
sun®
microsystem~

Sun'" 2.1 Common Lisp
Object System

·sun~
• microsystems

Sun'" 2.1 Common Lisp
Object System

Part t'i umber:
,""",,',,-.n A ,septernlber

The Sun logo is a registered trademark of Sun Microsystems, Inc.
Sun is a trademark of Sun Microsystems, Inc.
Sun Workstation® is a registered trademark of Sun Microsystems, Inc.
SunOS™, SunStation™, Sun Microsystems™, SunCore™, SunWindowsTM,

SunView™, DVMATM, and the combination of Sun with a
numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

This document is a draft specification from the XJ313 Common Lisp
Object System sub-committee. This specification will change in
October after the committee has their next fonnal meeting.

The specification is similar to the otherwise-undocumented Portable
Common Loops (PCL) software, however it should not be mistaken as a
manual for PCL. There are some significant differences between the
specification and the current version of PCL, at the moment the best PCL
documentation is the source code itself. A subsequent version of PCL
is expected to be a complete implementation of the CLOS specification.

Special Message - Please Read First

Unsupported Product Supplements:

Draft of the Proposed
CommonLisp Object System (CLOS) Specification

and Source Code for
Portable Common Loops (PCL)

Sun Common Lisp Users:

As you know it is Sun's policy to adopt and promote industry standards as they develop. The Sun Common Lisp
language as it exists today represents one such standard. There are, in addition, a number of standardization efforts
underway in areas relating to Common Lisp, including window toolkits and object-oriented programming systems.
Sun is an active participant in these standards organizations and we plan to incorporate these important new
capabilities into the Sun Common Lisp product as soon as technically feasible.

We feel it is important for you to be kept up to date on these standardization activities and as a result we have
included a recent draft of the proposed standard Common Lisp Object System (CLOS) Specification. This was
generated by the ANSI X3J13 standard committee - it is not a Sun document. We have also included on the
distribution media an experimental object system that is evolving towards CLOS called Portable Common Loops
(PCL), developed by XEROX P ARC.

Both of these items are included for your information only. The CLOS draft and PCL are NOT part of Sun
Common Lisp and are COMPLETELY UNSUPPORTED. These have simply been included to give you some
insight into our general development directions in the area of object-oriented programming systems.

If you choose to experiment with PCL and want to participate in the ongoing discussions of it, contact
CommonLoops-Coordinator . pa@Xerox. com This is for contributions only, however, and is not a means of
receiving support.

Special Message - Please Read First

87-002

Common Lisp Object System Specification

. 1. Programmer Interface Concepts

This document was written by Daniel G. Bobrow, Linda G. DeMichiel,
Richard P. Gabriel, Sonya Keene, Gregor Kiczales, and David A. Moon.

Contributors to this document include Patrick Dussud, Kenneth Kahn,
Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L White.

Programmer Interface Concepts 1-1

87-002

CONTENTS

Introduction ... 1-3
Classes 1-4

Defining Classes . 1-5
Creating Instances of Classes ... 1-5
Slots ... 1-5
Accessing Slots ... 1-6

Inheritance 1-7
Inheritance of Methods. 1-7
Inheritance of Slots and Slot Options ... 1-7
Inheritance of Class Options '. 1-9
Examples of Inheritance . 1-9

Redefining Classes .. 1-11
Integrating Types and Classes ... 1-13
Determining the Class Precedence List ... 1-14

Topological Sorting ... 1-14
Examples .. 1-15

Generic Functions and Methods .. 1-17
Introduction to Generic Functions. .. 1-17
Introduction to setf Generic Functions ... 1-18
Introduction to Methods ... 1-18
Congruent Lambda-lists for All Methods of a Generic Function 1-20

Method Selection and Combination .. 1-21
Determining the Effective Method ... 1-21
Standard Method Combination ... 1-24
Declarative Method Combination ... 1-25

Meta Objects. .. 1-26
Metaclasses .. 1-26
Standard Metaclasses .. 1-26
Standard Meta-Objects .. 1-26

1-2 Common Lisp Object System Specification

87-002

Introduction

This proposal presents a description of the standard Programmer Interface for object-oriented
programming in the Common Lisp Object System. The first chapter of this document describes
the concepts of the Common Lisp Object System, and the second gives an alphabetic list of the
functions and macros that comprise the Common Lisp Object System Programmer Interface.
A third chapter, "The Common Lisp Object System Meta-Object Protocol," will describe how
the Common Lisp Object System can be customized to support other existing object-oriented
paradigms and to define new ones.

The fundamental objects of the Common Lisp Object System are classes, instances, generic
functions, and methods.

A class object determines the structure and behavior of a set of other objects, which are called
its instances. It is an important feature of the Object System that every Common Lisp object
is an instance of a class. The class of an object determines the set of operations that can be
performed on the object.

A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object comprises a set of methods, a lambda-
list, a method combination type, and other information. The methods define the class-specific
behavior and operations of the generic function. Thus, generic functions are objects that may be
specialized by the definition of methods to provide class-specific operations. A generic function
chooses one or more of the set of its methods based on the classes of its arguments.

A generic function can be used in the same ways that an ordinary function can be used in Com­
mon Lisp; in particular, a generic function can be used as an argument to funcall and apply and
stored in the function cell of a symbol.

The class-specific operations provided by generic functions are themselves defined and imple­
mented by methods. A method object contains a method function, an ordered set of parameter
specializers that specify when the given method is applicable, and an ordered set of qualiflers
that are used by the method combination facility to distinguish among methods. Each required
formal parameter of each method has an associated parameter specializer, and the method is
expected to be invoked only on arguments that satisfy its parameter specializers.

To summarize, a generic function is a function that contains or encompasses a number of meth­
ods. When a generic function is invoked, the classes of its required arguments determine which
methods might be invoked. The behavior of the generic function results from which methods are
selected for execution, the order in which the selected methods are called, and how their values
are combined to produce the value or values of the generic function. The method combination
facility controls the selection of methods, the order in which they are run, and the values that
are returned by the generic function. The Common Lisp Object System offers a default method
combination type that is appropriate for most user programs. The Common Lisp Object System
also provides a facility for declaring new types of method combination for programs that require
them.

Programmer Interface Concepts 1-3

87-002

Classes

A class is an object that determines the structure and behavior of a set of other objects, which
are called its instances.

A class can inherit structure and behavior from other classes. A class whose definition refers to
other classes for the purpose of inheriting from them is said to be a subclass of each of those
classes. The classes that are designated for purposes of inheritance are said to be superclasses of
the inheriting class.

We say that a class, G1 , is a direct superclass of a class, C2 , if C2 explicitly designates G1 as a
superclass in its definition. We say that C2 is a direct subclass of C1• We will say that a class
Cn is a superclass of a class C1 if there exists a series of classes C2 , ••• , Cn - 1 such that Ci+1

is a direct superclass of Gi for 1 ~ i < n. In this case, we say that C1 is a subclass of Cn. A
class is considered neither a superclass nor a subclass of itself. That is, if C1 is a superclass of C2 ,

then C1 =j:. C2 • We refer to the set of classes consisting of some given class C along with all of its
superclasses as "C and its superclasses.»

When a class is defined, the order in which its direct superclasses are mentioned in the defining
form is important. Each class has a local precedence order, which is a list consisting of the
class followed by its direct superclasses in the order mentioned in the defining form.

Each class has a class precedence list, which is a total ordering on the set of the given class
and its superclasses. The total ordering is expressed as a list ordered from most specific to least
specific. The class precedence list is used in several ways. In general, more specific classes can
shadow, or override, features that would otherwise be inherited from less specific classes. The
method selection and combination process uses the class precedence list to order methods from
most specific to least specific.

A class precedence list is always consistent with the local precedence order of each class in the
list. The classes in each local precedence order appear within the class precedence list in the same
order. If the local precedence orders are inconsistent with each other, no class precedence list can
be constructed, and an error will be signaled. The class precedence list and its computation is
discussed at length in the section "Determining the Class Precedence List."

Classes are organized into a directed acyclic graph. There is a distinguished class named t.
The class t has no superclasses. It is a superclass of every class except itself.

There is a mapping from the Common Lisp type space into the Common Lisp Object System
class space. Many of the standard Common Lisp types specified in Common Lisp: The Language
by Guy L. Steele Jr. have a corresponding class that has the same name as the type. Some
Common Lisp types do not have a corresponding class. The integration of the type and class
system is discussed later in this chapter.

Classes are represented by first-class objects that are themselves instances of classes. The class
of the class of an object is termed the metaclass of that object. When no misinterpretation
is possible, we will also use the term metaclass to refer to a class that has instances that are

1-4 Common Lisp Object System Specification

87-002

themselves classes. The metaclass determines the form of inheritance used by the classes that are
its instances and the representation of the instances of those classes. The Common Lisp Object
System provides a default metaclass that is appropriate for most programs. The meta-object
protocol will allow for defining and using new metaclasses.

Defining Classes
The macro defclass is used to define a new class. The syntax for defc1ass is given in Figure 2-l.

The definition of a class includes:

• The name of the new class.

• The list of the direct superclasses of the new class.

• A set of slot specifiers. Each slot specifier includes the name of the slot and zero or more slot
options. A slot option pertains only to a single slot.

• A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass form allow for the following:

• Providing a default initial value form for a given slot.

• Requesting that methods for appropriately named generic functions be automatically gener­
ated for reading or writing one or more slots.

• Controlling whether one copy of a given slot is shared by all instances or whether each
instance has its own copy of that slot.

• Requesting that a constructor function be automatically generated for making instances of
the new class.

• Indicating that the instances of the class are to have a metaclass other than the default.

Creating Instances of Classes

Slots

The function make-instance creates and returns a new instance of a class.

The initialization protocol of make-instance is not yet specified.

An object has zero or more named slots. The slots of an object are determined by the class of
the object. Each slot can hold one value. The name of a slot is a symbol that can be used as a
Common Lisp variable name.

Programmer Interface Concepts 1-5

87-002

There are two kinds of slots: slots that are local to an individual instance and slots that are
shared by all instances of a given class. The :allocation slot option controls the kind of slot that
is defined. If the value of the :aHocation slot option is :instance, a local slot is created. This
is the most commonly used kind of slot. If the value of :allocation is :class, a shared slot is
created.

In general, slots are inherited by subclasses. That is, a slot defined by a class is also a slot
implicitly defined by any subclass of that class unless the subclass explicitly shadows the slot
definition. A class can also shadow some of the slot options declared in the defclass form of one
of its superclasses by providing its own description for that slot. A detailed explanation of the
inheritance of slot options is given in the section "Inheritance of Slots and Slot Options.»

We say that a slot is accessible in an instance of a class if the slot is defined by the class of the
instance or is inherited from a superclass of that class. At most, one slot of a given name can be

·1 1· •. acceSSIOle In an Instance.

Accessing Slots
Slots can be accessed in two ways: by use of generic functions defined by the defclass form and
by use of the primitive function slot-value.

The defclass syntax allows for generating methods to read and write slots. If an accessor is
requested, a method is automatically generated for reading the value of the slot, and a setf
method for it is also generated. If a reader is requested, a method is automatically generated for
reading the value of the slot, but no setf method for it is generated. These methods are added to
the appropriate generic functions. Readers and accessors are implemented by using slot-value.

Readers and accessors can be specified for individual slots or for all slots. When a reader or
accessor is specified for an individual slot, the name of the generic function is directly specified.
When readers and accessors are requested for all slots, the names of the generic functions are
determined by combining a prefix and the individual slot names. It is possible to modify the
behavior of these generic functions by writing methods for them.

The function slot-value can be used with any of the slot names specified in the defclass form to
access a specific slot in an object of the given class. Note that slot-value can be used to read or
write the value of a slot whether or not accessor functions exist for that slot. When slot-value is
used, no methods for the accessors are called.

Sometimes it is convenient to access slots from within the body of a method or a function. The
macro with-slots can be used to set up a lexical environment in which certain slots are lexically
available as if they were variables. The macro with-slots enables one to specify whether the
accessors or the function slot-value is to be used to access the slots.

1-6 Common Lisp Object System Specification

87-002

Inheritance

Inheritance is the key to program modularity within the Common Lisp Object System. A typical
object-oriented program consists of several classes, each of which defines some aspect of behavior.
New classes are defined by including the appropriate classes as superclasses, thus gathering
desired aspects of behavior into one class.

A class can inherit slots and some defclass options from its superclasses. This section describes
what is inherited from superclasses and how a class can shadow an aspect of inherited behavior.

Inheritance of Methods
A subclass inherits methods in the sense that any method applicable to an instance of a class is
also applicable to instances of any subclass of that class (all other arguments to the method being
the same).

The inheritance of methods acts the same way regardless of whether the method was created by
using defmethod or by using one of the defclass options that cause methods to be generated
automatically.

The inheritance of methods is described in detail in the section "Method Selection and Combina­
tion."

Inheritance of Slots and Slot Options
In general, slot descriptions are inherited by subclasses; that is, slots defined by a class are usually
slots implicitly defined by any subclass of that class.

In the simplest case, only one class in the class precedence list provides a slot description with
a given slot name. IT it is a local slot, then each instance of the class and all of its subclasses
allocate storage for it. If it is a shared slot, the storage for the slot is allocated by the class that
provided the slot description, and the single slot is accessible in instances of that class and all of
its subclasses.

