
Object Oriented Programming in NeWS

Owen M. Densmore

Sun Microsystems
Mt. View, California

Abstract

The NeWS† window system provides the primitives needed to create window
managers and user-interface toolkits, but does not, itself, supply either. This is done
to achieve a layering strategy for building several higher level systems that can share
NeWS as their low level window system. None of the traditional ‘‘tool kit’’ solutions
currently span the diverse set of clients NeWS needed to serve; they simply lack
sufficient flexibility. We are exploring an object oriented approach which uses a flexi-
ble inheritance scheme. This paper presents our initial attempt at introducing a
Smalltalk style class mechanism to PostScript‡, and our first use of it.

Introduction to NeWS

NeWS is a server-based window system which replaces the usual network protocols for express-
ing window and graphics primitives by an interpreted programming language. The language con-
sists of almost all of Adobe System’s PostScript [5], with some extensions.

The extensions to PostScript include:

� Primitives for managing client TCP/IP style connections.

� Primitives for light-weight processes.

� Multiple drawing surfaces called ‘‘canvases’’.

� An event mechanism for handling user input and inter-process communication.

� Use of garbage collection.

See the NeWS Preliminary Technical Overview [4] for details. For the rest of the discussion, use
of the word ‘‘PostScript’’ will include these extensions.

The NeWS environment consists of the NeWS window server communicating with client pro-
grams using standard TCP/IP. The client does not, however, have to use a fixed protocol for win-
dow and graphics primitives. Instead, each client connection has its own ‘‘private’’ light-weight
process [LWP in the figure] executing the client’s PostScript commands. This, in effect, replaces
a network window protocol with a language.

��

† NeWS is a trademark of Sun Microsystems Inc.

‡ PostScript is a trademark of Adobe Systems Inc.

NeWS Server

PostScript

PostScript

PostScript

LWP 3

LWP 2

LWP 1

Client 3

Client 2

Client 1

Figure 1 NeWS Client-Server Environment

Evolution of NeWS Tools

NeWS provides a rich set of graphics and window manipulation primitives but does not, how-
ever, provide window managers or user-interface toolkits. (NeWS is a ‘‘window kernel’’, not a
‘‘window shell’’.) This is done to achieve a layering strategy for building several higher level
systems that can share NeWS as their low level window system. A major problem in providing
this layer is the extreme diversity of the NeWS user community: OEM’s, the Lisp community,
our past SunView clients and X window system clients, to name a few. It became clear that the
more traditional user-interface ‘‘tool kit’’ would have difficulty providing sufficient flexibility.

A second problem was where to put the higher layer − on the server or in the client. There are
several advantages to providing the tools on the server side of the connection:

� Interactive performance would be improved since the user interface code would be kept
‘‘hot’’ in the server.

� Client code size would be decreased by sharing the server process’ code.

� Since the NeWS environment is much more powerful than the typical C client’s, it
would allow very rapid prototyping. We show below, for example, that Smalltalk-like
classes can be implemented in two pages of PostScript.

� No preference would be given to C clients over others; PostScript would be a common
language for all clients. Whenever a new package was made available [by any client], it
would immediately be available to all clients.

Our first attempt was to define a package to be a PostScript dictionary that managed an object
that was also a dictionary. (Dictionaries are discussed below.) This met with success during our
alpha release, especially in terms of flexibility. One Lisp client, for example, built a compiler to
translate Lisp window calls into PostScript using the packages delivered with the system. Where
they needed to modify the behavior of one of the package procedures, they replaced it with a pro-
cedure that called the original one.

This led us to look for a formalization of this style. A Smalltalk-like class mechanism seemed to
fill this need. Just before our beta release, therefore, we decided to look for the extensions we
would need to make to PostScript to support classes. Much to our surprise, PostScript could
implement classes with no modifications! The secret is PostScript dictionaries.

PostScript and Dictionaries

PostScript is a forth-like (prefix notation, stack based) interpretive language developed by Adobe
Systems [5]. It is a strongly, but dynamically, typed language. By dynamically I mean that
object type is determined at run time. It is ‘‘polymorphic’’ in that an object may have different
types at different times during execution of a program. In the figure below, for example, foo is
assigned the number 10 in one context, and the string abc in another.

