
Sun386i man Pages Supplement

December 1988

Sun Microsystems, Inc. • Two Federal Street • Billerica, MA 01821 • (508) 667-0010

Part No: 814-5019-01
Revision A, December 1988

Credits and Copyright
PostScript is a trademark of Adobe Systems, Inc.

UNIX is a registered trademark and UNIX System V is a trademark of AT&T Bell Laboratories.

Compaq is a registered trademark and COMPAQ DESK.PRO 386 is a trademark of COMPAQ Computer Corporation.

DEC, PDP-11, VAX, and VT are registered trademarks of Digital Equipment Corporation.

Intel is a registered trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines.

Ada is a trademark of the Joint Program Office, U.S. Department of Defense.

Ethernet is a r~gistered trademark of Xerox Corporation.

Frame Maker is a trademark of Frame Technology Corporation.

Interleaf is a trademark of Interleaf, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Motorola is a registered trademark of Motorola, Incorporated.

NeWS, SunCore, Sun Microsystems, and the Sun logo are registered trademarks and SunOS, Sun-COi, SunlPC, SunLink,
Sun View, Sun-2, Sun-3, Sun-4, and Sun386i are trademarks of Sun Microsystems, Inc.

SunINGRES is a trademark of Sun Microsystems, Inc., and is derived from INGRES, a product marketed by Relational
Technology, Inc.

UNIFY is a registered trademark of Unify Corporation.

VMEbus is a trademark of Motorola, Incorporated.

Copyright © 1983 - 1988 Sun Microsystems, Inc. All Rights Reserved.

No part of this work covered by copyright hereon may be reproduced in any form or by any means - graphic, electronic,
or mechanical - including photocopying, recording, taping, or information storage and retrieval systems~ without the
prior permission of the copyright owner. · · · · · ·

.·.-'.·'. :- < .:)). :..:>::<><>.::·· .·
Restricted rights legend: Use, duplication, or disclosure by U.S. government is subject to restrictj.()ns is ·set (C>rtbjn sub­
paragraph c. l .ii of the Rights in Technical Data and Computer Software clause at DFARS < $2.:;:4f7~7p!:3>·ajid itj> siil'lilar
clauses in the FAR and NASA FAR Supplement

· .. · .. ,···
·.· . .::::::::::.:· . .<:::: ·:.:-· .. :;-:· >:<::. ·.· .<-:·· .:· .:::. : . . .

This software and documentation is based in part on the Fourth Berkeley Software Distributiort 1.ln4ef li¢~pse,< fr-Ofll: The
Regents of the University of California. We acknowledge the following individuals and institutiori.$..fo(theitn)l~>:fo its
development: The Regents of the University of California and the Electrical Engineering and Computer ~ci~nc~s Depart-
ment at the Berkeley Campus of the University of California and Other Contributors. · · · · · · · ·

- ii - Revision A, December 1988

tevision History
Rev Date Comments

A December 1988 First release of this manual.

- iii - Revision A, December 1988

- iv - Revision A, December 1988

Sun386i man Pages Supplement

The manual pages in this document augment and in some cases replace the manual
pages in the SunOS Reference Manual (800-1751-10). The new and altered manual
pages document enhancements and functionality in the Sun386i SunOS 4.0.1 release.

You can replace existing man pages and insert new pages in SunOS Reference Manu­
al with the pages from this supplement. Replacement pages include the original
page number, and new pages have no page number. Insert the new pages after these
page numbers in SunOS Reference Manual:

f dfonnat(1) after page 181

fontflip(8) after page 1626

help_open(l) after page 224

keytables(5) after page 1402

loadkeys(1) after page 268

orgrc(5)after page 1410

start_applic(8) after page 1767

ypsync(8) - after page 1800

The man pages in this supplement are listed below according to section.

Section 1

bar(l)- Sun386i systems only, updated for Sun386i SunOS release 4.0.1

cc(l v) - updated for Sun386i SunOS release 4.0.1.

dos(l) - Sun386i systems only, updated for Sun386i SunOS release 4.0.1

fdformat(l)- Sun386i systems only, updated for Sun386i SunOS release 4.0.1

fontedit(1) - updated for Sun386i SunOS release 4.0.1.

help_open(l)- Sun386i systems only, updated for Sun386i SunOS release 4.0.1

help_ viewer(l) - Sun386i systems only, updated for Sun386i SunOS release
4.0.1

input _from_ defaults(l) - updated for Sun386i SunOS release 4.0.1.

ld(l) - updated for Sun386i SunOS release 4.0.1.

load(l), loadc(l) - Sun386i systems only, updated for Sun386i SunOS release
4.0.1

- v . Revision A, December 1988

loadkeys(l), dumpkeys(l) - Sun386i systems only, new for Sun386i SunOS
release 4.0. l

organizer(!) - Sun386i systems only, updated for Sun386i SunOS release 4.0.1

strip(l) - updated for Sun386i SunOS release 4.0.1.

textedit(l) - updated for Sun386i SunOS release 4.0.1.

uucp(lc)- updated for Sun386i SunOS release 4.0.1.

Section 3

getmntent(3) - updated for Sun386i SunOS release 4.0.1.

Section 4

kb(4m)- updated for Sun386i SunOS release 4.0.1.

Section 5

bar(5)- Sun386i systems only, updated for Sun386i SunOS release 4.0.1

help(5) - Sun386i systems only, updated for Sun386i SunOS release 4.0.1

help_ viewer(5) - Sun386i systems only, updated for Sun386i SunOS release
4.0.1

keytables(S) - new for Sun386i SunOS release 4.0.1.

orgrc(S)- Sun386i systems only, new for Sun386i SunOS release 4.0.1.

vfont(5) - updated for Sun386i SunOS release 4.0.1.

Section 8

fontt1ip_to_68k(8), fontt1ip_to_i386(8) - Sun386i systems only, new for
Sun386i SunOS release 4.0.1.

ipallocd(8C) - Sun386i systems only, updated for Sun386i SunOS release 4.0.1

kadb(8s) - updated for Sun386i SunOS release 4.0.1.

modload(8) - Sun38.6i systems only, updated for Sun386i SunOS release 4.0.1

modstat(8) - Sun386i systems only, updated for Sun386i SunOS release 4.0.1

mount(8) - updated for Sun386i SunOS release 4.0.1.

rarpd(8c)- updated for Sun386i SunOS release 4.0.1.

rwhod(8) - updated for Sun386i SunOS release 4.0.1.

start_applic(8) - Sun386i systems only, updated for Sun386i SunOS release
4.0.1.

unconfigure(8) - Sun386i systems only, updated for Sun386i SunOS release
4.0.1.

ypsync(8) - Sun386i systems only, new for Sun386i SunOS release 4.0.1.

- vi - Revision A, December 1988

BAR(1) USER COMMANDS BAR(l)

NAME
bar - create tape archives, and add or extract files

SYNOPSIS
bar [-] crxtu [014578feovwbXIFmhpBisHSUGZRTINLODPVd l [barfile] [blocksize]

[exclude-file l [Volume Header ID] [from-directory_to-directory] [user_id] l group_id l
[include-file] [date (yymmddhhmm) J r prompt] [volume_number l [output_Jtlename]
filename . . . [-C dir filename . . .] ...

AVAILABILITY
Sun386i systems only.

DESCRIPTION
bar archives and extracts multiple files onto a single bar, file archive, called a barfile. It is quite simi­
lar to tar(l), but it has additional function modifiers , can read and write multiple volumes of tapes or
diskettes, and writes and reads a format that is incompatible with tar (see bar(5)). A barfile is usually
a magnetic tape, but it can be any file. bar's actions are controlled by the first argument, the key, a
string of characters containing exactly one function letter from the set rxtuc, and one or more of the
optional function modifiers listed below. Other arguments to bar are file or directory names that
specify which files to archive or extract. In all cases, the appearance of a directory name refers recur­
sively to the files and subdirectories of that directory.

FUNCTION LETTERS
c Create a new barfile and write the named files onto it.

r Write the named files on the end of the barfile. Note: this option does not work with quarter-inch
archive tapes.

x Extract the named files from the barfile. If a named file matches a directory with contents written
onto the tape, this directory is (recursively) extracted. The owner, modification time, and mode are
restored (if possible). If no filename arguments are given, all files in the archive are extracted.
Note: if multiple entries specifying the same file are on the tape, the last one overwrites all earlier
versions.

t List the table of contents of the barfile.

u Add the named files to the barfile if they are not there or if they have been modified since they
were last archived. Note: this option does not work with quarter-inch archive tapes.

FUNCTION MODIFIERS
014578

Select an alternate drive on which the tape is mounted. The numbers 2, 3, 6, and 9 do not specify
valid drives. The default is /dev/rmt8.

f Use the next argument as the name of the barfile. If f is omitted, use the device indicated by the
TAPE environment variable, if set. Otherwise, use /dev/rmt8 by default. If barfile is given as '-',
bar writes to the standard output or reads from the standard input, whichever is appropriate. Thus,
bar can be used as the head or tail of a filter chain. bar can also be used to copy hierarchies with
the command:

example% cd fromdir; bar cf - . I (cd todir; bar xffip -)

o Suppress information specifying owner and modes of directories which bar normally places in the
archive. Such information makes former versions of bar generate an error message like:

<filename>: cannot create

when they encounter it.

v Normally bar does its work silently; the v (verbose) option displays the name of each file bar
treats, preceded by the function letter. When used with the t function, v displays the barfile entries
in a form similar to 'Is -1 '. Each entry displayed is followed by the date the bar archive was
created and the volume number on which the entry can be found.

SunOS Release 4.0.1 Last change: 8 November 1988 37

BAR(I) USER COMMANDS BAR(I)

w Wait for user confirmation before taking the specified action. If you use w, bar displays the action
to be taken followed by the file name, and then waits for a y response to proceed. No action is
taken on the named file if you type anything other than a line beginning with y.

b Use the next argument as the blocking factor for tape records. The default blocking factor is 20
blocks. The block size is determined automatically when reading tapes (key letters x and t). This
determination of the blocking factor may be fooled when reading from a pipe or a socket (see the B
key letter below). The maximum blocking factor is determined only by the amount of memory
available to bar when it is run. Larger blocking factors result in better throughput, longer blocks on
nine-track tapes, and better media utilization. Note: the blocking factor on tapes is forced to 126
and the blocking factor on diskettes is forced to 18. These are the optimal blocking factors for
these devices and are necessary in reading and writing multi-volume archives.

X Use the next argument as a file containing a list of named files (or directories) to be excluded from
the barfile when using the key letters 'c', 'x', or 't'. Multiple X arguments may be used, with one
exclude file per argument.

Display error messages if all links to archived files cannot be resolved. If I is not used, no error
messages are printed.

F With one F argument specified, exclude all directories named SCCS from barfile. With two argu­
ments FF, exclude all directories named SCCS, all files with .o as as their suffix, and all files named
errs, core, and a.out.

m Do not extract modification times of extracted files. The modification time will be the time of
extraction.

h Follow symbolic links as if they were normal files or directories. Normally, bar does not follow
symbolic links. Note: symbolic links followed in this way are not archived as symbolic links; they
are archived as directories or files. When these directories and files are restored, they are not
restore as symbolic links, but as directories and files.

L Follow directory symbolic links as if they were normal directories. Note: these directories are
archived and restored as symbolic links.

p Restore the named files to their original modes, ignoring the present umask(2). Setuid and sticky
information are also extracted if you are the super-user. This option is only useful with the x key
letter.

B Force bar to perform multiple reads (if necessary) so as to read exactly enough bytes to fill a block.
This option exists so that bar can work across the Ethernet, since pipes and sockets return partial
blocks even when more data is coming.

Ignore directory checksum errors.

s Force the ownership of extracted files to match the user's effective user ID and group ID.

H The string of up to 128 characters is to be used as a volume header ID. A null volume header ID is
written in each volume header of the archive when this function modifier is not specified. See
bar(5) for the volume header's format. This option is only useful with the c key letter.

S Followed by two arguments: the 'from' directory and the 'to' directory. If the pathname of any
extracted file begins with 'from' directory, then bar replaces 'from' directory with 'to' directory.
This function is only useful with the x function letter and is useful in restoring files and directories
to a different location.

U Use the next argument as the user ID in the volume header.

G Use the next argument as the group ID in the volume header.

Z Specify compression. bar will compress files when used with the c function letter and will
uncompress files when used with the x function letter. bar will neither compress a compressed file,
nor uncompress an uncompressed file. Uses compress(l).

SunOS Release 4.0.1 Last change: 8 November 1988 38

BAR (1) USER COMMANDS BAR (1)

0 When extracting files with the x function letter, issue an error message if the user ID in the volume
header of the bar archive does not match that of the user extracting the tiles.

R Read the volume header of the bar archive and print the information to stdout.

D Use the next argument (in the form 'yymmddhhmm', where 'yy' is a year, 'mm' is a month from
01-12, 'dd' is a day from 01-31, 'hh' is an hour from 01-24, and 'mm' is a minute from 00-59) as
the date in the volume header, instead of the current date. This function modifier is only useful
with the c function letter.

V Use the next argument as the starting volume number in the prompt for media changes. This func­
tion modifier is useful in situations where some volumes in a sequence are not written in bar for­
mat.

P Use the next argument as the prompt for media change conditions. If this argument, which is a
string, contains a printf(3S) conversion specification in the form of '%d', then that conversion
specification will be replaced with the current volume number.

N Do not overwrite bar archives with the c function letter if the user ID in the volume header of the
archive does not match that of the user creating the new archive.

T When using the x or t function letters, terminate the search of the media after all the files specified
are extracted (for x) or listed (for t).

I Use the next argument as a file containing a list of named files, one per line, to be included in the
bar archive. The include file expects filenames to be followed by a semicolon and newline charac­
ter.

In the case where excluded files (see X flag) also exist, excluded files take precedence over all
included files. So, if a file is specified in both the include and exclude files (or on the command
line), it will be excluded.

d Use the next argument, which is a filename, as a second output for the bar archive.

OPTIONS
-C dir filename

In a c (create) or r (replace) operation, bar performs a chdir (see csh(l)) to that directory before
interpreting filename. This allows multiple directories not related by a close common parent to be
archived using short relative path names. For example, to archive files from /usr/include and from
/etc, one might use:

example% bar c -C /usr include -C /etc .

If you get a table of contents from the resulting barfile, you will see something like:
include/
include/a.out.h
and all the other files in /usr/include ..• /chown
and all the other files in /etc

Note: the -C option only applies to one following directory name and one following file name.

EXAMPLES
Here is a simple example using bar to create an archive of your home directory on a tape mounted on
drive /dev/rmtO:

example% cd
example% bar cvf /dev/rmtO .
messages

The c option means create the archive; the v option makes bar tell you what it's doing as it works; the
f option means that you are specifically naming the file onto which the archive should be placed
(/dev/rmtO in this example).

SunOS Release 4.0.1 Last change: 8 November 1988 39

BAR(l) USER COMMANDS BAR (1)

Here is another example: /dev/rmtO:

example% cd

example% bar cvtH /dev/rmtO "THIS IS MY HEADER" .
messages

As in the first example, the c option means create the archive; the v option makes bar tell you what it's
doing as it works; the f option means that you are specifically naming the file onto which the archive
should be placed (/dev/rmtO in this example). The H option says to use the string "THIS IS MY
HEADER" as the ID field in the volume header.

Now you can read the table of contents from the archive like this:
example% bar tvf /dev/rmtO
(access user-id/group-id size
rw-r--r-- 1677/40 2123

example%

You can extract files from the archive like this:
example% bar xvf /dev/rmtO
messages

mod. date
Nov 7 18:15:1985

filename)
./archive/test.c

If there are multiple archive files on a tape, each is separated from the following one by an EOF marker.
bar does not read the EOF mark on the tape after it finishes reading an archive file because bar looks
for a special header to decide when it has reached the end of the archive. Now if you try to use bar to
read the next archive file from the tape, bar does not know enough to skip over the EOF mark and tries
to read the EOF mark as an archive instead. The result of this is an error message from bar to the
effect:

bar: blocksize=O

This means that to read another archive from the tape, you must skip over the EOF marker before sbart­
ing another bar command. You can accomplish this using the mt command, as shown in the example
below. Assume that you are reading from /dev/nrmtO.

example% bar xvfp /dev/nrmtO read first archive from tape
messages
example% mt fsf 1 skip over the end-of-file marker
example% bar xvfp /dev/nrmtO read second archive from tape
messages
example%

Finally, here is an example using bar to transfer files across the Ethernet. First, here is how to archive
files from the local machine (example) to a tape on a remote system (host):

example% bar cvfb - 20 filenames lrshhostdd
messages
example%

In the example above, we are creating a barfile with the c key letter, asking for verbose output from
bar with the v option, specifying the name of the output barfile using the f option (the standard output
is where the barfile appears, as indicated by the - sign), and specifying the blocksize (20) with the b
option. If you want to change the blocksize, you must change the blocksize arguments both on the bar
command and on the dd command.

Now, here is how to use bar to get files from a tape on the remote system back to the local system:
example% rsh -n host dd if=/dev/rmtO bs=20b I bar xvBfb - 20 filenames
messages
example%

SunOS Release 4.0. l Last change: 8 November 1988 40

BAR(1) USER COMMANDS BAR(l)

FILES

In the example above, we are extracting from the barfile with the x key letter, asking for verbose out­
put from bar with the v option, telling bar it is reading from a pipe with the 8 option, specifying the
name of the input barfile using the f option (the standard input is where the barfile appears, as indi­
cated by the ' - ' sign), and specifying the blocksize (20) with the b option.

/dev/rmt?
/dev/rfdO?
/dev/rar?
/dev/rst?
/tmp/bar•

half-inch magnetic tape interface
diskette interface
quarter-inch magnetic tape interface
SCSI tape interface

ENVIRONMENT
TAPE If specified, in the environment, the value of TAPE indicates the default tape device.

NOTES
bar will handle multiple volumes gracefully. If a tape error is encountered, bar issues a message on
the standard error requesting a new volume. . The presence of a new volume is confirmed when bar
reads a line beginning with Y or y on the standard input; a line beginning with N or n aborts the
archive; with any other character bar reissues the prompt.

SEE ALSO

BUGS

cpio(l), umask(2), bar(S), tar(S), dump(8), restore(8)

Neither the r option nor the u option can be used with quarter-inch archive tapes, since these tape
drives cannot backspace.

There is no way to ask for the nth occurrence of a file.

The u option can be slow.

There is no way selectively to follow symbolic links.

When extracting tapes created with the r or u options, directory modification times may not be set
correctly.

Filename substitution wildcards do not work for extracting files from the archive. To get around this,
use a command of the form:

bar xvf •.• /dev/rstO 'bar tf •.. /dev/rstO I grep 'pattern"

If you specify '-' as the target file and the archive spans volumes, the request for a new volume may
get lost.

Beta versions of bar archives cannot be read by later versions (4.0 and 4.0.1) of bar unless the H
modifier is specified when the Beta version is created. Under Beta the H modifier causes the bar
volume header to be written. The volume header is always written by post-Beta versions of bar,
whether or not the H modifier is specified.

SunOS Release 4.0.1 Last change: 8 November 1988 41

CC(IV) USER COMMANDS CC(IV)

NAME
cc - C compiler

SYNOPSIS
cc [-a] [-align _block] [-B binding] [-c] [-C] [-dryrun] [-Dname [=def] J [-E]

[fioat_option] [-fsingle] [-g] [-go] [-help] [-!pathname] [-J] [-llibrary]
[-Ldirectory] [-M] [-misalign] [-o outputfile] [-O[level]] [-p] [-P] [-pg] [-pie]
[-PIC J [-pipe] [-Qoption prog opt] [-Qpath pathname] [-Qproduce sourcetype] [-R

[-S] [target_arch] [-temp=directory] [-time] [-Uname] [-v] [-w] sourcefile ...

SYSTEM V SYNOPSIS

/usr/Sbin/cc arguments

Note: arguments to /usr/Sbin/cc are identical to those listed above.

DESCRIPTION
cc is the C compiler. It translates programs written in the C programming language into executable load
modules, or into relocatable binary programs for subsequent loading with the ld(l) link editor.

In addition to the many options, cc accepts several types of filename arguments. For instance, files with
names ending in .c are taken to be C source programs. They are compiled, and each resulting object
program is placed in the current directory. The object file is named after its source file - the suffix .o
replacing .c in the name of the object. In the same way, files whose names end with .s are taken to be
assembly source programs. They are assembled, and produce .o files. Filenames ending in .ii are taken
to be inline expansion code template files; these are used to expand calls to selected routines in-line
when code optimization is enabled. See FILES, below for a complete list of compiler-related filename
suffixes.

Other arguments refer to assembler or loader options, object programs, or object libraries. Unless -c,
-S, -E -P or -Qproduce is specified, these programs and libraries, together with the results of any
specified compilations or assemblies, are loaded (in the order given) to produce an output file named
a.out. You can specify a name for the executable by using the -o option.

If a single C program is compiled and loaded all at once, the intermediate file is deleted.

OPTIONS
When debugging or profiling objects are compiled using the -g or -pg options, respectively, the Id
command for linking them should also contain the appropriate option.

See ld(l) for link-time options.

-a

-align _block

-B binding

-C

-dryrun

-Dname[=def]

SunOS Release 4.0.1

(Available on Sun-2, Sun-3, and Sun-4 systems.) Insert code to count how many times
each basic block is executed. Invokes a run-time recording mechanism that creates a
.d file for every .c file (at normal termination). The .d file accumulates execution data
for the corresponding source file. The tcov(l) utility can then be run on the source
file to generate statistics about the program. Since this option entails some optimiza­
tion, it is incompatible with -g.

Force the global uninitialized data symbol block to be page-aligned by increasing its
size to a whole number of pages, and placing its first byte at the beginning of a page.

Specify whether bindings of libraries for linking are static or dynamic, indicating
whether libraries are non-shared or shared, respectively.