More than one class in the class precedence list can provide a slot description with a given slot
name. In such cases, at most one slot with a given name is accessible in any instance, and the
characteristics of that slot involve some combination of the several slot descriptions.

The following is a simple description of how the characteristics of a slot named S in a class Care
determined. The characteristics of a slot are the effective values of the slot options :allocation,
:initform, and :type. The defclass form for C might not mention the slot S, and whether there
is a slot named S in C will also be determined.

Programmer Interface Concepts 1-7

87-002

Let the class precedence list of G be (Gl ... Gn+d, G = Gl and Gn+l = t. We produce a list of
slot option values

D = {(Eb AI, T l , Id, ... , (En' An, Tn, In)}

derived from the class precedence list.

The valid values of these slot option values are the following:

• Ei can be t or nil. This will indicate whether or not a slot named S was mentioned in the
defclass form for Gi.

• Ai can be :instance, :class, or (:class i), where (:class i) indicates that the class Gi shares
a shared slot defined iI). the defclass form for G:j. This will indicate the effective value of the
:allocation option.

• 11 can be a Common Lisp type. This will indicate the effective value of the :type option.

• Ii can be a Common Lisp expression or unsupplied. This will indicate the effective value for
the :initform option.

In overview, the list D is a representation of the effective values of the slot options for the slot
named S in the class precedence list for C. The intuitive inheritance rules for these effective
values are captured by a simple recursive process of calculating this representation. In brief, this
process computes the values for (Ei' Ai, Ti, Ii) from the slot options supplied in the defclass form
for each class in the class precedence list and from other elements of the list D. If the defclass
form for Gi supplies a value for one of the options, that value is copied into the corresponding
element in the list D. If some options are not specified for some class Gi , the option value in the
corresponding element of D is defaulted.

The precise process is as follows: For each Gi in the class precedence list for G, consider the
defclass form for Gi j let Ei be t if the defclass form specifies the slot named S j let Ai be the
value supplied for the :allocation slot option for the slot Sj let 1i be the value supplied for the
:type slot option for the slot Sj and let Ii be the value supplied for the :initform slot option for
the slot S. If any of these options for the slot S is not explicitly specified by the defclass form
for Gi , they are defaulted as follows:

• Ei defaults to nil.

• For 1 ~ i < n: If Ai+ 1 is :class and Ei is nil, then Ai defaults to (:class i + 1) j if Ai+ 1 is
(:class j) and Ei is nil, Ai defaults to (:class j); otherwise Ai defaults to :instance. An
defaults to :instance.

• 1i defaults to t.

• Ii defaults to the value Ii+ 1, 0 ~ i < n. In defaults to unsupplied.

1-8 Common Lisp Object System Specification

87-002

IT there exists an i, 1 ~ i ~ n, such Ei is t, then the class a has a slot named S. The slot option
values for :allocation, :type, and :initform for the slot S in a are derived from the set D as
follows:

• The :allocation option for a is determined by the value A1" IT it is :class, it is a shared slot
of the class OJ if it is :instance, it is a local slot; and if it is (:class j), it is a shared slot
shared with the class OJ.

• The :type option for a is the value T1 , and the contents of the slot S will always be of type
(and T1 ... Tn).

• The :initform option for a is the value 11 • IT the value is unsupplied, the slot is not
initialized.

Methods that access slots know only the name of the slot and the type of the slot's value. Sup­
pose a superclass provides a method that expects to access a shared slot of a given name and a
subclass provides a local description of a local slot with the same name. IT the method provided
by the superclass is used on an instance of the subclass, the method accesses the local slot.

The :reader and :accessor options are not inherited. Reader and accessor methods are inherited
in the sense described in the section "Inheritance of Methods."

Inheritance of Class Options
Class options are not inherited. Reader and accessor methods defined by class options are inher­
ited in the sense described in the section "Inheritance of Methods."

Examples of Inheritance

(detclass Cl 0
((81 :initform 5.4 :type number)
(82 :allocation :class»

(detclass C2 (Cl)
((81 :initform 5 :type integer)
(82 :allocation :instance)
(83 :accessor C2-83»

(:reader-pretix C2-»

Instances of the class Cl have a local slot named 81, whose default initial value is 5.4 and whose
value will always be a number. Cl also has a shared slot named 82.

There is a local slot named 81 in instances of C2. The default initial value of 81 is 5. The value of
81 will be of type (and integer number). There are also local slots named 82 and 83 in instances

Programmer Interface Concepts 1-9

87-002

of C2. C2 has methods defined for reading the value of its slots; these methods are for the generic
functions named C2-S1, C2-S2, and C2-S3. There is also a method for setf of C2-S3 that writes the
value of S3.

1-10 Common Lisp Object System Specification

87-002

Redefining Classes

When a defclass form is evaluated and a class with the given name already exists, the existing
class is redefined. Redefining a class modifies the existing class object to reflect the new class
definition; it does not create a new class object for the class. Any method created by an :acces­
sor, :reader, :accessor-prefix, or :reader-prefix option specified by the old defclass form
is removed from the corresponding generic function unless that same method is specified by the
new defclass form; any function specified by the :constructor option of the old defclass form
is removed from the corresponding symbol function cell. Let C be the class being redefined, and
let Me be the set of methods removed. When C is redefined, an obsolete copy of the old class is
made for use during the process of updating the instances of C. Call the obsolete copy Co. The
class Co has no name, and it has no instances except during a particular part of the process of
updating instances.

When the class C is redefined, changes are propagated to instances of it and to instances of any
of its subclasses. The updating of an instance whose class has been redefined (or any of whose
superclasses have been redefined) occurs at an implementation-dependent time, but will usually
be upon the next access to that instance or the next time that a generic function is applied to
that instance. In this context, an instance is said to be accessed when a generic function is
called with the instance as an argument that is used for method selection or when slot-value is
called with the instance as its first argument. Updating an instance does not change its identity
as defined by the eq function. The updating process may change the slots of that particular
instance, but it does not create a new instance. Whether updating an instance consumes storage
is implementation dependent.

If a class is redefined in such a way that the set of local slots accessible in an instance of the class
is changed or the order of slots in storage is changed, the function change-class is called when­
ever an instance of the class is updated. Implementations may choose to invoke change-class
under other circumstances as well. The function change-class always calls class-changed to
complete the transformation from the old representation of the instance to the new representa­
tion. The generic function class-changed is provided to allow programmers to specify actions to
be taken when an instance is updated.

Because the class Co does not have a name, any method for class-changed that is specialized
to a particular Co must be written using the functional interface, that is, by using add-method
rather than by using defmethod. See the section "Introduction to Methods."

Note that redefining a class may cause slots to be added or deleted. When an instance is updated,
new slots are initialized and the values of deleted slots are discarded. Each local slot of the new
version of the class with no slot by the same name in the old version of the class is initialized to
the value of the corresponding :initform option of the new class or remains uninitialized if the
new version of the class does not specify or inherit the :initform option for that slot. This is
the same as the initialization done by make-instance except that no initialization methods are
invoked and no make-instance initialization arguments are present.

Programmer Interface Concepts 1-11

87-002

IT in the new version of the class there is a local slot of the same name as any slot in the old
version of the class, the value of that slot is unchanged. This means that if the slot has a. va.lue,
the value returned by slot-value after change-class is invoked is eql to the value returned by
slot-value before change-class is invoked. Similarly, if the slot was uninitialized, it remains
uninitialized. IT in the new version of the class there is a shared slot of the same name as any
shared slot in the old version of the class, the value of that slot will be the same in both. IT in the
new version of the class there is a shared slot of the same name as any local slot in the old version
of the class, that shared slot is initialized to the value of the corresponding :initform option of
the new class or remains uninitialized if the new version of the class does not specify or inherit
the :initform option for that slot.

After change-class has completed the above operations, it invokes the generic function class­
changed on two arguments computed by change-class. The first argument passed is a copy of
the instance being updated and is an instance of the obsolete dass Co; cali this instance 10 • The
second argument is the instance as updated so far by change-class and is an instance of the class
C. The methods Me, which were removed by the redefinition of the class C, apply to instances of
Co; for example, they apply to 10 • The methods defined on class-changed can use the methods
in Me-by invoking the appropriate generic functions-to obtain information that is not directly
stored in 10. 10 is constrained to have dynamic extent, so referencing it outside of the dynamic
extent of class-changed is an error. Note that Co has an instance within the dynamic extent of
class-changed; this is the only time that any instanc~s of Co will exist.

The Common Lisp Object System guarantees that defclass can be used to change the definition
of an existing class that was previously defined by defclass as long as the :metaclass option
is not used in either the old or the new definition. Whether defclass is allowed to change the
metaclass and whether redefining a class causes existing instances to be updated is up to the im­
plementor of the particular metaclass. "The Common Lisp Object System Meta-Object Protocol"
will describe how to control this.

1-12 Common Lisp Object System Specification

87-002

Integrating Types and Classes

The Common Lisp Object System maps the Common Lisp type space into the space of classes.
Many but not all of the predefined Common Lisp type specifiers have a class associated with
them that has the same name as the type. For example, an array is of type array and of class
array.

A class that corresponds to a predefined Common Lisp type is called a standard type class.
Each standard type class has the class standard-type-class as a metaclass. Users can write
methods that discriminate on any primitive Common Lisp type that has a corresponding class.
However, it is not allowed to make an instance of a standard type class with make-instance or
to include a standard type class as a superclass of a class.

Which Common Lisp types will have corresponding classes is still under discussion.

Creating a type by means of defstruct creates a class in the space of Common Lisp classes. Such
a class is an instance of structure-class and a direct subclass of the class that corresponds to
the type given as its :includes argument, if any.

Every class that has a name has a corresponding type with the same name. In addition, every
class object is a valid type specifier. Thus the expression (typep obiect class) evaluates to true if
the class of obiect is class itself or a subclass of class. The evaluation of the expression (subtypep
classl class2) returns the values t t if classl is a subclass of class2 or if they are the same class;
otherwise it returns the values nil t.

Programmer Interface Concepts 1-13

87-002

Determining the Class Precedence List

The defclass form for a class provides a total ordering on that class and its direct superclasses.
This ordering is called the local precedence order. It is an ordered list of the class and its
direct superclasses. A class precedes its direct superclasses, and a direct superclass precedes all
other direct superclasses specified to its right in the superclasses list of the defclass form. For
every class 0 we define

where 0 1 , ••• ,On are the direct superclasses of 0 in the order in which they are mentioned in
the defclass form. These ordered pairs generate the total ordering on the class 0 and its direct
superclasses.

Let Se be the set of 0 and its superclasses. Let R be

R= U Rc
cESc

R mayor may not generate a partial ordering, depending on whether the Rc , c E Se, are
consistent; we assume they are consistent and that R generates a partial ordering. When the Rc
are not consistent we say that R is inconsistent. This partial ordering is the transitive closure of
R. When (Ob O2) E R, we say that 0 1 precedes O2 •

To compute the class precedence list at 0, we topologically sort the elements of Se with respect
to the partial ordering generated by R. When the topological sort must select a class from a set
of two or more classes, none of which are preceded by other classes with respect to R, the class
selected is chosen deterministically, as described below.

We require that an implementation of Common Lisp Object System signal an error if R is incon­
sistent, that is, if the class precedence list cannot be computed.

Topological Sorting
Topological sorting proceeds by finding a class 0 in Se such that no other class precedes that
element according to the elements in R. 0 is placed first in the result. We remove 0 from Se,
and we remove all pairs of the form (0, D), D ESe, from R. We repeat the process, adding
classes with no predecessors at the end of the result. We stop when no element can be found that
has no predecessor.

IT Se is not empty and the process has stopped, the set R is inconsistent: if every class in the
finite set of classes is preceded by another, then R contains a loop, and there are two classes, 0 1

and O2 , such that C 1 precedes O2 and O2 precedes 0 1 •

1-14 Common Lisp Object System Specification

87-002

Sometimes there are several classes from Se with no predecessors. In this case we select the one
that has a direct subclass rightmost in the class precedence list computed so far. Because a direct
superclass precedes all other direct superclasses to its right, there can be only one such candidate
class. H there are no such candidate classes, R does not generate a partial ordering-the Rc ,

c ESe, are inconsistent.

In more precise terms, let {N 1, ••• , N m}, 2 :::; m, be the classes from Se with no predecessors. Let
(G 1 ••• Gn), 1 :::; n, be the class precedence list constructed so far. G 1 is the most specific class
and Gn is the least specific. Let 1 :::; i :::; n be the largest number such that :3 i where 1 :::; i :::; m
and Ni is a direct superclass of Gj ; Ni is placed next.

The effect of this rule for selecting from a set of classes with no predecessors is that simple
superclass chains and relatively separated sub graphs are kept together in the class precedence list.
For example, let Tl and T2 be sub graphs whose only element in common is the class t; let G1 be
the bottom of T1 ; and let G2 be the bottom of T2 • Suppose C is a class whose direct superclasses
are C1 and G2 in that order, then the class precedence list for G will start with G and will be
followed by all classes in T1 ; after all the classes of Tl will be all classes in T2.