Dictionaries are compound PostScript objects that contain key-value pairs. They can be used in
two basic ways. First, their values may be set and retrieved explicitly by the get and put primi-
tives:

MyDict /foo 10 put ..causes the value 10 to be associated with the key foo.
MyDict /foo get ..causes the value for the key foo to be put on the operand stack.

Second, their values may be set and retrieved emplicitly by use of the dictionary stack. Simply
using a name in PostScript causes that name to be looked up in the set of dictionaries currently on
the dictionary stack. The primitive def will define a key-value pair in the topmost dictionary,
while the primitive store will first look to see if the key is defined in the dictionary stack, assign-
ing it to that value if present.

This second form is the basis of PostScript’s name scoping and over-ride mechanism. The set of
names (primitives and data) known to the interpreter is the set of names in the current dictionary
stack. A name can be re-defined by simply defining it in a higher dictionary.

The figure below shows three clients’ dictionary stacks. All clients have a shared system diction-
ary and a private user dictionary. Two clients have additional dictionaries on their stacks. (Note:
take care not to confuse the dictionary stack with the operand stack which has the operands and
results of PostScript operators.) The system dictionary has a name foo which was defined at
startup. Clients 1 and 3 have not redefined foo, thus will share the initial definition of foo (as the
string ‘‘abc’’). Client 2, on the other hand, has defined foo to be the integer 10. It is this capabil-
ity to over-ride which makes PostScript adaptable to inheritance schemes in general, and to the
class mechanism in particular.

foo=10 foo=(abc)foo=(abc)

/foo 10 def

/foo (abc) def

System

User User User

Client1 Client2 Client3

Figure 2 Multiple Dictionary Stacks

Modules and Classes

The reader unfamiliar with the use of message-passing, classes, and object-oriented programming
may browse through the references listed at the end of the chapter [1, 2, 3]. Many of the essential
ideas in class-based systems are similar to the more traditional ‘‘package’’ or ‘‘module’’ based
systems, however.

Briefly:

� Packages (modules) are replaced by classes.

� Procedures in packages are replaced by methods in classes.

� Creating package objects is replaced by creating new instances of a class.

� Package local and global variables are replaced by class variables.

� Object variables are replaced by instance variables.

New notions are:

� Classes are ordered into a hierarchy by subclassing a new class to a prior one, inheriting its
methods, instance variables, and class variables.

� Methods are invoked by use of the send primitive. The term message is used for an invoca-
tion of a method with its arguments.

� There is a means of constructing classes that is absent in most languages’ module creation.

� Two new concepts, the self and super pseudo-variables are introduced. They are used in
methods to refer to the object sent the method, and the method’s superclass, respectively.
Note: self does not refer to the method’s class, but rather to the object that originally caused
the method to be invoked.

� Unlike PostScript procedures, methods are compiled when a class is created. Currently this
simply resolves self and super, and performs some minor optimizations.

The relationship between an instance and its class and superclass is shown in the figure below.
We have made an instance, aFoo, of class Foo which is a subclass of class Object. An instance
has a copy of all instance variables of its superclasses, thus aFoo has those required by both Foo
and Object. The methods known by an instance are stored in the classes in its superclass chain.
Thus aFoo can only respond to methods residing in Foo and Object.

&
methods

variables
classclass

variables

methods
&

ObjectFoo
null

variables
instance

aFoo

instance class class

Figure 3 Relationship between Instances and Classes

Sending a message to an instance requires packaging the arguments to the method, finding the
method in the class chain, invoking the method in the proper context, and possibly returning a
result to the sender. If the pseudo-variable self is used for the object in sending a message, the
search for the method starts at the beginning of the chain, while if super is used the search starts

in the superclass.

obj1

foo1:
super

self

ObjectFoo
null

aFoo

Figure 4 Self and Super

PostScript Classes

The PostScript implementation of classes uses dictionaries to represent the classes and instances.
Instances contain all the instance variables of all their superclasses. Classes contain their
methods as PostScript procedures. Our current implementation of class is entirely in PostScript
and is given in Appendix A.

} def
...

classclassinstance

aFoo

null
Foo Object

dictionaries

/foo 1 def
/bar (abc) def

/new {

...

