Object Oriented Programming in NeWS
Owen M. Densmore

Sun Microsystems
Mt. View, California

Abstract

The NeWSt window system provides the primitives needed to create window
managers and user-interface toolkits, but does not, itself, supply either. Thisisdone
to achieve alayering strategy for building several higher level systemsthat can share
NeWsS astheir low level window system. None of the traditional ‘*tool kit'* solutions
currently span the diverse set of clients NeWS needed to serve; they simply lack
sufficient flexibility. We are exploring an object oriented approach which uses a flexi-
ble inheritance scheme. This paper presents our initial attempt at introducing a
Smalltalk style class mechanism to PostScriptt, and our first use of it.

Introduction to NeWS

NeWSis a server-based window system which replaces the usual network protocols for express-
ing window and graphics primitives by an interpreted programming language. The language con-
sists of almost all of Adobe System’s PostScript [5], with some extensions.

The extensions to PostScript include:
o Primitives for managing client TCP/IP style connections.
o Primitives for light-weight processes.
o Multiple drawing surfaces called *‘ canvases’.
o Anevent mechanism for handling user input and inter-process communication.
o Useof garbage collection.

See the NeWS Preliminary Technical Overview [4] for details. For the rest of the discussion, use
of the word ** PostScript’” will include these extensions.

The NeWS environment consists of the NeWS window server communicating with client pro-
grams using standard TCP/IP. The client does not, however, have to use a fixed protocol for win-
dow and graphics primitives. Instead, each client connection hasits own ‘‘private’’ light-weight
process [LWP in the figure] executing the client’ s PostScript commands. This, in effect, replaces
a network window protocol with alanguage.

T NeWSisatrademark of Sun Microsystems Inc.
T PostScript is atrademark of Adobe Systems Inc.

Client 1

PostScript

Client 2

PostScript

Client 3

Figurel NeWSClient-Server Environment

Evolution of NeWS Tools

NeWS provides arich set of graphics and window manipulation primitives but does not, how-
ever, provide window managers or user-interface toolkits. (NeWSisa*‘window kernel’’, not a
“‘window shell’’.) Thisisdoneto achieve alayering strategy for building severa higher level
systems that can share NeWS as their low level window system. A major problem in providing
this layer isthe extreme diversity of the NeWS user community: OEM’s, the Lisp community,
our past SunView clients and X window system clients, to name afew. It became clear that the
more traditional user-interface ‘‘tool kit'* would have difficulty providing sufficient flexibility.

A second problem was where to put the higher layer — on the server or in the client. There are
several advantages to providing the tools on the server side of the connection:

o Interactive performance would be improved since the user interface code would be kept
““hot’” in the server.

o Client code size would be decreased by sharing the server process' code.

o Since the NeWS environment is much more powerful than the typical C client’s, it
would allow very rapid prototyping. We show below, for example, that Smalltalk-like
classes can be implemented in two pages of PostScript.

o No preference would be given to C clients over others; PostScript would be a common
language for al clients. Whenever a new package was made available [by any client], it
would immediately be available to all clients.

Our first attempt was to define a package to be a PostScript dictionary that managed an object
that wasalso adictionary. (Dictionaries are discussed below.) This met with success during our
alpharelease, especialy in terms of flexibility. One Lisp client, for example, built a compiler to
tranglate Lisp window calls into PostScript using the packages delivered with the system. Where
they needed to modify the behavior of one of the package procedures, they replaced it with a pro-
cedure that called the original one.

Thisled usto look for aformalization of this style. A Smalltalk-like class mechanism seemed to
fill this need. Just before our betarelease, therefore, we decided to look for the extensions we
would need to make to PostScript to support classes. Much to our surprise, PostScript could
implement classes with no modifications! The secret is PostScript dictionaries.

PostScript and Dictionaries

PostScript is aforth-like (prefix notation, stack based) interpretive language devel oped by Adobe
Systems[5]. Itisastrongly, but dynamically, typed language. By dynamically | mean that
object typeis determined at runtime. Itis‘‘polymorphic’’ inthat an object may have different
types at different times during execution of a program. In the figure below, for example, foo is
assigned the number 10 in one context, and the string abc in another.

