are immediately acknowledged
and carry no response data.

The asynchronous nature of the model is accomplished through the
high-level RPC protocol employed by the CSI and the SSIs. A Storage
Server request from an SSI initiates a series of synchronous
transactions which lead to the completion of an entire Storage Server
operation. After the SSI initiates the request, it is free to perform other
work, if so designed. After the CSI sends a request or response to the
appropriate destination, it is free to perform other work. The entire
storage server operation is complete when the SSI receives a final
response from the CSI.

9036 5-5

Communications Methodology CSl Processes

Interprocess Communications

CSI - ACSLM and CSI - ACSSA communications are accomplished
through BSD datagram sockets.

The CSI, ACSLM, and ACSSA each create and maintain a single,
named input socket used to receive messages from the other
processes. This simplifies initialization and error recovery in each
process. These sockets are defined at initiation.

Network Communications

Data Stream Representation

The data stream representation supported for the CSI is XDR. The
XDR format for data is a host-independent serial byte stream. All data
transmitted across the network is serialized to XDR format,
transmitted, and then deserialized on the receiving end. See CSI
Message Processing in this chapter for descriptions of the XDR
translation routines.

The only portion of a message going to or from the NI that the CSI
interprets is the cs1_HeaDER. The CSI does, however, parse all
information in a message as part of the serialization/deserialization
process.

Session Connection

Communications services are solely for connection and data transfer.
These two operations are encapsulated into a single, brief operation; a
connection is closed immediately after data transfer is complete. This
design is necessary because of the following constraints:

* Network interruptions. With current technology, network service
tends to be interrupted periodically. When this happens the
network connections are no longer valid. Limiting connection time
reduces the chances of losing a connection.

* Limited number of file descriptors that can be held at one time.
Maintenance of a TCP/IP connection on UNIX systems requires
holding one or more open file descriptors. Limiting the time that
connections are held reduces the chances of running out of available
file descriptors.

5-6 . 9036

CSl Processes Communications Methodology

RPC Service Registration

Within the callback model, both a primary client-server relationship
and a temporarily inverted client—server relationship are defined. The
primary relationship exists when the SSI requests tape services of the
ACSLM via the CSI:

» The SSI functions as primary client when it makes RPC calls to
transmit requests to the CSI.

» The CSI functions as primary server when it receives and
processes the requests and passes them to the ACSLM.

This relationship is inverted, however, when responses are transmitted:

» Effectively, the CSI briefly functions as a client when it makes an
RPC callback to the SSI.

« The SSI has a role as a secondary server in order to receive the
callback.

Since both the CSI and SSI have server roles, they must each register
as RPC servers at initiation. Client SSIs must interface with the RPC
layer of the CSI. The descriptions below will clarify some of the
processes documented in the Sun Network Programming Manual.

RPC Program Numbers and Port Mappings

A port mapping uniquely identifies a logical path that RPC uses in
executing a remote function. The port mapping is initialized by making
RPC calls to the RPC portmapper program. Each RPC procedure is
identified by:

* A unique program number, used to interrelate various procedures
(function calls) that are remotely executed.

» One or more version numbers, assigned to each program number so
that the program number does not need to change when the service
is changed.

* A procedure number.

In order to program the call for a particular remote procedure, the
programmer looks up these numbers in a published list, and codes them
as is appropriate on the function call interface. The Sun Network
Programming Manual (“Remote Procedure Call Programming Guide”;
“Higher Layers of RPC”, “Assigning Program Numbers”) defines the
following categories of program numbers:

» Sun-Defined Program Numbers. Sun-defined program numbers
exist in the following range:

0x0—-0x1fffffff

9036 57

Communications Methodology CSl Processes

Ultimately, the CSI program number will be derived from within this
range by Sun, after StorageTek applies for a program number for the
Storage Server product. It is not yet known when the CSI will

begin using a Sun-registered program number.

» User-Defined Program Numbers. Until Sun-registered program
numbers are employed, StorageTek will use user-defined program
numbers for the CSI. Permanent CSI service program numbers
should exist in the following range:

0x20000000-0x3fffffff

The program number currently used for the CSI is defined in csi.h
as CsI_PROGRAM. See Appendix D for a listing of the csi.h header
file.

The SSI callback service could register within this range, but this
might limit the number of SSIs that could run on a single host.

e Transient Program Numbers. Transient, or temporary, program
numbers are primarily intended to exist only for the life of a
particular execution of an application, barring a software error that
prevents their deletion from the portmapper. These numbers should
be dynamically assigned at program startup time, and unmapped
with the port-mapper upon program shutdown. The SSI should use
this category of program numbers.

The transient program number is passed in the program variable in
the cs1_HANDLE RpC structure. See the Input to the CSI From the
" SSI section in Chapter 7 for the format and content of this structure.

The range of transient program numbers is:
0x40000000-0x5EEE£EEE

The gettransient () function, which is shown in Figure 6-4, can be

used to obtain the mapping.

CSI Registration

The CSI is the primary server; therefore it registers as the primary
server at a permanent, advertised port/program number. It registers by
calling the svc_register () RPC function; the parameters and values
passed, as defined in the csi.h header file, are as follows.

» The transport handle:
xprt
* The program number of the CSI server:

#define CSI_PROGRAM 0x200000fe

¢ The version number of the CSI:

#define CSI_UDP_VERSION 1
#define CSI_TCP_VERSION 2

5-8 9036

CSI Processes CSIl Initiation

e A procedural dispatching routine:
#define CSI_ACSLM PROC 1000

» A parameter that respecifies this as a TCP/IP or UDP/IP based
service:

IPPROTO_TCP
IPPROTO_UDP

SSI Registration

When the SSI receives responses from the CSI it functions as a server,
apart from its normal role as primary client. This provides the CSI with
port, program number, and procedure number mapping used to direct an
RPC callback. An integral part of this process is obtaining a transient
port/program number. See the Initializing the SSI as a Callback Server
topic in the Programming an SSI section in Chapter 6 for details on SSI
registration.

CSI INITIATION

Overview

The Storage Server daemon, rc.acsss, initiates the CSI; it can also
reinitiate the CSI when necessary. CSI initiation performs the
following functions:

» Establishes an interprocess communications input endi)oint to
receive messages from the ACSLM and the ACSSA.

+ Establishes itself as an RPC network communications server.

The CSI writes entries to the Event Log when initiation begins and
ends. See Appendix A: Event Log Messages for these messages.

Environment Variables

The rc.acsss startup script sets and exports the CSI environment
variables. See the Environment Variables section in Chapter 7 for a list
of these variables.

Network Buffer Allocation

Upon startup, the CSI allocates a single network buffer into which the
XDR interface functions place data during deserialization. The network
buffer is allocated within the cs1_MsGBUF global message buffer
description structure as an array called data. This array is at least
MAX_MESSAGE_SIZE bytes long. See Message Translation Structures in
Chapter 7 for the format and contents of the cs1_MSGBUF structure. See
Common Variables in Chapter 3 for a definition of MAX_MESSAGE_SIZE.

9036 5-9

CSil Initiation

CSIl Processes

_ RPC Service Initiation

At initiation, the CSI establishes communications with the NI by
calling RPC library functions. Figure 5-3 identifies the functions and
the order in which they are called. Normally, the CSI server is
established before the SSI attempts to send calls to it.

Note: Figure 5-3 calls the svctcp_create () function to establish
TCP/IP connections. To establish UDP/IP connections, the
svcudp_create () function would be called instead.

socket
pmap_unset ()
svctcp_create()
svc_register()
csi_process|()
svc_destroy ()

/* CSI non-communications Initialization */

/* establish ACSLM IPC or other connections */

/* unmap residual port mappings */

/* establish CSI server and port connection */

/* register CSI service with portmapper */

/* enter main CSI processing loop */

/* de—-allocate the service transport resources */

5-10

Figure 5-3. Initializing the CSI Server

Figure 5-4 is a fragment of pseudocode that provides additional detail
to the functions in Figure 5-3. The numerical references in the
illustration are explained following the figure.

Note: The pseudocode in Figure 5-4 calls the svctcp_create ()
function to establish TCP/IP connections. To establish UDP/IP
connections, the svcudp_create () function would be called instead.

9036

CSIl Processes CSl Initiation

#include <rpc/rpc.h>
#include <stdio.h>
#include <sys/socket.h>
#include “csi.h"

main({argc, argv)

int argc; /* number of command line arguments */
char **argv; /* command line arguments */

{

SVCXPRT *xprt; /* transport service handle */

/*

* init log file, perform other Initialization

*/

/*

general, module-related initializationseeesese

* unmap from the portmapper if already mapped
*/
1 pmap_unset (CSI_PROGRAM, CSI_TCP_VERSION):;

/* csi to acslm socket */
if ((cs_sock = socket (AF_UNIX, SOCK_DGRAM, 0)) < 0)
handle erroreeseeses

2 /* csi rpc socket */
if ((cs_rcvsock = socket (AF_INET, SOCK_STREAM, 0)) < 0)
handle erroreseesses :

3 /* reserve a port for the csi server rpc service */

if (NULL == (xprt = svctcp_create(cs_rcvsock, 0, 0)))
— OF
if (NULL == (xprt = svctcp_create (RPC_ANYSOCK, 0, 0)))

4 handle erroressessee

/* register the service */

if (0 == svc_register(xprt, CSI_PROGRAM, CSI_TCP_VERSION,
address_of dispatch_program, IPPROTO_TCP))

/%

5 * enter main processing loop
*/
main processing loop
cs_process ()

/*
* termination, unmap from the portmapper
*/
6 pmap unset (CSI_PROGRAM, CSI_VERSION);
}

Figure 5-4. CSI RPC Service Initiation Logic

9036 5-11

CSI Initiation

5-12

CSIl Processes

. pmap_unset () is called to deregister the server with the

portmapper. Unsetting the port mapping guarantees port mapping
cleanup in case the registration from a previous initiation was not
removed because the CSI terminated in an unplanned manner.
Without this cleanup, the call to svc_register () could fail.

. An NI socket is initialized. This is an Internet domain socket, of

family ar_1NET, and TCP/IP stream sockets of type SOCK_STREAM.
The cs_rcvsock socket is the main RPC service socket for
accepting client connections and receiving request packets from,
and sending response packets to, the SSI. Either of the following
two methods can be used to initialize the socket: 1) the socket can
be created by the CSI/SSI, or 2) the cs_rcvsock variable can be
initialized to RPC_ANYSOCK, causing RPC to initialize the socket in
svctep_create (). The CSI uses the second method.

. svctcp_create () is called, reserving a port for TCP/IP

communications. This function returns the transport handle, xprt,
which is a structural representation of the service environment. It
is passed to svc_register () for service registration.

The parameters in this call should be set as follows:

— The first parameter is the input socket. It can be set to an
already opened socket or to RPC_ANYSOCK, causing RPC to
initialize it.

— The second parameter defines the send buffer size and should
be set to cs1_DEF_TCPSENDBUF. Only very unusual applications
of the CSI will require this parameter to be changed, since RPC
can handle this buffering.

=~ The last parameter defines the receive buffer size and should be
set to CSI_DEF_TCPRECVBUF. Only very unusual applications of
the CSI will require this parameter to be changed, since RPC
can handle this buffering.

. svc_register() is called to register the CSI with the portmapper.

This allows incoming RPC calls from the SSI to be multiplexed to
the correct socket, program number, version number, and procedure
number. See the Communications Methodology section in this
chapter for details on RPC registration.

. The CSI enters a main processing loop which listens for client

connections and data transfers, and multiplexes the input and
output accordingly. See the CSI Message Processing section in this
chapter for details on these processes.

. At termination, pmap_unset () is called to deregister the CSI from

the portmapper.

9036

CSl Processes CSl Message Processing

CSI MESSAGE PROCESSING

Overview

In acting as a communications switchboard between the SSIs and the
ACSLM, the CSI performs the following activities:

e Application-Level Messaging Protocol. The CSI employs a high-
level RPC protocol for message translation and transmission.

o Interprocess Communications. The CSI sends requests to and
receives responses from the ACSLM.

e Network Communications. The CSI and the SSIs receive and send
messages to one another via the NI

* Message Packet Decoding. The CSI serializes message packets to
be sent over the network and deserializes message packets read
from the network.

Application-Level Messaging Protocol

Figure 5-5 through Figure 5-8 are sample RPC protocol sets
describing the basic function calls and transactions necessary to
initiate a Storage Server operation and carry it to completion. The
protocol samples are listed as transaction pairs, two per page. On
each page, the first figure represents the initiator of a particular
transaction, and the second figure represents the response.

9036 5-13

CSl Message Processing

CSIl Processes

Entering its main processing loop, and blocking on select (), the SSI
receives a Storage Server request from a client application and makes
an RPC call to send it to the CSI.

LOOP {

select () /*
/*
read () /*
/*

gethostbyname () /*
bcopy () /*
clnttcp_create()/*
clnt_call() /*
csi_xdrrequest () /*
clnt_destroy() /*
} END

/* merge RPC (svc_fds global) and other file descriptors into mask */

block, waiting for application or RPC input */
determined that input is from application */

read application request from application socket */ ,
CSI_HEADER structure, build request packet */

initialize

/*
/*

gethostbyname() /*

/*
/*
/*
/*

copy remote host address to a sockaddr_in structure */

set
set
get
set
set
set
set

csi_proto to CSI_PROTOCOL_TCP */
csi_ctype to CSI_CONNECT_RPCSOCK */
address of this SSI host */

csi_handle (program) to transient program# */
csi_handle(version) to callback version# */
csi_handle(proc) to callback procedure# */

csi_handle(raddr) to struct sockaddr_in

returned from gethostbyname () */
get the address of the remote CSI host */

connect to the remote CSI server at CSI_PROGRAM */

issue an RPC call to the CSI server at CSI_ACSLM PROC */

clnt_call() calls XDR serialization function */
close TCP/IP connection to CSI */

Figure 5-5. Sending a Request From an Application to the CSI

The CSI server receives the request on one of its RPC sockets and
repackages it for transmission to the ACSLM.

LOOP {

dispatcher ()

write ()
} END

/* merge RPC (svc_fds global) and other file descriptors into mask */
select () /* block, waiting for ACSLM or RPC input */

/* determined that input is RPC */
svc_getreq() /* handle rpc input, calls CSI dispatcher CSI_ACSLM PROC */

/* svc_getreq() invokes dispatcher */

svc_getargs ()
csi_xdrrequest () /* called to () deserialize request */

/* csi_xdrrequest calls XDR primitives */

/* ACK SSI telling it received request */

/* strip off CSI_HEADER and store in connection table */

/* put IPC_HEADER into request packet */

xdr_2? ()

svc_sendreply();

/* dispatcher gets data off network */

/* send request packet to ACSLM */

Figure 5-6. Sending a Request From the CSl to the ACSLM

5-14

9036

CSIl Processes

CSl Message Processing

Later, the CSI receives a response from the ACSLM, repackages it and
issues an RPC callback to the destination SSI server at the designated
remote transient program number and dispatching procedure number.

LOOP |
select ()

read ()

clnt_call()

clnt_destroy ()
}

/*
/*
/*
/*
/*
/*
/*

clnttcp create()/*

/*

/*

/* merge RPC (svc_fds global) and ACSLM file descriptors into mask */

block, waiting for ACSLM or RPC input */
determined that input is from ACSLM*/
read storage server request from ACSLM socket */

get csi_header from connect table key=ipc_identifier */
extract sockaddr_in from client handle in csi_header */

extract transient program#, version#, procedure#

strip IPC_HEADER, add CSI_HEADER to response packet */

create a connection to the remote SSI server */

make RPC call to SSI at transient program#/procedure# */
csi_xdrresponse() /* clnt_call() calls XDR serialization function */

close TCP/IP connection to SSI */

Figure 5-7. Sending a Response From the ACSLM to the SSI

Finally, the SSI callback server dispatch function receives the response
packet input on its RPC input socket and repackages it for transmission
to the client application. '

LOOP {

select ()

svc_getreq()

} END

dispatcher ()
svc_getargs ()

csi_xdrresponse()/* called to deserialize response */
xdr ??() /* csi_xdrresponse calls XDR primitives */

svc_sendreply () ; /* ACK CSI telling him received packet */

/* strip CSI_HEADER from packet */

/* process response, repackage into application format */

/* send response to client application */

/* merge RPC (svc_fds global) and other file descriptors into mask */

/* block, waiting for application or RPC input */
/* determined that input is RPC */

/* handle rpc input, calls SSI RPC callback dispatcher */
/* svc_getreq() invokes dispatcher */
/* dispatcher gets data off network */

9036

Figure 5-8. Sending a Response From the SSlI to the

Application

5-15

CSl Message Processing CSl Processes

Interprocess Communications

Message Handling

All IPC messages between the CSI and the ACSLM have a common
top layer containing a MESSAGE_HEADER and an IPC_HEADER, which
together make up a REQUEST HEADER.

The client application creates the MESSAGE_HEADER, describing the
ACSLM command request, for each Storage Server request it
generates. See the Requests section in Chapter 3 for details on the
format and contents of the MESSAGE_HEADER.

The CSI creates an 1rCc_HEADER for each request sent to the ACSLM.
The contents of the IPC_HEADER structure are specific to the IPC
mechanism being used. See Input to the CSI From the ACSLM in
Chapter 7 for the current format of this structure.

The 1pc_HEADER contains application IPC return address information
and a unique identifier that allows responses to be matched to a
request. When the CSI receives a response from the ACSLM, it uses
the request identifier in the 1PC_HEADER to match the response to the
request and to filter out any duplicate packets that may have been
generated. The CSI strips the 1pc_HEADER from the response before
passing it on to the SSI.

Message Size

The datagram communication style ensures that messages are sent

and received atomically, eliminating the need for processes to deal with
partial messages. The size of individual datagrams (requests or
responses) is limited to MAXIMUM MESSAGE_SIZE bytes, which is
defined as:

#define MAXIMUM MESSAGE_SIZE 4096

Network Communications

Functions Called

The CSI calls the following RPC functions to establish network
communications and to send and receive messages:

* clnttcp_create (), to create TCP/IP connections.

* clntudp_create (), to create UDP/IP connections.

* clnt_call(), to serialize and send a message across the network.

* svc_getreq() Or svc_getregset (), to receive and deserialize a
message from an SSL

5-16 9036

CSl Processes CSl Message Processing

e svc_sendreply (), to acknowledge receiving an SSI message;
xdr_void is passed as one of the parameters to indicate that the
acknowledge carries no data.

Message Routing

All messages between the SSI and the CSI have a common header,
cs1_HEADER. The SSI creates a cs1_HEADER for each request. The
CSI_HEADER contains the return address for callback responses to the
SSL

When the CSI receives a request, it strips the cs1_HEADER from the
packet and stores it in its return address queue. When the CSI

receives a response from the ACSLM, it retrieves the cs1_HEADER from
the queue by using the ipc_identifier in the 1pC_HEADER. It then adds the
CSI_HEADER to the response and sends the response to the indicated
SSI network address.

See the Input to the CSI From the SSI section in Chapter 7 for the
format of the CS1_HEADER.

Timing Considerations

After the CSI sends a message across the network it blocks on input
until it receives an RPC acknowledge that the message has been
receivéd. A network transmission timeout will occur if the CSI does
not receive the acknowledge within the time period defined by the
CSI_RETRY_TIMEOUT environment variable.

When a timeout occurs, the CSI saves the unacknowledged message in
its network output queue. The CSI maintains one output queue for all
messages to be sent to all SSIs. The messages are sequenced

according to the order in which they were received from the ACSLM by
the CSI. The cs1_x1D in the CSI_HEADER is used to indicate the
sequence (see Chapter 7: CSI Data Structures for the format and
contents of these structures). The network output queue frees the CSI
to process new input without losing output that has not been
acknowledged and must therefore be transmitted again.

Once a message is saved after a imeout, the CSI checks for new input
from the ACSLM and proceeds as follows:

« If there is new input, the CSI services it immediately. This ensures
that input is not lost.

» If there is no new input, the CSI checks its network output queue
and transmits any messages intended for other SSIs.

9036 5-17

CSl Message Processing CSl Processes

« Once all messages for other SSIs are flushed from the queue and
after a waiting period greater than cSI_SELECT_TIMEOUT, the CSI
retries the original message for the first SSI. The CSI will attempt
as many retries as are specified by the CSI_RETRY_TRIES
environment variable.

Despite a timeout by the CSI, the SSI may still receive the original
message, although later than expected. The SSI must therefore
identify the retry message(s) as duplicates and discard them.

Message Packet Decoding

XDR Translation Functions

The CSI serializes and deserializes message packets by applying XDR
primitives to the message structures. The CSI calls high-level

routines which control complex translations by calling a series of lower-
level routines dedicated to data conversion.

StorageTek supplies two high-level XDR translation interface routines,
csi_xdrrequest () and csi_xdrresponse (), as well as supporting
functions, in “C” source code format. They can be ported, by customer
option, to the client host and called from CSIs and SSIs. These
routines call the lower-level supporting translation routines which, in
turn, call XDR primitives.

If the supplied routines are not used by the client SSI, they can be used
as a template for creating custom SSI XDR translation routines. Any
custom routines must preserve the order and functionality of the
serialization and deserialization processes in the supplied routines,
however.

See Appendix C: XDR Translation Functions for listings of these
functions and details on what they do.

csi_xdrrequest() Function

The csi_xdrrequest () function handles the serialization and
deserialization of Storage Server requests, as follows:

» For an SSI sending a request, the routine converts a request packet
from host-specific format to XDR stream format for transmission
across the NI

» For a CSI receiving a Storage Server request, the routine converts
the input from XDR stream format to a host-specific format request
packet.

See the Input to the CSI From the SSI section in Chapter 7 for
information on the structure of request packets.

5-18 . 9036

CSl Processes CSI Message Processing

csi_xdrresponse() Function

The csi_xdrresponse () function handles the serialization and
deserialization of Storage Server responses as follows:

» For a CSI sending a Storage Server response packet to an SSI, the
routine converts the packet from host-specific format to XDR
stream format for transmission across the NI

» For an SSI receiving a response, it converts the XDR data stream
received across the NI to a Storage Server response packet.

See the Output From the CSI to the SSI section in Chapter 7 for
information on the format of response packets.

Calling the Supplied Functions

The csi_xdrresponse () and csi_xdrrequest () routines have
identical interfaces. They are usually called from the svc_getargs () or
clnt_call() RPC library routines. On call, they are passed an XDR
handle (a client handle or transport handle), as well as a message

buffer description structure (cs1_MSGBUF). See the Message
Translation Structures section in Chapter 7 for the cs1_MsGBUF format.

» Following is an example of a call to csi_xdrresponse () on
client_call():

clnt_call (client_handle, procedure_number,csi_xdrresponse,
msg_buffer_desc, xdr_void, NULL) ;

csi_xdrresponse () parses the message contents at the address
called data specified in the msg_buffer_desc structure; it also calls its
own sub-library of XDR translation routines which, in turn, call
XDR translation primitives. As each low-level XDR primitive is
called, the resulting serialized data stream is placed into the
client_handle for subsequent transmission across the NI.

» Following is an example of a call to csi_xdrrequest () on
svc_getargs():

svc_getargs (transport_handle, csi_xdrrequest, msg_buffer_desc) ;

Duplicate Packet Detection

The XDR functions detect duplicate message packets. See Error
Detection and Recovery in this chapter for details.

Packet Tracing

The CSI is able to trace message packets and their contents. When
packet tracing is enabled, the CSI logs an ASCII dump of packets in the
execution trace log as they are processed. The log entry includes a
formatted header showing the critical elements of the cs1_HEADER and

9036 5-19

CSI Message Processing CSl Processes

the message_options from the MESSAGE_HEADER. The output indicates the
source of the message (either ACSLM or NI).

Figure 5-9 is an example of a packet trace.

Packet source: ACSIM

ssi_identifier: 39 message_options: 0
ssi client addr: 129.80.32.3 ssi client port: 255
Message contents (hex bytes):

0000: 00 00 00 00 00 00 00 00 0O OO OO 00 00 00 00 OO
0010: 00 00 00 00

Figure 5-9. Sample Packet Trace

Packet tracing is enabled by setting the trace environment variable,
TRACE_VALUE, t0 00800000 before initiating the CSI.

Request Processing Summary

The following series of steps outlines the interaction between an SSI
and the CSI to process a Storage Server request. Only the steps
performed by the CSI are detailed. See the Programming an SSI
section in Chapter 6 for details on the steps performed by the SSI.

SSI: 1. Receives a request from one of its client applications, translates it,
. and sends it to the CSL '

CSI: 2. Calls either the svc_getreq() oOr svc_getregset () RPC function to
receive the message. The following occurs:

2.1 The svc_getreq() Or svc_getregset () function calls
csi_rpcdisp (), the dispatching service that was registered
during initiation.

2.2 csi_rpcdisp() calls svc_getargs () to get the data off the
network.

2.3 svc_getargs () calls a deserialization function to convert the
response into host-dependent format. See the Message
Packet Decoding topic in this section for a description of the
StorageTek-supplied XDR translation functions.

3. Immediately acknowledges receipt of the message by calling the
svc_sendreply () RPC function, passing no data.

4. Modifies the request header into a format that can be interpreted by
the ACSLM:

— Strips off and stores the cs1_HEADER which contains SSI return
address information.

— Adds an 1rCc_HEADER containing Storage Server IPC “return
address” information.

5-20 9036

CSIl Processes

SSI:

10.

11

12.

Error Detection and Recovery

See the Interprocess Communications topic in this section.

Sends the request packet to the ACSLM.

Receives a response from the ACSLM.

Modifies the response header into a format that can be interpreted

by the SSI:

— Strips off the IPC_HEADER.

— Retrieves and adds the cs1_HEADER which contains the SSI’s
CSI_HEADER return address.

Calls either the clnttcp_create() or the clntudp_create() RPC

function to establish a TCP/IP or UDP/IP connection with the SSI at

the transient port/program number indicated in the CSI_HEADER.

See the Communications Methodology section in this chapter.

Calls the c1nt_call() RPC function to send the response

message.

clnt_call() calls a serialization function to convert the response

into XDR format. See the Message Packet Decoding topic in this

section for a description of the StorageTek-supplied XDR

translation functions.

. If this is a final response, deletes the SSI’s return address from the

connect queue.

Receives the message, translates it, and routes it to the
appropriate application.

ERROR DETECTION AND RECOVERY

Overview

External Errors

9036

The CSI can detect, isolate, report, and recover from various internal
software errors. All errors that the CSI encounters are handled in the
following manner:

All errors are logged to the Event Log. See Appendix A: Event
Log Messages for the error text and their explanations.

Selected errors are also sent as unsolicited messages to the
ACSSA. This messages are displayed in the Display Area of the
Command Processor window. See the Common Statuses section in
Chapter 3 for the message statuses.

The CSI only tracks errors within its domain. This is because the CSI
does not interpret the content of messages passed between the client
and the Storage Server. All errors, except those sensed internally, are
treated as application errors. Any error messages Or responses

5-21

Error Detection and Recovery CSI Processes

passed from the Storage Server to the client application are treated as
data.

In the case of either a network or application module connection failure,
the CSI attempts to recover the connection. It does not inform the SSI
of these errors, except as provided for by the RPC mechanism. The
RPC mechanism for communicating RPC errors between a CSI and an
SSI is employed when the RPC routines prefixed “svcerr” are used
(see the Sun Network Programming Manual). The CSI performs error
recovery for its own connections to the ACSLM, the ACSSA, and

the NL.

CSI Error Handling

5-22

The following sections describe major error detection and recovery
processes of the CSI.

IPC Failure

IPC failures occur whenever the CSI is unable to perform one of the
following functions:

+ Establish inter-module input communications endpoints during
initiation

* Read a message from the ACSLM

* Send a message to the ACSLM

* Send a message to the ACSSA

The CSI will attempt retries with timeouts and will issue error
messages if communications is still unsuccessful. See the
Environment Variables section in Chapter 7 for an explanation of how
the retries and timeouts are defined.

CSI Process Failure

A CSI process failure is a general error indicating a serious failure of
some internal mechanism. The Storage Server daemon, rc.acsss, may
attempt to reinitiate the CSI, depending on the nature of the failure.

The CSI will then attempt to reestablish itself as a network service,
using the same process employed during initiation. See CSI Initiation
in this chapter for a description of this process.

Operating System Failure

The CSI can indirectly detect some operating system errors. These
errors will be reported as IPC failures, process failures, or CSI-specific
error messages. Error messages caused by operating system failures
list a system error number. See your UNIX documentation for a
description of these error numbers.

9036

CSl Processes Error Detection and Recovery

Network Transmission Failure

Depending on system state, there may be an arbitrary number of
instances over an arbitrary length of time in which connections and data
transfers will never complete. Both the CSI and the SSI must be able
to detect these as errors by using timeout and retry algorithms. It is

left up to the client application to designate the appropriate handling for
connection errors.