/new {
/new super send

} def

Figure 5 PostScript use of Dictionaries as Objects

Classes are built using the classbegin . . . classend procedures; messages are sent with the send
primitive:

� classbegin: classname superclass instancevariables => −
Creates an empty class dictionary which is a subclass of superclass, and has instancevari-
ables associated with each instance of this class. The dictionary is put on the dict stack.
Instancevariables may be either an array of keywords, in which case they are initialized to
null, or a dict, in which case they are initialized to the values in the dict.

� classend: − => classname dict
Pops the current dict off the dict stack (put on by classbegin and presumably filled in by sub-
sequent defs), and turns it into a true class dictionary. This involves compiling the methods
and building various data structures common to all classes.

� send: <optional args> method object => <optional results>
Establishes the object’s context by putting it and its class hierarchy on the dictionary stack,
then executes the method. The method is typically the keyword of a method in the class of
the object, but it can be a arbitrary procedure (see the examples below).

The send primitive establishes the context for execution of the method by adding the instance and
its superclass chain to the dictionary stack. It then executes the method within this context. The

arguments to the method will be on the operand stack as in typical PostScript procedure calls.

userdict

systemdict

Object

Foo

aFoo

systemdict

userdict arg1 arg2 /meth aFoo send

dictstack [before] dictstack [after]

Figure 6 PostScript use of Dictionaries as Objects

Example: Class Foo

Here we build a sample class, Foo:

/Foo Object
dictbegin % (initialized) instance variables

/value 0 def
/time null def

dictend
classbegin

/Value [0 1] def % class variables
/Time currenttime def

/new { % class methods
/new super send begin

/resettime self send
currentdict

end
} def
/printvars {

(..we got: Value=%, value=%, Time=%, time=%.\n)
[Value value Time time] printf

} def
/changevalue { % value => - (changes the value of "value")

/value exch def
} def
/resettime { % - => - (sets time to the current time)

/time currenttime def
} def

classend def

Foo is a subclass of Object, discussed above. Foo has two instance variables unique to each of its
objects; value, an arbitrary value associated with the object, and time, the time of creation of the
object. They are initialized by use of the dict form of specifying instance variables. (The dictbe-
gin . . . dictend pair are standard utilities which create a dict just the right size for its defs.) Simi-
larly, Foo has two class variables; Value, an arbitrary value associated with the class, and Time,
the time of creation of the class. Note that Time is initialized by calling the PostScript primitive
currenttime.

Foo has four methods: new, printvars, changevalue and resettime. new first calls its super class
to get a raw instance, which it then initializes by setting the time to the current time. Note the use
of begin . . . currentdict end. This is a common cliché. Also note the use of both self and super:
we ask our superclass to make a new instance of itself and initialize it, then ask self to reset our
time. printvars is used to print the instance and class variables of the object; note how this uses

another standard utility, printf. changevalue is a method which takes a single argument and
assigns it to the instance variable value. Finally, resettime sets the instance variable time to the
current time.

Using Class Foo

Let’s look at some uses of Foo: Here we create a new instance, foo of Foo. We then print out its
initial values, shown by the line starting with ‘‘..we got’’.

/foo /new Foo send def
/printvars foo send
..we got: Value=array[2], Value=0, Time=1.728, time=4.042.

Now we are going to change the value of foo’s instance variable value. Note that value initially
was an integer, and we are changing it to a string − an example of PostScript ‘‘polymorphism’’.

(Value) /changevalue foo send
/printvars foo send
..we got: Value=array[2], value=0, Time=11.95, time=12.25.

Now we do an odd thing, we simply send an executable array (a procedure) to foo. The effect of
doing this is to execute the procedure within the context of foo. (This is somewhat unfair, like
cutting paper in Origami, but nicely illustrates the flavor of our combination of PostScript
language features and our class extensions.) The procedure we’re sending to foo is {Value
changevalue} which assigns Value, the class variable, to value, the instance variable.

{Value changevalue} foo send
/printvars foo send
..we got: Value=array[2], value=array[2], Time=11.95, time=12.25.