Examples
Here is an example of determining a class precedence list. The classes are defined:

(defclass pie (apple cinnamon) (»

(defclass apple (fruit) (»

(defclass cinnamon (spice) (»

(defclass fruit (food) (»

(defclass spice (food) (»

(defclass food () (»
The set S = {pie, apple, cinnamon, fruit, spice, food, t}. The set R = {(pie, apple), (pie,
cinnamon), (apple, cinnamon), (apple, fruit), (cinnamon, spice), (fruit, food), (spice,
food), (food t)}.

The class pie is not preceded by anything, so it comes first; the result so far is (pie). We remove
pie from S and pairs mentioning pie from R and get S = {apple, cinnamon, fruit, spice,
food, t} and R = {(apple, cinnamon), (apple, fruit), (cinnamon, spice), (fruit, food),
(spice, food), (food t)}.

Programmer Interface Concepts 1-15

87-002

The class apple is not preceded by anything, so it is next; the result is (pie apple). Removing ap­
ple and the relevant pairs we get S = {cinnamon, fruit, spice, food, t} and R = {(cinnamon,
spice), (fruit, food), (spice, food), (food t)}.

The classes cinnamon and fruit are not preceded by anything, so we look at which of these two
has a direct subclass rightmost in the class precedence list computed so far. The class apple is a
direct subclass of fruit and is rightmost in the precedence list. Therefore, we select fruit next,
and the result so far is (pie apple fruit). S = {cinnamon, spice, food, t}; R = {(cinnamon,
spice), (spice, food), (food t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon). S = {spice,
food, t}; R = {(spice, food), (food t)}.

The classes spice, food, and t are added in that order, and the class precedence list is (pie apple
fruit cinnamon spice food t).

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) (»

(defclass apple (fruit) (»
The class fruit must precede apple because the local ordering of superclasses is preserved. The
class apple must precede fruit because a class always precedes its own superclasses. When this
situation occurs, an error is signaled when the system tries to compute the class precedence list.

Note the following example, which appears at first glance to be a conflicting set of definitions:

(defclass pie (apple cinnamon) (»

(defclass pastry (cinnamon apple) (»

(defclass apple () (»

(defclass cinnamon () (»
The class precedence list for pie is (pie apple cinnamon t).

The class precedence list for pastry is (pastry cinnamon apple t).

There is no problem with the fact that apple precedes cinnamon in the ordering of the superclasses
of pie but does not in the ordering for pastry. However, it is not possible to build a new class
that has both pie and pastry as superclasses.

1-16 Common Lisp Object System Specification

87-002

Generic Functions and Methods

Introduction to Generic Functions
A generic function object comprises a set of methods, a lambda-list, a method combination type,
and other information.

Like an ordinary Lisp function, a generic function takes arguments, performs a series of opera­
tions, and perhaps returns useful values. An ordinary function has a single body of code that is
always executed when the function is called. A generic function might perform a different series of
operations and combine the results of the operations in different ways, depending on the class or
identity of one or more of its arguments. A generic function can have several methods associated
with it, and the class or identity of each argument to the generic function indicates which method
or methods to use.

Ordinary functions and generic functions are called with identical syntax.

Generic functions are true functions that can be passed as arguments and used as the first
argument to funcall and apply.

Ordinary functions have a definition that is in one place; generic functions have a distributed
definition. The definition of a generic function can be found in a set of defmethod forms,
possibly along with a defgeneric-options form that provides information about the behavior of
the generic function. Evaluating these forms produces a generic function object.

In Common Lisp, a name can be given to a function in one of two ways: a global name can
be given to a function using the defun construct; a local name can be given using the flet or
labels special forms. Generic functions can be given a global name using the defmethod or
defgeneric-options constructs. It is currently under discussion whether to provide constructs for
giving generic functions local names.

Both defmethod and defgeneric-options use symbol-function to find the generic function
that they affect. When a generic function is associated with a symbol, that name is in a certain
package and can be exported if it is part of an external interface.

When a new defgeneric-options form is evaluated and a generic function of the given name
already exists, the existing generic function object is modified. This does not modify any of the
methods associated with the generic function. When a defgeneric-options form is evaluated and
no generic function of the given name exists, a generic function with no methods is created.

When a defmethod form is evaluated and a generic function of the given name already exists,
the existing generic function object is modified to contain the new method. The lambda-list of the
new method must be congruent with the lambda-list of the generic function.

When a defmethod form is evaluated and no generic function with that name exists, a generic
function is created with default values for the argument precedence order, the generic function
class, the method class, and the method combination type. The lambda-list of the generic func-

Programmer Interface Concepts 1-17

87-002

tion is congruent with the lambda-list of the new method.

For a discussion of congruence, see the section "Congruent Lambda-lists for All Methods of a
Generic Function."

Introduction to setf Generic Functions
A setf generic function is called in an expression such as the following:
(setf (symbol arguments) new-valu.e).

One example of a setf generic function is the automatically generated setf function created when
the :accessor option is given to defclass. The :accessor option defines a reader generic function
of a given name. It also defines a generic function that is invoked when setf is used with the
reader generic function. H the reader generic function is named ship-color, the corresponding setf
generic function is invoked by means of the expression (setf (ship-color ship) new-valu.e).

The macro defgeneric-options-setf can be used to define a setf generic function. The macro
defmethod-setf can be used to define a method for a setf generic function.

Note that unlike other generic functions, setf generic functions do not have names. The macros
defmethod-setf and defgeneric-options-setf use get-setf-generic-function to find the
generic function they affect.

Introduction to Methods
A method object contains a method function, an ordered set of parameter specializers that
specify when the given method is applicable, and an ordered set of qualiJ1ers that are used by
the method combination facility to distinguish among methods.

The macro defmethod is used to create a method object. A defmethod form contains the code
that is to be run when the arguments to the generic function cause the method that it defines to
be selected. If a defmethod form is evaluated and a method object corresponding to the given
generic function name, parameter specializers, and qualifiers already exists, the new definition
replaces the old.

Each method has a specialized lambda-list, which determines when that method can be
selected. A specialized lambda-list is like an ordinary lambda-list except that a specialized
parameter may occur instead of the name of a parameter. A specialized parameter is a list,
(variable-name parameter-specializer-name), where parameter-specializer-name is a parameter
specializer name. Every parameter specializer name is a Common Lisp type specifier, but the only
Common Lisp type specifiers that are valid as parameter specializer names are the following:

1-18 Common Lisp Object System Specification

87-002

• The name of any class

• (quote obiect)

A parameter specializer name denotes a parameter specializer as follows: Let N be a parameter
specializer name and P be the corresponding parameter specializerj if N is a class name, then P
is the class with that namej otherwise N equals P.

Parameter specializer names are used in macros intended as the user-level interface (defmethod
and defmethod-setf), while parameter specializers are used in the functional interface (make­
method and get-method).

Only required parameters can be specialized, and there must be a parameter specializer for
each required parameter. For notational simplicity, if some required parameter in a specialized
lambda-list is simply a variable name, its parameter specializer defaults to the class named t.

A method can be selected for a set of arguments when each required argument satisfies its corre­
sponding parameter specializer. The following is a definition of what it means for an argument to
satisfy a parameter specializer.

Let (A l , ... , An) be the required arguments to a generic function in order. Let (Pl , . .. , Pn) be
the parameter specializers corresponding to the required parameters of the method M in order.
The method M can be selected when each Ai satisfies Pi. H Pi is a class, and if Ai is an instance
of a class C, then we say that Ai satisfies ~ when C = ~ or when C is a subclass of Pi. H Pi is
(quote o biect) , then we say that Ai satisfies Pi when Ai is eql to obiect.

This proposal requires that both parameter specializers and parameter specializer names be
Common Lisp type specifiers.

Because a parameter specializer is a type specifier, the function typep can be used to deter­
mine whether an argument satisfies a parameter specializer during method selection. Thus, this
standard includes an upward-compatible extension of the Common Lisp type system and does
not create another type system. Note that in general a parameter specializer cannot be a type
specifier list, such as (vector single-float). The only parameter specializer that can be a list
is (quote obiect). This proposal requires that Common Lisp be modified to include (deftype
quote (obiect) • (member ,obJ'ect».

A future extension might allow optional and keyword parameters to be specialized.

A method all of whose parameter specializers are the class named t is a default method; it is
always applicable but often shadowed by a more specific method.

Methods can have qualiflers, which give the method combination procedure a way to distinguish
between methods. A method that has one or more qualifiers is called a qualifled method. A
method with no qualifiers is called an unqualified method. A qualifier is any object other than
a list, that is, any non-nil atom. By convention, qualifiers are usually keyword symbols-it is rare
to find a vector used as a qualifier.

Programmer Interface Concepts 1-19

87-002

In this specification, the terms primary method and auxiliary method are used to partition
methods within a method combination type according to their intended use. In standard method
combination, primary methods are unqualified methods and auxiliary methods are methods
with a single qualifier that is :around, :before, or :after. When a method combination type is
defined using the short form of define-method-combination, primary methods are defined to
include not only the unqualified methods but certain others as well.

Thus, the terms primary method and auxiliary method have only a relative definition within
a given method combination type.

Congruent Lambda-lists for All Methods of a Generic Function
The lambda-list argument of defgeneric-options specifies the snape of lambda=lists for the
methods of that generic function. All methods for the given generic function must have lambda­
lists that are congruent with this shape; this implies that the system can determine whether
a call is syntactically correct. The shape of a lambda-list is defined by the number of required
arguments, the number of optional arguments, whether or not &allow-other-keys appears, the
number and names of keyword arguments, and whether or not &rest is used.

The rules for congruence are the following:

1. Each method must have the same number of required arguments.

2. Each method must have the same number of optional arguments, but methods can supply
different defaults for optional arguments.

3. IT &allow-other-keys is used by one method, all methods must use it.

4. IT &allow-other-keys is not used, each method must allow the same keyword arguments, if
any.

5. IT &rest is used by one method, all methods must use it.

6. The use of &aux need not be consistent across methods.

1-20 Common Lisp Object System Specification

87-002

Method Selection and Combination

When a generic function is called with particular arguments, it must decide what code to execute.
We call this code the effective method for those arguments. The effective method can be one of
the methods for the generic function or a combination of several of them.

When the effective method has been determined, it is called with the same arguments that were
passed to the generic function. Whatever values it returns are returned as the values of the
generic function.

Choosing the effective method involves the following decisions:

• Which method or methods to call

• The order in which to call the methods

• Which method to call when call-next-method is invoked

• Which value or values to return

Determining the Effective Method
The effective method is determined by the following three-step procedure:

1. Select the set of applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific method first.

3. Apply method combination to the sorted list of applicable methods, producing the effective
method.

Selecting the Set of Applicable Methods

Given a generic function and a set of arguments, the applicable methods are all methods for
that generic function whose parameter specializers are satisfied by their corresponding arguments.

Sorting the Applicable Methods by Precedence Order

To compare the preced~nce of two methods, examine their parameter specializers in order. The
default examination order is from left to right, but an alternative order may be specified by the
:argument-precedence-order option to defgeneric-options or defgeneric-options-setf.

Compare the corresponding parameter specializers from each method. When a pair of parameter
specializers are equal, proceed to the next pair and compare them for equality. If all correspond­
ing parameter specializers are equal, the two methods must have different qualifiers; in this case,
either method can be selected to precede the other. If some corresponding parameter special­
izers are not equal, the first pair of parameter specializers that are not equal determines the

Programmer Interface Concepts 1-21

87-002

precedence.

If both parameter speciaiizers are classes, consider the class precedence list of the class of the
argument. The more specific of the two methods is the method whose parameter specializer
appears earlier in the class precedence list. Because of the way in which the set of applicable
methods is chosen, the parameter specializers are guaranteed to be present in the class precedence
list of the class of the argument.

IT just one parameter specializer is (quote obiect) , the method with that parameter specializer
precedes the other method. IT both parameter specializers are quoted objects, the specializers
must be equal (otherwise the two methods would not both have been applicable for this argu­
ment).

The resulting list of applicable methods has the most specific method first and the least specific
method last.

Applying Method Combination to the Sorted List of Applicable Methods

In the simple case-if standard method combination is used and all applicable methods are
primary methods-the effective method is the most specific method. That method can call the
next most specific method by using the function call-next-method. The method that call­
next-method will call is referred to as the next method.

In general, the effective method is some combination of the applicable methods. It is defined by a
Lisp form that contains calls to some or all of the applicable methods, returns the value or values
to be returned by the generic function, and optionally makes some of the methods accessible by
means of call-next-method. This Lisp form is the body of the effective method; it is augmented
with an appropriate lambda-list to make it a function.

Method qualifiers determine the role of each method in the effective method. The meaning of the
qualifiers of a method is defined entirely by this step of the procedure. IT an applicable method
has an unrecognized qualifier, this step reports an error and does not include that method in the
effective method.

When standard method combination is used together with qualified methods, the effective method
is produced as described in the section "Standard Method Combination."

The programmer can select another type of method combination by using the :method­
combination option of defgeneric-options. This allows the programmer to customize this
step of this procedure without having to consider what happens in the other steps.

New types of method combination can be defined using the define-method-combination
macro. The body of the define-method-combination returns the Lisp form that defines the
effective method.

