@

sun

microsystems

r

Getting Started with SunPHIGS

e

o

Part Number: 800-3061-10
Revision A of 30 August 1989

Getting Started with SunPHIGS

Part No: 800-3061-10
Revision A of 30 August 1989
SunPHIGS Release 1.1

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks
of Sun Microsystems, Inc. '

Sun, Sun-2, Sun-3, Sun-4, Sun386i, Sunlnstall, SunOS, SunView, NFS, NeWS,
and SPARC are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

SunPHIGS is a registered trademark of Sun Microsystems, Inc.

Copyright © 1989 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means — graphic, electronic, or mechanical —
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun’s licensees.

R
R

Contents

Chapter 1 An Overview of PHIGS

1.1, INETOAUCHIONoooooe st s stssnssnsssonse e sssesssrssssesssssssssss s s smssnemsssssssonen 3
1.2. PHIGS:

Programmer’s Hierarchical Interactive Graphics System ... 3
Structure Elements 4
Traversal-time Binding 5
Central SIHUCTUTE STOTEvcevveeversscsesisss s sssasssssssssesssssses 5
WOTKSIALIONooooioeveeeeee e esesisssse s ssssssss e 6
Input Devices . 6
STAE VATIADIESocooooceeeee oo ssasssssse s sssss s sessnsssssscssssssssssssssoss 7
Description Tablesooorreeesesscieeessncin, 7
STALE LESESooocooceore e seveees e ssres s sse s sssssss s s ssssssssass st sessse sesssns 7

Chapter 2 Programming in PHIGSeoeoeeeeeeeseesseessssessise s 13
2.1. Creating a PHIGS Program eesaseasa s 13
2.2. Skeleton PHIGS PIOGIAMSeooooeveiveveessssesssseesse s sssnssssssens . 13
2.3. Multiple Libraries et 14

2.4. Compiling and Linking SunPHIGS Programs
C Program Examples

Sun Tool workstation

Sun Canvas workstation
FORTRAN Program Examples
Sun Tool workstation

Sun Canvas workstation

—iii—

Contents — Continued

Running a SunPHIGS application

2.5. SunPHIGS 1int Library

cfigsl.c

ffigsl.£f

2.6. Creating a SunPHIGS Program

Sun Tool Workstation Configuration
Workstation Type Create

Workstation Type Set

Workstation Type Get

Workstation Type Destroy

The Valulator Window

2.7. Sun Canvas Workstation Configuration

The Message Window

The SunPHIGS/SunView Interface in C
The SunPHIGS/SunView Interface with FORTRAN

2.8. Creating Structures

Structure Elements

Output Primitives

cfigs2.c

ffigs2.f

Primitive Attributes

Polyline Attributes

cfigs3.c

.........

ffigs3.f
Polymarker Attributes

Text Attributes

Fill Area Attributes

.........

Fill Area Set Attributes

Individual Attributes

Bundled Attributes

ffigs4.f

2.9. Structure Traversal and Invocation

Executing a Child Structure

.....

—-iv —

15
15
16

16

17
17
18
19
20
20
20
21
21
22
22
23
24
24
25
26
26
26
27
27
28
28
28
29
29
29
30
32
33

Contents — Continued

A Complex Structure Hierarchyoooooooereesressieenenenn 33

2.10. Manipulating Structures 35
Change Structure 35

L6007 41101110 (N 35

The Structure Element Pointer 35

Set Edit Mode . 35
Delete EICIENLooocoooeeecoeeeesenee s seeesssssssmsesssssssssssssse s smesssse 36
DEIEIE SIUCIULEooooevveeereseerecnrre e s sssssssssssss s sssesosssssss s e 36
Archiving and Retrieving Structures ... 37

Open Archive File ... 37

Close Archive File37
RELTIEVE SITUCTUIES ..o eeereseeesseessess s ssseessseessssssseessessessesserseesee e 37

2.11. Workstation State List oo 37
The Display UPdate Stateoooeeoeeeecensescoreesscceessosssemseesssesso 37
DEIETTAl MOGEScooccooercee s sessseses s ssssessesessseess s s 37
Modification Modes 38
(WAIT and NIVE) OSSR 1.
Window Damage S — 38
pickjet.c e 38

202, INQUITIESooooooeer e ssssns et 39
Chapter 3 The Transformation Pipelin€ ... 43
3.1. Modeling TranSfOrMAtiONS ... soeee s s sees o 43
Local Modeling Transformation ... 43
Global Modeling Transformation ... 45
EOULVI@W . Ci ..o sssenese s ssesssesses s 45

B2 VIBWING ..o orseesessssessssssmsssssssosssssessssesssassmsssssessosssssssssssssesssnsseesne 46
Another LOOK at £OUTVI@W. C e ees e eserenesnen 47
Workstation TransfOrmMationsoooeeeorereoooeeeeeesessooessesesseessseerens 48

L4 :30173 o 0 011010 SO 53
4.1. Six Input Classes ... et e e 53
SAMPIE USESooocove e sensssssess s sessses s sessssssssssssssssosssssssssssos 53

Contents — Continued

Appendix A Examples
A.1. C Examples

Locator Devices

Stroke Devices

Valuator Devices

Choice Devices

String Devices
Pick Devices

4.2. SunPHIGS Input Devices
4.3. Prompt/Echo Types (PETS)

Input Data Records

FORTRAN Packed Data Record
4.4. Three Operating Modes

Request Mode ...

Event Mode

Sample Mode

axes.c

canvasattrs.c

canvasid.c

cpolygons.c

exl.c

ex2.c

fourview.c

fourview_cvs.c

non_square.c

pickit.c

rspheres.c

spheres.c

txattrs.c

A.2. FORTRAN Examples ..

fbundles.f

ffillset.f

—-—Vvi—

54
55
55
55
55
57
58
59
59
60
61
61
62

65
65
65
67
69
70
73
78
83
92
101
104
113
124
128
140
140
142

Contents — Continued

ELINES . £ .t ass s rssss s . 145
fmarkers.f . 148
fpolygons. f . 150
ftext.f e 152
Frextall. £ o e 154
LOOLAEEES L £ oot smesseessmenesenssesessseesesssssss s s smssmssssessssessssos s 156
Appendix B Tutorial EXamplesooscrsisoscesssesssesss s 161
B.1. CEXAMPIESooooroeecocrrnsseresscsassssssssssessssssssessssssmssssssssssossesssssssssssssssssssos 161
Lo i Mo 1= 35 R o SO 161
cfigs2.c 162
CELGS3 . C et s st 163

LOC 1 C st ssess s s s s st e ke e 165
pickjet.c ... ' . 167

B.2. FORTRAN Examples w171
i e Ko £ T TN 171
FEIGSZ i E oo sseesssesssseesseseseesesssessossssssssos s ssesmsssssossssssessssessnmnren 172
EEIGSB L E oo snssssss s sasssass e ssss s srssssse s 173

ki e £ T . 174
£1g8CanVaL. L et 177
£ig8to0lval. £ ..t 179
APPENAIX € VIBWINE ... sesseeesnes s seesss s sssnesssesessessssn 183
LGN B A T 0,510 1171310 o OSSN 183
C.2. View Mapping 184

—vii—

G

Tables

Table 2-1 SunPHIGS Default Workstation TYPES ... 18
Table 2-2 Workstation Type Functions 18
Table 2-3 Traversal Order for Simple Hierarchical Structure Network 32
Table 2-4 Order of Element Execution During Traversal 35
Table 4-1 PHIGS Physical Devices 58

Figure 2-1 SunPHIGS Workstation with Several Primitivesc..c.....
Figure 2-2 Structure built by programs cfigs3.cand ffigs3.£f ...

Figure 2-3 Structure using Bundled Edge Flag Attribute
Figure 2-4 Simple Hierarchical Structure Network

Figure 2-5 Structure Network with Both Structures Posted (to
Different Workstations)

Figure 2-6 Structure Hierarchy for Robot Arm

Figure 2-7 Creating Elements in Insert Edit Mode

Figure 2-8 Creating Elements in Replace Edit Mode

Figure 3-1 Structure Network for Robot Arm

Figure 4-1 A Plane Structure Hierarchy from which Engine may be
Picked

Figure 4-2 Pick Path from Selecting Left Engine ...

Figure C-1 View Reference Coordinate System
Figure C-2 The Parallel Viewing Model
Figure C-3 The Perspective Viewing Model

- Xi -

33
34
36
36

44

184

An Overview of PHIGS

An Overview of PHIGS 3

1.1. Introduction

1.2. PHIGS:.
Programmer’s Hierarchical Interactive Graphics System

Structure Elements

.........

Traversal-time Binding
Central Structure Store
Workstation
Input Devices
State Variables
Description Tables
State Lists

N N9 Ny W

An Overview of PHIGS

1.1. Introduction SunPHIGS is an implementation of PHIGS, the Programmer’s Hierarchical
Interactive Graphics System, designed to run on the complete family of Sun sys-
tems and hardware accelerators. SurPHIGS diligently adheres to the PHIGS
standard. The functionality described herein is all part of that standard unless
otherwise stated to- be SunPHIGS implementation dependent.

This tutorial, Getting Started with SunPHIGS, is designed to familiarize the user
with the concepts of the PHIGS standard and the use of the SunPHIGS product.

This chapter is an overview of PHIGS, and will acquaint the reader with the
PHIGS standard terminology. Each topic mentioned in the overview will be
dealt with, in greater depth, in the later chapters of this document.

Throughout this tutorial, the PHIGS standard function names will appear in allt
capital letters. This is to key the reader that a complete description of the func-
tion can be looked up in the SunPHIGS Reference Manual. Code fragments,
which are excerpts from the full example programs located in the Appendices as
well as on the SunPHIGS!.1 Distribution Tape are provided to enhance the
understanding of the dialogue. These will appearin 1isting font. Referto
the complete example program for a better understanding of the functionalities

discussed.
1.2. PHIGS: PHIGS, the standard, is a hierarchical, interactive system for the definition,
Programmer’s modification and display of 3-D and 2-D data.
Hierarchical o . co
. . SunPHIGS is an implementation of the PHIGS standard, and hence is a library of
Interactive Graphics . . . , . .
System functions that support graphics applications on Sun’s Workstations. SunPHIGS is

integrated with Sun’s window system environment, and designed to transparently
take advantage of hardware acceleration on Sun’s CXP models.

PHIGS provides structured organization of graphical data in a central database
called the Central Structure Store (CSS).

o Graphics objects are defined by a sequence of elements (e.g., output primi-
tives, attributes, etc.). These elements are grouped into structures. A struc-
ture can be thought of as a contiguous linear array of graphical data. Rela-
tionships between structures are hierarchical.

o The Central Structure Store is a collection of structures in hierarchical (tree-
like) networks. Each structure is a node in the network. A root structure, or

Q?f sun 3 Revision A of 30 August 1989

microsystems

4 Getting Started with SunPHIGS™

Structure Elements

posted structure is the node from which other nodes originate. A parent struc-
ture is one which references other structures. A child structure is one which
is referenced by other structures. Ancestor and descendent structures are those
along the traversal path between the posted structure and the last structure in
the network. Structures can reference, or execute other structures (non-
recursively).

PHIGS provides modern concepts in a graphics standard such as structures, struc-
ture editing, traversal-time attribute binding of attributes, and control over detec-
tability, highlighting and visibility of output primitives.

PHIGS separates the definition of graphical data from the actions which display
the daia. Graphics iniformation is stored in the CSS in the form of structures.
These structures may be edited by inserting and deleting structure elements. New
structures can be created by copying graphical data from other structures.

Images can share component objects. Objects, as used in this document, refer to
portions of the graphical image to be displayed. Structures can be invoked (exe-
cuted) from within other structures. All of these features reduce repetition and
connectivity problems through repeated use of component objects and the rela-
tionships between them. Both construction of image data and user interaction are
facilitated.

o Data display is independent of the creation and modification of graphical
data. The application program has the ability to define the graphical data
stored in the CSS and to control when and how these images are to be viewed
on selected workstations.

o Attributes are bound to output primitives during structure network traversal
(execution). This allows a structure (child) executed from within another
structure (parent), to ‘‘inherit’’ the attributes of the structure referencing it.
Modification of primitive attributes is also permitted dynamically through
structure editing.

o Detectability, highlighting and visibility of primitives as groups are provided
for in the name set functionality.

o Modeling transformations and view indices provide dynamic capabilities
which can be stored and edited as structure elements.

a PHIGS supports both parallel and perspective projection viewing.

The basic building blocks of structures are structure elements:

o Qutput Primitives are the basic geometric graphics available for display.
These are: POLYLINE, POLYMARKER, TEXT, FILL AREA (polygon), FILL
AREA SET (polygon with multiple bounds), CELL ARRAY and GENERAL-
IZED DRAWING PRIMITIVES (GDPs) which are implementation dependent
primitives. (SunPHIGS provides one GDP, the Polyline Set).

a Aunributes control the appearance of output primitives. Examples of functions
which set attributes are: SET LINETYPE, SET LINEWIDTH SCALE FACTOR
and SET POLYLINE COLOUR INDEX.

sun Revision A of 30 August 1989

microsystems

Chapter 1 — An Overview of PHIGS 5

Traversal-time Binding

Central Structure Store

o Modeling Transformations are 4 X 4 matrices used to map modeling coordi-
nates to world coordinates. The two modeling transformation functions are:
SET LOCAL TRANSFORMATION and SET GLOBAL TRANSFORMATION,

o View Selections define the orientation of the displayed image relative to the
viewer’s point-of-view. SET VIEW INDEX is the element used to select a
view’s use. The SET VIEW REPRESENTATION function is used to define the
view on a specific workstation.

o Structure Invocations are the most notable feature of the PHIGS hierarchical
model. EXECUTE STRUCTURE invokes one structure from another.

o The Name Set functions control the visibility, highlighting and detectability
of groups of primitives in conjunction with workstation filters. The two
name set functions are Add Names to Set and Remove Names From Set.

o Pick Identifiers associate application supplied indentitifiers with output prim-
itives and are one part of the pick path produced by a pick input device. SET
PICK IDENTIFIER, creates a structure element containing a value for the
current pick identifier which applies to all output primitives following in the
structure network.

o Labels are used as delimiters to facilitate structure editing. The LABEL func-
tion creates a label to mark locations within a structure.

o Application Data embeds non-executable data in the database for use by the
application only. This data might include comments or part numbers. The
APPLICATION DATA function provides this capability.

o GENERALIZED STRUCTURE ELEMENTS (GSEs) are implementation defined
and enable access, during traversal, to special control and attribute related
actions that are beyond the scope of the structure elements defined by PHIGS.
SunPHIGS provides one GSE, Set Highlight Colour Index.

Traversal-time binding (during structure execution) provides an inheritance capa-
bility.

A Structure inherits the attributes of its parent (the structure invoking it), much
as a subroutine would inherit the values passed in the parameter list. A child
structure may modify its own attributes, without affecting the parent structure
attributes. Thus the same structure invoked from different parents might inherit
different attribute values. The posted structure of a structure network inherits its
attributes from the PHIGS description table which contains standard system
default values.

The Central Structure Store is the central graphical database which holds display
lists. All data is available to all workstations. This provides device indepen-
dence as there is no workstation-dependent structure storage.

% sun Revision A of 30 August 1989

microsystems

6 Getting Started with SunPHIGS™

Workstation

Input Devices

A workstation is the logical interface through which the application controls a
physical device. There are five types of workstations available in PHIGS: the
input-only workstation which has at least one logical input device; the output-
only workstation which has only a display area (no input devices); the input-
output workstation which combines the capabilities of both the input and output
only workstations; and the metafile input and metafile output workstation types.
SunPHIGS provides two input-output workstation types and one metafile output
workstation type. The input-output workstations are described in the following
chapter. For information on the metafile output workstation, see OPEN
WORKSTATION in the SunPHIGS Reference Manual.

PHIGS allows for addressing specific workstation capabilities through descrip-
tion tables and state lists.

a The workstation description table describes the capabilities and characteris-
tics of a specific device.

o The workstation state list contains the workstation values modifiable by an
application during a PHIGS session and workstation state maintained for you
by PHIGS. There is one workstation state list for each open workstation.

There are six logical input device classes supported by PHIGS:

o A Locator device returns a point in world coordinates. INITIALIZE
LOCATOR, SET LOCATOR MODE and GET LOCATOR are examples of func-
tions which pemit handling of the locator class of devices.

o A Stroke device returns a sequence of points in world coordinates.
INITIALIZE STROKE, SET STROKE MODE and GET STROKE are examples
of functions which permit handling of the stroke class of devices.

o A Valuator device returns a real number. INITIALIZE VALUATOR, SET
VALUATOR MODE and GET VALUATOR are examples of functions which
permit handling of the valuator class of devices.

o A Choice device returns a non-negative integer. INTIALIZE CHOICE, SET
CHOICE MODE and GET CHOICE are examples of functions which permit
handling of the choice class of devices.

o A Pick device returns a pick path which identifies a picked primitive.
INITIALIZE PICK, SET PICK MODE and GET PICK are examples of functions
which permit handling of the pick class of devices.

o A String device returns a character string. INITIALIZE STRING, SET STRING
MODE and GET STRING are examples of functions which permit handling of
the string class of devices.

Each logical input device can be operated in one of three operating modes:

o In Request mode, the application prompts for and waits for user input.
REQUEST <device class> is the function which requests the current measure
of a device of that class.

@?? mS un Revision A of 30 August 1989

icrosystems

Chapter 1 — An Overview of PHIGS 7

State Variables

Description Tables

State Lists

o In Sample mode, the application calls for the current value of a device
without waiting for action from the user. SAMPLE <device class> is the
function which samples the current measure of the specified device.

o In Event mode the operator enters input into a central input queue and the
application reads from the queue. AWAIT EVENT moves the event from the
input queue to the current event report and the GET <device class> function
retrieves the device measure from the current event report.

The value of four state variables define the current PHIGS operating state. Indi-
vidual PHIGS functions can be executed only in the proper state.

o The PHIGS system state variable reflects whether PHIGS is open (PHOP) or
closed (PHCL).

o Workstation state variable indicates whether any workstation is open
(WSOP) or all are closed (WSCL).

o The structure state variable designates whether any structure is open (STOP)
or all are closed (STCL).

o The archive state variable specifies whether any archive file is open (AROP)
or all are closed (ARCL).
Tables contain data which PHIGS uses to display structures.

Description Tables contain the initial values and system limits. The data in these
tables are initialized to standard and implementation dependent values when
PHIGS is opened. Values in description tables may be inquired but not modified
by the application.

o The PHIGS description table contains the system parameters and limits.

o The workstation description tables contain initial state values and predefined
attribute bundle definitions, for each available workstation type.

State Lists contain current application-dependent values. These tables are dynam-

ically modifiable during application execution.

o The PHIGS state list contains the system state values.

o The workstation state lists, one for each open workstation, contain the work-
station values active during a PHIGS session.

o The structure state lists, one for each defined structure, contain all the struc-
ture elements and the list of workstations to which the structure is posted.

a The error state list contains error information.

Sun Revision A of 30 August 1989

microsystems

Programming in PHIGS

Programming in PHIGS

2.1. Creating a PHIGS Program
2.2. Skeleton PHIGS Programs

2.3. Multiple Libraries

2.4, Compiling and Linking SunPHIGS Programs

C Program Examples
Sun Tool workstation

Sun Canvas workstation

FORTRAN Program Examples

Sun Tool workstation

Sun Canvas workstation

Running a SunPHIGS application

2.5. SunPHIGS lint Library

cfigsl.c

ffigsl.f
2.6. Creating a SunPHIGS Program

Sun Tool Workstation Configuration ...

Workstation Type Create

Workstation Type Set

Workstation Type Get
Workstation Type Destroy

The Valulator Window

2.7. Sun Canvas Workstation Configuration

13

13
13
14
14
14
15
15
15
15
15
15
15
16
16
17
17
18
19
20
20
20
21

The Message Window

The SunPHIGS/SunView Interface in C
The SunPHIGS/SunView Interface with FORTRAN
2.8. Creating Structures

Structure Elements

Output Primitives

cfigs2.c

ffigs2.f

Primitive Attributes

Polyline Attributes

cfigs3.c

ffigs3.f

Polymarker Attributes

Text Attributes

Fill Area Attributes

Fill Area Set Attributes

Individual Attributes

Bundled Attributes

ffigs4.£f

2.9. Structure Traversal and Invocation

2.10.

2.11.

Executing a Child Structure

A Complex Structure Hierarchy

Manipulating Structures

Change Structure

Copy Structure
The Structure Element Pointer

Set Edit Mode

Delete Element

Delete Structure

Archiving and Retrieving Structures
Open Archive File

Close Archive File

Retrieve Structures

Workstation State List

The Display Update State

22
22
23
24
24
25
26
26
26
27
27
28
28
28
29
29
29
30
32
33
33
35
35
35
35
35
36
36
37
37
37
37
37
37

Deferral Modes

Modification Modes
(WAIT and NIVE)

Window Damage
pickjet.c

2.12. Inquiries

37
38
38
38
38
39

2.1. Creating a PHIGS
Program

2.2. Skeleton PHIGS
Programs

Programming in PHIGS

Now that we have had a look at An Overview of PHIGS, there is no time like the
present to begin programming in PHIGS. This section is designed to teach the
basics of programming with PHIGS. SunPHIGS -specific and more complex
programs will follow in this chapter and in the appendices. Since SunPHIGS
provides both a C and FORTRAN binding, different topics will incorporate code
fragments in one or both languages. The PHIGS standard function name will
appear throughout this text in all capital letters. The function language binding
names will appear within the example code.

The tutorial directory within the examples directory on the SunPHIGS 1.1 distri-
bution tape includes some simple programs and the programs described in this
chapter. The programs can typically be found in Appendix B of this manual and
with the following pathname:

/usr/lib/phigsl.1l/examples/tutorial

More complex examples (as well as a makefile for compiling them) are provided
in the examples directory, typically found in Appendix A of this manual and with
the following pathname:

/usr/lib/phigsl.l/examples

Two example programs, one in C and the other in FORTRAN, are provided in
this chapter. They contain basic skeleton PHIGS programs. A brief explanation
of the parameter list is provided. The SunPHIGS Reference Manual should be
consulted for a full explanation of each individual function. The proper header
file must be included in the program in order to open a workstation or access
SunPHIGS constant definitions.

o PHIGS must be opened (OPEN PHIGS) prior to calling any other PHIGS
function. This function will initialize the PHIGS environment and enable
access to all other PHIGS functions. The first parameter is the error message
file and the second parameter the amount of memory units, which can be
ignored for now.

o Once PHIGS has been opened, it is possible to open a workstation (OPEN
WORKSTATION). A workstation identifier is passed as the first parameter
and its value will be used to identify the workstation in subsequent PHIGS
function calls. The second parameter is the connection identifier of the work-
station. This value is used when interfacing the SunPHIGS workstation with

sSun 13 Revision A of 30 August 1989

microsystems

14 Getting Started with SunPHIGS™

2.3. Multiple Libraries

2.4. Compiling and Linking
SunPHIGS Programs

C Program Examples

SunView subwindows. This will be described in a later section devoted to
SunPHIGS Workstation Configuration. The last parameter is the type of
workstation to open. The available workstation types for SunPHIGS are the
Sun Tool, the Sun Canvas, and the CGM Output workstation. We will begin
with the SunPHIGS Sun Tool workstation type.

o The UNIX sleep command is called in order to pause long enough to view
the opened workstation. We then close the workstation, (CLOSE
WORKSTATION) and lastly, we close PHIGS (CLOSE PHIGS).

There are several librarieé relating to SunPHIGS:

-lphigs The basic SunPHIGS library. At run time, this library will
switch operation to the most efficient floating point sup-
port available.

-lphigs77 The FORTRAN compatibility library, ~1phigs77, must

be linked to FORTRAN-based SunPHIGS applications
before any other SunPHIGS libraries.

-1lphigs If a program uses a Sun Canvas workstation, it must be
linked with the —-11phigs (notice the extra ‘1’ before
phigs) library ahead of the SunPHIGS library,
-lphigs.

Note, -1llibrary is the UNIX convention for the library files which reside in
/usr/lib (e.g. —-1lphigs is equivalentto /usr/1ib/libphigs.a).
Additional SunPHIGS libraries are replacements for —1phigs that support a
specific floating point option. These libraries have names starting with
-1lphigs. To prepare an application with one of these floating point specific
libraries, you must also use the appropriate compiler switch when compiling and
linking. The instructions given in this section prepare programs to select floating
point support at run time.

This section illustrates procedures to compile a PHIGS program and link it to the
appropriate SunPHIGS library. More complete instructions may be found in the
SunPHIGS Software Installation Guide. Other Sun libraries and the mathematics
library must also be linked to any SunPHIGS application, as shown. The order in
which the libraries is linked is critical.

The Sun Canvas workstation type, introduced later, requires special linking
instructions, which are given here.

The files named Make£ile inthe examples and tutorial directories are make(1)
description files for compiling and linking to SunPHIGS. The makefile in each
directory will compile the programs provided in that directory.

sSsun Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 15

Sun Tool workstation

Sun Canvas workstation

FORTRAN Program
Examples

Sun Tool workstation

Sun Canvas workstation

Running a SunPHIGS
application

2.5. SunPHIGS 1int
Library

A C application that does not use Sun Canvas workstations may be compiled and
linked in one step, as follows:

A C application that uses a Sun Canvas workstation also requires the
-1lphigs library. Such a program may be compiled and linked in one step, as
follows:

A FORTRAN application that does not use Sun Canvas workstations may be com-
piled and linked in one step, as follows:

A FORTRAN application that uses a Sun Canvas workstation also requires the -
1llphigs library. Such a program may be compiled and linked in one step, as
follows:

To run the program, merely use its name. For example:

For C programmers, SunPHIGS provides a 1int library which provides type
checking beyond the capabilities of the C compiler. For example, to use the
SunPHIGS 1lint library to check a program ex1. c against the SunPHIGS func-
tion calling sequences, a command like the following is used:

Note that the error messages 1int generates are mostly warnings, and may not
have an effect on the operation of the program. For a detailed explanation of
lint, see the 1int chapter in the SunOS 3.2 manual, Programming Utilities
for the Sun Workstation, or the 4.0 manual, Programming Utilities and Libraries.

sun Revision A of 30 August 1989

microsystems

16 Getting Started with SunPHIGS™

cfigsl.c

ffigsl.f

cfigsl.c is a simple skeleton PHIGS program in C which demonstrates how
to open and close a SunPHIGS Sun Tool workstation.

Note: It is necessary to include the declarations in phigs . h in order to open a
workstation or access SunPHIGS constants.
#include <phigs/phigs.h>

main()

{
Open PHIGS.

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE):;
Open a workstation numbered 1 and pause for 5 seconds.

popenws (1, (Pconnid) NULL,phigs_ws_type_sun_tool);
sleep(5):

Close workstation 1 and close PHIGS.

pclosews (1) ;
pclosephigs () ;
}

ffigsl. £ is a simple skeleton PHIGS program in FORTRAN which demon-
strates how to open and close a SunPHIGS Sun Tool workstation.

Note: It is necessary to include the declarations in phigs77.h in order to open
a workstation or access SunPHIGS constants.

include ' /usr/include/phigs/phigs77.h’
Open PHIGS using logical unit number 6 for the SunPHIGS error file.

call popph(6, 0)

Open a workstation numbered 1 and pause for 5 seconds.

call popwk(l, 0, phigswsttool)
call sleep(5)

Close workstation 1 and close PHIGS.

call pclwk(1l)
call pclph

stop
end

sun Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 17

2.6. Creating a SunPHIGS
Program

Sun Tool Workstation
Configuration

SunPHIGS integrates graphics into the Sun View windowing environment. Sun-
View is a system which supports interactive, graphics-based applications running
within windows. In this section we will leamn how to configure SunPHIGS work-
stations and how to integrate them with the SunView window management sys-
tem. For more information on SunView, see the SunView Programmer’s Guide.
SunPHIGS has two types of input/output workstation types:

o The Sun Tool workstation - a SunPHIGS generated graphics display window
and message text subwindow.

o The Sun Canvas workstation - a SunView generated graphics display with
optional message text subwindow.

These two workstation types will be discussed separately. For the SunPHIGS
user, new to the Sun window system environment, SunPHIGS provides a default
workstation tool (Sun Tool) which consists of a SunView frame and subwindows.
No knowledge of SunView is necessary to generate this type of workstation.

For the experienced SunView user, SunPHIGS provides the Sun Canvas work-
station type. Here the application creates its own SunView frame and subwin-
dows and SunPHIGS uses these as PHIGS workstations. This allows the pro-
grammer to incorporate SunPHIGS workstations into a SunView application.

The two programs above create PHIGS workstations of the Sun Tool workstation
type. This generates a SunView frame with two subwindows: a graphics window
and a message text subwindow. The message window will appear as the default
for the Sun Tool workstation, but can be suppressed. An optional Valuator dev-
ice window is also available with the Sun Tool workstation.

With the Sun Canvas type workstations the message text subwindow is optional
with the default being no text subwindow. An optional Valuator device window
is also available with the Sun Canvas workstation.

All output primitives are displayed in the graphics window. Messages from the
MESSAGE function appear in the message window. Messages will display on the
graphics window if the message window is not available. The message window is
also used as the String device for workstations of category OUTIN. The Valuator
window contains the Valuator devices. This Valuator window is only visible if a
Valuator device is active. The code fragments below demonstrate the creation
and modification of the Sun Tool and Sun Canvas workstation types.

The OPEN WORKSTATION function requires a workstation type parameter. The
predefined workstation types for a C program are:

«) u Revision A of 30 August 1989
microsystems

18 Getting Started with SunPHIGS™

Table 2-1 SunPHIGS Default Workstation Types
Type | C Name | FORTRAN Name
Sun Tool phigs_ws_type sun_tool phigswsttool
Sun Canvas phigs_ws_type sun_canvas phigswstcanvas
CGM Output phigs_ws_type cgm out phigswstcgmout
As shown in the examples cfigsl.c and ££figsl. £ above, these base work-
station types can be used directly with the OPEN WORKSTATION call, or they
can be used to create new workstation types.
Table 2-2 Workstation Type Functions
FORTRAN Subroutine | C Function
phigswstcreate (basewst, newwst) phigs_ws_type create
phigswstdestroy (wst) phigs_ws_type destroy
phigswstset (wst, attribute, value) phigs_wst_type_set
phigswstget (wst, attribute, value) phigs_wst type get

Workstation Type Create

The SunPHIGS WORKSTATION TYPE CREATE function is used to copy an
existing workstation type. It can also be modified by this function in a C pro-
gram, or subsequently modified by the SunPHIGS WORKSTATION TYPE SET
function in both C and FORTRAN. This new workstation type can then be
passed to OPEN WORKSTATION.

We will begin by using the Sun Tool workstation type and creating a new work-
station with a minor modification.

Pwstype WStype;
popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);

WStype = phigs_ws_type_create(phigs ws_type sun_tool,
PHIGS_TOOL_LABEL, "SunPHIGS Tool Workstation",
0);

popenws (WS1, (Pconnid)NULL, WStype):;

Each workstation type has a workstation description table associated with it.
This table contains the PHIGS-specific data describing workstation capabilities
and some SunPHIGS-specific data. The SunPHIGS-specific data, as well as some
of the PHIGS data, can be changed by the application before opening the work-
station. The fields in the workstation description table are modified by calling
either WORKSTATION TYPE CREATE or WORKSTATION TYPE SET and speci-
fying attribute-value pairs. The attribute specifies the field to change and the
value is the value to assign to the field. Both the C and FORTRAN constants for
the workstation description table attributes are described in the WORKSTATION
TYPE SET man page. The C constants are enumerated types defined in
phigs.h. The FORTRAN constants are defined with Parameter statements in
phigs77.h.

sSun Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 19

Workstation Type Set

After PHIGS has been opened, a new workstation of type Sun Tool is created and
the tool label (or window namestripe) is modified. The default label for a Sun
Tool workstation is "PHIGS Workstation". Applications might want to label
each workstation differently. Here the PHIGS_TOOL_LABEL attribute is used
to change the label to read "SunPHIGS Tool Workstation". Once the new work-
station type, WSt ype, has been created, this new type is passed to the OPEN
WORKSTATION function. Note that the original

phigs_ws_type_ sun_tool type workstation cannot be modified and if
opened would still contain the default label. WStype is a modified copy of the
original Sun Tool type. Also, WStype can now be used as the base workstation
type by a future call to WORKSTATION TYPE CREATE.

In C example above, only one attribute-value pair was used,
PHIGS_TOOL_LABEL, "SunPHIGS Tool Workstation". With C programs,
attribute-value pairs are contained in a 0 terminated list of workstation type attri-
butes and corresponding values. This attribute-value-list can be used to modify
workstation description table fields with either WORKSTATION TYPE CREATE
or WORKSTATION TYPE SET. ‘

The code fragment that follows uses this list to configure a SunPHIGS work-
station to be 400 x 600 pixels and to implicitly define the aspect ratio of the
workstation device space so that the image is rendered on the full display surface.
For the complete program which uses the code fragments below see
non_square.c in the examples directory.

Pwstype wst;
float xmax = 400.0, ymax = 600.0;

wst = phigs_ws_type_create(phigs_ws_type_sun_tool,
PHIGS_TOOL_WIDTH, (int)=xmax,
PHIGS_TOOL_HEIGHT, (int)ymax,
PHIGS_DEVICE_COORD_XMAX PTR, &xmax,
PHIGS DEVICE_COCRD_YMAX PTR, &ymax,
0);

Although the WORKSTATION TYPE CREATE function is also used to create new
workstation types with FORTRAN programs, separate calls to WORKSTATION
TYPE SET must be used to modify the workstation attribute values before open-
ing a new workstation.

Below is an example of workstation type creation and modification using the
FORTRAN binding. This code fragment configures a SunPHIGS workstation to
be 600 x 600 pixels, disables the message window so that only the graphics win-
dow is displayed, and changes the tool label to read "FORTRAN phigswttool" .
For the complete program which uses the code fragments below see
toolattrs. £ in the examples directory.

sun Revision A of 30 August 1989

microsystems

20 Getting Started with SunPHIGS™

Workstation Type Get

Workstation Type Destroy

The Valulator Window

integer wkid, strid, wstooltype, labellen
label = 'FORTRAN phigswsttool’

call phigswstcreate (phigswsttool, wstooltype)

call phigswstset (wstooltype, PHIGSTOOLHEIGHT, 600)

call phigswstset (wstooltype, PHIGSTOOLWIDTH, 600)

call phigswstset (wstooltype, PHIGSTEXTSW, PHIGSNONE)

call phigswstset (wstooltype, PHIGSTOOLLABEL, label(1:20))

In addition to the workstation configuration functions discussed above there are
also the WORKSTATION TYPE GET and WORKSTATION TYPE DESTROY func-
tions. WORKSTATION TYPE GET is used to retrieve the value of a specified
workstation type field.

From the same program example used above, toolattrs. f, WORKSTATION
TYPE GET is used to retrieve the current value of the tool label and display it
with the Text primitive in the graphics window.

call phigswstget (wstooltype, PHIGSTOOLLABEL, labellen, label
call pschh(.02)
call ptx(.1l, .4, label)

Here the retrieved value is returned as an output parameter. In FORTRAN, the
label length is also returned when the workstation attribute value is a string. In
C, this function returns the requested information as the value of the function.
This return value must be cast to the appropriate type when assigning it to a vari-
able.

Intxattrs.c, from the examples directory, WORKSTATION TYPE GET is
used to retrieve the base type of the workstation type.

Phigs_base_name n;

n = (Phigs_base_name)phigs_ws_tYpe_get(*wst, PHIGS_BASE NAM

WORKSTATION TYPE DESTROY deallocates any memory used by the work-
station type. After a workstation type has been destroyed, it can no longer be
used.

