micros ystems

»sun

B N S N N S R e e e T
RIS B BNV SOOI

Hardware Engineering Manual

for the
2060 CPU Board

Confidential and Proprietary Material

Sun Microsystems, Inc. e 2550 Garcia Avenue e Mountain View, CA 94043 o 415-960-1300

Part No: 800-1386-13
{Rev 1 of 10 May 1987} CONFIDENTIAL'

Acknowledgements

Sun Microsystems and Sun Workstation are

registered trademarks of Sun Microsystems, Incorporated.
Sun-3, Sun-3/xxx, Deskside,

SunStation, SunCore,

SunWindows, and DVMA are trademarks of Sun Microsystems,
Incorporated.

UNIX is a registered trademark of Bell Laboratories.

Multibus is a trademark of Intel Corporation

Thanks to Karl Bizjak, Joe Murphy, Jim Ludemann, Bruce
Smith, Kevin Mobley, and Niel Hanes, without whose explanation
and assistance this manual would never have been written.

Copyright © 1987 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other-
wise, without prior explicit written permission from Sun Microsystems.

Preface

Chapter 1 An Overview of the Sun-3 Architecture

1.1. CPU
1.2. System DVMA

1.3. VME Slave UserDVMA ...

1.4, RefTeSN e

1.5. DVMA Controller

1.6. Control Space Devices — FC3 ..o
1.7. Memory Management Unit ...

1.8. Device space

1.9. Memory Space (TYPEOQ space) ...

Parity Main Memory

Video Memory

1.10. 1/O Devices (TYPET! space)

1.11. VME Master (TYPE2 and TYPE3 Space)

1.12. Interrupts

On-Board Interrupts

VME Vectored Interrupts

1.13. CPU Resets and Timeout

Chapter 2 VME Compliance ..

2.1. Options

2.2. Performance Parameters

- iij—

Contents — Continued

Chapter 3 Block Diagram ...
3.1. Data Pathsooirenencreerieemssosssesssssssssssssssssssessseen

Chapter 4 Mechanical Specifications
4.1. Board Form Factor

4.2, COMNECIOTS ... oo sesamsssssenssessssasess ssssssssssessessstsosssssssass s
4.3, Switches

Chapter 5 68020, 68881 Floating Point Coprocessor, and

Associated Circuitry

5.1. Processor Data Buffers — UT0S5:2 ..o ssssssass s

U105:2 Data Flow

5.2. Cache Disable — J100 ... ssenseneesssssssses s

5.3. CPU Space PALs — U106 and U107comrrnrennn
5.4. UI06 PAL ...

U106 Input Signalsomeensrerireen
U106 Output Signalscmeeeen

5.5. U107 PAL ...
U107 Input Signals

U107 Output SIZNALSoooeeervereeesemmenesecessassmimassssssssssnsen

Chapter 6 Power-on Circuitry
Chapter 7 Response Synchronizer — U206 ...

Chapter 8 Reset Pal U201 and User Reset Switch U205
8.1. U205 User Reset Switch

8.2. U201 Reset PAL ..

U201 Input Signals

U201 Output Signals

Chapter 9 U202 and U203 Bus Error PAL and Register

............................

9.1. U202 Inputs
9.2. Pinout of U202 PAL

—-jv -

15
16

19
19
19
19

23
23
23
24
26
26
27
30
31
31

Contents — Continued

9.3. U202 OUPUt SIZNALS oo 83
9.4. U203 BuS Error REZISIEToooooocoveeooeeeeceereereeeeeseoeeeeereese e, 86

Chapter 10 U204 DSACK PAL
10.1.
10.2.

10.3.

Chapter 11 Interrupt Circuitry — U301:U300, J300

11.1.
11.2.

11.3.

Pinout of U204 PAL SO 1/
U204 Input Signals s sss s sessnsans
BUS TTANSTET SIZEoooeoeeereeeeessssseses s oo sses s esesesss s 60
OffSELBILScooooersersessmesesssns s ssee e sssesssmss s sssssssssssesssses s 60
U204 QUIPULSoooooeveeceeeeeeeeseseseess s sesssssssssssessssssessenssesses e sesssseesesssees e 62

Interrupt Priority ... ettt snsssssssssssssansonsannnronnonns 01
U301:0 Interrupt Enable Reglsters ... 68
J300 ..o, et enese s ek kR e 69

Chapter 12 Interrupt Circuitry — U302-U304 PALs, U305

12.1.

12.2.
12.3.
12.4.

12.5.

12.6.

12.7.

Register ...,

Interrupt Request CyCle ... soreessseseeeeesseseessesesesess 13
Interrupt Acknowledge CycCle ... 74
Priority .. OO OSSR 4y |
Two-Level Pnonty Encodmg OO OO 4 |
U302 Lower-Priority Encoder ... R
U302 Pinout SO [
U302 Input Signals
U302 Output Signals ...
U303 Higher-Priority ENCOAEr ... 84
U303 Pinout
U303 Input Signals
U303 Output Signals e 85
Second-Level Interrupt Priority Encoder — U304 ... 89
Pinout of U304 PAL ...
U304 Input Signals
U304 Output Signals - 90
Sample Interrupt Cycle . et tee ettt k224808844455 R R 92

Contents — Continued

Spurious Interrupt

Ethernet Controller and Spurious INEITUPLSovveeerereenre s

12.8. U305 Latch

Chapter 13 ATE Pulldowns — U407

Chapter 14 Clock Generation — U400-U406

14.1. Pinout of U400 Clock PAL

14.2. U400 Input Signals
14.3. U400 Output Signals

14.4. U401 Flip-Flops
14.5. U402 Flip-Flops

Chapter 15 Pal U408 ...
15.1. Pinout of U408 PAL

Chapter 16 Sun-3 Memory Management Unit (MMU)

Chapter 17 Context Register — U509

17.1. U509 Pinout .

17.2. US09 Input Signalscwrereene

17.3. U509 Output Signals

Chapter 18 Segment Map — U500:08

18.1. Segment Map Read and Write Cycles

Segment Map RAM Read Cycle

Segment Map RAM Write Cycle

Truth Table for the U508 Buffer

18.2. Segment Map RAM Control Signals

Chapter 19 Page Map RAM

Chapter 20 Statistics Control PAL — U611

20.1. U611 Input Signals

-vj—

93
94

97

101
101
102
103
104
104

107
107

111

115
116
116
117

121
122
122
123
123
123

127

133
133

Contents — Continued

20.2. U611 Output Signals

Chapter 21 MMU Validation and Decode PAL — U612

21.1. U612 Input Signals ...

21.2. U612 Output Signals

Chapter 22 P2 Bus Control and Address Buffers

22.1. U700 COmPArator ...

22.2. U703:01 P2 Address Buffers

22.3. U704 Control Signal Buffer

22.4. Aliases

Chapter 23 Parity Circuitry ..o
23.1. Parity Address Latch — U811:08
23.2. Parity Generator/Checkers — U807:04 ...

23.3. U803 Multiplexer

23.4. Parity Control and Parity Check PALs — U802 and U$12

23.5. U812 Parity Check PAL ...

U812 Input Signals ...

U812 Output Signals ...,

23.6. U802 Parity Control PAL ...

U802 Input Signals ..o

U802 Output Signals ..o
Pinout of U802 PAL

23.7. Memory Error Register — U801 ...

23.8. Byte Select Buffer (and Address Bit Driver) — U813 ..

23.9. Parity Data Buffer— U3112

Chapter 24 MOS Bus Devices

24.1. U900 MOS Enables PAL

U900 Pinout

U900 MOS Write Enable —moswren ...

U900 MOS Read Enable — mosrden

Diagnostic Cycle — diagCy ...

- vii —

151
151
152
152
153
153
153
156
156
157
159
161
162
162

Contents — Continued

24.2.

243,

244.

24.5.

24.6.

24.7.

24.8.

24.9.

Chapter 25 TTL Bus Accesses
25.1.
25.2.

U901 MOS SACK State Machine

Pinout of U901 PAL

U901 MOS Read/Write Control

U901 SCC Interrupt — SYNCWAIT State
U904 MOS Read/Write Strobe Decoder

U904 Pinout

U904 Input Signals

U904 Output Signals

U902 MOS Write and U903 MOS Read Buffers

U%02 MOS Write Buffer

U903 MOS Read Buffer

MOS Read and Write Cycles ...

MOS Read Cycle

MOS WIE CYCIE ..o sssseesise s sismssssmsses s s s

Mouse and Keyboard SCC ..

U405 and U2207 Baud Rate Clock

Transmit Data Path ...

Receive Data Path

Serial Ports A and B — ttya and ttyb ...

Transmit Data Path
Receive Data Path
EEPROM and EPROM

EEPROM
EPROM ...

Time of Day (TOD) ClOCKeommmmeeermcmmmemsisssssssissssssssssssssssssssssssssses

TOD Oscillator Circuit

TTL Bus Read/Write Cycle

U1400 TTL Bus Sack State Machine

U1400 Pinout

U 1400 State Machine Outputs

TTL Bus DTACK State Machine Diagram

—vili —

195
195
195
196
166
198

Contents — Continued

TTL Bus Cycle Timing et en e e 203
25.3. U1401 TTL Bus Device Decoder ... 204
U401 PINOUL ..o sssnsses s s ssressrssese e oo 205
U1401 Input Signals : 205
Output Signals of the U401 PAL e 206
25.4. U1402 MMU Decoder wereene 210
UTA02 PINOUL ... s sesese s sesesessee e e seeoes 212
U402 INpUt SIZNALS ..o 212
- U1402 Output Signals ..o 213
25.5. U1403 (Miscellaneous) CPU Signal TTL Bus Decoder ... 218
Pinout of UT403 PAL ..o,
U403 INPUt SIgNAlSoooeoeee e
U1403 Output Signals ...
25.6. Ethernet Control Register ...

U1405 Ethernet Control Write Buffer ...
U1407 Ethenet Control Read Buffer ...
25.7. System Enable Register ...
U1406 System Enable Write Register ...
U1408 System Enable Read Register ...
25.8. U1410 Diagnostics Register
25.9. U1409 ID PROM
25.10. U1404 P2-10-TTL Data Buffer ...,
25.11. U2905 and U2906 User DVMA Enable Register
25.12. U203 Bus EfTOr ReZiSIer ..o
25.13. U509 Context Register
US09 PINOULoooersrmeseesrsessssssmssamsssssns st
Inputs and Outputs of US09 Context Register

Chapter 26 Video CirCuitry ... 233
26.1. Video Cycle Timing ... 233
26.2. U1504 Video Select Decoder . 234

U1504 Pinout 233

U1504 Input and Output signals

Contents — Continued

26.3. U1502 Video Control Decoder

U1502 PINOULcovooocrererccrrsscsminsnnesss s sssesisscssssssssinsieosees

U1502 Input Signals
U1502 Output Signals

26.4. P2 Interface State Machine — U1503, U1605/07 ...

U1503 Pinout ...,

U1503 Inputs

U1503 Outputs ..o
26.5. VARB and Video Side State Machines

Video Readooeeeeeecerersenienns

Video Write .,
Video Write Timing Diagrams: A Real Example

26.6. U1501 Byte Decode PAL .
U1501 Pinout ...

U1501 Output Signalsooecrrermerssonn

U1500 Buffer and UISOS DIP ... eesssssisesssssessssssssssesesesssesssssenas

26.7. U1608-U1603 Video Controller ...
26.8. U1700-01 Video RAS/CAS Latches ...

26.9. Frame Buffer RAM
26.10. ECL Circuitry ...

ECL Clock

26.11. Horizontal and Vertical Synch State Machines ...

Chapter 27 VMEbus — Performance ...

27.1. 2060 VME Implementation

Chapter 28 VME Arbiter and Requester

28.1. Terminology for VME Arbiter and Requester

28.2. U2704 VME Arbiter and Requester

State Machine as Arbiter and Requester
Transitions from BUSREQ State

Transitions from MASTER State

Transitions from MASTER_NG State

236
237
237
237
241
241
241
242
242
243
247
249
250
250
251
253
253
254
255
256
256
257

263
263

269
269
271
272
273
274

Contents — Continued

Transitions from BUSGRANT State S X [
28.3. State Machine as Requester Only OOy iy

Transitions from IDLE State ... 277
Transitions from BUSREQ Stateoooo 278
Transitions from MASTER State S Y L
Transitions from MASTER NGSute ... 280
Transitions from the BUSGRANT State ... 281
Chapter 29 VME Master Interface e 285
29.1. VME Select and Freeze PAL, U2701 ettt A s 285
Pinout for the U2701 PAL ... 286
Terminology for the VME Select and Freeze PAL oo 287

CPU Reruns on VME *‘Short Timeouts™ ... 288

CPU Reruns on Deadlocks 288

29.2. VME Select and Freeze State Diagram ... 288
Normal Operation Lttt e s 288

Deadlock Resolution SO Y1
VME Short Timeouts OSSO |

VME LONg THMEOULS ..o 290

29.3. VME Master Controller PAL U2806 ... 291
Terminology for VME Master Controller ... 293

VME Master Controller State Machine ...~ 293

CPU Retains Control of VMEbus at Endof Cycle ... 294

CPU Relinquishes Control of VMEbus at End of Cycle ... 295

CPU Freeze CYCIEs ..o 295

Address Modifiers and P_BLWORD OSSOSO T .
Non-Aligned Master Cycles ... 296
Chapter 30 VME Slave Interface ... 299
30.1. VME Slave Address Latches, U2901-2 and U2911-13 ... 299
30.2. VME Slave Address Decoder U2907 ... 299
Terminology for the VME Slave Address Decoder, U2907 ... 301

30.3. User DVMA Enable (U2905-6) and Context Registers (US09) ... 302

-] -

Contents — Continued

30.4. VME Slave Address Multiplexers [QSPX (UH0,%) R —

30.5. VME Slave Request PAL (822,073 —
Terminology for VME Slave Request PAL ...

VME Slave Request State Machine

Chapter 31 VME Data Buffers, U3000 to U3006
31.1. 16-Bit OPeration ...

31.2. 32-Bit Operation

R U I 61 4 S 0175 (- S —————

31.4. DVMA Cycles

Chapter 32 Direct Virtual Memory N1 - J R ——

32.1. A Generic DVMA Cycle

Back-to-Back DVMA ..

32.2. Optimizations to the DVMA {037/l [J——

Ethemnet HOLAoooorereceeniesssnssssenssianas

VMEDUS LOCK ..oooceerimrimimrrressssssssssssmssssss s

32.3. Refresh as a Special Case ...

32.4. The DVMA Strobe PAL (U2410)

Input and OUtPUt SIZNALS v

Chapter 33 Sample Cycles
33.1. VME Master Cycles ...
CPU Access of Idle VMEDbus

CPU Access of a Busy VMEbus
CPU Access of VMEbus, Currently Bus Master
CPU Rerun During VME Access

Relinquishing the VMEbus

33.2. VME Slave Cycles
VME Device Accesses P2 Bus

Lock Mode Cycles

VME Device Initiates P2 Bus Lock

VME Device Ends P2 Bus Lock

— xii -

302
302
305
306

311
311
312
312
312

315
315
316
316
316
316
316
317
319

323
323
323
324
325
325
326
327
327
328
328
329

Contents — Continued

VME Device Not Fast Enough to Initiate P2 Bus Lock
33.3. EhemEt CYCIES ... eeeeeeereneseeeeessesessesssssessessses s
33.4. REfTESN CYCIES ... eeeessessessessssssssssseses s eesenes

Chapter 34 RAS Decode PALs — U3100 and U3102

34.1. U3100 and U3102 Pinouts

34.2. U3100 and U3102 Input Signals ..o

34.3. U3100 and U3102 OULPULScccoreeeerecsscmmereseseseeoreees s

U3100 Output Signals

U3102 Output Signals

Chapter 35 CAS Decode PAL—U3104 ...

35.1. U3104 Pinout

35.2. U3104 Input SIENQAIS ..o
35.3. U3104 Output Signals ... s s

Chapter 36 Control Buffers — U3105 and U3115 ..o

Chapter 37 Row and Column Address Multiplexers —
U3110:07

Chapter 38 Memory RAM — Pages 32 and 33
38.1. Memory Read

38.2. Memory Write
38.3. Processor Data Acquisition

Appendix A Figures and Timing Diagrams

— xili —

Tables

Table 1 Component DESIZNALOLScccvmmemmmmssmssesesssmsersessissssssssssssssssssin XXV
Table 1-1 Control Space Devices and Their Addresses ... 4
Table 1-2 I/O Devices and Their Addresses ... 5
Table 1-3 TYPE2 Space eeevteaeeesse A AR AR RRR S AR R8RS e 6
Table 1-4 TYPE3 SPACE ... ssesssasssssssssssssssssssssssssssss s 6
Table 1-5 On-Board INEITUPLSoermrerrressessrsenssessseasnmmessemsessssessessmsssssssssssssssns 7
Table 5-1 U105:2 Processor Data Buffers — Data FIOW ... vk}
Table 5-2 J100 — Cache Disable and Enable ..o R
Table 5-3 Sun-3 Function Code Address Spaceooeemmmemecreessssssssrne 24
Table 5-4 CPU SPACE CYCIESeeeeeeeeseecsssssseessssasssss s ssssssssssssssesssssesssssesssesees 25
Table 5-5 Coprocessor DESIZNAUONwomumseesmsssssssssssessessesssssssessrsessassssseen 25
Table 10-1 Data Size Encodings: (p2_siz[1:0]) e e 60
Table 10-2 Base Offset Encodings: (p2_a[01:00]) .o 62
Table 10-3 Dynamic Bus Sizing: How dsack[1:0] Decode Port Size ... 63
Table 11-1 Interrupt Register — Signal Designations 68
Table 12-1 Low Priority Acknowledge Bit Encodings: lp_;ack(1§0) 77
Table 12-2 High Priority Acknowledge Bit Enoodingé: hp_ack(1:0) ... 78
Table 12-3 Type of Interrupts Encoded by hp_ack(1:0) and

Ip_ack(1:0) 78
Table 12-4 Lower Priority Acknowledge Signals ..o 81

-XV -

Tables — Continued

Table 12-5 Lower Interrupt Priority Encode Signals ...
Table 12-6 Higher-Level Priority Acknowledge Signals ...
Table 12-7 Higher-Level Interrupt Priority Encode Signals ..o
Table 12-8 U304: Second-Level Acknowledge Signals ...
Table 12-9 U304: Second-Level Interrupt Priority Level Signals ...
Table 12-10 Spurious Ethernet Interrupts ..

Table 17-1 U509 Context Register — Description ...

Table 18-1 U508 Segment Map Buffer — DataFlow

Table 19-1 Format of a Page Map Entry S
Table 19-2 MMU Statistics BitS ...
Table 19-3 Type-Bit DECOE ..o
Table 19-4 Byte Selection in the Page MapRAM

Table 21-1 MMU Protection Bits — Decode of the Inputs ...
Table 21-2 Truth Table for MMU Protection Bits

Table 22-1 U700 Comparator

Table 23-1 Parity State Diagram — State Valves ...
Table 23-2 Parity State Diagram — Description of the States ...
Table 23-3 Memory Error Register — U801

Table 24-1 Map for TYPEL SPACE ..o
Table 24-2 U901 Control Counter States ...
Table 24-3 U901 Wait Counter States
Table 24-4 EPROM Jumpering

Table 25-1 TTL Bus DTACK State Machine States
Table 25-2 Byte Selection in Parity Address Selection .
Table 25-3 Byte Decode of the Parity Error and Address Registers ...
Table 25-4 Byte Selection in the Page Map RAM .

- XV] —

127
127
128
128

141
141

147

157
15§
162

165
172
172
150

200
204
206
211

Tables — Continued

Table 25-5 Contents of the ID PROMcennennccnncececcnsvenseomsmsmsmssssmsnsseee 27

Table 25-6 U1404 P2-10-TTL Data Buffer — Data Flowcocnnn. 220
Table 29-1 U2806 Transfer LOZICmmcsssisssesirsssssssssens 294
Table 29-2 Address Modifier Bits on the 2060 Board ... 296
Table 32-1 MC68020 Data Size Output Encodings . 320
Table 32-2 MC68020 Function Code Output Encodings ... 320
Table 38-1 Memory Data Buffers — Data FIOW ... 359

— xvii —

Figure 3-1

Figure 5-1
Figure 5-2
Figure 5-3

Figure 8-1
Figure 8-2

Figure 9-1

Figure 10-1
Figure 10-2
Figure 10-3
Figure 104
Figure 10-5
Figure 10-6

Figure 12-1
Figure 12-2
Figure 12-3
Figure 124
Figure 12-5
Figure 12-6

2060 Block Diagram

Virtual Address SPace ...

U106 Pinout

U107 PINOUL ..o

Sun-3 Connectors on the 2060 CPU Board
U201 Pinout

U202 Pinout

3-Byte Data Alignment Within the 32-bit Bus Spacet ...

Longword Data Alignment Within the 32-bit Bus Spacet
Dynamic Bus Sizing — Transfer Offsets ...

Interrupt Request Cycle

Interrupt Acknowledge Cycle ...

Interrupt and Acknowledge Cycle .

U302 Pinout
U303 Pinout

U304 Pinout .,

- xix —

25
26
30

45
46

59
61
61
61
61
62

74
75
76
79
84
89

Figures — Continued

Figure 14-1
Figure 14-2

Figure 15-1

Figure 16-1
Figure 16-2

Figure 17-1

" Figure 17-2

Figure 18-1

Figure 23-1
Figure 23-2

Figure 24-1
Figure 24-2
Figure 24-3
Figure 24-4
Figure 24-5
Figure 24-6
Figure 24-7
Figure 24-8

Figure 25-1
Figure 25-2
Figure 25-3
Figure 254
Figure 25-5
Figure 25-6

Figure 26-1
Figure 26-2

U400 PINOUL ..o seeseeesnssssessesensesssess

Clock Stretch (cs4 — cs4.5) State Diagram ...
U408 Pinout

Sun-3 Address Translation

Sun-3 MMU

Context Bits and Virtual Address

U509 Pinout

Segment Map RAM — U507:00

U802 Pinout

U802 Parity Control PAL — State DIagram ...

MOS Decoders
U900 Pinout
U901 MOS Control State Machine Pinout
MOS Control State Machine ...

MOS DTACK PAL Wait State COUNLETomemercsenecsssssnsisnees

US04 Pinout

U902 MOS Write Data Buffer

U903 MOS Read Data Buffer

U 1400 Pinout

TTL Bus DTACK (SACK) State Machine Diagram

U 1401 Pinout

U1402 Pinout

U1403 Pinout

U509 Pinout

U1504 Pinout

U1502 Pinout

- XX —

101
102

107

111
112

115
116

121

159
160

166
167

170 -

171
175
179
184
185

196
199
205
212
219
227

235
237

Figures — Continued

Figure 26-3
Figure 264
Figure 26-5
Figure 26-6
Figure 28-1
Figure 28-2
Figure 29-1

Figure 29-2

Figure 30-1
Figure 30-2

Figure 32-1

Figure 34-1

Figure 35-1

Figure 37-1

U1503 Pinout

Handshaking in the P2 Interface State Machine ...

U1501 Pinout
Data Path — From Frame Bufferto CRT

U2704 Pinout

VME MASTER State — Relationship of S4SEL to
B_SSEL

U2701 Pinout

U2806 Pinout

U2907 Pinout
U2504 Pinout

U2410 Pinout

Systems ...

- XXi—

286
292

300

355

Signal Names

Glossary

Preface

This document provides a detailed explanation of the 2060 board hardware. The
Sun-3/2060 board uses positive logic.

Both capitalized and uncapitalized names of signals are used in this text; they are
synonymous. For instance, readen- and READEN- are names for the same low
active signal (see the glossary for definition of ‘‘low active’’).

A few terms are used throughout this document which, without explanation, may
seem confusing.

o Positive Logic — positive logic means that the asserted level (see below) of
a signal is alogic 1 (see below also), 2.8 to 4.5 volts fora TTL gate.

o Asserted — when we say that a signal is ‘‘asserted,’”’ we mean thatitisinit
ACTIVE, or true, state. In positive logic this means that a signal like
READ, when asserted, is equal to its most positive state. When a signal like
WRITE*, WRITE-, or WRITEN\ (the three are synonymous) is asserted it is
equal to its most negative state.

o Activated — means the same as *‘‘asserted.”’

o Logic 1 — in positive logic, a logic 1 stands for the more positive of the two
voltage levels. A logic 1 in negative logic stands for the more negative of
the two voltage levels.

o Logic 0 — in positive logic, a logic 0 stands for the more negative of the
two voltage levels. A logic 0 in negative logic stands for the more positive
of the two voltage levels.

o Set — means the same as logical 1.
o Clear — means the same as a logical 0.

o High Active — refers to the level a signal is when it is “‘true’’; in positive
logic, a high active signal is true at its most positive state. For instance,
p2_rw, the processor read and write signal, has a high active read state.

o Low Active — refers to the level a signal is when it is ‘‘true’’; in positive
logic, a low active signal is true at its most negative state. For instance,
p2_rw, the processor read and write signal, has a low active write state.

— xxiil —

Prcface — Continued

Signal Levels

o ON — when it refers to a switch (or switch section) setting, is synonymous
with CLOSED. This means that the signal at the input of the switch (or
switch section) is shorted to its output.

o OFF — when it refers to a switch (or switch section) setting, is synonymous
with OPEN. This means that the signal at the input of the switch (switch
section) is NOT SHORTED (signal is not passed) to its output.

o CLOSED — when it refers to a switch (or switch section) setting, is
synonymous with ON. This means that the signal at the input of the switch
(switch section) is shorted to its output.

When referring to a latch, it means that data is nor flowing through the latch.

o OPEN — when it refers to a switch (or switch section) setting, is
synonymous with OFF. This means that the signal at the input of the switch
(switch section) is NOT SHORTED (signal is not passed) to its output.

When referring to a latch, it means that data is flowing through the latch.

o LATCHED — means that the data is held in the latch (that is, the latch is
closed).

o DIP — stands for Dual In-line Package, and refers to the physical geometry
of the chip (rectangular, with pins on the two longer sides).

o DIP Switch — a multi-sectioned switch which has DIP geometry.

o Switch — a device for making or breaking an electrical circuit. A switch
may have one or more sections, each of which may control a circuit.

o Ox — hexadecimal prefix; the number following this prefix is in hexade-
cimal.

o PCB — printed circuit board

o TTL — transistor-to-transistor logic.
o RX — receiver

o TX — transmiuer

o A(17:12) — indicates a range of signals, in this case address lines 17
through 12,

o R/W — read/write
The 2060 board uses positive logic; low active signal names can have either a

suffix or a prefix, depending upon the convention with which the engineer was
most familiar.

For instance, the low active ‘‘write"’ signal from the 68020 might be labelled:
O p_write-
0 /p_write

o p2_write_ (usually found in PAL listings)

- XXiv —

Preface — Continued

Component Designators

Pullups/Pulldowns

PALs/PAL Listings

Table 0-1

o p_write\
o p_write*.

All of these labels refer to the same signal and mean the same thing.

Component Designators
Designation Component
8) Integrated circuit resistor dips
C capacitor
R discrete resistor
J jumpers/DIPswitches
P connector

Each component is assigned one of these designators. The designator is one of
the above letters followed by four decimal digits.

1. The first two digits generally refer to the page number on which the com-
ponent is found. In the case of packages which contain more than one com-
ponent (for example, FOO) the first two digits indicate the page on which the
package is first used.

2. The last two digits distinguish components on the same page. Sometimes
these values will *‘skip.”’ Generally the numbers are assigned in columns
which go from left to right.

Pullups are indicated by ‘‘pu’’ followed by a functional designator, such as
““puv7,”’ which indicates a pullup used in the video section. Other pullups are
indicated by **h’’ followed by a numerical designator, such as *‘h0.”’

Pulldowns are indicated by an *‘pd’’ followed by a numerical designator, such as

l‘mo.ii

Inputs to PALS are shown (in the schematics) on the left side, outputs on the
right.

All of the inputs and outputs are declared at the beginning of the listing. Nega-
tive true inputs and outputs are usually preceded by a foreslash (for example,
“pwrite'*) or succeeded by a trailing underscore (for example, *‘write_""). These
two write signals are synonymous.

In the equations, the negation of a signal is shown by preceding the signal with
‘1*. A logical AND is designated in the PAL equation by a star *‘*’’ or an amper-
sand **&’"; a logical OR may be either a plus sign *‘+’’ or a pound sign “‘#."’

- XXV —

An Overview of the Sun-3 Architecture

An Overview of the Sun-3 Architecture ...

L0 T ! < O

1.2, System DVMA e .
1.3. VME Slave USer DVMA ..o
L 04 | R
1.5. DVMA Controller ...,
1.6. Control Space Devices — FCB

1.7. Memory Management Unit

1.8, DRVICE SPACE ... s

1.9. Memory Space (TYPEO space) ...
Parity Main Memory ...

Video MEMOTY ...
1.10. /O Devices (TYPE1 space) ...
1.11. VME Master (TYPE2 and TYPE3 Space)
1.12. Interrupts

On-Board INeITUPLSoooooeoeeeeeeeoeeeoeeeee
VME Vectored Interrupts
1.13. CPU Resets and Timeout

N Ny A A DN DN R W OW W

1.1. CPU

1.2. System DVYMA

1.3. VME Slave User
DVMA

NOTE

An Overview of the Sun-3 Architecture

This section is divided into five parts:
o the first describes the CPU and DVMA devices,

o the next two describe the Control Space (68020 extensions and MMU) and
all devices which must be accessed through the MMU,

o the last two describe interrupts, resets, and timeouts.

In this Chapter, references to the SUN-3 architecture manual (Rev. 2.0)are
enclosed within square brackets [].

The processor is a 68020 running at 16.67 MHz. All bus cycles incur a minimum
of 1.5 wait states (except FPA and 68881 cycles). S4 is stretched by 30 nsec to
cause the half wait state. ’

In conjunction with the CPU is an optional 68881 Floating Point Processor. A
separate clock is available to allow the FPP to run asynchronously to the 68020.

All CPU space cycles are implemented as in section [3.1]. Disabled (System
Enable register bit D6=0) FPP coprocessor cycles are terminated with an
immediate bus error. All other coprocessor addresses and accesses to an enabled
but uninstalled FPP result in a Timeout bus error. Interrupt Acknowledge cycles
and installed and enabled FPP cycles terminate normally with DSACK or are
aborted with a synchronous bus error.

The two system DVMA devices are the Ethernet Interface (Intel 82586) [5.14]
and the VME Slave System DVMA [6.2]. Both use supervisor data function
codes and are implemented as in the SUN-3 architecture manual.

The Ethemet Interface has one feature which other DVMA devices do not imple-
ment — FIFO operation of the 82586 requires that the Ethemet Interface be able

to retain bus mastership, therefore the 82586 can issue a HOLD signal along with
bus request.

This is implemented as described in the SUN-3 architecture manual section [6.2].

User DVMA is performed in user data function codes. There is no response to
any attempted access to a disabled context.

sSsun 3 (Rev 1 of 10 May 1987} CONFIDENTIAL!

4 2060 CPU Board Engineering Manual CONFIDENTIAL!

* 4. Refresh

\\,

1.5. DVMA Controller

1.6. Control Space Devices
—FC3

Table 1-1

1.7. Memory Management
Unit

1.8. Device space

The refresh timer requests the bus via the DVMA controller just like the other
DVMA devices. Once the bus has been obtained for a refresh operation, the con-
troller does not execute a DVMA cycle but instead executes a refresh cycle. A
refresh strobe, REFR, is issued instead of AS— so that the refresh cycle will not
conflict with any other address space cycle.

DVMA/CPU device priority is as follows:
1. Refresh — nothing can stop a refresh cycle

Ethemet — can issue bus hold to lock out priorities 3 and 4

2
3. VME System/User DMA — dynamic bus hold feature to lock out 4
4

68020/68881

The following Control Space devices are implemented [4.1]; all devices are
byte-read and byte-write except for the bus error register which is byte-read only.
The ID PROM, Page Map, and Segment Map are implemented as an array of
bytes. This allows word and longword accesses via the 68020 dynamic bus siz-
ing capability.

Control Space Devices and Their Addresses

ADDRESS DEVICE

[0x00000000] + Virtual | ID PROM

[0x10000000] + Virtual | Page Map

[0x20000000] + Virtual | Segment Map

[0x30000000] Context Register

[0x40000000] System Enable Register

[0x50000000] User Enable Register

[0x60000000] Bus Error Register

[Ox70000000] Diagnostic Register

[0x80000000] to Non-responding addresses which

{OxEO0OQ000] will cause a timeout bus error

[0XFO000000] l;leU bypa§s access to Serial Port
or diagnostics

The MMU will be implemented as described in the SUN-3 Architecture Manual,
section [4.3], with the following exception: cache bits are read back as zero since
they are not implemented.

The device space includes everything accessed through the MMU — main
memory, video memory, the system bus, and the 1/O devices.

sun

MCTosysiems

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 1 — An Overview of the Sun-3 Architecmure 5

1.9. Memory Space
(TYPEO space)

Parity Main Memory

Video Memory

1.10. /O Devices (TYPE1

space)

Table 1-2

4

Main memory is implemented as described in section [5.2). A positive ack-
nowledge scheme is used so that non-existent memory locations result ina
timeout bus error.

120 nsec 256K-by-1 DRAMs are used to implement the parity memory.
Accesses to this memory incur 1.5 wait states on reads and writes. There is a
minimum of two megabytes of memory on the CPU board (a maximum of 4
megabytes) and additional memory on the Expansion boards.

Video memory is a 128 Kbyte block of memory starting at location 0xFF000000.
Copy Mode (if enabled) causes any write operation to a 128 Kbyte block of
memory, starting at location 0x00100000, to also be written into the video
memory.

Video display format is of two types. The first is a 1152-by-900 pixel format and
the second is a 1024-by-1024 (1K-by-1K) format. The Vertical rate will be 67
Hz, and the pixel rate will be 10 nsec per pixel.

Outputs to the video monitor are as follows:

1. Serial Video — differential ECL

2. Horizontal Sync — positive TTL pulse, sync on rising edge
3. Vertical Sync — positive TTL pulse, sync on rising edge

The following devices are implemented in TYPE1, 21-bit address space as per
the Sun 3 Architecture Manual [5.2, 5.4 t0 5.14]:

1/0 Devices and Their Addresses

ADDRESS DEVICE
[0x00000000] Keyboard/Mouse interface
[0x00020000] Serial 1/O ports
[0x00040000] EEPROM
[0x00060000] Time of Day Clock
[0x00080000] Parity Error registers
[0x000A0000] Interrupt register
[0x000C0000] Ethernet Control register

Non-responding address which
[0x000E0000] will cause a timeout bus error

[0x00100000] EPROM

[0x00120000] to | Non-responding addresses which
[0x001A0000] will cause a timeout bus error

[0x001C0000] Encryption processor

[0x001EQ000] | TNon-responding addresses which
will cause a timeout bus error

Su {Rev 1 of 10 May 1987) CONFIDENTIAL!

mcrosystems

6 2060 CPU Board Engineering Manual CONFIDENTIAL!

1.11. VME Master (TYPE2

The Parity Error registers, EPROM, and the EEPROM appear as an array of
bytes. This allows usage of the 68020 dynamic bus sizing capability in accessing
these devices.

The Encryption processor is an option. To comply with U.S. Customs law, both
the 9518 DCP and support PAL will reside in sockets. The absence of the PAL
will cause a timeout error.

The Time of Day clock provides the level 7 non-maskable interrupt. The same
interrupt can also provide a level 5 interrupt [5.7: Int. reg].

The EEPROM has a 10 msec per byte write overhead. It is software’s responsi-
bility not write to the EEPROM faster than 10 msec/byte.

CPU accesses to the VMEbus will be through TYPE?2 space for 16-bit data

and TYPE3 Space) transfers and TYPE3 space for 32-bit data transfers. The 32-bit address will be
decoded to supply the VME Address Modifier bits and define the VME address
size.
Table 1-3 TYPE2 Space
TYPE2
32-bit Address | VMEbus with 16-bit data | AMS5:3 (H) Address Modifiers
[0x00000000] | VME 32-bit address space | (L L H)
[OXFFOO0000] | VME 24-bit address space | (HHH)
[OXFFFF0000] | VME 16-bit address space | (HL H) I/O access only
Table 1-4 TYPE3 Space

32-bit Address

TYPE3
VMEbus with 32-bit data

AMS5:3 (H) Address Modifiers

[0x00000000] VME 32-bit address space | (L L H)
[OXFFO00000] | VME 24-bit address space | (H H H)
[OXFFFFO000) | VME 16-bit address space | (HL H) I/O access only

1.12. Interrupts
On-Board Interrupts

On-board interrupts are autovectored on all levels except for level 6 where the

8530 SCCs provide a vector.

sun

mcrosystems

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter | — An Overview of the Sun-3 Architecture 7

Table 1-5 On-Board Interrupts

LEVEL DEVICES

NMI- Real Time Clock and Parity Error
All Serial Controllers (8530As)

Real Time Clock

Video vertical interrupt »
Ethemnet, System enable register 3
System enable register 2

System enable register 1

—N W H NN

VME Vectored Interrupts VME interrupts are vectored and at lower priority than on-board interrupts.

1.13. CPU Resets and 1. Power On Reset: see [7.0].

Timeout 2. Watchdog Reset: see [7.0]. A user-accessible panic button (RESET) will

also force a watchdog reset.

3. CPU Reset: see [7.0]. In addition, access to the VMEbus will be inhibited
for the 200 msec min. SYSRESET- period.

4. CPU Board Timeout: Minimum of one refresh period, maximum of two.
All non-responding addresses and devices will result in a timeout bus error.

@ sun (Rev 1 of 10 May 1987) CONFIDENTIAL!
{41 3

2.1. Options

2.2. Performance
Parameters

@

VME Compliance

1. Multiple Arbiters: A jumper is provided; if installed, it gives arbitration
control to another VME device.

2. Arbiter Option: ONE, Only BR3- will be monitored.
3. Requester Option: ROR, Release on request

4. Timeouts: Two VME Master timeouts are provided. The first is a "retry”
period of 2.88 pisec at which time the VME interface "freezes" and other
DVMA devices (Refresh, Ethernet) can obtain the local bus. After 256
retries (737 psec), a imeout error will occur. This provides a timeout when
the CPU board is master. No timeout will be provided for VME Slave or
VME User mode since it is each master’s responsibility to provide its own
timeout.

5. Backoff Mechanism: If the CPU initiates an access to the VME at the sam.
time that a VME device accesses the P2, the CPU cycle will back off and be
re-run.

6. Non-implemented features: Since multiprocessing will not be allowed on
our systems, READ-MODIFY-WRITE is not implemented. The ACFAIL-
timing during power down will not meet spec.

The following performance parameters assume a 60 nsec clock and 1.5 wait
states on read and write cycles.

1. CPU to VME latency (assume ideal VME device)

not currently bus master 600-660 nsec
currently VMEbus master 420-480 nsec

2. CPU to VME bandwidth (assume ideal VME device)

burst rate 8.3-9.5 MBytes/sec
480-420 nsec/longword
un 1 {Rev 1 of 10 May 1987) CONFIDENTIAL!
MICTos y$16me .

12 2060 CPU Board Engineering Manual CONFIDENTIAL!

VME to P2 latency (not currently P2 bus master, assume idle P2 bus)

M) W

AS to DTACK 570-630 nsec]

VME to P2 bandwidth (assume P2 bus locked)

bandwidth 6.3-8.9 MBytes/sec
635-450 nsec/longword

. 5. VME to VME transfer
time to acquire VMEbus 70-155 nsec
bandwidth limited by VME spec and
VME devices
@ sSsun {Rev 1 of 10 May 1987} CONFIDENTIAL!
microsysiems

Block Diagram

Block Diagram 15

3.1 DAtaPANS e eee s eessssees s sereneesenesansseenes 10

Block Diagram

The following figure, *‘2060 Block Diagram'’ shows a simplified block diagram
of the SUN 2060 system. CPU and DVMA devices are on the left side. They
supply a virtual address to the MMU and arbitrate for control via the DVMA
controller. Control space devices are located in the center. These are the CPU
extensions and are accessed in FC3 space. The MMU translates the virtual
address into a physical address (Device Space) that is used by the devices
accessed through the MMU. This Device Space is divided into four types:

o type0 for main and video memory,
o typel for I/O and Control devices, and
o type2:3 for the VME Master interface.

Figure 3-1 2060 Block Diagram

MMU
Contro!l
Dsep‘?” Main Video 10 VME
CPU VME viees Memory Memory and Master
68020 Ethernet Slave Control Interface
68881 Interface Interf Devices
FP A leriace
FC3 TYPEO TYPEO TYPE1 TYPE2:3
] []
i 4 / \
@ sun 15 {Rev 1 of 10 May 1987) CONFIDENTIAL!
mcrosystems

i6 2060 CPU Board Engineering Manual CONFIDENTIAL!

3.1. Data Paths

¥
an

See the figure, ‘‘2060 Data Busing,”” which provides details about data bus con-
nections. There are two bus sizes, a 32-bit and an 8-bit. The 32-bit bus provides
a high-bandwidth path between the CPU, DVMA devices and main memory. An
8-bit bus size is used to reduce board routing problems. This works because
most of the Control and Device Space devices are 8 bits. The Parity Latch and
Page Map interface bandwidth will be lower than maximum because of the 8-bit

‘bus restriction but accesses to these devices will be infrequent and the loss of

bandwidth not noticeable. The dynamic bus sizing capability of the 68020 is
used so that longword moves can be made to these two devices.

To segregate the MOS devices from the TTL devices, two separate 8-bit buses
are used. The two types of devices have different data bus interfacing capabili-
ties: MOS devices have weak bus drivers and are sensitive to undershoot while
TTL devices have the opposite characteristics. The separation of the two techno-
logies thus improves system reliability.

{Rev 1 of 10 May 1987) CONFIDENTIAL!

=

Mechanical Specifications

Mechanical Specifications ...

4.1. Board Form Factor ...

4.2. Connectors
4.3. Switches .

19

19
19
19

4.1. Board Form Factor

4.2. Connectors

4.3. Switches

4
1%
o=

Mechanical Specifications

The CPU and Expansion boards will conform to the triple height Eurocard
specification. This will allow either board to plug into a 75 or 160 chassis.

Eurocard dimensions are:

Height 366.67 mm
Width 400.00 mm

There are eight connectors on the CPU board.
1. P1, P2 and P3 — 96-pin VMEbus connectors.

2. 9-pin video output,

3. 15-pin Ethemet,

4. two 25-pin serial ports, and

5. 15-pin long distance keyboard and mouse connector.

The basic Expansion board has the three VMEbus connectors: P1, P2, and P3.

Additional connectors depend on what other functions (besides memory) are on
the board.

There are two user-accessible switches. One is the diagnostic switch which is
used to enter and exit diagnostic mode. The other is the user reset switch, which
causes a watchdog reset.

19 {Rev 1 of 10 May 1987} CONFIDENTIAL!

68020, 68881 Floating Point Coproces-
sor, and Associated Circuitry

68020, 68881 Floating Point Coprocessor, and Associated Circu-

TETY oo eses e assss mses st s sssss s st 88885588 ARt et st e 23
5.1. Processor Data Buffers — U105:2 ..., SRR X
UT05:2 Dt FIOW ..o err s sssssssssssssssmsssssssssss s 23

5.2. Cache Disable — J100 OO 23
5.3. CPU Space PALs — U106 and U107 wrvverenee 24
SA. UTOO PAL ...ttt e ssessssessss st st s 26
U106 Input Signals ..., v 26

U106 OULPUL SIENALSoooceooeeeeescses s ssess e ses s e 27

S50 UTOT PAL ..o ssess s s ot ese s st eemesssesss e 30
U107 Output Signals ... 31

5.1. Processor Data Buffers
— U105:2

U105:2 Data Flow

Table 5-1

5.2. Cache Disable — J100

68020, 68881 Floating Point
Coprocessor, and Associated Circuitry

Page one of the schematics contains the 68020 microprocessor and its 68881
floating point coprocessor. Detailed information about these can be found in
their respective User’s Manuals.

To the left of the 68881 are four processor data buffers, U105:2, which isolate the
P2 data bus from the data inputs of the 68020/68881; they also serve to reduce
the loading on the data inputs of the 68020/68881. These data buffers are
bidirectional; output is enabled from them when p_bufen- goes active (low).

Output of these buffers is nommally enabled (p_bufen- is low) except during two
situations:

1. the 68881 is performing a cycle, or

2. aDMA cycle is being performed.

This enabling/disabling action is controlled by the p_bufen- signal from U107
CPU space PAL.

Direction of the data flow is controlled by the processor read/write signal, p_rw;
when p_rw is high (a read), data flows from the P2 data bus to the processor,
when it is low (write) data flows from the processor to the P2 data bus. The truth
table for the U105:2 buffers is:

U105 :2 Processor Data Buffers — Data Flow

Gate Direction Which way the
| p_bufen- p_rw- data will flow
0 0 processor to P2 data bus (B -> A)
0 1 P2 data bus to processor (A -> B)
1 X outputs are tri-state

Jumper J100 on page 1 of the schematics serves to enable/disable the cache
memory. When J100 is IN, cache is disabled; when J100 is OUT, cache is
enabled. Usually this jumper is not installed (cache is enabled).

Q?y sun 23 {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTOE yS terms

24 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 5-2 J100 — Cache Disable and Enable

Jumper Cache Status
Inor Qut? Enabled or Disabled?
In Cache disabled
Out Cache enabled
5.3. CPU Space PALs — Each of these PALs, U107 and U106, decode address lines and function codes to
U106 and U107 generate the space-select and control signals. The three function code bits,

FC2:0, decode 1o one of eight address spaces:

Table 5-3 Sun-3 Function Code Address Space

Function Code Address Space
FC2 | FC1 | FCO
0 0 0 Reserved
0 0 1 Device Space (User Data)
0 1 0 Device Space (User Program)
0 1 1 Control Space
1 0 0 Reserved
1 0 1 Device Space (Supervisor Data)
1 1 0 Device Space (Supervisor Program)
1 1 1 CPU Space

Looking at this table, you will notice that address space is divided into three
kinds of space: :

1. Device Space — Function Codes 1, 2, 5, and 6
2. Control Space — Function Code 3
3. CPU Space — Function Code 7.
NOTE Atntempted access to address space for function codes 0 and 4 is illegal.

U107:6 PALs issue the appropriate control signals for CPU space cycles — that
is, the address space selected by FC7. Two kinds of CPU space cycles are used
in the Sun-3 architecture:

1. coprocessor (FPA/68881), and
2. interrupt acknowledge.

Address bits A17 and A16 are used to select between coprocessor and interrupt
acknowledge cycles.

{Rev 1 of 10 May 1987) CONFIDENTIAL!

¥
»
=
]

é

Chapter 5 — 68020, 68881 Floating Point Coprocessor, and Associated Circuitry 25

Table 5-4

Table 5-5

Figure 5-1

>

2

CPU Space Cycles
Address Bits | Type of CPU Space Cycle
Al7 Al6
1 0 Coprocessor
1 1 Interrupt Acknowledge

Address bits A15:13 are used to select from one of eight possible coprocessors.
However only one coprocessor is a legal designee: the floating point chip, 68881.
It is designated by A15:13 = 001 — see the table below.

Coprocessor Designation

Address Bits Coprocessor
AlS Al4 Al3 Selected

0 | 0 | 1 | 68881 (FPP)

Although all 32 processor address bits have meaning (in that they are decoded),
only the lower 28 address bits are translatable through the MMU. Thus, virtual
address space is defined as sixteen contiguous 256 Mbyte (28-bit) virtual address
spaces. These sixteen address spaces are decoded by the four high order address
bits not translated through the MMU, A(31:28).

User space is defined as either A31:28 = 0x0, OXE (in the case where you are try-
ing to access the FPA), or OxF. If a user program attempts to access one of the
areas in between — that is A31:28 = Ox1 through A31:28 = 0xD — the processo.
will timeout and no acknowledge will be returned.

Virtual Address Space
A3l A28
OxF < USER
OxE le—— FPA

Ox1 through OXD |«——ILLEGAL

0x0 e USER

w
=
e

{Rev 1 of 10 May 1987) CONFIDENTIAL!

26 2060 CPU Board Engineering Manual CONFIDENTIAL!

.. U106 PAL

U106 Input Signals

U106 decodes the four most significant address lines, A31:28, the function code |
bits FC2:0, and other control and enable signals, to issue various control signals.

Pinout of the U106 PAL is:

Figure 5-2 UI06 Pinout

AKX XX RRNRNRN A2 222202 R SRS
* * % *
TRW X LA R
p_fc2 * 1 pal *20* vecce
LS 8l LA A
p_fcl * 2% *19~ /p2_f£fpa
KRR Y LA & 84
p_£fc0O * 3% *18* /fpp_cs
KX * W wEXYW
p_a3l * 4~ *17+ /fpe_beli
*EEX KT X
p_a30 * 5* *1€x /clkinh
. w R h *HRE
p_a2¢ * 6x *15+ /boctey
EREK *EEW
p_aZ28 o *14* /devspc
*E R K *wXEX
/er_boct > gr e /etlspc
*wREW rERY
/s_cme * 9* *12* fpz_be
LA S R XXR X
gnd *iC* *1i+ fpaen
W R R " w KW
* *
TRRAXXT XA RXRAARAATRT TR XXRRN N KR TN NN

Inputs to the U106 PAL are;

- A
p_£fc[2:0] = unbuffered processor function codes
p_a(31:28] = unbuffered processor virtual address bits
en_boot- = special boot state - must go to EPROM
s_dma- = cycle is a DVMA cycle

(timing must be same as p_fc{2:0))
fpaen = FPA is enabled (from System Enable Register)
fpp cs- = processor is doing an FPP (68881) cycle.

\ _/

{»sun

MICIo6 ystens

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 5 — 68020, 68881 Floating Point Coprocessor, and Associated Circuitry 27

U106 Output Signals

Outputs from the U106 PAL are:
—
bootcy- = indicates a supervisor program access in boot state

devspc- = processor is doing a device space cycle,
FCl, 2, 5, or 6

ctlspc- = processor is doing a control space cycle,
FC3

p2_fpa- = processor is doing an FPA cycle

fpa_berr = attempting access to FPA that has not
been enabled
clkinh- = inhibit clock (multiphase) clock generator; used
for clock stretch through PAL U4CO
\L W,

The PAL equation for the bootcy- signal is:
()

bootcy- = /s_dma*en_boot * p fc2*p fcl*/p_fcO *
/p_a3l*/p_a30*/p_a29*/p_a28 +

/s_dma*en_boot * p fc2*p_fcl*/p_fcO *
p_a3l* p_a30* p a29

This equation indicates that the bootcy- signal will be active (low) when:
o you are not in a DMA cycle,
o you are in boot state,

o you are in FC6, which indicates a superviser program access in device space,
and

o the uppermost nibble of address, A31:28, equals 0x0, OxE or OxF — access-
ing a valid portion of the virtual address space.¥

tRemember, only A31:28 = 0x0, OxE (FPA), and OxF, are legal accesses.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

28 2060 CPU Board Engineering Manual CONFIDENTIAL!

The PAL equation for the devspc- signal is:
4)

devspc = /p_fc2*p_fcl*/p_£fcO0 * /p a3l*/p_a30*/p_a29*/p_a28 +
/p_fcl * p_fcO * /p a3l*/p a30*/p_a29*/p_a28 +
/en_boot*p_fcl*/p fc0 * /p_a3l*/p a30*/p a29*/p a28 +

/p_fc2*p fcl*/p_fcO * p a3l* p a30* p a29* p a28 +

/p_fcl * p_fcO * p_ a3l* p a30* p_a29* p_a28 +

/en_boot*p_fcl*/p fcO * p a3l* p a30* p a29* p a28

\

This equation says you may do a valid device space access when:

o the function codes = (1, 2, 5 or 6) and p_a<31:28> = (0x0 or OxF) as long as
you are not in boot state (as long as en_boot- is false), or

o the function codes = (1, 2, or 5) and p_a<31:28> = (0x0, or OxF) while you
are in boot state.

The PAL equation for the ctlspc- signal is:

ctlspc = /s_dma * /p fc2 * p_fcl * p_fcO

This equation says you may do a valid control space access when:
o you are not in a DMA cycle, and
o the function code equals FC3,

The PAL equation for the p2_fpa signal is:
e)

p2_fpa = /s_dma*fpaen * /p fc2 * p fel * /p_£fc0 *
p_a3l*p a30*p a29*/p a28 +

/s_dma*fpaen * /p_fcl * p fcO *
p_a3l*p a30*p_a29*/p a28 +

/s_dma*fpaen * /en boot * p_fcl * /p fcO *
p_a3l*p a30*p a29*/p a28

N
Q{f sSun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTos ys1ems

Chapter 5 — 68020, 68881 Floating Point Coprocessor, and Associated Circuitry 29

This equation says you may do an FPA cycle when:
o you are not in a DMA cycle,
o the FPA is enabled,

o you are in function code 1, 2, 5, or 6 (when not in a boot state; 1,2, or 5
when in boot state), and

o the high order address nibble is equal to OxE (FPA space).

The PAL equation for the fpa_bei- signal is:
o N

/fpa_be - /fpa_beit

\ J

— 2

fpa_bei = /s_dma*/fpaen * /p_fc2 * p_fcl*/p_£c0 *
p_a3l*p_a30*p_a29*/p_a28 +

/s_dma*/fpaen * /p_fcl* p_fcO *
p_a3l*p a30*p_a29*/p_a28 +

/s_dma*/fpaen * /en_boot * p_fcl*/p_£fcO *
p_a3l*p_a30*p_a29*/p_a28

\ J

This equation says you generate a bus error when you attempt to access the FPA
when the FPA is not enabled (fpaen is false).

The PAL equation for the clock inhibit signal, clkinh, is:

(-)

clkinh = /s_dma*fpaen * /p_fc2 * p fcl * /p_fcO *
p_a3l*p_a30*p_a29*/p_az28 +

/s_dma*fpaen * /p_fcl * p_ fcO *
p_a3l*p_a30*p_a29*/p_a28 +

/s_dma*fpaen * /en_boot * p_fcl * /p fcO *
p_a3l*p a30*p_a29*/p_a28 +

fpp_cs

+Note the /fpa_be = /fpa_bei equation; this cutput is the wrong polarity, and 2 demorganized version
would not fit. So we provide an inverted output, and then invert it again for the correct polarity.