The meta-object level also offers a mechanism for defining new types of method combination.
The generic function compute-effective-method receives as arguments the generic func­
tion, the sorted list of applicable methods, the name of the method combination type, and the

1-22 Common Lisp Object System Specification

87-002

list of options specified in the :method-combination option of defgeneric-options. It re­
turns the Lisp form that defines the effective method. The programmer can define a method
for compute-efFective-method directly by using defmethod or indirectly by using define­
method-combination.

Implementation Note:
In the simplest implementation, the generic function would compute the effective
method each time it was called. In practice, this might be too inefficient for
most implementations. Instead, these implementations might employ a variety
of optimizations of the three-step procedure, such as precomputation into tables,
compilation, and/or caching to speed things up. Some illustrative examples of
such optimizations are the following:

• Use a hash table keyed by the class of the arguments to store the effective
method.

• Compile the effective method and save the resulting compiled function in a
table.

• Recognize the Lisp form as an instance of a pattern of control structure and
substitute a closure that implements that structure.

• Examine the parameter specializers of all methods for the generic function
and enumerate all possible effective methods. Combine the effective methods,
together with code to select from among them, into a single function and
compile that function. Call that function whenever the generic function is
called.

The Lisp form computed by Step 3 as the body of the effective method serves as a more general
interface. For example, a tool that determines which methods are called and presents them to the
user works by going through the first three steps of the above procedure and then by analyzing
the form to determine which methods it calls instead of by evaluating it.

Separating the procedure of determining the effective method from the procedure of invoking
methods and combining their results, and using a Lisp form as the interface between these
procedures, allows for more optimizations to the speed of the code and also enables more powerful
programming tools to be written.

Programmer Interface Concepts 1-23

87-002

Standard Method Combination
Standard method combination is used if no other type of method combination is specified.
Standard method combination recognizes four roles for methods, as determined by method
qualifiers.

Primary methods define the main action of the effective method, while auxiliary methods
modify that action in one of three ways. A primary method has no method qualifiers.

The auxiliary methods are :before, :after, and :around methods.

• A :before method has the keyword :before as its only qualifier. A :before method specifies
code that is to be run before the primary method.

e A.n :after method has the keyword :after as its only qualifier. An :after method sPecifies
code that is to be run after the primary method.

• An :around method has the keyword :around as its only qualifier.

The semantics of standard method combination are:

• If there are any :around methods, the most specific :around method is called. It supplies
the value or values of the generic function.

• Inside the body of an :around method, call-next-method can be used to immediately
call the next method. When the next method returns, the :around method can execute
more code, perhaps based on the returned value or values. By convention, :around methods
almost always use call-next-method.

• If an :around method invokes call-next-method, the next most specific :around method is
called, if one is applicable. If there are no :around methods or if call-next-method is called
by the least specific :around method, the other methods are called as follows:

All the :before methods are called, in most specific first order. Their values are ignored.

The most specific primary method is called. Inside the body of a primary method, call­
next-method may be used to pass control to the next most specific primary method.
When that method returns, the first primary method can execute more code, perhaps
based on the returned value or values. An error is signaled if call-next-method is used
and there is no applicable primary method to call. If call-next-method is not used, only
the most specific primary method is called.

All the :after methods are called in most specific last order. Their values are ignored.

• If no :around methods were invoked, the most specific primary method supplies the value or
values returned by the generic function. Otherwise, the value or values returned by the most
specific primary method are those returned by the invocation of call-next-method in the
least specific :around method.

1-24 Common Lisp Object System Specification

87-002

In standard method combination, if there are any applicable methods at all, then there must
be an applicable primary method. In cases where there are applicable methods, but no primary
method, an error is signaled.

An error is signaled if call-next-method is used and there is no next method remaining.

An error is signaled if call-next-method is used in a : before or :after method.

Standard method combination allows no more than one qualifier per method.

Running :before methods in most specific first order while running :after methods in least
specific first order provides a degree of transparency. If class G 1 modifies the behavior of its
superclass, G2 , by adding an auxiliary method, the partitioning of G2 's behavior into primary,
:before, and :after methods is transparent. Whether class G2 defines these methods directly or
inherits them from its superclasses is transparent. Class G1 's :before method runs before all of
class G2 's methods. Class G1 's :after method runs after all of class G2 's methods.

The :around methods are an exception to this rule; they do not combine transparently. All
:around methods run before any other methods run. Thus, a less specific :around method runs
before a more specific primary method.

If only primary methods are used, standard method combination behaves like CommonLoops. If
call-next-method is not used, only the most specific method is invoked; that is, more general
methods are shadowed by more specific ones. If call-next-method is used, the effect is the same
as run-super in CommonLoops.

If call-next-method is not used, standard method combination behaves like :daemon method
combination of New Flavors, with :around methods playing the role of whoppers, except that the
ability to reverse the order of the primary methods has been removed.

Declarative Method Combination
The programmer can define new forms of method combination by using the define-method­
combination macro. This allows customization of Step 3 of the method combination procedure
described in the section "Determining the Effective Method." There are two forms of define­
method-combination. The short form is a simple facility for the cases that have been found
to be most commonly needed. The long form is more powerful but more verbose. It resembles
defmacro in that the body is an expression that computes a Lisp form, usually using backquote.
Thus, arbitrary control structures can be implemented. The long form also allows arbitrary pro­
cessing of method qualifiers. The syntax and use of both forms of define-method-combination
is explained in the second chapter of this document.

Programmer Interface Concepts 1-25

87-002

Meta Objects

Metaclasses
The metac1ass of an object is the class of its class. The metaclass determines the form of
inheritance used by its classes and the representation of the instances of its classes. The metaclass
mechanism can be used to provide particular forms of optimization or to tailor the Common
Lisp Object System for particular uses (such as the implementation of other object languages like
Smalltalk-80, Loops, and CommonObjects).

Any new metaclass must define the structure of its instances, how their storage is allocated,
how their slots are accessed, and how slots and methods are inherited. The protocol for defining
metaclasses will be discussed in Chapter 3, "The Common Lisp Object System Meta=Object
Protocol."

Standard Metaclasses
The Common Lisp Object System provides a number of predefined metaclasses. These include the
following: standard-class, standard-type-class, and structure-class.

• The class standard-class is the default class of classes defined by defclass.

• The class standard-type-class is a metaclass of all the classes that correspond to the
standard Common Lisp types specified in Common Lisp: The Language by Guy L. Steele Jr.
It is not allowed to make an instance of a standard type class by using make-instance, or
to use a standard type class as a superclass of a user-defined class. It is still under discussion
which Common Lisp types will have corresponding classes.

• The class structure-class is a subclass of standard-type-class. All classes defined by
means of defstruct are instances of structure-class or a subclass of structure-class.

Standard Meta-Objects
The Common Lisp Object System provides the predefined meta-objects standard-method and
standard-generic-function.

• The class standard-method is the default class of methods defined by defmethod or
defmethod-setf.

• The class standard-generic-function is the default class of generic functions defined by
defmethod, defmethod-setf, defgeneric-options, or defgeneric-options-setf.

The Common Lisp Object System also provides the standard method combination type, which is
not implemented as a meta-object, but as a method.

1-26 Common Lisp Object System Specification

87-002

Common Lisp Object System Specification

2. Functions in the Programmer Interface

This document was written by Daniel G. Bobrow, Linda G. DeMichiel,
Richard P. Gabriel, Sonya Keene, Gregor Kiczales, and David A. Moon.

Contributors to this document include Patrick Dussud, Kenneth Kahn,
Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L White.

Functions in the Programmer Interface 2-1

87-002

CONTENTS

Introduction ... 2-3
add-method . 2-5
call-next-method .. 2-6
change-class . 2-8
class-changed . 2-11
class-named . 2-13
class-of . 2-14
defclass .'. 2-15
defgeneric-options .. 2-21
defgeneric-options-setf . 2-24
define-method-combination . 2-26
defmethod . 2-33
defmethod-setf . 2-35
describe. 2-37
documentation . 2-38
get-method ... 2-39
get-setf-generic-function . 2-40
invalid-method-error ... 2-41
make-generic-function. 2-42
make-instance . 2-44
make-method. 2-45
make-method-call. 2-46
method-combination-error .. 2-48
method-qualifiers . 2-49
multiple-value-prog2 ... 2-50
print-object . 2-51
remove-method .. 2-53
slot-value. 2-54
with-slots .. 2-55

2-2 Common Lisp Object System Specification

87-002

Introduction

This chapter describes the functions provided by the Common Lisp Object System Programmer
Interface. The Programmer Interface comprises the set of functions and macros .that are sufficient
for writing most object-oriented programs.

The description of each function includes its purpose, its syntax, the semantics of its arguments
and returned values, and often an example and cross-references to related functions. This chapter
is reference material that requires an understanding of the basic concepts of the Common Lisp
Object System. The functions are arranged in alphabetic order for convenient reference.

It is useful to categorize the functions and macros according to their role in this standard:

• Tools used for simple object-oriented programming

These tools allow for defining new classes, methods, and generic functions, and for making
instances. Some tools used within the body of methods are also listed here. Some of the
macros listed here have a corresponding function that performs the same task at a lower level
of abstraction.

defclass
make-instance
defmethod
defmethod-setf
defgeneric-options
defgeneric-options-setf
call-next-method
slot-value
with-slots
change-class
class-changed

• Functions underlying the commonly-used macros

add-method
get-method
get-setf-generic-function
make-generic-function
make-method
remove-method

Functions in the Programmer Interface 2-3

87-002

• Tools for declarative method combination

denne-method-combination
make-method-call
method-qualifiers
multiple-value-prog2
method-combination-error
invalid-method-error

• General Common Lisp support tools

class-of
describe
documentation
print-object

2-4 Common Lisp Object System Specification

87-002

add-method Generic function

Purpose:

Syntax:

The generic function add-method adds a method to a generic function. It destructively modifies
the generic function and returns the modified generic function as its result.

add-method generic-function method [Generic function]

Arguments:

Values:

The generic-function argument is a generic function object.

The method argument is a method object. The lambda-list of the method function must be
congruent with the lambda-lists of any other methods associated with the generic function and
with the lambda-list of the generic function.

The generic function add-method returns the modified generic function.

Remarks:

If the given method is already one of the methods of the generic function or if the method cor­
responds in parameter specializers and method qualifiers to an existing method of the generic
function, an error is signaled.

See Also:

defmethod

make-method

make-generic-function

defgeneric-options

Functions in the Programmer Interface 2-5

87-002

call-next-method Function

Purpose:

Syntax:

The binding for the local function variable call-next-method has lexical scope and dynamic
extent. The function call-next-method is used within the body of a method to call the next
method. The next method is called with the same arguments that were received by the method in
which call-next-method is invoked. The function call-next-method returns the value or values
returned by the method it calls. If there is no next method, an error is signaled.

The type of method combination used determines which methods can invoke call-next-method.
The standard method combination type allows call-next-method to be used within primary
methods and :around methods. It defines the next method as follows:

• If call-next-method is used in an :around method, the next method is the next most
specific :around method, if one is applicable.

• If there are no :around methods at all or if call-next-method is called by the least specific
:around method, other methods are called as follows:

All the : before methods are called, in most specific first order. Their values are ignored.

The most specific primary method is called. Inside the body of a primary method, call­
next-method may be used to pass control to the next most specific primary method. An
error is signaled if call-next-method is used and there is no applicable primary method.

All the :after methods are called in most specific last order. Their values are ignored.

call-next-method [Function]

Arguments:

The function call-next-method is used with no arguments.

Values:

The function call-next-method returns the value or values returned by the method it calls.

Remarks:

The function call-next-method passes the current method's original arguments to the next
method. Neither argument defaulting, nor using setq, nor rebin'ding variables with the same
names as parameters of the method affects the values call-next-methpd passes to the method it
calls.

2-6 Common Lisp Object System Specification

87-002

call-next-method

Further computation is possible after call-next-method returns.

IT the short form of define-method-combination is used to define a new type of method
combination, call-next-method can be used in :around methods only.

A proposed extension is to allow call-next-method to accept arguments. When arguments are
given, call-next-method invokes the next method on those arguments instead of the arguments
that were received by the method from which it is called.

See Also:

"Method Selection and Combination"

"Standard Method Combination"

define-method-combination

Functions in the Programmer Interface 2-7

87-002

change-class Function

Purpose:

Syntax:

The function change-class changes the class of an instance to a new class. It destructively
modifies and returns the instance. The values of local slots held in common between the old and
new class are preserved in the new instance. The other slots are initialized as described in the
section "Redefining Classes." The generic function class-changed is run.

The generic function change-class is invoked automatically by the system after defclass has
been used to redefine an existing class. It can also be explicitly invoked by the user.

change-class instance new-class [Function]

Arguments:

Values:

The instance argument is a Lisp object, although not all objects are required to allow change­
class.

The new-class argument is a class object or a symbol that names a class.

The modified instance is returned. The result of change-class is eq to the instance argument.

Examples:

(detclass position () (»

(derclass x-y-position (position)
«x :inittorm 0)

(y :inittorm 0»
(:accessor-pretix position-»

(detclass rho-theta-position (position)
«rho :inittorm 0)
(theta :initform 0»

(:accessor-pretix position-»

(detmethod class-changed «old x-y-position)
(new rho-theta-position»

Copy the position intormation trom old to new to make new
be a rho-theta-position at the same position as old.