Response messages from outstanding ACSLM requests cause the CSI
to attempt to establish communications with the client system. If the
CSI is unsuccessful, it will attempt retries with timeouts, using a retry
algorithm. The algorithm functionality is controlled by setting the
CSI_RETRY_TIMEOUT and CSI_RETRY_TRIES environment variables
before starting the CSI. If a connection still cannot be established, the
pending messages will be discarded and their intended destination
logged.

Network Message Translation Failure

Network message translation failures usually occur when a message of
incorrect format or size is detected by the high-level CSI XDR
translation routines. The CSI logs all translation failures to the Event
Log. Translation failures may occur for a variety of reasons, as outlined
below: ‘

» If the message has an incorrect format (that is, the
CSI_REQUEST_HEADER portion is missing or has an invalid
structure), the CSI is unable to deliver it and so discards it.

» The CSI must convert the message representation based on the
contents of the message. The contents of key fields (for example,
command, type, count, and message_options) determine how the
remainder of the message is interpreted. When the CSI detects a
message from the NI containing an invalid value in a key field, the
message is truncated to the field in error and passed to the ACSLM
for error processing.

» The CSI receives IPC input from the ACSLM only. The CSI will
discard messages with module_type set to something other than
TYPE_LM.

* A network message translation failure may be logged if a failure
takes place in the Storage Server. The error is logged because a
packet of invalid size for the command type is detected in the CSL
The packet is still transmitted in its (usually) truncated form.

The CSI will transmit a message as long as it can correctly translate
the CSI_REQUEST_HEADER portion, despite other translation errors.
Therefore the receiver of a message should always check the

9036 5-23

CSI Termination CSI Processes

CSI_MSGBUF structure for either of the following conditions, both of
which indicate a message translation failure:

* packet_status iS set t0 CSI_PAKSTAT XLATE_ERROR.
* translated_size has an insufficient size for the command type.

Duplicate Network Packets

See the Timing Considerations topic in the CSI Message Processing
section in this chapter for an explanation of how duplicate packets may
be generated. The XDR translation functions will detect duplicate
message packets. Only the CSI_REQUEST_HEADER portion of the
message will be decoded, and the XDR translation routine will set the
packet_status in CSI_MSGBUF tO CSI_PAKSTAT DUPLICATE_PACKET. The
CSI discards duplicate packets.

CSl Request / Return Address Aging

The CSI’s return address queue contains return addresses for requests
awaiting final response. When the CSI receives a final response for a
request, it deletes the return address from the queue. It is possible,
however, for some processing or system error to prevent the CSI from
receiving a final response. In order to maintain the queue, the CSI will
automatically delete all return addresses that are older than a
predefined maximum age. This age is defined in the

CSI_CONNECT AGETIME environment variable which is defined at
initiation. See the Environment Variables section in Chapter 7 for
additional information about this variable.

CSI TERMINATION

Upon receipt of s1GTERM, the CSI immediately terminates, performing
only the cleanup that is necessary to leave its files and connections in a
recoverable state.

During termination the CSI may detect entries in its return address
queue. This means that some Storage Server requests are still
pending on a final response. The CSI will log the return addresses of
these responses to the Event Log.

5-24 . 9036

OVERVIEW

CHAPTER 6:
SS| REQUIREMENTS

This chapter describes special functional requirements for SSI design.
Since the SSI essentially mirrors the CSI, it is intended that the
functional requirements for the SSI be derived from the functionality of
the CSI, specifically the CSI’s interface requirements.

The following sections explain how to program an SSI. These sections
are intended as extensions to the previous sections on CSI design.

See Chapter 5: CSI Processes for details on CSI functionality. See
Chapter 7: CSI Data Structures for the format and contents of CSI data
structures used by the SSI and the CSIL.

Note: Reference is made in this chapter to the StorageTek SSI. This
is not a StorageTek product, and it is not distributed to customers.

This SSI is referenced only in order to describe the strategies and
techniques that StorageTek has successfully used to create an SSI for
in-house use. This information can serve to guide the SSI designer and
programmer in creating their own SSI.

DESIGNING AN SSI

Overview

9036

The SSI, residing on a client host, functions as an communications
switchboard for client system applications issuing requests for tape
services to the Storage Server. Its primary functions are as follows:

» The SSIreceives Storage Server requests as input from client
applications, serializes them, and sends them across the network
by making an RPC call to the CSIL

» The SSIreceives Storage Server responses from the CSI via its
RPC dispatcher, deserializes them, then provides necessary
services to return the responses to the issuing applications.

6-1

Designing an SSI SSI Requirements

Required Functionality
Any SSI implementation requires the following functionality:
« Porting and implementation of StorageTek’s XDR translation
routines

» Inidation of the SSI as a transient network server so that
responses can be received

+ Initiation of the interface between the SSI and an application
requesting network tape services of the Storage Server

» Allocation of a buffer for data transferred to or from the Network
Interface (NI)

« Ability to poll for both application and network input
+ Ability to receive messages from applications using tape services
» Ability to format application requests into Storage Server request

packets

+ Ability to send Storage Server request packets on the network via
XDR/RPC)

» Ability to receive CSI response packets from the network via an
RPC dispatcher

» Ability to match a response received from the CSI to a particular
request and to route the response to the correct application

+ Implementation of network-related error handling for timeouts,
transmission errors, and duplicate packets

Architectural Notes

The SSI can be implemented as an interface library linked to a client
application or as a separate executable module that communicates with
the client application via IPC mechanisms.

The functionality of an SSI can be viewed as a mirror image of the CSI.
If this approach is taken, then SSI source code can be derived directly
from CSI source code.

Architectural Constraints
The only constraints on SSI architecture are as follows:

e Communications and data translation protocols. The SSI must
employ the same protocols as the CSI for network connection and
data translation:

— XDR at the Presentation Layer
— RPC at the Session Layer
— TCP/IP or UDP/IP at the Transport Layer

6-2 9036

SSI Requirements

Designing an

» Application-level protocols. The SSI must conform to application-

level protocols allowing for asynchronous transactions. See
Communications Methodology in Chapter 5.

* Data structures. The SSI must include the standard message

SSi

header, CSI_REQUEST_ HEADER, and other predefined Storage Server

command data structures in all requests sent to the CSI. See the
Input to the CSI From the SSI section in Chapter 7 for the format
and content of this structure.

» Convention of maintaining only brief connections. 1t is
recommended that the SSI encapsulate network connection and
data transfer into one, brief operation, in a similar manner as the
CSI. See CSI Message Processing section in Chapter 5 for a
discussion of the reasons for this.

SSI - CSl Architectural Comparisons

Overview

Depending on the nature of the client application, SSI functionality can

be seen as a mirror image of CSI functionality. For example when
Storage Server requests are processed, on the client side they are
passed down from the application layer to the SSI, while on the server
side they are passed up from the CSI to the application layer.

In order to simplify maintenance of CSIs and SSIs, StorageTek has

built both applications using the same body of source code. Conditional

compilation statements are be used in areas of the CSI source code
where CSI and SSI functionality are inverse. Conditional compilation
statements are used in the following areas of the code:

» Sending messages down-layer

» Sending messages up-layer

* RPC initialization

The following discussion compares the differences between the
functionality of the StorageTek CSI and StorageTek SSI at points
where the functionality in each is a mirror image of the other.

Discussion centers on the handling of information as it crosses the
various OSI-modeled software layers.

Sending Messages Down-Layer

9036

When sending messages down-layer, the CSI retrieves return
addresses, whereas the SSI szores them.

The CSI sends responses down-layer from the ACSLM to the NI.
When it receives the response, the CSI retrieves the RPC return
address information from the return address queue in order to be able

6-3

Porting StorageTek XDR Routines SSI Requirements

to return the response to the correct client. The data structure
retrieved is of type CSI_HEADER.

The SSI sends requests down-layer from a client application to the NI.
When it receives the request, the SSI stores the IPC return address
information in the return address queue. The data structure is of type
IPC_HEADER.

The csi_lminput routine can be used by both the CSI and the SSI to
receive and process messages down-layer. The difference between
the CSI and SSI functions is accomplished with an #ifdef statement
in the code.

Sending Messages Up-Layer

When sending messages up-layer, the CSI stores return addresses,
whereas the SSI retrieves them.

The CSI sends requests up-layer from the NI to the ACSLM. When it
sends requests up-layer, the CSI stores the network return address in
the return address queue. The data structure is of type CSI_HEADER.

The SSI sends responses up-layer from the NI to the client
application. When it sends responses up-layer, the SSI retrieves the
IPC address information structure from the return address queue. The
data structure is of type 1pc_HEADER. The SSI uses the key value
ssi_identifier in the CSI_HEADER structure in order to direct the response
to the correct client application.

The csi_rpcdisp.c routine can be used by both the CSI and the SSI to
receive and process messages up-layer. The difference between the
CSI and SSI functions is accomplished with an #ifdef statement in the
code.

CSl and SSI Initialization

During RPC initialization, the CSI registers as a permanent server at a
predefined permanent program number, whereas the SSI registers as a
transient server at a transient program number.

The csi_rpctinit.c routine can be used by both the CSI and the SSI
for RPC TCP initialization, and the csi_rpcuinit.c routine can used
for RPC UDP initialization. The difference between the initialization
sequences of the CSI and SSI is accomplished with an #ifdef
statement in the code.

PORTING STORAGETEK XDR ROUTINES

StorageTek offers XDR translation functions in “C” source code
format, either as a template for, or for direct porting to, client SSI
source code. These routines perform XDR serialization and

6—4 9036

SSI Requirements

XDR functions

deserialization of Storage Server packets. These routines are
structured with a commonhigh-level interface for the SSI. The

interface has the following two parameters:

* A pointer to the network packet buffer supplied by the programmer
(of type CSI_MSGBUF)

» A pointer to the XDR handle (of type xpR) supplied by RPC.

These XDR interfaces are never called directly by the programmer.
They are always indirectly called on behalf of the programmer via RPC
routines. When porting the StorageTek XDR routines to the customer
host system, the programmer must be careful to preserve the intrinsic
order and structure of translation.

Serialization of Requests

The SSI serializes message packets when it sends a request to the
CSI via the NI. The SSIcalls cint_call (), which in turn calls
csi_xdrrequest (). Figure 6-1 shows the layering of calls.

clnt_call()

\

csi_xdrrequest ()

Figure 6-1. Layering of Calls — Request Serialization

Deserialization of Responses

9036

The SSI deserializes message packets when it receives a response

from the CSI via the NI. The SSI calls the svc_getreq() routine,
which calls the SSI's RPC dispatcher function (defined by the SSI
programmer). The dispatcher function calls svc_getargs (), which in
turn calls csi_xdrresponse (). Figure 6-2 shows the layering of these
calls. ’

svc_getreq()

rpc—-dispatcher

svc_getargs ()

csi_xdrresponse ()

Figure 6-2. Layering of Calls — Response Deserialization

6-5

Programming an SSI

SSI Requirements

PROGRAMMING AN SSi

Initializing the SSl as a Callback Server

When the SSI receives responses from the CSI, it functions as a
server, apart from its normal role as primary client. This provides the

CSI with port, program number, and procedure number mapping to

direct an RPC callback.

Because the SSI functions as a transient server it must be assigned a

transient program number. The transient number is dynamically

assigned when the SSI is initiated and should be unmapped with the
portmapper when the SSI is terminated in an orderly manner. When

the SSI is restarted later, a new program number will be assigned.

Figure 6-3 depicts the process of initializing the SSI as a transient

SCrver.
/* SSI non-communications Initialization */
/* establish application IPC or other connections */
pmap_unset () /* unmap residual port mappings */
gettransient () /* get transient RPC program# & socket */
socket () /* create a TCP/IP callback socket */
bind () /* bind socket to get port */
getsockname() /* retrieve assigned port number */
loop {
pmap_set ()
} . /* count up from starting transient

svctcp_create () /*

svc_register() /*
ssi_process () /*
svc_destroy () /*

program #, when pmap_set succeeds
you have a transient program number */

return (program-number) + socket file descriptor, by reference */

establish callback service port */
register callback service with port mapper */
enter main SSI processing loop */
de-allocate the service transport resources */

Figure 6-3.Initializing the SSI Server

6—-6

9036

SSI Requirements Programming an SSI

To initialize the SSI as a network service, the following is required:
* A unique transient program number, which the CSI can use when
issuing an RPC callback to the SSL.

e A version number, assigned to each program number so that the
program number does not need to change when the NI transport
service is changed.

» A procedure number.

Obtaining a Unique Program Number

In order to obtain a unique transient program number, which the CSI
will use to issue an RPC callback to the SSI (for transmitting Storage
Server responses), the SSI programmer must code a function that
obtains a transient port mapping. The gettransient () function,
shown in Figure 6-4, is a sample of such a function.

The gettransient () function is derived from the following sources:
» A prototype application
» The Sun Network Programming Manual, “Remote Procedure Call

Programming Guide,” (subsection: “More Examples/Callback
Procedures”).

The number obtained by the function must be in the range for transient
program numbers. See Communications Methodology in Chapter 5 for
this range.

Initializing the SSI — Application Interface

There are no constraints on the design of the interface between the SSI
and the application that it services. It is defined by the customer.

9036 6-7

Programming an SSI SSI Requirements

#include <rpc/rpc.h>

#include <stdio.h>

#include <sys/socket.h>

#define START_TRANSIENT 0x40000000 /* start number for transient progs */
#define END_TRANSIENT OxSffffffe /* last transient prog# available */

/*
* gettransient ()
*
* Description: Returns the next available RPC transient program number
* Assign a socket if the contents of sockp = RPC_ANYSOCK.
* Returns:
* On Call:
* (int) - Next available transient program #
* - 0 if ERROR
* By Reference:
* (int *) - new socket file descriptor
*/
gettransient (proto, vers, sockp)
int proto; /* socket protocol */
int vers; /* version number */
int *sockp:; /* pointer to socket */
{
static int prognum = START TRANSIENT; .
int s, len, socktype; /* s=socket fd, len=size of addr */
struct sockaddr_in addr; /* internet type socket struct */

switch (proto) {
case IPPROTO_UDP:
socktype = SOCK_DGRAM;
break;
case IPPROTO_TCP:
socktype = SOCK_STREAM;
break; .
default:
return(0);
} /* end of switch */

if (RPC_ANYSOCK == *sockp) {
if ((s = socket (AF_INET, socktype, 0)) < 0) {
return(0);
}

*sockp = s;
}
else

s = *sockp: /* use the socket passed in */

addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_family = AF_INET;
addr.sin _port = 0;

len = sizeof (addr):

bind(s, &addr, len); /* maybe already bound so don’t check for error */
if (getsockname (s, &addr, &len) < 0)
return(0);

/*count up from first program number until find one that is available */
for (prognum = START_ TRANSIENT; prognum < END_TRANSIENT; prognum++) {
if (pmap_set (prognum, vers, proto, ntohs(addr.sin port)) > 0)
return (prognum) ;
}

return(0); /* error */

Figure 6-4. Code for Obtaining a Transient Program Number

9036

SSI Requirements Programming an SSi

Allocating the Network Buffer

The SSI must allocate a buffer for network input which both stores and
describes the state of network packets. This buffer is of type
CSI_MSGBUF. See Message Translation Structures in Chapter 7 for the
format and content of this structure. For clarification, the definition is

duplicated below.
typedef struct {
int offset;
int size;
int maxsize;
int translated_size;

CSI_PAKSTAT packet_status;
CSI_Q MGMT q_mgmt
char data(l];

} CSI_MSGBUF;

The network buffer is to be allocated to the size of the cs1_MsGBUF data
structure (which is the size of the structure from offser through data),
plus the size of data for the maximum size of messages that are
expected. A “C” source code algorithm for this allocation is:

buffer_pointer=malloc (name, sizeof (CSI_MSGBUF) +MAX MESSAGE_SIZE)

The char data(1] “C” coding construct used in defining CSI_MSGBUF,
allows the data area to be dynamically allocated at the same time as the
other portions of the buffer structure. See your UNIX documentation for
a description of the malloc () system routine.

Polling for Application or Nl Input

The SSI must poll for input from both the network and client
applications resident on the client host. The method of polling for
network and application input varies depending on the client host.
Under 4.3BSD UNIX the select () system call is employed, for
example.

The following are requirements for using select ():

« Establish a file descriptor from which the SSI can read application
input

+ Establish the RPC input file descriptors used in managing RPC
network services

» Construct an input file descriptor mask to be passed to select ()

» Upon return from select (), differentiate NI input from application
input and make the appropriate function call:

— Call svc_getreq() network service function for network input
— Call a user function to process application input

9036 6-9

Programming an SSI SSI Requirements

Receiving a Request

The SSI receives requests from client applications. There are no
constraints on the method the SSI uses to do this; the interface may be
either a function call or an IPC mechanism. There is an implied
constraint, however, in that the SSI must be able to relate a response
to a request so that the response can be sent to the appropriate
application.

The StorageTek SSI communicates with an application via a BSD
socket IPC mechanism. In order to match a response with the
application that issued the original request, it employs a queueing
mechanism that stores the IPC return address of the application. In
this case, the IPC return address is an application input socket
number.

When the application request is first received, its return address is
placed on the queue. The location on the queue is described by an
integer returned from the queueing function. This integer is assigned to
the ssi_identifier in the CSI_HEADER structure and is preserved by the

CSl in its responses. When the SSI receives a Storage Server

response, it uses the ssi_identifier to retrieve the application’s IPC
address from the queue, then it sends the response to the application

at that IPC address.

For an example of how this mechanism works in the StorageTek SSI,
see the CSI source file csi_1lminput.c.

Formatting a Request Into a Storage Server Packet

6-10

Since there are no constraints with respect to the format and structure
of messages sent to the SSI by an application, this requirement is to be
defined by the customer.

The StorageTek SSI receives input as application-level Storage Server
packets. They are distinguished from SSI-CSI Storage Server packets
in that they have an 1pC_HEADER at the topmost layer of the packet
instead of a CSI_HEADER.

Since all packets sent from the SSI across the network must contain a
CSI_HEADER, the IPC_HEADER is stripped off and replaced by a
CsI_HEADER containing the RPC return address of the SSI. See Input
to the CSI From the SSI in Chapter 7 for a description of how to
initialize the cs1_HEADER. See the CSI “C” source file csi_lminput.c
for a description of how the StorageTek SSI strips off the 1PC_HEADER
and replaces it with a cs1_HEADER. See the CSI “C” source file
csi_rpccall.c for a description of how the cSI_HEADER is initialized
prior to making an RPC call to the CSI.

9036

SSI Requirements Programming an SSI|

Sending a Storage Server Packet on the NI

The requirements for an SSI issuing an RPC call to the CSI are as
follows:

» The cs1_HEADER must be initialized with the RPC return address of
the SSI so that the CSI can send responses back to the SSI.

» The network buffer structure state information must be initialized
properly before entry into xdrrequest ().

* The SSI must obtain the network address and, optionally, the port
number of the CSI.

» The SSI must implement an appropriate RPC timeout-retry
algorithm.

» The SSI must initiate a connection to the remote CSI via a call to
either clntudp_create() Or clnttcp_create().

e The SSI must call c1nt_call () which sends the request packet to
the CSI’s RPC dispatcher.

» The SSI must block while waiting for the CSI to send an
acknowledge via a svc_sendreply () call.

* The SSI must call clnt_destroy () to terminate the connection to
the CSL

Initializing the CSI_HEADER

The SSI must initialize the top layer of a request, which is the
CSI_HEADER, with its return address so that the CSI can use this
address in sending Storage Server responses to the SSI. See Input to
the CSI From the SSI in Chapter 7 for a description of how to initialize
the RPC return address.

The cs1_HEADER must also be stamped with a transaction ID (of type
CsI_x1D) consisting of the following:

o The SSI’s return address (redundant for this implementation of the
SSI/CS], but not for future extensions)

* The current process ID

* A packet sequence number

This architecture was chosen so that the CSI can not only identify
packet sequence, but also differentiate between SSIs running on
different hosts and multiple SSIs running on a single host. See Input to
the CSI From the SSI in Chapter 7 for a description of how to initialize
the cs1_x1p.

9036 6-11

Programming an SSI SSI Requirements

6-12

Initializing the Network Buffer Structure

The SSI must initialize the network buffer structure (of type
cs1_MsGBUF) before calling the c1nt_call () RPC routine, since
clnt_call() calls the XDR translation routine csi_xdrrequest ().
See Message Translation Structures in Chapter 7 for details on the
required state of the network buffer on entry to csi_xdrrequest ().

Obtaining the Network Address of the CSI

The SSI must obtain network address of the CSI before the SSI calls
clnt_call() in order to be able to properly initialize the first
parameter on the interface. This parameter is a pointer to an Internet
addressing structure (of type struct sockaddr_in).

The following are requirements for obtaining the remote address of the
CSI:

« Prior knowledge of the name of the CSI host
* An entry for the CSI host in the SSI host’s /etc/hosts file (or its
equivalent)

* A system call, roughly equivalent to the UNIX system call
gethostbyname (), which returns the address for a remote host.

Note: If the sin_port variable (the CSI port number in the Internet
address structure used by the SSI on the c1nt_call () interface) is set
to 0, the portmapper will always be consulted to obtain a target remote
CSI port number before packets are sent.

impiementing a Timeout—Retry Algorithm

It is necessary to implement a timeout and retry algorithm, due to
variations in the quality of network service and load on both the SSI
and Storage Server host. The SSI detects poor or failed network
service by exercising a timeout on a particular send attempt.
Functionality for a timeout-retry scheme is provided within RPC.
Depending on the nature of the client application, however, it may be
desirable to implement the timeout-retry algorithm at a higher level,
since once invoked, the built-in RPC method is outside of user control.

The RPC method of timeout-retry is specified by declaring a per-try
timeout when initiating a connection via the clntudp_create () RPC
call, and an overall timeout on the subsequent clnt_call().
Effectively, the overall number of tries is equal to the overall timeout
divided by the per-try-timeout. For example, if the per-try-timeout
passed to clntudp create () is specified as 4 seconds, and the overall
timeout passed to clnt_call () is specified as 20 seconds, then five
tries at sending will be attempted within clnt_call (). If the
RPC_SUCCESS return status is not forthcoming and no other RPC error
condition exists, then an ReC_TIMEDOUT error condition is returned after

9036

SSI Requirements Programming an SSI

the full timeout has been attempted. The timeout factors need to be
tailored to the individual computer installation.

The cint_call () -embedded RPC retry scheme hypothetically could
have various negative consequences on an SSI. One major
consequence is that neither application input nor network input can be
detected until the call returns. Consequently, packets may be dropped
at either the application or the network input endpoints.

In order to enhance input detection and prevent the dropping of packets,
it may be desirable to implement the retry algorithm within the SSI
program code, rather than within the RPC call.

Following are the requirements for recovering from poor network
service:

» Specify a per-try timeout, either within SSI program code or within
RPC as a parameter to clntudp_create ().

» Specify an overall timeout, either within SSI program code or within
RPC as a parameter to clnt_call().

» Provide a mechanism for RPC error detection and recovery in case
of RPC failures or RPC timeouts which prevents packets from being
dropped.

» Depending on the individual SSI application, provide a mechanism
whereby sending network output will not block the detection of
either application or network input.

In order to provide a robust system, StorageTek has chosen to favor
input over output in both its SSI and its CSI. If input is detected during
network transmissions, transmission is temporarily halted, and the
packet is placed on a network output queue. The CSI or SSI then
receives either application or network input. This prevents the
dropping of packets.

. After input has been read, if no more input is pending, the StorageTek
SSI flushes its network output queue, sending currently queued
packets to the appropriate target SSI, and then sends the most recently
received packet.

In all cases, it is imperative that the ordering of packets between a
specified CSI/ SSI pair be preserved. Packets must be sent in the
correct order.

In the StorageTek SSI, environment variables are used to fine-tune the
retry algorithm so that the values for timeout and number-of-tries need
not be hard-coded. The StorageTek SSI has its retry algorithm
implemented outside of RPC. In general, the most successful timeout—
retry approach has been to increase the number of retries rather than
the duration of the timeout. StorageTek has successfully used a four
second timeout combined with five retries in in-house testing.

9036 6-13

Programming an SSI SSI Requirements

Initiating a Connection to the CSI

The SSI initiates a connection to the CSI by calling either
clnttcp_create() Or clntudp_create (). The parameters in this call
are set as follows:

* struct sockaddr_in is initialized to the CSI Internet address. To
get the CSI address may require a call to gethostbyname () Or its
equivalent. The /etc/hosts file must contain the CSI host network
address.

» The program number is set to CSI_PROGRAM.

» The version number is set to either CSI_TCPVERSION or
CSI_UDPVERSION.

» The socket pointer is set to an open socket of the appropriate
Internet family type, or to Rec_anysock which will cause RPC to
create the socket.

* If using clntudp_create (), the timing parameter is set as
discussed in the “Implementing a Timeout—Retry Algorithm” topic
in this section.

This call returns a client handle structure which will be used in the
subsequent invocation of clnt_call().

Sending a Request to the CSI

The SSI sends a message packet to the CSI RPC dispatcher via a call
to clnt_call(). The parameters in this call are set as follows:

» The first parameter is set to the client handle returned from
clnttcp_create() Or clntudp create().

* The procedure number is CSI_ACSLM_PROC.

» The XDR serialization procedure is csi_xdrrequest ().

« The pointer to the network buffer is set to a structure of type
CSI_MSGBUF.

» The XDR procedure for data returned is not used, therefore it is set
to xdr_void ().

» The network buffer for data returned is not used, therefore it is set
to null.

« The overall timeout to be used is set as discussed in the Retry and
Timeout section.

Invoking XDR Translation

In order to translate the request, the SSI issues a call to

svc_getargs (). One of the parameters to this function is the XDR
translation function, in this case csi_xdrrequest (), and the other is
the network buffer where the serialized packet and information

6-14 9036

SSI Requirements

Programming an SSI

describing its size and state will be placed. See CSI Message
Processing in Chapter 5 for a description of the operation of
csi_xdrrequest (). See Message Translation Structures in Chapter 7
for a description of the status information returned in the network buffer.

Reading a Response From the NI

The SSI receives Storage Server responses via the NI. Input from the
network is detected when a poll of input file descriptors yields a
network file descriptor as being active.

Depending on the particular implementation of the SSI, this input will
usually be in the form and structure of an XDR-encoded Storage Server
response packet sent by the CSI. Typically, this means that one of the
file descriptors in the svc_fds global file descriptor mask, defined in the
RPC library, has input pending. Following are the requirements for
processing this input within the SSI:

» Detect network input as a result of input file descriptor polling.

» Issueacall to svc_getreq() which transparently further
demultiplexes the RPC input.

* svc_getreq() calls the SSI's RPC dispatcher at a designated
procedure number (the one originally specified by the SSI in the
CSI_HEADER portion of the request).

* Call svc_getargs () within the RPC dlspatchcr to retrieve the
packet from the NI ‘

* svc_getargs () calls the XDR translation function passed to it, in
this case csi_xdrresponse () to deserialize the packet.

* csi_xdrresponse () decodes the packet and determines if it is a
duplicate of a previous transmission.

* Drop duplicate packets.

* Determine the address of the application destined to receive the
packet.

Detection of Network Input

9036

As stated previously, the StorageTek SSI uses the select () system

call to detect network input. In this case, detection of network input
involves comparing the global RPC svc_fds mask of network-
dedicated file descriptors that are currently being used to the one(s)
returned from select (). If network input is active, the call to select ()
returns a file descriptor mask with one or more bits set, indicating RPC
input file descriptors.

6-15

Programming an SSI SSI Requirements

616

Invoking RPC Handling of Input

Handling of RPC input is invoked by calling the svc_getreq() function.
This routine has no parameters and initiates handling of input in a
somewhat transparent manner, since it calls the SSI's RPC dispatcher

on behalf of the SSI. It knows which dispatcher to call because the SSI
previously registered its dispatcher during initiation on call to
svc_register().

Invoking the RPC Dispatcher

If the switch and case “C” coding construct has been used in
construction of the SSI dispatcher, the switch trips on request-
handle-->procedure-number, and the case entered will be at the
value previously defined as the procedure number that the SSI
originally defined in the cs1_HEADER. See the Sun Network
Programming Manual for details on the switch and case construct.

Invoking XDR Translation

Within the procedure number specified by the SSI's RPC dispatcher,
the SSI issues a call to svc_getargs () in order to have the network
input translated and placed in the network buffer. One of the
parameters to this function is the XDR translation function, in this
case, csi_xdrresponse (), and the other is the network buffer where -
the deserialized packet and information describing its size and state
will be placed. See CSI Message Processing in Chapter S for a
description of the operation of csi_xdrresponse (). See Message
Translation Structures in Chapter 7 for a description of the status
information returned in the network buffer.