@ sun (Rev 1 of 10 May 1987) CONFIDENTIAL!
mcros

ystems

30 2060 CPU Board Engineering Manual CONFIDENTIAL!

This signal disables the clock generator (U400 and U406) on zero-wait-state
cycles (68881 and FPA cycles). This disables states cs4 through cs7, but still
allows clock edges at cs2 and cs3.

5.5. U107 PAL The second half of the CPU Space decoder PALSs is U107. It decodes function
code bits FC2:0, address bits A17:13, a pair of rerun signals, address strobe, and
the FFP enable signal to generate 5 CPU space control signals.

Pinout of the U107 PAL is:
Figure 5-3 U107 Pinout
EERXXXN AR KRR R AR AT RARNA AR NN

XEX® WX K

/s_dma * 1* pal *20* vce
X W kWK

p_fcz * 2> *19~ /p_bufen
W™ w wRXw

p_fcl * 3 *18~ /p_as
t_"‘ L 2 8

F_Zcl * 4 *17= /plrerun
LR RS LR 83

p_all > 5 *1g* /brerun
Trww Tk WK

F_al€ * e *:5> /rerun
LA S A TEXW

p_alt * *14> /p_inta
WX WX W

p_alé * 8> *13x /fpp_berr
XXX XX Y

p_ai¥ » 9~ *12* /fpp_cs
X ERE TRF X

gné *10* *11* er_fpp

AT R AR XTI A IR RN IR NAAN NI KR X R

Q?? sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

T8 y51ms

Chapter 5 — 68020, 68881 Floating Point Coprocessor, and Associated Circuitry 31

U107 Input Signals

U107 Output Signals

Inputs to the U107 PAL are:
()
s_dma- - cycle is a DVMA cycle

p_£fc[2:0] - unbuffered processor function codes

p_af{l17:13] = unbuffered processor virtual address

en_£fpp = FPP enable from System Enable Register

p_as- = processor address strobe - acts as a qualifier

b _rerun- - rerun request from DVMA logic

sp2_rerun- = synchronized rerun request from FPA board
via p2 bus

Outputs from the U107 PAL are:

(3

p_inta- = interrupt acknowledge cycle
fpp_berr- = quick berr when FPP is not enabled

p_bufen- = output enable for bidirectional
P2 <-> 68020 data buffers

fpp_cs- = chip select for 68881

rerun- = logical OR of b_rerun- and sp2_rerun-

Remember that CPU space is divided into either
O aCcoprocessor access, or
o aninterrupt acknowledge cycle,

as decoded by address bits A17 and A16. Interrupt acknowledge equals binary
11; coprocessor cycle is decoded by binary 10. A pair of macros in the PAL
equation cover these:

@& sSun (Rev 1 of 10 May 1987) CONFIDENTIAL!

mIcrosystems

32 2060 CPU Board Engineering Manual CONFIDENTIAL!

define INTA_SPACE = p al7*p al6

define COPROCESSOR = p_al7*/p_al6

Also, remember that address bits A15:13 can be decoded to one of eight copro-
cessors. The only legal coprocessor is the 68881, decoded as 001. A macro in
the PAL logic defines this too:

define FPP_ID = /p_al5*/p al4*p al3

The p_inta- signal is active (low) when you are doing a CPU space access (FC7)
and A17:16 equal Ox3 (both are high). The PAL equation for the interrupt ack-
nowledge cycle signal, p_inta-, is:

p_inta = CPUSPACE*INTA_SPACE

A bus error signal is generated immediately if a 68881 cycle is attempted without
first enabling the FPP. The PAL equation for the bus error signal, fpp_berr, is:

fpp_berr = CPUSPACE*COPROCESSOR*FPP_ID*/en_ fpp

The signal p_bufen is the output enable (gating signal) for the P2 data buffers,
U105:2. The signal is activated every cycle (p_as is valid) unless the FPP is
selected, or unless it is a DVMA cycle. The signal is then tumed off to avoid the
obvious conflict between signals already on the P2 bus and signals being driven
onto the P2 bus by the 68881.

p_bufen = /s_dma * /(CPUSPACE*COPROCESSOR*en_fpp) * p_as

The p_bufen signal is deasserted to disable the buffers for all coprocessor cycles.

Q%& sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 5 — 68020, 68881 Floating Point Coprocessor, and Associated Circuitry 33

@

r)
p_bufen = /s_dma * p_as * /p fc2 +

/s_dma * p_as * /p_fcl +

/s_dma * p_as * /p_£cO0 +

/s_dma * p_as * /p_all +

/s_dma * p as * p_ alé

L)

The fpp_cs signal is a chip select for a 68881 cycle. Itis valid as long as you are
doing a CPU space access (function code equals FC7), you are addressing a
coprocessor (A17:16 equal binary 10), address bits A15:13 decode to the FPP
(equal a binary 001), the FPP is enabled, and you are not in a DVMA cycle.

fpp_cs = CPUSPACE*COPROCESSOR*FPP_ID*en_fpp*/s_dma

We OR the two sources of rerun (DVMA and FPA) here inside this PAL simply
because the necessary pins were available.

rerun = brerun + p2rerun J

S un {Rev 1 of 10 May 1987} CONFIDENTIAL!

MmicCros ystems

Power-on Circuitry

Power-on Circuitry . 37

Power-on Circuitry

NOTE The power-on and reset generator is in the upper left-hand portion of page two
of the schematics.

The 2060 board includes a power-on/power-off reset generator that provides an
accurate reset pulse. The circuit uses a dual comparator LM393 (U200),a 1.2
volt reference voltage LM385 diode (D201), charge capacitor K200, and resistor
network R107:0.

The top comparator forms a power-on reset generator by comparing the voltage
from the charge capacitor with the reference voltage. This comparator asserts its
output until the voltage across the charge capacitor corresponds to a VCC of 4.5
volts.

The bottom comparator forms a power-off reset generator by comparing the +5\"
supply with the reference. This comparator asserts its output when the +5V sup
ply voltage is below 4.5 volt without the charge delay incurred by the first com-
parator.

The output of both comparators is wire ORed so that signal power-on-reset (por-)
is active when either comparator asserts its output.

@ S. un 37 {Rev 1 of 10 May 1987} CONFIDENTIAL!

Response Synchronizer — U206

Response Synchronizer — U206 ..o 41

Response Synchronizer — U206

The two response synchronizer flipflops synchronize the P2 bus error and P2
rerun signals to ¢60 system clock. The outputs, synchronized P2 bus error
(sp2_berr) and synchronized P2 rerun (sp2_rerun-) are activated during cs2
(when cs2 signal to the presets is a high) and the D input to the flip-flops is active
(ow).

Note that sp2_berr is a high active signal (for software use), so it is taken off the
Q/ output of the flip-flop. The sp2_rerun- signal, being low active, is taken off
the non-inverting output (Q) of U206.

Both p2_berr- and p2_rerun- are used exclusively by the FPA board.

sun 41 {Rev 1 of 10 May 1987} CONFIDENTIAL!

MmICros ys1ems

Reset Pal U201 and User Reset Switch

U205

Reset Pal U201 and User Reset Switch U205

8.1, U205 User Reset SWItCh oo,
8.2. U201 Reset PAL

U207 OULPUL STZNALSoooooeeeee e smereeseeessssseessesessssneesssosnoreseee

45

45
46
46
47

Reset Pal U201 and User Reset Switch
U205

8.1. U205 User Reset U205 user reset switch is on the back of the board between the DIAG/NORM
Switch switch and the video connector. Pressing this switch forces a watchdog reset,
which drops you down into the monitor program.

Figure 8-1 Sun-3 Connectors on the 2060 CPU Board

ETHERNET

LEDO

(LEDs)

!OOOOOO!

LED7

(diag position)
DIAG

DIAGNOSTICS —>O
NORM.
(boot position)

O<— RESET

VIDEO

KEYBOARD
MOUSE

SERIAL
PORT A

SERIAL
PORTB

Q}? sun 45 {Rev 1 of 10 May 1987} CONFIDENTIAL!

mecrosystems

46 2060 CPU Board Engineering Manual CONFIDENTIAL!

j 2..U201 Reset PAL

Figure 8-2 U201 Pinout

KAXXXT A IR R IR XN

L2 R 83

/c60 D

LA S &

/button * 2%
wRE R

nu3 * 3%

TEw W

/s_halz * 4»
XXX

/t_rerun * §»

KRR w

/b_rscin * 6>

w W

csliow * g
*w XWX

/por * Q-
TEE W

gnd *iC*

LE R 21

pa

L2 S22 RS2 RRRE S S

1

TR KK
*20>
*E XK
1191
LA A A4
]18
R R K
*]17>
LA 8 B4
ilet
*xww
*]1Ex
xwwa
*14>
L2 2 X%
tlsv
LR 24
L Ad
rrxx
oo

TEX X

LA S SR EES RS RS RS ER 2RSS 8

U201 Input Signals

Inputs to the U201 PAL are listed below.

The U201 reset PAL resolves contention between different types of resets.
Pinout of the U201 PAL is:

vcc

/p_reset

/watchdoc

g3

a2

/init

/o_rstout

/oe

The following signals are used for watchdog resets (drops you into the monitor

PROM):
{ N
p_halt- = Processor halt - either rerun or
double bus error
b _rerun- = Doing cycle rerun - else p_halt- triggers
watchdog signal
button- = Indicates user reset switch has been pushed,
which is the same as a watchdog reset
\. J

A very slow clock signal, cslow, is used to generate

o a VME reset pulse of greater than 200 msec, and

o ap_reset signal that lasts longer than 512 cycles.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 8 — Reset Pal U201 and User Reset Switch U205 47

1201 Output Signals

Since this signal is sampled a lot, the signal is synchronous.

cslow = output of refresh address counter, U2404. It
has a period approximately 62 msec.

The following input signals are *‘externally’’ caused resets. The p_reset term
triggers a long VME reset.

(N
por- = Power on reset

b_rstin- = Reset coming from the VMEbus

init_in- = OR of (por- and b_rstin) feedback

p_resetin- = p_reset - bidirectional - input indicates
a software reset

\ . Y,

The p_resetin- and p_resetout- signals are connected to the same bidirectional
pin. They are mapped together in a post-processing stage.

Outputs from the U201 PAL are:
-

init- board-level initialize signal

watchdog- = watchdog reset occurred (drops you into the monitor)
used as a .status bit in the bus error register

b_rstout- = VMEbus reset

p_reset— = processor reset

\. J

These signals are derived from a complex series of state equations which you can
find in the PAL listings for U201.

The watchdog- signal is connected to U1403 PAL, where it is decoded as TTL
data bit O for software readback. To allow this, the least significant bit of data
from register U203, t_d[0], is not connected to the data bus; rathert_d[0] is sup-
plied at pin 23 of U1403 PAL.

Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

mIcros ystems

U202 and U203 Bus Error PAL and

Register

U202 and U203 Bus Error PAL and Register

9.1. U202 Inputs
9.2. Pinout of U202 PAL
9.3. U202 Output Signals .

9.4. U203 Bus Error Register

51

51
52
53
56

9.1. U202 Inputs

32

U202 and U203 Bus Error PAL and
Register

The bus error PAL handles all the bus errors, the most common of which come

from the MMU.

Inputs to U202 PAL are:

r
mmu_verr -

mmu_perr =

tout =
b_berr =

fpp_berr- =

cint_berr- =

page referenced through MMU is invalid

page is valid, but protected (you are
trying to reference a protected page)

timeout; nothing responded to this cycle
bus error from the VMEbus

quick berr when access to the FPP is
attempted, but FPP has not been enabled

spurious interrupt bus error. If an
interrupt is asserted and then deasserted
before an interrupt acknowledge
can be run, this is known as a

‘‘spurious interrupt.’’ The system traps
on a spurious interrupt, which can occur
on any level except Level 3, the Ethernet

chip; Intel Ethernet chips can arbitrarily assert

and deassert their interruptst.

J/

4This is known as a *‘feature.”’

Sun

microsystems

51

{Rev 1 of 10 May 1987} CONFIDENTIAL!

52 2060 CPU Board Engineering Manual CONFIDENTIAL!

rerun- = rerun the bus cycle; usually necessary
because of an arbitration deadlock between
the CPU and VME. The processor is notified
that it should rerun the cycle
by a simultaneous assertion
of p _halt- and p_berr- signals.

p2_as- - processor address strobe (acts as a qualifier)
s_dma- - indicates the cycle is a DMA cycle

p2_berr = bus error on P2 bus from FPA

FPA_berr = bus error as result of attemped access to

disabled FPA

9.2. Pinout of U202 PAL Pinout of the U202 PAL is:

Figure 9-1 U202 Pinout

FAXXXT XXX T X XY XXX XXX R T XN
oW KW EERR
/c€C L pal »20 vee
L R TR KW
mmu_verrs * 27 *19~ /s_drma
EF XN LR A &3
mmu_perr * 3 *18~ sp2_berr
*FERE W * ok oWk
tout * 4> *17* lberr
ETET ™ XK K
b_berr * Ew *16%* /p _berr
Tww T W Rk
/fpp_berr * € *15* /s_halt
* W w WK
/cint_berr * 7= *14%* /vmeberr
L2 2 84 LA R &1
/rerun * B8* *13* fpa_berr
KXW K L8 2 83
/p2_as * 9* *12* /p_halt
L2 84 L2 2 81
gnd *10* *11x /oe
L2 A 84 'R RN

LA AEA 2RSSRt RRRRRRlS R

@ Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MCrosystems

Chapter 9 — U202 and U203 Bus Error PAL and Register 53

9.3. U202 Output Signals Output signals from the U202 PAL are:

'a 0
p_halt- - bidirectional processor halt signal
lberr - latch bus error status
p_berr- - processor bus error
s_halt- - syncronized halt signal (internal use only)
vmeberr- - bus error for the VME (includes only memory
MMU)
\ J

Halt is asserted for reruns. The signal s_halt is a synchronized version of p_halt;
p_halt is the “*open collector’’ version. Since p_halt is bidirectional, R209
pullup resistor is connected to this pin to place the line in a tri-state when the sig-
nal is deasserted.

The PAL equation for the p_halt- signal is:

if(s_halt) p_halt = s_halt }
s_halt := p2_as * /s_dma * rerun ‘

The p_berr signal indicates a processor bus error. It is asserted when one of the
following occurs (all are qualified by processor address strobe to indicate a valid
read/write cycle):

@ sSun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOS y318mMs

54

2060 CPU Board Engineering Manual CONFIDENTIAL!

p_berr :=

p2_as
p2_as
p2_as
p2_as

p2_as

p2_as * /s_dma * lberr +
indicates one of the laiched bus errors is active (see lberr below)

p2_as * /s_dma * fpp berr +
access to the 68881 attempted when it has not been enabled

* /s_dma * int_berr +

* /s_dma

*

*

s_dma
s_dma

s_dma

*

*

*

rerun +
mmu_verr +
mmu_perr +

tout

spurious inderrupt

cycle rerun

DVMA attempted to access an invalid page
DVMA aitempted 10 access a protected page

DVMA timed out

The Iberr signal latches certain of the bus error signals into the bus error latch,
U203. Since there were not enough OR terms for p_berr, bus errors had to be
partitioned into 2 groups — those that have to be latched into the bus error re gis-
ter and those that don’t. This is the term used to latch those errors. Errors thai
are not latched into the bus error register are:

o FPP erors,

o spurious interrupts, and

D reruns.

They vector automatically, and thus do not have to be latched (except for rerun,
which is not vectored).

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 9 — U202 and U203 Bus Error PAL and Register 55

Equation for the bus error register latch signal, lberr-, is:

e \
lberr := /p2_as + valid readiwrite cycle
s_dma + a DMA cycle is not being run
/mmu_verr * cycle is invalid
/mmu_perr * permissions incorrect
/tout * timeout
/b_berr * VMEbus error (presyncd)
/p2_berr * error from the FPA
/fpa_berr FPA is disabled
\. J

Bus errors that go to the 68020 are latched, and bus errors that are caused by
VME cycles excluded.

[)

vmeberr :=

p2_as * s_dma * mmu_verr ¥ cycle is invalid
p2_as * s_dma * mmu_perr + permissions incorrect
p2_as * s_dma * tout + timeout

p2_as * vmeberr hold till end of cycle

@ Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

IICTOB Y516MS

56 2060 CPU Board Engineering Manual CONFIDENTIAL!

¢ 4. U203 Bus Error
Register

NOTE

Some of the bus error signals are latched into U203 to allow software to access
them and determine what kind of bus error was asserted. Note that the LSB of
the register, 1_d[0], is not connected. This bit is the watchdog reset bit, which is
supplied later by PAL U1403.

FPP and interrupt bus errors vector automatically to their individual traps, so
they do not need to be read by software through the bus error register.

The output enable for the bus error register is supplied by the assertion of
rd_berr-, a low active signal supplied by U1403 PAL. Data is loaded and latched
into the register by the upward transition of lberr, supplied by U202 bus error
PAL.

The bus error register latch signal, lberr, is activated by each bus error; thus
only the status of the latest bus error is latched into the bus error register.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!
y

U204 DSACK PAL

U204 DSACK PAL 59
10.1. Pinout of U204 PAL 59
10.2. U204 Input Signals ... 60

Bus Transfer SIZeoieermismseesmsssssssssmmsssssssssssses 60
Offset BitS ..o 60

10,3, G204 OULPULS ..o st 62

10.1. Pinout of U204 PAL

Figure 10-1

U204 DSACK PAL

The dsack PAL acts mainly as an OR gate, encoding acknowledges arriving from
all over the board through the PAL to drive the two dsack output lines. The
dsack output lines are used to inform the 68020 of the I/O data port size.

Pinout of the U204 PAL is;

U204 Pinout

/p2_as

p2_sizC

p2_sizl

p2_al

p2_al

ltyp0

/tsack

/msack

/dcpsack

gnd

KX XXX F T XX RRT N

TR XX

* 1> P

EER W
»* 2-
*wEw
* 3w
EEW
* 41
L R 21
* &%
W W
* 6!
*wH W
x I
*xx®
* av
*HH X
* gx
rwww
]0

* W R

a

EHRXXRENXTRR S ™ >

TR WX
1 *2C vee
¥ XY
*i0~ /dsacxl
W

*1ex /vsack
X R R

*17 /vecopyd
*www

16 /fpp_cs
*EYyR

*15~ /p_dtack
*E TR

14 nulg

* W W

*13x nuil
WK

12 /dsackl
Tk w

*11x /p2_ack

LA S &4

il*l"li’l’tﬁt!‘tl"l’ltt"i"ii’*t"'

59

{Rev 1 of 10 May 1987} CONFIDENTIAL!

60 2060 CPU Board Engineering Manual CONFIDENTIAL!

10.2. U204 Input Signals

Bus Transfer Size

Offset Bits

Table 10-1

@

—
p2_as-— = processor is doing a cycle
p2_siz[1:0] = size bits (for VME dynamic bus sizing)
p2_a[01:00] = address bits (for VME dynamic bus sizing)
leypO = 16-bit or 32-bit VME transfer
tsack- = dtack from IO type space - TTL devices
msack- = dtack from IO type space — MOS devices
dcpsack- = dtack from IO type space - DCP chip
p2_ack- = open collector dtack from main memory
vsack- = dtack from video frame buffer
vcopydet - = copy mode cycle ; wait for vsack
fpp_cs- = FPP cycle - float outputs
b_dtack- = dtack from VME type space

L

The P2 size bits, p2_siz[1:0], determine the size of the data transfer which is to
be made by the processor over the data bus. This ‘‘data size'’ is decoded in the
following table.

Data Size Encodings: (p2_siz[1:0])

P2 Size Bits Size of
p2_siz[1] | p2_siz[0] Transfer
0 0 longword (32 bits)
0 1 byte (8 bits)
1 0 word (16 bits)
1 1 3-byte (24 bits)

The two low order P2 address bits, p2_a[01:00]}, are used to determine the offset
from the base of the transfer. The ‘‘base’’ of a transfer is the bit at which the
least significant bit of the data being transferred lines up in the 32-bit bus transfer

space.

o A byte transfer is normally (assuming a zero-byte offset) transferred on lines
24-31 on the data bus, with its LSB aligning on bit 24.

sun

microsystems

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 10 — U204 DSACK PAL 61

Figure 10-2

Figure 10-3

Figure 10-4

Figure 10-5

o A word transfer is normally passed over lines 16-31 of the data bus (again
assuming a zero-byte offset), with its LSB aligning with bit 16.

O A three-byte transfer occupies data bus lines 8-31, LSB starting at bit §.
o Alongword transfer occupies all 32 data lines.

Byte Data Alignment Within the 32-bit Bus Spacet

bit 31 24 23 16 15 08 07 00
byte

transfer

P

|
- | '

Word Data Alignment Within the 32-bit Bus Spacet

bit 31 24 23 16 15 08 07 00

word

transfer 3

3-Byte Data Alignment Within the 32-bit Bus Spacet

bit 31 24 23 16 15 08 07 00
3-byte

transfer

Longword Data Alignment Within the 32-bit Bus Spacet

bit 31 24 23 16 15 08 07 00

longword
transfer

Remember that in a write cycle, the 68020 drives all 32 lines of the data bus
regardless of the actual size of the transfer. This means that all 32 lines arc
driven even though there may only be a byte (8 bits) of data actually being
transferred.

1These alignments are valid for data with a zero-byte offset only.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

62 2060 CPU Board Engineering Manual CONFIDENTIAL!

Figure 10-6

Table 10-2

10.3. U204 Outputs

However, the data can be offset from its base — that is, moved one or more bytes
to the right in the 32-bit data space.

o For instance, as described above, a byte transfer with no offset is transferred
on lines 24 through 31.

o A byte transfer with 1-byte offset will be shifted one byte to the right — that
is, transferred over lines 16 through 23.

o A byte transfer with a 2-byte offset will be shifted 2 bytes to the right of the
norm — that is, transferred on lines 8 through 15.

The figure below illustrates the different offsets that a byte-transfer may have
within a 32-bit longword.

Dynamic Bus Sizing — Transfer Offsets

31 24 23 16 15 08 07 00
byte transfer byte transfer byte ransfer byte transfer
0-byte offset +1-byte offset +2-byte offset +3-byte offset

And so on. The table below decodes the different offsets.

Base Offset Encodings: (p2_a[01:00])

P2 Address Bits Size of
p2_al01] | p2_a[00] | Offset
0 0 0 bytes

0 1 +1 bytes

1 0 +2 bytes

1 1 +3 bytes

For more information on transfers and offsets, please the MC68020 User’s
manual.

Outputs of U204 DSACK PAL are the two dsack bits, dsack[1:0]. They are used
as inputs by the processor to determine the port size to or from which it will
make an /O transfer. Port size can be 32, 16 or 8 bits.

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

THCTO6 YS16ms

(93]

Chapter 10 — U204 DSACK PAL 6

Table 10-3 Dynamic Bus Sizing: How dsack[1:0] Decode Port Size

DSACK Bits Size of
dsack{01] | dsack[00] Port

0 0’ 32 bits

0 1 16 bits

1 0 8 bits

1 1 No size—inserts
wait states into current
cycle.

Since every device has a unique address, there should never be an occasion when
more than one acknowledge is returned at the same time. However should more
than one acknowledge be returned simultaneously, the DSACK PAL will output
a *‘no acknowledge’’ (dsack[1:0] are equal to ones), and wait states are inserted
into the current cycle until a timeout bus error is incurred.

N
Q{ﬁ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MIcTos ystems

Interrupt Circuitry — U301:U300, J300 67

11.1. INEEITUPE PHOTILYooooecoerserecsneccsmsien s s s i 67
11.2. U301:0 Interrupt Enable Registers 68
11,30 JB00 oo seesessssesssssesssasees e sasiS SRS RSB SRR e 69

11.1. Interrupt Priority

Interrupt Circuitry — U301:U300, J300

The interrupt circuitry includes

o two interrupt buffer/registers, U300 and U301,

o the VME interrupt connector, J300,

o the interrupt priority encoder PALs, U304:2, and
o the interrupt priority latch, U305.

This chapter covers the the two interrupt registers and the VME interrupt connec-
tor.

Interrupt priority runs from level O (lowest priority) to level 7 (highest priority).
Interrupt levels are encoded to the three interrupt priority code bits, p_ipl(2:0),
which are connected to the interrupt priority level pins ipl(2:0) on the 68020.

o Interrupt level zero (low active ipl{2:0] bits are all high) indicates that no
interrupt service is presently requested.

o Interrupt levels one through six are ‘‘maskable’’ interrupts — they are vali-
dated after comparison with three interrupt status bits in the MC68020 status
register. '

1. If the value in the status register is greater (its interrupt priority is
higher) than this latest interrupt request, the latest interrupt request is
ignored. ‘

2. If the value in the status register is less than or equal to (its interrupt
priority is equal to or lower than) this latest interrupt, the latest interrupt
is *‘pending.”’ This means it will be serviced as soon as the present
interrupt cycle is completed.

o Interrupt level seven (low active ipl[2:0] bits are all low) is non-maskablec.
This means that it can not be inhibited by the interrupt priority mask (threc
interrupt status bits in the MC68020 status register). An interrupt request is
generated any time a request level changes from some lower level to level
seven.

@ sun 67 {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysiems

68 2060 CPU Board Engineering Manual CONFIDENTIAL!

2. U301:0 Interrupt
Enable Registers

NOTE

Table 11-1

The interrupt registers latch interrupt enable status bidirectionally. Write status
is held in U300, software readback status is done through U301. The register is
cleared on power-up by the assertion of init- from the U201 Reset PAL.

The interrupt register allows you to selectively generate one of three software
interrupts — levels 1, 2, or 3. Interrupt level 0 is used as a global interrupt
enable (high active en_int signal). Signal descriptions from the registers are
given below.

© EN.INT — This bit enables all interrupts, including those recorded in the
Memory Error register. If this bit is off, no interrupts can occur.

o EN.INT(3:1) — These bits cause software interrupts on the corresponding
level. The interrupt request caused by an EN.INT(3:1) bit stays active until
software clears the corresponding bit.

© EN.INT4 — enables video interrupt requests on level 4. When enabled, a
level 4 interrupt request is set on the rising edge of vertical retrace. A level
4 interrupt request is cleared by momentarily tuming off the EN.INT4 bit.

This bit, EN.INT4, has no effect in implementations which have no memory frame
buffers.

o EN.INTS — enables clock interrupt requests on level 5. When enabled, a
level 5 interrupt request is set on the rising edge of the clock interrupt out-
put. The level 5 interrupt request is cleared by momentarily tumning off the
EN.INTS bit.

o EN.INT6 — is a reserved bit. It can be read from and written to but has no
effect.

o EN.INT7 — enables clock interrupt requests on level 7. When enabled, a
level 7 interrupt request is set on the rising edge of the clock interrupt out-
put. The level 7 interrupt request is cleared by momentarily turning off the
EN.INT?7 bit.

Interrupt Register — Signal Designations

BIT NAME TYPE | MEANING

D<0> | EN.INT read-write | Enable all Interrupts
D<1> EN.INT1 read-write | Software Interrupt Level 1
D<2> EN.INT2 read-write | Software Interrupt Level 2
D<3> EN.INT3 read-write | Software Interrupt Level 3
D<4> EN.INT4 read-write | Enable Video Interrupt Level 4
D<5> EN.INTS read-write | Enable Clock Interrupt Level 5
D<6> EN.INT6 read-write | (reserved)
D<7> EN.INT7 read-write | Enable Clock Interrupt Level 7

The write interrupt register, U300, has data written into it from the TTL data bus
when a positive transition of wr_int- arrives from U1401 PAL (we use the posi-
tive edge of a negative active signal as clock here to allow for latch setup time).
The register is cleared to lows by the assertion of the processor reset signal,
p_reset-.

sun

mcros ystems

(Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 11 — Interrupt Circuitry — U301:U300,J300 69

The readback register is an ALS244 buffer whose output is enabled with the
assertion of rd_int- (a low active signal) to pins 1 and 19.

The register latches seven levels of interrupt enable and an eighth signal, vinten,
vertical interrupt enable, which clears the vertical interrupt flipflop, U2209, in the
video section of the board.

11.3. J300 J300 jumper allows you to individually enable or disable interrupts coming from
the VMEbus. This is a convenience in situations where you are using more than
one CPU, by allowing you to assign individual interrupts to separate CPUs.

S
Q{& sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ysiems

Interrupt Circuitry — U302-U304
PALs, U305 Register

Interrupt Circuitry — U302-U304 PALs, U305 Register ...

12.1. Interrupt REQUEST CYCI® ...
12.2. Interrupt Acknowledge Cycle

12.3. Prionity ..

12.4. Two-Level Priority Encoding

12.5. U302 Lower-Priority Encoder ., ettt e ssesreseseseeenes e s eet e e esson
UB02 PINOUL ..o ssssssosss sttt
U302 INPUL SIZNALS ..ot e
U302 Output SIgnals ...

12.6. U303 Higher-Priority Encoder
UB03 PINOUL ... e st
U303 INPUL SIGNALS ..o,
U303 Output Signals ..o

12.7. Second-Level Interrupt Priority Encoder — U304
Pinout 0f U304 PAL oo .
U304 INPUL SIZNALS ..o s
U304 Output Signals
Sample INErrupt CYCIE ... e

Spurious Interrupt

Ethernet Controller and Spurious Interrupts
12.3. U305 Latch

NOTE

12.1. Interrupt Request
Cycle

Interrupt Circuitry — U302-U304
PALs, U305 Register

This Chapter covers the three interrupt PALSs, U304:2, on page three of the
schematics. It also describes the interrupt priority latch, U305.

Interrupts can come from the

o VMEbus (through J300 header)

o on-board devices .

o interrupt enable register (U300), or be
o spurious (false).

A spurious interrupt is an interrupt which is asserted and then deasserted before
the processor can complete an interrupt acknowledge cycle. Typically, an inter-
rupt level is asserted but no dsack(1:0) bits or autovector signal (p_avec-) is
returned to conclude the interrupt acknowledge cycle.

There are two parts to an interrupt cycle:
1. arequestcycle, and

2. aninterrupt cycle.

On interrupt request cycles, a device or interrupt request is asserted to the either
the high or low priority encoder (U302 or U303). The interrupt request level is
then output from the appropriate PAL on the three interrupt priority code lines,
ipc(2:0), to PAL U304.

This interrupt priority code level is then encoded by U304 onto the three inter-
rupt priority level lines p_ipl(2:0) which are connected to the processor.

This concludes the interrupt request cycle.

sun 73 {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOs yS16ME

74 2060 CPU Board Engineering Manual CONFIDENTIAL!

---> Signals flow from left to right --->

Figure 12-1 [Interrupt Request Cycle
high hp_eo
priority
) interrupt request encoder
Device U303 o
interrupt 1pc(2:0)
requests enable input
U304 P-pl2:0) 68020
enable input
i e ipc(2:0)
interrupt low
requests prionity
encoder Ip_eo
U302

‘2.2, Interrupt

Acknowledge Cycle

@

The processor completes the second half of an interrupt cycle, the interrupt ack-
nowledge cycle, by issuing the acknowledged priority level on three processor
address lines, p_a(03:01), which are connected to the upper and lower priority
encoders, U302 and U303. The appropriate encoder issues a 2-bit acknowledge

signal to U304 on either

0

=]

hp_ack(1:0) — high priority encoder, or

Ip_ack(1:0) — low priority encoder.

U304 then decodes this 2-bit acknowledge and issues the appropriate interrupt
acknowledge signal:

[w}

D

o

o autovector.
sun

interrupt bus error

VMEbus interrupt

SCC interrupt acknowledge, or

microsystems

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 75

Figure 12-2

Interrupt Acknowledge Cycle

68020

p_a(03:01)

low
priority
encoder
U302

Ip_ack(1:0)

high
priority
encoder

U303

U304

hp_ack(1:0) SCCS Interrupt U305
synchronizer

autovector

---> Signals flow from left to right --->

VME interrupt

bus error

clock synch

Before issuing any sort of interrupt signals of their own, U303 and U302
make certain that there are no interrupts pending of a higher priority than
that they are about to service.

o

If a higher-priority interrupt is pending, the interrupt acknowledge cycle
is allowed to complete before this new one is initiated.

If no higher-level interrupt is pending (or the interrupt pending is of an
equal or lower priority than the earlier interrupt about to be serviced) the
earlier interrupt cycle is completed.

Thus, the progression through an interrupt cycle is:

Request --> Pending --> Acknowledge --> Service

These acknowledge signals encode various types of interrupts:

=]

4
1%
g
=

autovector — the p_avec- signal is asserted by most on-board devices,
forcing the processor to generate an intemnal vector number;

vectored on-board interrupt — vectors to the SCCs;
vectored interrupts from the VMEbus;

finally, there may be no response, which indicates that no interrupts are
pending (spurious interrupt).

{Rev 1 of 10 May 1987) CONFIDENTIAL!

76

2060 CPU Board Engineering Manual CONFIDENTIAL!

Figure 12-3

A flow chart of the interrupt acknowledge cycle is provided below.

Interrupt and Acknowledge Cycle

Interrupting Device

1. Interrupt request is asserted by device
2. Interrupt is asserted on p_ipl(2.0) lines

Processor

1. Interrupt Request Level compared with Interrupt Mask
a. If higher level priority,
interrupt is serviced
b. If lower level priority,
inlerrupt is not recognized
2. Read/Write- signal asserted
3. Function Code set to 0x7, CPU space
4. Interrupt level placed on p2_a(2:0) address lines
S. Size bits (siz[1:0]) set to transfer size
6. Address strobe (p2_as-) and data strobe (p2_ds) asserted

Interrupting Device
Provides Vector Number

1. Vector number gemerated
2. Port size dsack(1:0) bits asserted from device, or
3. Awovector generated (avec- asserted)

Processor
Acquires Vector Number

1. Vector number latched
2. p2_as-and p2_ds deasserted

Processor

Interrupting Device

Starts interrupt processing

Releases bus

(Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 77

12.3. Priority

12.4. Two-Level Priority

Encoding

Table 12-1

@

Priority goes to the on-board interrupts on both encoding and acknowledging.

The two-level priority encoder uses three PALs — U304:U302 — and a latch,
U30S. The first level of encoding is done by the two PALs, U302 and U303.
Second level encoding is done by U304.

It is necessary to use two levels of encoding because there are too many inputs to
be handled by a single PAL. Therefore the pair of PALs, U302 and U303, exe-
cute a first-level encoding; their outputs are encoded by the second-level PAL,
U304, whose outputs are the final interrupt and acknowledge signals.

The first level of encoding is split between
o U302 — which handles the lower priority interrupts and
o U303 — which handles the higher priority interrupts.

When one of the two encoders processes an interrupt, it issues an interrupt prior-
ity code to the second-level encoder, U304, over the ipc(2:0) lines.

The two first-level encoders, U302 and U303, are daisy chained together by the
output enable signal /hp_eo, which arbitrates between U302 and U303. If U303
deasserts the low active /hp_eo signal, it:

1. notifies U304 that U303 will have control of the ipc(2:0) lines, and

2. disables U302, the lower-level priority encoder. This ‘‘lock-out’’ ensures
that the highest priority interrupt request takes precedence, preventing bus -
contention. .

Otherwise, U302 asserts /p_eo, indicating that it (U302) will have output on the
ipc(2:0) lines. '

The 2-bit 1Ip_ack(1:0) and hp_ack(1:0) acknowledge bits encode the three types
of interrupt acknowledge:

Low Priority Acknowledge Bit Encodings: Ip_ack(1:0)

Priority Address Bits Type of
Ip_ack[01] | Ip_ack[00] Vector
1 1 Autovector
1 0 Not used
0 1 VME vector
0 0 Spurious Interrupt!t

+1f 1p_ack(1:0) = 00 and the p2_a(3:1) address bits equal 0x7, 0x6, or 0x5, this code does not indicate a
spurious interrupl. 1t merely indicates an interrupt on that respective level — 5, 6, or 7, which is of no
interest to this encoder.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

TIcros ystems

78 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 12-2 High Priority Acknowledge Bit Encodings: hp_ack(1:0)
Priority Address Bits Type of
hp_ack[01] | hp_ack[00] Vector
1 1 Autovector
1 0 SCC interrupt
0 1 VME vector
0 0 Spurious interrupt!$
Concatenation of these two tables, Ip_ack and hp_ack, result in the following
derivations:
Table 12-3 Type of Interrupts Encoded by hp_ack(1:0) and Ip_ack(1:0)
‘ Priority Address Bits Type of
| Ap _acix[01] | hp_ack[00] | Ip_ack[01] Ip_ack[00] Vector
| 0 0 0 0 spurious interrupt
.0 0 0 1 vmevec - low priority section
) 0 1 0 sccvec - low priority section - ILLEGAL
0 0 1 1 autovec - low priority section
0 1 X T X vmevec - high priority section
1 0 X X sccvec - high priority section
1 1 X X autovec - high priority section

12.5. U302 Lower-Priority

Encoder

U302 encodes interrupt levels 4, 3, 2, 1 and 0; the lower-level interrupts. It also
encodes the lower-priority acknowledges.

$1f hp_ack(1:0) = 00 and the p2_a(3:1) address bits equal 0x3, x2, Ox1, or 0x0, this code does not
indicate a spurious interrupt. It merely indicates an interrupt on that respective level — 3, 2, 1, or 0, which
is of no interest to this encoder.

+1'X"" means ‘‘don't care.”’

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 79

U302 Pinout

U302 Input Signals

Figure 124

Pinout for the U302 PAL is:
U302 Pinout
(8222228284222 EHFRFE X RXERN d W
* *
TR XK L2 2 21
en_intl * 1% pal *20* vcc
* W kR B TR WX
ern_int2 * 2> *19+ lp_ackC
4 2 &3 * kWK
en_int3 * 3* *18* p2_a3
WKW TR ® W
/b_irgl * 4> *17* /hp_ec
W R R LB AR]
/b_irg2 * 5* *16* /lp_ec
Tk wR LA R B3
/b_irg3 * 6 . *15% /ipel
rE > L2 2 84
/b_irq4 * I *14> /ipcl
* A KW LA 8]
e _irg * g *]23x /ipe2
W W R R TR® X
p2_al * 9> *12> ip_ackl ~
LA A XEE X
gnd *1Cx *1l* p2_a2
*R XK XXX
* *

R R T AT KA ARE R TRANANRARFRRRRNNAR

Inputs to the U302 PAL are:
. —

en_int [3:1] = software interrupt enables from TTL data bus
b_irg{4:1] = interrupt requests from the VMEbus

e_irq = Ethernet chip interrupt requesﬁ

p2_a[03:01) P2 address bits which are used by the processor
to indicate which level of interrupt is

being acknowledged

hp_eo = high-level priority encoder enable output, which
is used to disable U302 to avoid bus contention
with U303.
\
sun {Rev 1 of 10 May 1987) CONFIDENTIAL!
microsysterms

80 2060 CPU Board Engineering Manual CONFIDENTIAL!

'302 Output Signals Two types of signals are decoded through the lower-level priority encoder:
o acknowledge encode
o priority encode.

Acknowledge encode signals, /lp_ack1 and /Ip_ack0, are the result of the follow-

ing equations:
.
/lp_ackl = p2_a3 +
/e_irq * /en_int3 * b_irqg3 * p2_a2 * p2_al +
/en_int2 * /p2_al +
/en_intl * /p2_a2 +
/p2_a2 * /p2_al
/lp_ack0 = p2_a3 * p2_a2 +
p2_a3 * p2_al +
/b_irg4 * /p2_a2 * /p2_al +
/en_int2 * /b_irq2 * p2_a2 * /p2_al +
/en_intl * /b_irql * /p2_a2 * p2_al +
/p2_a3 * /p2_a2 * /p2_al
\ J
The table below contains the PAL logic from which each output signal is
derived.
@ sun (Rev 1 of 10 May 1987) CONFIDENTIAL!
MICIos ys1ems

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 81

Table 12-4 Lower Priority Acknowledge Signals

Inputs Outputs Comments
b_irg4- | e_irg _int3 | b_irg3- | en_im2 | b_irg2- | en_int]l | b_irql- | p2_a3 | p2_a2 | p2_al || lp_ackl lp_ack0
X+ X X X X X X X 1 1 1 0 0 level 7

X X X X X X X X 1 1 0 0 0 level 6

X X X X X X X X 1 0 1 0 0 level 5

0 X X X X X X X 1 0 0 0 1 vectored VME
interrupt, leve] 4

1 X X X X X X X 1 0 0 0] spurious inter-
rupt, level 4

X 1 X X X X X X 0 1 1 1 1 level 3 autovector
(Ethemnet)

X 0 1 X X X X X 0 1 1 1 1 level 3 autovector
(system enable
interrupt)

X 0 0 0 X X X X 0 1 1 0 1 vectored VME
interrupt, level 3

X 0 0 1 X X X X 0 1 1 1 1 special case—
spurious Etherne.
interrupts

X X X X 1 X X X 0 1 0 1 1 level 2 autovector
to system enable
interrupt

X X X X 0 0 X X 0 1 0 0 1 level 2 VME vec-
tored interrupt

X X X X 0 1 X X 0 1 0 0 0 spurious level 2
interrupt

X X X X X X 1 X 0 0 1 1 1 level 1 autovector
(system enable

7 interrupt)

X X X X X X 0 0 0 0 1 0 1 level 1 VME vec-
tored interrupt

X X X X X X 0 1 0 0 1 0 0 spurious leve! 1
interrupt

X X X X X X X X 0 0 0 0 0 level O interrupt

4+‘X"’ means ‘‘don’t care.”’

{Rev 1 of 10 May 1987} CONFIDENTIAL!

82

2060 CPU Board Engineering Manual CONFIDENTIAL!

The priority encode signals, ipc[2:0] and 1p_eo, are the result of the following

PAL equations:
’
ipc2 = hp eo * b irqd +
hp eoc * e_irq +
hp eo * en_int3 +
hp_eo * b_irqg3
ipcl = hp eo * b_irq4 +
hp_eo * e_irqg +
hp_eo * /en_int3 * /b _irq3 * en_int2 +
hp_eo * /en_int3 * /b_irg3 * b_irqg2
ipcO0 = hp eo * b_irqd +
hp_eo * /e_irq * en_int3 +
hp eo * /e irq * /b_irg3 * en_int2 +
hp eo * /e_irq * /b_irg3 * /b_irq2 * en_intl
lp_eo = /hp_eo + cannot be asserted when hp_eo is deasserted
/b_irq4 * /e _irq * /en_int3 * /b irg3 *
/en_int2 * /b irq2 * /en_intl * /b_irql
\ J

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 8

(93]

The following table contains the PAL logic from which each output signal is

derived.
Table 12-5 Lower Interrupt Priority Encode Signals
Inputs Outputs Comments
hp_eo- |-b_irqd- | e_irg | en_int3 b_irg3- | en_int2 | b_irg2- | en_intl | b_irgl- || ipc2- ipcl- | ipcO- | lp_eo-

1 Xt X X X X X X 1 1 1 0 interrupts disabled

0 1 1 1 1 1 1 1 0 no interrupts

0 0 X X X X X X 0 0 0 1 VME vector - level
4 - VME level[4]

0 1 1 X X X X X 0] 1 1 Autovector - level 3 -
ethernet

0 1 0 1 X X X X 0 1 0 1 Autovector - level 3 -
system enable int

0 1 0 0 0 X X X 0 1 1 1 VME vector - level
3 - VME level[3]

0 1 0 0 1 1 X X 1 0 0 1 Autovector - level 2 -
system enable int

0 1 0 0 1 0 0 X 1 0 1 1 VME vector - level
2 - VME level(2]

0 1 0 0 1 0 1 X 1 1 0 1 Autovector - level 1 ~
system enable int

0 1 0 0 1 0 1 0 1 1 1 1 VME vector - level 1
- VME level{1]

4+X*’ means **don’t care.”’

(Rev 1 of 10 May 1987) CONFIDENTIAL!

84 2060 CPU Board Engineering Manual CONFIDENTIAL!

*2.6. U303 Higher-Priority

Encoder

U303 Pinout

U303 Input Signals

Figure 12-5

This section contains the signal description for U303 higher-priority encoder.

Pinout for the U303 PAL is:
U303 Pinout
LA 220 SRS REE] XX A AR K N NN
LR 2 3 L824
/b_irq5 * 1* pal *20* vcc
XEW XXX K
/b_irqé x 2% *19* hp_ack?
TEAR XRWKR
/b_irg? * 3 *x18* p2_a3l
LA 8 83 LR 2 &4
par_irg * 4 *17~ nul?
L8 & &4 LR 2 84
clk_irg? * 5x *lé~ /np_ec
LE A A4 KW N
/scc_irt * 6* *15* /ipcC
rw R KX W XN
clk_irgst LA *14x* /ipcl
LB & &4 * Wk W
vertint * 8> *13~ /ipc2
XKW XK X R
pl_al o= *12* hp_ack>
LA 81 XWX
cnd *10x *11~ p2_a2
KX X XXX
X T AT A AN AN AT AN NXRXRR TR K
Inputs to the U303 PAL are:
(A
b _ irqg{7:5] = interrupt request from the VMEbus
par_irgqg = parity circuitry interrupt request
clk_irg? = time-of-day clock interrupt on level 7
scc_int = serial controller interrupt
clk_irg5s = time-of-day clock interrupt on level 5
vertint = interrupt from the vertical state machine
in the video section
p2_a[02:00] = P2 address bits (for readback of present interrupt
level being acknowledged)
N J

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 12 — Interrupt Circuiry — U302-U304 PALs, U305 Register 85

U303 Output Signals Just as in U302, two types of signals are decoded through the higher-level prior-
ity encoder:

o acknowledge encode
o priority encode.

Acknowledge encode signals, /hp_ack1 and /hp_ackO, are the result of the fol-
lowing equations:
(N

/hp_ackl = /par_irg * /clk_irq7 * p2_a2 * p2_al +
/scc_int * p2_a2 * /p2_al +
/clk_irq5 * /p2_a2 * p2_al +
/vertint * /p2_a2 * /p2_al +
/p2_a3

/hp_ack0 = /par_irq * /clk_irq7 * /b_irqgl * p2_a2 * p2_al +
scc_int * p2_a2 * /p2_al +
/b_irg6 * p2_a2 * /p2_al +
/clk_irq5 * /b_irqS5 * /p2_a2 * p2_al +
/vertint * /p2_a2 * /p2_al +
/p2_a3

L

The table below contains the PAL logic from which each output signal is
derived.

S
Q{’/‘ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

86 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 12-6 ~ Higher-Level Priority Acknowledge Signals

Inputs Outputs Comments
par_irg | clk_irq7 | b_irq7- | scc_int- | b_irg6- | clk_irgS | b_irgS- | venint | p2_a3 | p2_a2 | p2_at hp_ackl | hp_ack0
1 Xt X X X X X X 1 1 1 1 1 Autovector -
level 7 - parity
error
0 1 X X X X X X 1 1 1 1 1 Autovector -
level 7 - system
|i clock
oo 0 0 X X X X X 1 1 1 0 1 VME vector -
; level 7 - VME
| level[7]
!) 0 1 X X X X X 1 1 1 0 0 spurious - level
7
X X X 0 X X X X 1 1 0 1 0 sccvec - level 6
- serial chips
X X X 1 0 X X X 1 1 0 0 1 VME vector -
level 6 - VME
level{6]
box X X 1 1 X X X 1 1 0 0 0 spurious - leve,
l 6
L ox X X X X 1 X X 1 0 1 1 1 || Autovector -
i level 5 - system
i clock
X X X X X 0 0 X 1 0 1 0 1 VME vector -
’ level 5 - VME
level(5]
X X X X X 0 1 X 1 0 1 0 0 spurious - level
5
X X X X X X X 1 1 0 0 1 1 Autovector -
level 4 - video
interrupt
X X X X X X X 0 1 0 0 0 0 spurious - level
: 4
X X X X X X X X 0 1 1 0 0 level 3
X X X X X X X X 0 1 0 0 0 level 2
X X X X X X X X 0 0 1 0 0 level 1
X X X X X X X X 0 0 0 0 0 level 0

+X"" means ‘‘don't care.”

@ Sun . {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTosystems

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 87

Higher-level interrupt priority encode signals, hp_eo and ipc[2:0], are the result
of the following equations:
[h

if (/hp_eo) ipc2 = par_irqg +
clk_irqg7 +
b_irq7 +
scc_int

[)
if (/hp_eo) ipcl = par_irq +
clk_irq7 +
/b_irql * /scc_int * b_irqg6 +
/b_irq7 * /scc_int * elk_irgd

if (/hp_eo) ipcO = par_irq +
/elk_irq7 * b_irq? +
/clk_irqg? * /scc_int * b_irqgé +
/clk_irg7 * /scc_int * /clk_irq5 * b_irgS
. J

e

hp_eo = /par_irg * /clk_irql * /b_irqg7 * /scc_int *
/b_irgé * /elk_irg5 * /b_irg5 * /vertint

l

The table below contains the PAL logic from which each output signal is
derived.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

53 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 12-7 Higher-Level Interrupt Priority Encode Signals

| Inputs Outputs Comments
|
{ par_irq | dk_irq7 | b_irq7- | scc_int- | b_irg6- | clk_irgS | b_irgS- | vermint || ipc2- | ipcl- | ipcO- | hp_eo-
o 0 1 1 1 0 1 0 1 1 1 0 || no interrupts
[X X X X X X X 0 0 0 1 Autovector - level 7 -
} parity error
.0 1 X X X X X X 0 0 1 1 || Autovector - level 7 -
| ! system clock
s | o 1 oo X X X X X o | 1]| o 1 || VME vector - level 7
| - VME level[7]
2 10 1 0 X X X X 0 1 1 1 sccvee - level 6 -
i serial chips
Y 1 1] X X X 1 0 0 1 VME vector - level 6
i - VME level[6]
o ! o 1 1 1 1 X X 1 0 1 1 Autovector - level 5 -
! i system clock
! o 1 1 1 0 0 X 1 1 0 1 || VME vector - level 5
i - VME level(5]
o i 0 1 1 1 0 1 1 1 1 1 1 || Autovector - level 4 -
| video interrupt

4
17,
=]

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 89

12.7. Second-Level The second-level priority encoder takes the outputs of the two first-level priority

Interrupt Priority encoder PALs, U302 and U303, and encodes them to issue as interrupt priority
Encoder — U304 and acknowledge signals.
Pinout of U304 PAL : Pinout of the U304 PAL is:

Figure 12-6 U304 Pinout

L3222 222228282 S 1232222222820 81
* * x *
LA A4 TEEW
en_int * 1+ pal *20* vcc
xR kR LA A 21
/lp_eo * 2* *19* /k_inta
*H XK TR KW
/ipcO * 3% *x18x /p_inta
*TERE T XX
/ipcl * 4 *17* /E_ipiC
T ERXK KX R T
/ipc2 * Sx *16* /r_ipll
XXX *WEX
lp_ackD0 * 6 *15+ /p_iplz
TEKR K X W W
lp_ackl * 7~ *14* /int_be
XXX L2 2 a4
/hp_ec * 8% *i3» /p_avec
TR KK L& 8 34
hp_ack?l * g» *12* /scc_ack
TR W *wwE®
gnd *10* *11* kg _ackl
R R R LA S 83
* *

2223 X223 222222 oSSRl ed s

@ sSun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICros ystems

|

90 2060 CPU Board Engineering Manual CONFIDENTIAL!

104 Input Signals

N

U304 Output Signals

@
F19,]
Ef=

(\
en_int = global interrupt enable
/hp_eo = enable output from U303 (locks out U302}
/lp eo = enable output from U302 (cannot be asserted

when /hp_eo is deasserted)

/ipc(2:0) = interrupt priority code from either U302
or U303 (/hp_eo signal arbitrates source)

/p_inta = processor interrupt acknowledge

hp_ack(1:0)= encode of vector-type being asserted from
higher-level priority encoder

lp ack(1l:0)= encode of vector-type being asserted from
lower-level priority encoder

_ J

Output signals for the U304 PAL are:
(N

/p_ipl(2:0) = interrupt priority level sent back to the
processor to notify what level interrupt
is being asserted

int_berr- = bus error interrupt

b_inta- = VMEbus interrupt acknowledge

scc_ack- = SCC interrupt acknowledge

p_avec- = tells the processor to generate an autovector
. J

The table below contains the PAL logic from which the acknowledge and bus
error signals are derived.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 91

Table 12-8 U304: Second-Level Acknowledge Signals

Inputs Outputs Comments

p_inta-

hp_ackl

bp_ack0 | lp_ackl | lp_ack0

g

b_inta- | scc_ack- | p_avec-

O O 0 0 0O O O =

—_—- 0 O O O O

X X X not doing an interrupt cycle

spurious interrupt

vmevec - low priority section

sccvec - low priority section - ILLEGAL
autovec - Jow priority section

vmevec - high priority section

sccvec - high priority section

autovec - high priority section

-0 = 0O 0O O O
M X Y - = o O
XA~ O -0
e~ i =
—_ et D e et D e s
b D bt bt b bmd et e
QO = et O et s e s

The table below contains the PAL logic from which the interrupt level signals,
ipl(2:0), are derived.

Table 12-9 U304: Second-Level Interrupt Priority Level Signals

Inputs Outputs Comments

en_int

hp_co- | lp_eo- | ipc2-

p_ipl2- | p_ipll- | p_iplO-

3

— s hs et b bk bk b bes ket b bk et bed e s s (O

interrupts disabled

no interrupts active

autovec - level 7 - parity error
autovec - level 7 - system clock
vmevec - level 7 - VME level[7]
sccvec - level 6 - serial chips
vmevec - level 6 - VME level[6]
autovec - level 5 - system clock
vmevec - level 5 - VME level[5]
autovec - level 4 - video interrupt
vmevec - level 4 - VME level[4]
autovec - level 3 - ethernet

autovec - level 3 - system enable int
vmevec - level 3 - VME level[3]
autovec - level 2 - system enable int
vmevec - level 2 - VME level[2]
autovec - level 1 - system enable int
vmevec - level 1 - VME level[1]

OOOOOOOO-—-—-—-—-—-..-..-_.Qx
e o e e e oo A X X M M M X O X
—_ et e e D O O O o oo OO O O XM
—_ et O O e OO = e OO == O O MY
—O-—O—no.—o-—-o_o._o...oxx'g
—_ s et s s e = O O O OO O O O O =
—_ -0 O O 0 O o o= = OO0 0O O O = -
O O = = O DO =0 0 = = 0 0 O = =

D
Q{y sSsun {Rev 1 of 10 May 1987} CONFIDENTIAL!

mCTos ystems

92 2060 CPU Board Engineering Manual CONFIDENTIAL!

