
microsystems

Sun Microsystems, Inc.
2500 Garcia Avenue
Mountain View, CA 94043

Part No: 800-5543-10
Revision A, of March, 1991

The NeWS Toolkit Reference Manual

The Sun logo, Sun Microsystems, NeWS, and Sun Workstation are registered trademarks of Sun
Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SunInstall, SunOS, SunView, NFS, and SPARC are trademarks
of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc..

All other products or services mentioned in this document are identified by the trademarks or service
marks of their respective companies or organizations.

Copyright © 1989, 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or
by any means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage
in an information retrieval system, without prior written permission of the copyright owner.

The Sun Graphical User Interface was developed by Sun Microsystems Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface which license also covers Sun’s licensees.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to
restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013 and in similar clauses in the FAR and NASA FAR
Supplement.

FrameMaker is a registered trademark of Frame Technology Corporation.

OPEN LOOK is a trademark of AT&T.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 (October 1988) and FAR 52.227-19 (June 1987).

PostScript is a trademark of Adobe Systems Incorporated

SmallTalk is a trademark of ParcPlace Systems

Contents

1. Preface. xxiii

Intended purpose of this manual . xxiii

What you need to know. xxiii

How the Reference Manual is organized. xxiv

TNT’s class tree. xxiv

Mixin class defined . xxiv

Rules followed for documenting superclass methods . . . xxiv

How the API is represented . xxv

What’s in the chapters . xxv

Use of fonts . xxvii

Subclassing issues. xxvii

Strict subclass responsibility . xxviii

Subclass responsibility. xxviii

Subclasser methods . xxviii

Utility methods . xxix

Variables . xxix

Demo methods . xxix

Programming notes . xxx

Modifying returned arrays . xxx

iv The NeWS Toolkit Reference Manual — March 1991

Using super in overrides . xxx

Getting the location of events . xxx

Bibliography . xxxi

NeWS . xxxi

PostScript. xxxi

Object-Oriented Programming and SmallTalk: xxxi

2. TNT Class Hierarchy . xxxiii

3. Introduction . 1

Programming flexibility. 1

Thin wire . 2

Imaging PostScript . 2

The Classing system . 2

Where the classes live . 3

What TNT isn’t . 3

The architecture of a TNT application 4

Server-side Architecture . 4

Client-side architecture . 8

 The client-server split . 9

Memory management in TNT. 10

Creation and destruction of references 10

 Automatic cleanup of references . 11

References maintained by the Toolkit 11

Cross-Object references within your application 12

Process management in TNT. 13

v

The connection reader . 13

The local event manager . 14

The global event manager . 14

 Starting and quitting applications . 15

Painting in TNT . 16

 The Canvas/Region hierarchy . 16

4. ClassBag . 17

Creation . 17

Activation and deactivation . 18

Bag clients . 18

Destruction . 19

Miscellaneous . 20

Subclasser methods . 20

Mouse tracking for regions in bags . 20

Menus. 21

5. ClassBorderBag . 23

Border bag’s clients . 23

Adding clients . 26

Positioning clients. 26

Geometry . 27

Layout . 28

Menus and tracking . 28

6. Buttons . 29

ClassButtons . 30

vi The NeWS Toolkit Reference Manual — March 1991

Creation . 30

Abbreviated buttons . 30

Ability to interact with buttons . 30

Default . 31

Justification . 31

Notification . 31

Managing references between controls and other objects 32

ClassMenuButtons . 32

7. ClassCanvas . 35

Creation . 35

Canvas appearance. 36

Colors. 36

Painting . 38

Fonts. 40

Cursors . 41

The canvas tree . 41

Geometry . 43

Validation. 44

Ability to accept user input . 46

Activation and deactivation . 46

ClassEventMgr . 48

Global event manager . 48

Local event manager . 49

Creation . 49

vii

Error handling in event managers 49

Changing event managers for execution and sends 50

Canvas damage handling . 51

Canvas menus . 53

Mouse tracking . 55

Tracking subclass responsibility methods 56

Getting focus and keystrokes . 57

Methods that can be specified in /KeyStart 59

Targets of global function keys . 60

Again, Find, and Undo keys . 61

Opening and closing canvases . 62

Help facilities . 63

Moving canvases along the z-axis (Front key) 64

Selectables . 65

Selectable subclass responsibility methods 67

Adjusting the selection . 69

Dragging the selection . 70

Drag and Drop—receptible canvases . 71

Handling the drop—subclass responsibility methods. . . 72

Obsolescence and destruction . 73

8. ClassControl. 75

Control values . 76

Notification and previewing . 77

Managing references between controls and other objects . . . 78

viii The NeWS Toolkit Reference Manual — March 1991

Destruction . 78

9. Display Items . 79

Utility procedures . 81

10. Gauges . 83

Creation . 83

Gauge values . 84

Gauge granularity. . 84

Visual presentation of gauges . 85

Geometry . 85

11. ClassItemGroup. 87

Creation . 87

Items . 88

Setting the item list. 88

Altering the item group . 91

Querying the item group. 92

Geometry and location of the items 92

Geometry of the item group . 93

Painting items . 93

Validation. 94

Tracking and items . 95

 Mouse tracking in items—subclass responsibility methods 95

Layout . 96

Positioning items . 96

Other layout methods . 96

ix

ClassLayout methods defined for ClassItemGroup 97

Help facilites for item groups . 97

Item creation—strict subclass responsibility methods. 97

12. ClassLabel . 99

Creation . 99

Geometry . 99

Label values. 100

13. ClassLayout . 101

Placement. 101

Geometry . 102

Layout . 102

Spaced placement . 102

Grid placement . 102

Absolute placement . 103

Calculated placement. 103

Miscellaneous . 104

Subclass responsibility procedures. 104

Useful systemdict utilities . 105

14. ClassMenu . 107

Creation . 107

Choice Modes . 108

Menu items . 108

Setting the menu’s item list . 109

Layout . 112

x The NeWS Toolkit Reference Manual — March 1991

Other item methods . 112

Default item . 113

Labels . 114

Pinned menus . 114

Programmatically pinning menus 115

Ability to interact with menu items . 115

Notification and previewing . 115

Menu targets . 116

The invoker mechanism . 117

Target interface inherited from ClassControl 117

Menu Values . 118

ClassCanvas and ClassRegion interfaces. 118

Canvas menu methods . 118

Help facilites for menus . 120

15. ClassNotice . 121

Creation . 121

Setting the frozen application . 121

Text in notices . 122

Buttons in notices . 122

Invoking a notice . 123

16. ClassNumericField . 125

NumericField values . 125

NumericField granularity . 126

Notification and previewing . 127

xi

Inherited Methods . 128

17. ClassObject . 129

18. ClassPanel . 131

Creation . 131

Panel clients. 132

Adding panel clients . 132

Removing clients . 135

Positioning clients . 136

Layout . 136

ClassLayout methods defined for ClassPanel 136

Menus and tracking . 136

19. ClassRegion . 137

Creation . 138

Region appearance . 138

Colors. 138

Painting . 140

Fonts. 142

The region tree . 143

Geometry . 143

Validation. 144

Region damage handling. 146

Mouse tracking . 147

Region menus . 147

Obsolescence and destruction . 149

xii The NeWS Toolkit Reference Manual — March 1991

Miscellaneous . 149

20. Scrollbars . 151

Creation . 152

Scrollbar auto repeat . 152

Geometry . 154

Values and parameters . 154

Notification and previewing . 155

Scrollbar motion . 157

 . 159

21. ClassScrollList . 161

Introduction. 161

Items . 163

Choices . 164

Scrolling and scrollbars . 165

List geometry . 166

Ability to interact with scroll list items 167

Notification . 168

Miscellaneous . 169

22. ClassSelection . 171

 Introduction . 171

How this chapter is organized . 172

How applications get information about selections. 172

The context of selection processing 173

 Retrieving selection values . 174

xiii

 When and how to transfer a selection value 179

 Making selections . 179

Creation . 179

Registering a new selection; unregistering an old one . . 183

Responding to selection requests . 183

 Utilities . 185

Utility selection class . 185

Utility methods . 185

23. ClassSettings and ClassCheckBoxes . 189

ClassSettings . 189

Creation . 190

Justification . 190

Choices. 190

Value of settings . 191

Notification . 191

ClassCheckBoxes . 192

Creation . 192

24. Sliders . 193

Creation . 194

Slider auto repeat . 194

Values . 194

Notification and previewing . 195

Target Interface . 195

Granularity . 196

xiv The NeWS Toolkit Reference Manual — March 1991

Visual presentation . 197

Geometry . 197

Slider label positioning . 197

25. ClassTextCanvas . 201

26. ClassTextField . 203

Creation . 203

State of Text Fields . 203

Value of Text Fields. 204

Characters . 205

Notification . 205

The text insertion point (the caret) . 206

Painting . 207

Manipulating the text. 207

Selections . 209

Moving between textfields and other textfields or canvases 209

Scrolling . 212

Miscellaneous . 215

27. Windows. 217

ClassWindow . 217

Creation and initialization. 218

Labels and footers . 219

Painting . 220

Freezing windows . 220

Window placement . 221

xv

Subwindows . 221

Viewing states . 223

Miscellaneous . 224

ClassBaseWindow. 224

Creation . 224

Opening and closing base windows 225

Base window icons . 225

Geometry . 226

Painting . 226

Menus . 226

ClassPopupWindow. 226

Creation . 226

28. The Wire Service . 227

Error handling. 227

Components . 228

Connection management . 228

Handle allocation and registration. 234

The Notifier . 238

Ease-of-use functions . 241

Synchronization . 241

Help facilities . 243

The help message file . 245

Constants . 245

29. Jot . 255

xvi The NeWS Toolkit Reference Manual — March 1991

Introduction to Jot . 255

How Jot functionality is organized. 255

Position definition . 256

Global error descriptions . 256

Jot initialization. 256

JotText procedures—the text model . 257

Undoing and redoing JotText operations 262

Text spans . 265

JotView procedures—the view and controller 269

The JotBoundingBox data type . 273

The Wire Service and JotViews . 277

View Controllers . 278

JotSearch procedures . 280

JotFont procedures . 282

JotSelection procedures . 283

A JOT Example . 285

Index . 295

ClassIndex . 321

xvii

Figures

Figure 1-1 Structure of references in manual.colors . 12

Figure 2-1 The ClassBag subtree . 17

Figure 3-1 The ClassBorderBag subtree . 23

Figure 3-2 Four short border clients surrounding a central client and separated
from it by symmetric gaps . 24

Figure 3-3 A typical OPEN LOOK arrangement: the /-North- client might be a
control area, the /East client a scrollbar, and the /Center client a can-
vas.. 25

Figure 3-4 Dynamically changing the arrangement of border bag clients . 25

Figure 3-5 Using gaps and insets to position four border clients. 26

Figure 4-1 The buttons subtree . 29

Figure 5-1 The ClassCanvas subtree . 35

Figure 7-1 Where display items are rendered . 79

Figure 7-2 The relationship of a string’s bbox, font baseline and the current
point . 80

Figure 8-1 The gauge subtree . 83

Figure 9-1 The ClassItemGroup subtree. 87

Figure 9-2 Example of items positioned using calculated layout. 90

xviii The NeWS Toolkit Reference Manual — March 1991

Figure 10-1 The ClassLabel subtree. 99

Figure 12-1 The ClassMenu subtree . 107

Figure 13-1 The ClassNotice subtree. 121

Figure 14-1 The ClassNumericField subtree . 125

Figure 16-1 The ClassPanel subtree. 131

Figure 16-2 Example of clients positioned using calculated layout. 134

Figure 17-1 The ClassRegion subtree . 137

Figure 18-1 The scrollbar subtree. 151

Figure 18-2 Map from scrollbar components to motion names 153

Figure 18-3 The minimum acceptable size for a scrollbar.. 154

Figure 18-4 The default preferredsize scrollbar. 154

Figure 18-5 How a scrollbar’s value changes. 156

Figure 18-6 The default /HandleMotion definition for scrollbars 158

Figure 18-7 Example of how /HandleMotion can be modified.. 159

Figure 19-1 The ClassScrollList subtree . 161

Figure 19-2 Interaction between scrolling and and painting a list. 162

Figure 19-3 Row gaps in scroll lists. . 167

Figure 21-1 The ClassSettings and ClassCheckBoxes subtree. 189

Figure 22-1 The slider subtree . 193

Figure 22-2 Horizontal slider with its labels positioned using slider offsets 198

Figure 22-3 Vertical slider with its labels positioned using slider offsets. . . 199

Figure 23-1 The ClassTextCanvas subtree . 201

Figure 24-1 The ClassTextField subtree . 203

Figure 24-2 Moving the focus between text fields. 211

Figure 24-3 How the caret position is resolved. . 214

xix

Figure 25-1 The windows subtree . 217

Figure 27-1 Inserting strings into a Jot span. 265

Figure 27-2 Relationship of a Jot view to a canvas . 273

xx The NeWS Toolkit Reference Manual — March 1991

xxi

Tables

Table 1-1 Object-oriented features and their PostScript implementations 3

Table 5-1 Toolkit color variables and their OPEN LOOK names 37

Table 5-2 Types of events a canvas can receive . 46

Table 5-3 Global function key targets . 61

Table 5-4 The text highlighting styles. . 66

Table 5-5 Selection context names . 68

Table 5-6 Transferring selections and event name . 72

Table 9-1 Layout data required during calls to /setitemlist. 88

Table 12-1 Layout data required during calls to /setitemlist. 109

Table 17-1 Toolkit color variables and their OPEN LOOK names 139

Table 20-1 Request keys . 176

Table 20-2 Class Selection attributes used in making selections. 180

Table 22-1 Code using offsets for calculated layout of horizontal slider labels 198

Table 22-2 Code using offsets for calculated layout of vertical slider labels 199

Table 24-1 The keys and values of the /SpecialActions dictionary.. 215

Table 25-1 Window attributes and their associated class variables 217

xxii The NeWS Toolkit Reference Manual — March 1991

Table 25-2 Default control usage by OPEN LOOK . 218

Table 27-1 Jot errors . 256

xxiii

1-0
1-0

Preface

The NeWS Toolkit (TNT) is an object-oriented programming system based on
the PostScript language and NeWS. TNT implements many of the OPEN
LOOK interface components required to build the user interface of an
application.

Intended purpose of this manual

The NeWS Toolkit Reference Manual is intended to provide a comprehensive
compendium of the Toolkit’s API. It is not intended to provide a conceptual
framework for the way the Toolkit works. That task is left to a future
programmer’s guide.

What you need to know

The NeWS Toolkit sits atop much functionality which you should be familiar
with before you attempt to use the Toolkit. You should be familiar with:

• The PostScript language
• Object-oriented programming
• NeWS

xxiv The NeWS Toolkit Reference Manual — March 1991

How the Reference Manual is organized

The NeWS Toolkit Reference Manual is organized alphabetically by class. With
some exceptions each class has its own chapter. Within each class’s chapter the
methods are grouped in sections by functionality, e.g., Geometry, Painting, etc.

TNT’s class tree

As noted above The NeWS Toolkit is an object-oriented system and as such
TNT subclasses inherit from their superclasses, which inherit from their
superclasses and on up the class tree (see the class tree illustration on page
xxxiii).

In addition, at the beginning of each class’s chapter there is an illustration of
that class’s subtree. For example, at the beginning of the ClassItemGroup
chapter you will find the following illustration:

If a class is shown in parentheses it means that it is mixed-in to the class
directly below it. (See Mixin class defined, below.)

Mixin class defined

A mixin class is an “abstract” superclass that contains functionality applicable
to a broad range of classes. Mixin classes are used to implement multiple
inheritance. ClassControl is an example of this type of class. Mixin classes have
only ClassObject (the root of the tree) as a superclass. Mixin classes are not
intended to be instantiated.

Rules followed for documenting superclass methods

In general the Reference Manual follows the following rules for documenting
inherited methods:

1. Subclasses document only those methods inherited from non-mixin
superclasses that are overridden in the subclass.

ClassObject ClassDrawable

ClassRegion ClassItemGroup
(ClassLayout)

Preface xxv

2. Subclasses document the methods they inherit directly from mixin classes
whether the methods are overridden or not.

How the API is represented

The methods, variables and utilities in the Reference Manual are documented
using the following syntax:

• The names of the methods, variables and utilities are flush with the left
margin to allow for easy scanning for a particular name.

• Methods have the following syntax:
arguments /name return values

A hyphen (-) indicates either no arguments or no return values.

• Variables take no arguments so only their value is given. In addition,
variables are marked as such:

/variable value (Variable)

• Utilities defined in systemdict are used directly rather than sent to an object.
They are shown in the Reference Manual without the beginning slash (/)
that denotes methods and variables:

arguments Utility return values

What’s in the chapters

Chapter 1, Introduction—an explanation of some of the general concepts of the
toolkit.

Chapter 2, ClassBag—the API for the Toolkit’s most basic class designed to
manage a collection of clients.

Chapter 3—ClassBorderBag—the API for a bag designed to manage a specific
number of clients.

Chapter 4, Buttons—contains the API for ClassButtons and ClassMenuButtons.

Chapter 5, ClassCanvas—contains the API for canvases, the substructure of
almost everything you see on the screen (the look) as well as the API for
linking toolkit objects to user input.

xxvi The NeWS Toolkit Reference Manual — March 1991

Chapter 6, ClassControl—contains the generalized architecture for toolkit
controls. ClassControl is a mixin class (see above) and establishes a common
API for controls(e.g., scrollbars, buttons, etc.)

Chapter 7, DisplayItems—contains the API for a set of drawing procedures.
Display items are not a class

Chapter 8, Gauges—contains the API for gauges and documents both
horizontal gauges (ClassHGauge) and vertical gauges (ClassVGauge).

Chapter 9, ClassItemGroup—ClassItemGroup is a utility class that helps
reduce the number of clients that need to be added to a bag.

Chapter 10, ClassLabel—contains the API for labels used to identify controls
and other objects.

Chapter 11, ClassLayout—a mixin class that is designed to ensure a consistent
approach to layout in panels (Chapter 16) and item groups (Chapter 9).

Chapter 12, ClassMenu—the API for the Toolkit’s menus.

Chapter 13, ClassNotice—the API for OPEN LOOK notices.

Chapter 14, ClassNumericField—the API for numeric fields.

Chapter 15 ClassObject—the root of the NeWS class hierarchy.

Chapter 16, ClassPanel—contains the API for panels, a subclass of ClassBag,
designed to provided a control surface for placing canvases and controls.

Chapter 17, ClassRegion—regions are the toolkit’s lightweight canvas
replacement.

Chapter 18, Scrollbars—contains the API for OPEN LOOK scrollbars and
documents both vertical scrollbars (ClassVScrollbar) and horizontal scrollbars
(ClassHScrollbar).

Chapter 19, ClassScrollList—contains the API for the Toolkit’s OPEN LOOK
scrolling lists.

Chapter 20, ClassSelection—contains the API for selections.

Chapter 21, ClassSettings and ClassCheckboxes—contains the API for OPEN
LOOK settings and checkboxes.

Preface xxvii

Chapter 22, Sliders—contains the API for OPEN LOOK sliders and documents
both horizontal sliders (ClassHSlider) and vertical sliders(ClassVSlider).

Chapter 23, ClassTextCanvas—a canvas subclass that provides minimal
assistance for clients whose selections are character strings and want to use an
overlay canvas for dragging animation.

Chapter 24, ClassTextField—contains the API for OPEN LOOK text fields.

Chapter 25, Windows—contains the API for the Toolkit’s window architecture.
This chapter documents the API for ClassWindow, ClassBaseWindow and
ClassPopupWindow.

Chapter 26, The Wire Service—documents the c-side library that provides for
server-client communications. The wire service is an extension of the NeWS
CPS facility. (See the NeWS 2.1 Programmer’s Guide for information on CPS.)

Chapter 27, Jot—documents the c-side library that implements the toolkit’s text
facility.

Index—a subject matter index.

Class Index—an index that provides a listing of the Toolkit’s methods by class.

Use of fonts

Type Font

/method, /Method and /Variable helvetica bold 9 pt

argument and /DictKey helvetica regular 9 pt

C code courier regular 9 pt

Subclassing issues

Throughout the documentation you will find references to subclassing. The
ability to use the provided classes as a solid base for any specialized classes
you want to build is one of the strengths of an object-oriented system. In order
to understand how NeWS implements its classing system you should read the
NeWS 2.1 Programmer’s Guide, Chapter 5, Classes.

xxviii The NeWS Toolkit Reference Manual — March 1991

The NeWS Toolkit has lower case methods and mixed case methods. Lower
case methods are “public”; mixed case methods are “private.” You send the
lower case methods to your objects and subclass the mixed case methods. In
rare cases you will subclass lower case methods (e.g., /validate). In addition, the
lower case methods are used for inter-object sends—e.g., when you want
pressing a button to paint a canvas. The mixed case methods are called within
the classes themselves.

Strict subclass responsibility

In TNT some methods are intended to be implemented by subclassers; some of
these “subclasser” methods have default implementations; some do not. In
general, those methods that have no default implementation are designated as
“Strict subclass responsibility.” If you instantiate a class that contains strict
subclasser methods, when the strict subclass responsibility method is sent you
get an error. ClassSelection is an example of one such class that contains strict
subclass responsibility methods.

Subclass responsibility

Some classes in the TNT hierarchy contain methods that are designated as
subclass responsibility methods but have default implementations. The
defaults are generally “uninteresting” but, unlike “strict subclass
responsibility” methods, subclass responsibility will not cause an error if you
don’t override them.

Subclasser methods

In order to provide for consistency in interfaces, and methods for subclassers
to override, some methods call other methods. Having methods call other
methods allows the Toolkit to establish protocols that make using the Toolkit
easier. In addition, these protocols allow the Toolkit to ensure that operations
like painting are performed in the correct context. Painting canvases is an
example of a protocol established in this manner. See Chapter 5, ClassCanvas,
Painting.

Preface xxix

Utility methods

The final category of mixed case methods are utility methods. Utility methods
are convenience functions that provide useful functionality. You can use them
in your subclasses but you never need to subclass them. In those classes where
they are defined, utility methods have their own section.

Variables

In addition, TNT makes use of variables that set some property (e.g., colors in
a canvas). You can subclass a TNT class to set this property to be the same for
all instances. For example if you wanted all your instances of ClassCanvas to
be pink you could subclass ClassCanvas and put the color pink into the
relevant class variable.

Demo methods

Many of The NeWS Toolkit classes include demo methods that demonstrate the
functionality of the class. You can see the demo by sending the demo method
to a class. For example, to see a demo of buttons in a window you would do:

/demo ClassButtons send

When you send the demo method to a class that has a demo the demo appears
on the screen and the window the demo is in and the object being
demonstrated (or an array of objects) are placed on the stack. Putting the object
on the stack allows you to get a handle on the object and “play” with it. For
example, in order to get a handle on the window that is created when you send
/demo to ClassBaseWindow you could do:

/win /demo ClassBaseWindow pop def

The default for TNT is to load all the demo code when the toolkit is loaded.
You can change this default by setting /IncludeDemos? to false in your
.startup.ps file. That is, you would do:

/IncludeDemos? false def

in your .startup.ps file.

xxx The NeWS Toolkit Reference Manual — March 1991

Programming notes

This section contains some important notes on programming in the Toolkit.
These notes have importance throughout the Toolkit.

Modifying returned arrays

Many TNT methods return arrays that, due to the nature of composite objects
in PostScript (see the PostScript Language Reference Manual), you should never
modify. You can use the array in a nondestructive way. For example, you could
“forall” over the array. If you do need to modify a returned array you should
make a copy of it first. One way to safely copy an array is:

dup length array copy

Using super in overrides

You should typically use the NeWS pseudo-variable, super, in your overrides
of TNT methods. For example if you override a definition of a TNT method
you should do something like:

/tnt’smethodname {
your overriding definition
/tnt’smethodname super send
} def

Doing a “super send” ensures that you are getting the benefit of any
manipulations that the toolkit does in super classes. See the NeWS 2.1
Programmer’s Guide for more information on super.

Getting the location of events

TNT uses NeWS events to distribute information (e.g., that a mouse button
went down over your object. Often the most interesting piece of information
that the event carries is its location. You can easily get the location of an event
that is delivered to your object by doing the following:

begin
XLocation YLocation
end

which puts the x,y coordinates of the event on the operand stack.

Preface xxxi

Bibliography

The following is a partial list of books that cover subjects related to
understanding and programming in The NeWS Toolkit.

NeWS

News 2.1 Programmer’s Guide

UNIX Networking, Chapter 10, Networking NeWS

PostScript

PostScript Language Reference Manual from Adobe

Inside PostScript (Merritt, Braswell)

Understanding PS programming

PostScript Programmer’s Reference Guide

Real World PostScript

The PostScript Journal

Object-Oriented Programming and SmallTalk:

Object-Oriented Programming on the Macintosh (Schmucker)

A Taste of SmallTalk (Kaehler & Patterson)

An Introduction to Object-Oriented Programming and SmallTalk (Wiener & Pinson)

OOP in Common Lisp (Keen)

Object Oriented Software Construction (Meyer)

C++ Primer (Lippman)

IEEE tutorials on OOP (Peterson) 1987

Journal of Object-Oriented Programing

OOPSLA proceedings

xxxii The NeWS Toolkit Reference Manual — March 1991

x
x
x
ii

i

C
la

s
s
V

S
c
ro

ll
b

a
r

C
la

s
s
H

S
c
ro

ll
b

a
r

C
la

s
s
O

b
je

c
t

C
la

s
s
D

ra
w

a
b

le
C

la
s
s
B

o
rd

e
rB

a
g

C
la

s
s
R

e
g

io
n

C
la

s
s
It

e
m

G
ro

u
p

C
la

s
s
T
e
x
tF

ie
ld

C
la

s
s
B

u
tt

o
n

s

C
la

s
s
S

e
tt

in
g

s

C
la

s
s

M
e

n
u

B
u

tt
o

n
s

C
la

s
s
C

h
e

c
k

B
o

x
e

s

C
la

s
s
T
e
x
tC

a
n

v
a
s

C
la

s
s
W

in
d

o
w

C
la

s
s

B
a

s
e

W
in

d
o

w

C
la

s
s

P
o

p
u

p
W

in
d

o
w

C
la

s
s
P

a
n

e
l

C
la

s
s
C

a
n

v
a
s

C
la

s
s
B

a
g

C
la

s
s
M

e
n

u

C
la

s
s
H

S
li

d
e
r

C
la

s
s
L

a
b

e
l

(C
la

ss
C

o
n
tr

o
l)

(C
la

ss
C

o
n
tr

o
l)

(C
la

ss
C

o
n
tr

o
l)(C

la
ss

L
a
yo

u
t)

(C
la

ss
L
a
yo

u
t)

(C
la

ss
C

o
n
tr

o
l)

K
e
y
:

(c
la

ss
n
a
m

e
)
=

 m
ix

in
 c

la
s
s

C
la

s
s
V

S
li

d
e
r

(C
la

ss
C

o
n
tr

o
l)

C
la

s
s
S

c
ro

ll
L

is
t

(C
la

ss
C

o
n
tr

o
l)

T
N

T
 C

la
ss

 H
ie

ra
rc

hy

C
la

s
s
F

ra
m

e
b

u
ff

e
r

C
la

s
s
H

G
a
u

g
e

C
la

s
s
V

G
a
u

g
e

(C
la

ss
C

o
n
tr

o
l)

C
la

s
s

N
u

m
e

ri
c

F
ie

ld

C
la

s
s
N

o
ti

c
e

T
h
e

N
eW

S
 T

o
o
lk

it
 R

ef
er

en
ce

 M
an

u
al

x
x
x
iv

1

1-0
1-0

 Introduction 1

The NeWS Toolkit (TNT) version 2.0 is an OPEN LOOK user interface toolkit
for NeWS. TNT is built on the NeWS Object Oriented PostScript (OOP) system,
an interpreted system. C-based libraries are also provided that implement a
lightweight notifier and connection manager for NeWS, called the Wire
Service, and a text package called Jot.

Apart from the full set of OPEN LOOK components, the Toolkit provides a
small set of ‘core’ classes that provide the substructure for the toolkit’s class
hierarchy and can be easily customized via subclassing.

Programming flexibility

The best thing about TNT is its flexibility. In a very real sense TNT is a toolkit
without “brick walls.” You can use the same core classes, the ones that the
Toolkit uses to build the OPEN LOOK components, to build your own
application-specific user interface components.

Furthermore, it is very easy to modify one of the OPEN LOOK components for
your own needs. You simply create your own subclass of a Toolkit object, add
new methods or override existing ones, and then instantiate your new class.

Finally, TNT being written in PostScript, may be read by everyone: if you want
to significantly change the way the toolkit works the PostScript code is all at
your disposal. TNT’s classing system is so dynamic that you can even change
method definitions while the system is executing. (Changing the TNT source

1

2 The NeWS Toolkit Reference Manual — March 1991

code should be thought of as an act of last resort however. The cost of doing
this will be that you will have to duplicate your changes, or at least reexamine
them, with each subsequent release of TNT.)

The cost of all this flexibility is that TNT programmers have to make more
decisions than the users of simpler toolkits. In particular, you have to consider
the problem of splitting your application between two very different
programming environments: the object oriented PostScript world of the NeWS
server and the more conventional C or C++ client-side. Use of DevGuide to
replace much hand-coded PostScript improves this situation somewhat, but
does not eliminate it.

Thin wire

TNT programs perform well over low bandwidth client-server connections
such as telephone lines or overloaded networks because the OPEN LOOK
components live in the window server and interact with the user without
involving the client program at all.

Application programmers can take advantage of the programmable server in
this way as well. For example, you can download user-interaction code that
animates some operation.

Imaging PostScript

The full PostScript imaging model is at your disposal when writing an
application under TNT. Not only can you draw using the hardware
independent, scalable and transformable NeWS primitives, but you can also
perform input hit detection over the shapes that you draw—no matter how
complex they are.

The Classing system

The NeWS2.1 Programmer’s Guide gives a thorough description of the NeWS
Object Oriented PostScript classing system that is used by TNT and other
NeWS toolkits.

Programmers already familiar with PostScript and the general principles of
object-oriented programming can understand the system by seeing the
transparent way that it is layered on top of PostScript in Table 1-1.

 Introduction 3

1

Table 1-1 Object-oriented features and their PostScript implementations

O-O feature PostScript Implementation

Class dictionary

Instance dictionary

Class Method (key, executable) entry in a class dictionary

Class Variable (key, any) entry in a class dictionary

Instance Method (key, executable) entry in an instance dictionary

Instance Variable (key, any) entry in an instance dictionary

“send” operator Place all superclass dictionaries on the
dictionary stack followed by the class and
instance dictionaries, then execute the name of
the method.

Where the classes live

TNT2.0 classes are automatically loaded into the shared systemdict the first
time they are referenced by an application program. Application-specific
classes can be stored in any dictionary you choose. By convention they are
usually put in the userdict associated with your connection to the server.

Userdict is the current dictionary when a connection is established, so the
“def” operator will store application-specific classes or data in that dictionary.
Remember however that each connection has its own userdict. If you want
some class to be accessible to more than one application (or more than a single
instance of an application) you should put it in systemdict.

What TNT isn’t

TNT is not a complete application programming environment. It addresses
only the user interface components of the problem, and leaves such issues as
application embedding, long-term persistence, and inter-application linkage to
higher-level toolkits.

Nor is it a User Interface Management System. Programmers interact directly
with the UI components. They are created by sending the /new method to a
class, and destroy themselves when the last reference to them is removed.

1

4 The NeWS Toolkit Reference Manual — March 1991

The architecture of a TNT application

TNT programs come in two pieces: a user-interface component written in
PostScript (usually residing in files with the suffix .ps or .cps) and a main
application body written in C or C++. Very simple programs can omit the
application body if everything is handled in PostScript. For an explanation of
how to use the server’s client-side facilities (called CPS) see the NeWS 2.1
Programmer’s Guide, Chapter 6, C Client Interface.

To illustrate this section an example PostScript program is presented. Although
all serious applications will have a client-side, many developers first write the
user interface part of their application as a standalone PostScript program, and
only later integrate a client process. The PostScript interpreter makes
incremental development of PostScript-only programs very fast.

Server-side Architecture

The general structure of the PostScript part of an application is as follows:

PS-1—definition
Definition consists of the creation of application-specific subclasses of
ClassCanvas and other classes. Any core or OPEN LOOK class may be
subclassed but most applications that want an input/output surface will
contain at least one subclass of ClassCanvas.

PS-2—instantiation
 In this step you instantiate the classes you defined in PS-1, one or more
windows, some TNT-provided OPEN LOOK control classes, and perhaps some
classes to manage the layout of these objects. When you instantiate an OPEN
LOOK control you provide a notification procedure to determine what should
happen when the user manipulates this control. This procedure is written in
PostScript, but can (via the NeWS tagprint and typedprint operators) send a
message across the connection to the main body of your application.

 Introduction 5

1

PS-3—composition
Composition is the “stitching together” of the objects instantiated in PS-2.
Objects can be inserted into the window directly, but more often they are
inserted into a canvas that is specialized to manage layout (these are called
“bags” in TNT), and this canvas is inserted into the window. This is a recursive
process: applications with complex layouts can have bags within bags within
bags...

PS-4—start up
Start up consists of the placement (positioning the window on the screen and
choosing an appropriate starting size), activation (making the window
responsive to input), and mapping (making the window appear) of the
window or windows.

Changing the order of these steps is permissible, with the obvious restrictions
that a class must be defined before it can be instantiated, and an object must be
instantiated before it can be inserted into the window.

The example program that illustrates this structure is a simple color chooser.
The program creates a single window which contains a control area holding
three sliders, and a color display canvas. The sliders control the hue, saturation
and brightness of the color shown in the color display canvas. As the user
drags one of the sliders the color shown changes continuously. When the slider
is released a message is printed to the footer giving the HSB and RGB values of
the final chosen color.

An executable version of this program called manual.colors can be found in the
“demo/bin” subdirectory of the TNT2.0 release. It has been annotated with
numbers corresponding to the steps PS-1–PS-4 defined above.

#!/bin/sh
psh << ‘EOF’

%---------------------------------PS-1--
% Define a class whose purpose will be to show something in the chosen color.
%
/ClassColorDisplay ClassCanvas
dictbegin

/Hue .8 def
/Saturation .8 def

1

6 The NeWS Toolkit Reference Manual — March 1991

/Brightness .8 def
dictend
classbegin

/TextFont /ZapfDingbats findfont 100 scalefont def

/PreviewColor { % value control => -
/name exch send exch 100 div def
self setcanvas /ShowColor self send

 } def

/ChooseColor { % value control => -
 /PreviewColor self send
 currentcolor colorhsb (HSB: % % %) [5 2 roll] sprintf
 currentcolor colorrgb (RGB: % % %) [5 2 roll] sprintf

/setfooter Parent send
 } def

/ShowColor { % - => -
0 /size self send exch pop 70 sub moveto
Hue Saturation Brightness hsbcolor setcolor
TextFont setfont (88) show %show DingBat character

 } def

 /Paint {BG fillcanvas /ShowColor self send} def
 /minsize {140 60} def

classend def

%---------------------------------PS-2--
% Create the window, the colordisplay canvas and a panel to
% put the sliders in.
%
/Win null framebuffer /new ClassBaseWindow send def
/ColorCan framebuffer /new ClassColorDisplay send def
/Panel /Calculated framebuffer /new ClassPanel send def

% Create the three sliders
%
[/Hue /Saturation /Brightness] {

framebuffer /new ClassHSlider send

 Introduction 7

1

ColorCan /settarget 2 index send
/ChooseColor /setnotifier 2 index send
/PreviewColor /setpreviewer 2 index send
80 /setvalue 2 index send
2 copy /setname exch send
def

} forall

% Create a label for each of the sliders
%
/HueLab (Hue:) framebuffer /new ClassLabel send def
/SatLab (Saturation:) framebuffer /new ClassLabel send def
/BriLab (Brightness:) framebuffer /new ClassLabel send def

%---------------------------------PS-3--
% Add the sliders and labels to the panel, using the /Calculated
% positioning protocol, then add the panel and our canvas to the window
%
/Hue Hue [/NorthEast {/NorthEast PARENT POSITION}] /addclient Panel send
/Sat Saturation [/North {/South /Hue POSITION 10 sub}] /addclient Panel send
/Bright Brightness [/North {/South /Sat POSITION 10 sub}] /addclient Panel send

/SatLab SatLab [/East {/West /Sat POSITION 5 0 xysub}] /addclient Panel send
/HueLab HueLab [/East {/West /Hue POSITION 5 0 xysub}] /addclient Panel send
/BriLab BriLab [/East {/West /Bright POSITION 5 0 xysub}] /addclient Panel send

/Center ColorCan /addclient Win send
/West Panel /addclient Win send

%---------------------------------PS-4--
% Finally, start the application up, and detach the psh connection.
%
(Reference Manual Demo #1) /setlabel Win send
10 0 15 20 /setgaps Win send
/place Win send
/new ClassEventMgr send /activate Win send
/map Win send

newprocessgroup
currentfile closefile
EOF

1

8 The NeWS Toolkit Reference Manual — March 1991

Although this program was advertised as “PostScript-only” there is indeed a
client-process involved. It is the utility program “psh” which reads PostScript
from standard input, sends it to the server, and prints on standard output
anything that the server sends back up the connection.

When using psh you have the option of having it exit when it finishes sending
your PostScript to the server, or having it stay alive until your PostScript
application decides to quit.The advantage of disconnecting the psh and letting
it exit after sending all your PostScript is simply that you will have one less
UNIX process active, and some space in the NeWS server will be freed up
when the connection is closed. The advantages of having psh maintain the
connection are that your PostScript can write to standard output and that a ^C
delivered to the psh will kill your entire application.

Client-side architecture

While no example code is given the general structure of the main application
body, written in C or C++, is as follows:

C-1—#includes
Include the .h files for the Wire Service and any libraries (such as Jot) that you
are using. You will usually also include one or more .h file containing encoded
versions of the entire PostScript part of your application PS-1 to PS-4, if these
were written using CPS.

C-2—callbacks
Define a number of callback functions that will receive the control notification
messages described in PS-2.

C-3—allocation
Allocate a number of tags and tokens to be used in communicating with the
PostScript part of your application. Tags are used to associate a PostScript
control with its C callback function; tokens are handles for the C side to refer to
PostScript objects.

 Introduction 9

1

C-4—registration
Associate your tags with your callback functions.

C-5—server initialization
Send some PostScript to the NeWS server. You do this by making CPS calls that
transmit code included in the .h files.

C-6—notification
Enter the Wire Service notifier, and wait for it to call the functions you
registered in C-2.

The ability to structure applications in this way is one of the unique aspects of
the NeWS environment. The next section focuses on how you can take
advantage of this structure.

 The client-server split

In deciding how to split your application between the client process and the
NeWS server the following considerations should apply.

• Low latency response—server
If you need the system to respond in milliseconds to some particular user
action then you should probably write the code to implement that
response in PostScript and download it to the server. This is what was
done with the slider previewing in the manual.colors example
introduced in The architecture of a TNT application.

• Hit detection over PostScript shapes—server
If you need to work out whether a mouse click or drag occurred inside
any shape more complex than a rectangle you should probably leave that
task to NeWS. This can be done either with the NeWS operator
pointinpath, or by making a canvas whose boundary is the path in
question, and requesting mouse input over that canvas.

• Broadcast-style communication with other programs—server
The NeWS event mechanism is powerful and easy to use. If you have a
group of applications that want to communicate by broadcasting
information without regard to who is listening, then NeWS events are
probably the easiest and cheapest way to achieve this.

1

10 The NeWS Toolkit Reference Manual — March 1991

• Computation intensive—client
Your PostScript code is interpreted, and your C code is compiled. Sorting
an array of strings for example, is going to execute much faster in the
client than in the server.

• Data intensive—client
PostScript data structures are large reference-counted objects. While the
addition of a new integer field in a C structure may only cost you 4 bytes
for example, the addition of an instance variable with an integer value to
your PostScript code will probably grow the server by 20-30 bytes.

• Access to system calls and UNIX libraries—client
NeWS provides access to hardly any of the UNIX system calls and very
few of its standard libraries. Application code that calls UNIX utilities
must be placed in the client process.

• File reading—client
Even though NeWS offers the “file” primitive to open a UNIX file, its use
should be carefully considered. The problem is caused by the flexibility
of NFS which allows different machines to have different names for the
same file (and the same name for different files!). In the situation where
your client process is running on a different machine from the window
system it is generally agreed that the file name resolution should be done
on the client machine.

Finally, when in doubt you should err on the side of putting less into the server
rather than more. This is because interpreted PostScript code is less space
efficient than compiled C code.

Memory management in TNT

NeWS has a reference-counted garbage collection system. The creation and
destruction of TNT objects follow the same rules that govern the persistence of
other NeWS data structures. The X11/NeWS Server Guide describes the system
in general, but the implications on TNT programming warrant some further
explanation.

Creation and destruction of references

The general way that an instance of a TNT class is created is:

 Introduction 11

1

/myinstance
<arguments> /new ClassSomething send

def

You now are holding one reference to the instance in your current dictionary
(usually userdict), and the key associated with this reference is “/myinstance”.
To destroy this object all that you need do is remove this reference. There are
two ways to do this in TNT:

currentdict /myinstance undef

or

/myinstance null def

 Automatic cleanup of references

There is of course another way to remove this reference—you can remove your
last reference to the dictionary into which you defined “myinstance”. That
dictionary will then be garbage collected, and everything in it will have their
reference counts decremented. Those objects whose reference counts reach zero
(such as the instance you created) will then be garbage collected.

This sounds complicated, but as long as the dictionary in question is userdict,
this wholesale destruction will happen automatically when your application
quits. So, unless you want to get rid of an instance or an application-specific
class while your application is still running, you do not need to worry about
explicitly removing the references to the objects you create in userdict.

If you define anything into systemdict it will not automatically be removed
when your application quits. This is a good reason to avoid storing anything in
systemdict.

References maintained by the Toolkit

Your application is not the only place where references to your objects are held,
and a general understanding of how the toolkit maintains references is useful
for TNT programming.

The most important references that TNT holds are references to the instances of
ClassCanvas and ClassRegion that form the hierarchy of drawable objects in
your application. This is done because the Toolkit needs to be able to traverse
this hierarchy when a command to repaint or reshape its root canvas (usually

1

12 The NeWS Toolkit Reference Manual — March 1991

an instance of ClassWindow) is given. In the example program presented in
The architecture of a TNT application, the canvas hierarchy held the following
references (the references are the by-product of calls to the /addclient method in
PS-3):

Figure 1-1 Structure of references in manual.colors

Because the objects ColorCan, Panel, Hue, Saturation, and Brightness are all
being referred to by other objects in the canvas/region hierarchy there was no
particular need for references to them to be left in userdict. (In section PS-2 of
manual.colors this was done for programming convenience and readability.)
The only object that the programmer must maintain a reference to is the root of
the hierarchy, in this case “Win”.

If the reference to Win is dropped, then the entire tree will attempt to destroy
itself. As soon as all other references to objects in this tree have been removed
the destruction will be complete. In the example in The architecture of a TNT
application, quitting the application or interrupting the psh causes the userdict
to be destroyed so the /Win reference is dropped, but so are all the references
to the internal objects, and hence the cleanup proceeds immediately to
completion.

Cross-Object references within your application

You can also have instance variables that hold a reference to another object in
your application. You may wish to do this if you want to send a message from
one object to another. Remember when you do this though, that the object
being referred to will not go away until this reference is dropped. (The
targeting mechanism in ClassControl, and the more general ObsoleteService
allow you to defeat this behavior. Targets make use of “soft” references which
are explained in the X11/NeWS Server Guide.)

Win

ColorCan

Panel

Hue

Saturation

Brightness

 Introduction 13

1

Finally it is possible in your program to introduce reference cycles (such as A
refers to B and B refers to A, or even A refers to itself!) that will defeat the
garbage collection mechanism. If you need to create such cycles, then at least
one of the references should be soft, and the object pointed to by the soft
reference should subclass its /destroy method:

/destroy { % - -> -
 % remove your reference to the next object in the cycle
 /Something null def /destroy super send

} def

The /destroy method will be called automatically when the only remaining
references are soft ones. You can override /destroy to break a reference cycle and
to send /destroy to other objects you’ve created.

Process management in TNT

NeWS provides the “fork” primitive by which application programmers can
create lightweight processes as they see fit. Generalizing from this, TNT
provides a class called ClassEventMgr. Instances of ClassEventMgr are
processes that are customized specifically for receiving and processing NeWS
events.

Application programs can fork as many processes as they like, and can have
any number of event managers running simultaneously. Most TNT programs
however will not benefit from a profusion of processes and standard
programming style recommends the use of exactly three processes, only one of
which is created explicitly by the application. These three processes are
described below.

The connection reader

This process is created automatically by NeWS when a connection is
successfully made to the server. Its only purpose is to read PostScript from a
client program and execute it. It is this process that executes the PostScript
code shown in The architecture of a TNT application to create a class,
instantiate some objects, and start the application. This process will die
automatically if the connection is closed by the client program.

1

14 The NeWS Toolkit Reference Manual — March 1991

The local event manager

The local event manager (LEM) is a process you create (see the “/new
ClassEventMgr send” at the end of the example in The architecture of a TNT
application), and it is responsible for receiving most of the events that are
handled by the toolkit on behalf of your application.

All processing resulting from the notification or previewing of a control takes
place in the local event manager. In particular, the calls to /PreviewColor and
/ChooseColor in manual.colors that are caused by the user dragging and
releasing a slider, will be executed by this process.

This process starts with the same execution environment as your connection
process. (This is not surprising since it was forked from the connection process,
and in NeWS, as in UNIX, a forked process inherits its parent’s environment.)
The importance of this is that it shares the same userdict and standard output
file as the connection reader. Thus, any objects defined into userdict will be
accessible to this process and can be referred to in the code that handles the
notification or preview of a control. Similarly, if a tagprint or typedprint
operator is invoked in this process the value will be written to the correct file
and your client side will receive it.

Every canvas within your application keeps a reference to its LEM, holding it
as the instance variable /EventMgr. Activating a canvas or a tree of canvases and
regions (see the call to /activate in the manual.colors example) will cause
interests to be expressed on behalf of your application within this process and
within the global event manager (described below).

If you want your application to receive events that the toolkit has not
anticipated (i.e., events other than mouse events, keyboard events, and damage
events) you can express extra interests to your LEM using ClassInterest. For a
little more information on this topic see the footnote on page 46.

The global event manager

The global event manager (GEM) is a process created when TNT is first
initialized, and is used to receive certain types of events on behalf of all TNT
applications. Its purpose is to synchronize certain user actions and avoid race
conditions. The GEM also saves a great deal of space by combining similar
processing across multiple canvases.

 Introduction 15

1

In most cases, the GEM merely determines which LEM should handle a
particular event, and redirects the event to that LEM. In a few cases (inter-
application communication, where more than one LEM is involved, or
application destruction, where the LEM may be dead) certain client-supplied
methods may be executed in the GEM or in another application’s LEM. These
cases are noted where they arise.

Such methods cannot assume that they have the correct userdict or connection
in place when they execute. If your code requires access to the connection or
userdict then you should use the /sendmanager or /callmanager utilities to
temporarily create the correct environment. For an explanation of /sendmanager
and /callmanager see Chapter 5, ClassCanvas, Changing event managers for
execution and sends.

 Starting and quitting applications

Sending /activate to a tree of canvases makes them ready to receive input, but
system generated events (such as mouse events or keystrokes) will not be
delivered to your application until it is mapped onto the screen. In general, the
first event that is delivered to your application is the damage event. It is
received by the window and causes the window to paint itself and its contents
for the first time.

The client side of your application will not start to respond to messages sent up
the connection until you call wire_EnterNotifier() or its single-shot variant,
wire_Notify(). (See Chapter 26, The Wire Service for an explanation of these
functions.)

If you call wire_EnterNotifier(), then a corresponding call to
wire_ExitNotifier() from within one of your callbacks will indirectly cause
wire_EnterNotifier to return. Simple applications will take this as an
indication to exit, and do so.

Exiting from the client process at any time is a safe way to kill both parts of
your application. The effect on the server when a client program exits is to
close the connection and kill the connection reader and all processes in its
process group. This includes the LEM and any other process you may have
forked from the connection reader or the LEM.

Killing the connection process will in general remove the last reference to your
userdict and all objects referenced directly or indirectly by it. Your application
will disappear from the screen unless some part of it is referenced by

1

16 The NeWS Toolkit Reference Manual — March 1991

something that was not destroyed. (If your application does not disappear you
may need to use the “reffinder” utility described in the X11/NeWS Server
Guide to track down the rogue reference.)

When the user chooses “Quit” from a base window menu the message
/QuitFromUser is sent to that window. The default implementation of
/QuitFromUser provided by TNT will kill your program. If you need to inform
the client side that it is about to be killed, or you want to confirm this with the
user, then override /QuitFromUser and insert your code there.

Painting in TNT

There are two ways to create a drawing in your application under TNT. The
general way is to override the /Paint method of one of the objects in your
canvas/region hierarchy. The full power of PostScript is at your disposal.

If your drawing is as simple as a string, a bitmap, or a glyph then you can take
advantage of Display Items (see the Display Items chapter). Display Items are
not objects, just simple PostScript data structures that the toolkit accepts as an
argument wherever you would expect to supply a string for rendering.
Subclassers of ClassCanvas and ClassRegion have access to the display item
handling code, and can use them in their subclasses if they choose.

 The Canvas/Region hierarchy

Window systems and user interface toolkits generally provide a way to
hierarchically combine objects on the screen. At the window system level this
is usually in the form of nested areas on the screen that have their own
coordinate spaces, receive their own input events, and clip their own painting.
Viewed from the toolkit level this hierarchy allows you to build a powerful
user interface to your application by gluing together simple independent
components.

The objects of aggregation in NeWS are canvases. In TNT they are instances
inheriting either from ClassCanvas or ClassRegion.

17

2-0
2-0

ClassBag 2

Figure 2-1 The ClassBag subtree

A bag is a canvas subclass explicitly designed to manage a collection of canvas
and region clients. A borderbag is an example of a bag that is designed to
manage one major client and up to four minor clients. (See ClassBorderBag on
page 23.)

Moreover, each client of a bag must respond to the following methods:

/map /destroy /mapped?

/reparent /activate (canvas client only)

/paint /deactivate (canvas client only)

ClassBag is the most general type of container; providing some control over an
arbitrary number of canvases and regions. ClassBag manages canvas activation
(i.e., activating the bag also activates its canvas clients) as well as providing a
convenient place to enforce layout policies on clients.

Creation

/new parentcanvas /new instance

Returns an instance of ClassBag.

ClassObject ClassDrawable ClassCanvas ClassBag

2

18 The NeWS Toolkit Reference Manual — March 1991

Activation and deactivation

A bag can receive user input if it is active and ceases to react to user input
when it is deactivated. See Activation and deactivation on page 46 and
ClassEventMgr on page 48 both in ClassCanvas.

/activate event-manager /activate -

Turns on event management for the bag and all its canvas clients. event-manager
is an instance of ClassEventMgr. Checks to see if the bag already has an event
manager; if it does, the given event manager instance is just popped off the
stack and /activate does nothing.

/deactivate - /deactivate -

Turns off event management for the bag and its canvas clients. Any of the bag’s
canvas clients that have their own event manager stay active.

If the bag has no event manager then /deactivate does nothing.

Bag clients

Clients are added to bags using /addclient and removed from them using
/removeclient. If you want to move a client from one bag to another you must
first remove it from the bag it’s in and then add it to the new bag.

/addclient name client /addclient -

Adds client to the bag and associates it with name. name is any valid dictionary
key, i.e., any non-null value. Each client’s name must be unique. client is either a
canvas or a region. The client is reparented to the bag. If the bag has been
activated the canvas is activated also.

If you do not need handles for your bag clients you can use “dup” as the
client’s unique name. I.e., you could do:

<create a canvas client, e.g., myclientcanvas>
dup /addclient mybag send

Not only does this ensure that each client has a unique handle, it also lets you
use the client itself as the argument to /removeclient:

myclientcanvas /removeclient mybag send

ClassBag 19

2

Finally /addclient invalidates the bag so its layout method is called the next
time repainting or layout is necessary. For an explanation of the The NeWS
Toolkit’s validation scheme see Validation on page 44 in ClassCanvas.

/client name /client client true | false

Searches the bag’s client list to determine if name is known. If it is known,
/client returns true and the client instance that was associated with name during
the call to /addclient. If name is not known, /client returns false.

/clientcount - /clientcount number-of-clients

Returns the number of clients managed by the bag. number-of-clients includes
both canvas and region clients.

/clientlist - /clientlist [client1 client2 ...]

Returns an array that contains all the clients (both canvases and regions) in the
bag.

/regionclientcount - /regionclientcount number-of-region-clients

Returns the number of region clients in the bag. If there are no regions in the
bag /regionclientcount returns 0.

/regionclientlist - /regionclientlist [region-client1 region-client2 . . .]

Returns an array that contains all the region clients in the bag.

/removeclient name /removeclient oldclient true | false

Removes the client associated with name from the bag and invalidates the bag
(if name is found). Returns the client instance and true if name exists; otherwise,
false is returned.

If the removed client is a canvas and it has the same event manager as the bag,
/removeclient deactivates it, which means that if a client is activated before it is
added to a bag, it is not deactivated automatically when it is removed.

Destruction

/destroy - /destroy -

Destroys the bag and its clients. /destroy executes in the global event manager.

See also Callback context on page 48 and /destroy on page 74 in ClassCanvas.

2

20 The NeWS Toolkit Reference Manual — March 1991

Miscellaneous

/validate - /validate -

Updates the appearance of the bag to reflect any changes (reshaping, new
clients added, etc.) that may have taken place. You should not call this yourself
because painting causes validation. In those cases where you want immediate
validation, call /?validate. (See page 45 in ClassCanvas for an explanation of
validation.) /validate calls /layout.

/layout -/layout -

Initiates layout for a bag. Establishes the layout context by making the bag the
current canvas and then calls /Layout.

Subclasser methods

/FixChildren - /FixChildren -

Handles the repainting of damaged bag clients by sending /FixAll to all the
bag’s clients. See Canvas damage handling on page 51 in ClassCanvas for an
explanation of how canvases handle damage repair. See the NeWS 2.1
Programmer’s Guide for an explanation of damage.

/Layout - /Layout -

Lays out the clients of the bag. Subclasses override /Layout to implement a
particular layout policy. If you are going to subclass ClassBag, you must
provide a definition of /Layout.

/PaintChildren - /PaintChildren -

Paints the clients of the bag by sending /PaintAll to all client instances. First,
regions are painted in insertion order, then canvases are painted in insertion
order.