Suppress linking with ld(l) and produce a .o file for each source file. A single object
file can be named explicitly using the -o option.

Prevent the C preprocessor, cpp(1), from removing comments.

Show but do not execute the commands constructed by the compilation driver.

Define a symbol name to the C preprocessor (cpp(l)). Equivalent to a #define

Last change: 8 November 1988 52

CC(IV)

-E

float_option

-fsingle

-g

-go

-help

-lpathname

-J

-llibrary

-Ldirectory

-M

-misalign

-o outputfile

SunOS Release 4.0. l

USER COMMANDS CC(IV)

directive in the source. If no def is given, name is defined as '1 '.

Run the source file through cpp(l), the C preprocessor, only. Sends the output to the
standard output, or to a file named with the -o option. Includes the cpp line number­
ing information. (See also, the -P option.)

Floating-point code generation option. Can be one of:

-f68881 Generate in-line code for Motorola MC68881 floating-point processor (sup­
ported only on Sun-3 systems).

-ff pa

-fsky

-fsoft

Generate in-line code for Sun Floating Point Accelerator (supported only
on Sun-3 systems).

Generate in-line code for Sky floating-point processor (supported only on
Sun-2 systems).

Generate software floating-point calls. Supported only on Sun-2 and Sun-
3 systems, for which it is the default.

-fswitch Run-time-switched floating-point calls. The compiled object code is
linked at runtime to routines that support one of the above types of float­
ing point code. This was the default in previous releases. Only for use
with programs that are floating-point intensive, and must be portable to
machines with various floating-point hardware options (supported only on
Sun-2 and Sun-3 systems).

(Sun-2, Sun-3 and Sun-4 systems)
Use single-precision arithmetic in computations involving only float expressions. Do
not convert everything to double, which is the default. Note: floating-point parame­
ters are still converted to double precision, and functions returning values still return
double-precision values.

Although not standard C, certain programs run much faster using this option. Be aware
that some significance can be lost due to lower-precision intermediate values.

Produce additional symbol table information for dbx(l) and dbxtool(l) and pass the
-lg flag to ld(l). When this option is given, the -0 and -R options are suppressed.

Produce additional symbol table information for adb(l). When this option is given,
the -0 and -R options are suppressed.

Display helpful information about cc.

Add pathname to the list of directories in which to search for #include files with rela­
tive filenames (not beginning with slash /). The preprocessor first searches for
#include files in the directory containing source/de, then in directories named with -I
options (if any), and finally, in /usr/include.

Generate 32-bit offsets in switch statement labels (supported only on Sun-2 and Sun-3
systems).

Link with object library library (for ld(l)).

Add directory to the list of directories containing object-library routines (for linking
using ld(l).

Run only the macro preprocessor on the named C programs, requesting that it generate
makefile dependencies and send the result to the standard output (see make(l) for
details about makefiles and dependencies).

Generate code to allow loading and storage of misaligned data (Sun-4 systems only).

Name the output file outputfile. outputftle must have the appropriate suffix for the
type of file to be produced by the compilation (see FILES, below). outputfile cannot be

Last change: 8 November 1988 53

CC(lV)

-O[level]

-p

-P

-pg

-pie

-PIC

-pipe

USER COMMANDS CC(lV)

the same as sourcefile (the compiler will not overwrite the source file).

Optimize the object code. Ignored when either -g, -go, or -a is used. On Sun-2 and
Sun-3 systems, -0 with the level omitted is equivalent to -01; on Sun-4 systems, it is
equivalent to -02. on Sun386i systems, all levels are the same as 1. level is one of:

1 Do postpass assembly-level optimization only.

2 Do global optimization prior to code generation, including loop
optimizations, common subexpression elimination, copy propagation,
and automatic register allocation. -02 does not optimize references
to or definitions of external or indirect variables.

3 Same as -02, but optimize uses and definitions of external variables.
-03 does not trace the effects of pointer assignments. Neither -03
nor -04 should be used when compiling either device drivers, or
programs that modify external variables from within signal handlers.

4 Same as -03, but trace the effects of pointer assignments.

Prepare the object code to collect data for profiling with prof(1). Invokes a run-time
recording mechanism that produces a moo.out file (at normal termination).

Run the source file through cpp(l), the C preprocessor, only. Puts the output in a file
with a .i suffix. Does not include cpp-type line number information in the output.

Prepare the object code to collect data for profiling with gprof(l). Invokes a run-time
recording mechanism that produces a gmon.out file (at normal termination).

Produce position-independent code. Each reference to a global datum is generated as
a dereference of a pointer in the global offset table. Each function call is generated in
pc-relative addressing mode through a procedure linkage table. The size of the global
offset table is limited to 64K on MC68000-family processors, or to SK on SPARC pro­
cessors.

Like -pie, but allows the global offset table to span the range of 32-bit addresses in
those rare cases where there are too many global data objects for -pie.

Use pipes, rather than intermediate files, between compilation stages. (Very cpu­
intensive.)

-Qoption prog opt
Pass the option opt to the program prog. The option must be appropriate to that pro­
gram and may begin with a minus sign. prog can be one of: as, cpp, inline, or Id.

-Qpath pathname
Insert directory pathname into the compilation search path (to use alternate versions
of programs invoked during compilation). This path will also be searched first for cer­
tain relocatable object files that are implicitly referenced by the compiler driver (such
files as *crt*.o and bb_link.o).

-Qproduce sourcetype

-R

-S

SunOS Release 4.0.1

Produce source code of the type sourcetype. sourcetype can be one of:
.c C source (from bb_count) .
. i Preprocessed C source from cpp(l) .
• o Object file from as(1) .
. s Assembler source (from ccom, inline(l) or c2).

Merge data segment with text segment for as(l). Data initialized in the object file
produced by this compilation is read-only, and (unless linked with Id -N) is shared
between processes. Ignored when either -g or -go is used.

Do not assemble the program but produce an assembly source file.

Last change: 8 November 1988 54

CC(lV) USER COMMANDS CC(lV)

target_arch

-temp=direct ory

-time

-Uname

-v

-w

Compile object files for the specified processor architecture. Unless used in conjunc­
tion with one of the Sun Cross-Compilers, correct programs can be generated only for
the architecture of the host on which the compilation is performed. target_arch can
be one of:

-sun2
-sun3
-sun4

Produce object files for a Sun-2 system.
Produce object files for a Sun-3 system.
Produce object files for a Sun-4 system.

Set directory for temporary files to be directory.

Report execution times for the various compilation passes.

Remove any initial definition of the cpp(l) symbol name. (Inverse of the -D option.)

Verbose. Print the version number of the compiler and the name of each program it
executes.

Do not print warnings.

ENVIRONMENT

FILES

FLOAT _OPTION

a.out
file.a
file.c
file.d
file.i
file.ii
file.o
file.s
file.S
file.tcov
/usr/lib/c2
/usr/lib/ccom
/usr/lib/compile
/usr/lib/cpp
/usr/lib/crtO.o
/usr/lib/Fcrtl.o
/usr/lib/gcrtO.o
/usr/lib/libc.a
/usr/lib/mcrtO.o
/usr/lib/Mcrt 1.o
/usr/Hb/Scrtl.o
/usr/lib/W crtl.o
/usr/include
/usr/lib/bb_link.o
/usr/lib/cg
/usr/lib/libc_p.a
/usr/lib/inline
I usr /Ii b/iropt
/usr/lib/libm.a
/usr/ Slib/libc.a
/usr/Slib/libc_p.a

SunOS Release 4.0.1

(Sun-2, Sun-3, Sun-4 systems only.) When no floating-point option is specified,
the compiler uses the value of this environment variable (if set). Recognized
values are: f68881, ffpa, fsky, fswitch and fsoft.

executable output file
library of object files
C source file
tcov(l) test coverage input file (Sun-2, Sun-3, Sun-4 systems only)
C source file after preprocessing with cpp(l)
inline expansion file
object file
assembler source file
assembler source for cpp(l)
output from tcov(l) (Sun-2, Sun-3, Sun-4 systems only)
object code optimizer
compiler
compiler command-line processing driver
macro preprocessor
runtime startup code
startup code for -fsoft option (Sun-2, Sun.:.3, Sun-4 systems only)
startup for profiling with gprof(1)
standard library, see intro(3)
startup for profiling with prof(l) intro(3)
startup code for -f68881 option (for Sun-3 systems)
startup code for -fsky option (for Sun-2 systems)
startup code for -ffpa option (for Sun-3 systems)
standard directory for #include files
basic block counting routine
code generator used with /usr/lib/iropt
profiling library, see gprof(l) or prof(l)
inline expander of library calls
intermediate representation optimizer
math library
System V standard compatibility library, see intro(3V)
System V profiling library, see gprof(I) or prof(I)

Last change: 8 November 1988 55

CC(IV) USER COMMANDS CC(IV)

/tmp/*
moo.out
gmon.out

compiler temporary files
file produced for analysis by prof(I)
file produced for analysis by gprof(1)

SEE ALSO
adb(l), ar(l V), as(l), cpp(1), dbx(l), dbxtool(l), gprof(l), inline(l), Id(1), lint(l V), make(l), prof(l),
tcov(l), intro(3), intro(3V), mol'litor(3)

Floating Point Programmers Guide
SunOS Programming Utilities and Libraries
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978

DIAGNOSTICS

BUGS

The diagnostics produced by the C compiler are intended to be self-explanatory. Occasional obscure
messages may be produced by the preprocessor, assembler, or loader.

The program context given in syntax error messages is taken from the input text after the C preproces­
sor has performed substitutions. Therefore, error messages involving syntax errors in or near macro
references or manifest constants may be misleading.

Compiling with optimization level 2 or greater may produce incorrect object code if tail-recursion elim­
ination is applied to functions called with fewer actual parameters (arguments) than the number of for­
mal parameters in the function's definition. Such parameter-count mismatches can be detected using
lint(l V).

SunOS Release 4.0.1 Last change: 8 November 1988 56

OOS(l) USER COMMANDS DOS(l)

NAME
dos - SunView window for IBM PC/AT applications

SYNOPSIS
dos [-b] [-s] [-p config] [-q] [-w] [-c command]

AVAILABILITY
Sun386i systems only.

DESCRIPTION

USAGE

A window created by dos looks and acts like the screen of an IBM PC/AT or compatible computer run­
ning MS-DOS 3.3, except that it has expanded features. It allows sharing of files with SunOS, copying
and pasting data between windows, and piping and redirection. You may run any reasonable number of
DOS windows simultaneously.

Shrinking or expanding the window will not change the contents to accommodate the new size.

Menu
The menu available in the window by pressing the right mouse button allows various controls over the
work in the window. Edit allows you to copy and paste between windows. The Show Screen menu
item selects the type of screen display-either Hercules, CGA, or Monochrome (use the DOS MODE
command to set the corresponding DOS display mode; see the Sun386i User's Guide or on-line help for
more information). The Mouse menu item allows you to control whether the mouse operates like a
Microsoft· or compatible mouse or in normal Sun View fashion (see Sun386i Advanced Skills for
instructions on enabling Microsoft mouse driver software). The Send to printer menu item allows you
to ·send queued jobs to the print spooler. Sound controls the volume of sounds from· the DOS window.
Device allows you to select which disks and other devices will be used and which are to be considered
read only. The Reboot DOS Window item is equivalent to restarting the window. This can also be
accomplished by pressing the CONTROL, ALT, and DELETE keys simultaneously.

Printer Assignments
DOS uses three printer designations: LPTl, LPT2, and LPT3. The default settings are: files sent to LPTl
go to the default system printer. Files sent to LPT2 are appended to the file lpt-2 in your home direc­
tory. Epson-compatible print jobs can be sent to LPT3 to yield Epson FX-80 quality output on your
default printer, as long as it is Postscript-compatible.

Drives
Drive A

Drive B

Drive C

Drives D through S

Drive D

Drive H

Drive R

SunOS Release 4.0.1

The Sun386i 3-1/2" diskette drive, used for reading PC format diskettes onto the
hard disk and writing data to be stored on floppy. Drive A is not accessible
across a network.

An optional 5-1/2" diskette drive. Same restrictions as Drive A.

A virtual disk stored in the -1pc/C: file. Files written to drive C cannot be
accessed from SunOS. Drive C is generally intended for storage of applications
and copy protected software but not data. To DOS, drive C is a 20-megabyte
drive. You can install copy-protected software on drive C, but not on other drives.

Equivalents of SunOS directories. They can be accessed from either DOS or
SunOS, and can contain any number of files and other directories. You cannot
install copy-protected software on drives D through S (install it on drive C
instead). The SunOS directories referenced by DOS drives other than D, H, and R
(described below) are user-defined (using the DOS EXTEND command).

The current SunOS directory when the DOS window was opened. May subse­
quently be changed to any other directory.

The home directory of the user who opened the window. May subsequently be
changed to any directory in the user's home directory tree.

Initially equivalent to the root directory of SunOS

Last change: 3 November 1988 158

DOS(l) USER COMMANDS DOS (1)

File Sharing between SunOS and DOS
File names under DOS consist of 8 characters, a period, and a 3 character extension. When a SunOS
filename does not comply with these rules, its name is modified by placing a tilde C) in an appropriate
location so that the file name conforms to DOS specifications while remaining unique. It is recom­
mended that filenames confonn to DOS requirements for files to be used in both SunOS and DOS.

Because SunOS and DOS use different conventions for carriage returns, dos2unix and unix2dos are pro­
vided to convert text files between the two formats.

Command Sharing between SunOS and DOS
The /etc/dos/unix directory contains a list of SunOS commands accessible from DOS. Other SunOS
commands not in this list can be executed from DOS with the command 'unix command'. SunOS com­
mands always use SunOS filename conventions and DOS commands always use DOS filename conven­
tions, regardless of whether either type of command is executed from SunOS or DOS. Only DOS com­
mands can use drives A and C.

OPTIONS
-b Boots (loads) DOS and opens a window using the AUTOEXEC.BAT and CONFIG.SYS files

instead of - /pc/.quickpc. A DOS sign-on message is displayed in the window. Normally, DOS
boots from settings in .quickpc unless C:AUTOEXEC.BAT, C:CONFIG.SYS, or
/etc/dos/defaults/rom has a date newer than the .quickpc file (see the -s option).

-s Boot DOS and save a new .quickpc file under the name specified on the SA VE line in
-;pc/setup.pc. Use this option after making changes to drive C's AUTOEXEC.BAT or
CONFIG.SYS. Exits DOS after saving the .quickpc file.

-p config
Loads an alternate file instead of setup.pc.

-q Forces dos to read settings from the quickpc file (as specified in setup.pc) even if
C:AUTOEXEC.BAT, C:CONFIG.SYS or /etc/dos/defaults/rom have been updated since you
last typed dos-s.

-c command
Executes the given DOS command in the newly created window. If you use the -c option, -c
and the command that follows it must be the last items on the command line.

-w Runs DOS text-only commands and applications in the current Sun View Commands window.

ENVIRONMENT
DOS_LOCKING

DOS_PRINTER

DOSLOOKUP

SunOS Release 4.0.1

This environment variable determines which locking service is used to lock drive C
for write access. If it is set to on, DOS uses the locking service on the server where
the home directory is located. This locks drive C for access from any DOS window
on the network. If it is set to off, DOS uses the local system's locking service. This
locks drive C only for access from DOS windows running on the local system. The
default is on. Some servers (for example, some VAX/Ultrix systems) do not provide
an NFS locking service. For home directories stored on these servers, set the variable
to off to avoid an error message when a DOS window starts up.

The value of this environment variable indicates the timeout (in seconds) for printing.
A value of 20 (the default) indicates that jobs will be sent to the UNIX print spooler
after 20 seconds of no printing activity from DOS to that printer. A value of 0 indi­
cates that the spooler must be flushed manually from the menu in the window.

If on, this environment variable indicates that a command should be tried as a DOS

command if not recognized by SunOS. If DOS supports the command, a DOS window
is created and the command executed in that window. If the command does not
exist, the normal SunOS error message results.

Last change: 3 November 1988 159

DOS(l) USER COMMANDS DOS (I)

FILES
/etc/dos/unix Files in this directory indicate which SunOS commands are accessible

from DOS.
/etc/dos/defaults/.quickpc Default .quickpc file copied into user's home PC directory C /pc) the first

time a DOS window is started. Not used by DOS in this location.
/etc/dos/defaults/setup.pc Default setup.pc file copied into user's home DOS directory C /pc) the

first time a DOS window is started. Not used by DOS in this location.
/etc/dos/defaults/boards.pc Stores information about IBM PC/XT/AT-compatible boards installed in

your system.
/etc/dos/defaults/C: Default drive C file copied into a user's home PC directory the first time

a DOS window is started.
- /pc/autoexec.bat Contains drive assignments, search paths, and other startup commands.

Searched after C:AUTOEXEC.BAT and D:AUTOEXEC.BAT.
C:AUTOEXEC.BAT Contains commands to access system printers and special drives. You

should not need to change the AUTOEXEC.BAT on drive C. Put your
changes in the AUTOEXEC.BAT on drive H (in your home directory).
C:AUTOEXEC.BAT is not accessible from SunOS.

D:A UTOEXEC.BA T If an A UTOEXEC.BAT file exists in the current directory (represented
by drive D), DOS executes it after running C:AUTOEXEC.BAT.

C:CONFIG.SYS Specifies device drivers and other system parameters. C:CONFIG.SYS is
not accessible from SunOS.

- /pc/setup.pc Defines printers, standard PC devices, and drive C. One or more of these
files may exist, under various names that you assign.

- /pc/.quickpc An image of DOS as last saved with dos -s, including all DOS environ­
ment variables and drivers that were in effect at that time. DOS normally
reads this file at startup.

- /pc/C: A user's personal copy of drive C.

DIAGNOSTICS
Cannot save filename quick-start file.

The dos command was unable to save the specified quick-start file. Check the SAVE setting in
your PC setup file (normally - /pc/setup.pc) Also check file access permissions on the specified
quick-start file.

Cannot load filename quick-start file.
dos was unable to read the specified quick-start file. Check the SA VE setting in your
setup.pc file. Also check file access permissions on the specified quick-start file.

Possible software incompatibility. Unsupported 286 instruction instruction at address.
Possible software incompatibility. Unsupported 386 instruction.
Possible software incompatibility. Segment wrap.
Possible software incompatibility. Two-byte opcode not supported.

The application you are running was written specifically for 80286 or 80386 machines.
Software run from a DOS window must be compatible with 8086 systems.

Copying default configuration files into your home directory.
This is the first time you have run the dos command. A - /pc directory is being set up, and
DOS-related files are being copied into it.

Another DOS window already has access to device
Your PC configuration file (normally - /pc/setup.pc) is requesting access to a physical dev­
ice that another DOS window is using.

Port number number out of range for board board.
The port number specified in the /etc/dos/defaults/boards.pc is invalid.

IRQ value number out of range for board board.
The interrupt level specified in the /etc/dos/defaults/boards.pc is invalid.

Interrupt level number is used by DOS to support the device

SunOS Release 4.0.1 Last change: 3 November 1988 160

DOS (1) USER COMMANDS DOS(1)

The interrupt level specified in the /etc/dos/defaults/boards.pc conflicts with an interrupt
value currently being used by either a physical or emulated DOS device.

1/0 address range address - address requested for board already in use by device.
The address range specified in the /etc/dos/defaults/boards.pc conflicts with range currently
being used by either a physical or emulated DOS device.

Cannot share device with a hardware interrupt.
A shared device specified in the /etc/dos/defaults/boards.pc was also assigned an interrupt
level in this file. Shared devices cannot be assigned interrupt level~.

Couldn't find board in boards.pc.
A file specified in the PC setup file (normally - /pc/setup.pc) is not listed in the
/etc/dos/defaults/boards.pc file. Check the setup.pc file, or add an entry for the board in
boards.pc.

ROM is newer than .quickpc. Rebooting program name.
Save a new .quickpc file by issuing the command dos -s.

Warning: Your personal drive C (pathname)
is not protected against simultaneous access by more than one workstation. Ask your
system administrator to upgrade server to use the lock manager. Until your home
directory server is updated with this program, do not use program name when you are
logged into more than one workstation. The system on the network where your drive C is
stored has not protected the drive against access by DOS windows in other workstations on
the network. This usually means that the server where your home directory is stored does
not provide an NFS locking service. To avoid this error message, set the environment vari­
able DOS_LOCKING to off.

SEE ALSO
dos2unix(1), unix2dos(1)
Sun386i User's Guide
Sun386i Advanced Skills
DOS Reference Manual

SunOS Release 4.0.1 Last change: 3 November 1988 161

FDFORMAT(1) USER COMMANDS FDFORMAT (1)

NAME
fdformat - format diskettes for use under SunOS

SYNOPSIS
/usr/etc/fdformat [-L][-2]

AV AILABLITY

Sun386i systems only.

DESCRIPTION
fdformat is a program for formatting diskettes to use with the SunOS operating system. All new blank
diskettes must be formatted before use. fdformat formats and verifies each track on the diskette, and
terminates if it finds any bad sectors. fdformat destroys all existing data on the diskette.

By default, fdformat formats a 1.44 megabyte high density diskette. Use the -L option to format low
density diskettes.

Use the -2 option to format diskettes in the optional external 5 1/4" floppy drive.

To format a diskette for use under MS-DOS, use the MS-DOS format command in a DOS window on the
Sun386i system.

OPTIONS

FILES

BUGS

-L Format a low density diskette (720 kilobyte) diskette.

-2 Format a diskette in the optional external 5 1/4" floppy drive.

/dev/rfdOc /dev/rfdlOc /dev/rfd2c /dev/rfdl2c

The SunOS system currently doesn't support bad sector mapping on diskettes. Therefore, a diskette is
unusable if fdformat finds an error (bad sector).

SEE ALSO
dos(l)

SunOS Release 4.0.1 Last change: 12 October 1988

FONTEDIT (I) USER COMMANDS FONTEDIT (I)

NAME
fontedit - a vfont screen-font editor

SYNOPSIS
fontedit [generic-tool-argument] . . . [font_name]

AV AILABILIT)'
This command is available with the Sun View I User's software installation option. Refer to Installing
the Sun Operating System for information on how to install optional software.