.__.mple Interrupt Cycle

Spurious Interrupt

This subsection runs you through a sample interrupt cycle. Let’s say that a video
interrupt is being asserted — level 4 autovector.

The first step in the interrupt cycle is for the interrupting device (the video circui-
try) to issue an interrupt request. It does this by asserting the vertical retrace
interrupt signal, vertint, from U2209 vertical interrupt flip-flop.

o Vertical interrupt is coupled to U303 PAL.

o U303 deasserts hp_eo-, indicating to U304 that it (U303) will take control of
the ipc(2:0) bus it shares in common with U302. This also locks U302 off of
the ipc(2:0) bus.

o Interrupt level four is encoded onto ipc(2:0) lines from U303 into U304.
o U304 issues the video interrupt level over the ipl(2:0) lines to the 68020.
This concludes the interrupt request half of the cycle.

Next, the processor runs an interrupt acknowledge cycle,

o If no higher-level interrupt request is pending, the 68020 processor issues the
video interrupt acknowledge over its address lines, p_a(3:1), which are cou-
pled to PAL U303.

o The p2_a(3:1) address bits are set to the interrupt level, level 4. These are
decoded through U303 to select either an autovectored video interrupt, or a
spurious interrupt. Differentiation between these two is made by the asser-
tion or deassertion of the vertint signal — vertical retrace interrupt. If ver-
tint is false, then the system initiates an interrupt bus error and vectors to the
spurious interrupt trap. If vertint is valid (high), the interrupt is ack-
nowledged on the two higher-level encoder acknowledge lines, hp_ack(1:0).

o The processor interrupt acknowledge signal, p_inta-, is input to U304.

o U304 makes certain that the processor interrupt acknowledge, p_inta-, from
U107 is true before issuing the p_avec- (processor autovector signal).

Remember that during an interrupt acknowledge cycle the interrupt level, level 4,
is asserted on address lines A03:01. All the rest of the address lines, A31:04, are
driven high; the three function code bits, FC2:0, are also driven high. This
uniquely identifies the current processor cycle as an interrupt acknowledge cycle.
Decoding these address and function code bits, the U107 CPU space PAL issues
the low active processor interrupt acknowledge signal, p_inta-.

A spurious interrupt occurs when an interrupt signal is asserted, an interrupt
cycle is run, but the interrupting device has taken away the request. When this
happens, U304 deasserts all its outputs except for int_berr-, interrupt bus error,
which is coupled to the U202 bus error PAL. One example of a spurious inter-
rupt is to run a VME interrupt acknowledge cycle and then have the device
requesting the interrupt not respond to the vector fetch cycle.

There is a special case, though, in which symptoms that normally would indicate
a spurious interrupt are not recognized. This is the case of the asynchronous Eth-
ernet chip, described below.

Sun . (Rev 1 of 10 May 1987} CONFIDENTIAL!

microe ysteme

Chapter 12 — Interrupt Circuitry — U302-U304 PALs, U305 Register 83

Ethernet Controller and

Look at the PAL logic (the table below) for the Ethemnet controller.

Spurious Interrupts
Table 12-10 Spurious Ethernet Interrupts
Inputs Outputs Comments
b_irgd- | e_irq | en_im3 | b_irq3- | en_int2 | b_irg2- | en_iml | b_irgl- | p2_a3 | p2_a2 | p2_al || Ip_ackl | Ip_ack0
——
X 1 X X X X X X 0 1 1 1 1 level 3 autovector
(Ethemet)
X 0 0 1 X X X X 0 1 1 1 1 special case—
spurious Ethemnet
interrupts

3

The Ethemnet controller interrupts on level 3, p2_a(3:1) = 0x3, while e_irg- (Eth-
ernet controller interrupt request) is asserted. This causes a level 3 autovector
code to be transmitted over 1p_ack(1:0) outputs as normal. The spurious inter-
rupt capability is also accounted for on this level. However notice what happens
when the symptoms of a spurious interrupt occur (taken from the table above):

o e_irqis low (false)
o en_int3 is low (false)
o b_irg3- is high (false)

This indicates that neither an Ethemet controller interrupt (e_irq is false), nor a
system enable interrupt (en_int3 is false), nor a VME interrupt (b_irq3- is false)
are requesting an interrupt. And yet a level 3 interrupt has been asserted over
p2_a(3:1). A classic case of the spurious interrupt?

No.

The Ethemet controller has a ‘‘feature’’ built into it which allows it to raise and
lower its interrupt asynchronously. Thus the processor may see an interrupt
raised, but by the time it has gone out to acknowledge that interrupt it may find
that the interrupt request has temporarily disappeared. When this happens on
interrupt level 3, the system does not vector to the spurious interrupt trap as it
would on any other level; instead it takes for granted that this disappearing
interrupt was asserted by the Ethernet controller. And U302 asserts valid Ether-
net autovector signals on its Ip_ack(1:0) output lines.

The cause of this is the Intel Ethemet controller, which can raise and lower its
interrupt request line asynchronously in order to protect on-chip status informa-
tion. The Intel Ethernet chip has no on-chip status registers to synchronously
latch status data; status data can be updated any time. However any update to the
status register of the Ethernet controller chip is presaged by the deassertion and
then assertion of an interrupt request; since status updating can occur asynchro-
nously, it follows that the interrupt request can also rise and fall asynchronously.

This is why, if the conditions for a spurious interrupt are true on a level 3 inter-
rupt request, the processor takes it for granted that this spurious condition was
caused by the Ethernet controller, and instead acts as if it is a normal Ethernet

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

34 2060 CPU Board Engineering Manual CONFIDENTIAL!

interrupt request.

12.8. U305 Latch Since the outputs of the three PALs, U304:2, are combinatorial (that is to say,
asynchronous), certain of their outputs need to be latched to preserve their state.
This is done in U305.

o When cs3- is high, U305 acts as a transparent latch, that is, data at its inputs
pass through within a propagation delay on the latch’s outputs. Any change
of data at the inputs will appear (within the bounds of this same propagation
delay) at the latch’s outputs.

o When cs3- is low, data is also latched into the latch. However data output is
not enabled until the assertion of a low active output enable signal. Since
the outputs are permanently enabled by the connection of pin 1 (output
enable) to a pulldown resistor, the only limitation (outside of the inherent
propagation delay) on data transmission through U305 are the input setup
time requirements.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

&
AN
)

ATE Pulldowns — U407

ATE Pulldowns — U407 97

%
1%
s

ATE Pulldowns — U407

Instead of tying unused signals to ground, they are tied to active pulldown resis-
tors, through U407 octal line drivers. These line drivers are inverters, with out-
puts permanently enabled by having low active output enables at pins 1 and 19
tied to ground.

Active pulldowns allow ATE overrides for test fixtures.

97 {Rev 1 of 10 May 1987) CONFIDENTIAL!

Clock Generation — U400-U406

Clock Generation — U400-U406

14.1.
14.2.
14.3.
144.
14.5.

Pinout of U400 Clock PAL

U400 Input Signals

U400 Output Signals
U401 Flip-Flops ..

U402 Flip-Flops .

101

101
102
103
104
104

14.1. Pinout of U400 Clock

PAL

Figure 14-1

@
N
am

Clock Generation — U400-U406

A single crystal supplies clock signals for the 2060 board:
o 33.33 (ad nausearn) MHz U403 supplies 16.667 MHz (60 nsec) clock.

This clock may be supplied independently to both the 68020 processor and the
68881 coprocessor by way of the J400 jumper, U400 and U406.

Pinout of U400 clock PAL is:

U400 Pinout

/cs2_3
c60
c60inv
c60k
/csé
/cs4_5S
/cs5
/cs6
/es7

gnd

KhkkT AKXk kkkkxk*k

*
kx
* 1%
*xk %
* 2%
*kkx
* 3%
* Xk K
*x 4%
LT
* 5
Ak k
* g%
Akkk
* Ik
KKk
* g%
XEk %
* g%
LR R
*10%
XxA K

LSRR E TR
*
LEE R

1 x20%*
*k*Kh
*]Q9%
LE &
18
LR E R
*17x
* k%%
*]1 6%
*E ko
*]5x%
xRk KK
14
*hk ok
*x]13%
* ok kk
*]12%
* %k kk
*1]1%
L2 & &

KA XA RAX KA AR R AR AR AR A AR AR R A A kA ®

101

vee
oc60
oc60inv
océ60k
/ocs4
/ocs4_5
/ocsS
/ocsé6
/ocs?

/elkinh

{Rev 1 of 10 May 1987) CONFIDENTIAL!

102 2060 CPU Board Engineering Manual CONFIDENTIAL!

14.2. U400 Input Signals

Figure 14-2

If you look at the schematics on page 4, you will notice that many of the inputs
to the U400 clock generator PAL are actually outputs from the state machine.

The PAL can be divided into two sections: the top three outputs are all 60 nsec
system clock:

o ¢60 clock
o inverted c60 clock
o a constant version of c60 clock, labelled c60k.

This c60k signal is unlike c60 and c¢60-. These last two can be stretched (making
c4.5, etc.).

' The state diagram below illustrates the generation of c60, ¢60-, and c60k. The

“‘stretch’’ occurs in the transition from state 100 to 101, or 101 to 100.

Clock Stretch (cs4 — cs4.5) State Diagram

(states at each node are c60, c60-, and c60k)

else

(c60, c60-,c60k)

csAMesd.5

(c60, c60-,c60k)

always

The bottom five inputs to U400 are the resultant clock states: ¢s4, ¢s4.5, cs5, cs6,
and cs7.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 14 — Clock Generation — U400-U406 103

14.3. U400 Output Signals

4
17
tfe=

Inputs to U400 PAL are:

(N
cs2_3 = signal occurring between cs2 and cs3 which is
used to start cs4

c60 = 60 nsec system clock
c60inv = inverted 60 nsec clock
c60k = 60 nsec constant clock
/cs4 = clock state 4

/cs4_5 = stretched cs4 (30 nsec wait state inserted)

/cs5 = clock state 5

/csé = clock state 6

/cs? = clock state 7

/clkinh = inhibits clock stretch during FPA or 68881
bus cycles

Output signals from the U400 PAL are latched in U406, these output signals can
be separated into two categories:

o system clock — ¢60, ¢60-, and c60k
o phases of system clock — cs4-, cs4.5-, ¢s5-, ¢s6-, and cs7.

The PAL logic from which these output signals are derived is given below. (Thi
is the code which goes with the clock stretch state diagram given above.)

(B

/0c60

c60 * /c60inv * cs4&_5 + 60 nsec system clock
c60 * /c60inv * /cs4

/oc60inv /c60 + inverted 60 nsec system clock
/cs4_5 * cs4 +

c60inv

/oc60k

/c60 * c60inv * c60k + 60 nsec ‘‘constant’’ clock
c60 * /c60inv * c60k

\ J

The remainder are basically the result of a shift register that generates an edge for
states 4-7 of the processor clock.

Clock stretch is eliminated on cycles to the FPA or 68881 because the FPA and
68881 operate at zero wait states. This elimination is accomplished by having
the clock inhibit signal suppress cs4 and thus never allow a transition from state
101 to 100 (or vice versa) in the state machine.

{Rev 1 of 10 May 1987) CONFIDENTIAL!

104 2060 CPU Board Engineering Manual CONFIDENTIAL!

14.4. U401 Flip-Flops

14.5. U402 Flip-Flops

-
ocs4 = /clkinh * cs2_3 */cs7 assertfor s4-> 8
ocs4_ 5 = cs4 * cs2_3 + set by cs4 if stretching
cs4_ 5 * cs2_3 hold through cs2_3 deassertion
ocs5 = ¢s45 * cs2_3 + set by cs4_5 if stretching
cs5 * cs2_3 hold through cs2_3 deassertion
ocsé = c¢cs5 * ¢s2_3 + set by cs5
cs6 * cs2_3 hold through cs2_3 deassertion
ocs7? = ¢s6 * cs2_3 + set by cs6
cs7 * cs2_3 hold through cs2_3 deassertion
.

Inputs to U406 are latched by the rising edge of master clock. Output of the
latches are permanently enabled by connecting the output control at pin 1to a

pulldown.

U401 flip-flops issue synchronized versions of ¢s2 and ¢s3. When processor
address strobe, p_as-, is asserted, the first positive-going edge of c60 clock
asserts cs2- from pin 5 of U401.

This cs2- output is used as an input for the second flip-flop; on the next positive
edge of c60- clock, cs3- is asserted from pin 9 of U401.

These two flip-flops are preset by the assertion of system-wide init- signal.

U402 pin 5 is used to generate 80 nsec clock.

U402 pin 9 generates cs2_3-, which causes ocs4- to go active 60 nsecs after cs2.

{Rev 1 of 10 May 1987) CONFIDENTIAL!

>

Pal U408

Pal U408

15.1. Pinout of U408 PAL

Pal U408

This PAL was added in a later modification to decode and generate the following

signals:

o cintberr-
o cpavec-
o G.cs3-

o clr-.

15.1. Pinout of U408 PAL Pinout of U408 PAL is:

Figure 15-1 U408 Pinout

hok ok kok ok ok ok kK k kR oh

*

* k k%

cs3 * 1x

* kK %

/int .berr * 2%
* %k %k *k

/p.avec * 3%
* %ok &

/cs4 * 4%

* Rk %k K

/b.freeze * 5*
* % % %

cl00 * 6%
Tk k%

/r.clr * 7*
*kk ok

* gx

*kkk

* 9*

kkk Kk

gnd *10*

LR 81

*

p a

*

(2SR R SRS REEER]

*

* ok kK

1 *20*

LR
*x19%
* kK k
x18%
LE R &
]17
Krk R
16%
*k ok k
*]15%
KA Kk
*14%
LR 2]
*13%
kR K
*12%
kKK
*11%

LR & 8

I3RS 222222822222 RE RS

€ sun 107

microsystems

vece

/cintberr

/cpavec

/g.cs3

/clr

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Sun-3 Memory Management Unit
(MMU)

Sun-3 Memory Management Unit (MMU)

Sun-3 Memory Management Unit
(MMU)

Sun-3 architecture splits the large physical address space into smaller ‘‘virtual”’
address spaces. The 2060 board uses the Sun-3 MMU to generate physical
addresses from the virtual addresses is receives from the processor or DVMA
devices.

Figure 16-1 Sun-3 Address Translation

68020
Processor Virtual address Sun-3 Physical address
or - MMU -
DVMA Device

32 bits of address can define 4 gigabytes (4096 Mbytes) of physical address.
However this much physical address is not actually resident on the board; most
of it lies in secondary memory devices such as disk and tape drives. To access
this memory, virtual addresses from the processor or DVMA devices must be
translated into physical addresses. To envision this address space, imagine the
virtual address as 32 bits from the processor, each with its own 3-bit context
(contexts are also called ‘‘processes’’).

This translation of virtual addresses into physical addresses occurs in the
Memory Management Unit (MMU). The Sun-3 MMU consists of three main *
parts:

o Context Register
o Segment MAP
o Page Map.

This list of MMU parts is hierarchical; that is, each successor further translates
(multiplies) its predecessor. For instance, the context register multiplies address.

@ sun 111 (Rev 1 of 10 May 1987) CONFIDENTIAL!

MiCros ystems

2060 CPU Board Engineering Manual CONFIDENTIAL!

space into one-of-eight contexts; the segment map splits each one of these con-
texts into one-of-2K segment areas; the page map splits each of these segment
areas into one-of-16 pages.

o Each page contains 8 Kbytes (A12:00, 13 bits of address).

o Each segment contains 128 Kbytes (A16:13, another 4 bits of address).

o Each context contains 256 Mbytes (A27:17, another 11 bits of address).
This total of 28 address bits defines virtual address space.

The figure below illustrates this progression from context to segment to page to
individual byte location.

Figure 16-2 Sun-3 MMU

bit A30 A28
Context Register
8 contexts;
process size
of 256 Mbytes
bit A27 Al7
Segment Map
2048 per process
128 Kbyte size
bit A16 Al3
Page Map
> 16 per segment
8 Kbyte size
bit A12 AQ00
Byte Select
8 Kbytes per page
@ Ssun {Rev 1 of 10 May 1987) CONFIDENTIAL!
MCros ystems

Context Register — U509

Context Register — U509 115
17.1. US09 Pinout e 116
17.2. USO9 INPUt SIZNALScoccocioeerrrerecressesasssssiassssssmssssssssmssss s ssseesss 116
17.3. U509 Output Signals ... 117

Figure 17-1

Context Register — U509

The Sun-3 MMU multiplies address space into eight distinct 256 Mbyte (28-bit
virtual address space) ‘‘contexts,’’ by means of the three context address bits
ctxt(2:0) encoded within PAL U509. The current context is selected by means of
these 3 bits. The same context applies to both user and supervisor state. The
figure below illustrates this division of Sun-3 address space.

Context Bits and Virtual Address

<--- Ctxt[2:0] --->

<---- A27:17 ----> <--- A16:13 ---> <---- A12:00 ---->

(A30:25) 2K Segments 16 pages 8 Kbytes
8 Contexts per context per segment per page
The context register has read and write controls — rd_ctxt- and wr_ctxt- — but
no initialization.
Table 17-1 U509 Context Register — Description

@
F17,)
e

NAME A<31..28> | SIZE | TYPE
CONTEXT REGISTER 0x3 BYTE | R/W
The U509 context register is actually a PAL that holds the current usr/supervisor
context in a register and multiplexes between this present context and the * ‘user

context’’ provided from the VME section of the 2060 board. This PAL
latches/outputs data to and from the TTL. data bus.

115 {Rev 1 of 10 May 1987} CONFIDENTIAL!

116 2060 CPU Board Engineering Manual CONFIDENTIAL!

.1. U509 Pinout Pinout of U509 context register PAL is:

Figure 17-2 U509 Pinout

Y%k k Kk ok ok ok k k k ok kk Kk % %k ok ok ok ok ok ok Kk ok k k%
* * % *
* % %k % * ok k k
/wr_ctxt * 1% pal *20* vcc
* % Kk Kk * %k Kk %
ti_do * 2% *19* nulg
* % k %k * %k %k k
ti_dl * 3% *18* ctxt0
Kk K * Kk %
ti_d2 * 4% *17* to_do
* %k %k % * %k %k k
ti_d3 * 5% *16* to_dil
* %k * k * %k k%
/en_bcx * 6% *15+% to_d2
* % k% * Kk Kk Xk
b_a28 * 7% *14* to_d3
* %k % * K Kk Kk
b _a29 * g* *13* ctxtl
* %k * k * k% ¥k
b_a30 * g *x12* ctxt2
* %k *k % * % %k %
gnd *10* *11+* /rd_ctx*
* Kk k k * %k k %k
* *

KI A AR KA KA R AR ARk Ak Ak Ak kkhk kA kkkxx

17.2. U509 Input Signals Inputs to U509 PAL are:
r 3

ti_d[3:0) TTL data bus (inputs for writes

to context register)

enable bus context - from VME section
of the 2060

en_becx-~

b a[30:28] - ‘‘user context’’ information from VMEbus.

@9 sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTOS ySlerms.

Chapter 17 — Context Register — U509 117

17.3. U509 Output Signals Outputs to U509 PAL are:

4 N

ctxt [3:0] = context value that is input to the
segment map rams

to_d([3:0} = TTL data bus (outputs for reads from
context register)

PAL logic from which each of these output signals are derived is given below.

The TTL data bus signals, /ti_d[3:0], need to be inverted because outputs are
inverted.

/to_d[3:0] = /ti_d[3:0]

The following equations define the multiplexing between the ‘‘user context’’
presented on the VMEbus and the context presented on the TTL data bus inputs.
f]
/ctxt0 = en_bex * /b_a28 + select VME input ‘
/en_bex * /to_dO0 select TTL data input

/ctxtl = en_bex * /b_a29 + select VME input
/en_becx * /to_dl select TTL data input

/ctxt2 = en_bcx * /b_a30 + select VME input
/en_bcx * /to_d2 select TTL data input

Generally, these equations indicate that if the en_bcx- signal from U2904 VME
slave request PAL is asserted, then the inputs at b_a(30:28) are selected (VME
user context). If en_bcx- is deasserted, the data in the context register are
selected.

microtystems

@ sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

Segment Map — U500:08

Segment Map — U500:08

18.1. Segment Map Read and Write Cycles
Segment Map RAM Read Cycle
Segment Map RAM Write Cycle ... s ssesesams s
Truth Table for the USO8 Buffer ...

18.2. Segment Map RAM Control Signals ...

121

122
122
123
123

Figure 18-1

L4

Segment Map — US500:08

The segment map RAM, U507:00, circuitry also includes the segment map tran-
sceiver, US08.

The eight segment map RAM chips are individually organized as 16K-by-1.
Fourteen address lines — eleven processor address bits (p_a27:17) and three con-
text bits (ctxt[2:0]) — decode to the individual bit-level in each RAM; the eight-
bit-wide organization of the RAM array results in an 8-bit byte being read from
or written to the segment/page map bus, labelled ia(24:17) on page 5 of the
schematics.

The figure below presents a simplified illustration of segment map data flow.

Segment Map RAM — U507 :00

processor address lines A27:17 Segment Map RAM

U |

U507
Sfrom context register — ctx1(2:0) _
beeed
S tM
-< TTL data cgrl:‘:flfer ® Data indata out) o page map RAM >
U508

Data can be read from or written to the segment map RAM, depending upon the
state of the read and write control signals. There are three signals which control

sSun 121 {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICro8 ys1ems

122 2060 CPU Board Engineering Manual CONFIDENTIAL!

18.1. Segment Map Read
and Write Cycles

" NOTE

Segment Map RAM Read
Cycle

data flow in this circuit:
[)

mnu_weseg- = segment map write enable

mmu_gtseg- = gates (enables output) from U508 bidirectional
transceiver

P2_IW = read/write from P2 bus

. J

A fourth control signal, chip enable to the RAMs, is permanently asserted by way
of a pulldown.

Some of the following information can also be found in the discussion of U1402,
the CPU MMU Decoder PAL.

Data inputs of the segment map RAM chips are wire-ORed to the data outputs
(DI to DO). In normal operation, the outputs of the segment map RAM chips are
ON (output-enabled) by the deassertion of the mmu_weseg- signal (signal is
high). Therefore there is a potential for bus conflict if the read and write timings
are not carefully managed; whenever you are writing data from the TTL data bus
to the segment map you must make certain that data out from the RAM have first
been disabled.

An I/O cycle to the segment map RAM begins with the RAM in a read state —
that is, output data is present on their DI/DO pins. The segment map data buffer,
US08, is output-enabled by the gate signal mmu_gtseg- from U1402.

A read of the segment map RAM will start with the normal deassertion of the
segment RAM write strobe mmu_weseg- (high), the p2_rw signal going high,
then mmu_gtseg- going low. The assertion of these two signals enables read data
at the DO data output pins of the segment map RAM through U508 onto TTL
data bus t_d(7:0).

If you take a look at the TTL bus read timing diagram, you will see that a read
cycle begins with cs4 going low, followed by the mmu_gtseg doing likewise.
This enables data at the output of the RAM onto the TTL data bus. Since, in the
absence of any other operation, data is always enabled onto the output of the
RAM — CE tied to a pull-down, and write enable false (mmu_wseg- is high).
The mmu_gtseg- signal stays true until ttirdend- is true (see the decode of the
U1402 PAL for an explanation of this), whereupon U503 shuts down.

Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 18 — Segment Map — U500:08 123

Segment Map RAM Write
Cycle

Truth Table for the U508
Buffer

Table 18-1

18.2. Segment Map RAM
Control Signals

@
F17,]
3

We initiate a write cycle to these RAM chips by first asserting the write strobe
mmu_weseg- to the RAM (see mmu_we signal in the TTL BUS WRITES timing
diagram), which tri-states the outputs of the RAM chips. Only then is the data
buffer (US08) output-enabled onto the segment map RAM data bus, ia(24:17).

A write (p2_rw is low) to the buffer, in combination with mmu_gtseg- going low,
enables data on the TTL bus through the U508 buffer onto the data inputs of the
segment map RAM.

Thus the truth chart for the U508 buffer is:

U508 Segment Map Buffer — Data Flow

Gate Direction Which Way The Data
mmu_gtseg- p2_rw Will Flow
0 0 TTL data bus to RAM (B -> A) |
0 1 RAM to TTL data bus (A -> B) |
1 X tri-state

The gate signal to the US08 buffer has to be deactivated at the same time as the
write enable to the RAM in order to prevent read data (now automatically
enabled onto the ia[24:17] bus when the RAM chips go from write to read) from
conflicting with the buffer’s write data also enabled onto the bus. In other words,
you can't have the RAMs enabling data onto the bus at the same time as the
buffer enables its data onto the bus.

Equations for the segment map RAM control signals are:

mmu_weseg = ctlspc*/p_a3l*/p a30* p_a29*/p _a28*
/p2_rw * /ttlwend*cs2

The mmu_weseg- signal is active when you are doing a control space access 0
the segment map RAM, you are in a write cycle during clock state 2, and you
have not entered the end of the write cycle (ttlwend is false/high).

With the write enable strobe issued, the outputs of the RAM go into a tri-state.
Note that the RAM go tri-state before the USO8 buffer is output-enabled
(mmu_gtseg- is issued) onto the segment map RAM data bus. The mmu_weseg-
signal is issued in cs2; mmu_gtseg- is issued during cs4.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

124 2060 CPU Board Engineering Manual CONFIDENTIAL!

4 A

mmu_gtseg = ctlspc*/p_a31*/p_a30*p a29*/p_a28*
p2_rw*csqd +

mmu_gtseg* p2_rw*/ttlrdend +

ctlspc*/p_a31l*/p_a30*p a29*/p_a28
csd /p2_rw * /ttlwend

L J

This ensures that there is no buffer conflict between the RAM and the U508
buffer on the segment RAM bus (ia[24:17]).

When mmu_gtseg- is issued in conjunction with p2_rw being low (write cycle),
data from the TTL bus is gated through U508 and coupled to the outputs of the
segment map RAM. This data is loaded into the RAM on the rising edge of
mmu_weseg-, the deactivation of the RAM write enable signal. When
mmu_weseg- goes high, the RAM are READ out-enabled, but there is no
conflict, because the data output is the same as the data just written in.

@/D’ Ssun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Page Map RAM

Page Map RAM

127

Page Map RAM

The page map contains 4096 32-bit page entries each mapping to an 8 Kbyte
page. Page map entries are composed of a valid bit, protection field, don’t cache
bit, type field, accessed and modified bits, and a page number.

The page map is divided into 256 sections of 16 entries each. Each section is
pointed to by a segment map entry and is called a page map entry group, or

pmeg.

Table 19-1 Format of a Page Map Entry

A3l

A30 _A29 A28 A27 A26

A25 A24 A23 Al9 AJ& <---> AD”

TYP | TYP
w|s|x |7

physical
A 1\1 reserved page number

Table 19-2 MMU Statistics Bits

Bit Meaning !
v valid bit, implies read access
w write access bit
s system access bit
X don’t cache bit
a accessed bit
m modified bit
@sun w

{Rev 1 of 10 May 1987} CONFIDENTIAL!

iz3

2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 19-3

Table 19-4

@

é

Type-Bit Decode

Decode of Type Bits Access
typ(01) 1yp(00)
0 0 main memory
0 1 Sun-3 I/0 space
1 0 VMEDbus 16-bit data
1 1 VMEbus 32-bit data

Since the page map is a 32-bit value, it has to be broken into four 8-bit bytes to
fit onto the 8-bit data bus. Address bits p2_a(1:0), decoded through U1402, act
as the byte-select mechanism.

Byte Selection in the Page Map RAM

Term Address Bits | Write Enable Strobe
Al A0 Asserted
BYTE24 0 0 mmu_we24
BYTE16 0 1 mmu_we 16
BYTEOS 1 0 mmu_we(08
BYTEOO 1 1 mmu_we00

The page map RAM operate similarly to the segment map RAM. The page map
RAM are normally output enabled—read data is latched to their outputs (since
the write enable signal, mmu_we[24/16/08/00] signals are normally high). To
write to the page map RAM we must first shut down their outputs by issuing the
appropriate write enable strobe. This tri-states the page map’s output pins. One
of the four U610:07 transceivers is then output-enabled by one of the four gating
signals. Disabling the outputs of the RAM occurs during ¢s2; gating of the tran-
sceiver occurs later, in cs4.

An example of the decode of a write enable signal (in this case mmu-we24) is
given below:

mmu_we24 = ctlspc*/p_a3l*/p_a30*/p_a29*p_a28*
/p2_a0l1*/p2_a00*/p2_rw*/ttlwend*cs2

This signal (mmu_we24) is the write enable for byte 31:24 of the page map
RAM. Itis active when you are doing a control space access (ctlspc- true) to the
page map RAM (pa_31:28 = 0001), the p2_a01:0 address bits decode to BYTE24
(00), you are in a write cycle (p2_rw is low), you have not ended the write cycle
(ttiwend is high/false) and you are in clock state two (cs2 is true).

After the write enable disables the output of the RAM at cs2, the appropriate gate
signal (mmu_we[24/16/08/00]) is issued during cs4. For instance, decode of the
mmu_gt16 signal, which gates U607, reveals:

/)
=
=

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 19 — Page Map RAM 129

—

.

mmu_gtlé = ctlspc*/p_a31l*/p_a30*/p_a29*p_a28*

/p2_a0l*p2_al0*p2_rw*csd +
mmu_gtl6*p2_rw*/ttlrdend +

ctlspc*/p_a31*/p_a30*/p_a29* p a28*
/p2_a01*p2_a00*cs4*/p2_rw*/ttlwend

This mmu_gt16 signal is asserted when:

1.

you are doing a control space access and address bits pa_31:28 decode to
the page map RAM (0001), the p2_a01:0 address bits decode to BYTE16
(01), you are doing a read cycle (p2_rw is high), and you are in clock state
four (cs4 is valid); or

mmu_gt16 is asserted (this is a self-latching mechanism, needed to extend
the read cycle beyond the deassertion of cs4), p2_rw indicates a read cycle
(signal is high), and you have not entered the end of the read cycle (tdrdend
is still high); or

you are doing a control space access to the device decoded by address bits
pa_31:28 to be the page map RAM (0001), p2_a01:0 decode 1o BYTE16
(01), you are in clock state four (cs4 is valid), you are in a write cycle
(p2_rw is low) and you have not yet entered the end of the write cycle
(tiwend is false).

The mmu_gate signal couples data through the appropriate buffer, onto the
MMU bus; this data is then written into the page map RAM on the rising edge
(deactivation) of the write enable signal.

For more information on these control signals, please see the explanation of PAL
U1402.

Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

Statistics Control PAL — U611

Statistics Control PAL — U611 . 133

20.1. U611 Input SignalS ... 133
20.2. U611 Output SIENAIS ..o 134

20.1. U611 Input Signals

Statistics Control PAL — U611

This PAL generates and updates various control and status bits for the MMLU.

Inputs to the U611 PAL are:

—

i_mod = modified bit from MMU

i_acc = accessed bit from MMU

i_typl1:0] = type bits from MMU

we2d- = write enable strobe for control
space access

p2_rw = doing a read/write operation

ttlwend- = terminate write cycle for above

cséd- = state clock - used to time
statistics updating

cs4_5- = state clock - used to time
statistics updating

cs5~- = state clock - used to time
statistics updating

cs7- = state clock - used to time
statistics updating

val- = cycle is a legal device space
cycle - do update

(-

Q?? su n 133 {Rev 1 of 10 May 1987) CONFIDENTIAL!
MICTOs yStems

134 2060 CPU Board Engineering Manual CONFIDENTIAL!

20.2. U611 Output Signals

¥

The following clock states are used in statistics update timing:

(N
s4 = latch output of RAM
s4_5 = assert we- on the static RAM
(turns off RAM drivers)
85 = turn on PAL to get updated version of
the statistics bits
s7 = deassert we- and turn off the PAL outputs
\. J

Outputs from the U611 PAL are:

- N
stwe- = write enable for MMU RAM

o_typl = updated version of stat bit

o_typ0 = updated version of stat bit

o_acc = updated version of stat bit

o_mod = updated version of stat bit

Imod = latched version of modified bit

\. J

Write strobe — there are two sources of writes to the static RAM in the MMU.
The processor needs to be able to read/write, and the statistics bits must be
updated when a device space cycle occurs.

o Processor writes are terminated with tilwend since the decode path for we24
is quite slow.

o On device space updates we assert stwe- at cs4_5 and deassert at ¢s7.

stwe = we24 * /ttlwend + control space cycles

val * cs4_5 * /cs7 device space cycles

If we define output enable as:

#define OE val*cs5*/cs?

{Rev 1 of 10 May 1987} CONFIDENTIAL!

AL
El=]

Chapter 20 — Statistics Control PAL — U611 13§

then the updated version of statistics bits are a result of:

—

if (TYPECE) /o_typl = /i_typl

if (TYPEOE) /o_typ0 = /i_typO

3
if (OE) /o_acc = gnd alwaysa l

\. J

(3
if (OE) /o_mod = /lmod latched version of modified bit

\ J

— "\
/lmod = /i mod * p2_rw * /csé4 + setifwrite or already set

/1lmod * cs4 hold as long as cs4

{Rev 1 of 10 May 1987} CONFIDENTIAL!

MMU Validation and Decode PAL —

U612
MMIJ Validation and Decode PAL — U612 139
210 U612 INPUl SIZNALS |ccoooooreseessis et 139

21.2 U612 Output Signals

21.1. U612 Input Signals

MMU Validation and Decode PAL —
U612

U612 PAL decodes various MMU validation type bits and system control signals

to issue MMU control and error signals.

Inputs to U612 are:

—

mmu_typ[1:0] = type bits determine physical
address space

mmu_s = page is supervisor access only

mmu_w = page is writable

mmu_v = page is valid

p2_rw = read/write-

csé- = ¢s4 - output of MMU is stable by now

cs4_5- = c¢s4_5 - feedback is stable - freeze

devspc- = doing a device space (physical
address) cycle

p2_fcl2] = function code 2 - doing a
supervisor cycle

p2_as- = used to end cycles (especially for
mmu_ram-)

N\

Q:'& sun 139 {Rev 1 of 10 May 1987) CONFIDENTIAL!
micros ystems

140 2060 CPU Board Engineering Manual CONFIDENTIAL!

.. ..2. U612 Output Signals Outputs from U612 are:

()
1typ0 = latched version of type0
mmu_vme- = valid VME master cycle (to type2
or type3 space)
mmu_io- = valid IO cycle (to typel space)

The above signals are asynchronous state machines
that latch when asserted, and stay latched through
p_as (end of cycle). This is done because the

the type bits may glitch during statistics updating.

mmu_ram- = valid RAM cycle (typel space -
includes video)

mmu_verr = page 1is invalid
mmu_perr = page is valid, but protection is bad
mmu_val- = physical address cycle’s protection is
ok, allow statistics updating
\ J

The Ityp0O- signal provides a latched version of the type[0] bit for VME dsack
signals (input to U204 dsack PAL).

/ltyp0 := p2_as * cs4 * /cs4_5 * /typ0 + seisthe laich

p2_as * /ltypO hold until p2_as is no longer valid

@ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

141

Chapter 21 — MMU Validation and Decode PAL — U612

The protection bits are derived from the following truth table.

Table 21-1 MMU Protection Bits — Decode of the Inputs
Input Signals Meaning
devspc- * mmu_v | enable cycle
p2_rw * mmuw | read protected
p2_fc2 * mmu_s supervisor protected
Table 21-2 Truth Table for MMU Protection Bits
Inputs Outputs Meaning | Status
devspc- | mmu_ p2_rw | mmu_w | p2_fc2 | mmu_s | mmu_verr | mmu_perr | mmu_val-
1 - - - - 0 0 1 not device
space cycle
0 0 - - - 1 0 1 page is
marked
invalid
READS
0 1 1 0 0 0 0 UST SUpV <-
usr
0 1 1 0 1 1 1 usr <- supv | ERROR
0 1 1 1 1 0 0 Supv <-
Supv
WRITES
0 1 0 - - 0 1 1 UST SUpv -> ERROR
prot
0 1 0 - 0 0 0 0 UST SUpv ->
usr
0 1 0 0 1 0 1 1 usr -> supv | ERROR
0 1 1)| 0 0 0 Supv ->
Supv

{Rev 1 of 10 May 1987} CONFIDENTIAL!

2060 CPU Board Engineering Manual CONFIDENTIAL!

The mmu_val- term produces the following set of validation equations:

-
mmu_val- =

devspc * mmu_v * p2_rw * /mmu_s +
devspc * mmu v * p2 rw * p2 fc2 +
devspc * mmu_v * mmu_w * /mmu_s +

devspc * mmu_v * mmu_w * p2_ fc2

These basic equations are used for mmu_val-, mmu_vme-, mmu_io-, and
mmu_ram-. They are further qualified by clock edges (cs4, cs5) and also by type
space decode bits (typ[1:0]).

r

/mmu_verr

/cs4 + qualified by cs4
/devspc +

mmu_v

/mmu_perr

/csd + qualified by cs4
/devspc +

/mmu_v +

p2_rw * /mmu_s +
p2_rw * p2 fc2 +

mmu_w * /mmu_s +

mmu_w * p2_ fc2

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 21 — MMU Validation and Decode PAL — U612 143

r

All terms qualified by cs4

mmu_val = cs4 * devspc
cs4 * devspc
csé4 * devspc

cs4 * devspc

mmu_v

mmu_ v

mmu_ v

mmu_v

*

p2_rw * /mmu_s +
p2_rw * p2_fc2 +
mmu_w * /mmu_s +

mmu_w * p2_fc2

of p2_as.

Enabled at s4, and frozen at s5. VME cycles are type = (2 or 3).
Signal is held valid 1ill cycle ends, indicated by deassertion

mmu_vme := p2_as * csd4*/cs4_5 * devspc *
mmu_v * p2_rw * /mmu_s * typl +

p2_as * cs4*/cs4_5 * devspc * mmu_v *
p2_rw * p2_fc2 * typl +

p2_as * cs4*/cs4_5 * devspc * mmu_v *
mma_w * /mmu_s * typl +

p2_as * csd4*/cs4_5 * devspc * mmu_v *
mmu_w * p2_fc2 * typl +

L p2_as * mmu_vme hold through end of cycle

{Rev 1 of 10 May 1987} CONFIDENTIAL!

144 2050 CPU Board Engineering Manual CONFIDENTIAL!

Enabled at 54, and frozen at s5. 10 cycles are type = (1).
Signal is held valid till cycle ends, indicated by p2_as being
deasserted,

mmu_io := p2_as * cs4*/cs4_5 * devspc * mmu_v *
p2_rw * /mmu_s * /typl * typ0 +

p2_as * cs4*/cs4_5 * devspc * mmu_v *
p2_rw * p2 fc2 * /typl * typ0 +

p2_as * c¢cs4*/cs4_5 * devspc * mmu_v *
mmu_w * /mmu_s * /typl * typ0 +

p2_as * cs4*/cs4_5 * devspc * mmu_v *
mmu_w * p2_fc2 * /typl * typ0 +

p2_as * mmu_io

The mmu_ram signal is not qualified by cs4, it is sampled by
the memory CAS decoder and the video interface hardware.
RAM cycles are rype = (0).

mmu_ram := p2_as * devspc * mmu_v * p2 rw *
/mmu_s * /typl * /typ0O +

p2_as * devspc * mmu_v * p2_rw *
p2_fc2 * /typl * /typ0 +

p2_as * devspc * mmu_v * mmu_w *
/mmu_s * /typl * /typO +

p2_as * devspc * mmu_v * mmu_w *
p2_fc2 * /typl * /typO

@ sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOsystems

P2 Bus Control and Address Buffers

P2 Bus Control and Address Buffers

22.1. U700 Comparator ...

22.2. U703:01 P2 Address Buffers .
22.3. U704 Control Signal Buffer

22.4. Aliases

147

147
147
148
148

22.1. U700 Comparator

Table 22-1

22.2. U703:01 P2 Address
Buffers

4
AN
Ef=]

P2 Bus Control and Address Buffers

Page 7 of the schematics includes the

o U700 comparator — decodes address bits to indicate an access to bottom 32
Mbytes of memory

o U703:01 P2 address buffers
o U704 Control signal buffer.

This comparator issues the signal that indicates an access is being made to the
bottom 32 Mbytes of memory, the amount of physical memory addressable by
A24:00.

In the comparator, mmu_a(31:25) address bits are compared to the ground inputs
at P(7:0) and when the comparison is equal — mmu_a(31:25) address bits are all
zeros — the low active signal p2_bot32M- is issued. This signal is used in the
3104 CAS decoder PAL as indication that an access is is being made to the bot-
tom 32 Mbytes.

Input to the comparator is permanently enabled by the connection of a pulldown
to pin 1, the gating signal. The table below summarizes the logic.

U700 Comparator
Inputs Output
G- (Input enable) mmu_a(31:25) p2_bot32M-
Low All low (equal GND) Low
Low High (not equal to GND) High
High Doesn’t matter High

U703:01 buffer the MMU address bits mmu_a(23:13) coming from the page map
RAM along with unbuffered processor address bits p_a(12:00) to the P2 address
bus. The two output enable pins of these three buffers are permanently gated ON
by being connected to a pulldown, and address bits at the inputs are coupled
immediately to the P2 address bus (minus propagation delay, of course).

147 {Rev 1 of 10 May 1987) CONFIDENTIAL!

148 2060 CPU Board Engineering Manual CONFIDENTIAL!

3. U704 Control Signal U704 operates in the same manner as the three address buffers described above.
Buffer Control signals asserted at the inputs are driven onto the P2 bus (except for the
pl_sysc system clock signal from U2505 crystal, which is available only if J2502
is IN). Notice also that mmu_a(24), address bit 24 from the page maps, is con-
nected to U704; there wasn't enough room in U703:01 for it.

Just like U703:01 buffers, U704 has its two output enables constantly gated ON
by being permanently connected to a pulldown.

Signals buffered by U704 are:
o mmu_a(24) — upper/lower 32 Mbyte select bit;
o p_fc(2) — unbuffered high order function code bit from the processor;

o ¢62 — 62 nsec clock from the 16 MHz crystal on page 25 of the schematics,
U2505. This signal is available only if J2502 is IN.

o refr- — refresh signal from U2409 DVMA controller;

o p_siz(1:0) — unbuffered processor size bits, indicating the size of the data to
be transferred over the bus;

o p_as— address strobe, whose assertion and deassertion define the beginning
and end of a cycle;

o p_rw — processor read/write signal.

" 4. Aliases The signals in the lower right hand of page 7 are merely aliases. Thus, devspc- is
‘ the same as p2_devspc-. And so on.
s ™
devspc <-> p2_devspc-
cs2- <-> p2_uas-
cs3 <-> p2_mux-
mmu_ram- <-> p2_ ram-
csé- <=> p2_ cas-
cs6- <-> p2_endras-
- J
L
L34 sSsun (Rev 1 of 10 May 1987} CONFIDENTIAL!
microsystems

Parity Circuitry

Parity Circuitry

23.1. Parity Address Latch — U811:08 .

23.2. Parity Generator/Checkers — U807.04
23.3, U803 Multiplexer

23.4. Parity Control and Parity Check PALs — U802 and U812

23.5. U812 Parity Check PAL ...

U812 Input Signals
U812 QOutput Signals ...

23.6. U802 Parity Control PAL

U802 Input Signals ...

U802 Output Signalscccerrvnnne
Pinout of U802 PAL

23.7. Memory Error Register — U801 ...

23.8. Byte Select Buffer (and Address Bit Driver) — U813
23.9. Parity Data Buffer— U3112 ...

23.1. Parity Address Latch

— U811:08

23.2. Parity
Generator/Checkers
— U807:04

Parity Circuitry

In the event of a parity error, the parity address latches will latch up all 28 bits of
virtual address for the MMU to translate. Since the TTL data bus is only 8 bits
wide, this address must be multiplexed. Multiplexing is accomplished by the
individual assertion of one-of-four read byte parity strobes, rd_pad(24/16/08/00),
to one of the four parity address latches.

The latches are loaded by an upward transition of the parity address strobe signal,
par_as, from U802 parity control PAL. Bytes of address are output sequentially
onto the TTL data bus, t_d(7:0), by the individual assertion of the following read
parity address signals:

o rd_pad(00) — outputs the low order byte of address, bits 7:0 from U811
o rd_pad(08) — outputs the next highest byte of address, bits 15:8 from U810

o rd_pad(16) — outputs the next highest byte of address, bits 23:16 from
U809

o rd_pad(24) — outputs the high order byte of address, bits 31:24 from U808.

U808 also latches up the three context bits, for use by the MMU in translating
this virtual address to an physical address.

Finally, U80S latches up the s_dma signal, indicating whether or not a DMA
cycle was being executed.

The 2060 board uses typical F280 9-bit parity generator/checkers. Each of the
four chips accept 9 bits of parity generator/check data, detect whether an odd or
even number of these are high, and issue a parity data bit at the SUM ODD out-
put.

o If the number of high inputs is ODD (1, 3, 5, 7, or 9) then the SUM ODD
output is high.

o If the number of high inputs is EVEN (0, 2, 4, 6, or 8) then the SUM ODD
output is low.

Outputs of the parity checker/generators are connected to U812 parity check
PAL, and also U801 memory error register.

The F280s operate in both read (generation) and write (check) modes.

sSsun 151 (Rev 1 of 10 May 1987) CONFIDENTIAL!

152 2060 CPU Board Engineering Manual CONFIDENTIAL!

23.3. U803 Multiplexer

23.4. Parity Control and
Parity Check PALs
— U802 and U812

Software can test the operation of the parity chips by setting the ninth parity bit
(through U803 multiplexer), par_test. By setting this bit, you can force bad par-
ity on every byte and check for the resultant parity error.

The software test bit, par_test, is one of the inputs multiplexed through U803
F158. Output is always enabled from the mux since pin 16 is permanently tied to
a pulldown. The output of the mux is inverted; thus, setting the parity test bit,
par_test, will add a low to the 9-bit input of the parity checker/generators, forcing
bad parity.

Multiplexing is done by the assertion of the processor read/write signal, p2_rw.

o When p2_rw is high (indicating a read cycle), the inputs at port A are
selected for transmission. In this case a read cycle selects the parity test bit,
par_test.

o When p2_rw is low (indicating a write cycle), the inputs at port B are
selected for transmission. In this case a write cycle asserts the P2 parity
byte-select bits, p2_par(24:16:08:00), from U801 memory error register.

These two PALs work in tandem; U812 looks at the parity check bits from the
parity checkers, the size and offset bits from the processor, and asserts

o a parity error signal (parerr-), if appropriate,

o a VMEdbus error signal, s_error, and

o one of the four parity error byte select signals, par_err(24:16:08:00).

A read cycle from memory uses the size (siz[1:0]) and offset (p_a[1:0]) bits to
determine exactly which byte(s) was (were) transferred. Decoding these bits
through U812 allows erroneous data to be located down 10 an individual byte.

The parity error signal, parerr-, is connected to the U802 PAL. U802 asserts a

~ sample-window signal, sample-, to indicate at what time during the read or write

cycle it is valid to check parity; on the next following edge of c60 clock U812
checks parity and indicates status to U802 via the parerr- signal. If parerr- is
asserted, U802 will decode it and issue the parity interrupt request signal,
par_irq, if appropriate.

Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

Chapter 23 — Parity Circuitry 153

23.5. U812 Parity Check

PAL

U812 Input Signals

U812 Output Signals

Inputs to U812 PAL are:
(N\
/sample = indicates a valid sample period
for checking parity error
/vmeberr = VMEbus error
p2_siz(1:0) = size of transfer, used to determine
individual byte that generated
the parity error
p2_a(01:00) = size of byte offset
par_d(24:16:08:00) = parity check bits
\ J

Outputs from U812 parity check PAL are derived below.

e

par_err(24) := /sample * /p2_a0l * /p2_a0C ~ par_d24 +

sample * par_err(24)

The first term of the above equation says that the parity error signal for the most
significant byte, D(31:24), is asserted when the sample signal is not true (not in
state cs8_cs0), offset bits indicate O byte offset, and the parity check bit comes
from the high order data byte, p2_d(31:24).

The second term of the above equation is a self-latching function,; it is true during
the sampling period defined in U802 PAL — cs8_cs0.

The parity error signal for byte (23:16) is defined below.

{)

par_err(l16) := /sample * p2_sizl * /p2 a0l * par_dl6 +
/sample * /p2_siz0 * /p2_a0l * par_dlé +
/sample * /p2_a0l * p2_a00 * par_dl6 +

sample * par_err(1l6)

sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

154 2060 CPU Board Engineering Manual CONFIDENTIAL!

This equation defines the parity error signal for data bits D(23:16), the check bit
from U806. The first three terms indicate that par_err(16) will be asserted when-
ever the check bit from U806 parity checker is valid, you are NOT in the sam-
pling period, and your data is offset 1, 2, or 3 bytes.

The last term is self-latching; par_err(16) is valid during the sampling period.
The parity error signal for byte (15:08) is defined below.

()
par_err(08) := /sample * /p2_sizl * /p2_siz0 *

/p2_a00 * par_d08 +
longword transfer, 0 or +2 byte offsets

/sample * p2_sizl * p2_siz0 *
/p2_a00 * par_d08 +
3-byte transfer, 0 or +2 byte offsets

/sample * p2_sizl * /p2_ a0l *
p2_a00 * par_d08 +
1 or 3-byte transfers, +1 byte offset

/sample * /p2_siz0 * /p2_a0l *
p2_a00 * par_d08 +
Word or longword transfer, +1 byte offset

/sample * p2_ a0l * /p2_a00 * par_d08 +
+2 byte offset

sample * par_err(08) self-latching

- J

The first five terms indicate that par_err(08) can be indicated during a non-
sampling period whenever the par_d08 signal is asserted from U80S. The last
term is self-latching; it holds par_err(08) valid during the sampling period.

The parity error signal for byte (07:00) is defined below.

{Rev 1 of 10 May 1987) CONFIDENTIAL!

@
wn
=

i

2

Chapter 23 — Parity Circuitry 155

. N

par_err(00) := /sample * /p2_sizl * /p2_siz0 *
par_do00 + longword transfer

/sample * p2_sizl * p2_siz0 *
p2_a00 * par d00 +
3 byte transfer, 0 or +2 byte offset

/sample * p2_sizl * p2_a0l * par_d00 +
2 or 3 byte transfer; 2 or 3 byte offset

/sample * p2_a0l * p2_a00 * par_d00 +
3 byte offset

sample * par_err(00)
self-latching during sample

. /

The s_error signal is defined below.

{ \

/s_error := /vmeberr * /p2_siz0 * /p2_a00 *
/par_d24 * /par_dlé * /par_d08 * /par_d00 +

/vmeberr * p2 sizl * /p2_siz0 * /p2_a0l *
/p2_a00 * /par_d24 * /par_dlé +

/vmeberr * /p2_siz0 * p2_a0l * /p2_a00 *
/par_d08 * /par_d00 +

/vmeberr * /p2_sizl * p2_siz0 * /p2_a0l *
/p2_al0 * /par_d24 +

/vmeberr * /p2_sizl * p2 siz0 * /p2_a0l *
p2_al0 * /par _dl6 +

/vmeberr * /p2 sizl * p2 siz0 * p2_all *
/p2_a00 * /par_d08 +

/vmeberr * /p2_sizl * p2_siz0 * p2_all *
p2_a00 * /par_d00 +

/sample * /vmeberr

All the parity errors are ORed together into one signal, parerr-, and connected to
the parity control PAL, U802. Since this output is clocked, the signal is not valid
until 2 states after you see sample-.

Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

156 2060 CPU Board Engineering Manual CONFIDENTIAL!

23.6. U802 Parity Control
PAL

U802 Input Signals

parerr := par_err(24) +
par_err(l6) +
par_err(08) +
par_err(00)

The parity control PAL works in tandem with U812, parity check PAL, to gen-
erate the parity interrupt request signal, par_irq, during the appropriate sampling
period (between cs8 and cs0). Also generated are:

o output enable signal for the high-order byte of parity address (and context
bits), rd_pad24-, which clears parity errors,

o latch strobe for the four parity address registers, par_as, and

o the sample- signal, which tells U812 when to check for parity errors.

Inputs to U802 PAL are:

{ A

Parity Interrupt Enable (from
memory control reg) allows software to
selectively enable or disable the parity
interrupt.

par_ien

par_chk = Parity Check Enable (from memory
control reg) indicates whether you are in
parity check or parity generation.

pa_zIw = Indicates a read or write cycle (used to
indicate read here).

p2_ack- = Positive acknowledge from memory.

devspc- = Cycle is a device space cycle (not FPA).

pad24- = Select from TTL decode logic (used to
unfreeze).

parerr; = Indicates the Parity Checker PAL has

detected an error.

S. un {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 23 — Parity Circuitry 157

U802 Output Signals

Table 23-1

@

;

Outputs of U802 PAL are:

-

par_irq = Parity Error Interrupt Request.

par_as = Parity Address Strobe - latch virtual address.
sample- = Tell Parity Checker PAL to check for error
rd_pad24 = Read most significant byte of parity address

\.

Equations of each of these signals are given below. The first is rd_pad24:

rd_pad24 = pad24 * p2_rw

pad24 valid from U140] TTL Bus decoder, during a read cycle

A state diagram illustrates the derivation of the remaining three signals, sample-,
par_as, and par_irq. First, the states of the state diagram are:

Parity State Diagram — State Values

Control State Bits

72 gl a0 State

0 0 0 nu0

0 0 1 nul

0 1 0 freeze

0 1 1 sendresults
1 0 0 nu4

1 0 1 genparity

1 1 0 latchparity
1 1 1 idle

Next, the meaning of these states is given in the following table:

wn

Ef=

{Rev 1 of 10 May 1987} CONFIDENTIAL!