Dictionaries are compound PostScript objects that contain key-value pairs. They can be used in
two basic ways. First, their values may be set and retrieved explicitly by the get and put primi-
tives:

MyDi ct /foo 10 put ..causesthe value 10 to be associated with the key foo.

MyDi ct /foo get ..causes the value for the key foo to be put on the operand stack.
Second, their values may be set and retrieved emplicitly by use of the dictionary stack. Simply
using a name in PostScript causes that name to be looked up in the set of dictionaries currently on
the dictionary stack. The primitive def will define akey-value pair in the topmost dictionary,
while the primitive store will first look to seeif the key is defined in the dictionary stack, assign-
ing it to that value if present.

This second form is the basis of PostScript’ s name scoping and over-ride mechanism. The set of
names (primitives and data) known to the interpreter is the set of names in the current dictionary
stack. A name can be re-defined by simply defining it in a higher dictionary.

The figure below shows three clients’ dictionary stacks. All clients have a shared system diction-
ary and a private user dictionary. Two clients have additional dictionaries on their stacks. (Note:
take care not to confuse the dictionary stack with the operand stack which has the operands and
results of PostScript operators.) The system dictionary has a name foo which was defined at
startup. Clients 1 and 3 have not redefined foo, thus will share the initial definition of foo (asthe
string ‘‘abc’’). Client 2, on the other hand, has defined foo to be the integer 10. It isthis capabil-
ity to over-ride which makes PostScript adaptabl e to inheritance schemes in general, and to the
class mechanism in particular.

Clientl Client2 Client3
foo=(abc) foo=10 foo=(abc)
/foo 10 def
User User User
System
/foo (abc) def

Figure2 Multiple Dictionary Stacks

M odules and Classes

The reader unfamiliar with the use of message-passing, classes, and object-oriented programming
may browse through the referenceslisted at the end of the chapter [1, 2, 3]. Many of the essential
ideas in class-based systems are similar to the more traditional *‘package’’ or ‘‘module’’ based
systems, however.

Briefly:

o Packages (modules) are replaced by classes.

o Proceduresin packages are replaced by methodsin classes.

o Creating package objectsis replaced by creating new instances of aclass.
o Packagelocal and global variables are replaced by class variables.

o Object variables are replaced by instance variables.

New notions are:

o Classes are ordered into a hierarchy by subclassing a new classto a prior one, inheriting its
methods, instance variables, and class variables.

o Methods are invoked by use of the send primitive. The term message is used for an invoca
tion of a method with its arguments.

o Thereisameans of constructing classesthat is absent in most languages' module creation.

o Two new concepts, the self and super pseudo-variables are introduced. They are used in
methods to refer to the object sent the method, and the method’ s superclass, respectively.
Note: self does not refer to the method' s class, but rather to the object that originally caused
the method to be invoked.

o Unlike PostScript procedures, methods are compiled when a classis created. Currently this
simply resolves self and super, and performs some minor optimizations.

The relationship between an instance and its class and superclass is shown in the figure below.
We have made an instance, aFoo, of class Foo which is asubclass of class Object. Aninstance
has a copy of al instance variables of its superclasses, thus aFoo has those required by both Foo
and Object. The methods known by an instance are stored in the classes in its superclass chain.
Thus aFoo can only respond to methods residing in Foo and Object.

aFoo Foo Object
G G null
instance class class
variables variables variables
& &
methods methods
instance class class

Figure3 Relationship between Instances and Classes

Sending a message to an instance requires packaging the arguments to the method, finding the
method in the class chain, invoking the method in the proper context, and possibly returning a
result to the sender. If the pseudo-variable self is used for the object in sending a message, the
search for the method starts at the beginning of the chain, while if super is used the search starts

in the superclass.