Mouse tracking for regions in bags

The following mouse tracking methods are included in ClassBag to handle
mouse tracking for region clients. For an explanation of mouse tracking see
Mouse tracking on page 55 in ClassCanvas. To see how regions handle tracking
see Mouse tracking on page 147 in ClassRegion.

ClassBag 21

2

/TrackMotion event /TrackMotion -

/TrackStart event /TrackStart false | [/label...] true | /name true

/TrackStop event /TrackStop -

/TrackCancel event /TrackCancel -

Menus

The following menu methods are included in ClassBag to handle menus for
region clients. For an explanation of canvas menus see Canvas menus on page
53 in ClassCanvas. For an explanation of how regions handle menus see Region
menus on page 147 in ClassRegion.

/MenuStart invoker posname event /MenuStart invoker posname event menu true
| invoker posname event false
| invoker posname event null true

/MenuStop menu /MenuStop -

2

22 The NeWS Toolkit Reference Manual — March 1991

23

3-0
3-0

ClassBorderBag 3

Figure 3-1 The ClassBorderBag subtree

ClassBorderBag, a subclass of ClassBag, is designed to manage up to five
clients; one located in the center and the other four located, logically enough,
on the four borders. Figure 3-2 illustrates one possible configuration of a
border bag and its five clients. Also note the gaps. You use gaps to set the
amount of space between border clients and the central client.

Border bag’s clients

Consistent with the bag interface, ClassBorderBag’s clients are referenced by
name.

• A northern client that matches the width of the central client is referenced as
/North. A northern client that matches the combined widths of the central,
eastern, and western clients is referenced as /-North-. As the bag width
changes, the north client’s width also changes; however, its height remains
constant.

ClassObject ClassDrawable ClassBorderBagClassCanvas ClassBag

3

24 The NeWS Toolkit Reference Manual — March 1991

• An eastern client that matches the height of the central client is referenced as
/East. An eastern client that matches the combined heights of the central,
northern, and southern clients is referenced as /-East-. As the bag height
changes, the east client’s height also changes; however, its width remains
constant.

• A southern client that matches the width of the central client is referenced as
/South. A southern client that matches the combined widths of the central,
eastern, and western clients is referenced as /-South-. As the bag width
changes, the south client’s width also changes; however, its height remains
constant.

• A western client that matches the height of the central client is referenced as
/West. A western client that matches the combined heights of the central,
northern, and southern clients is referenced as /-West-. As the bag height
changes, the west client height also changes; however, its width remains
constant.

• The central client is referenced as /Center. It inhabits the central space in the
bag. Once the space requirements of the border clients are satisfied, the
central client occupies the remaining space.

Figure 3-2 Four short border clients surrounding a central client and separated from it
by symmetric gaps

A border bag can also have insets, which determine the space between the
border clients and the edge of the bag (Figure 3-5).

/Center

/North

/E
a
s
t

/W
e
s
t

/South

ClassBorderBag 25

3

As illustrated in Figure 3-3 you can use border bags to arrange clients the way
a typical application might.

Figure 3-3 A typical OPEN LOOK arrangement: the /-North- client might be a
control area, the /East client a scrollbar, and the /Center client a
canvas.

You can dynamically rearrange the clients of a border bag. One way this
dynamic rearrangement would be useful is to allow a user to switch a scrollbar
from one side of the bag to the other. For example if you have a border bag
with /Center, /East, and /South clients you could dynamically rearrange the border
clients to be /Center, /West, and /South clients (Figure 3-4).

Figure 3-4 Dynamically changing the arrangement of border bag clients

/Center

/-North-

/E
a
s
t

/Center

/South

/Center

/South

/East /removeclient aBorderBag send pop

/West exch /addclient aBorderBag send

/paint aBorderBag send

/E
a
s
t

/W
e
s
t

A canvas (/Center) with vertical (/East)
and horizontal (/South) scrollbars.

A canvas (/Center) with vertical (/West)
and horizontal (/South) scrollbars.

(code above dynamically changes bag)

3

26 The NeWS Toolkit Reference Manual — March 1991

Adding clients

/addclient name client /addclient -

Adds client as a client of the border bag. In order for automatic layout of your
clients to operate, name must be one of /North, /East, /South, /West, /Center, /-North-
, /-East-, /-South- or /-West-. When the client has not been reshaped /addclient
reshapes it to its preferred size. Some combinations of clients are not allowed,
e.g., a /-North- and an /-East- clients. If you do add both of these clients the /-East-
client takes precedence and “overlays” the extension of the /-North- client into
the northeast corner.

Positioning clients

You can set gaps and insets in border bags. Gaps determine the distance
between the /Center client and the bag’s border clients. Insets determine the
distance between the border clients and the edge of the bag.

Figure 3-5 Using gaps and insets to position four border clients.

/setgaps northgap eastgap southgap westgap /setgaps -

Sets the distance between border clients and the central client. The default unit
is the point. Gaps specify how far each of the border clients are spaced from
the center client.

/gaps -/gaps northgap eastgap southgap westgap

Returns the value of the border bag’s gaps.

/North

/E
a
s
t

/W
e
s
t

/South

/Center

Insets

Gaps

ClassBorderBag 27

3

/setinsets northinset eastinset southinset westinset /setinsets -

Determines how far the /North, /East, /South and /West clients are inset from
the edge of the bag.

/insets - /insets northinset eastinset southinset westinset

Returns the border bag’s insets.

Geometry

/minsize - /minsize width height

Returns a border bag’s minimum width and height. The calculation of a border
bag’s minsize includes the minsizes of its clients, which means there are
several factors which you should consider when you set a borderbag’s minsize
(or preferredsize):

• Preferredsize defaults to an object’s minsize if no preferredsize is set.
• Clients of borderbags are reshaped to their preferredsize when they are

added to borderbags, if they haven’t already been reshaped.
• North and south borderbag clients have constant heights. Thus, the height

you assign to north and south clients in their preferredsizes becomes the
constant width these clients maintain in the borderbag.

• East and west borderbag clients have constant widths. Thus, the width you
assign to east and west clients in their preferredsizes becomes the constant
width that these clients maintain in the borderbag.

Thus, if you set both a minsize and a preferred size for non-/Center clients of
a borderbag /minsize should return the same value for the constant aspect of a
client’s size as /preferredsize. E.g., an east client has a minsize of 20x20 and a
preferredsize of 20x100: both /preferredsize and /minsize for this east client must
return the same width but are allowed to return different heights.

/preferredsize - /preferredsize width height

Returns the “ideal” size of the border bag. Defaults to the values returned by
/minsize.

3

28 The NeWS Toolkit Reference Manual — March 1991

Layout

/Layout -/Layout -

Lays out the border bag and its clients. Overridden from ClassBag to properly
lay out the border clients. East and west clients never have their width
adjusted by /Layout, only their height is modified to fill the available space.
Similarly, north and south clients maintain a constant height, but their widths
vary as the bag expands and contracts. See Border bag’s clients on page 23.

Menus and tracking

By default border bags are Menuable and Trackable. See Canvas menus on page
53 and Mouse tracking on page 55 in ClassCanvas for information on menus
and tracking, respectively.

29

4-0
4-0

Buttons 4

Figure 4-1 The buttons subtree

Buttons and menu buttons come in groups; buttons are considered items in the
button group. A single button is a degenerate case. The buttons in a group are
items and are added, deleted and accessed using the methods found in
ClassItemGroup (see ClassItemGroup on page 87). Some of the
ClassItemGroup methods inherited by ClassButtons are:

/setitemlist /itemlist /itemcount

/insertitem /replaceitem /deleteitem

/appenditem /itemsize /itemlocation

/itembbox /pointinitem? /pointtoitem

In addition, ClassControl is mixed-in to ClassButtons. The control interfaces
documented in ClassButtons are: /setnotifier, /notifier, /setvisualstate
/visualstate and the target interface (see Managing references between controls
and other objects).

ClassObject ClassDrawable

ClassRegion ClassItemGroup

ClassButtons ClassMenuButtons
(ClassControl)

(ClassLayout)

4

30 The NewS Toolkit Reference Manual — March 1991

A button group is created and items are added either one at a time or with a
single call. Most of the time items are simple string display items, but
theoretically any display item may be displayed in a button. (See Chapter 7,
Display Items on page 79.) However, buttons are restricted to a fixed size that
accommodates a maximum font size of 12 points.

ClassButtons

Creation

/new placement parent /new instance

Creates a button group, i.e., an instance of ClassButtons. placement is one of
/Spaced, /Absolute, /Calculated or /Grid. (See Chapter 9, ClassItemGroup; Setting
the item list, for an explanation of placement).

Abbreviated buttons

/setabbreviated item-index boolean /setabbreviated -

Determines whether the button at item-index is abbreviated. Invalidates the
group. (See the OPEN LOOK Graphical User Interface Functional Specification for
a definition of abbreviated buttons.)

/abbreviated? item-index /abbreviated? boolean

Returns whether the button at item-index is abbreviated.

Ability to interact with buttons

/setvisualstate item-index state /setvisualstate -

Sets the visual state of the button at item-index to be state. The visual state of a
button determines not only its visual presentation but also whether the button
can accept user interactions. state is one of /Active, /Busy, or /Inactive. Users can
interact with /Active buttons; /Inactive and /Busy buttons ignore user interaction.
The button repaints to reflect the new state only if it is valid.

/visualstate item-index /visualstate state

Returns the state of the button at item-index.

Buttons 31

4

Default

/setdefault item-index /setdefault -

Makes the button at item-index be the default choice for the button group.
Invalidates the group. The default button has a ring drawn around it. Button
defaults are used most often (if not exclusively) in notices.

/default - /default item-index | null

Returns the item-index of the default button choice if there is a default. If no
default exists null is returned.

Justification

/setjustification /Left | /Centered /setjustification -

Sets the justification for the button’s display item. Invalidates the group. The
default is /Centered.

/justification - /justification /Left | /Centered

Returns the justification of the button group.

Notification

Notifiers execute in the context of the local event manager (LEM) and are
called with the item-index and button group on the stack. You can associate a
notifier with the entire button group (/setnotifier) or on a per button basis
(/setitemnotifier).

/setnotifier notifier /setnotifier -

Sets the notifier for the entire button group. If you don’t use /setitemnotifier then
all the buttons in the group have the same notifier.

/notifier - /notifier notifier | null

Returns the button group’s notifier. If the button group doesn’t have a single
notifier that is associated with all the buttons null is returned.

/setitemnotifier item-index notifier /setitemnotifier -

Sets the notifier for the button at item-index. The per item notifier takes
precedence over any button group-wide notifier that may exist.

4

32 The NewS Toolkit Reference Manual — March 1991

/itemnotifier item-index /itemnotifier notifier | null

Returns the notifier of the button at item-index. If the button doesn’t have a
notifier then null is returned.

Managing references between controls and other objects

This section contains the target interface that ClassButtons inherits from
ClassControl.

/settarget object /settarget -

Sets object as the target of the button’s notifier. If a previous targets exists it is
overwritten.

/cleartarget null | object /cleartarget -

Clears the target. If null is given the target is cleared. If object is specified then
the target is cleared only if object and the target are the same. This latter
specification ensures that the target is not incorrectly cleared.

/sendtarget arguments /method /sendtarget results

Sends /method and any arguments that the method requires to the target.

/target - /target null | object

Returns the target.

/HandleObsoleteTarget object /HandleObsoleteTarget -

Use for breaking reference chains. The default is to send /cleartarget to object.
Subclasses of ClassControl that override /HandleObsoleteTarget should always do
a super send.

ClassMenuButtons

ClassMenuButtons implements OPEN LOOK menu buttons.

Items in a menu button group are described using the following specification:

[item menu]

Buttons 33

4

item serves as the text label or image that is presented within the borders of the
menu button. menu is either a menu instance or a PostScript code fragment that
returns a menu instance when executed; i.e., when MENU is pressed over the
button the code fragment is executed. The menu associated with the menu
button is positioned based on the menu direction state.

For example, you could set a menu button group’s itemlist like:

[[(Button1) menu1]
[(Button2) menu2]
[[(RedButton) 1 0 0 rgbcolor] redmenu]
. . .] /setitemlist mymenubuttons send

ClassMenuButtons inherits the methods specified in ClassButtons above. In
addition, menus in buttons use a mechanism that maintains a notion of which
object is affected by the menu’s notifier. For information on this mechanism see
The invoker mechanism on page 117.

Methods related to menus and defined in ClassMenuButtons are:

/setmenudirection item-index menu-direction /setmenudirection -

Specifies where the menu appears when MENU is pressed over the menu
button at item-index. menu-direction is defined as either /Down or /Right. The menu
mark visual corresponds to menu-direction. The default menu direction is /Down.

/menudirection item-index /menudirection menu-direction

Returns the menu direction for the menu button at item-index.

/setmenu item-index menu /setmenu -

Sets the menu for the menu button at item-index. menu is specified as either a
menu instance or a PostScript code fragment that returns a menu instance
when executed.

/menu item-index /menu menu

Returns the menu for the menu button at item-index.

4

34 The NewS Toolkit Reference Manual — March 1991

35

5-0
5-0

ClassCanvas 5

Figure 5-1 The ClassCanvas subtree

ClassCanvas provides the structure underneath most of what you see on the
screen (the “look” of the Toolkit), as well as linking an application to input (the
“feel” of the Toolkit). A TNT canvas is basically a NeWS canvas with
additional structure to support object-oriented programming, display of the
canvas, event management, and NeWS canvas tree operations.

Creation

/new parentcanvas /new instance
Subclasser method: /NewInit

Returns a canvas instance, with the specified canvas as its parent. /new is sent
to the class, which creates an object and then /NewInit is sent to that object.

ClassObject ClassDrawable ClassCanvas

5

36 The NeWS Toolkit Reference Manual — March 1991

/NewInit args | - /NewInit -

This method is called by /new to initialize an instance. It is overridden to allow
subclassers to perform any specific initialization on the instance. When it is
overridden, the method should do a super send so that the superclass can do
its initialization. Also, it should do any specific initialization the class requires
and consume the arguments on the stack.

Canvas appearance

Colors

The NeWS Toolkit’s OPEN LOOK components are drawn in a “3-D” style
using five different brightness values to represent light and dark shading of
beveled edges (Table 5-1). (For a complete explanation of how these shadings
are used to display 3-D objects see the OPEN LOOK Graphical User Interface
Functional Specifications.)

However, the 3-D effect is unusable on a black and white display when gray
values are approximated by stipple patterns. In order to make the OPEN
LOOK components usable in two colors (i.e. black and white), the Toolkit
provides 2-D colors and interfaces to switch between 3-D and 2-D looks.

/setcolors foreground-color background-color /setcolors -

Sets the foreground and background colors for the canvas. /setcolors examines
the /3D? variable (see Switching between 3-D and 2-D looks on page 38) to
determine whether to set /FG and /BG (3-D colors) or /2DFG and /2DBG (2-D
colors). If /3D? is true, /setcolors also computes and sets BG0, BG2, and BG3,
based on the value of background-color. See Table 5-1 for an explanation of these
colors. If the instance is valid, it is repainted immediately using the new colors.
If the instance is invalid the colors are reset but the instance is not painted
automatically. See Validation on page 44 for more information on validation.

Send /setcolors to a class to change the class defaults or an instance to change
just the instance.

/colors - /colors foreground-color background-color

Returns the foreground and background colors for the canvas. /colors examines
the value of /3D? to determine whether to return /FG and /BG or /2DFG and
/2DBG. Values returned are the NeWS color objects.

ClassCanvas 37

5

/BackgroundColor - /BackgroundColor background-color

Returns BG or 2DBG, according to the dimensionality. /BackgroundColor checks
to see what the dimensional state of the framebuffer is before returning a color.
Thus you should use /BackgroundColor instead of /BG so your application will
use the appropriate 2-D or 3-D color.

 /ForegroundColor - /ForegroundColor foreground-color

Returns FG or 2DFG, according to the dimensionality. /ForegroundColor checks to
see what the dimensional state of the framebuffer is before returning a color.
Thus you should use /ForegroundColor instead of /FG so your application will
use the appropriate 2-D or 3-D color.

Canvas color class variables
TNT uses slightly different names for its 3-D colors than are found in the
OPEN LOOK Graphical User Interface Functional Specifications. Table 5-1 shows
how the TNT color variables map into the OPEN LOOK names as well as the
names of the 2-D class variables.

Table 5-1 Toolkit color variables and their OPEN LOOK names

TNT Class OPEN LOOK
Variable name Explanation

/FG Foreground Foreground color. Used for text and the border of the
canvas. Default is black.

/BG0 Background Background color 0. Slightly darker than white, the
OPEN LOOK color that it replaces.

/BG BG1 Background color 1. Slightly darker than bg0.
Replaces the OPEN LOOK color, BG1. Used for the
background of the canvas.

/BG2 BG2 Background color 2. Slightly darker than bg. Used as
the background of “indented” choices.

/BG3 BG3 Background color 3. Used for the shadow of 3-D
objects.

/2DFG Black Used for the foreground of 2-D canvases. Defaults to
black.

/2DBG White Used for the foreground of 2-D canvases. Defaults to
white.

5

38 The NeWS Toolkit Reference Manual — March 1991

Switching between 3-D and 2-D looks
/3D? /3D? boolean (Variable)

Determines whether the canvas is drawn in 3-D or 2-D (i.e., the canvas’s
dimensionality). The default is true—use 3-D colors. 3-D canvases are drawn
using the 5 colors, FG BG BG0 BG2 and BG3 . 2-D canvases are drawn using the
2 colors, 2DFG and 2DBG. If you the Toolkit to be in 2-D mode when it is first
loaded you can set the dimensionality by doing a /3D? false put in UserProfile.

/set3D boolean /set3D -

Sets the dimensionality of the canvas. /set3D invalidates instances but does not
cause the canvas to repaint.

Painting

TNT uses the following rendering model for painting canvases: /paint initiates
the painting recursion by calling /PaintAll. /PaintAll sets up the context of the
current object relative to that of the parent. The context is established using the
NeWS operator, setcanvas. /PaintAll also validates the object. (See Validation on
page 44.) /PaintAll calls /Paint and /PaintChildren. /Paint paints the object itself.
Clients should override /Paint (unless the default /Paint method is suitable,
which is rare). /PaintChildren sends /PaintAll to each Mapped child.

/paint - /paint -
Subclasser method: /PaintAll

Sent to a canvas to initiate painting.

/PaintAll - /PaintAll -
Subclasser method: /Paint

/PaintChildren

Paints the entire canvas. Checks to see if the canvas is valid and if it isn’t,
validates it. /PaintAll sets up the context for the painting by making the canvas
the current canvas. Uses the /Paint and /PaintChildren methods for painting.
Subclassers should override /Paint and/or /PaintChildren to change the default
painting behavior.

ClassCanvas 39

5

/Paint - /Paint -

Paints the interior of a canvas. You do not need to do a canvas setcanvas or a
gsave/grestore in your /Paint procedure, they are done for you (by /paint) before
/Paint is called. The default painting done is a fill using the background color.
Subclassers should override /Paint to perform their own canvas painting.

/PaintChildren -/PaintChildren-

Paints the canvas’s children. /PaintChildren is a no-op for ClassCanvas and is
overridden in ClassBag. If you create a subclass of ClassCanvas that has
children and is not a subclass of ClassBag, you should override /PaintChildren.

Utility painting methods
The methods in this section are utility methods and are provided because of
their usefulness. These are not subclasser methods. The methods should be
called from within gsaves and grestores and the canvas must be set. If you’re
using these methods inside your /Paint definition you don’t have to set the
canvas yourself, TNT does this for you. See the rendering model discussion
above.

/BotRightPath x y width height /BotRightPath -

Constructs a path of the bottom and right edges of the box defined by x y width
and height.

/FillCanvas color /FillCanvas -

Fills the entire canvas with color.

/Paint3DLine x y width /Paint3DLine -

Draws a 3-D line with a 1-point light line above a 1-point dark line having
endcaps either all light or all dark.

/Paint3DBox x y width height down? /Paint3DBox -

Paints a 3-D box defined by the arguments using /BG* colors. When down? is
true the box appears pressed in. When down? is false the box appears “out.”

/Paint2DBox x y width height bold? /Paint2DBox -

Paint a 2-D box using the 2DFG and 2DBG colors, whose bounding box is
defined by the arguments. When bold? is true the box appears stroked with a
double thick line.

5

40 The NeWS Toolkit Reference Manual — March 1991

/StrokeCanvas color inset /StrokeCanvas -

Draws a border inset units inside the canvas, in the current transformation
matrix (CTM) and strokes it with color. For information on the CTM see Adobe
Systems PostScript Language Reference Manual.

/TopLeftPath x y width height /TopLeftPath -

Constructs a path of the top and left edges of the box defined by x y width and
height.

Fonts

/TextFont /TextFont font (Variable)

The default font used for the canvas. The default value is /LucidaSans 12
point. Setting this variable does not automatically make font the current font. In
order to make font the canvas’s current font you could do:

TextFont setfont

/settextfont font /settextfont -

Subclasser method: /ModifyFont

Defines the text font for a canvas. /settextfont can be sent to a class or an
instance. For example to change the canvas’s text font you would do something
like:

/TimesRoman findfont 12 scalefont /settextfont yourcanvas send

As with /TextFont, the code above doesn’t make font the current font. In order to
have the PostScript show operator use the text font sent in the example you
would have to make the font the current font using the PostScript setfont
operator. /settextfont invalidates canvas instances.

/textfont - /textfont font

Returns the text font of the canvas.

/ModifyFont font /ModifyFont font’

Returns a font that is the same as the given font except it is not printermatched
and it uses ISOLatin1 encoding. If you want to use printermatched fonts
and/or some encoding other than ISOLatin1 you should override /ModifyFont.
(For an explanation of printermatched font see the NeWS 2.1 Programmer’s
Guide and the X11/NeWS Server Guide.)

ClassCanvas 41

5

Cursors

/setcursor cursorobject | name | null /setcursor -

Sets the canvas cursor. If null is given as the argument then the canvas inherits
the cursor of its parent canvas. name is one of the named cursors in the shared
/Cursors dictionary. Currently the names are: panning, xhair, hourg, basic, beye,
nouse, copy, stop, move, navigation, rtarr, busy. xcurs, and ptr.

A cursorobject created using the NeWS operator newcursor can also be given as
an argument (See the NeWS 2.1 Programmer’s Guide for information on
newcursor.)

/Cursor /Cursor (Variable)

Default cursor for the canvas. Default is null, which means that the canvas
inherits the cursor of its parent.

/Cursors /Cursors dictionary (Variable)

The dictionary that stores the canvas’s cursors. You can create your own cursor
and put it into the /Cursors dictionary.

The canvas tree

/children - /children array

Returns an array of canvases; the children of the canvas in the canvas tree. The
array is ordered from the bottom canvas first to the top canvas last.

/descendants - /descendants array

Returns an array of canvases, the descendants (if any) of this canvas. The array
always contains self and is ordered by proximity to this canvas, children before
grandchildren. Within each generation, top canvases come before bottom
canvases.

/framebufferof - /framebufferof framebuffer

Returns the framebuffer on which the canvas is located.

5

42 The NeWS Toolkit Reference Manual — March 1991

/Mapped /Mapped boolean (NeWS Variable)

Determines whether the canvas is mapped. The default is for /Mapped to have
the same value as /Transparent. By default instances of ClassCanvas are
transparent and therefore mapped (See Canvas damage handling on page 51 for
an explanation of /Transparent.)

/map - /map -

Sets the NeWS /Mapped attribute of the canvas to be true. Painting a canvas
does not cause it to appear on the screen unless the canvas and all its parents
have also been mapped.

/mapped? - /mapped? boolean

Returns whether the canvas is currently mapped onto the screen. A true value
does not mean the canvas is currently visible on the screen. A mapped canvas
wouldn’t be visible if:

• It hasn’t been painted yet.

• It is positioned off the edge of the screen.

• It is covered by other canvases.

• It is a child of an unmapped canvas.

See the NeWS 2.1 Programmer’s Guide for an more complete explanation of
mapped canvases.

/parents - /parents [ancestor1 ancestor2 . . . framebuffer]

Returns an array of the canvas’ ancestors ordered from its immediate parent
first to the framebuffer last. The array does not include the GlobalRoot or self.

/reparent parentcanvas /reparent -

Moves the canvas in the NeWS canvas tree so that parentcanvas is its parent.
You are responsible for any layout or reshaping that must be done. The child
canvas is mapped after it is reparented if it was mapped before the
reparenting.

Note – Do not call this method for clients of bags. Bags reparent their clients
automatically.

ClassCanvas 43

5

/siblings - /siblings array

Returns an array of all the sibling canvases of the canvas. Includes self. The
array is ordered from bottom first to top last.

/tobottom - /tobottom -

Moves the canvas to the bottom of its sibling list.

/totop - /totop -

Moves the canvas to the top of its sibling list.

/unmap - /unmap -

Unmaps the canvas.

Geometry

All of the methods in this section operate using the current transformation
matrix (CTM).

/bbox - /bbox x y width height

Returns the bounding box for the canvas.

/location - /location x y

Returns the coordinates of the origin of the canvas.

/minsize - /minsize width height

Returns the minimum size of the canvas. If the data your canvas manages
requires you to enforce some minimum canvas size override /minsize to provide
an appropriate value.

/move x y /move -

Moves the origin of the canvas to the specified location. If you override
/reshape to change the canvas’s CTM you should override /move to compensate
for the changed coordinate system. For example if the origin of the canvas has
been translated in /reshape to be at the lower right instead of the lower left, you
could correct for the translation by overriding /move:

/move { % x y => -
/size self send % x y w h
pop 3 -1 roll add exch % (x+w) y

5

44 The NeWS Toolkit Reference Manual — March 1991

/move super send
} def

/path x y width height /path -

Builds a path that fits into the bounding box defined by the arguments. The
default is for a rectangular path. Each canvas uses this method for defining its
intrinsic shape given the desired bounding box. You should override /path for
any canvas subclass that you want to be nonrectangular.

/preferredsize - /preferredsize width height

Returns the preferred size for the canvas. The preferred size is some ideal
starting size that you determine in a subclass by overriding /preferredsize. By
default /preferredsize returns the canvas’s minsize.

/reshape x y width height /reshape -

Reshapes the canvas to fit the bounding box defined by the arguments.
Invalidates the canvas. Uses the current transformation matrix. The canvas’s
new shape is constructed by /path. If you change the canvas’s coordinate
system in an override of /reshape you should override /move in the same way
(see /move on page 43).

/reshaped? - /reshaped? boolean

Returns whether the canvas has been reshaped yet.

/size - /size width height

Returns the width and height of the canvas in the CTM.

Validation

The NeWS Toolkit uses a validation scheme to determine whether an object
needs to have its visual presentation updated. One way to understand this is
through the model-view portion of the model-view-controller paradigm.
Remember, the model is a data object, representing application information
and the view presents its model in a graphical fashion. TNT has several objects
that manage other objects. For example, menus manage a list of items, and
bags manage a collection of clients. The list of items in a menu and the
collection of clients in a bag are the model. How they are displayed on the
screen is the view.

ClassCanvas 45

5

Your application may allow the user to alter the model, by adding or deleting
menu items, for example. When the user alters the list of items, TNT marks the
menu as invalid by sending it the /invalidate method. Saying a menus is invalid
is the same as saying that the model has changed but the view hasn’t been
updated to reflect those changes.

The /paint method is used to initiate the process that causes an object’s view to
match its model. But, in order to be efficient, TNT doesn’t automatically
repaint objects when they become invalid, i.e., TNT doesn’t call /paint on
invalid objects, you do. This optimization allows you to change several
attributes of an object and only perform one repaint.

Certain operations are considered “basic” enough that they automatically
update the view. /setvalue and /setcolors are examples of methods that do the
automatic update. However, if the view is already invalid for other reasons
(such as adding items) then these methods do not update the view.

/Valid? /Valid? boolean (Variable)

Determines whether the canvas is marked as invalid. An invalid canvas is one
that needs some operations executed before it can be repainted; a valid canvas
is one that is ready to be painted. For example, to a bag valid means not
requiring layout at the moment. ClassCanvas does not interpret what validity
means itself, but leaves it to subclasses to do so by overriding the validation
methods (/invalidate, /valid?, /?validate and /validate). Subclassers should call
super in their override of the validation methods. E.g.,

/?validate {
. . .
/?validate super send

} def

/invalidate - /invalidate -

Marks the canvas as invalid.

/valid? - /valid? boolean

Returns whether the canvas is valid.

/?validate - /?validate -

Validates the canvas if it is currently invalid.

5

46 The NeWS Toolkit Reference Manual — March 1991

/validate - /validate -

Causes the canvas to become valid. If you override /validate you should be
sure to include a /validate super send in your override.

Ability to accept user input

/setvisualstate state /setvisualstate -

Sets the visual feedback state for a canvas. state is defined as one of /Active,
/Inactive, or /Busy. /setvisualstate also determines whether users can interact with
a canvas

/visualstate - /visualstate state

Returns the current visual feedback state for the canvas.

Activation and deactivation

A canvas can receive user input if it is active. An active canvas is defined as a
canvas that has a local event manager (LEM). See ClassEventMgr on page 48.
When a canvas is created it has no event manager.

/activate event-manager /activate -

Turns on event management for the canvas. Table 5-2 lists the types of events a
canvas can receive and the section where each type of event is discussed.1

Table 5-2 Types of events a canvas can receive

Event Section Page

damage Canvas damage handling 51

menu Canvas menus 53

1. It is possible that you want your application to receive events that the Toolkit has not anticipated. You can
express these additional interests in the LEM using ClassInterest. You create an instance of ClassInterest by
sending /new to it: canvas action name /new ClassInterest send. You might was to modify some NeWS
values in the resulting interest such as /Priority or /Exclusive. You would add this new interest instance to
your event manager using /addclient:: interest-instance /addclient emgr send. (Note that the event
manager is provided as an argument to /activate.
Interests passed to an event manager must specify executable matches; i.e., at least one of the matching
fields in the interest must have a dictionary with executable values that will run on exit from the awaitevent.
When all executable matches have run, the event must be consumed. Please see the NeWS 2.1 Programmer’s
Guide, Chapter 5—Events for a discussion on events, interests, and executable matches.

ClassCanvas 47

5

track Mouse tracking 55

key Getting focus and keystrokes 57

selection Selectables 65

reception Drag and Drop—receptible canvases 71

open Opening and closing canvases 62

help Help facilities 63

front Moving canvases along the z-axis (Front key) 64

obsolescence Obsolescence and destruction 73

When you are using bags and the bag subclasses (which includes windows),
you only need to activate the bag; all the bag’s canvas clients are activated
when the bag is activated.

Thus to activate a canvas you could do:

/new ClassEventMgr send /activate yourwindow send

/active? - /active? boolean

Returns whether the canvas has been activated.

/deactivate - /deactivate -

Turns off event management for the canvas. If the canvas does not have an
event manager /deactivate does nothing.

/eventmgr - /eventmgr event-manager | null

Returns the event manager for the canvas.

/EventMgr /EventMgr event-manager (Variable)

The event manager for the canvas.

/EventsConsumed /EventsConsumed (NeWS Variable)

Determines which events that are tested for a match against the canvas post-
child interests list are also matched against the post-child interests of the
canvas’s parent. Most programmer’s won’t need to change /EventConsumed.

/EventsConsumed is a NeWS canvas attribute. The default value is
/MatchedEvents. Other legal values are /AllEvents and /NoEvents. When
/EventsConsumed is set to /MatchedEvents events that match a post-child interest

5

48 The NeWS Toolkit Reference Manual — March 1991

of the canvas are consumed. Non-matching events may still be passed to the
canvas’ ancestors for further testing against post-child interests. See the NeWS
2.1 Programmer’s Guide for a complete explanation of event processing.

Callback context
The context of a callback refers to the process in which the callback executes.
You can find a discussion of NeWS processes in the NeWS 2.1 Programmer’s
Guide. The process maintains state in several ways, four are especially
important to TNT:

• The dictionary stack, especially the process’s userdict.
• The operand stack.
• The stdin/stdout pair, which is the client’s wire. (See The Wire Service on

page 227.)
• The graphics state.

In most cases TNT arranges that client callbacks are invoked in the context
defined by the client userdict and connection (stdin/stdout pair). In general,
this occurs in the application’s local event manager (LEM). Only obsolescence
and certain ClassSelection methods are exceptions to this.

One implication of this arrangement is that the notifier procedures for controls
(e.g., buttons) shouldn’t take a long time to execute in the server. If the notifier
needs a long time to execute, it should spawn a separate process to do it in. If
you don’t spawn a process for time-consuming procedures, the LEM, being
busy with the execution, can’t respond to other requests, e.g., /TrackStart and
/MenuStart. You can send a message over a wire that makes the client take a long
time because this frees up the LEM.

When a callback is invoked in the global event manager’s process (the GEM),
and the code requires access to the client’s context, there are two methods
available that provide this access—/callmanager and /sendmanager.

ClassEventMgr

Global event manager

The NeWS Toolkit has a single global event manager that is an instance of
ClassEventMgr. The global event manager (GEM) provides a process where
synchronous event-processing occurs. Synchronized events are executed in the

ClassCanvas 49

5

GEM. Non-synchronized events are passed to a per-client event manager, the
local event manager (LEM). The GEM also redistributes many events to the
LEMs after ensuring proper syncronization.

See Callback context on page 48 for information on where callbacks execute.

Local event manager

Local Event managers (LEM) are instances of ClassEventMgr. An event
manager is a NeWS process that receives events that the canvas is interested in
(For information on NeWS processes see the NeWS 2.1 Programmer’s Guide).
You can share event managers between different windows by creating a
pointer to a single instance of ClassEventMgr and then passing the reference to
/activate when you activate each window:

/emgr /new ClassEventMgr send def
emgr /activate MyFirstWindow send
emgr /activate MySecondWindow send

See /activate on page 46 for more information on activating canvases.

Creation

/new - /new event-manager

Creates an event manager instance.

Error handling in event managers

/Robust? /Robust? boolean (Variable)

Determines whether the event manager is “robust.” The robustness of an event
manager determines how it reacts when it gets a error (see the NeWS 2.1
Programmer’s Guide and /HandleError below). The default is false.

When a robust TNT event manager gets any error1 it:

• clears all the send contexts which includes any classes on the dictionary
stack and the history of any send contexts.

1. The NeWS operator killprocess is implemented as an error. Thus a robust event manager is not killed by
killprocess.

5

50 The NeWS Toolkit Reference Manual — March 1991

• removes all dictionaries from the dict stack except the user- and the
systemdict.

• prints out an error message from $error dict (if there is one) to the standard
output file.

• continues to run.

When a non-robust event manager gets any error other then a killprocess error it:

• prints out an error message from $error dict (if there is one) to the standard
output file.

• is killed using quit.

However, if the non-robust event manager gets a killprocess error it just quits
without printing out any error messages.

/robust? - /robust? boolean

Returns the value of /Robust?.

/setrobust boolean /setrobust -

Sets the value of /Robust?.

/HandleError - /HandleError -

Event manager’s error handler. When an event manager gets an error the
NeWS Toolkit calls /HandleError. Override /HandleError if you want error
handling behavior that’s different from that described in /Robust?. If you do
override /HandleError the robustness is no longer enforced and may be ignored.

Changing event managers for execution and sends

/callmanager proc /callmanager -

Executes proc within the event manager’s process. You send /callmanager to an
instance of ClassEventMgr, not to a canvas.

/sendmanager [<args> /method object] /sendmanager -

Sends /method with its accompanying arguments (if any) to object within the
event manager’s context. You send /sendmanager to an instance of
ClassEventMgr, not to a canvas.

ClassCanvas 51

5

Canvas damage handling

A canvas is considered damaged if all or part of its image is incorrect and
needs to be repainted. Only those canvases that are not transparent can receive
damage. For an explanation of damage see the NeWS 2.1 Programmer’s Guide.

The rendering model that TNT uses for fixing damage is similar to the one
used for painting (see Painting on page 38). One of the biggest differences is
that you never need to call the method that initiates the damage fixing
recursion, it is called for you by the Toolkit’s damage handling callback,
/HandleDamage. For damage repair, /HandleDamage establishes the context by
setting the clippath and then calls damage-fixing initiator, /FixAll. From the
point where /FixAll is called for you, the damage repair recursion is the same as
for painting (except for the method names of course). /FixAll calls /Fix and
/FixChildren.

/Transparent /Transparent boolean (NeWS Variable)

Determines if the canvas obscures other canvases. If the value of /Transparent is
true the canvas won’t obscure other canvases; it is transparent. Opaque
canvases have a /Transparent value of false. Only opaque canvases can get
damaged. Instances of ClassCanvas are transparent by default.

Instances of ClassCanvas are transparent by default.

/setdamageable boolean /setdamageable -

Sets the value of /Transparent (to be the opposite of boolean).

/damageable? - /damageable? boolean

Returns whether the canvas receives damage events (see also /Retained, page
53). Only a nontransparent canvas can receive damage.

/damage - /damage -

Adds the canvas’s path to the opaque parent’s damage path via the NeWS
operator extenddamage. This is used where /paint would be used but you don’t
want to take the time to paint because you’re in the global event manager.

5

52 The NeWS Toolkit Reference Manual — March 1991

/damageall - /damageall -

Adds the canvas path to opaque parent and children damage paths. Used
when you want to damage not only the opaque parent but also its opaque
children. Similar to /damage but uses the NeWS operator extenddamageall
instead of extenddamage.

/FixAll - /FixAll -
Subclasser methods: /Fix

/FixChildren

Paints the damaged area of the canvas. /FixAll is called for you by the damage
handler method /HandleDamage after the damage path has been clipped to the
canvas. It is not necessary for you to call it yourself.

By default, /FixAll calls /Fix and /FixChildren; override these methods in your
ClassCanvas subclass rather than /FixAll.

/Fix calls /Paint which simply paints the damaged section of the canvas without
trying to be efficient.

It is your responsibility to override /Fix if you want to provide more efficient
damage repair behavior.

/Fix - /Fix -

Handles the repainting of damaged portions of a canvas. Only the damaged
part of the canvas is repainted, using /Paint. Despite the fact that only the
damaged area of the canvas is painted, all the code in your /Paint definition is
executed. If your /Paint has complicated, time-consuming calculations, you may
want to override /Fix so you can execute only the painting code that applies to
the damaged area. If your painting procedures are simple and not time-
consuming (e.g., doing a FillCanvas followed by a show), you can just use your
painting procedures “as is” and allow the server to clip away the bits that
aren’t necessary.

/FixChildren - /FixChildren -

Handles the repainting of canvas children. Sends /FixAll to all the children.
/FixChildren is a no-op for ClassCanvas; definitions are provided for
ClassCanvas subclasses. FixChildren should ignore opaque (damageable)
children since they will get their own /Damaged events.

ClassCanvas 53

5

/HandleDamage event /HandleDamage -

Callback executed when a canvas interested in receiving damage events is
damaged. It clips the canvas to the damage path then calls /FixAll. Because
/HandleDamage clips the canvas to the damage path only the part of the canvas
that got damage is repainted. /HandleDamage resets the canvasclip when /FixAll
returns.

/SaveBehind /SaveBehind boolean (NeWS Variable)

Hint to the server about how to handle damage to underlying canvases when
this canvas is put on screen. Default is false. See the NeWS 2.1 Programmer’s
Guide for the discussion on the SaveBehind attribute.

/Retained /Retained boolean (NeWS Variable)

Determines if a copy of the canvas is saved off-screen. In general retained
canvases do not receive damage, except when they are first mapped and
reshaped. However, if a Retained canvas is damageable and active, sending
/damage to it causes its /Paint method to be called. Covering and then exposing
a Retained canvas does not cause the /Paint method to be called.

See the NeWS 2.1 Programmer’s Guide for a discussion of Retained canvases.

Canvas menus

/Menu /Menu menu (Variable)

The menu that is managed by the canvas. By default, canvases have no menus.

/setmenu menu | null /setmenu -

Installs or removes a popup menu for the canvas. The menu is activated by the
user pressing the MENU button when the pointer is over the canvas. Can be
sent to a class or an instance. You shouldn’t send /setmenu to an object that
hasn’t been made Menuable (see /Menuable?, below).

/menu - /menu menu

Returns the value of /Menu.

/Menuable? /Menuable? boolean (Variable)

Determines whether a canvas should show its menu when MENU is pressed
with the pointer over the canvas.

5

54 The NeWS Toolkit Reference Manual — March 1991

Subclass it if all instances of this type of canvas should or should not show
their menus.

/setmenuable boolean /setmenuable -

Sets the value of /Menuable?.

/menuable? - /menuable? boolean

Returns the current value of /Menuable?.

/MenuStart invoker posname event /MenuStart invoker posname event menu true
 | invoker posname event false
 | invoker posname event null true

Determines which menu (if any) should be shown over this object, and where
it should be positioned. You can change where the menu pops up by:

• Overriding /MenuStart and modifying the XLocation, YLocation pair of the event;

and/or

• Changing the posname.

posname defaults to /Default, which means that the default item (or the item at
index 0 if there is no default) is aligned beside the given point. Currently, the
only other legal posname is /NorthWest, which corresponds to the top-left corner
of the menu. (posname is used by menu buttons for positioning their menus.)

invoker is the object that most recently caused the menu to be displayed. The
invoker also determines the local event manager in which the menu’s notifier
executes and is the default target of the menu. (See The invoker mechanism on
page 117 in ClassMenu.)

By default /MenuStart method returns the menu held in the /Menu class/instance
variable, and does not modify the positioning arguments.

Returning invoker posname event false causes event to be redistributed allowing
some other object to open a menu.

The invoker posname event null true return is provided so that you can respond to
MENU down over your canvas or region by not opening any menu and
preventing anyone else (e.g., the window under the canvas or region) from
opening a menu in response to the MENU.

This method is executed in the local event manager (see Callback context on
page 48).

ClassCanvas 55

5

/MenuStop menu /MenuStop -

Called when the menu (the root of the chain of submenus if such a chain is up)
is brought down. You can subclass it if you need to perform any action at this
time.

Mouse tracking

A Trackable canvas is one which supports interactions whose form is an
extended transaction which begins with button down on SELECT and ADJUST,
and before being terminated, may process mouse-motion, window crossings,
shift-key transitions, and/or timer events.

All the tracking methods execute in the local event manager.

/Trackable? /Trackable? boolean (Variable)

Determines whether the canvas is interested in mouse tracking events. Default
is false.

/settrackable boolean /settrackable -

Sets the value of /Trackable?.

/trackable? - /trackable? boolean

Returns the value of /Trackable?.

/starttracktimer initial repeat /starttracktimer -

Determines what the initial and subsequent timing intervals (in milliseconds)
are for receiving /TrackTimer (see below) messages. initial is the time interval that
determines how long from the receipt of the /starttracktimer message the first
/TrackTimer message is sent to the canvas. repeat is the time interval that
determines the time between /TrackTimer messages.

If repeat is 0, only one /TrackTimer message is generated (after initial milliseconds).

/starttracktimer can be sent from your /TrackStart method or at any subsequent
time, e.g., during /TrackCrossing.

/stoptracktimer - /stoptracktimer -

Stops the generation of /TrackTimer messages. This happens automatically when
the tracking operation is completed (i.e., the mouse button is released).

5

56 The NeWS Toolkit Reference Manual — March 1991

Tracking subclass responsibility methods

If you make your canvas Trackable you must provide a definition for those
methods that you want to respond to. A Trackable canvas is sent /TrackStart
when SELECT or ADJUST goes down while the pointer is over the canvas. You
use /TrackStart to determine which intermediate mouse actions (e.g., crossings,
motions) your canvas is interested in. The possible intermediate mouse actions
are:

• /TrackCrossing

• /TrackMotion

• /TrackTimer

• /TrackStop

All of the tracking methods are sent to you with the event as an argument.
From the event you can get which button went down (stored in /Name) and the
XLocation and YLocation of the event. You can get these coordinates by doing:

begin % event
XLocation YLocation
end % x y

/TrackStart event /TrackStart false | [/label...] true | /name true | nullarray true

Determines which intermediate mouse actions a Trackable canvas is interested
in. Returning false indicates your canvas is not interested in tracking this
particular mouse action and causes event to be redistributed. Any client that
returns a non-empty array from /TrackStart must also implement /TrackCancel
(see page 57). /TrackStart executes in the local event manager.

A true return also indicates which intermediate actions should be tracked. The
[/label. . .] true return from /TrackStart is an array of the intermediate mouse
actions you are interested in (/TrackCrossing, /TrackMotion, /TrackTimer and/or
/TrackStop). The /name true return simply selects the name of a TNT supplied
array. The only predefined array is:

/Default [/TrackCrossing /TrackMotion /TrackStop] def

In addition there is a special case that is allowed: you could define /TrackStart to
return:

nullarray true

ClassCanvas 57

5

 (an empty array and true) if you wanted to find out that the mouse button was
pressed but that’s all you wanted to do. This return from /TrackStart means
don’t redistribute the event and don’t send the canvas any of the other
callbacks.

The situation whereby a canvas always returns false should not occur. Instead
/Trackable? should be set to false.

/TrackStop event /TrackStop -

event is the terminating event for this interaction (typically, button-up on the
button that initiated /TrackStart). /TrackStop executes in the local event manager.

/TrackCrossing event /TrackCrossing -

event is a crossing event into or out of the subtree rooted at the client canvas.

/TrackMotion event /TrackMotion -

event is a MouseDragged event anywhere on the screen.

/TrackTimer event /TrackTimer -

event signifies a timer has expired. See /starttracktimer and /stoptracktimer.

/TrackCancel event /TrackCancel -

Cancels the tracking sequence that began with a /TrackStart. Equivalent to a
/TrackStop (see above), but without carrying through the transaction. It might
be generated by the STOP key, or a second press of an initiating button without
an intervening release e.g., due to lost events in a world crossing. A world
crossing occurs when a user presses a mouse button down over a NeWS
display and releases it over a non-NeWS display. TNT never sees the mouse up
and so sends /TrackCancel if the button is pressed again in the NeWS display.

Getting focus and keystrokes

/Keyable? /Keyable? boolean (Variable)

Determines whether the canvas is a potential client for the input focus and
therefore is interested in getting keystrokes. The default is false.

/setkeyable boolean /setkeyable -

Sets the value of /Keyable?.

5

58 The NeWS Toolkit Reference Manual — March 1991

/keyable? - /keyable? boolean

Returns the value of /Keyable?

/KeyStart event /KeyStart false | [/label...] true | /name true | nullarray true

Determines which types of keys a canvas is interested in when it has the focus.
The name of the event is either /AcceptFocus or /RestoreFocus. If the canvas
doesn’t want the event, i.e., doesn’t want subsequent keystrokes or doesn’t
want the focus, it should return false. The situation whereby a canvas always
returns false should not occur. Instead, /Keyable? should be set to false.

In most cases /Keystart should return true and an array of labels or a single
name. The single name identifies one of a set of arrays defined by The NeWS
Toolkit. The only array currently defined is:

 /Default [/StandardKey /NumPadKey] def

The array of labels identifies which types of keys the canvas is interested in
being notified about while it has the focus. Each such label is also the name of
a method in the client canvas. The possible labels are:

/StandardKey /NumPadKey /MetaKey

/StandardKeyUp /NumPadKeyUp /MetaKeyUp

/ArrowKey /FunctionKey /FunctionString

/ArrowKeyUp /FunctionKeyUp /FunctionStringUp

/ArrowString

/ArrowStringUp

See each method below for an explanation.

Thus, for example, if /KeyStart returns [/StandardKey] (or /Default, which
turns into an array that includes/StandardKey), then the client’s /StandardKey
method is called whenever an appropriate key goes down. (see /StandardKey
and /NumPadKey, below.)

The nullarray true return (empty array and true) allows you to have a canvas
that accepts the input focus but is not notified of keystrokes. One use of this
/KeyStart return is for canvases that want to get the PASTE key but no other
keystrokes. PASTE can be seen only by Keyable canvases.

ClassCanvas 59

5

/KeyStop event /KeyStop -

Sent to the canvas when the canvas loses the focus. The default behavior is for
the method to simply pop the event off the stack. Override /KeyStop if you
want to provide loss-of-focus feedback (e.g., changing the state of the caret).

Methods that can be specified in /KeyStart

For each method below, the unsuffixed form has an event with /DownTransition
in its Action field; the corresponding *Up message will have /UpTransition in its
Action field. The /Name of the event describes the specific key, as detailed
below.

If a client selects overlapping sets of keys, such as /ArrowKey and /FunctionString,
only the callback listed first will be called for those keys. E.g.,

[/ArrowKey /FunctionString /FunctionKey]

calls /ArrowKey when an arrow key is pressed, and calls /FunctionString when a
function key is pressed that is NOT an arrow key; /FunctionKey is never called
in this example. If a client selects both down- and up-transitions for
overlapping keys, e.g.,

[/ArrowKey /FunctionKey /FunctionKeyUp /ArrowKeyUp]

the first callback listed for each class of key determines the relative priority of
the message.

/StandardKey event /StandardKey -

/StandardKeyUp event /StandardKeyUp -

event’s Name is one of the standard typing array characters, possibly shifted by
Control, Shift, or Caps.

/NumPadKey event /NumPadKey -

/NumPadKeyUp event /NumPadKeyUp -

event’s Name is a character from the keyboard number pad. If the keyboard has
a NumLock key, this method will be called only when a NumLock is in effect.

5

60 The NeWS Toolkit Reference Manual — March 1991

/MetaKey event /MetaKey -

/MetaKeyUp event /MetaKeyUp -

event’s Name is one of the standard typing-array characters, possibly shifted by
Control, Shift, Caps. Unlike /StandardKey, these methods are called only if the
Meta key is held down. If you want /StandardKey to be called only when Meta
is not held down, request both /MetaKey and /StandardKey (in that order) and
provide a nullnotify /MetaKey method. (See /KeyStart for an explanation of the
significance of the request order.)

/ArrowKey event /ArrowKey -

/ArrowKeyUp event /ArrowKeyUp -

event’s Name is one of the names /Up, /Down, /Right, /Left, or /Home.

/ArrowString event /ArrowString -

/ArrowStringUp event /ArrowStringUp -

event’s Name is a string holding the ANSI escape sequence for a cursor
function corresponding to a cursor key (^[[A, ^[[B, ^[[C, ^[[D, or ^[[H for up,
down, right, left, or home, respectively).

/FunctionKey event /FunctionKey -

/FunctionKeyUp event /FunctionKeyUp -

event’s Name is of the form /FunctionF1, /FunctionR12, etc.

/FunctionString event /FunctionString -

/FunctionStringUp event /FunctionStringUp -

event’s Name is a string holding the ANSI escape sequence for a function key.
Its form is ^[[nnnz, with nnn a 3-digit decimal number in the range 192 - 207
for a key on the left pad, 208 - 223 on the right, 224 - 239 on top, and 240 - 255
for the “bottom”—many of which appear on the right side of a type-4
keyboard.

Targets of global function keys

Table 5-3 on page 61 shows which canvas is the target of the global function
keys. The target can be one of the following:

ClassCanvas 61

5

Target Explanation

Focus the current input focus; a canvas must be Keyable to get focus.

Selection the current selection.

Cursor the object beneath the cursor.

Table 5-3 Global function key targets

 Key Target Notes

 Again Focus sent to the focus, with a default no-op handler in
ClassCanvas

 Copy Selection Handled by the current selection.

 Cut Selection Handled by the current selection.

 Find Focus sent to the focus, with a default no-op handler in
ClassCanvas.

 Front Cursor windows are Frontable by default.

 Help Cursor

 Open Cursor windows are Openable by default,

 Paste Focus can only be seen by Keyable canvases (see
Getting focus and keystrokes on page 57).

Props Selection

Stop Various various global input reinitializations occur and
then it gets redistributed.

Undo Focus sent to the focus, with a default no-op handler in
ClassCanvas.

Again, Find, and Undo keys

Canvases that want to be informed about presses on the Find, Undo and Again
keys must be Keyable. The following handler methods have no-op definitions
(they just pop the event off the stack). If you want your canvas to respond to
these keys you must provide definitions.

/HandleAgain event /HandleAgain -

The Again key callback.

5

62 The NeWS Toolkit Reference Manual — March 1991

/HandleFind event /HandleFind -

The Find key callback.

/HandleUndo event /HandleUndo -

The Undo key callback.

Opening and closing canvases

An Openable canvas is one that is a Window, so that it may be opened itself, or
one that contains objects that may be opened, e.g., a file-viewer.

/Openable? /Openable? boolean (Variable)

Determines whether the canvas is interested in “open” events and wants the
/HandleOpen method called.

/setopenable boolean /setopenable -

Sets the value of /Openable?.

/openable? - /openable? boolean

Returns the value of /Openable?.

/HandleOpen event /HandleOpen -

The method that is executed when an Openable canvas gets an open event. The
recipient Window / object at the Open event’s coordinates should be opened
or closed or zoomed, per the /Action field of the event. The value of /Action is one
of: /Open, /Close, /Zoom, /Unzoom, /Toggle.1

1. Implementation note: The event might be an up-transition on the OPEN key, or it could be an up-transition
on the mouse’s MENU button, or other events as defined by the UI. The code handling these various events
will put the desired action (i.e.,one of /Open, /Close, /Zoom, /Unzoom or /Toggle) into the /Action field
and then call /HandleOpen. Clients should not make any assumptions about the event except for the
coordinates and /Action.

ClassCanvas 63

5

Help facilities

The TNT help facility provides a spot help facility on a per-application basis. A
Helpable canvas undertakes to provide some help for any location in its
canvas. In addition, the help facility uses the Wire Service and has client-side
functions. These functions can be found in Chapter 26, The Wire Service, Help
facilities on page 243.

/Helpable? /Helpable?

Determines whether the canvas is added to the help service when the canvas is
activated. Default value is false (not added).

/sethelpable boolean /sethelpable -

Sets the value of /Helpable?.

/helpable? -/helpable? boolean

Returns the value of /Helpable?.

/HandleHelp event /HandleHelp -

Callback executed when a canvas that is Helpable gets a help event while the
pointer is over the canvas.

/HelpKeyword /HelpKeyword keyword-string (Variable)

The PostScript string that determines where the help system looks for the help
information for the canvas and which object it’s looking for. The keyword-
string has the following format:

(filename:objectname)

filename should be located in a path specified by the HELPPATH environment
variable. The format for the help file should be the same as the files in
$OPENWINHOME/lib/help and should follow the same naming conventions as
these files. For example, if you have a Helpable canvas, mycanvas, and a help
file, my_application_help, the keyword-string for this object would be:
my_application_help:mycanvas.