DESCRIPTION
fontedit is an editor for fixed-width fonts in vfont format (or Sun386i vfont format) whose characters
are no taller than 24 pixels (larger characters will not fit completely onto the screen). For a description
of vfont format, see vfont(5).

OPTIONS
generic-tool-argument

COMMANDS

fontedit accepts any generic tool argument as described in sunview(l). Otherwise, you can
manipulate the tool using the Frame Menu.

To edit a font, type 'fontedit'. A font_name may be supplied on the command line or may be typed
into the Control panel once the program has started. If it exists, the f ont_name file must be in vfont
format (or Sun386i vfont format). When the program starts, it displays a single large window contain­
ing four subwindows. From top to bottom, the four subwindows are:

I) The top subwindow, a message subwindow, displays messages, prompts, and warnings.

2) The second subwindow from the top, an Control panel, allows you to set global parameters for the
entire font and specify operations for editing any single character. The options are:

(Load) Load in the font specified in the file name field. The program will warn you if you try
to read over a modified font. For the Sun386i system, either vfont or Sun386i vfont
format can be read.

(Store)

(Quit)

Font name:

Store the current font onto disk with the name in file name field. For the Sun386i sys­
tem, fontedit always stores the font in Sun386i vfont format. Use fontflip_to_68k to
create a corresponding vfont format file.

Quit the program; warns you if you have modified the font.

The name of the font. On the Sun386i system, the system appends the suffix .i386
before opening the file and attempting to use it; if it does not find the font, it attempts
to open the original font name specified. By convention, Sun386i vfonts have the .i386
extension.

Max Width and Max Height:
The size, in pixels, of the largest character in the font. If you edit an existing font,
these parameters are set automatically; you must set them if you are creating a new
font. Changing either of these values for an existing font may alter the glyph of some
characters of the font. If the glyph size of a character is larger than the new max size,
then that character is clipped to the new size (its bottom and right edges are moved
in). However, if a glyph's size is smaller than the new size, the glyph is left alone.

Caps Height and X-Height:
The distance, in pixels, between the top of a capital and lowercase letter and the base­
line. When an existing font is edited, the values of Caps Height and X-Height are
estimated by f ontedit, and may require some adjustment.

Baseline: The number of pixels from the top (that is, the upper left comer) of the character to
the baseline. For an existing font, the value of the largest baseline distance is used.

SunOS Release 4.0.1 Last change: 3 November 1988 190

FONTEDIT (1)

(Apply)

Operation:

USER COMMANDS FONTEDIT (1)

For a new font, each character will have the same baseline distance. If this value is
changed, then the baseline distance for all characters in the font will be the new value.

Apply the current values of Max Width, Max Height, Caps Height, X-Height, and
Baseline to the font. That is, changes made to these values do not take effect until
Apply is selected.

This is a list of drawing and editing operations that you can perform on a character.
For drawing, the left mouse button draws in black, and the middle draws in white.
Operations are:

Single Pt Press a mouse button down and a grey cell will appear; move the mouse
and the cell will follow it. Releasing the the button will draw.

Pt Wipe Pressing a button down will draw and moving with the button down will
continue drawing until the button is released.

Line Button down marks the end point of a line; mov.ing with the button down
rubber bands a line; releasing button draws the line.

Rect Like Line except draws a rectangle.

Cut Button down marks one end of rectangle, and moving rubber bands the
outline of the rectangle. Button up places the contents of the rectangle into
a buffer and then "cuts" (draws in white) the rectangular region from the
character. The Paste operation (below) gets the data from the buffer.

Copy Like Cut except that the region is just copied; no change is made to the
character.

Paste Button down displays a rectangle the size of the region in the buffer.
Moving with the button down moves the rectangle. Button up pastes the
contents of the buffer into the character.
The contents of the paste buffer cannot be transferred between tools.
In Copy or Cut mode, holding down the shift key while pressing the left
or middle mouse button will perform a Paste action. For best results, after
placing a region in the buffer, press down the shift key and hold it down,
then press down the mouse button. Release the mouse key to paste the
region and then release the shift key.

3) The third subwindow echoes the characters in the current font as they are typed. Note that the cur­
sor must be in this window in order to see the characters. Your character delete key will delete the
echoed characters.

4) The bottom subwindow, the editing subwindow, displays eight smaller squares at its top; these are
called edit buttons. The top section of each of these buttons contains a line of text in the form
nnn: c, where nnn is the hexadecimal number of the character and c is the standard ASCII character
corresponding to that number. In the lower section of the button the character of the current font,
if it exists, is displayed. Clicking once over an editing button selects its character for editing.

Just below this row of buttons is a box with the characters "O 9 A Z a z" in it. This box is
called a slider. The slider allows you to scroll around in the font and select which section of the
font you want displayed in the edit buttons. The black rectangle near "a" is an indicator which
shows the section of the font that is displayed in the buttons above. To move the indicator, select it
by pressing the left or middle mouse button down over the indicator and then move the mouse to
the left or right with the button down; the indicator will slide along with the cursor. Releasing the
button selects the new section of the font. A faster method of moving about in the font is to just
press down and release the mouse button above the area you want without bothering to drag the
indicator. Another method of scrolling through the characters of the font is to press a key on the
keyboard when the cursor is in the bottom window; that character is the first one displayed in the

SunOS Release 4.0.1 Last change: 3 November 1988 191

FONTEDIT (1) USER COMMANDS FONTEDIT (1)

edit buttons.

EDITING CHARACTERS:

FILES

To edit a character, click once over the edit button where the character is displayed. When you do this,
an edit pad will appear in the bottom subwindow.

The edit pad consists of an editing area bordered by scales, a proof area, and 3 command buttons. The
editing area is Max Width by Max Height when the pad opens, and displays a magnified view of the
selected character. Black squares indicate foreground pixels. The editing area is surrounded by scales
which show the current Caps Height, X-Height and Baseline in reverse video.

Just outside the scales, on the top, right side, and bottom of the pad, are three small boxes with the cap­
ital letters "R", "B", and "A" in them. These boxes are movable sliders that change the right edge, bot­
tom edge, and x-axis advance of the character respectively. In a fixed-width font, these values are usu­
ally the same for all characters; however, in a variable-width font these controls can be used to set
these properties for each character.

To the right of the pad is the proof area where the character is displayed at normal (that is, screen)
resolution and three buttons. The three buttons are:

Undo Clicking the left or middle mouse button undoes the last operation.

Store Stores the current representation of the character in the font.

Quit Closes the edit pad.

In the bottom subwindow, the right mouse button displays a menu of operations. These operations are
the same as those in the control panel discussed above; you can select the current operation by either
picking the operation in the control panel or by selecting the appropriate menu with the right button of
the mouse. When the cursor is in the other subwindows, the right button displays the standard tool
menu.

/usr/lib/fonts/fixedwidthfonts
Sun-supplied screen fonts

SEE ALSO

BUGS

sunview(l), vswap(l), vfont(5) fontflip_to_68k(8) fontflip_to_i386(8)

Results are unpredictable with variable-width fonts. The baseline should be greater than 0 or else the
font cannot be read in by fontedit or by sunview(l).

SunOS Release 4.0.1 Last change: 3 November 1988 192

HELP _OPEN (1) USER COMMANDS HELP _OPEN (1)

NAME
help_open - causes help_ viewer to open a file

SYNOPSIS
help_open [-a] filename

AVAILABILITY
Sun386i systems only.

DESCRIPTION
help_ open is used to cause a running help_ viewer to open a file. 'filename' is typically the name of a
help_ viewer file. A call is made to help_ viewer using the same RPC mechanism as is used by Spot
Help.

If "filename" is relative, help_ viewer looks for it relative to the default help directory (as defined in the
user's defaults database). Otherwise, help_ viewer treats "filename" as absolute.

If the RPC call to help_ viewer fails, help_open attempts to spawn help_viewer, with "filename" as a
command line argument. If the -a command line option was given, then "filename" is first converted to
an absolute path name, as described in OPTIONS, below.

OPTIONS
-a Convert "filename" to absolute path; this option causes help_open to get the current working

directory and append it to the front of "filename" (thus creating an absolute pathname) before
passing "filename" on to help_ viewer. This allows help_open to be used with other processes,
such as Sun Organizer (see organizer (1)), which deal in relative pathnames. The -a option has
no effect if "filename" begins with the character '/'.

EXAMPLES

FILES

maple% help_open help/Help_Basics

This causes help_ viewer to open the file help/Help_Basics. This file is located relative to the default
help directory (as defined in the user's defaults database). So in the case where the default help direc­
tory was set to /vol/help/language/USA-English/, this would be /vol/help/language/USA­
English/help/Help_Basics.

maple% help_open help/Help_Basics 3

Same as previous example, but opens Help_Basics to page 3.

maple% help_open /home/mtravis/somefile

Causes help_ viewer to open somefile, relative to /home/mtravis/.

maple% cd /home/ahinkle
maple% help_open -a anotherfile

Causes help_ viewer to open /home/ahinkle/anotherfile.

/usr/lib/help/*

SEE ALSO
organizer(l), help_ viewer(l), help(S), help_ viewer(S), Sun386i Developer's Guide

SunOS Release 4.0.1 Last change: 5 October 1988

HELP_ VIEWER (1) USER COMMANDS HELP_ VIEWER (1)

NAME
help_ viewer - SunView program providing help with applications and desktop

SYNOPSIS
/usr/bin/help_ viewer [options]

AVAILABILITY
Sun386i systems only.

DESCRIPTION
help_viewer gives you quick access to documentation about SunView applications and the SunView
Desktop. This help consists of intermixed text and graphics displayed in a window called the Help
Viewer.

You start and control help_ viewer by one of these methods:

1. Typing help_ viewer at a shell prompt.

2. Clicking on the More Help button in a Spot Help window.

3. Sending instructions to the Help Viewer using the help_open command.

The documentation within help_ viewer is extendable, but as shipped it includes handbooks for the
DeskTop, mailtool(l), textedit(l), sunview(l), organizer(!), dos(l), coloredit(l), snap(l), and itself
(help_ viewer).

Developers and users can include additional handbooks by modifying /vol/help/format/Top_Level. See
help_ viewer(5).

The user moves between the various pages of help with the assistance of hypertext links. Links are
connections between pages of text. The convention is to use underlined text to indicate the presence of
a link. When the user double-clicks on a link, the text associated with the topic indicated by the link is
shown in the Help Viewer. There are links in many places to make it quick and easy to go from place
to place within the help_ viewer database.

Many help topics contain more than one page of text, and in these cases a link to the next page and to
the previous page is available at the upper-right comer of the Help Viewer; this allows the user to page
through the document.

The user's current position within the hierarchy of text is indicated by the links at the upper-left comer
of the Help Viewer. The last link in the list is the level just above the user's current position.

OPTIONS

FILES

The standard SunView options for window size, position, fonts, and other options are accepted. But
note that the font setting only affects the font in the Help Viewer namestripe. Also, Help Viewer text
does not wrap as a window is resized. See sunview(l) for details.

-dir dirname
Name of help directory

filename [#]
Name of startup file relative to help directory (or /vol/help by default, as set in the Help
category of defaultsedit). # is a page number separated from the filename by a SPACE. If# is
omitted, the first page is shown.

/vol/help automount point of miscellaneous help files
The files in /usr/lib/help are used by the help and the help_viewer facilities, and the SCCS help(l)
facility.
Directories within /usr/lib/help named after Sun View applications and the DeskTop contain specific
infonnation used by help_ viewer. See help_ viewer(5) for information about the files in these direc­
tories.

SunOS Release 4.0.1 Last change: 2 November 1988 225

HELP_ VIEWER (1) USER COMMANDS HELP_ VIEWER (1)

SEE ALSO
help(l), mailtool(l), shelltool(l), textedit(l), help_open(l), help_viewer(5), Sun386i User's Guide,
Sun386i Developer's Guide

DIAGNOSTICS
help_viewer(l) displays a pop-up error window if it cannot find the file required to show the requested
help.

SunOS Release 4.0.1 Last change: 2 November 1988 226

INPUT_FROM_DEFAULTS(1) USER COMMANDS INPUT_FROM_DEFAULTS (1)

NAME
input_from_defaults, defaults_from_input - update the current state of the mouse and keyboard from the
defaults database, and vice versa

SYNOPSIS
in put_from_defaults
defaults_from_input

AVAILABILITY
This command is available with the Sun View 1 User's software installation option. Refer to Installing
the Sun Operating System for information on how to install optional software.

DESCRIPTION

FILES

input_from_defaults updates various parameters controlling mouse- and keyboard-processing on the
machine on which it is run. It should be used on systems that are running the SunView window sys­
tem. The parameters control the distribution of function keys on the keyboard, the assignment of but­
tons on the mouse, the scaling of mouse-to-cursor motion, and the effect of two filters on mouse-motion
originally provided to compensate for defective mice. The new values are taken from the defaults data­
base, starting with the file .defaults in the user's home directory.

On the Sun386i system, the value /Input/Keyboard_Type is read from the user's .defaults file. The
values specified there are taken from the list of keyboard maps in /usr/share/lib/keytables/•. If the
value is blank, then the keyboard will be mapped to the default map setting. Keyboard maps can be
created using the dumpkeys utility.

defaults_from_input is the inverse operation to input_from_defaults. It updates the user's private
defaults database (used by defaultsedit(l)) to reflect the current state of kernel input parameters listed
above.

$HO MEI.defaults
/usr/lib/defaults/•.d
/usr/share/lib/keytables/•

SEE ALSO
defaultsedit(1), load keys(1), dump keys(1), keytables(5)

Sun View Beginner's Guide

BUGS
input_from_defaults should be targetable to any user's .defaults file.

SunOS Release 4.0.1 Last change: 6 October 1988 239

LD(l) USER COMMANDS LD(I)

NAME
Id, Id.so - link editor, dynamic link editor

SYNOPSIS
Id [-align datum] [-assert assertion-keyword] [-A name] [-Bbinding-keyword] [-d]

DESCRIPTION

[-de] [-dp] [-D hex] [-e entry] [-Ix] [-Ldir] [-M] [-n] [-N] [-<> name] [-p]
[-r] [-s] [-S] [-t] [-T [text] hex] [-Tdata hex] [-u name] [-x] [-X] [-;_ysym]
[-z] filename ...

Id combines object programs to create an executable file or another object program suitable for further
Id processing (with the -r option). The object modules on which Id operates are specified on the com­
mand line, and can be:

• simple object files, which typically end in the .o suffix, and are referred to as dot-oh files

• ar(l V) library archives (.a), or libraries

• dynamically-bound, sharable object files (.so), are also referred to as shared libraries, which
are created from previous Id executions.

Unless an output file is specified, Id produces a file named a.out. This file contains the object files
given as input, appropriately combined to form an executable file.

OPTIONS
When linking debugging or profiling objects, include the -g or -pg option (see cc(l V)), as appropriate,
in the Id command.

Options should appear before filenames, except for abbreviated library names specified with -1 options,
and some binding control options specified by -B (which can appear anywhere in the line).

-align datum
Force the global uninitialized data symbol datum (usually a FORTRAN common block) to be
page-aligned. Increase its size to a whole number of pages, and place its first byte at the start
of a page.

-assert assertion-keyword
Check an assertion about the link editing being performed. The assertion desired is specified
by the assertion-keyword string. Id is silent if the assertion holds, else it yields a diagnostic
and aborts. Valid assertion-keyword's and their interpretations are:

-A name

nodefinitions If the resulting program were run now, there would be no run-time
undefined symbol diagnostics. This assertion is set by default.

nosymbolic

pure-text

There are no symbolic relocation items remaining to be resolved.

The resulting load has no relocation items remaining in its text.

Incremental loading: linking is to be done in a manner so that the resulting object may be read
into an already executing program. name is the name of a file whose symbol table is taken as a
basis on which to define additional symbols. Only newly linked material is entered into the
text and data portions of a.out, but the new symbol table will reflect all symbols defined before
and after the incremental load. This argument must appear before any other object file in the
argument list. One or both of the -T options may be used as well, and will be taken to mean
that the newly linked segment will commence at the corresponding addresses (which must be a
multiple of the page size). The default value is the old value of _end.

SunOS Release 4.0.1 Last change: 6 October 1988 250

LD(1) USER COMMANDS LO(1)

-Bbinding-keyword
Specify allowed binding times for the items which follow. Allowed values of binding-keyword
are:

dynamic

nosymbolic

Static

symbolic

Allow dynamic binding: do not resolve symbolic references, allow creation
of run-time symbol and relocation environment. -Bdynamic is the default.
When -Bdynamic is in effect, all sharable objects encountered until a
succeeding -Bstatic may be added dynamically to the object being linked.
Non-sharable objects are bound statically.

Do not perform symbolic relocation, even if other options imply it.

Bind statically. Opposite of -Bdynamic. Implied when either -n or -N is
specified. Influences handling of all objects following its specification on a
command line until the next -Bdynamic.

Force symbolic relocation. Normally implied if an entry point has been
specified with -e, or if dynamic loading is in effect.

-d Force common storage for uninitialized variables and other common symbols to be allocated in
the current Id run, even when the -r flag is present (which would otherwise postpone this bind­
ing until the final linking phase).

-de Do -d, but also copy initialized data referenced by this program from shared objects.

-dp Force an alias definition of undefined procedure entry points. Used with dynamic binding to
improve sharing and the locality of run-time relocations.

-D hex Pad the data segment with zero-valued bytes to make it hex bytes long.

-e entry
Define the entry point: the entry argument is made the name of the entry point of the loaded
program. Implies -Bsymbolic.

-Ix[.v] This option is an abbreviation for the library name Ii bx.a, where x is a string. Id searches for
libraries first in any directories specified with -L options, then in the standard directories /lib,
/usr/lib, and /usr/local/lib. A library is searched when its name is encountered, so the place­
ment of a -1 is significant. If a dynamically loadable object is found, and -Bdynamic is in
effect at that point on the command line, then Id prepares to access the object for relocation at
run-time. In such a case, the optional .v suffix can be used to indicate a specific library ver­
sion.

-Ldir Add dir to the list of directories in which to search for libraries. Directories specified with -L
are searched before the standard directories, /lib, /usr/lib, and /usr/local/lib.

-M Produce a primitive load map, listing the names of the files which will be loaded.

-n Arrange (by giving the output file a 0410 magic number) that when the output file is executed,
the text portion will be read-only with the data areas placed at the beginning of the next
address boundary following the end of the text. Implies -Bstatic.

-N Do not make the text portion read-only. (Use magic number 0407.) Implies -Bstatic.

-o name
name is made the name of the Id output file, instead of a.out.

-p Arrange for the data segment to begin on a page boundary, even if the text is not shared (with
the -N option).

-r Generate relocation bits in the output file so that it can be the subject of another Id run. This
flag also prevents final definitions from being given to common symbols, and suppresses the
undefined symbol diagnostics.

-s Strip the output, that is, remove the symbol table and relocation bits to save space (but impair
the usefulness of the debuggers). This information can also be removed by strip(l).

SunOS Release 4.0. l Last change: 6 October 1988 251

LD(1)

USAGE

USER COMMANDS LD(1)

-S Snip the output by removing all symbols except locals and globals.

-t Trace: display the name of each file as it is processed.

-T [text] hex
Start the text segment at location hex. Specifying -T is the same as using the -Ttext option.

-Tdata hex

-u name

Start the data segment at location hex. This option is only of use to programmers wishing to
write code for PROMs, since the resulting code cannot be executed by the system.

Enter name as an undefined symbol. This is useful for loading wholly from a library, since
initially the symbol table is empty and an unresolved reference is needed to force the loading
of the first routine.

-x Preserve only global (non-.globl) symbols in the output symbol table; only enter external sym­
bols. This option saves some space in the output file.

-X Record local symbols, except for those whose· names begin with L. 'This option is used by cc
to discard internally generated labels while retaining symbols local to routines.

-ysym Display each file in which sym appears, its type and whether the file defines or references it.
Many such options may be given to trace many symbols. It is usually necessary to begin sym
with an '_', as external C, FORTRAN and Pascal variables begin with underscores.

-z Arrange for the process demand paged from the resulting executable file (0413 magic number).
This is the default. Results in a (32-byte) header on the output file followed by text and data
segments, each of which has a multiple of page-size bytes (being padded out with NULL char­
acters in the file if necessary). With this format the first few BSS segment symbols may actu­
ally end up in the data segment; this is to avoid wasting the space resulting from rounding the
data segment size. Implies -Bdynamic.

Command Line Processing
In general, options should appear ahead of the list of files to process. Unless otherwise specified, the
effect of an option covers all of Id operations, independent of that option's placement on the command
line. Exceptions to this rule include some of the binding control options specified by '-B' and the
abbreviated library-names specified by '-I'. These may appear anywhere, and their influence is depen­
dent upon their location. Some options may be obtained from environment variables, such options are
interpreted before any on the command line (see ENVIRONMENT, below).

Object File Processing
The files specified on the command line are processed in the order listed. Information is extracted from
each file, and concatenated to form the output. The specific processing performed on a given file
depends upon whether it is a simple object file, a library archive, or a shared library.

Simple object (.o) files are concatenated to the output as they are encountered.

Library archive (.a) files are searched exactly once each, as each is encountered; only those archive
ennies matching an unresolved external reference are extracted and concatenated to the output. If a
member of an archive references a symbol defined by another member of that same archive, the
member making the reference must appear before the member containing the definition.

On Sun386i, a library contains a dictionary of symbols, On other Sun systems, processing library
archives through ranlib(l) provides this dictionary. In addition, you can use lorder(l), in combination
with tsort(l) to place library members in calling order (see lorder(l) for details), or both (for fastest
symbol lookup). The first member of an archived processed by ranlib has the reserved name of
_.SYMDEF, which Id takes to be the dictionary of all symbols defined by members of the archive.