aFoo Foo Object
o o null
fool:
sper obj1
(self ‘>
| R

Figure4 Self and Super

PostScript Classes

The PostScript implementation of classes uses dictionaries to represent the classes and instances.
Instances contain all the instance variables of all their superclasses. Classes contain their
methods as PostScript procedures. Our current implementation of classis entirely in PostScript
and isgiven in Appendix A.

aFoo Foo Object
o o null
Inew { Inew {
/foo 1 def
Ibar (abc) def fnew super send } def
} def
instance \class T / class
dictionaries

Figure5 PostScript use of Dictionaries as Objects

Classes are built using the classbegin . . . classend procedures; messages are sent with the send

primitive:

o classbegin: classname superclass instancevariables => —
Creates an empty class dictionary which is a subclass of superclass, and has instancevari-
ables associated with each instance of this class. The dictionary is put on the dict stack.
Instancevariables may be either an array of keywords, in which case they areinitialized to
null, or adict, in which case they areinitialized to the valuesin the dict.

o classend: — => classname dict
Pops the current dict off the dict stack (put on by classbegin and presumably filled in by sub-
sequent defs), and turnsit into atrue class dictionary. Thisinvolves compiling the methods
and building various data structures common to all classes.

o send: <optional args> method object => <optional results>
Establishes the object’ s context by putting it and its class hierarchy on the dictionary stack,
then executes the method. The method is typically the keyword of a method in the class of
the object, but it can be aarbitrary procedure (see the examples below).

The send primitive establishes the context for execution of the method by adding the instance and
its superclass chain to the dictionary stack. It then executes the method within this context. The

arguments to the method will be on the operand stack asin typical PostScript procedure calls.

aFoo |

Foo |

Object |

userdict argl arg2 /meth aFoo send userdict |

systemdict systemdict |
dictstack [before] dictstack [after]

Figure6 Post<cript use of Dictionaries as Objects

Example: Class Foo

Here we build a sample class, Foo:

/ Foo Obj ect
di ct begin % (initialized) instance variables
/val ue 0 def
/time null def
di ctend
cl assbegin
/Value [0 1] def % cl ass vari abl es
[Time currenttine def

/ new { % cl ass met hods
/ new super send begin
/resettine self send
currentdi ct
end
} def
[printvars {
(..we got: Value=% value=% Time=% time=%\n)
[Value value Tine tinme] printf
} def
/ changeval ue { % value => - (changes the value of "val ue")
/val ue exch def
} def
/resettine { %- => - (sets time to the current tine)
/time currenttinme def
} def
cl assend def

Foo is asubclass of Object, discussed above. Foo has two instance variables unique to each of its
objects; value, an arbitrary value associated with the object, and time, the time of creation of the
object. They areinitialized by use of the dict form of specifying instance variables. (The dictbe-
gin... dictend pair are standard utilities which create adict just the right size for its defs.) Simi-
larly, Foo hastwo class variables; Value, an arbitrary value associated with the class, and Time,
the time of creation of the class. Notethat Timeisinitialized by calling the PostScript primitive
currenttime.

Foo has four methods. new, printvars, changevalue and resettime. new first calls its super class
to get araw instance, which it then initializes by setting the time to the current time. Note the use
of begin ... currentdict end. Thisisacommon cliché. Also note the use of both self and super:
we ask our superclassto make a new instance of itself and initialize it, then ask self to reset our
time. printvarsisused to print the instance and class variables of the abject; note how this uses

another standard utility, printf. changevalue is a method which takes a single argument and
assignsit to the instance variable value. Finaly, resettime sets the instance variable time to the
current time.

Using Class Foo

Let’slook at some uses of Foo: Here we create a new instance, foo of Foo. We then print out its
initial values, shown by the line starting with **. . we got .

/foo /new Foo send def
/printvars foo send
..we got: Value=array[2], Value=0, Tine=1.728, tinme=4.042.

Now we are going to change the value of foo’sinstance variable value. Note that valueinitially
was an integer, and we are changing it to a string — an example of PostScript ‘* polymorphism’’.