153 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 23-2 Parity State Diagram — Description of the States

States Description

nu0 State 0, not used

nul State 1, not used

freeze Parity error - freeze latch and
parity check bits
Parity Checker sends back the

sendresults results of check

nu4 State 4, not used

R Parity Checker generates parit
genparity checl}c, bits ’ pa
. Up address and tell Parity

latchparity Checker to check

idle Not enabled + Not a read + Not
acknowledged + Not devspc access

{Rev 1 of 10 May 1987} CONFIDENTIAL!

4
in
$
H=

Chapter 23 — Parity Circuimry

159

Pinout of U802 PAL

Figure 23-1

Pinout of the U802 PAL is:

U802 Pinout

c60

par_ien

par_chk

pP2_rw

/p2_ack

/devspc

/padz4

nu8

/parerr

LA RA RS RAR RS AN

ww

Xk w

* li p

L2 2 2
*w
* 2%
L X2 2
* %
* I
XX xR
* %
* 4!
TwEx
x ¥
* Sw
XXX W
w
*x gx
*XEX
*x
* Tx
W W
*x
*x g
1223
* %
x 9-
*rww
*w
10
xEEw

* K

a

XXX K KAR KT
IS
**wx
1 *20*

LA B B

*1Qx

KXW

*18x>
* xR X
*x
*x17x
XWX
*x
*1Ex
TEXX
x>
*185x
LE R &4
*
*14>
KW
*x
]13
XXX X
* %
x]12%

*ww ™

AR RS2SR A SRR RER AR SRRRRR R RS

vcc

q2

par_irgk

/samzle

/rd_pad24

/oe

{Rev 1 of 10 May 1987) CONFIDENTIAL!

160 2060 CPU Board Engineering Manual CONFIDENTIAL!

The following is the state diagram for the 2060 parity control PAL.

Figure 23-2 U802 Parity Control PAL — State Diagram

else

111
IDLE

par_chk & p2_rw &
(c60) | 1p2_ack- & !devspc-

1 .
= LATCHPARITY
i

'par_chk GENPARITY

011
- tpar_chk /s;r;:esums

else !parerr-
(c60)

A

010 else
Ipar_chk + !pad24- & !p2_rw FREEZE
-~ sample- = 0
par_irq = par_ien
----------- 9
always ! 100 1
\ not used '
Leceeceme e — = J
Fo=====-===-]
always l 001 l
N ! not used '
Lmmmccc e = J
e |
- always) 000 '
: not used :
bccmmm e e e = J
@ § ,}.}.,E {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 23 — Parity Circuitry 161

23.7. Memory Error
Register — U801

NOTE

The sample- signal defines the time period when a valid interrupt sample may be
taken.

- D

sample := ql * /g0 * /pad24 * par_chk +
gl * /q0 * p2_rw * par_chk +
/a2 * gl * g0 * parerr * par_chk +
g2 * /g1 * g0 * par_chk +
g2 * gl * /q0 * par_chk

\ J

Parity address strobe clocks the four parity address registers.
ﬁ N

/par_as := /q2 +
/ql +
/g0 +
/devspc +
/p2_rw +
/par_chk +
/p2_ack

. J

Parity interrupt request raises a non-maskable level 7 interrupt.
r A

/par_irq := /g0 * pad24 * /p2_rw +
q0 * /parerr +
/par_ien +
/ql +
/par_chk +
q2

The memory error register provides the necessary control and information to deal
with parity errors. It stores information on which byte(s) caused the parity error,
sets a pending parity error interrupt, and provides functions to test parity error
checking.

o When rd_par- signal is asserted, the four parity control bits are enabled.

o When the p2_rw signal is low, indicating a write cycle, the four parity error
bits are asserted.

The parity control and error bits can be asserted and deasserted independently.

sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

macros ystems

162 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 23-3 Memory Error Register — U801

Memory Error Register for Parity Memory

BIT

NAME

TYPE

MEANING

GATING SIGNAL

D<0> | PARITY ERROR 00 | read-only | Parity Error, bits DO7:D00 | rd_par- (U813)
D<1> | PARITY ERROR 08 | read-only | Parity Error, bits D15:D08 | rd_par- (U813)
D<2> | PARITY ERROR 16 | read-only | Parity Error, bits D23:D16 | rd_par- (U813)
D<3> | PARITY ERROR 24 | read-only | Parity Error, bits D31:D24 | rd_par- (U813)
D<4> | PARITY CHECK read-write | Enable parity checking rd_par- (U801)
D<5> | PARITY TEST
D<6> | PARITY INT ENBL | read-write | Parity interrupt enable rd_par- (U801)
D<7> | PARITY INTRPT read-only Parity interrupt (level 7) rd_par- (U801)

read-write | Test by inverting parity rd_par- (U801)

23.8. Byte Select Buffer
(and Address Bit
Driver) — U813

23.9. Parity Data Buffer —
U3112

¥
17
Efe=]

The memory error bits are described below.

o The four parity error bits are set when a parity error is detected in the
corresponding byte. These come from the F280 checkers.

o Parity check bit is set to enable parity checking on memory read cycles.

o Parity test bit is set in order to write parity with the inverse polarity to test
the operation of the parity error circuitry. With parity test off, correct parity
is generated on all memory write cycles.

o Parity interrupt enable enables level 7 interrupts if a parity error is detected.
(Remember, level 7 interrupts are non-maskable.)

o Parity interrupt is true if a parity interrupt is pending.

Only half of this AL.S240 buffer is actually used in the parity circuitry; the four
parity error byte-select bits (par_err{24:16:08:00]) are gated out onto the TTL
data bus by the assertion of the rd_par- signal. These parity error signals indicate
which byte in the 32-bit data space actually caused the parity error.

The remainder of the buffer is used to drive the four most-significant address bits
during a DMA cycle. Address bits 31:28 are driven high during a DMA cycle
(indicated by the assertion of s_dma-); since the ALS240 is an inverting driver,
the addresses are derived from ground on pins 2, 4, 6, and 8 of the input side.

The four parity check bits, p2_par(24:16:08:00), are gated through U3112 as
soon as they arrive at the inputs (output is permanently enabled by connection to

a pulldown).

The other half of the buffer drives the memory parity out bits
(m_po(24:16:08:00) from each byte of memory. These are gated out of the
buffer by the assertion of the m_parrd- signal from U3104 PAL.

{Rev 1 of 10 May 1987} CONFIDENTIAL

MOS Bus Devices

MOS Bus Devices

24.1.

24.2.

24.4.

24.5.

24.6.

US00 MOS Enables PAL ..o

US%00 Pinout et een et oo eeeeeeee

U900 MOS Write Enable — moswren ...

U900 MOS Read Enable — mosrden ...

Diagnostic Cycle — diagcy ...
U901 MOS SACK State Machine ...

Pinout of U901 PAL ..o

U901 SCC Interrupt — SYNCWAIT State ...
. U904 MOS Read/Write Strobe Decoder ...

US04 PINOUL e

U904 Input Signals ..o,
US04 Output Signals

U902 MOS Write and U903 MOS Read Buffers ...

U902 MOS Write Buffer

U903 MOS Read Buffer

MOS Read and Write Cycles

MOS Read Cycle ...

MOS Write Cycle ..
Mouse and Keyboard SCC

U405 and U2207 Baud Rate Clock

Transmit Data Path

165

166
167
167
168
169
169
170
172
176
179
179
180
180
184
184
184
185
186
186
186
187
187

Receive Data Path ... 187
24.7. Serial Ports A and B — ttya and fyb ... 187
Transmit Data Path ... e crsssesssssssssssmrimnssessesoess 188
Receive Data Pathccsinnccessinninscsinncnnens e 188
24.8. EEPROM and EPROM ... ssssssssssssessssssessmassess s s snssss 188
EEPROM ... e s 190
24.9 Time of Day (TOD) Clock 190
TOD OsCillator CTCUIL __........oocceoooevveesnserrescseennsessesnescesssmmmsssssssssssssssssseessns 190

Table 24-1

@

MOS Bus Devices

Seven MOS I/O devices share an 8-bit bus amongst themselves. These MOS
devices are:

o User-accessible EAROM (EEPROM)
o Boot PROM (EPROM)

o Real Time Clock (RTC)

o Serial Ports (Port A and Port B)

o Mouse

o Keyboard

MOS devices are accessed and controlied through a series of PALs and a
read/write decoder, shown on page 9 of the schematics.

MOS devices occupy TYPE1 space, and are located at:

Map for TYPEI Space

Device Address bits Address
KEYBDMOUSE | /p2_a20%/p2_al9*/p2_al8*/p2_al7 | 0x000000
SERIALIO /p2_a20*/p2_al9*/p2_al8* p2_al7 | 0x020000
EEPROM /p2_a20*/p2_al9* p2_al8*/p2_al7 | 0x040000
TOD /p2_a20%/p2_al9* p2_al8* p2_al7 | 0x060000
EPROM p2_a20*/p2_al9*/p2_al8*/p2_al7 | O0x100000

You can access the MOS bus using one of three cycles:
1. MOS read cycle, or

2. MOS write cycle, or

3. Diagnostic cycle.

Each of these accesses are defined by an output from the first-level MOS
decoder, U900. The diagnostic cycle bypasses the MMU (allowing you to access
a terminal even with a bad MMU).

MOS devices are physically accessed through:

sSun 165 (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOs ys{ems

166 2060 CPU Board Engineering Manual CONFIDENTIAL!

24.1. U900 MOS Enables

PAL

a MOS enable PAL, U900, which generates the MOS read, MOS write, and
the diagnostic cycle signals,

a MOS SACK (synchronized acknowledge) state machine, U901, which
generates MSACK (SACK for the MOS devices), strobe enable, and count
enable signals,

and the MOS read/write strobe decoder, U904, which issues read/write

o
strobes to the individual MOS devices.
The figure below illustrates this:
Figure 24-1 MOS Decoders
po————————-- |
! l
: U901 Lo-e-= > U902 & U903
mosrden-/moswren- ! MOS SACK cnten- MOS
U900 Tl state read/write
first machine buffers
level
decoder diagcy- stroben-
Y
Uso4 MOS devices read strobes
second =
o level MOS devices write strobes
p2_2a(20:17) tecoder >

U900 is the first-level decoder for the MOS devices. Its outputs function as fol-

lows:

[n}

moswren: this low-active signal enables the write data buffers (U902) for the
MOS devices. The DCP is not included. This signal also starts the dtack
state machine and indicates to U904 whether you are in a read or a write
cycle.

NOTE A write to the EPROM is available to enable diagnostics to check the statistics
' bits on a write to TYPEI space without actually affecting any devices.

o mosrden: this low active signal enables the read output buffers (U903) to
drive the P2 data bus for all MOS devices. This signal also starts the dtack
state machine and indicates to U904 whether you are in a read or a write
cycle.

o diagcy: special serial port SCC access indicator. Diagnostics cycle mode
bypasses the MMU logic so that diagnostics can get access to a terminal
with an inoperative MMU.

Q?f sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 24 — MOS Bus Devices 167

NOTE The signal sccack (serial controller acknowledge) is included due to a three OR-
term limit in the rd_serial output of U904.

U900 Pinout Pinout of the U900 high-level MOS decoder PAL is:
Figure 24-2 U900 Pinout
AANXX AR NRN AAXXKXXRE XN XN
/cntlspe * 1x pal *20* vce
pa3l * 2+ *19* /moswren
pal3l * 3« *18* plalsg
pa29 * 4 *17* p2al?
pa28 *x 5% *lé6* /p2as
/bootcy * g* *15« p2rw
/sccack * I* *14~ nc
/mmuic * gx *13> /diagey
p2a2l * gx *12* /mosrdern
gnd *10* *1lx p2al9
MOS read or MOS write is set by the state of the P2 read/write signal, p2_rw. A
low indicates a write cycle; high indicates a read cycle. When the mmuio- signal
on pin 8 of US00 is pulled low (active) the P2 address bits A20-A17 will decode
to a TYPE] space (indicating an 1/0 device) MOS device. When p_a(31:28) are
all high and the Control space signal, ctlspc-, is active, this indicates a diagnostic
cycle (bypassing the MMU).
U900 MOS Write Enable — When the mmuio- signal on pin 8 of U900 is pulled low (active) the P2 address
moswren bits A20-A17 will decode to a MOS device. The state of the p2_rw signal deter-

mines whether this will be a read cycle or a write cycle. Remember that:

p2_rw = high = read cycle

p2_rw = low = write cycle

Q}y Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

168 2060 CPU Board Engineering Manual CONFIDENTIAL!

r

moswren = /p2rw * p2as * mmuio * /p2a20 * /p2al9 + ;
/p2rw * p2as * cntlspc * pa3l * pa30 * pa29 * pa28 + ;

/p2rw * p2as * mmuio * p2a20*/p2al9*/p2al8*/p2al? :

writable mos
diagcycle

for diagnostic
; EPROM write

U900 MOS Read Enable —
mosrden

Inputs to U900 decoding to one of the following three events will force a MOS
write cycle:

1.

a MOS device write cycle — P2 read/write signal is low (indicating a write
cycle), low active p2_as (address strobe) is asserted, low active MMUIO
signal is asserted, and the two high order address bits for TYPE1 space, A20
and A 19, are held low, indicating a TYPE1 device (keyboard, mouse, serial
1/O port, EEPROM, or time of day clock) is going to be selected, or

a Control space diagnostic cycle — P2 read/write signal is low (indicating a
write cycle), low active p2_as (address strobe) is asserted, low active Con-
trol space (cntlspc-) is asserted, and address bits A28-A31 are high, or

a diagnostic write cycle to the EPROM — a write to the EPROM is essen-
tially a write to a bit bucket. The diagnostics write cycle enables diagnos-
tics to check statistics logic without actually affecting any devices.

P
mosrden = p2rw * p2as
p2rw * p2as
p2rw * p2as
p2rw * plas

p2rw * p2as

mmuio * /p2a20 * /p2al9 + ;

readable mos

mmuio * p2a20*/p2al9*/p2al8*/p2al7 + ; eprom
cntlspc * pa3l * pa30 * pa29 * pa28 + ; diagcycle
bootcy + ; boot eprom
sccack H

scc vect’d int

mosrden- is issued on pin 12 of U900 following one of five input events:

1.

N

a MOS device read cycle — P2 read/write is high, indicating a read cycle;
P2 address strobe is low (active); mmuio- is low (active); P2 address bits
A20 and A19 are low (indicating one of the four devices: keyboard, mouse,
TOD, or EEPROM, in TYPEI1 space); or

the EPROM is going to be read —- P2 read/write is high, indicating a read
cycle; P2 address strobe is low (active); mmuio- is low (active); P2 address
bits A20-A17 select the EPROM at 0x 100000, or

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 24 — MOS Bus Devices 169

Diagnostic Cycle — diagcy

a diagnostic cycle read — P2 read/write is high, indicating a read cycle; P2
address strobe is low (active); a Control space (as opposed to MMU 1/O)
access is indicated by the low active assertion of ctlspc-; and address bits
A31-A28 are all high, indicating that the MMU will be bypassed, allowing
direct diagnostic access of the serial controllers, or

a boot PROM read cycle — P2 read/write is high, indicating a read cycle;
P2 address strobe is low (active); and the low active signal bootcy- (decoded
from U106 PAL) is asserted, or

read of the serial controller’s vectored interrupt — P2 read/write is high,
indicating a read cycle; P2 address strobe is low (active); and sccack- (serial
controller acknowledge) is issued from U304 PAL. The serial controllers’
interrupts are daisy-chained; once the interrupt is acknowledged by the
assertion of sccack-, the software is supplied a vector by the interrupting
controller.

diagcy = p2as * cntlspc * pa3l * pa30 * pa29 * pa2B8 + ; diag scc access

2rw * p2as * sccack ; scc vect’d int
p

24.2. U901 MOS SACK
State Machine

diagcy- is issued on pin 13 of U900 by one of the following two events:

1.

serial controller access bypassing the MMU — P2 address strobe is
asserted; control space (ctlspc-) is asserted; and address bits A31-A28 are
set (indicating the UART bypass), or

read of the SCC vectored interrupt — P2 read asserted (p2_rw is high); P2
address strobe is asserted, and sccack- is asserted. It is ORed in U900
instead of U904 because the latter had a three-term OR limit, and they were
all used.

U901 MOS SACK state machine supplies three signals:

1.
2.
3.

MOS synchronous acknowledge, msack-, to the U204 DSACK PAL,
clock, cnten-, to the U903 MOS read buffer, and
strobe enable, stroben-, to the U904 MOS read/write strobe decoder.

U901 uses moswren-, mosrden-, and sccack- to start the state machine to issue
stroben-, cnten-, and msack- at the appropriate times.

Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

miIcrosystems

170 2.60 CPU Board Engineering Manual CONFIDENTIAL!

Pinout of U901 PAL Pinout of the U901 State Machine is:

Figure 24-3 U901 MOS Control State Machine Pinout

P16R6
__________ \ /__..____-__
i \ / |
i |
c60 | 1 20 | Vece
| |
moswren_ | 2 19 | msack_
| |
mosrden_ | 3 18 | go
| |
sccack | 4 17 | a1
| |
init | 5 16 | g2
| I
cs4_ | 6 15 | ctO
} |
p2as_ | 7 14 | ctl
| |
| 8 13 | ect2
| |
| 9 12 | stroben_
| |
GND | 10 11 | oce
! !
| |

NOTE For the following explanation, see the MOS Bus read cycle timing diagram in the
appendix.

The following figure illustrates the MOS control state machine.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

@
3
g

:

Chapter 24 — MOS Bus Devices

171

Figure 244 MOS Control State Machine

else
/msack- = 1, stroben- =1

sccack-\ * cs4-\

/msack- = 1, stroben- =
(moswren-\ + mosrden-\) * sccack- * cs4-\)

/msack- = 1, stroben- = 1

count<?
/msack- =1, stroben- =1

count <5
/msack- = 1, stroben- =0

count = 7
/msack- = 1, stroben- =1

MOSSTROBEN I

count= 5
fmsack- = 1, stroben-=0

p2as-

else
w /msack- = p2as-, stroben- = 1
/msack- = pas-, stroben- = 1

There are two paths through the MOS control state machine:
1. MOS read/write, and
2. SCCinterrupt.

@ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

172 2060 CPU Board Engineering Manual CONFIDENTIAL!

17201 MOS Read/Write

Control

Table 24-2

Table 24-3

L2

The MOS read/write path starts in the IDLE state. IDLE state (111) is defined by
a control state counter, which in tumn influences a wait state counter. Every time
the least significant bit (g0, also known as cnten — counter enable) of the control
state counter goes from a one to a zero, the wait state counter is enabled and
begins incrementing. Both of these counters are intemal to the U901 state
machine. The states in each of these counters are defined in the following two
tables:

U901 Control Counter States

Control State | Counter Value
g2 gl g0
idle 1 1 1
syncwait 1 0 0
mosstroben 1 1 0
mosend 0 1 1
nostateQ 0 0 0
nostatel 0 0 1
nostate2 0 1 0
nostateS 1 0 1

U901 Wait Counter States

Control State Counter Value
ct2 ctl ¢t
cnt0 0 0 0
cntl 0 0 1
cnt2 0 1 0
cnt3 0 1 1
cntd 1 0 0
cntS i 0 1
cnt6 1 1 0
cnt7 1 1 1

Note that some of the states in the control state counter are labelled *‘nostates."’
These are values in the control state counter which do not have control states
assigned to them: they are defined in case the counter should happen to hold one
of these stateless values when you power up. For instance, as shown below, a
control state register value of 000 is defined as nostate0.

sSun (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICros ystems

Chapter 24 — MOS Bus Devices 173

Assign control states

nostatel = 000
nostatel = 001
nostate2 = 010
nostate5 = 101

If you should happen to power up in one of these ‘‘nostates,’’ the state machine
will go immediately to IDLE. For instance, powering up in nostateQ will cause
you to go to IDLE state and force the outputs msack- and stroben- to their inac-
tive (high) state because of the following statements:

()
state nostate0: msack_ = h;
stroben_ = h;
goto idle;
- J
(A
state nostatel: msack_ = h;
stroben_ = h;
goto idle;
\. J
~
state nostate2: msack_ = h;
stroben_ = h;
goto idle;
. J
(A
state nostate5: msack_ = h;
stroben_ = h;
goto idle;
\. J

U901 is set to the IDLE state at initialization, and the control counter is set to
111. If you look at the MOS read timing diagram, you will see that msack- and
stroben- are false (high) during IDLE. This is also illustrated in the state diagram
equation:

state idle: msack_ = h;
stroben = h;

To go from the IDLE state to MOS strobe enable (MOSSTROBEN) state either
MOS read or MOS write must go true (low), scc_ack- stay high, and you must be

Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

TICros ystems

174

2060 CPU Board Engineering Manual CONFIDENTIAL!

@

é‘

in state 4 (cs4- asserted). The other path, to SYNCWAIT, is selected if both
sccack- and cs4- are asserted (low). Otherwise you remain in IDLE state.

- 3
state_diagram [a2,91,90] "control state machine"

state idle: msack_ = h;

stroben_ = h;

if !sccack_&'!cs4_ then syncwait
else
if (!moswren_#!mosrden_)&!cs4_&sccack_
then mosstroben
else
idle:

L

In MOSSTROBEN state the control state counter goes from 111 (IDLE) to 110
(MOSSTROBEN). Remember, when the least significant bit (q0) of the control
state counter goes from one to zero it enables the wait state counter (ct2-ct0) to
begin incrementing, unless or until the signal cnten- goes high, resetting this
counter. Once in MOSSTROBEN state the wait state counter increments every
¢60- (60 nsec) clock.

{Rev 1 of 10 May 1987) CONFIDENTIAL!

w
=
Ef="

Chapter 24 — MOS Bus Devices 175

Figure 24-5 MOS DTACK PAL Wait State Counter

cntreset

:

cntreset

Al
U

&

cntreset

AN
v

&
i

cntreset

[L .
v

cntreset

[\

cnireset

WaNa)
AVAVE

cntreset

_

=
\7

: .

o]
[+
o

awi
v

c60- + cntreset

As long as the wait state counter is less than 5 (101), U901 remains in
MOSSTROBEN state. When the count reaches five, 540 nsecs into the MOS
read/write cycle, U901 enters MOSEND state. This is designated by 011 in the
control state counter.

@ S un {Rev 1 of 10 May 1987) CONFIDENTIAL!

176 2060 CPU Board Engineering Manual CONFIDENTIAL!

U901 SCC Interrupt —
SYNCWAIT State

~
state mosstroben: msack_ = h;)
stroben_ = 1;
if !init_ then idle
else
if count == 5 then mosend
else
mosstroben:
L J
—~
state mosend: msack_ = p2as_; W
stroben_ = h;
if !init_ then idle
else
if p2as_ then idle
else
mosend;
\ J

Recall that the least significant bit (LSB) of the control state counter enables and
disables the wait state counter. When U901 enters MOSEND state, the LSB (q0)
goes to a one, (control state counter goes from 110 to 011) which disables cnten-,
and the wait state counter is reset to 000 on the next clock. This counter remains
reset until cnten- goes low again.

The stroben- signal goes high, disabling it, and msack- goes low, pacing the
p2as- address strobe. When the p2as- signal goes high msack- also goes high,
still pacing p2as-. On the next clock you reenter IDLE state.

If you look at the timing diagram, MOS bus cycle begins in the IDLE state with

‘both msack- and stroben- high. IDLE state continues until 180 nsecs into the

cycle, S5 of ¢60 clock. MOSSTROBEN state continues until count = 5, 540
nsecs into the cycle, at which time U901 enters MOSEND state. When msack-
goes low, the processor begins to end the bus cycle. When p2_as- goes high (end
of the bus cycle) the IDLE state is entered on the next clock (720 nsec) and
remains in IDLE.

The other path through the state machine is that of SYNCWALIT, the interrupt
acknowledge cycle. SYNCWAIT is necessary because of the long set-up times
needed for MOS chips; it’s essentially a lot of wait states inserted into an inter-
rupt cycle.

SYNCWALIT state is entered whenever sccack- and cs4- are asserted.

sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 24 — MOS Bus Devices 177

state idle: msack_ = h;
stroben_ = h;

if !sccack_&!cs4_ then syncwait
else

if (!moswren_#!mosrden_)&!cs4_&sccack_

then mosstroben

else
idle;

. J

When sccack- and c¢s4- are asserted, msack- and stroben- are still deasserted. The
control state counter goes from 111 (IDLE) to 100 (SYNCWAIT). The least
significant bit (g0) of the control state counter goes from a one to a zero (counter
goes from 111 to 100) and this enables the wait state counter, which begins to
increment. As long as the wait counter is less than seven (111), U901 remains in
SYNCWALIT state; as soon as the wait state counter reaches seven U901 enters
MOSSTROBEN state, a MOS read/write cycle.
()
state syncwait: msack_ = h;
stroben_ =

h;

if !init_ then idle
else
if count == 7 then mosstroben
else
syncwait;
\. J

These seven wait states allow

1. synchronization to PCLK baud rate clock on the serial communication con-
troller (205 nsecs),

2. the daisy-chained interrupt enable output from the first SCC chip to get out
of the chip (250 nsecs), and

3. the interrupt enable input to set up in the next chip (100 nsecs).

In other words, these seven wait states give the two SCCs time to decide which
of the SCCs will issue the interrupt. At this point the read cycle starts (enter
MOSSTROBEN state) to retrieve the interrupt vector. The wait state counter
simply rolls over from 111 to 000.

MOSSTROBEN state operates the same in SYNC as in MOS read/write cycles.
The control state counter’s LSB remains a zero (110), enabling the wait state
counter, which continues to increment. As long as the wait state counter is less
than five (101), U901 remains in MOSSTROBEN state. When the count reaches
five, 1020 nsecs into the SYNC cycle, U901 enters MOSEND state. This is
designated by 011 in the control state counter.

@ Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOs ystems

178

2060 CPU Board Engineering Manual CONFIDENTIAL!

‘@a

state mosstroben: msack_ = h;
stroben_ = 1;

if !init_ then idle
else
if count == 5 then mosend
else
mosstroben;

state mosend: msack__ = p2as_;
stroben_ = h;

if 'init_ then idle
else
if p2as_ then idle
else
mosend;

\. J

When U901 enters MOSEND state the control state counter goes from 110 to
011. When the LSB (q0) goes to a one cnten- is disabled and the wait state
counter is reset to 000. This counter remains reset until cnten- goes low again.
1030 nsecs into the cycle stroben- goes high, disabling it, and msack- goes low.
1080 nsecs into the cycle the wait state counter is reset to zero (000). When
p2_as address strobe goes high, you reenter IDLE state on the next clock.

The timing for the states is:

IDLE 0 to 180 nsecs
SYNCWAIT until 660 nsecs
MOSSTROBEN until 1020 nsecs
MOSEND until 1200 nsecs

(at which time you go back to idle)

Thus, the interrupt acknowledge cycle for the MOS devices is 1200 nsecs long.

MOS devices have very slow output disable times. A write cycle to a MOS dev-
ice following a read cycle will cause a buffer conflict unless time is allowed at
the end of a read cycle for the outputs to be cleared. The 8530 SCC gives one
solution to this problem — a status register read cycle will not provide stable
data for the length of the read cycle. To avoid unknown metastable conditions in
the 68020, the read data should be latched and time allowed for the data to settle.
Latching the data for all MOS reads allows the MOS read strobes to deactivate
early, allowing time for the buffers to tum off before the next cycle and also pro-
vides stable data to the 68020.

sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MCrosystems

Chapter 24 — MOS Bus Devices 179

24.3. U904 MOS

Read/Write Strobe
Decoder
U904 Pinout
Figure 24-6

MOS devices also have data and address hold time requirements which require
the write strobes to terminate before the end of the cycle.

The stroben- signal is used for providing the short R/W strobes for hold time
requirements and buffer turn-off time. In addition, the rising edge of cnten- is
used to clock the 74L.S374 data hold latch (U1203).

The U904 PAL generates the read and write strobes for all the MOS devices
except the DCP. The devices for which strobes are generated are:

o read/write Time of Day clock

o read/write serial ports

o read/write keyboard and mouse
o read/write EEPROM, and

o read EPROM.

The read strobes for the 8530 SCC devices are active for normal reads and inter-
rupt acknowledge cycles. In addition to normal accesses, the serial port SCC
read and write strobes are active during a diagnostic cycle. A diagnostic cycle
access bypasses the MMU (is mapped into Control space as ‘‘UART Bypass'’)
so that diagnostic programs can get access to a serial port while using a minimum
of hardware.

Pinout for U904 is:
U904 Pinout
ko dkkokkokokok kok ks KAk Kkkkkkkokkkkk*
* L I *
* %k k k * ok k%
/moswren * 1% pal *24* vee
* ok k% * %k %
/mosrden * 2% *23* /rd_eprom
* k kK * kK %k
/stroben * 3 *22% mos_a0
*k kK L2 2 -
/diagcy * 4% *21* /wr_tod
* k ok k * ok Kk
/bootcy * 5% *20% /rd_tod
* ¥k K KKk * -
/sccack * 6% *19% /wWr_serial
Akh% Kk kR -
p2_a00 * I *x18% /rd_serial
* k& * * &k k&
p2_a20 * 8* *17* /wr_keybdm
hk kKX * %k % %
p2_al9 * g% *16%* /rd_keybdm
* %k k& * ok ®k
p2_alsg *10%* *15% /wr_eeprom
TRk R LR -
p2_al? *x11# *14% /rd_eeprom
L& 8 &3 *k k&
gnd *312% *13% /init
Akk %k * Kk kK
* *

AKX KRR AR AR R A RR R AR AR R RN A R AR

{Rev 1 of 10 May 1987} CONFIDENTIAL!

180 2060 CPU Board Engineering Manual CONFIDENTIAL!

U904 Input Signals

U904 Output Signals

Description of the input signals:

o /moswren: indicates a valid TYPE1 space write cycle

o /mosrden: indicates a valid TYPE1 space read cycle

o /stroben: enable read/write strobes; avoids buffer conflicts

o p2_a<20:17>: physical address from MMU which decodes to a specific
MOS device — see the table which defines TYPE1 space devices, earlier.

o p2_a00: physical address from MMU

o /bootcy: doing special virtual address boot cycle

o /diagcy: doing special virtual address diag cycle or sccack

o /sccack: serial port and keyboard/mouse interrupt acknowledge
o /init: resets the SCC’s

Description of the output signals:

a /rd_eprom: read EPROM (boot)

o /rd_eeprom: read EEPROM

o /wr_eeprom: write EEPROM

o /rd_keybdm: read keyboard/mouse scc
o /wr_keybdm: write keyboard/mouse scc
o /rd_serial: read tty[ab] scc

o /wr_serial: write tty[ab] scc

o /rd_tod: read TOD chip

o /wr_tod: write TOD chip

o mos_a0: address bit AO on the MOS bus is gated to reduce noise injection
into 7170 TOD chip. If this line is not gated, transitions on the address bus
are injected into the TOD clock, making it run fast. For more information,
see the section on the 7170 TOD clock chip.

Three macros are used in the output equations:
(A

#define VALIDRD = mosrden*stroben*/reset

#define VALIDWT = moswren*stroben*/reset

#define IO = /bootcy*/diagcy
\. :)
These define:
sun . {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 24 — MOS Bus Devices 181

1. avalid read cycle as being an active MOS read enable, an active MOS
strobe enable, and init (reset) inactive;

2. avalid write cycle as being an active MOS write enable, an active MOS
strobe enable, and init (reset) inactive;

3. avalid I/O cycle as being neither a boot cycle nor a diagnostics cycle. In
other words, a valid I/O cycle does not bypass the MMU.

Decodes for the output signals are:

rd _eprom = VALIDRD*EPROM*IO +

bootcy*VALIDRD

J

This equation explains how to get access for a read of the EPROM. To access it,
you must be in a valid read cycle (defined above), address bits A20:17 must
decode to the EPROM in TYPE1 space —

(EPROM = p2_a20*/p2_alf%*/p2_alB*/p2_al? = 0x100000]

and you must be in an I/O cycle, or you must be in a bootcycle with a valid read
cycle.

The remainder of the outputs are defined below.

rd_eeprom = VALIDRD*EEPROM*IO

To read the EEPROM, you must be in a valid read, have the correct A20:17
address bits for TYPEI1 space decode to the EEPROM —

EEPROM = /p2_a20*/p2_al9*p2_al8*/p2_al7 = 0x040000

and you must be in an I/O cycle.

wr_eeprom = VALIDWT*EEPROM*IO
@? sSun {Rev 1 of 10 May 1987) CONFIDENTIAL!
microsystems :

182

2060 CPU Board Engincering Manual CONFIDENTIAL!

The only difference here is that you are in a valid write cycle.

Notice the reset term in the following serial equations; they cause both the read

NOTE
and write strobes to be active simultaneously, which resets the SCCs.
()

rd_keybdm = VALIDRD*KEYBDMOUSE*IO +

sccack*VALIDRD +

reset
_ J
To read the keyboard or mouse you must be in a valid read cycle, have the
TYPEI space address for the keyboard/mouse —

KEYBDMOUSE = /p2_a20*/p2_al9*/p2_al8*/p2_al7 = 0x0000C0
and you must be in a valid I/O cycle. Or you can access it through an interrupt
acknowldge cycle (sccack and valid read of the interrupt vector).

wr_keybdm = VALIDWT*KEYBDMOUSE*IO +

reset
A write to the keyboard/mouse is similar, except that there is no valid write dur-
ing an interrupt acknowledge cycle.
(A

rd_serial = VALIDRD*SERIALIO*IO +

VALIDRD*diagcy +

reset
\. J
To read the serial I/O port you must have a valid read, the TYPE1 address for the
serial I/O port —

SERIALIO = /p2_a20*/p2_al9*/p2_al8* p2_al7 = 0x020000

@ Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!
TaCros yS16Ms

§y)

Chapter 24 — MOS Bus Devices 183

and a valid I/O cycle. Or you can access it during a reset (init- asserted) cycle.
Or you can access it during a valid read and a diagnostic cycle. If you remember
back to U900, a diagnostic cycle is defined either as a control space access
(bypassing the MMU) or read of the vectored interrupt.

s N

wr_serial = VALIDWT*SERIALIO*IO +
VALIDWT*diagcy +

reset

\ J

A write to the serial ports is the same as a read, except that a valid write is
asserted in place of valid read.

N
rd_tod = VALIDRD*TOD*I0

Notice that the TOD clock can only be accessed through the MMU — no diag-

nostic cycle.

r =
wr_tod = VALIDWT*TOD*IO

N\ J

s \
/mos_al = mosrden*TOD*I0*/p2_al0 +

moswren*TOD*IO0*/p2 a00
- J

The AO bit is gated through U904 to reduce the number of transitions coupled to
the TOD clock. Transitions coupled to the oscillator circuit cause the TOD clock
to run fast; to control this, mos_a0 is gated through U904 only when there is a
TOD access, which is rare enough not to affect the TOD clock.

As shown above, the /mos_a0 bit is asserted during either a MOS read or a MOS
write, and when the TYPE1 address for the TOD clock is selected:

TOD = /p2_a20*/p2_al9%* p2_al8* p2_al7 = 0x060000

@f) sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

184 2060 CPU Board Engineering Manual CONFIDENTIAL!

24.4. U902 MOS Write and
U903 MOS Read
Buffers

U902 MOS Write Buffer

Figure 24-7

1903 MOS Read Buffer

when the MOS circuitry is in an /O cycle, and P2 address bit AQ is low.
The U902 write buffer and U903 read buffer couple data bidirectionally from the
processor bus (P2 data) to the MOS data bus.

U902 write buffer is a HCMOS chip used to minimize undershoot to its con-
nected MOS devices. When moswren- (from U900) goes active, data from the
P2 data bus is coupled to the MOS data bus.

U902 MOS Write Data Buffer

P2 data bus U902 MOS databus
write data o
buffer
(direction)
moswren-

On the rising edge of cnten-, data from the MOS bus (m_d([7:0]) are latched onto
the P2 data bus. The cnten- signal is also the LSB (q0) of the control state
counter in U904. This rising edge — going from a binary zero to a binary one —
of cnten- also signals the transition from MOSSTROBEN (110) state to
MOSEND (011) state.

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

Chapter 24 — MOS Bus Devices 185

Figure 24-8

24.5. MOS Read and Write
Cycles

U903 MOS Read Data Buffer
- P2 data bus U903 MOS data bus
‘ read data
buffer
o N
)
mosrden-
cnten-

If you look at the timing diagram for MOS Bus Read in the appendix, you will
see that cnten (q0) goes high at 545 nsecs, and then mosreden- at 667 nsecs. The
delay between cnten- and mosrden- is intentional, for two reasons:

1.

MOS devices have very slow output disable times. A write cycle immedi-
ately following a read cycle could conceivably result in a buffer conflict —
the read cycle data may not have been cleared from the MOS device’s out-
put. This delay between clocking data into the U903 buffer and enabling it
out is inserted into the timing cycle to make certain that the MOS device has
had time to clear itself of any read data.

When you do a status read from any of the 8530 serial communication con-
trollers, the data is not guaranteed to be stable in the SCC’s status register
for the entire length of the MOS read cycle. This is because status registers
in the SCCs are updated asynchronously and there is no provision for latch-
ing this data inside the SCC.

To avoid mztastable conditions and allow enough time for the MOS device to
turn off after data is read, a delay of a little over 100 nsecs between data latch
and output enable is built into the timing for U903.

Both the read and the write cycles use much of the same timing; the major differ-
ence is that the write cycle uses U902 data buffers and the read cycle uses U903
data buffers. U902 is enabled by the write line; U903 is enabled by the read line.

sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysterns

186 2060 CPU Board Engineering Manual CONFIDENTIAL!

MOS Read Cycle

MOS Write Cycle

24.6. Mouse and Keyboard

SCC

The MOS read cycle starts out in IDLE state, with the control state counter in
U904 set to 111. Both msack- and stroben- are high (false); mosrden- goes true
and moswren- stays high (false).

Whenever mosrden- or moswren- go low, and cs4- is true and sccack remains
false (we are not doing an interrupt acknowledge cycle), the state machine moves
from IDLE to MOSSTROBEN. Both msack- and stroben- remain high.

In MOSSTROBEN state, the three-bit wait state counter begins to increment
from 000, using 60 nsec clock (c60). The msack- signal remains false, but
stroben- goes low around 220 nsecs into the cycle.

When the wait state counter reaches five (101), the state machine moves from
MOSSTROBEN to MOSEND state; msack- still remains false (high) and
stroben- remains true.

In MOSEND state, data is clocked into the U903 read buffer by cnten- going
high (false) at 545 nsecs into the read cycle. At the same time cnten- going from
a zero to a one disables the U904’s wait state counter. 580 nsecs into the cycle,
mosend- goes low (true).

In MOSEND state, msack- ﬁaces p2_as-, going low at 580 nsecs, and stroben-
goes high at this same time.

When the address strobe p2_as- goes high, the read cycle reenters IDLE state.

The MOS write cycle is much like the MOS read cycle. The MOS write cycle
starts out in IDLE state, with the control state counter in U904 set to 111. Both
msack- and stroben- are high (false). When mosrden- stays false (high) and
moswren- goes low (true) a write cycle is signalled; cs4- dropped at 120 nsecs
and ccack- stays high (false) since this is not an interrupt acknowledge cycle.
The write cycle enters MOSSTROBEN state.

At this time msack- remains high but stroben- drops low, causing the appropriate
MOS write strobes to be issued from U904. The wait state counter is enabled
and begins incrementing every 60 nsecs (c60 clock) from an initial count of 000.
When it reaches five (101) the write cycle enters MOSEND state. When p2_as-
goes high, the cycle ends and the MOS circuitry returns to IDLE state.

The mouse and keyboard ports are both enclosed in the U1000 8530 serial com-
munications controller.

1. serial I/O for the keyboard is on SCC port A;

2. serial I/O for the mouse is on SCC port B.

Inputs to the U1000 SCC are:

o m_d[7:0] — MOS data bus bits 0-7

o fiei_scc — interrupt enable input, daisy-chained from the serial port SCC.
o /scc_ack — SCC acknowledge used in the interrupt acknowledge cycle

[

mos_al:0 — MOS bus address bits, terminated with serial resistors R901
and R902. These come from an F244 on the other side of the board and are

Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 24 — MOS Bus Devices 187

U405 and U2207 Baud Rate
Clock

Transmit Data Path

Receive Data Path

24.7. Serial Ports A and B
— ttya and ttyb

susceptible to undershoot; R901:2 are added to compensate.
o /rd_keybdm, /wr_keybdm — read/write.

U405 19.8608 MHz crystal and U2207 divider make up the baud rate clock for
the U1000 UART. It also provides 100 nsec clock (c100) to the refresh period
counter on page 24.

J1001 is normally IN, connecting the clock crystal to the UART. 200 nsec clock
(c200) from the divide-by-four (QB) output of the U2207 divider/counter is con-
nected to the PCLK input of U1000 UART.

Transmit data enters the parallel data port (D7:0) of U1000 from the MOS data
bus, bits m_d[7:0]. Data comes out serially on pin 15 (keyboard) and pin 25
(mouse). TX data is inverted through U1104 to set it to the correct polarity, fed
through U1003 driver to J1000 DB-15 Mouse/Keyboard connector. TX data for
the keyboard is connected to pin 3 (txkeybd), TX data for the mouse is connected
to pin 7 (txmouse).

Notice that U1003 driver has VEE grounded. This driver normally operates at
+/- 5 VDC,; grounding VEE makes the LS29 act like a normal TTL driver,
operating between 0 and +5 VDC.

C1003:2 47 pF caps are connected across the mouse and keyboard data outputs to
slow the transmit signal’s edge rate to between 1 and 2 microseconds; this
reduces radiation.

RX data enters the 2060 board on pin 1 (keyboard) and pin 5 (mouse) of J1000.
Receive data lines are linked to 4.7 KQ pullup resistors (necessary because the
mouse uses open collector circuitry) and then connect to U1002 differential
receiver with hysteresis. The internal hysteresis circuitry provides noise immun-
ity, and R1000 and R1001 bias network moves the input threshhold up to 1.5
VDC, also as a protection against the effects of noise. Threshhold voltage comes
in on the plus inputs (A+ and D+) of U1002; the RX data comes in on the minus
inputs (A- and D-). This causes the receiver to act as an inverter.

Keyboard data of corrected polarity is connected to port A of the SCC (RXDA,
pin 13); mouse data is connected to port B (RXDB, pin 27). From there it is con-
verted from serial to parallel data format inside the SCC, and put out on the MOS
data bus, m_d[7:0].

Serial Ports A and B use an 8530 SCC identical to the one used by the keyboard
and mouse. The inputs to the SCC are nearly the same as those for the
keyboard/mouse SCC — with the exception, of course, that read and write serial
signals are used instead of their keyboard/mouse correspondents. Also many of
the modem/terminal control signals are used in the serial port circuit.

sun {Rev 1 of 10 May 1987) CONFIDENTIALL!

mcrosystems

188 2060 CPU Board Engineering Manual CONFIDENTIAL!

Transmit Data Path

Receive Data Path

24.8. EEPROM and
EPROM

NOTE

Transmit data enters the parallel data port (D7:0) of U1100 from the MOS data
bus, bits m_d[7:0]. Data comes out serially on pin 15 (port A) and pin 25 (port
B). TX data is inverted through U1105:4 inverters to put the two signals in the
correct polarity. Next the data is fed through U1107:6 drivers to J1100 DB-15
Port A connector and J1101 Port B connector. TX data for the port A is con-
nected to pin 2 of J1100; TX data for port B is connected to pin 2 of J1101.

Notice that U1007:6 drivers do not have VEE grounded (as U1003 was). This
driver operates at +/- 12 VDC and thus supplies valid RS-423 signal levels.

C1007:0 47 pF caps are connected across the output signal lines to slow these
signals’ edge rate to between 1 and 2 microseconds; this reduces radiation.

Serial port control signals (request to send, data terminal ready) are supplied by
the SCC to both serial ports also.

RX data and control signals enter the 2060 board on the serial port connectors,
J1100 and J1101. The data and control lines are linked to U1003:1 differential
receivers with hysteresis; this intemal hysteresis circuitry provides noise immun-
ity. The plus inputs are connected to ground and the signals enter the minus
inputs; this inverts the signals.

This inversion means that the control signals are, by default, ACTIVE!

The 4.7 KQ resistors connected serially to the synch (SYNA and SYNB) and
TXCA/TXCB transmit clock lines are used as current limiters.

Serial port A data of corrected polarity is connected to port A of the SCC
(RXDA, pin 13); serial port B data is connected to port B (RXDB, pin 27). Itis
then converted from serial to parallel format inside the SCC, and put out on the
MOS data bus, m_d[7:0].

The signal -Svr (negative 5 volts regulated) is supplied at pin 25 of both connec-
tors for use by selected modems.

The EEPROM and EPROM reside in TYPE! space and are connected to the
MOS bus. Their respective addresses are:

EEPROM = /p2_a20+%/p2_ald* p2_al8*/p2_all = 0x040000

EPROM = p2 a20*/p2_al9*/p2_al8*/p2_al7 = 0x100000

The EEPROM can be both read and written; the EPROM is read-only. Thus
strobes to the EEPROM and rd_eeprom and wr_eeprom; strobe to the EPROM is
rd_eprom. If you recall, these three strobes were among those issued by US04;
the rd_eprom strobe was defined:

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 24 — MOS Bus Devices 189

rd_eprom = (mosrden*stroben*/reset*p2_a20*/p2_al9*/p2_alB*/p2_al7*/bootcy*/diagcy) +

(bootcy*mosrden*stroben*/reset)

In other words, a read EPROM cycle can be made when

1
2
3
4
5.
6
7
8
9

MOS read is enabled, AND
strobe enable is true, AND

it is NOT a reset cycle, AND

P2 address bit A20 is high, AND
P2 A19islow, AND

P2 A18 is low, AND

P2 A17 is low, AND

it is NOT a boot cycle, AND

it is NOT a diagnostic cycle.

Or, a read of the EPROM can be made when

1.
2.
3.
4.

it’s a boot cycle, AND
a MOS read cycle, AND
strobe enable is true, AND

it’s not a reset cycle.

Read of and write to the EEPROM are defined similarly:

rd_eeprom

mosrden*stroben*/reset*/p2_a20*/p2_al9*p2_al8*/p2_al7*/bootcy*/diagcy

\.

wr_eeprom

moswren*stroben*/reset*/p2_a20*/p2_al%9*p2_al8*/p2_al7*/bootcy*/diagcy

Both the EEPROM and the EPROM use addresses directly from the processor
(p_a addresses, virtual addresses) and not those off the MOS bus. This is
because the EEPROM and EPROM are physically located close to the processor,
and are susceptible to undershoot (as all MOS devices are). Since the 68020
closely controls undershoot, the processor’s address lines are used.

Q?& sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

190 2060 CPU Board Engineering Manual CONFIDENTIAL!

EEPROM

EPROM

Table 244

24.9. Time of Day (TOD)
Clock

TOD Oscillator Circuit

@

The EEPROM is a read/write device, organized into 2K 8-bit bytes. Eleven bits
of processor address (p_a[10:00]) select a byte from within this 2K space.

Chip write enable is controlled by the signal wr_eeprom-; when the signal is low,
data on the MOS bus (m_d[7:0]) is written into the chip at the byte address
selected by p_a[10:00]. When wr_eeprom- is high, write to the chip is disabled.

Chip output enable (EEPROM read) is controlled by the signal rd_eeprom-;
when the signal is low, data in the chip is written to the MOS data bus
(m_d[7:0]). When rd_eeprom- is high, output from the chip is disabled.

The 180 series termination resistors on the read and write were added to control
undershoot, since U904 is located on the far side of the board.

The EPROM can be either 256K or 512K, organized as either 32K or 64K 8-bit
bytes. 15 address bits (p_a[00:14]) are used to access a byte in the 256K
EPROM; 16 address bits are used in the 512K EPROM. The high order address
bit (p_a[15]) for the 512K EPROM is jumpered at J1201. If the 256K EPROM is
used, J1200 is jumpered. The table below gives this configuration.

EPROM Jumpering

EPROM Size | Jumper IN or OUT?
J1200 J1201

256K IN ouT
512K OuT IN

The rd_eprom line has a 180X series termination resistor (R907) to handle
undershoot.

The TOD clock is controlled by an Intersil 7170 real-time clock chip. Its 8-bit
bidirectional data bus is connected to the MOS data bus (m_d[7:0]); 5 bits of
MOS address (mos_a[4:0]) select from among 18 on-chip calendar functions.
The m_d[7:0] bus is susceptible to undershoot (due to the length of the bus) so
their source, U902, is an HCMOS device.

Also connected to the 7170 are the MOS read and write strobes: wr_tod- and
rd_tod-, both low active signals issued from U904.

The U1204 37.268 KHz crystal is part of a parallel resonant oscillator circuit.
200 KQ R1203 is in series with the crystal as a limiting resister because the cry-
stal can only handle about 10 pwatts. R1203 also acts as a wave-shaper.

C1201 adjustable capacitor on the output side of the 7170, together with C1200
loading capacitor (on the input of the 7170) allow you to adjust the crystal fre-
quency to the clock chip.

U1202 battery backup is connected to VCC to power the TOD chip when power
(VCC) is off.

Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

mcrosystems

Chapter 24 — MOS Bus Devices 191

o In battery backup mode, a switch inside the 7170 chip disconnects ground at
pin 11 and connects the battery to pin 14. When ground is disconnected the
circuit is isolated and there is no possibility of battery current leakage off-
chip.

o When the system is powered up (VCC available) the battery is disconnected
by the 7170 and ground is reconnected. When the battery is disconnected,
there is a very high input impedance to the 7170 at pin 14, and thus there is
practally no current drain. However the battery needs some sort of current
drain, so R1202 470 2 bleeder resister has been added to the circuit to allow
a controlled discharge, keeping the battery stabilized around 3 volts,

The TOD interrupt is issued at pin 12 of the 7170 chip. The low active interrupt
signal (int-) is connected to a 4.7 K pull-up resistor, inverted through U1104
inverter with hysteresis.t The signal is then connected as clock to the two inter-
rupt flip-flops, U1205-1 and U1205-2.

U1201-2 (top flip-flop on extreme right of page 12 of the schematics) is interrupt
request level 7 flip-fiop; U1201-1 beneath it serves as interrupt request flip-flop
for level 5. Level 7 is a non-maskable interrupt, and is provided for software
profiling. When either flip-flop is cleared, the appropriate interrupt request is
asserted.

E33 test point is used for calibrating the 7170 TOD chip.

t Hysteresis is necessary because the positive edge of the interrupt signal has an extremely slow edge, and
without hysteresis could trigger false clocks out to the interrupt flip-flops.

@? sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOS ystems

TTL Bus Accesses

TTL Bus Accesses ...

25.1.
25.2.

25.3.

25.5.

25.6.

25.7.

. U1402 MMU Decoder

TTL Bus Read/WTte CYCIE ..o essesssssesssessssensscossssssisniss

U1400 TTL Bus Sack State Machine
U1400 PinOUL ...

U 1400 State Machine Outputs

TTL Bus DTACK State Machine Diagram
TTL Bus Cycle Timing

U1401 TTL Bus Device Decoder

U401 PINOUL ...

U1401 Input Signals
Output Signals of the U1401 PAL ...

U1402 Pinout
U1402 Input Signals

..

U1402 Output Signals

U 1403 (Miscellaneous) CPU Signal TTL Bus Decoder

Pinout of U1403 PAL

U 1403 Input Signals
U1403 Output Signals

Ethernet Control Register ..

U 1405 Ethernet Control Write Buffer

U 1407 Ethernet Control Read Buffer

System Enable Register

195

165
195
196
196
198
203
204
205
205
206
210
212
212
213
218
219
219
220
223
223
224
224

U1406 System Enable Write Register ...
U1408 System Enable Read Register
25.8. U1410 Diagnostics Register
25.9. UT409 ID PROMormrmsmerssensennn

25.10. U1404 P2-t0-TTL Data Buffer

25.11. U2905 and U2906 User DVMA Enable Register

25.12. U203 Bus Error Register
25.13. U509 Context Register
U509 Pinout

224
225
225
225
225
226
226
226
227
227

25.1. TTL Bus Read/Write

Cycle

25.2. U1400 TTL Bus Sack

State Machine

TTL Bus Accesses

Page 14(a) of the schematics covers decoders U1400-U1403. These are:
o U1400 — TTL bus read/write, sack-, and buffer signal decoder

o U1401 — read/write strobe decoder to individual TTL devices

o U1402 — MMU read/write/control signal decoder

o U1403 — miscellaneous TTL-bused CPU control signal decoder.

The TTL bus decoder PALs U1403:1 are combinatorial, that is, based on the sig-
nals present at their inputs they asynchronously issue various output signals to

start the 1/O cycle.

The end of the I/O cycle occurs synchronously, however, triggered by signals
from U1400 PAL. These synchronous signals are the read and write END sig-

nals.

Thus the beginning of an I/O cycle is not dependent upon U1400, but the end of

the cycle is dependent.

This PAL controls the TTL bus transceiver and generates the TTL bus dsack sig-
nal, labelled tsack. q2, q1, and qO are the dsack state machine control counter
bits. The other combinatorial output is ttlbfen-, the TTL bus data transceiver
(U1404) output enable. The output direction of the data transceiver is controlled
by the p2_rw signal. The signal ttlbfen- is active for all valid device and control
space devices. Note that ttlwend- is the same as counter bit q0 and ttirdend- is
the same as control counter bit q1. Also output are the TTL read and write state
indicators — ttlrdend (TTL read end) and ttlwend (TTL write end).

sun

MICTOS yS16ms

195

{Rev 1 of 10 May 1987) CONFIDENTIAL!

196 2060 CPU Board Engineering Manual CONFIDENTIAL!