SunOS Release 4.0.1 Last change: 6 October 1988 252

LD(l) USER COMMANDS LD(l)

Sharable objects (.so) are scanned for symbol definitions and references, but are not normally included
in the output from Id, except in cases where a shared library exports initialized data structures and the
-de option is in effect. However, the occurrence of each sharable object file in the Id command line is
noted in the resulting executable file; this notation is utilized by an execution-time variant of Id, Id.so,
for deferred and dynamic loading and binding during execution. See Execution-Time Loading, below,
for details.

The -1 option specifies a short name for an object file or archive used as a library. The full name of
the object file is derived by adding the prefix lib and a suffix of either .a or .so[.v] to indicate an
ar(IV) archive or a shared library, respectively. The specific suffix used is determined through rules
discussed in Binding and Relocation Semantics, below.

Id searches for the desired object file through a list of directories specified by -L options, the environ­
ment variable LD_LIBRARY_PATH, and finally, the built-in list of standard library directories: /lib,
/usr/lib, and /usr/local/lib.

Binding and Relocation Semantics
The manner in which Id processes a given object file is dependent in part upon the binding mode in
which it is operating at the time the file is encountered. This binding mode is specified by the -B flag,
which takes the keyword arguments:

dynamic Allow dynamic binding, do not resolve symbolic references, and allow creation of
execution-time symbol and relocation information. This is the default setting.

static Force static binding, implied by options that generate non-sharable executable for-
mats.

-Bdynamic and -Bstatic may be specified several times, and may be used to toggle each other on and
off. Like -1, the influence of each depends upon its location within the command line. When
-Bdynamic is in effect, -I searches may be satisfied by the first occurrence of either form of library
(.so or .a), but if both are encountered, the .so form is preferred. When -Bstatic is in effect, Id refuses
to use any .so libraries it encounters; it continue searching for the .a form. Furthermore, an explicit
request to load a .so file is treated as an error.

After Id has processed all input files and command line options, the form of the output it produces is
based on the information provided in both. Id first tries to reduce all symbolic references to relative
numerical offsets within the executable it is building. To perform this symbolic reduction, Id must be
able to determine that:

• all information relating to the program has been provided, in particular, no .so is to be
added at execution time; and/or

• the program has an entry point, and symbolic reduction can be performed for all symbols
having definitions existing in the material provided.

It should be noted that uninitialized common areas (for example, uninitialized C globals) are allocated
by the link editor after it has collected all references. In particular, this allocation can not occur in a
program that still requires the addition of information contained in a .so file, as the missing information
may affect the allocation process. Initialized commons however, are allocated within the executable in
which their definition appears.

After Id has performed all the symbolic reductions it can, it attempts to transform all relative references
to absolute addresses. Id is able to perform this relative reduction only if it has been provided some
absolute address, either implicitly through the specification of an entry point, or explicitly through Id
command-line options. If, after performing all the reductions it can, there are no further relocations or
definitions to perform, then Id has produced a completely linked executable.

Execution-Time Loading
In the event that one or more reductions can not be completed, the executable will require further link
editing at execution time in order to be usable. Such executables contain a data structure identified
with the symbol _DYNAMIC. An incompletely linked main program should be linked with a

SunOS Release 4.0.1 Last change: 6 October 1988 253

LD(I) USER COMMANDS LD(I)

bootstrap routine that invokes Id.so, which uses the information contained in the· main program's
_DYNAMIC to assemble the rest of the executables constituting the entire program. A standard Sun
compilation driver (such as cc(l V)) automatically includes such a module in each main executable.

When Id.so is given control on program startup, it finds all .so files specified when the program was
constructed (and all .so's on which they depend), and loads them into the address space. Id.so then
completes all remaining relocations, with the exception of procedure call relocations; failure to- resolve
a given non-procedural relocation results in termination of the program with an appropriate diagnostic.

Procedure relocations are resolved when the referencing instruction is first executed. It should be noted
that it is possible for undefined symbol diagnostics to be produced during program execution if a given
target is not defined when referenced.

Although it is possible for binding errors to occur at execution-time, such an occurrence generally indi­
cates something wrong in the maintenance of shared objects. Id's -assert definitions function (on by
default) checks at Id-time whether or not an execution-time binding error would occur.

Version Handling for Shared Libraries
To allow the independent evolution of .so's used as libraries and the programs which use them, Id's
handling of .so files found through -1 options involves the retention and management of version control
information. The .so files used as such shared libraries are post-fixed with a Dewey-decimal format
string describing the version of the library contained in the file.

The first decimal component is called the library's major version number, and the second component its
minor version number. When Id records a .so used as a library, it also records these two numbers in
the database used by Id.so at execution time. In turn, Id.so uses these numbers to decide which of mul­
tiple versions of a given library is best or whether any of the available versions are acceptable. The
rules are:

• Major Versions Identical: the major version used at execution time must exactly match the
version found at Id-time. Failure to find an instance of the library with a matching major
version causes a diagnostic to be issued and the program's execution to be terminated.

• Highest Minor Version: in the presence of multiple instances of libraries that match the
desired major version, Id.so uses the highest minor version it finds. However, if the highest
minor version found at execution time is less than the version found at Id-time, a warning
diagnostic is issued; program execution continues.

The semantics of version numbers are such that major version numbers should be changed whenever
interfaces are changed. Minor versions should be changed to reflect compatible updates to libraries, and
programs will silently favor the highest compatible version they can obtain.

Special Symbols
A number of symbols have special meanings to Id and programs should not define these symbols. The
symbols described below are those actually seen by Id. Note: C and several other languages prepend
symbols they use with '_'.

_etext The first location after the text of the program.

_edata The first location after initialized data.

_end The first location after all data.

_DYNAMIC
Identifies an Id-produced data structure. It is defined with a non-zero value in executables
which require execution-time link editing. By convention, if defined, it is the first symbol in
the symbol table associated with an a.out file.

_GLOBAL_OFFSET_TABLE_
A position-independent reference to an Id-constructed table of addresses. This table is con­
structed from position-independent data references occurring in objects that have been assem­
bled with the assembler's -k flag (invoked on behalf of C compilations performed with the

SunOS Release 4.0.1 Last change: 6 October 1988 254

LD(l) USER COMMANDS LD(1)

-pie flag). A related table (for which no symbol is currently defined) contains a series of
transfer instructions and is created from position-independent procedure calls or, if -dp is
specified to Id, a list of undefined symbols.

Symbols in object files beginning with the letter L are taken to be local symbols and unless otherwise
specified are purged from Id output files.

ENVIRONMENT

FILES

LD_LIBRARY _PATH
A colon-separated list of directories in which to search for libraries specified with the~ -1
option. Similar to the PA TH environment variable. LO _LIBRARY _PATH also affects library
searching during execution-time loading.

LD_OPTIONS
A default set of options to Id. LD_OPTIONS is interpreted by Id just as though its value had
been placed on the command line, immediately following the name used to invoke Id, as in:

example% Id $LD_OPTIONS ... other-arguments ...

Note: Environment variable-names beginning with the characters 'LD_' are reserved for possible future
enhancements to Id.

/usr/lib/lib•.a
lib*.SO.V
lib*.sa.v
/usr/lib/ld.so
/usr/lib/•crt*.o
a.out
/usr/local/lib

libraries
shared libraries
exported, initialized shared library data
execution-time Id
default program bootstraps
output file

SEE ALSO

BUGS

as(l), ar(l V), cc(l V), lorder(l), ranlib(l), strip(!), tsort(l)

Options are being overloaded and are an inappropriate vehicle for describing to Id the wide variety of
things it can do. There needs to be a link-editing language which can be used in the more compJex
situations.

The -r option does not properly handle programs assembled with the -k (position-independent) flag,
invoked from cc with -pie or -PIC.

SunOS Release 4.0.1 Last change: 6 October 1988 255

LOAD(I) USER COMMANDS LOAD(I)

NAME
load, loadc - load Application SunOS or Developer's Toolkit clusters

SYNOPSIS
load [filename ...]

loadc [cluster ...]

AVAILABILITY
Sun386i systems only.

DESCRIPTION
load loads the optional clusters in the Application SunOS or the Developer's Toolkit that contain the
files specified in the filename arguments. loadc loads the optional clusters in the Application SunOS or
the Developers Toolkit specified in the cluster arguments. When you specify the special cluster name
appl with loadc, then loadc loads all the Application SunOS clusters; likewise, when you specify <level
to loadc, it loads all the Developer's Toolkit clusters.

load and loadc require the user to specify the distribution media type (3.5" diskette or 1/4" tape) for the
system and to insert the specified 3.5" diskette or 1/4" tape. The user will be asked to confirm that the
specified media has been inserted. If the user confirmation is negative, no software will be loaded from
the specified media.

Without arguments, load and loadc display a summary of the clusters in the Application SunOS and
Developer's Toolkit, including the load state and size of each cluster.

EXAMPLES
To load the cluster that contains the spell(l) command:

% load spell
Enter your distribution media type (1=114" tape, 2=3.5" diskette): 2
Insert diskette n to load the spellcheck cluster, confirm (y/n): y
Loading the spellcheck cluster ...
The spellcheck cluster has been loaded.
space used by clusters: 6021K bytes
total space remaining: 20432K bytes

To load the spellcheck cluster:

% loadc spellcheck
Enter your distribution media type (1=114" tape, 2=3.5" diskette): 2
Insert diskette n to load the spellcheck, confirm (y/n): y
Loading the spellcheck cluster ...
The spellcheck cluster has been loaded.
space used by clusters: 6021K bytes
total space remaining: 20432K bytes

To display a summary of the clusters in the Application SunOS and Developer's Toolkit:

% load
Application SunOS Clusters:

available cluster size (bytes)

yes accounting 265K
no advanced_admin SOlK

SunOS Release 4.0.1 Last change: 2 November 1988 267

LOAD(1) USER COMMANDS LOAD(l)

Developer's Toolkit Clusters:
available cluster size (bytes)

no base_devel 6907K

space used by clusters: 6021K bytes
total space remaining: 20432K bytes

A cluster is available if it has been loaded using load or loadc or if it has been mounted across the net­
work.

ENVIRONMENT
LOAD MEDIA Used to specify the distribution media type for the system. It can be set to diskette

to specify 3.5" diskette or tape to specify 1/4" tape. If it is set, load and loadc will
not ask the user to enter the distribution media type.

FILES
/usr/loaded/appl
/usr/loaded/devel
/usr/lib/load/•

where Application SunOS clusters are loaded (or mounted)
where Developer's Toolkit clusters are loaded (or mounted)
data files

SEE ALSO
unload(l), cluster(l), toc(5)

Sun386i System Setup and Maintenance

DIAGNOSTICS
Wrong diskette/tape

An incorrect diskette or tape was inserted. The user will again be asked to insert the specified
media.

The file filename is not in any of the optional software clusters.
The specified file is not part of the Application SunOS or Developer's Toolkit.

There is no cluster cluster.
The specified cluster is not part of the Application SunOS or Developers Toolkit.

The cluster cluster is already loaded, overwrite? (y/n):
The specified cluster appears to have been loaded already. Type y followed by RETURN to
have the cluster loaded or n followed by RETURN to cancel the loading of the cluster.

Cluster cluster requires nK; there is not enough disk space.
There is not enough disk space to hold the specified cluster.

The cluster cluster has not been loaded.
The loading of the specified cluster has been canceled or interrupted by the user.

The Application SunOS (and/or) Developers Toolkit are mounted.
The Application SunOS or Developers Toolkit or both are mounted across the network and can
not be loaded or unloaded.

The tape/diskette drive is currently in use.
You are trying to load a cluster from tape (or diskette) and another process currently has con­
trol of the tape (or diskette) drive.

SunOS Release 4.0.1 Last change: 2 November 1988 268

LOADKEYS (I) USER COMMANDS

NAME
loadkeys, dumpkeys - load and dump keyboard translation tables

SYNOPSIS
loadkeys [filename]

dumpkeys

DESCRIPTION
loadkeys

LOADKEYS (I)

loadkeys reads the file specified by filename, or, if no file is specified and the keyboard is a Type 4
keyboard, a default file for the layout indicated by the DIP switches on the keyboard, and modifies the
keyboard streams module's translation tables. The file is in the format specified by keytables(5).

If the layout code in the DIP switches on the keyboard has the hexadecimal value Ox dd, the file loaded
by loadkeys by default is /usr/share/lib/keytables/layout_ dd. These files specify only the entries that
change between the different Type 4 keyboard layouts.

dumpkeys

FILES

dumpkeys writes, to the standard output, the current contents of the keyboard streams module's transla­
tion tables, in the format specified by keytables(5).

/usr/share/lib/keytables/layout_dd
default keytable files

SEE ALSO
kb(4M), keytables(5)

SunOS Release 4.0.1 Last change: 1 September 1988

ORGANIZER (1) USER COMMANDS ORGANIZER (1)

NAME
organizer - file and directory manager

SYNOPSIS
organizer

AVAILABILITY
Sun386i systems only.

DESCRIPTION

FILES

organizer is a SunView application for viewing and manipulating files and directories. It performs
many of the functions of the Is, cd, cp, rm, mv, mkdir, rmdir, backup, restore, find, and chmod
commands, and with a visual interface.

At any given time, the organizer window normally shows the files and directories in a single directory,
representing each file or directory with an appropriate illustrated icon. The illustration indicates
whether a file is a directory, contains text, is an executable program, or optionally a user-defined file
type.

When organizer is switched into Map mode, the icons are arranged to indicate the hierarchy of files
and directories. Double clicking on a directory icon shows the contents of that directory in a new
column.

Several display modes are available, and can be set for an individual organizer window or for all
organizer windows. You can select whether hidden files are shown, whether just the name, the name
and information, or name and icon are shown for each file and directory, and how the contents are
sorted.

Text files can be "edited" by double clicking on the file's icon. The contents of the file are then shown
and can be edited in a separate text editor window. In the .orgrc file you can specify the EXECUTE,
EDIT, and PRINT applications for your own user-defined file types.

You can move down through the directory hierarchy by double clicking on a directory icon, and up by
double clicking on the parent directory name on the ancestor list in the upper left comer of the organ·
izer panel.

Copying, moving, and deleting require you to select one or more files. To select a file, click the left
button on it (don't double click-this will open the file). To select additional files to be operated on,
click the middle button on each additional file. Copying and moving operations require a destination
directory. After the files are selected, change directories to the desired destination as described above,
and then "drop" the files with the Drop button on the command panel. If the copy involves overwriting
an identically named file, an alert will allow you to confirm that you want to overwrite the file. If you
copy a file and then "drop" it in the same directory, organizer will prepend copy_of_ to the filename
of the new file.

/usr/include/images/* file and directory icons

-1.orgrc

SEE ALSO
orgrc(5)

SunOS Release 4.0.1 Last change: 5 October 1988 374

STRIP(I) USER COMMANDS STRIP(I)

NAME
strip - remove symbols and relocation bits from an object file

SYNOPSIS
strip filename ...

DESCRIPTION
strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler
and linker. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the -s option of ld(l).

SEE ALSO

BUGS

ld(I), a.out(5) coff(5)

Unstripped 2.0 binary files will not run if stripped by the 3.0 version. A message of the fonn:

pid xu: killed due to swap problems in 1/0 error mapping page.

when attempting to run a program indicates that this is the problem.

SunOS Release 4.0.1 Last change: 3 November 1988 479

TEXTEDIT (I) USER COMMANDS TEXTEDIT (I)

NAME
textedit - Sun View window- and mouse-based text editor

SYNOPSIS
textedit [generic-tool-arguments] [-Ea on I off] [-adjust_is_pending_delete] [-Ei on I off]

[-auto_indent] [-Eo on I off] [-okay _to_overwrite] [-Er on I off] [-read_only]
[-Ee N] [-checkpoint count] [-EL lines] [-lower _context lines] [-Em pixels]
[-margin pixels] [-En N] [-number _of_lines lines] [-Es N] [-scratch_ window lines]
[-ES N] [-multi_click_space radius] [-Et N] [-tab_width tabstop] [-ET N]
[-multi_click_timeout intrvl] [-Eu N] f -history_limit max] [-EUN]
[-upper _context lines] filename

AVAILABILITY
This command is available with the Sun View I User's software installation option. Refer to Installing
the Sun Operating System for information on how to install optional software.

DESCRIPTION
textedit is a mouse-oriented text editor that runs within the Sun View environment. It creates a window
containing two text subwindows. The top subwindow (referred to as the scratch window) can be used
to store small pieces of text. The bottom subwindow (referred to as the edit window) displays the con­
tents of filename, if given.

The name of the file currently being edited is displayed in the left-hand portion of the frame header.
The name of the current working directory is displayed in the right-hand portion.

OPTIONS
generic-tool-arguments

textedit accepts the Sun View generic tool arguments listed in sunview(l).

-Ea on I off
-adjust_is_pending_delete

-Ei onlotf

Choose whether or not an adjustment to a selection makes the selection pending-delete.
The default is off. This option corresponds to, and overrides, the
adjust_is_pending_delete Text defaults entry.

-auto_indent Choose whether or not to automatically indent newly-opened lines: The default is off.
Corresponds to the auto_indent Text default.

-Eo on I off
-okay _to_overwrite

-Er on I off

Set behavior to the Store as New File menu item. If on a Store as New File to the
current file is treated as a Save Current File. If off (the standard default), Store as New
File operations using the current filename result in an error message. Corresponds to
Store_self_is_save.

-read_only Turn read-only mode on or off. When on, text cannot be modified.

-EcN
-checkpoint count

-EL lines

Checkpoint after every count editing operations. If count is 0 (the standard default), no
checkpointing takes place. Each character typed, each Paste, and each Cut counts as an
editing operation. Corresponds to checkpoint_frequency.

-lower _context lines

SunOS Release 4.0.1

Specify the minimum number of lines to keep between the caret and the bottom of the
text subwindow. The default is 2. Corresponds to lower_context.

Last change: 5 October 1988 524

TEXTEDIT (1) USER COMMANDS TEXTEDIT (1)

USAGE

-Em pixels
-margin pixels

Set the scrollbar margin width in pixels. The default is 4. Corresponds to left_margin.

-En N
-number_of_lines lines

Set the number of lines in the bottom subwindow. The default is 45.

-EsN
-scratch_ window lines

-ESN

Set the number of lines in the scratch window. A zero value means that there is no
scratch window. The standard default is 1. Corresponds to scratch_window.

-multi_click_space radius

-EtN

Set the radius, in pixels, within which clicks must occur to be treated as a multi-click
selection. The default is 3 pixels. Corresponds to multi_click_space.

-tab_width tabstop

-ET N

Set the number of SPACE characters displayed per TAB stop. The default is 8. This
option has no effect on the characters in the file. Corresponds to tab_ width.

-multi click_timeout intrvl

-EuN

Set the interval, in milliseconds, within which any two clicks must occur to be treated as
a multi-click selection. The default is 390 milliseconds. Corresponds to
multi_click_timeout.

-history _limit max

-EUN

Set the maximum number of editing operations that can be undone or replayed. The
default is 50. Corresponds to history _limit.

-upper _context lines
Set the minimum number of lines to keep between the caret and the top of the text
subwindow. The default is 2. Corresponds to upper_ context.

For a description of how to use the facilities of the text subwindows, see the Sun View Beginner's
Guide.

Signal Processing
If textedit hangs, for whatever reason, you can send a SIGHUP signal to its process ID, which forces it
to write any changes (if possible):

kill -HUP pid

The edits are written to the file textedit.pid in its working directory. If that fails, textedit successively
tries to write to a file by that name in /var/tmp, and then /tmp. In addition, whenever textedit catches
a fatal signal, such as SIGILL, it tries to write out the edits before aborting.

Def au Its Options
There are several dozen user-specified defaults that affect the behavior of the text-based facilities. See
defaultsedit(l) for a complete description. Important defaults entries in the Text category are:

Edit_back_char Set the character for erasing to the left of the caret. The standard default is
DELETE. Note: the tty erase character-setting has no effect on textedit. Text­
based tools refer only to the defaults database key settings.

Edit_back_ word Set the character for erasing the word to the left of the caret. The standard

SunOS Release 4.0.1 Last change: 5 October 1988 525

TEXTEDIT (1)

Edit_back_line

USER COMMANDS TEXTEDIT (1)

default is CTRL-W.

Set the character for erasing all characters to the left of the caret. The ·standard
default is CTRL-U.

Checkpoint_frequency

Making a selection

If set to 0 (the standard default) no checkpointing is done. For any value greater
than zero, a checkpoint is made each time the indicated number of editing opera­
tions has been performed since the last checkpoint. Each character typed, each
Paste, and each Cut counts as an editing operation. The checkpoint file has a
name of the form: filename%%, where filename is the name of the file being
edited.

In textedit, the mouse is used to specify a selection, which is a character span to operate on. The
mouse is also used to position the insertion point and to invoke a menu of commands.

The assignment of commands to the mouse buttons is:

Mouse button Description

LEFf

MIDDLE

RIGHT

Starts a new selection and moves the insertion point to the end of the
selection nearest the mouse cursor.

Extends a selection, and moves the insertion point.

Displays a menu of operations, explained below.

There are two types of selections: a primary selection is indicated by video-inversion of the span of
characters, and tends to persist. A secondary selection is indicated by underlining the span of charac­
ters and only exists while one of the four function keys corresponding to the commands Cut, Find,
Paste, or Copy, is depressed.

In addition, a selection can be pending-delete, as indicated by overlaying the span of characters with a
light gray pattern. A selection is made pending-delete by holding the CTRL key while clicking the
LEFf or MIDDLE mouse buttons. If a primary selection is pending-delete, it is only deleted when char­
acters are inserted, either by type-in or by Paste or Copy. If a secondary selection is pending-delete, it
is deleted when the function key is released, except in the case of the Find, which deselects the secon­
dary selection.

You can make adjusted selections switch to pending-delete using the adjust_is_pending_delete defaults
entry, or the -Ea option. In this case, CTRL-Middle makes the selection not pending-delete.