2-8 Common Lisp Object System Specification

87-002

(let ((x (position-x old))
(y (position-y old)))

(sett (position-rho new) (atan y x)
(position-theta new) (sqrt (+ (* x x) (* y y))))))

At this point an instance ot the class x-y-position can be
changed to be an instance ot the class rho-theta-position using
change-class:

(setq p1 (make-instance 'x-y-position :x 2 :y 0))

(change-class p1 'rho-theta-position)

The result is that the instance bound to p1 is now an instance of
the class rho-theta-position. The method tor class-changed
pertormed the initializion ot the rho and theta slots based
on the value ot the x and y slots, which were maintained by
the old instance.

change-class

Remarks:

The Common Lisp Object System requires change-class to apply in only the following case:
let C1 and C2 be classes that are defined by defclass without using the :metaclass option in
either case; let X be an instance of C 1. Then, the class of X can be changed from C 1 to C2 • Both
before and after the call to change-class, the metaclass of X is the default metaclass, namely
standard-class.

Implementors can choose to support change-class in additional cases. For example, this stan­
dard does not require that change-class be able to accept an instance of a standard type class
as its first argument or a standard type class as its second argument; however, it is valid for an
implementation to support this for some standard type classes.

IT change-class is applied to arguments that are not supported by the implementation, an error
is signaled.

After completing all other actions, change-class invokes the generic function class-changed.
The generic function class-changed can be used to reinitialize slots.

The function change-class has several semantic difficulties. First, it performs a destructive
operation that can be invoked within a method on an instance that was used to select that
method. When multiple methods are involved because methods are being combined, the problem
could be compounded. Second, some implementations might use compiler optimizations of slot
access and when the class of an instance is changed, the assumptions the compiler made might
be violated. This implies that an application programmer must not use change-class inside a
method if any methods for that generic function access any slots.

Functions in the Programmer Interface 2-9

87-002

change-class

See Also:

"Redefining Classes"

class-changed

2-10 Common Lisp Object System Specification

87-002

class-changed Generic Function

Purpose:

Syntax:

The generic function class-changed is not intended to be called by programmers. Programmers
are expected to write methods for it. The function class-changed is called only by the function
change-class. It can also be explicitly invoked by the user.

class-changed previous current [Generic function]

Arguments:

Values:

When change-class is invoked on an instance, a copy of that instance is made; change-class
then destructively alters the original instance. The first argument to class-changed, previous, is
that copy, and the second argument, current, is the altered original instance.

The typical use of previous is to extract old slot values by using slot-value or with-slots or by
invoking an accessor generic function.

The value returned by class-changed is ignored by change-class.

Examples:

See the example for the function change-class.

Remarks:

The arguments to class-changed are computed by change-class. The first argument is an
instance of the original class created to hold the old slot values temporarily. This argument has
dynamic extent within class-changed, and therefore it is an error to reference it in any way once
class-changed ret urns.

The default method for class-changed does nothing. Methods on class-changed can be de­
fined to initialize slots differently from change-class. In this way class-changed methods can
alter the default behavior of change-class with respect to slot value preservation. The default
behavior is described in "Redefining Classes.»

The generic function class-changed uses standard method combination; thus :before, :after,
:around, and unqualified methods are allowed.

Functions in the Programmer Interface 2-11

87-002

class-changed

See Also:

"Redefining Classes"

change-class

add-method

make-method

2-12 Common Lisp Object System Specification

87-002

class-named Function

Purpose:

The function class-named returns the class named by a given symbol.

Syntax:

class-named name "optional errorp [Function]

Arguments:

Values:

The first argument to class-named is a symbol. IT there is no class named by the symbol and
the errorp argument is unsupplied or is non-nil, class-named signals an error. IT there is no class
named by the symbol and the second argument is nil, class-named returns nil. The default
value of errorp is t.

The result of class-named is the class named by the given symbol.

Functions in the Programmer Interface 2-13

87-002

class-of Function

Purpose:

Syntax:

The function class-of returns the class object for the most specific class of which the given object
is an instance. Every Common Lisp object has a class.

class-of object [Function]

Arguments:

Values:

The argument to class-of may be any Common Lisp object.

The function class-of returns the class object that represents the most specific class of which the
argument is an instance.

Remarks:

Which Common Lisp types will have corresponding classes is still under discussion. That decision
will affect the behavior of class-of.

2-14 Common Lisp Object System Specification

87-002

'defclass Macro

Purpose:

The macro defclass defines a new class. It returns the name of the new class as its result.

The syntax of defclass provides options for specifying default initialization values for slots, for
requesting that methods for appropriately named generic functions be automatically generated
for reading and writing the values of slots, and for requesting that a constructor function be au­
tomatically generated for making instances of the new class. No accessors, readers, or constructor
functions are defined by default; their generation must be explicitly requested.

Defining a new class also causes a type of the same name to be defined. The predicate (typep
object class-name) is true if the class of the given object is class-name itself or a subclass. of the
class class-name. A class object can be used as a type specifier. Thus (typep object class) is true
if the class of the object is class itself or a subclass of class.

Functions in the Programmer Interface 2-15

87-002

defclass

Syntax:

defclass class-name ({ superclass-name }*) ({slot-spec }*) {class-option}*

class-name::= symbol

superclass-name:;= symbol

slot-spec::= slot-name I (slot-name {slot-option }*)

slpt-name::= symbol

slot-option::= : accessor generic-Junction-name I
:reader generic-Junction-name I
: allocation allocation-type I
: ini tf orm Jorm I
: type type-specifier

generic-Junction-name::= symbol

allocation-type::= : instance I : class

class-option::= (: accessor-prefix symbol)
(:reader-prefix symbol) I
(: constructor symbol [boa-arglist]) I
(: documentation string) I
(:metaclass class-name)

boa-arglist::= ({ symbol}*
[&optional {var I (var [initJorm]))*]
[&rest var]
[&aux {var I (var [initJorm])}*J)

Figure 2-1. Syntax for defclass

2-16 Common Lisp Object System Specification

87-002

defclass

Arguments:

The class-name argument is a non-nil symbol. It becomes the name of the new class. If a class
with the same name already exists, the definition of that class is replaced.

Each superclass-name argument is a non-nil symbol. The new class will inherit slots and methods
from each of its superclasses, from their superclasses, and so on. See the section "Inheritance" for
a discussion of how slots and methods are inherited.

Each slot-spec argument is the name of the slot or a list consisting of the slot name followed by
zero or more slot options. The slot-name argument is a. symbol that can be used as a Common
Lisp variable name. If there are any duplicate slot names, an error is signaled.

The following slot options are available:

• The :accessor option specifies that an unqualified method is to be defined on the generic
function named generic-Junction-name to read the value of the given slot and that an un­
qualified method is to be defined on the setf generic function named generic-Junction-name to
be used with setf to modify the value of the slot. The generic-Junction-name argument is a
non-nil symbol. The :accessor option may be specified more than once for a given slot.

• The :reader option specifies that an unqualified method is to be defined on the generic
function named generic-Junction-name to read the value of the given slot. The generic­
Junction-name argument is a non-nil symbol. The :reader option may be specified more
than once for a given slot.

• The :allocation option is used to specify where storage is to be allocated for the given slot.
Storage for a slot may be located in each instance or in the class object itself. The value of
the allocation-type argument can be one of the following keywords: :instance or :class. The
:allocation option may be specified once at most for a given slot. If the :allocation option
is not specified, a local slot of the given name is allocated in each instance of the class.

If allocation-type is :instance, a local slot of the given name is allocated in each instance
of the class.

If allocation-type is :class, a shared slot of the given name is allocated in the cla.ss object
created by this defclass form. The value of the slot is shared by all instances of the class.
Any subclass of this class will share this single slot unless the defclass form for that
subclass specifies a slot of the same name.

• The :initform option is used to provide a default initial value form to be used in the ini­
tialization of the slot. The :initform option may be specified once at most for a given slot.
This form is evaluated every time it is used. The lexical environment in which this form is
evaluated is the lexical environment in which defclass was evaluated. Note that the lexical
environment refers both to variables and to functions. The dynamic environment is the one in
effect at the time the form is evaluated. This is the same behavior specified for defstruct slot
initialization forms in Common Lisp: The Language.

Functions in the Programmer Interface 2-17

87-002

defclass

• The :type option specifies the type of the slot contents. This specifies that the contents of
the slot will always be of the specified data type. It effectively declares the result type of the
reader generic function when applied to an object of this class. An implementation mayor
may not choose to check the type of the new value when initializing or assigning to a slot.
The expression (typep value type-specifier) will be true for the value stored in the slot. The
:type option may be specified once at most for a given slot. The :type option is further
discussed in the section "Inheritance of Slots and Slot Options."

Each class option is an option that refers to the class as a whole or to all class slots. The follow­
ing class options are available:

• The :accessor-prefix option specifies that, for each slot, an unqualified method to read the
value of the slot is to be defined on the generic function named symbol followed by the name
of the slot. Similarly, a method to be used with the macro setf to modify the value of the
slot is to be defined on the setf generic function named symbol followed by the name of the
slot. The names of these accessor functions are interned in the package that is current at
the time the defclass form is macro-expanded. IT the prefix is nil, the names of the accessor
functions are the symbols that are used as the slot names. The :accessor-prefix option may
be specified more than once.

• The :reader-prefix option specifies that, for each slot, an unqualified method to read the
value of the slot is to be defined on the generic function named symbol followed by the name
of the slot. The names of these reader functions are interned in the package that is current at
the time the defclass form is macro-expanded. IT the prefix is nil, the names of the reader
functions are the symbols that are used as the slot names. The :reader-prefix option may
be specified more than once.

• The :constructor option causes a constructor function to be generated automatically.
The constructor function is used to make new instances of the class. The symbol argument
is a non-nil symbol that specifies the name of the constructor function. IT the boa-arglist
argument is present, it describes the arguments to the constructor. The boa-arglist argument
of defclass is the same as that of defstruct. The :constructor option may be specified
more than once.

• The :documentation option causes a documentation string to be attached to the class
name. The documentation type for this string is type. The form (documentation class-name
'type) may be used to retrieve the documentation string. The :documentation option may
be specified once at most.

• The :metaclass option is used to specify that instances of the class being defined are to have
a different metaclass than the default provided by the system (the class standard-class).
The class-name argument is the name of the desired metaclass. The :metaclass option may
be specified once at most.

2-18 Common Lisp Object System Specification

87-002

defclass

Values:

The name of the new class is returned as the result.

Remarks:

H a class of the same name already exists, that class is redefined and instances of the class (and
subclasses of it) are updated to the new definition at the time that they are next accessed. For
details, see "Redefining Classes" and change-class. Redefining a standard type class is not
allowed.

Note the following rules of defclass:

• It is not required that the superclasses of a class be defined before the defclass form for that
class is evaluated.

• All the superclasses of a class must be defined before an instance of the class can be made.

• A class must be defined before it can be used as a parameter specializer in a defmethod
form.

• All the superclasses of a class must be defined before a with-slots form that uses that class
can be evaluated or compiled.

Some slot options are inherited by a class from its superclasses, and some can be shadowed
or altered by providing a local slot description. No class options are inherited. For a detailed
description of how slots and slot options are inherited, see the section "Inheritance of Slots and
Slot Options."

Some implementations might add other options to defclass. Therefore, it is required that all
implementations signal an error if they observe a class option or a slot option that is not imple­
mented locally.

H no default value for a slot is specified in either a defclass or a make-instance form, the initial
value of the slot is unspecified.

It is valid to specify more than one accessor or reader for a slot. No other slot option may appear
more than once in a single slot description.

The :accessor-prefix, :constructor, and :reader-prefix class options may appear more than
once. No other class option may appear more than once in a single defclass form.

H neither a reader nor an accessor is specified for a slot, the slot can only be accessed by the
function slot-value or by with-slots using :use-accessors nil.

Functions in the Programmer Interface 2-19

87-002

defclass

See Also:

slot-value

with-slots

"Classes"

"Inheritance"

"Redefining Classes"

"Determining the Class Precedence List"

2-20 Common Lisp Object System Specification

87-002

defgeneric-options Macro

Purpose:

Syntax:

The macro defgeneric-options is used to specify options and declarations that pertain to a
generic function as a whole.

The generic function is stored in the function cell of the symbol name. IT (fboundp name) is nil,
a new generic function is created. IT (symbol-function name) is a generic function, that generic
function is modified. IT neither of these conditions holds, defgeneric-options signals an error.

The macro defgeneric-options returns name as its result.

defgeneric-options name lambda-list {option} *

option::= (: argument-precedence-order {parameter-name} +)

(declare {declaration} +) I
(:documentation string) I
(:method-combinatioD symbol {arg }*) I
(:generic-function-class class-name)
(:method-class class-name)

[Macro]

Arguments:

The name argument is a non-~il symbol.

The lambda-list argument is an ordinary function lambda-list with these exceptions:

• No &aux variables are allowed.