(Vval ue) /changeval ue foo send
[printvars foo send
..we got: Value=array[2], value=0, Tine=11.95, time=12.25.

Now we do an odd thing, we simply send an executable array (a procedure) to foo. The effect of
doing this isto execute the procedure within the context of foo. (Thisissomewhat unfair, like
cutting paper in Origami, but nicely illustrates the flavor of our combination of PostScript
language features and our class extensions.) The procedure we're sending to foo is {Value
changevalue} which assigns Value, the class variable, to value, the instance variable.

{Val ue changeval ue} foo send
[printvars foo send
..we got: Value=array[2], value=array[2], Tinme=11.95, time=12.25.

The above example did not go through method compilation, thus ‘‘self’’ and *‘ super’’ could not
be used. Let’'s send an executable procedure to foo to change value to the current value of Time,
but this time using the more orthodox doit method which does go through method compilation.
The argument to doit first sends the message Time to itself, which ssimply returns the value of the
Time class variable. Thisthen gets sent to changevalue. Theresult is.

{/ Time self send /changeval ue self send} /doit foo send
[printvars foo send
..we got: Value=array[2], value=11.95, Tinme=11.95, tine=12.25.

Next we ask foo to reset its time value by using the method resettime:

/resettine foo send
/printvars foo send
..we got: Value=array[2], value=11.95, Tine=11.95, tine=13.16.

Now let’s change the class variable Value of class Foo by use of the set method. Because we are
not using any of the context of the class, we can send asimple array:

[/Value null] /set Foo send
[printvars foo send
..we got: Value=null, value=11.95, Tine=11.95, tinme=13. 16.

Here we set Value, but using the class variable Time. This requires deferring the evaluation until
within the context of the class, thus use of an executable array:

{/Val ue Tine} /set Foo send
/printvars foo send
..we got: Value=11.95, value=11.95, Tinme=11.95, tine=13.16.

Asafinal example, see Appendix B for the PostScript version of the self and super tests on page
62t0 65in[3]. We used this to convince ourselves that we were implementing self and super
correctly!

ClassItems

Thefirst real use of classesin NeWS wasthe class Item. Items are simple, graphical input con-
trols, such as buttons and check-boxes. The Item hierarchy consists of the base class Item, the
subclass Labeleditem, and several practical subclasses of Labeleditem. Both Item and Labeledl-
tem provide no usable instances themselves. Rather they are abstract superclasses used to pro-
vide acommon link for subclasses.

Class Item has these major components:
o A canvas used to depict the item and to be the target of the item’ s input.
o A set of procedures for painting the canvas and handling activation and tracking events.

o A current value and a procedure which notifies the client when that value changes due to
action of the tracking procedures.

o Methods for creating, moving and painting the item, and for returning the item’ s location and
bounding box.

The definition of the class Item is given in Appendix C. Rather than discuss the class in detail,
we look at two sample implementations: SampleToggle and SampleSlider, and a simple program
that uses them both.

SampleT oggle and SampleSlider

SampleToggle provides tracking by implementing the client’s Down, Up, Enter, and Exit pro-
cedures. The ItemValue istreated as a boolean, with true meaning on. Down and Enter simply
assign not |tem nitial Val ue toltemVaue, while Exit resetsit to IteminitialValue. Up
simply calls the notify procedure if the state has changed. SampleToggle adds no instance or
classvariables.

Here are two toggles, one on and one off, and the implementation of the class SampleToggle:

Figure7 Two Instances of Class SampleToggle

/ Sanpl eToggl e Item[]
cl assbegin
Inew { %initialvalue notifyproc parent width height => item
/ new super send begin
/' Noti fyUser exch cvx def
/1tenVal ue exch def
currentdict
end
} def

[Paintltem {
| t enVal ue

{0 fillcanvas}

{1 fillcanvas 0 strokecanvas} ifelse
} def
/CientDown {Itemnl nitial Val ue not Set Toggl eVal ue} def
/ClientUp {ItenValue Item nitial Value ne {NotifyUser} if} def
/CientEnter {CientDown} def
/CientExit {Item nitial Val ue Set Toggl eVal ue} def

/ Set Toggl evVal ue { % value => - (set value & paint toggle)
/1tenVal ue exch store
/paint self send
} def
cl assend def

SampleSlider provides tracking by implementing the client’s Down, Up, and Drag procedures.
The Down and Drag procedure are identical, ssimply projecting the current x coordinate of the
mouse onto the slider.