The Valuator device window contains the Valuator devices, and is only visible if
a Valulator device is active. Workstation attribute values may be set to control
the position of the Valulator window on the display.

The code fragment below is from figstoolval. £ inthe tutorial directory.
This program demonstrates the creation of the Valuator window, but does not
utilize the Valuator device. See rspheres. c in the examples directory for a
complete program which uses a Valuator device and the section on Input for a
discussion on setting up logical input devices.

Create a new workstation of type phigswsttool; set the attribute values for
positioning the Valuator window; open the workstation.

S un Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 21

2.7. Sun Canvas -
Workstation
Configuration

The Message Window

call phigswstcreate (phigswsttool, toolval)
call phigswstset (toolval, PHIGSVALPANELX, 650)
call phigswstset (toolval, PHIGSVALPANELY, 25)
call popwk(wkid, 0, toolval)

INITIALIZE VALUATOR and SET VALUATOR MODE to activate the device.

call pinvl (wkid, valdev, 0.5, pet, 0.0,1.0,0.0,1.0, -1.0,1.0, 1ldr,rec)
call psvlm(wkid, valdev, PEVENT, PECHO)

The man page for WORKSTATION TYPE SET, which describes all the work-
station attribute fields, states that PHIGS_VAL PANEL X (Y] and
PHIGSVALPANELX [Y] specify the desired location, in screen coordinates, of
the Valuator panel. These coordinates are in relation to the top left comer of the
workstation’s window. Therefore, in the above example, the Valuator window
will be seen 50 pixels to the right of the workstatation window and 25 pixels
down.

As pointed out in the Creating a SunPHIGS Program section, an application may
want to integrate SunPHIGS workstations with a SunView application. This
would allow the programmer to have Sun View windows and SunPHIGS win-
dows (workstations) running together in the same application.

In this section we will demonstrate different workstation configurations using a
Sun Canvas workstation type.

To use a Sun Canvas workstation, first a SunView canvas subwindow must be
created and the Canvas handle passes to OPEN WORKSTATION as the connec-
tion identifier. To learn more about creating Sunview subwindows, see the Sun-
View Programmers Guide. Canvasattrs.c and fmarkers. £, in the exam-
ples directory, are complete programs which use SunView to produce a Canvas
subwindow. The code fragments below are from canvasattrs.c and demon-
strate creating both a SunView Canvas and a Text subwindow handle, which are
then passed to SunPHIGS.

The default for a Sun Tool workstation type is to display the message text
subwindow. The default for the Sun Canvas workstation is not to display the
message window. In order to bring up the text subwindow, a new workstation
type must be created, and the attribute-value pair (PHIGS_TEXTSW, text handle)
used to enable the text subwindow display. The effect of many Sun Tool work-
station attributes can be created for Sun Canvas workstations by using SunView
attributes. An example is the frame label, shown below.

sSsun Revision A of 30 August 1989

22 Getting Started with SunPHIGS™

The SunPHIGS/SunView Obtain SunView canvas and textsw handles.

Interface in C frame = window_create (NULL, FRAME,

FRAME LABEL, "SunPHIGS Canvas Workstation",
0):

canvas = window_create (frame, CANVAS,
WIN_PERCENT_HEIGHT, 90,
0):

textsw = (Textsw) window_create(frame, TEXTSW,
WIN_PERCENT_HEIGHT, 10,
TEXTSW_IGNORE_LIMIT, TEXTSW_INFINITY,
0);

Open PHIGS and create a Sun Canvas workstation with a Message window. The
SunView textsw handle is passed as the value for the PHIGS_TEXTSW work-
station attribute. Open the modified Sun Canvas workstation.

popenphigs ((Pchar*)NULL, PDEFAULT_MEM SIZE);
canvaswst = phigs_ws_type create(phigs_ws_type_sun_canvas,

PHIGS_TEXTSW, textsw,
0);

popenws (WS, (Pconnid)canvas, canvaswst);

The SunPHIGS/SunView To create a Sun Canvas workstation using the FORTRAN binding, a small C

Interface with FORTRAN function is used as the interface. fmarkers. £ calls canvasid, a C function
which creates the SunView canvas subwindow and returns the Canvas handle.
SunView functions cannot be called directly from a FORTRAN application.
Included in the canvasid. c file is another function, display, which
activates the SunView Notifier, needed to display the windows on the screen.

The code fragments below are from fmarkers. f and demonstrate the creation
of a Sun Canvas workstation from a FORTRAN program. See canvasid.c,
also in the examples directory for the complete C interface function.

integer canvas, canvasid
SunView Setup canvasid is a C function which returns the connection
identifier canvas for a SunPHIGS canvas workstation.

canvas = canvasid()

Open PHIGS and open the Sun Canvas workstation.

call popph(6, 0)
call popwk(l, canvas, phigswstcanvas)

@ sun Revision A of 30 August 1989

Chapter 2 — Programming in PHIGS 23

Call the C/SunView interface function to display the SunView canvas window.

call display

The Valuator device window for a Sun Canvas workstation type is used in the
same way as for a Sun Tool workstation. Workstation attribute values are
specified using WORKSTATION TYPE SET to control the location for display of
the Valuator window. The code fragment below is from figscanval.f inthe
tutorial directory. This program demonstrates the creation of the Valuator win-
dow, but does not utilize the Valuator device. See rspheres. ¢ in the exam-
ples directory for a complete program which uses a Valuator device and the sec-
tion on Input for a discussion on setting up logical input devices.

canvas = canvasid()
call popph(6, 0)
Create a new workstation of type phigswstcanvas; set the attribute values for

positioning the Valuator window; open the workstation.

call phigswstcreate (phigswstcanvas, canvaswst)
call phigswstset (canvaswst, PHIGSVALPANELX, 625)
call phigswstset (canvaswst, PHIGSVALPANELY, 25)
call popwk(wkid, canvas, canvaswst)

INITIALIZE VALUATOR and SET VALUATOR MODE to activate the device.

call pinvl(wkid, valdev, 0.5, pet, 0.0,1.0,0.0,1.0, -1.0,1.0, ldr,rec)

call psvlim(wkid,

call display

2.8. Creating Structures

1, PEVENT, PECHO)

The WORKSTATION TYPE GET and WORKSTATION TYPE DESTROY functions
for the Sun Canvas workstation type are used in the same way as with a Sun Tool
type workstation.

Now that we are able to bring up a SunPHIGS workstation it is time to begin
displaying objects. As previously discussed, graphical objects are ‘ ‘defined’’ by
a sequence of elements within structures. However, the functions which create
the structure elements to describe an object do not display the object. Structure
traversal is the mechanism for displaying objects on a workstation.

First a structure must be created. Any functions which ‘‘reference’” a structure,
such as OPEN STRUCTURE, POST STRUCTURE, or EXECUTE STRUCTURE will
implicitly create an empty structure (one with no structure elements) if no struc-
ture exists with the specified structure identifier. A structure must be open before
the application can insert new elements or make changes to existing elements.

@ sun Revision A of 30 August 1989

24 Getting Started with SunPHIGS™

Structure Elements Structure elements are the building blocks of a graphical image. The different
structure elements which contribute to the display of a graphical image are:

O output primitives - the basic graphic element used to construct an object

a primitive attributes - affect the appearance of the output primitives

o Sstructure invocations - execute one structure from another

o modeling transformations - affect the placement of a graphical object

o view selections - control the viewing angle

o name sets - control visibility, highlighting and detectability of groups of
primitives

0 pick identifiers - associate names with output primitives

o labels - used by the application to mark locations within a structure

o application data used by the application to store non-executable data into the
CSS

o generalized structure elements - implementation defined structure elements
which enable access to special control and attribute related actions beyond
the scope of the standardized PHIGS structure elements

Output Primitives Output primitives are the basic graphic elements used to construct an object. The
POLYLINE function creates a structure element which defines points for drawing
a set of connected straight lines. The POLYMARKER function creates an element
containing a set of coordinates at which to draw the same symbol. TEXT creates
character string data. FILL AREA and FILL AREA SET elements are used to gen-
erate polygons. The PHIGS standard also defines the CELL ARRAY primitive
and the GENERALIZED DRAWING PRIMITIVE (GDP). SunPHIGS currently
implements one GDP, the Polyline Set

Figure 2-1 SunPHIGS Workstation with Several Primitives

Some Text
X ¥

* X

We will take our original PHIGS program and use it as a model to build upon in
order to generate a basic output primitive. Since we will be inserting a structure
element that uses parameter data, we begin with defining the data.

After opening PHIGS and a workstation, a structure is opened. The only parame-
ter to OPEN STRUCTURE is a structure identifier, which is used to specify the
structure within the CSS to be opened. If no structure exists for the identifier
specified, one is created.

Q} sSsun Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 25

cfigs2.c

Once the structure is opened, any structure elements can be inserted. We will use
the POLYLINE function to insert a polyline output primitive structure element.
We will then close the structure (CLOSE STRUCTURE) and post it (POST
STRUCTURE). It is not until the structure is posted that the polyline will actually
be displayed on the workstation.

Note that it is not necessary to close the structure before posting it to the work-
station; however, it is a good idea for reasons discussed in the section on deferral
modes.

cfigs2.c demonstrates the use of structures and structure elements in display-
ing a simple polyline.

#include <phigs/phigs.h>

main ()

{

Define a series of points for a polyline to be displayed. Ppoint is a structure
containing the x and y coordinates. The array is static so the C language will
allow its initialization.

static Ppoint xypoints([] = { {0.1, 0.5}, {0.9, 0.5} } ;
Open PHIGS, open a workstation and open structure 1.

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE;
popenws (1, (Pconnid)NULL, phigs_ws_type_sun_tool);
popenstruct (1) ;

Insert the polyline structure element into the open structure. The first parameter
is the number of points defining the polyline. The second parameter is a pointer
to an array of structures containing the x-y coordinates. Close the stucture.

ppolyline(2, xypoints);
pclosestruct () ;

Post the structure to the workstation in order to have the structure’s contents
displayed; pause.

ppoststruct(1,1,0.);
sleep(5);

Close the workstation and close PHIGS.

pclosews (1) ;
pclosephigs () ;

sun Revision A of 30 August 1989

26 Getting Started with SunPHIGS™

ffigs2.£f

Primitive Attributes

Polyline Attributes

ffigs2.f demonstrates the use of structures and structure elements in display-
ing a simple polyline.

include ’/usr/include/phigs/phigs77.h'’
Define a series of points for a polyline to be displayed.

real xpoints(2), ypoints(2)
data xpoints /0.1, 0.9/
data ypoints /0.5, 0.5/

Open PHIGS, open a workstation and open structure 1.

call popph(6, 0)
call popwk(l, 0, phigswsttool)
call popst(l)

Insert the polyline structure element into the open structure. The first parameter
is the number of points defining the polyline. The other parameters are the arrays
containing the x-y coordinates. Close the stucture.

call ppl(2, xpoints, ypoints)
call pclst

Post the structure to the workstation in order to have the structure’s contents
displayed; pause.

call ppost(l, 1, 0.)
call sleep(5)

Close the workstation and close PHIGS.

call pclwk (1)
call pclph

The examples above cover the basics of displaying a graphical object on a
SunPHIGS workstation. However, there are many aspects that we will want to
control in order to display the object exactly as we want it to appear (e.g., its
color, linetype, etc.). The code fragments below demonstrate the use of output
primitive attributes. These functions create structure elements that define the
appearance of primitives. For the complete program to which these example
lines belong see c£igs3.c and ££igs3. £ in the tutorial directory.

The SET <attribute> function creates a structure element which defines the
appearance of primitives by assigning an individual attribute value to them.

o For a polyline, like the one we just generated, the attribute functions are SET
LINETYPE (e.g., solid, dashed, dotted, dash-dotted, etc.), SET LINEWIDTH
SCALE FACTOR, which controls the width of the line, and SET POLYLINE
COLOUR INDEX. PHIGS uses indexed color entries from a color table,
therefore this attribute is an index into the workstation’s color table.

sSsun Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 27

cfigs3.c

ffigs3.£f

cfigs3. c demonstrates the definition of output primitive attributes to change
the appearance of a simple polyline.

5.0;
5;

static Pfloat linewidth
static Pinty colorindex

Create structure elements to set the linetype, the linewidth scale factor and the
polyline color index; move the x-y coordinates and redraw the polyline.

psetlinetype (PLN_DOTDASHDOT) ;
psetlinewidth (linewidth);
psetlinecolourind(colorindex);

xypoints[0].y += .2;
xypoints{l].y += .2;
ppolyline(2, xypoints);

ffigs3.f demonstrates the definition of output primitive attributes to change
the appearance of a simple polyline.

5.0
5

linewidth
colorindex

Create structure elements to set the linetype, the linewidth scale factor and the
polyline color index; move the x-y coordinates and redraw the polyline.

call psln(PLNDOTDASHDOT)
call pslwsc(linewidth)
call psplci(colorindex)

ypoints(l) = ypoints(l) + .2
ypoints (2) ypoints(2) + .2
call ppl(2, xpoints, ypoints)

[

Both programs cfigs3.c and ££igs3. £ build a structure which is shown in
Figure 2-2. The first polyline appears across the center of the window, and uses
default attributes. The second polyline appears above it, and uses attributes set
by intervening elements.

S un Revision A of 30 August 1989

microsystems

28 Getiing Started with SunPHIGS™

Figure 2-2

Polymarker Attributes

Text Attributes

Fill Area Attributes

Structure built by programs cfigs3.cand £figs3.f

Structure 1

POLYLINE
(0.1,0.5), (0.9,0.5)
SET LINETYPE
dot-dash-dot-dotted
SET LINEWIDTH SCALE FACTOR
5.0
SET POLYLINE COLOUR INDEX
S(YELLOW)
POLYLINE
(0.1,0.7), (0.9,0.7)

For a complete programming example that displays all polyline linetypes avail-
able with this implementation of PHIGS, see £1ines. £ in the examples direc-
tory. C examples using polylines can also be found in the examples directory.

The attribute functions for polymarkers are very similar to the polyline attribute
functions. They are SET MARKER TYPE, SET MARKER SIZE SCALE FACTOR
and SET POLYMARKER COLOUR INDEX. The mechanism for creating poly-
marker attribute elements is the same as for polylines. For a programming exam-
ple that displays all marker types available with this implementation, see
fmarkers. £ in the examples directory. C examples using polymarkers can
also be found in the examples directory.

The attribute functions for the text output primitive are more extensive.

o SET TEXT FONT, SET TEXT PRECISION, SET TEXT COLOUR INDEX, SET
CHARACTER HEIGHT, SET CHARACTER SPACING, and SET CHARACTER
EXPANSION FACTOR all affect the appearance of the text string.

o SET TEXT PATH, SET TEXT ALIGNMENT, and SET CHARACTER UP
VECTOR affect where the text is placed relative to the workstation display.

Several programs in the examples directory demonstrate the use of text attributes.
Ftext . f displays strings in all fonts supported by SunPHIGS and the text pre-
cision attribute. Ftextall. f displays text strings using different character
spacing and expansion factors as well as various text paths and character up vec-
tors. Txattrs.c inthe examples directory demonstrates the use of text primi-
tive attributes using the C binding.

Attribute functions for fill areas (polygons) are SET INTERIOR STYLE, SET
INTERIOR STYLE INDEX and SET INTERIOR COLOUR INDEX. The interior
style attribute determines whether a fill area is to be hollow, solid filled, hatch
filled or empty. Hollow fills are represented by a line drawn around the interior.
Empty fill areas are invisible on the display. The interior style index attribute is

sun - Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 29

Fill Area Set Attributes

Individual Attributes

Bundled Attributes

an index into the workstation’s hatch table (see Default Tables) selecting which
hatch is to be used. The interior colour index is, like the other color index attri-
butes, an index into the color table.

Fpolygons. £ demonstrates the use of different interior styles.

Cpolygons. ¢ demonstrates the use of the interior style index. Both of these
programs use the fill area function to create the structure elements and display
polygons in various colors and styles.

Fill area sets have the same attributes as the fill area primitives. In addition,
because fill area sets have edges (fill areas do not), there are additional fill area
set attribute functions which affect the appearance of the edge itself.

o SET EDGE FLAG determines whether or not a fill area set will display an
edge.

o SET EDGE TYPE, SET EDGEWIDTH SCALE FACTOR and SET EDGE
COLOUR INDEX affect the appearance of the edge in the same way the
corresponding primitive attributes affect the appearance of a polyline.

In the examples directory, ££fillset . £ demonstrates the creation of fill area
sets using the FORTRAN binding and fourview. c, the C binding.

So far, we have been creating structure elements in order to change the appear-
ance of output primitives. These are called individual attributes. Creating or
editing structure elements in the CSS causes a workstation independent, global
change. Primitives which follow in the structure network will reflect their new
appearance on all open workstations. By default, only individual attributes are
used.

Another technique allows for the same primitive to appear differently on dif-
ferent workstations. This is called Bundled Attributes. The mechanism for
defining workstation dependent attribute values involves selecting attributes from
a workstation bundle table. The SET <attribute> REPRESENTATION functions
define each bundle table entry.

The bundled attributes for each primitive are as follows:
o polyline - line type, line width scale factor and polyline color index;

o polymarker - marker type, marker size scale factor and polymarker color
index;

o text - text font, text precision, text color index, character expansion factor and
character spacing.

For fill areas and fill area sets:
a interior - interior style, interior style index and interior color index.
For fill area sets:

o edge - edge flag, edge color index, edge line type and edge width scale factor.

Sun Revision A of 30 August 1989
microsystems

30 Getting Started with SunPHIGS™

ffigs4.f

Predefined bundle table entries exist for all of the primitives described above. By
using the predefined attribute values in a workstation’s bundle tables, or modify-
ing the bundle table attributes, the application may use the same primitive data
on multiple workstations with different attribute values. The workstation
description table contains the default bundle table entries (see PHIGS Worksta-
tion Description Table (7P)).

Each bundle table entry is associated with an index. The bundle table index is
used when defining new bundled attribute values using the SET <attribute>
REPRESENTATION functions. The SET <primitive> INDEX function creates a
structure element containing this index to select an entry from a workstation’s
bundle table.

The default source for primitive attributes are the individual attribute values. To
notify PHIGS that the application wants to use the bundle table attribute values,
the SET INDIVIDUAL ASF (Aspect Source Flag) function is used.

Inthe £f£illset. £ example program, a second structure was created in order
to display the same fill area set with and without edges on two separate work-
stations. This could be done just as effectively by changing an attribute value in
one workstation’s bundle table. We will modify the ££illset . f program to
use a workstation bundle table entry to display the edge of the fill area set on one
workstation but not on the other. Below are code fragments which show this pro-
cess. For the complete program containing these code fragements see

ffigs4. £ inthe tutorial directory. For a complete program demonstrating
bundle table definition see fbundles. £ in the examples directory.

ffigs4.f demonstrates how to create a fill area set with and without edges
using the workstation bundle tables.

integer edgeindex, edgetype, edgecolor
real edgewidth

edgeindex = 1
edgetype = 1
edgewidth
edgecolor

1.0
1

1l

call popph(6, 0)
call popwk(WSl, 0, tooll)
call popwk(WS2, 0, tool2)

Use workstation 1’s bundle table to turn the SET EDGE FLAG off. The
workstation’s bundle table edge flag attribute will need to be changed from the
default value (on) to off. See the PHIGS Workstation Description Table (7P)
manual page for workstation default values.

The SET EDGE REPRESENTATION function defines an edge attribute bundle
table entry for the specified workstation. This bundle contains the edgetype,
width and color as well as whether the edge is displayed. The function below
uses the edge flag value POFF to specify that the edge is not to be displayed on
WwS1.

@ mS un Revision A of 30 August 1989

Chapter 2 — Programming in PHIGS 31

call psedr(WS1l, edgeindex, POFF, edgetype, edgewidth, edgecolor)

Open a structure and begin inserting elements. The SET EDGE INDEX function
creates a structure element containing an edge index value which selects an entry
from the workstation’s edge bundle table.

call popst (strid)
call psedi (edgeindex)

Use the SET INDIVIDUAL ASF function to insert a structure element containing
the Aspect Source Flag value; this determines whether the primitive’s individual
attribute value or the workstation’s bundle table attribute value will be used for
the specified attribute. Here we designate the bundied attribute for the edge flag.
All other edge attributes will use their individual values.

call psiasf (PEDFG, PBUNDL)

Create the individual attribute value elements for the fill area set using SET
INTERIOR STYLE, SET INTERIOR STYLE INDEX and SET INTERIOR COLOUR
INDEX. Insert the fill area set element into the structure and close it.

call psis (PHATCH)

call psisi (hatchindex)

call psici(colourindex)

call pfas(3, boundaries, fasxarr, fasyarr)

call pclst
Figure 2-3 Structure using Bundled Edge Flag Attribute
Workstation 1’s
Structure 1 Edge Bundle 1
SET EDGE INDEX . EdgeFlag |
1 i OFF |
SET INDIVIDUAL ASF b T Rdgetype
Edge flag ASF, BUNDLED | 1 (SOLID) »
SET INTERIOR STYLE " Edgewidih scale facior |
HATCH ;_ 1.0 !
SET INTERIOR STYLE INDEX . Edgecolour
-5 (Rectangular Grid) 'L 1 (White) _,'
SET INTERIOR COLOURINDEX | __ ~~=7777=7777
6 (CYAN)
FILL AREA SET
coordinates for diamond
@ S un Revision A of 30 August 1989
microsystems

Getting Started with SunPHIGS™

2.9, Structure Traversal

and Invocation

Figure 2-4

—

Table 2-3

Traversal, the execution of a structure, begins when the structure is posted (POST
STRUCTURE). Structures are executed sequentially. Structures can be invoked
or executed, from other structures (EXECUTE STRUCTURE). A referenced struc-
ture (one which is executed from another) is known as a child structure. Struc-
tures which reference or execute child structures are called parent structures.
During traversal, (the execution of a posted structure) the attribute values are
bound to the output primitives. These values are then passed on, or inherited by
child structures executed after the attribute values have been set. A referenced
structure can create its own attribute values using either of the methods discussed
above. As shown on Figure 2-4, these values will be bound to any primitives fol-
lowing attribute definition in the child structure and its descendants, but will have
no effect upon the primitives in the parent structure.

Simple Hierarchical Structure Network

Parent Structure A

SET POLYLINE COLOUR INDEX
3 (GREEN)

POLYLINE
coordinates for polyline #1

EXECUTE STRUCTURE
Structure B

POLYLINE
coordinates for polyline #3

.
ot
.
.
e
e
.
.

Child Structure B

SET POLYLINE COLOUR INDEX
2 (RED)

POLYLINE
coordinates for polyline #2

During traversal, the elements in structure A are executed sequentially until the
EXECUTE STRUCTURE, when structure B is executed until its completion. The
exectution of structure A is then resumed. Polyline 1 will be green. Polyline 2
will be red. Polyline 3 will be green.

Traversal Order for Simple Hierarchical Structure Network

St;‘::;re :}l:::;:: Element Type Element Data
Structure A 1 SET POLYLINE COLOUR INDEX 3 (Green)
Structure A 2 POLYLINE coordinates for polyline #1
Structure A 3 EXECUTE STRUCTURE Structure B
Structure B 1 SET POLYLINE COLOUR INDEX 2 (Red)
Structure B 2 POLYLINE coordinates for polyline #2
Structure A 4 POLYLINE coordinates for polyline #3

Below are code fragments which demonstrate the execution of a child structure
from within another structure. For the complete program containing these code
fragments see £fillset.f inthe examples directory. Most of the C programs
in the examples directory use the EXECUTE STRUCTURE structure ¢lement.

Revision A of 30 August 1989

Chapter 2 — Programming in PHIGS 33

Executing a Child Structure

Figure 2-5

A Complex Structure
Hierarchy

Q@sun

Open structure A and insert the structure element SET EDGE FLAG with a value
of on (the default is off). Also insert an EXECUTE STRUCTURE e¢lement to
create the empty structure B. Close structure A.

call popst (structd)
call psedfg(PON)
call pexst (structB)
call pclst

Open structure B and create the fill area set attribute elements SET INTERIOR
STYLE, SET INTERIOR STYLE INDEX and SET INTERIOR COLOUR INDEX.
Create a fill area set element with 3 boundaries and close structure B.

call popst (structB)

call psis (PHATCH)

call psisi (hatchindex)
call psici(colourindex)
call pfas(3, boundaries,
call pclst

fasxarr, fasyarr)

Post structure A to workstation 1, so the edge flag is ON. Post structure B to
workstation 2. It will inherit default attributes, including an edge flag of OFF.

call ppost (WS1,
call ppost (WS2,

structaA, 0.)
structB, 0.)

Structure Network with Both Structures Posted (to Different Workstations)

Structure A Structure B

(Posted to Workstation 1) (Posted to Workstation 2)

SET EDGE FLAG SET INTERIOR STYLE

ON HATCH
EXECUTE STRUCTURE SET INTERIOR STYLE INDEX
Structure B -5 (Rectangular Grid)
SET INTERIOR COLOUR INDEX
6 (CYAN)
FILL AREA SET

coordinates for diamond

Note that only workstation 1 will display the edge of the fill area set as structure
B is executed from within structure A, the posted structure, and inherits the "edge
on". Structure B is posted directly to workstation 2 and executed without inherit-
ing the "edge on".

The following robot arm example demonstrates the application of a hierarchical
structure network. The placement of the robot hand always starts where the robot
arm leaves off. Positioning by use of modeling transformations is discussed in
Chapter 3, using this example.

Revision A of 30 August 1989

icrosystems

34

Getting Started with SunPHIGS™
Figure 2-6 Structure Hierarchy for Robot Arm
Robot
Structure
1 FILL AREA
coordinates for trapazoid
o | SETTOCAL TRANSFORMATION
tr@iorm [or arm
EXECUTE STRUCTURE
3 A
rm
} Arm
Structure
1 EXECUTE STRUCTURE
Circle
2 FILL AREA
coordinates for arm
[SET LOCAL TRANSFORMATION
transform for hand
4 EXECUTE STRUCTURE
Hand

—

Circle
Structure
FILL AREA
coordinates for circle

Hand
Structure
EXECUITE STRUCTURE
Circle
SET LOCAL TRANSFORMATION
transform for one
EXECUTE STRUCTURE

Gri
SET LOCAL TRANSFORMATION

transform for other

EXECUTE STRUCTURE

AT T)

Grip

Grip
Structure
FILL AREA
coordinates for half

Now we consider the traversal of this structure network, when the Robot struc-
ture is posted to a workstation. Each element is executed in succession. When
an EXECUTE STRUCTURE element is encountered, the child structure is
traversed, and then execution continues at the element following the EXECUTE
STRUCTURE element. Because the Grip and Circle structures are referenced
more than once, their elements are executed more than once, inheriting different
attributes. This causes the two appearances of the circle on the workstation to

have different locations.

Revision A of 30 August 1989

Chapter 2 — Programming in PHIGS 35

Table 2-4 Order of Element Execution During Traversal

2.10. Manipulating
Structures
Change Structure

Copy Structure

The Structure Element
Pointer

Set Edit Mode

St;‘;i:::e 1‘3‘:::;2: Element Type Element Data
Robot 1 FILL AREA coordinates for trapazoid
Robot 2 SET LOCAL TRANSFORMATION transform for arm
Robot 3 EXECUTE STRUCTURE Arm
Amm 1 EXECUTE STRUCTURE Circle
Circle 1 FILL AREA coordinates for circle
Arm 2 FILL AREA coordinates for arm
Arm 3 SET LOCAL TRANSFORMATION transform for hand
Am 4 EXECUTE STRUCTURE Hand
Hand 1 STRUCTURE Circle
Circle 1 FILL AREA coordinates for circle
Hand 2 SET LOCAL TRANSFORMATION transform for one
Hand 3 EXECUTE STRUCTURE Grip
Grip 1 FILL AREA coordinates for half
Hand 4 SET LOCAL TRANSFORMATION transform for other
Hand 5 EXECUTE STRUCTURE Grip
Grip 1 FILL AREA coordinates for half

PHIGS provides many functions for the manipulation of structures.

The CHANGE STRUCTURE IDENTIFIER AND REFERENCES function changes
the identifier of the specified structure and changes all references to the original
identifier to now reference the new identifier. References may be both EXECUTE
STRUCTURE elements and workstation postings (POST STRUCTURES).

COPY ALL ELEMENTS FROM STRUCTURE copies the elements from a specified
Structure Identifier and inserts them into the currently open structure after the
element pointed to by the element pointer.

The SET ELEMENT POINTER function sets the current element pointer, which is
the number of the element in the structure currently open at which operations on
the structure begin.

The SET EDIT MODE function sets the edit mode in the PHIGS state list to insert
or replace. This value controls how the PHIGS functions which create new
structure elements add the new element to the currently open structure.

o When the edit mode is insert (the default), new structure elements are
inserted into the open structure following the element pointed to by the
current element pointer. Then the element pointer is advanced to the new
element.

sun Revision A of 30 August 1989

microsystems

36 Getting Started with SunPHIGS™

Figure 2-7

Figure 2-8

Delete Element

Delete Structure

As an example, consider opening an (empty) structure and calling the LABEL
function twice, with argument 1, and then 2. Figure 2-6 shows that afterward
both elements are present and the element pointer points to the last element
inserted.

Creating Elements in Insert Edit Mode

(a) With An (b) After (c) After second
Empty Structure calling LABEL LABEL call
=0 =1 LABEL 1 LABEL
: 1 1
............... L, v
2

o While the edit mode is replace, new structure elements replace the element in
the open structure pointed to by the current element pointer.

Considering the same example in Replace edit mode shows that the first element
is inserted, but element creation to a nonempty structure replaces the element at
the element pointer without moving the pointer. Again, the LABEL function is
called twice, with argument 1, and then 2. Figure 2-7 shows that afterward only
the last element created is present and the element pointer points to it.

Creating Elements in Replace Edit Mode

(a) With An (b) After (c) After second
Empty Structure calling LABEL LABEL call
0! o e T

Note: Attempting to insert elements into an open structure while the edit mode is
replace is difficult. In such a case, each new element will overwrite the existing

clement at the current element position. In replace mode, the element pointer is

not implicitly incremented after creating an element, as it is in insert mode.

DELETE ELEMENT removes the structure element at the element pointer in the
open structure and renumbers the remaining elements in the structure.

The DELETE STRUCTURE function can work one of two ways.

o If the structure identifier is not the currently open structure, DELETE
STRUCTURE removes the specified structure from the Central Structure
Store. The function deletes the structure identifier, the structure contents, and
all references to the structure identifier contained in other structures. If the
structure is posted to any workstations, it is unposted.

o If the structure identifier is the currently open structure, DELETE
STRUCTURE replaces the open structure with an empty, unreferenced struc-
ture.,

sun

microsystems

Revision A of 30 August 1989

Chapter 2 — Programming in PHIGS 37

Archiving and Retrieving
Structures

Open Archive File

Close Archive File
Retrieve Structures

2.11. Workstation State

List

The Display Update State

Deferral Modes

The ARCHIVE STRUCTURES function copies a list of specified structures from
the CSS to the specified open archive file. SunPHIGS supports the PHIGS
archive functionality with a private, binary archive format.

The OPEN ARCHIVE FILE function takes as an argument specifying the UNIX
file to use for a given archive identifier. If this file does not exist, it will be
created. Once an archive file has been opened, it may be both read from
(RETRIEVE STRUCTURES) and written to (ARCHIVE STRUCTURES).

When CLOSE ARCHIVE FILE is called, any archived structures will be written to
the UNIX file. Archives produced by SunPHIGS will be upwardly compatible
and will be transportable between machine architectures.

RETRIEVE STRUCTURES copies a list of structures from the specified open
archive file into the Central Structure Store.

The display image is affected by the information contained in the workstation
state lists as well as the CSS. Workstation attribute bundle tables are an example
of this. The application controls when and how changes to the display surface
take place by modifying certain values in the workstation state lists.

SET DISPLAY UPDATE STATE sets the deferral mode and modification mode
entries in the specified workstation’s state list. These modes control the degree
to which the display must reflect the state of the Centralized Structure Store and
the workstation tables. Selection of deferral and modification modes can heavily
influences both visual results and performance.

The deferral mode controls when the display is updated (i.e., made to match the
CSS and workstation tables).

o The default deferral mode is As Soon As Possible (ASAP). This requests that
SunPHIGS keep the screen consistent with the Centralized Structure Store
(CSS) and the workstation state list at all times. This typically causes a
regeneration for every change to a structure appearing on a workstation and
for every change to the workstation’s state list.

o "Before the Next Interaction Globally" (BNIG) behaves like ASAP when any
input device is active on any workstation.

o "Before the Next Interaction Locally" (BNIL) behaves like ASAP when any
input device is active on the specified workstation.

o "At Some Time" (ASTI) causes the display to be updated at the discretion of
PHIGS. With SunPHIGS, "At some time" causes the screen to be updated
only if the application calls Close Structure or if a window system event
(e.g., ‘*damage’’ or resize) causes a repaint.

o "When the Application Requests It" (WAIT) will not allow any updates to
the display until the application requests it.

S un Revision A of 30 August 1989

38 Getting Started with SunPHIGS™

Modification Modes

(WAIT and NIVE)

Window Damage

pickjet.c

REDRAW ALL STRUCTURES and UPDATE WORKSTATION are the two func-
tions which will cause the workstation to be updated when the deferral mode is
set to WAIT.

Except for the ASAP deferral mode, there are times in between display updates
that the image can be out-of-date, i.e., not reflecting the current state of the CSS
and workstation state lists.

The modification mode controls changes to the display between updates.

o "No Immediate Visual Effects" (NIVE) indicates that the only changes to the
display are those which are in accordance with the deferral mode.

o "Update Without Regeneration" (UWOR) allows all the updates that can be
realized immediately without regenerating the entire display.

o "Quick Update Method" (UQUM) allows the use of workstation dependent
simulations of changes that cannot be performed immediately unless the
display is regenerated.

"When the Application Requests It" and "No Immediate Visual Effects”
(WAIT/NIVE) together prohibit any change to the display in response to changes
in the CSS or the workstation state lists.

Pickijet.c, in the tutorial directory, demonstrates the use of the "At Some
Time" and "No Immediate Visual Effects" combination of modes.

With SunPHIGS, ASTI causes the screen to be updated only if the application
calls CLOSE STRUCTURE or if a window system event (e.g., "damage" or resize)
causes a repaint.

SunPHIGS regenerates the image from the CSS when the window is damaged by
window system events. However, only the damaged portion of the SunPHIGS
canvas is repainted. Therefore, this area of the display may not be regenerated
with the same information that generated the older, out-of-date, but not "dam-
aged" portion of the display.

In the open_phigs function of pickjet.c, PHIGS is opened, a workstation
is opened and the SET DISPLAY UPDATE MODE function used to set the deferral
and modification modes to ASTI/NIVE.

popenphigs ((Pchar *)NULL, PDEFAULT_ MEM SIZE);
popenws (ws, (Pconnid)NULL, phigs_ws_type sun_tool);

psetdisplayupdatest (ws, PASTI, PNIVE); /* turn off auto updates

*/

ppoststruct(ws, structure, priority); /* post before edit is ok */

Note that POST STRUCTURE adds a structure identifier to a table of posted struc-
tures on the specified workstation. Since the structure does not yet exist it will be
created as an empty structure and posted to the workstation. However, because
the update state is ASTI/NIVE, the display will not be generated until the struc-
ture is closed. The build_css function opens the empty structure, fills it with
the data to display the jet and closes the completed structure.

Sun Revision A of 30 August 1989

microsystems

Chapter 2 — Programming in PHIGS 39

2.12. Inquiries

popenstruct (structure);

pclosestruct ()

pupdatews (ws, PPERFORM) ; /* update display */
The UPDATE WORKSTATION function is used to execute any deferred work-
station actions and optionally correct the display if necessary.