~ _.400 Pinout

Figure 25-1

U1400 State Machine Outputs

NOTE

Pinout of the U1400 PAL is:
U1400 Pinout
(2RSS RARER RS LASA SRS RR SRR RS
* * % *
LA B &3 WX
/c60 * 1~ pal *20* vece
ARREN ARXXK
/csé * 2% *19* plals8
XX R LR A &4
pa3l * 3 *18* p2al?
XXX XXK K
/mmaio * 4 x17 ql
XXX 'w KXW
/p2as * 5« *lg> Gl
XK XN
/cntlspe * g% . *15~ c2
XXX * XX
/sanity * 7% *14~ nu
TEEwW rrwww
p2a2C * 8* *13> ttlbfen
W RXX R W
plald * 9% *12% /tsack
wE KK LA BB
gnd *10* *11x* gnac

*r RN *xww

* x

L2222 ARt RRdd R

Outputs from the state machine are:

o

o

ttibfen- : enables the output of the TTL buffers,
tsack- : synchronous interrupt acknowledge for the TTL bus,

ql1/tidrdend- : signals the end of the TTL read cycle; this signal is coupled to
the q1 bit of the state machine’s intemal control counter,

qO/ttlwend- : signals the early end of the TTL write cycle; this signal is cou-
pled to the g0 bit of the state machine’s intemal control counter).

For the following description, please consult both the state diagram and the read
and write timing diagrams for the TTL bus.

These output signals are derived through the following equation:

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 197

Q

g

-
ttlbfen = cntlspc * /pa3l * csd + w
mmuio*p2as*/p2a20*p2al9*/p2als +
mmuio*p2as*/p2a20*p2ald*/p2al7 +

ttlbfen * gl

_ ' y,

This equations tells us that ttlbfen- (TTL buffer’s output is enabled) is asserted
when:

1. you are doing a control space access, processor address bit 31 is low, and
you are in clock state four, or

2. you are accessing device space through the MMU, address strobe is
asserted, and the address bits A20:18 decode to either the parity error or
interrupt registers in TYPE1 address space, or

3. you are accessing device space through the MMU, address strobe is
asserted, and the address bits A20:19, A17 decode to either the parity error
or Ethemet controller registers in TYPE1 address space, or

4. TTL buffer’s output is enabled (ttlbfen- stays low) until TTLEND state (q1
bit goes low). This self-latching mechanism is necessary to enable the out-
put of the TTL buffer (U1404) until the end of the bus cycle, because cs4
deactivates during TTLWREND state.

tsack = /g2 * /g0 * p2as +

/q2 * gl * /sanity * p2as

The tsack- (TTL bus synchronous acknowledge) signal is asserted when:

1. the g2 bit of the control state counter is low and qO (ttlwend-, signalling the
end of the TTL write cycle) is low, and address strobe is asserted, or

2. the q2 bit of the control state counter is low and q1 is high (indicating the
TTL read cycle is NOT completed), sanity (init-) is not asserted, and
address strobe is asserted.

w
=
i

{Rev 1 of 10 May 1987} CONFIDENTIAL!

198 2060 CPU Board Engineering Manual CONFIDENTIAL!

TTL Bus DTACK State

Machine Diagram

/q2 := /g2 * gl * /g0 +
/g2 * gl * /sanity +
gl * g0 * /sanity * ttlbfen

/gl (ttlrdend):= /q2 * gl * /g0

/q0 (ttlwend):= /g2 * ql * /g0 +
/g2 * gl * /sanity

\. J

The three intemal control state counter bits are derived from the equations above.

States defined for U1400 state machine are:

"ttlend = end of TTL bus cycle

nostatel = not used state 1

ttlwrend = write strobe dissable

ttlwait = TTL bus wait state

nostate4d = not used state 4

nostate5 = not used state 5

nostateéb = not used state 6

idle = idle state

S. un {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses

199

Figure 25-2 TTL Bus DTACK (SACK) State Machine Diagram

else /tsack-=1
IDLE

—\“1

ttibfen- Asack- =1

60- /tsack- = p2_as-

¢60- /tsack- = p2_as-

tsack- = p2_as-

c60- fisack-=1

€ sun

{Rev 1 of 10 May 1987} CONFIDENTIAL!

200 2060 CPU Board Engineering Manual CONFIDENTIAL!

There are four states used in the state machine, and their lengths in the cycle are
given below:

Table 25-1 TTL Bus DTACK State Machine States

State Length the State runs
in the cycle
IDLE 0 to 180 nsecs

TTLWAIT 180 to 240 nsecs

TTLWREND 240 to 300 nsecs

TTLEND 300 to 360 nsecs
return to IDLE state

The init- signal (also known euphemistically as the system ‘‘sanity’’ signal
because it sets the system to a known condition) sets this state machine to the
IDLE state, with the control state counter at 111 (g2, q1, and q0 = 111). In IDLE
state, the interrupt acknowledge signal, tsack-, remains high (inactive).

IDLE is defined as:
(\
state idle No valid TTL bus access. Wait here in idle.
!'sanity-
-> state idle, power on reset
tsack- = 1;
else
'ttlbfen-

-> state ttlwait, valid TTL bus access: goto wait state

tsack- = 1;

else

always -> state idle, no valid cycle: stay in idle
tsack- = 1;

-)

When ttlbfen- goes low, (actually on the next edge of ¢60 clock following the
assertion of tbfen-) you enter TTLWAIT state (q2, q1 and q0 = 011). This is
180 nsecs into the TTL bus cycle; the assertion of ttibfen- signals the beginning
of a TTL access. In TTLWAIT state, tsack- goes low and paces the state of the
address strobe signal, p2_as-.

Q?? Ssun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 201

TTLWALIT is defined as:
e N

state ttlwait

Valid TTL bus cycle start. Inserta
wait state by spending one
clock in this state. Issue tsack-.

!sanity-
-> state idle, power on reset

tsack- = 1;
else

always =-> state ttlwrend, enough! Issue tsack- and go to
ttlwend-
tsack- = p2as-;

N J

On the next c60 clock, U1400 enters TTL write end, TTLWREND, state (g2, q1
and q0 = 010). Notice that the LSB, g0, has gone from a one to a zero; remember
that this bit is also the signal ttlwrend. Thus, ttlwrend- is asserted and issued on
the output of U1400. If you look at the timing diagram, you will see that this
occurs 245 to 255 nsecs into the bus cycle. The tsack- signal is still pacing
address strobe (still low) because the acknowledge signal must stay valid until
address strobe is deasserted.

TTLWREND issues an *‘early end’’ to the write cycle, necessary to guarantee
that the data and address hold times are met. The ttiwrend- signal is connected to
U1403:1 to deassert the write strobes coming from these three PALs.

TTLWREND is defined as:

e)
state ttlwrend

One wait state has passed. Issue ttlwend- (q0 bit) to
shut down the write strobe to the various TTL devices.

!sanity-
-> state idle, power on reset

tsack- = 1;
always -> state ttlend, stay here for one clock

tsack- = p2as-;

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

202 2060 CPU Board Engineering Manual CONFIDENTIAL!

TTLEND state occurs 300 nsecs into the TTL bus cycle, on the next ¢60 clock.
The control state counter goes from 010 to 000 — q1 goes from a one to a zero.
Recall that q1 is also the ttlrdend signal; thus when you enter TTLEND, ttlrdend-
goes low (true) which signals the end of the TTL read cycle, deactivating any
read strobes issued to the bus by U1401:3. The tsack signal goes high (is
deasserted) following p2_as, 307 nsecs into the bus cycle.

TTLEND is defined as:
s _ 3
state ttlend
This is the last state in the TTL bus cycle.
Here both ttlwend- and ttirdend- are active.
!sanity-
-> state idle, power on reset
tsack- = 1;
always -> state idle, cycle over, go back 1o idle
tsack- = p2as-;
\ Y,

On the next ¢60 clock you re-enter IDLE state. The tsack- signal remains hi gh
(inactive).

Unused states are defined below:
4)

Not-used states. Do not go here. If you get here on a power on reset
leave immediately or you will be shot for loitering. +

state nostatel
always -> state idle,

tsack- = 1;

tDon't blame us for the editorial comments; they were included in the PAL listings by the design
engineer. Personally, I would take any threats of bodily harm with a large grain of sall.

@ sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 203

[)
state nostated
always -> state idle,
tsack- = 1;
.)
- a
state nostateb
always =-> state idle,
tsack- = 1;
\ J
(N
state nostateé
always =-> state idle,
tsack- = 1;
end
L _
TTL Bus Cycle Timing This section refers to the timing diagram for TTL bus reads and writes.
1. InIDLE state, tilbfen- occurs sometime during cs4, depending upon

whether it is a control space access (labelled ttibfen{c]) or an access through
the MMU (labelled ttibfen[mmu}).

When ttibfen- occurs during cs4, the state machine enters TTLWAIT state
on the next negative edge of c60 clock (s5).

The tsack- signal drops low 190 to 220 nsecs into the cycle.
On the next clock (s7), 245 to 255 nsecs into the cycle, tiwend- goes true

-(low). The cs4 signal goes high.

On the next clock (s9), ttirdend- goes active, 305 to 315 nsecs into the cycle.
Now both TTL read and write cycles are ended, and you are in TTLEND
state. Address strobe goes high, and tsack- does likewise.

On the next clock IDLE state retumns.

@ sun (Rev 1 of 10 May 1987} CONFIDENTIAL!
microsysterms

204 2060 CPU Board Engineering Manual CONFIDENTIAL!

"~.3. U1401 TTL Bus This PAL generates the read and write strobes for the TTL devices in p2_typel
Device Decoder (device) space. The parity latches are arranged as an array of five bytes (four
address and one data) so that the dynamic bus sizing of the 68020 can be used,
hence the BYTExx term in the rd_padxx equations below. For example, the
BYTEOQO term selects the low order byte of the parity address register, bits 00
through 07. BYTEOS selects the next significant byte of the address register, bits
08 to 15. And so on.

Table 25-2 Byte Selection in Parity Address Selection

Term AA;idress A%“S Signal Enabled
BYTE24 | 0 0 pad24
BYTE16 | O 1 rd_pad16
BYTEOS8 1 0 rd_pad08
BYTEQO | 1 1 rd_pad00

In order to insure data and address hold times, the /tlwend signal is incorporated
into the /p2_rw*mmuio*/ttlwend definition so the write strobes go inactive
before the end of the bus cycle.

The devices for whom this PAL issues read and write strobes are listed below,
along with their addresses (A31:28):

Parity error register = /p2_a20*p2_al%*/p2_al8*/p2_al7 = 0x080000
Interrupt register = /p2_a20*p2_ald%*/p2_al8*p2_al7 = 0x0A0000

Ethernet control register = /p2_a20*p2_al9%*p2_al8*/p2_al7 = 0x0C0000

These are all mapped through the MMU, in TYPE! space.

S
Q‘? sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

Chapter 25 — TTL Bus Accesses 205

U1401 Pinout Pinout of U1401 is:

Figure 25-3 UI401 Pinowt

22222220222 R S EE AR RS ES S
* * x *
XWX R XX W
/ttlwend * 1% pal *24x* vee
*hRE LA R A
/ttlrdend * 2 *23* /pad24
LA 2 &3 RN
p2_rw * 3* *x22% /rd_padlé
MREN LA S 2 4
/mmuio * 4% *21* /rd_pad08
* kXN * XKW
p2_a20 * 5% *20* /rd_pad00
XRXW W LA B 8 4
p2_alg8 * &~ *19* /wr_ether
XXX . *whw
p2_al8 * = *18> /rd_ether
*wwk * xRk
p2_al7?7 * 8* *17* /wr_int
LE R 24 E KK
p2_a02 * 9~ *16* . /rd_int
L8 8 J XEEK
p2_all *10* *15% /wr_par
XK XN XXX
p2_al0 *11* *14* /rd_par
L2 84 LA S A4
gnd *12* *13* ne
ARKK LA A &4
* *

L2222 2 22222222 RS SRRRa Sl

U1401 Input Signals Inputs to the U1401 PAL are:

{Rev 1 of 10 May 1987) CONFIDENTIAL!

4
1<

=
H

206 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 25-3

Output Signals of the U1401
PAL

/mmuio = wvalid type 1 space access
/ttlrdend = ends read strobe to avoid buffer conflict
/ttlwend = write strobe end for data/address hold time

p2_a<20:17> = physical address from MMU,
to select the registers

p2_a<2:0> = physical address from MMU,
to select bytes from the array of

parity registers

p2_rw = processor read/write- signal

\. J

The p2_a(2:0) address bits decode decode down to one of five bytes of the parity
error and address registers. There is a single byte of parity error register and
there are four bytes of parity address, which are decoded as follows (‘X' means
“Don’t Care’’):

Byte Decode of the Parity Error and Address Registers

Address bits Signal Register
A2 Al A0 Enabled Selected
0 X X rd_paror | parity error

WrI_par (U801 and U813)

1 0 0 pad24 parity address (U811:08)
1 0 1 rd_pad16 | parity address (U811:08)
1 1 0 rd_padO8 | parity address (U811:08)
1 1 1 rd_pad00 | parity address (U811:08)

Output signals from the U1401 PAL are;

S u n {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

Chapter 25 — TTL Bus Accesses 207

- ~N
/rd_ether = read strobe to Ethernet control register

/wr_ether = write strobe to Ethernet control register

/rd_int = read strobe to interrupt enable register
/wr_int = write strobe to interrupt enable register
/rd_par = read strobe to parity error reg

/wr_par = write strobe to parity error reg

pad24 = read/write strobe to parity address latch <31:24>

/rd_padlé = read strobe to parity address latch <23:16>
/rd pad08 = read strobe to parity address latch <15:08>
/rd_pad00 = read strobe to parity address latch <07:00>

As explained above, all of the devices except for the parity address latch are
single-byte latches. The parity address latch is 32 bits wide; the TTL busis 8
bits wide. Therefore the address is broken up into four 8-bit registers. The CPU
board uses the 68020’s dynamic bus-sizing capability to execute four successive
reads of the 32-bit parity address off the 8-bit TTL bus.

rd_ether = p2_rw*mmuio*/ttlrdend*
/p2_a20*p2_al9*p2_al8*/p2_al’

This signal is the read strobe to the Ethernet control register, U1407. The signal
simultaneously clocks and enables output from the Ethemnet controller onto the
TTL data bus. To assert rd_ether you must be in a read cycle (p2_rw high),
accessing the device through the MMU (mmuio- true), must NOT be in
TTLEND state (ttirdend- must NOT be low), and have selected the ethernet con-
trol register via bits A20:17, which is equal to 0x0C0000 in TYPE1 space.

wr_ether = /p2_rw*mmuio*/ttlwend*
/p2_a20*p2_al9*p2_al8*/p2_al7

This signal is the write strobe to the Ethernet control register, U1405. The signal
clocks data from the TTL bus onto the data inputs of the Ethemnet controller. To
assert wr_ether you must be in a write cycle (p2_rw low), accessing the device

sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

208

2060 CPU Board Engineering Manual CONFIDENTIAL!

through the MMU (mmuio- true), must NOT be in TTLWREND state (tdwend-
must NOT be low), and have selected the ethernet control register via bits
A20:17, which is equal to 0xOC0000 in TYPET1 space.

rd_int = p2 rw*mmuio*/ttlrdend*
/p2_a20*p2_al9*/p2_al8*p2_al7

This signal is the read strobe to the interrupt register, U301. To assert rd_int you
must be in a read cycle (p2_rw high), accessing the device through the MMU
(mmuio- true), must NOT be in TTLEND state (ttirdend- must NOT be low), and
have selected the ethernet control register via bits A20:17, which is equal to
0x0A0000 in TYPE]1 space.

wr_int = /p2_rw*mmuio*/ttlwend*
/p2_a20*p2_al9*/p2_al8*p2 al7

This signal is the write strobe to the interrupt register, U300. The signal clocks
data from the TTL bus onto the data inputs of the priority encoder, U302, and the
interrupt enable bus. To assert wr_int you must be in a write cycle (p2_rw low),
accessing the device through the MMU (mmuio- true), must NOT be in
TTLWREND state (ttlwend- must NOT be low), and have selected the ethemet
control register via bits A20:17, which is equal to 0x0A0000 in TYPE! space.

rd_par = p2_rw*mmuio*/ttlrdend*
/p2_a20*p2_a19*/p2_a18*/p2_a17*/p2_302

This signal is the read strobe to the parity error register, U801 and U813. To
assert rd_par you must be in a read cycle (p2_rw high), accessing the device
through the MMU (mmuio- true), must NOT be in TTLEND state (ttirdend- must
NOT be low), have selected the parity error register via bits A20:17, which is
equal to 0x080000 in TYPE1 space, and the p2_a02 address bit must be LOW
(deselecting the parity address registers).

sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

mIcrosystems

Chapter 25 — TTL Bus Accesses 209

wr_par = /p2_rw*mmuio*/ttlwend*
/p2_a20*p2_al9*/p2_alB8*/p2_al7*/p2_al2

This signal is the write strobe to the parity error register, U801 and U813. To
assert wr_par you must be in a write cycle (p2_rw low), accessing the device
through the MMU (mmuio- true), must NOT be in TTLWREND state (ttlwend-
must NOT be low), and have selected the ethemet control register via bits
A20:17, which is equal to 0x080000 in TYPE1 space, and the p2_a02 address bit
must be LOW (deselecting the parity address registers).

pad24 = mmuio*/ttlrdend*
/p2_a20*p2_al9*/p2_alB*/p2_al7*
p2_a02*/p2_all*/p2_a00

This signal generates the read strobe rd_pad24 (through U802 parity control
PAL), to the high order parity address register, U808. To assert pad24 you must
be accessing the device through the MMU (mmuio- true), must NOT be in
TTLEND state (tirdend- must NOT be low), and have selected the parity register
via bits A20:17, which is equal to 0x080000 in TYPE]1 space, and the p2_a02:0
address bits must be equal to 100 (BYTE24 term in the PAL listings).

rd_padlé = p2_ rw*mmuio*/ttlrdend*
/p2_a20* p2_al9*/p2_al8*/p2_al7*
p2_a02*/p2_all*p2_alo0

This signal generates an output enable to the parity address register, U809. To
assert rd_pad16 you must be in a read cycle (p2_rw high), accessing the device
through the MMU (mmuio- true), must NOT be in TTLEND state (ttirdend- must
NOT be low), and have selected the parity register via bits A20:17, which is
equal to 0x080000 in TYPEI1 space, and the p2_a02:0 address bits must be equal
to 101 (BYTE16 term in the PAL listings).

rd_pad08 = p2_ rw*mmuio*/ttlrdend*
/p2_a20* p2_al9*/p2_al8*/p2_al7*
p2_a02*p2_al0l*/p2 a00

S u n {Rev 1 of 10 May 1987} CONFIDENTIAL!

210 2060 CPU Board Engineering Manual CONFIDENTIAL!

NOTE

25.4. U1402 MMU Decoder

This signal generates an output enable to the parity address register, U810. To
assert rd_pad08 you must be in a read cycle (p2_rw high), accessing the device
through the MMU (mmuio- true), must NOT be in TTLEND state (ttirdend- must
NOT be low), and have selected the parity register via bits A20:17, which is
equal to 0x080000 in TYPET1 space, and the p2_a02:0 address bits must be equal
to 110 (BYTEOS term in the PAL listings).

rd_pad00 = p2_rw*mmuio*/ttlrdend*
/p2_a20*p2_al9*/p2_al8*/p2_al7*
p2_a02*p2_a0l*p2_a00

This signal generates an output enable to the parity address register, U811. To
assert rd_pad00 you must be in a read cycle (p2_rw high), accessing the device
through the MMU (mmuio- true), must NOT be in TTLEND state (ttlrdend- must
NOT be low), and have selected the parity register via bits A20:17, which is
equal to 0x080000 in TYPEI1 space, and the p2_a02:0 address bits must be equal
to 111 (BYTEOQ term in the PAL listings).

There are a pair of *‘generic’’ signals—one in each timing digram—which stand
for the read and write strobes issued by U1401. The generic read signal is
ttispcrden- on the TTL BUS READS timing diagram; the generic write signal is
ttlspcwren- on the TTL BUS WRITES timing diagram.

This PAL generates the page and segment map RAM write strobes and the data
transceiver (USO8 and U610:7) output enable signals.

o The write strobes are enabled by cs2 being true and ttlwend- false.

‘o The gate outputs are enabled by cs4 being true and ttlwrend- false (write

cycles) or by cs4 and latched until ttirdend- is true (read cycles). This allows
time for the write signal to disable the outputs of the RAM output buffers
before the data transceivers’ outputs are enabled.

o The direction of the data transceivers is controlled by p2_rw.

The page map is arranged as an array of bytes so the dynamic bus sizing capabil-
ity of the 68020 can be used, hence the BYTExx term in the mmu_gtxx- and
mmu_wexx- equations.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 211

Table 25-4 Byte Selection in the Page Map RAM

Term i‘;’d’ess A%"S Signal Enabled
BYTE24 0 0 mmu_we24
BYTEI16 0 1 mmu_wel6
BYTEOS 1 0 mmu_we08
BYTEOQ 1 1 mmu_we00

Finally, in order to insure data and address hold times, the ttlwend- signal is
incorporated into the /p2_rw*/ttiwend definition so the write strobes go inactive
before the end of the bus cycle.

WRITE = /p2_rw * /ttlwend J

@ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTos ystems

212 2060 CPU Board Engineering Manual CONFIDENTIAL!
U1402 Pinout Pinout of U1402 is:
Figure 254 UI402 Pinout
TRAEAE X AA T X KK ARXXARXNX XK
XK KK LA A 24
/ttlwend * 1* pal *x24* vce
XXX KRR K
/ctlspc * 2* *23* /mmu_we24
LA & &4 LR 224
cs2 * 3% *22* /mmu_gtlé
LA A &1 KKK
/cs4 * 4x *21* /mmu_gt08
*EXK L 2 24
p2_rw * 5% *20* /mmu_gt00
LA & 4 * kW
p_a3l * 6* *19~ /mmu_gt24
KKK kXXX
p_a30 *x T* *18* /mmu_wel€
LB 24 LA 8 B4
p_a29 * 8« *17* /mmu_we08
* xR K LE B A d
p_aZ28 * 9% *16* /mmu_we0O0
TRXK XRKR
p2_all *10* *15* /mmu_gtseg
LA 84 LS & 1
p2_a00 *1lx *14x /mmu_weseg
LA A 84 x K kK
gnd *12* *x13* /ttirdend
*xRK L 2 84
1222222222222 ARttt sl
U1402 Input Signals Inputs to the U1402 PAL are:

{Rev 1 of 10 May 1987) CONFIDENTIAL!

@
wn
=

i

§;

Chapter 25 — TTL Bus Accesses 213

{ N
/ttlrdend - ends read strobe for buffer conflict avoidance’

/ttlwend - ends write strobe for data/address hold time

/ctlspc - indicates the processor is doing a
control space cycle

p_a<31:28> = unbuffered virtual address (for register decode)

p2_a<l:0> = buffered virtual address (for byte decode)

cs2 - used to enable the write strobes
/cs4 - used to enable the gates
p2_zxw = buffered processor read/write- signal
\ J
U1402 Output Signals Outputs from the U1402 PAL are:
4 N\

/mmu_gt24 = gate buffer for byte 0 of page map
(prot and id bits)

/mmu_gtlé = gate buffer for byte 1 of page map - page<18:16>
/mmu_gt08 = gate buffer for byte 2 of page map - page<l15:8>
/mmu_gt00 = gate buffer for byte 3 of page map - page<7:0>

/mmu_we24 = write enable byte 0 of page map -
(prot and id bits)

/mmu_welé = write enable byte 1 of page map - page<l18:1é>
/mmu_we08 = write enable byte 2 of page map - page<15:8>
/mmu_we00 = write enable byte 3 of page map - page<7:0>
/mmu_gtseg = gate buffer for segment RAM

/mmu_weseg = write enable segment RAM

\ J

Equations for U1402’s output signals are below:

{vﬁ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

214 2060 CPU Board Engineering Manual CONFIDENTIAL!

4 N

mmu_gt24 = ctlspc*/p_a3l*/p_a30*/p_a29* p_al8 *
/p2_a01*/p2_a00*p2_rw*cs4 +

mmu_gt24*p2_rw*/ttlrdend +

ctlspc*/p_a31*/p_a30*/p_a29*p_a28*
/p2_a0l*/p2_a00*cs4*/p2_rw*/ttlwend

\. J

This signal gates the buffer for byte 0 of the page maps. It is asserted when:

1. you are doing a control space access and address bits pa_<31:28> decode to
the page map RAM (0001), the p2_a(01:00) address bits decode to BYTE24
(00), you are doing a read cycle (p2_rw is high), and you are in clock state
four (cs4 is valid); or

2. mmu_gt24 is asserted (this is the self-latching mechanism, needed to extend
this read cycle beyond the deassertion of cs4), p2_rw indicates a read cycle
(signal is high), and you have not entered the end of the read cycle (utlrdend
is still high); or

3. you are doing a control space access to the device decoded by address bits
pa_<31:28> to be the page map RAM (0001), p2_a901:00) decode to
BYTE24 (00), you are in clock state four (cs4 is valid), you are in a write
cycle (p2_rw is low) and you have not yet entered the end of the write cycle
(tlwend is false).

mmu_gtlé = ctlspc*/p_a3l*/p_a30*/p_a29*p_a28*
/p2_al0l*p2_ a00*p2_rw*cs4 +

mmu_gtlé6*p2_rw*/ttlrdend +

ctlspc*/p_a3l*/p_a30*/p_a29* p_a28*
/p2_a0l*p2_al0*csd*/p2_rw*/ttlwend

. J

This signal gates the buffer for byte 1 of the page maps. It is asserted when:

1. you are doing a control space access and address bits pa_<31:28> decode to
the page map RAM (0001), the p2_a(01:00) address bits decode to BYTE16
(01), you are doing a read cycle (p2_rw is high), and you are in clock state
four (cs4 is valid); or

2. mmu_gtl6 is asserted (this is the self-latching mechanism, needed to extend
this read cycle beyond the deassertion of cs4), p2_rw indicates a read cycle
(signal is high), and you have not entered the end of the read cycle (itirdend
is still high); or

@ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 215

you are doing a control space access to the device decoded by address bits
pa_<31:28> to be the page map RAM (0001), p2_a(01:00) decode to
BYTE16 (01), you are in clock state four (cs4 is valid), you are in a write
cycle (p2_rw is low) and you have not yet entered the end of the write cycle
(ttlwend is false).

—

mmu_gt08 = ctlspc*/p_a3l*/p_a30*/p_a29*p a28*
p2_a0l*/p2_a00*p2_rw*cs4 +

mmu_gt08*p2_ rw*/ttlrdend +

ctlspc*/p_a3l*/p_a30*/p_a29*p_a28*
p2_a0l*/ p2_a00*cs4*/p2_rw*/ttlwend

This signal gates the buffer for byte 2 of the page maps. It is asserted when:

1.

you are doing a control space access and address bits pa_<31:28> decode to
the page map RAM (0001), the p2_a(01:00) address bits decode to BYTEOS
(10), you are doing a read cycle (p2_rw is high), and you are in clock state
four (cs4 is valid); or

mmu_gt08 is asserted (this is the self-latching mechanism, needed to extend
this read cycle beyond the deassertion of csd), p2_rw indicates a read cycle

(signal is high), and you have not entered the end of the read cycle (ttirdend
is still high); or

you are doing a control space access to the device decoded by address bits
pa_<31:28> to be the page map RAM (0001), p2_a(01:00) decode to
BYTEO8 (10), you are in clock state four (cs4 is valid), you are in a write
cycle (p2_rw is low) and you have not yet entered the end of the write cycle
(tiwend is false).

\

mmu_gt00 = ctlspc*/p_a31*/p_a30*/p_a29*p_a28*
p2_al0l* p2_a00*p2 rw*csd +

mmu_gt00*p2_rw*/ttlrdend +

ctlspc*/p_a3l*/p_a30*/p_a29*p a28*
p2_a0l*p2_al00*cs4*/p2_rw*/ttlwend

This signal gates the buffer for byte 3 of the page maps. It is asserted when:

<
£17,)

A

{Rev 1 of 10 May 1987) CONFIDENTIAL!

216

2060 CPU Board Engineering Manual CONFIDENTIAL!

1. you are doing a control space access and address bits pa_<31:28> decode to
the page map RAM (0001), the p2_a(01:00) address bits decode to BYTEQO
(11), you are doing a read cycle (p2_rw is high), and you are in clock state
four (cs4 is valid), or

2. mmu_gt00 is asserted (this is the self-latching mechanism, needed to extend
this read cycle beyond the déassertion of cs4), p2_rw indicates a read cycle
(signal is high), and you have not entered the end of the read cycle (ttlrdend
is still high); or

3. you are doing a control space access to the device decoded by address bits
pa_<31:28> to be the page map RAM (0001), p2_a(01:00) decode to
BYTEQO (11), you are in clock state four (cs4 is valid), you are in a write
cycle (p2_rw is low) and you have not yet entered the end of the write cycle
(ttiwend is false).

mmu_we24 = ctlspc*/p_a3l*/p_a30*/p_a29*p_a28*
/p2_a0l1*/p2_a00*/p2_rw*/ttlwend*cs2

This signal (mmu_we24) is the write enable for byte 0 of the page map RAM. It
is active when you are doing a control space access (ctlspc- true) to the page map
RAM (pa_<31:28> = 0001), the p2_2a(01:00) address bits decode to BYTE24
(00), you are in a write cycle (p2_rw is low), you have not ended the write cycle
(tlwend is high/false) and you are in clock state two (cs2 is true).

mmu_welé = ctlspc* /p_a3l*/p_a30*/p_a29* p_a28*
/p2_a0l* p2_a00* /p2_rw * /ttlwend*cs2

This signal (mmu_we16) is the write enable for byte 1 of the page map RAM. It
is active when you are doing a control space access (ctlspc- true) to the page map
RAM (pa_<31:28> = 0001), the p2_a(01 :00) address bits decode to BYTE16
(01), you are in a write cycle (p2_rw is low), you have not ended the write cycle
(ttlwend is high/false) and you are still in clock state two (cs2 is true).

mmu_we08 = ctlspc* /p_a3l*/p_a30*/p_a29* p_a28x*
p2_a0l*/ p2_a00* /p2_rw * /ttlwend*cs2

This signal (mmu_we08) is the write enable for byte 2 of the page map RAM. It
is active when you are doing a control space access (ctspc- true) to the page map

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 217

RAM (pa_<31:28> = 0001), the p2_a(01:00) address bits decode to BYTEOQS
(10), you are in a write cycle (p2_rw is low), you have not ended the write cycle
(tdwend is high/false) and you are still in clock state two (cs2 is true).

mmu_we00 =

ctlspc* /p_a3l*/p a30*/p_a29* p a28 *

p2_al0l* p2_al00* /p2_rw * /ttlwend*cs2

| N

This signal (mmu_we00) is the write enable for byte 3 of the page map RAM. It
is active when you are doing a control space access (ctlspc- true) to the page map
RAM (pa_<31:28> = 0001), the p2_a(01:00) address bits decode to BYTEQQ
(11), you are in a write cycle (p2_rw is low), you have not ended the write cycle
(tdwend is high/false) and you are still in clock state two (cs2 is true).

Ve

g

—
mmu_gtseg = ctlspc*/p_a3l*/p_a30*p_a29*/p_a28*
p2_rw*csd +
mmu_gtseg* p2_rw*/ttlrdend +
ctlspc*/p_a3l*/p_a30*p_a29*/p_a28
cs4 /p2_rw * /ttlwend
J

This signal (mmu_gtseg) gates the buffer for the segment map RAM. It is active

when:

1. you are doing a control space access (ctlspc- true) to the segment map RAM
(pa_<31:28> = 0010), and you are in a read cycle (p2_rw is high) during
clock state 4 (cs4 is true), or;

2. mmu_gtseg is true (this is the self-latching term, ensuring that this read
strobe lasts the entire length of the read cycle, beyond the time cs4 is deac-
tivated), you are in a read cycle (p2_rw is high) and you have not entered
the end of the read cycle (ttirdend is false), or;

3. you are doing a control space write cycle to the segment map RAM
(pa_<31:28> = 0010), you are in clock state four (cs4 is true) and you have
not entered the end of the write cycle (ttlwend is false/high).

mmu_weseg = ctlspc*/p_a31l*/p_a30* p_a29*/p_a28*

/p2_rw * /ttlwend*cs2

{Rev 1 of 10 May 1987} CONFIDENTIAL!

218 2060 CPU Board Engineering Manual CONFIDENTIAL!

25.5. U1403

(Miscellaneous) CPU

Signal TTL Bus
Decoder

This signal (mmu_weseg) is the write enable strobe to the eight segment map
RAM chips. Itis active when you are doing a control space access to the seg-
ment map RAM, you are in a write cycle during clock state 2, and you have not
entered the end of the write cycle (ttlwend is false/high).

Note the self-latching terms in the read cycle signals; since cs4 is deasserted
before the end of the read cycle, the MMU gate signal is fed back into itself,
self-latching. This lasts until ttirdend- goes true, indicating end of the read cycle.

This PAL generates the read and write strobes for Control Space devices which

are not included in the Page and Segment Map RAM. Of special note are two

signals:

1. the ttlwend- signal, which is used to disable the write strobes before the end
of the bus cycle to insure data and address hold time, and

2. the ttlrdend- signal which disables the read strobes so there is no end-of-
cycle buffer conflict. The read output strobes are latched inside U1403
since cs4- ends earlier than the read cycle.

The Control Space devices (and their addresses) to which this PAL sends
read/write strobes are:

-
IDPROM = /p_a31i*/p_a30*/p_a29*/p_a28 =0 W
CONTEXT = /p_a31*/p_a30* p_a29%* p_a28 =3
SYSENABLE = /p_a31l* p_a30*/p_a29*/p_a28 = 4
USERENABLE = /p_a31l* p_a30*/p_a29* p_a28 =5
BUSERROR = /p_a3l* p_a30* p_a29*/p_a28 = 6
LDIAG = /p_a3l* p_a30* p_a29* p_a28 =7

7/

Note an interesting characteristic of all of these devices: address bit p_a31 is low.
This is an easy one-bit way of selecting or deselecting all of these devices simul-
taneously; in fact, this method is used in the state machine.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOs yStems

Chapter 25 — TTL Bus Accesses

219

Pinout of U1403 PAL

Figure 25-5

U1403 Input Signals

Pinout of U1403 is:

U1403 Pinout

MXXXAXRAXNAXN AR RN

*
wwE N

/ttlwend x 1%

LR RS 3

/etlspc * 2%

TEXR

/ttlrdend * 3
A2 22

/cs4 * 4>

ME TN

p2_Iw * 5%

TwXERE

p_a3l * €x

ARXW
p a3l * 7=
WKW

p_a28 * g
*XETW

p_a28 * Ox
/watchdoc *10*

nc *1l*

gnd *12~

*

p a

x

*

*

AXRNEN XXX NN KX

XX T A AT TR AR TN AT X AN XNARRR KN

Input signals to the U1403 PAL are:

vee
tdC
/rd_id
/wr_diag
/wr_sysen
/rd_sysern

/wr_usren

{Rev 1 of 10 May 1987} CONFIDENTIAL!

220 2060 CPU Board Engineering Manual CONFIDENTIAL!

{1403 Output Signals

/ttlrdend =

-
/ttlwend = end write strobes for
data/address hold time (see U1400)
/ctlspc = processor is doing a control space cycle
p_a<31:28> = unbuffered virtual address (for decoding
to specific control register)
/cs4 = used to enable read/write strobes

buffered processor address strobe; defines

the end of the TTL read cycle (see Ul409)

p2_rw = buffered processor read/write- signal
/watchdog = watchdog reset bit
\ J
U1403 output signals are:
-

/rd_id = read strobe for the ID prom

/rd_ctxt = read strobe for the context reg

/wr_ctxt = write strobe for the context reg

/rd_sysen = read strobe for the system enable reg

/wr_sysen

/rd_usren

/wr_usren

write strobe for the system enable reg
read strobe for the user DVMA enable reg

write strobe for the user DVMA enable reg

/rd _berr = read strobe for the bus error reg
/wr_diag = write strobe for the
diagnostic register (LEDS)
tdo = watchdog readback bit driver
onto TTL data bus
. J

o A read cycle is defined as a cycle in which the read signal is aétive (p2_rwis
high) and you are in cs4 (cs4 is low).

o A write cycle is defined as a cycle in which the write signal is active (p2_rw
is low), you are still in a TTL write cycle (tlwend is high) and you are in cs4

(cs4 is low).

The equations for the output signals are given below. Note that the second OR
term of the various read strobes are feedback loops which latch the output to the

<rsun

mcrosystems

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 25 — TTL Bus Accesses 221

input, making the read strobe last until the end of the TTL read cycle (until
tilrdend goes low). This feedback loop is necessary because cs4 does not last the
length of the entire read cycle, therefore the individual device’s read strobe must
be latched until the end of the read cycle (ttirdend- comes true). Write cycle
strobes do not have to be self-latching since cs4 lasts as long as the write cycle.
Thus the write strobe can be deactivated by the deassertion of cs4.

The watchdog bit is a reset bit from U201 which signals various system errors or
someone has pressed the user RESET switch. The signal on pin 23 of U1403,
t_d(0), the LSB of the TTL data bus, acts as a 1-bit watchdog register. If you are
doing a read of the bus error register (U203), by asserting rd_berr-, this same
rd_berr- signal will force a read of the watchdog bit from U1403. Thus the status
of the watchdog error bit is available on the TTL bus every time you read the bus
error register. This is derived from the following equation:

if (rd_berr) /td0 = /watchdog

This equations says that if rd_berr is true then data bit zero of the TTL bus (td0)
is the same state as the watchdog bit.

Other outputs from U1403 are defined below:

rd_id = ctlspc*/p_a3l*/p_a30*/p_a29*/p_a28*p2_rw*csd +

rd_id*/ttlrdend

This equation tells us that the read strobe for the ID PROM is derived one of two
ways:

1. acontrol space access to the device addressed by bits A31:28 as 0000 while
doing a read (p2_rw high) during clock state 4 (cs4 true), or

2. the signal rd_id is asserted and ttlrdend is NOT asserted (high).

This second OR term is the self-latching mechanism discussed earlier. The self-
latching of the rd_id signal is defeated when ttirdend goes low (is true).

-
rd_ctxt = ctlspc*/p a3l*/p a30*p_a29*p a28*p2_rw*cs4 +

rd_ctxt * /ttlrdend

sSun (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTOS y81&Ms.

222

2060 CPU Board Engineering Manual CONFIDENTIAL!

This equation defines a read from the context registers as:

1. acontrol space access to the device selected by address bits A31:28 when
they are 0011 (0x3), and assertion of the read strobe during cs4, or

2. the read context signal latched and enabled by the deassertion of the ttirdend
signal (rd_ctxt is true as long as tirdend is false).

wr_ctxt = ctlspe*/p_a31*/p_a30*p_a29*p_a28*/p2_rw*/ttlwend*cs

This equation defines a write to the context registers as a control space access to
the device selected by address bits A31:28 when they are 0011 (0x3), and asser-
tion of the write strobe during cs4 as long as you have not entered ttlwend state
(ttlwend signal is high).

Notice that there is no self-latching needed for write strobes; the TTL bus write
cycle ends when cs4 does, thus ensuring hold times for the address and data.

rd_sysen = ctlspc*/p_a3l* p_a30*/p_a29*/p_a28 * p2_rw*csd +

rd_sysen * /ttlrdend

This equation defines the read strobe to the system enable register, at A31:28
0100 (0x4). It is similar to the other read strobes explained above, and has the

- read self-latching mechanism.

wr_sysen = ctlspc*/p_a3l*p_a30*/p_a29*/p_a28*/p2_rw*/ttlwend*cs4

This defines a write to the system enable register.

—
rd_usren = ctlspc*/p_a3l* p_a30*/p_a29* p_a28 * p2_rw*csd +

rd_usren * /ttlrdend

.

This defines a read of the user DVMA enable register, at A31:28 = 0101 (0xS).
The read signal is self-latching.

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICros ystems

Chapter 25 — TTL Bus Accesses 223

25.6. Ethernet Control
Register

U140S Ethernet Control Write
Buffer

22

Wwr_usren = ctlspc*/p_a3l*p a30*/p a29*p a28*/p2_rw*/ttlwend*cs4d

This defines a write to the user DVMA enable register.

rd_berr = ctlspc*/p_a3l* p_a30* p_a29*/p_a28 * p2_rw*csq +

rd_berr * /ttlrdend

\.

This defines a read of the bus error register, at A31:28 0110 (0x6). The read sig-
nal is self-latching.

wr_diag = ctlspc*/p_a3l*p a30*p_a29%*p_a28*/p2_rw*/ttlwend*csd

This defines a write to the diagnostics register, which are really the LEDs, at
0111 (0Ox7).

The Ethemet control register is on page 14(b) of the schematics, and includes
U1405 and U1407. U1405 operates as a write buffer; U1407 as a read buffer.

The TTL devices connected to the TTL bus all use the same sort of circuitry:
ALS 273s latch write data from the TTL bus for the particular device, which is
clocked on the rising edge of the device’s individual write strobe issued by
U1401 TTL bus decoder PAL.

U1405 buffer is used for write data storage to the Ethemet controller. Data at the
input(s) to the buffer (t_d[7:0])) is clocked to the Ethemnet controller by the rising
edge (deassertion) of the wr_ether- signal, issued by U1401 PAL, and which
occurs at the end of a write cycle. If you look at the TTL BUS WRITES timing
diagram, this signal is lumped under the generic label *‘ttlspcwren’’ which is
asserted 138-186 nsecs into the write cycle, and deasserted 260-305 nsecs into
the write cycle.

U1405 write buffer latches four control signals to the Ethemnet controller:
1. e_inten- : interrupt enable to the controller
2. e_ce: chip enable to the controller

3. e_loopb- : sets the Ethemet chip into loopback mode

sun . (Rev 1 of 10 May 1987) CONFIDENTIAL!

mcros ystems

224 2060 CPU Board Engineering Manual CONFIDENTIAL!

U1407 Ethernet Control Read
Buffer

25.7. System Enable
Register

U1406 System Enable Write
Register

4. e_reset- : resets the Ethemnet controller.

U 1405 read buffer’s outputs are held static to the Ethernet controller until the
buffer is either cleared or new data is clocked into it by the rising edge of
wr_ether-. U1405 is cleared (all Q outputs are set to zero) by the assertion of the
init- signal.

U1407 ALS 373 acts as a read-back register to the write outputs of the U1405
write register. The four control signals from U1405 are connected to U1407:
1. e_inten- : interrupt enable to the controller

2. e_ce : chip enable to the controller

3. e_loopb- : sets the Ethemet chip into loopback node

4. e_reset- : resets the Ethemnet controller.

Also connected to the U1407 read register are the signals:

1. e_int: interrupt signal from the Ethemet controller

2. e_err:error signal from the Ethemet chip

Since the interrupt and error signals occur asynchronously to the processor, they
must be synchronized through U1407. Data at the input(s) of U1407 are latched
to the TTL data bus (t_d[7:0]) by the assertion of the rd_ether- strobe from
U1401. When the rd_ether- strobe is high (deasserted) the U1407 read buffer is
set to a high impedance state.

The U1406 and U1408 system enable register operates the same as the Ethernet
control register. Write data is clocked into U1406, and U1408 acts as a read-
back register.

Write data is clocked from the TTL data bus into the U1406 register on the rising
edge of the wr_sysen- signal, which goes inactive at the end of the write cycle.
Write signals output from U1406 are: '

1. fpaen: enable signal to the FPA

encopy : enables copy mode to the video buffer
envideo : enables output from the video section
en_cache: enables cache memory

en_sdvma : enables supervisor DVMA

en_fpp : enables the floating point processor

N o v s v

en_boot- : enables boot state.

sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

mcTosysiems

Chapter 25 — TTL Bus Accesses 225

U1408 System Enable Read
Register

25.8. U1410 Diagnostics
Register

25.9. U1409 ID PROM

Table 25-5

25.10. U1404 P2-to-TTL
Data Buffer

U1408 is used as a read-back register for system enable data. When rd_sysen-
goes low, system enable data is latched by U1408 to the TTL data bus. Since the
user diagnostic switch can be pushed at any time (asynchronous), an ALS 373 is
used to synchronize this event. The init- signal clears the Q outputs of the regis-
ter to zeroes on power up.

The user diagnostics register clocks data from the TTL data bus into the bank of
8 LEDs when wr_diag_ goes from low to high at the end of the write cycle. The
init- signal clears the Q outputs of the register to zeroes on power up.

The ID PROM is a read-only device, which outputs byte-wide data onto the TTL
data bus. The PROM is organized 32 bytes by 8 bits, thus five address lines
(p2_a[04:00]) are used to access any one of these 32 bytes.

Information contained in the PROM includes machine type, a unique serial
number for software licensing, a unique Ethemet address, the date of machine
manufacture, and a checksum. Additionally, the ID PROM stores configuration
information for the machine. The ID PROM is located in Control Space, at
address A31:28 = 0x0, in other words:

IDPROM = /p_a3l*/p_a30*/p_a29*/p_a28 = 0

Contents of the PROM are organized in the table below:

Contents of the ID PROM

Entry Number Contents¥ Length (in bytes)
Format

Machine Type

Ethemet Address

Date

Serial Number

Checksum

Reserved 1

N AWM D W N -
QN = W B O\

Output of the PROM is enabled when the rd_id- signal is active (low).

U1404 buffers P2 data to and from the TTL data bus. The **A’’ side is con-
nected to the TTL data bus, while the B side is connected to the P2 data bus, bits
31:24. Output is enabled by the assertion of ttlbfen- from U1400; the direction
of the data flow is controlled by the p2_rw signal. When the p2_rw signal is high
(read) and ttlbfen- is true, data fiows from the TTL data bus to the P2 data bus.
When p2_rw is low (write cycle) and ttlbfen- is true, data flows from the P2 data
bus onto the TTL data bus. The table below codifies this:

1+These contents are described further in the Sun-3 Architecture manual.

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

226 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 25-6

25.11. U2905 and U2906
User DVMA Enable
Register

25.12. U203 Bus Error
Register

25,13, U509 Context
Register

U 1404 P2-to-TTL Data Buffer — Data Flow

Gate Direction Which way the
nlbfen- p2_rw data will flow
0 0 P2 data bus to TTL bus (B -> A)
0 1 TTL data bus to P2 bus (A -> B)
1 X tri-state

The User DVMA register has a write section (U2905) and a read section
(U2906). The write register has data at its inputs clocked out of it by the rising
edge of wr_usren- (which goes high at the end of the write cycle). Data clocked
out is connected to the enable context bus, en_cx(7:0). When asserted, the init-
signal clears all the Q outputs to a low.

U2906 read register has data at its inputs (from the enable context bus) latched
and output-enabled with the assertion of rd_usren-. This data is coupled to the
TTL data bus, t_d(7:0). U2906 thus opefates as a read-back register of the enable
context bus.

U203 is a read-only bus error register, which latches the status of the various
error signals to the TTL data bus. Data at the input to the register is stored on the
low-to-high transition of Iberr (load bus error), and this data is coupled to the
TTL data bus when the output enable signal, rd_berr-, goes low. When rd_berr-
is high, the register goes to a high impedance tri-state.

U509 Context register holds present status as either user or superviser status, and
multiplexes between this present status and the *‘user context’’ provided by the
VME section of the 2060 board. US09 latches data from and outputs data to the
TTL data bus.

Instead of a buffer/register, the context register consists of a PAL. Data at the
1(3:0) inputs are clocked into the PAL by the rising edge of wr_ctxt-, at the end
of the write cycle, and this data is latched into an internal register; rd_ctxt-
enables this output from the PAL. Outputs O(3:0) are held static until output is
disabled — when rd_ctxt- is deasserted.

The en_bcx signal multiplexes between the two input data ports, t_d(3:0) and
b_a(30:28). When the en_bcx- signal is true, it enables the user context data at
b_a(30:28) onto the ctxt(2:0) bus. When en_bcx- signal is false, the normal TTL
bus data, t_d(3:0), is enabled onto the ctxt(2:0) bus.

> sun ‘ {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

Chapter 25 — TTL Bus Accesses 227

U509 Pinout Pinout of the U509 PAL is:

Figure 25-6 U509 Pinout

2222222 SR RS iS22 S22 RS RR S
* LI *
xR WR XXX
/wr_ctxt * 1w pal *20x vee
RN LE A 81
ti do * 2+ *19* nul9
XXX R XYW
ti_dl * 3x *18* ctxt0
XXRR® RENRE
ti_d2 o+ 4* *17* to_d0
XE KK KX X
ti_d3 * 5% *1é* to_d:l
XXRK LA S22
/en_bcx * 6% *15* to_dz
L2 8 & 3 XXX
b_a28 ¥ 7 *14% to_d3
XX WN *XHXW
b_a2$% x gx *13* ctxtl
*H KW * w XK
b_a30 * 9x *12~ ctxt?2
LB B &1 X ™
gnd *10~ *1l~ /rd_coxt
wERY AWXXYX
* *

AR A AR IN TR XTI N N XN AARIANRRNRRE AT RN

Inputs and Outputs of U509 Inputs to the context register are:
Context Register r ~

t_d[3:0] TTL data bus

(inputs for writes to context register)

n

en_bcx- enable context bus (from VME circuitry)

b_a{30:28] = "user context" information from VMEbus

Outputs of the context register are:

@ sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

miCros ystems

t—
(893

8

2060 CPU Board Engineering Manual CONFIDENTIAL!

ctxt[3:0]) = multiplexed context value that is input
to the segment map rams

to_d[3:0] = TTL data bus (outputs for reads
from context register)

\. J

Eight user contexts are decoded from input bits b_a[30:28]; these bits are aliased
in the PAL equations as:

UCTXTO = b_a28
UCTXT1 = b_a29
UCTXT2 = b_a30

The Q3:0 outputs are latched externally to the I3:0 inputs, as represented in the
PAL equations:

a 3
/to_d0 = /ti_do
/to_dl := /ti_dl
/to_d2 := /ti_d2
/to_d3 = /ti_d3
L y

These signals must be inverted because outputs of the PAL are inverted.

The derivation of the three context bits UCTXT2:0 is given below:
e 3

/ctxt0 en_bcx * /UCTXTO +

/en_bcx * /to_do0

/ctxtl = en_becx * /UCTXT1 +
/en_bcx * /to_dl

fctxt2 en_bcx * /UCTXT2 +

/en_bcx * /to_d2

For instance, ctxt(0) is asserted when

+These labels differ somewhat from the schematics; the PAL equations differentiate between the input and
output TTL bus signals.

sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

Chapter 25 — TTL Bus Accesses 229

1. en_bcx- is true (Jow) and UCTXTO (b_a28 address bit) is also low, or
2. en_bcx-is NOT true (en_bcex is high) and to_dO (TTL bus data bit 0) is low.

Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

Video Circuitry

Video Circuitry

26.3.

26.4.

26.5.

26.6.

26.7.
26.8.

. Video Cycle Timing

U1504 Pinout

. U1504 Video Select Decoder ...

U1504 Input and Output signals
U1502 Video Control Decoder

U1502 Pinout
U1502 Input Signals

U1502 Output Signals

P2 Interface State Machine — U1503, U1605/07

U503 PINOUL oo sessesees s mises s s s ssssssssmsmsssssssssssesernne

U1503 Inputs ...,

U1503 Outputs

VARB and Vidco Side State Machincs

Video Read

Video Write

Video Write Timing Diagrams: A Real Example

U1501 Byte Decode PAL

U1501 Pinout

U1501 Output signals

U1500 Buffer and U1505 DIP

U1608-U1603 Video Controller

U1700-01 Video RAS/CAS Latches

233

233
234
235
235
236
237
237
237
241
241
241
242
242
243
247
249
250
250
251
253
253
254

26.9. Frame Buffer RAM
26.10. ECL Circuitry
ECL Clock

NOTE

26.1. Video Cycle Timing

Video Circuitry

Please refer to the video block diagram in the Appendix as you follow the
description below. '

Address and control signals from the P2 bus are connected to the U1701:00
address and control latches and the P2 interface state machine (U1503). U1503
issues vsack back to the processor (through the dsack PAL), and also handshakes
with the video memory controller on page 16, using the vreq-/busy signals.
U1503 state machine also issues the buffer latch signal, vlatch (which is the com-
plement of the vreq- signal), to the P2 data transceiver latches (on pages 18-21).

Processor column address to video memory comes from U1701:00, multiplexed
by row or column address strobe enable signals to the output control pins.
RAS/CAS/WE signals to the frame buffer are issued by the video memory con-
troller on page 16. Read or write data is connected to/from the P2 data bus
through the P2 data transceiver latches (LS 652s on pages 18-21), whose
read/write direction is determined by the assertion of vack (read data) or vlatch
(write data) signals.

The video refresh counter on page 17 issues the address of the location in the
frame buffer which is to be output to the display. It is comprised of a counter
(U1705:04) whose output is incremented and latched in a pair of buffers
(U1703:02) by either RAS (row address strobe) or CAS (column address strobe).
This address is then coupled to video memory on the rcaddr(7:0) bus.

64 bits of data are latched into or out of the LS 652 data transceivers, which are
connected to the P2 data bus through the transceivers, or to the video display ter-
minal through the ALS534s and the ECL shifters on page 23 of the schematics.

The video synchronization signals (horizontal and vertical) are issued by their
respective state machines on page 22.

The video control state machine includes the two PROMs (U1608 and U1603)
and their latches (U1601 and U1604).

The video cycle timing is given in the timing diagram labelled ‘2060 FRAME
BUFFER CONTROL."”

A video cycle has sixteen 40-nsec states, lasting 640 nsec. The cycle is broken
into two halves:

Q?f S llwl]‘ 233 {Rev 1 of 10 May 1987} CONFIDENTIAL!

mecrosys

234 2060 CPU Board Engineering Manual CONFIDENTIAL!

26.2. U1504 Video Select
Decoder

1. the first 320 nsecs services any processor requests (issuing from U1503,
etc.),

2. the final 320 nsecs services video update requests.

The processor half is conditional — may or may not occur — but the video
update always occurs every video cycle (all the time, or else you will see video
trash).