Hereisadlider and its implementation:

Figure8 An Instance of Class SampleSider

/ Sanpl eSlider Item[/SliderX /SliderY /SliderWdth /SliderHeight]
cl assbegin
Inew { %initialvalue notifyproc parent width height => item
/ new super send begin
/' Noti fyUser exch cvx def /IltenVal ue exch def

[SliderX ItenmHei ght 2 div 1 sub def
/SliderY ItenHei ght 2 div def
/ SliderwWdth ItemN dth |tenmHei ght sub def
/ Sl i der Hei ght 2 def
currentdi ct
end
} def

[Paintltem{
| tenCanvas setcanvas 1 fillcanvas 0 strokecanvas
SliderX SliderY SliderWdth SliderHeight rectpath fill
I tenVal ue 0 Paint SliderVal ue
} def
/ C'i ent Down {
Set Sl i der Val ue
It emval ue |tenPai nt edVal ue ne {
I t enPai nt edVal ue 1 Pai nt Sli der Val ue
It enval ue 0 Pai nt Sli der Val ue
}oif
} def
/CientUp {ltenmvalue Item nitial Value ne {NotifyUser} if} def
/CientDrag {Cient Down} def
/[PaintSlidervValue { %value gray => -
set gray
SliderX add SliderY 5 sub 4 4 rectpath fill
/|t enPai nt edVval ue |tenVal ue store

} def
/ Set Sli der Val ue {
/1tenVal ue
Current Event geteventl ocation pop SliderX sub
0 max SliderWdth nmin store
} def

cl assend def

Below is atest program that uses these samples. The notify procedure prints the value of theitem
using the printf utility. We start by building a canvas and painting it. Then we make two items, a
button and a dlider, putting them in adictionary called items. We then paint them and fork an
activation event manager.

Here' swhat the test looks like, and its implementation:

bigmacih

Jtarting server
Initialization filez Toaded!
Starting root eventmgr

Hi there!

ItemSampleTest

Figure9 The Sample Test Program

/1tenBanpl eTest {
Inotify {ltenValue (Itemvalue: %\n) printf} def
/i tenbackground .75 def
/can framebuffer 200 200 createcanvas def
can setcanvas 200 100 novecanvas currentcanvas nmapcanvas
i tenbackground fillcanvas 0 strokecanvas

/itens 10 dict dup begin
/ sanpl et oggl e
false /notify can 30 30 /new Sanpl eToggl e send def
10 30 /nove sanpl et oggl e send
/ sanpl esl i der
20 /notify can 180 20 /new Sanpl eSl i der send def
10 70 /nmove sanpl eslider send
end def
itens paintitens /p itenms forkitens def
} def

After pushing the toggle and diding the slider, we have:

Oirectory:

Jtarting serwver
Initialization files Toaded!
Jtarting root eventmgr

Hi there!

TremIampleTest]]

ItemVWalue: true

TtemWalue: 184

Figure10 Useof The Sample Test Program

What to notice here is the simplicity of the code, emphisizing the power, both of the program and
sample items, and of the NeWS programming environment. The implementation of the items and
test program in the interpretive NeWS environment took very little time.

Class L abeledltem

Most items are more elaborate than the preceeding examples. Class Labeleditem implements a
more common item; one that has:

[}

A polymorphic label-object pair, either of which may be a string, an icon, or a general
PostScript procedure.

A “‘round rectangle’’ frame enclosing the item.

Simple layout rules for automatic positioning of the label and object. The object positon
may beto the Right, Left, Top, or Bottom of the label.