Detecting Duplicate Packets

The SSI must be able to identify and handle duplicate message
packets. Even if the SSI exercises a timeout, the original message
may still reach the CSI, although later than expected. If this happens,
it is likely that the CSI will send a duplicate response to the request.
See the “Timing Considerations” topic in the CSI Message Processing
section in Chapter 5 for a more detailed explanation of how duplicate
packets occur.

csi_xdrresponse () detects duplicate packets using the cs1_x1p in the
CSI_HEADER: the address, process ID, and sequence number of the
duplicate packet are identical to a previously received packet. Upon
return from csi_xdrresponse (), the packet_status in the CSI_MSGBUF
structure is set to CSI_PAKSTAT DUPLICATE_PACKET for duplicate
packets.

Depending on the implementation of the SSI, it may be desirable to
drop duplicate packets. Currently csi_xdrresponse () detects a

9036

SSI Requirements Programming an SSI

duplicate packet in the initial phases of the deserialization process,
returning immediately upon detecting the condition. Only the
CSI_REQUEST_HEADER has been deserialized at this point. If duplicate
packets are not to be dropped, then csi_xdrresponse () must be
changed to completely deserialize the packet before returning. -

Determining the Destination Application Address

There is no constraint with respect to communications between the SSI
and the application. However there is a requirement that a response

be paired with a particular request in order that the response can be
sent to the appropriate application. See the “Receiving a Request”
topic in this section for details.

Formatting the Storage Server Response

The Storage Server packet received from the network must be
converted to a form that is intelligible by the client application. There is
no constraint with respect to communications between the SSI and the
application. The nature of this operation is determined by the customer.

Sending the Response to the Application

There is no constraint on communications between the SSI and the
" application. The form and content of this transaction is determined by
the customer. -

Request Processing Summary

9036

SSI:

CSI:

The following series of steps outlines the interaction between an SSI
and the CSI to process a Storage Server request. Only the steps
performed by the SSI are detailed. See the CSI Message Processing
section in Chapter 5 for details on the steps performed by the CSI.

1. Receives a request from one of its client applications.

2. Calls either the clnttep_create() or the clntudp_create () RPC
function to establish a TCP/IP or UDP/IP connection to the CSI at
its published RPC address.

3. Calls the c1nt_ca1l () RPC function to send the request across the
network.

4. clnt_call () calls a serialization function to convert the response
into XDR format. See the CSI Message Processing section in
Chapter 5 for a description of the StorageTek-supplied XDR
translation functions.

5. Receives the request, translates it, and sends it to the ACSLM.
Then, receives and translates responses from the ACSLM, and
routes them to the appropriate SSI.

6-17

Programming an SSI SSI Requirements

SSI: 6. Calls the svc_getreq() or svc_getregset () RPC function to
receive the message. The following occurs:

6.1 The svc_getreq() Or svc_getregset () function calls
csi_rpecdisp (), the dispatching service that was registered
during initiation.

6.2 csi_rpcdisp() calls svc_getargs () to get the data off the
network.

6.3 svc_getargs () calls a deserialization function to convert the
response into host-dependent format. See the CSI Message
Processing section in Chapter 5 for a description of the
StorageTek-supplied XDR translation functions.

7. Immediately acknowledges receipt of the message by calling the
svc_sendreply () RPC function, passing no data.

8. If this is a final response, deletes the CSI’s return address from the
connect queue.

9. Calls an RPC function to close the connection.

6-18 - 9036

OVERVIEW

CHAPTER 7:
CSI DATA STRUCTURES

This chapter describes the common data structures, variables, and
external libraries used by the CSI and the SSI. The use of common
structures supports both message decoding and extraction of routing
information. Common elements consist of the following:

» External interfaces

» Environment variables

» Input to the CSI from the SSI

+ Input to the CSI from the ACSLM

* Output from the CSI to the SSI

» Message translation data structures

EXTERNAL INTERFACES

Overview

This section identifies software libraries, functions, and variables that
are required for CSI and SSI operation. This software is not supplied
by StorageTek.

Software Libraries

9036

The following software libraries, supplied with the Storage Server, are
required for the CSI:

* UNIX operating system
» Sun Microsystems Remote Procedure Call (RPC)
* Sun Microsystems External Data Representation (XDR)

7-1

External Interfaces

CSl Data Structures

Communications Protocol Interfaces

The following communications protocols are required for transmission
of data:

» TCP/IP (transparently handled by RPC)

» UDP/IP (transparently handled by RPC)

* Special application-level protocol superimposed on RPC protocol.
See the Communications Methodology section in Chapter 5.

Both the CSI and the SSI use the low-level RPC routines since TCP/IP
is not supported by the intermediate-level RPC calls.

Functions and Variables

The following RPC & UNIX functions and global variables are used in
the CSI:

svc_getargs ()
svc_getreq()

xdr_enum()
xdr_float () .

clnt_call() xdr_free ()
clnt_destroy () xdr_int ()
clnt_sperrno () xdr_long ()

clnttcp_create()
clntudp_create()
pmap_set ()
pmap_unset ()
svc_destroy ()
svc_freeargs ()
svc_getargs()
svc_register()
svc_sendreply ()
svctcp_create()
svcudp_create ()
svcerr_noproc ()
svcerr_decode ()
xdr_array ()
xdr_bool ()
xdr_bytes ()
xdr_char ()
xdr_double ()

xdr_opaque ()

xdr_short ()

xdr_string()

xdr_u_char()

xdr_u_int ()

xdr_u_long()

xdr_u_short ()

xdr_vector()

xdr_void()
xdr_wrapstring ()

svc_fds (file descriptors)
clnt_stat (data structure)
rpc_createerr
gethostbyname () (UNIX 3N)
gethostname () (UNIX 3N)

9036

CSI Data Structures

Environment Variables

ENVIRONMENT VARIABLES

9036

The following environment variables are used by the CSI. They are
listed below as defined in the csi.h header file.

#define CSI_TCP_RPCSERVICE “"CSI_TCP_RPCSERVICE"
#define CSI_UDP_RPCSERVICE "CSI_UDP_RPCSERVICE"
#define CSI_CONNECT AGETIME "CSI_CONNECT AGETIME"

#define CSI_HOSTNAME "CSI_HOSTNAME"
#define CSI_RETRY TIMEOUT "CSI_RETRY_TIMEOUT"
#define CSI_RETRY TRIES "CSI_RETRY_TRIES"
#define CSI_TRACE_VALUE "TRACE_VALUE"

CSI_TCP_RPCSERVICE is used to define whether the CSI will
operate as a TCP RPC Server. This variable can be set as follows:

"TRUE"
"FALSE"

CSI_UDP_RPCSERVICE is used to define whether the CSI will
operate as a UDP RPC server. This variable can be set as follows:

"TRUE"
"FALSE"

CSI_CONNECT_ AGETIME defines the value of the maximum age of
pending requests in the CSI’s request queue. This variable is
accessed as a “C” character array (string) datatype, expressed as
an integer number of seconds. For example, an entry of 172800
indicates two days.

Messages that are older than this value are removed from the
queue, as it is assumed that they will never be responded to. The
CSI sends an entry to the Event Log when this happens. See Error
Detection and Recovery in Chapter 5.

cs1_HosTNAME defines for the SSI the hostname of its CSI server.
Defining this variable is optional.

CSI_RETRY TIMEOUT and CSI_RETRY_TRIES are used together to
determine the minimum total time over which the CSI will attempt
to send a message. Network transmission failures are detected
using a retry algorithm. While the algorithm itself is transparent to
the programmer, the functionality of the algorithm is controlled by
setting these two environment variables.

— CSI_RETRY_TIMEOUT defines the minimum amount of time, in
seconds, that the CSI should wait between attempts at
establishing a network connection. Its value is placed in the
timeout variable used on either the clntudp_create() oOr
clnttcp create() RPClibrary calls. See Error Detection and
Recovery in Chapter 5.

7-3

Environment Variables CSil Data Structures

— CsI_RETRY_TRIES defines the number of attempts the CSI
should make to transmit a message. Pending messages are
discarded if a connection cannot be established within the
number of tries defined.

Both of these variables can be set at Storage Server installation,

and reset at reconfiguration. See the UNIX Storage Server System
Administrator’s Guide for details on Storage Server installation and
reconfiguration. If they are not set, defaults are supplied as defined
in the csi.h header file. Since the timeout chosen will be a factor of
system and network processing loads, these environment variables
can be used to tailor CSI response to expected system load before
the CSI is initiated.

* CSI_TRACE_VALUE is used to enable packet tracing by the CSL
Setting trace to 00800000 before initiating the CSI will cause packet
tracing to be enabled. See the CSI Message Processing section in
Chapter 5.

7-4 9036

CSI Data Structures Input to the CSI From the SSI

INPUT TO THE CSI FROM THE SSI

Request Structure

Input to the CSI from the NI is in the format of Storage Server request
packets which are deserialized from XDR format using the StorageTek-
supplied XDR interface function, csi_xdrrequest (). Use of this high-
level XDR interface makes deserialization transparent to the caller;
therefore, CSI input is discussed in terms of its format after
deserialization.

After being deserialized, CSI input has the following format, as defined
in the csi_structs.h header file:

struct {
CSI_HEADER csi_header ;
MESSAGE_HEADER message_header;

(message_data)

};
Note: csI_HEADER and MESSAGE_HEADER together define the
CSI_REQUEST HEADER. ‘
The structure of the cs1_HEADER is described in the following section.

The MESSAGE_HEADER specifies ACSLM request information according
to a predefined format. See the Requests section in Chapter 3 for the
structure and contents of MESSAGE_HEADER.

9036 7-5

Input to the CSI From the SSI CSl Data Structures

csi_header Structure

Description

CSI_HEADER specifies client system return address information, as
defined by a client. Both the CSI and the SSI function as clients, as
well as servers. When the CSI receives a message from the SSI, it
strips off the CSI_HEADER, saves it, and uses it to route response
messages. The values in the csI_HEADER are returned to the SSI in the
CSI’s responses.

The structure of the cs1_HEADER is defined in the csi_header.h header
file which is compiled directly into CSI program code. The cSI_HEADER
definitions are required for the SSI, but the csi_header.n file is not.

Format
typedef struct ({
CSI_XID xid;
unsigned long ssi_identifier;
CSI_SYNTAX csi_syntax;
CSI_PROTOCOL csi_proto;
CSI_CONNECT csi_ctype;
CSI_HANDLE RPC csi_handle_rpc;
} CSI_HEADER;
Values

xid serves as a transaction identifier. It is used by both the CSI and the
SSI to identify duplicate packets. Initialization of this variable is
required.

ssi_identifier is reserved for the exclusive use of the SSI and is

preserved by the CSI in its responses. It is intended to be a routing
identifier which the SSI can use to identify a particular client
application, if the client architecture allows multiple client applications
to use a single SSI for network services.

csi_syntax is a version-independent variable that specifies the
translation syntax the client SSI uses to communicate with the CSL
The CSI uses this identifier to determine the particular type of byte
stream to be passed across the NI. It enables the CSI to apply the
correct deserialization routines when more than a single translation
syntax is supported. Currently only the XDR translation syntax is
supported. The csi_syntax variable should therefore be set to
CSI_SYNTAX_XDR, as defined in the ssi.h header file.

csi_proto is a version-independent variable that specifies the transport
protocol used between the SSI and CSI over the NI. The CSI uses this
identifier to make the appropriate type of connection when executing a

7-6 . 9036

CSl Data Structures Input to the CSI From the SSI

callback to the client SSI. The current implementation employs TCP/IP
and UDP/IP as transport mechanisms. This variable should be set to

CSI_PROTOCOL_TCP Or CSI_PROTOCOL_UDP, as defined in csi_header.h.

csi_ctype is a version-independent variable that specifies the type of the
session layer connection and data transfer interface between the SSI
and the CSI. It tells the CSI the structure of the client return address
handle, csi_handle_rpc. Therefore this variable should be set to
CSI_CONNECT_RPCSOCK.

csi_handle_rpc contains version-specific return address information that
enables the CSI to send responses to the SSI.

Note: Since IP is being used for the network software layers,
csi_handle_rpc is a sockaddr_in Internet address structure. The
definition for this structure resides in netinet/in.h. The “C” include
statement for this header file should be:

#include <netinet/in.h>.

9036 7-7

Input to the CSI From the SSI CSI Data Structures -

csi_xid Structure

Description

CSI_XID is used in CSI_HEADER to filter out duplicate packets. It
uniquely identifies a message by address, process, and sequence
number.

Format

typedef struct ({
unsigned char addr[CSI_NETADDR_SIZE] H
unsigned int pid;
unsigned long seq_num;

} CSI_XID;

Values
addr is the SSI’s host address.
pid is the SSI’s process ID.

seq_num is a sequence number generated by the SSI that identifies the
sequencing of messages sent from a particular SSI.

7-8 9036

CSI Data Structures Input to the CSI From the SSI

csi_handle_rpc Structure

Description

CSI_HANDLE_RPC is used in cs1_HEADER. By definition, the contents of
this structure are specific to the Session Layer network software
implementation. The format shown below is used for UNIX operating
systems that support RPC and the implementation of 4.3BSD sockets.

Format
typedef struct {
unsigned long program;
unsigned long version;
unsigned long proc;
struct sockaddr_in raddr;
} CSI_HANDLE_ RPC;
Values

program is set to the transient port-mapped RPC program number for
the SSI, to which the CSI must return Storage Server responses.

version is set to the current version number of SSI server software, per
RPC requirements for registration and port mapping. Per csi.h, the
TCP version is defined as cs1_Tcp_vERSION, and the UDP version is
defined as CSI_UDP_VERSION.

proc is set to the RPC procedure number to be executed by the client
SSI callback service dispatcher in response to a CSI RPC callback.

raddr is used for Internet addressing and varies according to the RPC
implementation. All of the raddr information can be directly set to the
values of the sockaddr_in structure established when making the
transient port-mapping for the client callback service. See
Communications Methodology in Chapter 5 for information on transient
port-mapping.

9036 7-9

Input to the CSI From the SSI CSI Data Structures

sockaddr_in Structure

Description

The following is a definition of the Internet addressing “C”
programming structure defined in the in.h header file.

Format
struct sockaddr_in {
short sin_family ;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];
}:
Values

sin_family is the transport protocol family to be used in sending
responses from the CSI to the SSI. In the current implementation it
should be set to AF_INET to indicate that Internet addressing is being
used.

sin_port is set to the number of the port to which the CSI executes
callbacks. If this is 0, the CSI RPC mechanism will reference the RPC
port mapper before initiating network transfers in order to determine
the correct port number.

sin_addr is set to the Internet address of the SSI's host machine.

sin_zero should be zeroed out.

7-10 9036

CSI Data Structures Input to the CSI From the ACSLM

INPUT TO THE CSI FROM THE ACSLM

Response Structure

Input from the ACSLM is detected on an ongoing basis when the active
file descriptor is of the ACSLM type. This input is always a Storage
Server response packet, and has the following structure, as defined in
the 1m_structs.h header file.

struct {
IPC_HEADER ipc_header;
MESSAGE_HEADER message_header ;
]
(message_data)

b:
Note: 1pc_HEADER and MESSAGE_HEADER together define the
REQUEST_HEADER.
The structure of the 1pC_HEADER is described in the following section.

The MEssAGE_HEADER specifies ACSLM request information according
to a predefined format. See the Requests section in Chapter 3 for the
structure and contents of MESSAGE_HEADER.

9036 7-11

Input to the CSI From the ACSLM CSI Data Structures

ipc_header Structure

Description

1PC_HEADER provides IPC “return address” information for requests
and responses between Storage Server processes. This allows the
number of input sockets for any process to be limited to one. The
format shown is for the BSD socket IPC mechanism.

Format

typedef struct {
} unsigned long byte_count
TYPE module_type;
unsigned char options;
unsigned long seq_num
unsigned char return_socket[SOCKET_NAME SIZE];
unsigned int return_pid
unsigned long ipc_identifier;
} IPC_HEADER;

Values
byte_count is the length of the message, including the header, in bytes.

module_type is a “C’” enumeration that identifies the process sending
the message. See the Common Variables section in Chapter 3 for
definitions of these types.

seq_num is a message sequence number used to verify message order
and identify duplicate message packets.

options currently has no defined use. It is reserved for future capabilities
and is maintained as a space filler.

return_pid is the process ID generated by the sending process.

return_socket specifies the input socket name of the sending process. If
the message is a request, this is the socket name to which replies are
to be sent. The string size is limited to the file name size limitation of
non-BSD UNIX file systems.

ipc_identifier is used optionally by the requesting process for information
to assist in synchronizing responses. This field is set by the process
originating the request message, and is copied by the receiving process
into its response message.

7-12) 9036

CSl Data Structures Output From the CSl to the SSI

OUTPUT FROM THE CSI TO THE SSI

Response Structure

CSI output to the SSI is in the format of Storage Server response

packets which are serialized into XDR format using the StorageTek-
supplied XDR interface function, csi_xdrresponse (). Use of this high-
level XDR interface makes serialization transparent to the caller;
therefore, CSI output is discussed in terms of its format before
serialization.

After being serialized, a response packet has the following format, as
defined in the csi_structs.h header file:

struct {
CSI_HEADER csi_header ;
MESSAGE_HEADER message_header ;

(message data)

}i

Note: cs1_HEADER and MESSAGE_HEADER together define the
CSI_REQUEST_HEADER.

The cs1_HEADER is preserved by the CSI and passed back to the SSI
unaltered. The CSI matches one or more responses to the CSI_HEADER
address of the originating SSI, and sends the responses to the client
SSI. See the Input to the CSI From the SSI section in this chapter for
the structure and contents of CSI_HEADER.

MESSAGE_HEADER specifies ACSLM request information generated by
the client application. The ACSLM generally copies this information
into its corresponding response messages. See the Requests section
in Chapter 3 for the structure and contents of MESSAGE_HEADER.

9036 7-13

Message Translation Structures CSl Data Structures

MESSAGE TRANSLATION STRUCTURES

csi_msgbuf Structure

Description

cs1_MsGBUF defines the buffer for translated Storage Server message
packets. Itis used in the clnt_call () and svc_getargs () calls to
csi_xdrrequest () and csi_xdrresponse (). See Appendix C: XDR
Translation Functions for details on these functions.

cs1_MsGBuUF should be allocated for the size of its fields plus the size of
the data area desired. The minimum allocation size, described as a
“C” language expression, is

sizeof (CSI_MSGBUF)+MAX MESSAGE_SIZE

MAX MESSAGE_SIZE is defined in the defs.h header file.

Format
typedef struct {
int offset;
int size;
int maxsize ;
int translated_size;
CSI_PAKSTAT packet_status;
CSI_Q MGMT ¢ _mgmt
. char data(l];
} CSI_MSGBUF;
Values

offset is the starting position of data in the buffer, expressed in bytes.
The packet data will start offset number of bytes from the start of data.
The cs1_pak_NETDATAP, supplied in the csi.h header file, can be used
to calculate the starting byte of a packet in data. See Appendix D: CSI
and SSI Required Files for the csi.n header file.

size is the size of the message packet, in bytes, before serialization or
after deserialization.

maxsize is the maximum size of packet data in the buffer. It should
always equal the allocated size of data in bytes.

translated_size is the number of bytes successfully translated during
serialization or deserialization. Comparisons of size to translated_size are
useful for detecting certain error conditions: for example, translated_size
might be less than size during serialization if part of a Storage Server
packet could not be translated but was nevertheless sent.

7-14 9036

CSI Data Structures Message Translation Structures

9036

packet_status is the status of the packet after decoding. Possible values
are:

* CSI_PAKSTAT_XLATE_COMPLETED, if packet translation was
successful.

* CSI_PAKSTAT_XLATE_ERROR, if there was a translation error.

* CSI_PAKSTAT DUPLICATE_PACKET, if a duplicate packet was
detected; only the CSI request header will be translated.

q_mgmt is a data structure dedicated to tracking the retry state of
network packet send attempts for packets residing on the CSI network
output queue. Currently, only the number of transmission attempts is
tracked in the structure variable xmit_tries. xmit_tries is incremented on
each invocation of clnt_call().

data is an area of memory where the message packet is to be stored.
This should be allocated to an area of memory sized

MAX MESSAGE_SIZE bytes or larger. See Common Variables in
Chapter 3 for a definition of MAX MESSAGE_SIZE.

7-15

Message Translation Structures CSI Data Structures

(INTENTIONALLY LEFT BLANK)

7-16 9036

APPENDIX A:
EVENT LOG MESSAGES

EVENT LOG FORMAT

9036

Event Log entries are ASCII text, allowing the Log to be viewed at any
terminal or printed to any printer.

All Event Log entries have a consistent format. Each entry contains a
one-line prefix, followed by one or more lines of message text. Figure
A-1 is an example of some Event Log entries.

mm-dd-yy hh:mm:ss component_name [nn]
module_name: One or more lines of message text ...

06-01-89 17:59:15 CSI[0]:
csi_init(); Initiation started

06-01-89 18:01:02 ACSSA[O0]:
sa_demux: CAP 0, 0: Place cartridges in CAP.

06-01-89 18:02:13 AUDIT[1]:
au_initiate: audit started

Figure A-1. Sample Event Log

The one-line prefix is broken down as follows:

* mm-dd-yy hh:mm:ss are the date and time of entry.
* component_name is an abbreviation for the originating Storage Server
component. This could be AcSLM, ACSSA, CST etc.

* [nn] is the request ID enclosed in square brackets. This ID is
generated by the ACSLM when it receives a valid request and is
displayed by a query request.

The module_name that precedes the message text is the name of the
Storage Server program module that generated the message. This is
included to help a Customer Services Engineer isolate the cause of the

A-1

Event Log Entries Event Log Messages

problem; it is not intended to be used by System Administrators or
library users.

EVENT LOG ENTRIES

The following Event Log messages are of particular interest to a
System Administrator or a programmer. They are not the only ones
that may be written to the Event Log, but they are ones most
frequently sent. Messages not listed here indicate a low-level error
and should be brought to the attention of a Software Support
Representative or a Customer Services Engineer.

The messages are grouped by the software component that generates
them (the component_name in the one-line message prefix). Within
software component, the messages are listed alphabetically. Common
messages which may be generated by any component comprise the
first group.

COMMON ENTRIES — UNSOLICITED MESSAGES

The following are Event Log messages that can occur during Storage
Server processing. The component_name in their message prefix is the
Storage Server component that generated the message. The entries
are listed in alphabetical order. Note: These entries also appear in
the Display Area of the Command Processor as unsolicited messages.

« This message indicates that cartridges are detected in the CAP
during initiation or recovery.

CAP cap_id: Cartridges detected in CAP.

cap_id is the ID of the CAP.

» This message indicates that the specified CAP is ready to receive
cartridges. This message is repeated at approximately one minute
intervals until the CAP door is opened.

CAP cap_id: Place cartridges in the CAP.

cap_id is the ID of the CAP.

» This message indicates that the specified CAP contains cartridges
and is ready for the operator to remove them. This message is
repeated at approximately one minute intervals until the CAP door
is opened.

CAP cap id: Remove cartridges from the CAP.

cap_id is the ID of the CAP.

A-2 . 9036

Event Log Messages Unsolicited Messages

+ This message indicates that the ACSLM is unable to access the
data base. A data base error code, indicating the reason for the
failure, will also be written to the Event Log.

Data Base Failure.
EXEC SQL sql_command

sql_command is the SQL statement on which the error occurred.
Note: The second line of the message is not included in the
Display Area message.

» This message indicates that the library hardware is operable, but
with degraded performance.
type identifier: Degraded mode fault_symptom_code.

type is the device type. identifier is the device ID. fault_symptom_code
is a four-character hexadecimal code that provides a Customer
Services Engineer with information needed to troubleshoot the
problem.

» This message indicates that the specified device has been varied to
the diagnostic state and is therefore available for requests
submitted through the Command Processor only.

type identifier: Diagnostic.
» This message indicates that the specified drive needs to be cleaned.

Drive drive_id: Clean drive.

drive_id is the ID of the library drive.

« This message indicates that the Event Logger is unable to open or
write to the Event Log file. '
Event log access failed.
» This message indicates that the Event Log has reached the
maximum size defined during installation. This message will be

displayed at one minute intervals until you reduce the size of the
Event Log.

Event log is full.

 This message indicates that the ACSLM or ACSSA cannot
communicate with another Storage Server software component.

IPC failure on socket socket id.

socket_id is the ID of the failing socket.

9036 A-3

Unsolicited Messages Event Log Messages

« This message indicates that a library hardware error occurred.
type identifier: Library error status.

rype is the device type. identfier is the device ID. status is an
explanation of the error.

» This message indicates that the library configuration specified in
the data base is not the same as that defined in the LMU by a
Customer Services Engineer, or if a component appears in the data
base but fails to respond to LMU commands. This error causes the
Storage Server to terminate.

Library configuration error.
» This message indicates that the specified LSM has failed to recover
in-transit cartridges during Storage Server recovery.

LSM Ism_id: In-transit cartridge recovery incomplete.

Ism_id is the ID of the LSM containing the in-transit cartridges.

» This message indicates that the specified device has been varied
offline. See the vary command description for additional details.

type identifier: Offline.

type is-the device type. identifier is the device ID.

» This message indicates that the specified device has been varied
online. See the vary command description for additional details.

type identifier: Online.

nype is the device type. identifier is the device ID.

» This message indicates that the ACSLM has been placed in the
idle state and is therefore unavailable for requests using library
resources.

Server System idle.

» This message indicates that the ACSLM is in an idle-pending state
and is therefore unavailable for requests using library resources.

Server system idle is pending.

* This message indicates that a timeout has occurred during network
data handling. Data may have been lost.

Server System network interface timeout.

» This message indicates that Storage Server recovery has been
completed successfully.

Server system recovery complete.

A4 9036

Event Log Messages Common Entries

» This message indicates that Storage Server recovery has failed.
Server system recovery failed.

» This message indicates that Storage Server recovery has been
initiated.
Server system recovery started.

» This message indicates that the CSI has encountered a Remote
Procedure Call (RPC) failure. Data may have been lost.

Server system RPC failure.

» This message indicates that the ACSLM has been placed in the run
state.

Server system running.

COMMON ENTRIES

ACSLH

9036

« This entry indicates that a process has received an invalid status
from another process.

calling_module: module_called unexpected status = status

calling_module is the software module making the call. module_called
" is the module that was called. status is the invalid status received.

The following messages are generated by the ACS Library Handler
(ACSLH) component of the ACSLM. The component_name in their
message prefix is acsrH. The entries are listed in alphabetical order.

» This entry indicates that the ACSLH has detected an invalid CAP
door status value in an LSM status response from the LMU.
bad LSM STATUS cap door status value.
» This entry indicates that the ACSLH has detected an invalid LSM
door status value in an LSM status response from the LMU.
bad LSM STATUS door status value.
+ This entry indicates that the ACSLH has detected an invalid hand
indicator value in an LSM status response from the LMU.
bad LSM STATUS hand n indicator value.

n is the number of the robot hand with the invalid indicator. » is
either 0 or 1.

A-5

ACSLH

A-6

Event Log Messages

This entry indicates that the ACSLH has detected an invalid hand
status value in an LSM status response from the LMU.

bad LSM STATUS hand n status value.

n is the number of the robot hand with the invalid status. » is either
0 or 1.

This entry indicates that the ACSLH has detected an invalid line
value in an LSM status response from the LMU.
bad LSM STATUS line value.

This entry indicates that the ACSLH has detected an invalid ready
value in an LSM status response from the LMU.

bad LSM STATUS ready value.

This entry indicates that the ACSLH has experienced an overflow
in its message buffer. The LMU will automatically resubmit the
message to the ACSLH, so there should be no loss of data. This
message should be a cause for concern only if it appears frequently,
in which case you should contact your Customer Services Engineer.

buffer overrun ... lmu messages will be lost.

The ACSLH has received a message from the LMU that it is unable
to interpret. This may be a problem with the way the ACSLH is
handling LMU messages.

Invalid message code received: message_code.

message_code is the code received.

The following entry indicates a problem with the RS423 line that
runs between the server system and the LMU. This message is
issued after the ACSLH has been unable to establish
communications with the LMU for approximately five minutes. Itis
reissued every five minutes thereafter until communications are
reestablished.

LMU communication failure.

The following entry indicates that the Storage Server data base -
indicates an LSM that does not appear in the library configuration
defined in the LMU. This error will most likely occur in response to
a library request.

lsm: Ism_id not configured !!!
Ism_id is the LSM ID from the data base.

The following entry indicates that the number of circuits defined in
the library configuration exceeds the maximum limit.

maximum number of circuits are already open.

9036

Event Log Messages

ACSLM

9036

ACSLM

The following entry indicates that the library configuration defined in
the LMU indicates a Pass-Thru Port (PTP) that the LSM robot is
unable to locate. This error will most likely occur during Storage
Server initialization or recovery.

No Pass-Through ports exist.

The following entry indicates a problem with the RS423 line that
runs between the server system and the LMU. This message is
issued after the ACSLH has been unable to establish
communications with the LMU for approximately one minute. It is
reissued every minute thereafter until communications are
reestablished.

Possible LMU communication failure.