The above example did not go through method compilation, thus ‘‘self’’ and ‘‘super’’ could not
be used. Let’s send an executable procedure to foo to change value to the current value of Time,
but this time using the more orthodox doit method which does go through method compilation.
The argument to doit first sends the message Time to itself, which simply returns the value of the
Time class variable. This then gets sent to changevalue. The result is:

{/Time self send /changevalue self send} /doit foo send
/printvars foo send
..we got: Value=array[2], value=11.95, Time=11.95, time=12.25.

Next we ask foo to reset its time value by using the method resettime:

/resettime foo send
/printvars foo send
..we got: Value=array[2], value=11.95, Time=11.95, time=13.16.

Now let’s change the class variable Value of class Foo by use of the set method. Because we are
not using any of the context of the class, we can send a simple array:

[/Value null] /set Foo send
/printvars foo send
..we got: Value=null, value=11.95, Time=11.95, time=13.16.

Here we set Value, but using the class variable Time. This requires deferring the evaluation until
within the context of the class, thus use of an executable array:

{/Value Time} /set Foo send
/printvars foo send
..we got: Value=11.95, value=11.95, Time=11.95, time=13.16.

As a final example, see Appendix B for the PostScript version of the self and super tests on page
62 to 65 in [3]. We used this to convince ourselves that we were implementing self and super
correctly!

Class Items

The first real use of classes in NeWS was the class Item. Items are simple, graphical input con-
trols, such as buttons and check-boxes. The Item hierarchy consists of the base class Item, the
subclass LabeledItem, and several practical subclasses of LabeledItem. Both Item and LabeledI-
tem provide no usable instances themselves. Rather they are abstract superclasses used to pro-
vide a common link for subclasses.

Class Item has these major components:

� A canvas used to depict the item and to be the target of the item’s input.

� A set of procedures for painting the canvas and handling activation and tracking events.

� A current value and a procedure which notifies the client when that value changes due to
action of the tracking procedures.

� Methods for creating, moving and painting the item, and for returning the item’s location and
bounding box.

The definition of the class Item is given in Appendix C. Rather than discuss the class in detail,
we look at two sample implementations: SampleToggle and SampleSlider, and a simple program
that uses them both.

SampleToggle and SampleSlider

SampleToggle provides tracking by implementing the client’s Down, Up, Enter, and Exit pro-
cedures. The ItemValue is treated as a boolean, with true meaning on. Down and Enter simply
assign not ItemInitialValue to ItemValue, while Exit resets it to ItemInitialValue. Up
simply calls the notify procedure if the state has changed. SampleToggle adds no instance or
class variables.

Here are two toggles, one on and one off, and the implementation of the class SampleToggle:

Figure 7 Two Instances of Class SampleToggle

/SampleToggle Item []
classbegin

/new { % initialvalue notifyproc parent width height => item
/new super send begin

/NotifyUser exch cvx def
/ItemValue exch def
currentdict

end
} def

/PaintItem {
ItemValue

{0 fillcanvas}
{1 fillcanvas 0 strokecanvas} ifelse

} def
/ClientDown {ItemInitialValue not SetToggleValue} def
/ClientUp {ItemValue ItemInitialValue ne {NotifyUser} if} def
/ClientEnter {ClientDown} def
/ClientExit {ItemInitialValue SetToggleValue} def

/SetToggleValue { % value => - (set value & paint toggle)
/ItemValue exch store
/paint self send

} def
classend def

SampleSlider provides tracking by implementing the client’s Down, Up, and Drag procedures.
The Down and Drag procedure are identical, simply projecting the current x coordinate of the
mouse onto the slider.

Here is a slider and its implementation:

Figure 8 An Instance of Class SampleSlider

/SampleSlider Item [/SliderX /SliderY /SliderWidth /SliderHeight]
classbegin

/new { % initialvalue notifyproc parent width height => item
/new super send begin

/NotifyUser exch cvx def /ItemValue exch def
/SliderX ItemHeight 2 div 1 sub def
/SliderY ItemHeight 2 div def
/SliderWidth ItemWidth ItemHeight sub def
/SliderHeight 2 def
currentdict

end
} def
/PaintItem {

ItemCanvas setcanvas 1 fillcanvas 0 strokecanvas
SliderX SliderY SliderWidth SliderHeight rectpath fill
ItemValue 0 PaintSliderValue