The current subclasses of class Labledltem are;

[}

[}

[}

[}

[}

[}

Buttonltem: provides a simple activation/confirmation item
Cycleltem: provides check boxes and choices

SliderItem: provides a continuous range of values
Textltem: provides atype-in area

M essagel tem: provides an output area

Arrayltem: provides an array of choices

The (abbreviated) class definition is given in Appendix D.

This window contains one of each of these items:

oo IO | yegetn
essage

Four [] Six
ArrayItem

IternV slue: Foo

TextItem: Foo

Figure1l Subclasses of Labeleditem

All four object positions are visible in the figure: The text and dlider items use /Right, the cycle
item uses /Left, the message item uses /Top, and the array item uses /Bottom. The complete class
definition for one of these, Cycleltem, is given in Appendix E.

Summary

Use of a Smalltalk-like class mechanism proves to have severa advantages for NeWS:

o Classesare awell documented standard discussed in several easily obtainable books.
o Classesformalize the flexibility needed by the NeWS community.

o Thereare at least two well-documented class hierarchies for application writing: Smalltalk
itself, and MacApp, Apple’' s ‘‘ extensible application.”’

o Classesare easily and naturally implemented in PostScript.
o Classes offer rapid prototyping and high productivity.

Our initial implementation of classes was done in PostScript itself, with no extensions required to
the interpreter. We then implemented a reasonably complex class hierarchy for standard user
interaction items. PostScript’s polymorphism proved quite useful for yielding different results
for different items. For example, Textltems return PostScript strings, Sliderltems return an
integer, and Arrayltems return a2 element array index. We feel our initial use of classes has
been successful. We plan to use classes for the package level of NeWS.

References

1. Kurt J. Schmucker, Object-Oriented Programming for the Macintosh, Hayden Book Com-
pany, 1986.

2. Byte Magazine, special issue on Object-Oriented Languages, August, 1986, McGraw-Hill
Inc.

3. Adele Goldberg and David Robson, Smalltalk-80: The Language and Its I mplementation,
Addison-Wesley, May, 1983.

4. NeWSPreliminary Technical Overview, Sun Microsystems, October 2, 1986.

Adobe Systems Incorporated, PostScript Language Reference Manual, Addison Wesley,
July, 1985.

Appendix A: Completelisting of PostScript classimplementation

%
% Objects 'n stuff.
%

/ Obj ect Tenpl ate dictbegin %Al objects have these fields:
/ parent Di ct null def %link to nmy parent dict; stops at null.
/parentDictArray null def % conplete parent chain to Qbject!

di ctend def

/ Cl assTenpl ate dictbegin % d ass objects have these fields in addition:
/instanceVars null def %this class’ additional inst vars
linstanceVarDict null def %this class’ total inst vars
/instanceVarExtra 10 def % extra space for class var over-rides

/ cl assName null def % name of the class (as a keyword)
/ subd asses nul l array def % subclass list (for browsing)
di ctend def

% Create a sub-class of the given class.
% The instancevari abl es may be either an array or a dict.
% The advantage of using a dict is that the variables will be
% pre-initialized to a val ue you chose, rather than "null".
/ cl assbegin { % cl assnane superclass insvars => - (newcl ass on dict stack)
di ctbegin
hj ect Tenpl ate {def} forall
Cl assTenpl ate {def} forall

/instanceVars exch def
[parent Di ct exch def
/ cl assName exch def
} def
/classend { % - => classnane newcl ass
currentdict {
dup xcheck {parentDi ct nethodconpile def} {pop pop} ifelse
} forall

/instanceVarDi ct instanceVars def
/parentDictArray [] def

i nstanceVarDict type /arraytype eq {
/instanceVarDict instanceVarDict |ength dict dup begin
instanceVarDict {null def} forall
end def

}oif

parentDi ct null ne {
parentDi ct /subCl asses 2 copy get [classNane] append put
/i nstanceVar Di ct
parentDi ct /instanceVarDict get instanceVarDi ct append def
/ parent Di ct Array
parentDict /parentDictArray get [parentDict] append def