• Optional and keyword arguments may not have default initial value forms nor use supplied-p
parameters. The generic function passes to the method all the argument values passed to it,
and only those; default values are not supported. Note that optional and keyword arguments
in method definitions, however, can have default initial value forms and can use supplied-p
parameters.

The following options are provided:

• The :argument-precedence-order option is used to specify the order in which the required
arguments in a call to the generic function are tested for specificity when selecting a par­
ticular method. By default, all required arguments are considered from left to right; each
required argument has precedence over those to its right. Each required argument must be
included exactly once as a parameter-name so that the full and unambiguous precedence order

Functions in the Programmer Interface 2-21

87-002

defgeneric-options

Values:

is supplied. If this condition is not met, an error is signaled.

• The declare option is used to specify declarations that pertain to the generic function. The
following standard Common Lisp declaration is allowed:

An optimize declaration specifies whether method selection should be optimized for
speed or space, but it has no effect on methods. To control how a method is optimized,
an optimize declaration must be placed directly in the defmethod form. The optimiza­
tion qualities speed and space are the only qualities this standard requires, but other
qualities may be recognized by particular implementations. A simple implementation that
has only one method selection technique and ignores the optimize declaration is valid.

The special, ftype, function, inline, notinline, and declaration declarations are not
permitted. Individual implementations can support their own additional declarations. If
an implementation notices a declaration that it does not support and that has not been
proclaimed as a nonstandard declaration name, it should issue a warning.

• The :documentation argument associates a documentation string with the generic function.
The documentation type for this string is function. The form (documentation generic­
function-name ':function) may be used to retrieve this string.

• The :generic-function-class option may be used to specify that the generic function is to
have a different class than the default provided by the system (the class standard-generic­
function). The class-name argument is the name of a class that can be the class of a generic
function.

• The :method-class option is used to specify that all methods for this generic function
are to have a different class than the default provided by the system (the class standard­
method). The class-name argument is the name of a class that is capable of being the class
of a method.

• The :method-combination option is followed by a symbol that names a type of method
combination. The arguments (if any) that follow that symbol depend on the type of method
combination. Note that the standard method combination type does not support any ar­
guments. However, all types of method combination defined by the short form of define­
method-combination accept an optional argument named order, defaulting to :most­
specific-first, where a value of :most-specific-Iast reverses the order of the primary meth­
ods, without affecting the order of the auxiliary methods.

The macro defgeneric-options returns name as its result.

Remarks:

The lambda-list argument of defgeneric-options specifies the shape of lambda-lists for the meth­
ods of this generic function. All methods for the generic function must have lambda-lists that
are congruent with this shape. If a defgeneric-options form is evaluated and some methods for

2-22 Common Lisp Object System Specification

87-002

defgeneric-options

that generic function have lambda-lists that are not congruent with that given in the defgeneric­
options form, an error is signaled. For further details on method congruence, see "Congruent
Lambda-lists for all Methods of a Generic Function"

Some implementations might add other options to defgeneric-options. Therefore, it is required
that all implementations signal an error if they observe an option that is not implemented locally.

See Also:

"Congruent Lambda-lists for All Methods of a Generic Function"

Functions in the Programmer Interface 2-23

87-002

defgeneric-options-setf Macro

Purpose:

Syntax:

The macro defgeneric-options-setf is used to define a setf generic function. A setf generic
function is called in an expression such as (setf (name arguments) new-value).

The macro defgeneric-options-setf returns name as its result.

defgeneric-options-setf name lambda-list set/-lambda-list {option} *
set/-lambda-Iist::= (variable-name)

option::= (: argument-precedence-order {parameter-name} +)

(declare {declaration}+) I
(:documentation string) I
(:method-combination symbol {args }*) I
(:generic-function-class class-name)
(:method-class class-name)

[Macro]

Arguments:

Values:

The name argument is a non-nil symbol.

The lambda-list argument is identical to the lambda-list argument of defgeneric-options.

The set/-lambda-list argument is (variable-name). It describes the parameter that receives the
new-value argument to setf.

The options are the same as for defgeneric-options.

The macro defgeneric-options-setf returns name as its result.

Remarks:

The lambda-list argument of defgeneric-options-setf specifies the shape of lambda-lists for
the methods of this setf generic function. All methods for the setf generic function must have
lambda-lists that are congruent with this shape. For further details on method congruence, see
"Congruent Lambda-lists for All Methods of a Generic Function"

2-24 Common Lisp Object System Specification

87-002

See Also:

defgeneric-options

defmethod

defgeneric-options-setf

"Congruent Lambda-lists for All Methods of a Generic Function"

Functions in the Programmer Interface 2-25

87-002

define-method-combination Macro

Purpose:

Syntax:

The macro define-method-combination is used to define new types of method combination.

There are two forms of define-method-combination. The short form is a simple facility for the
cases that have been found to be most commonly needed. The long form is more powerful but
more verbose. It resembles defmacro in that the body is an expression, usually using backquote,
that computes a Lisp form. Thus arbitrary control structures can be implemented. The long form
also allows arbitrary processing of method qualifiers.

define-method-combination name {short-form-option}*
short-form-option::= : documentation string I

:identity-with-one-argument boolean I
:operator operator I

define-method-combina tion name lambda-list
({ method-group-specifier }*)
{declaration I doc-string}*
{form}*

method-group-specifier::= (variable {{ qualifier-pattern} + I predicate}
{long-form-option }*)

long-form-option::= :description format-string
: order order I
: required boolean

[Macro]

[Macro]

Arguments:

In both the short and long forms, name is a symbol. By convention, non-keyword, non-nil
symbols are usually used.

Arguments of the Short Form:

The short form syntax of define-method-combination is recognized when the second subform
is a non-nil symbol or is not present. When the short form is used, name is defined as a type
of method combination that produces a Lisp form (operator method-call method-call .. .). The

2-26 Common Lisp Object System Specification

87-002

define-method-combination

operator is a symbol that can be the name of a function, macro, or special form. The operator
can be specified by a keyword option; it defaults to name.

Keyword options for the short form are the following:

• The :documentation option is used to document the method-combination type.

• The :identity-with-one-argument option enables an optimization when boolean is true (the
default is false). IT there is exactly one applicable method and it is a primary method, that
method serves as the effective method and operator is not called. This optimization avoids
the need to create a new effective method and avoids the overhead of a function call. This
option is designed to be used with operators such as progn, and, +, and max.

• The :operator option specifies the name of the operator. The operator argument is a sym­
bol that can be the name of a function, macro, or special form. By convention, name and
operator are often the same symbol, but this is not required.

None of the subforms is evaluated.

A method combination procedure defined in this way recognizes two roles for methods. An
unqualified method is a primary method. A method with the keyword symbol with the same
name as name as its one qualifier is also defined to be a primary method. Attaching this qualifier
to a primary method documents that this method is intended for use with an unusual form of
method combination and can make programs easier to understand.

A method with :around as its one qualifier is an auxiliary method that behaves the same as a
:around method in standard method combination.

The function: call-next-method can only be used in :around methods, not in primary methods.

A method combination procedure defined in this way accepts an optional argument named order,
which defaults to :most-specific-first. A value of :most-specific-last reverses the order of the
primary methods without affecting the order of the auxiliary methods.

A large fraction of the types of method combination needed by most programmers can be imple­
mented with this short form, which is provided for convenience. The short form automatically
includes error checking and support for :around methods and avoids the need for the use of the
back quote and comma.

Functions in the Programmer Interface 2-27

87-002

define-method-combination

Arguments of the Long Form:

The long form syntax of define-metbod-combination is recognized when the second subform is
a list.

The lambda-list argument is an ordinary lambda-list. It receives any arguments provided after
the name of the method combination type in the :metbod-combination option to defgeneric­
options or defgeneric-options-setf.

A list of method-group specifiers follows. Each specifier selects a subset of the applicable methods
to play a particular role, either by matching their qualifiers against some patterns or by testing
their qualifiers with a predicate. These method-group specifiers define all method qualifiers that
can be used with this type of method combination. IT an applicable method does not fall into any
method-group, the system reports the error that the method is invalid for the kind of method
combination in use.

Each method-group specifier names a variable. During the execution of the forms in the body of
define-metbod-combination, this variable is bound to a list of the methods in the method­
group. The methods in this list occur in most-specific-first order.

A qualifier pattern is a list or the symbol *. A method matches a qualifier pattern if the method's
list of qualifiers is equal to the qualifier pattern (except that the symbol * in a qualifier pattern
matches anything). Thus, a qualifier pattern can be one of the following: the empty list 0,
which matches unqualified methods; the symbol *, which matches all methods; a true list, which
matches methods with the same number of qualifiers as the length of the list when each qualifier
matches the corresponding list element; or a dotted list that ends in the symbol * (the * matches
any number of additional qualifiers).

Each applicable method is tested against the qualifier patterns and predicates in left-to-right
order. As soon as a qualifier pattern matches or a predicate returns true, the method becomes
a member of the corresponding method-group and no further tests are made. Thus, if a method
could be a member of more than one method-group, it joins only the first such group. IT a
method-group has more than one qualifier pattern; a method need only satisfy one of the qualifier
patterns to be a member of the group.

The name of a predicate function can appear instead of qualifier patterns in a method-group spec­
ifier. The predicate is called for each method that has not been assigned to an earlier method­
group; it is called with one argument, the method's qualifier list. The predicate should return
true if the method is to be a member of the method-group. A predicate can be distinguished from
a qualifier pattern because it is a symbol other than nil or *.
Method-group specifiers can have keyword options following the qualifier patterns or predicate.
Keyword options can be distinguished from additional qualifier patterns because they are neither
lists nor the symbol *. The keyword options are as follows:

• The :description option is used to provide a description of the role of methods in the
method-group. Programming environment tools use (apply # 'format stream format-string
(method-qualifiers method)) to print this description, which is expected to be concise, that

2-28 Common Lisp Object System Specification

87-002

define-method-combination

is, one or two words. This keyword option allows the description of a method qualifier to
be defined in the same module that defines the semantic meaning of the method qualifier.
In most cases, format-string will not contain any format directives, but they are available
for generality. IT :description is not specified, a default description is generated based on
the variable name and the qualifier patterns and on whether this method-group includes the
unqualified methods. The argument format-string is not evaluated.

• The :order option specifies the order of methods. The order argument is a form that eval­
uates to :most-specific-first or :most-specific-Iast. IT it evaluates to any other value,
an error is signaled. This keyword option is a convenience and does not add any expressive
power. If :order is not specified, it defaults to :most-specific-first.

• The :required option specifies whether at least one method in this method-group is required.
If the boolean argument is non-nil and the method-group is empty (that is, no applicable
methods match the qualifier patterns or satisfy the predicate), an error is signaled. This
keyword option is a convenience and does not add any expressive power. If :required is not
specified, it defaults to nil. The boolean argument is not evaluated.

The use of method-group specifiers provides a convenient syntax to select methods, to divide
them among the possible roles, and to perform the necessary error checking. It is possible to
perform further filtering of methods in the body forms by using normal list-processing operations
and the functions method-qualifiers and invalid-method-error. It is permissible to use setq
on the variables named in the method-group specifiers and to bind additional variables. It is also
possible to bypass the method-group specifier mechanism and do everything in the body forms.
This is accomplished by writing a single method group with * as its only qualifier pattern; the
variable is then bound to a list of all of the applicable methods, in most specific first order.

The body forms compute and return the Lisp form that specifies how the methods are combined,
that is, the effective method. The body of define-method-combination resembles the body of
defmacro and uses backquote in a similar way. The function make-method-call is also used
in constructing the Lisp form; it hides the implementation-dependent details of how methods are
called. Programmers always use make-method-call to translate from the lists of method objects
produced by the method-group specifiers to Lisp forms that invoke those methods.

Erroneous conditions detected by the body should be reported with method-combination­
error or invalid-method-error; these functions add any necessary contextual information to the
error message and will signal the appropriate error.

The body forms are evaluated inside of the bindings created by the lambda-list and method­
group specifiers. Declarations at the head of the body are positioned directly inside of bindings
created by the lambda-list and outside of the bindings of the method-group variables. Thus
method-group variables cannot be declared.

Within the body forms, the lexical variable generic-function is bound to the generic-function
object.

If a doc-string argument is present, it documents the method-combination type.

Functions in the Programmer Interface 2-29

87-002

define-method-combination

Values:

The functions make-method-call, method-combination-error, and invalid-method-error
can be called from the body forms or from functions called by the body forms. The action of
these three functions can depend on dynamic variables automatically bound before the method
combination function is called. These variables might contain the parameter list of the effective
method or other implementation-dependent information.

Note that two methods with identical specializers, but different qualifiers, are not ordered by the
algorithm described in Step 2 of the method selection and combination process described in the
section "Method Selection and Combination." Normally the two methods play different roles in
the effective method because they have different qualifiers, and no matter how they are ordered in
the result of Step 2, the effective method is the same. If the two methods play the same role and
their order matters, implementations are encouraged to signal an error (this would happen as part
of qualifier pattern matching in define-method-combination).

The name of the new method combination type is returned.

Examples:

Most examples of the long form of define-method-combination also illustrate the use of the
related functions that are provided as part of the declarative method combination facility.

;;; Examples of the short form of define-method-combination

(define-method-combination and :identity-with-one-argument t)

(defmethod func :and «x classl) y) ...)