There are several programs in the examples directory which demonstrate the use
of other deferral and modification mode combinations (ASAP/NIVE,
WAIT/NIVE and WAIT/UQUM).

Inquiry functions return values from the various description tables and state lists
such as the workstation state list described above.

The inquiry functions provide information concerning;:

o the operating state values

o PHIGS description table values

PHIGS state list values

a]

=]

the workstation description tables

the workstation state list

[u]

s}

the structure state lists
o structure content
o the error state list

Errors detected by inquiry functions are reported through an error indicator
parameter. The normal error reporting mechanism is not used for the inquiry
functions.

There are over one hundred inquiry functions available in SunPHIGS. Several
programs in the examples directory demonstrate the use of these functions. See
the SunPHIGS Reference Manual for a complete description of each inquiry
function.

> sun Revision A of 30 August 1989

microsystems

The Transformation Pipeline

The Transformation Pipeline

3.1. Modeling Transformations

Local Modeling Transformation

Global Modeling Transformation

fourview.c:

3.2. Viewing
Another Look at fourview.c
Workstation Transformations

43

43
43
45
45
46
47
48

3.1. Modeling
Transformations

Modeling Coordinate
Space (MC)

Composite Modeling
Transformation

World Coordinate
Space (WC)

¥

View Orientation

Transformation

View Reference
Coordinate Space (VRC)

View Mapping

and View Clip

Normalized Projection
Coordinate Space (NPC)

Workstation
Transformation

Local Modeling
Transformation

The Transformation Pipeline

A transformation pipeline is the set of transformations applied to a primitive
from its creation to its display. PHIGS transformations allow the application to
define objects in whatever coordinate space is convenient. The application may
then separately describe how to compose the objects into an image, and to place
the image onto the display.

Pictured at left is the PHIGS transformation pipeline.

The first step in this pipeline is the composite modeling transformation. This is
used to map primitives from Modeling Coordinates to World Coordinates. All
PHIGS coordinate systems are 3D, right-handed coordinate systems.

In PHIGS, the application programmer can compose a graphical picture from
separate parts, each of which can be defined within its own modeling coordinate
system. Modeling Coordinate Space (MC) is used to describe the graphical data.
The relative positioning of the separate parts is achieved by having a single
World Coordinate Space (WC) onto which all the defined Modeling Coordinate
systems are mapped using a composite of the modeling transformations. The
World Coordinate space can be thought of as a workstation independent virtual
viewing space and is used to describe objects in relation to each other.

A modeling transformation is stored as a structure element in the CSS. SET
LOCAL TRANSFORMATION is used to create such a structure element by speci-
fying a 4 X 4 or 3 x 3 transformation matrix and a composition type. The compo-
site modeling transformation is formed from the hierarchy of component model-
ing transformations in the current structure path.

When traversal of a structure begins, the initial local modeling transformation
and global modeling transformation are both the 3-D, 4 X 4 identity matrices.
The composite modeling transformation within a structure traversal is formed by
the matrix multiplication of the current local modeling transformation and the
current global modeling transformation. When an EXECUTE STRUCTURE ele-
ment is encountered, the current local and global transformations are saved. The

sun 43 Revision A of 30 August 1989

microsystems

44

Getting Started with SunPHIGS™

Global Modeling
Transformation

child structure inherits the parent’s composite modeling transformation as its glo-
bal modeling transformation. The child inherits an identity 1ocal modeling
transformation which maps every point onto itself unchanged. Therefore, the
child’s composite modeling transformation (local and global composite) initially
equals the parent’s. Thereafter, the child can change its own local modeling
transformation. After the referenced structure network has been traversed, the
parent’s transformations are restored.

The robot arm example in Figure 3-1 demonstrates the use of local transforma-
tions. The structure network is repeated here, just as in Chapter 2, but with the
current element pointer positioned at the Robot structure’s element 2, the SET
LOCAL TRANSFORMATION with the transform for arm. When a transformation
with a different rotation replaces this element, subsequent elements — including
the Amm structure and all its descendents — are rotated, as shown at the left of
Figure 3-1.

Structure Network for Robot Arm

p
Robot |
Structure

2 FILL AREA) Circle
coordinates for arm Structure
3| SET LOCAL TRANSFORMATION 1 [FILL AREA
transform for hand coordinates for circle
4 EXECUTE STRUCTURE
Hand
Hand
Structure
1 EXECUTE STRUCTURE
Circle
o | SETLOCAL TRANSFORMATION
transform for one
EXECUTE STRUCTURE
3 Gri
4| SET LOCAL TRANSFORMATION
transform for other
EXECUTE STRUCTURE
5 Gri
np
w Grip
Structure
1 FILL AREA
l coordinates for half
e J

When the Arm’s structure’s transformation for hand (element 3) is replaced with
a transformation with a different rotation, the Hand structure’s elements and its
descendents are rotated, as shown at left.

sun Revision A of 30 August 1989

microsystems

Chapter 3 — The Transformation Pipeline ~ 45

fourview.c:

SET GLOBAL TRANSFORMATION can be used to replace the global modeling
transformation. During structure traversal, modifications to the global transfor-
mation only affect the structure in which they are encountered and in its descen-
dents; the parent structures are not affected.

PHIGS provides a comprehensive set of utility functions to compute transforma-
tions for use in SET LOCAL TRANSFORMATION or SET GLOBAL
TRANSFORMATION. Included are utilities to produce matrices which indepen-
dently SCALE, TRANSLATE or ROTATE objects and to composite transforma-
tions. The BUILD TRANSFORMATION MATRIX function generates a transfor-
mation matrix to perform a transformation specified by a shift vector, rotation
angle and scale factors relative to a specified fixed point.

Fourview. c, in the examples directory uses BUILD TRANSFORMATION
MATRIX and SET LOCAL TRANSFORMATION MATRIX to rotate an object in a
specified view. Below is a code fragment from fourview. c demonstrating the
use of these functions. Although four views of the same object are provided, we
will look at only one to see how the transformation functions are used. Refer to
the complete program for a more complete picture of the modeling transforma-
tion process.

First a structure is opened, a view index is set (viewing will be discussed in the
next section), and a LABEL element is inserted to mark the position within the
structure where the transformation element resides. SET LOCAL
TRANSFORMATION is called to set the initial local modeling transformation.
The child structure, OBJECT, is then executed and the structure closed. OBJECT
contains the data for the object which is to be rotated.

#define VIEW_1 1
#define OBJECT_TRANSFORM 1

static Pmatrix3 identity = { 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0};

popenstruct (VIEW_1);
psetviewind(VIEW_1);
plabel (OBJECT_ TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct ()

At a later point in the program, the same structure VIEW_1 (view) is reopened,
the element pointer is set to the LABEL element which marks the position of the
transformation element, and then the element pointer is advanced by one to point
to the element containing the local transformation. BUILD TRANSFORMATION
MATRIX is used to generate a new transformation matrix and SET LOCAL
TRANSFORMATION MATRIX called again to replace the value of the current
local modeling transformation. This calculation and installation of a replacement
local modeling transformation is repeated in a loop to rotate the object. Finally,

@ sun Revision A of 30 August 1989
micros

ystems

46 Getting Started with SunPHIGS™

3.2. Viewing

Modeling Coordinate
Space (MC)

Composite Modeling
Transformation

World Coordinate
Space (WC)

View Orientation
Transformation

View Reference
Coordinate Space (VRC)

¥

View Mapping
and View Clip

Normalized Projection
Coordinate Space (NPC)

Workstation
Transformation

the structure is again closed.

popenstruct (view);
psetelemptr(0);
psetelemptrlabel (OBJECT TRANSFORM) ;
poffsetelemptr(1);
for (1 =0; i < 100; i++) {
pbuildtran3(&pt, &pt,
(Pfloat)i/30., (Pfloat)i/40., (Pfloat)i/50.,
&scale, &err, transform);
psetlocaltran3(transform, PREPLACE);
}
for (i = 99; i >= 0; i--) {
pbuildtran3(&pt, &pt,
(Pfloat)i/30., (Pfloat)i/40., (Pfloat)i/50.,
&scale, &err, transform);
psetlocaltran3(transform, PREPLACE);
}
pclosestruct();

Viewing is the mechanism whereby coordinates in the World Coordinate (WC)
system are transformed to Normalized Projection Coordinates (NPC). SET
VIEW INDEX creates a structure element which contains a view index attribute.
The view index is used to select a view representation entry in a workstation
view table.

The function SET VIEW REPRESENTATION is used to define a view representa-
tion entry on a workstation. A view representation controls the viewing stage of
the transformation pipeline which transforms the World Coordinates into Nor-
malized Projection Coordinates and optionally clips to the limits of the NPC
space. This view table entry specifies a view orientation matrix, a view mapping
matrix, view clipping limits in NPC space and a clipping indicator.

- The purpose of the view orientation matrix is to transform World Coordinates

4

relative to the view reference coordinate system. The axes of the VRC system
are U, V,N.

The purpose of the view mapping matrix is to transform points in VRC to points
in the Normalized Projection Coordinate system. This transformation can be
either a parallel or perspective transformation.

The purpose of the view clipping limits is to specify the region of NPC space in
which visible data may appear, provided clipping is turned on by the clipping
indicator.

EVALUATE VIEW ORIENTATION MATRIX and EVALUATE VIEW MAPPING
MATRIX are used to calculate the matrices used by the SET VIEW
REPRESENTATION function. EVALUATE VIEW ORIENTATION MATRIX is
used to calculate a transformation matrix that tranforms World Coordinates into
View Reference Coordinates (VRC). The input parameters to this function estab-
lish the view reference point and the view up vector. The view orientation
matrix is output from this function. EVALUATE VIEW MAPPING MATRIX is

Sun Revision A of 30 August 1989

microsystems

Chapter 3 — The Transformation Pipeline 47 -

Another Look at
fourview.c

used to calculate the mapping matrix for SET VIEW REPRESENTATION. Both
EVALUATE VIEW ORIENTATION MATRIX and EVALUATE VIEW MAPPING
MATRIX are described in detail in Appendix C.

A predefined number of views can be stored in each workstation. They are num-
bered consecutively starting with zero. In each view table view 0 is a special
identity view entry that cannot be modified. The predefined view table entries
are initialized to values in the workstation description table (see PHIGS Worksta-
tion Description Table (7P)). The other view table entries are initialized to the
same values as view table entry 0.

In demonstrating the functions described above, we will again use the example
program fourview. c from the examples directory. Fourview. c provides
four different views of the same object. We will use only one view to see how
the viewing functions interact.

After the OBJECT data structure is built, a structure for each view is created and
a SET VIEW INDEX element inserted for that view.

#define VIEW_1 1

popenstruct (VIEW_1);
psetviewind(VIEW_1):
plabel (OBJECT TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT)
pclosestruct();

Next, the view representation is set up by defining the clipping flags and the view
mapping matrix EVALUATE VIEW ORIENTATION MATRIX is used to generate
the orientation matrix. EVALUATE VIEW MAPPING MATRIX is used to gen-
erate the mapping matrix.

Once the representation has been set up, SET VIEW REPRESENTATION is called
to define the view representation entry in the workstation view table. Refer to
the man page entry for each of these functions for a complete description of all
of the parameters used below.

> sSun Revision A of 30 August 1989

microsystems

48 Getting Started with SunPHIGS™

Workstation Transformations

Vg

/* All views use the same reference point. */
vep.x = 0.0; vrp.y = 0.0; vrp.z = 0.0;

map.proj = PPARALLEL;
rep.clip_xy = rep.clip back = rep.clip_front = PCLIP;
map.window.xmin = -2.0; map.window.xmax = 2.0;

map.window.ymin = -2.0; map.window.ymax = 2.0;
map.back_plane = -2.0;

map.front_plane = 2.0;

map.view_plane = 1.8;

map.prp.Xx = (map.window.xmin + map.window.xmax) / 2.0;
map.prp.y = (map.window.ymin + map.window.ymax) / 2.0;
map.prp.z = 10.0;

map.viewport.zmin = 0,0; map.viewport.zmax = 1.0;

/* View 1 -- top view */

vup.x = 0.0; vup.y = 0.0; vup.z = -1.0;

vpn.x = 0.0; vpn.y = 1.0; vpn.z = 0.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation _matrix);

map.viewport.xmin = 0.05; map.viewport.xmax = 0.45;
map.viewport.ymin = 0.55; map.viewport.ymax = 0.95;
pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
rep.clip_limit = map.viewport;

psetviewrep3(WSID, VIEW_ 1, &rep);

For a more extensive took at the PHIGS viewing model see Appendix C.

The Normalized Projection Coordinate Space can be regarded as a workstation
dependent abstract image composition space. A part of the workstation’s NPC
space can be selected to be displayed somewhere on the workstation’s physical
display space. A workstation transformation is a mapping from NPC space to
Device Coordinate Space (DC) for a particular workstation.

The workstation transformation is a uniform mapping from NPC onto DC for x
and y and thus performs translation and equal scaling with a positive scale factor
for these two axes. The workstation transformation allows different aspects of
the composed picture to be viewed on different workstations.

A workstation transformation is specified by defining the limits of a volume
within NPC space within the range O to 1 which is to be mapped onto a specified
volume in DC space. Workstation transformations can be specified using SET
WORKSTATION WINDOW and SET WORKSTATION VIEWPORT.

SET WORKSTATION WINDOW defines the area in NPC space to be displayed on
the specified workstation. The workstation window is a rectangular box in NPC
space, which is mapped to the workstation viewport, defined in Device Coordi-
nate Space. The workstation window defines what within NPC space will be
displayed.

SET WORKSTATION VIEWPORT defines the area in DC space onto which the
workstation window will be mapped. The workstation viewport defines where

sun Revision A of 30 August 1989

microsystems

Chapter 3 — The Transformation Pipeline 49

the image will be displayed in DC space.

Together, the workstation window and the workstation viewport define the work-
station transformation that converts the image from Normalized Projection
Coordinate Space to the device coordinates of the workstation’s physical display
surface.

é{% sun Revision A of 30 August 1989

microsystems

Input

Input

4.1. Six Input Classes
Sample Uses

.......

Locator Devices

Stroke Devices

Valuator Devices

Choice Devices

String Devices

Pick Devices ..

4.2. SunPHIGS Input Devices

4.3. Prompt/Echo Types (PETSs)

Input Data Records

FORTRAN Packed Data Record
4.4. Three Operating Modes

Request Mode

Event Mode

Sample Mode

33

53
53
54
54
55
55
55
55
57
58
59
59
60
61
61
62

4.1. Six Input Classes

Sample Uses

Input

PHIGS uses the concept of a logical input device to obtain graphical input. This
logical interface provides portablility of applications shielding the application
programmer from the physical devices. In SunPHIGS the operator enters input
using the mouse and keyboard. The PHIGS standard uses the term operator to
refer to the person handling the input device, as distinguished from the PHIGS
programmer who writes the application.

There are six classes of logical input devices distinguished by the measure, or
value, they produce. For example, a locator device reports the x, y and z position
at which the mouse button is pressed. The table below shows the six device
classes, and the value each produces.

Device Class [Measure Produced

Locator x, y, z position in World Coordinate (WC) space
Stroke Sequence of x, y, z positions in WC space
Valuator Floating-point number

Choice Integer choice between 1 and N

String String of characters

Pick A primitive selected from a structure network

Locator A locator device may be used by the application to place a
graphical object at an x-y-z position interactively selected by the
operator at runtime,

Stroke A stroke device allows the operator to input a sequence of points
which the application may use to form a spline.

Valuator A valuator device allows the operator to input a floating-point
number which the application may use in a transformation, as a
scale factor or a rotation angle.

Choice A choice device may be a simple implementation of a menu,
selecting the next action to be performed from a set offered by
the application.

String A string device allows an operator to enter text such as filenames
or other information requested by the application.

@ sun 53 Revision A of 30 August 1989
microsystems

54 Getting Started with SunPHIGS™

Locator Devices

Stroke Devices

Pick A pick device may select a primitive, or group of primitives, to
be edited, deleted, copied, etc.

A logical input device is associated with a particular open workstation. It is
therefore uniquely identified by the workstation identifier, device class, and a
device number.

A locator device’s measure is reported in World Coordinates. In this description
we will assume a z value of 0. By default, the WC space ranges from 0 to 1 in the
x,y and z directions. If the locator device is triggered by the operator pressing a
mouse button while the mouse is in the lower left comer of the workstation, a
value near (0,0) would be returned as the locator measure. If the locator device is
triggered while in the upper right corner of the workstation, a value near (1,1)
would be returned as the locator measure.

A stroke device’s measure is also reported in World Coordinates. A stroke logi-
cal device behaves in the same fashion as the locator device only returning a
sequence of x-y-z values as the stroke measure.

A locator or a stroke device’s measure also includes the view index of the view
that was used to map the operator-chosen position(s), in Device Coordinate (DC)
space, back into WC’s. By default, the only view used for input is view index 0.
To override the default view index SET VIEW TRANSFORMATION INPUT
PRIORITY is used.

The following code fragments are from loc . c in the tutorial directory and
demonstrate the initialization and setting of a locator device operating mode and
echoing state. For a more complex demonstration of using the locator device,
see fourview.c in the examples directory. Inthe initialize input
function of loc. c, an initialized locator device is enabled using SET LOCATOR
MODE which sets the operating mode to Request and the echo switch to echo.
for the locator device. Inthe request_locator function, REQUEST
LOCATOR is used to request the current measure of the locator device.

sun Revision A of 30 August 1989

Chapter 4 —Input 55

Valuator Devices

Choice Devices

String Devices

Pick Devices

initialize_input ()

static Ploc init_location = { 0, {0., 0.} };

static Plocrec record; /* not used, but must be present */
Plimit area;

Pint pet = 1; /* data record not used for PET 1 */

area.xmin area.ymin = 0.0;
area.xmax = area.ymax = 1.0;

pinitloc(ws, devid, &init_location, pet, &area, &record);
psetlocmode(ws, devid, PREQUEST, PES_ECHO);

request_locator()

Pgloc locator;

pregloc(ws, devid, &locator);

A valuator device returns the value selected as its measure and a status indicating
whether a selection was made ornot. £igstoolval. £, previously discussed
in the Workstation Configuration section, demonstrates the initialization and
mode setting functions for a valuator device. For a more complex demonstration
of using the valuator device, see rspheres. ¢ in the examples directory.

A choice device returns the choice selected as its measure and a status indicating
whether a selection was made or not. For demonstration of initialization and
mode setting for a Choice device, see rspheres. c in the examples directory.

A string device retumns a string of characters as its measure. SunPHIGS uses the
string logical input device to return operators input from the message text
subwindow.

Because a PHIGS posted structure network is hierarchical, a single output primi-
tive element may appear on a workstation multiple times with different attribute
values and at varying locations. Therefore, a pick measure actually consists of:

a status indicating whether any primitive was selected;

a pick path, the list of triples (structure identifier, pick identifier, and ele-
ment number) which uniquely describe the path through the structure
network’s EXECUTE STRUCTURE elements from the posted structure to the
primitive element selected; and

the pick depth, or number of levels in the pick path.

By default, no primitives are initially selectable by pick input devices. The
application must use both the name set elements (ADD NAMES TO SET) and pick
filter (SET PICK FILTER) to allow primitives of interest to be eligible for picking.

@ ﬂrS‘k:’!:il n Revision A of 30 August 1989

ystems

56 Getting Started with SunPHIGS™
A pick path and corresponding structure network follow.
Figure 4-1 A Plane Structure Hierarchy from which Engine may be Picked

Plane Structure Engine Structure

1| ADDNAMES TO NAME SET L ":1 SET PICKID
{1 (meaning PICKABLE)} || : 4 (meaning engine)
) SET PICKID : 2 SET LOCAL TRANSFORMATION
1 (meaning fusilage) ' set up MC space for engine
3 FILL AREA SET X 3 FILL AREA SET
coordinates for fusilage ' coordinates for engine

4 SET PICKID !

2 (meaning left) !
5 SET LOCAL TRANSFORMATION :

’ translate onto left wing !
6 EXECUTE STRUCTURE _:
Engine

7 SET PICKID

3 (meaning right)
8 SET LOCAL TRANSFORMATION

translate onto right wing
9 EXECUTE STRUCTURE |
Engine
10 FILL AREA SET
coordinates for tail
Figure 4-2 Pick Path from Selecting Left Engine

Structure Pick Element
Identifier Identifier Number
Plane Structure 2 (meaning left) 6 (EXECUTE STRUCTURE Engine)

Engine Structure 4 (meaning engine) 3 (FILL AREA SET for engine)
Pick Path Depth is 2

The following code fragments are from pickjet . c in the tutorial directory
and demonstrate a programming example of setting up primitives to be *‘pick-
able’’. The functions used are ADD NAMES TO SET and SET PICK FILTER. For
a more complex picking example, see pickit. c in the examples directory.

Inthe build_css function, a number of ‘‘names’’ and a list of ‘‘names’”’ are
initialized. Each name in the name set list is a small positive integer. In this
instance, only one "name" is used. During traversal of the posted structure net-
work, the ADD NAMES TO SET attribute is bound to the output primitives which
follow.

sSun Revision A of 30 August 1989

microsystems

Chapter 4 —Input 57

Inthe initialize input function the list of ‘‘names’’ in the pick inclusion
filter is then initialized with the same data and SET PICK FILTER called to set the
PICK input device’s pick filter to complete the actions required to make the prim-
itives pickable.

#define PICKABLE 1

build css()

Pintlst names_to_add;
static Pint name([l] = { PICKABLE };
Pint part = 1;

names_to_add.number = 1;
names_to_add.integers = name;
paddnameset (&names_to_add);

psetintstyle(PSOLID);

psetintcolourind(BLUE); /* jet body is blue */
psetpickid(part); /* pick this as part #1 */
pfillarea(3, Jjetbody):
initialize_input()
Pintlst nfilt, exfilt;
infilt.number

infilt.integers
exfilt.number =

i
1;
0;
psetpickfilter(ws, devid, &infilt, &exfilt);

4.2. SunPHIGS Input SunPHIGS supports all six input device classes on Sun Tool and Sun Canvas
Devices workstations. The following table gives the physical devices provided by
PHIGS. For complete information, see INITIALIZE <device class>, in the
SunPHIGS Reference Manual.

sun Revision A of 30 August 1989

microsystems

58 Getting Started with SunPHIGS™

Table 4-1

Input 4th value: e.socc NN)

Valuator Window with Slider

Window with Choice Pop-up

4.3. Prompt/Echo Types
(PETs)

PHIGS Physical Devices
Device
Class Numbers SunPHIGS Implementation Method
Locator 1 Left mouse button and cursor
2 Middle mouse button and cursor
3 Right mouse button and cursor
4 Mouse movement (no button down) and cursor
5 Mouse dragging (any button down) and cursor
Stroke 1 Left mouse button and cursor
2 Middle mouse button and cursor
3 Right mouse button and cursor
Pick 1 Left mouse button and cursor
2 Middle mouse button and cursor
3 Right mouse button and cursor
Valuator 1—10 Left mouse button and a SunView slider
Choice 1 SunView pop-up menu from Left mouse button
2 SunView pop-up menu from Middle mouse button
3 SunView pop-up menu from Right mouse button
10 Any of mouse buttons
11 Any ASCII key from keyboard
12 Any Left function key from keyboard
13 Any Top function key from keyboard
14 Any Right function key from keyboard
String 1 Text subwindow input, terminated

The logical input device supports certain prompt/echo types, which determine the
details of operator interaction for the input transaction. A prompt shows that the
device is available to receive input. SunPHIGS prompts include changing the
mouse cursor displayed or making a SunView panel item visible. When no input
device is active, a NULL (®) cursor is displayed. An echo is the ‘‘feedback’’
notification to the operator of the present value of the input device. An example
locator prompt/echo type (PET) is a rubber-band line from an initial point to the
point the operator is selecting. The default PICK PET for SunPHIGS is to blink
the selected primitive by changing its color.

Certain PETs are defined by the PHIGS standard, but they are not necessarily
supported by any particular implementation or input device. The PETs a PHIGS
implementation supports may vary, even among devices in a single class. For a
description of the PETSs supported by each available input device, see
INITIALIZE <device class>, in the SunPHIGS Reference Manual.

Sun Revision A of 30 August 1989

Chapter 4 —Input 59

Input Data Records

C Programs

FORTRAN Programs

FORTRAN Packed Data
Record

Certain prompt echo types (PETSs) require additional parameters (such as appear-
ance attributes) to completely specify the input interaction with the operator.
These parameters are grouped into a PET-specific input data record. For PETs
defined by the PHIGS standard, some of these parameters are specified as well,
but in general this additional information is implementation and device-
dependent.

In C, the data record is a union. The application initializes the member that
matches the PET to be used, and passes the data record to INITIALIZE <device
class>. The example program, pickjet . c uses implementation-dependent
PICK PET -1, so it initializes the member upickpetl datarec, whichis of
type Pupickpetl_ datarec. The ‘u’ means the PET is an unregistered
(implementation-defined) PET.

In FORTRAN, the information for the data record is loaded into integer, real, and
character arrays, and is packed into elements of a CHARACTER*80 array, using
PACK DATA RECORD. The data record array is then provided to INITIALIZE
<device class>.

In figstoolval. £ from the tutorial directory, a dummy data record was
passed as a prompt/echo type of 1 was used and the data record parameters for
this PET are passed as function arguments. There is no data record required,
therefore, PACK DATA RECORD was not called. If it is desired to specify a label
for the valuator device, a PET of -1 is used and the label, format string and slider
length are specified in a data record. The following is an example of packing the
data record to be passed to INITIALIZE VALUATOR with the information needed
for aPET of -1. The parameters to PACK DATA RECORD are:

il the number of integers (one)
ia an array of integer(s) (contains the length of the slider in pixels)
rl the number of real values (zero)

ra an array of real values (no real values are required, therefore, this is a
dummy parameter)

sl the number of character strings (two)

Istr an array containing the lengths of the strings (the label and format
strings)

str an array containing the strings (the length and format strings).

mldr the number of 80-character array elements the data record has been
dimensioned to

errind an output parameter containing the error indicator (zero if no error)

ldr an output parameter containing the actual number of 80-character array
elements the data record has used

datrec the packed data record to be passed to the inialization function

Su n Revision A of 30 August 1989

microsystems

60 Getting Started with SunPHIGS™

integer ia(l), 1lstr(2), errind, ldr

real ra(l)

character
character

ia (1)

1str(1)
1lstr(2)

str(l)
str(2)

*15
*80

200
12
5

str(2)
datrec(10)

"Slider value"

"%4

L1f"

call pprec(l, ia, 0, ra, 2, lstr, str, 10, errind, 1ldr, datrec)

Full descriptions of all supported PETSs and their data records may be found on
the INITIALIZE <device class> pages of the SunPHIGS Reference Manual.

The following code fragment from the tutorial di}ectory pickjet.c demon-
strates setting up a data record in C. The function used to initialize the pick input
device with the data record is INITIALIZE PICK.

static Ppickpath init_pick_path = { 0, (Ppickpathel *)NULL };
static Pint

Ppickrec

Plimit
Pint

area.xmin

area.xmax = area.ymax

record.
record.
record.

/*
*
*

*

The
The

name[l] = { PICKABLE };
record;

area;

pet = -1;

= area.ymin = 0.0;

1.0;

upickpetl_datarec.highlight_colour = BLACK;
upickpetl_datarec.highlight_count = 3;
upickpetl_datarec.highlight_duration = 0.1;

pick aperture is defined in NPC, which ranges from 0 to 1.
default size of the window is 600 pixels.

To set the aperture to a square 3 pixels on a side,
centered around the cursor’s "hot spot", we calculate:

* 3/600. is 0.005.

*/
record.upickpetl datarec.aperture size.x = 0.005;
record.upickpetl datarec.aperture_size.y = 0.005;

record.upickpetl_datarec.aperture_size.z = 0.005;

pinitpick(ws, devid, PP_NOPICK, &init_pick_path, pet, &area,
&record, PTOP_FIRST);

44. Three Operating

Modes

A PHIGS program may select the flow of control between the application pro-
gram and the logical input device. The application program may use the logical
input device in one of the three operating modes: Request, Event and Sample.
The default is Request mode. Each input device can operate in any of the three
operating modes in a Sun Tool workstation, and in Event and Sample modes in
the Sun Canvas workstation.

rosystems

A@ sun Revision A of 30 Augusi 1989
mic

Chapter 4 —Input 61

Request Mode

Event Mode

Pint
Pint
Pgloc

In Request mode, when the application requests input from a single logical input
device, the application blocks (i.e., waits) until the request is satisfied. PHIGS
prompts for the input and echos the current measure. When the operator triggers
the device (e.g., by pressing a mouse button), PHIGS returns the measure to the
application.

The only other way the application can regain control without the operator
triggering the input device is for the operator to use the break action to indicate a
refusal to provide the input. The SunPHIGS break action for any device in
Request mode is (CTRL-D). The application can determine the break has
occurred from status returned from the REQUEST <device class> function.

Input devices associated with a Sun Canvas workstation do not support Request
mode. Demanding input from a particular device before continuing is foreign to
SunView, which offers the operator multiple actions supported by a handler,
called the notifier, which reacts to the operation selected.

The following code fragments from the tutorial program loc . c demonstrate the
use of the locator device in Request mode, using REQUEST LOCATOR.

ws = 1;
devid 1; /*locator 1 is LEFT mouse button*/
locator;

preqloc(ws, devid, &locator);
if (locator.status == PSTAT_ OK)

printf("Locator: x pos=%fy pos=%£f0,

locator.loc.position.x, locator.loc.position.y):

else if (locator.status == PSTAT NONE)

printf("Operator did CTRL-D break action.0);

return(locator.status);

After one or more input devices are placed in Event mode using SET <device
class> MODE, the application still has the flow of control. Simultaneously with
execution of the application program, PHIGS prompts for the input, and echos
the current measure. Whenever the operator triggers the device (e.g., by pressing
a mouse button) an input event is appended to a central input queue, a first-in
first-out list of input events. The event contains the class and number of the logi-
cal input device and the measure at that instant.

At the application’s convenience, AWAIT EVENT is used to determine if the
queue has any input events, to move the event at the head of the input queue to
the current event report, and to obtain that event’s device class and device
number. If there are no events in the input queue, AWAIT EVENT will optionally
wait for an event, until a timeout period has expired. The GET <device class>
function then returns the measure from the current event report. For example
programs which demonstrate using logical input devices in Event mode with
both the Sun Tool and Sun Canvas workstations, see the fourview examples
and pickit.c inthe examples directory.

Revision A of 30 August 1989

62 Getting Started with SunPHIGS™

Sample Mode

In Sample mode, the application (not the operator) selects the instants at which
the input device’s measure should be obtained. This is performed by the applica-
tion polling the device for its current input measure. When the application places
one or more input devices into sample mode using SET <device class> MODE,
the application still has the flow of control. Simultaneously with execution of the
application program, PHIGS prompts for the input, and optionally echos the
current measure. The operator changes the current measure (e.g., by moving the
mouse) and PHIGS updates the echo to reflect the measure. At the program’s
convenience, it obtains the device’s current measure using SAMPLE <device
class>.

A typical use of Sample mode is to implement an application-specific
prompt/echo type. The application would first disable PHIGS echoing using SET
<device class> MODE with the echo switch turned off. Then the application
would enter a loop, sampling the current measure and using it to modify the
display, perhaps scaling or rotating a multi-primitive object. When the applica-
tion leaves the loop, SET <device class> MODE is again called to return the input
devices to Request mode, in which the device is inactive until a request is ini-
tiated by the program.

sun Revision A of 30 August 1989

microsystems

Examples

Examples ...

A.l. C Examples

axes.c

canvasattrs.c

canvasid.c

cpolygons.c

exl.c

ex2.c

fourview.c

fourview_cvs.c

non_square.cC

pickit.c

rspheres.c

spheres.c

txattrs.c

A.2. FORTRAN Examples

fbundles.f ..
ffillset.f ..

flines.f

fmarkers.f ..
fpolygons. f
ftext.£f

...........

ftextall.f

65

65
65
67
69
70
73
78
83
92
101
104
113
124
128
140
140
142
145
148
150
152
154

Examples

Appendix A contains example programs from the /usr/1ib/phigsl.1l/examples directory.

A.1. C Examples
The following example programs use the SunPHIGS C binding.

axes.cC

Called by rspheres. c and used to insert axes into a structure.
#ifndef lint

static char sccsid[] = "@(#)axes.c 2.1 88/06/02 Copyr 1988 Sun Micro";
#endif

/*

* Copyright (c) 1988 by Sun Microsystems, Inc.

*/

/* Insert axes in the currently open structure. */
#include <phigs/phigs.h>

void

axes(origin, length, color)
Ppoint3 *origin;
Ppoint3 *length;
Pint color(3];

Ppoint3 axis[2];
axis[0] = axis[l] = *origin;

axis[l]).x = length->x;
psetlinecolourind(color[0});
ppolyline3(2, axis);

axis[1l].x = origin->x;
axis[l].y = length->y;
psetlinecolourind(color(1]);
ppolyline3(2, axis);

axis[l].y = origin->y;
axis[l].z = length->z;

Q?a sun 65 Revision A of 30 August 1989

microsystems

66 Getting Started with SunPHIGS™

psetlinecolourind(color([2]);
ppolyline3(2, axis):;

@ Sun Revision A of 30 August 1989

Appendix A — Examples 67

canvasattrs.c

Demonstrates Sun Canvas workstation configurations.

#ifndef lint
static char sccsid[] = "@ (#)canvasattrs.c 2.1 88/06/02 SMI";
#endif

/* canvasattrs.c - This program demonstrates one way to create a new
workstation of type phigs_ws_type sun_canvas and modify the
values in the workstation description table.

Canvas and text subwindows are generated in SunView and their
handles are passed to SunPHIGS.

Note: It is necessry to include the declarations in phigs.h in order to
open a workstation or access SunPHIGS constants.
*/

#include <phigs/phigs.h>
#include <suntocol/sunview.h>
#include <suntool/canvas.h>
#include <suntool/textsw.h>

#define WS 1
#define ST 1

main ()

{
static Frame frame;
static Canvas canvas;
static Textsw textsw;

static Pwstype canvaswst;
static Ppoint textpts = {0.1, 0.5};
static Pchar buf[80];

/* Obtain SunView canvas and textsw handles.

*/
frame = window_create (NULL, FRAME,
FRAME LABEL, "SunPHIGS Canvas Workstation",
0);

canvas = window_create (frame, CANVAS,
WIN PERCENT HEIGHT, 90,
0);

textsw = (Textsw) window_create (frame, TEXTSW,
WIN_PERCENT HEIGHT, 10,
TEXTSW_IGNORE_LIMIT, TEXTSW_INFINITY,
0);

/* Open PHIGS and create a sun_canvas workstation with a MESSAGE window.
The SunView textsw handle is passed as the value for the PHIGS_TEXTSW
workstation attribute.

*/

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);

canvaswst = phigs_ws_type create(phigs_ws_type_ sun_canvas,

S u n Revision A of 30 August 1989

microsystems

68 Getting Started with SunPHIGS™

PHIGS_TEXTSW, textsw,
0);

/* Open the sun_canvas workstation and a structure to contain text elements.
The SunView canvas handle is passed as the connection identifier for the
open workstation function. The PHIGS workstation handle, canvaswst is
passed as the workstation type.