This entry indicates that the ACSLH did not detect a “start of
frame” character at the beginning of a message from the LMU. The
LMU will automatically resubmit the message to the ACSLH, so
there should be no loss of data. This message should be of concern
only if it appears frequently, in which case you should contact your
Customer Services Engineer.

Start of frame character not found.

This entry indicates that the ACSLH has detected an invalid error
response from the LMU.

unexpected LMU error response lmu_response.
Imu_response is the response received from the LMU.

This entry indicates that the ACSLH has detected an invalid
response from the LMU.

unexpected response received (tran_code=Ilmu_response) .

Imu_response is the response code received from the LMU.

The following messages are generated by the ACSLM. The
component_name in their message prefix is acstM. The entries are listed
in alphabetical order.

[]

This entry indicates that the ACSLM has received a message that
is too small from a CSI or the ACSSA. The ACSLM does not
attempt to interpret the message because it does not have enough
information.

byte count (byte_count) too small for min packet
size (min_size) ignored.

A-7

ACSLM

A-8

Event Log Messages

byte_count is the number of bytes in the message. min_size is the
minimum size of a valid, readable message.

This entry indicates that the CAP door has been closed after having
been opened.

CAP Door Closed.

This entry indicates that the CAP door has been opened.
CAP Door Opened.

This entry indicates that the LSM access door has been closed
after having been opened.

LH_MSG_TYPE _DOOR_CLOSED received for Ism_id.
Ism_id is the LSM that has been closed.
This entry indicates that the LSM access door has been opened.
LH_MSG_TYPE_DOOR_OPENED received for Ism_id.
Ism_id is the LSM that has been opened.
This entry indicates that an LMU has been placed online.
LH_MSG_TYPE_LMU READY received for acs_id.
acs_id is the ACS to which the LMU is connected.
This entry indicates that the LSM has been taken offline.
LH_MSG_TYPE_LSM_NOT_READY received for Ism_id.
Ism_id is the LSM that has gone offline.
This entry indicates that the LSM has been placed online.
LH_MSG_TYPE_LSM_READY received for Ism_id.
Ism_id is the LSM that is online.

This entry indicates that a port between the server system and the
LMU has been taken offline.

LH_MSG_TYPE_PORT_OFFLINE received for port_id.

port_id is the identifier of the port that has gone offline.

This entry indicates that the ACSLM has encountered a fatal error,
such as a data base failure or an inconsistency in the library
configuration. This is a fatal error to the ACSLM. The ACSLM will
automatically initiate recovery processing if it is able. If recovery
does not start automatically, the system must be rebooted.

Severe Error (status), Exiting to ACSSS.

status is a message indicating the nature of the severe error.

9036

Event Log Messages ACSSA

« This entry indicates that the ACSLM has received a library
degraded mode message with an invalid device type.

Unexpected LH_ADDR_TYPE (device_type) received on
DEGRADED MODE Msg.

device_type is the invalid device type received in the message.

» This entry indicates that the ACSLM has detected a request with
an IPC_HEADER module_type not set to TYPE_CSI or TYPE_SA. The
ACSLM will only process requests received from a client
application through the CSI or from a user through the ACSSA.

Unsupported module type module type detected: discarded

module_type is the invalid entry.

ACSSA

The following messages are generated by the ACSSA. The
component_name in their message prefix is Acssa. The entries are listed
in alphabetical order.

» This entry indicates that the ACSSA has received a message
packet with an IPC identifier not found in the request queue. The
ACSSA is unable to process the message.

Unknown packet received, command = command,
identifier = ipc_id.

command is the entry in the MESSAGE_HEADER. ipc_id is the identifier
assigned to this message (used to synchronize requests and
responses).

AUDIT

The following entries are generated by the audit request. The
component_name in their message prefix is aupiT. The entries are listed
in alphabetical order.

» This entry indicates that audit processing has been cancelled. The
data base may have discrepancies or errant cartridges may not
have been ejected, therefore the audit should be rerun.

Audit cancelled

» This entry indicates that audit processing has completed
successfully.

Audit completed

9036 A-9

AUDIT Event Log Messages

+ This entry indicates that audit processing has terminated due to
some error condition. The description of the error is displayed in
the Command Area. The data base may have discrepancies or
errant cartridges may not have been ejected, therefore the audit
should be rerun.

Audit failed

« This entry indicates that audit processing has begun.
Audit started
» This entry indicates that the robot has found a cartridge with a
duplicate external label.
Cartridge vol_id ejected from location cell_id,

duplicate label.

The vol_id is the tape cartridge with the duplicate label. The cell_id
is the storage cell location where the cartridge was found.

» This entry indicates that the robot has encountered a cartridge with
an unreadable or nonexistent external label.
Cartridge vol_id ejected from location cell id,
unreadable label.

The'vol_id is the external label of the tape cartridge; question marks
(?) are substituted for the characters that the robot is unable to
read. The cell_id is the storage cell location where the cartridge
was found.

« This entry indicates that a tape cartridge not listed in the data base
is found in the ACS. The cartridge is added to the data base.

Cartridge vol_id found at location cell id.
The vol_id is the external label of the tape cartridge. The cell_id is
the storage cell location where the cartridge was found.

« This entry indicates that a tape cartridge is not in the location
defined by the data base. The cartridge is not moved in the ACS;
instead, the data base is updated to the new storage location.

Cartridge vol_id, new location cell_id

The vol_id is the external label of the tape cartridge. The cell_id is
the assigned storage cell location of the cartridge.

+ This entry indicates that a tape cartridge listed in the data base is
not found in the ACS. The cartridge is removed from the data base.

Cartridge vol_id not found

The vol_id is the external label of the tape cartridge.

A-10 9036

Event Log Messages

9036

AUDIT

This entry indicates that another process has reserved a cell record
in the data base and the audit process is unable to access it after
the appropriate number of retries and timeouts. The audit
continues with the next cell.

cell cell id reserved by another process.

cell_id is the ID of the cell record.

This entry indicates that the LSM robot has unexpectedly found a
cartridge in a CAP cell during ejection of cartridges. This will occur
if the operator did not completely empty the CAP during a previous
eject operation. The audit process will issue an unsolicited
message to empty the CAP, and will then resume ejecting

cartridges after the CAP door is closed.

Destination location full: CAP cell cell _id.

cell_id is the location of the CAP cell.

This entry indicates that the LSM robot has detected that a storage
cell is missing from the LSM. This is a library configuration error
and causes the Storage Server to terminate. The audit should be
rerun after the error has been corrected and the Storage Server has
gone through recovery.

missing cell cell id detected.

cell_id is the location of the missing cell.

This entry indicates that a spawned audit process has sent an
incomplete or unintelligible message to the parent audit process.
As a result, some errant cartridges may not be ejected. The audit
should be rerun, unless the audit_status is Audit complete.

audit_status.
Not all cartridges were ejected, messages lost.

audit_status can be either Audit cancelled, Audit complete, OT
Audit failed.

This entry indicates that the audit process is unable to eject
cartridges. Possible causes are the LSM being forced offline or
suffering a failure while the audit is ejecting cartridges. The audit
should be rerun, unless the audit status is Audit complete.

audit_status .
Not all cartridges were ejected, status = status_msg.

audit_status can be either Audit cancelled, Audit complete, OT
Audit failed. status_msg is the reason for the failure.

A-11

Csi

®

CsSl

Event Log Messages

This entry indicates that a cartridge marked for ejection is no longer
found in its storage cell when the robot goes to move it to the CAP.
The audit terminates and should be rerun.

Source location empty: Cell cell id.

cell_id is the assigned storage cell location of the cartridge.

The following messages are generated by the CS1. The component_name
in their message prefix is cs1. The entries are listed in alphabetical
order. Note: Since these messages are of special interest to SSI
programmers, the message status code for each is shown under the
message text.

L 4

A-12

This entry indicates that the CSI has detected a message from the
ACSLM but is unable to read it.

Cannot read message from the ACSLM: discarded.
MSG_ACSLM_READ FAILURE

This entry indicates that the CSI is unable to reply to an RPC
message because the call to the svc_sendreply () function has
failed. See the Sun Network Programming Manual, “Remote
Procedure Call Programming Guide.” '

Cannot reply to RPC message.
MSG_RPC_CANT_REPLY

This entry indicates that the ACSLM IPC mechanism is unable to
accept a message from the CSI. The CSI discards the message
after the appropriate number of retries with timeouts.

Cannot send message to ACSLM: discarded.
MSG_ACSLM SEND_FAILURE

This entry indicates that the CSI is unable to communicate with the
ACSSA. The CSI discards the message after the appropriate
number of retries with timeouts.

Cannot send message to ACSSA: discarded.
MSG_SEND_ACSSA_ FAILURE

This entry indicates that the NI’s communications mechanism is
unable to accept a message from the CSI. The CSI discards the
message after the appropriate number of retries with timeouts.

Cannot send message to NI: discarded.
MSG_SEND_NI_FAILURE

9036

Event Log Messages

9036

csl

This entry indicates that the CSI was unable to put a client’s return
address on its queue because the call to the c1_gm create()
common library function has failed.

Can’t add member to queue Q-id: queue_id.
MSG_QUEUE_MEMBADD FAILURE ‘

queue_id is the identifier of the CSI connection queue.

This entry indicates that the CSI is unable to delete a message in
an internal queue. This is a problem with the c1_qm mdelete ()
common library function.

Can’t delete Q-id queue_id, Member: member_id
MSG_DELETE QMEMBER FAILURE

queue_id is the identifier of the CSI connection queue. member_id is
the ID of the queue member it is trying to delete.

This entry indicates that the CSI is unable to get status information
because the call to the c1_gm_mstatus () common library function
has failed.

Can’t get queue status Q-id: queue_id, Member: member_id
MSG_QUEUE_STATUS_FAILURE

queue_id is the identifier of the CSI connection queue. member_id is
the ID of the queue member for which the CSI is seeking status
information. .

This entry indicates that the CSI is unable to find a specific member
in an internal queue. This is a problem with the c1_gm_maccess ()
common library function.

Can’t locate queue Q-id queue id, Member: member_id.
MSG_LOCATE_QMEMBER_FAILURE

queue_id is the identifier of the CSI connection queue. member_id is
the ID of the queue member it is trying to locate.

This entry indicates that the call to the svc_register () function
has failed. See the Sun Network Programming Manual, “Remote
Procedure Call Programming Guide.”

Can’t register RPC TCP service.
MSG_RPCTCP_SVCREGISTER_FAILED

This entry indicates that the call to the svc_register () function
has failed. See the Sun Network Programming Manual, “Remote
Procedure Call Programming Guide.”

Can’t register RPC UDP service.
MSG_RPCUDP_SVCREGISTER_FAILED

A-13

csl Event Log Messages

« This entry indicates that the RPC call to the svctcp_create ()
function has failed. See the Sun Network Programming Manual,
“Remote Procedure Call Programming Guide.”

Create of RPC TCP service failed,

Address: address, Port: port
MSG_RPCTCP_SVCCREATE_FAILED

address is the address of the host, expressed as an unsigned long
integer. port is the port number of the client where a connection was
attempted.

» This entry indicates that the call to the svcudp_create () function
has failed. See the Sun Network Programming Manual, “Remote
Procedure Call Programming Guide.”

Create of RPC UDP service failed,

Address: address, Port: port
MSG_RPCUDP_SVCCREATE_FAILED

address is the address of the host, expressed as an unsigned long
integer. port is the port number of the client where a connection was
attempted.

+ This entry indicates that the CSI was unable to create the network

output queue which is used for messages between the CSI and the
SSL

Creation of network output queue failed.
MSG_CREATE_NI_OUTQ_FAILURE

» This entry indicates that either the CSI has encountered a process
that is older than the connection time limit, or that the maximum
number of timeouts and retries has been applied to a packet on the
CSI network output queue. The connection limit is defined by the
CSI_CONNECT_AGETIME environment variable in the rc.acsss file.
The timeout and retry limits are defined by the cSI_RETRY_TIMEOUT
and CSI_RETRY TRIES environment variables, also defined in the
rc.acsss file. The CSI drops the packet.

Dropping from Queue: Address: address, Port: port_id,

ssi_identifier: ssi_id, Protocol: protocol
MSG_QUEUE_ENTRY DROP

address is the return address of the requesting SSI, expressed as an
unsigned long integer. port_id is the identifier of the port on the
server system that provides communications with the SSI. ssi_id is
the identifier for the SSI. protocol is type of network transmission
protocol.

A-14 . 9036

Event Log Messages Csl

» This entry indicates that the CSI has received a duplicate IPC
packet. It automatically drops the duplicate packet.

Duplicate packet from ACSLM detected: discarded.
MSG_DUPLICATE ACSLM PACKET

» This entry indicates that the CSI has received a duplicate packet
from the Network Interface. The duplicate is dropped.
Duplicate packet from Network detected: discarded
address: address, process—-id: process_id,

sequence_number: seq_nbr
MSG_DUPLICATE_NI_PACKET

address is the return address of the packet. process_id is the process
ID of the packet. seq nbr defines the ordering of packets sent via
IPC mechanisms.

+ This entry indicates that the call to the c1_gm_init () or
cl_gm_create () common library function has failed while trying to
create the internal SSI address connection queue.

Initialization of connect queue failed.
MSG_CREATE_CONNECTQ_FAILURE

+ This entry indicates that CSI initiation has completed successfully.
Communications with the ACSLM have been successfully
established, and the CSI has been established as an RPC server.

Initiation Completed.
MSG_INITIATION COMPLETED

* This entry indicates that CSI initiation has failed.
Initiation of CSI Failed.
MSG_INITIATION FAILURE

+ This entry indicates that CSI initiation has been started.
Initiation Started.

MSG_INITIATION STARTED

* This entry indicates that the CSI has received a request packet
from the SSI with an unrecognizable command specified in the
MESSAGE_HEADER portion of the CSI_REQUEST HEADER.

Invalid command.
MSG_INVALID COMMAND

9036 A-15

csi . Event Log Messages

» This entry may indicate that neither environment variable for the
two available communication services has been defined; these
variables are cSI_TCP_RPCSERVICE and CSI_UDP_RPCSERVICE in the
rc.acsss file. This entry may also indicate that a request received
from the SSI has incorrect values specified in the protocol-
dependent portions of the CSI_HEADER.

Invalid communications service.
MSG_INVALID_COMM_SERVICE

 This entry indicates that the CSI has received a message that is
too small. The CSI is unable to use this message, therefore it
discards it.
Invalid message size, size, from NI: discarded.
MSG_MESSAGE_SIZE

size is the size of the message received from the NL

» This entry indicates that the CSI has received a message that too
large. The CSI truncates the message to a valid size and attempts
to use it.

Invalid message size, size, from NI: truncated.
MSG_MESSAGE_SIZE_TRUNC

size is the size of the message received from the NI

» This entry indicates that an unsupported network protocol has been
passed to the csi_rpccall () function.

Invalid network protocol.
MSG_INVALID_PROTO

» This entry indicates that the calculated network timeout is not a
usable number. The timeout is calculated by combining the figures
assigned to the CSI_RETRY_TIMEOUT and CSI_RETRY TRIES
environment variables in the rc.acsss file.

Invalid network timeout value.
MSG_INVALID NI _TIMEOUT

» This entry indicates that a program is trying to use the CSI but it is
not using one of the two valid procedure numbers.

Invalid procedure number.
MSG_RPC_INVALID PROCEDURE

» This entry indicates that the CSI has received a packet from the NI
with either an unrecognizable TYPE in the IPC_HEADER portion of the
CSI_REQUEST_HEADER Or an unrecognizable IDENTIFIER type in the
message packet.

Invalid type.
MSG_INVALID TYPE

A-16 9036

Event Log Messages Csl

« This entry indicates that the CSI has detected a message from the
ACSLM for an invalid or unknown SSI client. The message is

discarded.

Message for unknown client discarded.
MSG_UNDEF_CLIENT

» This entry indicates that the CSI has encountered an operating
system error. This message is indicative of a problem with the
operating system itself, not with the CSI or the Storage Server.

Operating system error. error_nbr
MSG_SYSTEM_ERROR

error_nbr is the UNIX error number; see your UNIX documentation
for a description.

+ This entry indicates that the attempted TCP connection is not
possible.
RPC TCP client connection failed: rpc_error_msg,

Address: address, Port: port
MSG_RPCTCP_CLNTCREATE

rpc_error_msg is a detailed error message generated by the RPC
service itself. In most cases this message will be Program number
not registered, which indicates that either the CSI or the SSI is
not running. address is the address of the client host, expressed as
an unsigned long integer. port is the port number of the client
where a connection was attempted.

+ This entry indicates that the attempted UDP connection is not
possible.
RPC UDP client connection failed: rpc_error_msg,

Address: address, Port: port
MSG_RPCUDP_CLNTCREATE

rpc_error_msg is a detailed error message generated by the RPC
service itself. In most cases this message will be Program number
not registered, which indicates that the CSI or SSI is not
running. address is the address of the client host, expressed as an
unsigned long integer. port is the port number of the client where
a connection was attempted.

 This entry indicates that The CSI has begun the process of purging
old processes from its connection queue. The CSI routinely
searches for processes older than cSI_CONNECT AGETIME and
purges them.

Starting cleanup of connection queue, Q-id queue_id
MSG_QUEUE_CLEANING_START

9036 A-17

Csi Event Log Messages

queue_id is the identifier of the CSI connection queue.

« This entry indicates that CSI termination has been completed
successfully.

Termination Completed.
MSG_TERMINATION_ COMPLETED

« This entry indicates that CSI termination has been started.

Termination Started.
MS G_TERMINATION_STARTED

+ This entry indicates that the CSI has encountered a message from
the ACSLM or the NI that cannot be delivered because of incorrect
message format or a CSI failure. The message is discarded.

Undefined messaged detected: discarded.
MSG_UNDEF_MSG

» This entry indicates that the CSI has received a signal that it did
not expect.

Unexpected signal caught, value: signal.
MSG_UNEXPECTED_SIGNAL

signal is the signal value the CSI has received.

» This entry indicates that the CSI has been initiated. It notifies you
that an RPC number previously assigned to the CSI still exists.
The CSI unmaps this number and remaps to a new one as a normal
part of the initiation.

Unmapped previously registered RPC service.
MSG_UNMAPPED_ RPCSERVICE

» This entry indicates that the TYPE in the IPC_HEADER is not
supported by the CSI. The CSI only recognizes IPC input from the
ACSLM, therefore it discards any messages where TYPE is not set
to TYPE_LM.

Unsupported module type module detected: discarded.
MSG_UNDEF_MODULE_TYPE

module is the TYPE value in the IPC_HEADER.

+ This entry indicates that a packet that the CSI XDR translation
routines are unable to translate a message completely because it
has been damaged. The CSI attempts to translate the message up
to the point where the error was detected. If at least the
CSI_REQUEST_HEADER portion of the message is translatable, the
message is forwarded, otherwise it is dropped.

XDR message translation failure.
MSG_XDR_XLATE FAILURE

A-18 9036

Event Log Messages DISMOUNT

DISMOUNT

EJECT

9036

The following entries are generated by the dismount request. The
component_name in their message prefix is brsMounT. The entries are
listed in alphabetical order.

» This entry indicates that the storage cell to which a cartridge was
to be dismounted is full, although the data base indicates it was
empty. The robot will retry the dismount until it finds an available
cell. ~

Destination location full: cell_id

cell_id is the storage cell location indicated in the data base. An
audit should be performed on this cell location in order to reconcile
the data base with the physical contents of the cell.

» This entry indicates that the LSM robot was unable to find a tape
cartridge in a tape drive, although the data base indicates that it is
in the drive. The request fails.

Source location empty: drive_id

drive_id is the ID of the tape drive.

The following entries are generated by the eject request. . The
component_name in their message prefix is EJECT. The entries are listed
in alphabetical order.

» This entry indicates that the LSM robot unexpectedly found a
cartridge in a CAP cell. This will occur if the operator did not
completely empty the CAP during a previous eject operation. The
robot will attempt to place the cartridge in the next CAP cell. If itis
unable to find an available CAP cell, the eject process will issue
an unsolicited message to empty the CAP.

CAP cell destination location occupied.
+ This entry indicates that a client application submitted an e ject
request while the LSM was in the diagnostic state. The request is

rejected; only requests submitted from the Command Processor are
processed while the LSM is in the diagnostic state.

LSM Ism_id STATE_DIAGNOSTIC.
Ism_id is the ID of the LSM.

+ This entry indicates that the LSM is offline and is therefore
unavailable for ejecting tape cartridges.

LSM Ism_id STATE_OFFLINE.

A-19

ENTER Event Log Messages

Ism_id is the ID of the LSM.

» This entry indicates that the LSM robot was unable to find a tape
cartridge in the location indicated by the data base. The request
fails.

Source location empty: cell _id

cell_id is the storage cell location indicated in the data base. If you
suspect that the cartridge is in the library an audit should be
performed on the entire library in order to reconcile the data base
with the physical contents of the cell.

ENTER

The following entries are generated by the enter request. The

component_name in their message prefix is ENTER. The entries are listed

in alphabetical order.

+ This entry indicates that the LSM robot has found a tape cartridge
in a location that the data base indicated was empty. The tape
cartridge is not entered into the library.

Destination location full: cell_id
cell_id is the storage cell location indicated in the data base.
» This entry indicates that the LSM is offline and is therefore
unavailable for entering tape cartridges.
LSM Ism_id = STATE_OFFLINE.
Ism_id is the ID of the LSM.
MOUNT

The following entries are generated by the mount request The
component_name in their message prefix is MounT. The entries are listed
in alphabetical order.

» This entry indicates that the LSM robot has found a cartridge in the
tape drive, although the data base indicates that the drive is
available. The request fails.

Destination location full: drive_id.

drive_id is the ID of the tape drive. An audit should be performed in
order to reconcile the data base with the physical contents of the

library.

A-20 . 9036

Event Log Messages

L J

INITIATION

This entry indicates that the LSM robot was unable to find the tape
cartridge in the location indicated by the data base. The request
fails.

Source location empty: cell id.

cell_id is the storage cell location indicated in the data base. If you
suspect that the cartridge is in the library an audit should be
performed on the entire library in order to reconcile the data base
with the physical contents of the cell.

STORAGE SERVER INITIATION

The following messages are generated by the Storage Server Initiation
process performed by the ACSLM. The component_name in their
message prefix is Acsss_paemoN. The entries are listed in alphabetical
order.

9036

This entry indicates that the daemon has received an unexpected
exit status from a Storage Server process.

exit status (status), status_code, received from process_id.

status is the numeric exit status from the process. status_code is the
Storage Server status code that was generated as a result of the
exit. process_id is the Storage Server process.

This entry indicates that Storage Server initiation has completed
successfully.

Initiation completed.

This entry indicates that Storage Server initiation has begun.

Initiation started, acsss_version.

acsss_version is the version number of the Storage Server software.

This entry indicates that a Storage Server process has been
automatically restarted.

process_id restarted.
process_id is the Storage Server process.

This entry indicates that a Storage Server process has been
terminated.

signal (signal) terminated process id.

signal is the UNIX signal that caused the termination. process_id is
the Storage Server process that was terminated.

This entry indicates that Storage Server termination has begun.

Termination invoked, status_code.

A-21

RECOVERY , Event Log Messages

status_code is the Storage Server status code which indicates the
reason for the termination.

STORAGE SERVER RECOVERY

The following entries are generated by the Storage Server Recovery
process performed by the ACSLM. The component_name in their
message prefix is RECOVERY. The entries are listed in alphabetical
order.

 This entry indicates that the ACS configuration in the Storage
Server data base does not match the configuration defined in the
LMU. Recovery processing terminates.

ACS (acs_id) configuration failed to verify.

acs_id is the unique ID of the ACS.

» This entry indicates that an ACS status in the data base is changed
from the diagnostic state to offline. The ACS was in the diagnostic
state at the time the Storage Server went into recovery, but it will
be offline when recovery completes.

ACS acs_id in STATE_DIAGNOSTIC, marked STATE_ OFFLINE.

acs_id is the ACS that was updated.

» This entry indicates that an ACS status in the data base is changed
from the recovery state to online. The ACS was in the recovery
state at the time the Storage Server went into recovery, but it will
be online when recovery completes.

ACS acs_id in STATE_RECOVERY, marked STATE_ONLINE.

acs_id is the ACS that was updated.

» This entry indicates that the server system is not able to
communicate with any ports for the specified ACS. Recovery will
continue, but the ACS and its LSMs are marked offline in the data
base.

ACS acs_id, no ports online, marked offline.
acs_id is the ACS that was updated.

» This entry indicates that the server system is not able to
communicate with a port to an ACS. The port is marked offline in
the data base/

ACS acs_id, port <port id> failed to go online.

acs_id is the unique ID of the ACS. port_id is the port that failed to
go online.

A-22 9036

Event Log Messages

9036

RECOVERY

This entry indicates that the recovery process was unable to
successfully verify the drive configuration in the data base against
the configuration defined in the LMU. This may be because the
LSM is offline or because there is an actual configuration mismatch.

DRIVE configuration failed to verify.
This entry indicates that a drive has a status of empty, but was

marked in use in the data base. The data base is updated to
indicate that the drive is available.

drive (drive_id) error, status unloaded, marked empty.

drive_id is the drive that was updated.

This entry indicates that a drive for an online LSM has a status of
empty or not communicating, but was marked in use in the data
base. The data base is updated to indicate that the drive is
available, and any volume records referencing the drive are deleted
from the data base.

drive (drive_id) marked available.

drive_id is the drive that was updated.

This entry indicates that a drive for an offline LSM is updated in the
data base to indicate that it is available. The LMU cannot report
drive statuses for an offline LSM; therefore all drives for the LSM
are marked available in the data base.

drive (drive_id) marked available, LSM offline.

drive_id is the drive that was updated.

This entry indicates that a drive has a status of loaded, but was
marked available in the data base. The data base is updated to
indicate that the drive is in use.

drive (drive_id) marked in use, loaded.

drive_id is the drive that was updated.

This entry indicates that a drive has a status of in use and
unloaded, but was marked available in the data base. The external
label of the cartridge in the drive is readable. The data base is
updated to indicate that the drive is in use.

drive (drive_id) readable, marked in use.

drive_id is the drive that was updated.

A-23

RECOVERY

A-24

Event Log Messages

This entry indicates that a drive has a status of in use and

unloaded, but was marked available in the data base. In addition,
the LSM robot is unable to read the external label of the cartridge in
the drive. The data base is updated to indicate that the drive is in
use.

drive (drive_id) unreadable, marked in use.

drive_id is the drive that was updated.

This entry indicates that a cartridge that was selected for use by a
request process is not physically located in the storage cell
indicated by the data base. The volume record is deleted from the
data base. '

in-transit volume (vol_id) deleted.

vol_id is the volume record that was deleted.

This entry indicates that a cartridge that was selected for use by a
request process is not physically located in the storage cell
indicated by the data base. In addition, the LSM is offline. The
volume record is deleted from the data base.

in-transit volume (vol_id) deleted from location cell
(cell_id), LSM offline.

vol_id is the volume and cell_id is the cell location updated.

This entry indicates that a cartridge that was selected for use by a
request process is not physically located in the tape drive indicated
by the data base. In addition, the LSM is offline. The volume
record is deleted from the data base.

in-transit volume (vol_id) deleted from location drive
(drive_id), LSM offline.

vol_id is the volume and drive_id is the tape drive updated.

This entry indicates that a cartridge that was selected for use by a
request process is found in the storage cell indicated by the data.
base. The volume record is updated to indicate that the cartridge is
in the storage cell, not in-transit. '

in-transit volume (vol_id) marked home.

vol_id is the volume record that was updated.

This entry indicates that a cartridge with an unreadable label is
found in a storage cell location that the data base indicates contains
a cartridge that was reserved by a request process. The volume
record is updated to indicate that the selected (in-transit) cartridge
is in the storage cell.

in-transit volume (vol_id) unreadable, marked home.

9036

Event Log Messages

9036

RECOVERY

vol_id is the volume record that was updated.

This entry indicates that the LSM configuration in the data base
does not match the configuration defined in the LMU. Recovery
processing terminates.

LSM configuration failed to verify.
This entry indicates that an LSM status in the data base is changed
from the diagnostic state to offline. In addition, the ACS is online.

The LSM was in the diagnostic state at the time the Storage Server
went into recovery, but it will be offline when recovery completes.

LSM Ism_id in STATE_DIAGNOSTIC, marked STATE_OFFLINE.

Ism_id is the LSM that was updated.

This entry indicates that an LSM status in the data base is changed
from the recovery state to offline. In addition, the ACS is online.
The LSM was in the recovery state at the time the Storage Server
went into recovery, but it will be offline when recovery completes.

LSM Ism_id in STATE_RECOVERY, marked STATE_ONLINE.

Ism_id is the LSM that was updated.

This entry indicates that the server system is not able to
communicate with any ACS. Recovery continues, but all ACSs and
their LSMs are marked offline.

No server ports online.

This entry indicates that a cell marked reserved in the data base is
found to be empty. The cell record is updated to empty.

reserved cell (cell id) marked empty.

cell_id is the cell record that was updated.