In my_application_help the help message for mycanvas would be in the
format:

:mycanvas

<the help message>

5

64 The NeWS Toolkit Reference Manual — March 1991

/sethelpkeyword keyword-string /sethelpkeyword -

Sets the value of /HelpKeyword.

/helpkeyword event /helpkeyword keyword-string

Returns the value of /HelpKeyword. Subclassers may override /helpkeyword to
provide messages over any special areas of their Helpable canvases. You would
get the coordinates of the help event out of the event and determine whether
that point was in the area you wanted to provide help for. /HelpKeyword is
overridden in some classes of ClassCanvas to provide specialization.

Moving canvases along the z-axis (Front key)

A Frontable canvas is one which is a Window (Frame), which can be reordered
in Z, or contains objects subject to such a reordering (e.g., a structured graphics
editor).

/Frontable? /Frontable?

Determines whether the canvas is interested in front events and wants the
/HandleFront method called.

/setfrontable boolean /setfrontable -

Sets the value of /Frontable?.

/frontable? - /frontable? boolean

Returns the value of /Frontable?

/HandleFront event /HandleFront -

Callback executed when a canvas that is Frontable gets a front event when the
pointer is over the canvas. The value of the /Action field is one of /Front /Back,
or /Toggle. Initially defined as a no-op.1

1. Implementation note: The event might be an up-transition on the FRONT key, or it could be an up-transition
on the mouse’s MENU button, or other events as defined by the UI. The code handling these various events
will put the desired action into the /Action field (i.e.,one of /Front, /Back or /Toggle) and then call
/HandleFront. Clients should not make any assumptions about the event except for the coordinates and
/Action

ClassCanvas 65

5

Selectables

Selections come in two parts, the UI part which is discussed in this section and
the data part, which is discussed in Chapter 20, ClassSelection. In addition,
there is a demo in the TNT directory, called circles, which you can examine to
see how the methods discussed in this section and in ClassSelection are used.

A selectable canvas must define /SelectableType to one of /Canvas, /Graphic, /Text,
or /Dynamic and it must implement the notification methods listed in the section,
Selectable subclass responsibility methods on page 67. Of the methods listed only
/SelectionCancel has a default implementation. The other methods are
considered strict subclass responsibility. See Subclass responsibility on page xviii
in the Preface for a definition of “strict subclass responsibility methods.

 /Selectable? /Selectable? boolean (Variable)

Determines whether the canvas is interested in getting events as a selectable
object. When true the canvas can receive selection events. Its default value is
false. Further, the ClassCanvas variable /Holder is promoted when you
instantiate and activate your canvas (see /Holder on page 66). You can set
/Selectable? when you subclass ClassCanvas or on the fly using /setselectable
(page 65).

/setselectable boolean /setselectable -

Sets the value of /Selectable?

/selectable? - /selectable? boolean

Returns the value of /Selectable?.

/SelectableType /SelectableType /Text | /Graphic | /Canvas | /Dynamic (Variable)

Determines how the system should handle selections on the canvas; defaults to
/Text. Set the value of /SelectableType when you create your canvas subclass. The
possible values of /SelectableType are interpreted as follows:

• /Text indicates that text within the canvas can be selected. In addition, the
selection UI provides the text highlighting styles shown in Table 5-4. These
styles are possible values of the /Style variable in ClassSelection. The values
are set for you by the selection mechanism but it is your responsibility to
actually paint each style on the canvas.

5

66 The NeWS Toolkit Reference Manual — March 1991

Table 5-4 The text highlighting styles.

Highlight name Explanation

/Default the standard inverted highlighting

/UnderScore paints a thin line under selected text to indicate a Quick
Copy/Paste

/StrikeThrough paints a thin line through the text to indicate a Quick
Cut/Paste operation.

• A value of /Graphic means that graphic objects within the canvas can be
selected. For example, in a file manager-type application you may be able to
select icons and move them around.

• When the value of /SelectableType is /Canvas, the canvas itself can be selected.
For example, you may want to select windows so you can move groups of
windows around the screen. For a /SelectableType of /Canvas, /Level has no
meaning. For an explanation of /Level see Table 20-2 on page 180 in
ClassSelection.

• A value of /Dynamic means that Selectable objects within the canvas can
change type between /Text and /Graphic. This dynamic changing of type is
useful for graphics editors that have different modes for manipulating text
as a graphic object as well as normal text operations like insertions and
deletions of characters. For example text selected with a modifier key held
down might display the control points of its bounding box. Canvases of
/SelectableType /Dynamic must implement /IdentifySelectable (page 71).

/Holder /Holder canvas (Variable)

Determines which canvas is a selection client. If /Selectable? is true the Toolkit
sets /Holder to be the canvas. However, if a single selection may exist in two or
more canvases (e.g. a split view in a text editor, or several icons on the
desktop), then the Selectables for those two canvases should have the same
/Holder. This supports such behavior as starting a selection in one canvas of a
split view and then extending it by clicking in the other canvas. This single
holder can be an instance of ClassCanvas or any other object. For reasons of
reference counting and garbage collecting it is recommended that the single
holder for multiple views be a canvas.

ClassCanvas 67

5

/setselectionholder any /setselectionholder -

Resets the value of /Holder. This method should not be called within the bounds
of a SelectionStart / SelectionStop or DragStart / DragStop pair. For correct
memory management, the argument should be an object that can go obsolete
—not a name or number; null is valid only when /Selectable? is false.

/selectionholder - /selectionholder any

Returns the current value of /Holder.

Selectable subclass responsibility methods

In order to implement Selectable canvases you must provide definitions for the
methods in this section. One use for the event that is given as an argument to
these methods is to determine where the event occurred if you need that
information; event gives you the current-transformation-relative point.

/NewSelection event rank /NewSelection selection

Returns an instance of your subclass of ClassSelection. For information on how
to create a subclass of ClassSelection see Making selections on page 179 in
ClassSelection. The event input queue is blocked until /NewSelection returns.

Subclasses of ClassSelection require rank and holder arguments to the /new
method. TNT puts the rank on the stack and because /Holder evaluates to the
canvas you can use it to put the Holder on the stack prior to your call to /new:

/NewSelection { % event rank => selection
Holder /new YourSelectionSubclass send% event sel
exch pop % sel

} def

The first line puts the Holder (the canvas) on the stack and uses it and the rank
as arguments to /new. The second line simply pops the event off the stack and
leaves the selection.

The selection mechanism keeps a reference to this selection instance. The
reference is used for all subsequent interactions between the selection
mechanism and the selection client from the time /NewSelection is called until
your selection instance is destroyed.

5

68 The NeWS Toolkit Reference Manual — March 1991

/SelectionContext event selection | event null /SelectionContext /SelectedObject
| /UnselectedObject
| /Background
| /SelectedObject boolean
| /UnselectedObject boolean
| /Background boolean

Returns one of the listed context names, (or, optionally, a context name and a
boolean) depending on the relationship between the coordinates of event and
the location of the current selection (if any). /SelectionContext is called to
determine whether to start a selection or a bounding box.

Table 5-5 Selection context names

Name Location of event

/SelectedObject Inside the current selection. You could start a
drag or toggle a multiobject selection.

/UnselectedObject Inside an object that is not selected but could be.
Don’t start a drag but you could toggle the
selection.

/Background No object is selectable at that location. You could
cause the bounding box of a selected object to be
displayed. Not meaningful for selectables of
type /Text.

The Toolkit allows selections to be initiated using ADJUST, however,
conditions can arise that are ambiguous. The Tookit will occasionally need to
determine whether the pointer is over a selectable object when there is no
currently registered selection in that canvas (Or when the selection is not of an
appropriate /Rank for the check in progress.) When this occurs, the selection
parameter to /SelectionContext will be null.

Under certain circumstances the selection UI will send /SelectionContext to your
canvas with an event and null as arguments. This send can occur if a user tries
to extend a selection in a way that can’t result in a new selection. For example,
in a graphics editor with some object selected, the user presses ADJUST in the
editor’s background. No selection is created or extended and the canvas is sent
/SelectionContext with event and null as arguments. In this case the returned
name should not be /SelectedObject.

ClassCanvas 69

5

You can choose that your /SelectionContext method return a context name and a
boolean. The context name boolean return is only meaningful for /Graphic
/SelectableTypes. true means the event’s coordinates are inside the context found
by the last call to /SelectionContext. You keep track of where the selection
context is. When the object selected is different than the last call to
/SelectionContext, return the selection context name and false.

/SelectionStart event selection /SelectionStart boolean

Resolves the coordinates of the event to an object and starts a selection on it
with selection’s attributes. (See Table 20-2 in ClassSelection, page 180 for a
discussion of selection attributes.) The object is determined by the value of
/SelectableType. selection is the instance that was created by the previous call to
/NewSelection. /SelectionStart is called for every selection transaction in which a
selection is made or adjusted and may be preceded by calls to /IdentifySelectable
(page 71), /SelectionContext (page 68), and/or /NewSelection (page 67).

In those cases where you want to reject the selection, /SelectionStart should
return false. Returning false allows the Toolkit to pass the event on to other
possibly-interested objects.

Adjusting the selection

Adjusting a selection refers to altering its physical extent, i.e., you extend or
reduce the selection. For example a text selection comprised of a single word
might be adjusted to include an entire paragraph, or a selection consisting of a
single graphic object might be adjusted to include other objects.

/SelectionAdjust event selection /SelectionAdjust -

Adjusts the boundary of the given selection to lie on the object at the event’s
coordinates. Sent to the canvas when the selection is extended either by mouse
movement with SELECT or ADJUST held down or when ADJUST goes down.
/SelectionAdjust is always preceded by a /SelectionStart (page 69) and followed by
either /SelectionStop or /SelectionCancel (page 71).

It is possible for a /SelectionAdjust to indicate a point outside the area in which
contents can be displayed (e.g., off the bottom of a text window). This supports
an auto-scroll feature, such as defined by the OPEN LOOK user interface.
When an application gets such an /SelectionAdjust, it should (if possible) scroll
some new data into the visible region from the hidden region indicated by the

5

70 The NeWS Toolkit Reference Manual — March 1991

location of the /SelectionAdjust, and select everything up to that border. It
should repeat this process as long as /SelectionAdjust messages continue to be
received.

/SelectionStop event selection /SelectionStop -

Signals the end of the adjusting operation. /SelectionStop is always called to
complete a selection transaction begun by /SelectionStart and not cancelled by
/SelectionCancel. Use /SelectionStop to clean up anything you created (e.g., an
overlay canvas) in /SelectionStart.

Dragging the selection

The drag methods are used for drag and drop operations. A canvas must be
Receptible in order to handle drag and drops, see Drag and Drop—receptible
canvases on page 71. The methods in this section assume a selection already
exists, i.e., you’ve already created your subclass of ClassSelection and it’s been
instantiated. The method calling sequence for dragging is:

1. SELECT is pressed over the selection.

2. /DragStart is sent to your canvas. the drag image is created here.

3. With SELECT still down the drag image is moved. Your canvas is sent
/DragAdjust.

4. SELECT is released. Your canvas is sent /DragStop. Clean up whatever user
feedback you constructed in the /DragStart. If SELECT is released over a
Receptible canvas, then that canvas is sent /HandleReception. See
/HandleReception on page 72.

/DragStart event selection /DragStart -

Initiates user feedback for a Drag (direct-manipulation move or copy) of the
given selection; e.g., start an overlaid image of the value being dragged. If a
grasping point is needed (i.e., if the cursor coordinates are needed to position
the feedback) use the coordinates of event. /DragStart is executed in the local
event manager but with the input queue blocked.

/DragAdjust event selection /DragAdjust -

Moves a drag-image so its grasp-point is at the coordinates of the given event
or gives other feedback of a drag in progress. For example if you are moving a
selectable canvas by dragging around a wire frame with the mouse the

ClassCanvas 71

5

selection UI code calls /DragAdjust to tell you where the mouse is (the
coordinates of event) so you could move the wire frame there. /DragAdjust is
always preceded by a /DragStart and followed by a /DragStop or /SelectionCancel.

/DragStop event selection /DragStop -

Signals the end of the dragging operation. Sent to the canvas when the button
that initiated the drag goes up.

/SelectionCancel selection SelectionCancel -

Sent to a Selectable canvas when a selection-in-process gets cancelled. In
general this occurs only when the user presses the STOP key or starts a
selection in a TNT window then lets up on SELECT over a SunView window
where NeWS can’t see the release. In the latter case when the user moves the
pointer back to a TNT window and presses SELECT, TNT gets a /MouseDown on
a button thought to be already down. TNT sends /SelectionCancel in this case to
clear the selection originally begun.

/IdentifySelectable event /IdentifySelectable selectable-type target true | false

Sent to a Selectable canvas whose selectable type is /Dynamic. The canvas must
determine and return its current selectable type, (either /Text or /Graphic, see
/SelectableType on 65) at the location of the event. target is the object to which
other subclass responsibility selection methods should be sent. target may be
the same canvas that got the /IdentifySelectable message, but in the case of a bag
containing Selectable regions, target is the region containing event. A false return
means no selection can currently be made at the given location.

Drag and Drop—receptible canvases

A Receptible canvas is one that is interested in being on the receiving end of a
drag and drop operation. These operations are represented by events with the
Name /TransferSelection. A reception client may choose to reject a transfer, for
example, if the selection being transferred cannot render itself in a suitable
data format. You must implement either /HandleReception or /AsciiReception,
which are listed in the subclass responsibility section, to use The Toolkit’s drag
and drop facilities.

/Receptible? -/Receptible? boolean

Determines whether the canvas is interested in getting drag-and-drop events.

5

72 The NeWS Toolkit Reference Manual — March 1991

/setreceptible boolean /setreceptible -

Sets the value of /Receptible?.

/receptible? - /receptible? boolean

Returns the value of /Receptible?.

Handling the drop—subclass responsibility methods

/HandleReception event selection /HandleReception boolean

Insert selection at the “focus” or at the coordinates given in the event, as
described below. Some clients may choose to ignore this distinction if
insertions are permitted only at a single location (e.g., current type-in point).

In receptible canvases /HandleReception must distinguish not only the type of
transfer but also the destination of each type of transfer.

The types of transfers are:
1. A Move (the source is deleted after the transfer is completed).

2. A Copy (the source is not deleted after the transfer is completed).

The two destinations are:
1. The receptible canvas’s insertion point (for a Paste or Quick-Paste)

2. The cursor location (for a Drop).

The type and destination of selections combine to create four cases. Each case
is distinguished by the name in the Name field of the event argument passed
to /HandleReception. See Table 5-6 for the value of the Name field for each type
of transfer.

Table 5-6 Transferring selections and event name

Transfer type Destination /Name (of event)

Copy Insertion Point /CopyToCaret

Copy Cursor Location /CopyToLocation

Move Insertion Point /MoveToCaret

Move Cursor Location /MoveToLocation

ClassCanvas 73

5

/HandleReception returns true if the transfer succeeded; false if it fails, or to cause
the event to be redistributed further up the canvas tree. (E.g., if an icon is
dropped on a text field it might fall through to the parent canvas or even to the
desktop.)

The default method extracts the selection contents as an ASCII string
(returning false if the selection cannot represent itself in that form) and calls
/AsciiReception to process the string. Thus you must either override
/HandleReception or add /AsciiReception.

/AsciiReception event string /AsciiReception -

Override to receive ASCII selections (i.e., what you get from /ContentsAscii in a
selection; see Chapter 20, ClassSelection, Table 20-2) or override
/HandleReception to get non-ASCII selections. /AsciiReception has no default
implementation.

Obsolescence and destruction

Every object is automatically the object of an interest in its own obsolescence
(the disappearance of the last hard reference to it). When the last hard reference
to an object is broken and some soft references exist, the object is sent the
obsolete message, in the context of the global event manager; TNT catches the
obsolete event and sends /destroy to the object.

It is also useful for some objects (“aimers”) to respond to the obsolescence of
other objects (“targets”). The interface for this is:

target aimer /addclient ObsoleteService send
target aimer /removeclient ObsoleteService send

When a target goes obsolete, the aimer is sent a message in the GEM context:

 target /HandleObsoleteTarget aimer send

When this happens, the aimer does not need to call /removeclient to unregister
its interest in the target; this is done automatically. Subclasses that override
/HandleObsoleteTarget should always do a super send.

5

74 The NeWS Toolkit Reference Manual — March 1991

/destroy - /destroy -

Destroys the canvas and any children it manages (e.g., its menu).In a garbage
collected system you get rid of an object by dropping any references you
created to it. If the toolkit holds references to your objects, they will be
dropped when you drop your references: you don’t need to worry about what
reference the toolkit maintains.

You should override /destroy in your subclasses when instances of these classes
hold references that directly or indirectly point back to the instance. The parent
-> child -> parent circle between a bag and its regions is an example of this
kind of reference. In this case your /destroy should break the circle and call:

 /destroy super send.

You can also override /destroy to send /destroy to other objects you’re
managing in order to minimize the generation of obsolete events.

/destroy is executed in the global event manager.

75

6-0
6-0

ClassControl 6

ClassControl is a mixin class and is not intended to be instantiated itself. The
purpose of ClassControl is to establish a common interface for those classes
(generally controls like buttons, scrollbars and settings) that execute notifiers,
have default choices, and present a visual indication of the object’s ability to
accept user input.

ClassControl is directly mixed into the following classes of controls:

• ClassButtons

• ClassHSlider

• ClassScrollList

• ClassSettings

• ClassVScrollbar

• ClassTextField

In addition, because menus have many of the same characteristics as controls,
i.e., they execute notifiers and have default choices, ClassControl is also mixed
into:

• ClassMenu

Most controls change in discrete quanta: e.g., when you turn a settings item on
or off, or when you drag and release a slider. In some cases, where it is not
obvious how often the client wishes to be notified, the Toolkit broke

6

76 The NewS Toolkit Reference Manual — March 1991

notification into two levels: notifier and previewer. Clients who wish
intermediate notification can obtain it via the previewer (e.g., while dragging a
slider).

An additional set of interfaces implementing The NeWS Toolkit’s target
mechanism is also included in ClassControl. Targets allow you to safely keep a
reference to one object inside another object. Target references are “safe” in the
sense that they look after all the associated NeWS reference counting issues.
For a discussion of NeWS memory management see the NeWS 2.1 Programmer’s
Guide.

Controls and menus use targets because they have notifiers that specify the
action that takes place when a button is pressed, a slider is dragged, a menu
item is selected and so on. Typically, this action consists of sending a message
to some other object. The target mechanism maintains a soft reference to this
other object.

When an object has only soft references, NeWS generates an obsolete event.
The NeWS Toolkit’s target mechanism listens for obsolete events on targets and
ensures that when a target goes obsolete, the Toolkit’s soft reference to the
target is broken. When the last soft reference is broken the target can get
garbage collected.

Control values

With the exception of buttons, controls also possess an internal value which is
presented in a visual manner to the user. As the user interacts with these
controls, the internal value changes. This value can also be modified through
programmatic means, which would update the visual representation. A simple
example would be a check box which maintains an internal value to indicate
whether or not it is checked.

The interpretation of the value of a control is dependent on the type of control.
For controls with items, buttons, and settings, the value of the control
represents the zero relative integer referencing the chosen item. Sliders define
their value as an integer constrained between a minimum and maximum
range. In text fields value is a string.

/setvalue value /setvalue -

Sets the value of the control.

ClassControl 77

6

/value - /value value

Returns the value of the control.

Notification and previewing

Notification is performed within the context of the Local Event Manager
(LEM). See ClassCanvas, Event Management.

/setnotifier notifier | null /setnotifier -

Sets the notifier in the control. When notifier is specified as a PostScript name
type, it is used in conjunction with the target interfaces to dispatch notification
to the appropriate target. During notification, the current value, the control
instance, and the notifier name are pushed on the stack, prior to invoking
/sendtarget. In other words, your notifier should be written to take a value and
an instance as arguments. (See Managing references between controls and other
objects, below.) Using null makes the notifier a no-op, i.e., it turns off
notification. The default is for the notifier to be null.

Although not recommended, notifier can also be specified as a PostScript code
fragment. The current value, the control instance, and the fragment are pushed
on the stack, then the fragment is executed.

/notifier - /notifier notifier

Returns the notifier for the control.

/setpreviewer previewer | null /setpreviewer -

Sets the previewer procedure for the control. null removes the previewer from
the control. You should see the individual controls to see if and when
previewing is done.

/previewer - /previewer previewer

Returns the control’s previewer procedure.

/ExecuteNotifier value notifier | previewer /ExecuteNotifier -

Executes the given notifier or previewer in the context of the local event
manager. If you don’t want your control notifier to execute in the LEM then
you should subclass that control to override /ExecuteNotifier in order to provide
a different context for notifier execution.

6

78 The NewS Toolkit Reference Manual — March 1991

Managing references between controls and other objects

/settarget object /settarget -

Sets object as the target of the control’s or menu’s notifier. If a previous target
exists it is overwritten.

/cleartarget null | object /cleartarget -

Clears the target. If null is given the target is cleared. If object is specified then
the target is cleared only if object and the target are the same. This latter
specification ensures that the target is not incorrectly cleared.

/sendtarget arguments /method /sendtarget results

Sends /method and any required arguments to the target.

/target - /target null | object

Returns the target.

/HandleObsoleteTarget object /HandleObsoleteTarget -

Use for breaking reference chains. The default is to perform /cleartarget.

Destruction

/destroy - /destroy -

Destroys the control.In a garbage collected system you get rid of an object by
dropping any references you created to it. If the toolkit holds references to your
objects, they will be dropped when you drop your references: you don’t need
to worry about what reference the toolkit maintains.

You should override /destroy in your subclasses when instances of these classes
hold references that directly or indirectly point back to the instance. The parent
-> child -> parent circle between a bag and its regions is an example of this
kind of reference. In this case your /destroy should break the circle and call:

 /destroy super send.

You can also override /destroy to send /destroy to other objects you’re
managing in order to minimize the generation of obsolete events.

/destroy is executed in the global event manager.

79

7-0
7-0

Display Items 7

Display items are not a class, rather they are a set of lightweight drawing
specifications and associated utilities. You shouldn’t rely on being able to
reference userdict from display items. Make sure that they are completely self
contained, or depend just on the object on which they are being drawn.

All display items have a “size” or bounding box and they are rendered starting
with the current point at the lower left of that bounding box.

Figure 7-1 Where display items are rendered

A display item is a simple specification that allows for a visible part, called the
“atom,” and some number of modifiers to affect the rendering of the atom.
Most places in the toolkit where you need to supply a string, such as for a label
or a menu item, you can, in fact, provide any display item.

The display item specification looks like:

atom

or

[atom modifier modifier ...]

where atom is one of the following:

.
current point

display item

7

80 The NeWS Toolkit Reference Manual — March 1991

string, canvas or executable array

and a modifier is one or both of the following:

font, color

The case where the atom is a string is the most common. The string is shown in
the current font with its bounding box to the right of the current point. The size
of the display item is determined by the bounding box of the string. Moreover,
if the font extends below its baseline, the baseline of the font will be above the
current point.

Figure 7-2 The relationship of a string’s bbox, font baseline and the current point

If the canvas atom is used, the canvas is rendered as an image at the current
point. When the /Color key in canvas is true, imagecanvas is used to paint the
canvas; otherwise, imagemaskcanvas renders the canvas.

Most of the modifiers for a display item change the current graphics state in
some way. A modifier that is a font will set the current font to new font. A
color modifier changes the current color. Here are a few examples of valid
display items:

(test)
[(red test) 1 0 0 rgbcolor]
[(red times test) /Times-Roman findfont 12 scalefont 1 0 0 rgbcolor]

The executable array form of an atom is used to supply a drawing procedure
for the atom; it is a PostScript fragment that can respond to /paint and /size. The
executable array must take one argument on the stack, a name that is either
/size, or /paint. The executable array should return the width and the height that
the drawing will occupy if the argument is /size. The image should be rendered
in the current NeWS graphics state if the argument to the executable array is
/paint. The following is an example of the executable array form of an atom:

.
current point

string bounding box

Baseline of font

Display Items 81

7

{
/paint eq { % use currentpoint to paint

gsave
0.5 setgray 15 15 rmoveto currentpoint 2 copy
10 10 360 arc fill 10 0 360 arc 0.8 setgray stroke
grestore

} { % /size
31 30 % width height

} ifelse
}

Notice that the array should assume that the current point, current color, etc.
are available in the current NeWS graphics state.

Utility procedures

The procedures in this section are defined in ClassCanvas and ClassRegion and
must be called within the send context of a canvas or region.

DisplayItemPaint display-item DisplayItemPaint -

Paints the display-item.

DisplayItemSize display-item DisplayItemSize width height

Returns the width and height of the display item.

DisplayItemMaximumSize [display-item . . .] DisplayItemMaximumSize width height

Returns the maximum width and height for an array of display items.

DisplayItemRect /paint width height DisplayItemRect -

/size width height DisplayItemRect width height

Used to build an executable-array type of display item. For example,

[{20 20 DisplayItemRect} 0 0 1 rgbcolor

builds a blue 20x20 display item.

7

82 The NeWS Toolkit Reference Manual — March 1991

83

8-0
8-0

Gauges 8

Figure 8-1 The gauge subtree

A gauge is a linear read-only control that displays a numerical value bounded
by minimum and maximum values. By read-only it is meant that gauges are
not manipulated directly by users and thus have no notifier or previewer.

Creation

/new parentcanvas /new gauge

Creates a gauge instance. Send to ClassHGauge to create a horizontal gauge
and ClassVGauge to create a vertical one.

ClassHGauge ClassVGauge
(ClassControl)

ClassObject ClassDrawable

ClassRegion

8

84 The NeWS Toolkit Reference Manual — March 1991

Gauge values

/setvalue value /setvalue -

Sets the value of the gauge. Any number can be given to /setvalue but it is
normalized and forced in range. The gauge is updated to reflect the new value
if the gauge is valid.

/value - /value value

Returns the value of the gauge. The number returned by /value is always
normalized and in range. See page 84, /setnormalizer for information on
normalization.

/setrange minimum maximum /setrange -

Sets the minimum and maximum (inclusive) value of the gauge. The default
range is 0 to 100, inclusive. After changing the range, if you want the gauge to
be large enough to display every whole number in its range, you should
reshape the gauge to its preferred size. Invalidates the gauge.

/range - /range minimum maximum

Returns the minimum and maximum value of the gauge

Gauge granularity.

/setnormalizer proc /setnormalizer -

Sets the normalizer procedure. Invalidates the gauge. The normalizer
procedure controls the gauge granularity. The normalizer procedure takes the
unconstrained value on the stack and leaves a constrained value on the stack.
A typical normalizer would be “{round cvi}”, to constrain the value to rounded
integers. By default the normalizer is defined as a null proc, which does not
change the value.

/normalizer - /normalizer proc

Returns the normalization procedure

Gauges 85

8

Visual presentation of gauges

/settickmarks distance /settickmarks -

Specifies that you want tick marks to be drawn below the gauge. Invalidates
the gauge. distance is the space, in gauge value units, between consecutive tick
marks. 0 specifies no tick marks (the default). You should reshape the gauge to
its preferred size after adding or eliminating the tickmarks because gauges
with tickmarks are a different size than gauges without them. “Gauge value
units” requires some explanation: if your gauge has a value that ranges from 0
to 100 then the gauge has 101 gauge value units.

/tickmarks - /tickmarks distance

Returns the distance (in slider value units) between consecutive tick marks.
Returns 0 if there are no tickmarks.

/setvisualstate state /setvisualstate -

Sets the visual state of the gauge. state is one of /Active or /Inactive.

/visualstate - /visualstate state

Returns the visual state of the gauge.

Geometry

/minsize - /minsize width height

Returns the minimum size of a gauge. The default is what is deemed the
smallest reasonable size for a gauge.

/preferredsize - /preferredsize width height

Returns a size that is large enough to display every whole number in the
gauge’s range.

/offset name /offset x y

Returns the offset from the gauge’s lower left corner, to the named point on the
gauge. You may refer to the names during a calculated layout. Gauges know
about the following four offset names: /MinEnd, /MaxEnd, /MinTick, and /MaxTick.
For an explanation of how to use the offsets see Sliders, Slider label positioning,
page 197.

8

86 The NeWS Toolkit Reference Manual — March 1991

87

9-0
9-0

ClassItemGroup 9

Figure 9-1 The ClassItemGroup subtree

ClassItemGroup is a utility class that is designed to reduce the number of
clients that need to be added to a bag. Similar controls are managed as
individual items in an item group. Controls implemented as groups include
buttons, settings, and checkboxes. The group is responsible for arranging and
painting its items on a in a rectangular area. State information is maintained by
the group and appropriate event processing is also performed.

Creation

/new placement parentcanvas /new instance

Subclasser method: /NewInit

Returns an instance of ClassItemGroup. In the NeWS Toolkit you generally
instantiate subclasses of ClassItemGroup rather than the class itself. placement is
one of: /Spaced, /Absolute, /Calculated, or /Grid. (See Setting the item list on page 88.)

ClassObject ClassDrawable

ClassRegion ClassItemGroup
(ClassLayout)

9

88 The NeWS Toolkit Reference Manual — March 1991

/NewInit placement parentcanvas /NewInit instance

Initializes an instance. Called by /new. Override it to perform any specific
initialization on the instance. When it is overridden in subclasses, the method
should do a super send so that the superclass can do its own initialization.

Items

When subclasses of ClassItemGroup are instantiated (sent the /new method)
they get passed a placement parameter; this placement parameter determines
how the group’s items are laid out and what kind of layout data is given to
/setitemlist (below).

The items in a group are descriptions, not objects. Each item is specified using
display items. Internally, the item is stored as a PostScript dictionary which
includes the following keys : /ItemX, /ItemY, /ItemWidth, and /ItemHeight. See Item
creation—strict subclass responsibility methods, for an explanation.

Setting the item list

Items are referenced based on their insertion order. Each item can be accessed
through a zero relative integer representing its position in the group. This
integer is not a constant, because items can be inserted and/or deleted.

For /Absolute and /Calculated groups, layout data is required during the call to
/setitemlist. However, for groups of /Calculated placement you can provide a
default layout by using /setlayoutparameters (page 89). /Spaced an /Grid groups do
not require layout data at setitemlist time. The different specifications of the
layout data are in Table 9-1.

Table 9-1 Layout data required during calls to /setitemlist.

placement layout-data

/Spaced none required

/Absolute x-y coordinate pair: [x y]

/Calculated a compass point and a code fragment that the
Toolkit executes whenever the item group is
reshaped: [compass-point {calculated protocol }]

/Grid none required. Define the grid using
/setlayoutparameters.

ClassItemGroup 89

9

/Spaced and /Grid placement
/setitemlist [item1 item2 . . .] /setitemlist -

Sets the item list for groups using /Spaced or /Grid placement. /Spaced groups
provide a minimal default layout scheme. /Grid groups have their layout data
set using /setlayoutparamters.

Setting the layout for /Grid placement

You use /setlayoutparameters to define the shape of the grid in group’s with /Grid
placement.

/setlayoutparameters [layout-by-rows? rows columns] /setlayoutparameters -

Sets the layout parameters for /Grid placement format. layout-by-rows? is a
boolean; if true rows are filled with items before columns; if false, columns are
filled before rows. rows is the number of rows in the item group; columns is the
number of columns.

Absolute placement
/setitemlist [item1 [x1 y1] item2 [x2 y2] . . .] /setitemlist -

Determines the set of items that are managed by an item group with absolute
placement, and where they are to be placed.

Calculated placement
/setitemlist [item1 [compass-point { calculated protocol }] . . .] /setitemlist -

Determines the set of items that are managed by an item group with calculated
placement, and how they are to be laid out.

Setting a default layout for /Calculated placement

/setlayoutparameters [compass-point {calculated-protocol}] /setlayoutparameters -

Sets the default placement format for /Calculated placement. If you use
/setlayoutparameters for an itemgroup of placement-type /Calculated, you can use
nullarray in place of the layout data normally associated with an item during a
call to /setitemlist. Generally, you will want to provide layout data for the first
item in the list and then have all subsequent items use the default. That is if
you did:

9

90 The NeWS Toolkit Reference Manual — March 1991

[/West { /East PREVIOUS POSITION }] /setlayoutparameters myitemgroup send

Then, during a call to /setitemlist you could do:

[item1 [/West {/West PARENT POSITION}]
 item2 nullarray item3 nullarray

] /setitemlist myitemgroup send

which would position the first item’s west edge along the group’s west edge
and all subsequent items’ west edges along the previous items’ east edges.

Figure 9-2 Example of items positioned using calculated layout.

 /Calculated placement utilities

The calculated placement utilities are used as part of the calculated protocol for
groups using calculated placement. They allow you to get references to
individual items or the item group itself, and x,y position of items while
placement is taking place. You can use these references and coordinates for
positioning other items. For example the compass-point-calculated protocol
pair:

[/West {/West PARENT POSITION}]

positions the center of item’s west edge at the center of the west edge of the
item’s parent group.

CURRENT - CURRENT current-item

Returns a reference to the current item that is being positioned. CURRENT can
be passed as the item argument to other utilities such as WIDTH, HEIGHT, and
POSITION.

HEIGHT item | item-index HEIGHT height

Returns the height of the specified item.

/West edge of group /West edge of first item

group (PARENT)

. . .

ClassItemGroup 91

9

PARENT - PARENT item-group

Returns a reference to the parent region (self). PARENT can be passed as the
item argument to the other utilities such as WIDTH, HEIGHT, and POSITION.

POSITION compass-point item | item-index POSITION x y

Returns the x-y position for the specified compass-point on item-group.

PREVIOUS - PREVIOUS item | item-index

Returns a reference to the previous item that was positioned. PREVIOUS can be
passed as the item argument to other utilities such as WIDTH, HEIGHT, and
POSITION. For the first item, PREVIOUS’s value is null.

WIDTH item | item-index WIDTH width

Returns the width of the specified item.

Altering the item group

/appenditem item layout-data /appenditem -

Adds item to the end of the item group. If the item group’s placement is /Spaced
or /Grid, layout-data is omitted. See Table 9-1 for the format of layout-data.

/deleteitem item-index /deleteitem -

Deletes the item at item-index from the item group.

/insertitem item-index item layout-data /insertitem -

Inserts item into the item group at item-index using layout-data to position the
inserted item. If the item group’s placement is /Spaced or /Grid, layout-data is
omitted. See Table 9-1 for the format of layout-data.

/replaceitem item-index item /replaceitem -

Replaces the item currently in the item group at item-index with item. The layout
data of the replaced item is reused for the new item.

9

92 The NeWS Toolkit Reference Manual — March 1991

Querying the item group

/Item item-index /Item item-dictionary

Returns the item dictionary created by /NewItem. /Item is an internal utility. See
Item creation—strict subclass responsibility methods on page 97.

/item item-index /item item-description

Returns the item description of the item at item-index. /item is a subclass
responsibility method. The definition of item-description depends on the subclass
of ClassItemGroup. For example a button’s item description is the button’s
display item and notifier (if any); for menu buttons the item description is the
button’s display item and menu (if any).

/itemcount - /itemcount number-of-items

Returns the number of items in the item group.

/itemlist - /itemlist [item item. . .]

Returns an array of the items in the item group. No layout data for the items (if
any) is returned by /itemlist.

Geometry and location of the items

/itembbox item-index /itembbox item-x item-y item-width item-height

Returns the bounding box of the item at item-index.

/itemlocation item-index /itemlocation item-x item-y

Returns the physical location of the item at item-index. item-x and item-y are
relative to the group.

/itemsize item-index /itemsize item-width item-height

Returns the size of the item at item-index.

/pointinitem? x y item-index /pointinitem? boolean

Tells you whether the point specified by x,y is in the item at item-index.

ClassItemGroup 93

9

/pointtoitem x y /pointtoitem item-index true | false

Determines if the point specified by x,y is in any item. If the point is in an item
then the item’s index and true are returned. If x,y is not in any item, false is
returned.

Geometry of the item group

/minsize - /minsize width height

Returns the minimum size of the group. Calls /?ValidateItemList.

/preferredsize - /preferredsize width height

Returns the group’s preferred size. Calls /?ValidateItemList.

Painting items

/paintitem item-index /paintitem -

Subclasser method: /PaintItem

Initiates painting for the item at item-index. /paintitem gets the item’s item-
dictionary and then calls /PaintItem.

/PaintItem item-dictionary /PaintItem -

Paints the item represented by item-dictionary. This method is a strict subclass
responsibility method.

Item size
/FixedItemSize? /FixedItemSize? boolean (Variable)

Determines whether items in a subclass of ClassItemGroup are reshaped to the
same size. If /FixedItemSize? is true, subclassers of ClassItemGroup are
responsible for promoting /ItemWidth and /ItemHeight, which makes all items the
same size.

/setfixeditemsize boolean /setfixeditemsize -

Sets the value of /FixedItemSize?.

9

94 The NeWS Toolkit Reference Manual — March 1991

/fixeditemsize? - /fixeditemsize boolean

Returns the value of /FixedItemSize?.

Validation

ClassItemGroup provides these subclasser validation methods so you can
implement efficient validation for groups of controls. For example, if you have
a group of controls in a /Grid layout you may not have to lay out the grid when
the item list changes. Another use for these methods is to avoid recalculating a
group’s minsize where it isn’t necessary.

In general, if you do an operation that invalidates a control you are expected to
call /paint. Further, if you’re doing several operations, one or more of which
invalidate a control, you should do a single /paint at the end of the sequence.

/ItemListValid? /ItemListValid? boolean (Variable)

Determines if the item list is valid. Set to false in /insertitem, /replaceitem,
/appenditem, /deleteitem, and /setitemlist.

/ValidateItemList - /ValidateItemList -

A subclasser method to permit validation of the item list without executing the
/validate method, which causes layout to occur. The default action is to simply
set /ItemListValid? to true. [need more doc here—maybe an example of how
this is used. Pull from code?]]

/?ValidateItemList - /?ValidateItemList -

Tests to see if the item list is valid. If the list is not valid /?ValidateItemList
validates it. If the list is already valid nothing is done.

/?ValidateItemList is called during /validate and /minsize

/validate - /validate -

Validates the item list and calls your /Layout procedure. (See page 96.) Calls
/?ValidateItemList.

ClassItemGroup 95

9

Tracking and items

These methods are inherited from ClassRegion and overridden in
ClassItemGroup. You do not have to provide definitions for these methods.
However you do need to provide definitions for the methods in the Mouse
tracking in items—subclass responsibility methods section on page 95.

/TrackStart event /TrackStart -

Determines if the coordinates of event are in an item. If they are then /ItemStart is
sent to the group.

/TrackStop event /TrackStop -

Determines if the mouse was over an item when the button was released. If it
was /ItemStop is sent to the group.

/TrackCancel event /TrackCancel -

Sent when the user interrupts the action, e.g, presses the STOP key. If the
mouse was in an item when the /TrackCancel is sent, the group is sent
ItemCancel.

/TrackMotion event /TrackMotion -

Determines where the mouse has moved in relation to the items by resolving
the coordinates of event. Depending on where the mouse goes the following
occurs:

• If the mouse moves within an entered item, /ItemMotion is sent to the group.

• If the mouse moves from one item to another, the group it left is sent
ItemCancel and the group it entered is sent /ItemStart.

• If the mouse moves from an item to outside the group the group is sent
ItemCancel.

• If the mouse moves from outside the group to inside an item, the group is
sent /ItemStart.

 Mouse tracking in items—subclass responsibility methods

 /ItemStart item-index /ItemStart -

The callback executed when the item is entered; i.e., the mouse is in an item
when SELECT goes down, or enters an item with SELECT down.

9

96 The NeWS Toolkit Reference Manual — March 1991

/ItemStop item-index /ItemStop -

The callback executed when an item is chosen; i.e., SELECT goes up with the
mouse in an item.

/ItemMotion item-index /ItemMotion -

The callback executed when the mouse moves inside an entered item.

 ItemCancel item-index ItemCancel -

The callback executed when the mouse leaves an item with SELECT down.

Layout

Positioning items

/setgaps horizontal-gap vertical-gap /setgaps -

Sets the horizontal and vertical gaps between items being positioned in item
groups using either /Spaced or /Grid placement. For other placement formats,
the gaps are ignored.

/gaps - /gaps horizontal-gap vertical-gap

Returns the horizontal and vertical gaps.

Other layout methods

/Layout - /Layout -

During validation, the /Layout method positions the items based on the layout
parameters, individual items’ layout data and the item group’s placement type.

/layoutparameters - /layoutparameters layout-parameters

Returns the parameters set in the /setlayoutparameters method.

ClassItemGroup 97

9

ClassLayout methods defined for ClassItemGroup

ClassItemGroup provides a suitable implementation for the methods listed in
this section as required by ClassLayout. For an explanation of their
functionality please see Chapter 11, ClassLayout. The names of the methods
are: CellSize, List, Location, Move, ResolveReference, and Size.

Help facilites for item groups

In order for itemgroups to get help the canvas subclass on which they sit must
be Helpable. Help is available for itemgroups on a group-wide and on a per
item basis. See Chapter 5, ClassCanvas, Help facilities on page 63 for an
explanation of the TNT help system and, more specifically the format for
keyword-string.

/sethelpkeyword keyword-string /sethelpkeyword -

Sets the help string for the group.

/helpkeyword event /helpkeyword keyword-string

Returns the group’s help string.

/setitemhelpkeyword item-index keyword-string /setitemhelpkeyword -

Sets the help string for the item at item-index.

/itemhelpkeyword item-index /itemhelpkeyword keyword-string

Returns the help string for the item at item-index.

Item creation—strict subclass responsibility methods

/NewItem item-description /NewItem item-dictionary

Converts a item description into an item dictionary.

The items in a group are dictionaries that have the following keys:

Key Value Accessor method

/ItemX the item’s x location relative to the group /itemlocation (page 92)

/ItemY the item’s y location relative to the group /itemlocation (page 92)

9

98 The NeWS Toolkit Reference Manual — March 1991

/ItemWidth the item’s width /itemsize (page 92)

/ItemHeight the item’s height /itemsize (page 92)

Note – Subclassers should not access these item variables directly, rather you
should use the accessor methods. Following this procedure protects you
against changes in the internal structure of the toolkit.

Subclasses can promote ItemWidth and ItemHeight as instance variables when the
items share a common width or height. For example, if you have items that are
either all the same size or share a common width or height you don’t need to
put these common values in each instance. Rather you can store the values in
the class.

99

10-0
10-0

ClassLabel 10

Figure 10-1 The ClassLabel subtree

A label is a region that manages a display item.

Labels override ClassRegion’s text font to be the OPENLOOK default label
font, which is /LucidaSans-Bold 12.

Creation

/new displayitem parent /new -

A label is created by giving it a display item in addition to the parent used by
ClassRegion

Geometry

/size - /size width height

Returns the size of the display item, which is the size of the label. If the size is
explicitly set using /reshape, that size is returned.

ClassObject ClassDrawable

ClassRegion

ClassLabel

10

100 The NeWS Toolkit Reference Manual — March 1991

Label values

/setvalue displayitem /setvalue -

Changes the label’s display item

/value - /value displayitem

Returns the label’s display item

101

11-0
11-0

ClassLayout 11

ClassLayout is a mixin class, not intended to be directly instantiated and
designed to ensure a consistent approach towards layout in panels and item
groups. Panels manage groups of canvases and regions (see ClassPanel on page
131); item groups manage items that are defined as PostScript dictionaries (see
ClassItemGroup on page 87).

Note – To avoid confusion in this chapter, both the canvases and regions
managed by panels, and the dictionaries managed by item groups, are referred
to as elements.

Placement

A placement parameter is passed to the ClassLayout subclass during its
instantiation. The placement parameter determines how the elements of panels
and itemgroups are positioned. The placements provided are: /Spaced, /Grid,
/Absolute, and /Calculated.

With the exceptions of /Grid and /Spaced placement, layout information is
expected by interfaces that manipulate the elements. Examples include the
/addclient method in ClassPanel and the /insertitem method in ClassItemGroup.

11

102 The NeWS Toolkit Reference Manual — March 1991

Geometry

/minsize - /minsize width height

Returns the minimum width and height required to layout the elements. When
the placement format is /Calculated, the values returned might need to be
adjusted, since this format is based on a heuristic.

Layout

The specification for the layout information is dependent on the placement
parameter.

/Layout - /Layout -

During validation, the /Layout method positions the elements based on the
layout parameters, individual elements’ layout data and the subclass’s
placement type. The appropriate context (e.g., setting the canvas) is established
before /Layout is called.

Spaced placement

The /Spaced placement does not require information because it provides
automatic and minimal layout. Elements are laid out from left to right and
then top to bottom.

Grid placement

The /Grid placement does not require layout data because it positions elements
based on three parameters set through the /setlayoutparameters method. These
parameters determine the number of rows and columns and whether the rows
or columns should be filled first. The maximum item height and width
determines the cell size.

/Grid format defaults to having one row and as many columns as necessary to
accomodate all the elements. To change this default use /setlayoutparameters.

/setlayoutparameters [layout-by-rows? rows columns] /setlayoutparameters -

Sets the number of rows and columns and indicates whether rows are
supposed to be filled before columns.

ClassLayout 103

11

Absolute placement

The /Absolute placement allows you to position an element using an X-Y
coordinate pair:

[X Y]

Calculated placement

/Calculated placement allows you to position an element using a code fragment
that is executed whenever the layout subclass is reshaped.

/setlayoutparameters [compass-point {calculated-protocol}] /setlayoutparameters -

Sets the layout parameters for objects that use calculated placement to position
their elements. The compass-point notation allows elements to be positioned
relative to a corner of another element or the container. compass-point must be
defined as either /North, /East, /West, /South, /NorthEast, /NorthWest, /SouthEast,
/SouthWest, or /Center.

{calculated-protocol} is a code fragment that is executed whenever a reshape is
done. The fragment must return an x-y coordinate pair when executed.To aid
in placement, six utilities have been defined: PARENT, WIDTH, HEIGHT, POSITION,
CURRENT, and PREVIOUS. See Calculated placement utilities.

For example the following calculated parameters positions the west edge of the
element being positioned, along the west edge of its parent:

[/West {/West PARENT POSITION} /setlayoutparameters

Using /setlayoutparameters for calculated layouts allows you to specify a default
layout. If you have a default calculated layout you can specify an empty array
instead of associating layout data with each element. (In most cases you will
want to supply layout data for the first element being positioned.) The empty
array is detected during validation and your default is used to achieve
positioning.

 Calculated placement utilities
CURRENT - CURRENT current-element

Returns a reference to the current element which is being positioned. CURRENT
can be passed as the element argument to other utilities such as WIDTH, HEIGHT,
and POSITION.

11

104 The NeWS Toolkit Reference Manual — March 1991

HEIGHT element HEIGHT height

Returns the height of the specified element.

PARENT - PARENT parent

Returns a reference to the parent container (self). PARENT can be passed as the
element argument to other utilities such as WIDTH, HEIGHT, and POSITION.

POSITION compass-point element POSITION X Y

Returns the X-Y position for the specified compass-point on element.

PREVIOUS - PREVIOUS previous-element

Returns a reference to the previous element which was positioned. PREVIOUS
can be passed as the element argument to other utilities such as WIDTH, HEIGHT,
and POSITION.

WIDTH element WIDTH width

Returns the width of the specified element.

Miscellaneous

/layoutparameters - /layoutparameters layout-parameters

Returns the parameters set in the /setlayoutparameters method.

/setgaps horizontal-gap vertical-gap /setgaps -

Sets the horizontal and vertical gaps between elements being positioned using
either /Spaced or /Grid placement. For other placement formats, this method is
ignored.

/gaps - /gaps horizontal-gap vertical-gap

Returns the horizontal and vertical gaps.

Subclass responsibility procedures

During validation, ClassLayout requests a list of elements from the subclass.
The elements in the list are positioned based on the placement parameter. To
assist in layout, the subclasses are responsible for implementing the procedures
in this section.

ClassLayout 105

11

CellSize - CellSize cell-width cell-height

Returns the size of a single element of a ClassLayout subclass that has been
laid out using /Grid layout.

List - List [element ...]

Returns an array of elements to be positioned during validation.

Move x y element Move -

Moves the element to the specified x,y position.

Size element Size width height

Returns the width and height for the specified element. In addition, Size is
expected to return the appropriate answer for self.

Location element Location X Y

Returns the X-Y origin for the specified element. In addition, Location is
expected to return the appropriate answer for self.

ResolveOffset layout-client compass-point | offset-name ResolveOffset x y

Returns the x,y coordinates (in the current CTM) of layout-client’s compass-point or
the location of the specified offset-name. compass-point is one of: /North, /East,
/West, /South, /NorthWest, /SouthWest, /NorthEast, /SouthEast, or /Center. offset-name is a
name accepted by the /offset method of the layout client. (Not all objects
provide an /offset method. See Chapter 22, Sliders.) Both compass-point and
offset-names are used for calculated layout.

ResolveReference element-reference ResolveReference element

Returns the element associated with element-reference. For example, ClassPanel
uses PostScript names to reference its clients. ClassButtons uses an integer
index.

This method is used in the /Calculated placement protocol. When the element-
reference is self, then self is returned.

Useful systemdict utilities

The utilities in this section are defined in systemdict, not ClassLayout. They are
included here because they are useful for positioning elements of ClassLayout
subclasses that use calculated layout.

11

106 The NeWS Toolkit Reference Manual — March 1991

xyadd x1 y1 x2 y2 xyadd x1+x2 y1+y2

Does vector addition on the two sets of x,y coordinates.

xysub x1 y1 x2 y2 xysub x1-x2 y1-y2

Does vector subtraction on the two sets of x,y coordinates.

xymax x1 y1 x2 y2 xymax xmax ymax

Returns the largest x and largest y of two sets of x,y coordinates.

xymin x1 y1 x2 y2 xymin xmin ymin

Returns the smallest x and the smallest y of two sets of x,y coordinates.

107

12-0
12-0

ClassMenu 12

Figure 12-1 The ClassMenu subtree

ClassMenu implements OPEN LOOK menus. In addition to explaining the
methods that a menu responds to, this chapter also includes menu-related
interfaces from ClassCanvas and ClassRegion.

Four types of menus are possible: /Command, and three settings-based menus,
/Exclusive, /NonExclusive, and /ExclusiveVariation. Only /Command menus can have
submenus. The “type” of menus refers to the kind of items a menu has and
therefore the types of choices that can be made. Command menus have items
that look and act like buttons (see Buttons on page 29). The settings-based
menus look and act like settings (see ClassSettings and ClassCheckBoxes on
page 189). You determine the type of menu using /setchoicemode (page 108).

Creation

/new placement parent-canvas /new menu

Creates a menu that uses the given placement style. Placement determines how
menu items are laid out. placement is one of /Spaced, /Absolute, /Calculated, or /Grid
(see Placement on page 101 in ClassLayout).

ClassObject ClassDrawable ClassBorderBagClassCanvas ClassBag

ClassMenu
(ClassControl)

12

108 The NeWS Toolkit Reference Manual — March 1991

Choice Modes

/setchoicemode mode-name /setchoicemode -

Sets the choice mode for the menu. mode-name is one of: /Command (which
allows a mixture of command and submenu items), /Exclusive, /NonExclusive, or
/ExclusiveVariation. /Command is the default choice mode.

If you call /setchoicemode after having called /setitemlist or other methods that
manipulate the item list (e.g., /deleteitem, /insertitem), the items (and layout info,
if any) are copied over to the new mode. However, changing an existing menu
between /Command and non-/Command modes is likely not to result in a working
menu, because:

1. non-/Command menus don’t have submenu items, which will confuse the
non-/Command menus

and

2. The notifier callbacks for /Command and non-/Command menus expect slightly
different arguments on the stack. (See /setnotifier, page 116.)

/choicemode - /choicemode mode-name

Returns the menus mode. mode-name is one of: /Command (which allows a
mixture of command and submenu items), /Exclusive, /NonExclusive, or
/ExclusiveVariation. /Command is the default choice mode.

Menu items

For the methods in this section the argument item expands to:

string | [display-item <notifyname | notifyproc | submenu>optional]

An item is either a simple string, or it is an array whose first entry is a display
item, and whose optional second entry is one of the following three objects:

• the name of a notification method that is called in the target object when this
item is chosen from the menu

• a procedure to execute when this item is chosen from the menu

• a submenu to bring up when the user pulls-right over this object. Use of the
submenu argument is legal only for /Command menus.

ClassMenu 109

12

Thus the following are all legal arguments to /setitemlist:

Example 1:

[string string. . .]

Example 2:

[[displayitem1] [displayitem2] . . .]

Example 3:

[
[displayitem1 /notifier1]
[displayitem2 /notifier2]
[displayitem3 submenu]
. . .

]

If no notifier is provided in the array then the menu-wide notifier (if any) is
used when the user selects that item. Menu items are accessed via an item-
index.

Setting the menu’s item list

Menu items can be accessed through a zero relative integer (its index)
representing its position in the menu. This integer is not a constant, because
items can be inserted and/or deleted. The NeWS Toolkit does not check for
indexes out of range.

For /Absolute and /Calculated placement menus, layout data is required during the
call to /setitemlist. However, for menus of /Calculated placement you can provide
a default layout by using /setlayoutparameters (page 111). /Spaced and /Grid
groups do not require layout data at setitemlist time. The different
specifications of the layout data are in Table 12-1.

Table 12-1 Layout data required during calls to /setitemlist.

placement layout-data

/Spaced none required

/Absolute x-y coordinate pair: [x y]

12

110 The NeWS Toolkit Reference Manual — March 1991

/Calculated a compass point and a code fragment that the
Toolkit executes whenever the item group is
reshaped: [compass-point {calculated protocol }]

/Grid none required. Set the layout using
/setlayoutparameters.

Spaced and Grid placements
Menus using /Spaced and /Grid placement do not pass layout data to /setitemlist.
/Spaced layout provides automatic and limited layout. /Grid placement menus
use /setlayoutparameters to describe the shape of the grid.

/setitemlist [item item] /setitemlist -

Sets the menu’s item list. Invalidates the menu.

/setlayoutparameters [layout-by-rows? rows columns] /setlayoutparameters -

Sets the shape of the grid for /Grid placement format. layout-by-rows? is a boolean;
if true rows are filled with clients before columns; if false, columns are filled
before rows. Neither rows nor columns can be null.

Absolute placement
/setitemlist [item1 [x1 y1] item2 [x2 y2] . . .] /setitemlist -

Determines the set of items that are managed by a menu with absolute
placement, and where they are to be placed. [xn yn] is the position where you
want the lower-left corner of the item’s bounding box placed. Invalidates the
menu.

Calculated placement
/setitemlist [item [compasspoint {calculated protocol}]. . .] /setitemlist -

Sets the item list for a menu with calculated placement. [compasspoint
{calculated protocol}] is the item’s layout data and determines where the item
is positioned in the menu. Invalidates the menu.