Commands that operate on the primary selection do so even if the primary selection is not in the win­
dow that issued the command.

Inserting Text and Command Characters
For the most part, typing any of the standard keys either inserts the corresponding character at the inser­
tion point, or erases characters. However, certain key combinations are treated as commands. Some of
the most useful are:

Command

Cut-Primary
Find-Primary

Copy-to-Clipboard
Paste-Clipboard
Copy-then-Paste

Go-to-EOF

SunOS Release 4.0.1

Character

Meta-X
Meta-F

Meta-C
Meta-V
Meta-P

CTRL-RETURN

Description

Erases, and moves to the Clipboard, the primary selection.
Searches the text for the pattern specified by the primary
selection or by the Clipboard, if there is no primary selection.
Copies the primary selection to the Clipboard.
Inserts the Clipboard contents at the insertion point.
Copies the primary selection to the insertion point (through
the Clipboard).
Moves the insertion point to the end of the text, positioning
the text so that the insertion point is visible.

Last change: 5 October 1988 526

TEXTEDIT (I) USER COMMANDS TEXTEDIT (I)

Function Keys
The commands indicated by use of the function keys are:

Command Sun-213 Key Description

Stop LI
Again L2

Undo L4
Front L5

Copy L6

Open L7

Paste L8

Find L9

Cut LIO

CAPSLOCK Fl

Aborts the current command.
Repeats the previous editing sequence since a
primary selection was made.
Undoes a prior editing sequence.
Makes the window completely visible (or
hides it, if it is already exposed).
Copies the primary selection, either to the
Clipboard or at the closest end of the secondary
selection.
Makes the window iconic (or normal, if it is already
iconic).
Copies either the secondary seleption· or the Clipboard at
the insertion point.
Searches for the pattern specified by, in order, the
secondary selection, the primary selection, or the Clipboard.
Erases, and moves to the Clipboard, either the primary or
the secondary selection.
Forces all subsequently typed alphabetic characters
to be upper-case.
This key is a toggle; striking it a second time undoes the
effect of the first strike.

Find usually searches the text forwards, towards the end. Holding down the SHIFT key while invoking
Find searches backward through the text, towards the beginning. If the pattern is not found before the
search encounters either extreme, it wraps around and continues from the other extreme. Find starts the
search at the appropriate end of the primary selection, if the primary selection is in the subwindow that
the search is made in; otherwise it starts at the insertion point, unless the subwindow cannot be edited,
in which case it starts at the beginning of the text.

CTRL-Find invokes the Find and Replace pop-up frame.

The default assignment of function keys can be modified using defaultsedit(l).

Menu Items
File

Edit

Display

Find

Extras

A pull-right menu item for file operations.

A pull-right menu item equivalent of the editing function keys. The Edit submenu provides
Again, Undo, Copy, Paste, and Cut (same as function keys L2, L4, L6, L8, and LIO).

A pull-right menu item for controlling the way text is displayed and line display format.

A pull-right menu item for find and delimiter matching operations.

A user definable pull-right menu item. The Extras standard submenu is controlled by
/usr/lib/text_extras_menu. This file has the same syntax as .rootmenu file. See sun-
view(l).

Only those items that are active appear as normal text in the menu; inactive items (which are inap­
propriate at the time) are grayed out.

User Defined Commands
The file /usr/lib/text_extras_menu specifies filter programs that are included in the text subwindow
Extras pull-right menu item. The file -1.textswrc specifies filter programs that are assigned to (avail­
able) function keys. These filters are applied to the contents of the primary selection. Their output is
entered at the caret.

SunOS Release 4.0.1 Last change: 5 October 1988 527

TEXTEDIT (1) USER COMMANDS TEXTEDIT (1)

The file /usr/lib/textswrc is a sample containing a set of useful filters. It is not read automatically.

FILES
- /.textswrc specifies bindings of filters to function keys
/usr/lib/text_extras_menu

specifies bindings of filters for the extras menu pull-right items
/usr/bin contains useful filters, including shift_lines and capitalize.
filename% prior version of filename is available here after a Save Current File menu

operation
textedit.pid
/tmp/Text*

edited version of filename; generated in response to fatal internal errors
editing session logs

SEE ALSO
defaultsedit(l), kill(1), sun view(1),

Sun View Beginner's Guide

DIAGNOSTICS
Cannot open file 'filename', aborting!

filename does not exist or cannot be read.

textedit produces the following exit status codes:

0 normal termination
1 standard Sun View help message was printed
2 help message was requested and printed
3 abnormal termination in response to a signal, usually due to an internal error
4 abnormal termination during initialization, usually due to a missing file or running out

of swap space

BUGS
Multi-click to change the current selection does not work for Adjust Selection.

Handling of long lines is incorrect in certain scrolling situations.

There is no way to replay any editing sequence except the most recent.

'textedit newfile' fails if newfile does not exist.

SunOS Release 4.0.1 Last change: 5 October 1988 528

UUCP(lC) USER COMMANDS UUCP(IC)

NAME
uucp, uulog, uuname - system to system copy

SYNOPSIS
uucp [-acCdtinr] [-esystem] [-nusername] [-ggrade] [-sspool] [-xdebug] source-file ...

destination-file

uulog [-ssystem] [-uusername]

uuname [-1]

AVAILABILITY
This command is available with the uucp software installation option. Refer to Installing the Sun
Operating System for information on how to install optional software.

DESCRIPTION
uucp copies each source-file to the named destination-file. A filename may be a path name on your.
machine, or may have the form

system-name!pathname

where system-name is taken from a list of system names that uucp knows about. Shell metacharacters
?, *, and [] appearing in the pathname part will be expanded on the appropriate system.

Pathnames may be one of:

• a full pathname;

• a pathname preceded by - username/; where username is a usemame on the specified
system and is replaced by that user's login directory;

• a pathname preceded by - /; such a pathname will be replaced by the public uucp
directory on the remote machine;

• anything else is prefixed by the pathname of the current directory.

If the result is an erroneous pathname for the remote system, the copy will fail. If the destination-file is
a directory, the last component of the source-file name is used.

uucp preserves execute permissions across the transmission and gives 0666 read and write permissions
(see chmod(2)).

uulog maintains a summary log of uucp and
/var/spool/uucp/LOGFILE, by gathering information
/var/spool/uucp/LOG.*.?. It removes the partial log files.

uux(IC) transactions
from partial log

uuname lists the uucp names of systems that can be accessed using uucp.

OPTIONS
uucp Options

in the file
files named

-a Avoid doing a getwd(3) to find the current directory. This is sometimes used for efficiency.

-c Use the source file when copying out rather than copying the file to the spool directory. This
is the default.

-C Make a copy of outgoing files in the uucp spool directory, rather than copying the source file
directly to the target system. This lets you remove the source file after issuing the uucp com­
mand.

-d Make all necessary directories for the file copy.

-f Do not make intermediate directories for the file copy.

-m Send mail to the requester when the copy is complete.

-r Do not start the transfer, just queue the job.

SunOS Release 4.0.1 Last change: 8 November 1988 568

UUCP(IC) USER COMMANDS UUCP(IC)

-esystem
Send the uucp command to the system system to be executed there. This works only when the
remote machine allows uucp to be executed by /usr/lib/uucp/uuxqt.

-nusername

-ggrade

Notify username on remote system (by mail) that a file was sent.

grade is a single letter or number; lower ASCII values transmit a job earlier during a particular
conversation. The default grade is n. By way of comparison, uux(l C) defaults to 'A'; mail is
usually sent at grade 'C'.

-sspool Use spool as the spool directory instead of the default.

-xdebug
Tum on the debugging at level debug.

uulog Options
-ssystem

Print information about work involving system system.

-uusername
Print information about work done for the specified username.

uuname options
-I Display the local system-name.

FILES
/var/spool/uucp spool directory
/usr/lib/uucp/sys list of known systems and descriptions
/usr/lib/uucp/* other data and program files
/var/spool/uucp/LOGFILE

SEE ALSO
mail(l), uux(lC), chmod(2), getwd(3)

WARNING

BUGS

The domain of remotely accessible files can (and for obvious security reasons, usually should) be
severely restricted. You will very likely not be able to fetch files by pathname; ask a responsible per­
son on the remote system to send them to you. For the same reasons you will probably not be able to
send files to arbitrary pathnames.

All files received by uucp will be owned by the user ID uucp.

The -m option will only work sending files or receiving a single file. Receiving multiple files specified
by special shell characters ?, *, and [] will not activate the -m option.

SunOS Release 4.0.1 Last change: 8 November 1988 569

GETMNTENT (3) C LIBRARY FUNCTIONS GETMNTENT (3)

NAME
getmntent, setmntent, addmntent, endmntent, hasmntopt - get file system descriptor file entry

SYNOPSIS
#include <stdio.h>
#include <mntent.h>

FILE *setmntent(filep, type)
char *filep;
char *type;

struct mntent *getmntent(filep)
FILE *filep;

int addmntent(filep, mot)
FILE *filep;
struct mntent *mot;

char *hasmntopt(mnt, opt)
struct mntent *mnt;
char *opt;

int endmntent(filep)
FILE *filep;

DESCRIPTION

FILES

These routines replace the getfsent() routines for accessing the file system description file /etc/fstab.
They are also used to access the mounted file system description file /etc/mtab.

setmntent() opens a file system description file and returns a file pointer which can then be used with
getmntent, addmntent, or endmntent. The type argument is the same as in fopen(3). getmntent()
reads the next line from filep and returns a pointer to an object with the following structure containing
the broken-out fields of a line in the filesystem description file, <mntent.h>. The fields have meanings
described in fstab(S).

struct mntent {

} ;

char *mnt_fsname;
char *mnt_dir;
char *mnt_type;
char *mnt_opts;
int mnt_freq;
int mnt_passno;

/* file system name *I
I* file system path prefix *I
I* 4.2, nfs, swap, or xx */
I• ro, quota, etc. •/

I• dump frequency, in days *'
I* pass number on parallel fsck */

addmntent() adds the mntent structure mnt to the end of the open file filep. Note: filep has to be
opened for writing if this is to work. hasmntopt() scans the mnt_opts field of the mntent structure
mnt for a substring that matches opt. It returns the address of the substring if a match is found, 0 other­
wise. endmntent() closes the file.

/etc/fstab
/etc/mtab

SEE ALSO
fopen(3S), getfsent(3), fstab(5)

DIAGNOSTICS
NULL pointer (0) returned on EOF or error.

BUGS
The returned mntent structure points to static information that is overwritten in each call.

SunOS Release 4.0.1 Last change: 8 November 1988 872

KB(4) DEVICES AND NETWORK INTERFACES KB(4)

NAME
kb - Sun keyboard STREAMS module

CON FIG
pseudo-device kbnumber

SYNOPSIS
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sundev/vuid_event.h>
#include <sundev/kbio.h>
#include <sundev/kbd.h>

ioctl(fd, I_PUSH, "kb");

DESCRIPTION
The kb STREAMS module processes byte streams generated by Sun keyboards attached to a CPU serial
or parallel port. Definitions for altering keyboard translation, and reading events from the keyboard, are
in <sundev/kbio.h> and <sundev/kbd.h>. number specifies the maximum number of keyboards sup­
ported by the system.

kb recognizes which keys have been typed using a set of tables for each known type of keyboard.
Each translation table is an array of 128 16-bit words (unsigned shorts). If an entry in the table is less
than OxlOO, it is treated as an ISO 8859/1 character. Higher values indicate special characters that
invoke more complicated actions.

Keyboard Translation Mode
The keyboard can be in one of the following translation modes:

TR_NONE

TR_ASCII

TR_EVENT

TR_UNTRANS_EVENT

Keyboard Translation-Table Entries

Keyboard translation is turned off and up/down key codes are
reported.

ISO 8859/1 codes are reported.

firm_events (see The Sun View System Programmer's Guide -
Appendix: Writing a Virtual User Input Device Driver) are
reported.

firm_events containing unencoded keystation codes are reported
for all input events within the window system.

All instances of the kb module share seven translation tables used to convert raw keystation codes to
event values. The tables are:

Un shifted

Shifted

Caps Lock

Alt Graph

Num Lock

Controlled

Used when a key is depressed and no shifts are in effect.

Used when a key is depressed and a Shift key is being held down.

Used when a key is depressed and Caps Lock is in effect.

Used when a key is depressed and the Alt Graph key is being held
down.

Used when a key is depressed and Num Lock is in effect.

Used when a key is depressed and the Control key is being held down
(regardless of whether a Shift key or the Alt Graph is being held down,
or whether Caps Lock or Num Lock is in effect).

Key Up Used when a key is released.

Each key on the keyboard has a key station code that is a number from 0 to 127. This number is used
as an index into the translation table that is currently in effect. If the corresponding entry in that trans­
lation table is a value from 0 to 255, this value is treated as an ISO 8859/1 character, and that character

SunOS Release 4.0.1 Last change: 28 July 1988 1233

KB(4) DEVICES AND NETWORK INTERFACES KB(4)

is the result of the translation.

If the entry is a value above 255, it is a special entry. Special entry values are classified according to
the value of the high-order bits. The high-order value for each class is defined as a constant, as shown
in the list below. The value of the low-order bits, when added to this constant, distinguishes between
keys within each class:

SHIFTKEYS Ox I 00

BUCKYBITS Ox200

FUNNY Ox300

A shift key. The value of the particular shift key is added to determine which
shift mask to apply:

CAPSLOCK 0

SHIFTLOCK 1

LEFTSHIFT 2

RIGHTSHIFT 3

LEFTCTRL 4

RIGHTCTRL 5

ALTGRAPH 9

ALT IO

NUMLOCK 11

Caps Lock key.

Shift Lock key.

Left-hand Shift key.

Right-hand Shift key.

Left-hand (or only) Control key.

Right-hand Control key.

Alt Graph key.

Alternate key on the Type 3 keyboard, or Alt key on
the Type 4 keyboard.

Num Lock key.

Used to toggle mode-key-up/down status without altering the value of an
accompanying ISO 8859/l character. The actual bit-position value, minus 7, is
added.

METABIT 0

SYSTEMBIT 1

The Meta key was pressed along with the key. This is
the only user-accessible bucky bit. It is ORed in as the
Ox80 bit; since this bit is a legitimate bit in a character,
the only way to distinguish between, for example, OxAO
as MET A+Ox20 and OxAO as an 8-bit character is to
watch for MET A key up and MET A key down events
and keep track of whether the META key was down.

The System key was pressed. This is a place holder to
indicate which key is the system-abort key.

Performs various functions depending on the value of the low 4 bits:

NOP Ox300 Does nothing.

OOPS Ox301 Exists, but is undefined.

HOLE Ox302

NOSCROLL Ox303

CTRLS Ox304

CTRLQ Ox305

RESET Ox306

ERROR Ox307

IDLE Ox308

COMPOSE Ox309

NONL Ox30A

There is no key in this position on the keyboard, and
the position-code should not be used.

Alternately sends "S and "Q.

Sends "Sand toggles NOSCROLL key.

Sends "Q and toggles NOSCROLL key.

Keyboard reset.

The keyboard driver detected an internal error.

The keyboard is idle (no keys down).

This key is the COMPOSE key; the next two keys
should comprise a two-character COMPOSE key
sequence.

Used only in the Num Lock table; indicates that this

SunOS Release 4.0.1 Last change: 28 July 1988 1234

KB(4)

FA_CLASS Ox400

STRING Ox500

FUNCKEYS Ox600

PADKEYS Ox700

SunOS Release 4.0.1

DEVICES AND NETWORK INTERFACES KB(4)

key is not affected by the Num Lock state, so that the
translation table to use to translate this key should be
the one that would have been used had N um Lock not
been in effect.

Ox30B - Ox30F Reserved for nonparameterized functions.

This key is a floating accent or dead key. Pressing this key causes the next key
to generate an event for an accented character; for example, floating accent
grave followed by the a key generates an event with the ISO 8859/1 code for
the a with grave accent character. The low-order bits indicate which accent;
the codes for the individual floating accents are as follows:

FA_UMLAUT Ox400 umlaut

FA_CFLEX Ox401 circumflex

FA_TILDE Ox402 tilde

FA_ CEDILLA Ox403 cedilla

FA_ACUTE Ox404 acute accent

FA_GRA VE Ox405 grave accent

The low-order bits index a table of strings. When a key with a STRING entry
is depressed, the characters in the null-terminated string for that key are sent,
character by character. The maximum length is defined as:

KTAB_STRLEN 10

Individual string numbers are defined as:

HOMEARROW OxOO
UPARROW OxOl
DOWNARROW Ox02
LEFT ARROW Ox03
RIGHT ARROW Ox04

String numbers Ox05 - OxOF are available for custom entries.

Function keys. The next-to-lowest 4 bits indicate the group of function keys:

LEFTFUNC Ox600
RIGHTFUNC Ox610
TOPFUNC Ox620
BOTTOMFUNC Ox630

The low 4 bits indicate the function key number within the group:

LF(n)
RF(n)
TF(n)
BF(n)

(LEFTFUNC+(n)-1)
(RIGHTFUNC+(n)-1)
(TOPFUNC+(n)-1)
(BOTTOMFUNC+(n)-1)

There are 64 keys reserved for function keys. The actual positions may not be
on left/right/top/bottom of the keyboard, although they usually are.

This key is a numeric keypad key. These entries should appear only in the
Num Lock translation table; when Num Lock is in effect, these events will be
generated by pressing keys on the right-hand keypad. The low-order bits indi­
cate which key; the codes for the individual keys are as follows:

PADEQUAL Ox700 =key

PADSLASH Ox701 / key

Last change: 28 July 1988 1235

KB(4) DEVICES AND NETWORK INTERFACES

PADST AR Ox702 * key

PADMINUS Ox703 - key

PADSEP Ox704 , key

PAD7 Ox705 7 key

PADS Ox706 8 key

PAD9 Ox707 9 key

PADPLUS Ox708 +key

PAD4 Ox709 4 key

PADS Ox70A 5 key

PAD6 Ox70B 6 key

PADl Ox70C 1 key

PAD2 Ox70D 2 key

PAD3 Ox70E 3 key

PADO Ox70F 0 key

PADDOT Ox710

PADENTER Ox711 Enter key

In TR_ASCII mode, when a function key is pressed, the following escape sequence is sent:
<ESC>[O 9z

KB(4)

where <ESC> is a single escape character and 0 ... 9 indicates the decimal representation of the
function-key value. For example, function key Rl sends the sequence:

<ESC>[208z
because the decimal value of RF(l) is 208. In TR_EVENT mode, if there is a VUID event code for the
function key in question, an event with that event code is generated; otherwise, individual events for the
characters of the escape sequence are generated.

Keyboard Compatibility Mode

IOCTLS

kb is in compatibility mode when it starts up. In this mode, when the keyboard is in the TR_EVENT
translation mode, ISO 8859/l characters from the upper half of the character set (that is, characters with
the 8th bit set) are presented as events with codes in the ISO_FIRST range (as defined in
<sundev/vuid_event.h>);theeventcodeis ISO_FIRST plus the character value. This is for backwards
compatibility with older versions of the keyboard driver. If compatibility mode is turned off, ISO
8859/1 characters are presented as events with codes equal to the character code.

Two ioctls set and retrieve the current translation mode of a keyboard:

KIOCTRANS The argument is a pointer to an int. The translation mode is set to the value in the
int pointed to by the argument.

KIOCGTRANS The argument is a pointer to an int. The current translation mode is stored in the int
pointed to by the argument.

ioctls for changing and retrieving entries from the keyboard translation table use the kiockeymap struc­
ture:

struct kiockeymap {
int kio_tablemask;

#define KIOCABORTl -1
#define KIOCABORT2 -2

I* Translation table (one of: 0, CAPSMASK,
SHIFTMASK, CTRLMASK, UPMASK,
ALTGRAPHMASK, NUMLOCKMASK) *I

I* Special mask: abortl keystation *I
I* Special mask: abort2 keystation *I

SunOS Release 4.0.1 Last change: 28 July 1988 1236

KB(4)

) ;

KIOCSKEY

DEVICES AND NETWORK INTERFACES KB(4)

u_char kio_station; /• Physical keyboard key station (0-127) *I
u_short kio_entry; /• Translation table station's entry *I
char kio_string[lO]; /• Value for STRING entries (null terminated) *I

The argument is a pointer to a kiockeymap structure. The translation table entry
referred to by the values in that structure is changed.

kio_tablemask specifies which of the five translation tables contains the entry to be
modified:

UPMASK Ox0080 Key Up translation table.

NUMLOCKMASK Ox0800
Num Lock translation table.

CTRLMASK Ox0030 Controlled translation table.

AL TGRAPHMASK Ox0200
Alt Graph translation table.

SHIFTMASK OxOOOE Shifted translation table.

CAPSMASK OxOOOI Caps Lock translation table.

(No shift keys pressed or locked)
U nshifted translation table.

kio_station specifies the keystation code for the entry to be modified. The value of
kio_entry is stored in the entry in question. If kio_entry is between STRING and
STRING+ 15, the string contained in kio_string is copied to the appropriate string table
entry. This call may return EINVAL if there are invalid arguments.

There are a couple special values of kio_tablemask that affect the two step break to
the PROM monitor sequence. The usual sequence is SETUP-a or Ll-a. If
kio_tablemask is KIOCABORTl then the value of kio_station is set to be the first
keystation in the sequence. If kio_tablemask is KIOCABORT2 then the value of
kio_station is set to be the second keystation in the sequence.

KIOCGKEY The argument is a pointer to a kiockeymap structure. The current value of the key­
board translation table entry specified by kio_tablemask and kio_station is stored in
the structure pointed to by the argument. This call may return EINV AL if there are
invalid arguments.

KIOCTYPE The argument is a pointer to an int. A code indicating the type of the keyboard is
stored in the int pointed to by 'the argument:

KB_KLUNK Micro Switch 103SD32-2
KB_ VTlOO Keytronics VTIOO compatible
KB_SUN2 Sun-2 keyboard
KB _SUN3 Type 3 keyboard
KB _SUN4 Type 4 keyboard
KB_ASCII ASCII terminal masquerading as keyboard

-1 is stored in the int pointed to by the argument if the keyboard type is unknown.