*/

popenws (WS, (Pconnid)canvas, canvaswst);
popenstruct (ST) ;

psetcharheight (.02);
ptext (&textpts, "This is a phigswstcanvas workstation.");

/* Post the structure to the workstation and display a message in the textsw.
*/ *

ppoststruct (WS, ST, 0.);

sprintf (buf, "This is the MESSAGE window.");

pmessage (WS, buf):;

/* Call SunView’s notifier.
*x/

window_main_loop (frame);

/* Close the structure, close the workstation and close PHIGS.
*/

pclosestruct () ;

pclosews (WS) ;

pclosephigs () ;

sSun Revision A of 30 August 1989

microsystems

Appendix A — Examples 69

canvasid.c

Called by fmarkers. f as a FORTRAN/SunView interface.

#ifndef lint
static char sccsid(] = "@Q(#)canvasid.c 2.2 88/07/08 SMI";
#endif

/* canvasid.c - a C program to setup a SunView Canvas subwindow for SunPHIGS */

#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <errno.h>

static Frame frame;

int
canvasid_ ()
{
Canvas canvas;
frame = window_create (NULL, FRAME,
FRAME LABEL, *SunPHIGS Canvas Workstation",
0);
canvas = window_create (frame, CANVAS,
WIN_WIDTH, 600,
WIN HEIGHT, €00,
0):
window_fit (frame);
return ((int)canvas);

int
display_()
{
window_main_loop (frame) ;

}

sun Revision A of 30 August 1989

microsystems

70 Getting Started with SunPHIGS™

cpolygons.c

Demonstrates SunPHIGS hatch styles.

#ifndef lint .
static char sccsid[] = "@ (#)cpolygons.c 2.1 88/06/02 SMI";
#endif

/* cpolygons.c - This program draws fill areas in all available hatch styles.

Note: It is necessry to include the declarations in phigs.h in order to
open a workstation or access SunPHIGS constants. The #defines for
workstation 1 (WS1l) and the structures STl and ST2 are for clarity.

*/

#include <phigs/phigs.h>

#define WS1 1

#define ST1 1

#define ST2 2

#define ROWS 4 /* Number of rows of hatch-filled fill areas. */
#define POINTS 4 /* Number of points in each fill area primitive. */
#define HATCHES 6 /* Number of SunPHIGS "basic" hatch styles. */
main ()

{
int xaxis, yaxis, row, width, transparency, index;
Pwstype WStype;
static Pchar buf[80];
static Ppoint fapoints[POINTS];
static Ppoint orig_xy pts[POINTS] = { {.07,.775}, {.195,.775},
{.195, .975}, {.07,.975} };

static Pint hatches[HATCHES] =

{ PHATCH_HORIZ, PHATCH_VERT, PHATCH_DIAG_45,

PHATCH_DIAG_135, PHATCH_GRID_R, PHATCH GRID D };

/* Open PHIGS and create a sun_tool workstation.
*/
popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);

WStype = phigs_ws_type_create(phigs_ws_type_sun_tool,
PHIGS_TOOL_LABEL, "SunPHIGS Tool Workstation",
0);

/* Open workstation 1, then fill structure 2 with background elements.
*/
popenws (WS1, (Pconnid)NULL, WStype):;

f£fill background() ;

/* Open structure 1 and fill with elements to be displayed during traversal.
*/
popenstruct (ST1) ;

/* Create a structure element containing structure 2’s identifier,
to be invoked during traversal of structure 1.
*/
pexecutestruct (ST2) ;

/* Add a SET INTERIOR STYLE attribute element to structure 1.

@ sun : - ' . Revision A of 30 August 1989

microsystems

Appendix A — Examples

71

*/
psetintstyle (PHATCH) ;

/* Initialize a copy of the "original" point data, which we’ll change.
*/
for (xaxis = 0; xaxis < POINTS; xaxis++) {
fapoints[xaxis].x = orig_xy_ pts[xaxis].x;
}
for (yaxis = 0; yaxis < ROWS; yaxis++) {
fapoints(yaxis].y = orig_xy pts[yaxis].y;
}

for (row = 1; row <= ROWS; row++) {
switch (row) {
case 1l: width = 0; transparency = 0;
break;
case 2: width = PHIGS_HATCH DBL WIDTH;
transparency = 0;
break;
case 3: width = 0;
transparency = PHIGS_HATCH_ TRANSPARENT;
break;
case 4: width = PHIGS_HATCH DBL_WIDTH;
transparency = PHIGS_HATCH_TRANSPARENT;
}

/* Add the SET INTERIOR STYLE INDEX and SET INTERIOR COLOUR INDEX.
Add the FILL AREA output primitive element to the structure.
*/
for (index = 0; index < HATCHES; index++) {
psetintcolourind(index+2) ;
psetintstyleind (hatches[index] - width - transparency):;
pfillarea (POINTS, fapoints);

/* Move the x coordinates to the right. */
for (xaxis = 0; xaxis < POINTS; xaxis++) {
fapoints[xaxis].x += .15;
}
}

/* Finished with the row.
Reinitialize the original x-axis data and move the y-axis down.
*/
for (xaxis = 0; xaxis < POINTS; xaxis++) {
fapoints(xaxis].x = orig_xy pts[xaxis].x;
}
for (yaxis = 0; yaxis < ROWS; yaxis++) {
fapoints[yaxis].y -= .25;
}
}

/* Post structure ST1 to WSl to have the structure’s contents displayed.
*/
ppoststruct (WS1, ST1, 0.):;

sprintf (buf, "Displays supported hatch styles. Exits in 10 seconds."

pmessage (WS1, buf);
sleep(10);

@ sSun Revision A of 30 August 1989

72 Getting Started with SunPHIGS™

/* Close the structure, close the workstation and closé PHIGS.
*/ B

pclosestruct () ; i

pclosews (WS1) ;

pclosephigs () ;

/* £ill background - fills structure 2 with two solid background fill areas.
*/

f£fill background()
{
static Ppoint backgroundl{4] = { {.05, .1}, (.97, .1},
{.97, .4}, {.05, .4} };
static Ppoint background2[4] = { {.05, .6}, {.97, .6},
{.97, .9}, {.05, .9} };
popenstruct (ST2) ;-
psetintstyle (PSOLID) ;
pfillarea (4, backgroundl);
pfillarea (4, background2);
pclosestruct () ;

@ sSun " Revision A of 30 August 1989

microsystems

Appendix A — Examples 73

exl.c

Demonstrates 3-D transformations using a Sun Tool workstation.

#ifndef lint
static char sccsid[] = "@(#)exl.c 2.1 88/06/02 SMI";
#endif

/*
* Copyright (c) 1987 by Sun Microsystems, Inc.
*/

/* exl.c */

/*

* Example program that draws the Sun Cube which is made up of the
* Sun logo. The only geometry information is the points which

* make up one "u" in the logo.

*/
#include <phigs/phigs.h>
#define WS1 1

#define SUNPURPLE 1 /* colour table index for "sun purple" */
#define WHITE 8 /* colour index 1 used at traversal if monochrome */

/* convert degrees to radians */
#define DEG_TO_RAD (D) ((3.14159265358 / 180.0) * (D))

Ppoint3 u pts[] = {

{ 1.0, 0.0, 0.0},
{ 4.0, 0.0, 0.0},
{ 5.0, 1.0, 0.0},
{ 5.0, 11.0, 0.0},
{ 3.0, 11.0, 0.0},
{ 3.0, 2.0, 0.0},
{ 2.0, 2.0, 0.0},
{ 2.0, 11.0, 0.0},
{ 0.0, 11.0, 0.0},
{ 0.0, 1.0, 0.0},
{ 1.0, 0.0, 0.0}

}:
¥define NUM U_PTS (sizeof (u_pts)/sizeof (Ppoint3))

u_struct ()
{
popenstruct (1) ;
/* "U" points upward. is in * the lower left of a face. */
ppolyline3 (NUM _U_PTS, u_pts);
pclosestruct () ;

}

un_struct ()

{
Pmatrix3 transl, rotz, trans2, composite;
Pmatrix3 tl;

sun Revision A of 30 August 1989

microsystems

74 Getting Started with SunPHIGS™

Pvector3 P’
Pint err;

popenstruct (2) ;
psetlinecolourind (WHITE) ;

pexecutestruct (1) ;

psetlinecolourind (SUNPURPLE) ;

p.x = -2.5;
p.y = 0.0;
p.z = 0.0;

ptranslate3(&p, &err, transl);

protatez (DEG_TO_RAD(180.0), &err, rotz);

p.x = 8.5;

p.y = 11.0;

p.-z = 0.0; .

' ptranslate3(&p, &err, trans2);
pcomposematrix3 (rotz, transl, &err, tl);
pcomposematrix3 (trans2, tl, &err, composite);
psetlocaltran3(composite, PREPLACE);

/* transform U to point down (kinda looks like an N)
* and sit on the right of the U in structure 1
*/

pexecutestruct (1) ;

pclosestruct () ;

}

logo ()
{
Pmatrix3 transl, rotz, trans2, composite;
Pmatrix3 t1;
Pvector3 P’
Pint err;

popenstruct (3) ;
pexecutestruct (2); - /* lower left UN */

pclosestruct () ;

/* translate the UN to its center */

p.x = =5.5;
pP.y = -5.5;
p.z = 0.0;

ptranslate3(&p, &err, transl);
popenstruct (3) ;

protatez (DEG_TO_RAD(90.0), &err, rotz);
p.x = 5.5;

p.y = 17.5;

p.z = 0.0;

ptranslate3(&p, &err, trans2);
pcomposematrix3 (rotz, transl, &err, tl);
pcomposematrix3 (trans2, tl, &err, composite);
psetlocaltran3 (composite, PREPLACE) ;
pexecutestruct (2); /* upper left S */
pclosestruct () ;

popenstruct (3);
protatez (DEG_TO_RAD(180.0), &err, rotz);
p.-x = 17.5;

sSun : Revision A of 30 August 1989
microsystems

Appendix A — Examples 75

}

p.y = 17.5;
p.-z = 0.0;
ptranslate3(&p, &err, trans2);
pcomposematrix3 (rotz, transl,
pcomposematrix3 (trans2, t1l,

&err,
&err, composite);

tl);

psetlocaltran3 (composite, PREPLACE);

pexecutestruct (2) ;
pclosestruct () ;

popenstruct (3) ;

protatez (DEG_TO_RAD(270.0), &err,
p-x = 17.5;

p.y = 5.5;

p-z = 0.0;

ptranslate3 (&p, &err, trans2);
pcomposematrix3 (rotz, transl,
pcomposematrix3 (trans2, tl, &err,

&err,

/* upper right UN */

rotz);

tl);
composite);

psetlocaltran3 (composite, PREPLACE) ;

pexecutestruct (2) ;
pclosestruct () ;

face ()

{

popenstruct (4) ;
psetviewind (1) ;
pexecutestruct (3);
pclosestruct () ;

/* lower right S */

cube2 ()
{
Pmatrix3 rot, trans;
Pmatrix3 compositel, composite2;
Pvector3 j°H
Pint err;

protatey (DEG_TO_RAD(380.0), &err, rot);

p.x = 23.0;

p.y = 0.0;

p.-z = 0.0;

ptranslate3 (&p, &err, trans);
pcomposematrix3 (trans, rot, &err,
protatex (-DEG_TO_RAD (90.0), é&err,
p.x = 0.0;

p.y = 23.0;

p.z = 0.0;

ptranslate3 (&p, &err, trans);
pcomposematrix3 (trans, rot, &err,

popenstruct (4) ;

compositel) ;/* right face */

rot);

composite2);/* top face */

psetlocaltran3 (compositel, PREPLACE);

pexecutestruct (3);

psetlocaltran3 (composite2, PREPLACE);

pexecutestruct (3);

sun

microsystems

Revision A of 30 August 1989

76 Getting Started with SunPHIGS™

pclosestruct () ;
}

Pviewmapping3 view_map = {

{ -50.0, 50.0, -50.0, 50.0}, /* window */

{ 0.0, 1.0, 0.0, 1.0, 0.0, 1.0}, /* viewport */
PPARALLEL, /* viewport type */

{ 0.5, 0.5, 1000.0}, /* prp */

0.0, /* view plane dist */
-50.0, /* back plane dist */

50.0 /* front plane dist */

}:

set_up view(ws_id)

Pint ws_id;

{
Ppoint3 vrp;
Pvector3 vpn, vup;
Pint err;
Pviewrep3 vrep;

vrp.x = 23.0; vrp.y = 23.0; vrp.z = 0.0;

vpn.x = 1.0; vpn.y = 1.0; vpn.z = 1.0;

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
pevalvieworientationmatrix3 (&vrp, &vpn, &vup, &err,
vrep.orientation_matrix);

if (exr) {

fprintf (stderr, "error from eval orientation %d\n", err);
exit (4);

}

pevalviewmappingmatrix3 (¢view_map, &err, vrep.mapping matrix);
if (err) { .

fprintf (stderr, "error from eval mapping %d\n", err):;

exit (5);

}

vrep.clip limit = view_map.viewport;

vrep.clip xy = vrep.clip back = vrep.clip front = PNOCLIP;
psetviewrep3 (ws_id, 1, &vrep);

}
Pcobundl sunpurple = {175.0/255.0, 125.0/255.0, 255.0/255.0};

main (argc, argv)

int arge;

char *argv([];

{
Pwstype wst;
unsigned etime = 10;
Pchar buf[100];

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);
{

Psystemstate sys_state;
pingsystemst (&sys_state);

if (sys_state != PPHOP)
exit (1);

sSsun Revision A of 30 August 1989

Appendix A — Examples 77

wst = phigs_ws_type create(phigs_ws_type_ sun_tool,
PHIGS TOOL_LABEL, "SunPHIGS Tool Workstation",

0):

if (!wst) {

pclosephigs () ;

exit (1);

}

popenws (WS1, (Pconnid)NULL, wst);
{

Pwsstate ws_state;

pingwsst (&ws_state);

if (ws_state != PWSOP)
exit (3);

}

set_up_ view (WSl);

psetdisplayupdatest (WS1, PASAP, PNIVE);

/* make a "sun purple" */
psetcolourrep (WS1, SUNPURPLE, &sunpurple);

u_struct ();

un_struct () ;

logo ();

face():;

cube2 () ;

ppoststruct (WS1, 4, 1.0);
sprintf(buf, "Sun Logo. Program will exit in %u seconds.", etime);
pmessage (WS1, buf);

sleep (etime) ;

pclosews (WS1) ;
pclosephigs () ;

@ sSun Revision A of 30 August 1989

78 Getting Started with SunPHIGS™

ex2.c

Demonstrates 3-D transformations using a Sun Canvas workstation.

#ifndef lint
#static char sccsid[] = "@(#)ex2.c 2.1 88/06/02 SMI"
#endif

/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/

/*

#include <phigs/phigs.h>

#include <suntool/canvas.h>

#define WS1 1

#define SUNPURPLE 1 /* colour table index for "sun purple" */
$define WHITE 8 /* colour index 1 used at traversal if monochrome */

/* convert degrees to radians */
#define DEG_TO_RAD (D) ((3.14159265358 / 180.0) * (D))

Ppoint3 u_pts{] = {
{ 1.0, 0.0, 0.0},
4.0, 0.0, 0.0},
5.0, 1.0, 0.0},
5.0, 11.0, 0.0},
3.0, 11.0, 0.0},

3.0, 2.0, 0.0},
2.0, 2.0, 0.0},
2.0, 11.0, 0.0},
0.0, 11.0, 0.0},
0.0, 1.0, 0.0},
1.0, 0.0, 0.0}

};
#define NUM U_PTS (sizeof(u_pts)/sizeof (Ppoint3))

u_struct ()
{
popenstruct (1) ;
/* "U" points upward. is in * the lower left of a face.
ppolyline3 (NUM_U_PTS, u_pts);
pclosestruct () ;

}

un_struct ()
{
Pmatrix3 transl, rotz, trans2, composite;
Pmatrix3 tl;
Pvector3 p;
Pint err;

popenstruct (2) ;
psetlinecolourind (WHITE) ;
pexecutestruct (1)

@ sun : Revision A of 30 August 1989

microsystems

*/

Appendix A — Examples 79

psetlinecolourind (SUNPURPLE) ;

p.Xx = -2.5;
p.y = 0.0;
p.z = 0.0;

ptranslate3 (&p, &err, transl);

protatez (DEG_TO_RAD(180.0), &err, rotz);

p.x = 8.5;

p-y = 11.0;

p.z = 0.0;

ptranslate3(&p, &err, trans2);

pcomposematrix3 (rotz, transl, &err, tl);

pcomposematrix3 (trans2, tl, &err, composite);

psetlocaltran3(composite, PREPLACE);

/* transform U to point down (kinda looks like an N)
* and sit on the right of the U in structure 1
*/

pexecutestruct (1) ;

pclosestruct () ;

}

logo ()
{
Pmatrix3 transl, rotz, trans2, composite;
Pmatrix3 tl;
Pvector3 p;
Pint err;

popenstruct (3) ;
pexecutestruct(2); /* lower left UN */
pclosestruct () ;

/* translate the UN to its center */

p.x = -5.5;
p.y = -5.5;
p.z2 = 0.0;

ptranslate3 (&p, &err, transl);
popenstruct (3) ;
protatez (DEG_TO_RAD(90.0), &err, rotz);

p.x = 5.5;
p.y = 17.5;
p-z = 0.0;

ptranslate3(&p, &err, trans2);
pcomposematrix3 (rotz, transl, &err, tl);
pcomposematrix3 (trans2, tl, &err, composite);
psetlocaltran3 (composite, PREPLACE};
pexecutestruct (2); /* upper left S */
pclosestruct () ;

popenstruct (3) ;
protatez (DEG_TO_RAD(180.0), &err, rotz);

p.x = 17.5;
p.y = 17.5;
p.2 = 0.0;

ptranslate3 (&p, &err, trans2);
pcomposematrix3 (rotz, transl, &err, tl);
pcomposematrix3 (trans2, tl, &err, composite);
psetlocaltran3 (composite, PREPLACE) ;

Q?y sun Revision A of 30 August 1989

microsystems

80

Getting Started with SunPHIGS™

}

pexecutestrict (2); /* upper right UN */

pclosestruct () ;

popenstruct (3),

protatez (DEG_TC_RAD(270.0), &err, rotz);

p.x = 17.5;
p.y = 5.5;
p.z = 0.0;
ptranslate3(&p, &err, trans2);

pcomposematrix3 (rotz, transl, &err, tl);
pcomposemat ix3(trans2, tl, &err, composite);
psetlocaltran3 (composite, PREPLACE);
pexecutestruct (2); /* lower right S *,

pclosestruct () ;

face ()

{

popenstruct (4) ;
psetv. 4ind(1);
pexecutestruct (3);
pclosestruct () ;

}
cube2 ()
{
Pmatrix3 rot, trans;
Pmatrix3 compositel, composite2;

}

Pvector3 P’
Pint err;

p~otatey (DEG_TO_RAD(90.0), &err, rot);

p.x = 23.0;

p.y = 0.0;

p.z = 0.0;

ptranslate3(&p, &err, trans);
pcomposematrix3 (trans, rot, &err,

protatex (-DEG_TO_RAD(90.0), &err,
p.x = 0.0;
p.y = 23.0;
p.z = 0.0;

- ptranslate3(&p, &err, trans);

pcomposematrix3 (trans, rot, &err,

popenstruct (4) ;

compositel);/* right face */

rot);

composite2) ;/* top face */

psetlocaltran3(compositel, PREPLACE);

pexecutestruct (3);

psetlocaltran3(composite2, PREPLACE);

pexecutestruct (3) ;
pclosestruct () ;

Pviewmapping3 view_map = {

{ -50.0, 50.0, -50.0, 50.0},
{ 0.0, 1.0, 0.0, 1.0, 0.0, 1.0},

4 sun

microsystems.

/* window */
/* viewport */

Revision A of 30 August 1989

Appendix A — Examples 81

PPARALLEL, /* viewport type */
{ 0.5, 0.5, 1000.0}, /* prp */

0.0, /* view plane dist */
-50.0, /* back plane dist */
50.0 /* front plane dist */

}:

set_up_view (ws_id)

Pint ws_id;

{
Ppoint3 vrp;
Pvector3 vpn, vup;
Pint err;
Pviewrep3 vrep;

vrp.x = 23.0; vrp.y = 23.0; vrp.z = 0.0;

vpn.x = 1.0; vpn.y = 1.0; vpn.z = 1.0;

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
pevalvieworientationmatrix3 (&vrp, &vpn, &vup, &err,
vrep.orientation_matrix);

if (err) {

fprintf (stderr, "error from eval orientation %d\n", err);
exit (4);

}

pevalviewmappingmatrix3 (&view_map, &err, vrep.mapping matrix);
if (erx) {

fprintf (stderr, "error from eval mapping %d\n", err);

exit (5);

}

vrep.clip limit = view_map.viewport;

vrep.clip xy = vrep.clip back = vrep.clip front = PNOCLIP;
psetviewrep3 (ws_id, 1, &vrep);

}
Pcobundl sunpurple = {175.0/255.0, 125.0/255.0, 255.0/255.0};

main(argec, argv)
int argc;
char *argv([]:;
{
Frame frame;
Canvas canvas;

frame = window_create (NULL, FRAME,
FRAME LABEL, "SunPHIGS Canvas Workstation",

0);
if (!frame)
exit (1);

canvas = window_create (frame, CANVAS,
WIN WIDTH, 600,
WIN_HEIGHT, 600,
0);
if (! canvas)
exit(1l);
window_fit (frame);

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);
{

@ sun Revision A of 30 August 1989

microsystems

82 Getting Started with SunPHIGS™

Psystemstate sys_state;

pingsystemst (4sys_state);

if (sys_state != PPHOP)
exit(1l);

}

popenws (WS1, (Pconnid)canvas, phigs_ws_type_sun_canvas);

{

Pwsstate ws_state;

pingwsst (&ws_state);

if (ws_state != PWSOP)
exit (3):;

}

set_up_ view(WS1);

psetdisplayupdatest (WS1, PASAP, PNIVE);

/* make a "sun purple" */
psetcolourrep (WS1, SUNPURPLE, &sunpurple):;

u_struct (),

un_struct();

logo();

face();

cube?2 (),

ppoststruct (WS1, 4, 1.0);
window_main_loop (frame);
pclosews (WS1) ;
pclosephigs ()

é{:}y sun Revision A of 30 August 1989

Appendix A — Examples 83

fourview.c
Demonstrates the 3-D viewing model using a Sun Tool workstation.

#ifndef lint
static char sccsid[] = "@(#)fourview.c 2.2 89/02/16 Copyr 1988 Sun Micro";
#endif

/*
* Copyright (c) 1988,1989 by Sun Microsystems, Inc.
*/

/*
This program is an example of how to set up four views of the same
object and interact with it in two ways:

1) Change the viewing parameters of only one view.
2) Rotate the object only in one view.

The second operation is supported with a quick-update-method (QUM) and
can be done without any redraw of the other three views. The first
operation is currently not supported by a QUM, thus it causes the entire
workstation to be redrawn when any one view is changed (but with

colour map double buffering turned on, this is not visible to the user).

main() is at the bottom of this file.
*/

#include <phigs/phigs.h>

/* Device ids */
#define WSID 1

/* Workstation size and location. */
#define WS _X 100
#define WS_Y 150
#define WS_WIDTH 200
#define WS_HEIGHT 200

/* Colors */
#define BLACK
#define WHITE
#define RED
#define GREEN
#define BLUE
#define YELLOW
#define CYAN
#define MAGENTA

~No e WO

/* Structure names. */
#define OBJECT 10

#define VIEW 1 1
#define VIEW_ 2 2
#define VIEW_3 3
#define VIEW_ 4 4

/* Labels */

S un Revision A of 30 August 1989

microsystems

84

Geitting Started with SunPHIGS™

#define OBJECT_TRANSFORM 1

static void
build _css()

{

/* Build a cube with fill areas for sides.

static Ppoint3 fll = { -1.0,-1.0,
static Ppoint3 flr = { 1.0,-1.0,
static Ppoint3 fur = { 1.0, 1.0,
static Ppoint3 ful = { -1.0, 1.0,

static Ppoint3 bll =
static Ppoint3 blr =
static Ppoint3 bur =
static Ppoint3 bul =

’ ’

0

0,
0,
0

’

-1.0,-1.
1.0,-1.
1.0, 1.

-1.0, 1

_— A -

«Vy
.

’ .

static Pmatrix3 identity =
0.0, 1.0,
0.0, 0.0,
0.0, 0.0,

Ppoint3 points[4}];
Ppointlst3 side;

side.number = 4;
side.points = points;

0}:

1.
1.0
1.0}
1.0

-1.0
-1.0
-1.0
-1.0

*/

/* Build the object. Set the colors so that the red, blue and green
* sides intersect the positive x, y and z axes, respectively.

*/
popenstruct (OBJECT);
psetintstyle(PSOLID);
psethlhsrid(PHIGS_HLHSR ID_ZBUFF

/* front */

points[0] = fll; points(l] = flr;
psetintcolourind(BLUE);
pfillareaset3(1, &side);

/* back */

points[0] = bll; points[l] = blr;

psetintcolourind(CYAN);
pfillareaset3(1, &side);

/* top */

points[0] = ful; points[l] = fur;
psetintcolourind(GREEN);
pfillareaset3(1, &side);

/* bottom */

points{0] = £fl11l; points[l] = flr;
psetintcolourind(MAGENTA);
pfillareaset3(1, &side);

/* right */
points[0] = flr; points[l] = blr;

sun

microsystems

points[2]

points[2]

points[2]

points([2]

points[2]

[}

fur;

bur;

bur;

blr;

bur;

points(3] = ful;
points[3] = bul;
points[3] = bul;
points[3] = bll;
points[3] = fur;

Revision A of 30 August 1989

Appendix A — Examples 85

}

psetintcolourind{(RED);
pfillareaset3(1, &side);

/* left */

points[0] = bll; points[l] = fll; points[2] = ful; points[3] = bul;

psetintcolourind(YELLOW);
pfillareaset3(1, &side);
pclosestruct () ;

/* Build the hierarchical "views." Each of these structures will be

* Ok % ¥ * #

to see how this is done).

/

popenstruct (VIEW 1);

psetviewind(VIEW_ 1);

plabel (OBJECT TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct () ;

popenstruct (VIEW 2);

psetviewind(VIEW_ 2);

plabel (OBJECT_TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct () ;

popenstruct (VIEW 3);

psetviewind(VIEW 3);

plabel (OBJECT_TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct () ;

popenstruct (VIEW_4);

psetviewind(VIEW 4);

plabel (OBJECT TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct () ;

static void
set_up views ()

{

Pviewrep3 rep;
Pviewmapping3 map;
Ppoint3 vrp;
Pvector3 vup;
Pvector3 vpn;
Pint err;

/* All views use the same reference point. */

vrp.x = 0.0; vrp.y = 0.0; vrp.z = 0.0;

4 sun

microsystems

posted separately but will all reference the same object. They all
set the view index and then execute the obiject.
transformation elements are added so that the object can be rotated
independently in each view (see the function rotate_object_in view()

The label and

Revision A of 30 August 1989

86 Getting Started with SunPHIGS™

map.proj = PPARALLEL;

rep.clip xy = rep.clip back = rep.clip front = PCLIP;
map.window.xmin = -2.0; map.window.xmax = 2.0;
map.window.ymin = -2.0; map.window.ymax = 2.0;
map.back_plane = -2.0;

map.front_plane = 2.0;

map.view_plane = 1.8;

map.prp.x = (map.window.xmin + map.window.xmax) / 2.0;
map.prp.y = (map.window.ymin + map.window.ymax) / 2.0;
map.prp.z = 10.0;

map.viewport.zmin = 0.0; map.viewport.zmax = 1.0;

/* View 1 -- top view */

vup.x = 0.0; vup.y = 0.0; vup.z = -1.0;

vpn.x = 0.0; vpn.y = 1.0; vpn.z = 0.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

map.viewport.xmin = 0.05; map.viewport.xmax = 0.45;
map.viewport.ymin = 0.55; map.viewport.ymax = 0.95;
pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
rep.clip limit = map.viewport;

psetviewrep3(WSID, VIEW_ 1, &xep);

/* View 2 -— off axis view */

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;

vpn.x = 1.0; vpn.y = 1.0; vpn.z = 1.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

map.viewport.xmin = 0.55; map.viewport.xmax = 0.95;
map.viewport.ymin = 0.55; map.viewport.ymax = 0.95;
pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
rep.clip limit = map.viewport;

psetviewrep3(WSID, VIEW_2, &xep);

/* View 3 —— front view */

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;

ven.x = 0.0; vpn.y = 0.0; vpn.z = 1.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation matrix);

map.viewport.xmin = 0.05; map.viewport.xmax = 0.45;
map.viewport.ymin = 0.05; map.viewport.ymax = 0.45;
pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
rep.clip limit = map.viewport;

psetviewrep3 (WSID, VIEW 3, &rep);

/* View 4 -- right side view */

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;

ven.x = 1.0; vpn.y = 0.0; vpn.z 0.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

map.viewport.xmin = 0.55; map.viewport.xmax = 0.95;
map.viewport.ymin = 0.05; map.viewport.ymax = 0.45;
pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
rep.clip limit = map.viewport;

psetviewrep3(WSID, VIEW 4, &rep);

/* Set all these priorities to be higher than view 0. */
psetviewtraninputpri(WSID, 0, VIEW_l1, PLOWER);

sun Revision A of 30 August 1989
microsystems

Appendix A — Examples

87

}

psetviewtraninputpri(WSID, 0, VIEW_2, PLOWER);
psetviewtraninputpri(WSID, 0, VIEW_3, PLOWER);
psetviewtraninputpri(WSID, 0, VIEW 4, PLOWER);

static void
rotate_view(view)

{

Pint view;

Pviewrep3 rep, req_rep;
Pupdatest update_state;
Ppoint3 vrp;

Pvector3 vup;
Pvector3 vpn;
Pint err;
Pfloat *var dim;
int i
/* Change the viewing angle (view plane normal) of the specified view. */
switch (view) {
case VIEW_ 1l:
vup.x = 0.0; vup.y = 0.0; vup.z = -1.0;
vpn.x = 0.0; vpn.y = 1.0; vpn.z = 0.0;
var_dim = &vpn.x;
break;
case VIEW 2:
vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
vpn.x = 1.0; vpn.y = 1.0; vpn.z = 1.0;
var_dim = &vpn.x;
break;
case VIEW 3:
vup.Xx = 0.0; vup.y = 1.0; vup.z = 0.0;
vpn.x = 0.0; vpn.y = 0.0; vpn.z = 1.0;
var_dim = &vpn.x;
break;
case VIEW 4:
vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
vpn.x = 1.0; vpn.y = 0.0; vpn.z = 0.0;
var_dim = &vpn.z;
break;
default:
return;
}
/* Inquire the existing view representation and just change
* jits orientation matrix
*x/
pinqviewrep(WSID, view, &err, &update_state, &rep, &req_rep);
vrp.x = 0.0; vrp.y = 0.0; vrp.z = 0.0;
/* Set the view deferral state to display changes immediately. */
psetdisplayupdatest (WSID, PASAP, PNIVE);
for (i =1; i <= 10; i++) {
*var dim -= 0.10;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);
sun Revision A of 30 August 198!

microsystems

88 Getting Started with SunPHIGS™

}

psetviewrep3(WSID, view, &rep);

for (i =1; i <= 20; i++) {
*var_dim += 0.10;

pevalviewcrientationmatrix3{ &vrp, &vpn, &vup, &err,

rep.orientation matrix);

psetviewrep3(WSID, view, &rep);

for (i = 1; i <= 10; i++) {
*var_dim -= 0.10;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,

rep.orientation matrix);

psetviewrep3 (WSID, view, &rep);

static void
rotate_object_in view(view)

{

Pint view;

static Ppoint3 pt = {0.0,0.0,0.0};
static Pvector3 scale = {1.0,1.0,1.0};

Pmatrix3 transform;
Pint err;
Peditmode edit_mode;
int i;

if (!view)
/* User picked outside of the four views - nothing to do. */
return;

/* Rotate the object only in the specified view. This is done by

* changing the modelling transform in the "view" structure that
* executes the object.
*/

/* There is a QUM to support replacement of modelling transforms. This

* QUM draws the object in the background color before replacing the
* transform, then replaces the transform and draws the structure in
* the correct colors.

*/

psetdisplayupdatest (WSID, PWAIT, PUQUM);

/* Save and set the edit mode. We want REPLACE for this function

* since we will be replacing the existing transform.

*/

pingeditmode (&err, &edit_mode);
pseteditmode (PEDIT_REPLACE);

/* Open the structure, position the element pointer to the transform

* element and replace it. Each time the transformation element is

* replaced, the SunPHIGS QUM simulation will make the new transformation
* visible.

*/

popenstruct (view)
psetelemptr (0);
psetelemptrlabel (OBJECT_ TRANSFORM);

sSun Revision A of 30 August 1989

microsystems

Appendix A — Examples 89

poffsetelemptr(1);
for (i = 0; i < 100; i++) {
pbuildtran3(&pt, &pt,
(Pfloat)i/30., (Pfloat)i/40., (Pfloat)i/50.,
&scale, &err, transform);
psetlocaltran3(transform, PREPLACE)};
}
for (i = 99; i >=0; i--) {
pbuildtran3(&pt, &pt,
(Pfloat)i/30., (Pfloat)i/40., (Pfloat)i/50.,
&scale, &err, transform);
psetlocaltran3(transform, PREPLACE);
}

pclosestruct () ;

/* The workstation has visual representation "simulated."
* Make the workstation entirely correct by updating.
x/

pupdatews (WSID, PPERFORM);

/* Restore the edit mode. */
pseteditmode (edit_mode);
}

static void
input_loop()
{
int done = 0;
Pevent event;

/* Enable the input devices. */

psetlocmode (WSID, 1, PEVENT, PES_ECHO);
psetlocmode (WSID, 2, PEVENT, PES_ECHO);
psetlocmode(WSID, 3, PEVENT, PES ECHO);

/* Get and process input. The operator is always selecting views.
* The operation to perform is based on the button used to
* select the view:
Left mouse button: change viewing paramters.
Middle mouse button: rotate the object.
Right mouse button: terminate the program.

*/

do {

pawaitevent (60.0, &event);

switch (event.class) {

case PI_LOCATOR: ({
Ploc3 location;

pgetloc3(&location);
switch (event.dev) {
case 1:
rotate_view(location.view_index };
break;
case 2:
rotate object_in_view(location.view_index);
break;
case 3:
done = 1;

@ sun Revision A of 30 August 1989

microsystems

90

Getting Started with SunPHIGS™

}

break;
}
break;
b

}
} while (!done);

main(argc, argv)

int argce;
char *argv[];
Pwstype wst;

popenphigs ((Pchar*)0, PDEFAULT MEM SIZE);

/* Create the display hierarchy. */
build ecss();

/* Create a workstation type with the description table values we want
and open a workstation. Decommission the workstation type when
done with it to free up resources. The specific workstation type is
saved (internally to SunPHIGS) with the workstation.

* * * ¥

* Turn on color map double buffering to make updates smoother.
*/
wst = phigs ws_type create(phigs ws_type sun_tool,
PHIGS _TOOL WIDTH, WS_WIDTH, PHIGS_TOOL HEIGHT, WS_HEIGHT,
PHIGS_TOOL_X, WS_X, PHIGS_TOOL Y, WS_Y,
PHIGS_TEXTSW, PHIGS_NONE,
PHIGS_TOOL LABEL, "Viewing Example",
PHIGS_COLOR_TABLE_ SIZE, 8,
PHIGS DOUBLE BUFFER, PHIGS_DBL CMAP,
0); ‘
popenws (WSID, (Pconnid)O0, wst);
phigs_ws_type destroy(wst);

/* Enable Z-buffering. */
psethlhsrmode (WSID, PHIGS HLHSR_MODE_ZBUFF) ;

/* Set up the views we’ll be using. */
set_up_views();

/* Set the deferral state so that the screen is not updated when the
* hierarchy is posted, then post the hierarchy. The structures posted
* don’t overlap when displayed so posting priority is unimportant.
*/
psetdisplayupdatest (WSID, PWAIT, PNIVE);
ppoststruct (WSID, VIEW_ 1, 1.0);
ppoststruct (WSID, VIEW_ 2, 1.0):;
ppoststruct (WSID, VIEW 3, 1.0);
ppoststruct (WSID, VIEW 4, 1.0);

/* Now display the hierarchy and start looking for input. */
pupdatews (WSID, PPERFORM);
input_loop();

/* No more input, close everything. */

sun ’ Revision A of 30 August 1989
microsystems

Appendix A — Examples 91

pclosews (WSID);
pclosephigs();

@
i
=

Revision A of 30 August 1989

92 Getting Started with SunPHIGS™

fourview_cvs.c

Demonstrates the 3-D viewing model using a Sun Canvas workstation.