This entry indicates that a cell marked reserved in the data base is
updated to empty because the LSM is offline. The recovery process
is unable to verify the cell contents of an offline LSM.

reserved cell (cell id) marked empty, LSM offline.
cell_id is the cell record that was updated.

This entry indicates that a cell marked reserved in the data base is
found to contain a cartridge with a readable label. The cell record is
updated to full.

reserved cell (cell_id) readable, marked full.

cell_id is the cell record that was updated.

A-25

RECOVERY Event Log Messages

« This entry indicates that a cell marked reserved in the data base is
found to contain a cartridge with an unreadable label. The cell
record is updated to full.

reserved cell (cell id) unreadable, marked full.

cell_id is the cell record that was updated.

« This entry indicates that recovery processing terminates because
the ACSLM is unable to receive a response from the ACS Library
Handler (ACSLH).

timed out awaiting ACSLH response.

+ This entry indicates that an LSM has failed to vary online.
unexpected identifier status = status_code for LSM Ism_id

status_code is the final status of the LSM. Ism_id is the unique ID for
the LSM.

» This entry indicates that a drive marked as containing a tape
cartridge is found to be empty. The volume record is deleted from
the data base.

volume (vol_id) not in drive (drive_id), deleted
vol_id is the volume record that was deleted. drive_id is the tape
drive that the data base indicated contained the cartridge.

» This entry indicates that a cell or drive marked reserved is found to
contain a tape cartridge that does not exist in the data base. A
record is created for the new volume.

volume (vol_id) record created.
vol_id is the volume record that was created.

 This entry indicates that a cell or drive marked reserved is found to
contain a different tape cartridge than the one indicated in the data
base. The data base is updated with the correct volume ID.

volume (vol_id) record updated.

vol_id is the volume record that was updated.

A-26 . 9036

Event Log Messages

VARY

VARY

The following entries are generated by the vary request. The
component_name in their message prefix is vary. The entries are listed in

alphabetical order.

L]

9036

This entry indicates that a client application submitted a vary
request while the ACS was in the diagnostic state. The request is
rejected; only requests submitted from the Command Processor are
processed while the ACS is in the diagnostic state.

ACS acs_id incorrect requestor type: vary disallowed

acs_id is the ACS in the request.

This entry indicates that a vary request was received while the
ACS was in the recovery or offline-pending state. The request is
rejected.

ACS acs_id is in transitional state: vary disallowed

acs_id is the ACS in the request.

This entry indicates that a vary offline request was received
while the ACS was already in the offline state. The request is
rejected.

ACS acs_id is offline: vary disallowed.

acs_id is the ACS in the request.

This entry indicates that a request was received to vary offline the
last online port for an online ACS. The request is rejected. The
ACS must be varied offline before the last online port can be varied
offline.

Attempted to vary last port port id for online ACS:
vary disallowed.

port_id is the port in the request.

This entry indicates that a device was forced offline while it was in
the offline-pending state. The vary request that placed the device
in the offline-pending state is overridden.

Current vary request overidden by a vary with the
FORCE option.

This entry indicates that a client application submitted a vary
request while the drive was in the diagnostic state. The request is
rejected; only requests submitted from the Command Processor are
processed while the drive is in the diagnostic state.

Drive drive_id incorrect requestor type: vary
disallowed.

A-27

VARY Event Log Messages

drive_id is the drive in the request.

» This entry indicates that a vary request was received against a
tape drive that the data base indicates is in use.. The request is
rejected.

Drive drive_id not available: vary disallowed.
drive_id is the drive in the request.

» This entry indicates that a request to vary an LSM offline was
processed to completion, but the LSM failed to vary offline.

LSM: Ism_id failed to vary offline.

Ism_id is the LSM in the request.

» This entry indicates that a request to vary an LSM online was
processed to completion, but the LSM failed to vary online.

LSM: Ism_id failed to vary online after an online
request.

Ism_id is the LSM in the request.

+ This entry indicates that a client application submitted a vary
request while the LSM was in the diagnostic state. The request is
- rejected; only requests submitted from the Command Processor are
processed while the LSM is in the diagnostic state.

LSM Ism_id incorrect requestor type: vary disallowed.

Ism_id is the LSM in the request.

» This entry indicates that a vary request was received while the
LSM was in the recovery or offline-pending state. The request is
rejected.

LSM Ism id is in transition state: vary disallowed.

Ism_id is the LSM in the request.

» This entry indicates that in-transit cartridge recovery completed
successfully while an LSM was varied online.

LSM Ism_id: recovery complete.

Ism_id is the LSM varied online.

» This entry indicates that the LSM robot was unable to dispose of
in-transit cartridges while an LSM was varied online. The LSM is
successfully brought online, but there may be cartridges left in the
robot’s hands.

LSM [sm_id: recovery incomplete.

Ism_id is the LSM varied online.

A-28 9036

Event Log Messages VARY

» This entry indicates that, during LSM recovery, the robot finds a
cartridge in-transit, but the data base indicates that the cartridge is
not in-transit. The volume record is deleted from the data base,
and the robot places the cartridge in the Playground area of the
LSM. You must enter the LSM and remove the cartridge.

Misplaced tape. Removed volume record for volid
vol_id from database.

vol_id is the ID of the volume record deleted from the data base.

» This entry indicates that a vary request was received while all
ports to the ACS were offline. The request is rejected. At least
one port must be online in order for a vary request to be processed.

No port online for ACS acs_id: vary disallowed
acs_id is the ACS in the request.

» This entry indicates that a request to vary a port offline was
processed to completion, but the port failed to vary offline.

port port_id failed to vary offline.

port_id is the port in the request.

+ This entry indicates that a request to vary a port online was
processed to completion, but the port failed to vary online.

port port_id failed to vary online.

port_id is the port in the request.

9036 A-29

VARY Event Log Messages

(INTENTIONALLY LEFT BLANK)

A-30 9036

OVERVIEW

9036

APPENDIX B:
ACSLM HEADER FILES

This Appendix includes the following header files which contain
definitions used for ACSLM processing:

db_defs.h — Contains definitions used for data base transactions.
defs.h — Contains general, system-wide definitions. Includes
db_defs.h.

identifier.h — Contains structure definitions used for data base
transactions.

structs.h — Contains general, system-wide data structure
definitions. Includes db_defs.h and identifier.h.

db_defs.h

db_defs.h HEADER FILE

/* SccsId
#define _DB_DEFS_

/*

*

¥ % %k ok H % ok % A X Ok O O % 2k % % O % % X X * % *

NOTE:

@ (#)db_defs.h

1

ACSLM Header Files

1.4 5/18/89 (c) 1988 StorageTek */

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation
All Rights Reserved

Functional Description:

system-wide definitions used in data base transactions.

Modified by:

due to limitations of the INGRES embedded sql front-end,
it is necessary to separate definitions required by the
sql preprocessor because it does not handle all C preprocessor
statements.

this file also gets included by defs.h if

D. F. Reed 06-0Oct-1988
D. A. Beidle 21-Apr-1989
code definition.
/
/*
* Header Files:
*/
/*
* Defines, Typedefs
*/
#define DATA BASE "libl"
typedef char ACS;
#define MIN_ACS 0
#define MAX ACS 127
typedef char LSM;
#define MIN_ LSM 0
#define MAX LSM 15
typedef char PORT;
#define MIN_PORT 0
B-2

/*
/*
/*

/*

/*

DB DEFS is not yet defined, therefore any routine needing

both MUST include db_defs.h in a "sql declare™ section before
the C #include of defs.h. '
"unsigned" is not supported by INGRES esqglc

Original.

Added DB_MULTI_ROW data base error

and Structure Definitions:

data base name */
acs number/identifier */
really 255, but not in a char */

1sm number */

server—acs communications line */

9036

ACSLM Header Files

#define MAX PORT 15
#define PORT_NAME SIZE 32
typedef char PANEL;
#define MIN_PANEL 0
#define MAX PANEL 19
typedef char DRIVE;
#define MIN_DRIVE 0
#define MAX DRIVE 3
typedef char ROW;
#define MIN_ROW 0
#define MAX_ROW 14
#define MIN_CAP_ROW 0
#define MAX_CAP_ROW 2
typedef char COL;
#define MIN_COL 0
#define MAX COL 23
#define MIN_CAP_ COL 0
#define MAX_CAP_COL 6
#define CAP_SIZE 21
typedef long FREECELLS;
#define EXTERNAL LABEL SIZE 6
#define SOCKET_NAME SIZE 14

/* cell location codes */
typedef enum {

LOCATION_FIRST = 0,

LOCATION CELL,
LOCATION DRIVE,
-LOCATION_LAST

} LOCATION;

/* state codes */

typedef

enum {

STATE_FIRST = 0,
STATE_CANCELLED,
STATE_DIAGNOSTIC,
STATE_IDLE,

STATE_IDLE_PENDING,

STATE_OFFLINE,
STATE OFFLINE_PENDING,
STATE ONLINE,
STATE_RECOVERY,
STATE_RUN,

9036

/*

/*

/*

/*

/*
/*

/*

/*

/*

/*

/*
/*

db_defs.h

lsm panel number */

transport number */

row number within a lsm panel */

column number within a lsm panel */

cap cartridge capacity (row*col) */

count of unused cells within a */
server or acs or lsm */

label characters */

max characters in socket name */

illegal */

illegal */

illegal */
process state only */

/* 5 */

db_defs.h

STATE_LAST

} STATE;

/* status codes */
typedef enum {

B4

STATUS_SUCCESS = 0,
STATUS_ACS_FULL,
STATUS_ACS_NOT_IN_LIBRARY,
STATUS_ACS_OFFLINE,
STATUS_ACSLM_IDLE,

STATUS_ACTIVITY_END,
STATUS_ACTIVITY START,
STATUS_AUDIT ACTIVITY,
STATUS_AUDIT_IN_PROGRESS,
STATUS_CANCELLED,

STATUS_CAP_AVAILABLE,
STATUS_CAP_FULL,
STATUS_CAP_IN USE,
STATUS_CELL_EMPTY,
STATUS_CELL_FULL,

STATUS_CELL_INACCESSIBLE,
STATUS_CELL_RESERVED,
STATUS_CLEAN_DRIVE,
STATUS_COMMUNICATION_FAILED,
STATUS_CONFIGURATION_ERROR,

STATUS_COUNT_TOO_SMALL,
STATUS_COUNT_TOO_LARGE,
STATUS_CURRENT,
STATUS_DATABASE_ERROR,
STATUS_DEGRADED_MODE,

STATUS_DONE,
STATUS_DOOR_CLOSED,
STATUS_DOOR_OPENED,
STATUS_DRIVE_AVAILABLE,
STATUS_DRIVE_IN_USE,

STATUS_DRIVE_NOT_IN_ LIBRARY,
STATUS DRIVE OFFLINE,
STATUS_DRIVE_RESERVED,
STATUS_DUPLICATE_ LABEL,
STATUS_EJECT_ACTIVITY,

STATUS_ENTER_ACTIVITY,
STATUS_EVENT_ LOG_FULL,
STATUS_IDLE_PENDING,
STATUS_INPUT_CARTRIDGES,
STATUS_INVALID_ACS,

STATUS_INVALID_COLUMN,

/*

/*

/*

/*

/*

/*

/*

ACSLM Header Files

illegal */

10

15

20

25

30

35

40

*/

*/

*/

*/

*/

*/

*/

*/

9036

ACSLM Header Files db_defs.h

STATUS_INVALID_COMMAND,
STATUS_INVALID_ DRIVE,
STATUS_INVALID_LSM,
STATUS_INVALID_ MESSAGE,

STATUS_INVALID_OPTION,
STATUS_INVALID_ PANEL,
STATUS_INVALID_PORT,
STATUS_INVALID_ROW,
STATUS_INVALID_ STATE,
/* 50 */
STATUS_INVALID_SUBPANEL,
STATUS_INVALID_ TYPE,
STATUS_INVALID_VALUE,
STATUS_INVALID VOLUME,
STATUS_IPC_FAILURE,

STATUS_LIBRARY_ BUSY,
STATUS_LIBRARY_ FAILURE,
STATUS_LIBRARY_NOT AVAILABLE,
STATUS_LOCATION_OCCUPIED,
STATUS_LSM_FULL,

/* 60 */
STATUS_LSM_NOT_IN_LIBRARY,
STATUS_LSM_OFFLINE,
STATUS_MESSAGE_NOT_FOUND,
STATUS_MESSAGE_TOO_LARGE,
STATUS_MESSAGE_TOO_SMALL,

STATUS_MISPLACED_TAPE,
STATUS_MULTI_ACS_AUDIT,
STATUS_NORMAL,
STATUS_NONE,
STATUS_NOT_IN_SAME_ACS,
/* 70 */
STATUS_ONLINE,
STATUS_OFFLINE,
STATUS_PENDING,
STATUS_PORT_NOT_IN_ LIBRARY,
STATUS_PROCESS_FAILURE,
/* 15 */
STATUS_RECOVERY_COMPLETE,
STATUS_RECOVERY_FAILED,
STATUS_RECOVERY_INCOMPLETE,
STATUS_RECOVERY_STARTED,
STATUS_REMOVE_CARTRIDGES,
/* 80 x/
STATUS_RETRY,
STATUS_STATE_UNCHANGED,
STATUS_TERMINATED,
STATUS_VALID,
STATUS_VALUE_UNCHANGED,
/* B85S */
STATUS_VARY_ DISALLOWED,

9036 B-5

db_defs.h

STATUS_VOLUME_ADDED,
STATUS_VOLUME_EJECTED,
STATUS_VOLUME_ENTERED,
STATUS_VOLUME_FOUND,

STATUS_VOLUME_HOME,
STATUS_VOLUME_IN_DRIVE,
STATUS_VOLUME_IN_TRANSIT,
STATUS_VOLUME_NOT_IN_DRIVE,
STATUS_VOLUME_NOT_IN_LIBRARY,

STATUS_UNREADABLE_LABEL,
STATUS_UNSUPPORTED_OPTION,
STATUS_UNSUPPORTED_STATE,
STATUS_UNSUPPORTED_TYPE,
STATUS_VOLUME_IN_USE,

STATUS_PORT_FAILURE,
STATUS_MAX_PORTS,
STATUS_PORT_ALREADY_ OPEN,
STATUS_QUEUE_FAILURE,
STATUS_RPC_FAILURE,

STATUS_NI_TIMEDOUT,
STATUS_INVALID_COMM SERVICE,
STATUS_COMPLETE,
STATUS_AUDIT_FAILED,
STATUS_NO_PORTS_ONLINE,

STATUS_CARTRIDGES_IN_CAP,
STATUS_TRANSLATION_FAILURE,
STATUS_DATABASE_DEADLOCK,
STATUS_DIAGNOSTIC,
STATUS_DUPLICATE_IDENTIFIER,
STATUS_EVENT LOG_FAILURE,

STATUS_LAST
} STATUS;

/* Database Dependent Constants */

#define DB_SUCCESS 0
#define DB_TIMEOUT -17702
#define DB_LOCK_TIMEOUT 10
#define DB_NODATA 100
#define DB_DEADLOCK -17700
#define DB_INCONSISTENT -38
#define DB _MULTI_ROW -1320

B-6

/*
/*
/*
/*
/*
/*
/*
/*

ACSLM Header Files

/* 90 */

/* 95 */

/* 100 */

/* 105 */

/* 110 */

/* illegal */

successful completion */

timeout occurred */

system lock timeout period (sec.) */
no data was found */

deadlock was detected */

internal database inconsistency */
non-cursor select attempted to */
return more than one row */

9036

ACSLM Header Files

defs.h HEADER FILE

/* SccsId $WS %G% (c) 1988 StorageTek */
#ifndef DEFS_

#define _DEFS_

/*

*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work
Copyright (1988)

Storage Technology Corporation
All Rights Reserved

Functional Description:

system-wide definitions
includes db_defs.h, unless already defined, to be complete.

Modified by:

D. F. Reed 19-Sep-1988 Original.

¥ Ok A b % 2 2k X R X % % X A

/*
LA Header Files:

*/
#ifndef _DB_DEFS_
#include "db defs.h"
#endif _DB _DEFS__

/%
* Defines, Typedefs and Structure Definitions:

*/
#define ACSSS_VERSION "Version 1.0"

#ifndef TRUE

#define FALSE 0
#define TRUE (!FALSE)
#endif TRUE

#ifndef NULL
#define NULL ((char*)0)
#endif NULL

/* execution trace support definitions */

#define TRACE_ACSSS_DAEMON 0x00000100L
#define TRACE_CSI 0x00000200L
#define TRACE_ACSLM 0x00000400L
#define TRACE_MOUNT 0x00000800L
#define TRACE_DISMOUNT 0x00001000L

9036

defs.h

B-7

defs.h

#define
#define
#define
#define
#define

TRACE_ENTER
TRACE_EJECT
TRACE_AUDIT
TRACE_QUERY
TRACE_VARY

#define TRACE_RECOVERY

#define
#define

TRACE_ACSSA
TRACE_CP

#define TRACE_LIBRARY HANDLER
#define TRACE_EVENT LOGGER
#define TRACE_CSI_PACKETS

#define
lev))

TRACE (lev)

((trace_value & trace_module)

0x00002000L
0x00004000L
0x00008000L
0x00010000L
0x00020000L
0x00040000L
0x00080000L
0x00100000L
0x00200000L
0x00400000L
0x00800000L

/* well-known socket name definitions */
/* uses IP port numbers > 50000

#define
#define
#define
#define
#define
#define

typedef
typedef

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ACSEL
ACSLH
ACSLM
ACSSA
ACSSS
ANY PORT

"50001"
"50002"
"50003"
"50004"
"50005"
“0“

unsigned intBOOLEAN;

unsigned short MESSAGE_ID;

MAX_ID
MIN_MESSAGE
MAX_MESSAGE

21
1
65535

MAX_MESSAGE_SIZE 4096

MAX RETRY

10

RETRY_ TIMEOUT 2

MAX_ACS_DRIVES

MAX_LSM_PTP
MAX_PORTS
FD_SETSIZE

128
4
16
32

(IPPORT_USERRESERVED) */

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

{TRUE, FALSE} */

request id assigned by acslm */

max
min
max
max
max

identifier count
message_id value
message_id value
IPC message size
retry lh request

*/
*/
*/
*/
attempts */

ACSLM Header Files

&& ((trace_value & 0xff) >=

time-out seconds between retries */

max
max
max
max

/* IPC_HEADER option values (bit field) */

#define

RETRY

/* command codes */

typedef

enum {

COMMAND_FIRST =
COMMAND AUDIT,

COMMAND _CANCEL,
COMMAND_DISMOUNT,
COMMAND EJECT,

COMMAND_ENTER,
COMMAND_IDLE,

COMMAND_MOUNT,
COMMAND_QUERY,

B-8

0x01

0,

drives per acs */

pass—thru ports per lsm */
acs communication ports */

file desc. for

/* illegal */

/* 5

select */

*/

9036

ACSLM Header Files defs.h

COMMAND_RECOVERY, /* ACSLM internal use only */
/* 10 */

COMMAND _START,

COMMAND_VARY,

COMMAND UNSOLICITED_EVENT,

COMMAND TERMINATE, /* ACSLM internal use only */
COMMAND_ABORT, /* ACSLM internal use only */
COMMAND_LAST /* illegal */

} COMMAND;

/* message_option qualifier codes (bit field) */

#define FORCE 0x01
#define INTERMEDIATE 0x02
#define ACKNOWLEDGE 0x04

/* log_option codes */
typedef enum {
LOG_OPTION_FIRST = 0, /* illegal */
LOG_OPTION_EVENT,
LOG_OPTION_TRACE,
LOG_OPTION_LAST /* illegal */
} LOG_OPTION;

/* type codes */
typedef enum {

TYPE _FIRST = 0, /* illegal */
TYPE_ACS, /* automated cartridge system */
TYPE_AUDIT, /* audit request process */
TYPE_CAP, /* cartridge access port */
TYPE_CELL, /* cell identifier */

/* 5 */
TYPE_CP, /* ACSSA command process */
TYPE_CSI, /* client system interface */
TYPE_DISMOUNT, /* dismount request process */
TYPE_EJECT, /* eject request process */
TYPE_EL, /* event logger */

/* 10 */
TYPE_ENTER, /* enter request process */
TYPE DRIVE, /* library drive */
TYPE_IPC, /* inter-process communication */
TYPE_LH, /* library handler */
TYPE_LM, /* library manager (ACSLM) */

/* 15 */
TYPE_LSM, /* library storage module */
TYPE_MOUNT, /* mount request process */
TYPE NONE, /* no identifier specified */
TYPE_PANEL, /* LSM panel */
TYPE_PORT, /* ACS communications line */

/* 20 %/
TYPE_QUERY, /* query request process */
TYPE_RECOVERY, /* recovery request process */
TYPE_REQUEST, /* storage server request */
TYPE_SA, /* system administrator (ACSSA) */

9036 B-9.

defs.h

TYPE_SERVER,

TYPE_SUBPANEL,
TYPE_VARY,
TYPE VOLUME,

TYPE_LAST
} TYPE;

/* data base field update codes
typedef enum {
FIELD FIRST = 0,
FIELD_ACTIVITY,
FIELD_CAP,
FIELD_STATE,
FIELD_STATUS,
FIELD_LAST
} FIELD;

/* query type codes */

typedef enum {
QUERY_TYPE_FIRST = 0,
QUERY_TYPE_ALL,

QUERY_TYPE_NEXT,
QUERY_TYPE_ONE,
QUERY_TYPE_LAST

} QUERY_TYPE;

/* data base write_mode codes */
typedef enum {
WRITE_MODE_FIRST = 0,
WRITE_MODE_CREATE,
WRITE_MODE_UPDATE,
WRITE MODE_LAST
} WRITE_MODE; .

/* volid volume_type codes */

typedef enum { '
VOLUME_TYPE_FIRST = 0,
VOLUME_TYPE_DIAGNOSTIC,
VOLUME_TYPE_STANDARD,
VOLUME_TYPE_LAST

} VOLUME_TYPE;

/* cell select option codes */

typedef enum {
SELECT_OPTION FIRST = 0,
SELECT_OPTION_ACS,
SELECT_OPTION_LSM,
SELECT_OPTION LAST

} SELECT_OPTION;

/*

B-10

*/

/*
/*
/*

/*

/*

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

ACSLM Header Files

storage server */

/* 25 */
LSM subpanel */
vary request process */
tape cartridge */

illegal */

illegal */

illegal */

illegal */

init sequential read of table */

and return first record */
get next sequential record */

get record keying off specified id */

illegal */

illegal */

create a new record */
update an existing record */
illegal */

illegal */
volid may contain blanks */

volid must be 6 chars, [A-Z][0-9] */

illegal */

illegal */

if 1lsm full, try any lsm in acs */

try specified lsm only */
illegal */

ACSLM Header Files defs.h

* Global Variable Declarations:

*/
extern int errno; /* system error number */
extern int sd_in; /* module input socket descriptor */
extern int n_fds; /* number of input descriptors */
extern int fd list[FD_SETSIZE];

/* input descriptor list */
extern char my_ sock_name [SOCKET_NAME_ SIZE];

/* module input socket name */
extern TYPE my_module_type;/* executing module’s type */
extern TYPE requestor_type;/* request originator’s module type */
extern int restart_count; /* process failed/restart count */
extern MESSAGE_ID request_id; /* associated request ID, or 0 if */

/* not associated with a request */
extern STATE process_state; /* executing process’ state flag */
extern unsigned long trace_module; /* module trace define value */
extern unsigned long trace_value; /* trace flag value */
extern int acs_count; /* number of ACSs configured */
extern int port_count; /* number of ports configured */

/ *

* Procedure Type Declarations:

*/

STATUS cl_acs_destroy();
STATUS cl_acs_read();
STATUS cl_acs_update();
STATUS cl_acs_valid():
STATUS cl_acs_write();
STATUS cl_cap_eject():
STATUS cl_cap_release():
STATUS cl_cap_reserve();
STATUS cl_cap_valid():
STATUS cl_cel_destroy();
STATUS cl_cel next();
STATUS cl_cel_read():
STATUS cl_cel_select();
STATUS cl_cel _update();
STATUS cl _cel valid():
STATUS cl_cel_write();
int cl_chk_input ()
char * cl_command();
STATUS cl_db_connect():
STATUS cl_db_disconnect ();
STATUS cl_drv_destroy();
STATUS ¢l _drv_list ()
STATUS cl_drv_read():
STATUS ¢l_drv_update();
STATUS cl drv _valid():
STATUS cl_drv_write();
char * cl_identifier();
STATUS cl _inform();
STATUS cl_ipc_create();
STATUS cl_ipc_destroy():
int cl_ipc_open():

9036 B-11

defs.h . ACSLM Header Files

STATUS cl_ipc_read();
STATUS cl_ipc_send();
STATUS cl_ipc_write();
STATUS cl_ipc_xmit();
char * cl_lh_error();
char * cl_lh identifier();
char * cl_1lh_type();
void cl_log_db _error();
void cl_log_event ()
void cl_log_trace():
void cl_log_lh_error():
void cl_log unexpected():
STATUS cl_lsm destroy():
STATUS cl_1lsm _list();
STATUS cl_lsm_read():
STATUS cl_lsm_update();
STATUS cl_1lsm valid():
STATUS cl_lsm write():
STATUS cl_pnl_valid():;
STATUS cl_proc_init();
STATUS cl_prt_destroy():
STATUS cl_prt_read();
STATUS cl_prt_update();
STATUS cl_prt_valid();
STATUS : cl_prt_write();
STATUS cl_req_valid();
STATUS cl_rp_init();

int cl_select_input ();
TYPE cl_set_type():
void cl_sig_hdlr();
char * cl_status{();
STATUS cl_sub_valid():
void cl_trace();

char * cl_typel():;

STATUS cl_vol_destroy():
STATUS cl_vol_read():
STATUS cl_vol_update():
STATUS cl_vol_valid();
STATUS cl _vol_write();

#endif DEFS_

B-12 9036

ACSLM Header Files identifier.h

identifier.n HEADER FILE

/* SccsId = @(#)identifier.h 1.2 4/6/89 (c) 1988 StorageTek */
#define _IDENTIFIER_ 1 :
/%

*

StorageTek SECRET .
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation
All Rights Reserved

Functional Description:

system-wide data structure definitions used in data base transactions.
due to limitations of the INGRES embedded sql front-end,
it is necessary to separate definitions required by the
sql preprocessor because it does not handle all C preprocessor
statements. this file also gets included by other header files if -
IDENTIFIERS is not yet defined.
NOTE: "unsigned" is not supported by INGRES esqlc

definitions of system data structures

Modified by:

D. F. Reed 27-Jan-1989 Original.

Ok A Ok b o % Ok % Ok % X F % O % X X A X X ¥

~

/*
* Header Files:
x/
/*
* Defines, Typedefs and Structure Definitions:
x/
typedef struct ({
ACS acs;
LSM lsm;
} LSMID;

typedef LSMIDCAPID;

typedef struct (

ACS acs;
PORT port;
} PORTID;

typedef struct ({
LSMID lsm id;

9036 B-13

identifier.h

PANEL
} PANELID;

typedef struct
PANELID
ROW
COL
ROW
COoL

} SUBPANELID;

typedef struct
PANELID
DRIVE

} DRIVEID;

typedef struct
PANELID
ROW
COL

} CELLID;

typedef struct
char
} VOLID;

typedef union {
ACS
CAPID
CELLID
DRIVEID
LSMID
PANELID
PORTID
SUBPANELID
VOLID
char
long

} IDENTIFIER;

B-14

ACSLM Header Files

panel;

panel_id;
begin_row;
begin_col;
end row;
end_col;

panel_id;
drive;

panel_id;
row;
col;

external_label [EXTERNAL_LABEL_SIZE + 1];

acs_id;

cap_id;

cell_id;

drive id;

lsm_id;

panel_id;

port_id;

subpanel_id;

vol_id;

socket_name [SOCKET_NAME_SIZE];
request;/* really a MESSAGE_ID */

9036

ACSLM Header Files structs.h

structs.h HEADER FILE

/* SccsId @(#)structs.hl.2 4/3/89 (c) 1988 StorageTek */
#ifndef _STRUCTS_

#define _STRUCTS_

/x

*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation
All Rights Reserved
Functional Description:
definitions of system data structures. most of these structures
are common to csi and acslm, and are included by both header files.

includes "identifier.h", unless already defined, to be complete.
includes "db_structs.h", unless already defined, to be complete.