ClassMenu 111

12

You can use /setlayoutparameters to provide a default calculated layout. (See
Setting a default layout for /Calculated placement, below.) Generally, you will give
the first item its own layout data and the default is used to place the other
items. In this case you would pass an empty array as layout data for all items
other than the first one:

[item1 [compasspoint {calculated protocol} item2 nullarray item2 nullarray. . .] /setitemlist

Setting a default layout for /Calculated placement

/setlayoutparameters [compass-point {calculated-protocol}] /setlayoutparameters -

Sets the default layout for /Calculated placement. If you use /setlayoutparameters
for a menu of placement-type /Calculated you can specify the layout data
associated with an item as an empty array. That is if you did:

[/West { /East PREVIOUS POSITION }] /setlayoutparameters mymenu send

Then, during a call to /insertitem, for example, you could do:

item-index myitem nullarray /insertitem mymenu send

which would position myitem’s west edge along the previous item’s east edge.
Each subsequent call to /insertitem (with an empty layout data array) would
position the new client’s west edge along the east edge of the previous item.

/Calculated placement utilities

The calculated placement utilities are used as part of the calculated protocol for
groups using calculated placement. They allow you to get references to
individual items, the menu itself, and the x,y positions of items while
placement is taking place. You can use these references and coordinates for
positioning other items. For example the compass-point-calculated protocol
pair:

[item1/West {/West PARENT POSITION}]

positions item1’s west edge along the west edge of item1’s parent container.

PARENT - PARENT parent

Returns a reference to the parent container (self). PARENT can be passed as client
to other utilities such as WIDTH, HEIGHT, and POSITION.

12

112 The NeWS Toolkit Reference Manual — March 1991

CURRENT - CURRENT current-client

Returns a reference to the current client that is being positioned. CURRENT can
be passed as the client argument to other utilities such as WIDTH, HEIGHT, and
POSITION.

PREVIOUS - PREVIOUS previous-client

Returns a reference to the previous client that was positioned. PREVIOUS can be
passed as the client argument to other utilities such as WIDTH, HEIGHT, and
POSITION.

WIDTH client WIDTH width

Returns the width of the specified client.

HEIGHT client HEIGHT height

Returns the height of the specified client.

POSITION compasspoint client POSITION X Y

Returns the X-Y position for the specified compasspoint on client.

Layout

/layoutparameters - /layoutparameters layout-parameters

Returns the menu’s layout parameters.

Other item methods

See Menu items on page 108 for a definition of item. If a method returns an
item, the entire item is returned.

/appenditem item layout-data /appenditem -

Adds item to the end of the menu’s item list. Invalidates the menu. /Spaced and
/Grid menus omit layout-data; calculated placement menus may specifiy layout-
data as a null array if a default layout has been set with /setlayoutparamters.

/deleteitem item-index /deleteitem -

Deletes the item at item-index. Invalidates the menu.

ClassMenu 113

12

/insertitem item-index item layout-data /insertitem -

Inserts item at item-index in the menu. Insertions go before any existing item of
that index. /Spaced and /Grid menus omit layout-data; calculated placement menus
may specifiy layout-data as a null array if a default layout has been set with
/setlayoutparamters. Invalidates the menu.

/item item-index /item item

Returns the item located at item-index.

/itemcount - /itemcount item-count

Returns the number of items in the menu. (The pin is not considered an item.)

/itemlist - /itemlist [item item ...]

Returns the items in the menu. The layout data is not returned.

/replaceitem item-index item /replaceitem -

Replaces the item at item-index. The layout data, if any, of the old item at item-
index is used to position the new item. Invalidates the menu.

Default item

A default item is visually highlighted, and determines where the pop-up
menus are positioned on the screen relative to the mouse. Menu buttons use
their associated menu’s default item as their response to SELECT. TNT allows
you to have a pop-up menu that has no default.

/setdefault null | item-index /setdefault -

Sets the item at item-index to be the default item for the menu.

A default item is visually highlighted, and determines where the pop-up
menus are positioned on the screen relative to the mouse. Menu buttons use
their associated menu’s default item as their response to SELECT. It is legal for
a pop-up menu to have no default.

/default - /default null | item-index

Returns the index of the menu’s default item, or null if there is no default.

12

114 The NeWS Toolkit Reference Manual — March 1991

Labels

/setlabel display-item | null /setlabel -

Sets the label shown at the top of the menu. null implies that there is no label,
which is the default. Invalidates the menu.

/label - /label display-item | null

Returns the label shown at the top of the menu or null if there is no label.

/setpinnedlabel display-item | null /setpinnedlabel -

Sets the label for the pinned copy of the menu. OPEN LOOK requires that a
pinned copy of a menu have a label; /setpinnedlabel is provided so you can give
the pinned copy of your menu a label. If null, then the label of the original
menu is used. If the original menu has no label, and you don’t use
/setpinnedlabel to provide on for the pinned copy, then the pinned copy has no
label either. The default is null. /setpinnedlabel invalidates the menu.

/pinnedlabel - /pinnedlabel display-item | null

Returns the label of pinned copy of the menu, or null if it has no label.

Pinned menus

TNT handles the interaction between a menu and its pinned copy so you don’t
have to make sure changes made to your menu are reflected in its pinned copy.
When changes that cause invalidation (e.g., /insertitem) are made to a menu,
you send /paint only to the menu. TNT ensures that the pinned copy also is
updated to reflect the changes, including size, made to the menu. In general,
you shouldn’t send any messages to the pinned copy.

/Pinnable? /Pinnable? boolean (Variable)

Determines whether the menu has a pin.

/setpinnable boolean /setpinnable -

Sets the value of the variable /Pinnable?

/pinnable? - /pinnable? boolean

Returns the value of the variable /Pinnable?

ClassMenu 115

12

Programmatically pinning menus

The methods in this section are only defined for menus that are pinnable. They
would only be called by applications that want to programmatically control the
pinning of menus. (Users usually look after this.)

/pin x y /pin -

Creates the pinned copy (if necessary), maps it, activates it, and positions it on
the screen so that its northwest corner is at the given position. If the menu is
already pinned the pinned window moves to the given location. The pinned
menu is activated using the event manager of the canvas that most recently
activated the original menu; if the original menu has never been popped up, or
if that event manager has since gone away, an error will result. If the
originating canvas is inside a window, the pinned menu is added as a
subwindow of that window’s root window.

/pinned? - /pinned? boolean

Returns whether the menu has a pinned copy currently displayed.

/unpin - /unpin -

Unmaps and deactivates the pinned menu.

Ability to interact with menu items

/setvisualstate index state /setvisualstate -

Sets the visual presentation of the menu item at index. state can be one of /Active,
/Inactive, or /Busy. /Active is the default. /setvisualstate also determines whether
users can interact with the menu. Users can interact with /Active items; /Inactive
and /Busy items ignore user interactions.

/visualstate - /visualstate index statename

Returns the state of the item at index.

Notification and previewing

When menu notification occurs the notification value and the menu instance are
placed on the stack before the notifier is called. The notification value varies
with the type of menu:

12

116 The NeWS Toolkit Reference Manual — March 1991

• For /Command menus the notification value is the index of the item where the
mouse button was released. The index and the menu instance are put on the
stack before the notifier is called. If the notifier is a proc then the index,
menu instance and proc are put on the stack and the proc is executed.

• For the settings-based menus (/Exclusive, /NonExclusive and /ExclusiveVariation)
the notification value is an array:

[item-index boolean]

Different types of settings notify at different user actions:

/Exclusive notifies only when an item is turned on. This means
you are not notified about the item being unchosen,
and the boolean in the array is always true.

/ExclusiveVariation notifies when an item is turned on as /Exclusive
settings do and notifies when the item currently
turned on is turned off and the setting has no chosen
item.

/NonExclusive notifies when any item is turned on or off.

The array and the menu instance are put on the stack before the notifier is
called. If the notifier is a proc then the array, menu instance and proc are put
on the stack and then the proc is executed.

/setnotifier notifier /setnotifier -

Sets the notifier for the entire menu. The notifier can be either a PostScript
name or a procedure. The notifier determines what action takes place when an
item that has no individual notification specification is selected. (An item with
no notifier is specified using the form string or [displayitem].) Your notifier should
be written to use the notification value and the menu instance as arguments.

/notifier - /notifier notifier

Returns the single notifier that is associated with the entire menu.

Menu targets

The NeWS Toolkit has the notion of a default object that is affected by a menu’s
notifier. If you want to retarget the notifier use the target mechanism (see
Target interface inherited from ClassControl on page 117).

ClassMenu 117

12

The invoker mechanism

Menus remember which object invoked them.The invoker of a menu is the
object that most recently caused the menu to be displayed. So, for a popup
menu the invoker is a canvas, for a menu-button menu the invoker is the
button group, and for a submenu (pullright) the invoker is the parent menu.

If you choose not to call /settarget yourself then the following rules apply:

• The target of a popup-menu is its invoker (i.e. the canvas or region from
which it came).

• The target of a submenu is the target of its invoker. (In this case the invoker
is a menu. The invoker menu may have an application-specified target, or it
too might default via these rules.)

• The target of a menu button’s menu is the target of its invoker. Its invoker is
the menu button instance, and because menu buttons are controls, they can
have targets.

The invoker is available to programmers via the /invoker method. Generally you
don’t use /invoker yourself but if you wanted to find out the chain of menus
that resulted in a callback to be executed you just keep walking backwards
down the invoker chain until you come to an object that isn’t a menu.

/invoker - /invoker object

Returns the object that invoked the menu.

Target interface inherited from ClassControl

/settarget object | null /settarget -

Sets object to be the target of the menu. If null is specified the target is cleared.

/cleartarget null | object /cleartarget -

Clears the target. If object is specified the target is cleared only if the target and
object are the same.

/target - /target null | object

Returns the target object. If /settarget has not been called (or /cleartarget has
been called), a default target is determined using the Invoker mechanism.

12

118 The NeWS Toolkit Reference Manual — March 1991

/sendtarget args /method /sendtarget results

Sends /method and any necessary arguments to the target and returns the
method’s results, if any.

Menu Values

/setvalue [index index ...] /setvalue -

Sets the value of the menu. /setvalue can be used to initialize a settings menu to
a specific state: the items corresponding to the indices provided will be turned
on—the rest will be off. The behavior is undefined if an /Exclusive menu is given
an array of other than a single index, or an /ExclusiveVariation menu is given an
array of other than 0 or 1 indices. Command menus are not stateful, and hence
have no real need for this method. (It can be legally used however, and has the
effect of changing the menu’s notion of which command item was last selected.
An array containg a single index should be used in this case.)

/value - /value [index index ...]

Returns the value of the menu. For settings menus (/Exclusive, /NonExclusive, and
/ExclusiveVariation), /value returns an array of indices (possibly empty)
corresponding to the currently “on” items. For /Command menus an array
containing a single index corresponding to the item last selected is returned.

ClassCanvas and ClassRegion interfaces

Canvas menu methods

Instances of ClassCanvas do not respond to MENU by default. They will if
made “menuable.” Regions sitting on menuable canvases simply make sure
that their menu is not null before showing it when the user presses MENU
over them.

/Menu /Menu menu-instance (Variable)

The menu for a canvas or region. Subclass it to associate a menu with all
instances of this type of canvas or region.

ClassMenu 119

12

/setmenu menu | null /setmenu -

Associates a menu with this Canvas or Region. Calling this method alone does
not ensure that the menu will be shown when the user presses MENU. In order
for the menu to appear the canvas must be made menuable.

/menu - /menu menu | null

Returns the menu (if any) associated with this canvas or region.

/Menuable? /Menuable? boolean (Variable) (only in ClassCanvas)

Determines whether a canvas should show its menu when MENU is pressed
with the pointer over the canvas. When /Menuable? is true the canvas receives a
/MenuStart when MENU is pressed over it (see /MenuStart on page 119).

/setmenuable boolean /setmenuable - (only in ClassCanvas)

Sets the value of /Menuable?.

/menuable? - /menuable? boolean (only in ClassCanvas)

Returns the value of the variable /Menuable?.

/MenuStart invoker posname event /MenuStart invoker posname event menu true
| invoker posname event false
| invoker posname event null true

Determines which menu (if any) should be shown over this object, and where
it should be positioned. You can change where the menu pops up by:

• Overriding /MenuStart and modifying the XLocation, YLocation pair of the event;

and/or

• Changing the posname.

posname defaults to /Default, which means that the default item (or the item at
index 0 if there is no default) is aligned beside the given point. Currently, the
only other legal posname is /NorthWest, which corresponds to the top-left corner
of the menu. (posname is used by menu buttons for positioning their menus.)

invoker is the object that most recently caused the menu to be displayed. The
invoker also determines the local event manager in which the menu’s notifier
executes and is the default target of the menu (see The invoker mechanism on
page 117). /MenuStart can return a different invoker to change teh event
manager and target.

12

120 The NeWS Toolkit Reference Manual — March 1991

By default /MenuStart returns the /Menu class/instance variable, and does not
modify the positioning or invoker arguments.

Returning invoker posname event false causes event to be redistributed allowing
some other object to open a menu.

The invoker posname event null true return is provided so that you can respond to
MENU down over your canvas or region by not opening any menu and
preventing anyone else (e.g., the window under the canvas or region) from
opening a menu in response to the MENU.

This method is executed in the local event manager.

/MenuStop menu /MenuStop -

Called when the menu (the root of the chain of submenus if such a chain is up)
is brought down. You can subclass it if you need to perform any action at this
time, such as destroying a temporary menu. /MenuStop executes in the local
event manager.

Help facilites for menus

Help is available for menus on a menu-wide and on a per item basis. See
Chapter 5, ClassCanvas, Help facilities on page 63 for an explanation of the the
TNT help facilities and, more specifically, the format for keyword-string.

/sethelpkeyword keyword-string /sethelpkeyword -

Sets the help string for the group.

/helpkeyword event /helpkeyword keyword-string

Returns the group’s help string.

/setitemhelpkeyword item-index keyword-string /setitemhelpkeyword -

Sets the help string for the item at item-index.

/itemhelpkeyword item-index /itemhelpkeyword keyword-string

Returns the help string for the item at item-index.

121

13-0
13-0

ClassNotice 13

Figure 13-1 The ClassNotice subtree

Notices are panels that expect user input and usually freeze the application
that generated them.

Creation

/new base-window | null parentcanvas /new notice

Creates an instance of ClassNotice. If base-window is given (null is an acceptable
value) it is the base window of the application that is blocked as a result of this
notice. base-window should be the base window of the application so all the
subwindows are also frozen.

Setting the frozen application

/setbasewindow base-window | null /setbasewindow -

Sets the base window of the application that is frozen as a result of this notice.

ClassObject ClassDrawable ClassCanvas ClassBag

ClassPanel
(ClassLayout)

ClassNotice

13

122 The NeWS Toolkit Reference Manual — March 1991

/basewindow - /basewindow base-window

Returns the base window that is frozen as a result of this notice.

Text in notices

/settext string | [display-item display-item. . .] /settext -

Sets the text for the notice. If the argument is a single string it is broken up into
as many strings as necessary to fit horizontally in the notice. If an array is
passed, each display item in the array appears on one line, and the notice is
made big enough to fit the longest one.

/text - /text string | [display-item display-item . . .]

Returns the text of the notice.

Buttons in notices

/setbuttons buttongroup | null /setbuttons -

Sets the buttons for the notice. The buttons should be laid out horizontally. The
notice will add the button group as it client, centered. The buttons should have
a default choice specified. If there isn’t one, the notice just warps the cursor to
some place in the notice. If null is specified the existing buttons are removed
with /removeclient.

Note – The notifier for the buttons should send /close to the button group’s
parent to dismiss the notice. The notice does not go away automatically. For
example:
{ % index buttongroup => -

/close /Parent 2 index send send
}

/buttons - /buttons buttongroup

Returns the notice’s buttons.

ClassNotice 123

13

Invoking a notice

/open <apex> /open -

Invokes a notice. When invoked a notice:

• maps and paints itself

• warps the cursor to the default button

• takes the input focus

• freezes the target application until it is unmapped

<apex> determines the point from which the notice tail emanates. The OPEN
LOOK Graphical User Interface Function Specification calls this point the apex.
<apex> is used to calculate the x,y coordinates of the “emanation point” and is
one of the following:

[x y] | event | canvas-instance | region-instance | [index itemgroup] | null

[x y] You can simply furnish the point; it is CTM relative.

event The coordinates are extracted from the event.

canvas or region The notice apex is in the center of a region or canvas.

[item-index itemgroup] The notice apex is at the center of the item’s bounding
box. (Remember, when notification occurs for an item
group the item-index of the item selected and the item
group are pushed on the stack.)

null The notice does not display a tail and appears centered
over the base window, or the framebuffer if the base
window is null.

/close - /close -

Takes the notice down, warps the cursor back to its original position, restores
the input focus and unfreezes the base window.

13

124 The NeWS Toolkit Reference Manual — March 1991

125

14-0
14-0

ClassNumericField 14

Figure 14-1 The ClassNumericField subtree

A numeric field is a control that displays numbers. Two arrows allow a client
to increase and decrease the field’s value by discrete stepping.

NumericField values

/setvalue number /setvalue -

Sets the value of the field. Causes the field to be repainted.

/value - /value number

Returns the value of the numeric field.

/setrange min max /setrange -

Sets the minimum and maximum values permitted by the numeric field. When
the value is changed by /setvalue or via the increment/decrement buttons (or
the /increment or /decrement methods), or when the notifier is being called, the

ClassObject ClassDrawable

ClassTextFieldClassTextCanvas

ClassCanvas

(ClassContol)

ClassNumericField

14

126 The NeWS Toolkit Reference Manual — March 1991

value is first constrained to lie within the given range. (If min > max, the
results are undefined.) The default min/max settings restrict the field to 32-bit
integers, i.e., -2147483648 to +2147483647.

/range - /range min max

Returns the minimum and maximum values permitted by the numeric field.

/setdelta delta /setdelta -

Sets the amount by which the value is changed by a single click of the
increment/decrement buttons. The field is updated if it is valid.

If the delta is set to zero, the increment/decrement buttons disappear from the
field, though space is still reserved for them. (I.e., the numeric baseline is not
extended to fill the space.) If the delta is set negative then the increment button
decreases the value of the field and the decrement button increases the field’s
value.

/delta - /delta delta

Returns the amount by which the value is changed by a single click of the
increment/decrement buttons.

/increment - /increment -

Adds the delta to the value of the field. After the delta is added the new value
is checked against the field’s range and adjusted if it is not in range. The new
value is painted, but the increment/decrement buttons on the screen are not
affected (i.e., they do not momentarily invert). /increment does not cause
notification.

/decrement - /decrement -

Subtracts the delta from the value of the field. The new value is painted, but
the increment/decrement buttons on the screen are not affected (i.e., they do
not momentarily invert). /decrement does not cause notification.

NumericField granularity

Numeric field granularity is controlled by a normalizer procedure. The
normalizer procedure consumes the unconstrained value on the stack and
leaves a constrained value on the stack.

ClassNumericField 127

14

/Normalizer /Normalizer proc (Variable)

A normalizer is applied to constrain the value to some legal set. By default, the
value is not constrained. A typical normalizer would be {round cvi} to
constrain the value to integers.

The normalizer is applied after /setvalue, /increment, or /decrement (including
when called due to clicking on the increment/decrement buttons), and before
calling the notifier. The min/max are applied after normalizing, even if this
results in a value that does not meet the normalization constraints. (E.g.,
consider a field where the normalizer is {round cvi} and the min/max range is
1.1 to 1.2.)

/setnormalizer proc /setnormalizer -

Sets the field’s normalizer.

/normalizer - /normalizer proc

Returns the field’s normalizer procedure.

Notification and previewing

The value of a numeric field is a number; thus the value placed on the stack
before the notifier is called is a number. However, the previewer, if a client
chooses to provide one, still operates on individual characters.

/setnotifier notifier /setnotifier -

Sets the numeric field’s notifier. notifier is either a method name that is sent to
the target (as set by /settarget), or it is a PostScript code fragment. (The latter is
not recommended but is permitted for those clients who need the generality or
efficiency.) See Notification and previewing on page 77 in ClassControl.

/notifier - /notifier notifier

Returns the numeric field’s notifier.

/setpreviewer previewer /setpreviewer -

Sets the previewer. Like the notifier (above), the previewer is either a method
name that is sent to the target, or it is a PostScript code fragment. It can also be
null to obtain default behavior. Setting the previewer allows a client to respond
to each character as it is typed into the numeric field, unlike the notifier which
is called only when the user is finished.

14

128 The NeWS Toolkit Reference Manual — March 1991

/previewer - /previewer previewer

Returns the numeric field’s previewer.

Inherited Methods

The following methods are inherited from ClassTextField (or ClassControl) and
perform the same function as in text fields:

/new /setcaret /setselection

/caret /selection

/setvisualstate

/visualstate /PaintText /scroll

/Scroll

/setreadonly /insertcharacter

/readonly? /insertstring /fitcaret

/ReadOnly? /InsertString /FitCaret

/AutoScrollPosition

/deletecharacters

/deletespan /InvisibleCaret

/DeleteSpan /VisibleCaret

/CaretDelay

/setnextfocus

/movebaseline /nextfocus /ResolveToChar

/previousfocus

/setminimumvisible /gotonextfocus /SpecialActions

/minimumvisible /gotonextfield

/MinimumVisible /gotopreviousfield

A few additional methods are inherited unchanged from text fields, even
though their application to numeric values is perhaps less common:

/characters (yields number of characters in the text)

/deletewords

/AlphaNumeric?

129

15-0
15-0

ClassObject 15

ClassObject is the root of the NeWS class hierarchy and therefore The NeWS
Toolkits’s class tree. In general ClassObject contains methods and operators
that form some of the basis for NeWS. These operators are defined and
discussed in the NeWS 2.1 Programmer’s Guide. There are three exceptions:
/Properties, /setproperty, and /property. These methods are discussed in this
chapter.

/Properties /Properties dictionary (Variable)

A dictionary used to store application-specific properties. These properties are
called “client data” in other systems. During sends ClassObject is always on
the dictionary stack and therefore the properties dictionary is always accessible
during sends. However, care should be taken so that each instance’s properties
have unique keys to avoid name collisions. In addition these keys should be
widely known so other applications can avoid colliding with your names.

/setproperty key value /setproperty -

Adds the specified key and its associated value to the properties dictionary.

/property key /property value

Returns the value associated with key in the properties dictionary.

15

130 The NeWS Toolkit Reference Manual — March 1991

131

16-0
16-0

ClassPanel 16

Figure 16-1 The ClassPanel subtree

ClassPanel is designed to be a control surface that contains canvas and region
controls. A placement format is chosen when a panel is created (see /new
below). This format determines how clients are positioned in the panel. In
some cases, layout information is required when the client is added to the
panel.

Creation

/new placement parent-canvas /new instance

Returns a ClassPanel instance. placement indicates the placement format for the
panel clients. It must be defined as either /Spaced, /Absolute, /Calculated, or /Grid:

/Spaced placement provides automatic and limited layout.

/Absolute placement allows you to specify the position of a panel client using an
x-y coordinate pair, specified as an array: [x y].

ClassObject ClassDrawable ClassCanvas ClassBag

ClassPanel
(ClassLayout)

16

132 The NeWS Toolkit Reference Manual — March 1991

/Calculated placement allows you to position a panel client using a code
fragment that is executed whenever the panel is reshaped. The fragment must
return an x,y coordinate pair when executed. In addition to the code fragment
you may specify a compass-point that allows clients to be positioned relative to
a corner of another client or the panel. Thus the /Calculated placement
specification looks like:

[compass-point { calculated-protocol }]

compass-point is one of /North, /East, /West, /South, /NorthEast, /NorthWest,
/SouthEast, /SouthWest, or /Center.

To aid in placement, six utilities have been defined, including PARENT, WIDTH,
HEIGHT, POSITION, CURRENT, and PREVIOUS. These utilities are described in
/Calculated placement utilities below.

/Grid placement allows you to position clients based on the number of rows and
columns you want as well as whether you want rows or columns filled first.
The maximum client height and width determines the grid’s cell size. The
grid’s three parameters, number of rows, number of columns and the order
that the rows and columns are filled are set using /setlayoutparameters (page
133).

Panel clients

Adding panel clients

When you are adding a client to a panel (of all formats) one of the arguments
is a name that is used to reference that client. This name must be unique. If you
do not need handles for your panel clients you can use “dup” as the client’s
unique name. I.e., you could do:

<create a canvas client, e.g., mycanvasclient>
dup /addclient mypanel send

Not only does this ensure that each client has a unique handle, it also lets you
use the client itself as the argument to /removeclient:

myclientcanvas /removeclient mypanel send

ClassPanel 133

16

Spaced and Grid placements
/addclient name client /addclient -

Adds client to the list of clients managed in a panel of either /Spaced or /Grid
placement. client is an instance of ClassRegion, ClassCanvas, or one of their
subclasses. name is a PostScript name used to reference client.

No layout data is required for /Spaced and Grid formats during /addclient. For
the /Grid format you set the layout parameters of the panel as a whole using
/setlayoutparameters (page 133). When the client has not been reshaped, /addclient
reshapes it to its preferred size.

Setting the layout for /Grid placement

/setlayoutparameters [layout-by-rows? rows columns] /setlayoutparameters -

Sets the layout parameters for /Grid placement format. layout-by-rows? is a
boolean; if true rows are filled with clients before columns; if false, columns are
filled before rows.

rows is the number of rows and columns is the number of columns.

Absolute placement
/addclient name client [x y] /addclient -

Adds client to the list of clients managed in a panel of absolute placement. client
is an instance of ClassRegion, ClassCanvas, or one of their subclasses. name is a
PostScript name used to reference client. [x y] is the position that you want the
lower left corner of client’s bounding box placed. When the client has not been
reshaped, /addclient reshapes it to its preferredsize.

Calculated placement
/addclient name client [compass-point {calculated protocol}] /addclient -

Adds client to the list of clients managed in a panel with calculated placement.
client is an instance of ClassRegion, ClassCanvas, or one of their subclasses.
name is used to reference client and is any valid dictionary key, i.e., any non-
null value.

[compass-point {calculated protocol}] determines where client is positioned in the
panel.

16

134 The NeWS Toolkit Reference Manual — March 1991

For example, to position an object’s west edge along the previous objects east
edge you could do the following:

 /clientname yourclient [/West { /East PREVIOUS POSITION }] /addclient yourpanel send

When the client has not been reshaped, /addclient reshapes it to its /preferredsize.

Setting a default for /Calculated placement

/setlayoutparameters [compass-point {calculated-protocol }] /setlayoutparameters -

Sets the default placement for /Calculated panels. If you use /setlayoutparameters
for a panel of placement-type /Calculated you can specify the layout data,
normally associated with a client during a call to /addclient, as a nullarray.

Generally, you will want to provide layout data for the first client you are
adding to the panel and then have all subsequent panels use the default. That
is if you did:

[/West { /East PREVIOUS POSITION }] /setlayoutparameters mypanel send

Then, during a call to /addclient for the first client you could do:

 /myclient1 myclient1 [/West {/West PARENT POSITION}]
/addclient mypanel send

which would position the first clients’s west edge along the panels’s west edge
and all subsequent client’s west edges along the previous clients’ east edges.

Figure 16-2 Example of clients positioned using calculated layout.

Then, during all subsequent calls to /addclient you could do:

/myclient2 myclient2 nullarray /addclient mypanel send

which would position myclient1’s west edge along the previous client’s east
edge. Each subsequent call to /addclient (with an empty layout-data array)
would position the new client’s west edge along the east edge of the previous
client.

/West edge of panel /West edge of first client

panel (PARENT)

. . .

ClassPanel 135

16

 /Calculated placement utilities

CURRENT - CURRENT current-client

Returns a reference to the current client that is being positioned. CURRENT can
be passed as the client argument to other utilities such as WIDTH, HEIGHT, and
POSITION.

HEIGHT client HEIGHT height

Returns the height of the specified client.

PARENT - PARENT parent

Returns a reference to the parent panel (self). PARENT can be passed as client to
other utilities such as WIDTH, HEIGHT, and POSITION.

POSITION compass-point client POSITION X Y

Returns the X-Y position for the specified compass-point on client.

PREVIOUS - PREVIOUS previous-client

Returns a reference to the previous client that was positioned. PREVIOUS can be
passed as the client argument to other utilities such as WIDTH, HEIGHT, and
POSITION. For the first client being added to a panel PREVIOUS returns null.

WIDTH client WIDTH width

Returns the width of the specified client.

Removing clients

/removeclient name /removeclient old-client true | false

Removes the client associated with name and invalidates the panel. The client
instance and true are returned if the named client exists. Otherwise, false is
returned. No layout data is returned.

If old-client is a canvas and has the same event manager as the panel, /removeclient
deactivates it. If the client had its own event manager when it was added to the
panel, it remains active when it is removed.

16

136 The NeWS Toolkit Reference Manual — March 1991

Positioning clients

/setgaps horizontal-gap vertical-gap /setgaps -

Sets the horizontal and vertical gaps between clients being positioned using
either /Spaced or /Grid placement. For other placement formats, this method is
ignored.

/gaps - /gaps horizontal-gap vertical-gap

Returns the horizontal and vertical gaps.

Layout

/layoutparameters - /layoutparameters layout-parameters

Returns the parameters set in the /setlayoutparameters method.

/Layout - /Layout -

During validation, the /Layout method positions the clients in the supplied list
based on the Placement variable.

ClassLayout methods defined for ClassPanel

ClassPanel provides a suitable implementation for the methods listed in this
section as required by ClassLayout. For an explanation of their functionality
please see Chapter 11, ClassLayout. The names of the methods are: CellSize, List,
Location, Move, ResolveOffset, ResolveReference, and Size.

Menus and tracking

By default panels are Menuable and Trackable (see ClassCanvas on page 35).

137

17-0
17-0

ClassRegion 17

Figure 17-1 The ClassRegion subtree

Regions are the Toolkit’s lightweight canvas replacement but there are some
differences between canvases and regions:

• Regions can only be rectangular in shape.
• Regions cannot be made Selectable (See Selectables on page 65 in

ClassCanvas.)
• Regions have parents, but they don’t have children.
• Regions generally are required to be clients of a Bag (e.g., border bags and

panels) to be useful. Bags provide the canvas “glue” to capture events and
forward them to the appropriate region client.

Regions support the menu and tracking interfaces found in ClassCanvas. The
Toolkit uses regions to create such objects as buttons and settings.

ClassObject ClassDrawable

ClassRegion

17

138 The NeWS Toolkit Reference Manual — March 1991

Creation

/new parentcanvas /new instance

Creates a new region instance.

Region appearance

Colors

The NeWS Toolkit’s OPEN LOOK components are drawn in a “3-D” style
using five different brightness values to represent light and dark shading of
beveled edges (Table 17-1). (For a complete explanation of how these shadings
are used to display 3-D objects see the OPEN LOOK Graphical User Interface
Functional Specifications.)

However, the 3-D effect is unusable on a black and white display when gray
values are approximated by stipple patterns. In order to make the OPEN
LOOK components usable in two colors (i.e. black and white), the Toolkit
provides 2-D colors and interfaces to switch between 3-D and 2-D looks.

/setcolors foreground-color background-color /setcolors -

Sets the foreground and background colors for the region. /setcolors examines
the /3D? variable (see Switching between 3-D and 2-D looks) to determine whether
to set /FG and /BG (3-D colors) or /2DFG and /2DBG (2-D colors). If /3D? is true,
/setcolors also computes and sets BG0, BG2, and BG3, based on the value of
background-color. See Table 17-1 for an explanation of these colors. If the instance
is valid, it is repainted immediately using the new colors. If the instance is
invalid the colors are reset but the instance is not painted automatically. See
Validation for more information.

Send /setcolors to a class to change the class defaults or an instance to change
just the instance.

/colors - /colors foreground-color background-color

Returns the foreground and background colors for the region. /colors examines
the value of /3D? to determine whether to return /FG and /BG or /2DFG and
/2DBG. Values returned are the NeWS color objects.

ClassRegion 139

17

/BackgroundColor - /BackgroundColor background-color

Returns BG or 2DBG, according to the dimensionality. /BackgroundColor checks
to see what the dimensional state of the framebuffer is before returning a color.
Thus you should use /BackgroundColor instead of /BG so your application will
use the appropriate 2-D or 3-D color.

/ForegroundColor - /ForegroundColor foreground-color

Returns FG or 2DFG, according to the dimensionality. /ForegroundColor checks to
see what the dimensional state of the framebuffer is before returning a color.
Thus you should use /ForegroundColor instead of /FG so your application will
use the appropriate 2-D or 3-D color.

Region color class variables
TNT uses slightly different names for its 3-D colors than are found in the
OPEN LOOK Graphical User Interface Functional Specifications. Table 17-1 shows
how the TNT color variables map into the OPEN LOOK names as well as the
names of the 2-D class variables.

Table 17-1 Toolkit color variables and their OPEN LOOK names

TNT Class OPEN LOOK
Variable name Explanation

/FG Foreground Foreground color. Used for text and the border of the
region. Default is black.

/BG0 Background Background color 0. Slightly darker than white, the
OPEN LOOK color that it replaces.

/BG BG1 Background color 1. Slightly darker than bg0.
Replaces the OPEN LOOK color, BG1. Used for the
background of the region.

/BG2 BG2 Background color 2. Slightly darker than bg. Used as
the background of “indented” choices.

/BG3 BG3 Background color 3. Used for the shadow of 3-D
objects.

/2DFG Black Used for the foreground of 2-D regions. Defaults to
black.

/2DBG White Used for the foreground of 2-D regions. Defaults to
white.

17

140 The NeWS Toolkit Reference Manual — March 1991

Switching between 3-D and 2-D looks
/3D? /3D? boolean (Variable)

Determines whether the region is drawn in 3-D or 2-D (i.e., the region’s
dimensionality). The default is true—use 3-D colors. 3-D regions are drawn
using the 5 colors, FG BG BG0 BG2 and BG3 . 2-D regions are drawn using the 2
colors, 2DFG and 2DBG. If you the Toolkit to be in 2-D mode when it is first
loaded you can set the dimensionality by doing a /3D? false put in UserProfile.

/set3D boolean /set3D -

Sets the dimensionality of the region. /set3D does not cause the region to
repaint, but it does invalidate instances of the following region subclasses
(because they have cached drawing information that needs to be updated):
ClassButtons and ClassMenuButtons.

Painting

TNT uses the following rendering model for painting regions: /paint initiates
the painting recursion by making the region’s canvas parent the current canvas
and then calling /PaintAll. /PaintAll sets up the context of the current object
relative to that of the parent. For regions the context is established by
translating the coordinate system so 0,0 is at the lower left corner of the
affected region. /PaintAll also validates the object. (See Validation on page 44.)
/PaintAll calls /Paint and /PaintChildren. /Paint paints the object itself. Clients
should override /Paint (unless the default /Paint method is suitable, which is
rare). /PaintChildren sends /PaintAll to each Mapped child.

/paint - /paint -

Sent to a region to initiate painting. /paint sets up the context for the painting by
making the region’s canvas parent the current canvas. Calls /PaintAll.

/PaintAll - /PaintAll -
Subclasser method: /Paint

/PaintChildren

Paints the entire region. You should neither call nor override /PaintAll. Checks
to see if the region is valid and if it isn’t, validates it. Uses the /Paint and
/PaintChildren methods for painting. Subclassers should override /Paint and/or
/PaintChildren to change the default painting behavior.

ClassRegion 141

17

/Paint - /Paint -

Paints the interior of a region. You can assume that /Paint is operating inside a
gsave/grestore and with the region’s canvas parent set as the current canvas.
Moreover, you also can assume that a translate has been done so that the lower
left corner of the region is located at (0,0). The default painting done is to fill
the region with its background color; subclassers should override /Paint to
perform their own region painting.

/PaintChildren - /PaintChildren -

A no-op for ClassRegion.

Utility Painting Methods
The methods in this section are utility methods and are provided because of
their usefulness. These are not subclasser methods. The methods should be
called from within gsaves and grestores and the region’s canvas parent must be
set. If you’re using these methods inside your /Paint definition you don’t have
to set the canvas yourself, TNT does this for you. See the rendering model
discussion above.

/BotRightPath x y width height /BotRightPath -

Constructs a path of the bottom and right edges of the box defined by x y width
and height.

/Paint3DBox x y width height down? /Paint3DBox -

Paints a 3-D box using /BG* colors whose bounding box is defined by the
arguments. When down? is true the box appears recessed. When down? is false
the box appears raised.

/Paint3DLine x y width /Paint3DLine -

Draws a 3-D line with a 1-point light line above a 1-point dark line having
endcaps either all light or all dark.

/Paint2DBox x y w h bold? /Paint2DBox -

Paints a 2-D box using the 2DFG and 2DBG colors, whose bounding box is
defined by the arguments. When bold? is true the box appears stroked with a
double thick line.

17

142 The NeWS Toolkit Reference Manual — March 1991

/TopLeftPath x y width height /TopLeftPath -

Constructs a path of the top and left edges of the box defined by x y width and
height.

Fonts

/TextFont /TextFont font

The default font used for the region. The default value is /LucidaSans 12 point.
Setting this variable does not automatically make font the current font. In order
to make font the region’s current font you could do:

TextFont setfont

/settextfont font /settextfont -

Subclasser method: /ModifyFont

Defines the text font for a region. /settextfont can be sent to a class or an
instance. For example to change the region’s text font you would do something
like:

/TimesRoman findfont 12 scalefont /settextfont yourcanvas send

As with /TextFont, the code above doesn’t make font the current font. In order to
have the PostScript show operator use the text font sent in the example you
would have to make the font the current font using the PostScript setfont
operator.

/textfont - /textfont font

Returns the text font of the region.

/ModifyFont font /ModifyFont font’

Returns a font that is the same as the given font except it is not printermatched
and it uses ISOLatin1 encoding. If you want to use printermatched fonts
and/or some encoding other than ISOLatin1 you should override /ModifyFont.
(For an explanation of printermatched font see the NeWS 2.1 Programmer’s
Guide and the X11/NeWS Server Guide.)

ClassRegion 143

17

The region tree

/framebufferof - /framebufferof framebuffer

Returns the framebuffer on which the region is located.

/map - /map -

Maps the region. For the purposes of mapping, regions resemble transparent
canvases in that unmapping a region does not cause it to disappear—a refresh
is required.

/mapped? - /mapped? boolean

Returns whether the region is currently mapped onto the screen.

/unmap - /unmap -

Unmaps the region. Unmapped regions are not painted in bags.

/Parent /Parent parentcanvas (Variable)

The region’s parent canvas.

/reparent parentcanvas /reparent -

Changes the parent of the region so that parentcanvas is it’s parent.

Geometry

All coordinates are relative to the region’s canvas parent, i.e., not the CTM.

/bbox - /bbox x y width height

Returns the bounding box of the region.

/location - /location x y

Returns the coordinates of the origin of the region.

/minsize - /minsize width height

Returns the minimum size of the region. If the data your region manages
requires you to enforce some minimum region size override /minsize to provide
an appropriate value.

17

144 The NeWS Toolkit Reference Manual — March 1991

/move x y /move -

Moves the origin of the region to x,y.

/path x y width height /path -

Sets the current path to be the rectangle that is defined by the arguments.
Regions always have a rectangular path.

/preferredsize - /preferredsize width height

Returns the preferred size for the region. The preferred size is some ideal
starting size that you determine. The Toolkit uses /preferredsize when clients are
added to panels and border bags; unreshaped regions are reshaped to their
/preferredsize.

One way to define /preferredsize in a subclass is:

/preferredsize { width height } def

By default /preferredsize returns the region’s /minsize.

/reshape x y width height /reshape -

Reshapes the region to fit the bounding box defined by the arguments.

/reshaped? - /reshaped? boolean

Returns whether the region has been reshaped.

/size - /size width height

Returns the size of the region.

Validation

The NeWS Toolkit uses a validation scheme to determine whether an object
needs to have its visual presentation updated. One way to understand this is
through the model-view portion of the model-view-controller paradigm.
Remember, the model is a data object, representing application information
and the view presents its model in a graphical fashion. TNT has several objects
that manage other objects. For example, menus manage a list of items, and
bags manage a collection of clients. The list of items in a menu and the
collection of clients in a bag are the model. How they are displayed on the
screen is the view.

ClassRegion 145

17

Your application may allow the user to alter the model, by adding or deleting
menu items, for example. When the user alters the list of items, TNT marks the
menu as invalid by sending it the /invalidate method. Saying a menus is invalid
is the same as saying that the model has changed but the view hasn’t been
updated to reflect those changes.

The /paint method is used to initiate the process that causes an object’s view to
match its model. But, in order to be efficient, TNT doesn’t automatically
repaint objects when they become invalid, i.e., TNT doesn’t call /paint on
invalid objects, you do. This optimization allows you to change several
attributes of an object and only perform one repaint.

Certain operations are considered “basic” enough that they automatically
update the view. /setvalue and /setcolors are examples of methods that do the
automatic update. However, if the view is already invalid for other reasons
(such as adding items) then these methods do not update the view.

/Valid? /Valid? boolean (Variable)

Determines whether the region is valid. An invalid region is one that needs
some operations executed before it can be repainted; a valid region is one that
is ready to be painted. ClassRegion does not interpret what it means for a
region to be invalid and what should be done to an invalid region is left to
subclasses. Subclasses can interpret what to do by overriding the validation
methods (/invalidate, /valid?, /?validate and /validate). Subclassers should call super
in their override of the validation methods, e.g.,

/?validate {
. . .
/?validate super send

} def

/invalidate - /invalidate -

Marks the region as invalid.

/valid? - /valid? boolean

Returns whether the region is valid.

/?validate - /?validate -

Validates the region if it is currently invalid.

17

146 The NeWS Toolkit Reference Manual — March 1991

/validate - /validate -

Causes the region to be marked as valid.

Region damage handling

Regions are generally contained in bags and don’t get the Toolkit’s damage
handler method, /HandleDamage, directly. Instead, the bag holding the region
gets the /HandleDamage message and then sends /FixAll to the regions in the
damage path. As with canvases, /FixAll sends /Fix and /FixChildren to each region.
(See /HandleDamage in ClassCanvas on page 53.)

/FixAll - /FixAll -
Subclasser methods: /Fix

/FixChildren

Paints the damaged area of the region. /FixAll is called for you. It is not
necessary for you to call /FixAll yourself.

/FixAll calls /Fix and /FixChildren; override these methods in your ClassRegion
subclass rather than /FixAll.

 /Fix - /Fix -

Handles the repainting of the damaged portions of a region. By default it
simply calls /Paint, which simply paints the damaged section of the region
without trying to be efficient.

Despite the fact that only the damaged area of the region is painted, all the
code in your /Paint definition is executed. If your /Paint has complicated, time-
consuming calculations, you may want to override /Fix so you can execute only
the painting code that applies to the damaged area. If your painting procedures
are simple and not time-consuming, you can just use your painting procedures
“as is” and allow the server to clip away the bits that aren’t necessary.

/FixChildren - /FixChildren -

Handles the repainting of damaged region children. Sends /FixAll to all the
children. /FixChildren is a no-op in ClassRegion.

ClassRegion 147

17

Mouse tracking

Regions are not themselves Trackable. If the canvas on which they sit is
Trackable then a region will receive the methods in this section when the
condition(s), described under each method, are met.

/TrackStart event /TrackStart -

Sent to a region when:

• SELECT is pressed in the region;

or

• when SELECT is pressed in the background and, with SELECT still down,
the mouse is dragged into the region.

/TrackStart executes in the local event manager. The /TrackStart method in
ClassRegion is more indiscriminate that its counterpart in ClassCanvas. It does
not return information to indicate whether tracking should occur.

/TrackStop event /TrackStop -

Sent to a region when the SELECT button is released inside the region.

/TrackMotion event /TrackMotion -

Sent to a region when SELECT is pressed and the mouse is being dragged
inside the region.

/TrackCancel event /TrackCancel -

Sent to a region when SELECT is pressed and the mouse is dragged outside the
region or when /TrackCancel is received in the bag instance.

Region menus

Regions are, by default, Menuable but their menus do not appear unless the
canvas on which they sit is Menuable. (See Canvas menus on page 53.)

/Menu /Menu menu (Variable)

The menu that is managed by the region.

17

148 The NeWS Toolkit Reference Manual — March 1991

/setmenu menu | null /setmenu -

Installs or removes a popup menu for the region. The menu is activated by the
user pressing the MENU button when the pointer is over the region. You
shouldn’t send /setmenu to a region that is on a canvas that hasn’t been made
Menuable. /setmenu can be sent to a class or an instance.

/menu - /menu menu

Returns the value of /Menu.

/MenuStart invoker posname event /MenuStart invoker posname event menu true
| invoker posname event false
| invoker posname event null true

Determines which menu (if any) should be shown over this object, and where
it should be positioned. You can change where the menu pops up by:

• Overriding /MenuStart and modifying the XLocation, YLocation pair of the event;

and/or

• Changing posname.

posname defaults to /Default, which means that the default item (or the item at
index 0 if there is no default) is aligned beside the location of event. Currently,
the only other legal posname is /NorthWest, which corresponds to the top-left
corner of the menu. (posname is used by menu buttons for positioning their
menus.)

invoker is the object that most recently caused the menu to be displayed. The
invoker also determines the local event manager in which the menu’s notifier
executes and is the default target of the menu (see The invoker mechanism on
page 117 in ClassMenu).

By default /MenuStart returns the menu held in the /Menu class/instance
variable, and does not modify the positioning arguments.

Returning invoker posname event false causes event to be redistributed allowing
some other object to open a menu.

The invoker posname event null true return is provided so that you can respond to
MENU down over your canvas or region by not opening any menu and
preventing anyone else (e.g., the window under region) from opening a menu
in response to the MENU.

ClassRegion 149

17

/MenuStop event /MenuStop -

Sent to a region when MENU is released. Use /MenuStop to clean up anything
you created in /MenuStart.

Obsolescence and destruction

/destroy - /destroy -

Destroys the region.In a garbage collected system you get rid of an object by
dropping any references you created to it. If the toolkit holds references to your
objects, they will be dropped when you drop your references: you don’t need
to worry about what reference the toolkit maintains.

You should override /destroy in your subclasses when instances of these classes
hold references that directly or indirectly point back to the instance. The parent
-> child -> parent circle between a bag and its regions is an example of this
kind of reference. In this case your /destroy should break the circle and call:

 /destroy super send.

You can also override /destroy to send /destroy to other objects you’re managing
in order to minimize the generation of obsolete events.

/destroy is executed in the global event manager.

Miscellaneous

/pointinregion? x y /pointinregion? boolean

Indicates whether the point represented by x and y is located within the
region’s boundaries.

/eventmgr - /eventmgr event-manager

Returns the event manager for the region’s canvas parent.

17

150 The NeWS Toolkit Reference Manual — March 1991

151

18-0
18-0

Scrollbars 18

Figure 18-1 The scrollbar subtree

TNT Scrollbars are a subclass of ClassCanvas and implement OPEN LOOK
scrollbars. ClassVScrollbar provides vertical scrollbars and ClassHScrollbar
provides horizontal ones.

TNT scrollbars act like controls in that they have a value and a target at which
they direct certain actions. As with other controls, scrollbars also have notifiers
that are sent to scrollbar targets.

The scrollbar classes are very complete and by default do most of the
calculations and visual updating themselves. When a user interacts with the
scrollbar, it moves itself to a new value, and notifies its target of the new value.

The value of a scrollbar is defined as the first position currently displayed in its
target. At any given time the visual presentation of a scrollbar is defined by
three parameters:

• the total number of objects in the view

ClassVScrollbar ClassHScrollbar

ClassObject ClassDrawable ClassCanvas

(ClassControl)

18

152 The NeWS Toolkit Reference Manual — March 1991

• the position of the first visible object

• the position of the last visible object

Definition of “Object.” The definition of object depends on what is being
scrolled. In a scrolling list an object is anything that comprises a legal item in
the scrolling list; in a text pane objects might be a lines of text, a characters, or
pages.

Creation

/new parentcanvas /new instance

Creates a new scrollbar instance. Sent to ClassVScrollbar to create a vertical
scroll bar and ClassHScrollbar to create a horizontal scrollbar.

Scrollbar auto repeat

To control scrollbar repeating yourself, you need to have two variables defined
in your UserProfile. However, if you don’t define these variables, default
values are stored in UserProfile for you.

/ScrollThresh—determines how long after the /MouseDown that the scrollbar
begins repeating. The default is 200 milliseconds.

/ScrollDelay—determines the time that elapses between each repeat. The default
is 100 milliseconds.

 /motion - /motion motion-name

Returns the type of elevator motion. The return value is determined by where
the cursor is on the scrollbar when the user presses SELECT. The OPEN LOOK
GUI Specification determines, in general, what kind of motion is caused by
user interaction with each part of the scrollbar. See Figure 18-2.

Scrollbars 153

18

Figure 18-2 Map from scrollbar components to motion names

/warpcursor - /warpcursor -

Warps the cursor when required. For example if you press and hold the left
mouse button over the /ElevatorDown, the elevator moves downward as long as
the button is depressed; the cursor is warped so the pointer stays over the
/ElevatorDown.

But, the cursor can’t be warped until the scrollbar is updated because the
position of the elevator isn’t known until the update occurs. Thus, if you have
taken control of the notification and updating of the scrollbar via /HandleMotion
you should call /warpcursor after you have caused the scrollbar to be updated
(via a call to either /setparameters or /setvalue).

Beginning of file

One Screenful Up

One Screenful Down

End of file

One Unit Up

One Unit Down

Type of MotionScrollbar motion names

/TopAnchor

/PageUp

/ElevatorUp

/ElevatorDown

/PageDown

/BottomAnchor

}

} (anywhere on cable
 above elevator)

(anywhere on cable)

/ElevatorDrag Follow the mouse

18

154 The NeWS Toolkit Reference Manual — March 1991

Geometry

/minsize - /minsize width height

Returns the minimum acceptable size for the scrollbar. The OPEN LOOK
Graphical User Interface Specification specifies what the smallest scrollbar looks
like.

Figure 18-3 The minimum acceptable size for a scrollbar.

/preferredsize - /preferredsize width height

Returns the size you think is ideal for your scrollbar. The default preferredsize
describes a scrollbar with a full elevator and anchors but no cable.

Figure 18-4 The default preferredsize scrollbar

Values and parameters

/setparameters value viewsize max /setparameters -

Sets the parameters of the scrollbar and updates the visual presentation of the
scrollbar to reflect the new parameters.

value is the index of the first object visible; it ranges in size from 0 to max-1.

viewsize is the number of objects currently visible.

max is the total number of objects being scrolled.

Thus in a text window that wanted to scroll by lines, value is the index of the
first visible line; viewsize is the total number of lines currently visible; and max
is the total number of lines in the file that the text program is managing.

Scrollbars 155

18

/parameters - /parameters value viewsize max

Returns the scrollbar’s current parameters.

/setvalue value /setvalue -

Sets the value of the scrollbar and updates the visual presentation of the
scrollbar to reflect the new value. value ranges from 0 to max–1 (see
/setparameters and Figure 18-5).

/value /value value

Returns the current value of the scrollbar; the value is from 0 to max–1 (see
/setparameters and Figure 18-5).

/EventToValue event /EventToValue value

Resolves an event into the current value of the scrollbar. Used by subclassers,
i.e., if you’re going to do an /installmethod on /HandleMotion.

Notification and previewing

The scrollbar’s notifier is called when the user interacts with the scrollbar in all
ways except dragging the elevator. When the elevator is dragged the previewer
is called. If you want no scrolling to occur when the user drags the elevator
define a notifier as usual but don’t define a previewer. If you want continuous
scrolling when the user drags the elevator define the previewer to be the same
as the notifier.

/setnotifier notifier-name | proc /setnotifier -

Stores the name of a notifier or the notifier procedure itself in a scrollbar class
or instance. If you use a name, the notifier is sent to the scrollbar’s target with
two arguments, the value of the scrollbar and the scrollbar instance itself:

value <scrollbar-instance> /yournotifier

The notifier should consume its arguments.

18

156 The NeWS Toolkit Reference Manual — March 1991

If you’ve stored a procedure in the scrollbar, the scrollbar’s value and the
scrollbar itself are pushed on the stack and then your procedure is executed.
The new value of the scrollbar depends on where SELECT went down on the
scrollbar.

Figure 18-5 How a scrollbar’s value changes

/notifier - /notifier notifier-name | proc

Returns the name of the notifier or the executable procedure.

/setpreviewer previewer-name | proc /setpreviewer -

Sets the scrollbar’s previewing procedure. The previewer is called when the
elevator is dragged. If you want no scrolling to occur until the user lets up on
the mouse define a notifier but leave the previewer undefined. If you want
continuous scrolling when the user drags the elevator define the previewer to
be the same as the notifier.

/previewer - /previewer previewer-name | proc

Returns the scrollbar’s previewer.

-1

+1

+ last viewsize

- last viewsize

To 0

To max–1

}

}

Scrollbar Value
 Change

Scrollbar

(from /setparameters)

(from /setparameters)

(from /setparameters)

Scrollbars 157

18

Scrollbar motion

/HandleMotion event /HandleMotion notifier-arguments

/HandleMotion is called internally whenever the user interacts with the scrollbar.
In particular, it is called immediately before the scrollbar’s notifier is executed.
Therefore, /HandleMotion is responsible for calculating the arguments that the
notifier expects, and pushing them onto the operand stack.

Figure 18-6 shows the default /HandleMotion. The API for scrollbars says that the
notifier is called with the scrollbar and the new value on the stack. Therefore,
the default /HandleMotion simply calculates a new value and leaves it on the
stack.

A new /HandleMotion can be methodinstalled into scrollbar instances for
applications that need more control over the scrollbar. Figure 18-7 shows a
/HandleMotion that is automatically installed into all scrollbars that are used by
the Jot text package. This /HandleMotion just describes the motion that occurred
and passes that information to Jot, and lets Jot calculate a new set of
parameters for the scrollbar.

This /HandleMotion produces two arguments for the notifier, which is allowed,
because it was Jot that supplied both the /HandleMotion and the notifier. Because
this /HandleMotion doesn’t actually change the value of the scrollbar, Jot issues
either a /setvalue or /setparameters once the new values are calculated. And at
that time Jot will also warp the cursor with the /warpcursor scrollbar method.