}oif

cl assNane
di ctend
} def
% Crack open the nethods and fix for "super send" and "self send"
/ met hodconpil e { % met hod parentdi ct => newnet hod
10 dict begin
/ super pendi ng fal se def
/ sel f pending fal se def

[parent Di ct exch def
[exch {
dup /send eq superpendi ng sel fpending or and {
pop pop
super pendi ng
{parentDi ct /classNane get cvx /supersend cvx}
{cvx} ifelse
}if
dup type /arraytype eq {parentDict nethodconpil e} if

dup /super eq /superpendi ng exch def
dup /self eq /selfpending exch def
} forall
] cvx
end
} def

% Generic Smalltal k-ish Primtives.

% Send a nessage to an object.

/send { % <args> nessage object => <results>
dup /parentDictArray get {begin} foral
begin

CVX exec
parentDi ct Array length 1 add {end} repeat

} def

% Send a nessage to super wi thout poping nyself.

/ supersend { % <ar gs> keywordnessage supercl ass => <resul ts>
exch { 2 copy known {exit} {exch /parentDict get exch} ifelse } |oop
get exec

} def

% Put me on the operand stack.

/self {/parentD ct where pop} def

% Your basic object!
/ Object null [] classbegin
Inew { %class => instance
oj ect Tenpl ate | ength instanceVarDi ct | ength instanceVarExtra
add add dict dup begin
i nstanceVarDict {def} foral
bj ect Tenpl ate {def} foral
end
dup /parentDict currentdict put
dup /parentDictArray parentDictArray [currentdict] append put

} def
/doit { % proc ins => - (conpile & execute the proc)
parent Di ct /parentDi ct get nethodconpile exec
} def
/set { % {/key value ...} => - stores the values in the object

mark exch cvx exec
counttomark 2 div {def} repeat pop % store??
} def
cl assend def

Appendix B: Smalltalk [3] page 62 examplein PostScript

Thisis a PostScript implementation of the self and super tests given in [3] on pages 62 - 65.

/smal | tal kpage62 {
/One Object [] classbegin
/test {1} def
/resultl {/test self send} def
cl assend def

/ Two One [] cl assbegin
/test {2} def
cl assend def

/ex1 /new One send def
/ex2 I new Two send def

/test exl send =
/resultl exl1l send
/test ex2 send =
/resultl ex2 send =

[Three Two [] cl assbegin
/result2 {/resultl self send} def
/result3 {/test super send} def
cl assend def
[Four Three [] classbegin
/test {4} def
cl assend def

/ ex3 [new Three send def
/ ex4 [new Four send def

/test ex3 send =

/resultl ex4 send

/result2 ex3 send

/result2 ex4 send

/result3 ex3 send

/result3 ex4 send
} def

Results:

smal | t al kpage62
1122242422

Appendix C: ClassItem

/1tem Qoj ect [

% i nstance vari abl es
/1temWN dt h
/1tenHei ght
/1t enPar ent
/1temCanvas
/1t enval ue
/l1tem nitial Val ue
/1t enPai nt edVal ue
/[Startlnterest
/1tem nterests
/I tenEvent Myr
/ Noti fyUser

] classbegin

% default vari abl es
/1t enfFont
/1t emText Col or
/ 1t enBor der Col or
/l1tenFill Col or

%item s wdth,

% .. & height,

% ..& parent canvas (from "new')

% the canvas we created for the item
% t he canvas’ current val ue

%the value it started out with
%the value it currently shows

% the interest which activates the item
% interests used to track item

% ..the tracking process

% the user’s notify proc

Def aul t Font def %the item s font

0 0 O rgbcolor def %..& text color

I tenText Col or def % .. & border col or

11 1 rgbcolor def %..& background col or

% cl ass variables; mainly the std client procs
[Paintltem nullproc def %the core of the /paint nethod
/CdientDown nullproc def % procedures installed in
/ClientDrag nullproc def % the activated (tracking)
/CientEnter nullproc def % process
/CientExit nullproc def
/dientKeys nullproc def
/CientUp nul | proc def