#ifndef lint

static char sccsid[] = "@(#)fourview_cvs.c 2.1 88/06/02 Copyr 1988 Sun Micro";
#endif

/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/

/*
This program is an example of how to set up four views of the same
object and interact with it in two ways:

1) Change the viewing parameters of only one view.
2) Rotate the object only in one view.

Four sun_canvas workstations are used, one for each view. This allows
each "view" to be updated completely independently of the other three,
and does not cause all of the "views" to be redrawn when one of them
changes.

*/

#include <phigs/phigs.h>
#include <suntool/canvas.h>

/* Workstation size and location. */
#define WS_X 100
#define WS_Y 150
#define WS_WIDTH 200
#define WS_HEIGHT 200

/* Colors */

#define BLACK 0
#define WHITE 1
#define RED 2

#define GREEN
#define BLUE
$#define YELLOW
#define CYAN
#define MAGENTA

SN o s W

/* Structure names. */
#define OBJECT 10

/* These are really workstation id’s corresponding to the four "views." */

#define VIEW_1 1
#define VIEW_2 2
$define VIEW 3 3
#define VIEW_ 4 4

/* Labels */
#define OBJECT TRANSFORM 1

static void

@ sSun : Revision A of 30 August 1989

microsystems

Appendix A — Examples 93

build css(triangles)

{

int triangles;

/* Build a cube with fill areas for sides. */

static Ppoint3 f£fl1 =
static Ppoint3 flr =
static Ppoint3 fur =
static Ppoint3 ful =

o~ o

static Ppoint3 bll
static Ppoint3 blr
static Ppoint3 bur
static Ppoint3 bul

{

{

{ 1.0,

{ -1.0,

static Pmatrix3 identity = { 1
0.0, 1.0, 0.0

0, 1.0

0, 0.0

I3 .

14

0.0, O.
0.0, O.

Ppoint3 points[4];
Ppointlst3 side;

side.number = triangles ? 3 :
side.points = points;

/* Build the object. Set the colors so that the

-1.0,-1.0,-1.0};
1.0,-1.0,-1.0};

1.0,-1.0};
1.0,-1.0};

4;

red, blue and green

* sides intersect the positive x, y and z axes, respectively.

*/
popenstruct (OBJECT);
psetintstyle(PSOLID);
psetedgeflag (PEDGE_OFF) ;

psethlhsrid(PHIGS_HLHSR ID_ZBUFF);

/* front */
psetintcolourind(BLUE);
if (!triangles) {
points[0] = £11; points[1]
pfillareaset3(1, &side)
} else {
points[0] = £11; points[1]
pfillareaset3(1, &side):;
points[0] = £f11; points[1]
pfillareaset3(1, &side):
}

/* back */

psetintcolourind(CYAN };

if (!triangles) {
points[0] = bll; points[1]
pfillareaset3(1, &side);

} else {
points[0] = bll; points[l]
pfillareaset3(1, &side);
points[0] = bll; points[l]
pfillareaset3(1, &side):

rosystems

flr;

flr;

fur;

blr;

blr;

bur;

points[2]

points[2]

points[2]

points[2]

points[2]

points (2]}

fur; points[3] = ful;

fur;

ful;

bur; points([3] = bul;

bur;

bul;

Revision A of 30 August 1989

94 Getting Started with SunPHIGS™

/* top */

psetintcolourind(GREEN)

if (!triangles) {
points{[0] = ful; points[l] = fur; points{2] = bur; points[3] = bul:;
pfillareaset3(1, &side);

} else {
points[0] = ful; points[l] = fur; points([2] = bur;
pfillareaset3(1, &side);
points[0] = ful; points[l}] = bur; points[2] = bul;
pfillareaset3(1, &side);

}

/* bottom */

psetintcolourind(MAGENTA);

if (!triangles) {
points[0] = fll; points[l] = flr; points[2] = blr; points([3] = bll;
pfillareaset3(1, &side);

} else {
points[0] = £11; points[l] = flr; points[2] = blr;
pfillareaset3(1, &side });
points[0] = fll; points[l] = blr; points[2] = bll;
pfillareaset3(1, &side);

}

/* right */
psetintcolourind(RED):
if (!triangles) {

points([0] = flr; points[l] = blr; points[2] = bur; points[3] = fur;
pfillareaset3(1, &side);

} else {
points([0] = flr; points[l] = blr; points[2] = bur;

pfillareaset3(1, &side);
points[0] = flr; points[l] = bur; points[2] = fur;
pfillareaset3(1, &side });

}

/* left */

psetintcolourind(YELLOW)

if (!'triangles) {
points([0] = bll; points[l] = fll; points[2] = ful; points[3] = bul;
pfillareaset3(1, &side);

} else {
points[0] = bll; points{l] = fll; points[2] = ful;
pfillareaset3(1, &side);
points[0] = bll; points[l] = ful; points[2] = bul;
pfillareaset3(1, &side);

}

pclosestruct () ;

/* Build the hierarchical "views." Each of these structures will be

* posted separately but will all reference the same object. They all
* gset the view index and then execute the object. The label and

* transformation elements are added so that the object can be rotated
* independently in each view (see the function rotate_object_in view()
* to see how this is done).

popenstruct (VIEW_1 });

@ sSun ; " Revision A of 30 August 1989

microsystems

Appendix A — Examples

95

}

psetviewind(1);

plabel (OBJECT_TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT),
pclosestruct () ;

popenstruct (VIEW_2);

psetviewind(1);

plabel (OBJECT_TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT) ;
pclosestruct();

popenstruct (VIEW 3);

psetviewind(1);

plabel (OBJECT TRANSFORM);
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct () ;

popenstruct (VIEW_4);

psetviewind(1);

plabel (OBJECT_TRANSFORM) ;
psetlocaltran3(identity, PREPLACE);
pexecutestruct (OBJECT);
pclosestruct () ;

static void
set_up views()

{

Pviewrep3 rep;
Pviewmapping3 map;
Ppoint3 vrp;
Pvector3 vup;
Pvector3 vpn;
Pint err;

/* All views use the same reference point. */
vrp.x = 0.0; vrp.y = 0.0; vrp.z = 0.0;

map.proj = PPARALLEL;

rep.clip xy = rep.clip back = rep.clip_front = PCLIP;
map.window.xmin = -2.0; map.window.xmax = 2.0;
map.window.ymin = -2.0; map.window.ymax = 2.0;
map.back_plane = -2.0;

map.front_ plane = 2.0;

map.view_plane = 1.8;

map.viewport.xmin = 0.0; map.viewport.xmax =
map.viewport.ymin = 0.0; map.viewport.ymax
map.viewport.zmin = 0.0; map.viewport.zmax
rep.clip limit = map.viewport;

map.prp.Xx = {(map.window.xmin + map.window.xmax) / 2.0;
map.prp.y = (map.window.ymin + map.window.ymax) / 2.0;
map.prp.z 10.0;

[l
)
.
o oo
NN

/* View 1 -- top view */
vup.x = 0.0; vup.y = 0.0; vup.z = -1.0;

sSun Revision A of 30 August 198'

microsystems

96

Getting Started with SunPHIGS™

}

ven.x = 0.0; vpn.y = 1.0; vpn.z = 0.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix):;

pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
psetviewrep3(VIEW_ 1, 1, &rep):

/* View 2 -- off-axis view */

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;

vpn.x = 1.0; vpn.y = 1.0; vpn.z = 1.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

pevalviewmappingmatrix3(&map, &err, rep.mapping matrix);
psetviewrep3(VIEW_2, 1, &rep);

/* View 3 -- front view */

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;

vpn.x = 0.0; vpn.y = 0.0; vpn.z = 1.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

pevalviewmappingmatrix3(&map, &err, rep.mapping_matrix);
psetviewrep3(VIEW_3, 1, &rep);

/* View 4 -- right side view */

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;

ven.x = 1.0; vpn.y = 0.0; vpn.z = 0.0;
pevalvieworientationmatrix3(&vrp, &vpn, &vup, é&err,
rep.orientation_matrix);

pevalviewmappingmatrix3(&map, &err, rep.mapping_matrix);
psetviewrep3(VIEW_4, 1, &rep);

static void
rotate view(view)

{

Pint view;

Pviewrep3 rep, req_rep;
Pupdatest update_state;
Ppoint3 vrp;

Pvector3 vup;

Pvector3 vpn;

Pint err;

Pfloat “*var dim;

int i;

/* Change the viewing angle (view plane normal) of the specified view.

switch (view) ({
case VIEW_1:

vup.x = 0.0; vup.y = 0.0; vup = 1.0;
vpn.x = 0.0; vpn.y = 1.0; vpn.z = 0.0;
var_dim = &vpn.x;
break;

case VIEW_2:
vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
vpn.x = 1.0; vpn.y = 1.0; vpn.z = 1.0;

var_dim = &vpn.x;
break;
case VIEW_3:

*/

@ Sun Revisior A of 30 August 1989

microsystems

Appendix A — Examples 97

vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
vpn.x = 0.0; vpn.y = 0.0; vpn.z = 1.0;
var_dim = &vpn.x;
break;

case VIEW_4:
vup.x = 0.0; vup.y = 1.0; vup.z = 0.0;
vpn.x = 1.0; vpn.y = 0.0; vpn.z = 0.0;

var_dim = &vpn.z;
break;

default:
return;

}

/* Inquire the existing view representation and just change
* its orientation matrix
*/
pinqgviewrep(view, 1, &err, &update_state, &rep, ®_rep);
vrp.x = 0.0; vrp.y = 0.0; vrp.z = 0.0;
psetdisplayupdatest (view, PASAP, PNIVE):;

for (i =1; i <= 10; i++) {

*var_dim -= 0.10;

pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

psetviewrep3(view, 1, &rep);

}

for (i =1; i <= 20; i++) {

*var_dim += 0.10;

pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

psetviewrep3(view, 1, &rep);

}

for (i =1; i <= 10; i++) {

*var_dim -= 0.10;

pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

psetviewrep3(view, 1, &rep);

}

static void

rotate_object_in view(view)
Pint view;

{
static Ppoint3 pt = {0.0,0.0,0.0};
static Pvector3 scale = {1.0,1.0,1.0};

Pmatrix3 transform;
Pint err;

Peditmode edit_mode;
int i

/* Rotate the object only in the specified view. This is done by
* changing the modelling transform in the "view" structure that
* executes the object.

*/
psetdisplayupdatest (view, PASAP, PNIVE);

@ sun Revision A of 30 August 1989

98 Getting Started with SunPHIGS™

}

/* Save and set the edit mode. We want REPLACE since we will be

* replacing the existing transform, not adding a new one.
*x/ .

pingeditmode(&erxr, &edit_mode);

pseteditmode { PEDIT REPLACE) ;

1

/* Open the structure, position the element pointer to the transform

* element and replace it.
*/
popenstruct (view);
psetelemptr (0);
psetelemptrlabel (OBJECT TRANSFORM) ;
poffsetelemptr(1);
for (i = 0; i < 100; i++) {
pbuildtran3(&pt, &pt, .
(Pfloat)i/30., (Pfloat)i/40., (Pfloat)i/50.,
&scale, &err, transform);
psetlocaltran3(transform, PREPLACE);
}
for (i =99; i >= 0; i--) {
pbuildtran3(&pt, &pt,
(Pfloat)i/30., (Pfloat)i/40., (Pfloat)i/50.,
&scale, &err, transform);
psetlocaltran3(transform, PREPLACE);
}

pclosestruct () ;

/* Restore the edit mode. */
pseteditmode (edit_mode);

static void
input_handler ()

{

int done = 0;
Pevent event;

/* Get and process input. This function is ‘called by PHIGS
input event is added to the input queue. See the set-up
(the ESCAPE function call) in main ().
The operation to perform is based on the button used to
select the view:

Left mouse button: change viewing paramters.

Middle mouse button: rotate the object.

* o X F

*/

do {
pawaitevent(0.0, &event);
switch (event.class) {
case PI_LOCATOR:
switch (event.dev) {
case 1l:
rotate_view(event.ws };
break;
case 2:
rotate_object_in view(event.ws);
break;

when an
for this

Sun Revision A of 30 August 1989

microsystems

Appendix A — Examples 99

}

break;

case PI_NONE:
done = 1;
break;
}
} while (!done):;
}

main(argc, argv)

int argc;
‘char *argv([]l;
{
Pescapein esc_rec;
Pwstype wst;
Pint wsid, device;
Frame frame;
Canvas canvas;

popenphigs ((Pchar*)0, PDEFAULT MEM SIZE);

/* Specify the input notification function. This function will be
* called by PHIGS whenever an input event is added to the input
* queue.
x/

esc_rec.uesc2_idatarec.notify proc = input_handler;

pescape(PUESC_INPUT NOTIFY PROC, &esc_rec, (Pescapeout*)NULL);

/* Create the display hierarchy. */
if (axgec > 1)

build css(0);

else

build css(1);

/* Create a workstation type with the description table values we want,
* then open four workstations, each one corresponding to a different
* "yiew" of the object.

*/

wst = phigs ws_type create(phigs_ws_type sun_canvas,

PHIGS_COLOR_TABLE_SIZE, 8,

0);

frame = window_create(NULL, FRAME,

WIN_X, WS_X, WIN Y, WS_Y,

WIN SHOW, TRUE,

0);

canvas = window_create(frame, CANVAS,

WIN X, 0, WIN. Y, O,

WIN WIDTH, WS _WIDTH, WIN_HEIGHT, WS_HEIGHT,
0);

popenws (VIEW_1, (Pconnid)canvas, wst };

canvas = window_create(frame, CANVAS,

WIN_RIGHT OF, canvas,

WIN_WIDTH, WS _WIDTH, WIN_HEIGHT, WS_HEIGHT,

0);

/* Turn on double buffering for the off-axis view. The color

@ sun Revision A of 30 August 1989

microsystems

100

Getting Started with SunPHIGS™

* table isn’t big enough to double buffer all workstations this way.
*/ :
phigs ws_type_set (wst, PHIGS DOUBLE BUFFER, PHIGS DBL CMAP, 0);
popenws (VIEW_2, (Pconnid)canvas, wst);
phigs_ws_type_set { wst, PHIGS_DOUBLE_BUFFER, PHIGS DBL NONE, 0);

canvas = window_create(frame, CANVAS,

WIN X, 0, WIN_BELOW, canvas,

WIN WIDTH, WS_WIDTH, WIN HEIGHT, WS_HEIGHT,
0):

popenws (VIEW_3, (Pconnid)canvas, wst);

canvas = window_create(frame, CANVAS,
WIN_RIGHT OF, canvas,

WIN _WIDTH, WS_WIDTH, WIN_HEIGHT, WS_HEIGHT,
0):

popenws (VIEW_4, (Pconnid)canvas, wst);

window_fit (frame);

/* Enable Z-buffering on all workstations. */
for (wsid = 1; wsid <= 4; wsid++)
psethlhsrmode (wsid, PHIGS_HLHSR_MODE_ZBUFF) ;

/* Decommission the workstation type when done with it to free
* resources. The specific workstation type is saved (internally
* to SunPHIGS) with the workstation.
*/

phigs_ws_type_destroy(wst);

/* Set up the viewing paramaters of all the views we use. */
set_up_views();

/* Set the deferral states and post the hierarchy. Posting priority
* is unimportant in this case since only one structure is posted on
* each workstation.

*/

for (wsid = 1; wsid <= 4; wsid++) {

psetdisplayupdatest (wsid, PASAP, PNIVE)};

ppoststruct (wsid, wsid, 1.0);

}

/* Enable the input devices. */

for (wsid = 1; wsid <= 4; wsid++) {

for (device = 1; device <= 3; device++)
psetlocmode (wsid, device, PEVENT, PES_ECHO);

}

/* Start accepting input. */
notify start();

/* Close everything. */

for (wsid = 1; wsid <= 4; wsid++)
pclosews (wsid); -
pclosephigs ()

@ sun ' Revision A of 30 August 1989

microsystems

Appendix A — Examples 101

non_square.c

Demonstrates aspect ratio definition for the workstation device space.

#ifndef lint
static char sccsid[] = "@(#)non_square.c 2.1 88/06/02 SMI";
#endif not lint

/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/

/* non-square.c - This program demonstrates the use of the PHIGS
device coordinate attributes: PHIGS_DEVICE_COORD_XMAX PTR and
PHIGS_DEVICE_COORD_YMAX PTR which implicitly define the aspect ratio -
of the workstation device space. This allows the display to fill the
complete device space of the workstation.

*/
#include <phigs/phigs.h>
#define WS1 1

main(arge, argv)

int argc;
char *argvl[]:;
{
Pwstype wst;
Psystemstate sys_state;
Pwsstate ws_state;
Plimit wswin;
float xmax = 400.0, ymax = 600.0;

/* Open PHIGS */

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);
pingsystemst {(&sys_state);
if (sys_state != PPHOP)

exit (1) ;

/* Configure the PHIGS workstation display size and device coordinate space.
*/
wst = phigs_ws_type create(phigs_ws_type_sun_tool,
PHIGS_TOOL WIDTH, (int) xmax,
PHIGS_TOOL_ HEIGHT, (int)ymax,
PHIGS_DEVICE COORD_XMAX PTR, &xmax,
PHIGS_DEVICE COORD_YMAX PTR, &ymax,
0);

/* Open the workstation */

popenws (WS1, (Pconnid)NULL, wst);
pingwsst (&ws_state);
if (ws_state != PWSOP)

exit (3);

/* Set the workstation window to have the same aspect ratio
as the display space.

@ Sun Revision A of 30 August 1989

microsystems

102 Getting Started with SunPHIGS™

*x/
wswin.xmin = wswin.ymin = 0.0;
wswin.xmax = xmax / ymax;
wswin.ymax = 1.0;
psetwswindow (WS1, &wswin);

/* Open a structure and insert polyline primitives and attribute elements.
*/
popenstruct (1) ;

{
Ppoint3 pts[5];

/* Initialize point data for the bottom box. */

pts[0].x = pts{[0].y = pts[0].z = 0.0;

pts[l].x = 0.0; pts[l].y = xmax / ymax; pts[l].z = 0.0;
pts[2].x = xmax / ymax; pts{2].y = xmax / ymax; pts[2].z = 0.0;
pts[3].x = xmax / ymax; pts[3].y = 0.0 ; pts[3].z = 0.0;
pts[4].x = 0.0 ; pts[d4].y = 0.0 ; pts[4)l.z = 0.0;

/* SET POLYLINE COLOUR INDEX to red and add the POLYLINE. */
psetlinecolourind(2);
ppolyline3 (5, pts):;

/* Reset the point data and insert more POLYLINE elements. */
pts[0].x = 0.0 ; pts{0]l.y = 0.0 ; pts[0].z = 0.0;
pts[l].x = xmax / ymax; pts[l].y = xmax / ymax; pts[l].z = 0.0;
ppolyline3 (2, pts):;
pts[0].x = 0.0 ; pts{[0]l.y = xmax / ymax; pts[0]l.z = 0.0;
pts[l].x = xmax / ymax; pts[l].y = 0.0 ; pts[l]l.z = 0.0;

ppolyline3 (2, pts):;

/* Initialize point data for the top box. */

pts{0]).x = 0.0 ; pts[0].y = xmax / ymax; pts[0].z = 0.0;
pts(l].x = 0.0 ; pts[l]l.y = 1.0 ; pts{l]l.z = 0.0;
pts[2]).x = xmax / ymax; pts[2].y = 1.0 ; pts[2].z = 0.0;
pts[3].x = xmax / ymax; pts(3].y = xmax / ymax; pts[3].z = 0.0;
pts[4].x = 0.0 ; pts[d4].y = xmax / ymax; pts[4].z = 0.0;

/* SET POLYLINE COLOUR INDEX to green and add the POLYLINE. */
psetlinecolourind(3);
ppolyline3 (5, pts);

/* Reset the point data and insert more POLYLINE elements. */

pts[0].x = 0.0 ; pts[0).y = xmax / ymax; pts[0].z = 0.0;
pts[l].x = xmax / ymax; pts{l}l.y = 1.0 ; pts[l].z = 0.0;
ppolyline3(2, pts);

pts[0]l.x = 0.0 ; pts[0].y = 1.0 ; pts[0].z = 0.0;
pts[l].x = xmax / ymax; pts[l]l.y = xmax / ymax; pts[l].z = 0.0;

ppolyline3(2, pts);
}

/* Close thé/;;;;;turé“agd post it to the workstation for display. */
pclosestruct () ; /
ppoststruct (WSl, 1,.71.0);
sleep(5);

@ S u n Revision A of 30 August 1989

microsystems

Appendix A — Examples 103

/* Close the workstation and PHIGS */

pclosews (WS1) ;
pclosephigs () ;

sun Revision A of 30 August 1989

microsystems

104 Getting Started with SunPHIGS™

pickit.c

A complex picking example program.

$#ifndef lint
static char sccsid[] = "@(#)pickit.c 2.1 88/06/02 Copyr 1987 Sun Micro";
#endif
/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/
/* Example program showing how to use a pick input device. This program

*/

demonstrates:

- How to initialize and enable a pick input device.

- How to collect event mode PHIGS input using either sun_canvas
or sun_tool workstation types.

- How to set a pick device’s detectability filter.

- How to use name sets to allow selection and highlighting of
picked output primitives.

- How to use SunView and PHIGS together.

- With both canvas and tool workstation types.

— How to use the SunPHIGS input event notification for canvas
workstation types.

- How to write a program that determines the workstation model
selected at link time (tool or canvas) and opens the correct
workstation type.

This program can be linked using either the tool or the canvas model,
i.e, either with or without the library lphigs.a. It determines the
model used and acts accordingly.

The output primitives are all in one structure. Each primitive has a
separate pick id associated with it; this pick id is also used as the
name set id. Each primitive’s name is added to the name set before
the primitive is defined and removed immediately afterwards. This
limits the scope of that name to only the elements associated with that
primitive.

To collect input, the canvas model registers an input event notification
function with SunPHIGS. This function is called by SunPHIGS whenever
new input is placed on the SunPHIGS input event queue. The tool model
uses a timer function that it registers with the SunView notifier. (This
is necessary since the application (this program) is using the SunView
event driven model and needs the flow of control passed back to it to
query the SunPHIGS event queue.) When either of these call-back
functions is called, the SunPHIGS functions AWAIT EVENT and GET PICK are
used to retrieve any pick input from the SunPHIGS input queue.

MAIN is at the bottom of the file.

#include <malloc.h>
#include <phigs/phigs.h>
#include <suntool/canvas.h>
#include <suntool/panel.h>

S u n Revision A of 30 August 1989

microsystems

Appendix A — Examples

105

#define
#define

#define
#define
#define
#define

#define

#define

#define
#define
#define
#define
#define
#define
#define
#define

/* Primitive pick and name set ids. */

#define
#define
#define
#define
#define

FRAME X
FRAME_Y

Ws_X
WS_Y
WS_WIDTH
WS_HEIGHT

OUTPUT_WS
NUM_NAMES

BLACK
WHITE
RED 2
GREEN
BLUE
YELLOW
CYAN
MAGENTA

100
50

100
150
200
200

20

-

~N o0 Ww

LINE 1
FILL_AREA 2
FILL_AREA SET
TEXT 4
MARKERS 5

static Pwstype
static Panel

/* Control buttons for the Button Panel.

typedef struct {
char *name;
void

} Control button;

extern void redraw_all();
extern void clear highlight();

cur_wst;
cmd_panel;

(*func) () ;

static Control_ button
"redraw",
"clear",

NULL,

static void

redraw_all(item)

NULL

Panel_ item item;

{

predrawallstruct (OUTPUT_WS, PALWAYS);

}

static void
clear_highlight(item)
Panel item item;

{

sun

microsystems

ctl btns[] = {
redraw_all,
clear_highlight,

/* for tool or canvas */

Revision A of 30 August 1989

106

Getting Started with SunPHIGS™

Pintlst infilt, exfilt;

exfilt .number = 0;
infilt.number = 0;
/* All highlighted primitives will be redrawn in their original colours.
psethilightfilter(OUTPUT WS, &infilt, &exfilt);
}
static void
select_primitive(path)
Ppickpath *path;
{
Pint innames [NUM_NAMES], exnames[NUM NAMES];
Pint err, insize, exsize;
Pintlst infilt, exfilt;
/* Get the current highlight filter. */
infilt.integers = innames;
exfilt.integers = exnames;
pinghilightfilter (OUTPUT_WS, NUM _NAMES, 0, NUM_NAMES, 0, é&err,
&infilt, &insize, &exfilt, &exsize);
/* Add this primitive to the highlight filter’s inclusion set. */
infilt.integers[infilt.number++] = path->pick_path([0].pick_id;
psethilightfilter(OUTPUT_WS, &infilt, &exfilt);
}
static void
await_event ()
{
Pevent event;
Ppickpathel path[l];
Ppick pick;
do {
pawaitevent(0.0, &event);
switch (event.class)} ({
case PI_PICK:
/* Since the device was initialized to return paths
* BOTTOM FIRST, we only need to look at the first element
* of the returned path to determine the primitive picked.
*/
pick.pick_path.pick_path = path;
pgetpick(1, é&pick);
if (pick.status == PP_OK)
/* Highlight picked primitive in
* gse—-defined highlight colour.
*/
select_primitive(&pick.pick _path);
break;
}
} while (event.class != PI_NONE };
}
static Panel
create_cmd_panel (frame)
Frame frame;
{
sun Revision A of 30 August 1989

microsystems

*/

Appendix A — Examples 107

Panel panel;
register Control_ button *btn;
register int max_length = 0;

panel = window_create(frame, PANEL,
PANEL_LABEL_ BOLD, FALSE,
0);

for (btn = ctl_btns; btn->name; btn++) {
if (strlen(btn->name) > max_length)
max_length = strlen (btn->name);

}

for (btn = ctl_btns; btn->name; btn++) {
panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL IMAGE,
panel_button_image(panel, btn->name, max length, NULL),
PANEL_NOTIFY_ PROC, btn->func,
0);
}

window_fit (panel);
return panel;

}

static void
build css ()
{
/* Define all the primitives about the origin then position them with
* local transforms.
*/
static Ppoint3 square[] = { 0.0,0.0,0.0,

.2,0.0,0.0,

.2,0.2,0.0

.0,0.2,0.0,
0,0.0,0.0

- O O OO0

static Ppointlst3 fas = { 4, square };
static Ppoint3 tpt = {0.0,0.0,0.0};
static Pvector3 tdir{2] = { {1.0,0.0,0.0}, {0.0,1.0,0.0} };

Pint names [20], err;

Pintlst nset;

Pvector3 vtrans; /* location of lower left corner of square. */
Pmatrix3 trans;

Pgserec gserec;

nset.number = 1;
nset.integers = names;

/* Add the primitives and bracket each with add/remove name from set.
* The pick ids correspond to the primitive’s name in the set.
*/
popenstruct(1);
/* Colour to be used to highlight primitives in select_primitive */
gserec.ugsel_datarec.highlight colour = YELLOW;
pgse (PUGSE_HIGHLIGHT COLOUR_INDEX, &gserec);

@ sun Revision A of 30 August 1989

microsysterns

108

Getting Started with SunPHIGS™

names[0] = LINE;

paddnameset (&nset);

vtrans.x = 0.1; vtrans.y = 0.6; vtrans.z = 0.0;
ptranslate3(&vtrans, &err, trans);
psetlocaltran3(trans, PREPLACE);
psetlinecolourind(WHITE);

psetpickid(LINE);

ppolyline3(5, square);

premovenameset (&nset);

/* The following fill area and fill area set primitives use the same
* data as the polyline primitive, but only need the first four points,
* gince fill areas are implicitly closed.

*/

names[0] = FILL_AREA;

paddnameset (&nset);

vtrans.x = 0.6; vtrans.y = 0.6; vtrans.z = 0.0;

ptranslate3(&vtrans, &err, trans);

psetlocaltran3(trans, PREPLACE);

psetintstyle(PSOLID);

psetintcolourind(MAGENTA);

psetpickid(FILL_AREA);

pfillarea3(4, square);

premovenameset (&nset);

names[0] = FILL AREA_SET;
paddnameset (&nset);

vtrans.x = 0.1; vtrans.y = 0.1; vtrans.z = 0.0;
ptranslate3(&vtrans, &err, trans);
psetlocaltran3(trans, PREPLACE);
psetintstyle (PSOLID):;
psetedgeflag (PEDGE_ON);
psetedgecolourind(GREEN);
psetintcolourind(RED);

psetpickid(FILL_AREA_SET);
pfillareaset3(1, &fas)
premovenameset (&nset);

names{[0] = TEXT;

paddnameset (&nset);

vtrans.x = 0.3; vtrans.y = 0.4; vtrans.z = 0.0;
ptranslate3(&vtrans, &err, trans);
psetlocaltran3(trans, PREPLACE);
psettextcolourind(CYAN);

psetcharheight (0.05);

psetpickid(TEXT);

ptext3(&tpt, tdir, "Some Text");
premovenameset (&nset);

names[0] = MARKERS;

paddnameset (&nset);

vtrans.x = 0.6; vtrans.y = 0.1; vtrans.z = 0.0;
ptranslate3(&vtrans, &err, trans);
psetlocaltran3(trans, PREPLACE);
psetmarkercolourind(BLUE);

psetpickid (MARKERS);

ppolymarker3 (4, square);

premovenameset (&nset);

S u n Revision 74y AL zast 160

microsystems

Appendix A — Examples 109

pclosestruct () ;

}

static void

open_phigs ()

{
char *buf = NULL;
Pint i, err, size;
Pwstypelst list;
Pwstype *wst;
Phigs base name n;
Pescapein esc_rec;

static struct itimerval itval = { 1, 0, 1, 0};

/* Open PHIGS, and use the file "my errors" for the SunPHIGS error file.
popenphigs ("my errors", PDEFAULT MEM SIZE);

/* Report errors synchronously. */
esc_rec.uescl_idatarec.sync_on = PERRSYNC_ON;
pescape (PUESC_ERRSYNC, &esc_rec, (Pescapeout*)NULL);

/* The list of available workstation types indicates which model was

* selected at link time. We look through the list to see what types
of workstations we can use from this application. As soon as we

* see one that tells us how the application was linked, we create one

* of that type and return.

*/

/* Get the buffer size needed. */
pingwstypes(0, &err, (Pchar*)NULL, &list, &size);
if (lerr) {
if (size > 0)
buf = malloc((unsigned)size);
pingwstypes(size, &err, buf, &list, &size);
for (i = 0, wst = list.ws_types; i < list.number; i++, wst++) {
n = (Phigs_base name)phigs_ws_type get (*wst, PHIGS_BASE_NAME);

if (n == PHIGS_SUN_TOOL) ({

cur_wst = phigs_ws_type_ create(phigs_ws_type_sun tool,
PHIGS_TOOL WIDTH, WS_WIDTH, PHIGS_ TOOL_HEIGHT, WS _HEIGHT,
PHIGS_TOOL X, WS_X, PHIGS TOOL_ Y, WS Y,
PHIGS_TEXTSW, PHIGS_NONE,
PHIGS_TOOL_SHOW_LABEL, FALSE,
0):

/* Set up a timer so we can poll the event queue from our
* SunView application that uses a PHIGS_SUN_TOOL workstation.
*/
notify set itimer func(&cur_wst, await_event, ITIMER REAL,
&itval, NULL);
break;

} else if (n == PHIGS_SUN_CANVAS) {

cur_wst = phigs_ws_type create(phigs_ws_type_ sun_canvas,
PHIGS TEXTSW, PHIGS_NONE,
0);

@ sun Revision A of 30 August 1989

110 Getting Started with SunPHIGS™

}

/* Register our SunPHIGS event callback. (This feature
* is only available for PHIGS_SUN_CANVAS workstation

* types.)

*/

esc_rec.uesc2_idatarec.notify proc = await_event;
pescape (PUESC_INPUT_NOTIFY PROC, &esc rec, (Pescapeout*)NULL);
break;
}
}
if (buf)

free (buf) ;
}

void
open_workstation(ctl_frame)

{

}

Frame ctl_frame;
Canvas canvas;

Frame pframe;

Pint wsid = OUTPUT_WS;

switch ((int)phigs_ws_type_get (cur_wst, PHIGS_BASE NAME)) {
case PHIGS_SUN_TOOL:
window_set (ctl_frame, FRAME LABEL, "Tool Workstation", 0);
popenws (wsid, (Pconnid)NULL, cur_wst);
break;

case PHIGS_SUN_CANVAS:
window_set (ctl_frame, FRAME LABEL, "Canvas Workstation", 0):;
pframe = window_create(ctl_frame, FRAME,
WIN_SHOW, TRUE,
WIN_X, WS_X - FRAME X, WIN Y, WS_X - FRAME_Y,
FRAME SHOW_LABEL, FALSE,
0);
canvas = window_create(pframe, CANVAS,
WIN X, O,
WIN_WIDTH, WS_WIDTH, WIN_HEIGHT, WS_HEIGHT,
0);
popenws (wsid, (Pconnid)canvas, cur_wst);
window_fit (pframe) ;

static void
init_pick device(dev_id)

{

Pint dev_id;

Pint names [NUM_NAMES];
Pintlst infilt, exfilt;
Ppickrec rec;

Plimit3 ev; /* echo volume */
Ppoint3 *aperture;

Ppick init_pick;

/* Make everything detectable by this device. */
infilt.number = 5;
infilt.integers = names;

sSuin

microsystems

Revision A of 30 August 1989

Appendix A — Examples 111

names[0] = LINE;

names[l]) = FILL AREA;
names[2] = FILL AREA SET;
names[3] = TEXT;

names[4] = MARKERS;

exfilt.number = 0;
psetpickfilter (OUTPUT_ WS, dev_id, &infilt, é&exfilt):;

/* Initialize and enable the device. Use prompt/echo type 2 (highlight
* all prims with same pick id of picked primitive) and no initial pick.
* Set the path order to BOTTOM FIRST so that we only have to look at
* the first element in a returned pick path. The bottom—most element
* is the one that contains the primitive’s pick id (in this application).
*/

/* Two 0.1 second blinks in yellow. */
rec.pickpet2_datarec.highlight colour = YELLOW;
rec.pickpet2_datarec.highlight_count = 2;
rec.pickpet2_datarec.highlight_duration = 0.1;

/* Set echo volume to the entire ws viewport. */
ev.xmin = ev.ymin = ev.zmin = 0.0;
ev.Xxmax = ev.ymax = ev.zmax = 1.0;

/* Set the pick aperture to 5% of NPC in all dimensions. */
aperture = &rec.pickpet2_datarec.aperture_size;
aperture->x = aperture->y = aperture->z = 0.05;

init_pick.status = PP_NOPICK;

init_pick.pick_path.depth = 0;

pinitpick3(OUTPUT_WS, dev_id, init_pick.status, &init_pick.pick_path,
2, &ev, &rec, PBOTTOM _FIRST):;

psetpickmode (OUTPUT WS, dev_id, PEVENT, PES_ECHO);

main(argc, argv)
int argc;
char *argv(];

Frame base frame;

/* Open PHIGS and create a structure containing the primitives that
* will be used to demonstrate picking.
*/

open_phigs () ;

build css();

/* Create the control frame. */

base_frame = window_create (NULL, FRAME,
WIN_X, FRAME X, WIN_Y, FRAME_Y,

FRAME NO_CONFIRM, TRUE,

0);

cmd _panel = create_ cmd_panel(base_frame);

/* Open a workstation of the type appropriate for the model selected
* at link time, initialize pick device 1 (cursor and left mouse button),
* and post (display the contents of) the structure created by build css.

sun Revision A of 30 August 1989

microsystems

112 Getting Started with SunPHIGS™

*/

open_workstation(base_frame);
init_pick _device(1); :
ppoststruct (OUTPUT WS, 1, 1.0);

/* Pass control to SunView. */
window fit (base_frame);
window_main_loop(base_frame)

/* Cleanup. */
pclosews (OUTPUT WS);
pclosephigs () ;

Sun Revision A of 30 August 1989

microsystems

Appendix A — Examples 113

rspheres.c

Demonstrates the transformation pipeline and logical input devices.