;;; The eqUivalent of this example in the long form is:

(define-method-combination and
(&optional (order ':most-specitic-tirst»
«around (:around»
(primary () (:and) :order order :required t»

(make-method-call ·(,@around
, (make-method-call primary

:operator 'and
:identity-with-one-argument t»

:operator :call-next-method»

;;; Examples of the long form of define-method-combination

;The default method-combination technique
(define-method-combination standard ()

«around (:around»
(before (:before»

2-30 Common Lisp Object System Specification

87-002

(primary () :required t)
(atter (:atter»)

(make-method-call '(,@around
(multiple-value-prog2

define-method-combination

, (make-method-call before)
, (make-method-call primary

:operator :call-next-method)
, (make-method-call (reverse after»»

:operator :call-next-method»

;A simple way to try several methods until one returns non-nil
(define-method-combination and ()

«methods () (:and»)
(make-method-call methods :operator 'and»

;A more complete version of the preceding
(define-method-combination and

(toptional (order ':most-specific-first»
«around (:around»

(primary () (:and»)
Process the order argument

(case order
(:most-specific-first)
(:most-specific-last (setq primary (reverse primary»)
(otherwise (method-combination-error II-S is an invalid order.-@
:most-specific-first and :most-specific-last are the possible values. II

;; Must have a primary method
(unless primary

order»)

(method-combination-error IIA primary method is required. II»
(make-method-call '(,@around

, (make-method-call primary
:operator 'and
:identity-with-one-argument t»

:operator :call-next-method»

;The same thing, using the :order and :required keyword options
(define-method-combination and

(toptional (order ':most-specific-first»
«around (:around»
(primary () (:and) :order order :required t»

(make-method-call '(,@around
,(make-method-call primary

:operator 'and
:identity-with-one-argument t»

Functions in the Programmer Interface 2-31

87-002

define-method-combination

:operator :call-next-method»

;This short-form call is behaviorally identical to the preceding
(define-method-combination and :identity-with-one-argument t)

;Order methods by positive integer qualifiers
; : around methods are disallowed to keep the example small
(define-method-combination example-method-combination ()

«methods positive-integer-qualifier-p»
(make-method-call (stable-sort methods #'<

:key #'(lambda (method)
(first (method-qualifiers method»»»

(defun positive-integer-qualifier-p (method-qualifiers)
(and (= (list-length method-qualifiers) 1)

(typep (first method-qualifiers) '(integer 0 *»»

Remarks:

The :metbod-combination option of defgeneric-options and defgeneric-options-setf is
used to specify that a generic function should use a particular method combination type. The
argument to the :metbod-combination option is the name of a method combination type.

Individual implementations might support other keyword options. Therefore, it is required that
all implementations signal an error if they observe a keyword option that is not implemented
locally.

See Also:

make-method-call

method-qualifiers

multiple-value-prog2

metbod-combination-error

invalid-metbod-error

defgeneric-options

defgeneric-options-setf

2-32 Common Lisp Object System Specification

87-002

defmethod Macro

Purpose:

Syntax:

The macro defmethod defines a method on a generic function.

H a generic function is currently named by the symbol name, the lambda-list of the method must
be congruent with the lambda-list of the generic function. H this condition does not hold, an error
is signaled. See the section "Congruent Lambda-lists for All Methods of a Generic Function" for a
definition of congruence in this context.

H (fboundp name) is nil, a generic function is created with default values for the argument
precedence order (each argument is more specific than the arguments to its right in the argument
list), for the generic function class (the class standard-generic-function), for the method class
(the class standard-method), and for the method combination type (the standard method
combination type). The lambda-list of the generic function is congruent with the lambda-list of
the method being defined.

H the symbol name names a non-generic function, a macro, or a special form, an error is signaled.

defmethod name {method-qualifier} *
specialized-lambda-list
{declaration I documentation}* {form}*

name::= symbol

method-qualifier::= non-nil-atom

specialized-lambda-list::= ({ var I (var parameter-specializer-name)} *
[&optional {var I (var [initform [supplied-p-parameter]]))*]
[&rest var]

[Macro]

[&key {var I ({ var I (keyword var)} [initform [supplied-p-parameter]])}*
[&allow-other-keys]]

[&aux {var I (var [initform])} *]

parameter-specializer-name::= symbol I (quote datum)

Arguments:

The name argument is a non-nil symbol that names the generic function on which the method is
defined.

Functions in the Programmer Interface 2-33

87-002

defmethod

Values:

Each method qualifier is an object that is used by method combination to identify the given
method. A method qualifier is a non-nil atom. The method combination type may further
restrict what a method qualifier may be. The standard method combination type allows for
unqualified methods or methods whose sole qualifier is one of the following keywords: :before,
: after , or :around.

The specialized-lambda-list argument is like an ordinary function lambda-list except that the
names of required parameters can be replaced by specialized parameters. A specialized parameter
is a list of the form (variable-name parameter-specializer-name). Only required parameters may
be specialized. A parameter specializer name is a symbol that names a user-defined class, a
structure defined by defstruct if the :type option was not used, or a class that corresponds
to a Common Lisp type specifier. Note that not all Common Lisp types have a corresponding
class. A parameter specializer name can also be (quote obiect). Such a parameter specializer
name indicates that the corresponding argument' must be eqi to the quoted object for the method
to be applicable. If no parameter specializer name is specified for a given required parameter,
the parameter specializer name for that parameter defaults to t. A method whose required
parameters all have t parameter specializers is termed a default metbod. Such a method is
selected when no more specific method for the generic function is applicable. See the section
"Introduction to Methods" for further discussion.

The result of defmethod is the method object.

Remarks:

The class of the method object that is created is that given by the method class option of the
generic function on which the method is defined.

If a method already exists on the given generic function with the same parameter specializers and
the same qualifiers, defmethod replaces the existing method with the one now being defined.

The parameter specializers are derived from the parameter specializer names as described in the
section "Introduction to Methods."

See Also:

add-method

"Introduction to Methods"

"Congruent Lambda-lists for all Methods of a Generic Function"

2-34 Common Lisp Object System Specification

87-002

defmethod-setf Macro

Purpose:

Syntax:

The macro defmethod-setf defines a method for a setf generic function. A setf generic function
is called in an expression such as (set! (name arguments) new-value).

defmethod-setf name {method-qualifier}*

name::= symbol

specialized-lambda-list specialized-setJ-lambda-list
{declaration , documentation} * {Jorm} *

method-qualifier::= non-nil-atom

specialized-lambda-Iist::= ({ var , (var parameter-specializer-name)} *
[&toptional {var , (var [initJorm [supplied-p-parameter]]))*]
[&trest var]

[Macro]

[&tkey {var , ({ var , (keyword var)} [initJorm [supplied-p-parameter]])}*
[&tallow-other-keys]]

[&taux {'Oar , ('Oar [initJorm])} *])

specialized-setJ-lambda-list::= ({ 'Oar, ('Oar parameter-specializer-name))}

parameter-specializer-name::= symbol' (quote datum)

Arguments:

Values:

The arguments name, method-qualifier, and specialized-lambda-list are the same as for defmethod.

The specialized-setJ-lambda-list argument is the same as specialized-lambda-list except that for
now there can be only one parameter. In other words, specialized-setJ-lambda-list is a lambda-list
containing exactly one required parameter, which may be specialized. It describes the parameter
that receives the new-value argument to setf in the expression (set! place new-value).

The 'Oar argument in the specialized-setJ-lambda-list argument is the name of the variable that
gets bound to the value of the new-value form in the expression (seti' place new-value).

The result of defmethod-setf is the method object.

Functions in the Programmer Interface 2-35

87-002

defmethod-setf

Remarks:

IT a method aiready exists on the given generic function with the same parameter specializers
and the same qualifiers, defmethod-setfreplaces the existing method with the one now being
defined.

See Also:

defmethod

2-36 Common Lisp Object System Specification

87-002

describe Generic function

Purpose:

Syntax:

The Common Lisp function describe is replaced by a generic function. The generic function
describe prints information about a given object on the standard output.

Each implementation is required to provide a default method for describe, that is, a method for
the class t. Implementations are free to add methods for specific classes. Users can write methods
for describe for their own classes if they do not wish to inherit an implementation-supplied
method. These methods must conform to the definition of describe as specified in Gommon Lisp:
The Language.

describe obiect [Generic function]

Arguments:

The argument of describe may be any Common Lisp object.

Values:

The generic function describe returns no values.

Functions in the Programmer Interface 2-37

87-002

documentation Generic Function

Purpose:

Syntax:

The Common Lisp function documentation is replaced by a generic function. The generic
function documentation returns the documentation string associated with the given object if it
is available; otherwise it returns nil.

documentation x .toptional doc-type [Generic function]

Arguments:

Values:

The first argument is a generic function object, a method object, a class object, or a symbol.

IT the first argument is not a symbol, the second argument must not be supplied. IT the first
argument is a generic function object, method object, or class object, documentation returns
the documentation string for that object.

IT the first argument is a symbol, the second argument must be supplied. The generic function
documentation returns the documentation string of the given type. The doc-type argument is a
symbol. It can be one of the following types: variable, function, structure, type, and setf.

IT the first argument is a symbol and the second argument is type, documentation returns the
documentation string of the class object named by the symbol.

IT the first argument is a symbol and the second argument is function, documentation returns
the documentation string of the function or generic function named by the symbol.

IT the first argument is a symbol and the second argument is setf, documentation returns the
documentation string of the setf generic function associated with that name.

The documentation string associated with the given object is returned unless none is available, in
which case documentation returns nil.

Remarks:

The macro setf can be used with documentation to update the documentation for a symbol,
generic function object, method object, or class object.

2-38 Common Lisp Object System Specification

87-002

get-method Generic function

Purpose:

Syntax:

The generic function get-method takes a generic function and returns the method object that
has the given method qualifiers and parameter specializers.

get-method generic-function method-qualifiers specializers &optional errorp [Generic function]

Arguments:

Values:

The generic-function argument is a generic function.

The method-qualifiers argument is a list of the method qualifiers for the method. The order of the
method-qualifiers is significant.

The specializers argument is a list of the parameter specializers for the method. It must corre­
spond in length to the number of required arguments of the generic function. This means that to
obtain the default method for a given generic function, a list of t's corresponding in length to the
number of required arguments of that generic function must be given.

IT there is no such method and the errorp argument is unsupplied or is non-nil, get-method
signals an error. IT there is no such method and the errorp argument is nil, get-method returns
nil. The default value of errorp is t.

The result of get-method is the method object with the given method qualifiers and parameter
specializers.

Functions in the Programmer Interface 2-39

87-002

get-setf-generic-function Function

Purpose:

Syntax:

The function get-setf-generic-function takes a symbol for which a setf generic function has
been defined by either defmethod-setf or defgeneric-options-setf and returns a generic
function object. This object is the generic function that is called when the form (set:t (name
arguments) new-value) is evaluated.

get-setf-generic-function name [Function]

Arguments:

Values:

The name argument is a symbol for which a setf generic function has been defined. IT no such setf
generic function has been defined, an error is signaled.

The function get-setf-generic-function returns a generic function object. This object is the
generic function that is called when the form (set:t (name arguments) new-value) is evaluated.

2-40 Common Lisp Object System Specification

87-002

invalid-method-error Function

Purpose:

Syntax:

The function invalid-method-error reports an applicable method whose qualifiers are not valid
for the method combination type. The error message is constructed by using a format string
and any arguments to it. Because an implementation may need to add additional contextual
information to the error message, invalid-method-error should be called only within the
dynamic extent of a method-combination function.

Whether invalid-method-error returns to its caller or exits via throw is implementation
dependent.

invalid-method-error method format-string .trest args [Function]

Arguments:

The method argument is the invalid method object.

The format-string argument is a control string that can be given to format, and args are any
arguments required by that string.

Remarks:

The function invalid-method-error is called automatically when a method fails to satisfy every
qualifier pattern and predicate in a define-method-combination form. A method combination
function that imposes additional restrictions should call invalid-method-error explicitly if it
encounters a method it cannot accept.

The function invalid-method-error will use the condition-signaling system when and if it is
incorporated into Common Lisp.

See Also:

define-method-combination

Functions in the Programmer Interface 2-41

87-002

make-generic-function Function

Purpose:

Syntax:

The function make-generic-function creates and returns a generic function. This resulting
function can be used an argument to funcall and apply.

make-generic-function "key : lambda-list : argument-precedence-order
:declare :documentation :method-combination
:generic-function-class :method-class

[Function]

Arguments:

The :lambda-list argument is a lambda-list of the type that may be given to defgeneric­
options.

The following arguments have the same semantics as the corresponding arguments of defgeneric­
options, although their syntax may differ:

• The :argument-precedence-order argument is a list containing the parameter names for
all required arguments. Each required argument must be included exactly once so that the
full and unambiguous precedence order is supplied. IT this condition is not met, an error is
signaled.

• The :method-combination argument is a symbol or a list. IT it is a symbol, that symbol
names a type of method combination. IT it is a list, its first element is a symbol that names
a type of method combination, and its remaining elements are any arguments accepted by
the method combination type. Any arguments that follow that symbol depend on the type
of method combination. Note that the standard method combination type does not support
any arguments. However, all types of method combination defined by the short form of
define-method-combination accept an optional argument named order, which defaults to
:most-spedfic-first, where a value of :most-specific-Iast reverses the order of the primary
methods without affecting the order of the auxiliary methods.