KIOCLA YOUT The argument is a pointer to an int. On a Type 4 keyboard, the layout code specified
by the keyboard's DIP switches is stored in the int pointed to by the argument.

KIOCCMD The argument is a pointer to an int. The command specifed by the value of the int
pointed to by the argument is sent to the keyboard. The commands that can be sent
are:

Commands to the Sun-2, Type 3, and Type 4 keyboard:
KBD_CMD_RESET Reset keyboard as if power-up.

SunOS Release 4.0.1 Last change: 28July,1988 1237

KB(4)

KIOCSLED

KIOCGLED

DEVICES AND NETWORK INTERFACES

KBD_CMD_BELL
KBD_CMD_NOBELL

Turn on the bell.
Turn off the bell

Commands to the Type 3 and Type 4 keyboard:
KBD_CMD_CLICK Turn on the click annunciator.
KBD_CMD_NOCLICK Turn off the click annunciator.

KB(4)

Inappropriate commands for particular keyboard types are ignored. Since there is no
reliable way to get the state of the bell or click (because we cannot query the key­
board, and also because a process could do writes to the appropriate serial driver -
thus going around this ioctl) we do not provide an equivalent ioctl to query its state.

The argument is a pointer to an char. On the Type 4 keyboard, the LEDs are set to
the value specified in that char. The values for the four LEDs are:

LED_CAPS_LOCK Caps Lock light.
LED_COMPOSE Compose light.
LED_SCROLL_LOCK Scroll Lock light.
LED_NUM_LOCK Num Lock light.

The argument is a pointer to a char. The current state of the LEDs is stored in the
char pointed to by the argument.

KIOCSCOMPA T The argument is a pointer to an int. Compatibility mode is turned on if the int has a
value of 1, and is turned off if the int has a value of 0.

KIOCGCOMPAT The argument is a pointer to an int. The current state of compatibility mode is stored
in the int pointed to by the argument.

KIOCGDIRECT These ioctls are supported for compatibility with the system keyboard device
/dev/kbd. KIOCSDIRECT has no effect, and KIOCGDIRECT always returns 1.

SEE ALSO
click(l), loadkeys(l), kbd(4S), termio(4), win(4S)

The Sun View System Programmer's Guide- Appendix: Writing a Virtual User Input Device Driver
(describes firm_event format)

SunOS Release 4.0.1 Last change: 28 July 1988 1238

BAR(S) FILE FORMATS BAR(5)

NAME
bar - tape archive file format

AVAILABILITY
Sun386i systems only.

DESCRIPTION
bar(l), (the tape archive command) dumps several files into one, in a medium suitable for transporta­
tion. This format is not compatible with the format generated by tar(1).

A "bar tape" or file is a series of blocks. Each block is of size TB LOCK. A file on the tape is
represented by a header block that describes the file, followed by zero or more blocks that give the con­
tents of the file. At the end of the tape are two blocks filled with binary zeros, as an end-of-file indica­
tor.

The blocks are grouped for physical 1/0 operations. Each group of n blocks (where n is set by the b
keyletter on the bar(l) command line - default is 20 blocks) is written with a single system call; on
nine-track tapes, the result of this write is a single tape record. The last group is always written at the
full size, so blocks after the two zero blocks contain random data. On reading, the specified or default
group size is used for the first read, but if that read returns less than a full tape block, the reduced block
size is used for further reads, unless the B keyletter is used.

The header block looks like:
#define TBLOCK 512

union hblock {

};

char dummy[TBLOCK];
struct header {

char mode[8];
char uid[8];
char gid[8];
char size[l2];
char mtime[l2];
char chksum[8];
char rdev[8];
char linkflag;
char bar _magic[2];
char volume_num[4];
char compressed;
char date[l2];
char start_of_name;

} dbuf;

start_of_name is a null-terminated string. date is the date of the archive. bar _magic is a special
number indicating that this is a bar archive. rdev is the device type, for files that are devices. The
other fields are zero-filled octal numbers in ASCII. Each field (of width w) contains w-2 digits, a
space, and a null, except size, rdev, and mtime, which do not contain the trailing null. start_of_name is
the name of the file, as specified on the bar command line. Files dumped because they were in a direc­
tory that was named in the command line have the directory name as prefix and /filename as suffix.
mode is the file mode, with the top bit masked off. uid and gid are the user and group numbers that
own the file. size is the size of the file in bytes. Links and symbolic links, and special files, are
dumped with this field specified as zero. mtime is the modification time of the file at the time it was
dumped. chksum is a decimal ASCII value that represents the sum of all the bytes in the header block.
When calculating the checksum, the chksum field is treated as if it were all blanks. linkflag is ASCII 0
if the file is ''normal'' or a special file, 1 if it is an hard link, 2 if it is a symbolic link, and 3 if it is a
special file (device or FIFO). The name linked-to, if any, is in a null-terminated string, following
start_of_name. Unused fields of the header are binary zeros (and are included in the checksum).

SunOS Release 4.0.1 Last change: 8 November 1988 1358

BAR(5) FILE FORMATS BAR(5)

The first time a given i-node number is dumped, it is dumped as a regular file. The second and subse­
quent times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but not the file it
was linked to, an error message is printed and the tape must be manually re-scanned to retrieve the
linked-to file.

An additional header block (one that does not pertain to a particular file) is written to the first block of
each volume of the archive. The volume header ID is copied to start_of_name and is a NULL string,
unless one is specified with the bar(l) H function modifier. The size in the volume header reflects the
number of bytes to skip to the start of the first full file (always zero on the first volume).

The encoding of the header is designed to be portable across machines.

SEE ALSO
bar(l)

SunOS Release 4.0. l Last change: 8 November 1988 1359

HELP(5) FILE FORMATS HELP(5)

NAME
help - help file format

SYNOPSIS
/usr/lib/help/•

AVAILABILITY
Sun386i systems only.

DESCRIPTION
Each Sun View application using the help feature has a simple ASCII file with the name application­
name.info and stored in the user's default help directory. The default help directory for a user typically
is /vol/help/language/USA-English; this has links to various places, including the help files (that Sun
Microsystem supplies) in /usr/lib/help/language/USA-English.

This file contains the text of help messages for each Sun View object within that program. Each help
message is separated in the file by a line beginning with a colon and identified by a keyword that
matches the HELP _DATA attribute of the SunView object.

The first character of each line in the file may be:

any other

comment line
keyword line
1-32 help text lines

If the line is a keyword line, it has the following structure:

:keyword[s] :datastring [pagenumber]<er>

keyword is a 1-65 character keyword
--any displayable characters may be used
--several keywords may be present
--keywords are separated by 1-or-more blanks

datastring is 1-256 ASCII bytes, and describes the path of the data files. If it is
a help_viewer file, and it is a relative file name, then help_ viewer
looks for the file relative to the default help directory as defined
in the user's defaults database.

page number is an optional page number within the help_ viewer data file.

The help text that follows the :keyword line will be displayed in an Alert Box when help is requested
for one of the keywords by pressing the help key.

The datastring will be sent (by RPC) to the help_ viewer procedure when the user selects the More
Help box in the Alert Box window.

EXAMPLE
Here is part of a typical help file, called mailtool.info.

:abort
Abort button

o Quits the Mail application (click
left on button). Tentative message
deletions do not become permanent.

SunOS Release 4.0.1 Last change: 8 November 1988 1393

HELP(5)

o Provides a menu of Abort options
(click right on button).

FILE FORMATS

:cancel :mailtool/Writing_and_Sending_Mail 1
Cancel button

o Closes the message composition
window without sending message
(click left on button).

o Provides a menu of Cancel options
(click right on button).

HELP(5)

Pressing the help key while the mouse cursor is over the Cancel or Abort button triggers the display of
the corresponding text. The words cancel and abort in this file are the keywords. In the case of abort,
there is no More Help available. For cancel, More Help is available and it is stored in the first page of
the Writing_and_Sending_Mail file in the mailtool directory.

FILES
/usr/lib/help/*

SEE ALSO

files for the pop-up help facility

help_ viewer(I), help_ viewer(5)

Sun386i Developer's Guide

SunOS Release 4.0.1 Last change: 8 November 1988 1394

HELP_ VIEWER (5) FILE FORMATS HELP_ VIEWER (5)

NAME
help_viewer - help viewer file format

SYNOPSIS
/usr/lib/help/•/•

AVAILABILITY
Sun386i systems only.

DESCRIPTION

FILES

The help_ viewer reads and displays the following types of files:

1. Specially formatted ASCII text (for tables of contents). Example:

/usr /lib/help/language/USA-English/Top_Level

2. FrameMaker document files. Example:

/usr/lib/help/Janguage/USA-English/sunview/Desktop_Basics

3. Interleaf files. Example:

/usr/lib/help/language/USA-English/help_guide/Help_ Writer's_Handbook

Each directory within /usr/lib/help/language/USA-English that corresponds to a SunView application
name contains detailed information about that application. These are also FrameMaker files. The *.rf
tiles in these directories store some of the pictures that appear in the help handbooks (other pictures are
integral to the FrameMaker files). Thes *.rf files are stored in standard Sun compressed raster file for­
mat.

The Frame and Interleaf subdirectories of /usr/lib/help/format contain topic, contents, and index tem­
plates that can be used to create new Help Viewer handbooks.

By default, Help Viewer reads help files through /vol/help. The /vol/help/language/USA-English
directory contains symbolic links to the individual help files and directories for the various applications
on the system. Help files for Sun-supplied applications reside in /usr/lib/help/language/USA-English.

Developers who wish to add their own document directories to the system should create links to them
from /vol/help.master/language/USA-English. Installation scripts should have the name of new hand­
books added to the Top_Level file in /vol/help.master/language/USA-English.

/usr/lib/help/*f *
SEE ALSO

help(5), help_viewer(l), Sun386i Developer's Guide

SunOS Release 4.0.1 Last change: 3 October 1988 1395

KEYT ABLES (5) FILE FORMATS KEYTABLES(5)

NAME
keytables - keyboard table descriptions for loadkeys and dumpkeys

DESCRIPTION
These files are used by loadkeys(l) to modify the translation tables used by the keyboard streams
module kb(4M), and generated by dumpkeys(1) from those translation tables.

Any line in the file beginning with # is a comment, and is ignored. # is treated specially only at the
beginning of a line.

Other lines specify the values to load into the tables for a particular keystation. The format is either:

key number list_of_entries

or

swap number 1 with number2

or

key number 1 same as number2

or a blank line, which is ignored.

key number list_of_entries

sets the entries for keystation number from the list given. An entry in that list is of the form

tablename code

where tablename is the name of a particular translation table, or all. The translation tables are:

base entry when no shifts are active

shift entry when "Shift" key is down

caps entry when Caps Lock is in effect

ctrl entry when "Control" is down

altg entry when "Alt Graph" is down

numl entry when Num Lock is in effect

up entry when a key goes up

All tables other than up refer to the action generated when a key goes down. Entries in the up table
are used only for shift keys, since the shift in question goes away when the key goes up, except for
keys such as "Caps Lock" or "Num Lock"; the keyboard streams module makes the key look as if it
were a latching key.

A table name of all indicates that the entry for all tables should be set to the specified value, with the
following exception: for entries with a value other than hole, the entry for the numl table should be set
to nonl, and the entry for the up table should be set to nop.

The code specifies the effect of the key in question when the specified shift key is down. A code con­
sists of either:

1) A character, which indicates that the key should generate the given character. The character
can either be a single character, a single character preceded by "' which refers to a "control
character" (for instance, "c is control-C), or a C-style character constant enclosed in single
quote characters ('), which can be expressed with C-style escape sequences such as \r for
RETURN or \000 for the null character. Note that the single character may be any character in
an 8-bit character set, such as ISO 8859/1.

2) A string, consisting of a list of characters enclosed in double quote characters ("). Note that
the use of the double quote character means that a code of double quote must be enclosed in
single quotes.

3) One of the following expressions:

SunOS Release 4.0.1 Last change: 1 September 1988

KEYT ABLES (5) FILE FORMATS KEYT ABLES (5)

shiftkeys+leftshift
the key is to be the left-hand "Shift" key

shiftkeys+rightshift
the key is to be the right-hand "Shift" key

shiftkeys+leftctrl
the key is to be the left-hand "Control" key

shiftkeys+rightctrl
the key is to be the right-hand "Control" key

shiftkeys+alt
the key is to be the "Alt" shift key

shiftkeys+altgraph
the key is to be the "Alt Graph" shift key

shiftkeys+capslock
the key is to be the "Caps Lock" key

shiftkeys+shiftlock
the key is to be the "Shift Lock" key

shiftkeys+numlock
the key is to be the "N um Lock" key

buckybits+system bit
the key is to be the "Stop" key in Sunview; this is normally the LI key, or the SETUP
key on the VTI 00 keyboard

buckybits+metabit
the key is to be the "meta" key, i.e. the "Left" or "Right" key on a Sun-2 or Type 3
keyboard or the "diamond" key on a Type 4 keyboard

compose
the key is to be the "Compose" key

ctrlq on the "VTlOO" keyboard, the key is to transmit the control-Q character (this would
be the entry for the "Q" key in the ctrl table)

ctrls on the "VTIOO" keyboard, the key is to transmit the control-S character (this would be
the entry for the "S" key in the ctrl table)

noscroll
on the "VTIOO" keyboard, the key is to be the "No Scroll" key

string+uparrow
the key is to be the "up arrow" key

string+downarrow
the key is to be the "down arrow" key

string+leftarrow .
the key is to be the "left arrow" key

string+rightarrow
the key is to be the "right arrow" key

string+homearrow
the key is to be the "home" key

fa_acute
the key is to be the acute accent "floating accent" key

fa_ cedilla
the key is to be the cedilla "floating accent" key

SunOS Release 4.0.1 Last change: 1 September 1988

KEYT ABLES (5) FILE FORMATS

fa_cftex
the key is to be the circumflex "floating accent" key

fa_grave
the key is to be the grave accent "floating accent" key

fa_tilde the key is to be the tilde "floating accent" key

fa_ umlaut
the key is to be the umlaut "floating accent" key

KEYT ABLES (5)

non I this is used only in the N um Lock table; the key is not to be affected by the state of
Num Lock

padO the key is to be the "O" key on the numeric keypad

padl the key is to be the "l" key on the numeric keypad

pad2 the key is to be the "2" key on the numeric keypad

pad3 the key is to be the "3" key on the numeric keypad

pad4 the key is to be the "4" key on the numeric keypad

padS the key is to be the "5" key on the numeric keypad

pad6 the key is to be the "6" key on the numeric keypad

pad7 the key is to be the "7" key on the numeric keypad

pad8 the key is to be the "8" key on the numeric keypad

pad9 the key is to be the "9" key on the numeric keypad

paddot the key is to be the "." key on the numeric keypad

padenter
the key is to be the "Enter" key on the numeric keypad

pad plus
the key is to be the "+" key on the numeric keypad

padminus
the key is to be the "-"key on the numeric keypad

padstar the key is to be the "*" key on the numeric keypad

padslash
the key is to be the "/" key on the numeric keypad

pad equal
the key is to be the "=" key on the numeric keypad

padsep the key is to be the "," (separator) key on the numeric keypad

lf(n) the key is to be the left-hand function key n

rf(n) the key is to be the right-hand function key n

tf(n) the key is to be the top function key n

bf(n) the key is to be the "bottom" function key n

nop the key is to do nothing

error this code indicates an internal error; to be used only for keystation 126, and must be
used there

idle this code indicates that the keyboard is idle (that is, has no keys down); to be used
only for all entries other than the numl and up table entries for keystation 127, and
must be used there

SunOS Release 4.0. l Last change: 1 September 1988

KEYT ABLES (5) FILE FORMATS KEYT ABLES (5)

oops this key exists, but its action is not defined; it has the same effect as nop

reset this code indicates that the keyboard has just been reset; to be used only for the up
table entry for keystation 127, and must be used there

swap number 1 with number2

exchanges the entries for keystations number 1 and number2.

key number 1 same as number2

sets the entries for keystation number 1 to be the same as those for keystation number2. If the file does
not specify entries for keystation number2, the entries currently in the translation table are used; if the
file does specify entries for keystation number2, those entries are used.

EXAMPLES
The following entry sets keystation 15 to be a "hole" (that is, an entry indicating that there is no keysta­
tion 15); sets keystation 30 to do nothing when Alt Graph is down, generate "!" when Shift is down,
and generate "1" under all other circumstances; and sets keystation 76 to be the left-hand Control key.

key 15 all hole
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

The following entry exchanges the Delete and Back Space keys on the Type 4 keyboard:

swap 43 with 66

Keystation 43 is normally the Back Space key, and keystation 66 is normally the Delete key.

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4 keyboards:

key 119 all nop

The following specifies the standard translation tables for the U.S. Type 4 keyboard:

key 0 all hole
key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole
key 3 all lf(2)
key 4 all hole
key 5 all tf (1)
key 6 all tf(2)
key 7 all tf(10)
key 8 all tf(3)
key 9 all tf(11)
key 10 all tf (4)
key 11 all tf(12)
key 12 all tf(5)
key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(6)
key 15 all hole
key 16 all tf (7)
key 17 all tf(8)
key 18 all tf(9)
key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole
key 21 all rf (1)
key 22 all rf(2)
key 23 all rf (3)
key 24 all hole
key 25 all lf(3)

SunOS Release 4.0.1 Last change: 1 September 1988

KEYT ABLES (5)

key 26
key 27
key 28
key 29
key 30
key 31
key 32
key 33
key 34
key 35
key 36
key 37
key 38
key 39
key 40
key 41
key 42
key 43
key 44
key 45
key 46
key 47
key 48
key 49
key 50
key 51
key 52
key 53
key 54
key 55
key 56
key 57
key 58
key 59
key 60
key 61
key 62
key 63
key 64
key 65
key 66
key 67
key 68
key 69
key 70
key 71
key 72
key 73
key 74
key 75
key 76
key 77
key 78

SunOS Release 4.0.1

all lf(4)
all hole
all hole
all "[

FILE FORMATS

base 1 shift ! caps 1 ctrl 1 altg nop
base 2 shift@ caps 2 ctrl "@ altg nop
base 3 shift # caps 3 ctrl 3 altg nop
base 4 shift $ caps 4 ctrl 4 altg nop
base 5 shift % caps 5 ctrl 5 altg nop
base 6 shift " caps 6 ctrl "" altg nop
base 7 shift & caps 7 ctrl 7 altg nop
base 8 shift * caps 8 ctrl 8 altg nop
base 9 shift (caps 9 ctrl 9 altg nop
base 0 shift) caps 0 ctrl 0 altg nop
base - shift _ caps - ctrl "_ altg nop
base ::: shift + caps = ctrl = altg nop
base ' shift - caps ' ctrl "" altg nop
all '
all hole
all rf(4) numl padequal
all rf(5) numl padslash
all rf(6) numl pads tar
all bf(13)
all lf(5)
all bf(10) numl padequal
all lf(6)
all hole
all "
base q shift Q caps Q ctrl "Q altg nop
base w shift W caps W ctrl "W altg nop
base e shift E caps E ctrl "E altg nop
base r shift R caps R ctrl "R altg nop
base t shift T caps T ctrl "T altg nop
base y shift Y caps Y ctrl "Y altg nop
base u shift U caps U ctrl "U altg nop
base i shift I caps I ctrl ' ' al tg nop
base o shift 0 caps 0 ctrl "O altg nop
base p shift P caps P ctrl "P altg nop
base [shift { caps [ctrl "[altg nop
base] shift } caps] ctrl "] altg nop
all '177'
all compose
all rf(7) numl pad?
all string+uparrow numl pad8
all rf(9) numl pad9
all bf(l 5) numl padminus
all lf(7)
all lf(8)
all hole
all hole
all shiftkeys+leftctrl up shiftkeys+leftctrl
base a shift A caps A ctrl "A altg nop
base s shift S caps S ctrl "S altg nop

Last change: 1 September 1988

KEYTABLES(5)

KEYT ABLES (5)

SEE ALSO

key 79
key 80
fey 81
tcey 82
gkey 83
key 84
~ey 85
~ey 86
key 87
key 88
key 89
key 90
key 91
key 92
key 93
key 94
key 95
key 96
key 97
key 98
key 99
key 100
key 101
key 102
key 103
key 104
key 105
key 106
key 107
key 108
key 109
key 110
key 111
key 112
key 113
key 114
key 115
key 116
key 117
key 118
key 119
key 120
key 121
key 122
key 123
key 124
key 125
key 126
key 127

FILE FORMATS

based shift D caps D ctrl "D altg nop
base f shift F caps F ctrl "F altg nop
base g shift G caps G ctrl "G altg nop
base h shift H caps H ctrl '
base j shift J caps J ctrl 'O altg nop
base k shift K caps K ctrl 'altg nop
base l shift L caps L ctrl "L altg nop
base ; shift : caps ; ctrl ; altg nop
base ''' shift "" caps ''' ctrl "' altg nop
base•'\' shift I caps '\' ctrl " altg nop
all '
all bf(l l) numl padslash
all string+leftarrow numl pad4
all rf(ll) numl pad5
all string+rightarrow numl pad6
all bf(8) numl padO
all lf(9)
all hole
all lf(lO)
all shiftkeys+numlock
all shiftkeys+leftshift up shiftkeys+leftshift
base z shift Z caps Z ctrl "Z altg nop
base x shift X caps X ctrl "X altg nop
base c shift C caps C ctrl "C altg nop
base v shift V caps V ctrl "V altg nop
base b shift B caps B ctrl "B altg nop
base n shift N caps N ctrl "N• ~Ug qmp
base m shift M caps M ctrl •
base , shift < caps , ctrl , altg nop
base . shift > caps . ctrl . altg n0p
base I shift ? caps I ctrl "_ altg nop
all shiftkeys+rightshift up shiftkeys+rightshift
all ·o
all rf(l3) numl padl
all string+downarrow numl pad2
all rf(15) numl pad3
all hole
all hole
all hole
all lf(l6)
all shiftkeys+capslock
all buckybits+metabit up buckybits+metabit
base ' ' shift • ' caps • • ctrl "@ altg ' '
all buckybits+metabit up buckybits+metabit
all hole
all hole
all bf(14) numl padplus
all error numl error up hole
all idle numl idle up reset

loadkeys(l), kb(4M)

SunOS Release 4.0.1 Last change: 1 September 1988

KEYT ABLES (5)

ORGRC(5) FILE FORMATS ORGRC(5)

NAME
.orgrc - organizer configuration and initialization file

AVAILABILITY
Sun386i systems only.