#ifndef lint
static char sccsid[] = "@(#)rspheres.c 2.3 89/01/04 Copyr 1988 Sun Micro";
#endif

/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/

/* Example program allowing a user to interactively modify viewing
g

parameters using a SunPHIGS valuator device, and see the effect

on the displayed image (a sphere bouncing inside a cube).

Also demonstrates the use of a SunPHIGS choice device, allowing the
user to add additional spheres, modify their attributes, etc.

/

* % Ok % * F

#include <phigs/phigs.h>
#include <ctype.h>
#include <math.h>

extern int facet_sphere();

#define MAX SPHERES 100

#define SPHERE 1
#define LOCATIONS 2
#define ROOT 3

#define LINTSTYLE 1
#define LEDGEFLAG 2

#define BLACK 0
#define WHITE 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define YELLOW 5

#define QUIT -1
#define WC_MIN -5.0
#define WC_MAX 5.0

#define TIME_ INC 1.0
#define VELOCITY 0.2
#define MAX_RAND 2147483647

#ifndef MIN

#define MIN(a, b) (((a) < (b)) 2 (a) : (b))
#endif

#ifndef MAX

#define MAX(a, b) (((a) > (b)) 2 (a) : (b))
#endif

Q@ sSun Revision A of 30 August 1989

microsystems

114 Getting Started with SunPHIGS™

static Pchar *strings[] = {
"EMPTY" R
"HOLLOW",
"SOLID",

"PATTERN",

"HATCH" ,
” " .
"EDGE_ON",
"EDGE_OFF",
LI] y
"PARALLEL",
"PERSPECTIVE",
"w ’
"ADD SPHERE",
"REMOVE SPHERE",
" " ’
"HIDDEN SURF ON",
"HIDDEN SURF OFF",
” "
" QUIT "

}:

static num strings = sizeof (strings)/sizeof (Pchar¥);

static Pmatrix3 identity = { 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0

};

/* Sphere velocity and location data. */
typedef struct ({

Pvector3 velocity;

Pmatrix3 position;
} Sphere_data;

static Sphere_data sphere_data[MAX SPHERES];
static int sphere count = 0;

/* Radius of spheres. */
static double radius = 1.0;

/* Viewing parameters */

static Pviewrep3 rep;

static Pviewmapping3 map;

static Ppoint3 vip = { 0.0, 0.0, 0.0};
static Pvector3 vup = { 0.0, 0.0, 1.0};
static Pvector3 ven = { 0.866, -0.5, 0.5};

static void
usage (name)
char *name;
{
fprintf (stderr,
"usage: %s [count] [e on|off] [i elhi{s] [(h on|off] [d c¢lh|n] [?]1l]0,
name) ;

S un Revision A of 30 August 1989

microsystemns

Appendix A — Examples 115

}

static void
random_velocity(v)

{

}

Pvector3 *v;
extern long random() ;

long Xr, Yr;
Pfloat Xv, Yv, 2v, XYv, V2;

Xv = Yv = Zv = 0.0;
V2 = VELOCITY * VELOCITY;

Xr = random();
Xv =

if (Xxr % 2)
Xv = - Xv;

Yr = random():;

Yv =
if (Yr % 2)
Yv = - Yv;

XYv = sqgrt(Xv * Xv + Yv * Yv);
if (XYv < VELOCITY) {
Zv = sqgrt (V2 - XYv * XYv);
if (random() % 2)
Zv = - Zv;

}

v->x = Xv;
v->y = Yv;
v=>z = 7Zv;

static void
add_sphere()

{

}

Sphere_data *data;

if (sphere_count < MAX SPHERES) {
data = &sphere_data[sphere count++];
memcpy (data->position, identity,
random_velocity(&data->velocity);

pseteditmode (PEDIT_INSERT);
popenstruct (LOCATIONS) ;

psetlocaltran3(data->position, PREPLACE);

pexecutestruct (SPHERE) ;
pclosestruct () ;
pseteditmode (PEDIT_REPLACE) ;
}

static void
remove_sphere ()

sun

microsystems

((float)Xr/(float) MAX RAND) * (VELOCITY/sqrt(3.0));

({(float)Yr/(float)MAX_RAND) * sqrt (V2 - Xv * Xv);

sizeof (Pmatrix3));

Revision A of 30 August 1989

116 Getting Started with SunPHIGS™

if (sphere count > 0) {

popenstruct (LOCATIONS) ;
pdelelem();
pdelelem();

pclosestruct ();

--sphere count;

}

}

static void

init_view mapping ()

{
map.proj = PPERSPECTIVE;
map.prp.z = 6.0 * WC_MAX;
map.window.xmin = WC_MIN; map.window.xmax = WC_MAX;
map.window.ymin = WC_MIN; map.window.ymax = WC_MAX;
map. front_plane = 2.0 * WC_MAX;
map.back_plane = 2.0 * WC_MIN;
map.view plane = 0.4 * map.prp.z;
map.prp.x = (map.window.xmin + map.window.xmax) / 2.0;
map.prp.y = (map.window.ymin + map.window.ymax) / 2.0;
map.viewport.xmin = 0.0; map.viewport.xmax = 1.0;
map.viewport.ymin = 0.0; map.viewport.ymax = 1.0;
map.viewport.zmin = 0.0; map.viewport.zmax = 1.0;

}

static void

eval view_rep(rep)
Pviewrep3 *rep;

{

Pint err;

pevalviewmappingmatrix3(&map, &err, rep->mapping matrix);
if (err) {
fprintf(stderr, "Error from eval mapping %d0, err):

}

pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep->orientation_matrix);
if (err) {
fprintf(stderr, "Error from eval orientation %d0, err);
}

}

static void
set_view_rep()
{
eval_view_rep(&rep);
rep.clip_limit = map.viewport;
rep.clip_xy = rep.clip back = rep.clip front = PNOCLIP;
psetviewrep3(1, 1, &rep):
}

static void
build_sphere(}
{ ,
Ppointlst3 *facets;

sSsun Revision A of 30 August 1989

microsystems

Appendix A — Examples 117

int num_facets, num_lat = 6, num long = 8;
register int i;

num_facets = facet_sphere(radius, num lat, num long, &facets);
popenstruct (SPHERE) ;

for (i = 0; i < num_facets; i++) {

psetintcolourind((i % 6) + 2);

pfillareaset3(1, &facets[i]):

}

pclosestruct () ;

free (facets);

}

static void
build box ()

{
Ppoint3 pts[5];

psetlinecolourind (RED) ;

/* top */

pts[0].z = pts[l].z = pts[2].z = pts[3].z = pts[4].2 = WC_MIN;
pts[0].x = WC_MIN; pts[0].y = WC_MIN;

pts[l].x = WC_MAX; pts[l].y = WC_MIN;

pts[2].x = WC_MAX; pts[2].y = WC_MAX;

pts[3].x = WC_MIN; pts[3].y = WC_MAX;

pts[4].x = WC_MIN; pts([4].y = WC_MIN;

ppolyline3(5, pts):;

/* bottom */

pts[0).z = pts[l].z = pts[2].z = pts[3]).z = pts[4].z = WC_MAX;
ppolyline3(5, pts);

/* corners */

pts([0].z = WC_MIN; pts{l].z = WC_MAX;
pts{0].x = pts[l].x = WC_MIN; pts[0].y
ppolyline3(2, pts):

pts[0].x = pts{l].x = WC_MAX; pts[0].y = pts[l].y = WC_MIN;
ppolyline3(2, pts);

ptsil].y WC_MIN;

pts(0].x = pts{l].x = WC_MAX; pts[0].y = pts{l].y = WC_MAX;
ppolyline3(2, pts):;
pts[0].x = pts[l].x = WC_MIN; pts[0].y = pts{l].y = WC_MAX;

ppolyline3(2, pts);
}

static void

build_css(edge_flag, int_style)
Pedgef edge_flag;
Pinterstyle int_style;

Ppoint3 axes_origin, axes_length;
Pint axes_color(3];

axes_origin.x = axes_origin.y = axes_origin.z = 0.0;
axes_length.x = axes_length.y = axes_length.z = 0.5;
axes_color[0] = RED; axes_color[l] = GREEN; axes_color{2] = BLUE;

popenstruct (ROOT) ;

psetviewind(1);

psethlhsrid (PHIGS_HLHSR_ID_ZBUFF);

axes (&axes_origin, &axes_length, axes_color);

@ sun Revision A of 30 August 1989

microsystems

118 Getting Started with SunPHIGS™

psetintcolourind (YELLOW) ;
psetedgecolourind (GREEN) ;
plabel (LEDGEFLAG) ;
psetedgeflag(edge_flag):
plabel (LINTSTYLE) ;
psetintstyle(int_style);
pexecutestruct (LOCATIONS);
build box();
pclosestruct () ;
build_sphere();

}

#define NEW RI(_v, _dt, _r)

{

(Lx) += (_v) * (_dt);

if ((_r) >= WC_MAX) {
(_r) = 2.0 * WC_MAX -~ (_r);
(v) = ~(Vv);

} else if ((_r) <= WC_MIN) {
(_r) = 2.0 * WC_MIN - (_r);
(V) =-(Vv):

}

}

static void

move_spheres (}

{
register Sphere data *data;
register int i;

popenstruct { LOCATIONS);

psetelemptr(l);

for (i = 0; i < sphere_count; i++) {

data = &sphere datali];

NEW RI(data->velocity.x, TIME INC, data->position([0][3])
NEW_RI (data->velocity.y, TIME_INC, data->position[l]([3])
NEW _RI(data->velocity.z, TIME INC, data->position[2][3])
psetlocaltran3(data->position, PREPLACE);
poffsetelemptr(2);

}

pclosestruct () ;

}

static void
init_input ()
{

Pchoicerec crec;
Pvalrec vrec;
Plimit ea;

crec.choicepet3 datarec.number = num_strings;
crec.choicepet3 datarec.strings = strings;

ea.xmin = 0.0; ea.xmax = 1.0; ea.ymin = 0.0; ea.ymax = 1.0;
pinitchoice(1, 3, PCH_OK, 13, 3, &ea, &crec);

vrec.uvalpetl datarec.low = -1.0;
vrec.uvalpetl datarec.high = 1.0;
vrec.uvalpetl datarec.length = 200.0;

S un Revision A of 30 August 1989
microsystems

Appendix A — Examples 119

strcpy (vrec.uvalpetl datarec.format, "%8.3f");

strcpy (vrec.uvalpetl datarec.label, "vpn.x ");

pinitval(1, 1, vpn.x, -1, &ea, &vrec);

strepy (vrec.uvalpetl datarec.label, "vpn.y ");

pinitval(1, 2, vpn.y, -1, &ea, é&vrec);

strcpy (vrec.uvalpetl datarec.label, "vpn.z "y ;

pinitval(1, 3, vpn.z, -1, &ea, &vrec);
vrec.uvalpetl datarec.low = -map.pip.z;
vrec.uvalpetl datarec.high = map.prp.z;

strcpy (vrec.uvalpetl datarec.label, "view plane");

pinitval(1, 4, map.view_plane, -1, &ea, &vrec);

psetchoicemode(1, 3, PEVENT, PES_ECHO);
psetvalmode(1, 1, PEVENT, PES ECHO);
psetvalmode(1, 2, PEVENT, PES_ECHO);
psetvalmode(1, 3, PEVENT, PES_ECHO);
psetvalmode(1, 4, PEVENT, PES_ECHO);

}

static void
valuator_event (ev, val)
Pevent *ev;
Pfloat val;

switch (ev->dev) {

case 1l: vpn.x = val; break;

case 2: vpn.y = val; break;

case 3: vpn.z = val; break;

case 4: map.view_plane = val; break;

default: /* 2?2 */
fprintf (stderr, "Unknown valuator device %d0,
return;

}

set_view_rep();

}

static int

choice_event(ev, ch)
Pevent ‘*ev;
Pchoice *ch;

int status = 0;
Pinterstyle int_style;

switch (ch->choice)} {

case 1:

case 2:

case 3:

case 4:

case 5:
switch (ch->choice) {
case 1: int_style = PEMPTY; break;
case 2: int_style = PHOLLOW; break;
case 3: int_style = PSOLID; break;
case 4: int_style = PPATTERN; break;
case 5: int_style = PHATCH; break;
}

sun

microsystems

ev->dev);

Revision A of 30 August 1989

120

Getting Started with SunPHIGS™

P

openstruct (ROOT) ;

psetelemptr (0);

P
p

P

P
b

case
case

p
)

setelemptrlabel (LINTSTYLE) ;
of fsetelemptr(l);
setintstyle(int_style);
closestruct ();

reak;

7:
8:

popenstruct (ROOT) ;

setelemptr(0);
setelemptrlabel (LEDGEFLAG) ;

poffsetelemptr(l);

psetedgeflag(ch->choice == 7 ? PEDGE_ON

pclosestruct();
break;

case 10:
map.proj = PPARALLEL;
set_view_rep();
break;

case 11:
map.proj = PPERSPECTIVE;
set_view_rep();
break;

case 13:
add_sphere();
break;

case 14:
remove_sphere ();
break;

case 16:

psethlhsrmode (1, PHIGS_HLHSR MODE_ZBUFF);

break;
case 17:

psethlhsrmode (1, PHIGS_HLHSR_MODE_NONE) ;

break;

case 19:
status = QUIT;
break;

return status;

}

static int
check_input ()

{
int

status = 0;

Pevent event;
Pchoice choice;
Pfloat val;

do {

pawaitevent (0.02, &event);

sun

microsystemns

PEDGE_OFF) ;

Revision A of 30 August 1989

Appendix A — Examples 121

switch (event.class) {
case PI_CHOICE:
pgetchoice(&choice);
if (choice.status == PCH_OK)
status = choice_event (&event, &choice);
break;

case PI_VALUATOR:

pgetval (&val);

valuator event(&event, val);
break;

}
} while (event.class != PI_NONE);

return status;

}

main(argc, argv)
int argc;
char *argv([]:;

int

char

Pedgef
Pinterstyle
Pwstype wst;

Pint hidden_surf = PHIGS_HLHSR_MODE_NONE;
Phigs_dbl buff dbl_buff = PHIGS DBL_CMAP;

i, num_spheres = 1;

*arg, *progname = argv([0];

edge_flag = PEDGE_OFF;
int_style = PSOLID;

while (arg = *++argv) {
if (isdigit(*arg))
num_spheres = MIN(MAX SPHERES, atoi(arg));

else {
while (*arg) {
switch (*arg++) {
case ‘e’:
edge flag =
strcmp (*+t+argv,
break;
case ‘h’':
hidden_surf = strcmp(*++argv, "on")
' ? PHIGS_HLHSR_MODE_NONE :

"on") ? PEDGE_OFF :

break;
case ‘i’:
switch (*(*++argv)) {
case 'e':
int_style = PEMPTY; break;
case 'h’':
int_style = PHOLLOW; break;
case ’‘s’:
int_style = PSOLID; break;
}
break;
case ’'d’:
switch (* (*++argv)) {
case 'c':

dbl_buff = PHIGS DBL CMAP; break;

sun

microsystems

PEDGE_ON;

PHIGS_HLHSR_MODE_ZBUFF;

Revision A of 30 August 1989

122 Getting Started with SunPHIGS™

case ‘h':
dbl_buff = PHIGS_DBL HW; break;
case 'n’:
dbl_buff = PHIGS_DBL NONE: break:
}

break;

case '-':

/* Ignore unneeded flag denotation. */

break;

case ’'?':

‘case "1':

usage (progname) ;

exit (2);

break;

default:

fprintf (stderr, "%s: Unrecognized option.O,
progname) ;

usage (progname) ;

exit (2);

break;

}
}

/* Set up initial viewing parameters. */
init_view_mapping ()

/* Open PHIGS and create the display hierarchy. */
popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);
build css(edge_flag, int_style);

/* Create a workstation type with the description table values we want
* and open a workstation.
* Use colour map double buffering unless told otherwise on the command
* line (-d argument).
*x/

wst = phigs ws_type create(phigs_ws_type_sun_tool,

PHIGS COLOR TABLE SIZE, 8,

PHIGS_DOUBLE_BUFFER, dbl_buff,

PHIGS TOOL_X, 20, PHIGS_TOOL_ Y, 20,

PHIGS_TOOL HEIGHT, 600, PHIGS_TOOL_ WIDTH, 600,

PHIGS_VAL PANEL X, 650, PHIGS VAL PANEL Y, 25,

PHIGS_TOOL_ SHOW_LABEL, FALSE,

PHIGS_TEXTSW, PHIGS_NONE,

0);

popenws(1, (Pconnid)NULL, wst);

/* Set the deferral state so that the screen is not updated when
* the hierarchy is posted, then post the hierarchy.
*/

psetdisplayupdatest (1, PWAIT, PNIVE);

psethlhsrmode (1, hidden_surf);

set_view_rep();

init_input () ;

for (i = 0; i < num_spheres; it++)

@ sSun Revision A of 30 August 1989

microsystems

Appendix A — Examples 123

add_sphere () ;

ppoststruct(1, ROOT, 1.0);

/* Now display the hierarchy. */
psetdisplayupdatest (1, PASAP, PNIVE):;

/* Set edit mode to REPLACE to allow replacement of primitive attribute
* elements as they are changed by the user. Watch for input, and
* redisplay the image after making the appropriate changes to primitive
* attributes, viewing parameters, etc.
*/
pseteditmode (PEDIT_REPLACE) ;
for (;;) {
psetdisplayupdatest (1, PWAIT, PNIVE);
if (check_input () != QUIT) {
move_spheres();
psetdisplayupdatest (1, PASAP, PNIVE);
} else {
pclosews (1) ;
pclosephigs () ;
break;

sSun Revision A of 30 August 1989

microsystems

124 Getting Started with SunPHIGS™

spheres.c

Called by rspheres. c to form a sphere with triangles.

#ifndef lint
static char sccsid[] = "@(#)spheres.c 2.1 88/06/02 Copyr 1988 Sun Micro";
#endif

/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/

/* tessellate a sphere with triangles

method: divide into latitute and longitude lines. This gives
quadrilateral tesellation, then slash each quad to give triangles.
Exception: first and last latitude rows are already triangles, with
the N or S pole as a vertex

*/

#include <phigs/phigs.h>
#include <math.h>
#include <malloc.h>

#define MAXIAT 100 /*max number of horiz and vert. divisions of sphere*/
#define MAXLONG 100

#define BIGNUM 999.0
#define PI 3.14159265358979
#define TORAD (x) ((x)*PI/180.0)

typedef struct {
Ppoint3 upleft, upright, downleft, downright;
} Quad;

static int

tesselate sphere(radius, nlat, nlong, facets)
double radius;
int nlat, nlong; /*number of horiz, vert quads*/
Ppoint3 facets[]{3]:

int i, j, latl, lat2, nfacets = 0;
double theta, deltay, deltatheta;
Ppoint3 pl, p2;

Ppoint3 npole, spole;

Quad (*q) [MAXLONG] ;

if (nlat < 2 || O != nlat % 2) {

fprintf(stderr, "num lats must be even and >=2\n");
return -1;

}

if (nlat >= MAXLAT) {

fprintf(stderr, "current num lat limit is %d\n"):;

return -2; -
}
Q sun Revision A of 30 August 1989
microsystems

Appendix A — Examples

125

if(nlong < 3) {

fprintf(stderr, "num long must be >= 3\n");

return -3;

}

if (nlong >= MAXLONG) {

fprintf(stderr, "current num long limit is %d\n");
return -4;

}

q = (Quad(*) [MAXLONG])malloc(nlat * MAXLONG * sizeof (Quad));
if ('q)
return O0;

npole.x = 0.0; npole.y = 1.0; npole.z = 0.0;
spole.x = 0.0; spole.y = -1.0; spole.z = 0.0;
deltay = 2.0/nlat; /*y size of horiz. slices*/
deltatheta = 2.0*PI/nlong;

for (j=0; j<nlong; ++3j){

q{0] [j) .upleft = npole;

q{0][j].upright.x = BIGNUM; /*this is a triangle, not a quad*/
g[nlat-1][j] .downleft = spole;

g[nlat-1] {j] .downright.x = BIGNUM;

}

pl.x = p2.x = 1.0;

pl.y = p2.y = pl.z = p2.2 = 0.0;
lat2 = nlat/2;

latl = lat2-1;

theta = 0.0;

for(j=0; j<nlong; ++3){
gl[latl] [j]} .downright = g[lat2] [j].upright = pl;
if (3>0)
qllatl][j-1).downleft = g[lat2][j-1].upleft = pl;
theta += deltatheta;
pl.x = radius*cos (theta);
pl.z = radius*sin (theta);

}

qllatl] [nlong-1].downleft = g[lat2] [nlong-1l].upleft = g[latl][0].downright;

for(;;) {
if(latl == 0)
break;
--latl; ++lat2;
pl.y += deltay; p2.y —-= deltay;
radius = sqrt (1.0 - pl.y*pl.y);
pl.x = p2.x = radius;
pl.z = p2.z = 0.0;
theta = 0.0;

for(3=0; j<nlong; ++3j){
qflatl][j}.downright = g[latl+l][j].upright = pl;
gl[lat2][j]).upright = q[lat2-1]{j].downright = p2;
if (3>0) {
qllatl] [j-1).downleft = g[latl+1]([j-1]).upleft= pl;
qllat2][j-1].upleft = g[lat2-1)[j-1].downleft= p2;
}

@ sun Revision A of 30 August 1989

microsystems

126

Getting Started with SunPHIGS™

theta += deltatheta;

pl.x = p2.x = radius*cos(theta);

pl.z = p2.z = radius*sin(theta);
}
gllatl] ([nlong-1].downleft

= g[latl+l] [nlong-1].upleft = g[latl] [0].downright;
gllat2] [nlong-1].upleft

= g[lat2-1] [nlong-1].downleft = g[lat2][0].upright;
}

for(i=0; i < nlat; ++i) {

for(j = 0; j < nlong; ++3) {
if(qli] 3] .upright.x == BIGNUM) {
facets [nfacets]) (0] = gq[i][]j].downleft;
facets [nfacets] [1] = q[i][]j]) .downright;
facets[nfacets] [2] = gq[i][j].upleft;
++nfacets;
} else if(q[i][j].downright.x == BIGNUM) {
facets[nfacets] [0] = q[i][]j].downleft;
facets [nfacets] [1] qlil [j].upleft;
facets [nfacets] [2] qgl[i) [j] .upright;
++nfacets;
} else {
facets[nfacets] [0] = g[i][]j].downleft;
facets[nfacets] [1] = q[i][]j].downright;
facets[nfacets] [2] = g[i][j].upleft;
++nfacets;
facets[nfacets] [0] = gq[i][]j].downright;
facets[nfacets] [1]) = g[i] []j].upleft;
facets[nfacets] (2] = gq[i] [j].upright;
++nfacets;

}

}
}

free(q):
return nfacets;

}

int
facet_sphere(radius, num lat, num_long, facetlist
float radius;
int num_lat;
int num_long;
Ppointlst3 **facetlist;
{
Ppoint3 (*facets) [3];
int num_facets, farray size, flist_size;
char *buf;
register int i;

register Ppointlst3 *cfp;

num_facets = (2 + 2 * (num_lat - 2)) * num_long;
farray size = num facets * 3 * sizeof (Ppoint3);

flist_size = num_facets * sizeof (Ppointlst3);
buf = malloc(flist_size + farray_ size);

if (buf) {

facetlist = (Ppointlst3)buf;

sun

microsystems

Revision A of 30 August 1989

Appendix A — Examples 127

facets = (Ppoint3(*) [3]) (buf + flist_size);
num_facets = tesselate_sphere(radius, num lat, num_long, facets);
for (i = 0, cfp = *facetlist; i < num facets; i++, cfp++) {
cfp->number = 3;
cfp->points = facets[i];
}
}

return num_ facets;

}
#ifdef STANDALONE

main(argc, argv)

int argc;
char *argv[];
{
Ppointlst3 *facets;
int num_facets, num_lat = 8, num long = 8;
double radius = 1.0;
register int i;

num facets = facet_sphere(radius, num_lat, num_long, &facets);
for (i = 0; i < num_facets; i++) {
Ppoint3 *pts; ’

pts = facets[i].points;
fprintf(stdout,
"sd: \t(%f, %£f, $f) \n\t(3%f, %£f, %£)\n\t(%f, %£f, %f)\n",
i,
pts[0]).x, pts[0].y, pts[0].z,
pts[l].x, pts[l].y, pts(l].z,
pts[2].x, pts[2].y, pts[2].z);
}
free (facets);
}
#endif

@ S un Revision A of 30 August 1989

128 Getting Started with SunPHIGS™

txattrs.c

Demonstrates various text functions in C.

#ifndef lint

static char sccsid[] = "@(#)txattrs.c 2.1 88/06/02 Copyr 1988 Sun Micro";
#endif

/*
* Copyright (c) 1988 by Sun Microsystems, Inc.
*/

~
*

Example program showing the application of certain text attributes
and the text extent function. The user may interactively modify
text attributes and see how they affect the appearance of the text.

This program also demonstrates the use of colour map double buffering.
This program can be linked using either the tool or the canvas model,

i.e, either with or without the library lphigs.a. It determines the
model used and acts accordingly.

* ok % % * % * ¥

*
~

#include <phigs/phigs.h>
#include <suntool/canvas.h>
#include <suntool/panel.h>
#include <malloc.h>

/* Worksatation size and position constants. */
#define WS_SIZE 600

#define WS_X 25

#define WS Y 200

/* Colors */

#define CINDEX_GRAY 1
#define CINDEX RED 2
#define CINDEX_ GREEN 3
#define CINDEX_ YELLOW 5
#define CINDEX CYAN 6

/* World coordinate limits. */
#define WC_MIN -100.0
#define WC_MAX 100.0

/* Structure element labels *
#define DUMMY ELEMENT 0
#define TEXT ELEMENT 1
#define FONT ELEMENT 2
#define HEIGHT ELEMENT 3
#define EXPANSION ELEMENT 4
#define SPACING_ELEMENT 5
#define UP_ELEMENT 6

#define PATH ELEMENT 7
#define ALIGN ELEMENT 8
#define EXTENT_ELEMENT 9
#define CATPOINT ELEMENT 10

/* Definition of the text local coordinate system. */

sun Revision A of 30 August 1989

microsystems

Appendix A — Examples 129

static Ppoint3 loc = { 0.0, O.
static Pvector3 dir[2]= { 1

/* The workstation type used. */
static Pwstype cur_wst;

/* Current attribute values and default assignments. */

static Pchar cur_text[100] = "SunPHIGS";

static Pfloat cur_expansion = 1.0;

static Pfloat cur_spacing = 0.0;

static Pvector cur up = { 0.0, 1.0};

static Pfloat cur_height = 10.0;

static Pint cur_font = 1;

static Ptxpath cur_path = PTP_RIGHT;

static Ptxalign cur_align = { PAH_NORMAL, PAV_NORMAL};

/* Color rep */
static Pcobundl gray = { 0.5, 0.5, 0.5};

static void
init_view_mapping ()
{
/* Set the view mapping to display all of WC. */

Pviewmapping3 map;
Pviewrep3 rep;

static Ppoint3 vrp = { 0.0, 0.0, 0.0};
static Pvector3 vup = { 0.0, 1.0, 0.0};
static Pvector3 vpn = { 0.0, 0.0, 1.0};

Pint err;

map.proj = PPARALLEL;
map.prp.z = 10.0;
map.window.xmin = WC_MIN; map.window.xmax = W
map.window.ymin = WC_MIN; map.window.ymax = W
map.front_plane = WC_MAX;

map.back_plane = WC_MIN;

map.view_plane = 0.0;

map.prp.x = (map.window.xmin + map.window.xmax) / 2.0;
map.prp.y = (map.window.ymin + map.window.ymax) / 2.0;
map.viewport.xmin = 0.0; map.viewport.xmax =
map.viewport.ymin 0.0; map.viewport.ymax =
map.viewport.zmin 0.0; map.viewport.zmax

C_MAX;
C_MAX;

|
o e
o oo
o~~~

pevalviewmappingmatrixé(&map, &err, rep.mapping matrix);
if (errxr) {
fprintf(stderr, "Error %d from eval mapping\n", err);

}

pevalvieworientationmatrix3(&vrp, &vpn, &vup, &err,
rep.orientation_matrix);

if (err) {

fprintf(stderr, "Error %d from eval orientation\n", err);

}

rep.clip limit = map.viewport;
rep.clip xy = rep.clip back = rep.clip front = PNOCLIP;
psetviewrep3(1, 1, &rep);

@ sun ~ Revision A of 30 August 1989

microsystems

130

Getting Started with SunPHIGS™

}

static void
set_elem ptr to(label)

{

}

Pint label;

/* Find the specified label in the open structure and set the element
* pointer to the structure element immediately following the label.
*/

psetelemptr(0);

psetelemptrlabel (label);

poffsetelemptr(l);

static void
show_extent ()

{

}

Pint err;
Ppoint cat_pt, box[5];
Prect extent;

/* Inquire the extent of the sample text on the screen and replace
* the structure element data defining the text extent box and the
* concatentation point with the new data.

*/

pingtextextent (cur_wst, cur_ font, cur expansion, cur_spacing, cur_height,

cur_path, cur_align.hor, cur_align.ver, cur_text,

&err, &extent, &cat_pt);

if (lerr) {

box[0] = box{[4] = extent.ll;

box[l].x = extent.ll.x; box[l].y = extent.ur.y;

box[2] = extent.ur;

box[3].x = extent.ur.x; box[3].y = extent.ll.y;

set_elem ptr_to(EXTENT_ELEMENT);

ppolyline(5, box):

set_elem ptr to(CATPOINT_ELEMENT);
ppeolymarker(1, &cat_pt);

} else
fprintf(stderr, "Error %d from Inquire Text Extent\n", err):;

/* Update the ws to show the changed text structure (this initiates
* a traversal of all posted structures, rendered into the undisplayed
* buffer, at the end of which the displayed and undisplayed
* buffers will be swapped). :
*/
pupdatews (1, PPERFORM) ;

static void
set_text_string(item)

{

Panel_item item;

/* Replace the structure element defining the text string with the
* new string entered by the user, update the text extent box, and
* display the changed image.

*/

@ sun Revision A of 30 August 1989

Appendix A — Examples 131

set_elem ptr_ to(TEXT_ELEMENT);

strcpy (cur_text, (Pchar*)panel_get_value(item));
ptext3(&loc, dir, cur_text);

show_extent () ;

}

static void

set_font(item, val)
Panel_item item;
int val;

/* Replace the structure element -setting the current font with the
* new font selected by the user, update the text extent box, and
* display the changed image.

*/

switch (val) {

case 0: cur_font = PFONT_ROMAN MONO; break;

case 1: cur_font = PFONT ROMAN SIMPLEX; break;

case 2: cur_font = PFONT ROMAN DUPLEX; break;

case 3: cur_font = PFONT _ROMAN COMPLEX; break;

case 4: cur_font = PFONT_ROMAN_ TRIPLEX; break;

case 5: cur_ font = PFONT ITALIC COMPLEX; break;

case 6: cur_font = PFONT ITALIC TRIPLEX; break;

case 7: cur_font = PFONT_GREEK_SIMPLEX; break;

case 8: cur_font = PFONT_GREEK_COMPLEX; break;

case 9: cur_font = PFONT_SCRIPT_SIMPLEX; break;

case 10: cur_font = PFONT_SCRIPT COMPLEX; break;

case 1ll: cur_font = PFONT_CARTOGRAPHIC; break;

case 12: cur_font = PFONT_SYMBOL; break;

/* See if error conditions handled correctly (Bad Font menu item). */

default: cur_font = -999; break;

}

set_elem ptr to(FONT_ELEMENT);
psettextfont (cur_font);
show_extent () ;

}

static void)
set_expansion(item, val)
Panel item item;
int val;

/* Replace the structure element defining the character expansion with
* the new value entered by the user, update the text extent box, and
* display the changed image.

*/

cur_expansion = 0.01 * (float)val;

set_elem ptr to(EXPANSION_ELEMENT) ;

psetcharexpan(cur_expansion);

show_extent ();

}

static void

set_spacing(item, val)
Panel item item;
int val;

sSun Revision A of 30 August 1989

microsystems

132

Getting Started with SunPHIGS™

}

/* Replace the structure element defining the character spacing with
* the new value entered by the user, update the text extent box, and
* display the changed image.

*/

cur_spacing = 0.01 * (float)val;

set_elem ptr to(SPACING_ELEMENT);

psetcharspace(cur_spacing);

show_extent () ;

static void
set_height(item, val)

}

Panel item item;
int val;

/* Replace the structure element defining the character height with
* the new value entered by the user, update the text extent box, and
* display the changed image.
*/

cur_height = (Pfloat)val;

set_elem ptr_ to(HEIGHT ELEMENT);

psetcharheight (cur_height);

show_extent () ;

static void
set_x _up(item, val)

}

Panel_ item item;
int ~val;

/* Replace the structure element defining the x component of the character
* up vector with the new value entered by the user, update the text
* extent box, and display the changed image.
*/

cur_up.x = (Pfloat)val;

set_elem ptr to(UP_ELEMENT);

psetcharup(&cur_up);

show_extent ();

static void
set_y up(item, val)

}

Panel_item item;
int val;

/* Replace the structure element defining the y component of the character
* up vector with the new value entered by the user, update the text
* extent box, and display the changed image.
*/ :

cur_up.y = (Pfloat)val;

set_elem ptr to(UP_ELEMENT);

psetcharup(&cur_up);

show_extent () ;

static void
set_path(item, val)

Panel_item item;

sun Revision A of 30 August 1989
microsystems

Appendix A — Examples 133

}

int val;

/* Replace the structure element defining the text path with the
* new value entered by the user, update the text extent box, and
* display the changed image.

*/

switch (val) {

case 0: cur_path = PTP_RIGHT; break;

case 1: cur path = PTP_LEFT; break;

case 2: cux path = PTP_UP; break;

case 3: cur_path = PTP_DOWN; break;

}

set_elem ptr to(PATH ELEMENT);
psettextpath(cur_path);
show_extent () ;

set_vert_align(item, val)

}

Panel_item item;
int val;

/* Replace the structure element defining the text vertical alignment
* with the new value entered by the user, update the text extent box,
* and display the changed image.

*/

switch (val) {

case 0: cur align.ver = PAV_NORMAL; break;

case 1: cur_align.ver = PAV_TOP; break;

case 2: cur_align.ver = PAV_CAP; break;

case 3: cur_align.ver = PAV_HALF; break;

case 4: cur_align.ver PAV_BASE; break;

case 5: cur_align.ver = PAV_BOTTOM; break;

}

set_elem ptr to(ALIGN_ELEMENT) ;
psettextalign(&cur_align);
show_extent ();

set_horiz_align(item, val)

Panel_item item;
int val;

/* Replace the structure element defining the text horizontal alignment
* with the new value entered by the user, update the text extent box,
* and display the changed image.