Modified by:

D. F. Reed 22-Sep-1988 Original.

¥ 0% % X X X X % X A A X X X X X X *

~
*
~

* Header Files:
* /

#include “"defs.h"

#ifndef _IDENTIFIER
#include "identifier.h"

#endif _IDENTIFIER
#ifndef _DB_STRUCTS_
#include "db_structs.h"

#endif _DB_STRUCTS__

/*
* Defines, Typedefs and Structure Definitions:
*/

typedef struct {
unsigned short packet_id; /* client-specified */
COMMAND command;
unsigned char message_options;

} MESSAGE_HEADER;

typedef struct {

unsigned long byte_count; /* message length, including header */
TYPE module_type; /* sending module type */
unsigned char options; /* see defs.h */

9036 B-15

structs.h ACSLM Header Files

unsigned long seq_num; /* message sequence number */
char return_socket [SOCKET_NAME_SIZE];

/* sender’s input socket name */
unsigned int return_pid; /* sender’s PID */

unsigned long ipc_identifier; /* used for message sync */
} IPC_HEADER;

typedef struct {

IPC_HEADER ipc_header;
LOG_OPTION log_options;
char event_message [MAX MESSAGE_SIZE];

} EVENT_LOG_MESSAGE;

typedef struct {

STATUS status:;
TYPE type:
IDENTIFIER identifier:;

} RESPONSE_STATUS;

typedef struct {
IPC_HEADER ipc_header;
MESSAGE_HEADER message_header;
RESPONSE_STATUS message_status;
unsigned short error;

} UNSOLICITED_MESSAGE;

typedef struct { /* volume status sub-structure */
VOLID vol_id; '
RESPONSE_STATUS status;

} VOLUME_STATUS:

/***

* AUDIT REQUEST/RESPONSE COMMON STRUCTURES *

***/

typedef struct { /* audit ACS identifier status */
ACS acs_id;
RESPONSE_STATUS status;

} AU_ACS_STATUS;

typedef struct { /* audit LSM identifier status */
LSMID 1sm_id;
RESPONSE_STATUS status;

} AU_LSM_STATUS;

typedef struct { /* audit panel identifier status */
PANELID panel_id;
RESPONSE_STATUS status;

} AU_PNL_STATUS;

typedef struct ({ /* audit subpanel identifier status */

SUBPANELID subpanel_id;
RESPONSE_STATUS status;

B-16 9036

ACSLM Header Files

} AU_SUB_STATUS;

structs.h

/***

*

QUERY REQUEST/RESPONSE COMMON STRUCTURES

*

**/

typedef enum {

AUDIT = 0,
MOUNT,
DISMOUNT,
ENTER,
EJECT,

MAX_COMMANDS

} QU_COMMANDS;

typedef enum
CURRENT
PENDING,

0,

/* request summary commands */

/* request summary dispostions */

MAX_DISPOSITIONS
} QU_DISPOSITIONS;

typedef struct ({
MESSAGE_1ID
} REQ_SUMMARY;

typedef struct {
ACS
STATE
FREECELLS
REQ_ SUMMARY
STATUS

} QU_ACS_STATUS;

typedef struct {
CAPID
STATUS

} QU_CAP_STATUS;

typedef struct ({
DRIVEID
STATE
VOLID
STATUS

} QU_DRV_STATUS;

typedef struct ({
LSMID
STATE
FREECELLS
REQ_SUMMARY
STATUS

} QU_LSM STATUS;

9036

/* request summary matrix */
requestS[MAX_COMMANDS][MAX_DISPOSITIONS];

/* ACS status (one/acs_id) */

acs_id; /* ACS for status */
state; /* ACS state */
freecells; /* number of free cells in ACS */
requests; /* request summary for ACS */
status; /* ACS status */

/* CAP status (one/cap_id) */
cap_id: /* CAP for status */
status; /* CAP status */

/* drive status (one/drive_id) */
drive_id; /* drive for status */
state; /* drive state */
vol id; /* volume if STATUS_DRIVE_IN USE */
status; /* drive status * /

/* LSM status (one/lsm id) */
lsm_id; /* LSM for status */
state; /* LSM state */
freecells; /* number of free cells in LSM */
requests; /* request summary for LSM */
status; /* LSM status */

B-17

structs.h

typedef struct {
VOLID
STATUS
unsigned short
DRIVEID

} QU_MNT STATUS;

typedef struct (
PORTID
STATE
STATUS

} QU_PRT_STATUS;

typedef struct ({
MESSAGE_ID
COMMAND
STATUS

} QU_REQ_STATUS;

typedef struct {
STATE
FREECELLS
REQ_SUMMARY

} QU_SRV_STATUS;

typedef struct {
VOLID
LOCATION
union {
CELLID
DRIVEID
} location;
STATUS
} QU_VOL_STATUS;

ACSLM Header Files

/* drive proximity status (one/volid) */
volume for drive proximity list */

vol_id; /*
status; /*
drive_count;/*

drive_id[MAX ACS_DRIVES];

/%

/*
port_id; /*
state; /*
status; /*

/*
request; /*
command; /*
status; /*

/*
state; /*
freecells; /*
requests; /*

/%
vol id; /*
locgfion_type;

/*
cell id; /*
drive_id; /*

/*
status; /*

volume status */
number of drive identifiers */
drive list in proximity order */

port status (one/port_id) */

port for status
port state
port status

*/
*/
*/

request status (one/request_id) */

request for status */
command from request_packet */
request status */
server status (one) *x/
ACSLM state */
number of free cells in library */
request summary for library */
volume status (one/vol_id) */

volume for status */
/* LOCATION_CELL or LOCATION_DRIVE */
current location of volume */
if STATUS_VOLUME HOME */
if STATUS_VOLUME_IN DRIVE */
undefined if none of above */

volume status

*/

AR L I e s e T e
VARY REQUEST/RESPONSE COMMON STRUCTURES *

*

***/

typedef struct {
ACS
RESPONSE_STATUS
} VA_ACS_STATUS;

typedef struct ({
DRIVEID
RESPONSE_STATUS
} VA _DRV_STATUS;

typedef struct {

LSMID
RESPONSE_STATUS

B-18

/* ACS status (one/acs_id) */

acs_id;
status;

/* drive status

drive_id;
status;

/*
lsm_id;
status;

(one/drive_id) *x/

LSM status (one/lsm_id) */

9036

ACSLM Header Files structs.h

} VA_LSM_STATUS;

typedef struct { /* port status (one/port_id) */
PORTID port_id;
RESPONSE_STATUS status;

} VA_PRT_STATUS;

/*

* Procedure Type Declarations:
*/

#endif _STRUCTS_

9036 B-19

structs.h ACSLM Header Files

(INTENTIONALLY LEFT BLANK)

B-20 9036

OVERVIEW

9036

APPENDIX C:
XDR TRANSLATION FUNCTIONS

This Appendix includes listings of the high-level XDR translation
routines supplied by StorageTek:

csi_xdrrequest () — Used to serialize and deserialize Storage
Server request packets. '

csi_xdrresponse () — Used to serialize and deserialize Storage
Server response packets.

csi_xdrrequest() XDR Translation Functions

csi_xdrrequest() FUNCTION

~
*

B % ¥ Ok O ¥ % ok % % o * OF % O % A 3k 2k F % % % % % % % O A % X X X X X X X * *

¥ % %k % ok % % % % X F

L

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1989)
Storage Technology Corporation
All Rights Reserved

Name:

csi_xdrrequest ()

Description:

CSI high level xdr based routine for serializing and deserializing
storage server request packets. The routines in this source and those
called from this source support a bi-directional protocol for either
encoding or decoding storage server request packets based on the value
of the XDR handle’s "xdrsp->x_op" directional variable.

The data buffer passed, "bufferp->data", is encoded during serialization
for up to "bufferp->size"™ bytes beginning with the byte number specified
as "bufferp~>offset™. During deserialization, the XDR stream

is translated out of the xdr handle "xdrsp" into "bufferp->data™
beginning at the offset specified by "bufferp->offset™.

The number of bytes of the packet that were successfully translated

is returned in "bufferp->translated bytes".

This routine will only return an error to the rpc layer (return 0)
if the contents of the request header could not be translated.

If the request header was translated but there was a translation error
lower in the packet, "bufferp->packet_status" equals
CSI_PAKSTAT XLATE ERROR otherwise it equals CSI_PAKSTAT_ XLATE_COMPLETED.

If a duplicate packet was detected during deserialization, this routine
returns "bufferp->packet_status"™ equal to CSI_PAKSTAT DUPLICATE_PACKET.
In this case, upon return, only the CSI_REQUEST_ HEADER portion of the
packet will have been translated.

SERIALIZATION:

For serialization of a request packet, xdrsp->x_op equals XDR_ENCODE.
Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry:

o bufferp->data ptr to memory containing a request packet
bufferp->offset - postion where data starts in buffer
bufferp->size size of entire request packet in buffer
bufferp->translated size - 0 or don’t care

bufferp->packet_status don’t care or CSI_PAKSTAT_INITIAL

O O O 0
| |

9036

XDR Translation Functions csi_xdrrequest()

¥ b 3k X ok Ok R A b % OF b b Ok % O X % X % % b 2 %k O O ok ok Ok k% R Ok Ok % Ok E % O b Ok 2 % % % X % % X % %

9036

o bufferp->maxsize - allocated size of bufferp->data

Upon Exit:

o bufferp—->data - unaltered

o bufferp->offset - unaltered

o bufferp—>size - unaltered

o bufferp->translated size - bytes of request that xdr could translate

o bufferp->packet_status — CSI_PAKSTAT_XLATE_ERROR or
CSI_PAKSTAT XLATE COMPLETED

o bufferp->maxsize - unaltered

DE-SERIALIZATION:

For deserialization of a request packet, xdrsp->x_op equals XDR _DECODE.
During deserialization, if "bufferp->data"™ is NULL, xdr will allocate
memory for the packet read in off of the wire. In this case it is

the responsibility of the caller to free that memory.

Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry:
o bufferp->data - memory where request packet will be put
OR =— NULL for xdr to do allocation for caller

o bufferp->offset - start byte# where data is placed in buffer

0 " bufferp->size - 0 or don’t care

o bufferp->translated size - 0 or don’t care

o bufferp->packet_status - don’t care or CSI_PAKSTAT INITIAL

o bufferp->maxsize - allocated size of bufferp->data

Upon Exit:

o Dbufferp->data - contains the translated data

o bufferp->offset - unaltered

o bufferp—->size - bytes of request that xdr could translate

o bufferp->translated size - bytes of request that xdr could translate

o bufferp->packet_status = CSI_PAKSTAT_XLATE ERROR or
CSI_PAKSTAT_XLATE COMPLETED or
CSI_PAKSTAT DUPLICATE_ PACKET

o bufferp->maxsize - unaltered bufferp->data not null on entry

OR - if xdr allocated, bufferp->translated size

ERROR CONDITIONS AND HANDLING DURING TRANSLATION:
During translation, portions of a packet might not be translatable
for numerous reasons following:

xdr error,

client packet format error,

invalid command,

invalid identifier type,

invalid count,

invalid packet size for designated storage server command
duplicate packet

O 0 0 0O0O0O0

If at least the csi_request_header (type CSI_REQUEST_ HEADER in
csi_structs.h) can be processed, then a partial packet is translated.

Cc-3

csi_xdrrequest() XDR Translation Functions

¥ Ok Ok Ok % % % o % b Ok % % 2 % % b O % A O O H % O F ¥ % X X X *

/*

*

*/

The receiver of the partial packet can determine what the attempted
operation was by analyzing the request header and the downstream
portions of the packet that were translated. The amount of the
packet that was actually translated and presumably sent on the wire
(barring a higher level Network layer error) is returned in
"bufferp->translated_size".

Return Values:

(bool_t) 1 — At least a partial conversion performed.
(bool_t) 0 - Conversion failed.

Implicit Inputs:

NONE
bufferp->data - buffer for packet data
bufferp->offset - byte# location of start of packet in buffer

Implicit Outputs:

bufferp->data - data is placed here during deserialization.
bufferp->size - size of data placed during deserialization
bufferp->packet_status - describes various translation errors

bufferp->translated_size - bytes of data that could be translated

Considerations:

This routine may return a partial packet. Return code will be (1)
if at least a request header can be serialized/deserialized.

The value of size and translated size is undefined when 0 return code
(error) is returned.

Header Files:

#include <rpc/rpc.h>
#include "“structs.h"
#include "defs.h"
#include "csi.h"

#include "csi_xdr xlate.h

bool_t

csi_xdrrequest (xdrsp, bufferp)

XDR *xdrsp; /* XDR handle */

CSI_MSGBUF *bufferp; /* data buffer description structure */

{

9036

XDR Translation Functions csi_xdrresponse()

csi_xdrresponse() FUNCTION

/*
* StorageTek SECRET

* Property of Storage Technology Corporation
* Do not copy or distribute unpublished work
*

* Copyright (1989)

* Storage Technology Corporation

* All Rights Reserved

*

* Name:

*

*csi_xdrresponse ()
*

* Description:

*

CSI high level xdr based routine for serializing and deserializing
storage server response packets. The routines in this source and those
called from this source support a bi-directional protocol for either
encoding or decoding storage server response packets based on the value
of the XDR handle’s "xdrsp->x_op" directional variable.

The data buffer passed, "bufferp->data", is encoded during serialization
for up to "bufferp->size" bytes beginning with the byte number specified
as "bufferp->offset". During deserialization, the XDR stream

is translated out of the xdr handle "xdrsp" into "bufferp->data"
beginning at the offset specified by "bufferp->offset".

The number of bytes of the packet that were successfully translated

is returned in "bufferp->translated bytes".

This routine will only return an error to the rpc layer (return 0)
if the contents of the request header could not be translated.

If the request header was translated but there was a translation error
lower in the packet, "bufferp->packet_status" equals
CSI_PAKSTAT_XLATE_ERROR otherwise it equals CSI_PAKSTAT_ XLATE_ COMPLETED.

If a duplicate packet was detected during deserialization, this routine
returns "bufferp->packet_status" equal to CSI_PAKSTAT DUPLICATE_PACKET.
In this case, upon return, only the CSI_REQUEST_ HEADER portion of the
packet will have been translated.

SERIALIZATION:

For serialization of a response packet, xdrsp->x_op equals XDR_ENCODE.
Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry:

o bufferp->data ptr to memory containing a response packet
bufferp->offset - postion where data starts in buffer
bufferp->size size of entire response packet in buffer
bufferp->translated_size - 0 or don’t care

bufferp->packet_status don’t care or CSI_PAKSTAT INITIAL

ook ok % ok b b % b O OF % O % % % % % ok % b 2 % X 2k % % o kR % % X A A

O 0 0 O

9036 C-5

csi_xdrresponse() XDR Translation Functions

¥ % b R k% O % Ok ¥ b Ok O % % R % F % & ok Ok % Ok Ok % Ok % b Ok A 2k % 3k Ok ¥ X % % O Ok % % % % O % % A X ¥ A X ¥

i

o bufferp->maxsize —- allocated size of bufferp->data
Upon Exit:
o Dbufferp->data - unaltered
o bufferp->offset - unaltered
o bufferp->size - unaltered
o bufferp->translated size - bytes of response that xdr could translate
o bufferp->packet_status — CSI_PAKSTAT XLATE_ERROR or
CSI_PAKSTAT XLATE_COMPLETED
o bufferp->maxsize - unaltered

DE-SERIALIZATION:

For deserialization of a response packet, xdrsp->x_op equals XDR DECODE.
During deserialization, if "bufferp->data"™ is NULL, xdr will allocate
memory for the packet read in off of the wire. In this case it is

the responsibility of the caller to free that memory.

Upon entry to this routine, the data buffer description structure of
type CSI_MSGBUF must be initialized as follows:

Upon Entry: .
o bufferp->data - memory where a response packet will be put
OR - NULL for xdr to do allocation for caller
bufferp->offset - start byte# where data is placed in buffer

°

o bufferp->size - 0 or don’t care

o bufferp->translated _size — 0 or don’t care

o bufferp->packet_status - don’t care or CSI_PAKSTAT INITIAL
o

bufferp->maxsize - allocated size of bufferp->data
Upon Exit:
o bufferp->data - contains the translated data
o bufferp->offset - unaltered
o bufferp->size - bytes of response that xdr could translate
o bufferp->translated size - bytes of response that xdr could translate
o bufferp->packet_status - CSI_PAKSTAT_XLATE ERROR or

CSI_PAKSTAT XLATE_COMPLETED or
CSI_PAKSTAT DUPLICATE PACKET
o Dbufferp->maxsize - unaltered bufferp->data not null on entry
OR - if xdr allocated, bufferp->translated size

ERROR CONDITIONS AND HANDLING DURING TRANSLATION:
During translation, portions of a packet might not be translatable
for numerous reasons following:

xdr error,

client packet format error,

invalid command,

invalid identifier type,

invalid count,

invalid packet size for designated storage server command
duplicate packet

O OO0 O0O0O0O0

If at least the csi_request_header (type CSI_REQUEST_HEADER in
csi_structs.h) can be processed, then a partial packet will be encoded.

9036

XDR Tra

"b
Retur

bo
bo

Impli

Impli

X% o b ok % X% % o % % % F X A % X X X X O X

Consi

* % F A X ¥ ¥ F

/*
*
*

nslation Functions

ufferp->translated size".
n Values:

ol_t - 1 successful xdr
ol _t - 0 xdr conversion
cit Inputs:

NONE

cit Outputs:

bufferp->data -
bufferp->size -
bufferp->translated size -
bufferp->packet_status -

bufferp->data -
bufferp->offset -

derations:

csi_xdrresponse()

The receiver of ‘the partial packet can determine what the attempted
operation was by analyzing the request header and the downstream
portions of the packet that were translated. The amount of the
packet that was actually translated and presumably sent on the wire
{barring a higher level Network layer error) is returned in

conversion
failed

data is placed here during deserialization.
size data put here during deserialization.
bytes of data that could be translated.
describes various translation errors

buffer for packet data
byte# location of start of packet in buffer

This routine may return a partial packet. Return code will be (1) if
at least a request header can be serialized/deserialized.

The value of packet size returned is undefined when 0 return code

(error) is returned.

Header Files:

* See csi.h/rpc.h for other include files.

*/
#include
#include
#include
#include
#include

bool_t
csi_xdrr
XDR
CSI_MSGB
*/

{

9036

<rpc/rpc.h>
"structs.h"
"defs.h"

"csi.h"
"csi_xdr_xlate.h

esponse (xdrsp, bufferp)
*xdrsp;
UF *bufferp;

/* XDR handle */
/* data buffer description structure

csi_xdrresponse() XDR Translation Functions

(INTENTIONALLY LEFT BLANK)

Cc-8 9036

OVERVIEW

APPENDIX D:
CSI AND SSI REQUIRED FILES

This Appendix includes the following files which are required by the
CSI and the SSI:

9036

csi_header.h header file — Contains cSI_HEADER definitions.

csi.h header file — Includes csi_header.h, csi_structs.h, and

csi_msg.h. This file should be included or duplicated for CSIs and

SSIs.

csi_structs.h header file — Contains CSI data structure

definitions. This file parallels the 1m_structs.h header file, with

the following differences:

— 1m structs.h uses the IPC_HEADER return address structure,
specifying a return socket name.

— csi_structs.h uses the CSI_HEADER return address structure,
specifying RPC and Internet return address information.

Changes to this file must be reflected in 1m_structs.h, and vice
versa.

csi_msg.h header file — Defines access numbers to each CSI
message.

csi_getmsg.c source file — Defines the contents of each CSI
message.

D-1

csi_header.h CSl & SSI Required Files

csi_header.h HEADER FILE

/* SccsId @ (#)csi_header.h 1.4 6/8/89 (c) 1988 StorageTek */
#ifndef _CSIHEADER
#define _CSIHEADER

~
*

StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation
All Rights Reserved
Functional Description:

Header file containing all CSI_HEADER structure-specific definitions.

Modified by:

% % o O Ok OF ¥ O Ok % ¥ % % X ¥

J. W. Wishner 30-Jan-1989. Original.
* J. A. Wishner 05/01/89.TIME STAMP-POST CUSTOMER
INITIAL RELEASE

*/
/%
*
*/
/%
* Defines, Typedefs and Structure Definitions:
*/
/%
*
*/
#define CSI_NETADDR_SIZE 6 /* #0of bytes in a network address */

Header Files:

Procedure Type Declarations:

typedef struct {
unsigned long program; /* callback program number */
unsigned long version; /* version number */
unsigned long proc; /* procedure number to call back to */
struct sockaddr in raddr; /* return internet address */

} CSI_HANDLE_RPC;

typedef enum {

CSI_SYNTAX NONE =0, /* default transfer syntax is none */
CSI_SYNTAX XDR, /* XDR used as transfer syntax */
} CSI_SYNTAX;
typedef enum {
CSI_PROTOCOL_TCP =1, /* transport protocol used is TCP/IP */
CSI_PROTOCOL_UDP = 2, /* transport protocol used is TCP/IP */
} CSI_PROTOCOL;
typedef enum {
CSI_CONNECT_RPCSOCK = 1, /* type of connection defined by CSI */
} CSI_CONNECT;
typedef struct { ' ’ ’
unsigned char addr (CSI_NETADDR_SIZE]; /* sender network address */
unsigned int pid; /* sender process id */

D-2) 9036

CSI & SSI Required Files csi_header.h

unsigned long seq_num; /* sender sequence number */
} CSI_XID;

/*
* Note: the xid must stay at the very top of CSI_HEADER in order for
* duplicate packet comparisons to work in csi_xdrrequest () &
csi_xdrresponsed()

*/

typedef struct ({
CSI_XID xid; /* transaction id=net address,pid,seq#*/
unsigned long ssi_identifier; /* identifier for use by SSI */
CSI_SYNTAX csi_syntax; /* type of transfer syntax */
CSI_PROTOCOL csi_proto; /* protocol used */
CSI_CONNECT csi_ctype; /* type connection management used */
CSI_HANDLE_RPC csi_handle; /* return handle of client */

} CSI_HEADER;

#endif

9036 D-3

csi.h

csi.h HEADER FILE

/* Sccs
#ifndef
#define
/*

*

Name:
cs

Funct

X b % b Db %k % O b % % b % Ok b % b % Ok %k % % O % % % %

CSl & SSI Required Files

Id @(#)csi.h 1.11 6/21/89 (c) 1988 StorageTek */

Cs1
CSI

StorageTek SECRET
Property of Storage Technology Corporation.
Do not copy or distribute unpublished work.

Copyright (1988)
Storage Technology Corporation
All Rights Reserved

i.h

ional Description:

CSI/SSI interface include file for the client system interface.

Modified by:
J. A. Wishner 12/02/88.Created.
J. A. Wishner 05/01/89.TIME STAMP-POST CUSTOMER INITIAL RELEASE
J. A. Wishner 05/15/89.Added csi routine level tracing
CSI_XDR _TRACE_LEVEL definition.
Cleaned out redundant #includes.
J. A. Wishner 05/30/89Changed data portion allocation on
CSI_MSGBUF. Was "char *", now datal[l].
External for csi_netbuf goes to char *.
External for csi netbuf _data goes away.
J. A. Wishner 06/16/89Took limits off of queue sizes.
/
#include <sys/types.h>
#include <rpc/rpc.h>
#include "cl_gm defs.h"
#include "cl_qgm.h"
#include "lm structs.h"/*includes defs.h structs.h db_structs.h identifier.h*/
#include “"csi_header.h"
#include "csi_structs.h"
#include "csi_msg.h"
/*
#undef DEBUG
*/
/%
* IPC related definitions
* Including workaround (for common library) for Sun IPC bug
*/
#ifndef INETSOCKETS
#define CSI_INPUT_SOCKET "./to_CsI" /* csi input socket name */
#define CSI_ACSLM SOCKET "./to_ACSLM" /* acslm input socket name */
#else
#define CSI_INPUT_SOCKET ANY_PORT /* csi input socket name */
#define CSI_ACSLM_SOCKET ACSLM /* see defs.h acslm input socket name */
#endif
/*

9036

CSI & SSI Required Files csi.h

* Miscellaneous CSI definitions

*/

#define CSI_XDR_TRACE_LEVEL 5 /* xdr routine level tracing */
#define CSI_DEF_CONNECTQ_ AGETIME 172800/* seconds time connection aging */
#define CSI_SELECT_TIMEOUT 2 /* seconds time timeout */
#define CSI_DEF_RETRY_ TIMEOUT 3 /* seconds per network send try */
#define CSI_DEF_RETRY_ TRIES 5 /* number of times network retry */
#define CSI_HOSTNAMESIZE 32 /* size of name of host csi is on */
#define CSI_NO_CALLEE (char *) NULL /* no fail function name passed to

* to csi_logevent () */

typedef void (*CSI_VOIDFUNC) (); /* function as a variable on call */
#define CSI_NO_LOGFUNCTION (CSI_VOIDFUNC) NULL
#define CSI_NO_SSI_IDENTIFIER 0 /* csi_header-no value in ssi_identifier */
#define CSI_ISFINALRESPONSE (opt) (0 == (INTERMEDIATE & opt) && A}

== (ACKNOWLEDGE & opt) ? TRUE : FALSE)
#define CSI_MAX MESSAGE_SIZEMAX MESSAGE_SIZE

/*.
* packet transfer direction used in packet tracing routine(s)
*/

#define CSI_TO_ACSLM 0 /* packet direction csi_ptrace() */
#define CSI_FROM_ACSLM 1 /* packet direction csi_ptrace() */
/%

* RPC variables specifically for a CSI. Note: The program numbers are
* effective until post-beta when numbers will be obtained from Sun.
*/

#define CSI_PROGRAM 0x200000fe /* CSI RPC program number */
#define CSI_UDP_VERSION . 1 /* RPC UDP server version# */
#define CSI_TCP_VERSION 2 /* RPC TCP server version# */
#define CSI_ACSLM PROC 1000 /* RPC server procedure# */
#define CSI_DEF_TCPSENDBUF0 /* size tcp rpc send buffer */
#define CSI_DEF_TCPRECVBUFO0 /* size tcp rpe receive buffer*/

/* network send options for routine csi_net_send() */
typedef enum {
CSI_NORMAL_SEND, /* regular send of packet */
CSI_FLUSH_OUTPUT_QUEUE, /* flush network send queue */
} CSI NET SEND _OPTIONS;

/*
*
*/

#define CSI_TCP_RPCSERVICE "CSI_TCP_RPCSERVICE" /* registers as tcp server */

#define CSI_UDP _RPCSERVICE "CSI_UDP_RPCSERVICE" /* registers as udp server */
#define CSI_CONNECT AGETIME "CSI_CONNECT AGETIME"/* # secs connection aging */

Environment Variables

#define CSI_HOSTNAME "CSI_HOSTNAME" /* name of host csi is on */
#define CSI_RETRY_ TIMEOUT "CSI_RETRY_ TIMEOUT" /* per try NI timeout */
#define CSI_RETRY_ TRIES "CSI_RETRY TRIES" /* number of retrys */
#define CSI_TRACE_VALUE "TRACE_VALUE"™ /* trace label for getenv()*/
/%

* Connection queue related defines for saving

csi_header return addresses

*/
#define CSI _MAXMEMB LM QUEUE 0 /* unlimited size LM Q */
#define CSI MAXMEMB NI OUT " QUEUE 0 /* unlimited size NI out Q */
#define CSI_MAXQUEUES 2 /* max # of csi queues */
#define CSI_CONNECTQ NAME "connection queue" /* name of connection Q */

#define CSI_NI_OUTQ NAME "network output queue" /* name of net output Q */

9036 D5

csi.h CSl & SSI Required Files

#define CSI_QCB_REMARKS "master control block" /* name of Q control block */

/*
* csi message buffer description structure passed to csi_xdrrequest() and
* csi_xdrresponse() XDR translation routines.
*/ :
/* data offsets into packet buffer */
#define CSI_PAK NETOFFSET (sxzeof(CSI _HEADER) > sxzeof(IPC HEADER)) \
0 : sizeof (IPC_HEADER) - sizeof (CSI_HEADER)
#define CSI_PAK LMOFFSET (sizeof(CSI _HEADER) > sizeof (IPC_HEADER))\
? sizeof (CSI _HEADER) - sizeof (IPC_HEADER) : 0
#define CSI_PAK_NETDATAP(bufp) ((bufp)—>data) + ((char *)CSI_] PAK .__NETOFFSET)
#define CSI_PAK_LMDATAP (bufp) ((bufp)->data) + ((char *)CSI_PAK_LMOFFSET)

/* packet buffer status for buffer of type CSI_MSGBUF */
typedef enum { :
CSI_PAKSTAT INITIAL = 0, /* currently testing packet */

CcSs1 PAKSTAT _XLATE_COMPLETED, /* packet translation completed */
Cs1 PAKSTAT XLATE_ERRCR, /* translate error incomplete packet */
CSI PAKSTAT | _DUPLICATE_ PACKET, /* packet in buffer is duplicate */

} CSI_PAKSTAT;

/* queue management */
typedef struct csi_q mgmt {

unsigned short xmit_tries; /* number of attempts at transmission */
} CSI_Q MGMT;

/* packet buffer */
typedef struct {

int “offset; /* starting offset of packet data */
int size; /* size of the data in buffer */
int maxsize; /* maximum size of the data in buffer */
int translated_size;/* size valid data xdr translatable */
CSI_PAKSTAT packet_status; /* success/failure of translation */
CSI_Q MGMT q_mgmt; /* for managment of queueing */
char datal[l]; /* starting address of data storage */