} def
/ClientDown {

SetSliderValue
ItemValue ItemPaintedValue ne {

ItemPaintedValue 1 PaintSliderValue
ItemValue 0 PaintSliderValue

} if
} def
/ClientUp {ItemValue ItemInitialValue ne {NotifyUser} if} def
/ClientDrag {ClientDown} def
/PaintSliderValue { % value gray => -

setgray
SliderX add SliderY 5 sub 4 4 rectpath fill
/ItemPaintedValue ItemValue store

} def
/SetSliderValue {

/ItemValue
CurrentEvent geteventlocation pop SliderX sub
0 max SliderWidth min store

} def
classend def

Below is a test program that uses these samples. The notify procedure prints the value of the item
using the printf utility. We start by building a canvas and painting it. Then we make two items, a
button and a slider, putting them in a dictionary called items. We then paint them and fork an
activation event manager.

Here’s what the test looks like, and its implementation:

Figure 9 The Sample Test Program

/ItemSampleTest {
/notify {ItemValue (ItemValue: % \n) printf} def
/itembackground .75 def
/can framebuffer 200 200 createcanvas def
can setcanvas 200 100 movecanvas currentcanvas mapcanvas
itembackground fillcanvas 0 strokecanvas

/items 10 dict dup begin
/sampletoggle

false /notify can 30 30 /new SampleToggle send def
10 30 /move sampletoggle send

/sampleslider
20 /notify can 180 20 /new SampleSlider send def
10 70 /move sampleslider send

end def
items paintitems /p items forkitems def

} def

After pushing the toggle and sliding the slider, we have:

Figure 10 Use of The Sample Test Program

What to notice here is the simplicity of the code, emphisizing the power, both of the program and
sample items, and of the NeWS programming environment. The implementation of the items and
test program in the interpretive NeWS environment took very little time.

Class LabeledItem

Most items are more elaborate than the preceeding examples. Class LabeledItem implements a
more common item; one that has:

� A polymorphic label-object pair, either of which may be a string, an icon, or a general
PostScript procedure.

� A ‘‘round rectangle’’ frame enclosing the item.

� Simple layout rules for automatic positioning of the label and object. The object positon
may be to the Right, Left, Top, or Bottom of the label.

The current subclasses of class LabledItem are:

� ButtonItem: provides a simple activation/confirmation item

� CycleItem: provides check boxes and choices

� SliderItem: provides a continuous range of values

� TextItem: provides a type-in area

� MessageItem: provides an output area

� ArrayItem: provides an array of choices

The (abbreviated) class definition is given in Appendix D.

This window contains one of each of these items:

Figure 11 Subclasses of LabeledItem

All four object positions are visible in the figure: The text and slider items use /Right, the cycle
item uses /Left, the message item uses /Top, and the array item uses /Bottom. The complete class
definition for one of these, CycleItem, is given in Appendix E.

Summary

Use of a Smalltalk-like class mechanism proves to have several advantages for NeWS:

� Classes are a well documented standard discussed in several easily obtainable books.

� Classes formalize the flexibility needed by the NeWS community.

� There are at least two well-documented class hierarchies for application writing: Smalltalk
itself, and MacApp, Apple’s ‘‘extensible application.’’

� Classes are easily and naturally implemented in PostScript.

� Classes offer rapid prototyping and high productivity.

Our initial implementation of classes was done in PostScript itself, with no extensions required to
the interpreter. We then implemented a reasonably complex class hierarchy for standard user
interaction items. PostScript’s polymorphism proved quite useful for yielding different results
for different items. For example, TextItems return PostScript strings, SliderItems return an
integer, and ArrayItems return a 2 element array index. We feel our initial use of classes has
been successful. We plan to use classes for the package level of NeWS.