18

158 The NeWS Toolkit Reference Manual — March 1991

Figure 18-6 The default /HandleMotion definition for scrollbars

/HandleMotion { event => <notify-args>
% Calculate a new current value for the scrollbar base on the kind of
% motion that just occurred.
%
/motion self send { % event motion

/TopAnchor { pop 0 } % 0
/BottomAnchor {

pop /parameters self send % value viewsize max
3 1 roll pop pop % newvalue

}
/ElevatorUp { pop /value self send 1 sub } % newvalue
/ElevatorDown { pop /value self send 1 add } % newvalue
/PageUp {

pop /parameters self send pop % value viewsize
sub % newvalue

}
/PageDown {

pop /parameters self send pop % value viewsize
add % newvalue

}
/ElevatorDrag { % event

/EventToValue self send % newvalue
}

} case % newvalue

% Now set the scrollbars value to the newvalue. This moves the elevator automatically.
% Then warp the cursor to the new elevator position. Finally, leave the new value on the
% stack for the notifier.
%
/setvalue self send % -
/warpcursor self send
/value self send % value

} def

Scrollbars 159

18

Figure 18-7 Example of how /HandleMotion can be modified.

/HandleMotion { event => <notify-args>
/motion self send { % event motion

/ElevatorDrag { % event
/EventToValue self send % newvalue
/Absolute % newvalue /Absolute

}
/TopAnchor { pop -1 /Document }
/BottomAnchor { pop 1 /Document }
/ElevatorUp { pop -1 /Line }
/ElevatorDown { pop 1 /Line }
/PageUp { pop -1 /Page }
/PageDown { pop 1 /Page }

} case
} /installmethod jotscrollbar send

18

160 The NeWS Toolkit Reference Manual — March 1991

161

19-0
19-0

ClassScrollList 19

Figure 19-1 The ClassScrollList subtree

Introduction

A scrolling list is a list of items that you can scroll through and in most cases
choose one or more of the items. However, you have to add a scrollbar to the
scroll list.

The items in scrolling lists are similar to settings: they can be exclusive or
nonexclusive. The NeWS Toolkit (TNT) provides the following kinds of
scrolling lists:

• /Exclusive
A scrolling list from which you can choose one item.

• /ExclusiveVariation
A scrolling list from which you can choose one or none of the items.

• NonExclusive
A scrolling list from which you can choose none, one, or multiple items.

ClassScrollList
(ClassControl)

ClassObject ClassDrawable ClassCanvas

19

162 The NeWS Toolkit Reference Manual — March 1991

A ClassScrollList instance presents a list of items in its canvas; the scroll list is
said to manage its items. These items are specified using TNT display items;
therefore the following types are available:

• strings with font modifiers
• strings with color modifiers
• strings with font and color modifiers
• canvases (including orphans)
• PostScript fragments that can respond to /paint and /size messages

Prior to display, the list is validated to determine the maximum item width and
height. Using the maximum height, the number of visible items and the row
height is calculated. Because items can be different sizes, each item is centered
within the row height. As the maximum item height changes, the layout also
changes.1

When scrolling occurs, a minimum number of items will be repainted. Total
repaint happens when three or fewer items are visible in the canvas or no items
overlap.

Figure 19-2 Interaction between scrolling and and painting a list.

1. The maximum width is calculated to limit the number of bits affected during a scroll operation. The scroll
operation is implemented using copyarea.

Item 1

Item 2

Item 3

Item 2

Item 3

Item 4}Item overlap—full

Item 4 Item 5

repaint not done.

Item 1

Item 2

Item 3

Item 4

S
cr

o
ll

Item 6

Item 7

Item 8

Item 9

No item overlap—full
repaint performed.

S
cr

o
ll

ClassScrollList 163

19

Each item is accessed through a zero relative integer (called the item-index)
representing its position in the list. The item-index is not constant, because
items can be inserted or deleted in the list. No error handling is performed when
an index is out of range.

When an item in the list is chosen, the rectangle surrounding the item is
recessed as indicated in the OPEN LOOK Graphical User Interface Specification.

Items

/setitemlist [display-item display-item ...] /setitemlist -

Sets the list of items to be managed in the scrolling list. Invalidates the list. To
unset the current list you can use nullarray. Unsetting the item list also
initializes (i.e., clears) the list of choices. If you call /setitemlist, with a non-null
array, on a list that already has items, the item list is reset and the list of choices
is cleared.

/itemlist - /itemlist [display-item display-item ...]

Returns an array that contains the list of items managed in the scrolling list.
Due to the nature of composite objects in PostScript, you must not modify the
array1.

/item item-index /item display-item

Returns the display item at item-index.

/itemcount /itemcount number-of-items

Returns the number of items managed in the scrolling list.

/insertitem item-index display-item /insertitem -

Inserts display-item into the list at the specified item-index. Invalidates the
scrolling list and no automatic repainting occurs. When the instance is
validated, the row height and visible items might change.

1. If you need to modify the returned array you should make a copy of it and modify the copy. One way to
copy the array is:
dup length array copy

19

164 The NeWS Toolkit Reference Manual — March 1991

/replaceitem item-index display-item /replaceitem -

Replaces the item referenced through item-index with display-item. Invalidates the
scrolling list and no automatic repainting occurs. When the list is validated, the
row height and visible items might change.

/deleteitem item-index /deleteitem -

Deletes the item referenced through item-index. Invalidates the scrolling list and
no automatic repainting occurs. When the list is validated, the row height and
visible items might change. If the item you are deleting is chosen, its item-
index is also deleted from the choice list.

If you delete an item that precedes chosen item, the chosen item, stays chosen
and it is assigned an item-index appropriate to its new position. The chosen
item’s new item-index is added to the choice list.

/appenditem display-item /appenditem -

Appends the item to the end of the list. Invalidates the scrolling list and no
automatic repainting occurs.

/itemvisible? item-index /itemvisible? boolean

Returns a boolean that indicates whether the item referenced through item-
index is visible. This method may return incorrect results when the instance is
invalid.

Choices

/setchoicemode mode /setchoicemode -

Sets the choice mode for the scrolling list. mode must be defined as /Exclusive,
/NonExclusive, or /ExclusiveVariation. The default mode is /NonExclusive.

/choicemode - /choicemode mode

Returns the choice mode for the scrolling list.

ClassScrollList 165

19

/locatechoice - /locatechoice -

Provides an interface to the OPEN LOOK menu commands “Locate Choice” in
exclusive lists and “Locate Next Choice” in nonexclusive lists. When the
instance is valid, the list is scrolled to the next choice that is not currently
visible in the canvas. This search does not wrap around; if there is no choice
below the last visible item, no scrolling occurs.

/clearchoice - /clearchoice -

Provides an interface to the menu command “Clear All Choices” in scroll lists.
When the instance is valid, the choice list is initialized and visible choices will
be raised. This method is ignored when the choice mode is /Exclusive.

/chosen? item-index /chosen? boolean

Indicates whether the item referenced though item-index is included in the
choice list.

/setvalue [item-index ...] /setvalue -

Sets the value of the scroll list. /setvalue raises visible choices if the old choice is
not in the new array and recesses visible choices if the new choice is not in the
old array. Choices contained in both arrays are not altered. Recessing and
raising occurs only if the instance is valid.

When the choicemode is /Exclusive, the array passed to /setvalue should contain 1
element; otherwise, the behavior of this operation is undefined. Similarly,
when the choicemode is /ExclusiveVariation, the array passed to /setvalue
should contain 0 or 1 element.

/value - /value [item-index item-index ...]

Returns an array that contains the list of choices. Due to the nature of
composite objects in PostScript, you must not modify the array.

Scrolling and scrollbars

Though not mandatory, most applications will use a scrollbar to scroll the
scrolling list. For a explanation of using scrollbars see Scrollbars on page 151.
the following sequence is one way you could associate a scroll list with a
scrollbar.

1. A scrolling list is instantiated:

19

166 The NeWS Toolkit Reference Manual — March 1991

/list framebuffer /new ClassScrollList send def

2. A vertical scrollbar is instantiated.

/scrollbar framebuffer /new ClassVScrollbar send def

3. Using ClassControl target mechanism the scrolling list becomes the “target”
for notification from the scrollbar.

list /settarget scrollbar send

4. The /scroll method in the scrolling list is executed during scrollbar
notification.

/scroll /setnotifier scrollbar send

5. The /scroll method in the scrolling list is also executed during scrollbar
previewing.

/scroll /setpreviewer scrollbar send

6. The scrolling list is informed that it has an attached scrollbar. The scrolling
list will use this reference to set and update the scrollbar’s parameters.

scrollbar /setscrollbar list send

/setscrollbar scrollbar-instance /setscrollbar -

Associates scrollbar-instance with the scrolling list and sets the parameters of the
scrollbar (see /setparameters in Scrollbars on page 154). You still must make the
list the target of the scrollbar. To unset the scrollbar you can define scrollbar-
instance as null.

/scroll item-index scrollbar /scroll -

The notifier for the list’s scrollbar.

/scrolltohere item-index /scrolltohere -

Scrolls the list to put item-index at the top.

List geometry

/rows - /rows rows

Returns the number of rows that fit in the visible portion of the list.

ClassScrollList 167

19

/heightfromrows rows /heightfromrows height

Calculates the appropriate height for the specified number of rows. The
returned height can be used with /reshape, /minsize, and /preferredsize to ensure
an appropriate number of visible items (rows) in the scrolling list.

/setrowgap points-between-rows /setrowgap -

Sets the amount of space (in points) between scroll list items. Invalidates the
scrolling list.

/rowgap - /rowgap points-between-rows

Returns the amount of space (in points) between items and between the visible
item list and the scroll list itself.

Figure 19-3 Row gaps in scroll lists.

Ability to interact with scroll list items

/setvisualstate state /setvisualstate -

Sets the state of the list. state is one of /Active, /Inactive, or /Busy. /Active is the
default. The list is not repainted to reflect the new state unless it is valid. The
state of a list determines not only its visual presentation but also whether users
can interact with the scroll list. Users can interact with /Active lists; /Inactive and
/Busy lists ignore user interaction.

/visualstate - /visualstate state

Returns the visual state of the list. state is one of /Active, /Inactive, or /Busy.

Item 1

Item 2

Item 3

Item 4

row gaps

19

168 The NeWS Toolkit Reference Manual — March 1991

Notification

/setnotifier notifier /setnotifier -

Sets the notifier in the scrolling list; notifier can be either a PostScript name or a
PostScript code fragment.When notifier is specified as a PostScript name type, it
is used in conjunction with the target interfaces to dispatch notification to the
appropriate target. Whenever an item is chosen, notification occurs. During
notification the following objects are pushed onto the stack:

• An array describing the change to the list. The array contains either the
item-index(es) of the items chosen and a boolean that is true if the was
chosen or or false if unchosen.

• An array of choices for /NonExclusive; an item-index and a bool for an
/ExclusiveVariation; a single item-index for /Exclusive.

• the scrolling list instance, and the notifier name are pushed on the stack,
prior to invoking /sendtarget.

Although not recommended, notifier can also be specified as a PostScript code
fragment. The above mentioned array, the scrolling list instance, and the
fragment are pushed on the stack, then the fragment is executed.

Notification is performed within the context of the Local Event Manager
(LEM).

/notifier - /notifier notifier

Returns the notifier for the scrolling list.

/setpreviewer previewer | null /setpreviewer -

Sets the previewer procedure for the list. null removes the previewer from the
list.

/previewer - /previewer previewer

Returns the previewer for the list.

The target interface
Use targets with scroll lists to make the scroll list the target of its scrollbar and
to make other objects targets of scroll list notifiers.

ClassScrollList 169

19

/settarget object /settarget -

Sets object to be the target of the scroll list.

/cleartarget null | object /cleartarget -

Clears the target. If object is specified the target is cleared only if the target and
object are the same.

/target - /target null | object

Returns the target object.

/sendtarget args /method /sendtarget results

Sends /method and any necessary arguments to the target and returns the
method’s results, if any.

Miscellaneous

/settextfont font /settextfont -

Changes TextFont to font. Simple string items are affected. The instance is
invalidated and no automatic repainting occurs. When the instance is
validated, the row height and visible items might change.

19

170 The NeWS Toolkit Reference Manual — March 1991

173

20-0
20-0

ClassSelection 20

 Introduction

A selection is an indication of some data of interest to the user, almost always
some information visible on the screen that is about to be used in an operation.
The most common example is text that is to be moved or copied from one place
to another. Many other objects can be selected, and many operations besides
move/copy are possible; for instance, a window may be selected so that its
properties may be inquired or manipulated. The NeWS Toolkit provides a
ClassSelection, whose instances (Selections) describe such a selected chunk of
data.

The window system has a global registry that keeps track of a few selections;
registering a selection causes any previously registered value to be deselected,
and makes the current selection available to all clients of the window system.
This registry is implemented inside ClassSelection through utility procedures
defined in systemdict.

The instance variables for ClassSelection contain attributes of the selection.
Some of these are required by ClassSelection’s processing: Holder is the object
responsible for the selection (which is, by default, the canvas on which the
selection appears), and Rank is a global identifier that may be any non-null
PostScript object The standard ranks are /PrimarySelection, /SecondarySelection, and
/ShelfSelection. /ShelfSelection is also commonly referred to as the ClipBoard. Other
variables are attributes that support the user interface for making selections,
see Table 20-2 on page 182. Finally, a Selection usually also contains
information stored by the client to identify the selection.

20

174 The NeWS Toolkit Reference Manual — March 1991

Note – There is a file in the demo/bin directory on the TNT release tape called
circles that demonstrates many of the concepts discussed in this chapter. It is
strongly advised that you use the circles demo in conjunction with this chapter
when you are trying to use selections in your application.

How this chapter is organized

This chapter is divided into three main categories of information:

The section Retrieving selection values on page 176 tells you how to ask an
existing selection for its value.

The section Making selections on page 181 tells you how to make a selection.
Making selections is somewhat more complicated, connected as it is to issues
of user interface and UI independence.

The section Responding to selection requests on page 185 tells you how your
selection should respond to requests posed to it.

Definition of “selection client”
 The “client” and “selection client” mentioned in this chapter both refer to the
canvas in which there is a selection. In most cases this is the /Holder but that is
not a requirement because there can be more than one canvas associated with a
single /Holder (see /Holder on page 66 in ClassCanvas).

How applications get information about selections

Some users of ClassSelection will make selections, other users will want to get
information about selections. ClassSelection provides the means for both
creating selections and getting information from them. For example, a series of
selection-related transactions involving a dialog window might look like1:

1. A user presses the “Load” button in an application window.

1. If the dialog box wanted to make its own selections rather than just use another window’s selections then it
would have to be Selectable. See Selectables on page 65 in ClassCanvas.

ClassSelection 175

20

2. A dialog window opens. The dialog window tries to fill in the name of the
file using the current /PrimarySelection, e.g., some text selected in a command
tool.

3. The dialog box first must determine if a /PrimarySelection exists. It would use
/getselection. (See /getselection on page 176.)

4. Now that it has the selection, the dialog window must determine if it can
use it. The dialog window is expecting text; ClassSelection “labels” a
selection that contains only text, /ContentsAscii (see Table 20-1 on page 178).
The dialog box would use the ClassSelection method /query to determine if
the current selection was text. (See /query on page 176.)

5. The dialog processes the selection and performs the appropriate action; in
this case the text is installed as the default value in the dialog’s text field.

The application that is going to create selections and respond to queries has its
own associated series of transactions; see Making selections on page 181.

The context of selection processing

It is important to recognize that a selection can exist without being registered
in the global database—instances of (subclasses of) ClassSelection are used
privately in several parts of the system before being made available to the
world at large.

A second important point is that much of the processing described in this
chapter is initiated outside the application’s context, i.e., its userdict and
stdin/stdout are not available.

For instance, global UI code will recognize that a function key has been
released, or a drag action performed, signaling that a selection transfer should
take place. Similarly, the UI layer, not the application, is responsible for
determining which user actions indicate a selection is to be made or adjusted.

One implication of this second point is that the selection’s methods are often
invoked in some foreign process (the global event manager, or even in another
client’s process). They must, consequently, be self-contained—if they need
some data such as the connection to the C-side client, that must be reachable
from the selection instance. Context is important when communicating with a

20

176 The NeWS Toolkit Reference Manual — March 1991

c-client because of the way NeWS communicates with the client-side (see the
NeWS 2.1 Programmer’s Guide for an explanation of NeWS-Client
communication).

 Retrieving selection values

Applications can retrieve the value of a selection by sending a message to it.
This may require that the application first find that selection in the global
registry. To find the selection in the registry use /getselection. To get information
about a selection’s attributes use /query or /request; /request is the more general
(and complex) method.

getselection rank getselection selection | null

Returns selection currently registered under rank, or null if none exists. The
standard ranks are: /PrimarySelection, /SecondarySelection, and /ShelfSelection, but
rank may be any non-null PostScript object.

getselection is a utility procedure in systemdict, you don’t send it to an object
but just call it. For example to determine if a /PrimarySelection exists you could
do:

/PrimarySelection getselection dup null ne % selection bool

/query key /query false | value true

Retrieves a single attribute of a selection. key is the name of the attribute
desired (e.g., /ContentsAscii; see Table 20-2 on page 182 for a list of attribute
keys) and returns the associated value and true. If there is no such value, it
returns false.

For example, to use /query to retrieve just the characters of a selection you
could do the following:

/PrimarySelection getselection dup null ne{ % sel
/ContentsAscii /query 3 -1 roll send { % val

...process the value... % -
} if

} {
pop

} ifelse % -

ClassSelection 177

20

/request request-dictionary /request response-dictionary

Retrieves one or more attributes of a selection at a time1. request-dictionary is a
dictionary that contains the complete request. Each key in the dictionary names
a selection attribute or an operation the selection should perform. For an
operation, the corresponding value in the dictionary may be a parameter or
array of parameters. For requested attributes, the original value in the
dictionary doesn’t matter. /request should be used when any of the following
are true:

• You are asking a selection to do an operation that takes arguments to
complete.

• The requester and holder must negotiate the form of the requested data
(described below).

• When the cost of communicating with the holder of the selection is high
(e.g., the holder must communicate with its C-side client through a slow
communication link in order to respond to any request), it may be
advantageous to batch queries in a single call to /request.

The selection will return a similar dictionary (or modified copy of the same
dictionary, as convenient), with results and requested attributes in the value for
each key wherever possible; if it cannot store a result, it will store the value
/UnknownRequest.

1. The default implementation for /request in ClassSelection is in terms of /SingleRequest: the request-dict is
enumerated with forall, and each request/value pair is passed to /SingleRequest. (If /RequestSequence is
found, it is passed to its own enumerator, which in turn calls /SingleRequest. When /RequestChoice is
implemented it will work in the same way.) If a selection holder wishes to do batch processing of requests, it
should override the /request method. Any such override is then responsible for supporting
/RequestSequence and /RequestChoice (see Table 20-1 on page 178).

20

178 The NeWS Toolkit Reference Manual — March 1991

The following example illustrates use of /request to ask an editor where the
selection is and in what source file. A debugger might do this so that it could
set a breakpoint there.

The set of request keys passed to the selection holder is open-ended; any set of
clients that can agree on the interpretation of a new key, may use that key to
communicate among themselves. A convention for the most common requests
has not yet been established; but a number of the most useful are suggested
here. In general, request names should develop parallel to the conventions of
the X11 Window System, as documented in David Rosenthal’s Inter-Client
Communication Conventions Manual (distributed by the X Consortium).

The following table summarizes the conventional request keys. Certain keys
request that the client modify the selection in some way. Two “action-type”
keys are specified here: /DeleteContents and /ReplaceContents.Most keys represent
requests for the Selection to render its value in a named format.

Table 20-1 Request keys

Key Name1 Argument Result

/Canvas none the selected object, if it is a NeWS canvas.

/ContentsAscii none a PostScript string containing the selected text, without text
attributes (font, typeface, etc.)

1. Those keys marked with * are not currently implemented by The NeWS ToolKit, but are defined so that
clients who wish to use such requests will have a common interface.

/PrimarySelection getselection dup null ne {% sel
dictbegin % construct request dict

/FileName null def
/StartIndex null def

dictend % sel request
/request 3 -1 roll send % response
begin

... process response ...
end
} { % no such selection; null

pop
} ifelse

ClassSelection 179

20

/ContentsPostScript none a PostScript object, which, when executed, will recreate the selected
value. (This is likely to be most useful for graphical objects, which
can be redrawn in a new environment.)

/DeleteContents none the contents of the selection are deleted. Tells the client to delete
the contents of the selection. This is not the same as merely
deselecting or destroying the Selection instance; e.g., in a text item
/DeleteContents means remove the selected span of characters from
the text. Since there are no parameters required for this operation,
either of /query or /request will work for it. Assuming the holder is
willing and able to comply, a null value will be returned.

/ReplaceContents* none /ReplaceContents involves a deletion, just like /DeleteContents; but
then new data passed as an argument to the request should be
stored in place of the deleted material, and the replacement should
be selected. In this case (where the requester must be able to pass
an argument to the request), the /query method will not work.
Instead, the /request method is used, with a request dict for its
argument. In the request dict, the key /ReplaceContents is defined,
with the replacement contents as its value. This style of passing
parameters enables a consistent interface to be maintained between
requester and selection holder, regardless of the particular
requests.1

/FirstIndex * none the count of how many objects of size Level precede the first object
in the selection.

/Level * none the multi-click level of the selection.

/LastIndex * none the count of how many objects of size Level precede the last such
object in the selection.

/RequestChoice * [request arg ...] a list of alternative requests (with parameters for each) of which
the holder should respond to one.

/RequestSequence [request arg ...] a list of requests (with parameters for each) which the holder
should respond to in order.

1. Note: No Toolkit selections currently support (or attempt to use) the /ReplaceContents request. It is
specified here so that clients who may choose to implement it will have a consistent protocol. The protocol
described in the table matches that in the ICCCM.

20

180 The NeWS Toolkit Reference Manual — March 1991

/SelectionObjsize none the size of the selection as measured in bytes. Note the lower-case
’s’ in “Objsize”. In order to paste TNT selections into XView
applications you must include /SelectionObjsize in your
/SingleRequest definition (page 186).

/TransferSelection * dict[.../Source: Selection...]

one selection is requested to perform a transfer between itself and
another; see the note at the end of the next section.

Since /query retrieves only one selection attribute at a time, the requester can
easily control the order in which requests are processed. This is not so easy
with /request: The order of objects in a dictionary is undefined, so if there is a
required order to the requests, the requester must take special pains. It should
define only one key in the request dictionary, /RequestSequence, and its value
should be an array. The 0th, 2nd, etc. elements of the array will be taken as
requests, and the following (odd-numbered) element for each will be the
corresponding parameter/value. In the dict returned by /request, the value
associated with /RequestSequence will be an array in which the odd-numbered
elements are the values returned by the selection holder.

A similar mechanism allows the requester and holder to negotiate over the
form of response. The requester uses the key /RequestChoice, which is defined
to an array similar to the one used with /RequestSequence. In this case, the keys
in the even-numbered positions of the array are included in the order of the
requester’s preference. The holder may then choose any of the requests in the
RequestChoice to respond to; the key /RequestChoice is redefined to a new array
containing the single key responded to and its corresponding value. If none of
the choices is acceptable, the array should be replaced by /UnknownRequest. (If
one of the choices in the /RequestChoice array is in turn a /RequestSequence, it is
deemed responded to only if all the requests in the sequence are acceptable.)

Note – Like /ReplaceContents, the /RequestChoice key is not currently supported
by the NeWS Toolkit. Individual clients may choose to implement it if they are
willing to run the risk of having their code become obsolete.

The full details of request processing are described below under “Responding
to Requests.”

ClassSelection 181

20

 When and how to transfer a selection value

Clients will occasionally decide on their own initiative that they should
retrieve a selection value; for instance, the debugger example above would
probably be triggered by invocation of a “Breakpoint” panel button or menu
command. But most of the time, global user interface code will determine that
a selection transfer is called for. If a client can accept input from the user
(keystrokes or mouse drawings, for instance), then it should generally also be
ready to accept the contents of a selection. Whenever the UI code determines
this is appropriate, it will send an event to the destination of the transfer.

In order for your canvas to receive these transfer events you must make it
Receptible. See Chapter 5, Drag and Drop—receptible canvases on page 71.

 Making selections

Creation

/new rank holder /new selection

Creates an instance of ClassSelection.

A selection client is a canvas that can contain a selection, or be one itself (e.g. a
text window or a frame).

Selection clients will subclass two classes: ClassSelection and ClassCanvas. In
both, there are subclass responsibility methods that the client must implement
in its own subclass. If your canvas is handling text you may want to subclass
ClassTextCanvas instead of ClassCanvas.

Below is a typical sequence of operations for a selection-client application:

1. Subclass ClassCanvas to be Selectable and to provide definitions of the
selectable subclass responsibility methods and /SelectableType (see Selectables
on page 65 in ClassCanvas).

2. Subclass ClassSelection to provide subclass responsibility methods.

3. Activate an instance of your subclass of ClassCanvas (see Activation and
deactivation on page 46 in ClassCanvas). Because /Selectable? is true the
canvas is added to a global interest managed by UI-specific code.

20

182 The NeWS Toolkit Reference Manual — March 1991

4. The UI code matches certain events (which events get matched depends on
the particular UI), and decides a selection action has occurred, e.g., SELECT
goes down over the canvas.

5. The UI code sends the /NewSelection message to the canvas. /NewSelection
returns a new Selection of the appropriate class (i.e., an instance of the
client’s Selection subclass created in step 2). See /NewSelection on page 67 in
ClassCanvas.

6. The UI code then sets instance variables within that selection (selection
attributes) to indicate what’s going on (multiclick level, etc.). See Table 20-2
for a list of the relevant instance variables. You should realize that it is the
UI code that sets these variables. When the selection is delivered to your
canvas you can query the selection as to the value of the variables you want
to know about.

7. Next the UI code calls more canvas subclass responsibility methods to get
the client to finish resolving the operation. E.g., the ADJUST button may be
used to extend the selection, causing the UI code to call the canvas’s
/SelectionStart method (see /SelectionStart on page 69 in ClassCanvas).

8. When the UI code decides that the user action is complete (e.g., a mouse
button is released), it notifies the canvas that the selection is complete (see
/SelectionStop on page 70 in ClassCanvas) and then registers the Selection in
the global dictionary so that other applications can access it, via getselection.

Note that most of the selection actions are driven by the UI code. Clients need
write relatively little code for their particular selections. In particular, clients
should not try to interpret raw device events—some are not readily accessible
to the client; most are subject to user-modification (some left-handers swap the
meaning of the mouse buttons and function keys for left-handed use); and user
interfaces are subject to many changes an application will do well to ignore if it
can.

Table 20-2 Class Selection attributes used in making selections.

Key (Name) Value Type Interpretation

/DeleteSource? boolean Meaningful only if the selection is being passed to a /DragStart
or /DragAdjust canvas method, in which case the key is true if
the operation is a Move rather than a Copy.

/ToggleSelected? boolean This key is defined only if the SelectableType of the canvas that
made the selection is /Canvas or /Graphic. For /Canvas Selectable

ClassSelection 183

20

types, it shows a change in the previewed-state (as distinguished
from the true state) of the selection. E.g., Adjust-down on an icon
[de]- hilites it immediately, and then toggles its hiliting as you
slide off and on the icon.

In /Graphic selections, it is set from /SelectionStart (page 69 in
ClassCanvas) through /SelectionStop (page 70 in ClassCanvas).
Its interpretation depends on the form of the adjustment, indicat-
ed by the Pin value at SelectionStart time:

/Pin=/NoPin The object under the cursor is being toggled.
If the client is doing any previewing on /Se-

lectionAdjust (page 69 in ClassCanvas), the
last object toggled must be cached so that it
may be restored.

/Pin=/AtPoint There is no object under the cursor. A bound-
ing box should be started, and all selectable
objects enclosed by it at /SelectionStop should
be toggled.

/Holder any Determines who is the selection client.

/InsertionPoint name Tells the client the selection’s insertion point if some value is cop-
ied to the selection. In particular, if this is a primary selection the
canvas should change its input focus location. name is one of:

/LowEnd The low end of the existing selection (first)

/HighEnd the high end of the existing selection (last)

/NearEnd whichever of first/last is closest to the cur-
rent point

/FarEnd whichever of first/last is furthest from the
current point

/AtPoint the cursor position (current)

/Level int The “size” of objects to be selected. For instance, in text, 1 may
indicate a character, 2 a word, 3 a line or sentence, etc. Essential-
ly, for OPEN LOOK, /Level is a multi-click count.

/PendingDelete? boolean true if the selection should be replaced by the next user input ac-
tion (always, for primary selections in OPEN LOOK).

/Pin any Tells the client where to “anchor” the selection during an /Selec-

tionAdjust operation. The pin can be a name, in which case it can
be evaluated using /ComputeNamedPosition (described below

20

184 The NeWS Toolkit Reference Manual — March 1991

under “Utilities”), or it may be an arbitrary value (typically an
int) representing a previously computed anchor point. The pos-
sible names are:

/LowEnd The low end of the existing selection (first)

/HighEnd The high end of the existing selection (last)

/NearEnd Whichever of first/last is closest to the cur-
rent point

/FarEnd Whichever of first/last is furthest from the
current point

/AtPoint The cursor position (current)

/NoPin No pin. One use for /NoPin is toggling the se-
lected state of the object under the cursor.

/Rank any Most selections have Rank eq /PrimarySelection. Selections made
while some function-keys are down have Rank eq /SecondarySe-
lection. (These get reflected differently, and have special uses.)
The Clipboard has Rank eq /Shelf-Selection. Other Ranks are pos-
sible.

/Registered? boolean true if the selection has been registered in the global database via
/setselection.

/SelectResult? boolean Determines whether data that has been transferred via a selec-
tion operation (e.g., Cut and Paste) should be selected after the
transfer.

/Style any The style of highlighting recommended by the UI manager. Cur-
rently defined values are /Default, /Invert, /Outline, /StrikeThru, and
/Underscore. Clients may ignore this value if they think it does not
apply to their selection type, basing their highlighting instead on
/Rank and /PendingDelete?.

Finally, to assist clients in correctly reflecting changes to the selection, every
time the /SelectionAdjust message is sent, the accompanying selection will have
the name /Changed defined to an array of some of the above names; each key in
the array has changed value since the previous adjustment.

ClassSelection 185

20

Registering a new selection; unregistering an old one

When the UI layer decides that a selection specification has been completed, it
sends /setselection to the selection; the default implementation registers the
instance in the global database. Clients may override /setselection if they need
to adjust state or maintain any additional information when one of their
selections becomes publicly available. Of course, it is also possible for a client
to create a new selection on its own initiative and send it /setselection; it will
get registered just the same.

Just as a client may register a selection on its own initiative, it can unregister
one by sending /unsetselection to it. A warning given above bears repeating
here: It often happens that a /Deselect message is generated in the client which
is making a new selection (the cause of this one being Deselected); the
message-send in this context is in danger of communicating with the wrong
client. For instance, printing data over the current process’s standard out is
likely to send it over the wrong connection. Clients must take care to store
some access back to their generating client in selections they create, so they can
communicate with it reliably when that selection receives a message while
running in another process. Other messages that may be sent to a selection face
analogous dangers: /SingleRequest and /destroy in particular are liable to be
sent to a selection while running in some process other than the selection’s
Holder’s client. Equivalent care is required in these cases to respond in the
proper context.

/Deselect - /Deselect -

When a new selection is registered, any old selection already registered under
that rank is sent a /Deselect message. /Deselect is a strict subclassresponsibility
method: there is no implementation in ClassSelection. The subclasser’s method
should at least dehighlight the selection; most selections will also destroy
themselves. However, a deselected selection might be retained, for instance to
support restoring the selection in an Undo operation.

Responding to selection requests

Selections respond to requests through either of two methods, /request or
/SingleRequest, and you must override ride at least one of them. Because the
default implementation of /request is defined using /SingleRequest, most
subclassers of ClassSelection can simply define /SingleRequest to meet their
needs.

20

186 The NeWS Toolkit Reference Manual — March 1991

In this section only /SingleRequest is discussed. For information on /request see
page 177.

/SingleRequest oldvalue request-key /SingleRequest newvalue

The key passed to a selection’s /SingleRequest method identifies the nature of
the request. Most keys represent requests for the selection to render its value in
a named format (see Table 20-1). For these requests, the value currently on the
stack (oldvalue) is to be discarded, and the client should put the requested value
on the stack.

Certain keys request that the client modify the selection in some way. For these
requests, the oldvalue on the stack contains arguments, if any, to be used in the
operation. Even if no arguments are needed, the /SingleRequest method must
be sure to remove the value from the stack; likewise, even if there is no return
value, /SingleRequest must store something (typically ’null’) on the stack. This
ensures a uniform interface to /SingleRequest. (If neither the oldvalue nor the
newvalue is meaningful, the oldvalue can simply be left on the stack as the
returned value. See the /DeleteContents case in the example below.)

Note – In order to paste TNT selections into XView applications you must
define /SelectionObjsize in your /SingleRequest override. See Table 20-1 on page
178 for a definition of /SelectionObjsize.

For any request (value or action), the client may choose not to support the
requested key. If so, /SingleRequest should pop oldvalue and return
/UnknownRequest.

A typical /SingleRequest method might look like:

/SingleRequest { % oldvalue request-key => newvalue
{ /ContentsAscii {pop Rank <get value> Holder send}

/SelectionObjsize {pop Rank <get value> Holder send length}
/Level {pop Level}
/Canvas {pop Holder}
/DeleteContents {Rank /DeleteSel Holder send} % leave junkval
/Default {pop /UnknownRequest}

} case
} def

ClassSelection 187

20

Note that /SingleRequest need not support /RequestSequence or /RequestChoice.
Since clients making such requests must always go through the /request
method (rather than /query), it is left to the /request method to handle breaking
up the /RequestSequence or /RequestChoice into a series of calls to
/SingleRequest.

 Utilities

Utility selection class

The NeWS Toolkit defines a subclass of particular interest to clients and/or
implementors of selections. The subclasses is StringSelection.

A StringSelection only knows how to render itself as ContentsAscii.
StringSelection’s value never changes; it responds to queries by looking up the
queried keys in a constant dict. This is to make it easy for clients to wrap a
string inside a selection preparatory to handing it to a canvas via a
/TransferSelection request. (See /sendtocanvas on page 188.) A StringSelection is
intended to be created directly via /new instead of via the /NewSelection
method, and thus does not expect rank/holder arguments; its /new method
takes just a string.

Utility methods

/ComputeNamedPosition first last current position-name /ComputeNamedPosition position

first, last, current, and position are numeric values referring to the location of a
selection (in the client’s interpretation); first/last are the endpoints of an existing
selection, while current is typically the position corresponding to the
coordinates of a recent event. position-name is one of the values defined for the
Pin in a Selection, and is interpreted as follows:

/LowEnd the low end of the existing selection (first)

/HighEnd the high end of the existing selection (last)

/NearEnd whichever of first/last is closer to current

/FarEnd whichever of first/last is further from current

/AtPoint the cursor position (current)

20

188 The NeWS Toolkit Reference Manual — March 1991

This is used for interpreting the Pin to establish one endpoint in preparation
for subsequent /SelectionAdjust messages.

/computepin first last current /computepin pin-point

If the Selection’s Pin is a name, /computepin calls /ComputeNamedPosition and
stores the result as the new value of Pin. Otherwise the three input values are
discarded and the previously computed Pin value is returned unchanged. This
should be done on every /SelectionStart or /SelectionAdjust; the UI manager will
override Pin again if the anchor is to change.

/computerange first last current /computerange newfirst newlast

Same as /computepin, but it returns the pinned position and the current
position, in sorted order.

/CanRenderAs - /CanRenderAs dictionary (Variable)

Determines which data-rendering request keys, e.g., /ContentsAscii (see Table 20-
1 for a list of the keys) a selection responds to; the dictionary should not
contain any of the action-generating keys (e.g., /DeleteContents). The dictionary is
of the form: /request-key:any.

The cut and copy operations use /CanRenderAs to figure out what data formats
the selection supports. The Toolkit’s cut/copy code then queries the selection
for each of those formats and stores the values on the clipboard.

Note – The list should NOT include /Canvas, even though the selection’s
/SingleRequest method might handle such a request. This is because copying a
/Canvas value to the ClipBoard would result in the canvas staying on the screen
after its application has been destroyed.

/sendtocanvas canvas [delete?] /sendtocanvas -

Sends the selection to the given canvas if the canvas is receptible. The selection
need not be registered with the global manager. The optional boolean says
whether the selection should be deleted after the transfer. (Default is false.) The
canvas can be null to send the event to the canvas(es) currently under the
pointer. For example, the following would send a string to the current input
focus:

(random string) /new StringSelection send
currentinputfocus /sendtocanvas 3 -1 roll send

ClassSelection 189

20

clearselection rank clearselection -

Removes the selection (if any) currently registered for the given rank from the
global registry and deselects it. Defined in systemdict.

20

190 The NeWS Toolkit Reference Manual — March 1991

189

21-0
21-0

ClassSettings and ClassCheckBoxes 21

Figure 21-1 The ClassSettings and ClassCheckBoxes subtree

ClassSettings

ClassSettings is a single class implementing both exclusive and non-exclusive
settings, including the special variation of exclusive settings which toggles the
currently selected item on clicking on it a second time, thus allowing for no
item being currently chosen. Settings can be: /Exclusive, /NonExclusive, or
/ExclusiveVariation. The settings in a group are items and are added, deleted and
accessed using the methods found in ClassItemGroup (see ClassItemGroup on
page 87). Some of the ClassItemGroup methods inherited by ClassButtons are:

/setitemlist /itemlist /itemcount

/insertitem /replaceitem /deleteitem

/appenditem /itemsize /itemlocation

/itembbox /pointinitem? /pointtoitem

ClassObject ClassDrawable

ClassRegion ClassItemGroup

ClassSettings ClassCheckBoxes
(ClassControl)

(ClassLayout)

21

190 The NeWS Toolkit Reference Manual — March 1991

In addition, ClassControl is mixed-in to ClassSettings. The control interfaces
documented in ClassSettings are: /setnotifier, /notifier, /setvisualstate
/visualstate and the target interface.

Creation

Instances and items follow the item group interface exactly, overriding only
/NewItem to store the display item and to initialize the “chosen” state to be false.

/new placement parent /new instance

Creates a new instance of ClassSettings. Placement is one of /Spaced, /Absolute,
/Calculated or /Grid.

Justification

/setjustification /Left | /Centered /setjustification -

Sets the justification of the settings.

/justification - /justification /Left | /Centered

Returns the settings justification.

Choices

/setchoicemode /Exclusive | /NonExclusive | /ExclusiveVariation /setchoicemode -

Sets the style of the setting. You should call /setchoicemode immediately after
/new, and before adding any items to the setting.

/choicemode - /choicemode /Exclusive | /NonExclusive | /ExclusiveVariation

Returns the style of the setting.

The default is /NonExclusive.

/chosen? item-index /chosen? boolean

Indicates whether the item at item-index is chosen.

ClassSettings and ClassCheckBoxes 191

21

Value of settings

The “value” of a setting is an array of the chosen items’ indices. No special case
is made for exclusive choices.

/setvalue [item-index item-index . . .] /setvalue -

Sets the items whose indices appear in the array as the current set of chosen
items.

For settings of mode /Exclusive this array must have one and only one entry.

For settings of mode /ExclusiveVariation the array may have either one entry or be
an empty array.

/value - /value [item-index item-index]

Returns an array of indices of the chosen items.

Notification

The notification value for settings and checkboxes is an array that contains:

[item-index boolean]

boolean indicates whether the item has been chosen or “unchosen.”

Different types of settings notify at different user actions:

/Exclusive notifies only when an item is turned on. This means
you are not notified about the item being unchosen,
and the boolean in the array is always true.

/ExclusiveVariation notifies when an item is turned on as /Exclusive
settings do and notifies when the item currently
turned on is turned off and the setting has no chosen
item.

/NonExclusive notifies when any item is turned on or off.

21

192 The NeWS Toolkit Reference Manual — March 1991

/setnotifier notifier | null /setnotifier -

Sets the notifier for the settings. When notifier is specified as a PostScript name
type, it is used in conjunction with the target interfaces to dispatch notification
to the appropriate target. During notification, the notification value, the setting
instance, and the notifier name are pushed on the stack, prior to invoking
/sendtarget. (see below).

Although not recommended, notifier can also be specified as a PostScript code
fragment. The current value, the control instance, and the fragment are pushed
on the stack, then the fragment is executed.

/notifier - /notifier notifier | null

Returns the notifier for the settings.

/setpreviewer previewer | null /setpreviewer -

Sets the previewer for settings. If null is specified the previewer is set to null,
i.e., previewing is turned off.

/previewer - /previewer previewer | null

Returns the settings previewer.

ClassCheckBoxes

ClassCheckBoxes, implements the special check box selection list by
subclassing ClassSettings. Although it typically uses /Grid layout, it is not
limited to that and may use /Calculated, /Absolute, or /Spaced layouts. Only
/NonExclusive check boxes are supported.

Creation

/new placement parent /new instance

Creates a new instance of ClassCheckBoxes. placement is one of /Spaced, /Absolute,
/Calculated or /Grid

193

22-0
22-0

Sliders 22

Figure 22-1 The slider subtree

The NeWS Toolkit implements OPEN LOOK horizontal sliders by ClassHSlider
and OPEN LOOK vertical sliders by ClassVSlider.

A slider controls a numerical value bounded by minimum and maximum
values. A user may affect the value of the slider in the following ways:

• moving the drag box to the desired location to set an absolute value.

• clicking on the end boxes to select the minimum or maximum values.

• clicking to the left or the right of the drag box to change the value by a
relative delta.

Values are also constrained to be between the minimum and maximum values,
after being normalized.

Tick marks can be drawn at regular intervals below a horizontal slider, or
alongside a vertical one, by specifying the distance in slider value units
between consecutive tick marks. If you don’t want tick marks, you can specify
a distance of 0, which is the default.

ClassObject ClassDrawable ClassCanvas

ClassHSlider ClassVSlider
(ClassControl)

22

194 The NeWS Toolkit Reference Manual — March 1991

Creation

/new parentcanvas /new instance

Creates a new slider instance. Sent to ClassHSlider to create a horizontal slider
and ClassVSlider to create a vertical slider.

Slider auto repeat

You can control when the slider starts to repeat and how fast it repeats by
defining two variables in your UserProfile. If you don’t define values for the
variables, the Toolkit uses default values.

/SliderThresh /SliderThresh milliseconds (UserProfile Variable)

Determines how many milliseconds SELECT has to be down to either side of
the drag box before the slider begins repeating. Default is 500 milliseconds

/SliderDelay /SliderDelay milliseconds (UserProfile Variable)

Determines how many milliseconds delay there is between slider repeats.
Default is 20 milliseconds.

Values

/setvalue value /setvalue -

Sets the value of the slider. Any number can be given to /setvalue; it is
normalized and forced in range. The slider is painted to reflect the new value if
the slider is valid.

/value - /value value

Returns the value of the slider. The number returned by /value is always
normalized and in range.

/setrange minimum-value maximum-value /setrange -

Sets the minimum and maximum values of the slider. Invalidates the slider.
The slider is updated to reflect the new range. You should reshape the slider to
its preferredsize after changing the range if you want the slider to be large
enough to select every whole number in its range. The default range is 0 to 100.

Sliders 195

22

/range - /range minimum-value maximum-value

Returns the minimum and maximum values of the slider.

Notification and previewing

/setnotifier notifier | null /setnotifier -

Sets the notifier in the slider. When notifier is specified as a PostScript name
type, it is used in conjunction with the target interfaces to dispatch notification
to the appropriate target. During notification, the current value, the slider
instance, and the notifier name are pushed on the stack, prior to invoking
/sendtarget. In other words, your notifier should be written to take a value and
an instance as arguments. Using null makes the notifier a no-op, i.e., it turns off
notification. The default is for the notifier to be null.

Although not recommended, notifier can also be specified as a PostScript code
fragment. The current value, the control instance, and the fragment are pushed
on the stack, then the fragment is executed.

/notifier - /notifier notifier

Returns the notifier for the slider.

/setpreviewer previewer | null /setpreviewer -

Sets the previewer procedure for the slider. null removes the previewer from the
slider. Previewing involves returning intermediate values before getting the
final value, e.g., dragging the sliders drag box could preview.

/previewer - /previewer previewer

Returns the slider’s previewer procedure.

Target Interface

/settarget object /settarget -

Sets object as the target of the slider’s notifier. If a previous target exists it is
overwritten.

22

196 The NeWS Toolkit Reference Manual — March 1991

/cleartarget null | object /cleartarget -

Clears the target. If null is given the target is cleared. If object is specified then
the target is cleared only if object and the target are the same. This latter
specification ensures that the target is not incorrectly cleared.

/sendtarget arguments /method /sendtarget results

Sends /method and any required arguments to the target.

/target - /target null | object

Returns the target.

Granularity

Slider granularity is controlled by a normalizer procedure. The normalizer
procedure consumes the unconstrained value on the stack and leaves a
constrained value on the stack.

/setnormalizer proc /setnormalizer -

Sets the slider’s normalization procedure. Invalidates the slider.

/normalizer - /normalizer proc

Returns the procedure that normalizes the value of the slider.

A typical normalizer would be “{round cvi}”, to constrain the value to rounded
integers. By default the normalizer does not change the value.

/setdelta step /setdelta -

Sets the slider’s step delta. step is the amount the slider’s value changes when
the user presses POINT to the left or right of the drag box. To the left of the
drag box the slider’s value is decremented by step; to the right of the drag box
the slider’s value is incremented by step. The default is 1.

/delta - /delta step

Returns the slider’s step delta.

Sliders 197

22

Visual presentation

/settickmarks distance /settickmarks -

Specifies that you want tick marks drawn below or alongside the slider.
Invalidates the slider. distance is the space, in slider value units, between
consecutive tick marks. 0 specifies no tick marks. “Slider value units” requires
some explanation. For example, if a slider has a value that ranges from 0 to 100
then it has 101 slider value units.

/tickmarks - /tickmarks distance

Returns the distance (in slider value units) between the tickmarks. Returns 0 if
the slider has no tick marks.

/setendboxes boolean /setendboxes -

Determines whether the slider has endboxes. The default is for no endboxes.
Invalidates the slider. You should reshape the slider to its preferred size after
changing the endboxes.

/endboxes? - /endboxes? boolean

Returns whether the slider has endboxes.

Geometry

/minsize - /minsize width height

Returns the minimum size of the slider.

/preferredsize - /preferredsize width height

Returns a size that makes the slider larger enough to select every whole
number in its range.

Slider label positioning

/offset name /offset x y

Returns the (x,y) offset from the slider’s lower left corner to the point where a
label should be justified.

 name is one of:

22

198 The NeWS Toolkit Reference Manual — March 1991

/MinEnd At left end of hslider, or bottom of vslider.

/MaxEnd At right end of hslider, or top of vslider.

/MinTick At left end below hslider, or top to right of vslider.

/MaxTick At right end below hslider, or bottom to right of vslider.

The offsets are useful when positioning the slider’s minimum and maximum
labels and labels for the tick marks, if any. Table 22-1 shows the various ways
you could use offsets to position your slider labels using calculated layout and
the slider offsets. Figure 22-2 shows the resulting slider.

Table 22-1 Code using offsets for calculated layout of horizontal slider labels

Label Label Offset Slider Offset Slider Client Gap offset
name name name calculation

MinEnd [/East { /MinEnd /hslider POSITION 0 5 xysub }]
MaxEnd [/West { /MaxEnd /hslider POSITION 0 5 xyadd }]
MinTick [/North { /MinTick /hslider POSITION 5 0 xysub }]
MaxTick [/North { /MaxTick /hslider POSITION 5 0 xysub }]

Figure 22-2 Horizontal slider with its labels positioned using slider offsets

Similarly you could use the slider offsets to layout a vertical slider (Table 22-2,
Figure 22-3). The label offset names change to reflect the change in orientation
and the gap offset calculation changes slightly but otherwise the calculations
are the same.

Sliders 199

22

Table 22-2 Code using offsets for calculated layout of vertical slider labels

Label Label Offset Slider Offset Slider Client Gap offset
name name name calculation

MinEnd [/North { /MinEnd /vslider POSITION 5 0 xysub }]
MaxEnd [/South { /MaxEnd /vslider POSITION 5 0 xyadd }]
MinTick [/West { /MinTick /vslider POSITION 0 5 xyadd }]
MaxTick [/West { /MaxTick /vslider POSITION 0 5 xyadd }]

Figure 22-3 Vertical slider with its labels positioned using slider offsets.

22

200 The NeWS Toolkit Reference Manual — March 1991

201

23-0
23-0

ClassTextCanvas 23

Figure 23-1 The ClassTextCanvas subtree

ClassTextCanvas subclasses ClassCanvas to provide assistance for clients
whose selections are character strings, and who want to use an overlay canvas
to display the selection during a drag-move or drag-copy operation. It fills in
the /DragStart and /DragAdjust methods for you. You still must provide the
definitions for the other selectable subclass responsibility methods in
ClassCanvas (see Selectables on page 65 in ClassCanvas).

/DragStart event selection /DragStart -

Creates an overlay canvas (see the NeWS 2.1 Programmer’s Guide for
information on overlay canvases).

/DragAdjust event selection /DragAdjust -

Called when the cursor is moved (as long as SELECT stays pressed); it causes
the overlay canvas to follow the cursor and displays some of the text that was
displayed in the window when dragging began.

/DragStop event selection /DragStop -

Destroys the overlay canvas. Sent to the text canvas when SELECT is released.

ClassObject ClassDrawable

ClassTextCanvas

ClassCanvas

23

202 The NeWS Toolkit Reference Manual — March 1991

/CurrentText selection /CurrentText string

Obtains the text to display in the overlay canvas. Subclassers will generally
wish to override the /CurrentText method for greater efficiency (the default uses
the normal /query mechanism (see /query page 174 in ClassSelection), whereas
individual subclasses can usually obtain the text by more direct methods).

203

24-0
24-0

ClassTextField 24

Figure 24-1 The ClassTextField subtree

Creation

/new parentcanvas /new instance

Creates a textfield instance. Unlike some controls, text fields are not “grouped”
and so do not have a placement parameter.

State of Text Fields

/setvisualstate state /setvisualstate -

Sets the state of the field to one of /Active, /Inactive, or /Busy. The field is not
painted unless it is valid.

Active fields accept the focus, drag and drops, and selections.

ClassObject ClassDrawable

ClassTextFieldClassTextCanvas

ClassCanvas

(ClassControl)

24

204 The NeWS Toolkit Reference Manual — March 1991

Inactive fields are dimmed, and do not accept the input focus, drag and drops,
or selections. The text can still be modified programmatically via calls to
/inserttext, /setvalue, etc.

Busy fields do not accept input, drag and drops, or selections.

/visualstate - /visualstate state

Returns the state of the field. State is one of /Active, /Inactive, or /Busy (see
/setvisualstate).

/ReadOnly? /ReadOnly? boolean (Variable)

Determines if the text field is read only. A read only text field does not display
a caret and does not accept the input focus or drag and drops. However, it
displays normally (i.e., not dimmed) and the text in it can be selected. As with
inactive fields, the text can still be modified programmatically via calls to
/inserttext, /setvalue, etc.

/setreadonly boolean /setreadonly -

Sets the value of the variable /ReadOnly?.

/readonly? - /readonly? boolean

Returns the value of the variable /ReadOnly? (see /ReadOnly? for an
explanation).

Value of Text Fields

/setvalue string /setvalue -

Replaces the entire contents of the text field with the given string. Any
selections in the old text are cleared, and the caret is placed at the end of the
new text. The string is copied, so subsequent changes to the original string or
to the text field’s value do not affect each other. The field is not painted unless
it is valid.

To clear the text completely, use the global constant “nullstring”, i.e.,

nullstring /setvalue mytextfield send.

ClassTextField 205

24

/value - /value string

Returns the current contents of the text field. Clients who intend to modify the
contents of the string (via the PostScript operators put or putinterval) must
instead make their own copy of the string.

Characters

/characters - /characters number-of-characters

Returns the number of characters in the text. Equivalent to, but much faster
than

/value mytextfield send length.

/MinimumVisible /MinimumVisible number-of-characters (Variable)

Determines the minimum number of characters to display in the field. Setting
/MinimumVisible does not automatically reshape the text field; all it does is
change the value returned by /minsize. Default setting is 5 (see /minsize).

/setminimumvisible number-of-characters /setminimumvisible -

Sets the minimum number of characters to display.

/minimumvisible - /minimumvisible number-of-characters

Returns the minimum number of characters to display.

/minsize - /minsize width height

Specifies a width for the text field large enough to fit /MinimumVisible number
of capital-M characters in the text field’s font, plus the scrolling buttons.

Notification

The Toolkit’s text fields notify only on TAB or RETURN (or LINEFEED), not on
loss of focus. This means that, unlike for other controls, the client must
explicitly obtain the current text if it needs to be certain of having the most
recent value, such as when performing an “Apply” function.

24

206 The NeWS Toolkit Reference Manual — March 1991

This notification scheme can create a problem for an application if it assumes
that it will be notified when a text field is changed. If a user makes changes to
a textfield and then types ^N (or ^P) to move to another object, no notification
will occur. You should use the notifier to perform some specific action, like
doing a “Load File.”

/setnotifier notifier /setnotifier -

Sets the text field’s notifier. notifier is either a method name that is sent to the
target (as set by /settarget), or it is a PostScript code fragment. (The latter is not
recommended but is permitted for those clients who need the generality or
efficiency.) See Notification and previewing on page 77 in ClassControl.

/notifier - /notifier notifier

Returns the text field’s notifier.

/setpreviewer previewer /setpreviewer -

Sets the previewer. Like the notifier (above), the previewer is either a method
name that is sent to the target, or it is a PostScript code fragment. It can also be
null to obtain default behavior. Setting the previewer allows a client to respond
to each character as it is typed into the text field, unlike the notifier which is
called only when the user is finished. See /insertcharacter for more details.

/previewer - /previewer previewer

Returns the text field’s previewer.

The text insertion point (the caret)

/setcaret caret-position /setcaret -

Sets the position of the caret within the text. The caret position determines the
location for inserting characters, as well as for various other operations. The
caret goes between two characters. If caret-position is 0 the caret is placed to the
left of the first character. If the position exceeds the length of the text, an error
will result.

/caret - /caret caret-position

Returns the current caret position. The number returned is the number of
characters to the left of the caret, including characters not visible due to having
scrolled off the left edge of the field.

ClassTextField 207

24

Painting

/PaintText character-number /PaintText -

Paints the text, starting at character-number. If character-number is less than 0,
/PaintText paints all the text and also clears the rest of the canvas. The scrolling
buttons are also repainted as necessary. Assumes that the canvas and font are
set.

Note – /PaintText is a utility used to write other methods. Most clients will call
the ClassCanvas /paint method, which ends up doing a -1 /PaintText self send.