} CSI_MSGBUF;

#define CSI_MSGBUF_MAXSIZE (sizeof (CSI_MSGBUF) + CSI_MAX MESSAGE_SIZE)

* Merged request/response types used so data structures can be accessed
* at their top layer (common layered structure) to determine their type
* and handling. Listed below, these are:

/*
* packet structure definitions for requests sent from csi to the acslm
*/
typedef union ({
REQUEST_HEADER req_header;
AUDIT_REQUEST audit_reg;
ENTER_REQUEST enter_req;
EJECT_REQUEST eject_req;
VARY_ REQUEST vary_req;
MOUNT_REQUEST mount_req;
DISMOUNT REQUEST dismount_req;
QUERY_REQUEST query_req;
CANCEL_REQUEST cancel_req;
START_ REQUEST start_req;
IDLE_REQUEST idle_req;
EJECT_ENTER eject_enter_req;

D-6 9036

CSl & SSI Required Files

} CSI_LM REQUEST:
/*

*
*/
typedef union {
REQUEST_HEADER
ACKNOWLEDGE _RESPONSE
AUDIT_RESPONSE
ENTER_RESPONSE
EJECT_RESPONSE
VARY_RESPONSE
MOUNT_RESPONSE
DISMOUNT_RESPONSE
QUERY RESPONSE
CANCEL_RESPONSE
START_RESPONSE
IDLE_RESPONSE
EJECT_ENTER
} CSI_LM RESPONSE;

packet structure definitions for

responses sent from acslm

req_header;
ack res;
audit_res;
enter_res;
eject_res;
vary_res;
mount_res;
dismount_res;
query_res;
cancel_res;
start_res;
idle_res:
eject_enter_res;

to the csi

/*
* packet structure definitions for requests sent from SSI/NI to the csi
*/
typedef union {
CSI_REQUEST HEADER csi_req_header;
CSI_AUDIT_ REQUEST csi_audit_req;
CSI_ENTER_REQUEST csi_enter_req;
CSI_EJECT_ REQUEST csi_eject_req;
CSI VARY REQUEST csi_vary_ req;
CSI_MOUNT REQUEST csi_mount_req;
CSI_DISMOUNT REQUEST csi_dismount_req;
CSI QUERY REQUEST csi_query_req;
CSI_CANCEL_REQUEST csi_cancel_req;
CSI_START REQUEST csi_start_req;
CSI_IDLE_REQUEST csi_idle_req;
CSI_EJECT_ENTER csi_eject_enter req;
} CSI_REQUEST;
/*
* packet structure definitions for responses sent from the c¢si to SSI/NI
*/
typedef union ({
CSI_REQUEST_HEADER csi_req_header;
CSI_ACKNOWLEDGE_RESPONSE csi_ack_res;
CSI_AUDIT_RESPONSE csi_audit_res;
CSI_ENTER_RESPONSE csi_enter_res;
CSI_EJECT_RESPONSE csi_eject_res;
CSI_VARY_RESPONSE csi_vary res;
CSI_MOUNT RESPONSE csi_mount_res;
CSI_DISMOUNT _RESPONSE csi_dismount_res;
CSI QUERY RESPONSE csi_query_res;
CSI_CANCEL_RESPONSE csi_cancel_res;
CSI_START_RESPONSE csi_start_res;
CSI_IDLE_RESPONSE csi_idle_res;
CSI_EJECT_ENTER csi_eject_enter_res;
} CSI_RESPONSE;
/%
* external declarations for global variables
*/
extern QM QID csi_lm gid; /* connection queue to acslm */
9036 D-7

csi.h

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

/*

QM _QID
long

long

int

int
BOOLEAN
BOOLEAN
CSI_MSGBUF
SVCXPRT
SVCXPRT

QM _QID
CSI_HEADER
IPC_HEADER
int

int

csi_ni_out_qid;
csi_lmg_lastcleaned;
csi_connect_agetime;
csi_rpc_tcpsock;
csi_rpc_udpsock;
csi_udp_ rpcsvc;
csi_tcp rpcsve;
*csi_netbufp;
*csi_udpxprt;
*csi_tcpxprt;

csi_lm qid;
csi_ssi_address;
¢si_ipc_header;
csi_retry_timeout;
csi_retry tries;

unsigned char csi_netaddr(];

char
int

csi_hostnamel[]};
csi_pid;

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

CSl & SSI Required Files

network output queue */

time acslm connect queue cleaned */
aging time for connection */

rpc tcp service socket */

rpc udp service socket */

TRUE if using RPC UDP server */
TRUE if using RPC TCP server */
network packet buffer */

CSI UDP transport handle */

CSI TCP transport handle */

ID of CSI connection queue */

CSI header to build ssi packets */
IPC header used to build packets */
seconds per network send try */
number of times network retry */
address of this host */

name of this host */

process id this program */

* external declarations for csi internal routines

*/
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

/*

* external

*/
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void

void

STATUS
char

STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
STATUS
void

STATUS
STATUS
STATUS
STATUS
STATUS
STATUS

int

unsigned long

STATUS
int
int
STATUS
int

bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t

csi_fmtlmqg lo

csi_freeqmem(
*csi_getmsg() ;
csi_getiaddr();
csi_hostaddr();
csi_init();
¢si_lminput ();
csi_netbufinit();
csi_net_send();
csi_process();
csi_ptrace();
csi_gclean();
csi_qget ()

g()
csi_fmtniq log();
)i

csi_ginit();

csi_gput();
csi_rpccall();
csi_rpctinit();
csi_rpcdisp();
¢si_rpcinput () ;

csi_rpctransient ();

csi_rpcuinit();
csi_sighdlc();
csi_ssicmp();
csi_svcinit ()
csi_xidemp () ;

csi_xackresponse();
csi_xacs();
csi_xcap_id();
csi_xcell id():
csi_xcol();
csi_xcommand() ;
csi_xcsi_hdr();
csi_xdrive_id();-
csi_xdrrequest ()
csi_xdrresponse();

declarations for XDR conversion routines

9036

CSl & SSI Required Files

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

#endif

9036

bool_t
bool t
bool_t
bool t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool_t
bool t
bool_t
bool_t
bool _t
bool_t
bool_t
bool_t

csi_xeject ();
csi_xeject_enter();
csi_xfreecells();
csi_xidentifier();
csi_xipc_hdr();
csi_xlocation();
csi_xlsm();
csi_xlsm_id();
csi_xmsg_hdr():
csi_xpnl():;
csi_xpnl_id();
csi_xport();
csi_xport_id():
csi_xqu_response();
csi_xreq hdr();
csi_xreqsummary () :
csi_xres_status();
csi_xrow();
csi_xsockname () ;
csi_xspnl_id();
csi_xstate();
csi_xstatus();
csi_xtype ():
csi_xvol_id();
csi_xvol_status():;

D-9

csi_structs.h , CSl & SSI Required Files

csi_structs.h HEADER FILE

/* SccsId $W% %G3% (c) 1988 StorageTek */
#ifndef _CSI_STRUCTS_
#define _CSI_STRUCTS_
/*
* StorageTek SECRET
Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1988)
Storage Technology Corporation
All Rights Reserved

Functional Description:

definitions of CSI data structures.

includes "defs.h", unless already defined, to be complete.
includes "identifier.h", unless already defined, to be complete.
includes "db_structs.h", unless already defined, to be complete.
includes "“structs.h", unless already defined, to be complete.

NOTE:

the structures defined here have corresponding definitions for the
ACSIM in 1lm structs.h. any modifications to this file MUST be
reflected in lm _structs.h as well.

Modified by:

X% %k Ok Ok % % O X % 2 % %k % % % O % X ¥ X X XA ¥

D. F. Reed 29—-Jan-1989 Original.
J. A. Wishner 30-Jan-1989 Added definitions for CSI_HEADER.
/
/*
* Header Files:
*/

#include “defs.h"
#ifndef _IDENTIFIER
#include "identifier.h"
#endif _IDENTIFIER_
#ifndef _DB_STRUCTS_
#include "db_structs.h"
#endif _DB_STRUCTS_
#include "“structs.h"
#include "csi_header.h"

/*
* Defines, Typedefs and Structure Definitions:
*/
typedef struct { /* fixed portion of request_packet */

CSI_HEADER csi_header;
MESSAGE HEADER message_header;
} CSI_REQUEST_HEADER;

typedef struct { /* intermediate acknowledgment */
CSI_REQUEST HEADER csi_request_header;
RESPONSE_STATUS message_status;
MESSAGE ID message_id;

} CSI_ACKNOWLEDGE RESPONSE;

D-10 9036

CSI & SSI Required Files csi_structs.h

PR e e eI e s Ry
* AUDIT REQUEST/RESPONSE STRUCTURES

*
R e L L

typedef struct ({ /* audit_request
*/
CSI_REQUEST_ HEADER csi_request_header;
CAPID cap_id; /* CAP for ejecting cartridges *x/
TYPE type:; /* type of identifiers */
unsigned short count; /* number of identifiers */
union { /* list of homogeneous ids to audit */
ACS acs_id([MAX ID]:
LSMID lsm _id[MAX ID];
PANELID panel_id[MAX_ID];
SUBPANELID subpanel id[MAX ID];

} identifier;
} CSI_AUDIT REQUEST;

typedef struct ({ /* audit_response */
CSI_REQUEST_HEADER csi_request_header;
RESPONSE_STATUS message_status;
CAPID cap_id; /* CAP for ejecting cartridges */
TYPE type: /* type of identifiers *x/
unsigned short count; /* number of audited identifiers */
union { /* list of ids audited w/status */

AU _ACS_STATUS acs_status([MAX ID];
AU_LSM STATUS lsm_status[MAX ID];
AU_PNL_STATUS panel_status[MAX ID];
AU_SUB_STATUS subpanel_ status([MAX ID];
} identifier_status;
} CSI_AUDIT_RESPONSE;

typedef struct { /* eject_enter intermediate response */
CSI_REQUEST HEADER csi_request_header;
RESPONSE_STATUS message_status;
CAPID cap_id; /* CAP for ejecting cartridges */
unsigned short count; /* no. of volumes ejected/entered */
VOLUME_STATUS volume status[MAX ID};

} CSI_EJECT ENTER;

/***

* EJECT REQUEST/RESPONSE STRUCTURES *

**/

typedef struct { /* eject request */
CSI_REQUEST HEADER csi_request_header:;
CAPID cap_id; /* CAP used for ejection */
unsigned short count; /* Number of cartridges */
VOLID vol_id[MAX_ID]; /* External tape cartridge label */

} CSI_EJECT_REQUEST;

typedef CSI_EJECT _ENTER CSI_EJECT_RESPONSE;

/***

* ENTER REQUEST/RESPONSE STRUCTURES *
Ry e 22

typedef struct { /* eject request */
CSI_REQUEST_HEADER csi_request_header;
CAPID cap_id; /* CAP used for entry */

} CSI_ENTER REQUEST;

9036 D-11

csi_structs.h CSl & SSl Required Files

typedef CSI_EJECT_ ENTER CSI_ENTER_RESPONSE;
PR L L e L R e e e s s e

* MOUNT REQUEST/RESPONSE STRUCTURES *
LR s L e r e Ty

typedef struct {
CSI_REQUEST_ HEADER csi_request_header;

VOLID vol_id;
unsigned short count;
DRIVEID drive_id[1];

} CSI_MOUNT_REQUEST;

typedef struct ({
CSI_REQUEST HEADER csi_request_header:;
RESPONSE_STATUS message_status;
VOLID vol_id;
DRIVEID drive_id;

} CSI_MOUNT_RESPONSE;

/***

* DISMOUNT REQUEST/RESPONSE STRUCTURES *
R R T T T Ly

typedef struct {
CSI_REQUEST_HEADER csi_request_header;
VOLID vol_id;
DRIVEID drive_id;

} CSI_DISMOUNT_REQUEST;

typedef struct {
CSI_REQUEST HEADER csi_request_header;
RESPONSE_STATUS message_status;
VOLID vol id;
DRIVEID drive_id;

} CSI_DISMOUNT_ RESPONSE;

/***

* QUERY REQUEST/RESPONSE STRUCTURES *
R R e s r r e e L Ly

typedef struct { /* query request */
CSI_REQUEST_ HEADER csi_request_header;
TYPE type; /* type of query *x/
unsigned short count; /* number of identifiers */
union { /* list of homogeneous ids to query */
ACS acs_id[MAX_ ID];
LSMID lsm ld[MAX ID];
CAPID cap_. 1d[MAX ID];
DRIVEID drive ld[MAX ID];
VOLID vol ld[MAX 1D];
MESSAGE_ID request[MAX ID]);
PORTID port_ 1d[MAX ID];
} identifier;

} CSI_QUERY REQUEST;

typedef struct { /* query_response */
CSI_REQUEST HEADER csi_request_header;
RESPONSE_STATUS message_status;
TYPE type; /* type of query */
unsigned short count; /* number of identifiers */
union { /* list of ids queried w/status */

QU_SRV_STATUS server_status{MAX ID]:;
QU ACS . _STATUS acs status[MAX ID],
QU LSM STATUS lsm_status[MAX ID];

D-12 9036

CSI & SSI Required Files csi_structs.h

QU_CAP_STATUS cap_status(MAX ID];
QU_DRV_STATUS drive_status[MAX ID];
QU_MNT STATUS mount_status[MAX ID];
QU VOL STATUS volume_ status[MAX ID]:
QU PRT STATUS port_ status[MAX ID],
QU_REQ_STATUS request_status [MAX_ID];
} status_response;
} CSI_QUERY_ RESPONSE;

/***

* VARY REQUEST/RESPONSE STRUCTURES *
R e s e s R LTy

typedef struct ({
CSI_REQUEST HEADER csi_request_header;

STATE state;

TYPE type;

unsigned short count;

union { /* list of homogeneous ids to vary */
ACS acs_id[MAX ID];

LSMID 1sm id{MAX_ID]:;

DRIVEID drive ld[MAX ID]);

PORTID port_ ld[MAX ID];

} identifier;
} CSI_VARY_REQUEST;

typedef struct ({
CSI_REQUEST_ HEADER csi_request_header;

 RESPONSE_STATUS message_status;

STATE state;

TYPE type:

un51gned short count; :

union { /* list of ids varied w/status */
VA_ACS_STATUS acs_status[MAX ID]; :
VA_LSM_STATUS lsm status(MAX ID];

VA DRV STATUS drive_status[MAX ID];

VA_PRT_STATUS port_status[MAX ID];

} device_status;
} CSI_VARY_ RESPONSE;

[K I KKK KKK IR KKK KKK KKK I KKK IR A KA KKK AKKK KK KKK RK KK KR KKK K KAk A KAk kkkkkkk
* CANCEL REQUEST/RESPONSE STRUCTURES *

**/

typedef struct {
CSI_REQUEST_HEADER csi_request_header;

MESSAGE_ID request;
} CSI_CANCEL_REQUEST;

typedef struct {
CSI_REQUEST HEADER csi_request_header;
RESPONSE_STATUS message_status;
MESSAGE_ID request;

} CSI_CANCEL RESPONSE;

/***

* START REQUEST/RESPONSE STRUCTURES *

**/

typedef struct ({
CSI_REQUEST_HEADER csi_request_header;
} CsI START REQUEST

typedef struct {

9036 D-13

csi_structs.h CSl & SSI Required Files

CSI_REQUEST HEADER csi_request_header;
RESPONSE_STATUS message_status;
} CSI_START_RESPONSE;

/***

* IDLE REQUEST/RESPONSE STRUCTURES *
R s e R e e e e s e s s s Ly

typedef struct {
CSI_REQUEST HEADER csi_request_header:;
} CSI_IDLE_REQUEST;

typedef struct ({
CSI_REQUEST_ HEADER csi_request_header;
RESPONSE_STATUS message_status;

} CSI_IDLE RESPONSE;

/*
* Procedure Type Declarations:

*/

#endif _CSI_STRUCTS_

D-14 y 9036

CSI & SSI Required Files csi_msg.h

csi_msg.h HEADER FILE

/* ScecsId @(#)csi_msg.h 1.9 6/19/89 (c) 1988 StorageTek */
#ifndef _CSIMSG_
#define _CSIMSG_ /* where MODULE == header module name */
/*

* StorageTek SECRET

* Property of Storage Technology Corporation

* Do not copy or distribute unpublished work

*

* Copyright (1988)

* Storage Technology Corporation

* All Rights Reserved

*

* Functional Description:

*

* functional description of objects defined in header file.
*

* Modified by:

*

* J. A. Wishner 18-Jan-1988. Created.

* J. A. Wishner 05/01/89.TIME STAMP-POST CUSTOMER INITIAL RELEASE
*

*x/

/*

* Header Files:

*/ .

/%

* Defines, Typedefs and Structure Definitions:

*

* Enumerated type for csi messages.

*

* Considerations:

*

* Must be kept in sync with the message declarations in
* csi_getmsg.c.

*/

typedef enum ({
MSG_FIRST = 0,/* invalid */
MSG_UNMAPPED RPCSERVICE,
MSG_RPCTCP_SVCCREATE_FAILED,
MSG_RPCTCP_SVCREGISTER_FAILED,
MSG RPCUDP_ "~ SVCCREATE FAILED,
MSG RPCUDP SVCREGISTER_FAILED,
MSG INITIATION _STARTED,
MSG INITIATION COMPLETED,
MSG INITIATION_FAILURE,
MSG_CREATE_CONNECTQ_FAILURE,
MSG_CREATE_NI_OUTQ_ FAILURE,
MSG LOCATE QMEMBER FAILURE,
MSG DELETE QMEMBER_FAILURE,
MSG_SYSTEM_ERROR,
MSG UNEXPECTED _SIGNAL,
MSG RPC_ INVALID _PROCEDURE,
MSG RPC INVALID PROGRAM,
MSG_RPC_CANT_ REPLY,
MSG RPCTCP _CLNTCREATE,
MSG RPCUDP CLNTCREATE,
MSG INVALID_ PROTO,
MSG _QUEUE_ CREATE __FAILURE,

9036 D15

csi_msg.h CSl & SSI Required Files -

MSG_QUEUE_STATUS_FAILURE,
MSG_QUEUE_MEMBADD_FAILURE,
MSG_QUEUE_CLEANING_START,
MSG_UNDEF_MSG,
MSG_UNDEF_MSG_TRUNC,
MSG_UNDEF_MODULE_TYPE,
MSG_UNDEF_CLIENT,
MSG_MESSAGE_SIZE,
MSG_MESSAGE_SIZE_TRUNC,
MSG_ACSLM_SEND_FAILURE,
MSG_ACSLM_READ_FAILURE,
MSG_SEND_NI_FAILURE,
MSG_SEND_ACSSA_FAILURE,
MSG_INVALID_COMM SERVICE,
MSG_XDR_XLATE_FAILURE,
MSG_RPC_CANT_FREEARGS,
MSG_QUEUE_ENTRY_DROP,
MSG_UNDEF_HOST,
MSG_TERMINATION STARTED,
MSG_TERMINATION COMPLETED,
MSG_DUPLICATE_ACSLM_ PACKET,
MSG_INVALID_NI_TIMEOUT,
MSG_DUPLICATE_NI_PACKET,
MSG_NI_TIMEDOUT,
MSG_UNEXPECTED_FAILURE,
MSG_INVALID_ COMMAND,
MSG_INVALID_TYPE,
MSG_LAST, /* invalid */
} CSI_MSGNO;

/* .

* Procedure Type Declarations:
*/

/* external procedure declarations */
#endif _CSIMSG_

D-16 9036

CSI & SSI Required Files csi_getmsg.c

csi_getmsg.c SOURCE FILE

#ifndef lint

static char SccsId[] = "@(#)csi_getmsg.c 1.16 6/19/89 (c) 1989 StorageTek";
#endif

/*

* StorageTek SECRET

Property of Storage Technology Corporation
Do not copy or distribute unpublished work

Copyright (1989)
Storage Technology Corporation
All Rights Reserved
Name:
csi_getmsg ()

Description:

Functions returns a pointer to a csi message, accessed via defined
value (defined in csi_msg.h).

Return Values:

(char *)- pointer to a static message string
Implicit Inputs:

st_msgtab- static message table

Implicit Outputs:

Considerations:
Messages must be kept in sync with the enumerated type CSI_MSGNO
in csi_msg.h. Also, table must be fully populated and messages must
at least be defined as an empty string (at a minumum).
Module Test Plan:
NONE

Revision History:

H ok ok ok b OF b ok % b Ok Ok b 3 b b Ok 6 % 2 X b % b % O O 3 Ok % Ok % % % % O & % ¥ O % % % O %

J. A. Wishner 25~Jan-1989. Created.
/
/*
* Header Files:
*x/

#include "csi.h"™

/*
N Defines, Typedefs and Structure Definitions:

9036 D-17

csi_getmsg.c CSI & SSI Required Files
*/

/%
* Global and Static Variable Declarations:
*/

static char
static char

*st_src = __FILE _;
*st_module = "csT _getmsg () ";

static struct st_msg {
CSI_MSGNO msgno;
char *msg;
} st_msgtab [] = {
MSG_FIRST, "Invalid Message MSG_FIRST",

MSG_UNMAPPED_RPCSERVICE, "Unmapped previously registered RPC service.",
MSG_RPCTCP_SVCCREATE_FAILED, "Create of RPC TCP service failed",

MSG RPCTCP SVCREGISTER . FAILED, "Can’t register RPC TCP service",

MSG_| RPCUDP SVCCREATE FAILED, "Create of RPC UDP service falled",

MSG RPCUDP_| SVCREGISTER . FAILED,"Can’t reglster RPC UDP service",

MSG INITIATION STARTED,
MSG INITIATION COMPLETED,
MSG INITIATION_FAILURE,

MSG CREATE CONNECTQ FAILURE,

MSG CREATE NI_OUTQ FAILURE,
MSG LOCATE QMEMBER FAILURE,
MSG DELETE ¢ QMEMBER . FAILURE,
MSG SYSTEM ERROR,

MSG UNEXPECTED SIGNAL,
MSG RPC__ INVALID _PROCEDURE,
MSG RPC INVALID PROGRAM,
MSG_RPC_CANT_REPLY,

MSG RPCTCP CLNTCREATE,
$s\nAddress:%lu, Port:%d",
MSG_RPCUDP_CLNTCREATE,
%¥s\nAddress:%1lu, Port:%4d",
MSG_INVALID_ PROTO,

MSG QUEUE_CREATE FAILURE,
MSG QUEUE STATUS | FAILURE,
MSG ¢ QUEUE MEMBADD FAILURE,
MSG QUEUE CLEANING _START,
MSG UNDEF MSG,

MSG UNDEF_| “MSG TRUNC,

MSG UNDEF | _MODULE_TYPE,
discarded™,

MSG UNDEF CLIENT

MSG | MESSAGE SIZE,

MSG_] MESSAGE SIZE_TRUNC,
MSG ACS1LM SEND FAILURE,
MSG ACSLM READ FAILURE,
MSG SEND NI FAILURE,
$s\nAddress:%lu, Port:%d",
MSG_SEND_ACSSA_FAILURE,
MSG INVALID_COMM SERVICE,
MSG_XDR_XLATE FAILURE,
MSG RPC CANT FREEARGS,

MSG QUEUE ENTRY __DROP,

"Initiation Started",

"Initiation Completed",

"Initiation of CSI Failed",

"Creation of connect queue failed",
"Creation of network output queue failed",
"Can’t locate queue Q-id:%d, Member:%d",
"Can’'t delete Q-id:%d, Member:3%d",
"Operating system error %d",

"Unexpected signal caught, value:%d",
"Invalid procedure number"™,

"Invalid RPC program number",

"Cannot reply to RPC message",

"RPC TCP client connection failed,

"RPC UDP client connection failed,

"Invalid network protocol™,

"Queue creation failure",

"Can’t get queue status Q-id:%d, Member:%d",
"Can’t add member to queue Q-id:%d",

"Starting cleanup of connection queue, Q-id %d",
"Undefined message detected: discarded",
"Invalid message contents from NI: truncated"™,
"Unsupported module type %d detected:

"Message for unknown client discarded",

"Invalid message size, %d, from NI: discarded",
"Invalid message size, %d, from NI: truncated",
"Cannot send message to ACSLM: discarded",
"Cannot read message from the ACSLM: discarded",
"Cannot send message to NI: discarded,

"Cannot send message to ACSSA: discarded",
"Invalid communications service",

"XDR message translation failure",

"Cannot decode to free memory allocated by XDR",
"Dropping from Queue: Address:%lu, Port:%d,

ssi 1dent1f1er %d, Protocol:%d, Connect type:%d",

MSG UNDEF_HOST,

MSG TERMINATION _STARTED,
MSG TERMINATION COMPLETED,
MSG DUPLICATE_. ACSLM | PACKET,
discarded",

MSG_ INVALID NI TIMEOUT,
MSG DUPLICATE NI _PACKET,

"Undefined hostname",

"Termination Started",

"Termination Completed",

"Duplicate packet from ACSLM detected:

"Invalid network timeout value",
"Duplicate packet from Network detected

discarded\naddress:%lu, process-id:%d, sequence number:%lu",

D-18

9036

CSI & SSI Required Files

MSG_NI_TIMEDOUT, "Network timeout",
MSG_UNEXPECTED_ FAILURE, "Unexpected failure detected:
MSG_INVALID_COMMAND, "Invalid command",
MSG_INVALID_TYPE, "Invalid type",

MSG_LAST, "Invalid Message MSG_LAST"

}; /* end of table declaration */

/*

* Procedure Type Declarations:

*/

char *

csi_getmsg (msgno)
CSI_MSGNO msgno;
{

int i;

#ifdef DEBUG
if TRACE(0)
cl_trace(st_module,
1,
(unsigned long) msgno);
#endif DEBUG

i = (int) msgno;

if (i <= (int) MSG_FIRST ||

/*

/*

/*
/*
/*

message number */

message number */

routine name */
parameter count */
argument list */

csi_getmsg.c

errno=3%d",

/* make sure status if valid */

>= (int) MSG_LAST) {

cl_log _unexpected(st_module, st_module, STATUS_INVALID MESSAGE):

return("error: unknown message");

}

return(st_msgtab[i] .msqg);

9036

/* return valid message */

D-19

csi_getmsg.c CSl & SSI Required Files

(INTENTIONALLY LEFT BLANK)

D-20 y 9036

9036

GLOSSARY OF TERMS

AC — Alternating Current.
ACS — See Automated Cartridge System.
ACSEL — See ACS Event Logger.

ACS Event Logger (ACSEL) — The Storage Server software component
that receives messages from other Storage Server components and
writes them to an Event Log.

ACS ID — A unique identifier for an ACS.
ACSLH — See ACS Library Handler.

ACS library — A library is composed of one or more ACSs, attached
4480 tape cartridge drives, and cartridges residing in the ACSs.

ACS Library Handler (ACSLH) — The part of the ACS Library Manager
that communicates directly with the LMU.

ACS Library Manager (ACSLM) — The Storage Server software
component that validates and routes library requests and responses.

ACSLM — See ACS Library Manager.
ACSSA — See ACS System Administrator.

ACS System Administrator (ACSSA) — The Storage Server software
component that provides a screen interface enabling library operators
and users to monitor and control Storage Server operations.

Automated Cartridge System (ACS) — The library subsystem
consisting of one LMU, and one to sixteen LSMs connected to that
LMU.

Automated library — See Library.

Gl-1

Gl-2

Glossary

Bar code — A code consisting of a series of bars with varying widths.
This code appears on the external label attached to the spine of a
cartridge, and its value is equivalent to the volume serial number. This
code is read by the robot’s machine vision system.

Beginning of Tape — The location on a tape where written data begins.
BOT — See Beginning of Tape. '

BSD — Acronym for Berkeley Software Distribution, a version of the
UNIX operating system.

CAP — See Cartridge Access Port.

CAP ID — A CAP ID uniquely identifies the location of a CAP by the
LSM on which it resides. A CAP ID consists of the ACS ID and the
LSM number.

Cartridge — A plastic housing containing a length of data recording
tape. It is approximately 4 inches (100mm) by 5 inches (125 mm) by 1
inch (25mm). The tape is threaded automatically when loaded in a
transport. A plastic leader block is attached to the tape for automatic
threading. The spine of the cartridge contains an OCR/Bar Code label
listing the volume ID.

Cartridge Access Port (CAP) — A bidirectional port, built into the door
panel of a LSM, which provides for the manual entry or automatic
ejection of tape cartridges.

Cartridge drive — A device containing two or four cartridge transports
and their associated power and pneumatic supplies.

Cartridge transport — An electromechanical device that moves tape
from a cartridge over a head that writes data on and reads data from
the tape. A transport is distinct from the power and pneumatic sources
that supply the electricity and air it needs to function. See Cartridge
drive.

Cell — A receptacle in the LSM in which a cartridge is stored.

Central Support Remote Center (CSRC) — An installation whose
operators can access and test StorageTek products over telephone
lines.