• The :documentation argument is a string.

• The :declare argument is a list of declaration specifiers.

• The :generic-function-class argument is a class or the name of a class.

• The :method-class argument is a class or the name of a class.

2-42 Common Lisp Object System Specification

87-002

make-generic-function

Values:

The result of make-generic-function is a generic function object.

Remarks:

The function make-generic-function is part of the programmatic interface to defgeneric­
options.

See Also:

defgeneric-options

Functions in the Programmer Interface 2-43

87-002

make-instance Function

Purpose:

The function make-instance creates and returns a new instance of the class class.

Syntax:

make-instance class trest initialize-keywords-and-values [Function]

Arguments:

The class argument is a class object or a symbol that names a class.

Values:

The new instance is returned.

Remarks:

The initialization protocol of make-instance has not been specified.

It is not possible to make an instance of a class whose class is standard-type-class by using
the function make-instance. IT class is an instance of standard-type-class, make-instance
signals an error.

The function class-of can be used to determine the class of the instance that is returned.

See Also:

class-of

2-44 Common Lisp Object System Specification

87-002

make-method

Purpose:

The function make-method creates and returns a method object.

Syntax:

make-method method-qualifiers specializers junction

Arguments:

The method-qualifiers argument is a list of the method qualifiers for the method.

The specializers argument is a list of the parameter specializers for the method.

The junction argument is the method function.

Function

[Function]

The length of the list of specializers must be equal to the number of required arguments of the
method function.

Values:

The function make-method returns the resulting method object.

See Also:

defmethod

add-method

Functions in the Programmer Interface 2-45

87-002

make-method-call Function

Purpose:

Syntax:

The function make-method-call is used in method combination. It has dynamic scope within
the body of a define-method-combination form.

The function make-method-call returns a form whose effect is the same as a form whose first
element is the operator specified by the :operator keyword argument (the default is progn) and
the rest of which is a list of forms that call the methods in the given method list. Each method
receives the same arguments that the generic function received. The function make-method-call
hides the implementation-dependent details of how methods are called.

make-method-call method-list &key : operator : identi ty-wi th-one-argument [Function]

Arguments:

Each element of method-list can be either a method object or a list. When a list is given, it is
regarded as a form and converted when necessary into a method whose body is that form.

If the value of :identity-with-one-argument is true and method-list contains exactly one ele­
ment, the result is simply a form that calls that single method and does not invoke the operator.
If :operator is progn, the default for :identity-with-one-argument is true; otherwise the
default for this option is false. This option is to be used with operators that are identity opera­
tors when applied to one argument, that is, such operators as progn, and, +, and max. This
optimization can enable the use of an existing method as the effective method, thus avoiding the
need to create a new effective method.

If method-list is nil, the result is a call to the specified operator with no arguments or a form with
the same effect.

If :operator is :call-next-method, the methods are combined in a different way, rather than
calling a function named :call-next-method. The result is a form that calls the first method
and arranges for call-next-method to reach the rest of the methods in the order in which they
appear in method-list. If there is only one method in method-list, the result is a form that calls
that method, and if the method calls call-next-method, an error is signaled.

As a convenience, if method-list is a method object, it is automatically converted to a one-element
list of that method.

If call-next-method is extended as noted, additional keyword arguments will be needed for
make-method-call.

2-46 Common Lisp Object System Specification

87-002

Values:

make-method-call

The result is a form whose effect is the same as a form whose first element is the operator spec­
ified by the :operator keyword argument and the rest of which is a list of forms that call the
methods in method-list.

See Also:

define-method-combination

Functions in the Programmer Interface 2-47

87-002

method-combination-error Function

Purpose:

Syntax:

The function method-combination-error reports a problem in method combination. The error
message is constructed by using a format string and any arguments to it. Because an imple­
mentation may need to add additional contextual information to the error message, method­
combination-error should be called only within the dynamic extent of a method combination
function.

Whether method-combination-error returns to its caller or exits via throw is implementation
dependent.

method-combination-error format-string &rest args [Function]

Arguments:

The format-string argument is a control string that can be given to format, and args are any
arguments required by that string.

Remarks:

The function method-combination-error will use the condition signaling system when and if it
is incorporated into Common Lisp.

See Also:

define-method-combination

2-48 Common Lisp Object System Specification

87-002

method-qualifiers

Purpose:

The function method-qualifiers returns a list of the qualifiers of the given method.

Syntax:

method-qualifiers method

Arguments:

The method argument is a method object.

Values:

A list of the qualifiers of the given method is returned.

Examples:

(setq methods (remove-duplicates methods
:from-end t

See Also:

de1ine-method-combination

:key #'method-qualifiers
:test #'equal))

Function

[Function]

Functions in the Programmer Interface 2-49

87-002

multiple-value-prog2 Macro

Purpose:

The macro multiple-value-prog2 is similar to multiple-value-progl except that it returns the
values of its second form.

Syntax:

multiple-value-prog2 first second {form}* [Macro]

Values:

All the values of second are returned.

See Also:

define-metbod-combination

2-50 Common Lisp Object System Specification

81-002

print-object Generic function

Purpose:

Syntax:

The generic function print-object writes the printed representation of an object to a stream.
The function print-object is called by the print system; it should not be called by the user.

Each implementation is required to provide a default method for print-object, that is, a method
for the class t. Implementations are free to add methods for specific classes. Users can write
methods for print-object for their own classes if they do not wish to inherit an implementation­
supplied method.

print-object object stream [Generic function]

Arguments:

The first argument is any Lisp object. The second argument is a stream; it cannot be t or nil.

Values:

The function print-object returns its first argument, the object.

Remarks:

Methods for print-object must obey the print control special variables described in Common
Lisp: The Language. The specific details are the following:

• Each method must implement *print-escape*.

• The *print-pretty* control variable can be ignored by most methods other than the one for
lists.

• The *print-cirde. control variable is handled by the printer and can be ignored by methods.

• The printer takes care of *print-Ievel* automatically, provided that each method handles
exactly one level of structure and calls write (or an equivalent function) recursively if there
are more structural levels. The printer's decision of whether an object has components (and
therefore should not be printed when the printing depth is not less than *print-Ieveh) is
implementation dependent. In some implementations its print-object method is not called;
in others the method is called, and the determination that the object has components is based
on what it tries to write to the stream.

• Methods that produce output of indefinite length must obey *print-Iength*, but most
methods other than the one for lists can ignore it.

Functions in the Programmer Interface 2-51

87-002

print-object

• The *print-base*, *print-radix*, *print-case*, *print-gensym*, and *print-array*
control variables apply to specific types of objects and are handled by the methods for those
objects.

In general, the printer and the print-object methods should not rebind the print control vari­
ables as they operate recursively through the structure, but this is implementation dependent.

In some implementations the stream argument passed to a print-object method is not the
original stream, but is an intermediate stream that implements part of the printer. Methods
should therefore not depend on the identity of this stream.

All of the existing printing functions (write, prinl, print, princ, pprint, write-to-string,
prinl-to-string, princ-to-string, the -8 and -A format operations, and the -B, -D, -E,
-F, -G, -$, -0, -R, and -X format operations when they encounter a non-numeric value) are
required to be changed to go through the print-object generic function. Each implementation
is required to replace its former implementation of printing with one or more print-object
methods. Exactly which classes have methods for print-object is not specified; it would be valid
for an implementation to have one default method that is inherited by all system-defined classes.

2-52 Common Lisp Object System Specification

87-002

remove-method Generic function

Purpose:

Syntax:

The generic function remove-method removes a method from a generic function. It destruc­
tively modifies the specified generic function and returns the modified generic function as its
result.

remove-method generic-function method [Generic function]

Arguments:

Values:

The generic-function argument is a generic function object.

The method argument is a method object. The function remove-method does not signal an
error if no such method is part of the generic function.

The function remove-method returns the modified generic function.

See Also:

get-method

add-method

Functions in the Programmer Interface 2-53

87-002

slot-value Function

Purpose:

The function slot-value returns the value contained in the slot slot-name of the given object. H
there is no slot with that name, an error is signaled.

The macro setf can be used with slot-value to change the value of a slot.

Syntax:

slot-value obiect slot-name [Function]

2-54 Common Lisp Object System Specification

87-002

with-slots Macro

Purpose:

Syntax:

The macro with-slots creates a lexical context for referring to slots as though they were vari­
ables. Within such a context the value of the slot can be specified by using its slot name, as if it
were a lexically bound variable. Both setf and setq can be used to set the value of the slot. The
macro with-slots can be used inside a method or inside any function.

The macro with-slots translates an appearance of the slot name as a variable into a call to
the accessor generated by defclass unless the :use-accessors argument is nil, in which case
slot-value is used instead of the accessor.

with-slots ({instance-form I (instance-form option*)}*) {form}*

option::= :use-accessors flag
:class class-name I
: pret ix symbol

[Macro]

Arguments:

The instance-form should evaluate to an object that has slots, such as an instance of a user­
defined class. The instance-form should not evaluate to an instance of a standard type class.

Each instance-form is evaluated exactly once, upon entry to the body of the with-slots form.
The instance-form forms are evaluated in the order in which they appear.

It is necessary that the class of the instance can be determined lexically (at compile-time). Either
instance-form must be the name of a specialized parameter in the lambda-list of a method that
lexically contains this with-slots form, or the :class option must be used to indicate the class of
the instance.

The keyword options in this special form are not evaluated.

• The :class option is used to specify the class of the instance. Its argument is the name of
a class. This option is necessary if the class of the instance cannot be determined from the
lambda-list of a method that lexically contains the with-slots form or if the with-slots
form does not occur within a method body. If the :class option is used, an error is signaled
at runtime if the class of the instance is not the specified class or a subclass of the specified
class. Note that if a superclass of the actual class of the instance is given here, only those
slots accessible in instances of the superclass are accessible; this might be a smaller set of
slots than those accessible in the instance itself.

Functions in the Programmer Interface 2-55

87-002

with-slots

Values:

• The :prefix option is used to generate a variable name by which the given slot may be
referenced. This name is given by the name of symbol followed by the slot name. It causes
a symbol of the given name to be created and interned in the package that is current at the
time the with-slots form is macro-expanded. This option can be used to keep separate two
instances whose slot names overlap, such as two instances of the same class or two instances
that have a common superclass.

• The :use-accessors option is used to specify whether accessing a slot is performed by calling
the accessor function generated by defclass or by calling the function slot-value. IT :use­
accessors is t, the accessor function generated by defclass is called to access the slots; this
means that any methods written for the accessor are also run. IT :use-accessors is nil, with­
slots accesses the slots by calling slot-value instead of the accessor. IT accessors for the slot
were not specified in the relevant defclass form, then the value of :use-accessors should be
specified as nil. The default value of :use-accessors is t.

The values of the with-slots form are the values returned by the last form in its body.

Examples:

(detc1ass point () «x 0) (y 0»
(:accessor-pretix pOint-»

(detmethod move «p point) dx dy)
(with-slots (p) p is known as a point trom the method args

(sett x (+ x dx) y (+ y dy»» ; use accessor tunctions

(detmethod move «p point) dx dy)
(with-slots «p :use-accessors nil»

(sett x (+ x dx) y (+ y dy»» ; use slot-value

(detmethod make-same-height «p1 point) (p2 point»
;; use :pretix to make distinction between the two points
(with-slots «pi :pretix pi-) (p2 :pretix p2-»

(sett pi-y p2-y»)

(detmethod make-horizontal «1 line»
;; it is necessary to specify the class ot point explicitly,
;; because there is no lexical way to determine it
(With-slots «(lett-point 1) :c1ass point :prefix left-)

«right-point 1) :c1ass point :pretix right-»
(sett 1eft-y right-y»)

2-56 Common Lisp Object System Specification

87-002

with-slots

Remarks:

The examples have used setf to change the value of instance variables; setq is also allowed.

An error is signaled if the class of instance-form cannot be inferred from the lexical context in
which it occurs and the :class option is not specified.

An error is signaled if there is any conflict between variable names.

Functions in the Programmer Interface 2-5'1

87-002

2-58 Common Lisp Object System Specification

~ystems for Open Computing ™

.-'. lCorporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
TLX 37-29639

For U.S. Sales Office
locations, call:
800 821-4643
In CA: 800821-4642

European Headquarters Germany: (089) 95094-0
Sun Microsystems Europe, Inc. Hong Kong: 8525-8651688
Bagshot Manor, Green Lane Italy: (39) 6056337

Taiwan: 2-7213257
UK: 0276 62111

Bagshot, Surrey GU19 5NL Japan: (03) 221-7021 Europe, Middle East, and Africa,
England Korea: 2-7802255 call European Headquarters:
027651440 Nordic Countries: + 46 (0)87647810· 027651440
TLX 859017 PRC: 1-8315568

Australia: (02) 413 2666
Canada: 416477-6745
France: (1) 40948000

Singapore: 224 3388
Spain: (1) 2532003
Switzerland: (1) 8289555
The Netherlands: 02155 24888

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