Manipulating the text

/deletecharacters number-of-characters /deletecharacters -

Deletes one or more characters from the text, starting at the caret. If number-of-
characters is negative, deletes characters preceding the caret; otherwise
/deletecharacters deletes after the caret. (If number-of-characters is zero, the text is
unchanged.)

/deletespan 1st-character-position number-of-characters /deletespan-
Subclasser method: /DeleteSpan

Deletes an arbitrary span of characters, starting after 1st-character-position and
extending for number-of-characters. If 1st-character-position + number-of-characters
exceeds the length of the text, an error may occur. Any selections within the
text are adjusted accordingly. For example:

 (Sample Text) /setvalue txt send 4 5 /deletespan txt send /value txt send == (Sampxt)

/DeleteSpan 1st-character-position number-of-characters /DeleteSpan -

Deletes the span of characters defined by 1st-character-position and number-of-
characters. It assumes the canvas and the font have been set. It does not do any
painting, but just updates the text value and adjusts the selections.

/deletewords number-of-words /deletewords -

Deletes number-of-words, starting at the caret. If number-of-words is negative, deletes
words preceding the caret; otherwise deletes words after the caret. To delete
each word, characters are deleted until (a) at least one alphanumeric has been

24

208 The NeWS Toolkit Reference Manual — March 1991

deleted and (b) the next character is not alphanumeric, or until the caret
reaches the start of the text (or end, if deleting forward). The /AlphaNumeric?
method is used to test individual characters.

 Example:

(Here, so they say, is some sample text.) /setvalue txt send 11 /setcaret txt send
% puts it after the “th” of “they”
2 /deletewords txt send /value txt send == (Here, so th, is some sample text.)

/insertcharacter character /insertcharacter -

Inserts a single character into the text at the current caret location. If the caret
is within (or at one end of) a pending-delete primary selection, the selected text
is deleted.

If the previewer is non-null (see /setpreviewer), then /insertcharacter does not
modify the text. Instead it sends the previewer method to the target, or
executes the previewer code fragment. The text field instance is first pushed
onto the stack; the previewer should consume both the instance and the
character. It is up to the previewer to make any desired modifications to the
text, e.g. by calling /insertstring. NOTE: The previewer must not call
/insertcharacter, because this will likely cause infinite recursion.

If the previewer is null, the character given to /insertcharacter is matched
against a dictionary of special characters (see /SpecialActions); characters found
in that dict perform the special action and are not inserted (and do not delete
the selection).

/insertstring string /insertstring -
Subclasser Method: /InsertString

Inserts a string of characters into the text at the current caret location. If the
caret is within (or at one end of) a pending-delete primary selection, the
selected text is deleted.

Characters in the string given to /insertstring are NOT checked for special
actions and do NOT go through the previewer. Ordinary type-in uses
/insertcharacter; text received via cut and paste or drag and drop uses
/insertstring.

ClassTextField 209

24

/InsertString string /InsertString -

Performs the actual insertion of the text. It does NOT do any painting.
/InsertString assumes that the canvas and the font have been set, that the caret
has been turned off, and the pending-delete selection has been dealt with. It
also assumes that the caller will take care of scrolling the text if the position
where the caret is to be restored turns out to be off the edge of the canvas.

Note – The /insertcharacter operation is actually quite different from Jot’s
/insertcharacters. The Jot method inserts multiple characters specified as a
buffer and length (as distinct from a null-terminated string). PostScript makes
no distinction for null-terminated strings, so /insertstring handles all multi-
character cases. Jot does not have a single-character /insert method.

/settextfont font /settextfont -

Sets the font of the textfield. Invalidates the field.

Selections

/setselection 1st-character-position number-of-characters /setselection -

Causes the specified range of characters to become the primary selection. The
selection is single-click level, pending delete. “Single-click” means that if the
user subsequently clicks ADJUST, the selection adjusts by characters, not
words. Pending delete means if the user types, the selection is deleted. OPEN
LOOK specifies that selections are pending-delete.

/selection - /selection false|1st-character-position number-of-characters true

Returns the indices of the selected range and true if the text field currently
contains the primary selection; otherwise it returns false.

Moving between textfields and other textfields or canvases

Text fields support the notion of “where to go next”; i.e., where should the
input focus go when the user presses RETURN or some other key (per the
OPENLOOK specification). Usually the next focus is another text field, but it
can be any Keyable canvas. (E.g., in Mail Tool, pressing RETURN in the
composition window eventually puts the focus into the message text area.)

24

210 The NeWS Toolkit Reference Manual — March 1991

/setnextfocus canvas /setnextfocus -

Sets the canvas that gets the focus from the text field. /setnextfocus doesn’t
actually set the focus but just specifies the focus order. It’s generally called
when you are creating a control panel, not in a notifier. To specify that the
focus should not move out of the text field when RETURN is pressed, call
/setnextfocus with ‘null’. The default is null.

/nextfocus - /nextfocus canvas

Returns the canvas that was set by /setnextfocus.

/previousfocus - /previousfocus canvas

Returns the text field for which /nextfocus is this one. (If more than one text
field calls /setnextfocus with the same destination, the results are undefined.)

/gotonextfocus - /gotonextfocus -

Moves the focus to the canvas specified via /setnextfocus after calling the
notifier (if any) with the current value. If /nextfocus is null, the input focus is
not moved, but the notifier is still called.

/gotonextfield - /gotonextfield -

Moves the focus to the text field specified in /setnextfocus. If some other type of
canvas (i.e., not a text field) was specified in /setnextfocus, the focus goes to the
first text field in the chain set up by sequential calls to /setnextfocus. I.e., the
focus wraps around from the last field back to the first. Does not call the text
field’s notifier.

ClassTextField 211

24

/gotopreviousfield - /gotopreviousfield -

Moves the focus to the text field that is returned by /previousfocus. If there is
no such text field the focus is moved to the last text field in a chain set up by
sequential calls to /setnextfocus. I.e., the focus wraps around from the first field
back to the last.

Figure 24-2 Moving the focus between text fields.

Figure 24-2 illustrates a sample application that has linked text fields so the
focus can be moved between textfields. You could establish the chain of focus
passing by doing the following:

Textfield2 /setnextfocus Textfield1 send
Textfield3 /setnextfocus Textfield2 send
Can /setnextfocus Textfield3 send

With this chain established if /gotonextfocus is called when Textfield3 has the
focus the focus moves to Can. However, if /gotonextfield is called when
Textfield3 has the focus then the focus moves to Textfield1 (i.e., the focus
“wraps”). Similarly if Textfield1 has the focus and you call /gotopreviousfocus,
the focus “wraps” around to Textfield3.

Textfield1

Textfield2

Textfield3

(a canvas that can get the focus, i.e., it’s Keyable)
Can

24

212 The NeWS Toolkit Reference Manual — March 1991

Scrolling

/scroll number-of-characters /scroll -
Subclasser method: /Scroll

Scrolls the text left or right, as number-of-characters is positive or negative,
respectively. If you try to scroll right and the first character is already visible,
no scrolling occurs; it does not cause an error. Similarly trying to scroll left
while no character is visible, does not cause an error.

/Scroll number-of-characters /Scroll -

Works the same as /scroll except it does not perform any painting. It is used
internally by various methods that may perform several scrolls before
updating the screen. The /scroll method also uses /Scroll.

/fitcaret - /fitcaret -

Subclasser method: /FitCaret

Scrolls the text left or right as necessary to cause the current caret position to be
within the visible portion of the text. Usually you do not need to call this
method explicitly, because other methods (/insertcharacter, /deletespan and
/setposition) scroll the text automatically.

If the caret is already visible, no scrolling occurs. Otherwise the text scrolls so
as to place the caret at approximately the position specified by
/AutoScrollPosition.

/FitCaret /method /FitCaret boolean

Adjusts the text field’s left margin as necessary, but without doing any
painting, and returns true if any scrolling was performed (in which case the
caller is expected to do a full repaint instead of whatever partial repaint might
otherwise have been required). The method name given to /FitCaret is one of:
/fitcaret, /setposition, /deletespan, and /insertstring; the default implementation
ignores it, but a subclasser might choose to scroll differently (or not at all) after
certain operations.

ClassTextField 213

24

/AutoScrollPosition - /AutoScrollPosition position (Variable)

Determines where the caret is placed, by /FitCaret. It is a fraction between 0 (to
put the caret at the left edge of the field) and 1 (to put it at the right). The
default value is 2/3. This value is not expected to be changed “on the fly,” but
only via subclassing (or UserProfile overrides), so there are no accessor
methods.

/InvisibleCaret - /InvisibleCaret -

Makes the caret so that it is not currently painted, blinking, or otherwise active.
Assumes the canvas and font are set.

/VisibleCaret boolean /VisibleCaret -

Causes the caret to become visible at its current position. Assumes the canvas
and font are set. If boolean is true, the caret is activated immediately. Otherwise
an event is queued that causes the caret to become visible after a short delay
(determined by /CaretDelay) unless additional /*Caret calls occur.1

/CaretDelay /CaretDelay milliseconds (Variable)

Determines how long the text field waits to make the caret visible/Active. The
default is 100 milliseconds.

1. Implementation note: The reason for the delay is to avoid spending time painting and unpainting the caret
when the user is typing many characters. Eliminating this extra painting saves a significant amount of
processor overhead.

24

214 The NeWS Toolkit Reference Manual — March 1991

/ResolveToChar event /ResolveToChar caret-position

Returns the caret position nearest to the coordinates of the event. Caret
positions are between characters; the position returned is before/after the
character at the coordinates as the coordinates are in the left/right half of the
character (see Figure 24-3).

Figure 24-3 How the caret position is resolved.

/AlphaNumeric? character-position /AlphaNumeric? boolean

Returns “true” if the character at the specified position is part of a word. The
default method returns true for A-Z, a-z, 0-9, and underscore. Subclassers may
override this to change the behavior of word-selection and word-deletion
operations. See also /AlphaNumericTable, below.

/AlphaNumericTable /AlphaNumericTable dictionary (Variable)

Determines which characters can be part of a word; used by /AlphaNumeric?. It
is a dict whose keys are the alphanumeric characters (with null values).

If you want to modify this dictionary to change the behavior of the
/AlphaNumeric? method for an instance or a subclass, you must be careful to
make a copy of it and modify the copy. If you simply define new keys into the
existing dict, it affects all text fields.

c c
(event) (event)

character centerline

(caret put
here)

(caret put
here)

ClassTextField 215

24

/SpecialActions /SpecialActions dictionary (Variable)

Defines the special actions performed by /insertcharacter in response to certain
characters. As with /AlphaNumericTable, subclassers who wish to modify this
dict should make a copy of it. The default set of special actions is:

Table 24-1 The keys and values of the /SpecialActions dictionary.

Miscellaneous

/movebaseline x y /movebaseline -

Moves the text field (within its parent canvas) so as to place the left edge of the
baseline at the given coordinates. This method is intended for application
writers who have raw text painted on a canvas and want to replace that text
with a text field with minimal visual disturbance.

For example the following two lines of code:

/Parent yourtextfield send setcanvas x y moveto (some text) show

Keyboard

Dict Key Dict Value Key Explanation

1 {0 setcaret} def ^A move to beginning

2 {caret 1 sub 0 max setcaret} def ^B move backward

4 {1 deletecharacters} def ^D delete forward

5 {characters setcaret} def ^E move to end

6 {caret 1 add characters min setcaret} def ^F move forward

8 {-1 deletecharacters} def ^H delete backward

9 {gotonextfocus} def TAB go to next focus canvas

10 {gotonextfocus} def LF go to next focus canvas

13 {gotonextfocus} def CR go to next focus canvas

14 {gotonextfield} def ^N go to next field

16 {gotopreviousfield} def ^P go to previous field

 21 {caret neg deletecharacters}def ^U delete to beginning

23 {-1 deletewords} def ^W delete word

127 {-1 deletecharacters} def % DEL delete backward

24

216 The NeWS Toolkit Reference Manual — March 1991

(some text) /setvalue yourtextfield send x y /movebaseline yourtextfield send

positions the text “some text” at the same position on the screen.

/reshape x y width height /reshape -

Reshapes the field to fit the bounding box defined by the arguments.
Invalidates the field.

invalidate -/invalidate -

Invalidates the text field. You can use /invalidate to control how many times the
field paints when you are changing both its value and its visual state. Both
/setvalue (page 204) and /setvisualstate (page 203) only repaint the field if it’s
valid. So, if you’re planning to call /setvalue and /setvisualstate for a text field to
avoid having it repaint twice you could call:

/invalidate (marks field as invalid)

/setvalue (sets the value, field is invalid, it doesn’t paint)

/setvisualstate (sets state, field is still invalid, it doesn’t paint)

/paint (paints and validates the field)

in that order.

217

25-0
25-0

Windows 25

Figure 25-1 The windows subtree

ClassWindow

A window is a descendent of ClassBorderBag which defaults to having a single
“client” canvas. (It is the /Center client of the borderbag, see Chapter 3,
ClassBorderBag.) The client canvas operates like any other ClassCanvas object:
it knows how to /paint, /fix, /reshape, /move itself.

A window also has five standard “attributes” that determine its style (Table 25-
1).

Table 25-1 Window attributes and their associated class variables

Window Variable Explanation

/Close? True to display the close button

/Footer? True to display a footer area

/Label? True to display a label area

/Pin? True to display a pin

ClassObject ClassDrawable ClassBorderBag ClassWindow

ClassBaseWindow

ClassPopupWindow

ClassCanvas ClassBag

25

218 The NeWS Toolkit Reference Manual — March 1991

/Reshape? True to display reshape corners

Each attribute is associated with a window decoration that may be an active
area.

While some combinations of attributes are not explicitly errors, they give rise
to undefined behavior. For example the pin and close button are displayed in
the same part of the window. If you set both /Pin? and /Close? to true both are
displayed but the one that notices the mouse down first is undefined.

Table 25-2 Default control usage by OPEN LOOK

Window Type /Label? /Footer? /ReShape? /Close? /Pin? Menu

Base Window y o o y n y†

Property Window y o o n y y††

Command Window y o o n y y††

Help Window y n o n y y††

Notice Window1 n n n n n n

Icon Window y n n n n y†

Legend: y: yes n:no o:optional †Uses base window’s menu; ;†† uses pop-
up window’s menu

1 Notices are not actually a subclass of ClassWindow and are included here
only to complete the OPEN LOOK model.

Creation and initialization

/new client | null parent /new instance

Creates an instance of ClassWindow. If client is non-null, it becomes the central
client (i.e., it’s name is /Center) in the border bag (see ClassBorderBag).

/setattribute attribute-name boolean /setattribute -

Determines whether a window has the named attribute. name is one of: /Close?,
/Footer?, /Label?, /Pin?, or /Reshape?. These are initially class variables, promoted
by /setattribute. The attributes default to false in ClassWindow, and are
overridden to OPEN LOOK defaults by ClassBaseWindow and
ClassPopupWindow.

Windows 219

25

Your window can have a label area and/or a footer area but not have anything
displayed in them. /setattribute can be seen as changing a window’s structure
(by allocating part of the window for a label and/or a footer) but says nothing
about the label’s or the footer’s contents. For example, if you add a footer area
by doing:

/Footer? true /setattribute win send

you have altered the structure of the window to have an area at the bottom of
the window where you can put display items. In order to have anything
actually displayed in the footer you have to use /setfooter. /setfooter can be seen
as putting some content into the footer structure. Thus, if you want a window
to have a footer that is sometimes empty you should do:

 nullstring nullstring /setfooter win send

instead of:

 /Footer? false /setattribute win send

/setattribute invalidates the window. (See Validation on page 44 in ClassCanvas.)

/attribute name /attribute boolean

Returns whether name (a window attribute) is present in the window.

For example, to see if there is a label area allocated:

/Label? /attribute win send

Labels and footers

Windows can have header and footer areas into which the application can put
arbitrary display items.

/setlabel display-item /setlabel -

Sets the label to be the given display item.

For example, to set the label to be “Hi World!” in blue:

 [(Hi World!) 0 0 1 rgbcolor] /setlabel win send

/label - /label display-item

Returns the current label.

/setfooter left right /setfooter -

Sets the left and right footer display items.

25

220 The NeWS Toolkit Reference Manual — March 1991

/footer - /footer left right

Returns the left and right footer display items.

Painting

There are also two public window painting methods, /paintwindow and
/flashframe.

/flashframe - /flashframe -

Changes the window’s appearance, then back to the current appearance. Use
/flashframe to draw attention to the window. Uses /paintwindow.

/paintwindow - /paintwindow -

Paints just the window; does not paint the window’s client.

/TextFont /TextFont font (Variable)

Font used by the window label.

/FooterFont /FooterFont font (Variable)

Font used by the window footer.

Freezing windows

Windows may be “frozen” for input when in an error situation. You freeze and
unfreeze a window using /setvisualstate. This allows an application in an error
state to ignore input until the error condition is handled. See /FreezeFilter
below.

/Freezable? /Freezable? boolean (Variable)

Determines whether the window can be frozen. Windows are Freezable by
default.

/setvisualstate state /setvisualstate -

Sets the visual presentation of the window. state can be one of /Active, /Inactive,
/Busy. /Active is the default. /setvisualstate also determines whether users can
interact with the window. Users can interact with /Active windows; /Inactive and
/Busy windows ignore user interactions, i.e., they are frozen.

Windows 221

25

/visualstate - /visualstate state

Returns the state of the window.

/FreezeFilter /FreezeFilter dictionary (Variable)

Dictionary used to determine what should happen when the window gets an
event when it is /Busy (frozen).The dictionary consists of event name-procedure
pairs used to process the events of a frozen window. Any event name not
found in the dictionary uses the /Default entry, which ignores the event. The
procedures are executed when a key matches an event. You may supply your
own custom FreezeFilter by defining one as either a class variable or an
instance variable. The standard filter is:

/FreezeFilter dictbegin
/Damaged {redistributeevent} def
/LoseFocus {redistributeevent} def
/LoseSelection {redistributeevent} def
/Default {pop} def

dictend def

The standard filter allows the window to repaint damaged areas if new
portions are exposed, and to respond to loss (but not acquisition) of focus and
selections.

Window placement

Windows implement a simple default placement policy for bringing up
windows for which the user has specified no explicit location.

/place - /place -

Positions the window at the next location in the placement scheme. If the
window is already reshaped, /place uses its current size, otherwise it uses the
window’s preferredsize.

Subwindows

Windows may have nested subwindows. These close together, and if closed
together, open together. Generally subwindows are popups managed by base
windows. The subwindow tree is bidirectional: the subwindow has a
SuperWindow reference, and the super window has an array of subwindows.

25

222 The NeWS Toolkit Reference Manual — March 1991

Windows have no accessor methods for subwindows; you must keep a handle
to any subwindows you might want to access.

/SubWindows /Subwindows array (Variable)

The window’s subwindows.

/SubWindows /Subwindows array (Variable)

The window’s subwindows.

/subwindows - /subwindows [subwindow1 subwindow2 . . .]

Returns the value of /SubWindows, i.e., an array containing the window’s
subwindows.

/addsubwindow subwindow /addsubwindow -

Adds a subwindow to this window. If the subwindows is not active, it is
activate using the superwindow’s event manager.

/removesubwindow subwindow /removesubwindow -

Removes a subwindow from this window. Deactivates the subwindow if it has
the same event manager as the superwindow.

/opensubwindows - /opensubwindows -

Opens the subwindows previously closed by this window.

/closesubwindows - /closesubwindows -

Closes the subwindows currently open and marks them as having been closed
by this window.

/SuperWindow /SuperWindow super-window (Variable)

The window’s super window.

/RootWindow - /RootWindow root-window (Variable)

The root window of this set of subwindows.

Windows 223

25

Viewing states

Three viewing states of windows are handled in a similar manner: pinned,
opened, and zoomed. The interfaces are similar: /foo, /unfoo, /fooed?, and
/togglefoo.

Opening and closing windows
/open - /open -

Opens the window, does nothing if the window is already open. The opened
state is an abstract notion that for base windows means non-iconic, and for
other windows means mapped. If /open is sent to a base window, any
subwindows that the window may have previously closed are opened.

/close - /close -

Closes all open windows, does nothing if the window is already closed. If
/close is sent to a base window, it closes opened subwindows.

/opened? - /opened? boolean

Returns whether the window is mapped.

/toggleopened - /toggleopened -

Reverses the opened state of the window.

Pinning windows
/pin - /pin -

Pins the window.

/pinned? - /pinned? boolean

Returns whether the window is pinned.

/togglepinned - /togglepinned -

Reverses the pinned state of the window.

/unpin - /unpin -

Unpins the window. Causes the window to close itself.

25

224 The NeWS Toolkit Reference Manual — March 1991

Zooming windows
/zoom - /zoom -

Zooms the window to full size. Remembers the unzoomed size.

/zoomed? - /zoomed? boolean

Returns whether the window is zoomed.

/togglezoomed - /togglezoomed -

Reverses the zoomed state of the window.

/unzoom - /unzoom -

Reverts to unzoomed size.

Miscellaneous

/QuitFromUser control | event /QuitFromUser -

Responds to a request to quit. When the user chooses “Quit” from a base
window menu the message /QuitFromUser is sent to that window. The default
implementation of /QuitFromUser provided by TNT kills your program. If you
need to inform the client side that it is about to be killed, or you want to
confirm this with the user, then override /QuitFromUser and insert your code
there.

ClassBaseWindow

ClassBaseWindow is a subclass of ClassWindow, overrides a few ClassWindow
methods, provides an icon, and provides a menu that the base window and its
icon share. In addition, ClassBaseWindow overrides some of ClassWindow‘s
painting methods in order to paint the icon.

Creation

/new client | null parentcanvas /new instance

Creates an instance of ClassBaseWindow. By default a window is open when it
is created and has a close box, a footer area, a label area, reshape corners but no
pin.

Windows 225

25

Opening and closing base windows

/opened? - /opened? boolean

Returns whether the window is open or iconified.

Base window icons

The icon painting method, /PaintIcon, typically paints an image then a label.
Both are arbitrary display items. In addition, the image size determines the size
of the icon. If the icon image is null (i.e. no image has been set), the icon
defaults to 64x64.

/IconFont - /IconFont font (Variable)

Font used by the icon label. Defaults to FooterFont.

/IconSize - /IconSize width height (Variable)

Returns the size of the icon’s image, or 64x64 if the image is null.

/seticonimage display-item | hexstring /seticonimage -

Sets the icon image and repaints the icon. If a string is passed in, it is converted
into an “image” display item whose image is composed of the hex data in the
string. The hexstring is assumed to be square, i.e. an NxN array of bits. Because
of the space considerations, it is a good idea for applications to share the icon
image among all instances of their base windows.

/iconimage display-item /iconimage -

Returns the image display item.

/seticonlabel display-item /seticonlabel -

Sets the display item to be the icon’s label and repaints the icon.

Example [(Hi) 1 0 0 rgbcolor] /seticonlabel win send

/iconlabel - /iconlabel display-item

Returns the icon’s label.

25

226 The NeWS Toolkit Reference Manual — March 1991

Geometry

/minsize - /minsize width height

Returns the window’s minimum size. If the window is iconified the size of the
icon is returned.

/preferredsize - /preferredsize width height

Returns the “ideal size” for the window. If the window is iconified the size of
the icon is returned.

Painting

/Paint - /Paint -

Paints the window.

/PaintChildren and /FixChildren are no-ops when iconic.

Menus

By default base windows are Menuable and all the basewindows and their
icons share the same menu. The iconic state of the window is tracked and the
menu reflects the state by either having Close or Open in the menu depending
on whether the window is open or closed. For a discussion of menus see
Canvas menus on page 53 in ClassCanvas.

ClassPopupWindow

ClassPopupWindow currently overrides three window attributes to be true:
/Label?, /Pin?, and /Reshape? It also handles a shared menu exactly like base
windows, switching between “Cancel” and “Dismissed” based on the state of
the /Changed? state of the window.

Creation

/new client | null parentcanvas /new instance

Creates an instance of ClassPopupWindow.

227

26-0
26-0

The Wire Service 26

The purpose of the NeWS Wire Service is a server-client communications
package of sufficient generality that diverse client applications and toolkits can
use it.

The Wire Service is almost completely independent of the PostScript
components of The NeWS Toolkit; it does not presume the existence of any
particular class. However, in order to use the Wire Service you must know the
NeWS client-side facility CPS and how to use. See the NeWS 2.1 Programmer’s
Guide, for an explanation of CPS.

Also included in this chapter are the client-side functions that you use to
implement help facilities.

At the end of the chapter there is an example called wire-demo. This demo is
also included as part of the TNT distribution CD and can be found in the demo
directory.

Error handling

Most Wire Service interface functions return a value that can be coerced to an
integer and tested for a 0 return value. Many of them return a boolean; TRUE
for success, FALSE for failure.

26

228 The NeWS Toolkit Reference Manual — March 1991

wire_Errno int wire_Errno;

wire_ErrorString char * wire_ErrorString();

wire_Perror void

 wire_Perror(prefix)
char *prefix;

When an error has occurred, its type is available in the wire_Errno global
variable, and a descriptive string is pointed to by wire_ErrorString. Like its
UNIX equivalent, the error condition is not cleared immediately after an error.
It remains set until the next error. The function wire_Perror prints the current
error string to standard error, prefixed by the user-supplied string.

Components

The components of the Wire Service are:

• A connection manager that handles multiple connections to one or more
servers (discussed on page 228).

• Handle allocation and registration procedures that allow items on one side
of the wire to be referred to from the other side (discussed on page 234).

• A notifier on the C-side to allow asynchronous messages from the server(s)
to be dispatched to client functions (discussed on page 238).

• A synchronization package to allow server-based code to make RPC-style
calls across the wire (discussed on page 241).

Connection management

The connection management functions support multiple connections.

The Wire Service 229

26

wire_Open wire_Wire

wire_Open(server)
char *server;

Opens a connection to a server1 which makes the wire the current connection
and enables it. All libcps calls use the current connection. wire_Open takes an
argument to specify the particular server to connect to. If you use NULL as an
argument, wire_Open attempts to use the NEWSSERVER environment variable. If
NEWSSERVER is unset, the environmental variable, DISPLAY is used. If DISPLAY
is not set, then the current host is used with default port 2000. If the argument
is not NULL then it should be a hostname, a NEWSSERVER-style string, or a
DISPLAY-style string. For more information on the NEWSSERVER and DISPLAY
variables and the correct format of their string values, see the X11/NeWS
Version 2 Server Guide.

wire_Close boolean

wire_Close(w)
wire_Wire w;

Closes an opened connection. If the argument is wire_ALLWIRES, all the
connections are closed, however, FALSE is returned if there is an error with any
of the connections.

wire_SetCurrent boolean

wire_SetCurrent(w)
wire_Wire w;

Sets the current wire, i.e., it directs CPS to and from a the connection from now
on. wire_SetCurrent has the effect of moving the appropriate file pointers
into the CPS global variables, “PostScript” and “PostScriptInput”. All libcps
calls will thereafter use this connection. The act of opening a wire sets it to be
the current wire.

1. Implementation Note: The current implementation uses 2 file descriptors per connection. Thus, the number
of available wires is determined by the number of available file descriptors in the system. This is highly
implementation-specific and may be changed in the future.

26

230 The NeWS Toolkit Reference Manual — March 1991

wire_Current wire_Wire

wire_Current()

Returns the current connection. Your program may need to determine what the
current wire is because the notifier (see The Notifier on page 238) may itself
change the current connection depending on where the next message has come
from. Clients that do not want to reply down the same connection as their up-
coming message will have to call wire_SetCurrent again before they write.

wire_Valid boolean

wire_Valid(w)
wire_Wire w;

Indicates whether wire w is valid. A valid wire represents a connection to a
NeWS server that is open and active.

wire_SetData boolean

wire_SetData(w, data)
wire_Wire w;
caddr_t data;

Associates a client data pointer with a connection. Applications may associate
client data with each connection via the wire_SetData. The most common use
of wire_SetData will be to reestablish some per-connection application context
when processing a message from a particular connection.

wire_Data caddr_t

wire_Data(w)
wire_Wire w;

Returns the client data pointer for a connection.

wire_Disable boolean

wire_Disable(w)
wire_Wire w;

Disables a connection. You can use wire_AllWires as the wire argument to
disable all the wires in a single call. An error is reported if there is a problem
with any one of the connections. wire_Disable allows input from a particular
connection to be ignored temporarily, and later the wire is reactivated via
wire_Enable (see below). While a connection is disabled, the notifier (see The
Notifier on page 238) does not read any messages from it, and no functions are
called on its behalf. The purpose of this function is to allow a client to negotiate
with one server, and guarantee that the client won’t be interrupted by
messages from another. Disabling a wire only affects its input side; writes to a
disabled wire will succeed.

The Wire Service 231

26

wire_Enable boolean

wire_Enable(w)
wire_Wire w;

Enables a connection. When first opened, a connection is enabled. You can use
wire_AllWires as the wire argument to enable all the wires in a single call. An
error is reported if there is a problem with any one of the connections.

wire_Enabled boolean

wire_Enabled(w)
wire_Wire w;

Returns whether a connection is enabled.

Handling abnormal events on a connection
The wire service has three default functions that handle certain abnormal
events (e.g., an unexpected termination of a connection). You may “override”
any or all of the default functions by supplying functions that the notifier will
call after these abnormal events. You register your functions with the notifier
using the function wire_Problems.The abnormal events and their associated
user-defined functions are:

• If the connection is terminated, other than by a call to wire_Close, death is
called. Your definition of this function should not attempt to close the
offending wire.

• If the notifier finds data at the head of an input queue that is not
recognizable as a dispatching tag, the current connection is preset to the
offending one and disease is called. disease must consume the leading
non-tag values from the stream.

• If the notifier finds a dispatching tag which has not been registered using
wire_RegisterTag, unknowtag is called.

26

232 The NeWS Toolkit Reference Manual — March 1991

User-supplied functions

wire_Problems wire_Problems(w, death, disease, unknowntag)

wire_Wire w;
void (*death)();
void (*disease)();
void (*unknowntag)();

Registers functions that are called on connection death or reading errors. If
wire_Problems is called with wire_ALLWIRES as the first parameter, then the
same set of callbacks will be used for all of the existing connections. A NULL
argument to any of these three arguments to wire_Problems leaves that
function unchanged.

void

death(w)
wire_Wire w;

Called on abnormal connection termination.

void

disease(w)
wire_Wire w;

Called after connection protocol error.

void

unknowntag(w)
wire_Wire w;

Called when an unregistered tag is found.

Default functions

wire_DeathDefault void

wire_DeathDefault();

Prints a message to stderr.

wire_DiseaseDefault void

wire_DiseaseDefault();

Cleans up the queue and prints a message to stderr.

wire_UnknownTagDefault void

wire_UnknownTagDefault();

Consumes the tag and any following arguments, and prints a message to
stderr.

The Wire Service 233

26

wire_SkipEvent boolean

wire_SkipEvent()

Consumes a token and skips to the next tag. wire_SkipEvent consumes the
initial token on the current wire and any remaining input up to, but not
including, the next tag. If there is no next tag on the current wire,
wire_SkipEvent will not block waiting for one. This function is useful when
writing ‘disease’ and ‘unknowntag’ functions.

Indexing data structures by wires
Certain clients of the Wire Service may want to build data structures that are
indexed by a wire. For this reason a pair of procedures (currently macros) are
provided that map a wire into a unique small integer and back again. This is
meant to be used in those cases where a client does not want to use the client
data field associated with the connection.

wire_WireToInt int

wire_WireToInt(w)
wire_Wire w;

Maps a wire to a small integer.

wire_IntToWire wire_Wire

wire_IntToWire(i)
int i;

Maps a small integer into a wire.

Accessing the psio files
wire_PSinput and wire_PSoutput are accessor functions to the psio file
pointers. Use these functions if your program needs to access the psio files.
(For an explanation of psio see the X11/NeWS Version 2 Server Guide or the
psio(3) man page.)

wire_PSinput PSFILE *

wire_PSinput(w)
wire_Wire w;

Returns a pointer to the psio input file pointer.

26

234 The NeWS Toolkit Reference Manual — March 1991

wire_PSoutput PSFILE *

wire_PSoutput(w)
wire_Wire w;

Returns a pointer to the psio output file pointer.

Handle allocation and registration

Both C and PostScript components of the Toolkit need to reference remote
objects. The C programmer may need to modify or query some PostScript
object created earlier. Similarly, any PostScript object that wishes to notify the
client of a user event needs some way to specify the appropriate C function to
invoke. Because references to PostScript objects cannot be passed across the
wire and C pointers cannot easily be stored in the server, the Toolkit provides
two “handle allocators” that generate and remember unique identifiers.

Tags
The Wire Service uses “tags,” as provided by CPS, to drive its notifier. Before
you can register a callback with the notifier, you must obtain a tag to associate
with it.

wire_AllocateTags int

wire_AllocateTags(count)
int count;

Reserves a range of client tags. wire_AllocateTags takes a number N and
returns another M, such that none of the integers M, M+1, ... M+N-1 are
already allocated, i.e. it returns the number of tags allocated. These integers are
handles whose primary use is to dispatch messages from the server to client
functions.

wire_AllocateNamedTags boolean

wire_AllocateNamedTags(names)
int *names[];

Assigns client tags to an array of addresses. wire_AllocateNamedTags is a thin
wrapper around wire_AllocateTags. It takes a NULL terminated array of
pointers to integers, and assigns a tag through each of these pointers. A typical
use might look like:

The Wire Service 235

26

int menu_tag, resize_tag;
int *tag_pointers[] = {&menu_tag,&resize_tag, NULL};

wire_AllocateNamedTags(tag_pointers);
wire_RegisterTag(menu_tag, my_menu_callback, data);
wire_RegisterTag(resize_tag, my_resize_callback,data);

wire_ReserveTags boolean

wire_ReserveTags(largest)
int largest;

Makes the tag allocator ignore a range of integers. wire_ReserveTags is
provided to allow dynamically-allocated tags to coexist with a previous
version of CPS that used constant tags. If you know that some piece of code
uses tag values 1..50, then before calling wire_AllocateTags you should call
wire_ReserveTags(50). This facility can also be used to leave space for your
own private tag allocator if the one provided by the Wire Service doesn’t meet
your needs. wire_ReserveTags must be called before any connections are
opened.

wire_RegisterTag boolean

wire_RegisterTag(tag, proc, data)
int tag;
void (*proc)();
caddr_t data;

Registers a client handler. wire_RegisterTag allows you to associate a
procedure pointer and a user data pointer with a tag. If this tag is ever found
on the wire by the notifier, your procedure will be called.

void
(*proc)(tag, data)
int tag;
caddr_t data;

wire_TagProc void (*)()

wire_TagProc(tag)
int tag;

Retrieves a client function pointer.

wire_TagData caddr_t

wire_TagData(tag)
int tag;

Retrieves a client data pointer.

26

236 The NeWS Toolkit Reference Manual — March 1991

The environment in which your callback function (*proc above) is called is as
follows:

• The current wire will be the wire on which the given tag arrived. This
implies that normal CPS techniques for reading values from a connection
can be used.

• By the time your function is called the tag will have already been removed
from the wire (and handed to you as an argument).

It is your responsibility to know how many arguments follow this particular
tag, and to read them all from the wire before returning from this function. You
may do this either via CPS input functions, or the “ease of use” procedures
described in Ease-of-use functions. If you do not remove all the arguments from
your wire, the disease handling function will be called.

Since the Wire Service is reentrant it is admissable to call wire_Notify or
Wire_EnterNotifier from within your callback function. This is sometimes
useful when synchronizing with the user.

Tokens
The Wire Service uses “usertokens”, as provided by CPS, as handles to
PostScript objects. These tokens are allocated on a per connection basis. The
application is responsible for the registration of the usertoken in the server.
These calls are similar to the calls for tag allocation, except that they are done
on a per-wire basis and there is an additional call to free up a range of user
tokens (Wire_DeallocateTokens).

Note – It is still up to the user to remove the reference to the server object in
the user token array (by assigning null to that user token). Unlike
wire_ReserveTags, wire_ReserveTokens is called after the connection has
been opened.

wire_AllocateTokens int

wire_AllocateTokens(w, count)
wire_Wire w;
int count;

Reserves a range of client tokens on a specific wire.

The Wire Service 237

26

wire_AllocateNamedTokens boolean

wire_AllocateNamedTokens(w, names)
wire_Wire w;
int *names[];

Assigns tokens for a specific wire to an array of addresses.

wire_ReserveTokens boolean

wire_ReserveTokens(w, largest)
wire_Wire w;
int largest;

Makes the token allocator for a specific wire ignore a range of integers.

wire_RegisterToken boolean

wire_RegisterToken(w, token, obj)
wire_Wire w;
int token;
wire_RefAny obj;

Associates a server-side object (token) with a client-side one (obj).
wire_RegisterToken is a way to associate a client-side object (or any piece of
data) with a usertoken. For example, a usertoken might represent a server
canvas, and the client-side object that parallels that server object would be
registered with wire_RegisterToken. Then when that canvas makes a
callback, it will include the usertoken as an argument, and the client side will
look that up with wire_TokenData (see below). wire_RegisterToken does not
register the usertoken in the server because this cannot be done from the C
process—you need a reference to the PostScript object to make it a usertoken.

wire_TokenData wire_RefAny

wire_TokenData(w, token)
wire_Wire w;
int token;

Given a server side object (token); retrieve the client-side one.

wire_DeallocateTokens boolean

wire_DeallocateTokens(w, first, count)
wire_Wire w;
int first, count;

Frees up a range of allocated tokens.

An example of the way you should use the usertoken facility for registering
your server-side objects is:

In your C file:

26

238 The NeWS Toolkit Reference Manual — March 1991

struct canvas *c;

c = canvas_create();
c->token = wire_AllocateTokens(wire_Current(), 1);
wire_RegisterToken(wire_Current(), c->token, (caddr_t) c);
ps_CreateMyCanvas(c->token);

And in your CPS file:
cdef ps_CreateMyCanvas(int token)

... /new MyCanvas send % canvas

% /SaveToken defined in canvas subclass

token /SaveToken 2 index send % canvas ; save token

token setfileinputtoken

Now if the canvas makes a callback to the client side, it sends the token
number over the wire so the client side knows which canvas is making the
callback. For example, one of the canvas’s methods might send a mouse event
across the wire.

In your window class:

/sendmouseevent { % event => -
MOUSE_EVENT tagprint % event
/GetToken self send tagprint % event ; send token; /GetToken defined in canvas subcl.
/EventToXY self send exch % y x
tagprint tagprint % - ; send coordinates

} def

And in your client callback:
static void
mouse_callback()
{

struct canvas *c;
int token_id;

... /* get token_id from callback */
c = (struct canvas *) wire_TokenData(wire_Current(), token_id);

}

The Notifier

The purpose of the notifier is to read tags from one or more server connections,
and depending on their value, call the client functions that were previously
registered using wire_RegisterTag. Two styles of notification are provided
(The two styles can also be mixed in the same application.):

1. The notifier itself can handle the main loop.

The Wire Service 239

26

2. The client program can repeatedly request the dispatching of a single
incoming message.

wire_Notify boolean

wire_Notify(timeout)
struct timeval *timeout;

Reads and processes one message. wire_Notify causes a single tag to be read
from one of the active connections. (Round-robin scheduling is used when
more than one connection with data ready for reading exists.) The tag read is
used to look up the registered procedures. The procedure is then called with
the handle and registered data as arguments. (See the function
my_slider_handler in the example at the end of the chapter.) wire_Notify
has the side-effect of setting the current connection, which allows registered
functions to read further arguments from the wire using CPS and psio
functions. If no data is available on any of the active connections, wire_Notify
blocks until a message arrives or the period specified in the timeout parameter
expires.

If a timeout occurs wire_Notify returns FALSE. When wire_Notify is blocked
waiting for input, and a signal interrupts it before the input arrives,
wire_Notify returns FALSE and wire_Errno is set to wire_EINTR. This
corresponds to the UNIX system call error EINTR (interrupted system call).
Programs are often interrupted, but that doesn’t mean the program should exit.
Therefore, when wire_Notify returns false, wire_Errno should be checked to
see if it is wire_EINTR. If wire_Errno is set to wire_EINTR the program should
continue in the notify loop. wire_EnterNotifer() ignores interrupted system
calls, but will return if there is an error for another reason.

wire_WouldNotify boolean

wire_WouldNotify(w)
wire_Wire w;

Indicates whether there are any messages to read on this wire.
wire_WouldNotify does not block. If you use wire_ALLWIRES as the wire
argument, wire_WouldNotify indicates whether there are messages on any of
the active connections.

26

240 The NeWS Toolkit Reference Manual — March 1991

wire_EnterNotifier void

wire_EnterNotifier()

Descends into the main loop. wire_EnterNotifier will be the main-loop for
many client applications. It will be reentrant, and can be intermixed with calls
to wire_Notify. In fact, it will do little more than repeatedly call wire_Notify
itself. A call to wire_EnterNotifier does not return until the corresponding
wire_ExitNotifier is executed.

wire_ExitNotifier void

wire_ExitNotifier()

Emerges from main loop. wire_ExitNotifier is called when the application
programmer wants to exit from a (possibly nested) notifier loop. The
corresponding wire_EnterNotifier will return as soon as the registered
procedure that called wire_ExitNotifier itself returns. Pending messages are
not processed in any way.

wire_AddFileHandler boolean

wire_AddFileHandler(file, callback, data)
FILE *file;
void (*callback)();
caddr_t data;

Adds a file to the notifier’s list of files to check. When data is detected on the
file, (*callback)() is called and passed the data pointer. No restrictions are
imposed on the file and it is up to the client to handle all operations within the
callback. wire_AddFileHandler takes a file pointer but if a file descriptor is
desired in the application program, a call to fdopen can be made with no
adverse side-effects.

wire_RemoveFileHandler boolean

wire_RemoveFileHandler(file)
FILE *file;

Removes a file from the notifier’s list of files to check. The file is not a
wire_Wire and cannot be enabled/disabled, etc. There are no restrictions
imposed on the file and it is up to the client to handle all operations within the
callback. wire_RemoveFileHandler takes a file pointer, but If a file descriptor
is desired in the application program, a call to fdopen can be made with no
adverse side-effects.

The Wire Service 241

26

Ease-of-use functions

The following functions are provided to enable data to be easily read from the
current connection. It is assumed that the user of these functions knows the
type of the data on the wire. Thus there is no type checking or error reporting.
If the data is of the wrong type, garbage may be returned and the wire may be
left in an undetermined state. The caveat to this is numeric arguments are
converted by CPS (floats to ints, ints to floats, etc.).

wire_ReadInt int

 wire_ReadInt()

wire_ReadFloat float

 wire_ReadFloat()

wire_ReadString char *

wire_ReadString(str)
char *str;

wire_GobbleAny void

wire_GobbleAny()

Synchronization

CPS provides a mechanism for a client process to block pending notification
from a server process. The wire service provides a complementary mechanism
that allows a server process to block pending notification from a client process.
This provides symmetric facilities for synchronous communications.

Server interface:

wire_Sync proc wire_Sync -

The proc is executed, and wire_Sync guarantees it will not return until the C
client has acknowledged dealing with any data sent to it by the proc. That is,
wire_Sync execs the proc, and sends a marker to the C client, then waits for
the client to acknowledge having seen the marker. For example, PostScript can
ask C to send it some value, or to do some painting, etc., and be sure that C has
responded to the request before trying to do any more PostScript code.
Naturally, this makes some assumptions about the client; hence the
requirement that the client be built on the Wire Service.

26

242 The NeWS Toolkit Reference Manual — March 1991

Things can get rather tricky if wire_Sync is called from the “listener” process,
i.e., the process that is reading from the client connection. wire_Sync
guarantees that anything the client ships in response to the proc will be
executed (a) before wire_Sync returns and (b) before any other tokens that the
client may have previously shipped down the wire.

Client interface:

wire_InSync boolean

wire_InSync(w)
wire_Wire w;

Indicates whether the wire is responding to a synchronized request.

wire_InSync simply checks to see if wire w is responding to a synchronized
request from the server, which means that PostScript code sent now may be
executed before PostScript code sent earlier. This is a subtle but important
point.

Wire Service synchronization caveat.
The Wire Service has some very obscure problems with client-server
synchronization. These problems are attributable to the flexibility NeWS gives
you for having code on both sides of the wire. In most cases the Wire Service
will work fine but the following problems are indications that you are
encountering synchronization problems:

• You start having symptoms like deadlock, e.g., your program is stuck in a
cps call that waits for return values.

or

• You find that when you use a user token, the value it turns into is a null.

If you are experiencing these symptoms then you should revisit this section
and read it carefully.

The problem

When the server-side code does a synchronized callback to the client, it can
result in data being read from the wire without that data being immediately
executed. In other words, the server-side callback wants to get the response
from the client before continuing. After getting the response the callback wants
to execute anything else that came down the wire while it was waiting.

The Wire Service 243

26

There are two cases where the client needs to be sure that the server is
executing what it receives, i.e., data isn’t being cached for “later execution”.
These two cases are:

1. The client is about to do a “blocking cps call”, i.e., one that returns a value.

The client is about to send a snippet that includes a usertoken, and wants to be
sure that the definition of that usertoken will have been executed before To
ensure the server is executing what it receives, the application writer should
use the two functions: wire_ExpectSync and wire_DrainSync.

wire_ExpectSync boolean

wire_ExpectSync(wire)
wire_Wire wire;

wire_ExpectSync() is called after calling a cps function that might result in
the server executing some wire_Sync callbacks.

wire_DrainSync boolean

wire_DrainSync(wire, notify_proc)
wire_Wire wire;
void (*notify_proc)();

wire_DrainSync is called when the client needs to make sure the server is
actually executing what it receives. Thus you call it before making a blocking
cps call, and you call it somewhere between sending the definition of a
usertoken and the first time you try to use that token.

In both cases, the purpose of wire_DrainSync is to make sure there are no
pending wire_Sync calls yet to come from the Listener process. wire_DrainSync
repeatedly executes notify_proc in a loop until the number of expected syncs
goes to zero. It is the responsibility of the notify_proc to execute at least one call
to wire_Notify(), in addition to anything else it wants to do (like update
some other information).

Help facilities

The TNT help facilities assume that you will use the Wire Service, in particular
the notifiers provided by the Wire Service. In addition there are server-side
methods used in conjunction with these client-side functions. You can find the
applicable methods in ClassCanvas, Help facilities on page 63.

26

244 The NeWS Toolkit Reference Manual — March 1991

Help_Initialize void

Help_Initialize(w);
wire_Wire w:

Initializes the help system. The wire passed to Help_Initialize should have
been opened with wire_Open(). The connection used to initialize the help
library should be the same connection used to load the definitions of all
windows containing Helpable objects into the server. The userdict associated
with this connection will contain information necessary for TNT objects to pass
help requests back to the client for message lookup and display.

The Help library currently looks in the directory where the application was
launched, and in $OPENWINHOME/lib/help for help message files. If you want
the message file to reside elsewhere, you are responsible for setting up
HELPPATH correctly before calling Help_HelpInitialize.

Help_UpdateView void

Help_UpdateView ();

Updates the canvas that displays the help message. The recommended style for
a notification loop involving help uses Help_UpdateView. For example:

while (!quit && wire_Notify((struct timeval *) NULL)) {

if (wire_WouldNotify(thiswiire))

continue

. . .

Help_UpdateView();

}

Help_HelpRequestHandler void

Help_RequestHelpHandler(tag, data);
int tag;
caddr_t data;

Handles help requests transmitted from the server. Its default behavior sets up
the pane, adds it to the help window, looks for the help text and displays it.

Help_RequestHelpHandler is the callback function that is registered with the
Wire Service. Replace it only if you want some kind of custom help display.

The Wire Service 245

26

The help message file

The help library expects messages in a file to follow this format:

• Keywords are lines that start with a colon (:) character.
• Any line beginning with a pound-sign (#) is a comment line, and ignored.
• Messages are one or more lines in between keywords and/or comment

lines. Message files are ordinary text files following the format in the
example below. Messages containing no newline characters will be word-
wrapped inside the help window.

Thus a help file would contain entries similar to:

Help for myslider

:myslider

Moving the slider adjusts the value of the gauge.

#

#Help for Save button

:savebutton

Pressing this button will save your work before quitting.

Help for Discard button

:discardbutton

Pressing this button will quit without saving changes.

Help for Cancel button

:cancelbutton

Pressing this button will cancel the Quit operation.

#

Constants

The following constants are defined in the wire service:

Boolean values: TRUE FALSE

Special Wires: wire_INVALID_WIRE

wire_ALLWIRES

Error values: wire_EUNKNOWNHOST

wire_ENOSUCHSERVER

wire_EBADWIRE

wire_ECONNECTIONDIED

26

246 The NeWS Toolkit Reference Manual — March 1991

wire_ENOWIRES

wire_ETIMEOUT

wire_EINTR

wire_ERANGECHECK

wire_EBADRESERVE

wire_EFILEINUSE

wire_ENOFILEHANDLER

wire_ECONNECTIONREFUSED

The Wire Service 247

26

Sample Program
/* wire.c

 * Sample program to illustrate the proposed NeWS Wire Service.

 * A slider is placed on the framebuffer, and values are notified

 * back to the client. If the slider is dragged to 0, the program

 * terminates.

 * The program consists of two files: this one, called wire.c and

 * the file called wire_demo_cps.cps, which starts at the top of

 * the page following the last line of wire.c.

 */

#include <NeWS/wire.h>

#include “wire_demo_cps.h”

#if !defined (lint)

static char sccsid[] = “@(#)wire_demo.c 1.5 91/02/11 Copyright 1985 Sun Micro”;

#endif

/*

 * Slider callback function.

 */

void

my_slider_handler(tag, data)

int tag;

caddr_t data;

{

 /*

 * Let’s assume that the client wants to know the new value of the

 * slider when it changes. He must read it himself in this procedure.

 * The data argument in this case holds the server handle provided to

26

248 The NeWS Toolkit Reference Manual — March 1991

 * wire_RegisterTag().

 */

 float value;

 /* Take the value off the wire */

 value = wire_ReadFloat();

 printf(“The value of the slider is now %f\n”, value);

 if (value == 10.0) {

/*

 * Modify the slider if its value is now 10.0!

 */

ps_grow_slider((int) data, 10);

 }

} /* my_slider_handler() */

/*

 * Quit callback function.

 * Triggered from the Quit window menu item.

 */

void

my_quit_handler(tag, data)

int tag;

caddr_t data;

{

 /*

 * Assume that there is no application specific cleanup required.

 */

 wire_ExitNotifier();

The Wire Service 249

26

} /* my_slider_handler() */

/*

 * Wire demo main program.

 */

main()

{

 wire_Wire w; /* My connection */

 int slider_tag; /* Client-side handle */

 int quit_tag;

 int slider_token; /* Server-side handle */

 /* Open a connection to your default NeWS server */

 w = wire_Open(NULL);

/*

 * Reserve a set of tokens (1 in this case) by which

 * the client can refer to objects on the server. This will

 * only be necessary if 1) you need to refer to an object after

 * it has been created, and 2) you don’t want to provide your

 * own set of names.

 */

 slider_token = wire_AllocateTokens(w, 1);

/*

 * Reserve a set of tags (2 in this case) by which

 * server-based objects can call functions on the client-side.

 * Then register my functions to be called when this tag is received.

 * The registration function also takes an arbitrary client data

 * value, which in this case we choose to use to store the server

 * handle.

26

250 The NeWS Toolkit Reference Manual — March 1991

 */

 slider_tag = wire_AllocateTags(1);

 wire_RegisterTag(slider_tag, my_slider_handler, (caddr_t) slider_token);

 quit_tag = wire_AllocateTags(1);

 wire_RegisterTag(quit_tag, my_quit_handler, (caddr_t) slider_token);

/*

 * Send PS to the server to create a slider on the framebuffer.

 * THIS IS NOT A FUNCTION PROVIDED BY THE WIRE SERVICE.

 * (Implementation below).

 */

 ps_create_slider(slider_tag, quit_tag, slider_token, 100, 100, 200);

/*

 * Enter the read/dispatch loop. This function will not return

 * until after wire_ExitNotifier() has been called from inside

 * some callback function -- in this case my_quit_handler()

 */

 wire_EnterNotifier();

 /* Close and exit gracefully */

 wire_Close(w);

 exit(0);

}

The Wire Service 251

26

% This is the file wire_demo_cps.cps

% */

%

% Create the slider and position it at (x,y). Give it the standard

% height and make it “width” wide. The executable array is the

% slider’s notify proc. In this case it simply tagprints the

% client tag, and typedprints its value.

%

% Note that the server_handle is passed in as an int because the

% usertoken hasn’t been initialized yet.

%

cdef ps_create_slider(int client_handle, int quit_tag, int server_handle,

 int x, int y, int width)

 % Make a window with a calculated pane.

 /pan /Calculated framebuffer /new ClassPanel send def

 /win pan framebuffer /new ClassBaseWindow send def

 (Wire Service Demo) /setlabel win send

 (Value 10) (extends slider) /setfooter win send

 % Make a slider.

 /slider framebuffer /new ClassHSlider send def

 % Turn on the end boxes. Don’t bother with end labels.

 true /setendboxes slider send

 % Let’s start out with a range of 0..20

 0 20 /setrange slider send

 % And let’s set tic marks every two units.

 2 /settickmarks slider send

26

252 The NeWS Toolkit Reference Manual — March 1991

 % Make values integers.

 { round cvi } /setnormalizer slider send

 % Set up slider target, notifier, and previewer.

 win /settarget slider send

 { % Notifier: % value slider

client_handle tagprint

1 index typedprint

% Tell target (our window) to set its footer.

exch (%) sprintf % s (v)

(Slider Notify) exch % s (SN) (v)

/setfooter /sendtarget 5 -1 roll % (SN) (v) /sf /st s

send % -

 } /setnotifier slider send

 { % Previewer: % value slider

% Tell target (our window) to set its footer.

exch (%) sprintf % s (v)

(Slider Preview) exch % s (SN) (v)

/setfooter /sendtarget 5 -1 roll % (SN) (v) /sf /st s

send %

 } /setpreviewer slider send

 % Put the slider in the center of the panel.

 /slider slider [/Center {/Center PARENT POSITION}]

 /addclient pan send

The Wire Service 253

26

 % Size it

 x y width /minsize slider send exch pop

 /reshape slider send

 /QuitFromUser { % CallingControl => -

pop

quit_tag tagprint

/QuitFromUser super send

 } /installmethod win send

 % Reshape and activate the window.

 20 40 20 40 /setgaps win send

 /place win send

 /new ClassEventMgr send /activate win send

 /map win send

 % Now associate the server_handle token with the slider

 slider server_handle setfileinputtoken

%

% Grow the slider. Don’t ask me why.

%

% Note that server_handle is declared as a token so that the usertoken

% lookup will be performed.