If you are doing a CPU read/write access, the processor issues RAS (row address
strobe) from states 2 through 6 and CAS (column address strobe) from states 5 to
8. The processor read/write cycle is completed — data read or written to the

. frame buffer, vack issued, data latched into data transceivers (if a processor read)

and the U1607 busy flipflop is cleared — and the video cycle enters its second
half, video update.

If you are not doing a CPU read/write access, only the video update cycle occurs.

A processor video access cycle starts with the enable request (enreq) line sam-
pling the busy signal through U1600 AND gate (on page 16), which sets the sreq
signal through U1607-1 flip-flop in state 1 of the video cycle. The enreq signal
then goes low. The sreq signal stays set until state 9, when the vack- signal from
U1604 clears flip-flop U1607-1.

Video memory can be located either in a physically-separate frame buffer
(address OxFFOO0000) or in main memory (address 0x00100000). In either case
it takes up 128 Kbytes. The frame buffer can be read-from or written-to directly,
Jjust like ordinary memory. However, when a ‘‘copy-mode’’ write is executed,
the enable copy bit from the system enable register (U1406) is set. Information
being written into the specific 128 Kbyte ‘‘copy region’’ set aside in main
memory for this purpose (starting at address 0x00100000), is also written into the
separate frame buffer. A read from the copy region retums data from main
memory, and does not affect video memory.

U1504 is an address space decoder; from its address bit inputs, mmu_a(31:17),
one of two signals are issued:

o mblé6sel- : indicates an access is to be made to the top 16 Mbyte space
(which is where the frame buffer resides) of the 4 Gbyte physical address
space and is used to qualify reads from the video memory and VME
accesses. This signal is used for normal video reads and writes.

o copyl6sel- : indicates an access is to be made either to the top 16 Mbyte
space of the 4 Gbyte physical address space, or to the 1 Mbyte + 128K copy
mode space. This signal is used to qualify writes to the video memory.

This PAL must be of the 15 nsec variety.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 26 — Video Circuitry 235

U1504 Pinout Pinout of the U1504 PAL is:

Figure 26-1 U1504 Pinout

*kkk
p2a3l * 1
*k kK
p2a30 * 2%
* bk *
p2a28 * 3%
* e dr %k
p2a26 * 4*
* % %k
pla24 * 5%
xkk Kk
p2a22 * 6%
* ok &k
p2a20 * 7%
*k kK
p2al9 * 8%
LE R R4
plals * g«
* ok kk
gnd *10*
*kkk
*

U1504 Input and Output Inputs to the U1504 Decoder are:

AAkR R kKKK Ak khk

*

* &%k &k ok odkok ko kok ok

* *

*xk %
1 *20%
-
*19%
Ak K
*18%
* kkk
*17%
Kk Ew
x16%
* ke k k
x]5*
*kkk
x14%
kk
*13%
kAR
*12%
xkkx
x11%
* k& x

®

I ETEZE SRR SRS R R SRR RES

vee
/mblésel
p2a29
p2a2l
p2a25
p2a23
plaz2l
encopy
/copylésel

p2al’

signals
mmu_a(31:17)

encopy

Outputs of the U1504 decoder are:

/copylésel

/mblésel

Equations for the two output signals are:

(mbIGSel = mmu_a3l*mmu_a30*mmu_a29%*mmu_a28*mmu_a27*mmu_a26*

L

mmu_a25*mmu_a24

&sun

{Rev 1 of 10 May 1987) CONFIDENTIAL!

236 2060 CPU Board Engineering Manual CONFIDENTIAL!

The above equation says that the mb16sel- signal is asserted if mmu_a(31:24)
bits are all high (top 16 Mbytes of the 4 Gbyte address space selected), meaning
the address is OXFFxxxxxx.

copylésel = mmu_a3l*mmu_a30*mmu_a29*mmu_a28*mmu_a27*mmu_a26*mmu_a25*mmu_a24 +

/mmu_a3l*/mmu_a30*/mmu_a29*/mmu_a28*/mmu_a27*/mmu_a26*/mmu_a25*/mmu_a24*
/mmu_a23*/mmu_a22*/mmu_a2l*mmu_a20*/mmu_al9*/mmu_al8*/mmu_al7*encopy

26.3. U1502 Video Control
Decoder

@

The copy16sel- signal is asserted if:
1. mmu_a(31:24) bits are all high, OxFFxxxxxx, (top 16 Mbytes of the 4 Gbyte
address space selected), or if

2. 0Ox001xxxxx (mmu_a20 high and all others in the equation are low) address
space in main memory is selected, and copy mode is enabled (encopy true).

The copy16sel signal is actually an OR of the mbl6sel term with a copy-mode
enable term.

The two select signals from U1504 are connected to (among others) the U1502
video control decoder, which is a multi-purpose strobe decoder. The signals
p2rden0 and p2rdenl are output enables to gate either

o bits 63:32 (p2rden0) or
o bits 31:00 (p2rdenl)
of the video memory onto the p2_d(31:00) data bus.

During any read of the video memory, all 64 bits of the video memory are
latched. The p2_a02 input signal determines which 32-bit word is to be read,
upper or lower — when p2_a02 is low, it selects the upper data word, when high
it selects the lower data word.

The vcopydet- signal is used by the 68020 DSACK generator. When vcopydet-
is asserted, DSACK will not be asserted until both p2 memory and video
memory respond to a copy mode write.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTos ystems

Chapter 26 — Video Circuitry

237

U1502 Pinout

Pinout of the U1502 PAL is:

Figure 26-2 U1502 Pinowt

U1502 Input Signals

U1502 Output Signals

p2a02

p2rw

/mmuram

/mblésel

/copylésel

/csé

/plas

nc

gnd

T2 22222223
x

122 34

* 1% P

*RXX

* 2%

L2223

* 3«

122 2

* 4%

LA 2 84

LS & 4

kKXW

x kWK

* g«

XX

LA R 8 4
=10x%
X KX

*

(222222 2R RAS2 2
*
XK K

1 *20*
* KRR
19%
KRR K®
'18*
* kW Kk
17
*kww
1g
L2 22
x]15«
* K k%
x14>
L2 8
*13x
' wkx
*12%
L 222
LSS
12 821

w

2222222322222 2SS d iR Ealt s S

vcce

/rderl

p2rdenl

p2rden0

/rdenl

/vcopycet

/vidwr

/vidrd

nc

/irdenl

The two video select signals decoded by U1504, copy16sel- and mb16sel-, are
connected to the U1502 video control decoder. Other inputs are:

(N\
p2rw = read/write strobe
/mmuram = indicates you are accessing
memory through the MMU
p2_a02 = bit used to select upper or lower
data word from 64-bit video bus
\ J

Outputs from the U1502 decoder are:

{Rev 1 of 10 May 1987} CONFIDENTIAL!

238

2060 CPU Board Engineering Manual CONFIDENTIAL!

p2rden0 read enable for upper video data word

p2rdenl = read enable for lower video data word

/vcopydet = video copy detect signal, used to
make certain both P2 memory and video
memory are ready before processor
issues a DSACK.

\. J

If you look on pages 18-21 of the schematics, you will find the video memory
RAM. Notice that the read output enables on the data latches are connected to
either p2rden0 (for the upper data word) or p2rden1 (lower data word).

The equations for these two signals, p2rden0 and p2rdenl, are below.

{ N

/p2rden0 = /rden0

(since the output enable of the LS652
is active high, rden0 must be inverted)

q J

~ ™

rden0 = mblésel * p2rw * mmuram * /p2a02 * cs4d +

rden0’” * p2as

\. J

This equation tells us that p2rden0, the read enable strobe for the upper 32 bits of
video data, is issued when rden0 is issued. The rden0 signal is issued when

1. the mblé6sel signal is true (you are doing an access to the upper 16 Mbytes
of the 4 Gbyte physical address Space); you are in a read cycle (p2rw is
high); you are accessing a TYPEO space device — memory and the frame
buffer; mmuram- is true; p2a02 is low; and you are in clock state 4 (address
and control signals are stable); or,

2. rdenQ is true and until p2as- goes false (self-latching mechanism to ensure
the read cycle lasts beyond the deassertion of cs4). When p2as- goes false
(high), this self-latching mechanism is aborted.

S. u n {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 26 — Video Circuiry 239

/p2rdenl = /irdenl

(since the output enable of the LS652
is active high, rden0Q must be inverted)

rdenl = mblésel * p2rw * mmuram * p2a02 * cs4d +

irdenl * p2as

N\ y

This equation tells us that p2rdenl, the read enable strobe for the lower 32 bits of
video data, is issued when irdenl is issued. The irdenl signal is issued when

1. the mbl6sel signal is true (you are doing an access to the upper 16 Mbytes
of the 4 Gbyte physical address space); you are in a read cycle (p2rw is
high); mmuram- is true; p2a02 is high; and you are in clock state 4 (address
and control signals are stable); or,

2. irdenl is true and until p2as- goes false (self-latching mechanism to ensure
the read cycle lasts beyond the deassertion of cs4). When p2as- goes false
(high), this self-latching mechanism is aborted.

The video copy detect signal is issued when you are going to execute a copy-
mode write—writing to both video memory and main memory. Should the fram¢
buffer be busy when you want to initiate a copy-mode write, vcopydet- will be
issued, which in tum holds off the CPU from issuing a dsack until vsack is
issued. This ensures both video and main memory are done (vsack and p2_ack
have been issued to U204 DSACK PAL) before you end a copy-mode write.

vcopydet = copylésel * /mblésel * /p2rw * mmuram * cs4 + }

vcopydet * plas

This equation says that video copy detect is true when

1. copyl6sel is true and mb16sel is NOT true (in essence, you are in copy
mode to the 0x00100000 address space); you are in a write cycle (p2rw low)
to0 memory (mmuram- is true) during clock state 4 (cs4 true); or

2. the vcopydet- signal is true until p2as address strobe goes false.

This latter term is a self-latching mechanism to make sure the vcopydet- lasts as
long as long as the address strobe is not deactivated when cs4 goes inactive.
When p2as goes false (high), this self-latching mechanism is aborted.

sSsun] {Rev 1 of 10 May 1987) CONFIDENTIAL!

240 2060 CPU Board Engineering Manual CONFIDENTIAL!

The logical AND of copy16sel*/mb16sel means that access to the top 16 Mbytes
is NOT activated (mb16sel term is removed from copy16sel term), which leaves
just the copy term asserted.

vidrd = mblésel * p2rw * mmuram * csd +

vidrd * p2as

- The equation above indicates that video read (vidrd-) is active (Jow) for the
length of the video read cycle. Deactivation of vidrd- indicates that the video
read cycle has been completed. Thus vidrd- is true when:

1. mblé6sel is true (doing an access to the top 16 Mbytes of the 4 Gbyte physi-
cal address space); p2rw is high (indicated a read cycle); mmuram- is true
(accessing a TYPEO space device — main memory or frame buffer) during
clock state 4; or :

2. video read is true until p2as address strobe goes false.

This latter term is a self-latching mechanism to make sure vidrd- is not deac-
tivated when cs4 goes inactive. When p2as goes false (high), this self-latching
mechanism is aborted.

vidwr = copylésel * /p2rw * mmuram * cs4 +

vidwr * p2as

Video write (vidwr-) is active for the length of the video write cycle. Note that
copy16sel is used instead of mb16sel, because you can do writes to both the
frame buffer video memory and the copy region of main memory. Therefore,
vidwr- is true when;

1. copyl6sel is true; during a write cycle (p2rw lbw); mmuram- is true (access-
ing a TYPEO space device — main memory or frame buffer) during clock
state 4; or,

2. video write is true until p2as address strobe goes false.

This latter term is a self-latching mechanism to make sure vidwr- is not deac-
tivated when cs4 goes inactive. When p2as goes false (high), this self-latching
mechanism is aborted.

2
F17,]
Efe=]

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 26 — Video Circuiry 241

26.4. P2 Interface State
Machine — U1503,

U1605/07

U1503 Pinout

U1503 Inputs

Figure 26-3

U1503 issues the control signals which interface the video circuitry to the P2 bus.
It has a state machine internal to itself (labelled ‘‘VARB’’) which handshakes
with another (labelled **Video Side’’) which consists of flip-flops U1605 and
U1607. This handshaking mechanism is described below.

Pinout of the U1503 PAL is:
U1503 Pinout
I'S2Z22 233222284 (22222322822 224
w * * k]
WK LR 224
/c60 * 1* pal *20* vee
* kW TRXRW
/vidrd * 2% x1Qw nc
W RN WRX X
/vidwr * 3 *18~> viatch
* X WK XXRX
nc * 4% *17* nc
*x kW * ok kK
busy * 5% *16% q0
* R kK wh KX
sbusy * 6* *15* gl
EER X XXX
/copyl6 x T *14% q2
XXX x*wE RN
/mblésel * Bg* *13* _ /vreq
rFwRW * WK KN
/init * g% *12~* /vsack
L2 84 *EEWN
gnd *1C~ *11* gnd
XXX X *ww R
x *
i’ti*t*'tt*t'it*t*l’t'tﬁtt*tiﬁﬂ!t
Inputs to the PAL are:
()
vidrd- = Vvalid video read strobe
vidwr- = Valid video write strobe

busy = Video frame buffer busy

sbusy = Synchronized version of vbusy to 68020 clock

init- = Reset input
p2_as- = notused
.
sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

242 2060 CPU Board Engineering Manual CONFIDENTIAL!

503 Outputs Outputs from the PAL are:
(

vsack- = Video dsackt
vregq- = 68020 video operation requestt
vlatch = combinatorial output; vlatch is the

inversion of vreg-, used to latch
various buffer/registers.

26.5. VARB and Video Take a look at the two state machines, labelled ‘‘VARB’’ and ‘‘Video Side.”’
Side State Machines They work in conjunction with each other, through a trio of handshaking signals
— vreq and busy/sbusy.

A cycle begins with both state machines in IDLE states.

These outputs are not latched and are associated with state as in the Moore model.

M
Q{y sun . {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTros ystems

Chapter 26 — Video Circuitry 243

Video Read

(A
state idle
'init- power on reset
-> state idle,
vsack- = 1,
vreg- = 1;
else
'vidrd-
~-> state rdservreq,
vsack- = 1,
vreg- = ! (!vidrd- & !busy):
video read request and NOT busy
else
tvidwr-
-> state wrserv,
vsack- = vidwr-,
vreg- = ! (!vidwr- & !busy):
video read request and NOT busy
else
always
-> state idle,
vsack~- = vidwr-,
vreq- = ! ((!vidrd- + !vidwr-) & !busy);
L J

The init- signal (labelled *‘sanity’’ in the state diagram), is a power-on reset
which sets the state machines to IDLE.

In IDLE, U1503 (VARB state machine) has vsack- pacing the condition of
vidwr- (both are high/inactive). The vreg- signal goes active (low) when vidrd-
or vidwr- and NOT busy are true, indicating a processor video cycle request.

While in IDLE, U1503 is going to receive either a video read (vidrd-) or a video
write (vidwr-) from U1502, which signals the start of a bus cycle. When either
of these two signals goes active (low) the state machine goes out of IDLE state
into a read or a write service state. Let’s say the signal received was a video
read.

In a video read cycle, U1502 issues a vidrd- signal to U1503. This moves the
state machine to RDSERVRQ state, which does two things:
1. keeps vsack- at a one (deactivates it), and

2. keeps vreg- at the state of vidrd- and NOT busy, which is a low (indicating
that the processor wants to do a video cycle).

sSun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

244 2060 CPU Board Engineering Manual CONFIDENTIAL!

This is described in the following equation:
(h

state rdservreg

'init- power on reset
-> state idle,

vsack- = 1,
vreg- = 1;
else
sbusy
~> state rdserv, video side has received a
request so go to readservice state
vsack- = 1,
vreg- = 1;
else
always

-> state rdservreq, waitfor video side to
receive a request
vsack- = 1,
vreg- = !(!vidrd- & !'busy):; J

\

The vreg- signal is part of half of the handshaking mechanism that connects the
VARB state machine with the Video Side state machine. If you follow vreg- out
of U1503, you will see it connects to pin 2, the D input of U1605-0 flip-flop.

Power on reset (init-) has set U1605-0 flip-flop, putting a low at its inverted out-
put (Q NOT, pin 6). This same init- signal has cleared U1607-0. Both flip-flops
are clocked by 40 nsec video clock (vclk40), and U1605-0 stays set until vreg-
goes low. This is the IDLE state of the Video Side state diagram.

When vreq- goes low and is presented to the D input of U1605-0, this flip-flop is
cleared at the next 40 nsec clock and the inverted output (a logical high) is taken
from pin 6. This is the SYNC state of Video Side state diagram, named because
it synchronizes the vreq- to the 40 nsec video clock.

The next 40 nsec vclk40 clocks this high through U1607-0 flip-flop, which
asserts the busy signal at pin 6. This puts the Video Side state machine in the
BUSY state.

Busy itself stays true (high) and is qualified through U1600 AND gate by the
assertion of enreq — request enable — by the U1603 video memory controller.
The output of U1600 AND gate is clocked through U1607-1 by 40 nsec vclk40,
and emerges as synchronized request, sreq, which is connected to the video
memory controller state machine, U1603. The enabling of sreq through the AND
gate by the enreq signal moves the Video Side state machine into SERVICE
state. U1607 flip-flops are cleared by vack- from U1604:3, and this takes the
Video Side state machine out of SERVICE state and moves it back to IDLE.

THCrO8 YS!

Qf Su {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 26 — Video Circuiry 245

Figure 26-4

4

2

Since busy is clocked through U1607 by 40 nsec vclk40, it is essentially asyn-
chronous to the U1503 PAL, which is operated by 60 nsec clock. Therefore busy
must be synchronized to the PAL, by ¢60 in U1605-1.

In the meantime, the VARB state machine has been patiently waiting to receive
the high active busy signal from the Video Side state machine, U1607-0. This
high active busy is connected to U1503, which immediately deactivates the vreq-
signal, setting vreg- to a high.

To recapitulate thusfar:

1. avideo read, vidrd-, has been issued to U1503;

2. vreg-is issued ty U1503

3. vreg- is clocked through U1605, and then U1607 to emerge as busy

4. busy connects back to U1503, deactivating vreg-

5. the VARB state machine is in RDSERVRQ state.

This then is the handshaking mechanism between the two state machines: vreg-
from VARB to Video Side, and busy/sbusy from Video Side back to VARB.

Handshaking in the P2 Interface State Machine

VREQ-

U1605/7
Video Side

The vreq/busy handshaking is used to make certain that vreg- is held active until
busy is issued, which means the read request is being serviced.

When sbusy occurs, the VARB state machine goes from RDSERVRQ state to
RDSERYV state.

w
=
tf=

{Rev 1 of 10 May 1987} CONFIDENTIAL!

)

246 2060 CPU Board Engineering Manual CONFIDENTIAL!

(A
state rdserv
'init- power on reset
-> state idle,
vsack- = 1,
vreg- = 1;
else
!sbusy
-> state rdend, NOT busy so go to readend state
vsack- = vidrd-,
vreg- = 1;
else
always
-> state rdserv, waitfor NOT busy
vsack- = !(!busy)f
vreg- = 1;
. J

During RDSERY state, the state machine waits for the return of the NOT busy
signal and the Video Side state machine to progress through BUSY to SERVICE
to IDLE. The vsack- signal goes active when NOT busy goes true. The vreq-
signal is still a high (false). When NOT busy occurs, the data is stable on the
bus, and the state machine moves into RDEND (read end) state.

N
Q@ S u n {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 26 — Video Circuitry 247

Video Write

(3\
state rdend

'init- power on reset
-> state idle,

vsack- = 1,
vreg- = 1;

else
vidrd-
-> state idle, read inactive (cycle over) so go to idle state
vsack- = 1,
vreg- = 1;
else
always
~-> state rdend, read cycle still active so wait
vsack- = vidrd-,
vreg- = 1;
_ J

Remain in RDEND until the read request is gone then go to the IDLE state. The
vreq- signal is still inactive (high). Also, vsack is still the same level as vidrd-,
which is active until p2_as goes high, which indicates the end of the read cycle.
At this time the state machine retumns to IDLE, with vsack and vreq high (inac-
tive).

The video write cycle begins with the state machine in IDLE. The busy signal is
not active (it is low) and vreq and vsack are high (false). When a vidwr- comes
into U1503 PAL, vreg- is issued, and clocked through U1605-0 flip-flop. This
starts handshaking between the VARB and Video Side state machines (see the
description of handshaking in the Video Read section, above). The vsack- signal
is issued to end the write bus cycle. Write data and address are latched on vlatch
(which is inverted vreq-) so the processor need not wait until the data is written
into the video RAM.

vlatch = /vreqg-

The vlatch signal is an inversion of the vreq- signal. It must be inverted because
it is used to latch data into ALS 374 buffers, and these need a low-to-high transi-
tion. The vlatch signal latches the size and address bits along with the p2_rw sig-
nal in U1500 ALS 374; it also latches address bits into U1700 and U1701, and
latches write data into the LS 652 transceivers on pages 18-21.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

248 2060 CPU Board Engineering Manual CONFIDENTIAL!

The vidwr- signal also causes the state machine to enter WRSERY state, and the
Video Side state machine goes from IDLE through the following states:

1. SYNC:in which vreq is synchronized to 40 nsec vclk40 in flip-flop
U1605-0;

2. BUSY :in which the busy signal is clocked out of U1607-0;

3. SERVICE: in which the busy signal is enabled through U1600 AND gate by
the enable request signal (enreq) from U1603/4;

4. the flip-flops are cleared by vack-, and the Video Side state machine returns
to IDLE.

The busy signal is re-synchronized to 60 nsec clock through flip-flop U1607-1
and emerges as sbusy, which is used back in U1503 VARB state machine.

. The VARB state machine enters WRSERYV by the following equation:

4 N\

state wrserv

'init- power on reset
-> state idle,

vsack- = 1,
vreg- = 1;
else

vidwr- & sbusy
-> state wrend, write done and busy so
£0 to the write end state

vsack- = 1,
vreg- = 1;

else

always
-> state wrserv,

vsack- = vidwr-,
vreg- = ! (!vidwr- & !busy);

\ y,

In WRSERY state, vsack- paces vidwr- (both are low). An immediate vsack- is
issued from U1503; vreg- stays low because busy is false (low) and vidwr- is low
(true). When the busy signal is coupled back to U1503, it disables vreq- (vreg-
goes high)

@4 Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

Chapter 26 — Video Circuiry 249

Video Write Timing
Diagrams: A Real Example

e N
state wrend
tinit- power on reset
-> state idle,
vsack- = 1,
vreg- = 1;
else
Isbusy busy so go to the idle state
-> state idle,
vsack- = 1,
vreg- = 1;
else
always NOT busy so wait
-> state wrend,
vsack- = 1,
vreg- = 1;
. W,

When vidwr- goes high and sbusy is true, the state machine enters WREND
(write end) state, indicating the end of the write cycle. Both vsack- and vreg- arc
false. The state machine remains in WREND until the frame buffer has serviced
the write request (vack- returns true from the frame buffer, the Video Side state
machine goes to IDLE, and the Video Side flip-flops are cleared). When sbusy
goes low (busy from U1607-0 has been cleared by vack- and is clocked through
U1607-1) indicating that the video state machine is no longer tied up doing a
write operation, the VARB state machine returns to IDLE.

state idle

vsack- =1
vreq- = 1

Should the processor start another video write cycle while in WREND state,
vsack- and vreq- are suppressed and wait states occur until the video write is
done and the data/address latches are available for the waiting cycle.

An actual logic analyzer tracing of a video write cycle is available in the appen-
dix. Note that the c60 clock is really inverted c60 clock — c60 bar. Therefore a
transition from clock state to clock state occurs on a low-to-high edge.

A write cycle starts during cs4 (the stretched portion of ¢60). The vidwr- signal
is issued from U1502 during this clock state and one PAL delay (15 nsec) later
both vsack- and vreg- drop (go true). The state machine is still in IDLE.

sun

microsystems

{Rev 1 of 10 May 1987} CONFIDENTIAL!

250 2060 CPU Board Engineering Manual CONFIDENTIAL!

The next upward transition of c60 clock the state machine enters WRSERYV state.
- The busy signal comes back from U1607-0, and invalidates vreq-. The high
active sbusy signal is clocked out of U1607-1 into U1503. When vidwr- goes
high (inactive) vsack- is disabled and on the next c60 clock (rising edge in the
timing diagram) the state machine enters WREND. The vack- signal is issued by
the frame buffer which clears the busy flip-flop, which in turn clears the sbusy
flip-flop. When sbusy goes low (inactive) the state machine returns to IDLE.

Note that a second processor write cycle starts (sample 99) while the video state
machine is still doing the first write. In this case, vreq- and vsack- are not issued
until the write is finished (IDLE state).

26.6. U1501 Byte Decode
PAL

This PAL generates the write strobes for the video memory 4416 rams. Since the
video memory is 64 bits wide, va02 (latched version of p2_a02) is used to select

the four write enable signals wren(24:16:08:00) or wren(56:48:40:32) and
accounts for the symmetry of the equations. These strobes will only be enabled
if the memory write signal, vwe, is true and the latched version of p2_rw, vrw, is
low indicating a write cycle. The size (vsiz1:0) and address line (va01l :00)
decode equations allow byte, word, 3-byte, and longword transfers, with offset.

U1501 Pinout

Figure 26-5 UI1501 Pinout

xwwEx

Pinout of the U1501 PAL is:

XK XXRN RN T T XN AT FAXRANXXNA Y
* * % -

* x>

vwe x 1~ pal *20¥* vece

R KR e WY

vsizl * 2« *19x /wrenCg
* W kW L &

vsiz0 * 3x *18x /wrend€
wr WK LA & &4

vaC2 * 4 *17x /wrenég
x X W W XXX W

va0l * 5> *l6* /wrensC
TwXW W XXX

va00 * 6% *15% /wren32
TREE X TR XK

vrw * I *14* /wren24
XY L2 B 81

nc * g* *13* /wrenlé
*hRW TR E W

nc * Ox *12* /wren00

*wwk

10

L2 2 84

gnd

€»sun

Mmicrosys{ems

LA 0 23

11 nc
Rk R

* *

LA AARSA SRR RS R R R N EEERE

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 26 — Video Circuizy 251

U1501 Output signals

Output signals of the U1501 PAL are:

s

wren00 = vwe * /vrw

vwe * /vrw

vwe * /vrw

vwe * /vrw

L

*

/va02
/va02
/val2

/va02

/vsizl * /vsiz) +

va0l * vaQ0 +

vsizl * vsiz0 * va00 +

vsizl * vall

J
The wren00- signal write enables data bits [39:32] in U1908.
. \
wren08 = vwe * /vrw * /va(2 va0l * /va00 +
vwe * /vrw * /va02 /vsizl * /vsiz0 * /vaOl +
vwe * /vrw * /va02 vsizl * vsiz0 * /vaOl +
vwe * /vrw * /val2 vsizl * /va0l * va00
.

The wren08- signal enables data bits [47:40] in U1507.

—

\

wrenl6é = vwe * /vrw * /va02 * /va0l * va00 +
vwe * /vrw * /va02 * vsizl * /vaOl +

vwe * /vrw * /va02 * /vsiz0 * /vaOl

The wren16- signal enables data bits {55:48] in U1808.

wren24 = vwe * /vrw * /va02 * /va0l * /va0O0

The wren24- signal enables data bits [63:56] in U1807.

4
in
=

{Rev 1 of 10 May 1987) CONFIDENTIAL!

252

2060 CPU Board Engineering Manual CONFIDENTIAL!

r R
wren32 = vwe * /vrw * va02 /vsizl * [vsiz0 +
vwe * /vrw * va(2 val0l * va00 +
vwe * /vrw * va(2 vsizl * vsiz0 * va00 +
vwe * /vrw * va(2 vsizl * vaOl
\ y,
- The wren32- signal enables data bits [07:00] in U2108.
r N
wren40 = vwe * /vrw * va02 va0l * /va00 +
vwe * /vrw * wva02 /vsizl * /vsiz0 * /va0l +
vwe * /vrw * va02 vsizl * vsiz0 * /va0l +
vwe * /vrw * va02 vsizl * /va0l * vaQo0
\ Y,
The wrend0- signal enables data bits [15:08] in U2107.
r ~
wrend8 = vwe * /vrw * va02 * /va0l * va00 +
vwe * /vrw * wva02 * vsizl * /va0l +
vwe * /vrw * wva02 * /vsiz0 * /va0l
N\ J

The wrend8- signal enables data bits [23:16] in U2008.

wrenS6 = vwe * /yvrw *

va02 * /va0l * /va00

The wren56- signal enables data bits [31:24] in U2007.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 26 — Video Circuiry 253

U1500 Buffer and U1505 DIP U1505 DIP series-terminates the write enable signals to the frame buffer RAM

26.7. U1608-U1603 Video
Controller

* %
(%]
«
i
(a4
o
o
[

Clock -- -

on pages 18-21. The wren(56:00)T signals are output enables to the LS 652 tran-
sceivers, and don’t need to be series-terminated. The wren(56:00)t signals out-
put enable data from the P2 data bus onto the video memory data bus (A -> B), to
be written into the frame buffer RAM.

U1500 LS 374 latches size, address, and read/write control signals from the P2
bus on the rising edge of rvlatch from U1503 PAL through U1609 RDIP. These
size, address and read/write bits are decoded by U1501 to issue a specific read or
write enable strobe to the frame buffer.

The video state machines perform an optional read or write access to the frame
buffer memory followed by a video update read cycle. The basic memory cycle
consists of 16 states; the state machine is clocked every 40 nsec and, hence,
repeats every 640 nsec.

The following are timing diagrams for the frame buffer; the first is with no CPU
read/write access during the CPU portion of the cycle (first 320 nsecs), and the
second includes a CPU read/write access.

VOE 00000000111111112222222233333333444444445555555566666666777777 77
RAS —=mmmmmm——mm—mmmmmmmemm e e e —me—m——eo oo ——

VINCRC

HCLK ~ =-=—=--=—-=

ENREQ -———

PO T T T S
0O
>

+These signals are labelled ‘‘wen'’ in the
confused. They refer to the same signal.

schematics and labelled **wren’’ in the PAL listings. Don'tbe

@ "S‘c ,E.x.lr]. (Rev 1 of 10 May 1987} CONFIDENTIAL!

254 2060 CPU Board Engineering Manual CONFIDENTIAL!

»
[}
(ad
V1]
t
o
o
=

*

VPRA =----

VVCA —-----meoo -

——— e - ——— - - - ———— - — - —— -

—— o — - ————— - ——— - e - - ———

VACK

VPCA ————————————

VINCRC

ENREQ -———-

HCLK ~ —=—-—=-—-

*oo% % % % % % A+ % % o O ¥ %

26.8. U1700-01 Video
RAS/CAS Latches

2

The video control state machine includes the two PROMs (U1608 and U1603)
and their latches (U1601 and U1604). Three state bits, labelled state1, state2 and
state3 (along with stateQ, the TTL version of 80 nsec ECL clock) combine to
make a 4-bit state counter which determines video cycle states zero through
fifteen (state 0-15 in the timing diagrams immediately above). StateQ, the TTL
version of the 80 nsec ECL clock, provides synchronization between the ECL
and TTL state machines. Three of these state bits — statel, state2, and state3 —
are also used by the 3-10-8 demultiplexer U1602 to generate one of eight video
output enable signals for the ALS 534 output buffers connected to the frame
buffer RAM.

These four state bits also generate (through U1603) the video RAS, CAS, write
enable, horizontal clock (hclk), enable request (enreq, which qualifies the busy
signal through U1600 AND gate), vack, and vgen- (which enables read data from
the video buffer RAM).

There are separate row and column address strobes for each half of the video
cycle:

o vpra and vpca are the row and column address strobes for the processor
(first) half of the video cycle;

o vvra and vvca are the row and column address strobes for the video update
(last) half of the cycle.

U1700 and U1701 hold the processor RAS and CAS addresses used during the
processor half of the video cycle:

o U1700 = RAS address (output controlled by vpra-)
o U1701 = CAS address (output controlled by vpca-).

Both of these registers (U1700 and U1701) have the P2 address latched into them
by the rising edge of rvlatch (which is vlatch passed through U1609 RDIP)

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

mcrosystems

Chapter 26 — Video Circuiry 255

26.9. Frame Buffer RAM

coming from U1503 and have their outputs enabled by vpra- (U1700) or vpca-
(U1701). When either of these go active during the processor half of the video
cycle, the P2 address is presented to the video address bus.

The video update half of the timing cycle (last 320 nsecs) begins at state 8, when
vack is true. During this half-cycle, the video refresh counter on page 17
(U1705:4) issues a refresh address through either U1702 (row address) or U1703
(column address) buffers. Either the row or the column address is enabled from
the appropriate buffers by vvra- (video row address) or vvca- (video column
address). The enabled address is latched onto the rcaddr(7:0) bus through U1707
series terminator resistors. The video refresh counter is cleared by the vclr-, from
the vertical state machine on page 22 of the schematics. The counter is not incre-
mented during blanking (by qualifying vrcinc with displen through U1600 AND
gate).

Data take two paths from the frame buffer RAM:
1. P2 databus
2. through the ECL circuitry out to the video display.

The output enable for the video RAM chips is the signal mgen(1:0). However if
there is a write to the RAM during the processor half of the video cycle, this sig-
nal is over-ridden by the appropriate write-enable signal (mwren[56:00]), effec-
tively disabling mgen(1:0) as an output enable.

The vack- signal latches read data into the LS 652 transceivers; vlatch latches
write data into the transceivers. These data are then connected either to (on a
read cycle) or from (on a write cycle) the P2 data bus.

The video output latches between the 64-bit frame buffer data bus and the 8-bit
ECL converters (on page 23) are multiplexed by one of eight video output enable
signals (voe[7:0]) asserted by the video control state machine through U1602 3-
to-8-line decoder. The ALS 534 latches invert their outputs to compensate for
the ECL output shifters. The ECL shifters’ logic needs a one to be a video white
and a zero to be a video black. Since this is the complement of the logic input to
the 534s, the signals are inverted.

During the last half of the video cycle, 64 bits of data are latched into the 8 ALS
534 latches (at the output of the frame buffer RAM on pages 18-21) by the hor-
izontal video clock signal, hclk, which is active at the end of state 15/beginning
of state 0. Only oae of these eight buffers will have its output enabled, however,
depending upon which output enable signal (voe[7:0]) is issued by the video con-
trol machine on page 16. Thus every 640 nsecs 64 bits of data are latched into
their appropriate buffers.t

+The fact that this pixelbit time is 10 nsecs — same as the ECL clock — is a **fundamental
wonderfulness’’ (to quote the engineer) and purely serendipitous.

& sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ystems

256 2060 CPU Board Engineering Manual CONFIDENTIAL!

74.10. ECL Circuitry

Eight bits of TTL video data are shifted out of the frame buffer latch whose out-
put is enabled by one of the eight valid voe[7:0] signals. These eight bits are
converted from TTL to ECL signal levels, and then from eight bits of parallel
data to serial data, which is fed to the differential inputs of the CRT.

Figure 26-6 = Data Path — From Frame Buffer to CRT
. . 334 . . U2304:02 L.
64 bits from frame buffer video data 8 bits U2303:01 8 bits serial video data
>~ »{ ECL parallel » CRT
buffers ECL level]
1o serial
converers converters
pages 18-21

ECL Clock

NOTE

Serial data taken from the parallel-to-serial converters is passed through a ‘‘res-
toration’’ flip-flop, U2310, which is toggled at 10 nsec clock rate. Since the
10H141 parallel-to-serial converters are susceptible to noise (which shows up on
the monitor as every eighth pixel being slightly darker than the rest), U2310 flip-
flop is used to shape and clean up the signal to the differential inputs of the CRT.
U2310 also provides the differential signals needed by the CRT to drive the mon-
itor.

R2304 and 2305 resistors are used for differential transmission, and diodes
2304:01 are used for transient suppression — clamp the voltage levels to -5 VDC
and ground.

Please see the 2060 video timing diagram (covering the output shifter, clock gen-
erator, and blanking) in the appendix.

The 8 data bits are shifted on 80 nsec boundaries from the 8-bit TTL output
buffers (ALS 534s on pages 18-21). These 8 bits are converted to serial data, and
shifted serially on 10 nsec boundaries out to the differential inputs of the CRT.
The clock for this is derived from U2308 ECL oscillator, with J2301 jumper IN.
Output of the oscillator is 10 nsec ECL clock, which is used to generate various
clock signals used in video timing, through U2305 and U2312 video clock

@'y sun {Rev 1 of 10 May 1987) CONFIDENTIAL!
mci

ro6ys1ems

Chapter 26 — Video Circuitry 257

26.11. Horizontal and

Vertical Synch State

Machines

¥
A
Ef=

generator.

This 10 nsec ECL clock is input to U2305 counter, which is in down-counter
mode. ECL 20, 40 and 80 nsec clocks are generated; when its output is 000, the
output of the OR gate asserts the ECL load signal, eload-, (true every 80 nsecs)
which loads an 8-bit byte into the parallel-to-serial converters. 10 nsec eclk10 is
used to shift this byte out, bit by bit.

Also derived from 10 nsec ECL clock is the 40 nsec TTL video clock, vclk40,
and the state0 signal. The vclk40 signal is merely the TTL version of eclk40,
passed through U2306 ECL-to-TTL converter. The state0 signal is derived from
ECL 80 nsec clock, eclk80, and is the complement of the ECL signal (taken from
the DIN- input).

To make certain that the ALS 534 output buffers are loaded correctly on 80 nsec
boundaries, the stateQ signal (complement of 80 nsec ECL clock) is used. This
80 nsec ECL clock (stateQ signal) is used to synchronize the video state con-
troller on page 16 with the eload- pulse from U2312 OR gate.

Notice that the chip select input to the U2303:01 level converters is the blank-
signal. This is the video blanking signal, generated by the horizontal state
machine on page 22 and qualified by the video enable signal from the system
enable register on page 14(b). When blank- to the CS inputs of the TTL-to-ECL
level converters is true (low), the outputs of the level converters are forced to a
zero state (black), which means that nothing will be painted onto the display dur-
ing retrace period.

During blanking periods the video refresh counter (page 17) is NOT incremented

The timing signals are terminated by R2308 RDIP, which are 120£2/195Q2
pullup/pulldown which give an impedance of about 70€2, which is about the
same impedance of the board traces.

The horizontal and vertical state machines operate much alike; the horizontal is
on the top of page 22 of the schematics, and the vertical is on the bottom. U2203
is the output register for both state machines.

640 nsec hclk starts U2201 counter incrementing, which increments the count
into U2202 PROM, the horizontal state machine. The hsynch, display enable,
and clear for the horizontal state machine counter are all asserted at the appropri-
ate times by the horizontal timing PROM, U2202.

Horizontal timings are given below, for both the 1152 by 900 pixel display and
the 1024 by 1024.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

258 2060 CPU Board Engineering Manual CONFIDENTIAL!
r A
Timing:
1 Horizontal state = 64 pixel; 1 pixel = 10 nsec.
Range Length Length Time
[State] [State] [Pixel] [Msec]
*** 1152 x 900 Display ***
cycle 00..24 25 1600 16.00 HFreq = 62.5 KHz
visible 00..17 18 1152 11.52
invisble 18..24 7 448 4.48
frontporch . 0 0 0
hsync 18..19 2 128 1.28
backporch 20..24 5 320 3.20
*x% 1024 x 1024 Display **=*
cycle 00..24 25 1600 16.00 HFreg = 62.5 KHz
visible 00..15 18 1152 11.52
invisble 16..24 7 448 4.48
frontporch 16..16 1 64 0.64
hsync 17..18 2 128 1.28
backporch 19..24 6 384 3.84
4 J
The display enable signal, displen, is ANDed at U1600 with the enable video bit
from the system enable register to disqualify blanking (when both signals are
true). The hsynch signal, which occurs every 16 psecs (1152 visible plus 448
invisible horizontal pixels times 10 nsec ECL clock), clocks the vertical state
machine’s counter. Vertical timing is given below:
()
1l state = 1 line = 16.00 pusec (62.50 KHz)
Range Length Time
[Lines] [Lines]) [Mdsec)
**x 1152x900 Display **x*
cycle 000..936 937 14992 66.70 Hz
visible 000..899 900 14400
invisble 900..936 37 592
frontporch - 0 0
vsync 900..909 10 160
backporch 910..936 27 432
*** 1024x1024 Display ***
cycle 000..1060 1061 16976 58.91 Hz
visible 000..1023 1024 16384
invisble 1024..1060 37 592
frontporch .. 0 0
vsync 1024..1033 10 160
backporch 1034..1060 27 432
_ J
Q} sSsun (Rev 1 of 10 May 1987) CONFIDENTIAL!
microsystems

Chapter 26 — Video Circuiry 259

U2206 and U2207 vertical state machine counter is incremented by hsync. The
count is applied to vertical timing PROM U2208, which asserts various control
signals from the vertical state machine: vertical synch, vertical blanking (during
vertical retrace), and vclr, which clears the vertical state machine’s counter,
U2206 and U2207, and also clears the video refresh counter on page 17.

Notice that the vertical blanking signal, vblank, is fed from the output of the state
machine register, U2203, back into the horizontal state machine. This causes
hblank and vblank to be ORed together. The horizontal state machine’s blanking
always occurs before vertical blanking; if a vblank is valid after an hblank, it will
merely append the vblanking interval to the tail of the horizontal blanking period
to produce clean and continuous blanking during vertical retrace.

Su {Rev 1 of 10 May 1987) CONFIDENTIAL!

VMEbus — Performance

VMEbus — Performance 263

27.1. 2060 VME Implementation ... 263

27.1. 2060 VME
Implementation

VMEDbus — Performance

The 2060 VME interface was designed for the highest data transfer rate possible
— given the constraint of the extremely limited printed circuit board space avail-
able. Under control of the CPU, the 2060 is capable of transferring up to 8.9
Megabytes/second to or from an external VME device. The 2060 memory is
capable of accepting data at a rate of up to 7.8 Megabytes/second when under the
control of an external VME master.

MASTER CAPABILITIES

Data Bus Size:

Address Bus Size:

Timeout Option:

Sequential Access:

Interrupt Handler:

Requester Option:

Bus Busy Option:

Read/Modify/Write:
£> sun 263
mcrosystems

D32 MASTER 32/16/8 bit data

A32 MASTER (DYN) 32/24/16 bit addresses
TOUT (737) 737 microsecond timeout period

None

IH(1-7) (STAT) Level 1 thru 7,
independently jumperable
All interrupts use vectors provided by
VMEbus interrupters, per the VME spec.

ROR R(3) Release on request, level 3

Releases BBSY after AS assertion when
releasing bus

Will not release VMEbus during
Read/Modify/Write cycles

{Rev 1 of 10 May 1987) CONFIDENTIAL!

264

2060 CPU Board Engineering Manual CONFIDENTIAL!

SLAVE CAPABILITIES

Data Bus Size:

Address Bus Size:

Sequential Access:

Special Access Mode:

Interrupter Options:

32-bit Slave

D32 SLAVE (DYN) 32/16/8 bit data

A32 SLAVE (DYN) 32/24 bit addresses
(no 16-bit addr.)

None
A high-speed access mode is engaged if
the time from DTACK assertion to the next

AS and DS assertion is less than 200ns.

None

Addressing: The 2060 responds to the bottom 1 Mbyte by
performing DVMA using system function codes
and responds to the top 2 Gbytes by
performing DVMA using user function

codes.

Response can be dynamically

disabled on 256 Mbyte boundaries.

24-Bit Slave

Addressing: The 2060 responds to the bottom 1 Mbyte
by performing DVMA, by using the system
function codes.

SYSTEM CONTROLLER CAPABILITIES

Clock Option:

Arbiter Option:

Bus Time Out Module:

Sysreset Option:

Sysfail Option:

ACfail Option:

SYSCIK 16 MHz,
jumperable (not used on board)

ONE Bus Request/Grant Level 3 only,
or External Arbiter

None

SYSRESET MASTER or SYSRESET SLAVE,
including manual button

Not Monitored

Not Implemented (ACFAIL is
connected to SYSRESET)

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature:

Humidity:

<rsun

10-40 C

5-90% non-condensing

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 27 — VMEbus — Performance 265

POWER CHARACTERISTICS
+5 Volts: 14 Amp Max.
-5 Volts: 1 Amp Max.
+12 Volts: 0.5 Amp Max.
-12 Volts: Not used

sun -

MiCros ystems

{Rev 1 of 10 May 1987} CONFIDENTIAL!

VME Arbiter and Requester

VME Arbiter and Requester

28.1. Terminology for VME Arbiter and Requester
28.2.

28.3.

U2704 VME Arbiter and Requester

State Machine as Arbiter and Requester
Transitions from BUSREQ State
Transitions from MASTER State

Transitions from MASTER_NG State
Transitions from BUSGRANT State

State Machine as Requester Only
Transitions from IDLE State

Transitions from BUSREQ State

Transitions from MASTER State ...

Transitions from MASTER_NG State
Transitions from the BUSGRANT State

269
271
272
273
274
276
276
277
277
278
279
280
281

28.1. Terminology for
VME Arbiter and
Requester

VME Arbiter and Requester

The VME Arbiter and Requester functions are implemented in the synchronous
state machine shown on page 27 of the schematics. The Arbiter/Requester state
machine (U2704) is responsible for:

o granting control of the VMEbus to the CPU while holding off other devices
wishing control of the VMEDbus, and

o granting control of the VMEDbus to external VME devices when the CPU
doesn’t wish to access it.

The arbiter and requester functions could have been implemented as separate
modules, but this was not done because separating the functions would have
introduced extra states into the request process, slowing it significantly and
increasing the chip count.

The arbitration function can be locked out by moving shunt J2701 to J2700; this
allows the customer to perform arbitration on a separate board, in order that two
or more 2060 boards can be installed in the same system for testing or multiple-
processor systems. Moving this jumper from J2701 to J2700 leaves the 2060
board operating only as a VMEbus requester, as detailed in the VMEbus Manual.
The arbiter/requester state machine operates differently in the two modes, so they
are handled separately below. This entire discussion assumes a familiarity with
the VMEbus specification, so no attempt is made here to explain the basic work-
ings of the VMEbus.

o B_AEN: Ornginally stood for VME Address Enable, but now the addresses
are actually enabled by B_OECPU. B_AEN indicates to the VME Master
Controller PAL (U2806) that the 2060 board has control of the VMEbus,
causing U2806 to assert B_OECPU.

o B_BBOUT: VMEbus Busy OUT. This signal indicates the 2060 board is
driving the VMEDbus busy signal, P1_BBSY. It is separated from P1_BBSY
by open collector driver U2702.

o B_BG3IN: VMEbus Grant 3 In. When the 2060 is jumpered as the
VMEDbus arbiter (J2700 out and J2701 in), B_BG3IN is tied to ground to
save on terms inside the VME Arbiter/ Requester PAL. When the 2060 is
jumpered to be a VME Requester only (J2700 in and J2701 out), this signal
is the synchronized form of P1_BGB3IN, indicating that the off-board VME
Arbiter is granting the VMEDbus to the 2060 board.

sSun 269 {Rev 1 of 10 May 1987) CONFIDENTIAL!

mucros ysiems

270

2060 CPU Board Engineering Manual CONFIDENTIAL!

B_BGOUT: VMEbus Grant OUT. Electrically the same as signal
P1_BG30UT, this signal indicates that the VMEbus arbiter on the 2060
board is granting control of the VMEDbus to an external master. The 2060
has control of this signal only if configured (through jumpers) to be the
VMEDbus arbiter.

B_BROUT: VMEbus Request OUT. This signal is buffered by open col-
lector driver U2702 to form P1_BR3, indicating that an external VMEbus
master has control of the VMEbus and the 2060 wishes to acquire control.

B_SBBIN: VME Synchronized Bus Busy IN. P1_BBSY is run through a
low-pass filter (C2700 and R2700), then synchronized by c60 clock to form
this signal.

B_SBR: VME Synchronized Bus Request. All four levels of VMEbus
request, P1_BR3:0, are logically ORed in U2703, then synchronized by c60
clock to form this signal.

B_SSEL: Bus Synchronized SELect, indicating that the CPU is accessing
the VMEbus. This signal is asserted from U2701 PAL at state 5 if either
B_INTA or MMU_VME is active, and is held active during freeze cycles.

P1_AS: VME Address Strobe

P1_BBSY: VMEbus BuSY signal, asserted by the current VMEbus master
to indicate that it has control of the VMEbus. Control of the VMEbus may
not be taken away from this master until it has deactivated P1_BBSY.

P1_BR3, P1_BR2, P1_BR1,P1_BRO: VMEbus Request signals. The 2060
board issues requests on P1_BR3 only, but will relinquish the bus upon
receiving a request on any level. Requests on levels other than 3 will occur
in a properly configured system only if the 2060 board is set up so as not to
be the VMEbus arbiter.

P_RMC: Processor Read Modify Cycle. Indicates that the current cycle is
part of an indivisible read-modify-write cycle, generally used to coordinate
actions between several processors. The VMEbus is not given up as long as
this signal is asserted in order that semaphores between multiple processors
may be implemented in VMEbus memory.

S4SEL: State 4 SELect. This signal is asserted approximately at state 4
during a CPU cycle that accesses the VMEbus. This signal is required to
make sure that the Arbiter/Requester keeps the VMEbus until the upcoming
state 5, because a B_SSEL is about to be asserted. Otherwise it would be
possible for Arbiter/Requester to give up the bus just as B_SSEL became
asserted, which would mean the VME Master Controller PAL could start its
cycle after the VMEDbus had already been given up.

Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 28 — VME Arbiter and Requester 271

28.2. U2704 VME Arbiter Pinout of the U2704 PAL is:
and Requester
Figure 28-1 U2704 Pinout

RERAXA I AR AR Y AR XN R
* * w *
L8 24 LA A 84
/c_60 * 1» pal *20* vee
LA 8 &4 LR &4
* 16reé6 *
wRWww LA S 24
/b_ssel * 2% *19* /s4sel
LR 2 24 W R K
» *
* WA W wxK* W
/e_bg3in * 3+ *18* /master_del
*XE K T X XK
* *
LA 8 . * R AE
b_sbr * 4= *17= /b_aen
xR R w kX
* x
L2 2 A LA 84
b_sas * 5 *l6* /b_bro
*XRW LA R & 1
* *
LA 1 XN
/b_sbbin * 6% *15* /b_bbo
ThwwW w*EwN
* ®
*wkwR LA A 84
/p_rmc * = *14~* /b_bgo
*wwE *ER K
1 *
LA S 82 LA &
/pl_sysr x 8% *13* nc
xRN * kXK
* *
b2 A B4 LA 824
/b_arb * 8* *12* /b_sbclr
LR 2 2 J RN
* *
LE 8 23 LA &8 4
gnd *10* *1l* /oe
LA 8 24 XR*N
* *

(AR SRS RSS RS2SRRSR 2 2 "]

@ sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ystems

272 2060 CPU Board Engineering Manual CONFIDENTIAL!

1te Machine as Arbiter and
<quester

This discussion refers to the state diagram labelled “* VME Arbiter & Requestor,
Arbiter Mode,”’” which is in Appendix A.

State equations are given below; an explanation of the different states is given
further on.

s A
idle /b_aen*/b_bro*/b_bbo*/b_bgo*/pl_sysr

master = b _aen*/b_bro*b_bbo*/b_bgo*/pl_sysr
master_grt = b_aen*/b_bro*/b _bbo*b_bgo*/pl_sysr
busgrant = /b_aen*/b_bro*/b_bbo*b_bgo*/pl_sysr

busregq = /b_aen*b_bro*/b_bbo*/b _bgo*/pl_sysr

master_req b_aen*b_bro*b_bbo*/b_bgo*/pl_sysr

waitreq /b_aen*b_bro*b_bbo*/b_bgo*/pl_sysr

wait /b_aen*/b_bro*b_bbo*/b_bgo*/pl_sysr

master_ng b_aen*/b_bro*/b_bbo*/b_bgo*/pl_sysr

A _/

The state machine starts in the IDLE state waiting for B_SSEL or B_SBR.

o B_SSEL indicates that the CPU wants to access the VMEbus, and is asserted
from U2701 when signal MMU_VME or B_INTA is asserted, which hap-
pens during a read or write to the VMEbus or an interrupt vector acquisition
cycle from the VMEDbus, respectively.

o B_SBRis asseried when P1_BR3 comes in from an external VME device
(through U2401 NAND gate) indicating that it wants the bus. P1_BR2,
P1_BRI1, and P1_BRO are monitored for the case where the 2060 board is a
requester only. '

When B_SSEL is asserted there are three possible state transitions, depending on
the state of B_SBBIN (synchronized bus busy in, indicating that an external dev-
ice is asserting P1_BBSY on the VMEbus) and B_SAS (a synchronized version
of VMEbus address strobe).

1. If neither B_SBBIN or B_SAS are asserted, the VMEDbus is idle and the next
state is MASTER, in which we assert B_BBOUT to lock the VMEDbus and
B_AEN 1o signal to the VME master interface that the CPU has been
granted the bus. B_AEN is the signal referred to in the VMEbus Manual as
Master-Granted-Bus.

The equation MASTER state is:

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 28 — VME Arbiter and Requester 273

In state IDLE;

if B_SSEL * !B_SBBIN * !B_SAS then state = MASTER J

2. The second case is when B_SBBIN is not asserted but B_SAS is, which
means another device is just about to finish using the VMEDbus and has
released P1_BBSY so that the arbitration process can go on in parallel with
that device's last cycle. In this case we go to the WAIT state, where we
assert B_BBOUT to lock the VMEbus, and wait for B_SAS to be negated
before jumping to the MASTER state where control is granted to the VME
master interface.

The equation for the WAIT state is

In state IDLE;

if B_SSEL * !B_SBBIN * B_SAS then state = WAIT

3. The third case is when B_SBBIN (synchronized bus busy) is asserted, caus-
ing us to jump to the BUSREQ state, where we assert B_BROUT. This is
necessary in case there is another Release On Request VMEbus requester
out there, because such a device will not release P1_BBSY until it sees a
request from another device.

The equation for the BUSREQ state is

In state IDLE;

if B _SSEL * B_SBBIN then state = BUSREQ

Transitions from BUSREQ There are two possible transitions from the BUSREQ state once B_SBBIN has
State been negated, depending on the state of B_SAS at that point.