*/

switch (val) {

case 0: cur_align.hor = PAH_NORMAL; break;

case 1: cur_align.hor = PAH_LEFT; break;

case 2: cur_align.hor = PAH_CENTRE; break;

case 3: cur_align.hor = PAH_RIGHT; break;

}

set_elem ptr_ to(ALIGN_ELEMENT);
psettextalign(&cur_align);
show_extent ()

S un Revision A of 30 August 1989
microsystems

134 Getting Started with SunPHIGS™

}

static Panel
create_panel (frame)
Frame frame:;

{ v

Panel panel;

/* Create the panel with which the user may set text attribute values. */
panel = window_create(frame, PANEL, PANEL LABEL BOLD, TRUE, 0):
panel create_item(panel, PANEL TEXT,
PANEL ITEM Y, ATTR ROW(0), PANEL ITEM X, ATTR COL(1),
PANEL VALUE, cur_text,
PANEL LABEL_ STRING, "Text string: ",
PANEL_NOTIFY PROC, set_text_string,
PANEL VALUE_DISPLAY LENGTH, 30,
0);
panel_create_item(panel, PANEL_CYCLE,
PANEL_ITEM Y, ATTR_ROW(0), PANEL_ITEM X, ATTR_COL(50),
PANEL_LABEL_STRING, "Font:",
PANEL CHOICE_STRINGS,
"Roman Mono",
"Roman Simplex",
"Roman Duplex",
"Roman Complex",
"Roman Triplex",
"Italic Complex",
"Italic Triplex",
"Greek Simplex",
"Greek Complek",
"Script Simplex",
"Script Complex",
"Cartographic",
"Symbol",
"Bad Font",
0,
PANEL NOTIFY_ PROC, set_font,
0);
panel create item(panel, PANEL CYCLE,
PANEL ITEM Y, ATTR ROW(1l), PANEL ITEM X, ATTR _COL(1),
PANEL_LABEL_STRING, "Path: ",
PANEL CHOICE_STRINGS, "RIGHT", "LEFT", "UP", "DOWN", O,
PANEL_NOTIFY PROC, set_path,
0):
panel create_item(panel, PANEL_CYCIE,
PANEL ITEM_ Y, ATTR ROW(l), PANEL ITEM X, ATTR_COL(20),
PANEL LABEL STRING, "Horiz Align: ",
PANEL CHOICE_STRINGS, "NORMAL", "LEFT", "CENTRE", "RIGHT", O,
PANEL _NOTIFY PROC, set_horiz align,
0);
panel create_item(panel, PANEL CYCLE,
PANEL ITEM_Y, ATTR ROW(1l), PANEL_ITEM X, ATTR_COL(50)},
PANEL LABEL STRING, "Vert Align: ",
PANEL CHOICE_STRINGS,
"NORMAL", "TOP", "CAP", "HALF", "BASE", "BOTTOM", O,
PANEL NOTIFY PROC, set_vert align,
0):
panel create_item(panel, PANEL_SLIDER,

sun Revision A of 30 August 1989
microsystems

Appendix A — Examples 135

PANEL_ITEM Y, ATTR ROW(2), PANEL_ITEM X, ATTR COL(1l),
PANEL VALUE X, ATTR_COL(20),

PANEL LABEL X, ATTR COL(1),

PANEL LABEL STRING, "Expansion (%): ",
PANEL MIN VALUE, 0, PANEL MAX VALUE, 200,
PANEL SLIDER WIDTH, 200,

PANEL NOTIFY PROC, set_expansion,

PANEL NOTIFY_ LEVEL, PANEL ALL,

PANEL VALUE, (int) (cur_expansion * 100.0),
0):

panel create_item(panel, PANEL SLIDER,
PANEL ITEM Y, ATTR ROW(3), PANEL ITEM X, ATTR COL(1l),
PANEL VALUE X, ATTR_COL(20),

PANEL_ ILABEL X, ATTR COL(1),

PANEL LABEL_STRING, "Spacing (%): ",
PANEL MIN VALUE, -200, PANEL MAX VALUE, 200,
PANEL SLIDER WIDTH, 200,

PANEL_NOTIFY PROC, set_spacing,

PANEL NOTIFY_LEVEL, PANEL_ALL,

PANEL_VALUE, (int) (cur_spacing * 100.0),

0);

panel create_item(panel, PANEL_SLIDER,
PANEL ITEM Y, ATTR ROW(4), PANEL_ITEM X, ATTR COL(1l),
PANEL VALUE X, ATTR COL(20),

PANEL LABEL X, ATTR COL(1),

PANEL LABEL STRING, "Height: ",
PANEL MIN VALUE, 0, PANEL_MAX VALUE, 200,
PANEL_SLIDER WIDTH, 200,

PANEL NOTIFY PROC, set_height,

PANEL NOTIFY_ LEVEL, PANEL ALL,

PANEL VALUE, (int)cur_height,

0);

panel_create_item(panel, PANEL_ SLIDER,
PANEL ITEM Y, ATTR ROW(5), PANEL ITEM X, ATTR_COL(1),
PANEL VALUE_X, ATTR_COL(20),

PANEL LABEL X, ATTR COL(1),

PANEL LABEL STRING, "Up.x : ",
PANEL MIN VALUE, -10, PANEL MAX VALUE, 10,
PANEL_SLIDER WIDTH, 40,

PANEL NOTIFY_ PROC, set_x up,

PANEL NOTIFY LEVEL, PANEL ALL,

PANEL VALUE, (int)cur_up.Xx,

0);

panel create item(panel, PANEL_ SLIDER,
PANEL_ITEM Y, ATTR ROW(5), PANEL ITEM X, ATTR COL(40),
PANEL VALUE X, ATTR_COL(50),

PANEL LABEL STRING, "Up.y : ",
PANEL MIN VALUE, -10, PANEL MAX VALUE, 10,
PANEL SLIDER_WIDTH, 40,

PANEL NOTIFY PROC, set_y_ up,

PANEL NOTIFY LEVEL, PANEL ALL,

PANEL VALUE, (int)cur_up.y,

0);

return panel;

}

static void

@a sun Revision A of 30 August 198

microsystems

[36 Getting Started with SunPHIGS™

initialize text struct(id)
Pint id;
{

/* Create the structure used to display the text, its extent rectangle
* and its concatenation point, using the default text attribute wvalue
* defined at the top of this file.
*/

popenstruct (id);

psettextcolourind (CINDEX_GREEN) ;

plabel (FONT_ELEMENT) ;

psettextfont (cur_font);

plabel (HEIGHT ELEMENT) ;

psetcharheight (cur_height);

plabel (EXPANSION ELEMENT) ;
psetcharexpan(cur_expansion);
plabel (SPACING_ELEMENT) ;
psetcharspace(cur_spacing);
plabel (UP_ELEMENT) ;

psetcharup(&cur_up);

plabel (PATH _ELEMENT) ;

psettextpath(cur_path);

plabel (ALIGN_ELEMENT) ;

psettextalign(&cur_align);

plabel (TEXT ELEMENT) ;

ptext3(&loc, dir, cur_text);

w -~

psetlinecolourind(CINDEX_CYAN);

plabel { EXTENT ELEMENT) ;

/* placeholder for polyline text extent box calculated in show_extent */
plabel (DUMMY ELEMENT) ;

psetmarkercolourind(CINDEX_YELLOW) ;

plabel (CATPOINT_ELEMENT) ;

/* placeholder for concatentation point marker calculated in show_extent */
plabel (DUMMY_ ELEMENT) ;

pclosestruct () ;

}

static void

grid2(bnds, nx, ny, color)
Plimit *bnds;
int nx, ny;
Pint color;

Ppoint 1n[2];
int i;
float inc;

/* Create structure elements defining a grid
* over the entire display surface.
*/
psetlinecolourind(color);
inc = ny > 1 ? (bnds->ymax - bnds->ymin) / (ny - 1) : O;
1ln[0].x = bnds->xmin; 1ln[0].y = bnds->ymin;
In{l}.x = bnds->xmax; 1ln[l].y = bnds->ymin;
for (i = 0; i < ny; i++) {

sSun Revision A of 30 August 1989
microgsystems

Appendix A — Examples 137

ppolyline(2, 1ln);
1n[0]).y += inc;
iIn[l].y += inc;
}
inc = nx > 1 ? (bnds->xmax - bnds->xmin) / (nx - 1) : O;
1n[0].x = bnds->xmin; 1n[0].y = bnds->ymin;
In[l].x = bnds->xmin; 1ln[l].y = bnds->ymax;
for (i =0; i < ny; i++) {
ppolyline(2, 1n);
In[0].x += inc;
In[l].x += inc;
}
}

static void
init_ws ()
{
/* Set the workstation to perform no updates until the application
* explicitly requests one, define a colour table entry for gray,
* and display the text with default attributes, its extent box,
* the grid, etc.
*/
psetdisplayupdatest (1, PWAIT, PNIVE);
init_view_mapping();
psetcolourrep(1, CINDEX GRAY, &gray);
ppoststruct(1, 1, 1.0);
show_extent () ;

}

build_structs ()}

{
Ppoint pt;
Plimit bnds;

/* Create the structures used to display the text, its points
* of origin and concatenation, and its extent rectangle.
*x/

popenstruct (1) ;

psetviewind (1) ;

bnds.xmin = bnds.ymin = WC_MIN;

bnds.xmax = bnds.ymax = WC_MAX;

grid2(&bnds, 21, 21, CINDEX_ GRAY);

pexecutestruct (2) ;

/* origin marker */
psetmarkercolourind(CINDEX RED);
psetmarkertype (PMK_PLUS) ;

pt.x = pt.y = 0.0;

ppolymarker(1, &pt):

pclosestruct () ;

initialize text_ struct(2);

}

static void
open_phigs ()
{

@ sun Revision A of 30 August 1989

microsystems

138 Getting Started with SunPHIGS™

char *buf = NULL;
Pint i, err, size;
Pwstypelst list;
Pwstype *wst;

Phigs_base_name n;
popenphigs ((Pchar*)0, PDEFAULT MEM SIZE);

/* The list of available workstation types indicates which model was

* gelected at link time. We look through the list to see what types
* of workstations we can use from this application. As soon as we

* see one that tells us how the application was linked, we create one
* of that type and retuzn.

/* Get the buffer size needed. */
pingwstypes(0, &err, (Pchar *)NULL, «list, &size);
if (terr) {
if (size > 0)
buf = malloc((unsigned)size);
pingwstypes(size, &err, buf, &list, &size);
for (i = 0, wst = list.ws_types; i < list.number; i++, wst++) {
n = (Phigs_base_name)phigs_ws_type get (*wst, PHIGS_BASE_NAME);
if (n == PHIGS_SUN_TOOL) ({
cur_wst = phigs_ws_type_create(phigs_ws_type_sun_tool,
PHIGS_TOOL X, WS_X, PHIGS_TOOL_Y, WS_Y,
PHIGS_TOOL_WIDTH, WS_SIZE, PHIGS_TOOL_HEIGHT, WS_SIZE,
PHIGS_COLOR_TABLE_SIZE, 8,
PHIGS_DOUBLE_BUFFER, PHIGS_DBIL_CMAP,
PHIGS_TOOL LABEL, "SunPHIGS Workstation",
PHIGS_TOOL_SHOW_LABEL, FALSE,
PHIGS_TEXTSW, PHIGS_NONE,
0):
break;
} else if (n == PHIGS_SUN_CANVAS) {
cur_wst = phigs_ws_type_sun_ canvas;
break;
}
}
if (buf)
free (buf);
}
}

main(argc, argv)
int argc;
char *argv(];

Frame frame, pframe;
Canvas canvas;
Panel panel;

/* Open PHIGS and create the panel with which the user may set
* text attribute values.
*/

open_phigs () ;

frame = window_create(NULL, FRAME,

WIN X, 25, WIN_Y, 20,

@ sSun Revision A of 30 August 1989

microsystems

Appendix A — Examples 139

FRAME NO CONFIRM, TRUE,

0);

panel = create panel(frame);
window_fit (panel);

window_fit (frame);

/* Create the structures used to display the text, its points
of origin and concatenation, its extent rectangle, and a grid.
Open the structure containing the text string, concatentation
point, and extent rectangle, and set the edit mode to REPLACE
to allow replacement of the text attribute elements as they

* are changed by the user.

*/
build_structs():;
popenstruct (2) ;
pseteditmode (PEDIT_REPLACE) ;

* * ¥ *

/* Open a workstation of the type appropriate for the model selected
* at link time and display the text on it.
*/
switch ((int)phigs_ws_type get(cur_wst, PHIGS_BASE NAME)) {
case PHIGS SUN_TOOL:
window_set (frame, FRAME LABEL, "Tool Ws", 0);
popenws (1, (Pconnid)NULL, cur_wst);
break;

case PHIGS_SUN_CANVAS:
pframe = window_create(frame, FRAME,
WIN_X, WS_X, WIN_Y, WS_ Y,
WIN_SHOW, TRUE,
0);
window_set (frame, FRAME LABEL, "Canvas Ws", 0);
canvas = window_create(pframe, CANVAS,

WIN X, O,
WIN_WIDTH, WS_SIZE, WIN_HEIGHT, WS_SIZE,
0):

popenws (1, (Pconnid)canvas, cur_wst});
window_fit (pframe);
}

init_ws{();

/* Wait for user input and modify the text attributes accordingly. */
window_main loop(frame);

/* Cleanup. */
pclosestruct () ;
pclosews (1) ;
pclosephigs () ;

sSun Revision A of 30 August 195

microsystems

4

(40 Getting Started with SunPHIGS™

\.2. FORTRAN Examples
Che following example programs use the SunPHIGS FORTRAN binding.

‘bundles.f

demonstrates the use of workstation attribute bundles.

¢ Note: It is necessary to include the declarations in phigs77.h
c in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

¢ Turn off implicit typing of possible SunPHIGS names.
¢ This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)

integer wkid, strid, bundlindex, linetype, colorindex, i, 3j, k
real xstar(6), xstar2(6), ystar(6), linewidth

data xstar /0.2, 0.3, 0.4, 0.1, 0.5, 0.2 /

data ystar /0.2, 0.5, 0.2, 0.4, 0.4, 0.2 /

wkid =1

strid = 1

¢ Open PHIGS, open a SunPHIGS phigswsttool workstation and open a structure.
call popph(6,0)
call popwk(wkid, 0, phigswsttool)
call popst(strid)

¢ Define different polyline attributes in 3 workstation bundle tables.

do 25 i = 2,4

bundlindex = i
linetype =1
linewidth =

float (i)
colorindex = i
call psplr(wkid, bundlindex, linetype, linewidth, colorindex)

25 continue

c Set the Aspect Source Flag to bundled for each polyline attribute.
call psiasf(PLN, PBUNDL)
call psiasf (PLWSC, PBUNDL)
call psiasf (PPLCI, PBUNDL)
c Create a polyline star using the default workstation bundle table (index 1).
call ppl(6, xstar, ystar)
¢ Create more polyline stars using polyline bundle indices 2, 3 and 4
do 50 j = 1,6
y =

xstar2 (j
50 continue

xstar(j) + 0.45

call pspli(2)
call ppl(6, xstar2, ystar)

A S ll Il Revision A of 30 August 1989
g

microsystems

Appendix A — Examples 141

do 100 k = 1,6
ystar (k) = ystar(k) + 0.45
100 continue

call pspli(3)
call ppl(6, xstar, ystar)

call pspli (4)
call ppl(6, xstar2, ystar)

¢ Close the structure and post it to the workstation for display.
call pclst
call ppost(wkid, strid, 0.)
call sleep(5)

c Close the workstation and close PHIGS.

call pclwk(wkid)
call pclph

stop
end

Sun Revision A of 30 August 198¢

microsystems

142 Getting Started with SunPHIGS™

ffillset.f

Demonstrates how to create a fill area set.

Cc

Q000

(o]

[~
C

(o]

(e}

50

@(#)ffillset.f 2.1 88/06/02 SMI

ffillset.f — This program demonstrates how to create a fill area set

with and without edges using the SET EDGE FLAG attribute.

This program also demonstrates the creation of two modified workstations
and the traversing of a child structure using the EXECUTE STRUCTURE ELEMENT.

Note: It is necessry to include the declarations in phigs77.h
in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

Turn off implicit typing of possible SunPHIGS names.
This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)

integer i, WS1l, WS2, tooll, tool2, structA, structB
integer boundaries, hatchindex, colourindex

real fasxarr(l12), fasyarr(l2), diamondlx(4), diamondly (4)
real diamond2x(4), diamond2y(4), diamond3x(4), diamond3y (4)
dimension boundaries (3)

Fill the boundaries array elements with the cumulative number of
array elements in each set of points (i.e., 4 + 4 = 8 + 4 = 12)

data boundaries /4,
data hatchindex /-5
data colourindex /6

/
/

8, 12/

Fill each point set array that will be included in the fill area set arrays.

data diamondlx /0.0
data diamondly /0.5
data diamond2x /0.2
data diamond2y /0.5
data diamond3x /0.4
data diamond3y /0.5

Fill the fill area set

do 50 i =1,4
fasxarr (i)
fasyarr (i) -
fasxarr (i+4)
fasyarr (i+4)
fasxarr (i+8)
fasyarr (i+8)

continue
WSl =1

WS2 = 2
structA = 1
structB = 2

€ sun

microsystems

’

4

L4

’

14

.5/
.0/
.5/
.8/
.5/
.5, 0.6/

~

-~

~

~

[l el olNeNeol
Moo
OO OO o+
eooo!
S
cooroO

~

arrays with the data from each point set array.

diamondlx (i)
diamondly (i)
diamond2x (i)
diamond2y (i)

= diamond3x (i)

[

diamond3y (i)

Revision A of 30 August 1989

Appendix A — Examples 143

0000

o000

Q

PHIGS must be opened prior to calling any other PHIGS function.
call popph(6, 0)

Create workstations with modified sizes and x-y positions on the
display surface so that both workstations are visible at the same time.
Note: with a FORTRAN program, these attributes are set individually
rather than in an attribute value list.

call phigswstcreate (phigswsttool, tooll)

call phigswstset (tooll, PHIGSTOOLWIDTH, 500)
call phigswstset (tcoll, PHIGSTOOLHEIGHT, 500)
call phigswstset (tooll, PHIGSTOOLX, 50)

call phigswstset (tooll, PHIGSTOOLY, 50)

call phigswstcreate (tooll, tool2)

call phigswstset (tool2, PHIGSTOOLX, 600)

call phigswstset (tool2, PHIGSTOOLY, 300)

Open the modified phigswsttool workstations using the workstation handles
returned from phigswstcreate.

call popwk (WS1, 0, tooll)
call popwk (WS2, 0, tool2)

Open structure A and create the structure element SET EDGE FLAG with a
value of on (default is off). Also create an EXECUTE STRUCTURE element
which will create the empty structure B. This structure will be

open and filled next. Close structure A.

call popst (structd)
call psedfg (PON)
call pexst (structB)
call pclst

Open structure B and create the fill area set attribute elements SET
INTERIOR STYLE, SET INTERIOR STYLE INDEX and SET INTERIOR COLOUR INDEX.
Create a fill area set element with 3 boundaries and close structure B.

call popst (structB)

call psis (PHATCH)

call psisi (hatchindex)

call psici (colourindex)

call pfas (3, boundaries, fasxarr, fasyarr)
call pclst

Post structure A to workstation 1 displaying the fill area set with edge

call ppost (WS1l, structA, 0.)
call pmsg (WS1l, ’'Displays a fill area set with the edge flag on.’)

Post structure B to workstation 2, which displays the same fill area set
but without edges as the edge flag element resides in structure A only.

call ppost (WS2, structB, 0.)
call pmsg(WS2, ’Displays a fill area set with the edge flag off.’)
call sleep(10)

Close both workstations and PHIGS.

@ sSun Revision A of 30 August 1¢

microsystems

144 Getting Started with SunPHIGS™

call pclwk (WS1)
call pclwk (WS2)
call peclph

stop
end

@ sun Revision A of 30 August 1989

microsystems

Appendix A — Examples 145

flines.f

Demonstrates the various POLYLINE attributes.

]

@(#)flines.f 2.1 88/06/02 SMI

flines.f - This program displays all of the PHIGS standard
polyline types available in SunPHIGS.

Note: It is necessry to include the declarations in phigs77.h
in order to open a workstation or access SunPHIGS constants.

include '’ /usr/include/phigs/phigs77.h’

Turn off implicit typing of possible SunPHIGS names.
This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)

integer colourindex

real linewidth

real xendpoints, yendpoints

common colourindex, linewidth, xendpoints(2), yendpoints (2)

Initialize the colour index, line width and end-point coordinate data.
data colourindex /2/
data linewidth /2.0/
data xendpoints /0.1, 0.9/
data yendpoints /0.15, 0.15/

Open PHIGS, open workstation 1, open structure 1.
Use logical unit number 6 for the SunPHIGS error file.

call popph(6, 0)
call popwk(l, O, phigswsttool)
call popst (1)
Add set character height (default is .01)

call pschh(.015)

Add set linetype, set polyline colour index and set linewidth scale factor
elements to the open structure, then add the polyline.

call psln (PLNDOTDASHDOT)

call psplci (colourindex)

call pslwsc(linewidth)

call ppl(2, xendpoints, yendpoints)

Add set text font and set text colour index elements, then add text.
call pstxfn (PFONTROMANSMPLX)
call pstxci(colourindex)
call ptx(xendpoints(l), yendpoints(l) - .035, ‘PLNDOTDASHDOT’)

Add new linetypes and text fonts, then add new lines followed with text.

call psln(PLNLONGDASH)

sun Revision A of 30 August 1989

microsystermns

146

Getting Started with SunPHIGS™

call pstxfn (PFONTROMANDPLX)
call newline
call ptx(xendpoints(l), yendpoints(l) - .035, ’"PLNLONGDASH')

call psln(PLSOLI)

call pstxfn (PFONTROMANCMPLX)

call newline

call ptx(xendpoints(l), yendpeoints(l) - .035, "PLSOLI’)

call psln (PLDASH)

call pstxfn (PFONTROMANTRPLX)

call newline

call ptx(xendpoints(l), yendpoints(l)

.035, "PLDASH’)

call psln (PLDOT)

call pstxfn (PFONTITALICCMPLX)

call newline :
call ptx(xendpoints(l), yendpoints(l) - .035, ‘PLDOT’)

call psln (PLDASD)

call pstxfn (PFONTITALICTRPLX)

call newline

call ptx(xendpoints(l), yendpoints(l) - .035, ‘PLDASD’)

Post structure 1 to WS 1 to have the structure’s contents displayed; pause.

call ppost(l, 1, O.)
call pmsg(l, ’'Displays all polyline types. Exits in 10 seconds.’)
call sleep(1l0)

Close the structure, close the WS, and close PHIGS.

call pclst
call pclwk(1l)
call pclph

stop
end

==newline==
subroutine newline

Add new polyline and text colour indices, increased linewidth scale factor
and end-point coordinate data to the open structure, then add new polyline.

implicit undefined (P,p,E,e)

integer colourindex

real linewidth

real xendpoints, yendpoints

common colourindex, linewidth, xendpoints(2), yendpoints(2)

colourindex = colourindex + 1
linewidth = linewidth + 1.0
yendpoints (1) = yendpoints(l) + .15
yendpoints (2) = yendpoints(2) + .15

call psplci (colourindex)

@ Ssun Revision A of 30 August 1989

microsystems

Appendix A — Examples 147

call pstxci (colourindex)
call pslwsc(linewidth)
call ppl(2, xendpoints, yendpoints)

return
end

Revision A of 30 August 1989

148

Getting Started with SunPHIGS™

fmarkers.f

Demonstrates the POLYMARKER function.

[

0

@ (#) fmarkers.f 2.1 88/06/02 SMI

fmarkers.f - This program displays all of the PHIGS standard
marker types using a SunView canvas subwindow.

Note: It is necessry to include the declarations in phigs77.h

in order to open a workstation or access SunPHIGS constants.
include ’/usr/include/phigs/phigs77.h’

Turn off implicit typing of possible SunPHIGS names.
This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)

integer canvas, canvasid, i, colour(5), marker(5)
character*6 text (5)

real xpoint, ypoint (5)

Initialize the colour index, marker type and text arrays.
Initialize the x-y coordinates.

Default colours: 1l=white; 2=red; 3=green; 4=blue; 5=yellow.
data colour /1, 2, 3, 4, 5/
data marker /PPOINT, PPLUS, PAST, POMARK, PXMARK/
data text /’/PPOINT’, 'PPLUS ’, 'PAST ', 'POMARK’, ’'PXMARK'/
data xpoint /.65/
data ypoint /.1, .3, .5, .7, .9/

SunView Setup - canvasid is a C function which returns the
connection identifier ‘canvas’ for a SunPHIGS canvas workstation.

canvas = canvasid()
Open PHIGS. Use logical unit number 6 for the SunPHIGS error file.
call popph (6, 0)

Open workstation 1 and open structure 1.

call popwk(l, canvas, phigswstcanvas)
call popst (1)

Add set marker scale factor element to the open structure.

call psmksc (5.)

Add set marker type and set polymarker colour index, then add polymarker

and text.

do 50 i = 1,5
call psmk (marker (i))
call pspmci(colour(i))
call ppm(1l,xpoint, ypoint(i}))

sun

microsystems

Revision A of 30 August 1989

Appendix A — Examples 149

call pschh(.015)
call ptx(xpoint-.2, ypoint (i), text(i))
50 continue
c Post structure 1 to WS 1 to have structure’s contents displayed on Canvas.
call ppost(l, 1, 0.)
c Call SunView’s notifier to have SunView canvas window displayed.
call display
¢ Close the structure, close the WS, and close PHIGS.
call pclst
call pclwk (1)
call pclph

stop
end

@ S un Revision A of 30 August 1989

150 Getting Started with SunPHIGS™

fpolygons.f

Demonstrates interior styles for fill areas.

c Q(#) fpolyge

nsg
- S

LS.

£ 2.1 88/06/02 SMI
¢ fpolygons.f - This program draws fill areas with different interior styles.

c Note: It is necessry to include the declarations in phigs77.h
c in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

c Turn off implicit typing of possible SunPHIGS names.
c¢ This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)

integer row, x, y, colourindex, hatchindex, newstyle
real fapointx(4), fapointy(4), savepts(4)

data savepts /.025, .225, .225, .025/

data fapointx /.025, .225, .225, .025/

data fapointy /.75, .75, .95, .95/

data colourindex /2/

data hatchindex /-1/

data newstyle /1/

c Open PHIGS, open a workstation(l) and open a structure(l).
c Use logical unit number 6 for the SunPHIGS error file.

call popph(6, 0)
call popwk(l, 0, phigswsttool)
call popst (1)
¢ Add the SET INTERIOR STYLE (hollow) element to the open structure.

call psis (PHOLLO)

c¢ Add a SET INTERIOR COLOUR INDEX attribute element and a row of fill areas.

c Note: set interior style index for hatch will not be implemented
c until the ‘hatched’ row is displayed.
25 do 75 row = 1,4

call psici(colourindex)
call psisi(hatchindex)
call pfa(4, fapointx, fapointy)

c Move x-axis over.
do 50 x = 1,4
fapointx(x) = fapointx(x) + .25
50 continue
colourindex = colourindex + 1
hatchindex = hatchindex - 1
75 continue

c Move y-axis down.

do 100y =1,4

microsystems

@ sun Revision A of 30 August 1989

Appendix A — Examples 151

100

c

125

fapointx(y) = savepts(y)
fapointy(y) = fapointy(y) - .25
continue

goto (125, 150, 175) newstyle

Add a another SET INTERIOR STYLE (solid) and the next row of fill areas.

call psis (PSOLID)
colourindex = 4
newstyle = newstyle + 1
goto 25

¢ Add a another SET INTERIOR STYLE (hatch) and the next row of fill areas.

150

c

175

(o]

(o]

call psis (PHATCH)
colourindex = 2
hatchindex = -1
newstyle = newstyle + 1
goto 25

Add the "empty" interior style to show that it is invisible for fill area:

call psis (PISEMP)

call pfa(5, fapointx, fapointy)

call pschh(.015)

call ptx(fapointx(l), fapointy(l) + .1,

'Interior style Empty is invisible. See FILL AREA SET.')

Close the structure and post it to the workstation.
This will cause the structure’s contents to be displayed.

call pclst

call ppost (i, 1, 0.)

call pmsg(l, 'Displays sets of polygons. Exits in 10 seconds.’)
call sleep(10)

Close the the workstation and close PHIGS.

call pclwk(1l)
call pclph

stop
end

sSun Revision A of 30 August 198

microsystems

152 Getting Started with SunPHIGS™

ftext.f

Demonstrates the text fonts available with SunPHIGS.

[+

@(#)ftext.f 2.1 88/06/02 SMI
ftext.f - This program displays all of the fonts available in SunPHIGS.

Note: It is necessry to include the declarations in phigs77.h
in order to open a workstation or access SunPHIGS constants.

include ' /usr/include/phigs/phigs77.h’

Turn off implicit typing of possible SunPHIGS names.
This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)
integer font, index, colour(6)
character*22 text (13)

real xpoint, ypoint

Initialize the index into the text array. Note, all but the default font
are in negative numbers. Initialize the arrays and the x-y coordinates.

data font /2/
data colour /2, 3, 4, 5, 6, 1/

data text/’PFONTROMANMONO = 1 ‘.,

1 'PFONTROMANSMPLX = -2 ‘, ‘PFONTROMANDPLX = -3 'y
2 'PFONTROMANCMPLX = -4 ‘’, 'PFONTROMANTRPLX = -5 /,
3 'PFONTITALICCMPLX = -6 ’, ’'PFONTITALICTRPLX = -7 ',
4 'PFONTGREEKSMPLX = -8 ', 'PFONTGREEKCMPLX = -9 ‘,
S ’PFONTSCRIPTSMPLX = -10’, ‘PFONTSCRIPTCMPLX = -11’,
6 'PFONTCARTO = -12 ’, 'PFONTSYMBOL = -13 ‘/

data xpoint /.1/
data ypoint /.8/

Open PHIGS, open workstation 1, open structure 1.
Use logical unit number 6 for the SunPHIGS error file.

call popph (6, 0)
call popwk (1, 0, phigswsttool)
call popst (1)
Add set character height (default is .01)
call pschh(.015)

Add text in the default font (PFONTROMANMONO) and default String Precision.

call ptx (xpoint, ypoint,
1 "These are all of the fonts supported by SunPHIGS.’)

Change set text precision to Character Precision and add to the structure.

call pstxpr (PCHARP)

sSsun Revision A of 30 August 1989

microsystems

Appendix A — Examples 153

c Add set text colour index and set text font to the open structure,
c then add the text until all fonts are displayed.

do 50 index = 1,6
ypoint = ypoint - .1
call pstxci (colour(index))
call pstxfn(-font)
call ptx(xpoint, ypoint, text (font))
font = font + 1
50 continue

c Add set text precision to Stroke Precision and add new x-y coordinates.

call pstxpr (PSTRKP)

xpoint = .5

ypoint = .8

do 100 index = 1,6
ypoint = ypoint - .1
call pstxci (colour (index))
call pstxfn(-font)
call ptx(xpoint, ypoint, text (font))
font = font + 1

100 continue

¢ Post structure 1 to WS 1 to have the structure’s contents displayed; pause.
call ppost(l, 1, 0.)
call pmsg(l, ’Displays all available fonts. Exits in 10 seconds.’)
call sleep(l10)
c Close the structure, close the WS, and close PHIGS.
call pclst
call pclwk(l)
call pclph

stop
end

@ sSun Revision A of 30 August 1989

154 Getting Started with SunPHIGS™

ftextall.f

Displays text in various directions.

[o]

00000

[¢]

)

[+
(o]

(o]

@ (#)ftextall.f 2.2 89/03/31 SMI

ftxtall.f - This program demonstrates the use of text attributes

to display text in many different fonts, sizes and directions.

SET CHARACTER HEIGHT, SET TEXT COLOUR INDEX, SET TEXT FONT, SET

CHARACTER SPACING, SET CHARACTER EXPANSION FACTOR, SET TEXT PATH,

and SET CHARACTER UP VECTOR are all used to manipulate the character data.

Note: It is necessry to include the declarations in phigs77.h
in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

Turn off implicit typing of possible SunPHIGS names.
This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)
integer wkid, strid, i, font, color
real x, x1, y, height, space, expfactor
data x /.01/

data x1 /.2/

data y /.95/

data font /-2/

data color /2/

data height /.02/

data space /.5/

wkid =1

strid = 1

Open PHIGS, open a SunPHIGS phigswsttool workstation and open a structure.

call popph(6,0)
call popwk (wkid, O, phigswsttool)
call popst (strid)

Create attribute elements for setting text font and colour, character height,
spacing and expansion factor. Then create the text primitive element.

do 50 i =1,3

call pstxfn(font)
call pstxci (color)
call pschh(height)
call ptx(x, y, 'Welcome to ')
call pschsp(space)

expfactor = float (i) - .5
call pschxp(expfactor)
call ptx(xl, y, ‘PHIGS!')

Change x-y coordinates and attribute parameter values.

x1 =x1+ (1 * .1)

y =y - .1
font = font ~ 1
color = color + 1

@ S un Revision A of 30 August 1989

microsystems

Appendix A — Examples 155

height = height + .01
space = space - .25

¢ Reset to default values for character spacing and expansion factor.
call pschsp(0.)
call pschxp(l.)

50 continue

c Set different paths (default PRIGHT) and up vectors (default 0.,1.)
c Note: default colour indices are: O=black; l=white; 2=red; 3=green;
c 4=blue; 5=yellow; 6=cyan; 7=magenta; > 7 = white.

call pstxfn(font)

call pstxci (color)

call pschh(.03)

call pstxp (PLEFT)

call ptx (.65, .625, ’'?dnuora denruT’)
call pstxci(6)

call pschh(.02)

call pstxp (PUP)

call ptx (.75, .05, ’'Things are looking up!’)
call pstxci(7)

call pstxp (PDOWN)

call ptx(.9, .6, 'Feeling down?’)
call pstxp (PRIGHT)

call ptx(.2, .4, ' {0., 1.}")
call pschup(l., 0.)

call ptx(.2, .4, * {1., 0.}")
call pschup(0., -1.)

call ptx(.2, .4, ' {0., -1.}")
call pschup(-1., 0.)

call ptx(.2, .4, ' {-1., 0.}")

call pstxci(6)

call pschh (.03)

call pschup(-1., 1.)

call ptx(.4, .2, 'Full tilt boogie!'’)
call pstxci(3)

call pschup(l., -1.)

call ptx(.6, .35, "I'm upside down!")

¢ Close the structure and post it to the workstation for display.
call pclst
call ppost (wkid, strid, 0.)
call sleep(1l0)

c Close the workstation and close PHIGS.

call pclwk (wkid)
call pclph

stop
end

@ sun Revision A of 30 August 1989

microsystems

156 Getting Started with SunPHIGS™

toolattrs.f

Demonstrates Sun Tool workstation configuration.

Cc

Q

Q

@ (#)toolattrs.f 2.1 88/06/02 SMI

toolattrs.f - This program demonstrates how to create and modify
a new workstation of type phigswsttool and how to set and
retrieve the values stored in the workstation description table.