%

cdef ps_grow_slider(token server_handle, int delta)

 /bbox server_handle send

 exch delta add exch

 /reshape server_handle send

 /bbox win send /preferredsize win send

 xymax /reshape win send

26

254 The NeWS Toolkit Reference Manual — March 1991

255

27-0
27-0

Jot 27

Introduction to Jot

Jot is the text package included with the NeWS toolkit. Jot defines both the
data structures and procedures required to manage presentation and
interaction with text. You can use either C or C++ when using the Jot interface.

How Jot functionality is organized

Jot’s functionality is organized according to the model-view-controller
paradigm. This paradigm decomposes an application into three components.
The model is a data object, representing application information. The view
presents its associated model in a graphical fashion. The controller provides an
interface between input devices and the model that allows the user to interact
with the model through its view.

For example, a model consisting of numeric data might be viewed as a
spreadsheet, a pie chart, or a line graph. When the user enters a number in a
spreadsheet cell, the controller notifies the model, which stores the new
information. The model then requests its views to update their presentations.

The arrangement of Jot functionality does not quite map into the model-view-
controller paradigm. The text model is called JotText and all the procedures
that deal with the model are prefaced with JotText_. The view and controller
procedures are combined and are prefaced by JotView_.

27

256 The NeWS Toolkit Reference Manual — March 1991

In addition, Jot uses spans to reference specific pieces of the text buffer
(JotSpan_) and has functions for implementing a text search facility
(JotSearch_) and for handling selections (JotSelection_).

Position definition

In Jot, position indicates a point between characters so that the location of
operations like inserting characters is unambiguous. A characters said to be
located at a position is actually the character to the right of that position. The
first character in a JotText is at position zero (0).

Global error descriptions

Whenever a Jot function indicates an error condition, the global error variable,
Jot_Errno is also set. You can examine this variable for a more detailed
explanation of the failure.

Table 27-1 Jot errors

Error name Description

Jot_ECONSTRAIN The characters in the JotText buffer could not be
constrained to the JotView. This error occurs only when a
JotView is constrained.

Jot_EMEMORY An attempt to allocate memory failed.

Jot_ERANGECHECK Position and/or length parameters exceeded the range of
the associated JotText buffer. For JotSelections, the rank
or level were inappropriate.

Jot_ESELECTION An operation was attempted on a selection that didn’t
exist.

Jot_ESYNTAX An invalid regular expression was detected.

Jot_ETEXT An operation was attempted on a JotSpan or JotView not
associated with a JotText instance.

Jot initialization

Jot_Initialize must be performed on each Wire Service connection prior to
executing other Jot procedures.

Jot 257

27

Jot_Initialize void

Jot_Initialize(connection)
wire_Wire connection;

Initializes a Jot connection. Information is placed on the server associated with
the connection. In addition, Jot internal data structures are initialized to default
values.

JotText procedures—the text model

JotText is the text model managed in Jot. This model includes a character buffer
and procedures to access and change this buffer. The developer can insert or
delete characters, read characters from a file stream, or write characters to a file
stream. In addition, the developer can search for specific patterns and perform
inquiries on the buffer state.

JotText_New JotText *

JotText_New(length)
int length;

Allocates and returns a pointer to a new JotText instance. A NULL (0) pointer is
returned if the operation fails. The initial size of the JotText buffer, length, can
be specified. If length is negative, the size defaults to zero.

The length parameter is declared for performance reasons. When the initial size
is zero, sequential insertions might result in the buffer space being reallocated
several times. For example, when a large file is to be edited in an application,
you can define a reasonable length for the buffer during text creation. The
performance penalty associated with numerous allocations is then avoided.

Errors: Jot_EMEMORY

JotText_Free void

JotText_Free(text)
JotText *text;

Deallocates text and its internal resources. Any JotViews or JotSpans associated
with text are returned to a pristine state for reuse.

JotText_Clear void

JotText_Clear(text)
JotText *text;

Deletes all the characters in the text buffer. Any JotSpans associated with text
reset their length and position to zero.

27

258 The NeWS Toolkit Reference Manual — March 1991

JotText_CharacterAt int

JotText_CharacterAt(text, position)
JotText *text;
int position;

Returns the character following position in the text buffer. A -1 is returned if the
operation fails.

Errors: Jot_ERANGECHECK

JotText_FastCharacterAt int

JotText_FastCharacterAt(text, position)
JotText *text;
int position;

Returns the character following position in the text buffer.
JotText_FastCharacterAt performs no range checking. Although the macro is
faster than the related JotText_CharacterAt function, it is also dangerous
unless used with care. In addition, constructs such as
JotText_FastCharacterAt(text, position++) should be avoided, because
position will be incremented twice.

JotText_InsertCharacters int

JotText_InsertCharacters(text, position, buffer, length)
JotText *text;
int position;
char *buffer;
int length;

Inserts length characters from buffer into the text buffer, at position. When the
operation is successful, the number of characters inserted is returned;
otherwise, a -1 is returned.

Errors: Jot_ECONSTRAIN Jot_EMEMORY Jot_ERANGECHECK

JotText_ScanCharacter int

JotText_ScanCharacter(text, position, c, n)
JotText *text;
int pos, c, n;

Returns the position of the nth occurrence of c in text. It starts at position and
searches for the Nth occurrence of c. If n is a negative number, it searches
backwards from position starting from the character just before position.
JotText_ScanCharacter returns -1 if there are not n occurrences.

Jot 259

27

JotText_InsertString int

JotText_InsertString(text, position, string)
JotText *text;
int position;
char *string;

Inserts a null terminated string into the text buffer, at position. When the
operation is successful, the number of characters inserted is returned;
otherwise, a -1 is returned.

Errors: Jot_ECONSTRAIN Jot_EMEMORY Jot_ERANGECHECK

JotText_ReplaceCharacters int

JotText_ReplaceCharacters(text, position, length, buffer, buffer_length)
JotText *text;
int position;
int length;
char *buffer;
int buffer_length;

Replaces length characters in the text buffer, at position, with buffer_length
characters from buffer. When the operation is successful, the number of
characters inserted is returned; otherwise, a -1 is returned.

Errors: Jot_ECONSTRAIN Jot_EMEMORY Jot_ERANGECHECK

JotText_DeleteCharacters int

JotText_DeleteCharacters(text,position,length)
JotText *text;
int position;
int length;

Deletes length characters from the text buffer, after position. When length is
negative, length characters before position are deleted. When the operation is
successful, the number of characters deleted is returned; otherwise no deletion
is performed and -1 is returned.

Errors: Jot_ERANGECHECK

27

260 The NeWS Toolkit Reference Manual — March 1991

JotText_Read int

JotText_Read(text, position, file)
JotText *text;
int position;
int file;

Reads from the file descriptor, inserting characters into the text buffer at position
until EOF is detected. When the operation is successful, the number of
characters read is returned; otherwise, a -1 is returned. You are responsible for
opening, positioning, and closing file.

Note – The file parameter should not be set to non-blocking mode.
Applications that require this feature can use read(2) or fread(3) to read
characters into a private buffer and then use JotText_InsertCharacters or
JotText_InsertString to transfer the characters into a JotText buffer.

Errors: Jot_ECONSTRAIN Jot_EMEMORY Jot_ERANGECHECK (plus all the errors
that you can get when using read(2))

JotText_Write int

JotText_Write(text,position,length,file)
JotText *text;
int position;
int length;
int file;

Writes length characters, beginning at position, from text buffer to the file
descriptor. When the operation is successful, the number of characters written
is returned; otherwise, a -1 is returned. You are responsible for opening,
positioning, and closing file.

Note – If the file parameter is set to non-blocking mode and refers to a pipe or
socket, JotText_Write may write fewer bytes than requested. The return value
should be noted and the operation retried.

Errors: Jot_ERANGECHECK (plus all the errors that you can get when using
write(2))

Jot 261

27

JotText_Modified int

JotText_Modified(text)
JotText *text;

Returns the total number of modifications performed on text since its creation.
The modification total is incremented each time the buffer is changed. To
determine whether text has been modified, you compare the return values from
two successive calls to JotText_Modified. JotText_Modified is the
foundation for developing a checkpoint service.

JotText_Characters int

JotText_Characters(text)
JotText *text;

Returns the number of characters in the text buffer.

JotText_Newlines int

JotText_Newlines(text)
JotText *text;

Returns the number of newline characters in the text buffer. Jot does not cache
this information in a JotText instance; the number of newline characters is
recalculated each time JotText_Newlines is called. Therefore, a slight
performance penalty might result from locating and counting newline
characters in a large buffer.

JotText_FirstView JotView *

JotText_FirstView(text)
JotText *text;

Returns a pointer to the first JotView instance in the text’s view list. When the
list is empty, a NULL (0) pointer is returned.

JotText_NextView JotView *

JotText_NextView(view)
JotView *view;

Returns a pointer to the JotView instance following view in the list managed by
the owner of view. When view is the last JotView in the list, a NULL (0) pointer is
returned. You can use this function and JotText_FirstView to enumerate all
the views on a text:

for (V = JotText_FirstView(text);

V != 0; V=JotText_NextView(V)) {

. . .

}

27

262 The NeWS Toolkit Reference Manual — March 1991

JotText_FirstSpan JotSpan *

JotText_FirstSpan(text)
JotText *text;

Returns a pointer to the first JotSpan instance in the list associated with text.
When the list is empty, a NULL (0) pointer is returned.

JotText_NextSpan JotSpan *

JotText_NextSpan(span)
JotSpan *span;

Returns a pointer to the JotSpan instance following span in the list managed by
the owner of span. When span is the last JotSpan in the list, a NULL (0) pointer is
returned.

JotText_SetCaret boolean

JotText_SetCaret(text, position)
JotText *text;
int position;

Moves the caret (insertion point) to position in the text buffer. When the
operation is successful, TRUE is returned; otherwise, FALSE is returned.

If the caret should be visible following the next JotView refresh (see JotView
procedures—the view and controller on page 269), you must invoke:

if (JotText_SetCaret(aText, aPosition)) {

JotView_EnsurePositionVisible(aView, JotText_Caret (aText));

}

Errors: Jot_ERANGECHECK

JotText_Caret int

JotText_Caret(text)
JotText *text;

Returns the caret position (insertion point) in the text buffer.

Undoing and redoing JotText operations

Jot has an undo facility built into it. The undo operations are part of the JotText
interface.

Jot 263

27

The way any undo works is by keeping a history of editing operations. To
undo an insertion, the corresponding deletion is done. To undo a deletion, the
deleted characters are reinserted. Two possible approaches to the undo
operation are:

1. The accountant’s approach—an operation that is undone becomes a part of
the edit history.

2. The 1984 approach—back up in time, thus rewriting history.

Jot uses the 1984 approach. In this approach undoing an operation can be
thought of as going backward in time through the edit history. Redoing an
operation can be though of as simply moving forward through time, or “back
to the future.” Once back in time, starting new editing operations erases the
future. Jot uses an N level undo, which means it will remember an arbitrary
number of editing operations on a per JotText basis.

In Jot, consecutive insertions (or deletions) are grouped into one undoable
editing operation. Jot provides functions to break up the default grouping, or
to group together operations that are normally considered separate.

JotText_SetUndo void

JotText_SetUndo(text, level)
JotText *text;
int level;

Sets the undo level in text to level. If the specified level is <= 0 undo is disabled
in text. Otherwise, Jot remembers the last level changes to text. When
JotText_SetUndo is used to shorten the edit history, some number of the
oldest operations are immediately forgotten.

JotText_Undo boolean

JotText_Undo(text)
JotText *text;

Effectively backs up in time, undoing one operation. JotText_Undo returns
FALSE if you are already at the beginning of recorded history. If JotText_Undo
is issued again before any other changes are made, time is backed up even
further.

27

264 The NeWS Toolkit Reference Manual — March 1991

JotText_Redo boolean

JotText_Redo(text)
JotText *text;

Redoes the last undone operation, effectively moving forward through the edit
history. JotText_Redo returns FALSE if there are no more undone operations
that can be redone.

JotText_RedoCount int

JotText_RedoCount(text)
JotText *text;

Returns the number of redoable operations for text. This is useful for an editor
which wants to guard against a naive user erasing a bunch of redoable
operations.

JotText_UndoCount int

JotText_UndoCount(text)
JotText *text;

Returns the number of undoable operations for text. The integer returned is a
number between 0 and the level specified in JotText_SetUndo.

JotText_UndoBreak void

JotText_UndoBreak(text)
JotText *text;

Specifies that the current grouping of edit operations should be stopped, and a
new one started. The default grouping combines consecutive insertions or
deletions at the same position in the text as one undoable operation. You use
JotText_UndoBreak to split up that default grouping.

JotText_UndoBegin void

JotText_UndoBegin(text)
JotText *text;

JotText_UndoEnd void

JotText_UndoEnd(text)
JotText *text;

These two routines are used to group together operations that are normally
considered separate. For instance, an EMACS fill-paragraph operation is
implemented by inserting and deleting many Newline characters. The default
grouping separates insertions and deletions into separate pieces of history, but
that would not be the correct behavior for undoing a fill paragraph. So,
EMACS implementers would use JotText_UndoBegin at the beginning their
fill routine and JotText_UndoEnd at the end.

Jot 265

27

Another use for the begin and end pair might be in implementing a global
replace operation. You could wrap the global replace operation in a begin/end
pair so the user could undo the entire replacement operation at once. Contrast
this behavior with query replace, which you want to allow the user to undo
one replacement at-a-time. Thus, you wouldn’t wrap a query replace in a
begin/end pair.

Text spans

A JotSpan describes a specific region or location in a text buffer through a
beginning position and length. (The definition of “position is on page 256.)
Each JotText instance maintains a list of the JotSpans that are associated with it.
The position field is adjusted whenever modifications occur before the
beginning of a JotSpan. The length field is adjusted whenever modifications
occur within the JotSpan boundaries. These adjustments require no
intervention from the developer.

Figure 27-1 illustrates the adjustments to the JotSpan, as strings are inserted
within and before its scope.

Figure 27-1 Inserting strings into a Jot span

Position: 2

Length: 4

Position: 2

Length: 8

Position: 11

Length: 8

S P A N

T E X T S P A N

E X A M P L EN T E X T S P A NA

A

A

27

266 The NeWS Toolkit Reference Manual — March 1991

JotSpan_New JotSpan *

JotSpan_New(text, position, length)
JotText *text;
int position;
int length;

Allocates and returns a pointer to a new JotSpan instance. When text is a
pointer to a JotText instance, the JotSpan is inserted into the JotSpan list
managed by text. When text is a NULL (0) pointer, the JotSpan is not initially
associated with a JotText instance. The position and length variables in the new
JotSpan are set to the specified position and length. If the operation fails, a NULL
(0) pointer is returned.

Errors: Jot_EMEMORY Jot_ERANGECHECK

JotSpan_Free void

JotSpan_Free(span)
JotSpan *span;

Deallocates span and its internal resources. If span is owned by a JotText
instance it is also removed from the JotSpan list in its owner.

JotSpan_SetText boolean

JotSpan_SetText(span, text, position, length)
JotSpan *span;
JotText *text;
int position;
int length;

Inserts span into the JotSpan list managed by text. If span is already associated
with a JotText instance, it will be removed from the previous list. In addition,
span can be explicitly disassociated from its current owner by defining text as a
NULL (0) pointer. The position and length variables in span are set to the
specified position and length. When the operation is successful, TRUE is
returned; otherwise, FALSE is returned.

Errors: Jot_ERANGECHECK

JotSpan_Text JotText *

JotSpan_Text(span)
JotSpan *span;

Returns a pointer to the JotText instance associated with span. When span is not
associated with a JotText instance, a NULL (0) pointer is returned.

Jot 267

27

JotSpan_DeleteContents int

JotSpan_DeleteContents(span)
JotSpan *span;

Deletes the characters from the buffer managed by the owner of span using the
position and length of span. Because spans adjust their length as they are
modified the length of span becomes 0. When the operation is successful, the
number of characters deleted is returned; otherwise, no deletion is performed
and -1 is returned.

Errors: Jot_ETEXT

JotSpan_Contents int

JotSpan_Contents(span, contents)
JotSpan *span;
char *contents;

Copies the characters defined by span, from the owner of span to contents. The
characters are placed in contents. You are responsible for allocating adequate
space to hold the characters. When the operation is successful, the number of
characters copied is returned; otherwise, -1 is returned.

if (((length = JotSpan_Length(aSpan)) > 0) &&

 ((contents = (char *) malloc(length)) != 0)) {

JotSpan_Contents(aSpan, contents);

/* process the contents */

free(contents);

}

Errors: Jot_ETEXT

JotSpan_Replace boolean

JotSpan_Replace(old, new)
JotSpan *old;
JotSpan *new;

Replaces the characters described in old with the characters described in new.
Both old and new must be associated with a JotText instance. When the
operation is successful, TRUE is returned; otherwise, FALSE is returned.

Errors: Jot_ECONSTRAIN Jot_EMEMORY Jot_ETEXT

JotSpan_Position int

JotSpan_Position(span)
JotSpan *span;

Returns the value of the position variable in span. If the operation fails, a -1 is
returned.

27

268 The NeWS Toolkit Reference Manual — March 1991

Errors: Jot_ETEXT

JotSpan_SetPosition boolean

JotSpan_SetPosition(span, position)
JotSpan *span
int position;

Sets the position variable in span to the specified position. The span must be
associated with a JotText instance. When the operation is successful, TRUE is
returned; otherwise, FALSE is returned.

Errors: Jot_ERANGECHECK Jot_ETEXT

JotSpan_Length int

JotSpan_Length(span)
JotSpan *span;

Returns span’s length. If the operation fails, a -1 is returned.

Errors: Jot_ETEXT

JotSpan_SetLength boolean

JotSpan_SetLength(span, length)
JotSpan *span;
int length;

Sets the length variable in span to the specified length. The span must be
associated with a JotText instance. When the operation is successful, TRUE is
returned; otherwise, FALSE is returned.

Errors: Jot_ERANGECHECK Jot_ETEXT

JotSpan_Set boolean

JotSpan_Set(span, position, length)
JotSpan *span;
int position;
int length;

Sets the position and length variables in span to the specified position and
length. The span must be associated with a JotText instance. When the operation
is successful, TRUE is returned; otherwise, FALSE is returned.

Errors: Jot_ERANGECHECK Jot_ETEXT

Jot 269

27

JotSpan_Modified boolean

JotSpan_Modified(span)
JotSpan *span;

Returns the modified state of span. Whenever a text operation occurs in a span,
the span is marked as modified and stays marked until
JotSpan_ClearModified is called. When span is not associated with a JotText
instance, FALSE is returned.

JotSpan_ClearModified void

JotSpan_ClearModified(span)
JotSpan *span;

Sets the modified state of span to FALSE.

JotView procedures—the view and controller

The view associated with the text model is the JotView. This view reads
characters from a text buffer, applies formatting information, and displays the
results in a rectangular canvas on the screen. A JotText instance can be
associated with multiple JotViews.

The JotView interface also encompasses the controller interface. The user
interacts with text using the mouse and keyboard. Mouse events such as
selections or caret movement are handled in the controller. Jot provides no-op
default controllers.

JotView_New JotView *

JotView_New(text)
JotText *text;

Allocates and returns a pointer to a new JotView instance. In addition, a canvas
is created on the window server to view text. This canvas is neither mapped
nor activated. A NULL (0) pointer is returned if the operation fails.

You can use JotView_New to create and associate a JotView with an existing
JotText instance in one operation. When this behavior is not desired, text
should be defined as a NULL (0) pointer.

Errors: Jot_EMEMORY

27

270 The NeWS Toolkit Reference Manual — March 1991

JotView_Free void

JotView_Free(view)
JotView *view;

Deallocates view and its internal resources, including the canvas created in the
window server. As necessary, view is removed from the JotView list in its
associated JotText.

JotView_SetText void

JotView_SetText(view, text)
JotView *view;
JotText *text;

Inserts view into the JotView list managed by text. This operation permits text
to be presented and edited in the canvas controlled through view. If view is
already associated with a JotText instance, it is removed from the previous list.
In addition, view can be explicitly disassociated from its current owner by
defining text as a NULL (0) pointer.

JotView_Text JotText *

JotView_Text(view)
JotView *view;

Returns the JotText instance associated with view. When view is not associated
with a JotText instance, a NULL (0) pointer is returned.

JotView_Characters int

JotView_Characters(view)
JotView *view;

Returns the number of characters in view. Should the operation fail, a -1 is
returned.

The information returned is consistent with the last change to the text buffer
presented in view, i.e., if the buffer’s contents have changed, Jot formats it to
calculate the answer. However, view is not redisplayed, which may result in the
returned value being inconsistent with what is displayed in view.

JotView_EnsurePositionVisible

boolean
JotView_EnsurePositionVisible(view, position)
JotView *view;
int position;

Forces the character at position to be visible after the next update in view. When
the operation is successful, TRUE is returned; otherwise, FALSE is returned.

Jot 271

27

Errors: Jot_ERANGECHECK

JotView_ConstrainText void

JotView_ConstrainText(view, constrain)
JotView *view;
boolean constrain;

Prevents scrolling and limits character insertion to the amount of space in view,
when constrain is TRUE. JotView_ConstrainText is useful in forms-based
applications where each JotView represents a field in a form.

At some future time, during a insertion into the text buffer (e.g., using
JotText_InsertCharacters), the insertion may fail and the insertion function
will return -1 and the error number will be Jot_ECONSTRAIN.

JotView_Update boolean

JotView_Update(view)
JotView *view;

Forces view to update its display based on the current state of the associated
JotText buffer and the caret location (the insertion point). If the buffer hasn’t
changed and the caret hasn’t moved, no action occurs. When the operation is
successful, TRUE is returned; otherwise, FALSE is returned.

In a editor with a C language mode, the caret might be moved to the matching
delimiter when a close brace is entered. (This is commonly referred to as
“paren flashing.”) After a brief interval, the cursor would then restored to its
original position. The following code demonstrates how Jot functions could be
used to implement such behavior:

/* A simple paren flashing example*/

aText = JotView_Text(aView);

CurrentLocation = JotText_Cursor(aText);

JotText_SetCursor(aText, AnotherLocation);

JotView_EnsurePositionVisible(aView, AnotherLocation);

JotView_Update(aView);

sleep(1);

JotText_SetCursor(aText, CurrentLocation);

JotView_EnsurePositionVisible(aView, CurrentLocation);

JotView_Update(aView);

27

272 The NeWS Toolkit Reference Manual — March 1991

JotView_UpdateViews void

JotView_UpdateViews()

Updates all the views that need updating. Changes are made to text buffers,
they are all batched together and the screen is refreshed once. Every time
through the main loop, JotView_UpdateViews should be called to ensure that
all views that need updating for one reason or another are, in fact, updated.

It is necessary for applications using Jot to own the main loop and call
JotView_UpdateViews(). E.g.,

while (wire_Notify()) {

/* If there is something else coming over the wire

 don’t bother updating the views this time, so we

 can batch keystrokes, etc. */

 if (wire_WouldNotify())

continue;

JotView_UpdateViews();

/* maybe do something else*/

}

Errors: Jot_ETEXT

JotView_Lines int

JotView_Lines(view)
JotView *view;

Returns the number of lines in view. Should the operation fail, a -1 is returned.

The information returned is consistent with the last change to the text buffer
presented in view, i.e., if the buffer’s contents have changed, Jot formats it to
calculate the answer. However, view is not redisplayed, which may result in the
returned value being inconsistent with what is displayed in view.

Errors: Jot_ETEXT

Jot 273

27

JotView_PositionFromLine int

JotView_PositionFromLine(view, line)
JotView *view;
int line;

Returns the position preceding the first character displayed on line in view. If
you ask what this character is you get the first character in line; remember
position is defined to be between characters. line must be greater than or equal
to zero and less than the value returned from JotView_Lines (page 272).
Should the operation fail, a -1 is returned.

/* First position in view */

First = JotView_PositionFromLine(aView, 0)

/* Last position in view */

Last = (First + JotView_Characters(aView)) - 1;

Errors: Jot_ERANGE, Jot_ETEXT

The JotBoundingBox data type

A new data type, JotBoundingBox, is used to determine the size of a view.
Although characters are presented on a canvas managed in a JotView instance,
if you use margins, the view size and origin might not be equivalent to those of
the canvas. The JotView_Height, JotView_Width, JotView_LineBoundingBox,
and JotView_BoundingBox functions take the margins into account. In
addition, the values are relative to the Current Transformation Matrix (CTM)
for the canvas.

Figure 27-2 Relationship of a Jot view to a canvas

View

canvas origin

view origin

grey areas are the margins

Canvas

27

274 The NeWS Toolkit Reference Manual — March 1991

The origin for JotView is the lower-left corner. The declaration for
JotBoundingBox is:

typedef struct {

int x;

int y;

int width;

int height;

} JotBoundingBox;

JotView_Height int

JotView_Height(view)
Jotview *view;

Returns the view height in points

JotView_Width int

JotView_Width(view)
JotView *view;

Returns the view width in points.

JotView_SetMargins void

JotView_SetMargins(view, left, right, top, bottom)
JotView *view;
int left, right, top, bottom;

Sets the margins for a view. left, right, top and bottom are specified in points.

JotView_BoundingBox void

JotView_BoundingBox(view, box)
JotView *view;
JotBoundingBox *box;

Copies the values for the origin, width and height of view into box. You are
responsible for allocating box.

JotView_LineBoundingBox boolean

JotView_LineBoundingBox(view, box, line)
JotView *view;
JotBoundingBox *box;
int line;

Copies the values for the origin, width and height of line, in view, to box. line
must be greater than or equal to zero and less than the value returned from
JotView_Lines (page 272). When the operation is successful, TRUE is returned;
otherwise, FALSE is returned. You are responsible for allocating box.

Jot 275

27

The information returned is consistent with the last change to the text buffer
presented in view, i.e., if the buffer’s contents have changed, Jot formats it to
calculate the answer. However, view is not redisplayed, which may result in the
returned value being inconsistent with what is displayed in view.

Errors: Jot_ERANGECHECK, Jot_ETEXT

 JotView_RelativeLineFromPosition
int
JotView_RelativeLineFromPostion(view, position)
JotView *view;
int position;

Returns the line number containing the character at position in the text buffer
being presented in view. This line number is relative to view, so its value is
greater than or equal to zero and less than the value returned from
JotView_Lines. When the character is not contained in view or the operation
fails for other reasons, a -1 is returned.

Errors: Jot_ERANGECHECK, Jot_ETEXT

JotView_LineFromPosition int

JotView_LineFromPosition(view, position)
JotView *view;
int position;

Returns the number of the line containing the character located at position.
JotView_LineFromPosition uses view’s width to calculate line width but
pretends that view’s height is adequate to present the entire JotText buffer. The
first character in the buffer appears at the top of view. Should the operation
fail, a -1 is returned.

JotView_LineFromPosition needs to format text from the beginning of the
buffer to calculate the line number; performance will be degraded during this
process.

Errors: Jot_ERANGE, Jot_ETEXT

JotView_ScrollAutomatic void

JotView_ScrollAutomatic(view, height)
JotView *view;
int height;

Specifies how you want the view to scroll when the caret would be positioned
outside view without scrolling. Scrolling is specified as follows:

27

276 The NeWS Toolkit Reference Manual — March 1991

• When height is positive, the caret is positioned height points below the top or
above the bottom of view.

• When height is negative, the caret is positioned height points from the
opposite end of view.

• When the absolute value of height is zero or greater than the value returned
by JotView_Height, the caret is centered in view.

The direction to scroll is determined by whether the caret is moving forward or
backward. For automatic scrolling to occur, JotView_EnsurePositionVisible
must also be invoked.

JotView_ScrollRelative boolean

JotView_ScrollRelative(view, units, count)
JotView *view;
int units;
int count;

Scrolls text in view based on line or page units. The count parameter determines
the number of units to scroll. When count is positive, the text is scrolled
forward. When count is negative, the text is scrolled backward. When count is
zero, the operation is ignored and TRUE is returned. If the absolute value of
count exceeds the actual number of lines or pages, count is regarded as the
maximum number of units. The units parameter must be defined as Jot_LINE
or Jot_PAGE. If further scrolling is not possible, FALSE is returned; otherwise,
TRUE is returned.

while (JotView_ScrollRelative(view, Jot_PAGE, 1))

;

Errors: Jot_ETEXT

JotView_ScrollAbsolute boolean

JotView_ScrollAbsolute(view, position, YCoordinate)
JotView *view;
int position;
int YCoordinate;

Scrolls text in view until the line containing the character at position is visible.
The baseline for this line is positioned as close as possible to the point defined
in YCoordinate. To calculate appropriate values for YCoordinate, you should
reference the values returned from JotView_BoundingBox or JotView_Height,
e.g.,

JotView_BoundingBox (aView, &aBox);

Bottom = aBox.y;

Top = Bottom + aBox.height;

Jot 277

27

JotView_ScrollAbsolute (aView, 1000, Top);

Errors: Jot_ETEXT

JotView_SetReadOnly void

JotView_SetReadOnly(view, browse)
JotView *view;
boolean browse;

Determines whether the view is protected from user input. Jot does not enforce
the read-only state. Your keyboard controller will have to check to see if read
only is turned on and then enforce it. When browse is TRUE the view is read
only and the caret is not visible. Scrolling and selections remain available in a
read only view with the following limitations on manipulating the selection:

• selections cannot be cut.
• selections cannot be pasted into the view.
• selections can be copied out of the view.

JotView_ReadOnly boolean

JotView_ReadOnly(view)
JotView *view;

Indicates whether view is protected from input.

JotView_SetData void

JotView_SetData(view, pointer)
JotView *view;
caddr_t pointer;

Associates a client data pointer with view.

JotView_Data caddr_t

JotView_Data(view)
JotView *view;

Returns the client data pointer previously associated with view. If no client data
has been associated with view, a NULL (0) pointer is returned.

The Wire Service and JotViews

Please see the example at the end of this chapter for information on the
relationship between the Wire Service and JotViews, including how to
associate a scrollbar to the JotView.

27

278 The NeWS Toolkit Reference Manual — March 1991

JotView_Canvas int

JotView_Canvas(view)
JotView *view;

Returns the Wire Service user token representing the canvas managed by view.

JotView_View JotView *

JotView_View(connection, token)
wire_Wire connection;
int token;

Returns a pointer to the JotView instance associated with the Wire Service user
token on the Wire Service connection. Should the operation fail, a NULL (0)
pointer is returned.

JotView_Wire wire_Wire

JotView_Wire(view)
JotView *view;

Returns the Wire Service connection associated with view. Should the operation
fail, wire_INVALID_WIRE is returned.

View Controllers

Jot provides a mechanism to register controllers that control user input into the
JotView. The keyboard and mouse default controllers are implemented as no-
ops. The selection controllers have implement Toolkit semantics for selections.
You can install the default if you no longer want to get input from the
associated device. For example, if you don’t want to get input from the mouse
you can use the default mouse controller.

JotView_SetControllers

void
JotView_SetControllers(view, keyboard, mouse, SelectionStart, SelectionAlter)

JotView *view;
void (*keyboard) ();
void (*mouse) ();
boolean (*SelectionStart) ();
void (*SelectionAlter) ();

Registers the controllers that respond to various inputs in view. Jot provides
default controllers that are used when you do not define and register a private
controller. To unregister your private controller, you should execute
JotView_SetControllers using the appropriate default controller name.

Jot 279

27

When a controller parameter is defined as NULL, it is ignored. This permits you
to change one or more controllers without registering an existing controller
multiple times.

void

keyboard(view, character)

JotView *view;

int character;

The keyboard controller is executed whenever keyboard events are detected in
view.

void

mouse(view, button, action, position)

JotView *view;

int button;

int action;

int position;

The mouse controller is called for the entire time between mouse down and
mouse up on either SELECT or ADJUST and includes mouse drags. The
default controller is JotView_MouseDefault.

button is defined as either Jot_SELECTBUTTON or Jot_ADJUSTBUTTON. action is
defined as Jot_BUTTONUP, Jot_BUTTONDOWN, or Jot_MOUSEDRAGGED. position
corresponds to the point preceding a character in the text buffer being
presented in view.

boolean

SelectionStart(view, position)

JotView *view;

int position;

The SelectionStart controller is executed whenever a request to begin a
selection is made. Your SelectionStart controller determines whether a selection
should be made and returns true if it should be started. The default controller
is JotView_SelectionStartDefault.

position corresponds to the point preceding a character in the text buffer being
presented in view. When JotView_SelectionStart returns TRUE, a new
selection is created.

27

280 The NeWS Toolkit Reference Manual — March 1991

Note – In an editing application, a click on SELECT button might reset the
insertion point or start a selection. A hypertext application might interpret this
action in a different manner. For instance, a text link could be activated in the
Help Viewer.

void

SelectionAlter(view, rank)

JotView *view;

int rank;

The SelectionAlter controller is executed whenever the selection is adjusted
in view. The default controller is JotView_SelectionAlterDefault.

 rank is defined as either Jot_PRIMARY or Jot_SECONDARY.

JotSearch procedures

JotSearch uses the same syntax as regular expressions to conduct its text
searches. Regular expressions are passed to JotSearch_CompileExpression,
which compiles them into a form usable for pattern matching.

JotSearch_New JotSearch *

JotSearch_New()

Allocates and returns a pointer to a new JotSearch instance. If the operation
fails a NULL (0) pointer is returned.

Errors: Jot_EMEMORY

JotSearch_Free void

JotSearch_Free(search)
JotSearch *search;

Deallocates search and its internal resources.

Jot 281

27

JotSearch_CompileExpression

boolean
JotSearch_CompileExpression(search, string, regular)
JotSearch *search;
char *string;
boolean regular;

Compiles string and copies the results to search. When regular is TRUE, string is
considered a regular expression search string, and certain characters will be
treated specially (See ed(1) for a list of these characters.). When regular is TRUE,
the special characters must be escaped if they are to be treated as literal. When
the operation is successful, TRUE is returned; otherwise, FALSE is returned.

A new JotSearch instance does not have to be created for each search; an
existing instance can be passed repeatedly to JotSearch_CompileExpression.

Errors: Jot_EMEMORY, Jot_ESYNTAX

JotSearch_MatchPattern boolean

JotSearch_MatchPattern(search, range, match, direction, case)
JotSearch *search;
JotSpan *range;
JotSpan *match;
int direction;
boolean case;

Matches the compiled expression in search against characters in the text buffer
managed by the owner of range. The position and length variables of range are
examined to determine the search region. The direction must be defined as
Jot_FORWARD or Jot_BACKWARD. case determines whether case should be
considered during the search. When the operation is successful, the text,
position, and length variables describing the matched characters are copied
into match and TRUE is returned; otherwise, FALSE is returned.

JotSearch_MatchString boolean

JotSearch_MatchString(string, range, match, direction, case)
char *string;
JotSpan *range;
JotSpan *match;
int direction;
boolean case;

Matches string against characters in the text buffer managed by the owner of
range. The position and length variables in range are examined to determine the
search region. direction must be defined as Jot_FORWARD or Jot_BACKWARD. case
determines whether case should be considered during the search. When the

27

282 The NeWS Toolkit Reference Manual — March 1991

operation is successful, the text, position, and length variables describing the
matched characters are copied into match and TRUE is returned; otherwise,
FALSE is returned.

Note – JotSearch_MatchString does not support regular expressions. It is
used for simple searches.

JotSearch_Substring boolean

JotSearch_Substring(search, substring, match)
JotSearch *search;
int substring;
JotSpan *match;

Accesses the substring register from the current regular expression in search.
The search parameter must have been passed to a successful execution of
JotSearch_MatchPattern. When the operation is successful, the text, position,
and length variables describing the contents of substring register are copied
into match and TRUE is returned; otherwise, FALSE is returned.

Notes: From the ed(1) manual pages:

\n - Match the contents of the nth substring register from the current RE. This
provides a mechanism for extracting matched substrings. For example, the
expression \(.*\)\1$ matches a line consisting of two repeated appearances of
the same string. When nested parenthesized substrings are present, n is
determined by counting occurrences of \(starting from the left.]

Errors: Jot_ERANGECHECK

JotFont procedures

JotFont_New JotFont *

JotFont_New(name, size, printermatched)
char *name;
int size;
boolean printermatched;

Returns a pointer to a JotFont instance. The JotFont cache is searched for a font
matching the specified parameters. When the search is successful, the pointer
to an existing JotFont instance is returned; otherwise, the window server is
requested to locate the font corresponding to name. If the font is not located, a

Jot 283

27

NULL (0) pointer is returned; otherwise, the font is scaled to size. When
printermatched is TRUE, printer metrics are imposed on the font. The pointer to
the new JotFont instance is returned and the instance is cached for reuse.

The Times-Roman 12 is the default font.

Errors: Jot_EMEMORY

JotFont_Free void

JotFont_Free(font)
JotFont *font;

Deallocates font and its internal resources. In addition, font is removed from the
JotFont cache.

JotView_SetFont void

JotView_SetFont(view, font)
JotView *view;
JotFont *font;

Sets the font in view to font.

JotSelection procedures

Selections are a mechanism that permit client applications to exchange
information. This service allows text to be cut, copied, and pasted between
applications. Although the window server might support an arbitrary number
of selections, the Jot interface the Jot interface supports only primary and secondary

selections.

JotSelection_Set boolean

JotSelection_Set(span, rank, pendingdelete)
JotSpan *span;
int rank;
boolean pendingdelete;

Uses the position and length variables in span to set the rank selection. The rank
must be defined as either Jot_PRIMARY or Jot_SECONDARY. When pendingdelete
is TRUE, the selection is to be pending delete and will be replaced with the next
inserted character. The characters defined by span are highlighted when visible
in associated JotViews. When the operation is successful, TRUE is returned;
otherwise, FALSE is returned.

Errors: Jot_ERANGECHECK Jot_ETEXT

27

284 The NeWS Toolkit Reference Manual — March 1991

JotSelection_SetLevel boolean

JotSelection_SetLevel(view, rank, level)
JotView *view;
int rank;
int level;

Sets the rank selection in view to the specified level. The rank must be defined as
Jot_PRIMARY or Jot_SECONDARY. The level must be defined as Jot_CHARACTER,
Jot_WORD, Jot_LINE, or Jot_BUFFER. When the operation is successful, TRUE is
returned; otherwise, FALSE is returned.

Errors: Jot_ERANGECHECK

JotSelection_Clear boolean

JotSelection_Clear(text, rank)
JotText *text;
int rank;

Clears the rank selection in text. The rank must be defined as Jot_PRIMARY or
Jot_SECONDARY. When text does not own the selection, the operation is ignored
and FALSE is returned; otherwise, TRUE is returned. The characters addressed in
the selection are unhighlighted when visible in associated JotViews.

Errors: Jot_ERANGECHECK

JotSelection_Span JotSpan *

JotSelection_Span(text, rank)
JotText *text;
int rank;

Returns a pointer to a JotSpan that represents the selection of rank rank. The
rank must be defined as Jot_PRIMARY or Jot_SECONDARY. JotSelection_Span
supports only primary and secondary selections. In addition, text must own
the rank selection. When the operation is not successful a NULL (0) pointer is
returned.

Jot 285

27

A JOT Example

This is a Jot example that consists of three files: joe.c, joe_cps.cps, and Makefile.
This is an example of a very simple text editor.

#include <sys/ioctl.h>

#include <sys/stat.h>

#include <stdio.h>

#include <strings.h>

#include “NeWS/wire/wire.h”

#include “NeWS/jot/jot.h”

#include “NeWS/jot/view.h”

#include “NeWS/jot/font.h”

#include “joe_cps.h”

#define CTL(c) (c & 037)

JotView*TheView;

/*

 * Keyboard callback for the JotView. This handles:

 * Control-A moves to the beginning of the document.

 * Control-B moves backward one character.

 * Control-D deletes the character after the caret.

 * Control-E moves to the end of the document.

 * Control-F moves forward one character.

 * Delete deletes the character before the caret.

 *

 *

 * All other characters are inserted in the text buffer based on the

 * caret position. Following the insertion, the caret is

 * advanced.

 */

27

286 The NeWS Toolkit Reference Manual — March 1991

static void

keyboard_callback (view, ch)

JotView *view;

char ch;

{

 JotText *text;

 int caret_pos;

 text = JotView_Text(view);

 caret_pos = JotText_Caret(text);

 switch (ch) {

 case CTL(‘D’):

 case ‘\177’:

(void) JotText_DeleteCharacters(text, caret_pos, (ch == CTL(‘D’)) ? 1 : -1);

break;

 case CTL(‘B’):

if (caret_pos > 0)

 JotText_SetCaret (text, caret_pos - 1);

break;

 case CTL(‘F’):

if (caret_pos < JotText_Characters(text))

 JotText_SetCaret(text, caret_pos + 1);

break;

 case CTL(‘E’):

JotText_SetCaret(text, JotText_Characters(text));

break;

Jot 287

27

 case CTL(‘A’):

JotText_SetCaret(text, 0);

break;

 case ‘\r’:

ch = ‘\n’;

/* Fall into */

 default:

JotText_InsertCharacters(text, caret_pos, &ch, 1);

break;

 }

 JotView_EnsurePositionVisible(view, JotText_Caret(text));

}

/*

 * A menu callback has been made. We snarf the font family and try to create that font.

 * If we succeed, the global font in view is

 * set to the new font; otherwise, an error message is printed.

 */

void

menu_callback(tag, data)

{

 JotFont *f;

 char name[128];

 wire_ReadString(name);

27

288 The NeWS Toolkit Reference Manual — March 1991

 if ((f = JotFont_New(name, 12, FALSE)) == NULL) {

fprintf(stderr, “Error finding font %s.\n”, name);

return;

 }

 JotView_SetFont(TheView, f);

}

main(argc, argv)

int argc;

char **argv;

{

 JotText *text;

 wire_Wire wire;

 struct statstbuf;

 int fd, menu_tag, nbytes;

 char *filename;

 if (argc < 2) {

fprintf(stderr, “%s: usage: %s file\n”, argv[0], argv[0]);

exit(1);

 }

 filename = argv[1];

 /* A server connection is opened and initialized. */

 if ((wire = wire_Open(NULL)) == wire_INVALID_WIRE) {

wire_Perror();

exit(1);

 }

 Jot_Initialize(wire);

Jot 289

27

 /* The file is opened and its length is acquired. A text

 object is created with a little extra room and the file is

 read into the text object. */

 if ((fd = open(filename, 0)) == -1) {

perror(filename);

exit(1);

 }

 if (fstat(fd, &stbuf) == -1) {

perror(filename);

exit(1);

 }

 if ((text = JotText_New(stbuf.st_size + 1024)) == NULL) {

fprintf(stderr, “Cannot create text object\n”);

exit(1);

 }

 nbytes = JotText_Read(text, 0, fd);

 printf(“Read %d bytes from file %s.\n”, nbytes, filename);

 close(fd);

 /*

 * Now allocate a tag for the menu. The menu callback will read a font family

 * name from the wire and make that the font for the view. When the view is

 * created, we associate the menu with that canvas using the /setmenu method

 * in ClassCanvas. The ps_initialize routine downloads a couple of useful

 * functions into the server, as well as

 * creating the font menu.

 */

27

290 The NeWS Toolkit Reference Manual — March 1991

 menu_tag = wire_AllocateTags(1);

 wire_RegisterTag(menu_tag, menu_callback, 0);

 ps_joe_initialize(menu_tag);

 /*

 * The view is created and the text object is associated with it. The canvas

 * managed by the view is made a client of a baseframe through the ps_initcanvas

 * routine. When the baseframe is mapped, the canvas will be mapped

 * and painted as well.

 */

 TheView = JotView_New(text);

 ps_initcanvas(JotView_Canvas(TheView));

 /* the keyboard callback is called whenever a character is typed in the JotCanvas */

 JotView_SetControllers(TheView, keyboard_callback, NULL, NULL, NULL);

 /* “Off on your way, hit the open road, there is magic at your

 fingers. For the spirit ever lingers, undemanding contact

 in your happy solitude.” */

 while (wire_Notify()) {

if (wire_WouldNotify(wire_ALLWIRES))

 continue;

JotView_UpdateViews();

 }

}

Jot 291

27

% Define a routine and a menu.

%

% init_canvas accepts a JOT canvas parameter. It creates a base window

% and a scrollbar, and inserts the scrollbar and the JOT canvas

% into the base window. Then it attaches the scrollbar to the JOT

% canvas. When it’s done it creates an event manager and activates

% the base window, which activates the JOT canvas and scrollbar.

%

% The menu is simply a list of well-known font families. When a

% client selects an item from the menu, the selected family name

% is sent up the wire to the client-side menu callback.

%

cdef ps_joe_initialize(menu_tag)

 /init_canvas { % JotCanvas => -

5 dict begin

 /cv exch def

 /win cv framebuffer /new ClassBaseWindow send def

 /sbar framebuffer /new ClassVScrollbar send def

 /preferredsize { 500 600 } /installmethod cv send

 cv /settarget sbar send

 sbar /ScrollbarInitialize cv send

 /Scroll /setnotifier sbar send

 /Scroll /setpreviewer sbar send

 /East sbar /addclient win send

 0 2 0 2 /setgaps win send

 0 0 /preferredsize win send /reshape win send

27

292 The NeWS Toolkit Reference Manual — March 1991

 /place win send

 (JOE - Jonathan’s Own Editor) /setlabel win send

 /new ClassEventMgr send /activate win send

 /map win send

 win % window

 end

 /JoeWindow exch def

} def

/FontMenu /Grid framebuffer /new ClassMenu send def

[(Courier) (Helvetica) (Times-Roman) (LucidaSans)]

 /setitemlist FontMenu send

{ % index menu

/item exch send 0 get % item-string

menu_tag tagprint % item-string

typedprint % -

} /setnotifier FontMenu send

% Call init_canvas with a JotCanvas. This initializes the canvas

% and then sets its menu.

cdef ps_initcanvas(token cv)

 cv init_canvas

 FontMenu /setmenu cv send

 true /setmenuable cv send

Jot 293

27

Makefile for JOE. TNTHOME should point at the top level of a

TNT release directory. Just say “make” and JOE will be built.

To run JOE just say “joe filename” Joe is a simple file viewer

program based on JOT.

SRC = joe.c

OBJ = joe.o

CPSFILES = joe_cps.cps

INCLUDE = -I$(TNTHOME)/include

LIBPATH = -L$(TNTHOME)/lib -L$(OPENWINHOME)/lib

CFLAGS += $(INCLUDE) -g

joe: $(OBJ)

cc -o joe $(OBJ) $(LIBPATH) -ljot -lwire -lcps

joe.o: joe_cps.h

.SUFFIXES: .cps

.cps.h:; cps $*.cps

SHAR_EOF

fi

exit 0

End of shell archive

27

294 The NeWS Toolkit Reference Manual — March 1991

295

Index

A
abnormal event functions

registering, 232
see wire_SkipEvent, 233

abnormal event handling, 231

/abbreviated
ClassButton, 30

absolute placement, 89

accessing the psio files, 233

activation
by bags, 17

/activate
ClassBag, 18
ClassCanvas, 46

/active?
ClassCanvas, 47

active
buttons, 30

/addclient
ClassBag, 18
ClassBorderBag, 26

/addclient (absolute format)
ClassPanel, 133

/addclient (calculated format)
ClassPanel, 133

/addclient (spaced and grid formats)
ClassPanel, 133

/addsubwindow
ClassWindow, 222

adding window attributes
see /setattribute, 218

adding x y coordinates, 106

adjusting sizes, 28

adjusting the selection, 69

/AdjustTo
ClassCanvas, 69

Again key, 61

/AlphaNumeric
ClassTextField, 214

/AlphaNumericTable
ClassTextField, 214

altering the item group, 91

/appenditem
ClassItemGroup, 91
ClassMenu, 112
ClassScrollList, 164

application windows
see ClassBaseWindow, 224

applications
an processes, 13
quitting and systemdict, 11
quitting and userdict, 11
splitting, 9
using events to communicate, 9

296 The NeWS Toolkit Reference Manual — March 1991

/ArrowKey
ClassCanvas, 60

/ArrowKeyUp
ClassCanvas, 60

associating server and client objects, 237

/AsciiReception
ClassCanvas, 73

/attribute
ClassWindow, 219

attributes, 218

attributes of selections
retrieving, 174

auto repeat
sliders, 194

/AutoScrollPosition
ClassTextField, 213

B
/BackgroundColor

ClassCanvas, 37

bags
activating canvases in, 47
event management, 18
methods to respond to, 17
moving clients to another, 18
number of clients in, 19
tracking and region clients, 20
types of clients, 17

batching requests, 175

/basewindow
ClassNotice, 122

/bbox
ClassCanvas, 43
ClassRegion, 143

border bags
rearranging clients, 25
using gaps to position clients, 26
using insets to position clients, 26

borderbags
calculating minsize of clients, 27
clients

interaction of named, 26
how clients change as bag

changes, 28
how clients sizes are adjusted, 28
precedence of layout, 26

/BotRightPath
ClassCanvas, 39
ClassRegion, 141

busy buttons, 30

busy windows
see /setvisualstate, 220

busy windows and event handling, 221

/buttons
ClassNotice, 122

buttons
accepting user actions, 30
busy, 30
limitations on display size, 30
menu

specifying item list, 32
where menu appears, 33

menus
menu mark, 33

notifier arguments, 31
putting in notices

see /setbuttons, 122

C
calculated placement, 89

setting a menu default, 111

calculated placement utilities, 90, 111

calculated protocol
defined, 103

callback
context, 48

callback function environment, 236

callbacks
mouse tracking in items, 95

/callmanager
ClassEventMgr, 50

/callnotifier
ClassTextField, 206

/CanRenderAs
ClassSelection, 186

canvas, 41, 42

Index 297

activating, 46
default path, 44
event managers, 46
help, 63
initializing an instance

see /NewInit, 36
making selectable, 65
mapped and visibility, 42
mapping default, 42
mouse tracking, 55
moving to another bag, 18
opaque

damage, 51
overriding /reshape, 43
receiving events, 46
utility painting methods, 39
when valid, 45

canvas activation
in bags, 47

canvas color variable names, 37

canvas cursors, 41

canvas fonts
making current font, 40
show operator, 40

canvas menus, 53

canvas painting
rendering model

painting method order, 38

canvas parents
painting unmapped, 42

canvases and selections
sequence of operations, 179

/caret
ClassTextField, 206

/CaretDelay
ClassTextField, 213

CellSize
ClassLayout, 105

Changing event managers for execution
and sends, 50

/characters
ClassTextField, 205

/children+
ClassCanvas, 41

/choicemode
ClassScrollList, 164
ClassSettings, 190

/chosen
ClassSettings, 190

/chosen?
ClassScrollList, 165

class system
relationship to PostScript, 3

classes
where loaded, 3

ClassHScrollbar
Scrollbars, 151

ClassRegion
/ModifyFont, 142

ClassSelection/Deselect, 183

ClassVScrollbar
Scrollbars, 151

ClearAllChoices, 165

/clearchoice
ClassScrollList, 165

/clearselection
ClassSelection, 187

/cleartarget
ClassButtons, 32
ClassControl, 78
ClassMenu, 117
ClassScrollList, 169
Sliders, 196

/client
ClassBag, 19

/clientcount
ClassBag, 19

/clientlist
ClassBag, 19

clients
borderbags, 28
in bags, 17
moving to another bag, 18
names in borderbags, 23 to 24
number in bag, 19
rearranging in border bags, 25

client-server split

298 The NeWS Toolkit Reference Manual — March 1991

NFS, 10

client-side
exiting

effect on server, 15
responding to messages, 15

/close
ClassNotice, 123
ClassWindow, 223

/closesubwindows
ClassWindow, 222

closing a connection, 229

closing canvases, 62

closing notices, 122

/colors
ClassCanvas, 36
ClassRegion, 138

colors
2-D, 36, 138
3-D, 36, 138

computing, 36, 138
Background, 37
background, 139
canvas, 36
canvas variable names, 37
Foreground, 37
foreground, 139
region variable names, 139
when validation occurs, 36, 138

/ComputeNamedPosition
ClassSelection, 185

/computepin
ClassSelection, 186

/computerange
ClassSelection, 186

connection
and userdict, 3
closing, 229
getting current, 230
handling abnormal events, 231
killing and effect on userdict, 15
opening, 229
opening and current wire, 229
reestablishing application context

see wire_SetData, 230

connection input
ignoring

see wire_Disable, 230

connection reader
and the local event manager, 14

context
callback, 48
of notification, 77

control surface
see ClassPanel, 131

controls, 76
interaction with LEM, 14
targeting mechanism, 78
types of, 75
value of different types, 76

converting descriptions to item
dictionaries, 97

coordinates
adding values, 106
finding max value, 106
finding min value, 106

coordinates subtracting values, 106

CPS
see the NeWS 2.1 Programmer’s Guide

creating the grid for itemgroups, 89

CTM
changing and /move, 43

CURRENT
ClassItemGroup, 90
ClassLayout, 103
ClassMenu, 112
ClassPanel, 135

current connection
getting, 230

current font and canvas font, 40

/CurrentText
ClassTextCanvas, 202

Current transformation matrix
for regions, 143

/Cursor
ClassCanvas, 41

/Cursors
ClassCanvas, 41

Index 299

cursors, 41

D
/damage

ClassCanvas, 51

damage
for regions, 146
getting, 51
model for fixing, 51
opaque canvases, 51

/damageable?
ClassCanvas, 51

/damageall
ClassCanvas, 52

damage callback, 53

damage handling, 51

data structures indexed by wire, 233

/deactivate
ClassBag, 18
ClassCanvas, 47

/decrement
ClassNumericField, 126

decrement/increment buttons
normalization of value, 127

/default
ClassButton, 31
ClassMenu, 113

default item
for menus, 113

default layout
calcualated placement, 89

default layout for calculated
placement, 111

/deletecharacters
ClassTextField, 207

/DeleteContents
request key, 177

deleting the contents of a selections, 177

/deleteitem
ClassItemGroup, 91
ClassMenu, 112
ClassScrollList, 164

/DeleteSource? (attribute)
ClassSelection, 180

/DeleteSpan
ClassTextField, 207

/deletespan
ClassTextField, 207

/deletewords
ClassTextField, 207

/delta
ClassNumericField, 126
Sliders, 196

/descendants
ClassCanvas, 41

demo
of selections, 172

/Deselect
ClassSelection, 183

/destroy
ClassBag, 19
ClassCanvas, 74
ClassRegion, 149

/DisplayItemMaximumSize
DisplayItems, 81

/DisplayItemPaint
DisplayItems, 81

/DisplayItemRect
DisplayItems, 81

/DisplayItemSize
DisplayItems, 81

displayitems
defined, 79

/DragAdjust
ClassCanvas, 70
ClassTextCanvas, 201

drag and drop
getting events, 71
getting the drop, 72
Receptible canvases, 71

drag box
used to change slide value, 196

/DragStart
ClassCanvas, 70
ClassTextCanvas, 201

300 The NeWS Toolkit Reference Manual — March 1991

/DragStop
ClassCanvas, 71
ClassTextCanvas, 201

drawing
lightweight

see Display Items, 79

dup
using for client names, 18

E
/endboxes?