1. IfB_SAS is negated also, then we jump to the MASTER-REQ state, where
we assert B_AEN, B_BBOUT, and continue asserting B_BROUT to
guarantee overlap between our assertion of P1_BBSY and our negation of
P1_BR3. On the next clock we make the transition to the MASTER state.

The equation for the MASTER-REQ state is

In state BUSREQ;

if !B _SAS * !B _SBBIN then state = MASTER-REQ

2. The second way of leaving the BUSREQ state is to jump to the WAITREQ
state, which occurs if B_SAS is still asserted when B_SBBIN becomes
negated. This means that the external device that had control of the

sun : {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTos ystems

274 2060 CPU Board Engineering Manual CONFIDENTIAL!

VMEDbus is performing its last transfer and has released P1_BBSY, so that
arbitration can take place.

" The equation for the WAITREQ state is

In state BUSREQ;

if B_SAS * !B_SBBIN then state = WAITREQ

In the WAITREQ state, we once again assert B_BBOUT and continue asserting
. B_BROUT to guarantee overlap between the two signals.

At the next clock we
1. jump to the WAIT state if B_SAS is still asserted, or
2. jump to the MASTER state if B_SAS is now negated.

From the WAIT state we wait until B_SAS is negated before moving to the
MASTER state. This wait is required by the VMEbus, which dictates that the
new VMEbus master mustn’t enable its drivers onto the bus until the old master
has negated the VME address strobe.

Transitions from MASTER The MASTER state is the normal condition of a release-on-request requester, and
State the only time we leave this state is when an external device has requested control
of the VMEbus.

When an external bus request is received (P1_BR3 asserted), we need to look at
several conditions.

1. We will stay in MASTER state if P_RMC is asserted, which allows imple-
mentation of interprocessor semaphores in VMEbus memory.

2. We will also stay in MASTER state if S4SEL is asserted, which means that
B_SSEL is going to be asserted at the next falling edge of the system clock
(see terminology, above.) Without S4SEL here, it is possible for the VME
Master Controller to assert VME address strobe even though we have made
the decision to give up the VMEbus by leaving MASTER state. This is
shown in the following timing diagram, in which B_SSEL occurs one clock
after B_SBR is received.

@'a Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ystems

Chapter 28 — VME Arbiter and Requester 275

Figure 28-2 VME MASTER State — Relationship of S4SEL to B_SSEL
ﬁ R

c60 e

B_SBR- ----

B_AEN- XXX X === mmmmm———m e e — e — - — e

B_BBO- KX K == = e o e —

\. J

If neither P_RMC nor S4SEL is asserted when an external bus request is
received, then we look to see whether or not the CPU is using the VMEbus.

o Ifthe CPU is not using the VMEbus, then B_SSEL will not currently be
asserted and we will make a transition directly to the MASTER_NG?2 state,
in which we wait until the P1_BBSY that we have asserted onto the
VMEDbus is no longer being received as B_SBBIN. This is an indeterminate
amount of time because of the low-pass filter on P1_BBSY on each 2060
board, and because we don’t know how many 2060 boards might be pluggec
into the backplane.

The equation for the MASTER_NG?2 state is

In state MASTER;

if !B_SSEL * B_SBR * !P_RMC * !S4SEL then state = MASTER_NG2

When B_SBBIN has gone away, we jump to BUSGRANT state, where
B_BGOUT is asserted to indicate that the external device requesting the
VMEbus has been granted control.

o Inthe case where the CPU is using the VMEbus and an extemnal bus request
is received, then B_SSEL will currently be asserted and we will wait until
the 2060 VME Master Controller has asserted P1_AS (which will be
received as B_SAS) before we move to the MASTER_NG state.

The equation for the MASTER_NG state is

In state MASTER;

if B SSEL * B_SBR * B_SAS * !P_RMC then state = MASTER NG2

@ Sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysterms

276 2060 CPU Board Engineering Manual CONFIDENTIAL!

Transitions from
MASTER_NG State

Transitions from BUSGRANT

State

L

There is a reason for the two separate states, MASTER_NG and MASTER_NG?2.
If we made a transition from MASTER to MASTER_NG when B_SSEL wasn’t
asserted and then B_SSEL was asserted, we would get stuck forever in
MASTER_GRT state waiting for B_SSEL to be deasserted.

Once in the MASTER_NG state, we wait for B_SBBIN to go away just as in the
transition from MASTER_NG?2 state mentioned above. At the point when
B_SBBIN goes away we check to see if B_SSEL is still asserted, which means
that the CPU is not yet finished with its cycle. If B_SSEL is still asserted we
jump to MASTER_GRT state, where we grant the VMEDus to the external dev-
ice that is requesting it, then wait for B_SSEL to be negated before jumping to
BUSGRANT state.

The equation for the MASTER_GRT state is

In state MASTER_NG;

if B_SSEL * !B_SBBIN then state = MASTER GRT

The advantage of issuing B_BGOUT before the CPU has finished with its cycle
is that this overlaps the end of the CPU cycle with the time required by the bus
grant signal to propagate down the bus grant daisy chain. When several boards
are installed this can be a significant amount of time, on the order of 90 ns per
board. This overlap is allowed by the VMEbus specification because the next
device must wait until P1_AS is negated before taking control of the bus. If
B_SSEL is not asserted at the point when B_SBBIN goes away, we jump directly
from the MASTER_NG state to the BUSGRANT state.

The equation for the BUSGRANT state is

In state MASTER NG;

if !B _SSEL * !B_SBBIN then state = BUSGRANT

Once we are in the BUSGRANT state, we wait for the external device that has
now been granted the bus to acknowledge by asserting P1_BBSY (which we will
receive as B_SBBIN). When we receive this signal we either jump to the IDLE
state or the BUSREQ state, depending on the state of B_SSEL at that time. If
B_SSEL is not asserted when B_SBBIN becomes asserted, that means the CPU
does not wish to use the VMEbus and we jump to the IDLE state to await a
request from the CPU or another VME device.

The equation for the IDLE state is

In state BUSGRANT;

if (!B_SSEL * B_SBBIN) +
(!B_SBBIN * !B_SBR) then state = IDLE

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

mcrosystems

Chapter 28 — VME Arbiter and Requester 277

If B_SSEL is asserted when B_SBBIN becomes asserted, that means the CPU
wants to use the VMEbus and we jump to the BUSREQ state where we assert
B_BROUT.

The equation for the BUSREQ state is

In state BUSGRANT;

if B_SSEL * B_SBBIN then state = BUSREQ
28.3. State Machine as When jumper J2701 is removed and jumper J2700 is inserted, the
Requester Only arbiter/requester state machine functions as a requester only, requiring (or allow-

ing) the arbitration function to be taken over by another VME board. Operation
as a requester bears a close resemblance to operation as an arbiter/requester
except that now the effects of P1_BG3IN, VMEbus Grant Level Three In, must
be taken into account, as that is how the external arbiter grants control to the
2060 board. The following explanation refers to the state diagram titled ‘‘VME
Arbiter/Requester, Requester-Only Mode,”’ which is in Appendix A.

Transitions from IDLE State The requester state machine starts off in the IDLE state, waiting for either a
B_SSEL signal from the CPU indicating a request for control of the VMEbus, or
a P1_BG?3IN signal from the arbiter indicating the VMEbus has been granted to
someone.

The equation for the IDLE state is

In state IDLE;

if£ !B_SSEL * !P1l _BG3IN then state = IDLE

There are four transitions from the IDLE state, depending on the states of the
above two signals plus P1_BBSY and B_SAS. These transitions are enumerated
below:

1. If the CPU doesn’t want the VMEbus when P1_BG3IN is received, then we
pass the bus grant down the bus grant daisy chain by jumping to the BUS-
GRANT state where we assert B_BGOUT, assuming that a device further
down the daisy chain is requesting the bus.

The equation for the BUSGRANT state is

In state IDLE;

if !'B_SSEL * B _BG3IN then state = BUSGRANT

2. If the CPU wants the VMEbus but no bus grant (P1_BG3IN) has yet been
issued, then we jump to the BUSREQ state where we assert B_BROUT.

@ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MCTOs ystems

278 2060 CPU Board Engineering Manua!l CONFIDENTIAL!

Transitions from BUSREQ
State

The equation for the BUSREQ state is

In state IDLE;

if !B_SSEL * B_BG3IN then state = BUSGRANT

3. The third transition from the IDLE state occurs when the CPU wants to
access the VMEbus (B_SSEL asserted), a bus grant has been issued
(P1_BG3IN asserted), no other device has acknowledged the bus grant
(P1_BBSY negated), but the previous bus master is still active (B_SAS still
asserted). In this case, we jump to the WAIT state to wait for the negation
of B_SAS before making the transition to the MASTER state.

The equation for the WAIT state is

In state IDLE;

if B_SSEL * B _BG3IN * !B_SBBIN * B_SAS then state = WAIT

4. The final way of leaving the IDLE state is to jump directly to the MASTER
state, which happens when the CPU wants to use the VMEbus (B_SSEL
asserted), the VMEDbus is idle (P1_AS and P1_BBSY negated), and a bus
grant has been issued (P1_BG3IN asserted). This happens when the CPU
asserts B_SSEL just as a bus grant is being given to another device, so we in
effect intercept the bus grant intended for the other device.

The equation for the MASTER state is

In state IDLE;

if B_SSEL * B_BG3IN * !B SBRIN * !B _SAS then state = MASTER

Two transitions out of the BUSREQ state are possible, both requiring B_SBBIN
negated and P1_BGB3IN asserted:

1. If B_SAS is not asserted when we recognize that B_SBBIN is negated and
P1_BG3IN is asserted, that means we can use the VMEbus immediately so
we jump to the MASTER-REQ state. In the MASTER-REQ state we assert
B_AEN to grant the bus to the CPU, B_BBOUT to inform the arbiter that
we are taking the bus, and we continue asserting B_BROUT to guarantee
overlap between the bus request and bus grant signals. On the next clock,
we jump to the MASTER state.

The equation for the MASTER-REQ state is

Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

mICrosystems

Chapter 28 — VME Arbiter and Requester 279

Transitions from MASTER
State

\

In state BUSREQ;

if B_BG3IN * !B_SBBIN * !B_SAS then state = MASTER-REQ

2. If B_SAS is still asserted when we recognize that B_SBBIN is negated and
P1_BG3IN is asserted, we must wait until the previous bus master relinqu-
ishes the bus by negating P1_AS. We do this by jumping to the WAITREQ
state, where we assert B_BBOUT and B_BROUT for the reasons mentioned
above, but don't yet issue B_AEN o grant the bus to the CPU.

The equation for the WAITREQ state is

In state BUSREQ;

if B_BG3IN * !B SBBIN * B_SAS then state = WAITREQ

If at the next clock B_SAS has gone inactive, we jump to the MASTER state,
otherwise we jump to the WAIT state to wait for the negation of B_SAS before
moving to the MASTER state.

All of the above paths lead to the MASTER state, where we assert B_AEN to
inform the CPU that it has been granted the VMEDbus, and we assert B_BBOUT
to inform the arbiter that we have taken control. Itis in this state that the CPU
performs its transfers to and from the VMEbus.

We leave the MASTER state when we see another device requesting the
VMEbus via P1_BRO, 1, 2, or 3, the OR combination of which is called B_SBR
(U2401), as long as P_RMC or S4SEL are not asserted. Just as in the
Arbiter/Requester case above, P_RMC holds the VMEbus throughout a CPU
read-modify-write cycle, and S4SEL holds the VMEDbus if B_SSEL is just about
to be asserted. If the CPU is not using the VMEbus when we receive B_SBR
(B_SSEL inactive), and P1_BG3IN has been negated, we jump directly to the
IDLE state. P1_BG3IN must be inactive to meet the VME specification require-
ment that the requester must not release bus busy until bus grant in has been
removed.

The equation for the IDLE state (from MASTER) is

In state MASTER;

if !B_SSEL * B_SBR * !B_BG3IN
* !S4SEL * !P_RMC then state = IDLE

If the CPU is still using the VMEbus when B_SBR is received, we wait until
P1_AS has been asserted by the 2060 VME Master Controller PAL (and once
again check that P1_BG3IN has been negated), then jump to the MASTER_NG
state, where we wait for P1_BG3IN to be asserted again.

sun ; {Rev 1 of 10 May 1987) CONFIDENTIAL!

280 2060 CPU Board Engineering Manual CONFIDENTIAL!

The equation for the MASTER_NG state is

In state MASTER;

if B_SSEL * B_SBR * !B BG3IN
* B_SAS * !P_RMC then state = MASTER_NG

Transitions from The purpose of the MASTER_NG state is to allow arbitration to proceed in
MASTER_NG State parallel by releasing P1_BBSY but holding the bus by asserting P1_AS.
- From MASTER_NG state are three possible transitions, all of them eventually
leading to the BUSGRANT state.

1. Ifthe CPU is finished using the VMEDbus before the arbiter issues the bus
grant for the next master (B_SSEL negated before P1_BG3IN asserted), we
jump to the IDLE state then to the BUSGRANT state when B_BG3IN is
received.

The equation for the IDLE state is

In state MASTER_NG:;

if !B_SSEL * !B_BG3IN then state = IDLE

2. If we receive the bus grant at the same time that the CPU finishes using the
VMEDbus, we jump directly to the BUSGRANT state.

The equation for the BUSGRANT state is

In state MASTER_NG;

if !B_SSEL * B_BG3IN then state = BUSGRANT

3. If the bus grant is received before the CPU is finished using the VMEbus,
we jump to the MASTER_GRT state, where we assert B_BGOUT and await
the negation of B_SSEL before proceeding to the BUSGRANT state.

5

The equation for the MASTER_GRT state is

In state MASTER _NG;

if B_SSEL * B_BG3IN then state = MASTER_GRT

Q& sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ysteme

Chapter 28 — VME Arbiter and Requester 281

Transitions from the
BUSGRANT State

In the BUSGRANT state we assert B_BGOUT while awaiting the negation of
P1_BG3IN. If at that point B_SSEL is not asserted we jump back to the IDLE
state, whereas if it is asserted we jump to the BUSREQ state.

The equation for the IDLE state is

In state BUSGRANT;

if !B_SSEL * !B BG3IN then state = IDLE

The equation for the BUSREQ state is

In state BUSGRANT;

if B _SSEL * !B_BG3IN then state = BUSREQ

-~/ -/

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

mICros ystems

Memory RAM — Pages 32 and 33

Memory RAM — Pages 32 and 33 359
38.1. MEMOTY REAQ ...t ssenessnees s st sesssisessessecsscsesssssssins 359
38.2. MEMOTY WIIIE ..o sssess s s massnessssessssssasssssssssssssssssnssnns 359

38.3. Processor Data ACQUISILIONooccccccovurrmsssnssssmssssssssnssse s 359

38.1. Memory Read

38.2. Memory Write

Table 38-1

38.3. Processor Data
Acquisition

2

Memory RAM — Pages 32 and 33

Eight banks of eighteen 256K-by-1-bit chips make up the memory array on the
2060 board. This provides 4Mbytes of memory, with one bit of parity per byte.
Multiplexing of eighteen address bits from the P2 bus, p2_a(21:02), allow access
to a bit within each 256K-by-1-bit chip, or an entire word from one of the eight
banks.

Bit data is bidirectionally connected to the 32-bit P2 data bus through the U3200,
U3202, U3300, U3302 data transceivers. Direction of the data flow through
these four transceivers is controlled by the assertion of the memory read/write
(m_rw) signal.

When m_rw is high — a read cycle — and output is enabled through the asser-
tion of the memory buffer enable signal m_ben-, a bit of data from each memory
RAM within the selected bank is coupled to the P2 data bus.

When m_rw is low — a write cycle — and output is enabled through the asser-
tion of the memory buffer enable signal m_ben-, a bit of data is written into each
memory RAM (within the selected bank) from the P2 data bus.

Thus the truth table for the memory data buffers is:

Memory Data Buffers — Data Flow

Gate Direction Which way the
m_ben- m_rw data will flow
=O 1 memory to P2 data bus (A -> B)
0 0 P2 data bus to memory (B -> A)
1 X outputs are tri-state

Note that assertion of m_rw and m_ben- are valid for all four data transceivers
simultaneously and thus memory data is driven onto all 32 bits of the data bus;
this leaves it up to the processor (through bus sizing and byte offset capabilities)
to access the byte(s) it wants within this 32-bit data space. Manipulation of the
size and offset bits by the processor also determines which of the RAS signals
will be valid to each bank of memory (see the section on U3100 and U3102 for
further explanation).

sSsun 359 {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ystems

VME Master Interface

VME Master Interface

29.1.

29.2.

29.3.

VME Select and Freeze PAL, U2701

Pinout for the U2701 PAL

Terminology for the VME Select and Freeze PAL ...

CPU Reruns on VME ‘‘Short Timeouts”’

CPU Reruns on Deadlocksoovoeeeeeeceeeeseeseesererrenn

VME Sclect and Freeze State Diagram

NoOrmal OPETAliONccccccommerermrmseress s sssesssssssssssssnses

Deadlock RESOIULION ... cer e sesees s

VME Short Timeouts
VME Long Timeouts
VME Master Controller PAL U2806

Terminology for VME Master Controller

VME Master Controller State Machine

CPU Retains Control of VMEDbus at End of Cycle ...

CPU Relinquishes Control of VMEbus at End of Cycle
CPU Freeze Cycles

..................

Address Modifiers and P_BLWORD |

Non-Aligned Master Cycles ...

285
286
287
288
288
288
288
289
290
290
291
293
293
294
295
295
295
296

VME Master Interface

29.1. VME Select and The VME Select and Freeze PAL, U2701, controls the VMEDbus select signals
Freeze PAL, U2701 B_SSEL and S4SEL, and controls the operation of the VMEbus Master Interface
during VME rerun cycles.

A CPU rerun occurs under two sets of circumstances:
1. when a VYME device fails to respond within 2.88 microseconds, or

2. when the CPU attempts to access the VMEDbus at the same time as an exter-
nal VME master accesses the 2060.

‘@'y sun 285 {Rev 1 of 10 May 1987) CONFIDENTIAL!

286 2060 CPU Board Engineering Manual CONFIDENTIAL!

.nout for the U2701 PAL Pinout of the U2701 PAL is:

Figure 29-1 U2701 Pinout

L2 A SRR RRS EXXAATA TR R KR
* * *
EWEK * kKK
/c_60 * 1% pal *20* vcc
"Xk N LA S 2
* lé6r4 *
LA 2 A4 wh KK
/mmu_vme ¥ 2* *19* nc
LA 2 A *hR K
* *
LA A B *EKEK
/c_s4 * 3 *18* b_csé
* Rk LR 2 &
* *
R KK " XY
/b_inta * 4% *17 /b_rerun
ERES® XK
* *
H WX WY
/p2_as * 57 *1€* /b_freeze
FEXEW XX
- *
R WK L a8 8
b_torrn * 6* *15* /b_ssel
*wwE *w R WE
* *
wEw LA B B
b _tolat * 7* *14* Ek_ento
TR XK L8 21
* *
LA A 8 LA A A4
/s_dma * g+ *13* /sésel
*kWR wk Wk
* *
TR RN *hww
/s_xreq * 9% *x12~ /init
LA A &1 TR K
* *
L2 2 24 TR WW
gnd *10* *11w /oe
ERWR *w WK
* *

AR TN TR AR R AN A RN AR AN RN R AR WA

Q?/) Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 29 — VME Master Interface 287

Terminology for the VME
Select and Freeze PAL

@

g.

7
=
]

B_CS4: VME Clock State 4. Latches CPU addresses into the VME master
address latches at state 4 on every P2 Bus cycle except when the VME inter-
face is frozen.

B_ENTO: VME ENable Time Out. Tells the VME Rerun Timer to start
counting the time from the start of a VME Master cycle. Resets the counter
once a rerun has been requested.

B_FREEZE: Tells the VME Master Controller PAL and the VME Data
Buffer Control PAL to freeze their current state so that the CPU doesn’t
have to maintain all of its signals while it reruns a cycle.

B_INTA: Signal from the Interrupt Acknowledge Generator PAL (U304)
that indicates the CPU is trying to fetch an interrupt vector from the
VMEDbus.

B_RERUN: Tells the Bus Error PAL (U202) to assert P_HALT and
P_BERR simultaneously, causing the CPU to rerun its current cycle. This
signal is combined in PAL U107 with the rerun request from the P2 Bus,
SP2_RERUN, before going to the Bus Error PAL.

B_SSEL: the key signal in all VME master cycles, indicating that the CPU
is accessing the VMEDbus either to write or read data or fetch an interrupt
vector. Goes active at state S.

B_TOLAT: VME TimeOut LATch. Comes from the VME Rerun Timer
(U2700) and signifies that it’s time to close the latches that allow VME
DTACKSs onto the 2060 board.

B_TORRN: VME TimeOut ReRuN. Comes from the VME Rerun Timer
(U2700) and signifies that it’s time to rerun the CPU because a VME Slave
has taken too long to respond. This signal has meaning only when asserted
in conjunction with B_TOLAT.

LONG TIMEOUT: A period equal to 256 Short Timeouts, at which point
we decide that the addressed VME device is never going to respond, and we
abort the cycle.

MMU_VME: Signal from the MMU Validation/Decode PAL (U612) that
goes active when MMU_TYP[1] is active, indicating that the CPU is either
reading or writing data to the VMEbus. Goes active at state 4.

S4SEL: combinatorial signal that warns the VME arbiter that B_SSEL will
be asserted on the next falling clock edge. This is required so that the arbiter
won'’t decide to give up the bus just as the CPU starts to use it, which would
create a condition where the VME Master Controller PAL could assert
address and data strobes onto the VMEDbus even though we had just granted
control of the bus to another board. Goes active at state 4.

SHORT TIMEOUT: A 2.88 microsecond period after which the CPU
reruns a VME access if no response is received from the addressed VME
device.

{Rev 1 of 10 May 1987} CONFIDENTIAL!

288 2060 CPU Board Engineering Manual CONFIDENTIAL!

“~PU Reruns on VME “‘Short
mneouts”’

CPU Reruns on Deadlocks

29.2. VME Select and
Freeze State Diagram

Normal Operation

Q

When a VME device being accessed by the 2060 has a response time of greater
than 2.88 microseconds, the access will be broken up into one or more shorter
cycles by VME *‘short timeouts.”’ This is required because the VMEbus has no
specified maximum response time, and the local bus must not be kept tied up for
long periods of time or the 2060 will start missing Ethemnet packets and dynamic
RAM refresh cycles. The Xylogics disk controller board, for example, has
response times as long as 80 microseconds because reads from certain registers
are actually requests for the Xylogics microcontroller to perform a short program
and report back the results.

In this case what happens is that the state of the VME Master Interface is frozen,
incoming DTACKSs from the VMEbus are disregarded, and a rerun of the current
cycle is requested of the CPU via simultaneous assertion of P_BERR and
P_HALT. The CPU indicates its acceptance of the rerun by negating address
strobe (P_AS) and re-arbitrating for the local bus. If at that point a request for
the local bus is pending (signified by P_BR being active), the CPU will grant
local bus access to a DVMA device and a DVMA cycle will be performed before
the CPU begins the instruction again. This would be the case if an Ethernet
request (E_DMAREQ and S_EHOLD) or a refresh request (R_DMAREQ) were

pending.

The second type of CPU rerun is called a deadlock. Arbitration of deadlocks is
required because the VMEbus makes no provision for backing off or rerunning a
cycle. During deadlocks the B_RERUN signal is asserted but the B_FREEZE
signal is not; since the CPU does not yet have control of the VMEbus there is no
‘‘VMEDbus state’’ to preserve. The CPU will accept the rerun command, grant
the local bus to the DVMA controller, the VME Slave cycle will complete, and
then the CPU will perform its VME Master cycle. ‘

The state diagram covers four possible contingencies:

o normal operation

o resolution of deadlocks

o short timeouts, and

o long timeouts.

Each of these are explained below. Refer to the state diagram labelled ‘‘VME
Select & Freeze State Machine’’ (in Appendix A) for the following explanations.

Normmal operation of the VME Select and Freeze PAL can be defined as VME
accesses that don’t involve reruns or deadlock conditions. Under normal opera-
tion, U2701 waits in the IDLE state, or state A of the figure, until receiving either
the signal MMU_VME or B_INTA indicating a VME data access or interrupt
vector fetch, respectively.

The equation for the IDLE state is

[if IMMU_VME * !B_INTA then state = IDLE J

Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTOs ys16ms

Chapter 29 — VME Master Interface 289

Deadlock Resolution

When one of these signals becomes asserted, U2701 waits until CS4 is also
asserted by the central timing generator, then asserts B_SSEL. Waiting for CS4
assures that B_SSEL won't go active until after state S because U2701 is clocked
by /c60 (inverted 60 nsec clock). P2_AS is included in the equation with
MMU_VME so that B_SSEL is negated properly at the end of the cycle. This
takes us to state B, in which we stay until the next clock.

The equation for the state B is

In state IDLE:;

if MMU_VME * P2_AS * CS4
+ B_INTA * CS4 then state = state B

In state B you can go either to state C (if S_XREQ is not asserted) or state E (if
S_XREQ is asserted).

With the assertion of B_ENTO the VME short timeout counter starts counting to
signal a rerun. If the VME device being accessed responds within 2.88
microseconds, the response (P1_DTACK) will get transmitted to the CPU, which
will respond by negating P2_AS. This will cause U2701 to jump to state D by
negating B_SSEL, then on the following clock it will return back to the IDLE
state.

A deadlock occurs when the CPU accesses the VMEDbus just as an external VME
device (that already has control of the VMEbus) accesses the P2 bus. As in nor-
mal operation above, U2701 will proceed from state A to state B. Then
S_XREQ will be received either before or after the transition to state C.

1. If S_XREQ is received during state B, the state machine goes directly to
state E.

2. If S_XREQ is not received in state B, the state machine goes on to state C,
whereupon assertion of S_XREQ moves the state machine to state E.

Once in state E, B_RERUN is sent to the Bus Error PAL, U202. On the next
clock B_LENTO will go away (since we are already rerunning the CPU and don’t
want to be confused by short imeout signals). This will put us in state F where
we will wait for the rerun to be accepted by the CPU, indicated by P2_AS going
away. When P2_AS goes away we will jump to state G and negate B_SSEL, fol-
lowed by a transition back to IDLE on the next clock.

At this point the CPU grants control of the P2 bus to the DVMA controller,
which will perform a VME Slave cycle before returning control of the P2 bus
back to the CPU. When the CPU regains control of the P2 bus, it will again
attempt to perform the same cycle it attempted earlier.

sSun {Rev 1 of 10 May 1987) CONFIDENTIAL!

IMICTOs y$ lems

290 2060 CPU Board Engineering Manual CONFIDENTIAL!

“1E Short Timeouts

VME Long Timeouts

When the CPU requests access of the VMEbus there may be some time wasted in
acquiring control of the bus, which is followed by the selected device taking a
further amount of time to respond. If the sum of these two time periods exceeds
2.88 microseconds, a VME Short Timeout is asserted. This results in the CPU
rerunning the cycle (after the DVMA controller first checks to see if there are any
pending requests from the refresh or Ethemet subsystems). In this case U2701
will proceed normally from state A to state B to state C, as above, and 2.88
microseconds later will receive the combination of signals that causes a
Freeze/Rerun. That combination is the simultaneous assertion of B_TOLAT and
B_RERUN.

The start of a Freeze/Rerun cycle will be signalled by U2701 asserting

- B_FREEZE and B_RERUN. B_FREEZE goes to the VME Master Interface and

the VME Data Buffer Controller, causing them to freeze the state of the VMEbus
interface until the CPU restarts the current access. B_RERUN goes to PAL
U107 where it is combined with the synchronized P2 rerun signal,
SP2_RERUN.%

The combined signal, RERUN-, then goes to the Bus Error PAL U202 where it
causes P_BERR and P_HALT to be asserted.

On the next clock after B_FREEZE and B_RERUN are asserted, B_LENTO will
be negated, causing the VME short timeout counter (U2700) to be reset. The
state machine will then remain in state J until the CPU responds to the rerun
request by negating P2_AS, at which point it will jump to state K by negating
B_RERUN. On the next clock the state machine will proceed to state L with the
assertion of B_ENTO to start the VME short timeout counter counting the period
until the next rerun cycle. We will remain in state L until the state 4 of the next
non-DMA cycle, indicated by S_DMA being negated and CS4 being asserted.
This is guaranteed to be the CPU re-attempting its original transfer. When this
occurs, we will jump back to state C by unfreezing the state of the VME interface
(negating B_FREEZE).

The VME Rerun Timeout counter is an LS590 (U2805) that counts 256 Freeze
cycles on a single CPU access before asserting B_TOUT. It starts counting when
B_SSEL is asserted, which is accomplished by inverting the B_SSEL signal in
inverter U2803 and running that into the clear input. When B_SSEL is asserted
the clear condition is removed. If B_SSEL goes away before the counter reaches
256, the counter is cleared by B_SSEL.

The counter is clocked by the trailing edge of B_FREEZE, so we will be in state
C when B_TOUT is asserted. This will cause TOUT to be asserted externally to
the VME Select and Freeze State Machine. This will assert S_TOUT, which will
cause the Bus Error PAL U107 to assert P_BERR, aborting the cycle. The VME
Select and Freeze State Machine will see only the CPU’s response to this, which
will be the negation of P2_AS. This will cause it to jump to state D, followed by
state A, the IDLE state.

1This PAL is used only because it had the required number of inputs and outputs 1o combine these signals,
30 can be thought of as an external AND gate (logical NOR).

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ysteme

Chapter 29 — VME Master Interface 291

29.3. YME Master
Controller PAL
U2806

VME Long Timeouts are inhibited during the 200 millisecond VME reset period
so that if the CPU attempts to access the VMEbus during this period it will rerun
the cycle continuously until the reset period is over. This is done by inverting
the B_LRSTOUT signal in inverter U2803, and feeding that into the count enable
input of the VME Rerun Timeout Counter.

The VME Master Controller PAL controls VME address strobe, data strobe,
transfer size, output enable, acknowledge enable, and some address modifiers
during VME Master cycles. It is an asynchronous state machine that will run as
fast as the PAL. is able. The PAL has one fairly complex state machine to handle
output enable, address strobe, data strobes, and acknowledge enable; one fairly
simple state machine to handle address modifiers; and one combinatorial output.

sun i {Rev 1 of 10 May 1987} CONFIDENTIAL!

92

2060 CPU Board Engineering Manual CONFIDENTIAL!

Pinout of the U2806 PAL is:

Figure 29-2 U2806 Pinout

/pl_dtack

/b_ssoe

/b_freeze

p2_typ(0]

/mblésel

/c_top€ék

p2_al00]

p2_a[01]

/b_aen

/b_ssel

p2_siz (0]

gnd

ERFAXAN AR AR 12222222 RS RS

22 12233
* 1> pal *24*
*RRK 1222
* 2018 *
*TEHW R w N
* % *23
hKK kKX
* *
1223 (2225
* 3' 1221'
(223 *xnw
* *
*rww 223
* 4 *2]w
LA S & * kR F
* *
LA S 8] LA B &4
* 5% *20%
LA A 8] whEW
»® *
LA S & LA AR
6 *1o%
TrXW * kKX
* *
wh R R X WK *
A *ig=
*xwx Tk x
* *
*Hww (2224
* g% *17x
TR WR LA R A1
* *
Tk ww LR
* gx *16*
*Hk R xhk R
* *
1222 12234
10 *x15%
(2234 *hwx
* *
*rwR 12333
*11% *14%
222 L2225
* *
223 222
*12» *13x
TRE N (12225

(AR S S SRR RSt s s REY

{Rev 1 of 10 May 1987) CONFIDENTIAL!

vece

/pl_berr

b_acken

/b_oecpu

/b_lds

/b_uds

/b_ambout

/b_am4out

/b_as

/p_blword

/p2_as

p2_siz{l]

Chapter 29 — VME Master Interface 293

Terminology for VME Master

Controller

VME Master Controller State

Machine

8]

B_ACKEN: VME ACKnowledge ENable. Allows acknowledges,
P1_DTACK and P1_BERR, to flow to the CPU on VME cycles. Also clear.
them at the end of each cycle and holds them off during rerun cycles.

B_AEN: Signal from the VME Arbiter/Requester PAL (U2704) indicating
that the CPU has won control of the VMEDbus.

B_FREEZE: Signal from the VME Select and Freeze PAL (U2701) that
causes the current state of the VME Master Interface to be frozen during
CPU rerun cycles.

B_OECPU: VME Output Enable CPU. Enables the Master Address
Buffers onto the VMEbus and goes to the VME Data Buffer Control PAL
(U3000) where it is combined with several other signals to enable the P2
Data bus onto the VMEbus under certain conditions.

B_SSEL: Signal from the VME Select and Freeze PAL (U2701) indicating
that the CPU is accessing the VMEbus.

B_SSOE: VME Synchronized Synchronized Output Enable. B_OECPU
from the VME Master Controller PAL (U2806) is run through two flip-flops
to form B_SSOE, which indicates that addresses have been enabled onto the
VMEDbus long enough to satisfy the VME address setup requirement.

MB16SEL: MegaByte 16 SELect; generated by address decoding logic in
the Video section, this signal is active when P2_A[31:24] are all high. This
function is shared with the Video section to save an IC, and chooses between
32- and 24-bit VME addressing modes on Master cycles.

MMU_TYP[0]: The low-order type bit generated by the MMU. It is used
here to distinguish between 16- and 32-bit VME accesses. When
MMU_TYP{1] is high, MMU_TYP[O] low indicates 16-bit VME data space,
and high indicates 32-bit VME data space.

P_BLWORD: Processorto VME LongWORD. Indicates that the CPU is
performing a legal VME 32-bit data transfer. Active only when performing
a longword-aligned longword access to type 3 space. Latched externally in
U2808.

Q_TOP64K: Active when P2_A[23:16] are all high. It is used here to
choose between 24- and 16-bit VME addressing modes on Master cycles
when MB16SEL is active. The ‘‘Q’’ prefix has historical roots.

The following discussion refers to the state diagram titled ‘‘VME Master Con-

troller State Machine,’’ which is in Appendix A.

U2806 waits in the IDLE state (A) until the VME Arbiter signals that the CPU
has been granted control of the VMEDbus by asserting B_AEN. It then also
checks to see that neither P1_DTACK nor P1_BERR is active before starting a
cycle in order to satisfy the VME requirement that the acknowledges must be
inactive before data strobes are asserted. If this is the case we jump to state B by
asserting B_OECPU, which goes to the VME Master Address Buffers and
enables the P2 addresses onto the VMEDbus.

s

un {Rev 1 of 10 May 1987) CONFIDENTIAL!
08 yS16Ms

294 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 29-1

CPU Retains Control of
VMEbus at End of Cycle

The equation for the IDLE state is

Ef B_AEN * !P1_DTACK * !P1_BERR then state = IDLE]

The VMEDbus specification requires addresses to be enabled onto the bus for a
minimum of 35 nanoseconds before address strobe is asserted. In order to satisfy
this requirement worst case, we run B_OECPU through two clocked flip- flops
(routed twice through U2703) and wait for the result, B_SSOE, before asserting
address strobe. This is shown on the state diagram as states C and D.

Once address strobe is asserted, we check for the size and alignment of the
transfer and assert data strobes accordingly. If the transfer is word-aligned and
its length is word, 3-byte, or longword, both data strobes are asserted and we
jump to state F. If the transfer is word-aligned and byte size, upper data strobe is
asserted and we find ourselves in state M. If the transfer is not word-aligned,
only lower data strobe is asserted and we end up in state P.

U2806 Transfer Logic
Transfer Length State Equation
word '
word aligned 3-byte F 1P2_AO00 * ('P2_SIZ[0] + P2_SIZ[1])
longword
word-aligned byte-size | M 'P2_A00 * (P2_SIZ[0] + 'P2_SIZ[1))
not word-aligned P P2_A00

When the VME Slave currently being addressed responds with a P1_DTACK or
P1_BERR, this will be sent to the CPU, which will negate P2_AS. If no other
VME device has requested control of the VMEbus, the 2060 board will retain
control by continuing to assert P1_BBSY and will indicate this to the VME Mas-
ter Controller PAL by keeping B_AEN asserted.

If at the point when P2_AS becomes negated B_AEN is still asserted, we will
leave state F, M, or P and move to state D to await the next Master cycle. The
start of the next Master cycle will be indicated by the assertion of B_SSEL. The
design could also have been implemented such that at the end of every Master
cycle we return to IDLE state, but this would require us to waste the VME
address setup time on every cycle. This implementation, on the other hand, takes
advantage of the fact that the P2 addresses are valid at state 4 even though we
don't know whether or not the current cycle involves the VMEbus until state 5.
If it does, the VME address strobe can be asserted immediately.

If, instead of receiving another B_SSEL, the VME Arbiter/Requester PAL gives
up the VMEbus and indicates this to the VME Master Controller by negating
B_AEN while we're in state D, we simply negate B_OECPU by jumping to state

sun

microsysiems

{Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 29 — VME Master Interface 295

CPU Relinquishes Control of
VMEbus at End of Cycle

CPU Freeze Cycles

Address Modifiers and
P_BLWORD

K.

If B_AEN is not asserted at the point that the CPU negates P2_AS, this indicates
that an extemal VME device has requested control of the VMEbus and a com-
pletely different set of actions occurs. When transferring the VMEbus from one
master to another, a significant amount of time can be required to pass the bus
grant down the bus grant daisy chain. For example, the 2060 on the average
takes more than 90 nanoseconds to pass bus grant in to bus grant out when
configured as a VMEbus requester only and not requesting the bus. Ten such
boards would require over 900 nanoseconds to pass the bus grant to the lowest
priority board on the VMEbus.

The VMEDbus specification allows pipelining of this time with the time taken to
perform the last transfer by the master that is presently relinquishing the bus.
The 2060 board takes advantage of this by negating P1_BBSY and asserting
P1_BG3OUT as soon as P1_AS has been asserted on the last transfer. This
means that the only way we have of indicating that we still have control of the
VMEDbus is by continuing to assert P1_AS; therefore the VMEbus specification
has a requirement that if this pipelining is implemented the address and data
drivers must be tri-stated before P1_AS is negated at the end of the cycle.

States H and J in the VME Master Controller State Diagram allow this pipelin-

ing. The Controller negates VME data strobes and clears out the acknowledges
as it moves from states F, M, or P to state H, then disables the drivers by negat-
ing B_OECPU as it moves from state H to state J. Now that the drivers are dis-
abled we can remove the VME address strobe, which takes us to state K. States
K and L don’t perform any tasks.

When the VME Master Controller is waiting in states F, M, or P and B_FREEZE
is asserted, we move to the corresponding state G, N, or Q by negating
B_ACKEN. This occurs when 2.88 microseconds have passed since the CPU
requested a VME cycle and no response has been received yet (see the discussion
above in the section on the VME Select and Freeze PAL). It is necessary to
block the acknowledges so that any DMA cycles that might occur before the
CPU cycle acwally reruns don’t inadvertently get terminated by P1_DTACK
from the VMEbus. We will remain in state G, N, or Q until B_FREEZE is
negated, at which point we'll retum to the corresponding state F, M, or P.

The VMEDbus uses six signals in addition to the addresses to give more informa-
tion about the type of cycle being performed. These are called the Address
Modifiers. P1_AM2:0 correspond to function codes P_FC2:0 in the 68000 fam-
ily in the sense that they select between Supervisor and User modes, and between
Program and Data spaces.

o Address Modifier 3 is always high in in our implementation and all modes
with it low are undefined.

o Address Modifiers S and 4 are generated in PAL U2806 based upon decodes
of the top 16 P2 address bits. They select between 16-, 24-, and 32-bit
addressing modes. The complete encoding of the address modifier bits as
used by the 2060 board is shown in the following table:

sSsun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysiems

296 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 29-2

Non-Aligned Master Cycles

NOTE

Address Modifier Bits on the 2060 Board

Address Modifier Codes Hex
Address Modifier Function Code
543210
LLHLLH 32 bit addressing, User Data Space 09
LLHLHL 32 bit addressing, User Program Space 0A
LLHHLH 32 bit addressing, Supervisor Data Space 0D
LLHHHL 32 bit addressing, Supervisor Program Space | OE
HLHLLH 16 bit addressing, User Data Space 29
HLHLHL 16 bit addressing, User Program Space 2A
HLHHLH 16 bit addressing, Supervisor Data Space 2D
HLHHHL 16 bit addressing, Supervisor Program Space | 2E
HHHLLH 24 bit addressing, User Data Space 39
HHHLHL 24 bit addressing, User Program Space 3A
HHHHLH | 24bit addressing, Supervisor Data Space 3D
HHHHHL | 24bit addressing, Supervisor Program Space | 3E

P_BLWORD is also generated in U2806 in accordance with the VMEbus
Specification Revision B, which says that P1_LWORD can only be asserted on
longword accesses that are longword aligned. We also check that MMU_TYP[0]
is high, indicating an access to TYPE3 Space, which is where devices having
32-bit data buses are accessed. The address modifiers and type bits combine to
generate the address map shown in the figure titled ‘‘Sun-3 Physical Address
Mapping,”’ which is in Appendix A.

The 68020 allows several types of transfers that are not allowed by the VMEbus
Specification, including non-word-aligned word accesses, non-longword-aligned
longword accesses, and three-byte transfers.

o A non-word-aligned word transfer will result in a byte being read or written.

o A longword transfer to an address misaligned by one or three bytes will also
result in a byte being read or written.

o A longword transfer to an address misaligned by two bytes will result in a
word being read or written.

The amount of data that the CPU assumes has been accepted or provided by the
VME Slave being addressed is determined by which of P_DSACK[1:0] signals
are asserted. This is controlled in turn by the DSACK PAL (U204), which looks
at address bits 0 and 1, size bits 0 and 1, and type bit 0 to decide which DSACKs
should be asserted.

You may notice that this scheme doesn’t quite fit in with the 68020’ s dynamic bus
sizing, in that it is theoretically possible to transfer more data per transfer than
this scheme allows, but the 2060 board was designed to meet the VMEbus Revi-
sion B Specification. Revision B requires that word transfers be word aligned
and that longword transfers be longword aligned, a requirement that has since
been loosened in the Revision C Specification.

S. un {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

VME Slave Interface

VME Slave Interface .. e 299
30.1. VME Slave Address Latches, U2901-2 and U2911-13 299
30 2. VME Slave Address Decoder U2907 , 299

Terminology for the VME Slave Address Decoder, U2907 ... 301
30.2. User DVMA Enable (U2905-6) and Context Registers (US09) 302
30.4. VME Slave Address Multiplexers (U2910:09)coermecrnn 302
30.5. VME Slave Request PAL (U2904) ...

Terminology for VME Slave Request PAL
VME Slave Request State Machine

30.1. VME Slave Address
Latches, U2901-2 and
U2911-13

30.2. VME Slave Address
Decoder U2907

VME Slave Interface

Five ICs, U2901-2 and U2911-13, make up the VME Slave Address Latches.
Their purpose is to latch the addresses from the VMEbus at a time when they are
guaranteed to be valid, and hold them until they are no longer needed. This
decreases the sensitivity of the 2060 board to noise on the VMEDbus, and it takes
no extra ICs to implement latches instead of buffers. Address bits 20-31 are
latched in transparent latches (F373s U2901 and U2902) on the leading edge of
the buffered form of the VME address strobe (P1_AS buffered through U2803 to
form B_ASIN-) in order to take advantage of the address-to-address setup time of
10 nanoseconds guaranteed to a VME Slave by the VMEbus specification. Since
the flow-through time of an F373 is less than this setup time, as soon as P1_AS
‘goes active we are guaranteed to have valid outputs from the address latches.
This allows the use of a 25 nanosecond PAL in U2907 instead of a 15
nanosecond version, as will be explained later. -

Address bits P1_A(19:04) are latched in D-type flip-flops (ALS374s U2913:12),
also on the leading edge of P1_AS. They are enabled onto the processor address
bus when the DVMA Controller grants control of the P2 bus to the VME Slave
interface (X_DMAEN- is true). Address bits P1_A(03:01) and P1.WRITE are
latched into U2911 on the rising edge of P1_DS.

ALS technology was chosen here to minimize undershoot on the processor
address bus as several devices sensitive to undershoot are located there, such as
the 68020 and MMU RAM:s.

VMEbus addresses are latched on every VMEDbus address strobe by the VME
Slave Address Latches, and the VME Slave Address Decoder, PAL U2907,
examines the contents of these latches continuously to see if the 2060 board is
being referenced. It generates one of two signals, B_SDMA or B_USPC, if the
address and number of the valid address bits (as indicated by the address
modifiers) match any of the locations to which the 2060 board is permanently
wired to respond. (See the section above on the VME Master Controlier State
Machine for a discussion of the VME Address Modifiers.) The figure titled
‘“VMEDbus Slave Address Mapping'’ (in Appendix A) gives a graphic representa-
tion of the addresses to which the 2060 board responds.

Sun 299 {Rev 1 of 10 May 1987) CONFIDENTIAL!

Mmicrosystems

300 2060 CPU Board Engineering Manual CONFIDENTIAL!

Pinout of the U2907 PAL is:

Figure 30-1 U2907 Pinout

I3 33222222288 Rd AR RART RN AT AN
* x* w *
XK K LA & B4
‘b_a[20] * 1% pal *20* vcc
TRRK kR Ww
* 1618 *
TR R TAXRK
b_al21) * 2* *19* /b_sdma
L e 2 &3 *RXK
» *
*RRR TR XW
b_af22) *x 3* *18% b_am5in
xWR K kR
b4 *
KRN LA AR
b_a[23] * 4> ‘ *17* b_amdin
XERXX XK X
* ®
XN * kX R
b_a(24) * o« *i€* /b_iack
XX K LA A 84
* *
LA R B 4 *XEK
b_a[25] * 6% *15* b_a{3C]
XXX ERNE
* L4
*hk K L & 84
b_a[26] * 7~ *14* b_a{31]
XN *H kK
x* »
THER LA 28
b_al27] * 8> *13* /b _aen
RRX XHRXX
* *
XREK® XXX K
b_a(28)] * g¥ w12 /b_uspc
* kK L3 2 24
* *
KRR W E 2 2 24
gnd *10* *11* b_a(29]
L2 424 AR
* *

[3Z222223E3 3222228222222 222 2222

@ S un {Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 30 — VME Slave Interface 301

Terminology for the VME
Slave Address Decoder, U2907

4

B_A[31:20]: these signals are versions of the VME address bus signals
P1_A[31:20] latched on the falling edge of /P1_AS.

B_AMSIN, B_AM4IN: correspond to VMEbus address modifiers P1_AMS5
and P1_AM4, which are latched on the falling edge of /P1_AS. When both
are high, the latched address has 24 bits valid. When both are low, the
latched address has 32 bits valid.t

B_SDMA stands for VME System DMA and indicates that the bottom
megabyte of either the 24-bit or 32-bit VME address space is being
accessed.

~
if(vec) b_sdma = /b_al31]) * /b _a[30] * /b_a[29] *
/b_a[28] * /b_a[27) * /b_a[26] *
/b_al25] * /b_al24] * /b_a[23] *
/b_a(22] * /b_a[21] * /b_al[20]) *
*

/b_amS5in * /b_amdin /b_iack * /b_ssos€
lowest megabyte in 32-bit address space => system DVMA

+ /b al23) * /b_al22] * /b_a[21] *
/b_a[20] * b_ambin * b_am4in *
/b_iack * /b_ssoe

lowest megabyte in 24-bit address space => system DVMA

B_USPC stands for VME User Space and is roughly analogous to the User
form of B_SDMA except that it goes through a further level of qualification
before becoming a valid decode, at which point it is called B_UDMA.
B_USPC goes active if the address bits indicate an access to the top 2 giga-
bytes of the 32-bit VME address space.

if(vece) b_uspc = b_a[31) * /b_am5in * /b_amédin *
/b_iack * /b_ssoe
highest 2 gigabytes in 32-bit addr. space => user dvma

B_SSOE is included in the decoding equations of U2907 in order to elim-
inate self-referential cycles over the VMEbus. That is, when the 2060 board
has control of the VMEbus, B_OECPU is asserted to enable the 2060
address drivers onto the VMEDbus, and two clocks later this becomes
B_SSOE. When B_SSOE is active, all Slave mode decodes are disabled.
This allows identical software to be plugged into two 2060 boards in the
same backplane, and allows each board to reference the other at the same
range of addresses.

$See the VMEbus specification for further details.

Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

302 2060 CPU Board Engineering Manual CONFIDENTIAL!

30.3. User DVYMA Enable
(U2905-6) and
Context Registers
(U509)

\.4. VME Slave Address
Multiplexers
(U2910:09)

30.5. VME Slave Request
PAL (U2904)

o B_IACK: since the 2060 board is not capable of requesting interrupts over
the VMEDbus, it stands to reason that its Slave interface should not be
activated on any interrupt acknowledge cycles. For this reason, whenever
B_IACK is active all Slave decodes are disabled.

The 2060 Slave interface divides the top half of the VME 32-bit address space
into eight 256-megabyte "contexts” that can be individually enabled or disabled.
These contexts correspond to the context bits stored in the Context Register,
U509, and are controlled by VME address bits 30:28. On User DVMA cycles,
these bits are stored in the Context Register instead of the value that is currently
stored there.

The information to which User DVMA contexts are currently enabled is stored in
the User DVMA Enable Register, U2905-6. It is an 8-bit read/write register
located in Control Space at address 0x50000000. Bit O corresponds to context 0,
bit 1 corresponds to context 1, and so on. The register is clearcd on resets, and a
one must be written to enable a context.

These context enable bits are compared in the User DVMA Context Selector,
U2908, to the context that the VMEDbus is attempting to access. If the latched
versions of VME address bits P1_A[30:28] correspond to a context that is
enabled, that is, a one is in the proper bit location in the User DVMA Enable
Register, and if the VME Slave Address Decoder is asserting B_USPC as
explained above, then output B_UDMA will be asserted.

The VME Slave Address Multiplexers are two 4-bit tri-stable multiplexers that
drive processor address lines P_A[27:20] during VME Slave cycles. On User
DVMA cycles, they choose the latched VME address lines B_A[27:20]. On Sys-
tem DVMA cycles, they drive P_A[27:20] to all ones, causing the System
DVMA to be relocated to a virtual address of OXFFFX XXXX, where the Xs
stand for the address bits actually on the VMEbus. Both 24-bit and 32-bit Sys-
tem DVMA are relocated to this address range, and it is impossible for the 2060
board to distinguish between the two addressing modes.

You will note that the upper four address lines appear to not be driven during
VME Slave cycles, but this is done on page 8 by U813, an ALS240 that is
enabled on S_DMA which goes active on VME Slave or Ethemet DVMA cycles.
In this way we can share the driver between both types of cycles and save half an
IC. ALS technology is used for all of the processor address bus drivers to
minimize undershoot, as mentioned above in the section on the VME Slave
Address Latches.

The VME Slave Request PAL implements an asynchronous state machine that
generates requests for VME Slave cycles to the DVMA Controller, and responds
to the completion of a Slave cycle by generating P1_DTACK back to the exter-
nal master. An earlier implementation of this PAL on the 2060 board used a syn-
chronous state machine, which required the synchronization of the incoming data
strobes and increased the turnaround time between cycles to an unacceptably
long period. The current implementation asynchronously removes DTACK at
the end of the cycle as soon as the external master negates its data strobes. This

sun (Rev 1 of 10 May 1987) CONFIDENTIAL!

MICros ystems.

Chapter 30 — VME Slave Interface 303

is important because the VME spec requires the next cycle not to begin until
DTACK from the previous cycle goes away. The synchronous implementation
locked out the next cycle for approximately 100 nanoseconds, while the synchro-
nous implementation locks it out for only about 15 nanoseconds.

< Sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

2060 CPU Board Engineering Manual CONFIDENTIAL!

Pinout of the U2904 PAL is:

Figure 30-2 U2904 Pinout

RAXARXRARRREEE K AL AXXRX XXX R R AR RN
* x x *
RN X XK
/c_60 * 1+ pal *20* vcce
R WR LA RS
* 16r4 *
L2 8 24 WY
s_ack * 2* *19* en_sdvma
LA S 8 J * Kk Kk
* *
XXX K xw XK
/pl_slds * 3x *18~ /p2_as
LA & ¢ TR
w *
LA A 84 *Hw K
/pl_suds * 4 *17* /s_xreg
X ENR "W w
* w
EEX X LA A 24
pl_sas * 5% *16* /b_diout
*h AR LA 24
x *
LA A2 R wW
s_error * 6% *15~ /b_errout
wwwk KR W
* *
*RRK WRX K
/b_sdma * 7~ *14* /xgrant
LA 2 84 NX W
»* *
T KRR *ERR
/x_dmaen * 8% *13* /en_bcx
XK KK XH R
* *
K XK KEww
/b_udma * g *12* /b_endo
xRk w kWK
* *
KERXN L2 2 84
gnd *10* *11* /oe
LA 8 A4 RERYE
* *

(2222222280222 22202 RR 2RSSR S

Q?& sun . (Rev 1 of 10 May 1987) CONFIDENTIAL!

Chapter 30 — VME Slave Interface 308

Terminology for VME Slave
Request PAL

4

o

B_DTOUT: VME Data Transfer acknowledge OUT. This signal is buf-
fered to form P1_DTACK, and indicates to an external master that the
current cycle has been completed.

B_ERROUT: VME ERRor OUT. This signal is buffered to form
P1_BERR, and indicates to an external master that the current cycle has ter-
minated abnormally with some sort of error condition.

B_SDMA: VME System DMA. Active when the addresses on the
VMEDbus correspond to the System DVMA address space on the 2060 board.
See the section above on the VME Slave Address Decoder.

B_SXDMA: VME Synchronized eXtemal DMA enable. X_DMAEN is
fed through a flip-flop clocked on the falling edge of the system clock so that
it is delayed one cycle. This allows us to detect the condition at the end of
an external DMA cycle when X_DMAEN has just gone away.

B_UDMA: VME User DMA. Active when the addresses on the VMEDbus
correspond to the User DVMA address space on the 2060 board. See the
section above on the VME Slave Address Decoder. ’

EN_BCX: ENable VME ConteXt. Goes to the Context Register, US09,
where it selects between the bits currently stored there and the upper address
bits coming in from the VMEbus on User DVMA cycles.