Note: It is necessry to include the declarations in phigs77.h
in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

Turn off implicit typing of possible SunPHIGS names.
This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)
integer wkid, strid, wstooltype, labellen
character label*80

Initialize data.

wkid = 1
strid = 1
label = ‘FORTRAN phigswsttool’

Open PHIGS, use logical unit number 6 for the SunPHIGS error file.
call popph(6, 0)

Create a new workstation type and modify the workstation attribute values.
Note: with a FORTRAN program, these attributes are set individually
rather than in an attribute value list.

call phigswstcreate (phigswsttool, wstooltype)

call phigswstset (wstooltype, PHIGSTOOLHEIGHT, 600)

call phigswstset (wstooltype, PHIGSTOOLWIDTH, 600}

call phigswstset (wstooltype, PHIGSTEXTSW, PHIGSNONE)

call phigswstset (wstooltype, PHIGSTOOLLABEL, label (1:20))

Open the modified phigswsttool workstation using the workstation handle
returned from phigswstcreate. Open a structure for text primitive display.

call popwk (wkid, 0, wstooltype)
call popst (strid)

label = 'This is the current contents of the label string. ’
call ptx(.1, .7, label) ‘

Retrieve a workstation attribute value from the workstation description
table and display its contents with the PHIGS text primitive.

call phigswstget (wstooltype, PHIGSTOOLLABEL, labellen, label)
call pschh(.02)
call ptx(.1, .4, label)

sun - Revision A of 30 August 1989

microsystems

Appendix A — Examples 157

c Post the structure to the workstation to display the structure’s contents.

call ppost(wkid, strid, 0.)
call sleep(10)

¢ Close the structure, close the workstation, and close PHIGS.

call peclst
call pclwk (wkid)
call pclph

stop
end

@ Sun Revision A of 30 August 1989

Tutorial Examples

Tutorial Examples

B.1. C Examples

cfigsl.c

cfigs2.c

cfigs3.c

loc.c

pickjet.c

B.2. FORTRAN Examples
ffigsl.f

ffigs2.f

ffigs3.f

ffigs4.f

figscanval.f

figstoolval.f

...........

161

161
161
162
163
165
167
171
171
172
173
174
177
179

R R

S

R 2%4@3&%@{? e

Tutorial Examples

Appendix B contains example programs from the /usr/lib/phigsl.1/examples/tutorial.

B.1. C Examples
The following example programs use the SunPHIGS C binding.

cfigsl.c
A skeleton PHIGS program.

#ifndef lint
static char sccsid[] = "@(#)cfigsl.c 2.1 88/06/02 SMI";
$endif

/* cfigsl.c - A simple skeleton PHIGS program in C
which demonstrates how to open and close a SunPHIGS workstation.

Note: It is necessry to include the declarations in phigs.h
in order to open a workstation or access the SunPHIGS constants. */

#include <phigs/phigs.h>

main ()
{

/* Open PHIGS */
popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);
/* Open a workstation with a value of 1 and pause for 5 seconds. */

popenws (1, (Pconnid)NULL, phigs ws_type_sun_tool);
sleep(5);

/* Close workstation 1 and close PHIGS. */

pclosews (1) ;
pclosephigs () ;

@ sun 161 Revision A of 30 August 1989

microsystems

162 Getting Started with SunPHIGS™

cfigs2.c

Demonstrates the use of structures.
#ifndef lint

5 o~ ra L]
static char scesidi] =

#endif

c+3

{#)cfigsZ.c 2.1 88/06/02 SMI";

/* c¢figs2.c - Demonstrates the use of structures

and structure elements in displaying a simple polyline. */
#include <phigs/phigs.h>
main ()

{
/* Define a series of points for a polyline to be displayed.
Ppoint is a structure containing the x and y coordinates. */

static Ppoint xypoints(] = { {0.1, 0.5}, {0.9, 0.5} };
/* Open PHIGS, open a workstation and open structure 1. */
popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE);
popenws (1, (Pconnid)NULL, phigs_ws_type sun_tool);
popenstruct (1) ;
/* 1Insert the polyline structure element into the open structure.
The first parameter is the number of points to be used to define
the polyline. The second parameter is the array of structures

which contain the x-y coordinates. Close the structure. */

ppolyline (2, xypoints);
pclosestruct () ;

/* Post the structure to the workstation in order to
have the structure’s contents displayed; pause. */

ppoststruct(1,1,0.);
sleep(5);

/* Close the workstation and close PHIGS. */

pclosews (1) ;
pclosephigs () ;

Sun . Revision A of 30 August 1989

microsystems

Appendix B — Tutorial Examples 163

cfigs3.c

Demonstrates primitive attributes.

#ifndef lint
static char sccsid[] = "Q(#)cfigs3.c 2.1 88/06/02 SMI";
#endif

/* cfigs3.c - Demonstrates defining output primitives attributes
to change the appearance of a simple polyline. */

#include <phigs/phigs.h>

main ()

{

/* Define a series of points for a polyline to be displayed.
Ppoint is a structure containing the x and y coordinates. */

static Ppoint xypoints(] = { {0.1, 0.5}, (0.9, 0.5} };
static Pfloat linewidth = 5.0;
static Pint colorindex = 5;

/* Open PHIGS, open a workstation and open structure 1. */

popenphigs ((Pchar*)NULL, PDEFAULT MEM SIZE):;
popenws (1, (Pconnid)NULL, phigs_ws_type_ sun_tool);
popenstruct (1);

/* Insert the polyline structure element into the open structure.
The first parameter is the number of points to be used to define
the polyline. The second parameter is the array of structures
which contain the x-y coordinates. */

ppelyline (2, xypoints);

/* Create structure elements to set the linetype, the linewidth scale facto
and the polyline color index; move the y-axis coordinates and redraw the
polyline. Close the structure after all elements have been inserted.

psetlinetype (PLN_DOTDASHDOT) ;
psetlinewidth (linewidth);
psetlinecolourind(colorindex);

xypoints([0].y += .2;
xypoints([l].y += .2;
ppolyline (2, xypoints);

pclosestruct();

/* Post the structure to the workstation in order to
have the structure’s contents displayed; pause. */

ppoststruct(1,1,0.);
sleep(5);

sun Revision A of 30 August 191

microsystems

164 Getting Started with SunPHIGS™

/* Close the workstation and close PHIGS. */

pclosews (1) ;
pclosephigs () ;

S u n Revision A of 30 August 1989

microsystems

Appendix B — Tutorial Examples 165

loc.c

A logical locator input device example.

#ifndef lint
static char sccsid[] = "Q@(#)loc.c 2.1 88/06/02 SMI";
¥endif

/%
loc.c - Demonstrates use of locator input device.
* Coordinate system is from 0.0 to 1.0 in both x and y
* directions.

*/
#include <phigs/phigs.h>
#include <suntool/canvas.h>
Pint ws = 1;
Pint devid = 1; /* locator 1 is LEFT mouse button */

Pistatus request_locator();

main(argec, argv)
int argec;
char *argv([];

Pistatus status;

open_phigs () ;
initialize_ input();

pmessage (ws,

"Use the LEFT mouse button to select cursor locations.\n");
pmessage (ws,

"Use CTRL-D (input break action) to terminate program.\n");

do {
status = request_locator();
} while (status == PSTAT OK);

close phigs();
exit (0);

* Initialization routine. 1Initialize PHIGS and the SunPHIGS
Sun Tool workstation.

* The workstation is never updated since nothing is posted to it.
*/

open_phigs ()

{

popenphigs ((Pchar *)NULL, PDEFAULT MEM SIZE);
popenws(ws, (Pconnid)NULL, phigs_ws_type sun_tool);

S u n Revision A of 30 August 1989

166 Getting Started with SunPHIGS™

/*
* Initialize the locator device.
*/

initialize_input ()

{

static Ploc init_location = { 0, {0., 0.} };

static Plocrec record; /* not used, but must be present */
Plimit area;
Pint pet = 1; /* data record not used for PET 1 */

area.xmin = area.ymin = 0.0;
area.xmax area.ymax = 1.0;

pinitloc(ws, devid, &init_location, pet, &area, &record);
psetlocmode(ws, devid, PREQUEST, PES_ECHO);

/*
* Use request mode to request the input from the locator device.

preqloc will return an X,Y location and the view index used,

which will be 0 because we haven’t changed the view input priorities.
*/

Pistatus

request_locator ()

{

Pqgloc locator;

preqloc(ws, devid, &locator);
if (locator.status == PSTAT_OK)
printf ("Locator: x pos=%f\ty pos=%f\n",
locator.loc.position.x, locator.loc.position.y):;
else if (locator.status == PSTAT_ NONE)
printf ("Operator did CTRL-D break action.\n");
return(locator.status);

/*
* Close SunPHIGS workstation and PHIGS.
*/

close_phigs ()

{

pclosews (ws) ;
pclosephigs () ;

sun Revision A of 30 August 1989

microsystems

Appendix B — Tutorial Examples

167

pickjet.c
A simple picking example.

#ifndef lint
static char sccsid[] = "@(#)pickjet.c 2.1 88/06/02 SMI";

#endif

/*
* pickjet.c - Demonstrates use of pick input device.
*
* Draw jet as three parts: jetbody, right wing, left wing.
* The user may "pick" a jet part, by placing the mouse over
* the part and pressing the left mouse button.
*
* This program has sets the "pick aperture" and the pick filter
* of the pick device.
*/

#include <phigs/phigs.h>

#include <suntool/canvas.h>

#define PICKABLE 1

#define BLACK 0

#define WHITE 1

#define RED 2

#define GREEN 3

#define BLUE 4

#define YELLOW 5

#define CYAN 6

¥define MAGENTA 7

static Ppoint Jetbody([3]} = { {0.1, 0.6}, {0.9, 0.6}, {0.2, 0.5} };
static Ppoint rightwing[3] = { {0.4, .53}, {.55, .55}, {.36, .48} };
static Ppoint leftwing(3] = { {0.4, 0.6}, {.55, 0.6}, {.36, .65} };

Pint WS = 1;

Pint structure = 1;

Pfloat priority = 1.0;

Pint devid = 1; /* PICK device 1 is LEFT mouse button */

Pgpickstatus request pick();

main{ argc, argv)

int argc;
char *argv{]:

Pgpickstatus status;

open_phigs () ;
build css();
initialize_input ();
pmessage (ws,
"Use the LEFT mouse button to PICK the part under cursor.\n");
pmessage (ws,
"Use CTRL-D (input break action) to terminate program.\n");

S un Revision A of 30 August I'

microsystems

168

Getting Started with SunPHIGS™

do {
status = request_pick():;
} while(status != PQP NONE);

close_phigs(j;
exit (0);

/*
* Initialization routine. Initialize PHIGS and the SunPHIGS
* Sun Tool workstation.
*
* The display will be updated only when the user requests it to be.
*x/
open_phigs ()
{
popenphigs((Pchar *)NULL, PDEFAULT_MEM SIZE);
popenws (ws, (Pconnid)NULL, phigs_ws_type_sun_tool);
psetdisplayupdatest (ws, PASTI, PNIVE);/* turn off auto updates */
ppoststruct (ws, structure, priority);/* post before edit is ok */
sleep(l);
}
/*
* Build the jet structure out of three parts:
* jet body, right wing and left wing.
* The jet is a solid object filled with a different
* color for each part. Each part is pickable seperately.
*/

build css()

{

Pintlst names_to add;
static Pint name([l] = { PICKABLE };
Pint part = 1;

popenstruct (structure);

names_to_add.number = 1;
names_to_add.integers = name;
paddnameset (&names_to_add);

psetintstyle(PSOLID);

psetintcolourind(BLUE) ; /* jet body is blue */
psetpickid(part); /* pick this as part #1 */
pfillarea(3, jetbody):

psetintcolourind(GREEN); /* right wing is green */
psetpickid(++part): /* pick this as part #2 */
pfillarea(3, rightwing);

psetintcolourind(RED); /* left wing is red */
psetpickid(++part); /* pick this as part #3 */
sun , Revision A of 30 August 1989

microsystems

Appendix B — Tutorial Examples 169

pfillarea(3, leftwing):

pclosestruct ();

pupdatews (ws, PPERFORM); /* update display */
sleep(l);
}
/*
* Initialize the pick device.
*/

initialize_input ()

{

static Ppickpath init_pick_path = { 0, (Ppickpathel *)NULL };
static Pint name[l] = { PICKARLE };

Ppickrec record;

Plimit area;

Pintlst infilt, exfilt;
Pint pet = -1;

area.xmin = area.ymin = 0.0;
area.xmax = area.ymax = 1.0;

record.upickpetl_datarec.highlight_colour = BLACK;
record.upickpetl datarec.highlight_count = 3;
record.upickpetl datarec.highlight_duration = 0.1;
/* The pick aperture is defined in NPC, which ranges from 0 to 1.
* The default size of the window is 600 pixels.
* To set the aperture to a square 3 pixels on a side,
* centered around the cursor’s "hot spot", we calculate:
* 3/600. is 0.005.
*/
record.upickpetl_datarec.aperture_size.x = 0.005;
record.upickpetl_datarec.aperture size.y = 0.005;
record.upickpetl datarec.aperture size.z = 0.005;

pinitpick(ws, devid, PP_NOPICK, &init_pick_path) pet, &area,
&record, PTOP_FIRST);

infilt.number = 1;

infilt.integers = name;

exfilt.number = 0;

psetpickfilter(ws, devid, &infilt, &exfilt);

/*
* Use request mode picking routine to pick jet parts.
* pregpick will return the pickid which is the part number,
* the element number, and the depth from posted structure to
* the structure containing the picked element. Here, they are
* the same structure, so the depth will be 1.
*/
Pgpickstatus
request_pick()

{
Pgpick pick;

@ sun Revision A of 30 August 1989

microsystems

170 Getting Started with SunPHIGS™

Ppickpathel element[l];
pick.pick.pick_path = element;
pregpick (ws, devid, 1, &pick):;
if (pick.status == PQP OK) {
printf("Pick: element number=%d\n", element [0] .el num);
printf("Pick: pick id is the part number: %d\n",
element [0] .pick_id);
} else if (pick.status == PQP NOPICK)
printf("Nothing under cursor\n");
else if (pick.status == PQP NONE) {
printf("Operator did CTRL-D break action.\n");
} else {
printf("Should never happen.\n");
pemergencyclosephigs();
exit(l);
}

return(pick.status);

/*
* Close down workstation and PHIGS.
x/
close_phigs ()
{
pclosews (ws) ;
pclosephigs();

sun Revision A of 30 August 1989

Appendix B — Tutorial Examples

171

B.2. FORTRAN Examples
The following example programs use the SunPHIGS FORTRAN binding.

ffigsl.f

A skeleton PHIGS program.

(o]

@(#)£ffigsl.f 2.1 88/06/02 SMI

ffigsl.f - A simple skeleton PHIGS program in FORTRAN
which demonstrates how to open and close a SunPHIGS workstation.

Note: It is necessry to include the declarations in phigs77.h
in order to open a workstation or access the :SunPHIGS constants.

include ‘/usr/include/phigs/phigs77.h’

Open PHIGS using logical unit number 6 for the SunPHIGS error file.
call popph(6, 0)

Open a workstation with a value of 1 and pause for 5 seconds.

call popwk(l, 0, phigswsttool)
call sleep (5)

Close workstation 1 and close PHIGS.

call pclwk(1)
call pclph

stop
end

S u n Revision A of 30 August 19

microsystems

(72 Getting Started with SunPHIGS™

ifigs2.f

Jemonstrates the use of structures.

(o]

0000

@(#)ffigs2.f 2.1 88/06/02 SMI

ffigs2.f - Demonstrates the use of structures
and structure elements in displaying a simple polyline.

include ’/usr/include/phigs/phigs77.h’
Define a series of points in the x-y axes for a polyline to be displayed.
real xpoints(2), ypoints(2)
data xpoints /0.1, 0.9/
data ypoints /0.5, 0.5/
Open PHIGS, open a workstation and open structure 1.
call popph(6, 0)
call popwk(l, 0, phigswsttool)
call popst (1)
Insert the polyline structure element into the open structure.
The first parameter is the number of points to be used to define
the polyline. The other parameters are the arrays which contain

the x-y coordinates. Close the stucture.

call ppl (2, xpoints, ypoints)
call pclst

Post the structure to the workstation in order to
have the structure’s contents displayed; pause.

call ppost(l, 1, 0.)
call sleep(5)

Close the workstation and close PHIGS.

call pclwk(1)
call pclph

@ sun Revision A of 30 August 1989

Appendix B — Tutorial Examples 173

ffigs3.f

Demonstrates primitive attributes.

(o]

a0 o0a0

[¢]

[}

@(#)ffigs3.f 2.1 88/06/02 SMI

ffigs3.f - Demonstrates defining output primitives attributes
to change the appearance of a simple polyline.

include ’/usxr/include/phigs/phigs77.h’
Define a series of points in the x~y axes for a polyline to be displayed.

integer colorindex

real xpoints(2), ypoints(2), linewidth
data xpoints /0.1, 0.9/

data ypoints /0.5, 0.5/

linewidth = 5.0

colorindex = 5§

Open PHIGS, open a workstation and open structure 1.
call popph(6, 0)
call popwk(l, 0, phigswsttool)
call popst (1)

Insert the polyline structure element into the open structure.
The first parameter is the number of points to be used to define

‘the polyline. The other parameters are the arrays which contain

the x-y coordinates. Close the stucture.
call ppl (2, xpoints, ypoints)

Create structure elements to set the linetype, the linewidth scale factor
and the polyline color index; move the x-y coordinates and redraw the
polyline. Close the structure after all elements have been inserted.

call psln(PLNDOTDASHDOT)
call pslwsc(linewidth)
call psplci (colorindex)

ypoints (l) = ypoints(l) + .2
ypoints (2) = ypoints(2) + .2
call ppl (2, xpoints, ypoints)
call pclst

Post the structure to the workstation in order to
have the structure’s contents displayed; pause.

call ppost(1, 1, 0.)
call sleep(5)

Close the workstation and close PHIGS.

call pclwk(1l)
call pclph

@ S u n Revision A of 30 August 1989

174 Getting Started with SunPHIGS™

ffigs4.f

Demonstrates bundled and primitive attributes.
c @(#)£figs4.f 2.1 88/06/02 SMI

c ffigs4.f - This program demonstrates how to create a fillarea set
¢ with and without edges using the workstation’s bundle table.

include ’/usr/include/phigs/phigs77.h’
implicit undefined (P,p,E,e)

integer i, WS1l, WS2, tooll, tool2, strid

integer edgeindex, edgetype, edgecolor

integer boundaries, hatchindex, colourindex

real edgewidth

real fasxarr(l2), fasyarr(l12), diamondlx(4), diamondly(4)
real diamond2x(4), diamond2y(4), diamond3x(4), diamond3y (4)
dimension boundaries (3)

c Fill the boundaries array elements with the cumulative number of
c array elements in each set of points (i.e., 4 + 4 = 8 + 4 = 12)

data boundaries /4, 8, 12/
data hatchindex /-5/

data colourindex /6/

c Fill each point set array that will be included in the fill area set arrays.

data diamondlx /0.0, 0.5, 1.0, 0.5/
data diamondly /0.5, 0.0, 0.5, 1.0/
data diamond2x /0.2, 0.5, 0.8, 0.5/
data diamond2y /0.5, 0.2, 0.5, 0.8/
data diamond3x /0.4, 0.5, 0.6, 0.5/
data diamond3y /0.5, 0.4, 0.5, 0.6/

c Fill the fill area set arrays with the data from each point set array.

do 50 i =1,4
fasxarr(i)

diamondlx (i)

fasyarr (i) = diamondly (i)
fasxarr (i+4) = diamond2x(i)
fasyarr(i+4) = diamond2y (i)

fasxarr (i+8) = diamond3x (i)
fasyarr (i+8) = diamond3y (i)
50 continue

¢ Initialize values for the workstation and structure identifiers
¢ and the parameters for setting the edge bundled attribute values.

Wsl =1

WS2 = 2

strid =1
edgeindex = 1
edgetype = 1
edgewidth = 1.0
edgecolor = 1

sun Revision A of 30 August 1989

microgystems

Appendix B — Tutorial Examples 175

[+

[+

O 000

QO 000

0000

o]

PHIGS must be opened prior to calling any other PHIGS function.
call popph(6, O0)
Create two sun_tool workstations and open them.

call phigswstcreate (phigswsttool, tooll)
call phigswstset (tooll, PHIGSTOOLWIDTH, 500)
call phigswstset (tooll, PHIGSTOOLHEIGHT, 500)
call phigswstset (tooll, PHIGSTOOLX, 50)
call phigswstset (tooll, PHIGSTOOLY, 50)
call phigswstcreate(tooll, tool2)
call phigswstset (tool2, PHIGSTOOLX, 600)
call phigswstset (tocol2, PHIGSTOOLY, 300)
call popwk (WS1l, 0, tooll)
¢ call popwk(WS2, 0, tool2)

Use workstation 1’s bundle table to turn the SET EDGE FLAG off.

The workstation’s bundle table edge flag attribute will need to be
changed from the default value (ON) to off. See the PHIGS WORKSTATION
DESCRIPTION TABLE (7P) manual page for workstation default values.

The SET EDGE REPRESENTATION defines an edge attribute bundle on the
specified workstation. This determines the edgetype, width and color

as well as whether or not the edge is displayed. The function below uses
the edge flag value POFF to specify the edge is not to be displayed on WS1

call psedr(WS1l, edgeindex, POFF, edgetype, edgewidth, edgecolor)

Open a structure and begin inserting elements. The SET EDGE INDEX functic
creates a structure element containing the an edge index value which selec
an entry from the workstation’s edge bundle table.

call popst(strid)
call psedi (edgeindex)

Use the SET INDIVIDUAL ASF function to insert a structure element
containing the Aspect Source Flag value which determines whether the
primitive’s individual attribute value or the workstation’s bundle table
attribute value will be used. Here we designate the bundled attribute
for the edge flag.

call psiasf (PEDFG, PBUNDL)

Create the individual attribute value elements for the fill area set using
SET INTERIOR STYLE, SET INTERIOR STYLE INDEX and SET INTERIOR COLOUR INDE?
Insert the fill area set element into the structure and close it.

call psis (PHATCH)

call psisi(hatchindex)

call psici (colourindex)

call pfas(3, boundaries, fasxarr, fasyarr)
call pclst

Post the structure to both workstations to display the fill area set data.

call ppost (WS1l, strid, 0.)
call pmsg(WS1l, ‘Displays a fill area set with the edge flag off.’)

@ sun Revision A of 30 August 1989

microsystems

176 Getting Started with SunPHIGS™

call ppost (WS2, strid, 0.)

call pmsg(WS2, ‘Displays a fill area set with the edge flag on.’)

call sleep(10)

¢ Clecse both workstations and PHIGS.

»

call pclwk (WS1)
call pclwk(WS2)
call pclph

stop
end

Sun

microsystems

Revision A of 30 August 1989

Appendix B — Tutorial Examples 177

figscanval.f

Demonstrates the Valuator window using a Sun Canvas workstation.
c @(#)figscanval.f 2.2 88/07/08 SMI

c figscanval.f - Create a phigswstcanvas workstation type and set attributes.

c Note: It is necessry to include the declarations in phigs77.h
c in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

¢ Turn off implicit typing of possible SunPHIGS names.
¢ This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)
character *80 rec(l)
integer wkid, strid, valdev, pet, canvas, canvasid, canvaswst, ldr

¢ Initialize variables for the workstation identifier & structure indentifer
¢ and the valuator device and prompt/echo type (for INITIALIZE VALUATOR) .

wkid = 1
strid = 1
valdev = 1
pet =1
1dr = 0

c SunView Setup - canvasid is a C function which returns the
c connection identifier ‘canvas’ for a SunPHIGS canvas workstation.

canvas = canvasid()
c Open PHIGS, use logical unit number 6 for the SunPHIGS error file.
call popph(6, 0)

¢ Create a new workstation of type phigswstcanvas; set the attribute values
c for positioning the VALUATOR window; open the workstation.

call phigswstcreate (phigswstcanvas, canvaswst)
call phigswstset (canvaswst, PHIGSVALPANELX, 625)
call phigswstset (canvaswst, PHIGSVALPANELY, 25)
call popwk (wkid, canvas, canvaswst)

¢ INITIALIZE VALUATOR and SET VALUATOR MODE to activate the device.

call pinvl (wkid, valdev, 0.5, pet, 0.0,1.0,0.0,1.0, -1.0,1.0, ldr,rec)
call psvlm(wkid, 1, PEVENT, PECHO)

¢ Open a structure and insert a SET CHARACTER HEIGHT and TEXT element.

call popst (strid)
call pschh (.015)
call ptx(.01, .5,
& "This is a phigswstcanvas workstation with a VALUATOR window.")

@ sun Revision A of 30 August 1989

microsystems

178 Getting Started with SunPHIGS™

c Post structure to the workstation to display the structure’s contents.
call ppost (wkid, strid, 0.)

¢ Call SunView’s notifier from canvasid() to update the SunView canvas.
call display

¢ Close the structure, close the workstation, and close PHIGS.
call pclst
call pclwk (wkid)

call pclph

stop
end

Sun Revision A of 30 August 1989

microsystems

Appendix B — Tutorial Examples 179

figstoolval.f

Demonstrates the Valulator window using a Sun Tool workstation.
¢ Q@(#)figstoolval.f 2.1 88/06/02 SMI

c figstoolval.f - Create a phigswsttool with a VALUATOR window.

c Note: It is necessry to include the declarations in phigs77.h
c in order to open a workstation or access SunPHIGS constants.

include ’/usr/include/phigs/phigs77.h’

¢ Turn off implicit typing of possible SunPHIGS names.
¢ This will cause the compiler to report undeclared usage of such names.

implicit undefined (P,p,E,e)
character *80 rec(l)
integer wkid, strid, valdev, pet, toolval, ldr

¢ Initialize variables for the workstation identifier & structure indentifer
c and the valuator device and prompt/echo type (for INITIALIZE VALUATOR).

wkid = 1
strid = 1
valdev = 1
pet = 1
ldr = 0O

¢ Open PHIGS, use logical unit number 6 for the SunPHIGS error file.
call popph (6, 0)

¢ Create a new workstation of type phigswstool; set the attribute values
¢ for positioning the VALUATOR window; open the workstation.

call phigswstcreate (phigswsttool, toolval)
call phigswstset (toolval, PHIGSVALPANELX, 650)
call phigswstset (toolval, PHIGSVALPANELY, 25)
call popwk (wkid, 0, toolval)

¢ INITIALIZE VALUATOR and SET VALUATOR MODE to activate the device.

call pinvl(wkid, valdev, 0.5, pet, 0.0,1.0,0.0,1.0, -1.0,1.0, 1ldr,rec
call psvlm(wkid, valdev, PEVENT, PECHO)

¢ Open a structure and insert a SET CHARACTER HEIGHT and TEXT element.
call popst (strid)
call pschh (.015)
call ptx(.01, .5,

& "This is a phigswsttool workstation with a VALUATOR window.")

¢ Post structure to the workstation to display the structure’s contents.

call ppost (wkid, strid, 0.)
call sleep(10)

@ sun Revision A of 30 August 1989

microsystems

180 Getting Started with SunPHIGS™

¢ Close the structure, close the workstation, and close PHIGS.

call pclst
call pclwk (wkid)
call pclph

stop
end

sun Revision A of 30 August 1989

microsystems

Viewing

Viewing

C.1. View Orientation

C.2. View Mapping

183

183
184

20000 RULU00000

RS

19983000000000000000001 R aaReaR000s TR0 s R
R

PHIGS provides utility functions which compute 4 x 4 and 3 x 3 matrices suit-
able for use as view orientation matrices and view mapping matrices. The
parameters for these utility functions are based on 3-D and 2-D models of orien-
tation and projection. These models explain how certain parameters are used to
determine 4 x 4 matrices. PHIGS supports only certain models. Other models
are possible and can be utilized by an application by creating its own matrices in
accordance with the desired model.

The EVALUATE VIEW ORIENTATION MATRIX and EVALUATE VIEW
MAPPING utility functions have two output parameters, a matrix and an error
indicator. The matrix is a 4 x 4 or 3 x 3 depending on whether the utility function
is 3-D or 2-D. The error indicator will be set to indicate the cause of the error if
the input parameters are not well-defined or are inconsistent.

C.1. View Orientation The model for view orientation provides for positioning and orientation of the
View Reference Coordinate (VRC) system with respect to the World Coordinate
(WC) system. The 3-D model is supported by the function VALUATE VIEW
ORIENTATION MATRIX 3. The input parameters of the function are:

a view reference point - in WC, defines the origin of the VRC. The view refer-
ence point is typically a point on or near the object to be viewed.

o view plane normal - a vector relative to the view reference point that defines
the N axis of the VRC system. The axes of the View Reference Coordinate
system are the UVN axes as described in Figure C-1 below.

o view up vector - a vector relative to the view reference point which is pro-
jected onto the view reference plane via a projection parallel to the view
plane normal. The projection of the view up vector onto the view reference
plane determines the V axis of the VRC system. The U axis is determined
such that the UVN axes form a right-handed coordinate system.

@ Su 183 Revision A of 30 August 1989

184 Getting Started with SunPHIGS™

Figure C-1

C.2. View Mapping

View Reference Coordinate System

The 2-D model for view orientation provides for positioning and orientation of
the VRC system in the x-y plane of the WC system. The 2-D model is supported
by the function EVALUATE VIEW ORIENTATION MATRIX and its input param-
eters are:

o view reference point - a 2-D point that defines a point in the WC Z=0 plane.
This point becomes the origin of the View Reference Coordinate system.

o view up vector - a 2-D vector relative to the view reference point that indi-
cates a direction in the WC Z= 0 plane. This direction becomes the V axis
of the VRC. The N axis of the VRC system is parallel to the Z axis of the
WC system. The U axis of the VRC system is determined such that the UVN
axes from a right-handed coordinate system.

The 3D model for view mapping provides for parallel and perspective transfor-
mation of the View Reference Coordinate (VRC) system to the Normalized Pro-
Jjection Coordinate (NPC) system. This model is supported by the function
EVALUATE VIEW MAPPING MATRIX 3. This function maps a volume in VRC
called the view volume, to a volume in NPC bounded by projection viewport lim-
its. EVALUATE VIEW MAPPING MATRIX 3 retumns the 4 x 4 matrix which per-
forms this mapping. Figures C-2 and C-3 below show typical view volumes asso-

ciated with parallel and perspective views. The input parameters for this func-
tion are:

o window limits - the limits of a rectangular region on the view plane with
sides parallel to the U and V axes. The view window is specified as U and
V coordinate values. The window limits parameter consists of four values,

sun Revision A of 30 August 1989
microsystems

()
Y
World Coordinate System
X
Z -
View Plane Nomal
-« " View Reference Point
e
U
View Reference Coordinate System
_ J

=

=3

Appendix C — Viewing 185

usually referred to as UMIN, UMAX, VMIN and VMAX. By definition the
UMIN edge is the left edge of the view window, the UMAX edge is the right
edge, the VMIN edge is its bottom edge and the VMAX edge is its top edge.
The left, right, bottom and top edges of the view window, together with the
projectors through those edges, define the left, right, bottom and top sur-
faces of the view volume, respectively. In this model for view mapping, the
term projector refers to an infinite line in VRC that is mapped (via the view
mapping) to an infinite line in NPC of the form X=constant, Y=constant, Z
arbitrary.

o projection viewport limits - the limits of a rectangular parallelpiped in NPC
space with edges parallel to the NPC axes. Normalized Projection Coordi-
nate space conceptually extends beyond [0,1] x [0,1] x [0,1], however, the
part of NPC in which the view clipping limits shall be located is the closed
unit cube [0,1] x [0,1] x [0,1]. The six NPC values defining the projection
viewport are referred to as XMIN, XMAX, YMIN, YMAX, ZMIN and ZMAX.
Typically the projection viewport limits and the view clipping limits will be
set to the same values, however, this is not mandatory.

o projection type - an enumerated type with the values PARALLEL and
PERSPECTIVE.

o projection reference point (PRP) - a position in VRC space which serves to
orient the projectors defining the surfaces of the view volume. If the projec-
tion type is PARALLEL, the projectors are all paraliel to the vector joining
the projection reference point and the center of the view window. The view
volume, therefore, is, a parallelpiped. If the projection type is
PERSPECTIVE, the projectors all pass through the projection reference
point. In the case of the latter, the projectors passing through the view win-
dow lie on the surface of a pair of infinite rectangular cones having their
common vertex at the PRP. The view volume, therefore, is a portion of this
double cone.

o view plane distance, back plane distance and front plane distance - N coor-
dinate values which specify the planes parallel to the UV plane of the View
Reference Coordinate system. The front plane and back plane contain the
front and back of the view volume. Conceptually, the VRC space is oriented
(since View Reference Coordinates result from the view orientation
transformation). Since the front plane should not be behind the back plane,
the front plane distance should not be less than the back plane distance.

sSun Revision A of 30 August 1989
microsystems

186

Getting Started with SunPHIGS™

Figure C-2

Figure C-3

4

The Parallel Viewing Model

r~

Y
World Coordinate System
z X

Front Plane Distance

View Reference Point
N

]
= View Plane Distance

Back Plane Distance

(UMIN,VMIN)

View Window

View Volume

Front Plane
\ J
The Perspective Viewing Model
(A
Y
/< World Coordinate System
. X Back Plane Distance
Front Plane Distance | View Plane Distance
v |
I
N U {
View Reference Pointl
Projection View Window View Volume
Reference
Point
\. J

un

microsystems

Revision A of 30 August 1989

Appendix C — Viewing 187

The 2-D model for view mapping provides for parallel transformation of the VRC
system to the NPC system. The EVALUATE VIEW MAPPING MATRIX function
supports this model which permits the application to specify a rectangle on the

=0 plane in VRC, and to specify a rectangle on the Z=0 plane in NPC.
EVALUATE VIEW MAPPING MATRIX returns the 3 x 3 matrix which is used to
map the VRC rectangle to the NPC rectangle. The input parameters for this func-
tion are:

o window limits - the limits of a rectangular region in VRC which is upright
(sides parallel to the U and V axes) and located on the N=0 plane. The view
window is specified as U and V coordinate values. The window limits
parameter consists of four values called UMIN, UMAX, VMIN and VMAX.

o projection viewport limits - the limits of a rectangle in NPC which is upright
(sides parallel to the X and Y axes) and located on the Z=0 plane. Although
the NPC conceptually extends beyond [0,1] in the X and Y axis, the NPC
rectangle is located in the closed unit square [0,1] x [0,1]. The four values
defining the NPC rectangle are XMIN, XMAX, YMIN and YMAX.

sSun Revision A of 30 August 198
microsystems

Notes

Notes

Corporate Headquarters

Systems for Open Computing™

European Headquarters

Germany: (089) 95094-0

Taiwan: 2-7213257

Sun Microsystems, Inc. Sun Microsystems Europe. Inc. Hong Kong: 852 5-8651688 UK: 0276 62111 -
2550 Garcia Avenue Bagshot Manor, Green Lane Italy: (39) 6056337 -
Mountain View, CA 94043 Bagshot, Surrey GU19 SNL Japan: (03) 221-7021 Europe, Middle East, and Africa,
415 960-1300 England Korea: 2-563-8700 call European Headquarters: N
FAX 415969-9131 0276 51440 New Zealand: (04) 499 2344 0276 51440
TLX 859017 Nordic Countries: +46 (0)8 7647810 -
For U.S. Sales Office PRC: [-8315568 Elsewhere in the world, {
locations, call: Australia: (02) 413 2666 Singapore: 224 3388 call Corporate Headquarters: -
800 821-4643 Belgium: 32-2-759 5925 Spain: (1) 5551648 415 960-1300
In CA: 800 821-4642 Canada: 416 477-6745 Switzerland: (1) 8289555 Intercontinental Sales %
France: (1) 4094 8000 The Netherlands: 033 501234 -
—
1
—
—
—-—
-
—