References

1. Kurt J. Schmucker, Object-Oriented Programming for the Macintosh, Hayden Book Com-
pany, 1986.

2. Byte Magazine, special issue on Object-Oriented Languages, August, 1986, McGraw-Hill
Inc.

3. Adele Goldberg and David Robson, Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, May, 1983.

4. NeWS Preliminary Technical Overview, Sun Microsystems, October 2, 1986.

5. Adobe Systems Incorporated, PostScript Language Reference Manual, Addison Wesley,
July, 1985.

Appendix A: Complete listing of PostScript class implementation

%
% Objects ’n stuff.
%

/ObjectTemplate dictbegin % All objects have these fields:
/parentDict null def % link to my parent dict; stops at null.
/parentDictArray null def % complete parent chain to Object!

dictend def
/ClassTemplate dictbegin % Class objects have these fields in addition:

/instanceVars null def % this class’ additional inst vars
/instanceVarDict null def % this class’ total inst vars
/instanceVarExtra 10 def % extra space for class var over-rides
/className null def % name of the class (as a keyword)
/subClasses nullarray def % subclass list (for browsing)

dictend def

% Create a sub-class of the given class.
% The instancevariables may be either an array or a dict.
% The advantage of using a dict is that the variables will be
% pre-initialized to a value you chose, rather than "null".
/classbegin { % classname superclass insvars => - (newclass on dict stack)
dictbegin

ObjectTemplate {def} forall
ClassTemplate {def} forall

/instanceVars exch def
/parentDict exch def
/className exch def

} def
/classend { % - => classname newclass

currentdict {
dup xcheck {parentDict methodcompile def} {pop pop} ifelse

} forall

/instanceVarDict instanceVars def
/parentDictArray [] def

instanceVarDict type /arraytype eq {
/instanceVarDict instanceVarDict length dict dup begin

instanceVarDict {null def} forall
end def

} if

parentDict null ne {
parentDict /subClasses 2 copy get [className] append put
/instanceVarDict

parentDict /instanceVarDict get instanceVarDict append def
/parentDictArray

parentDict /parentDictArray get [parentDict] append def
} if

className
dictend
} def
% Crack open the methods and fix for "super send" and "self send"
/methodcompile { % method parentdict => newmethod
10 dict begin

/superpending false def
/selfpending false def

/parentDict exch def
[exch {

dup /send eq superpending selfpending or and {
pop pop
superpending

{parentDict /className get cvx /supersend cvx}
{cvx} ifelse

} if
dup type /arraytype eq {parentDict methodcompile} if

dup /super eq /superpending exch def
dup /self eq /selfpending exch def

} forall
] cvx

end
} def

% Generic Smalltalk-ish Primitives.
% Send a message to an object.
/send { % <args> message object => <results>

dup /parentDictArray get {begin} forall
begin

cvx exec
parentDictArray length 1 add {end} repeat

} def
% Send a message to super without poping myself.
/supersend { % <args> keywordmessage superclass => <results>

exch { 2 copy known {exit} {exch /parentDict get exch} ifelse } loop
get exec

} def
% Put me on the operand stack.
/self {/parentDict where pop} def

% Your basic object!
/Object null [] classbegin

/new { % class => instance
ObjectTemplate length instanceVarDict length instanceVarExtra
add add dict dup begin

instanceVarDict {def} forall
ObjectTemplate {def} forall

end
dup /parentDict currentdict put
dup /parentDictArray parentDictArray [currentdict] append put

} def
/doit { % proc ins => - (compile & execute the proc)

parentDict /parentDict get methodcompile exec
} def

/set { % {/key value ...} => - stores the values in the object
mark exch cvx exec
counttomark 2 div {def} repeat pop % store??

} def
classend def

Appendix B: Smalltalk [3] page 62 example in PostScript

This is a PostScript implementation of the self and super tests given in [3] on pages 62 - 65.

/smalltalkpage62 {
/One Object [] classbegin

/test {1} def
/result1 {/test self send} def

classend def

/Two One [] classbegin
/test {2} def

classend def

/ex1 /new One send def
/ex2 /new Two send def

/test ex1 send =
/result1 ex1 send =
/test ex2 send =
/result1 ex2 send =

/Three Two [] classbegin
/result2 {/result1 self send} def
/result3 {/test super send} def

classend def
/Four Three [] classbegin

/test {4} def
classend def

/ex3 /new Three send def
/ex4 /new Four send def

/test ex3 send =
/result1 ex4 send =
/result2 ex3 send =
/result2 ex4 send =
/result3 ex3 send =
/result3 ex4 send =