Channel — A device that connects the host and main storage with the
input and output control units.

Checkpoint — A static backup of a data base.

9036

Glossary

Client applications — Software applications that manage tape cartridge
contents. They access tape cartridges by interacting with the Storage
Server. Any number of client applications can be resident on a client
system.

Client System Interface (CSI) — The Storage Server software
component that translates and routes messages between the ACS
Library Manager and the Storage Server Interfaces.

Client system user — A person who executes applications on a client
system.

Command Processor — The screen interface of the ACS System
Administrator. The Command Processor performs basic syntax
validations on user input.

Control Unit — A microprocessor-based unit logically situated
between a channel and up to sixteen cartridge transports. It translates
channel commands into transport commands and sends transport
status to the channel.

CSE — Acronym for Customer Services Engineer.
CSI — See Client System Interface.

CSRC — See Central Support Remote Center.

CU — See Control Unit.

Data base — A collection of interrelated data files.
Data base catalog — A file that keeps track of data base files.

Data base management system (DBMS) — The process that accesses,
controls, organizes, and modifies a data base.

DC — Direct Current.

EOT — Acronym for End of Tape.
EPO — Acronym for Emergency Power Off.

Event Log — A file, maintained by the ACS Event Logger, that
contains messages describing significant library and Storage Server
events; these events include errors.

External label identifier — A six-character alphanumeric label adhered
to an outside edge of a tape cartridge. It is used to identify a physical

9036 GI-3

Gl4

Glossary

tape volume. It may consist of upper case letters A through Z,
numerals O through 9, and blanks.

FIFO — First In/First Out

Home location — The cell in an LSM in which a cartridge is currently
stored.

ID — Identifier or identification.

Initial Program Load (IPL) — A process that activates a machine
reset, initiates wake up diagnostics (from EPROMs) and, upon
completion of wake up, loads functional code from a floppy disk.

Inline diagnostics — Routines that test components of a subsystem
while operating on a time-sharing basis with the functional microcode
in the subsystem component.

1/0 — Input/Output
IPC — Acronym for Interprocess Communication
IPL — See Initial Program Load.

Journal — A sequential log of changes made to the data base since the
last checkpoint. '

LAN — See Local Area Network.
LCU — See Library Control Unit.

9036

Glossary

9036

Library — A library is composed of one or more ACSs, attached 4480
cartridge drives, volumes placed in to the ACSs, the Storage Server
software that controls and manages the ACSs, and the data base that
describes the states of the ACSs.

Library Control Unit (LCU) — The portion of the LSM that controls the
picking, mounting, dismounting, and replacing of tape cartridges.

Library drive — A cartridge transport that is attached to an LSM and
is connected to, and controlled by, a client system. Library drives
interact with the LCU during automated tape cartridge mount and
dismount operations. Library drives interact with a client application
during tape data transfer operations. Library drives are individually
addressable by the ACSLM and are individually accessible by client
applications. See Cartridge Transport.

Library Management Unit (LMU) — The portion of an ACS that
manages the LSM, allocates its resources, and communicates with the
Storage Server.

Library Storage Module (LSM) — The portion of an ACS that provides
the storage area for cartridges and the robot necessary for moving them.

Light Emitting Diode (LED) — A light emitting device that uses little
energy and is used mainly to indicate on/off conditions.

LMU — See Library Management Unit.

Local Area Network (LAN) — A computer network in which any
component in the network can access any other component. This is the
type of interface between an LMU and attached LSMs.

LSM — See Library Storage Module.

LSM ID — A unique identifier for an LSM. The LSM ID consists of
the ACS ID and the LSM number.

Machine Initiated Maintenance (MIM) — A unique feature of the
4400 ACS in which an expert system monitors conditions and
performance of the subsystem and requests attention before a problem
becomes serious enough to impact operations. The customer can set
threshold levels.

MIM — See Machine Initiated Maintenance.

Network Adapter — Equipment that provides an electrical and logical
interface between a network and specific attached equipment.

Gl-5

Gl-6

Glossary

Network Interface (NI) — An interface between the server system
and the client systems that maintains network connections and
controls the exchange of messages. A Network Interface is resident
on the server system and each client system.

NI — See Network Interface.

OCR — Optical Character Recognition.

OCR label — An external label attached to the spine of a cartridge that
is both human- and machine-readable.

OSI — Acronym for Open Systems Interconnection, a software
architecture model of the International Organization for
Standardization. The OSI model provides standards for the
interconnection of data processing systems.

Pass-Thru Port (PTP) — Mechanism that allows a cartridge to be
passed from one LSM to another in a multiple LSM ACS.

PTP — See Pass-Thru Port.

Relational data base — A data base that is organized and accessed
according to relationships between the data items; relationships are
represented by tables.

RPC — Acronym for Remote Procedure Call.

Server system — The part of the library that is the residence for the
Storage Server software. The server system acts as an interface
between a library and any number of client systems.

Servo — A system that uses feedback to control a process.

Server system user — A person who invokes ACS Storage Server
commands, utilities or procedures, on the server system. Server
system users are generally site and maintenance personnel (for

9036

Glossary

example, library operators, tape librarians, system administrators,
CSEs, and systems personnel).

SQL — See Structured Query Language.
SSI — See Storage Server Interface.
SSR — Acronym for Software Support Representative.

Storage Server — The software that interprets library commands from
client applications or library operators and routes them to the
appropriate LMU. The Storage Server consists of the following
software components: ACS Library Manager (ACSLM), ACS System
Administrator (ACSSA), Client System Interface (CSI), ACS Event
Logger (ACSEL), Network Interface (NI), and Storage Server data
base.

Storage Server data base — A data base used by the Storage Server to
track the library configuration and the locations and IDs of all tape
cartridges in the library.

Storage Server Interface (SSI) — A software component, resident on a
client system, that translates and routes messages between client
applications and the Client System Interface.

Structured Query Language (SOL) — A language used to define, access,
and update data in a data base.

SVID — Acronym for System V Interface Definition.

TCP — Acronym for Transport Connect Protocol.

TLMS — Acronym for Tape Library Management System, a type of
client application.

Transport — An electromechanical device capable of threading tape
from a cartridge, moving the tape across a read/write head, and writing
data onto or reading data from the tape.

UNIX — An operating system originally developed by Bell
Laboratories and used by a variety of computer systems.

UDP — Acronym for User Datagram Protocol.

9036 Gl-7

Glossary

Volume ID — A six-character string that uniquely identifies a tape
cartridge to the data base. '

Volume serial number — A synonym for external label identifier.

XDR — Acronym for External Data Representation.

Gl-8 9036

Numerics
4480
cartridge drive.......cocveeeereeenineeccsneenannes 1-8
cartridge SubSystem........cccceeeeeeeenvenencens 1-8
Control Unitccceeveeeereereereeseernasesenne 1-8
A
ACS
DENEfItS ..couvicrieiiicieceneecerce e nreenecnenee 1-4
deSCTIPtION...cccciieeeereeecieeeeeeeeeceaeeesanas 1-1
fUNCHONS.....conieiieeeecce et ceeceeeene 1-1
hardware componentsccccoeeeceeenennes 1-4
ACS Event Logger, see Event Logger..............
ACS hardware
cartridge SubSYStem.....cccceeuereeerersveseanenne 1-8
LCU .oiiiiireenectenenreeenneneeseensssesaenns 1-5
LMU. . ciiiiiiininiientnreeneenneeneesnessesnesane 1-8
LSM ccirresetesteeecsecseesentesesneeneseeneene 1-5
ACS Library Manager, see ACSLM.................
ACS System Administrator, see ACSSA
ACSEL, see Event Logger.....cccccoceeveeenernccnnnenne
ACSLM
€ITOT TECOVETY ..cuveeneceeesencreesencsesssasnns 1-12
fUNCHONS.....coviieeteeceeeecceree et seenen 1-12
interactions with ACSSA.............. 2-9-2-12
interactions with client applications.....2-5-
2-8
mapping to OSI model.........ccccueuenenne 1-18
request Processing.....coceeeeeeereennees 2-3-2-12
State TanSItionsccoveeveervecrernurcnecnerneenee 24
SEALES.ceueeererraeeererresseeneeesessrasseses 2-3,4-25
ACSSA
deSCription.......cccceveeveererecceeeeaeceereenen 1-12
mapping to OSI model.............cccuu....... 1-18
audit command........ccccoeeeriereeneniennennnnne 4-2-4-8

9036

INDEX

B
BSD SOCKELS....coceueerereeeernarcanenassncones 1-10, 6-10
C
cancel command.........cccccceverneceeneenne 4-9-4-11
cancelled requests
AUAIL ..coveeeneeeeneeeneeneererenesesesssncnsssesaones 4-7
EJECT. eureterennieerrnesreneesesnansssssensessenses 4-19
ENLET ...veeeeeeeneeenarenanesneessasessassossasssens 4-24
QUETY «eveeerreereereennesnenseessessessessassnsossasass 4-44
CAP
CAPACILY wecvuveernecneinenreesrsessacssstssesssessenns 1-5
deSCTIPHONccouiiuimcuiiencrieninesaenneenns 1-5
Cartridge Access Port, see CAP.........ccocueune..
cartridge drive.......coccveeeeererrerseeiesereecnsscreenes 1-8
client applications
interaction with ACSLM................ 2-5-2-8
client software
client applications.........cceceerveeuuenne 1-4,1-14
mapping to OSI model...........cccoeueeee. 1-18
NI nresessesassasasones 1-14
SO et snee e ae 1-14
TLMS ..ottt ecneseaeseceaeseeeseanees 1-14
Client System Interface, see CSI......................
client—server relationship.........ccccecceuenee 5-3,5-7
Command Processor...........ccoeeeeseeeseecsecnnces 1-12
commands
QUL ottt seee e 4-2-4-8
CANCEL ..ueeeneeenieeiereeeee e eaeeanene 4-94-11
diSmMOUNLccovirieniieinienrensineene 4-124-15
EJECE ceruneeeeieneeenreseetecen e asesaae s 4-164-20
ENLET c.veeeeeeeneeiecresneeeeseeseesessnanne 4-214-24
AL et 4-25-4-27
INOUNL ...ccoiieeeuaeecereesrsesasecsssessases 4-28-4-31
QUETY «eeerneneverneneeeeseeneeseesessesscsns 4-32-4-44
SEATE c.eevveeeercneeeeeeeeneeeeneenesneenennes 4-45-4-46
VATY 1ovvereeneneeenenneseensesesseesessasnsssanes 4-47-4-53
Index-1

communications, asynchronous...........c....... 5-5

control pathccoviveviiiinnniinninninneinnennnns 1-14
Control Unitcceeeecieeeseenseesseesseessesessensenes 1-8
COUNL....cuvreeecnreeeeasseeserasesecsssnsasasssessssssessssans 3-3
CP, see Command Processorcceeeeeruiencennns
C I recreeeeereeseeecreesseasenessessnnannes 1-13, 1-17
applied to Open Systems Interconnection
model cerressesneieseaseeetnaens 5-3-5-4
aS Primary SEIVeT..........cceeererene 5-7,5-8, 6-4
COMMUNICALONS TELTY...c.ccecuerueeraenneoncene 5-23
communications timeout.........ccccceeuee. 5-23
communications with ACSLM5-6-5-16,
7-11
error handling........cccooereeucvecnnennes 5-21-5-24
fUNCHONS. ... eeeeeceeeccnnreecnnneraecnees 5-1-5-2
global variables........ccccceevrniinrcncncnnennne. 7-2
INItHAONcuvveereeerreesraacnnens 5-9-, 5-10-5-12
interaction with the SSL.........cccccueeevenanes 5-3
interprocess communications............... 5-16
MESSAZE ProCeSSINgG.....vevueerveniene 5-13-5-20
network communications............ 5-16-5-18
RPC registration.........cccceeveeeceevunnee 5-8, 5-12
teImMINAtIONcovveeeeeeereenneeneesnersneseesaenne 5-24
csi_getmsg.c source file........oourrerennnnnen D-17
cSi_handle_1pcCoueerveeerenrrereeeinaesene e 7-7
csi_handle_rpc StruCturec.ccceeeeeveeressnees 7-9
sockaddr_in.......ccceeeveeinnecnseeennneecsenenns 7-10
csi_header 5-17, 6-4, 6-10, 6-11,7-13
csi_header Structureccceceeececeneccecncennnes 7-6
csi_handle_1pcccceecerernienieancnne 7-7,7-9
CSI_XId ueeueerenerronnceesenneenseeenenneecnseeeanene 7-6
csi_msgbuf.......cccceerueenen. 5-24, 6-9, 6-12, 6-16
csi_msgbuf structure........ccccceeceerreevnnsnennne 7-14
csi_request_header........ccccoceevevuceuenunne. e 3-23
csi_xdrrequest function............... 5-18,7-5,C-2
csi_xdrresponse function 5-19,7-13,C-5
CSi_Xid SIUCIUTE ...ccecurreeerrnerienrrrecsseneasensenss 7-8
CU, see Control Unitcceeeveeecemeneccsceenecesenne
D
data path.......ccceinceninninnnieninninennen 1-14
device Statesccceereeererareenseeaneeeaenne 4-47-4-49
dismount command.........ccccceerueeenncene 4-12-4-15
dismount, forcedccecevveeencreneirecnennces 4-12
drive addressescocveeveeeerreneceseenueceresennse 2-13

Index-2

drive, see cartridge driveccccecersensieccrnenns

E

eject command........cocceeveernerineinnennnne 4-164-20

enter commandccceeceeeveessnneseenane 4-21-4-24

environment variables
CSI_CONNECT_AGETIME....... 5-24,7-3
CSI_HOSTNAME.......ccccoveremircsnnsnennens 7-3
CSI_RETRY_TIMEOUT............. 5-23,7-3
CSI_RETRY_TIMES........ccccocevvrerrunncn 7-4
CSI_RETRY_TRIES.......ccccevvmenurnras 5-23
CSI_TCP_RPCSERVICEccccorueueee 7-3
CSI_TRACE_VALUEccccoeuvvueunuees 7-4
CSI_UDP_RPCSERVICE.........ccccoereuee. 7-3

Event Logccccceevnirrcnncneinccnicnninens 2-18-2-19
ACSLH....uuoceeiriccccvcnesncssassens A-5-A-7
ACSLMooviiirreneirinnncncenecnnens A-7-A-9
ACSSA ...rrreeninrtnnnsssecssssaeeseans A-9
;11T V1L OO A-9-A-12
COMIMON ENLTIES..cccoerrrrsrucessersseesssesssnsons A-5
CSL..eeeereneenerneesesnsssenasssssasens A-12-A-18
diSmOUNLcccevivmrirainniinccnrenssenes veee A-19
EJECE e uereeneaneeneenenneseeesessenaneneaessesassenes A-19
ENLET .vevveeecrereceeseseeaessesaesssassassasssssns A-20
1€ ueeereeeerenreseeenesreasctesassre e snsesesasanes 2-18
format........ccecveniniinneiinnninneineennne A-1
IMNOUNLcoereiernreinsacsesssssssssessssnesssansnnne A-20
Storage Server initiation..........ccceeeenee. A-21
Storage Server recovery............ A-22-A-26
unsolicited messages......... 2-16-2-17, A-2—

A-5

VATY ovvevreenennesnessennsesssssasessossenes A-27-A-29

Event LOGEETcoovvivencncnincnninrensensessnnnes 1-13

External Data Representation, see XDR.......... .

F

force message_option.............. 4-13, 4-25, 4-47

H

header files
CSL Nt D-4
csi_header.h....ccoovvieccinnnicciiiccnnnninnacns D-2
CSI_MSZN et D-15
CSL_STUCES. N eecienveeevneneas 7-5,D-10

9036

L

l
16 15 111 51 GNP U PO RSP 3-6
idle command.........ccccceeceeeveerceenucnnnen. 4-25-4-27
initiation, CSI.......ccccoverivinniirvenrinsennn 5-9-5-12
initiation, Storage Serverc.cueeen. 2-1-2-2

command filecccoecreveerenrcnninicnicenns 2-1
interactions with CSIccoceeveeccecceennene 6-14
intermediate response

AUAIL c.veeeneeceneceeeeene e e caceneanes 4-34-4

QUETY ceveereerecnuneneesnersensnessesassssosesnsesscaneas 4-35
INtETNCL...ccuiiiieiiieeceeciiesirccreesaresnecanees 1-17
interprocess communications, see IPC
IP, see INternetccocceeveevnvcrcnsecnnncnnsecnsncsinennes
IPC

fAIlUTE ...ttt 5-22

message handling...........cocceueaee. 5-6-5-16

SOCKELS...cceuueeneirteaeeeeeanneeeeaaesneenaesananne 5-6
ipc_header.........cccceuen. 3-2, 3-4, 5-16, 6-4, 6-10
ipc_header structure........ccccceeeveeeiecrccennncns 7-12
LCUcuuene, i eereeeesteeaeentestanateneestenasenaeseannase 1-5
Library Control Unit, see LCUcccccceevereene.
Library Management Unit, see LMU................
Library Manager, see ACSLMcccceuvuenee.
Library Storage Module, see LSM....................
LMU . ccieiienteeeresenesecsns et ennessessessnens 1-8
LSM

deSCTIPtioN......ccovveereieieetrencceesaecaeeane 1-5

PANEIS ...viiiiiiiieininte et 1-5

Pass-Thru Ports.......cccccoeccevrenncnncnninncnns 1-5

TODOL...cccueeietrrrnecientnctesnnesassssessessssssanns 1-5

StOrage CelIS....ccuirveeennnnniereenacnereeenanenne 1-5
M
message decodingccceeuee. 6-5, 6-10, 6-17
message packets

decoding......... 5-14, 5-15, 5-18, 6-10, 6-17,

7-14
duplicate......ccccereveeecnennncns 5-16, 5-24, 6-16
routing 5-14, 5-15, 5-17, 6-3-6-4, 6-11,
6-12, 6-15, 6-17,7-6, 7-7

11 €071 17 - RS SR 5-19

message_data

9036

message_header......... 3-2, 3-4, 5-16,7-5, 7-11,
7-13
MESSAZE_OPHONS....uceevueerreresraceaenes 3-2,34
packet_id.....c..covveeceniiinenecenenaee 3-2,3-4
MESSAZE_OPLONS...ccuereeernenenseracsaencsencnsases 34
messages
EventLog............... eeeeenennsesasses A-1-A-29
unsolicited.................. 2-16-2-17, A-2-A-5
mount commandcccceeeeereecsessacens 4-28-4-31
N
Network adaptor........cceeeiicecnneerensuesecessenns 1-9
Network Interface......cc.coeeeueee 1-13, 1-14, 1-17
NI, see Network Interface........cccceeeeeveeercveeecnnee
o
Open Systems Interconnection
application 1ayercccccevvenrensueesuenns 1-18
data link layercccccocevereecereeceinncennces 1-17
dESCTIPHONcocuerrrniruersrnresssessecseesenes 1-16
JAYETS...ciieiieriienirintinnececinecssstessanns 1-16
NEtwork layer.......cccvcveveiniuinninncnnnens 1-17
Physical Iayer........cceeeeuerervererarsesrenenne 1-17
presentation layer.........cvceiiniinnccninnne 1-17
SESS10N laYer....cooivnuiiniiiiniiniiiniinecans 1-17
transport Iayer.......ccocceecevecnrenersecrenaenns 1-17
OSI, see Open Systems Interconnection...........
P
PacKket_id.....ccoveviveniinnininnininieerinenne 3-2,3-4
Pass-Thru POITS........cccccevuenureiinunnucssusisnens 1-5
121025 :1071 1o OO RO 1-15
Q
query commandcoccevevenseeiennens 4-32-4-44
ACS Status ..oceeeeeeierninnsevescnecnsnisssecennns 4-36
CAP StatUsccceeecnerecerersnessseressacsesacens 4-37
Arive SLAtUS......ccceeereuereeeerenneesseeenesesas 4-38
LSM Status....cccccovveerenrncrncnssecssessecssens 4-39
TNOUNE STAUS ...uveeueeeerrerrersnessessessacsanesaes 4-40
POTE STALUS...ccueeeerirerircesenaessenecsessnnns 4-41
TEQUESE STALUS...ccverrresressressvessnessaessrenaes 4-41
SEIVET STALUS ..uveeeeecnercneecaerssnessnesseosaneas 4-42
Index-3

VOIUINE SLALUS ..oevveereereeeeieeereeeeesessesncnnes 4-43

R
TeCOvery, Storage Server............cu... 2-14-2-15
Remote Procedure Call, see RPC......................
request identifiercocoeeeerveeneerecienscercenennes 5-16
FEQUESE SIUCIUTEeeveerereracereresencraessenes 3-1-3-3
fixed POTtON.......coeeereeceerecrrerernecrreaennes 3-1
ipc_header.......ceceviiviccrninnenrnecreennenne. 3-2
. MeSSage_dataccereuennnreneninenennnanes 3-2
" -message_headerccocerererrerererenennnn. 3-2
. variable portion..........cceceeeeeeeererernenenene 3-1
TEQUESLS ...ceonenne eereesstesessateaestssssntentesesaasnas 2-3
outstandingccceveeeeeereennrerereeneressannns 2-12
TESPONSE SITUCKUTE.......cccveerreerreerreessnennne 3-4-3-7
acknowledgeccceeeeeerrenecrrecenrensensenne 3-6
final ...t 3-7
intermediate.........cccoueverereninreenrereeereraennnns 3-7
ipc_header.......ccevinveevreenininreneeeseenene 3-4
message_headerccccevneenecnenruennnnnn. 3-4
TESPONSE_SLALUSeeeeuvrrrceeraerranenancasensaeans 3-5
responses
acknowledgeccceeeueennnn. 2-5,2-12, 3-3
final ..cooouieeeiecciieceteeeae, 2-5,2-12,3-3
intermediate.........c.cecceeviecueneenrecnennes 2-5,3-3
TESPONSE_SLALUS ...covvuerernreernrcsseeersaecessasasanas 3-5
TODOL ...euieeeienceceneeteesssesesssenessensessensesesnnens 1-5
routing message Packetsc.cceeeereereerennes 5-14
routing messages......5-15, 5-17, 6-3-6-4, 6-10,
6-12, 6-17,7-6,7-7
RPC .ttt srceesteree e srneennens 1-18
RPC functions
at CSI initiation............. 5-8, 5-10, 5-12, 6-4
at SSI initiation 5-9, 5-10, 6-4, 6-6-6-7
for network communications5-14, 5-15,
5-16, 6-5, 6-14, 6-15, 6-16
required library.........cccoeverernrereernrecnnnenns 7-2
RPC program numbers..........c.ceevereenene 5-7-5-8
S
server system
connection to LMUcc.ccvevvevinennne. 1-9
fUNCHONS......covcerterrrersnnnere e, 1-9
Server System Interface, see SSI........cccoeunnene.
sockaddr_in SIUCHUTE..........cccevveererreceevaenaane 7-10

Index-4

sockets
Internet.......c.cooeeivveiicecnnnnnnnnes 5-12,7-9,7-10
IPC...eeeeneeseree e asnenanas 5-6,7-12
TCP/IPcoeeeeeeenecnesessnesesseesasaasassnens 5-12
SST ueiiieiinicteneenecsenennseasesaesnsones 1-14, 1-17
application interfacecccceeuree 6-7, 6-17
ATCHIECIUTE ...cecveenrruienenrenreneeerencnasncnnens 6-2
as a secondary server 5-7, 6-4, 6-6
CONSITAINLS....cceeerecreessesserssesanesnsossanne 6-2-6-3
duplicate packet handling..................... 6-16
fUNCHONSccoveveeeereeeerenreereeaesenaenne 6-1-6-2
interactions with CSI...........cccceueeee. 2-5-2-8
message decoding........cccceveueen.. 6-10, 6-17
MESSAZE PrOCESSING...ccverreeereerserassacanaes 6-14
message routing................. 6-10, 6-12, 6-17
network timeout........ccccvueeeereennes 6-12-6-13
polling for input.........cceccerereneniee. 6-9, 6-15
reciprocal to the CSI............cceueeeees 6-3-6-4
RPC registrationccccevene.. 5-9, 6-6-6-7
transient port Mapping........cc.ceececeeecveerene 59
start command.........ceceeeveeereeerierencanns 4-45-4-46
states
ACSLM ...iiiiinniieentieeneenassenensssennes 4-25
deViCe ..ottt 4-47-4-49
status codes, COMMON.........c.cereereeeavcene 3-7-3-9
StOTAZE CELIS ..civcirirnriieetienreernreeeceneectanennnees 1-5
Storage Server
ACSLM ...iiieiieceeneneeeneseessssannnes 1-12
ACSSA ...ttt 1-12
ATCHILECTUTEeciveeenneerereceenrennenennens 1-15
client interactionccceeevereevenees 1-9-1-10
COMPONENLScoverrrenruessrsseessenssessesseeases 1-10
CSL ittt st ese s saanens 1-13
Event LOGEETcoovenievunnennneersascssasnnes 1-13
initiation.......... reeeseesaeeseesaesnans vereenes 2-1-2-2
operating environment............ceceeceveeese 1-10
TECOVETY .ccoveierveernuensanasessraasssaesoncs 2-14-2-15
tErMINAtION.....cccuiiuereeceierereersasecesaaraene 2-13
SVID, see System V Interface Definition
System V Interface Definition.......... 1-10, 1-15
T
TCP/IP c..ueeeteveentererieeereenesnnesseneesenes 1-17, 5-4
termination, Storage Server.........c.ccceeeeueeee 2-13
command file.......ccoceveeveerrenrncscnrennanes 2-13

9036

TLMS ... cieeeeeetrecnecectreeteessssesssasessaesssens 1-14

rACE 1OZ...uuiiitieiniiiniiiieenircecc e 5-19

Transmission Control Protocol, see TCP..........

transport
fUNCHONS.....eeieeeeeeeceteeeceeeccreeeeecreeeeennee 1-9

U

UDP/IP........utieeeeeeeenneecrerenneessneessanens 1-17, 5-4

union declaration..........c..eeevecvereeeerscnneeecsanes 3-3

\')

variables
ACS.... e eeeeeecteerreesteesasessae s se e nas 3-10
CAPIDoeeeeeceeecreeceteeeseeecateenneeaees 3-10
CAP_SIZEoeeereecreeereecrreennee 3-10
CELLIDcuuveteeerrenreecnneesrneesasesssens 3-11
COMMANDterteeeeecreeerteesaeeenes 3-11
DRIVEIDuuieteerrecrenreeecreenaeennns 3-12
EXTERNAL_LABEL_SIZE............... 3-18
FREECELLSooooeiierecreeecneeenneenns 3-12
FUNCTIONoovrveereeirecreereeennsens 3-13
LOCATIONcoovteetrecvenereneeeseneans 3-13
LSMID ...oecreeeeeetveceeeseneeseeens 3-13
MAX_ACStrreeteeeeeceie e 3-10
MAX_ACS_DRIVES........eveeeennen. 3-14
MAX_COL.....uiiireeeieeenneeneeesneeecneenns 3-11
MAX_DRIVE.......cerecreerreenennnns 3-12
MAX _ID ..oiieeeeeeceeenneeeeeestaeeeneeenns 3-14
MAXIMUM_MESSAGE_SIZE.......... 5-16
MAX _LSM...ueeceeeeesereeceeeerre e 3-14
MAX_MESSAGEcuvoreerveinrins 3-15
MAX_MESSAGE_SIZE..................... 3-14
MAX_PANELerereererrrennnen 3-15
MAX_PORTceereereceeertreeanenns 3-16
MAX_PORTS......cooveeeeereenreecerenene 3-14
MAX _ROW....iiicreeerecteeeneeennen 3-11
MESSAGE_ID.......cuveeierrieerrrerreennns 3-15
MIN_ACS ...eereeeeceeeenreeereenanes 3-10
MIN_COL.......uoeeveeeceeenrrerneeeserenraeennns 3-11
MIN_DRIVE.......ecieereeeeeenns 3-12
MIN_LSM ..cooiiiieiccreeceeneeesseeenns 3-14
MIN_MESSAGE.......ccuevreecreeeieenns 3-15
MIN_PANEL......cicovieiirieireenenreeeenns 3-15
MIN_PORTcooreeeeieereecrneerneenns 3-16
MIN_ROW ..., 3-11

PORTID......ccvnrieinsnnniinisessssnneesiesssannee 3-16
STATE.....ioeieeesecenrte st caenees 3-16
SUBPANELIDccccecemmreveaeerenvennene 3-17
TYPEooiiiniiinnenescnenessenrssssasnenes 3-17
VOLID......coivniecennrnensencaesneesereasonees 3-18
vary commandcoceceeecenseescsnneeeses 4-47-4-53

X
XDR......cc.e. ettt be b e sa e aens 1-18
XDR functions................. 5-6, 5-18-5-19, 6-14
csi_xdrrequest.............. 5-18;6-12,7-5, C-2
csi_xdrresponse 5-19, 6-15, 6-16, 7-13,

C-5 o

Index-5