[StopOnUp? true def % deactivate on up event?
% met hods
/ new % par ent canvas wi dth hei ght => instance

/ mkecanvas

/ makei nt erests

/ move

/ novei nteractive

/ pai nt
/1 ocation
/ bbox

cl assend def

% - => -

% - => -

%xy =>- (Mves itemto x y)
% itens backgroundcol or => -

% (interactively noves the iten)
%- =>- ([Re]lpaints item

%- => XYy

%- =>xy wh

Appendix D: Class L abeledltem

/ Label edltem | tem
di ctbegin
% i nstance vari abl es

/1tenDbj ect nul I string def % The item s "object"
/ Cbj ect X 0 def % and boundi ng rect:
[Qbj ectY 0 def

/ Cbj ect Wdth 0 def
/ Qbj ect Hei ght 0 def

/1tenlabel nul I string def % The item s "I abel™
/ Label X 0 def % and boundi ng rect:
/ Label Y 0 def
/ Label W dt h 0 def
/ Label Hei ght 0 def
/1t enBorder 2 def % Extra space around the item
/ Qbj ect Loc nul | def % Label - Cbj ect position
/1tenGap 5 def % Di stance between object & | abel
/I tenframe 0 def % Draw frame if not zero
/1t enRadi us 0 def % Radi us of frane
di ctend

cl assbegin
% def aul t vari abl es
/1tenmlabel Font Item/ItenFont get def
% cl ass variable: over-ride of Paintltem
[Paintltem %- => -
% et hods: over-ride new
Inew 9%/ abel obj loc notify parent wi dth hei ght =>
% utilities used to mani pul ate | abel - obj ect pair

/ Label Si ze % - => width hei ght
/ ShowLabel %- => -
/ ShowObj ect %- => -
| Er ase(bj ect %- => -

[Adj ustltenSize %- => -
[Cal cObj &Label XY % - => -
cl assend def

i nst ance

Appendix E: Class Cycleltem

/ Cycl el tem Label edl tem

di ctbegin
/1tenVal ue 0 def
[EraseToUpdate true def % erase when switching state
/ Cycl e nul l array def

di ctend

cl assbegin
Inew { %Il abel array loc notify parent w dth hei ght => instance
/ new super send begin
/ Cycl e Itenthject def
currentdi ct
end
} def
/ makecanvas {
Bi ndCycl e(hj ect
% cal cul ate Label & hject Height & Wdth:
Cycle { %cal cul ate bbox for all the cycle objects
It enfFont Thi ngSi ze
/ Cbj ect Hei ght exch Cbj ect Hei ght max def
/ Obj ect Wdth exch Qoject Wdth max def
} forall
Label Si ze / Label Hei ght exch def /Label Wdth exch def

Adj ust I tenSi ze
Cal cnj &L abel XY

/1tenCanvas ItenParent ItemWdth |tenHei ght createcanvas def
} def
/Paintltem {/Paintltemsuper send fal se PaintCycle} def
/ Set Cycl eVal ue { % Bunp? => - (Set ItenValue to initial or bunped val ue)
/1tenValue Itemnitial Value 3 -1 roll
{1 add Cycle length nod} if store
It enVal ue |tenPai nt edVal ue ne {
true PaintCycle
/I tenPai nt edVal ue I tenVal ue store
}if
} def
/ Bi ndCycl ebj ect {/ltemCbject Cycle Itenmval ue get store} def
/CientDown {true SetCycl eVal ue} def
/CientUp {lItenValue Itemnitial Value ne {NotifyUser} if Stoplten} def
/CientEnter {true SetCycl eVal ue} def
/CientExit {fal se Set Cycl eVal ue} def

[Pai nt Cycl e { % updating? => -
EraseToUpdat e and {EraseObject} if
Bi ndCycl ethj ect Showhj ect
} def
cl assend def