DESCRIPTION
The organizer(l), a Sun View application for viewing and manipulating files and directorie"s, saves its
parameters in the .orgrc file between runs. The user can use this file to configure the organizer.

The first parameter in the file should always be the version number.

Version = 1.1

Do not change the version number gratuitously; if the organizer determines that this version is "old",
then it will save this version in - /.orgrc.old and try to copy /usr/lib/Orgrc into - /.orgrc.

The next two parameters assign default names for the system DOS Program and the default Text Editor.

DOS Program = dos
Text Editor = textedit

The DOS Program parameter should not be changed. However, the user can change the default text edi­
tor. For example:

Text Editor = shelltool vi

is an option to textedit(l) The Properties section initializes or customizes certain properties. The possi­
ble values for each item are listed below. The braces and vertical bars below indicate choices, they are
not used in the .orgrc file.

Properties
PROPERTY Display Style= {Name and Icon I Name Only I Name and Info}
PROPERTY Roadmap= {Yes I No}
PROPERTY Show Hidden Files= (Yes I No)
PROPERTY Sort Type= (Name I File Type I Size I Date)
PROPERTY Sort Direction = (Ascending I Descending)
PROPERTY Update Interval = [5-300]

The Color Palette specifies all the color values used by the organizer's buttons and icons. These
values must be RGB triplets. It is listed below.

Begin Color Palette

SunOS Release 4.0.1

Background Color = 255, 255, 255
Directory Name Color = 0, 146, 236
Directory Icon Foreground Color = 114, 45, 0
Directory Icon Background Color = 255, 227, 185
Directory Highlight Name Color = 255, 255, 255
Text Name Color= 0, 166, 143
Text Icon Foreground Color = 0, O, 0
Text Icon Background Color= 255, 255, 255
Text Highlight Name Color = 255, 255, 255
Executable Name Color = 255, 0, 0
Executable Icon Foreground Color = 157, 162, 187
Executable Icon Background Color = 255, 255, 255
Executable Highlight Name Color = 255, 255, 255
Device Name Color= 113, 117, 135
Device Icon Foreground Color = O, 0, 0
Device Icon Background Color = 174, 255, 159
Device Highlight Name Color = 255, 255, 255
Button Groupl Color = 255, 220, 187
Button Group2 Color = 201, 211, 232

Last change: 4 October 1988

ORGRC(5) FILE FORMATS ORGRC(5)

FILES

Button Group3 Color= 255, 244, 113
Button Foreground Color= 0, 0, 0
Button Background Color = 255, 255, 255
Button Shadow Color = 180, 180, 184
Button Highlight Color = 0, 0, 0
Scrollbar Color = 142, 106, 146

End Color Palette

The Color Labels section allows the labelling or "aliasing" of ROB triplets. The right side of a label
assignment can contain an ROB triplet, a palette entry, or another label that has already been assigned.
Here's an example:

Begin Color Labels
Black = Text Icon Foreground Color
White = Background Color
Orange = 255, 213, 127
Dark Red = 232, 0, 0
Red = Dark Red
Dark Blue = 0, 75, 161
Light Gray = 223, 223, 223

End Color Labels

The rest of the .orgrc file contains user defined filetypes. The user can specify that certain files be
grouped together and treated in a similar fashion. That is, the same icon is used to display all files in a
filetype, and the same command is used when a file is opened or edited. In the default .orgrc
(/usr/lib/Orgrc) there are ten user defined file types. Here is an example of a user defined file type:

Begin File Type Definition
Name= *.sh
Background Icon = - /images/scriptBackGround.icon
Foreground Icon = - /images/scriptForeGround.icon
Name Color = Black
Icon Background Color = Orange
Icon Foreground Color = Black
Highlight Name Color= White
Execute Application = cmdtool "$(FILE)"
Edit Application = cmdtool vi "$(FILE)"
Print Application = pr -f "$(FILE)" I lpr

End File Type Definition

The right side of the Name field can contain any combination of csh(l) Filename Substitution charac­
ters. This field specifies the file type by way of its name. The next six fields together specify an
organizer icon. This model allows a rich variety of icons. For more information, see the Sun386i
Advanced Skills manual. The right side of the Execute Application specifies the command to execute
when the user either opens or double clicks on a file of that type. Edit Application and Print Applica­
tion specify the command to execute when the user requests that a file of that type be edited or printed.

- /.orgrc
/usr/lib/Orgrc

SEE ALSO

Read at beginning of execution by the Organizer
Default .orgrc

Sun386iUser'sGuide, Sun386iAdvancedSkills, organizer(l)
LIMIT A TIO NS

The right side of Color Palette entries must be ROB triplets.
Forward references for Color Labels are not allowed.

SunOS Release 4.0.1 Last change: 4 October 1988

ORGRC(5) FILE FORMATS ORGRC(S)

BUGS
The organizer saves its parameters as it exits; unfortunately. it doesn't know how to save user's com­
ments in the file. So, comments get blown away.

SunOS Release 4.0.1 Last change: 4 October 1988

VFONT(5) FILE FORMATS VFONT(5)

NAME

vfont - font formats

SYNOPSIS
#include <vfont.h>

DESCRIPTION

FILES

The fonts used by the window system and printer/plotters have the following format. Each font is in a
file, which contains a header, an array of character description structures, and an array of bytes contain­
ing the bit maps for the characters. The header has the following format:

struct header {
short magic;
unsigned short size;
short maxx;
short maxy;
short xtend;

) ;
#define VFONT _MAGIC

I* Magic number VFONT_MAGIC */
I* Total # bytes of bitmaps */
I* Maximum horizontal glyph size */
I* Maximum vertical glyph size *I
I* (unused) *I

0436

maxx and maxy are intended to be the maximum horizontal and vertical size of any glyph in the font, in
raster lines. (A glyph is just a printed representation of a character, in a particular size and font.) The
size is the total size of the bit maps for the characters in bytes. The xtend field is not currently used.

After the header is an array of NUM_DISPATCH structures, one for each of the possible characters in
the font. Each element of the array has the form:

struct dispatch {
unsigned short addr;
short nbytes;
char up, down, left, right;
short width;

) ;
#define NUM_DISPATCH

I* &(glyph) - &(start of bitmaps) *I
I* # bytes of glyphs (0 if no glyph) */
I* Widths from baseline point *I
I* Logical width, used by troff *I

256

The nbytes field is nonzero for characters which actually exist. For such characters, the addr field is an
offset into the bit maps to where the character's bit map begins. The up , down, left, and right fields
are offsets from the base point of the glyph to the edges of the rectangle which the bit map represents.
(The imaginary "base point" is a point which is vertically on the "base line" of the glyph (the bottom
line of a glyph which does not have a descender) and horizontally near the left edge of the glyph; often
3 or so pixels past the left edge.) The bit map contains up+down rows of data for the character, each of
which has left+right columns (bits). Each row is rounded up to a number of bytes. The width field
represents the logical width of the glyph in bits, and shows the horizontal displacement to the base
point of the next glyph.

/usr/lib/vfont/•
/usr/lib/fonts/fixedwidthfonts/*

SEE ALSO

BUGS

troff(l), vfontinfo(l), vswap(1) fontftip_to_68k(8) fontflip_to_i386(8)

A machine-independent font format should be defined. The shorts in the above structures contain
different bit patterns depending whether the font file is for use on a VAX or a Sun. The vswap program
must be used to convert one to the other.

SunOS Release 4.0.1 Last change: 3 November 1988 1488

FONTFLIP(8) MAINTENANCE COMMANDS FONTFLIP (8)

NAME
fontftip_to_i386 - change a vfont file

fontftip_to_68k - change a Sun386i vfont

SYNOPSIS
fontflip_to_i386 fontname [-o newfontname]

fontflip_to_68k fontname [-o newfontname]

AVAILABILITY
Sun386i systems only.

DESCRIPTION
fontftip_to_386i takes as input a vfont file (Sun-3 fixedwidthfont) and creates a Sun386i vfont. This
new font is a bitflipped version of its input. The new font is named oldfont.i386 unless otherwise
specified.

fontftip_to_68k takes as input a Sun386i vfont file (fixedwidthfont) and creates a Sun-3 vfont file (also
used by Sun-2 and Sun-4 systems). If the input font has the name font.i386, the new font will have the
.i386 extension stripped off, resulting in the name font. If the input file does not have the .i386 exten­
sion, then the ~ switch must be used to specify the output file.

By default, the system appends the suffix .i386 to a font name before it opens the font and attempts to
use it. If the system doesn't find the font, it then opens the font name specified, which by convention is
a Sun-3 font. You can use either format of font, but system performance improves with use of the
Sun386i format fonts. These two utilities allow you to convert between the two formats. Sun ships
both formats in /usr/lib/fonts/fixedwidthfonts. Typically only developers will need to employ these
utilities.

OPTIONS
-o filename Specify the name of the new flipped font.

FILES
/usr /Ii b/f onts/fixedwidthfonts

SEE ALSO
vfont(5) fontedit(l)

SunOS Release 4.0. 1 Last change: 2 November 1988

IPALLOCD (8C) MAINTENANCE COMMANDS IPALLOCD (8C)

NAME
ipallocd - Ethernet-to-IP address allocator

SYNOPSIS
/usr/etc/rpc.ipallocd

AVAILABILITY
Sun386i systems only.

DESCRIPTION

FILES

ipallocd is a daemon that determines or temporarily allocates IP addresses within a network segment.
The service is only available on the system which is home to the address authority for the network seg­
ment, currently the YP master of the hosts.byaddr map although the service is not tied to Yellow Pages.
It has complete knowledge of the hosts listed in the yellow pages, and, if the system is running the
name server, of any hosts listed in internet domain tables automatically accessed on that host through
the standard library gethostbyaddr() call.

This protocol uses DES authentication (the Sun Secure RPC protocol) to restrict access to this function.
The only clients privileged to allocate addresses are those whose net IDs are in the networks group. For
machine IDs, the machine must be a YP server.

The daemon uses permanent entries in the /etc/ethers and /etc/hosts files when they exist and are usable.
In other cases, such as when a system is new to the network, ipallocd will enter a temporary mapping
in a local cache. Entries in the cache are removed when there have been no references to a given entry
in the last hour. This cache survives system crashes so that IP addresses will remain consistent.

The daemon also provides corresponding IP address to name mapping.

If the file /etc/ipalloc .netrange exists, ipallocd refuses to allocate addresses on networks not listed in the
netrange file, or for which no free address is available.

/etc/ipalloc.cache
/etc/ipalloc.netrange

SEE ALSO
pnp(3R), ipalloc(3R), ipalloc.netrange(5), ipallocd(8C), pnpboot(8C), netconfig(8C), rarpd(8C)

SunOS Release 4.0.1 Last change: 8 November 1988 1652

KADB(8S) MAINTENANCE COMMANDS KADB(8S)

NAME
kadb - adb-like kernel and standalone-program debugger

SYNOPSIS
> b kadb [-d] [boot-flags]

DESCRIPTION
kadb is an interactive debugger that is similar in operation to adb(l), and runs as a standalone program
under the PROM monitor. You can use kadb to debug the kernel, or to debug any standalone program.

Unlike adb, kadb runs in the same supervisor virtual address space as the program being debugged -
although it maintains a separate context. The debugger runs as a coprocess that cannot be killed (no
':k') or rerun (no ':r'). There is no signal control (no ':i', ':t', or '$i'), although the keyboard facilities
(CTRL-C, CTRL-S, and CTRL-Q) are simulated.

While the kernel is running under kadb, the abort sequence (LI-A or BREAK) drops the system into
kadb for debugging - as will a system panic. When running other standalone programs under kadb,
the abort sequence will pass control to the PROM monitor. kadb is then invoked from the monitor by
jumping to the starting address for kadb found in /usr/include/debug/detiug.h (currently this can be
done for both Sun-2 and Sun-3 system machines with the monitor command 'g fdOOOOO', and with the
monitor command 'g fe005000' for Sun386i systems). kadb's user interface is similar to adb. Note:
kadb prompts with

kadb>

Most adb commands function in kadb as expected. Typing an abort sequence in response to the
prompt returns you to the PROM monitor, from which you can examine control spaces that are not
accessible within adb or kadb. The PROM monitor command c will return control to kadb. As with
$p works when debugging kernels (by actually mapping in new user pages). The verbs ? and I are
equivalent in kadb , since there is only one address space in use.

Sun386i System Operations
kadb on the Sun386i system can also be used to debug loadable modules. To do so, use the -sym
option to the modload command. If you need to debug the module entry point routine, be sure to set a
breakpoint on the kernel routine vd_entry. This is the routine that calls the module entry point routine.
When kadb hits the breakpoint, the symbols for the module are usable and a breakpoint can be set in
the module itself.

Care must be taken to remove kadb breakpoints before unloading modules. Since kadb inserts bpt
instructions in the module itself, unloading and loading new modules while breakpoints are set can
cause kadb to insert bpt instructions at incorrect places. This may cause the system to crash.

The symbol "vddebug" can be set to -1 to enable all kernel printf's in the pseudo-driver (/dev/vd).
These printf's may be helpful when trying to load or unload modules.

OPTIONS
kadb is booted from the PROM monitor as a standalone program. If you omit the -d flag, kadb
automatically· loads and runs vmunix from the filesystem kadb was loaded from. The kadb vmunix
variable can be patched to change the default program to be loaded.

-d Interactive startup. Prompts with
kadb:

for a file to be loaded. From here, you can enter a boot sequence line to load a standalone
program. Boot flags entered in response to this prompt are included with those already set and
passed to the program. If you type a RETURN only, kadb loads vmunix from the filesystem
that kadb was loaded from.

boot-flags
You can specify boot flags as arguments when invoking kadb. Note: kadb always sets the -d
(debug) boot flag, and passes it to the program being debugged.

SunOS Release 4.0.1 Last change: 5 October 1988 1653

KADB (8S) MAINTENANCE COMMANDS KADB(8S)

USAGE
Refer to adb in Debugging Tools for the Sun Workstation.

Kernel Macros
As with adb, kernel macros are supported. With kadb, however, the macros are compiled into the
debugger itself, rather than being read in from the filesystem. The kadb command $M lists macros
known to kadb.

Setting Breakpoints
Self-relocating programs such as the SunOS kernel need to be relocated before breakpoints can be used.
To set the first breakpoint for such a program, start it with ':s'; kadb is then entered after the program
is relocated (when the system initializes its interrupt vectors). Thereafter, ':s' single-steps as with adb.
Otherwise, use ':c' to start up the program.

Sun386i System Commands
The Sun386i system version of kadb has the following additional commands. Note, for the general
syntax of adb commands, see adb(l).

:i

:o

:p

$S

Read a byte (with the INB instruction) in from the port at address.

Send a byte (with the OUTB instruction) containing count out through the port at
address.

Like :b in adb(l), but sets a breakpoint using the hardware debug register
instead of the breakpoint instruction. The advantage of using :p is that when
setting breakpoints with the debug register it is not necessary to have write
access to the breakpoint location. Four (4) breakpoints can be set with the
hardware debug registers.

Switch 1/0 from the console to the serial port or vice versa.

Like :e in adb(l), but requires only one keystroke and no RETURN character.

Like :sin adb(l), but requires only one keystroke and no RETURN character.

Automatic Rebooting with kadb

FILES

You can set up your workstation to automatically reboot kadb by patching the vmunix variable in /boot
with the string kadb. (Refer to adb in Debugging Tools for the Sun Workstation for details on how to

. patch executables.)

/vmunix
/boot
/kadb
/usr/include/debug/debug.h

SEE ALSO

BUGS

adb(l), boot(8S), modload(8), modunload(8)

Debugging Tools for the Sun Workstation
Writing Device Drivers

There is no floating-point support, except on Sun386i systems.

kadb cannot reliably single-step over instructions that change the status register.

When sharing the keyboard with the operating system the monitor's input routines can leave the key­
board in a confused state. If this should happen, disconnect the keyboard momentarily and then recon­
nect it. This forces the keyboard to reset as well as initiating an abort sequence.

Most of the bugs listed in adb(l) also apply to kadb.

SunOS Release 4.0.1 Last change: 5 October 1988 1654

MODLOAD(8) MAINTENANCE COMMANDS MODLOAD(8)

NAME
modload - load a Sun386i module

SYNOPSIS
modload filename [-conf config_file] [-entry entry_point] [-exec exec_file] [-o output_file]

[-nolink] [-A vmunix_file]

AVAILABILITY
Sun386i systems only.

DESCRIPTION
modload loads a loadable module into a running system. The input file filename is an object file (.o
file).

OPTIONS
-conf config_Jile

Use this configuration file to configure the loadable driver being loaded. The commands in this
file are the same as those that the config(8) program recognizes. There are two additional
commands, blockmajor and charmajor, shown in the configuration file example below.

-entry entry_point
This is the module entry point. This is passed by modload to ld(l) when the module is linked.
The default module entry point name is 'xxxinit'.

-exec exec_Jile
This is the name of a shell script or executable image file that will be executed if the module
is successfully loaded. It is always passed the module id and module type as the first two argu­
ments. For loadable drivers, the third and fourth arguments are the block major and character
major numbers respectively. For a loadable system call, the third argument is the system call
number.

-o output_Jile
This is the name of the output file that is produced by the linker. If this option is omitted, then
the output file name is filename without the '.o'.

-nolink This option can be used if modload has already been issued once and the output file already
exists. One must take care that neither the kernel nor the module have changed.

-sym This option indicates that modload should invoke the linker without the -s option. The linker
will then produce a symbol table for the module. These symbols are useful for developers
using a debugger to debug the module.

-A vmunix_Jile

EXAMPLE

SEE ALSO

This is the file that is passed to the linker to resolve module references to kernel symbols. The
default is /vmunix. The symbol file must be for the currently running kernel or the module is
likely to crash the system.

controller
controller
disk
disk
disk
device
disk
blockmajor 51
charmajor 52

fdcO at atmem csr Ox001000 irq 6 priority 3
f dc2 at atmem csr Ox002000 irq 5 priority 2
fdO at fdcO drive 0
f dO at fdcO drive 1
fdO at fdcO drive 2
fdO at fdc2 drive 0 csr Ox003000 irq 4 priority 2
fdO at fdc2 drive 1

ld(l), modunload(8), modstat(8)

SunOS Release 4.0.1 Last change: 8 November 1988 1676

MODSTAT(8) MAINTENANCE COMMANDS

NAME
modstat - display status of Sun386i modules

SYNOPSIS
modstat [-id module_id]

AVAILABILITY
Sun386i systems only.

DESCRIPTION
modstat displays the status of the loaded modules. A sample status from modstat:

Id Type Loadaddr Size B-major C-major Sysnum Mod Name
0 Drv fdOOOOOO dOOO 58. Tablet Driver
1 Sys fdOOdOOO 2000 180 Pageinfo

MODSTAT(8)

The Size displayed is a hexadecimal number in bytes of the sum of text + data + bss + symbol_table.
The Size value includes the symbol_table only when the module was loaded with the modload -sym
option.

OPTIONS
-id module_id

Display status of only this module.

SEE ALSO
modload(8), modunload(8)

SunOS Release 4.0.1 Last change: 4 October 1988 1677

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

NAME
mount, umount - mount and dismount filesystems

SYNOPSIS
/usr/etc/mount [-p]
/usr/etc/mount -a[fnv] [-t type]
/usr/etc/mount [-fnrv] [-t type] [-0 options] filesystem directory
/usr/etc/mount [-vfn] [-o options] filesystem I directory

/usr/etc/umount [-t type] [-h host]
/usr/etc/umount -a[v]
/usr/etc/umount [-v j filesystem I directory

DESCRIPTION
mount attaches a named filesystem to the filesystem hierarchy at the pathname location directory, which
must already exist. If directory has any contents prior to the mount operation, these remain hidden
until the filesystem is once again unmounted. If filesystem is of the form host:pathname, it is assumed
to be an NFS filesystem (type nfs).

umount unmounts a currently mounted filesystem, which can be specified either as a directory or a
filesystem.

mount and umount maintain a table of mounted filesystems in /etc/mtab, described in fstab(5). If
invoked without an argument, mount displays the contents of this table. If invoked with either a
filesystem or directory only, mount searches the file /etc/fstab for a matching entry, and mounts the
filesystem indicated in that entry on the indicated directory.

MOUNT OPTIONS
-p Print the list of mounted filesystems in a format suitable for use in /etc/fstab.

-a All. Attempt to mount all the filesystems described in /etc/fstab. If a type argument is
specified with -t, mount all filesystems of that type. Filesystems are not necessarily mounted
in the order shown in /etc/fstab.

-f Fake an /etc/mtab entry, but do not actually mount any filesystems.

-n Mount the filesystem without making an entry in /etc/mtab.

-v Verbose. Display a message indicating each filesystem being mounted.

-t type Specify a filesystem type. The accepted types are 4.2, and nfs; see fstab(5) for a description
of these types.

-r Mount the specified filesystem read-only, even if the entry in /etc/fstab specifies that it is to be
mounted read-write. ·

Physically write-protected and magnetic-tape filesystems must be mounted read-only. Otherwise
errors occur when the system attempts to update access times, even if no write operation is
attempted.