Sliders, 197

error
Jot, 256

errors
Jot_Errno, 256

etting a default layout for /Calculated
placement, 89

event
name of focus events, 58

event management
turning on for bags, 18
turning on for canvas, 46

event manager
robust, 49

event managers
error messages, 50

/EventMgr
ClassCanvas, 47

/eventmgr
ClassCanvas, 47
ClassRegion, 149

events
first one delivered, 15
getting damage, 51
handling for busy windows, 221
keeping menus from opening

see /MenuStart, 120
open, 62
redistribution

preventing for track, 57
types canvas can receive, 46

/EventsConsumed

ClassCanvas, 47

/EventToValue
Scrollbars, 155

/ExecuteNotifier
ClassControl, 77

F
/FillCanvas

ClassCanvas, 39

Find key, 61

finding a point in a item
see /pointinitem?, 92

/FitCaret
ClassTextField, 212

/fitcaret
ClassTextField, 212

/Fix
ClassCanvas, 52

/Fix (Class Method)
ClassRegion, 146

Fix
overriding, 52

/FixAll
ClassCanvas, 52
ClassRegion, 146

/FixChildren
ClassCanvas, 52
ClassRegion, 146

/FixClients
ClassBag, 20

/fixeditemsize
ClassItemGroup, 94

/FixedItemSize?
ClassItemGroup, 93

fixing damage
model, 51

/flashframe
ClassWindow, 220

focus
getting, 57
getting without keystrokes, 58
losing, 59

Index 301

name of event, 58

fonts
canvas, 40
default encoding, 40, 142
in displayitems, 80
printer matching default, 40, 142
regions, 142

/footer
ClassWindow, 220

/FooterFont
ClassWindow, 220

/ForegroundColor
ClassCanvas, 37

forking processes, 13

/framebufferof
ClassCanvas, 41
ClassRegion, 143

/Freezable
ClassWindow, 220

/FreezeFilter
ClassWindow, 221

/Frontable?
ClassCanvas, 64

/frontable?
ClassCanvas, 64

Front key, 64

/FunctionKey
ClassCanvas, 60

/FunctionKeyUp
ClassCanvas, 60

/FunctionString
ClassCanvas, 60

/FunctionStringUp
ClassCanvas, 60

G
/gaps

ClassBorderBag, 26
ClassItemGroup, 96
ClassLayout, 104
ClassPanel, 136

gaps
definition of, 26

garbage collection and canvases, 74

GEM
accessing from LEM
see global event manager

getselection
ClassSelection, 174

getting damage, 51

getting drag and drop events
see /Receptible?, 71

getting the drop, 72

global event manager
accessing from local event manager
defined, 48
purpose, 14

graphic state
affected by display items, 80

grid layout, 89

grid menus, 110

H
/HandleAgain

ClassCanvas, 61

/HandleDamage
ClassCanvas, 53

/HandleError
ClassEventMgr, 50

/HandleFind
ClassCanvas, 62

/HandleFront
ClassCanvas, 64

/HandleHelp
ClassCanvas, 63

/HandleMotion
Scrollbars, 157

/HandleObsoleteTarget
ClassButtons, 32
ClassControl, 78

/HandleOpen
ClassCanvas, 62

/HandleReception
ClassCanvas, 72

/HandleUndo

302 The NeWS Toolkit Reference Manual — March 1991

ClassCanvas, 62

HEIGHT
ClassItemGroup, 90
ClassLayout, 104
ClassMenu, 112
ClassPanel, 135

/heightfromrows
ClassScrollList, 167

help
for items, 97

/helpable?
ClassCanvas, 63

/Helpable?(Class Variable)
ClassCanvas, 63

/HelpKeyword
ClassCanvas, 63

/helpkeyword
ClassCanvas, 64
ClassItemGroup, 97, 120

help system
see Help Facilities, 63

Help_HelpRequestHandler
WireService, 244

Help_Initialize
WireService, 244

Help_UpdateView
WireService, 244

/Hilited?(attribute)ClassSelection, 180

hit detection
using canvas path, 9
using pointinpath, 9

/Holder
ClassCanvas, 66

/Holder (attribute)
ClassSelection, 181

Holder
defined, 171

I
/IconFont

ClassBaseWindow, 225

/iconimage

ClassBaseWindow, 225

/iconlabel
ClassBaseWindow, 225

/IconSize
ClassBaseWindow, 225

/IdentifySelectable
ClassCanvas, 71

imaging model, 2

/increment
ClassNumericField, 126

increment/decrement buttons
normalization, 127

indexing data structures by wires, 233

initializing a settings menu
see /setvalue, 118

input
ignoring, 230

input focus
getting, 57
see focus

/InSelection?
ClassCanvas, 68

/insets
ClassBorderBag, 27

insets
definition of, 26

/insertcharacter
ClassTextField, 208

/InsertionPoint (attribute)
ClassSelection, 181

/insertitem
ClassItemGroup, 91
ClassMenu, 113
ClassScrollList, 163

/InsertString
ClassTextField, 209

/insertstring
ClassTextField, 208

instance
initializing canvas, 36

interaction of ClassSelection and
ClassCanvas

sequence of operations, 179

Index 303

interpretation of value, 76

/invalidate
ClassCanvas, 45
ClassRegion, 145

/InvisibleCaret
ClassTextField, 213

/invoker
ClassMenu, 117

ISOLatin encoding, 40

/Item
ClassItemGroup, 92

/item
ClassItemGroup, 92
ClassMenu, 113

item
appending, 91
deleting, 91
inserting, 91
replacing, 91

/itembbox
ClassItemGroup, 92

/ItemCancel
ClassItemGroup, 96

/itemcount
ClassItemGroup, 92
ClassMenu, 113
ClassScrollList, 163

/itemhelpkeyword
ClassItemGroup, 97, 120

/itemlist
ClassItemGroup, 92
ClassMenu, 113
ClassScrollList, 163

/ItemListValid?
ClassItemGroup, 94

/itemlocation
ClassItemGroup, 92

/ItemMotion
ClassItemGroup, 96

/itemnotifier
ClassButton, 32

items
as dictionaries, 88

definition, 88
determining if same size

see /FixedItemSize?, 93
menu

defined, 108
definitions for, 109

referencing order, 88

/itemsize
ClassItemGroup, 92

item size, 93

/ItemStart
ClassItemGroup, 95

/ItemStop
ClassItemGroup, 96

/itemvisible?
ClassScrollList, 164

J
Jot_Initialize

Jot, 257

JotFont_Free
Jot, 283

JotFont_New
Jot, 282

JotSearch_CompileExpression
Jot, 281

JotSearch_Free
Jot, 280

JotSearch_MatchPattern
Jot, 281

JotSearch_MatchString
Jot, 281

JotSearch_New
Jot, 280

JotSearch_Substring
Jot, 282

JotSelection_Clear
Jot, 284

JotSelection_Set
Jot, 283

JotSelection_SetLevel
Jot, 284

304 The NeWS Toolkit Reference Manual — March 1991

JotSelection_Span
Jot, 284

JotSpan_ClearModified
Jot, 269

JotSpan_Contents
Jot, 267

JotSpan_DeleteContents
Jot, 267

JotSpan_Free
Jot, 266

JotSpan_Length
Jot, 268

JotSpan_New
Jot, 266

JotSpan_Position
Jot, 267

JotSpan_Replace
Jot, 267

JotSpan_Set
Jot, 268

JotSpan_SetLength
Jot, 268

JotSpan_SetPosition
Jot, 268

JotSpan_SetText
Jot, 266

JotSpan_Text
Jot, 266

JotText_Caret
Jot, 262

JotText_CharacterAt
Jot, 258

JotText_Characters
Jot, 261

JotText_Clear
Jot, 257

JotText_DeleteCharacters
Jot, 259

JotText_FastCharacterAt
Jot, 258

JotText_FirstSpan
Jot, 262

JotText_FirstView

Jot, 261

JotText_Free
Jot, 257

JotText_InsertCharacters
Jot, 258

JotText_InsertString
Jot, 259

JotText_Modified
Jot, 261

JotText_New
Jot, 257

JotText_Newlines
Jot, 261

JotText_NextSpan
Jot, 262

JotText_NextView
Jot, 261

JotText_Read
Jot, 260

JotText_Redo
Jot, 264

JotText_RedoCount
Jot, 264

JotText_ReplaceCharacters
Jot, 259

JotText_ScanCharacter
Jot, 258

JotText_SetCaret
Jot, 262

JotText_SetUndo
Jot, 263

JotText_Undo
Jot, 263

JotText_UndoBegin
Jot, 264

JotText_UndoBreak
Jot, 264

JotText_UndoCount
Jot, 264

JotText_UndoEnd
Jot, 264

JotText_Write
Jot, 260

Index 305

JotView_BoundingBox
Jot, 274

JotView_Canvas
Jot, 278

JotView_Characters
Jot, 270

JotView_ConstrainText
Jot, 271

JotView_Controllers
Jot, 278

JotView_Data
Jot, 277

JotView_EnsurePositionVisible
Jot, 270

JotView_Free
Jot, 270

JotView_Height
Jot, 274

JotView_LineBoundingBox
Jot, 274

JotView_LineFromPosition
Jot, 275

JotView_Lines
Jot, 272

JotView_New
Jot, 269

JotView_PositionFromLine
Jot, 273

JotView_ReadOnly
Jot, 277

JotView_RelativeLineFromPosition
Jot, 275

JotView_ScrollAbsolute
Jot, 276

JotView_ScrollAutomatic
Jot, 275

JotView_ScrollRelative
Jot, 276

JotView_SetData
Jot, 277

JotView_SetFont
Jot, 283

JotView_SetMargins

Jot, 274

JotView_SetReadOnly
Jot, 277

JotView_SetText
Jot, 270

JotView_Text
Jot, 270

JotView_Update
Jot, 271

JotView_UpdateViews
Jot, 272

JotView_View
Jot, 278

JotView_Width
Jot, 274

JotView_Wire
Jot, 278

/justification
ClassButton, 31
ClassSettings, 190

K
/Keyable?

ClassCanvas, 57

/keyable?
ClassCanvas, 58

keys
determining which to get, 58
getting, 57
getting number pad keystrokes, 59
getting standard typing

see /StandardKey, 59

/KeyStart
ClassCanvas, 58

/KeyStop
ClassCanvas, 59

keystrokes
getting, 57

L
/label

ClassMenu, 114

306 The NeWS Toolkit Reference Manual — March 1991

ClassWindow, 219

labels
for menus, 114
for pinned menus

pinned menu lables, 114
see ClassLabel, 99

/Layout
ClassBag, 20
ClassBorderBag, 28
ClassItemGroup, 96
ClassLayout, 102
ClassPanel, 136

/layout
ClassBag, 20

layout
borderbag client precedence, 26
calculated placement utilities, 90
context of, 102
default calculated

in item groups, 89
validating definition, 44

/layoutparameters
ClassItemGroup, 96
ClassLayout, 104
ClassMenu, 112
ClassPanel, 136

layout parameters
for grid item groups, 89

LEM
see also event manager
see local event manager

/Level
(attribute)ClassSelection, 181

List
ClassLayout, 105

local event manager
and userdict, 14
defined, 49
execution environment, 14
using to activate a canvas, 49

LocateChoice, 165

/locatechoice
ClassScrollList, 165

LocateNextChoice, 165

locating point in item
see /pointinitem?, 92

/location
ClassCanvas, 43
ClassRegion, 143

Location
ClassLayout, 105

losing focus
method sent, 59

M
Main loop, owning

Jot, 272

/map
ClassCanvas, 42
ClassRegion, 143

/Mapped
ClassCanvas, 42

/mapped?
ClassCanvas, 42
ClassRegion, 143

mapped canvas and visibility, 42

mapping and painting interaction, 42

mapping and transparent canvases, 42

max value
finding for coordinates, 106

Memory Management, 10

/Menu
ClassCanvas, 53
ClassMenu, 118

/menu
ClassCanvas, 53
ClassMenu, 119
ClassMenuButton, 33
ClassRegion, 148

/Menu(Class Variable)
ClassRegion, 147

/menuable
ClassCanvas, 54

/Menuable?
ClassMenu, 53, 119

/menuable?

Index 307

ClassMenu, 119

menu buttons
buttons

menu, 32

menu default target changing
see /MenuStart, 119

/menudirection
ClassMenuButton, 33

menu item layout, 110

menu labels
setting

see /setlabel, 114

/MenuStart
ClassBag, 21
ClassCanvas, 54
ClassMenu, 119
ClassRegion, 148

/MenuStop
ClassBag, 21
ClassCanvas, 55
ClassMenu, 120
ClassRegion, 149

menu type
setting

see /setchoicemode, 108

menu values
see /setvalue, 118

menus
allowing other objects to open, 148
buttons

setting the menu, 33
canvas, 53
default item, 113
default target, 116
grid, 110
intercepting the menu event, 120
invoker

definition, 117
setting different, 119

opening over canvases, 54
opening over regions, 148
preventing any menu from

opening, 148
preventing from opening, 148

region, 148
rules for determining target, 117
see /MenuStart, 148
setting the default item

see /setdefault, 113
settings

notification, 116
spaced, 110
types, 107
user interaction with

see /setvisualstate, 115
values and notification, 115

/MetaKey
ClassCanvas, 60

/MetaKeyUp
ClassCanvas, 60

method sent, 59

mouse
moving in items, 95

/MinimumVisible
ClassTextField, 205

/minimumvisible
ClassTextField, 205

/minsize
ClassBaseWindow, 226
ClassBorderBag, 27
ClassCanvas, 43
ClassItemGroup, 93
ClassLayout, 102
ClassRegion, 143
ClassTextField, 205
Gauges, 85
Scrollbars, 154
Sliders, 197

/ModifyFont
ClassCanvas, 40
ClassRegion, 142

/motion
Scrollbars, 152

mouse tracking
providing methods for, 56

/move
ClassCanvas, 43
ClassRegion, 144

308 The NeWS Toolkit Reference Manual — March 1991

Move
ClassLayout, 105

/movebaseline
ClassTextField, 215

N
names

for bag clients, 18
of borderbag clients, 23
using dup for bag clients, 18

Naming panel clients, 132

/new
ClassBag, 17
ClassBaseWindow, 224
ClassButton, 30
ClassCanvas, 35
ClassCheckBoxes, 192
ClassEventMgr, 49
ClassItemGroup, 87
ClassLabel, 99
ClassMenu, 107
ClassNotice, 121
ClassPanel, 131
ClassPopupWindow, 226
ClassRegion, 138
ClassSelection, 179
ClassSettings, 190
ClassTextField, 203
ClassWindow, 218
Scrollbars, 152
Sliders, 194

/NewInit
ClassCanvas, 36
ClassItemGroup, 88

/NewItem
ClassItemGroup, 97

/NewSelection
ClassCanvas, 67

/Normalizer
ClassNumericField, 127

/normalizer
ClassNumericField, 127
Gauges, 84
Sliders, 196

normalizing gauge values
see Gauge granularity, 84

normalizing slider values, 196

notices
closing and notifier, 122
notifier for buttons, 122
opening

see /open, 123
putting buttons in

see /setbuttons, 122
tail

see apex, 123
warping the cursor to, 122

Notification
button arguments on the stack

during, 31
Buttons, 31

notification
changing context of, 77
context of, 77
scrollbars, 155
settings, 191
sliders, 195
turning off, 77

notification and menu values, 115

/notifier
ClassButton, 31
ClassControl, 77
ClassMenu, 116
ClassNumericField, 127
ClassScrollList, 168
ClassSettings, 192
ClassTextField, 206
Scrollbars, 156
Sliders, 195

notifier
arguments for, 77
driving with tags, 234
for notice buttons, 122
specified as PostScript code, 77
specifying, 77

notifiers, 48
setting for single buttons

see /setitemnotifer, 31

Index 309

time-consuming, 48
using with help facilities, 243

numeric field
buttons

changing deltas, 126
normalizer 127
normalizing values, 126
range of values

see /setrange, 125
value, 127

/NumPadKey
ClassCanvas, 59

/NumPadKeyUp
ClassCanvas, 59

O
objects

associating server and client, 237

obsolete objects
responding, 73

of numeric fields, 127

/offset
Gauges, 85
Sliders, 197

offsets
used for positioning slider labels, 198

opaque and transparent, 51

opaque canvas
damage, 51

/open
ClassNotice, 123
ClassWindow, 223

/Openable?
ClassCanvas, 62

/openable?
ClassCanvas, 62

/opened
ClassWindow, 223

/opened?
ClassBaseWindow, 225

opening a connection
NEWSSERVER variable, 229

opening canvases, 62

opening notices, 123

/opensubwindows
ClassWindow, 222

owning the main loop
Jot, 272

P
/Paint

ClassCanvas, 39
ClassRegion, 141

/paint
ClassCanvas, 38
ClassRegion, 140

Painting
Regions

graphical context of, 140
painting a 2-D box, 141
painting a 3-D box, 141
validation during, 140

translated origin during, 140

painting
rendering model, 38, 140

painting and validation, 45

painting regions
context for, 140

paintwindow
ClassWindow, 220

/Paint2DBox
ClassCanvas, 39
ClassRegion, 141

/Paint3DBox
ClassCanvas, 39
ClassRegion, 141

/Paint3DLine
ClassCanvas, 39
ClassRegion, 141

/PaintAll
ClassCanvas, 38
ClassRegion, 140

/PaintChildren
ClassRegion, 141

/PaintClients

310 The NeWS Toolkit Reference Manual — March 1991

ClassBag, 20

/PaintItem
ClassItemGroup, 93

/paintitem
ClassItemGroup, 93

/PaintText
ClassTextField, 207

/parameters
Scrollbars, 155

/Parent
ClassRegion, 143

PARENT
ClassItemGroup, 91
ClassLayout, 104
ClassMenu, 111
ClassPanel, 135

parent
region’s, 143

/parents
ClassCanvas, 42

PASTE key
canvas recognition of, 58

pasting to XView
required request key, 178

/path
ClassCanvas, 44
ClassRegion, 144

/PendingDelete? (attribute)
ClassSelection, 181

/pin
ClassWindow, 223

/Pin(attribute)
ClassSelection, 181

/Pinnable
ClassMenu, 114

/pinnable
ClassMenu, 114

/Pinnable?
ClassMenu, 114

/pinned?
ClassWindow, 223

pinned menus, 114

/place

ClassWindow, 221

placement for menus, 109

placement parameter
defined, 101

/pointinitem?
ClassItemGroup, 92

/pointinregion?
ClassRegion, 149

/pointtoitem
ClassItemGroup, 93

POSITION
ClassItemGroup, 91
ClassLayout, 104
ClassMenu, 112
ClassPanel, 135

PostScript data structure
definition, 10

/preferredsize
ClassBaseWindow, 226
ClassBorderBag, 27
ClassCanvas, 44
ClassItemGroup, 93
ClassRegion, 144
Gauges, 85
Scrollbars, 154
Sliders, 197

/previewer
ClassControl, 77
ClassNumericField, 128
ClassScrollList, 168
ClassTextField, 206
Scrollbars, 156
Sliders, 195

previewing
definition, 76

PREVIOUS
ClassItemGroup, 91
ClassLayout, 104
ClassMenu, 112
ClassPanel, 135

process
defintion of context, 48

processes
client’s effect on exiting, 15

Index 311

killing connection
effect on userdict, 15

spawning new for notifiers, 48
which to use, 13

programs
parts of, 4

/Properties
ClassObject, 129

/property
ClassObject, 129

property sheets
windows for

see ClassPopWindow, 226

PS-1—Definition, 4

PS-2—Instantiation, 4

PS-3—Composition, 5

PS-4—Start Up, 5

psh
using, 8

psio files
accessing, 233

Q
/query

ClassSelection, 174

/QuitFromUser
ClassWindow, 224
using to inform clients, 16

R
/range

ClassNumericField, 126
Gauges, 84
Sliders, 195

range
numeric field

default, 125

/Rank(attribute)
ClassSelection, 182

/ReadOnly
ClassTextField, 204

/readonly

ClassTextField, 204

ReadOnly text field
definition, 204

receiving the drop
see /HandleReception, 72

/Receptible?
ClassCanvas, 71

/receptible?
ClassCanvas, 72

receptible canvases and selection
transfers, 179

reference cycles
breaking, 13

references
and dictionaries, 11
and object trees, 12
cross-object, 12
cycles

and /destroy, 13
how the Toolkit maintains, 11

referencing items, 88

referencing remote objects
handle allocation and

registration, 234

Regions
CTM, 143
definition of, 137
mapping

comparison to canvases, 143
moving the origin, 144
parent of, 143

/regionclientcount
ClassBag, 19

/Registered? (attribute)
ClassSelection, 182

registered selection
getting, 174

registering
tokens, 237

registering a client handler, 235

registering callbacks and tags, 234

/removeclient
ClassBag, 19

312 The NeWS Toolkit Reference Manual — March 1991

ClassPanel, 135

/removesubwindow
ClassWindow, 222

rendering a selection’s value
see /SingleRequest, 184

ResolveOffset
ClassLayout, 105

/reparent
ClassCanvas, 42
ClassRegion, 143

/replaceitem
ClassItemGroup, 91
ClassMenu, 113
ClassScrollList, 164

/request
ClassSelection, 175
example use, 176
ordering selection requests, 178
when to use, 175

/RequestSequence
ordering selection requests, 178

/reshape
ClassCanvas, 44
ClassRegion, 144

/reshape overrides and /move, 43

/reshaped?
ClassCanvas, 44
ClassRegion, 144

ResolveReference
ClassLayout, 105

/ResolveToChar
ClassTextField, 214

/Retained
ClassCanvas, 53

/Robust?
ClassEventMgr, 49

/robust?
ClassEventMgr, 50

robust event manager
definition, 49, 50

/RootWindow
ClassWindow, 222

/rowgap

ClassScrollList, 167

/rows
ClassScrollList, 166

S
/SaveBehind

ClassCanvas, 53

/Scroll
ClassTextField, 212

/scroll
ClassScrollList, 166
ClassTextField, 212

/ScrollDelay
Scrollbars, 152

scroll list
adding scrollbars to, 165
changing fonts in, 169
painting and scrolling, 162
scrolling and repainting, 162
validation, 162

scrollbar
notification, 155
value, 151

scrollbar repeating
setting values for, 152

scrollbars
adding to scroll lists, 165
controlling motion

see/HandleMotion, 157

/ScrollThresh
Scrollbars, 152

/scrolltohere
ClassScrollList, 166

seeing mapped canvases, 42

/Selectable
ClassCanvas, 65

/selectable?
ClassCanvas, 65

/SelectableType
ClassCanvas, 65

selectable canvas, 65

/SelectAt
ClassCanvas, 69

Index 313

/selection
ClassTextField, 209

selection
getting current, 174

selection attributes
definition, 180
retrieving

see /query, 174
retrieving multiple

see /request, 175

/SelectionCancel
ClassCanvas, 71

selection client
definition, 179

/selectionholder
ClassCanvas, 67

selection instance variables
see selection attributes, 180

selection method’s context, 173

/SelectionObjsize
request key, 178

selection requests and the client-side, 175

selections
adjusting

see /SelectionAdjust, 69
amount of code needed, 180
changing type on canvas

see /Dynamic

see also

/IdentifySelectable
completing the selection transaction

See /SelectionStop, 70
context names, 68
context of, 68
demo, 172
determining how canvas handles, 65
determining the canvas client

see /Holder, 66
dragging,

method calling sequence 70
identifying the nature of request

see /SingleRequest, 184
rejecting, 69
requests to render its value, 184

returning an instance, 67
signalling the end of a drag

see /DragStop, 71
starting

see /SelectionStart, 69
use for /UnknownRequest

see /SingleRequest, 184
what the UI sets for you, 180

selections and canvases
sequence of events, 179

selections and split views, 66

/SelectionStop
ClassCanvas, 70

/SelectResult (attribute)
ClassSelection, 182

/sendmanager
ClassEventMgr, 50

/sendtarget
ClassMenu, 118
ClassScrollList, 169

/sendtocanvas
ClassSelection, 186

server v. client-side, 9
ClassCanvas, 38

/setabbreviated
ClassButton, 30

/setattribute
ClassWindow, 218

/setbasewindow
ClassNotice, 121

/setbuttons
ClassNotice, 122

/setcaret
ClassTextField, 206

/setchoicemode
ClassMenu, 108
ClassScrollList, 164
ClassSettings, 190

/setcolors
ClassRegion, 138

/setcursor
ClassCanvas, 41

/setdamageable

314 The NeWS Toolkit Reference Manual — March 1991

ClassCanvas, 51

/setdefault
ClassButton, 31
ClassMenu, 113

/setdelta
ClassNumericField, 126
Sliders, 196

/setendboxes
Sliders, 197

/setfixeditemsize
ClassItemGroup, 93

/setfooter
ClassWindow, 219

/setfrontable
ClassCanvas, 64

/setgaps
ClassBorderBag, 26
ClassItemGroup, 96
ClassLayout, 104
ClassPanel, 136

/sethelpable
ClassCanvas, 63

/sethelpkeyword
ClassCanvas, 64
ClassItemGroup, 97, 120

/seticonimage
ClassBaseWindow, 225

/seticonlabel
ClassBaseWindow, 225

/setinsets
ClassBorderBag, 27

/setitemhelpkeyword
ClassItemGroup, 97, 120

/setitemlist
ClassScrollList, 163

/setitemlist (absolute)
ClassItemGroup, 89
ClassMenu, 110

/setitemlist (calculated)
ClassItemGroup, 89
ClassMenu, 110

/setitemlist (spaced and grid)
ClassItemGroup, 89

ClassMenu, 110

/setitemnotifier
ClassButton, 31

/setjustification
ClassButton, 31
ClassSettings, 190

/setkeyable
ClassCanvas, 57

/setlabel
ClassMenu, 114
ClassWindow, 219

/setlayoutparameters
ClassPanel, 134

/setlayoutparameters (calculated)
ClassItemGroup, 89
ClassLayout, 103
ClassMenu, 111

/setlayoutparameters (grid)
ClassItemGroup, 89
ClassLayout, 102
ClassMenu, 110
ClassPanel, 133

/setmenu
ClassCanvas, 53
ClassMenu, 119
ClassMenuButton, 33
ClassRegion, 148

/setmenuable
ClassCanvas, 54
ClassMenu, 119

/setmenudirection
ClassMenuButton, 33

/setminimumvisible
ClassTextField, 205

/setnormalizer
ClassNumericField, 127
Gauges, 84
Sliders, 196

/setnotifier
ClassButton, 31
ClassControl, 77
ClassMenu, 116
ClassNumericField, 127
ClassScrollList, 168

Index 315

ClassSettings, 192
ClassTextField, 206
Scrollbars, 155
Sliders, 195

/setopenable
ClassCanvas, 62

/setparameters
Scrollbars, 154

/setpinnable

/setpreviewer
ClassControl, 77
ClassNumericField, 127
ClassScrollList, 168
ClassTextField, 206
Scrollbars, 156
Sliders, 195

/setproperty
ClassObject, 129

/setrange
ClassNumericField, 125
Gauges, 84
Sliders, 194

/setreadonly
ClassTextField, 204

/setreceptible
ClassCanvas, 72

/setrobust
ClassEventMgr, 50

/setrowgap
ClassScrollList, 167

/setscrollbar
ClassScrollList, 166

/setselectable
ClassCanvas, 65

/setselection
ClassTextField, 209

/setselectionholder
ClassCanvas, 67

/settarget
ClassButtons, 32
ClassControl, 78
ClassMenu, 117
ClassScrollList, 169

Sliders, 195

/set3D

/settext
ClassNotice, 122

/settextfont
ClassCanvas, 40
ClassRegion, 142
ClassScrollList, 169

/settickmarks
Gauges, 85
Sliders, 197

setting 2-D in UserProfile, 38

setting item help, 97

setting the type of menu
see /setchoicemode, 108

settings menus
notification, 116

/settrackable
ClassCanvas, 55

/setvalue
ClassControl, 76
ClassLabel, 100
ClassMenu, 118
ClassNumericField, 125
ClassScrollList, 165
ClassSettings, 191
ClassTextField, 204
Gauges, 84
Scrollbars, 155
Sliders, 194

/setvisualstate
ClassButton, 30
ClassControl, 46
ClassMenu, 115
ClassScrollList, 167
ClassTextField, 203
ClassWindow, 220
Gauges, 85

/siblings
ClassCanvas, 43

signals
handling

see wire_Notify, 239

/SingleRequest

316 The NeWS Toolkit Reference Manual — March 1991

ClassSelection, 184

Size
ClassLayout, 105

/size
ClassCanvas, 44
ClassLabel, 99
ClassRegion, 144

size of items, 93

slider
auto repeat

setting, 194

/SliderDelay
Sliders, 194

/SliderThresh
Sliders, 194

spaced and grid placement, 89

spaced menus, 110

spawning processes for, 48

/SpecialActions
ClassTextField, 215

split views and selections, 66

/StandardKey
ClassCanvas, 59

/StandardKeyUp
ClassCanvas, 59

/starttimer
ClassCanvas, 55

/stoptimer
ClassCanvas, 55

strings
as displayitems, 80

StringSelection, 185

/StrokeCanvas
ClassCanvas, 40

/Style(attribute)
ClassSelection, 182

submenus, 108

subtracting x y coordinates, 106

/Subwindows
ClassWindow, 222

subwindow tree, 221

subwindows, 221

/SuperWindow
ClassWindow, 222

Switching between 3-D and 2-D looks, 140

Switching between 3-D and 2-D looks in
regions, 140

synchronization of user actions, 14

T
tags

ignoring
see wire_ReserveTags, 235

reading a single on
see wire_Notify, 239

reserving
see wire_AllocateTags, 234

tail
for notices

see apex, 123

/target
ClassButtons, 32
ClassControl, 78
ClassMenu, 117
ClassScrollList, 169
Sliders, 196

target
default for menus, 116
menu default

changing, 119

target mechanism
defined, 76

targets
as reference managers, 78

/text
ClassNotice, 122

text
putting in notices

see /settext, 122

text canvas
purpose, 201

/TextFont
ClassCanvas, 40
ClassRegion, 142

Index 317

ClassWindow, 220

/textfont
ClassCanvas, 40
ClassRegion, 142

/3D?
ClassCanvas, 38
ClassMenu, 114

3-D
switching to 2-D, 38

3-D colors
computing, 36

/tickmark
Gauges, 85

/tickmarks
Sliders, 197

tick marks
for gauges

see /settickmarks, 85

/tobottom
ClassCanvas, 43

/toggleopened
ClassWindow, 223

/togglepinned
ClassWindow, 223

/togglezoomed
ClassWindow, 224

token example, 238

tokens
handles to PostScript objects, 236
usertokens

see tokens, 236

toolkit components, 1

/TopLeftPath
ClassCanvas, 40
ClassRegion, 142

/totop
ClassCanvas, 43

/Trackable?
ClassCanvas, 55

/trackable?
ClassCanvas, 55

/TrackCancel
ClassBag, 21

ClassCanvas, 57
ClassItemGroup, 95
ClassRegion, 147

/TrackCrossing
ClassCanvas, 57

tracking
default method sequence, 56
for region clients, 20
preventing redistribution of

events, 57
providing methods for, 56
regions, 147

tracking mouse in items, 95

tracking the mouse, 55

/TrackMotion
ClassBag, 21
ClassCanvas, 57
ClassItemGroup, 95
ClassRegion, 147

/TrackStart
ClassBag, 21
ClassCanvas, 56
ClassItemGroup, 95
ClassRegion, 147

/TrackStop
ClassBag, 21
ClassCanvas, 57
ClassItemGroup, 95
ClassRegion, 147

/TrackTimer
ClassCanvas, 57

transferring selections
drag and drop, 179

/Transparent
ClassCanvas, 51

transparent and mapped canvases, 42

transparent and opaque, 51

trees
destroying, 12

2-D
setting in UserProfile, 140
switching to 3-D, 38

/2DBG

318 The NeWS Toolkit Reference Manual — March 1991

ClassCanvas, 37, 139

/2DFG
ClassCanvas, 37, 139

types of controls, 75

U
Undo key, 61

UNIX
client-server split, 10

/unmap
ClassCanvas, 43
ClassRegion, 143

/unpin
ClassWindow, 223

/unzoom
ClassWindow, 224

userdict
definition, 3

utilities for calculated placement, 111

Utility painting methods
ClassCanvas, 39

utility painting methods, 39, 141

V
/Valid?

ClassCanvas, 45
ClassRegion, 145

/valid?
ClassCanvas, 45
ClassRegion, 145

/?validate
ClassCanvas, 45
ClassRegion, 145

/validate
ClassBag, 20
ClassCanvas, 46
ClassItemGroup, 94
ClassRegion, 146

valid wire
definition of, 230

/?ValidateItemList
ClassItemGroup, 94

/ValidateItemList
ClassItemGroup, 94

validation
changing colors, 36
definition, 44, 144
optimizing painting, 45

validation and painting, 45

/value
ClassControl, 77
ClassLabel, 100
ClassMenu, 118
ClassNumericField, 125
ClassScrollList, 165
ClassSettings, 191
ClassTextField, 205
Gauges, 84
Scrollbars, 155
Sliders, 194

value, 127
changing slider’s in response to drag

box, 196
interpretation for controls, 76
of controls, 76
of scrollbar, 151
scroll list

effect of changing, 165
scrollbar

how it changes, 156

value of text fields, 204

variables
color, 139
colors, 37

/VisibleCaret
ClassTextField, 213

/visualstate
ClassButton, 30
ClassControl, 46
ClassMenu, 115
ClassScrollList, 167
ClassTextField, 204
ClassWindow, 221
Gauges, 85

Index 319

W
/warpcursor

Scrollbars, 153

WIDTH
ClassItemGroup, 91
ClassLayout, 104
ClassMenu, 112
ClassPanel, 135

window
as border bag, 217

window attributes, 217

window attributes adding, 218

window attributes and OPEN LOOK, 218

window interaction with users
see /setvisualstate, 220

windows, 218
busy

event handling, 221

windows for property sheets
see ClassPopupWindow, 226

wire_AddFileHandler
WireService, 240

wire_AllocateNamedTags
WireService, 234

wire_AllocateNamedTokens
WireService, 237

wire_AllocateTags
WireService, 234

wire_AllocateTokens
WireService, 236

wire_Close
WireService, 229

wire_Current
WireService, 230

wire_Data
WireService, 230

wire_DeallocateTokens
WireService, 237

wire_DeathDefault
WireService, 232

wire_Disable
WireService, 230

wire_DiseaseDefault
WireService, 232

wire_DrainSync
WireService, 243

wire_Enable
WireService, 231

wire_Enabled
WireService, 231

wire_EnterNotifier
WireService, 240

wire_ErrorString
WireService, 228

wire_ExitNotifier
WireService, 240

wire_ExpectSync
WireService, 243

wire_GobbleAny
WireService, 241

wire_InSync
WireService, 242

wire_IntToWire
WireService, 233

wire_Notify
WireService, 239

wire_Open
WireService, 229

wire_Perror
WireService, 228

wire_Problems
WireService, 232

wire_PSinput
WireService, 233

wire_PSoutput
WireService, 234

wire_ReadFloat
WireService, 241

wire_ReadInt
WireService, 241

wire_ReadString
WireService, 241

wire_RegisterTag
WireService, 235

wire_RegisterToken

320 The NeWS Toolkit Reference Manual — March 1991

WireService, 237

wire_RemoveFileHandler
WireService, 240

wire_ReserveTags
WireService, 235

wire_ReserveTokens
WireService, 237

wire_SetCurrent
WireService, 229

wire_SetData
WireService, 230

wire_SkipEvent
WireService, 233

wire_Sync
WireService, 241

wire_TagData
WireService, 235

wire_TagFunction
WireService, 235

wire_TokenData
WireService, 237

wire_UnknownTagDefault
WireService, 232

wire_Valid
WireService, 230

wire_WireToInt
WireService, 233

wire_WouldNotify
WireService, 239

X
XView pasting and /SelectionObjsize, 178

xyadd
ClassLayout, 106

xymax
ClassLayout, 106

xymin
ClassLayout, 106

xysub
ClassLayout, 106

Z
/zoom

ClassWindow, 224

/zoomed?
ClassWindow, 224

zooming windows, 224

321

Class Index

ClassBag
/activate 18
/addclient 18
/client 19
/clientcount 19
/clientlist 19
/deactivate 18
/destroy 19
/FixChildren 20
/Layout 20
/layout 20
/MenuStart 21
/MenuStop 21
/new 17
/PaintChildren 20
/regionclientcount 19
/removeclient 19
/TrackCancel 21
/TrackMotion 21
/TrackStart 21
/TrackStop 21
/validate 20

ClassBaseWindow
/IconFont 225
/iconimage 225
/iconlabel 225
/IconSize 225

/minsize 226
/new 224
/opened? 225
/Paint 226
/preferredsize 226
/seticonimage 225
/seticonlabel 225

ClassBorderBag
/addclient 26
/gaps 26
/insets 27
/Layout 28
/minsize 27
/preferredsize 27
/setgaps 26
/setinsets 27

ClassButtons
/abbreviated 30
/cleartarget 32
/default 31
/HandleObsoleteTarget 32
/itemnotifier 32
/justification 31
/new 30
/notifier 31
/sendtarget 32

322 The NeWS Toolkit Reference Manual — March 1991

/setabbreviated 30
/setdefault 31
/setitemnotifier 31
/setjustification 31
/setnotifier 31
/settarget 32
/setvisualstate 30
/target 32
/visualstate 30

ClassCanvas
/activate 46
/active? 47
/ArrowKey 60
/ArrowKeyUp 60
/ArrowString 60
/ArrowStringUp 60
/AsciiReception 73
/BackgroundColor 37
/bbox 43
/BotRightPath 39
/children 41
/colors 36
/Cursor 41
/Cursors 41
/damage 51
/damageable? 51
/damageall 52
/deactivate 47
/descendants 41
/destroy 74
/DragAdjust 70
/DragStart 70
/DragStop 71
/EventMgr 47
/eventmgr 47
/EventsConsumed 47
/FillCanvas 39
/Fix 52
/FixAll 52
/FixChildren 52
/ForegroundColor 37
/framebufferof 41
/Frontable? 64
/frontable? 64

/FunctionKey 60
/FunctionKeyUp 60
/FunctionString 60
/FunctionStringUp 60
/HandleAgain 61
/HandleDamage 53
/HandleFind 62
/HandleFront 64
/HandleHelp 63
/HandleOpen 62
/HandleUndo 62
/Helpable? 63
/helpable? 63
/HelpKeyword 63
/helpkeyword 64
/Holder 66
/IdentifySelectable 71
/InSelection? 68
/invalidate 45
/Keyable? 57
/keyable? 58
/KeyStart 58
/KeyStop 59
/location 43
/map 42
/Mapped 42
/mapped? 42
/Menu 53
/menu 53
/Menuable? 53
/menuable? 54
/MenuStart 54
/MenuStop 55
/MetaKey 60
/MetaKeyUp 60
/minsize 43
/ModifyFont 40
/move 43
/new 35
/NewInit 36
/NewSelection 67
/NumPadKey 59
/NumPadKeyUp 59
/Openable? 62
/openable? 62
/Paint 39

Index 323

/paint 38
/PaintAll 38
/Paint2DBox 39
/Paint3DBox 39
/Paint3DLine 39
/parents 42
/path 44
/preferredsize 44
/Receptible? 71
/receptible? 72
/reparent 42
/reshape 44
/reshaped? 44
/Retained 53
/SaveBehind 53
/SelectableType 65
/Selectable? 65
/selectable? 65
/SelectionAdjust 69
/SelectionCancel 71
/selectionholder 67
/SelectionStart 69
/SelectionStop 70
/setcolors 36
/setcursor 41
/setdamageable 51
/setfrontable 64
/sethelpable 63
/sethelpkeyword 64
/setkeyable 57
/setmenu 53
/setmenuable 54
/setopenable 62
/setreceptible 72
/setselectable 65
/setselectionholder 67
/settextfont 40
/settrackable 55
/set3D 38
/siblings 43
/size 44
/StandardKey 59
/StandardKeyUp 59
/starttracktimer 55
/stoptracktimer 55
/StrokeCanvas 40

/TextFont 40
/textfont 40
/tobottom 43
/TopLeftPath 40
/totop 43
/Trackable? 55
/trackable? 55
/TrackCancel 57
/TrackCrossing 57
/TrackMotion 57
/TrackStart 56
/TrackStop 57
/TrackTimer 57
/Transparent 51
/unmap 43
/validate 46
/Valid? 45
/valid? 45
/2DBG 37, 139
/2DFG 37, 139
/3D? 38
/?validate 45

ClassCheckBoxes
/new 192

ClassControl
/cleartarget 78
/destroy 78
/ExecuteNotifier 77
/HandleObsoleteTarget 78
/notifier 77
/previewer 77
/sendtarget 78
/setnotifier 77
/setpreviewer 77
/settarget 78
/setvalue 76, 84
/setvisualstate 46
/target 78
/value 77
/visualstate 46

324 The NeWS Toolkit Reference Manual — March 1991

DisplayItems
/DisplayItemMaximumSize 81
/DisplayItemPaint 81
/DisplayItemRect 81
/DisplayItemSize 81

Gauges
/minsize 85
/new 83
/normalizer 84
/offset 85
/preferredsize 85
/range 84
/setnormalizer 84
/setrange 84
/settickmarks 85
/setvalue 84
/setvisualstate 85
/tickmarks 85
/value 84
/visualstate 85

ClassItemGroup
CURRENT 90
HEIGHT 90
PARENT 91
POSITION 91
PREVIOUS 91
WIDTH 91
/appenditem 91
/deleteitem 91
/FixedItemSize? 93
/fixeditemsize? 94
/gaps 96
/helpkeyword 97, 120
/insertitem 91
/Item 92
/item 92
/itembbox 92
/ItemCancel 96
/itemcount 92
/itemhelpkeyword 97, 120
/itemlist 92

/ItemListValid? 94
/itemlocation 92
/ItemMotion 96
/itemsize 92
/ItemStart 95
/ItemStop 96
/Layout 96
/layoutparameters 96
/minsize 93
/new 87
/NewInit 88
/NewItem 97
/PaintItem 93
/paintitem 93
/pointinitem? 92
/pointoitem 93
/preferredsize 93
/replaceitem 91
/setfixeditemsize 93
/setgaps 96
/sethelpkeyword 97, 120
/setitemhelpkeyword 97, 120
/setitemlist (absolute) 89
/setitemlist (calculated) 89
/setitemlist (spaced and grid) 89
/setlayoutparameters(calculated) 89
/setlayoutparameters(grid) 89
/TrackCancel 95
/TrackMotion 95
/TrackStart 95
/TrackStop 95
/validate 94
/ValidateItemList 94
/?ValidateItemList 94

Jot
JotFont_Free 283
JotFont_New 282
JotSearch_CompileExpression 281
JotSearch_Free 280
JotSearch_MatchPattern 281
JotSearch_MatchString 281
JotSearch_New 280
JotSearch_Substring 282
JotSelection_Clear 284

Index 325

JotSelection_Set 283
JotSelection_SetLevel 284
JotSelection_Span 284
JotSpan_ClearModified 269
JotSpan_Contents 267
JotSpan_DeleteContents 267
JotSpan_Free 266
JotSpan_Length 268
JotSpan_Modified 269
JotSpan_New 266
JotSpan_Position 267
JotSpan_Replace 267
JotSpan_Set 268
JotSpan_SetLength 268
JotSpan_SetPosition 268
JotSpan_SetText 266
JotSpan_Text 266
JotText_Caret 262
JotText_CharacterAt 258
JotText_Characters 261
JotText_Clear 257
JotText_DeleteCharacters 259
JotText_FastCharacterAt 258
JotText_FirstSpan 262
JotText_FirstView 261
JotText_Free 257
JotText_InsertCharacters 258
JotText_InsertString 259
JotText_Modified 261
JotText_New 257
JotText_Newlines 261
JotText_NextSpan 262
JotText_NextView 261
JotText_Read 260
JotText_Redo 264
JotText_RedoCount 264
JotText_ReplaceCharacters 259
JotText_ScanCharacter 258
JotText_SetCaret 262
JotText_SetUndo 263
JotText_Undo 263
JotText_UndoBegin 264
JotText_UndoBreak 264
JotText_UndoCount 264
JotText_UndoEnd 264
JotText_Write 260

JotView_BoundingBox 274
JotView_Canvas 278
JotView_Characters 270
JotView_ConstrainText 271
JotView_Controllers 278
JotView_EnsurePositionVisible 270
JotView_Free 270
JotView_Height 274
JotView_LineBoundingBox 274
JotView_LineFromPosition 275
JotView_Lines 272
JotView_New 269
JotView_PositionFromLine 273
JotView_ReadOnly 277
JotView_RelativeLineFromPostion

275
JotView_ScrollAbsolute 276
JotView_ScrollAutomatic 275
JotView_ScrollRelative 276
JotView_SetData 277
JotView_SetFont 283
JotView_SetMargins 274
JotView_SetReadOnly 277
JotView_SetText 270
JotView_Text 270
JotView_Update 271
JotView_UpdateViews 272
JotView_View 278
JotView_Width 274
JotView_Wire 278
keyboard 279
mouse 279
SelectionAlter 280
SelectionStart 279

ClassLabel
/new 99
/setvalue 100
/size 99
/value 100

ClassLayout
CellSize 105
CURRENT 103

326 The NeWS Toolkit Reference Manual — March 1991

HEIGHT 104
List 105
Location 105
Move 105
PARENT 104
POSITION 104
PREVIOUS 104
ResolveOffset 105
ResolveReference 105
Size 105
WIDTH 104
xyadd 106
xymax 106
xymin 106
xysub 106
/gaps 104
/Layout 102
/layoutparameters 104
/minsize 102
/setgaps 104
/setlayoutparameters (calculated)

103
/setlayoutparameters(grid) 102

ClassMenu
CURRENT 112
HEIGHT 112
PARENT 111
POSITION 112
PREVIOUS 112
WIDTH 112
/appenditem 112
/cleartarget 117
/default 113
/deleteitem 112
/insertitem 113
/invoker 117
/item 113
/itemcount 113
/itemlist 113
/label 114
/layoutparameters 112
/Menu 118
/menu 119
/Menuable? 119

/menuable? 119
/MenuStart 119
/MenuStop 120
/new 107
/notifier 116
/Pinnable 114
/pinnable 114
/Pinnable? 114
/replaceitem 113
/sendtarget 118
/setchoicemode 108
/setdefault 113
/setitemlist 110
/setitemlist (absolute) 110
/setitemlist (calculated) 110
/setitemlist (spaced and grid) 110
/setlabel 114
/setlayoutparameters (calculated) 111
/setlayoutparameters (grid) 110
/setmenu 119
/setmenuable 119
/setnotifier 116
/setpinnable 114
/settarget 117
/setvalue 118
/setvisualstate 115
/target 117
/value 118
/visualstate 115

ClassMenuButtons
/menu 33
/menudirection 33
/setmenu 33
/setmenudirection 33

ClassNotice
/basewindow 122
/buttons 122
/close 123
/new 121
/open 123
/setbasewindow 121
/setbuttons 122

Index 327

/settext 122
/text 122

ClassNumericField
/decrement 126
/delta 126
/increment 126
/Normalizer 127
/normalizer 127
/notifier 127
/previewer 128
/range 126
/setdelta 126
/setnormalizer 127
/setnotifier 127
/setpreviewer 127
/setrange 125
/setvalue 125
/value 125

ClassObject
/Properties 129
/property 129
/setproperty 129

ClassPanel
CURRENT 135
HEIGHT 135
PARENT 135
POSITION 135
PREVIOUS 135
WIDTH 135
/addclient(absolute) 133
/addclient(calculated) 133
/addclient(spaced/grid) 133
/gaps 136
/Layout 136
/layoutparameters 136
/new 131
/removeclient 135
/setgaps 136
/setlayoutparameters(calculated) 134
/setlayoutparameters(grid) 133

ClassPopWindow
/new 226

ClassRegion
/bbox 143
/BotRightPath 141
/colors 138
/destroy 149
/eventmgr 149
/Fix 146
/FixAll 146
/FixChildren 146
/framebufferof 143
/invalidate 145
/location 143
/map 143
/mapped? 143
/menu 148
/MenuStart 148
/MenuStop 149
/Menu(Class Variable) 147
/minsize 143
/move 144
/new 138
/Paint 141
/paint 140
/PaintAll 140
/PaintChildren 141
/Paint2DBox 141
/Paint3DBox 141
/Paint3DLine 141
/Parent 143
/path 144
/pointinregion? 149
/preferredsize 144
/reparent 143
/reshape 144
/reshaped? 144
/setcolors 138
/setmenu 148
/settextfont 142
/size 144
/TextFont 142
/textfont 142

328 The NeWS Toolkit Reference Manual — March 1991

/TopLeftPath 142
/TrackCancel 147
/TrackMotion 147
/TrackStart 147
/TrackStop 147
/unmap 143
/validate 146
/Valid? 145
/valid? 145
/?validate 145

Scrollbars
/EventToValue 155
/HandleMotion 157
/minsize 154
/motion 152
/new 152
/notifier 156
/parameters 155
/preferredsize 154
/previewer 156
/setnotifier 155
/setparameters 154
/setpreviewer 156
/setvalue 155
/value 155
/warpcursor 153

selections
getting the value of Pin

see /ComputePin 186

ClassScrollList
/appenditem 164
/choicemode 164
/chosen? 165
/clearchoice 165
/cleartarget 169
/deleteitem 164
/heightfromrows 167
/insertitem 163
/item 163
/itemcount 163
/itemlist 163
/itemvisible? 164

/locatechoice 165
/notifier 168
/previewer 168
/replaceitem 164
/rowgap 167
/rows 166
/scroll 166
/scrolltohere 166
/sendtarget 169
/setchoicemode 164
/setitemlist 163
/setnotifier 168
/setpreviewer 168
/setrowgap 167
/setscrollbar 166
/settarget 169
/settextfont 169
/setvalue 165
/setvisualstate 167
/target 169
/value 165
/visualstate 167

ClassSelection
/CanRenderAs 186
/clearselection 187
/ComputeNamedPosition 185
/computepin 186
/computerange 186
/getselection 174
/new 179
/query 174
/request 175
/sendtocanvas 186
/SingleRequest 184

ClassSettings
/choicemode 190
/chosen? 190
/justification 190
/new 190
/notifier 192
/setchoicemode 190
/setjustification 190

Index 329

/setnotifier 192
/setvalue 191
/value 191

Sliders
/cleartarget 196
/delta 196
/endboxes? 197
/minsize 197
/new 194
/normalizer 196
/notifier 195
/offset 197
/preferredsize 197
/previewer 195
/range 195
/sendtarget 196
/setdelta 196
/setendboxes 197
/setnormalizer 196
/setnotifier 195
/setpreviewer 195
/setrange 194
/settarget 195
/settickmarks 197
/setvalue 194
/SliderDelay 194
/SliderThresh 194
/target 196
/tickmarks 197
/value 194

ClassTextCanvas
/CurrentText 202
/DragAdjust 201
/DragStart 201
/DragStop 201

ClassTextField
setnotifier 206
/AlphaNumericTable 214
/AlphaNumeric? 214
/AutoScrollPosition 213

/caret 206
/CaretDelay 213
/characters 205
/deletecharacters 207
/DeleteSpan 207
/deletespan 207
/deletewords 207
/FitCaret 212
/fitcaret 212
/gotonextfield 210
/gotonextfocus 210
/gotopreviousfield 211
/insertcharacter 208
/InsertString 209
/insertstring 208
/invalidate 216
/InvisibleCaret 213
/MinimumVisible 205
/minimumvisible 205
/minsize 205
/movebaseline 215
/new 203
/nextfocus 210
/notifier 206
/PaintText 207
/previewer 206
/ReadOnly? 204
/readonly? 204
/reshape 216
/ResolveToChar 214
/Scroll 212
/scroll 212
/selection 209
/setcaret 206
/setminimumvisible 205
/setnextfocus 210
/setpreviewer 206
/setreadonly 204
/setselection 209
/settextfont 209
/setvalue 204
/setvisualstate 203
/SpecialActions 215
/value 205
/VisibleCaret 213
/visualstate 204

330 The NeWS Toolkit Reference Manual — March 1991

ClassPanel 133

ClassWindow
/addsubwindow 222
/attribute 219
/close 223
/closesubwindows 222
/flashframe 220
/footer 220
/FooterFont 220
/Freezable? 220
/FreezeFilter 221
/label 219
/new 218
/open 223
/opened? 223
/opensubwindows 222
/paintwindow 220
/pin 223
/pinned? 223
/place 221
/QuitFromUser 224
/removesubwindow 222
/RootWindow 222
/setattribute 218
/setfooter 219
/setlabel 219
/setvisualstate 220
/SubWindows 222
/SuperWindow 222
/TextFont 220
/toggleopened 223
/togglepinned 223
/togglezoomed 224
/unpin 223
/unzoom 224
/zoom 224
/zoomed? 224

WireService
Help_HelpRequestHandler 244
Help_UpdateView 244
wire_AddFileHandler 240
wire_AllocateNamedTags 234

wire_AllocateNamedTokens 237
wire_AllocateTags 234
wire_AllocateTokens 236
wire_Close 229
wire_Current 230
wire_Data 230
wire_DeallocateTokens 237
wire_DeathDefault 232
wire_Disable 230
wire_DiseaseDefault 232
wire_DrainSync 243
wire_Enable 231
wire_Enabled 231
wire_EnterNotifier 240
wire_Errno 228
wire_ErrorString 228
wire_ExitNotifier 240
wire_ExpectSync 243
wire_GobbleAny 241
wire_IntToWire 233
wire_Notify 239
wire_Open 229
wire_Problems 232
wire_PSinput 233
wire_PSoutput 234
wire_ReadFloat 241
wire_ReadInt 241
wire_ReadString 241
wire_RegisterTag 235
wire_RegisterToken 237
wire_RemoveFileHandler 240
wire_ReserveTags 235
wire_ReserveTokens 237
wire_SetCurrent 229
wire_SetData 230
wire_SkipEvent 233
wire_Sync 241
wire_TagData 235
wire_TagFunction 235
wire_TokenData 237
wire_UnknownTagDefault 232
wire_Valid 230
wire_WireToInt 233
wire_WouldNotify 239