} def

Results:

smalltalkpage62
1 1 2 2 2 4 2 4 2 2

Appendix C: Class Item

/Item Object [
% instance variables

/ItemWidth % item’s width,
/ItemHeight % ..& height,
/ItemParent % ..& parent canvas (from "new")
/ItemCanvas % the canvas we created for the item
/ItemValue % the canvas’ current value
/ItemInitialValue % the value it started out with
/ItemPaintedValue % the value it currently shows
/StartInterest % the interest which activates the item
/ItemInterests % interests used to track item
/ItemEventMgr % ..the tracking process
/NotifyUser % the user’s notify proc

] classbegin
% default variables

/ItemFont DefaultFont def % the item’s font
/ItemTextColor 0 0 0 rgbcolor def % ..& text color
/ItemBorderColor ItemTextColor def % ..& border color
/ItemFillColor 1 1 1 rgbcolor def % ..& background color

% class variables; mainly the std client procs
/PaintItem nullproc def % the core of the /paint method
/ClientDown nullproc def % procedures installed in
/ClientDrag nullproc def % the activated (tracking)
/ClientEnter nullproc def % process
/ClientExit nullproc def
/ClientKeys nullproc def
/ClientUp nullproc def
/StopOnUp? true def % deactivate on up event?

% methods
/new % parentcanvas width height => instance
/makecanvas % - => -
/makeinterests % - => -
/move % x y => - (Moves item to x y)
/moveinteractive % items backgroundcolor => -

% (interactively moves the item)
/paint % - => - ([Re]paints item)
/location % - => x y
/bbox % - => x y w h

classend def

Appendix D: Class LabeledItem

/LabeledItem Item
dictbegin
% instance variables

/ItemObject nullstring def % The item’s "object"
/ObjectX 0 def % and bounding rect:
/ObjectY 0 def
/ObjectWidth 0 def
/ObjectHeight 0 def
/ItemLabel nullstring def % The item’s "label"
/LabelX 0 def % and bounding rect:
/LabelY 0 def
/LabelWidth 0 def
/LabelHeight 0 def
/ItemBorder 2 def % Extra space around the item
/ObjectLoc null def % Label-Object position
/ItemGap 5 def % Distance between object & label
/ItemFrame 0 def % Draw frame if not zero
/ItemRadius 0 def % Radius of frame

dictend
classbegin
% default variables

/ItemLabelFont Item /ItemFont get def
% class variable: over-ride of PaintItem

/PaintItem % - => -
% methods: over-ride new

/new % label obj loc notify parent width height => instance
% utilities used to manipulate label-object pair

/LabelSize % - => width height
/ShowLabel % - => -
/ShowObject % - => -
/EraseObject % - => -
/AdjustItemSize % - => -
/CalcObj&LabelXY % - => -

classend def

Appendix E: Class CycleItem

/CycleItem LabeledItem
dictbegin

/ItemValue 0 def
/EraseToUpdate true def % erase when switching state
/Cycle nullarray def

dictend
classbegin

/new { % label array loc notify parent width height => instance
/new super send begin

/Cycle ItemObject def
currentdict

end
} def
/makecanvas {

BindCycleObject
% calculate Label & Object Height & Width:

Cycle { % calculate bbox for all the cycle objects
ItemFont ThingSize
/ObjectHeight exch ObjectHeight max def
/ObjectWidth exch ObjectWidth max def

} forall
LabelSize /LabelHeight exch def /LabelWidth exch def

AdjustItemSize
CalcObj&LabelXY

/ItemCanvas ItemParent ItemWidth ItemHeight createcanvas def
} def
/PaintItem {/PaintItem super send false PaintCycle} def
/SetCycleValue { % Bump? => - (Set ItemValue to initial or bumped value)

/ItemValue ItemInitialValue 3 -1 roll
{1 add Cycle length mod} if store

ItemValue ItemPaintedValue ne {
true PaintCycle
/ItemPaintedValue ItemValue store

} if
} def
/BindCycleObject {/ItemObject Cycle ItemValue get store} def
/ClientDown {true SetCycleValue} def
/ClientUp {ItemValue ItemInitialValue ne {NotifyUser} if StopItem} def
/ClientEnter {true SetCycleValue} def
/ClientExit {false SetCycleValue} def

/PaintCycle { % updating? => -
EraseToUpdate and {EraseObject} if
BindCycleObject ShowObject

} def
classend def