-o options
Specify filesystem options -list of comma-separated words from the list below. Some options
are valid for all filesystem types, while others apply to a specific type only.

options valid on all filesystems:

SunOS Release 4.0.1

rw I ro Read/write or read-only.
suid I nosuid Setuid execution allowed or disallowed.
grpid Create files with BSD semantics for the propagation of the group ID.

Under this option, files inherit the GID of the directory in which they
are created, regardless of the directory's set-GID bit.

Last change: 8 November 1988 1687

MOUNT(8)

noauto

remount

MAINTENANCE COMMANDS MOUNT(8)

Do not mount this filesystem that is currently mounted read-only. If
the filesystem is not currently mounted, an error results.
If the file system is currently mounted, and if the entry in /etc/fstab
specifies that it is to be mounted read-write or rw was specified along
with remount, remount the file system making it read-write. If the
entry in /etc/fstab specifies that it is to be mounted read-only and rw
was not specified, the file system is not remounted. If the file system
is not currently mounted, an error results.

The default is 'rw ,suid'.

options specific to 4.2 filesystems:

quota I noquota Usage limits are enforced, or are not enforced. The default is
noquota.

options specific to nfs (NFS)filesystems:

UMOUNT OPTIONS

bglfg

retry=n
rsize=n
wsize=n
timeo=n
retrans=n
port=n
soft I hard

in tr
secure
acregmin=n
acregmax=n

If the first attempt fails, retry in the background, or, in the fore­
ground.
The number of times to retry the mount operation.
Set the read buffer size to n bytes.
Set the write buffer size to n bytes.
Set the NFS timeout to n tenths of a second.
The number of NFS retransmissions.
The server IP port number.
Return an error if the server does not respond, or continue the retry
request until the server responds.
Allow keyboard interrupts on hard mounts.
Use a more secure protocol for NFS transactions.
Hold cached attributes for at least n seconds after file modification.
Hold cached attributes for no more than n seconds after file
modification.

acdirmin=n Hold cached attributes for at least n seconds after directory update.
acdirmax=n Hold cached attributes for no more than n seconds after directory

update.
actimeo=n Set min and max times for regular files and directories to n seconds.

Regular defaults are:
fg,retry= 10000,timeo=7 ,retrans=3,port=NFS_PORT ,hard,\
acregmin=3,acregmax=60,acdirmin=30,acdirmax=60

Defaults for rsize and wsize are set internally by the system kernel.

-h host Unmount all filesystems listed in /etc/mtab that are remote-mounted from host.

-t type Unmount all filesystems listed in /etc/mtab that are of a given type.

-a Unmount all filesystems currently mounted (as listed in /etc/mtab).

-v Verbose. Display a message indicating each filesystem being unmounted.

NFS FILESYSTEMS
Background vs. Foreground

Filesystems mounted with the bg option indicate that mount is to retry in the background if the server's
mount daemon (mountd(8c)) does not respond. mount retries the request up to the count specified in
the retry=n option. Once the filesystem is mounted, each NFS request made in the kernel waits
timeo=n tenths of a second for a response. If no response arrives, the time-out is multiplied by 2 and
the request is retransmitted. When the number of retransmissions has reached the number specified in
the retrans=n option, a filesystem mounted with the soft option returns an error on the request; one

SunOS Release 4.0.1 Last change: 8 November 1988 1688

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

mounted with the hard option prints a warning message and continues to retry the request.

Read-Write vs. Read-Only
Filesystems that are mounted rw (read-write) should use the hard option.

Interrupting Processes With Pending NFS Requests
The intr option allows keyboard interrupts to kill a process that is hung while waiting for a response on
a hard-mounted filesystem.

Secure Filesystems
The secure option must be given if the server requires secure mounting for the filesystem.

File Attributes
The attribute cache retains file attributes on the client. Attributes for a file are assigned a time to be
flushed. If the file is modified before the flush time, then the flush time is extended by the time since
the last modification (under the assumption that files that changed recently are likely to change soon).
There is a minimum and maximum flush time extension for regular files and for directories. Setting
actimeo=n extends flush time by n seconds for both regular files and directories.

SYSTEM V COMPATIBILITY
System V File-Creation Semantics

Ordinarily, when a file is created its GID is set to the effective GID of the calling process. This
behavior may be overridden on a per-directory basis, by setting the set-GID bit of the parent directory;
in this case, the GID is set to the GID of the parent directory (see open(2V) and mkdir(2)). Files
created on filesystems that are mounted with the grpid option will obey BSD semantics; that is, the GID
is unconditionally inherited from that of the parent directory.

EXAMPLES

FILES

To mount a local disk: mount /dev/xyOg /usr
To fake an entry for nd root: mount -ft 4.2 /dev/ndO I
To mount all 4.2 filesystems: mount -at 4.2
To mount a remote filesystem: mount -t nfs serv:/usr/src /usr/src
To mount a remote filesystem: mount serv:/usr/src /usr/src
To hard mount a remote filesystem:

mount -o hard serv:/usr/src /usr/src
To save current mount state: mount -p > /etc/fstab

/etc/mtab
/etc/fstab

table of mounted filesystems
table of filesystems mounted at boot

SEE ALSO

BUGS

mkdir(2), mount(2), unmount(2), open(2V), fstab(5), mtab(5), mountd(8C), nfsd(8)

Mounting filesystems full of garbage crashes the system.

If the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on
the directory to which the symbolic link refers, rather than being mounted on top of the symbolic link
itself.

SunOS Release 4.0.1 Last change: 8 November 1988 1689

RARPD(8C) MAINTENANCE COMMANDS RARPD(8C)

NAME
rarpd - DARPA Reverse Address Resolution Protocol service

SYNOPSIS
/usr/etc/rarpd if hostname

Sun386i SYNOPSIS
/usr/etc/rarpd if [hostname]

AVAILABILITY
This program is available on all Sun386i systems. On other Sun systems, it is available with the Net­
working Tools and Programs software installation option. Refer to Installing the SunOS for information
on how to install optional software.

DESCRIPTION
rarpd starts a daemon that responds to Reverse Address Resolution Protocol (Reverse ARP) requests.
The daemon forks a copy of itself, and requires root privileges.

The Reverse ARP protocol is used by machines at boot time to discover their (32 bit) IP address given
their (48 bit) Ethernet address. In order for the request to be answered, a machine's name-to-IP-address
entry must exist in the /etc/hosts file and its name-to-Ethernet-address entry must exist in the
/etc/ethers file. Furthermore, the server that runs the rarpd daemon must have entries in both files.
Note that if the server machine is using the Yellow Pages service, the server's files are ignored, and the
appropriate Yellow Pages maps queried.

The first argument, if, is one of the interface parameter strings (listed in boot(8S)), in the form of
"name unit", for example ieO. The second argument, hostname, is the interface's corresponding host
name. The if, hostname pair should be the same as the arguments passed to the ifconfig (8) command.
As with ifconfig, rarpd must be invoked for each interface that the server wishes to support. Therefore
a gateway machine may invoke the rarpd multiple times, for example:

/usr/etc/rarpd ieO host
/usr/etc/rarpd iel host-backbone

Sun386i DESCRIPTION
On the Sun386i, rarpd is responsible for dynamic IP address allocation using Dynamic RARP. If the
pnp policy is not set to restricted in the YP policies map, then Dynamic RARP requests may cause
rarpd to request allocation of a temporarily unused IP address from the ipalloc daemon. This happens
only when the system is not listed in the hosts and ethers YP maps as being on the particular network
segment.

If the pnp policy is set to restricted then Dynamic RARP requests that can not be satisfied will receive
an error response indicating that Automatic System Installation is not enabled on the network segment.
In such a case, systems trying to install themselves on the network will report that manual installation
by the network administrator is required.

Only Yellow Pages servers provide Dynamic RARP service. If any system incorrectly tries to provide
Dynamic RARP service on the network, this will be detected and dynamic IP address allocation will be
disabled. This is required, since otherwise two different authorities could be assigning IP addresses on
the network and would probably allocate addresses that should not be allocated. Only one Address
Authority may exist for a network segment; it must have the authoritative list of all Dynamic RARP
clients.

IP address allocation using the RARP protocol, as well as the Dynamic RARP protocol, may be enabled
by setting the ip_address_allocation policy (in the YP policies map) to the value rarp_and_drarp . If
this is done, then all RARP clients must be listed in the YP databases used by rarpd. If this is not done,
some clients may be returned incorrect addresses when one is dynamically assigned. The Dynamic
RARP protocol may be completely disabled by setting this policy value to none . This is strongly
discouraged.

SunOS Release 4.0.1 Last change: 6 October 1988 1723

RARPD(8C) MAINTENANCE COMMANDS RARPD(8C)

FILES
/etc/ethers
/etc/hosts

SEE ALSO
boot(8S), ifconfig(8C) ipallocd(8C), ethers(5), hosts(5), ipallocd(8C), netconfig(8C), pnpboot(8), poli­
cies(5)

Finlayson, Ross, Timothy Mann, Jeffrey Mogul, and Marvin Theimer, A Reverse Address Resolution
Protocol, RFC 903, Network Information Center, SRI International, Menlo Park, Calif., June 1984.

SunOS Release 4.0. l Last change: 6 October 1988 1724

RWHOD(8C) MAINTENANCE COMMANDS RWHOD(8C)

NAME
rwhod - system status server

SYNOPSIS
/usr/etc/in.rwhod

AVAILABILITY
Due to its potential impact on network performance, this service is commented out of the /etc/re.local
system initialization script. It is provided only for 4.3 BSD compatibility.

This program is available with the Networking Tools and Programs software installation option. Refer
to Installing the Sun Operating System for information on how to install optional software.

DESCRIPTION
rwhod is the server which maintains the database used by the rwho(l C) and ruptime(l C) programs.
Its operation is predicated on the ability to broadcast messages on a network.

rwhod operates as both a producer and consumer of status information. As a producer of information it
periodically queries the state of the system and constructs status messages which are broadcast on a net­
work. As a consumer of information, it listens for other rwhod servers' status messages, validating
them, then recording them in a collection of files located in the directory /var/spool/rwho.

The rwho server transmits and receives messages at the port indicated in the ''rwho'' service
specification, see services(5). The messages sent and received, are of the form:

struct outmp {

} ;

struct

} ;

char out_line[8]; I* tty name */
char out_name[8]; I* user id */
long out_time; I* time on *I

whod {
char
char
char
int
int
char
int
int

wd_vers;
wd_type;
wd_fill[2];
wd_sendtime;
wd_recvtime;
wd_hostname[32];
wd_loadav[3];
wd_boottime;
struct whoent (
struct outmp we_utmp;
int we_idle;

} wd_we[l024 I sizeof (struct whoent)];

All fields are converted to network byte order prior to transmission. The load averages are as calcu­
lated by the w(l) program, and represent load averages over the 5, 10, and 15 minute intervals prior to
a server's transmission. The host name included is that returned by the gethostname(2) system call.
The array at the end of the message contains information about the users logged in to the sending
machine. This information includes the contents of the utmp(5) entry for each non-idle terminal line
and a value indicating the time since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at a rwho server's port. In
addition, if the host's name, as specified in the message, contains any unprintable ASCII characters, the
message is discarded. Valid messages received by rwhod are placed in files named whod.hostname in
the directory /var/spool/rwho. These files contain only the most recent message, in the format
described above.

SunOS Release 4.0.1 Last change: 3 November 1988 1753

RWHOD(8C) MAINTENANCE COMMANDS RWHOD(8C)

FILES

Status messages are generated approximately once every 60 seconds. rwhod performs an nlist(3) on
/vmunix every IO minutes to guard against the possibility that this file is not the system image
currently operating.

/var/spool/rwho

DIAGNOSTICS
Status and diagnostic messages are logged to the appropriate system log using the syslogd(8) facility.

SEE ALSO

BUGS

rwho(lC), ruptime(lC), w(l), gethostname(2), nlist(3), utmp(5), syslogd(8)

This service takes up progressively more network bandwidth as the number of hosts on the local net
increases. For large networks, the cost becomes prohibitive. RPC-based services such as rup(l C) and
rusers(IC) provide a similar function with greater efficiency.

rwhod should relay status information between networks. People often interpret the server dying as a
machine going down.

SunOS Release 4.0.1 Last change: 3 November 1988 1754

ST ART_APPLIC (8) MAINTENANCE COMMANDS START_APPLIC(8)

NAME
start_applic - generic application startup procedures

SYNOPSIS
/usr/etc/start_applic

AVAILABILITY
Sun386i systems only.

DESCRIPTION
start_applic is a short generic shell script that can be copied or symbolically linked into either
/vol/local/bin/application or lusr/local/bin/application. When invoked as application, an application
installed as described below will be correctly invoked on systems of any supported processor architec­
ture. Installing start_applic (or a customized version of it) in one of these locations ensures that no
user's or system's environment needs to be modified just to run the application. Applications are stored
in a single tree, not shared with any other applications. This tree may be available on different systems
in different places; if the application needs to reference its distribution tree, this should be determined
from the $application_ROOT environment variable.

The application startup script arranges that the $PATH and $application_ROOT environment variables
are set correctly while the application is running. If the application's distribution tree (placed into
/vol/application or /usr/locallapplication) doesn't have an executable binary with the name of the appli­
cation (e.g. /vol/application/bin.arch/application) then start_applic can not be used, and a customized
application startup script must be used instead. Such scripts must also allow users to invoke the appli­
cation from systems of any architecture, without requiring them to customize their own environments.

Heterogeneous Networked Installations
Applications available on the network are available through /vol/application and exported either to all
systems or just to selected ones, as licensing restrictions allow. The export point is
/export/vol/application, which is a symbolic link to the actual installation point, typically the
/files/vol/application directory. All subdirectories not explicitly tagged with a processor architecture are
shared among all processor architectures; thus while the .. ./bin.sun386 and .. ./lib.sun386 subdirectories
contain respectively binaries and libraries executable only on systems of the sun386 architecture, the
.. ./bin directory contains executables that run on any architecture (typically using an interpreter such as
/bin/sh), and the .. ./etc directory only contains sharable configuration files.

Homogeneous Single Machine Installations
Applications available only on a specific machine and its boot clients of the same architecture are
installed into /usrllocallapplication. This directory supports only a single architecture; this means that
/usrllocallapplicationlbin contains binaries executable only on the local architecture, and
/usr/local/application/lib contains libraries executable only on the local architecture. Any sharable files
may be grouped in lusr/local/applicationlshare.

If an application is to be installed onto a boot server with the intent of serving it to boot clients with
architectures other than the server's native one, it will appear on all of those systems in
/usrllocal/application as described above. However, the installation point (on the server) for application
binaries of architecture arch is /export/local/arch/application. (When the architecture is the server
architecture, this case is identical with the one above.)

Other Installations
Note that these are two contrasting models of software installation. The heterogeneous model assumes
general availability of the software, and solves the "which binaries to use" problem with no adminis­
trative overhead. The homogeneous model assumes very limited availability of software, requires
administrative procedures to ensure that /usr/local only contains binaries of the local architecture, and
doesn't really account for networked installations. It is easier to add support for additional architectures
using a heterogeneous network model of software installation from the beginning.

SunOS Release 4.0.1 Last change: 20 June 1988

ST ART_APPLIC (8) MAINTENANCE COMMANDS START _APPLIC (8)

FILES

Smaller applications (of only one or two files) may be installed into the appropriate /vol/local/bin.arch
directory, or possibly into /export/local/arch/bin. These directories are in user's default paths, so the
application does not need to be registered using start_applic •

/files<n>/vol/ application
/export/vol/application
/vol/ application
/vol/application/bin.arch/application
/usr/local/ application
/export/h>eal/ arc hf application

SEE ALSO
automount(8), auto.vol(S), exportfs(8), exports(5)

SunOS Release 4.0.1 Last change: 20 June 1988

UN CONFIGURE (8) MAINTENANCE COMMANDS UN CONFIGURE (8)

NAME
unconfigure - reset the network configuration for a Sun386i system

SYNOPSIS
/usr/etc/unconfigure [-y]

AVAILABILITY
Sun386i systems only.

DESCRIPTION
unconfigure restores most of the system configuration and status files to the state they were in when
delivered by Sun Microsystems, Inc. It also deletes all user accounts (including home directories), Yel­
low Pages information, and any diskless client configurations that were set up.

After running unconfigure, a system halts. Rebooting it to multi-user mode at this point will start
automatic system installation.

unconfigure is intended for use in the following situations:

• As one of the final steps in Software Manufacturing.

• In systems being set up with temporary configurations, holding no user accounts or diskless clients.
These will occur during demonstrations and evaluation trials.

• To allow systems that had been used as standalones to be upgraded to join a network in a role other
than as a master server. (See instructions later.)

unconfigure is potentially a dangerous utility; it does not work unless invoked by the super-user. As a
warning, unless the -y option is passed, it will require confirmation that all user files and system
software configuration information is to be deleted.

This utility is not recommended for routine use of any sort.

Resetting Temporary Configurations
If users need to set up and tear down configurations, unconfigure can be used to restore the system to
an essentially as-manufactured state. The main concern here is that user accounts will be deleted, so
this should not be done casually.

To reset a temporary configuration, just become the super-user and invoke unconfigure.

Upgrading Standalones to Network Clients
Systems that are going to be networked should be networked from the very first, if at all possible. This
eliminates whole classes of compatibility problems, such as pathnames and (in particular) user account
ID (UID) clashes.

Automatic system installation directly supports upgrading a single standalone system to a YP master,
and joining any number of unused systems (or systems upon which unconfigure has been run) into a
network.

However, in the situation where standalone systems that have been used extensively are to be joined to
a network, unconfigure can be used in conjunction with automatic system installation by a knowledge­
able super-user to change a system's configuration from standalone to network client. This particular
procedure is not recommended for use by inexperienced administrators. Inexperienced administrators
should use the directions found in the Sun386i SNAP Administration book instead.

The following procedure is needed only when user accounts or other data need to be preserved; it is
intended to ensure that every urn and GID is changed so as not to clash with those in use on the net­
work. It must be applied to each system that is being upgraded from a standalone to a network client.

The procedure is as follows:

1. Identify all accounts and files that you '11 want to save. If there are none, just run unconfigure and
install the system on the network. Do not follow the remaining steps.

2. Copy /etc/yppasswd to /etc/yppasswd.bak.

SunOS Release 4.0.1 Last change: 8 November 1988 1786

UN CONFIGURE (8) MAINTENANCE COMMANDS UN CONFIGURE (8)

FILES

3. Rename all the files (including home directories) so that they aren't deleted. (See FILES below.)
These should only be found in /files/home and perhaps in /files/vol/local.

4. Run unconfigure and install the system on the network.

5. For each account listed in /etc/yppasswd.bak that you want to save, follow this procedure:

a. Create a new account on the network; if the UID and GID are the same as in
/etc/yppasswd.bak on the standalone, then skip the next step. However, be sure that you do
not make two different accounts with the same UID. (Instructions for manually creating user
accounts may be found in the Sun386i Advanced Administration book.)

b. Use the 'chown -R' command to change the ownership of the home directories.

c. You may need to rename the files you just chowned above, for example to ensure that they
are the user's home directory. This may involve updating the auto.home(S) and auto.vol(S)
YP maps, as well.

d. For the files that are to be exported, put symbolic links pointing to them from the /export tree,
and include the pathnames of these symbolic links (e.g.
/export/home/groupname/username) into /etc/exports

6. Delete /etc/yppasswd.bak.

unconfigure deletes the following files, if they are present, replacing some of them with the distribution
version if one is supposed to exist:

lfB lfB lfB lfB /etc/. rootkey /etc/ethers /etc/localtime /etc/publ ickey
/etc/auto.home /etc/exports /etc/net.conf /etc/sendmail.cf
/etc/auto. vol /etc/fstab /etc/netmasks /etc/syslog.conf
/etc/bootparams /etc/ypgroup /etc/networks /etc/systems
/etc/bootservers /etc/hosts /etc/yppasswd /single/ifconfig
/var/sysex/* /etc/passwd /etc/group /etc/printcap /etc/ttytab

and all files in /var/yp except those distributed with the operating system.

unconfigure truncates all files in /var/adm. All user home directories symbolically linked to in
/export/home are deleted, except those for the default user account users, which is shipped with the
operating system. All diskless client configuration information symbolically linked to in /export/root,
/export/swap, and /export/dump is deleted.

SEE ALSO
find(l), passwd(S), group(S), adduser(8), chgrp(l), chown(8)

BUGS
More of the system configuration files should be reset.

SunOS Release 4.0.1 Last change: 8 November 1988 1787

YPSYNC(8) MAINTENANCE COMMANDS YPSYNC(8)

NAME
ypsync - collect most up-to-date YP maps

SYNOPSIS
/usr/etc/yp/ypsync r -r] [-u]

AVAILABILITY
Sun386i systems only.

DESCRIPTION

FILES

The ypsync command is used to gather current Yellow Pages (YP) maps to the local YP server. When
invoked with no arguments, it will poll all the yp servers listed in the ypservers yp map for the maps
they serve, and the order of those maps. If there are any new maps that the local server does not have,
or if there are maps that are more current than the local server's copy, it invokes ypxfr to transfer those
maps to the local server.

The ypsync command eliminates the need for cron jobs to ensure that YP map updates are eventually
transmitted to all YP servers, and supports different YP maps having different masters. It is invoked
periodically by ypserv(8).

When invoked with the -r flag, ypsync will recreate the local /var/yp directory and databases if needed.
This facility is used when upgrading servers, since they can automatically retrieve YP maps without
needing manual intervention. The YP master of the ypservers map can also designate new servers,
which would automatically pick up their new maps on reboot.

When invoked with the -u flag, ypsync will update the list of YP servers on the master of the ypservers
YP map to include the local system if it doesn't already, and then get copies of all the YP databases.
A user invoking ypsync -u may not be root, and must have the networks privilege in the YP group map.

/var/yp/Y P .domainname

SEE ALSO
ypupdate(3c), ypserv(8), ypxfr(8)

SunOS Release 4.0.1 Last change: 10/21/88