EN_SDVMA: ENable System DVMA. Comes from the System Enable
Register, U1406, and indicates that DVMA from the VMEDbus has been
enabled for System Mode (User Mode is enabled by the User DVMA Enablc
Register, U2905.)

P1_DS: VME Data Strobe. Not actually a signal on the VMEDbus, this sig-
nal is active when either or both P1_DSO0 or P1_DS]1 are active. It exists to
minimize inputs to PALSs that require only the presence of any VME Data
Strobe (U2904 and U3000).

P1_SAS: VME Synchronized Address Strobe. Also not actually a VMEbus
signal, P1_SAS is formed by running P1_AS- through an inverter (U2803)
and then through a synchronizer (U2903). It is used to guarantee enough
time for the addresses to ripple through the Slave Decoder section.

S_ACK: Synchronized ACKnowledge. P_DSACKI1 and P_BERR are fed
into a NAND gate (U2406) and then into a synchronizer (U2408) to form
this signal. It indicates that we are at state 5 of a P2 bus cycle.

S_ERROR: Synchronous ERROR. Indicates that a protection error or a
parity error has been detected on the current cycle. It is synchronous in that
errors are reported in the cycle during which they occur, as opposed to one
cycle later as happens with parity errors encountered by the CPU.

S_XREQ: Synchronized eXternal REQuest. XREQ is fed through a syn-
chronizing flip-flop (U2407) before going to the DVMA Controller (U2409)
so that we don’t confuse the controller, which is a synchronous state
machine.

sSsun {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

306 2060 CPU Board Engineering Manual CONFIDENTIAL!

o X_DMAEN: eXternal DMA ENable. Indicates that the CPU is off the
local bus and control has been granted to the VME Slave Interface.

o XGRANT: eXternal GRANT. A state variable used only in the VME Slave
Request PAL. It goes active when the currently-requested extemal DVMA
cycle has been started on the P2 bus, as indicated by both X_DMAEN and
P2_AS being asserted. It stays active until the VMEbus data strobes have
been negated by the external master, indicating that it has ended its cycle.

o XREQ: eXternal REQuest. An asynchronous signal that indicates a valid
request for use of the P2 bus has been received from an external VMEbus

master.
VME Slave Request State The following discussion refers to the figure titled, ‘* VME Slave Requester State
Machine Machine,’’ which is in Appendix A.

The VME Slave Request State Machine (U2904) waits in the IDLE state until it
receives a valid address decode in combination with the synchronized VME
address strobe (P1_SAS) and at least one VME Data Strobe (P1_DS).

The equation for the IDLE state is

In state IDLE;

if !'P1_SAS + !P1_DS + B _DTOUT + B_ERROUT then state = IDLE

The equation for state A is

In state IDLE;

if P1_SAS * P1_DS + * !B_DTOUT *
ADDRESS_DECODE * !B_ERROUT then state = A

This address decode can be either of B_SDMA or B_UDMA, indicating an
access to the system address space or user address space, respectively. At that
point it checks to see if the previous cycle has terminated, as indicated by both
P1_DTACK and P1_BERR being inactive. If this is the case, it asserts XREQ
and jumps to state A. XGRANT in that equation (state B) is the end condition,
not a start condition, and will be explained later.

The XREQ signal is synchronized externally before it is fed into the DVMA
Controller, U2409, where it will initiate the Bus Request/Bus Grant/Bus Grant
Acknowledge sequence. When it has gained control of the P2 bus, the DVMA
controller will respond with X_DMAEN to enable the VME Slave Addresses
onto the P2 bus, then one clock later P2_AS will be asserted to begin the cycle.

The equation for the state B is

@? Sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

Chapter 30 — VME Slave Interface 307

In state A;

if X_DMAEN + P2_AS then state = B J

When U2904 sees this it will assert XGRANT, which will negate XREQ), jump-
ing us to state B then C. XGRANT provides a way to remember that we have
already requested the current cycle and been granted it, so that we don’t assert
XREQ for a second time on the same cycle.

 We will wait in state C until the end of the cycle, which will be indicated by
X_DMAEN going away but the delayed form of it, B_SXDMA, still being
present. At this point, if S_ERROR is not asserted, we will jump to state D and
send B_DTOUT to the VMEbus (buffered to form P1_DTACK).

The equation for the state D is

In state C;

if B_SXDMA * !X DMAEN * !S_ERROR then state = D

If S_ERROR is asserted, we will jump to state E instead, and assert B_ERROUT
to signa! a termination with error.

The equation for the state E is

In state D;

if B_SXDMA * !X DMAEN * S ERROR then state = E

Either state D or E will signal to the external master to end its cycle, which will
cause it to respond by negating the VME data strobes. We will see this as a
negation of P1_DS (state D). When this happens, we will jump back to the IDLE
state.

The equation for the IDLE state is

In state D or E;

if !P1_DS then state = IDLE

Note the presence of B_DTOUT in the equation to assert B_ERROUT and vice-
versa. This is to ensure that we get one and only one of the two possible
responses to end a cycle, no matter what X_DMAEN does. X_DMAEN can do
some irregular things when lock mode is engaged and disengaged.

One tricky aspect of this state machine is that we will not jump back to the IDLE
state until the entry condition to states D and E has also gone away, that is, until -
B_SXDMA goes away. This is how we allow for an external master that negate.

S Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICIOs yStems

308 2060 CPU Board Engineering Manual CONFIDENTIAL!

address strobe, then reasserts it before P1_SAS can go high. Since we must also
wait for B_SXDMA to go away, we are guaranteed enough time to decode the
new address before we reassert XREQ. It is important to remember that, worst
case, the clock on the 2060 board is 90 nanoseconds long and so it is conceivable
that an external master could be fast enough to do this.

@ sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

VME Data Buffers, U3000 to U3006

VME Data Buffers, U3000 to U3006

31.1. 16-Bit Operation
31.2. 32-Bit Operation ...

31.3. CPU Cycles

31.4. DVMA Cycles

- 311

. 31
. 312
. 312
. 312

31.1. 16-Bit Operation

VME Data Buffers, U3000 to U3006

The VME Data Buffer section is shown on page 30 of the schematics, and is
composed of one Data Buffer Control PAL, U3000, and six bidirectional octal
latch/transceivers, U3001-6. Along with the obvious buffering function, this sub-
system implements a data multiplexer that shuffles data among both halves of
both the VMEDbus and the P2 bus according to the size and address alignment of
the cycle. The basic problem is that when performing a 16-bit data transfer, the
VMEDbus uses data lines 0-15 while the 68020 uses data lines 16-31. During a
32-bit data transfer, however, all 32 bits of the VMEbus align with the like-
numbered bits on the P2 bus.

The same set of buffers are used for CPU cycles and DVMA cycles, but the
direction of data flow is reversed. That is, data travels the same direction for a
CPU read as it does for a DVMA write. Likewise, it travels the same direction
for a CPU write as it does for a DVMA read.

The figure labelled *‘Carrera VME Diagnostic PROMs Data Paths,’’ (in Appen-
dix A) sections A-F, show the different operating modes used in TYPE2 space,
the VME 16-bit data space.

o When the CPU writes or reads, the top half of the CPU data bus is connected
to the bottom half of the VME data bus (sections A and B of the diagram)
via the ‘‘cross buffers.’’

o When an external VME master writes to the P2 bus, the bottom half of the
VME data bus is enabled onto both halves of the P2 data bus (sections C and
D). This is done because the information required to decide which half of the
P2 bus is being accessed is not available until later in the cycle.

On DVMA reads, however, we must decide which half of the P2 data bus is
being read in order to avoid data buffer conflicts.

o If address bits P1_A[01:00] are 00, this means the top half of the P2 data bus
is being accessed and the *‘cross buffers’’ are used.

o If address bits P1_A[01:00] are 10, the bottom half of the P2 data bus is
being accessed, and the *‘longword buffers’’ are used.t

Although this enables the top half of the P2 data bus onto the top half of the VME dau bus, it is not
relevant and doesn’t hunt anything.

un 311 (Rev 1 of 10 May 1987} CONFIDENTIAL!
MICTOs ys terme

312 2060 CPU Board Engineering Manual CONFIDENTIAL!

21.2. 32-Bit Operation

31.3. CPU Cycles

31.4. DVMA Cycles

32-bit operation is much simpler. The 32-bit P2 data bus always lines up with
the 32-bit VME data bus, and the longword buffers are always used. Data flows
out from the 2060 board on CPU writes and VME reads, and flows into the 2060
board on CPU reads and VME writes.

The various enables for the data buffers are little state machines that start at state
4 on writes and state 1 on reads. Once the signals are asserted they are held until
the end of the cycle because the type bits coming out of the MMU can glitch,
which can cause P_BLWORD to glitch, which could cause certain signals to be
illegally active at the same time. On writes, the enables are also held during
Freeze cycles. See the section on the VME Select and Freeze PAL for more

" information on Freeze cycles.

On writes, the transparent latches open at the beginning of the cycle and remain
open for the duration of the cycle. On reads, the latches open at state 6 and like-
wise remain open for the entire cycle.

The enables for data out on reads are state machines during DVMA cycles. They
start at state 4 and hold the data valid until the external master ends the cycle as
indicated by negating the VME data strobes. Note that this can be significantly
after the end of the P2 bus cycle, and that the CPU can have gone on its way
much earlier because the data is latched at state 7.

On writes, the enables are purely combinatorial. The latches are closed at state 4.

sSun (Rev 1 of 10 May 1987) CONFIDENTIAL!

macrosysterms

Direct Virtual Memory Access

Direct Virtual Memory Access

32.3.
324.

. A Generic DVMA Cycle
. Optimizations to the DVMA Cycle

Back-to-Back DVMA
Ethemnet Hold

VMEDbus Lock

Refresh as a Special Case

The DVMA Strobe PAL (U2410)

Input and Output Signals

315

315
316
316
316
316
316
317
319

32.1. A GenericDVYMA
Cycle

Direct Virtual Memory Access

Direct Virtual Memory Access, or DVMA, is Sun’s method of allowing devices
other than the CPU to access the system's main memory, and allowing them to
use virtual addresses rather than physical ones when doing so. This means the
addresses provided by a DVMA device are translated by the Memory Manage-
ment Unit, or MMU, just like those provided by the CPU. This simplifies the
software by not requiring DVMA devices to perform their own address transla-
tion. The simplest way of approaching DVMA is to think of it as literally replac-
ing the CPU during DVMA cycles, generating all the identical signals with ident-
ical or better iming.

The DVMA circuitry consists of the DVMA Controller PAL (U2409), an input
synchronizer (U2408), the bus lock flip-flop (U2407), and the DVMA Strobe
PAL (U2410).

The DVMA Controller is a 20R8 PAL that receives

o requests for the use of the P2 bus,

o requests the bus from the CPU,

o grants the bus to the DVMA devices, and

o handles assertion and negation of the address strobe on DVMA cycles.

Requests can be generated by the Refresh subsystem, the Ethernet Controller,
and the VME Slave Interface and are prioritized in that order, which is to say that
if two requests are pending at the point when the DVMA Controller gets the bus
from the CPU, the one with higher priority gets serviced first.

The DVMA Controller State Diagram is shown in the figure titled, ‘‘DVMA
Controller State Machine, Fig. 2.1,”’ in Appendix A. Rather than attempt to
describe every transition here, we will present a simplified version of a generic
DVMA cycle. Details will become clearer when we go through the individual
cycles in later sections.

A DVMA cycle begins when a device requests the P2 bus via one of the signals
R_DMAREQ, E_DMAREQ, or XREQ (which particular one it is doesn’t con-
cem us at the moment). These signals are run through synchronizers and into the
DVMA Controller, which will assert P_BR to request the bus from the CPU.
Approximately three clocks later the CPU will respond with Processor Bus Grar -
(P_BG). The DVMA Controller then waits until the current CPU cycle has

sun 315 {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICOs y$18ms

316 2060 CPU Board Engineering Manual CONFIDENTIAL!

32.2. Optimizations to the
DVMA Cycle

Back-to-Back DVMA

Ethernet Hold

VMEDbus Lock

32.3. Refresh as a Special
Case

completed by waiting for CS3, the delayed version of the processor address
strobe, to go away. At this point it will decide which device should be granted
the bus based on the fixed priority mentioned above, and will assert one of the
DMA enables R_LDMAEN, E_DMAEN, or X_DMAEN.

On the next clock the DVMA controller will issue the appropriate address strobe
(D_AS for Ethemet and VME, REFR for Refresh), and will start waiting for the
end of the cycle. On Ethernet & VME cycles the end of the cycle is indicated by
the assertion of S_ACK, while on Refresh cycles it is indicated by R_SSAS.
When the response is received the DVMA Controller will negate the address
strobe, negate Bus Grant Acknowledge, negate the DMA enable, and then return
to the IDLE state.

There are several optimizations not mentioned above in the simplified descrip-
tion.

First, the DVMA Controller need not go through the IDLE state between each
cycle of DVMA. If a request from another DVMA device is present at the point
where the DVMA Controller negates address strobe and P_BACK, address strobe
will be negated but P_BACK will be held so that the CPU can’t get back on the
bus. The next DVMA cycle will then be performed before the next CPU cycle.
This avoids the overhead associated with transferring control of the P2 bus back
and forth between the CPU and the DVMA Controller, which amounts to four
clocks for each round trip.

Secondly, it is possible for devices to keep control of the P2 bus even when they
aren’t using it. The Ethernet interface can assert S_EHOLD to retain control of
the bus. While S_EHOLD is asserted the DVMA Controller will continue to
assert P_BACK, keeping the CPU off the P2 bus. Refresh cycles will still get
access to the bus, however, as will VME cycles as long as the Ethemnet isn’t
attempting to perform a cycle immediately. The Ethemet chip will assert
EHOLD for as long as it thinks it might be needing the bus.

The VME Slave Interface can also keep control of the P2 bus from reverting back
to the CPU by engaging lock mode. This happens when an external VME master
is *‘fast’’ in turning around between cycles. ‘‘Fast’’ is defined here as less than
200 nanoseconds between generation of P1_DTACK and start of the extemnal
master’s next cycle, as indicated by re-assertion of P1_AS and either one or both
of P1_DSO0 and P1_DS1. Bus lock cycles will be covered in more detail later.

Refresh cycles are analogous to Ethemet and VME Slave cycles, but have a few
differences.

1. The first difference is that instead of asserting the DVMA address strobe,
D_AS, the DVMA Controller asserts REFR, which is buffered to form
P2_REFR. This acts like an address strobe, but insures that no decodes or
enables will be generated anywhere on the board. Since there is no real
address strobe there will be no DSACKSs generated, therefore we have 10
know when to end the cycle independent of DSACK. This function is per-
formed by R_SSAS (Refresh Sync’d Sync’d Address Strobe), the REFR

Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

mcros ysterms

Chapter 32 — Direct Virtual Memory Access 317

32.4. The DVMA Strobe
PAL (U2410)

signal fed through two flip-flops so that it is delayed by two system clock
periods. (REFR used to be called R_AS, or Refresh Address Strobe, at
which point these names made more sense.)

2. A second difference between Refresh and the other DVMA s is that P_BACK

is released one clock before the *“‘address strobe’’ (REFR) is released. This
information is provided by R_SAS. On Ethemet and VME cycles P_BACK
is released at the same time as address strobe (D_AS). This is made possible
by the fact that we know exactly how long each Refresh cycle is, so we can
pipeline the end of the cycle. On Ethemet and VME cycles we don't know
exactly when the end of the cycle will be since it is legal to DMA into Video
memory, which has an indeterminate response time.

3. The third difference between Refresh and other forms of DVMA is that
EHOLD and B_LOCK don’t work after a refresh cycle. By that we mean
that the bus is always given back to the CPU after a refresh cycle as a sort of
fail-safe feature in case one of those subsystems breaks down. If this hap-
pens the CPU will still be able to limp along (albeit extremely slowly).

The DVMA Strobe PAL generates the P2 bus control signals (with the exception
of address strobe, which is generated by the DVMA Controller) that are required
during DVMA cycles. These signals include the processor function codes
P_FC[2:0], processor address bit zero P_A[00], and the processor size bits
P_SIZ[1:0]. In addition, both polarities of the S_DMA are generated, a signal
that indicates that the current cycle is an Ethernet or VME Slave cycle. Since
DVMA can be thought of as replacing the CPU during DVMA cycles, it is essen-
tial that all the necessary control signals that would otherwise be generated by
the CPU be generated somewhere in the DVMA section. Note that processor
data strobe P_DS is not used anywhere in the 2060 design, so it is not generated
here. The encodings of the size and function code bits match those of the 68020.

S— un {Rev 1 of 10 May 1987} CONFIDENTIAL!

318 2060 CPU Board Engineering Manual CONFIDENTIAL!

Pinout of the U2410 PAL is:

Figure 32-1 U2410 Pinout

1222202 RE S REX XXX XY
* * % *
XREXX FRRW
/r_dmaen * 1x pal *20* gnd
*RwW *EWKX
* 1618 *
LA R A] KRR E
/x_dmaen * 2~ *19~ s_dmahi
WK LA B 1
* *
TR X LA R &4
/e_dmaen * 3% *18* /s_dmea
EX K LA & 4
* *
W H W kXN
/e_bhe * 4> *17* p sizl
* XK X LA 2]
* *
R w X L8 B3
/b_lword * 5% *16* p_sizl
W RK rrEXW
x g
wRXK LS 3 1
/pl_slds * 6% *i5% p_£fcC
wE XK XK XK
* *
FrXNW TXR X
/pl_suds * 7* *14* p fcl
*rww ’ XKW
* *
LA A 84 XXX
e_al0 * 8x *13* p_fc2
XE XN TRRXK
* *
*RTK LA R 8
/b_sdma * 9~ *12* p_al0
XK Wk ok ok
x *
XXX K KKK W
vee *10* *11+ d_pub
LA S &4 L 8 &3
* *

t!"'l'tti"it'ii""!tt*tii*‘*tlt*

@ Sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

Chapter 32 — Direct Virtual Memory Access

319

Input and Output Signals

@

Inputs to the U2410 PAL are:

(r_dmaen -

X_dmaen =

e _dmaen =

b_lword =

pl_slds,
pl_suds =

d pub = u

active during refresh DVMA cycles

active during external DVMA cycles, when
the 2060 board is in VME slave mode.

active during ethernet DVMA cycles.

signal from an external DVMA master that is
asserted during a longword transfer.

buffered versions of the VMEbus upper
and lower data strobes, asserted to
indicate activity on the corresponding
byte of the VME data bus.

e_a00 = ethernet address line zero

b_sdma = VME system direct memory access. Asserted during

external DVMA cycles that are occurring in the
system DVMA part of the address space, as defined
in the Sun-3 architecture manual.

sed only during board test to check the operation

of the p fc0 output.
L
Outputs from the U2410 PAL are:
4 B
p_£c0,
p_fcl,
p_fc2 = processor function codes, used by the 68000
family to generate 8 separate address spaces.
p_siz0,

p_sizl =

processor size codes, used by the 68020 for
dynamic bus sizing, indicating the number of
bytes of the data bus that are involved in
the current transfer.

p_a00 = processor address line zero.

s_dma = this signal is asserted whenever some type of DMA is in
progress.

The signals generated are encoded according to the MC68020 User’s Manual as

follows (0=>

Ssun

IMICTOs ystome.

zero volts, 1=> five volts):

{Rev 1 of 10 May 1987) CONFIDENTIAL!

320 2060 CPU Board Engineering Manual CONFIDENTIAL!

Table 32-1 M(C68020 Data Size Output Encodings

sizl siz0 size
0 1 byte
1 0 word
1 1 3-byte
0 0 longword

Table 32-2 MC68020 Function Code Output Encodings

p_fe2 p_fel p_fc0 cycle type
0 0 0 undefined reserved
0 0 1 user data space
0 1 0 user program space
0 1 1 undefined
1 0 0 undefined reserved
1 0 1 supervisor data space
1 1 0 supervisor program space
1 1 1 cpu space
Q& NS”E“Q {Rev 1 of 10 May 1987) CONFIDENTIAL!

Sample Cycles

Sample Cycles ..

33.1. VME Master Cycles
CPU Access of Idle VMEbus
CPU Access of a Busy VMEDbus
CPU Access of VMEDbus, Currently Bus Master
CPU Rerun During VME Access ...
Relinquishing the VMEbus

. VME Slave Cycles

VME Device Accesses P2 Bus

Lock Mode Cycles

VME Device Initiates P2 Bus Lock ..
VME Device Ends P2 Bus Lock
VME Device Not Fast Enough to Initiate P2 Bus Lock

Ethemnet Cycles

Refresh Cycles

323

323
323
324
325
325
326
327
327
328
328
329
329
329

33.1. VME Master Cycles

CPU Access of Idle VMEDbus

Sample Cycles

In this section we will present timing diagrams and discuss how the various cir-
cuits previously described interact to produce this behavior.

The VME Master Interface operates in several different ways depending on:
o whether or not the 2060 board currently has control of the VMEbus,

o the activity currently on the VMEDbus, and

o the response time of the VME device being addressed.

In order to use the VMEbus the CPU must first obtain control of it. The simplest
case is when the VMEbus is currently idle, which means that P1_BBSY, P1_AS,
P1_DS[1:0], P1_DTACK, and P1_BERR are all inactive. This situation is
shown in the timing diagram labelled ‘*CPU Access of Idle VMEDbus,’’ in
Appendix A.

1. The CPU starts a cycle by asserting P2_AS at state 1.

2. By state 4 the MMU has finished its address translation and indicates that
this is a VME Master cycle by asserting MMU_VME.

3. MMU_VME goes into the VME Select and Freeze PAL U2701, causing it to
assert B_SSEL at state 5.

4. B_SSEL goes into the VME Arbiter/Requester PAL U2704, which observes
that the VMEDbus is idle by checking that P1_BBSY and P1_AS are inactive.

5. On the next clock U2704 asserts P1_BBSY to take control of the VMEDbus
and B_AEN to indicate to the VME Master Interface that we have control of
the VMEDbus.

6. The VME Master Controller PAL U2806 receives B_AEN, checks also that
the VMEDbus is idle by making sure that P1_DTACK and P1_BERR are
inactive, and asserts B_OECPU immediately to enable the VME Master
Address Latches onto the VMEDbus.

7. The VME Data Buffer Control PAL also receives B_OECPU and enables
the VME Data Buffers onto the VMEDbus in the case of a write, or onto the
P2 bus in the case of a read.

sun 323 {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTOs ystems

324 2060 CPU Board Engineering Manual CONFIDENTIAL!

CPU Access of a Busy
VMEDbus

&

10.

11.

12.

13.

14.

15.

16.

At this point we wait two clocks to satisfy the VMEbus address-to-address
strobe setup requirement of 35 nanoseconds by running B_OECPU through
two flip-flops clocked by the system clock and wait for the result.

When this delayed signal, B_SSOE, is received by the VME Master Con-
troller PAL U2806, it will immediately assert P1_AS, followed one PAL
delay later by the appropriate VME data strobes P1_DS§[1:0] and
B_ACKEN, which allows the acknowledges (P1_DTACK & P1_BERR) to
flow to the CPU.

At this point, state 11, the 2060 board simply waits for a response from the
addressed VME slave. In the diagram, this response is P1_DTACK received
just before state 15. (If the VME slave takes a long time to respond — more
than 2.88 microseconds — the 2060 board will perform a rerun cycle, which
will be examined later.)

The VME Slave's response (P1_DTACK in our scenario) is synchronized to
the falling edge of the system clock in flip-flop U2804, then fed to the
DSACK PAL U204.

DSACK PAL U204 generates P_DSACK1 for 16-bit data transfers or
P_DSACK1 and P_DSACKO for 32-bit data transfers.

The CPU receives this on the next falling edge, and on the following falling
edge negates P2_AS.

Negation of P2_AS causes the VME Master Controller PAL U2806 to
immediately negate the VME address and data strobes and clear B_DTACK
from flip-flop U2804 by negating B_ACKEN.

The VME slave responds by negating P1_DTACK at some arbitrary time in
the future.

At state 1 of the next cycle, B_SSEL will go away and the cycle will be
finished.

This situation — an external VME master is using the VMEDbus to access an
external VME slave just as the CPU attempts to use the VMEbus — is shown in
the figure labelled ‘*CPU Access of Busy VMEbus,’’ in Appendix A. As you can
see, this cycle takes significantly longer and appears much more complex, but all
of the differences occur before the start of the CPU's VME cycle.

1.

In this case, as before, the CPU starts a VME Master cycle and B_SSEL is
asserted at state S.

The VME Arbiter/Requester PAL U2704, however, sees that P1_BBSY is
active when B_SSEL becomes asserted, so instead of jumping to the MAS-
TER state it jumps to the BUSREQ state, where it asserts B_BROUT (which
is buffered to form P1_BR3).

The extemal VME master that is using the bus will eventually respond to
this bus request by releasing P1_BBSY, although there is no VME
specification for the maximum time allowable for this.

sSun (Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysiems

Chapter 33 — Sample Cycles 325

CPU Access of VMEDbus,
Currently Bus Master

CPU Rerun During VME
Access

4. When the VME Arbiter/Requester sees this P1_BBSY released it will assert
B_BBOUT (which gets buffered extemnally to form P1_BBSY).

5. The VME Arbiter/Requester then jumps to the WAITREQ state.

6. On the next clock the VME Arbiter/Requester jumps to the MASTER state
if B_SAS has gone away by then (indicating P1_AS went away earlier).

7. If B_SAS is still present at this point, the Arbiter/Requester will jump to the
WALIT state to wait for it to go away.

From here on the cycle is the same as that for the idle VMEDbus as discussed
above.

Since the 2060 board uses a Release-On-Request Arbiter, it will retain control of
the VMEDbus until an external master requests it. The advantage of this is made
clear in the figure labelled ‘' CPU Access of VMEbus (Currently Bus Master),"’
in Appendix A, where we see that the cycle is roughly three clocks shorter. This
is because we already have the addresses and data enabled onto the VMEbus dur-
ing this time; when we discover at state S that the CPU is accessing the VMEDbus,
we can assert the VME address and data strobes immediately. The VME
address-to-address strobe setup and data-to-data strobe setup times will already
have been met. Other than that, the cycle is identical to those described earlier.

When the VME slave currently being addressed has a response time of greater
than 2.88 microseconds, or when it takes the CPU a while to gain control of the
VMEDbus, the CPU will be instructed to rerun its cycle. This will cause it to re-
arbitrate for the P2 bus and allow other pending DVMA cycles to complete
before it re-attempts the cycle. This situation is shown in the figure labelled
*‘CPU Rerun During YME Access (Currently Bus Master),’’ in Appendix A.

1. B_ENTO is asserted on the next falling edge after B_SSEL, causing the
VME Rerun Timer U2700 to start counting system clocks.

2. Atstate 71 U2700 will assert B_TOLAT.

This forces the outputs of the OR gates in the VME DTACK and BERR
Input Latch (U2802) to go high, which means that P1_DTACK and
P1_BERR arriving after that point will have no effect.

4. Since the flip-flops at U2804 are self latching, we need to allow them some
time to settle, as an acknowledge might have been received that didn’t meet
the setup requirement. Then we need to allow enough time to see if the ack-
nowledge gets through to the CPU, which will respond by negating its
address strobe, P_AS. This settle-and-wait time period is generated by wait-
ing for bit 4 of the VME Rerun Timer (B_TORRN) to go high, which will
occur at state 103 if no acknowledge has reached the CPU.

5. B_TORRN causes the VME Freeze and Select PAL U2701 to assert
B_FREEZE and B_RERUN on the next falling edge of the system clock.

6. B_FREEZE goes to the VME Master Interface to make sure that all signals
on the VMEbus remain in their current states.

Sun . (Rev 1 of 10 May 1987} CONFIDENTIAL!

326 2060 CPU Board Engineering Manual CONFIDENTIAL!

Relinquishing the VMEbus

@

7.

10.

11.
12,
13.

14.
15.

16.

B_RERUN goes to PAL U107, where it is combined with the rerun signal
from the Floating Point Accelerator before it proceeds to the Bus Error PAL,
U202.

B_RERUN also causes the VME Select and Freeze PAL to negate B_ENTO.

Negation of B_ENTO clears the VME Rerun Timer in anticipation of the
next rerun cycle.

The Bus Error PAL asserts P_BERR and P_HALT on the next falling edge,
which is the indication to the CPU that it should rerun the cycle.

The CPU sees these signals on the next falling edge.
On the falling edge after that the CPU negates P_AS.

On the falling edge after that, the VME Select and Freeze PAL will respond
to the negation of P_AS by negating B_RERUN.

On the next falling edge the Bus Error PAL responds to the negation of
B_RERUN by negating P_BERR and P_HALT.

In addition, B_ENTO will be assertéd again so that the VME Rerun Timer
can begin timing for the next rerun.

At this point the CPU will either rerun its cycle or, if a DVMA request is
pending, a DVMA cycle will be performed.

When an external VME device requests the VMEDbus while the 2060 board is
performing a VME cycle, we will end the cycle in a different way as shown in
the timing diagram labelled ‘‘CPU Relinquishes VMEbus (Currently Bus Mas-
ter),”” in Appendix A, release P1_BBSY as soon as we detect both P1_BR3 and
P1_AS, so that the VMEbus grant will be able to make its way down the daisy
chain while the last cycle is in progress, overlapping the two processes. The
cycle goes like this:

1.

In the timing diagram we see the external device assert P1_BR3, which gets
synchronized to the system clock in U2703 to form B_SBR.

The VME Arbiter/Requester PAL U2704 will respond on the next falling
edge by jumping to MASTER_NG state and negating P1_BBSY and
B_AEN.

When B_SBBIN, the synchronized input of our own output, goes away, the
VME Arbiter/Requester will assert P1_BG3OUT, which will trickle down
the daisy chain until it reaches the board that is currently requesting a cycle.

In the meantime we see the CPU’s cycle completing with the receipt of
P1_DTACK, which is synchronized to form B_DTACK.

Three clocks later the CPU responds by negating its address strobe, P2_AS,
but here is where the differences start. The VMEbus Specification requires
that if P1_BBSY is negated before the end of the last cycle in order to real-
ize the pipelining mentioned above, then the master’s address and data
drivers must be disabled before the master negates its address strobe,
P1_AS. To accomplish this the VME Master Controller PAL U2806 senses

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

micros ystems

Chapter 33 — Sample Cycles 327

33.2. VME Slave Cycles

VYME Device Accesses P2 Bus

that the bus has been given up by noting that B_AEN is no longer asserted,
even though it is still holding its address strobe, B_AS, asserted. Due to this
it continues to hold B_AS while first the data strobes are negated and then
B_OECPU is negated.

Other than that, the cycle is identical to other cycles.

VME Slave cycles occur when an external VME device gets control of the
VMEDbus and accesses the main memory or video memory on the 2060 P2 bus.
In this section we will cover a typical VME Slave cycle and discuss Lock Mode,
the high-speed access mode automatically engaged by a fast VME master.

The timing diagram labelled ‘*VME Device Acquires VMEDbus and Accesses P2
Bus,”’ in Appendix A, shows a typical VME Slave cycle.

1.

The cycle starts with the extemal VME device requesting control of the
VMEDbus by asserting P1_BR3.

2. P1_BR3is synchronized to the system clock to form B_SBR, which feeds
into the VME Arbiter/Requester PAL U2704.

3. U2704 asserts B_BGOUT (which is the same signal as P1_BG30UT) since
the VMEbus is currently IDLE.

4. The external master responds to the bus grant by asserting P1_BBSY, indi-
cating that is has taken control of the VMEbus.

5. This is received by the VME Arbiter/Requester as B_SBBIN, causing it to
release the bus grant signal.

6. After the external master takes control of the VMEDbus it will enable its
addresses and data onto the VMEDbus and assert its address and data strobes
P1_AS and P1_DS[1:0].

7. The addresses will be latched in the VME Slave Address Latches U2901-2
and U2911-3, and be decoded by the VME Slave Address Decoder U2907.

8. B_USPC enables the User DVMA Context Selector U2908, which indicates
that an enabled context has been chosen by asserting B_UDMA. (In this
example we show a User DVMA cycle, as indicated by the assertion of
B_USPC by the decoder.)

9. B_UDMA in association with P1_SAS and P1_DS causes the VME Slave
Request PAL U2904 to assert XREQ.

10. XREQ gets synchronized to the system clock to form S_XREQ.

11. Assertion of S_XREQ causes the DVMA Controller PAL U2409 to assert
Processor Bus Request P_BR on the next falling edge.

12. About three clocks later the CPU will respond by asserting Processor Bus
Grant P_BG.

13. The DVMA Controller will then wait until the delayed version of P_AS,
CS3, goes away and then asserts Processor Bus Grant Acknowledge
P_BACK to take control of the P2 bus, and X_DMAEN to enable the VME

sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystams

328 2060 CPU Board Engineering Manual CONFIDENTIAL!

Lock Mode Cycles

VME Device Initiates P2 Bus
Lock

Slave Interface onto the P2 bus.

14. On the next falling edge it asserts the DVMA Address Strobe D_AS, which
is buffered to form P_AS.

15. On the falling edge after that P_BR will be released, leaving only P_BACK
to hold onto the P2 bus.

16. Sometime later the CPU will respond to the negation of P_BR by negating
P_BG.

17. The point at which D_AS is asserted becomes state 1 of the DVMA cycle,
which will proceed identically to a CPU cycle. In our example an access of
main memory is shown.

18. On main memory accesses P_DSACKI1 is asserted at state 4, which will
cause S_ACK to go active at state S.

19. The DVMA Controller will respond to this by negating D_AS and P_BACK
at state 7, ending the cycle and turning the P2 bus back over to the CPU.

20. In the case of a VME read cycle, the data will be latched into the VME Data
buffers at state 7.

21. These data buffers will remain enabled onto the VMEDbus until the external
master negates the data strobes P1_DS[1:0].

22. Atstate 9 P1_DTACK will be asserted to indicate to the external VME mas-
ter that the transfer has been completed, and X_DMAEN will be negated.
P1_DTACK occurs at state 9 instead of state 7 for two reasons: to satisfy the
VME data-to-DTACK setup time and to allow time for parity checking. The
VMEDbus doesn’t allow simultaneous assertion of DTACK and BERR, so the
data must be checked before asserting DTACK.

23. The external master will respond to P1_DTACK by negating its VME
address and data strobes.

24. This will cause P1_DS to go away.

25. When P1_DS is deasserted, the VME Slave Request PAL negates
P1_DTACK.

In the timing diagram labelled *‘VME Device Initiates P2 Bus Lock,’’ in Appen-
dix A, we see the circumstances surrounding the initiation of P2 bus lock mode,
comprised of the tail end of a VME Slave cycle, a CPU cycle, and two more
VME Slave cycles. The end of the first VME Slave cycle is identical to that
shown in the previous section, but a new signal relevant to lock mode operation
is shown: B_SSXDMA. This is simply the VME Slave Address Enable signal,
X_DMAEN, delayed by passing through 5 flip-flops clocked on the falling edge
of the system clock. It can be thought of as timing a period of 300 nanoseconds
from the end of the Slave cycle, or 240 nanoseconds from the generation of
P1_DTACK. If, within this period, a new DMA request is received from the
external VME Master in the form of a valid XREQ, we will enter Lock Mode.

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysisms

Chapter 33 — Sample Cycles 329

VME Device Ends P2 Bus Lock

VME Device Not Fast Enough
to Initiate P2 Bus Lock

33.3. Ethernet Cycles

@

This is accomplished by clocking the state of XREQ into a D fiip-flop (U2407)
on the trailing edge of B_SSXDMA.

The output of U2407 flip-flop is B_LOCK, the indication of Lock Mode. We see
B_LOCK being asserted in the timing diagram, but it occurs too late to lock out
the current CPU cycle, which is already in progress. Instead, the DVMA Con-
troller goes through the normal process of requesting and being granted the local
bus, and performing the first Slave cycle.

At this point, in the absence of B_LOCK, the local bus would be returned to the
CPU. Since B_LOCK is asserted in this case, however, the bus is kept by the
DVMA controller and prepared for the start of the next cycle by re-asserting
X_DMAEN. This allows the next Slave cycie to start on the next falling edge of
the system clock if XREQ is present. From now on, as long as a new XREQ is
present at the trailing edge of B_SSXDMA, we will remain in Lock Mode.

A fail-safe mechanism is provided which returns the local bus to the CPU for onc
cycle after every refresh cycle, in case Lock Mode gets stuck in the ‘‘on’’ state.
Note that Lock Mode does not lock out refresh or Ethernet cycles, both of which
still retain their higher priority.

When the external VME Master stops initiating cycles within the window timed
by B_SSXDMA, B_LOCK will be negated and control of the P2 bus will be
returned to the CPU. This situation is shown in the timing digram labelled
*“VME Device Ends P2 Bus Lock,’’ in Appendix A, where we see the last VME
Slave cycle. (A certain amount of time is wasted at the end of Lock Mode
because the DVMA controller holds onto the P2 bus for approximately six clocks
before deciding that it is no longer required.)

If the external VME Master is not fast enough to initiate bus lock, the CPU will
perform a bus cycle in between most Slave cycles. Hits on the internal 68020
cache will lower the bus utilization so that this doesn’t always happen, but about
half of the time it will. The situation where the CPU performs a cycle in between
each Slave cycle is shown in the timing diagram labelled ‘‘VME Device Not Fast
Enough to Initiate P2 Bus Lock,’’ in Appendix A.

The Ethemet interface runs off of an 8 megahertz clock that is asynchronous to
the CPU clock, so Ethemnet cycles take a variable amount of time depending on
the relationship of the two clocks at the time the cycle starts. The timing
diagram labelled ‘‘Ethernet Cycle (Fastest Case),’’ in Appendix A, shows the
fastest case, which occurs when the clocks have the optimal relationship. The
timing diagram labelled ‘‘Ethemet Cycle (Slowest Case),’’ in Appendix A,
shows the slowest case.

1. An Ethemet cycle starts when the 82586 asserts either E_RD or E_WR,
which signify either a read or a write.

2. These signals are synchronized to the 8 megahertz Ethernet clock, E_C125,
in flip-flop U2500% to form E_SRD and E_SWR.

1Due to BITS, or Bizarre Intel Timing Specs.

sSsun {Rev 1 of 10 May 1987} CONFIDENTIAL!

MICTos ystems

330 2060 CPU Board Engineering Manual CONFIDENTIAL!

33.4. Refresh Cycles

3. Onthe next rising edge of E_C125 the Ethemet Control PAL, U2501, will
assert E_AS, or Ethemet Address Strobe.

4. E_AS goes to the Ethemet Request Flip-Flop, U2407, where it clocks in the
Ethernet DMA Request (E_DMAREQ) as long as there have been no Ether-
net errors.

5. [E_AS also clocks the addresses into the Ethernet Address Latches, U2512-
15.

6. E_DMAREQ gets synchronized to the CPU clock in U2408 to form
S_EREQ.

7. S_EREQ goes into the DVMA Controller (U2409), causing it to generate the
Ethernet Address Enable signal, E_DMAEN, as soon as the CPU is not
using the P2 bus.

8. This enables the Ethemet Address Latches onto the P2 bus, and will be fol-
lowed on the next system clock by the DVMA Address Strobe, D_AS.

9. Assoonas E_DMAEN is asserted, E_CLR will clear E_DMAREQ, prepar-
ing it for the next cycle.

10. A normal memory cycle will be performed and D_AS will be negated at
state 7, causing flip-flop U2504 to assert E_READY to the 82586.

11. The 82586 will recognize this and end its cycle two E_C125 clocks later,
after an internal synchronization delay.

The 82586 multiplexes addresses with the data on all 16 data lines, so some con-
tortions are required in order to keep from having contention on these lines. On
reads, signal E_RDT1 indicates the T1 period in Intel parlance. On the next ris-
ing edge of E_C125, one of E_RDU or E_RDL goes active, depending on which
half of the P2 bus is being accessed. These signals enable the Ethernet Data
Buffers U2508-11 onto the local Ethernet address/data bus at a time guaranteed
10 be after the 82586 stops driving these lines with address information. The
read data is latched into these latches at state 7, with the negation of D_AS.

A typical refresh cycle is illustrated by the timing diagram labelled ‘‘Refresh
Cycle,”’ in Appendix A.

Refresh cycles are requested by free running counter U2400 approximately every
15 microseconds — every time bit 7 goes high. The counter is reset when it
reaches binary count 10011001, counting off a 100 nanosecond clock.

1. Bit 7 of the Refresh Period Counter U2400 clocks the Refresh Request Flip-
Flop U2402, which generates R_DMAREQ.

2. This is synchronized to the system clock by U2408, then fed into the DVMA
Controller U2409 in the form of S_RREQ.

3. Referring to the timing diagram, you will see that the DVMA Controller
goes through its normal bus request/bus grant/bus grant acknowledge routine
and asserts R_DMAEN as soon as it gets control of the P2 bus, enabling the
refresh addresses onto the P2 bus (U2403-5).

sun {Rev 1 of 10 May 1987) CONFIDENTIAL!

MICTos ystems

Chapter 33 — Sample Cycles 331

4. On the next clock, REFR, a signal analogous to an address strobe, is
asserted.

5. This signal goes to the RAS PALs U3100 and U3102 after being buffered in
U704.

6. RASPALs U3100 and U3102 assert RAS to all banks of RAM simultane-
ously.

7. REFR is delayed by two flip-flops to form R_SAS and R_SSAS.

8. R_SAS causes the DVMA controller to release P_BACK, so that the CPU
can start the process of retaking the P2 bus.

9. R_SSAS ends the cycle by telling the DVMA Controller to negate REFR
and R_DMAEN.

Sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

RAS Decode PALs — U3100 and

U3102

RAS Decode PALs — U3100 and U3102 335
34.1. U3100 and U3102 Pinoutsocmeereenreen 335
34.2. U3100 and U3102 Input Signalsommmemesrrsnsnrne w336
34.3. U3100 and U3102 OULPULSccoeeemmmemessneers s sessessssssessasasesssssssessammsssessessss 336

U3100 Output SIENAIS ..o sesermrsesessssssinssssesssssmssssssssssssssssssasssssssines 337

U3102 Output SIgNALSoooocvoeervesnsreresssseserssssssssesssesosssssssssssssissss s e 339

RAS Decode PALs — U3100 and
U3102

34.1. U3100 and U3102 Pinouts for the two decoder PALSs are generically the same; ras0 signals from
Pinouts U3100 are derived from the same equations as ras2 in U3102; ras1 in u3100 are
derived from the same equations as ras3 in U3102. These signals are lumped
under the general terms EVEN (rasE) and ODD (ras0). Thus, rasO is connected
to the two odd megabytes in the four megabyte space — megabytes 1 and 3. The
rasE signals go to the two even megabytes — 0 and 2. In other words,

0

s}

o

s]

RAS to megabyte O comes from U3100
RAS to megabyte 1 comes from U3100
RAS to megabyte 2 comes from U3102
RAS to megabyte 3 comes from U3102.

Figure 34-1 U3100 and U3102 Pinouts

¥
in

XXX XTXXRRTE TR AXARXXXKXXXRNKR X

x XXX XK

/p2_uas * i* pa . *20~ vee

LA S &4 XXX

/p2_endras * 2x *19~ /rasO_C8
XXX XY

/p2_devsp * 3x *18~ /rasf_24
xR EK kKX

/p2_refr > 4* *17* /rasE_16
XEX X X XN

p2_siz0 * 5« *16* /rasg_08
R W RXWK

p2_sizl * 6% *15% /rasgE_00C
XK R ARXXK

p2_a0l * Jx ®14% /ras0O_24
L2 A2 TRk R

p2_al * gx *13* /rasO_16
XX *ww K

p2_all * 9* *12* /rasC_00
LA 2 21 XX N

gnd *10~ *11%* p2_al2
LA S 24 *RXYE
'S 222222222 R 22 Rl Rl
n 335 {Rev 1 of 10 May 1987) CONFIDENTIAL!
orms

336 2060 CPU Board Engineering Manual CONFIDENTIAL!

=12, U3100 and U3102 Inputs to U3100 and U3102 decoders are:
Input Signals s 2
p2_uas- = row address is stable - generate RAS
p2_endras- = terminate RAS to meet precharge spec
p2_devsp- = device space cycle
p2_refr- = RAS all DRAM for refresh

p2_8iz<1:0> = =size bits from bus master (to
select byte, word, 3-byte or longword)

p2_a<12:11> = physical address from MMU (to
select 1 of 4 Megs)

p2_a<01:00> = physical address from bus master
(to select bytes)

_ J
34.3. U3100 and U3102 Outputs from U3100 and U3102 are:
Outputs e N
U3100 03102

rasE_24- = Meg O Meg 2 - byte 24

rasE_16- - Meg O Meg 2 - byte 16

rasg_08- - Meg O Meg 2 - byte 08

rasg_00- - Meg 0 Meg 2 - byte 00

rasO_24- - Meg 1 Meg 3 - byte 24

rasO_16- - Meg 1 Meg 3 - byte 16

rasO_08- - Meg 1 Meg 3 - byte 08

rasO_00- = Meg 1 Meg 3 - byte 00
\. J

Derivations of the individual RAS signals are given below. First, though, a cou-
ple of macros need to be defined for convenience.

Q?? sSun | {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsysterms

Chapter 34 — RAS Decode PALs — U3100 and U3102 337

U3100 Output Signals

The ‘‘do a RAS cycle’’ macro is defined as a device space access during a cs2,
when RAS is stable, until p2_endras is deasserted.

#define DORAS p2_devsp*p2_uas*/p2_endras

The next four definitions define one of four megabytes in the on-board 4 Mbyte
physical memory, by decoding address bits p2_all and p2_al2.
— N

#define MEGO /p2_al2*/p2_all first megabyte
#define MEG1 /p2_al2* p2_all second megabyte
#define MEG2 p2_al2*/p2_all third megabyte
#define MEG3 p2_al2* p2_all Sfourth megabyte

\. J

Now we can list the PAL equations for the eight RAS signals issued from U3100
and the eight RAS signals from U3102. Remember that:

o U3100 issues RAS to megabytes 0 and 1;
o U3102 issues RAS to megabytes 2 and 3.

The following eight signals are issued from U3100.

The RAS strobe for upper data byte (data bits [31:24]) in O megabyte space is
decoded:

o D

rasE_24 = DORAS*MEGO*/p2_al*/p2_a0 +
valid RAS 1o first megabyte on the board, and 0 byte offset

p2_refr
RAS always on refresh

sSun {Rev 1 of 10 May 1987} CONFIDENTIAL!

microsystems

338 2060 CPU Board Engineering Manual CONFIDENTIAL!

RAS issued to byte [23:16] in the O megabyte space is:
s N\

rasg_16 = DORAS*MEGO* /p2_al* p2_al +
valid RAS 1o megabyte 0, data with +1 byte offset

DORAS*MEGO* p2_sizl*/p2_al +
3 byte or word-sized data, 0 or +1 byte offset

DORAS*MEGO* /p2_s8iz0*/p2_al +
1 byte or longword-sized data, 0 or +1 byte offset

p2_refr
RAS always on refresh

The remaining RAS signals are decoded similarly. RAS to byte [15:08] in mega-

byte 0 is:
(3
rasE_08 = DORAS*MEGO* p2_al*/p2_al +
DORAS*MEGO* /p2_sizl*/p2_siz0*/p2_al +
DORAS*MEGO* p2_ sizl* p2_ siz0*/p2_al +
DORAS*MEGO* p2_sizl*/p2_al* p2_al +
p2_refr
\. J

RAS to byte [07:00] in megabyte 0 is decoded:
s)

rasg_00 = DORAS*MEGO* p2_al* p2_a0 +
DORAS*MEGO* /p2_sizl*/p2_siz0 +
DORAS*MEGO* p2_sizl* p2_al +
DORAS*MEGO* p2_sizl* p2_ siz0* p2_al +
p2_refr
_ _J

RAS to byte [31:24] in megabyte 1 is decoded:

rasO_24 = DORAS*MEG1*/p2_al*/p2_a0 +
p2_refr
6\’" ,,S.c,!;l .n {Rev 1 of 10 May 1987} CONFIDENTIAL!
ystems

Chapter 34 — RAS Decode PALs — U3100 and U3102 339

U3102 Output Signals

4

g

RAS to byte [23:16] in megabyte 1 is decoded:

—
rasO_16 = DORAS*MEG1*/p2_al* p2_a0 +
DORAS*MEG1* p2_sizl*/p2_al +
DORAS*MEG1*/p2_siz0*/p2_al +
p2_refr
. J
RAS to byte [15:08] in megabyte 1 is decoded:
{ A
rasO_08 = DORAS*MEG1* p2_al*/p2_a0 +
DORAS*MEGl*/p2_sizl*/p2_siz0*/p2_al +
DORAS*MEG1* p2 sizl* p2_siz0*/p2_al +
DORAS*MEGl* p2_sizl*/p2_al* p2_a0 +
p2_refr
\. J
RAS to byte [07:00) in megabyte 1 is decoded:
—)
ras0O_00 = DORAS*MEG1* p2_al* p2_al +
DORAS*MEG1*/p2_sizl*/p2_siz0 +
DORAS*MEG1* p2_sizl* p2_al +
DORAS*MEG1* p2_sizl* p2_sizO* p2_a0 +
p2_refr
\ J
The following eight signals are issued from U3102 PAL. Remember that
DORAS and MEG(3:0) are macros defined as:
- R
#define DORAS p2_devsp*p2_uas*/p2_endras
\, J
(N
tdefine MEGO /p2_al2*/p2_all first megabyte
#define MEG1 /p2_al2* p2_all second megabyte
tdefine MEG2 p2_al2*/p2_all third megabyte
#define MEG3 p2_al2* p2_all fourth megabyte
\. J

7
=
Efe=

{Rev 1 of 10 May 1987} CONFIDENTIAL!

340 2060 CPU Board Engineering Manual CONFIDENTIAL!

RAS to byte [31:24] in megabyte 2 is decoded:

rasE_24 = DORAS*MEG2*/p2_al*/p2_al +
p2_refr

RAS to byte [23:16] in megabyte 2 is decoded:

4 \

rasg_16 = DORAS*MEG2*/p2_al* p2_a0 +
DORAS*MEG2* p2_ sizl*/p2_al +
DORAS*MEG2*/p2_8iz0*/p2_al +
p2_refr

RAS to byte [15:08] in megabyte 2 is decoded:
f)

rasg_08 = DORAS*MEG2* p2_al*/p2_al +
DORAS*MEG2* /p2_sizl*/p2_siz0*/p2_al +
DORAS*MEG2* p2_sizl* p2_siz0*/p2_al +
DORAS*MEG2* p2_sizl*/p2_al* p2_a0l +
p2_refr

RAS to byte [07:00] in megabyte 2 is decoded:
C N

rasg_00 = DORAS*MEG2* p2_al* p2_a0 +
DORAS*MEG2*/p2_sizl*/p2_siz0 +
DORAS*MEG2* p2_sizl* p2_al +
DORAS*MEG2* p2_sizl* p2_siz0* p2_ a0 +
p2_refr

L J

RAS to byte [31:24] in megabyte 3 is decoded:

rasC_24 = DORAS*MEG3*/p2_al*/p2_a0 +
pP2_refr
@ sun : {Rev 1 of 10 May 1987) CONFIDENTIAL!
microsystems

Chapter 34 — RAS Decode PALs — U3100 and U3102 341

RAS o0 byte [23:16] in megabyte 3 is decoded:
- N

rasO_16 = DORAS*MEG3*/p2_al* p2_al +
DORAS*MEG3* p2_sizl*/p2_al +
DORAS*MEG3*/p2_siz0*/p2_al +
p2_refr

RAS 1o byte [15:08] in megabyte 3 is decoded:
r N

rasO_08 = DORAS*MEG3* p2_al*/p2_a0 +
DORAS*MEG3*/p2_sizl*/p2_siz0*/p2_al +
DORAS*MEG3* p2_sizl* p2_siz0*/p2_al +
DORAS*MEG3* p2_sizl*/p2_al* p2_a0 +
p2_refr

RAS 10 byte [07:00] in megabyte 3 is decoded:

r)

rasO_00 = DORAS*MEG3* p2_al* p2_a0 +
DORAS*MEG3*/p2_sizl*/p2_siz0 +
DORAS*MEG3* p2_sizl* p2_al +
DORAS*MEG3* p2_sizl* p2_siz0* p2_a0 +
p2_refr

sun (Rev 1 of 10 May 1987} CONFIDENTIAL!

mICros ystems

CAS Decode PAL — U3104

CAS Decode PAL — U3104 345
35.1. U3104 Pinout ... e s e s 345
35.2. U104 INPUL SIGNALSoooeercmerrscenrcenreressins e sness s csessssssssssssssesssssssssses o 346

35.3. U3104 OUtput SiZNALSooccoorresrrcsremnresssesssscisssssssssssssassssssssssss s 346

35.1. U3104 Pinout

Figure 35-1

CAS Decode PAL — U3104

The CAS decode PAL generates eight column address strobe signals — one to
each bank of eighteen chips (two bytes and two parity bits). Two of its output
signals, x_we- and x_cas-, are buffered by U3105 and U3115 control buffers.

D x_we- is used to generate write enables for the eight banks of memory;
o x_cas- generates the column address strobes for these same eight banks of
memory.

Pinout for U3104 CAS decoder PAL is:

U3104 Pinout
MEXX XXX RRT KA, XX LA AR E SRR RS LRSS
® * % *
XK TN KK
/p2_uas * 1% pal *20* vcce
TR EK XK WX
/p2_cas * 2~ *19* /p2_ack
XXX XXX
/p2_ram * 3* *18* nulsg
*REW LA A 8]
P2_rw * 4 *17= nul?
LA A &4 *REK
/p2_bot32M * 5% *16*x /x_we
KXETKX LA & 84
p2_a24 * 6% *15* /x_cas
KREXR LA & B4
p2_a23 * Jx *14~ /m_parrd
LA 84 LA 2 2
p2_a22 * 8% *13* m_rw
EXWR * kKK
p2_a2l * 9* *12* /m_ben
LE S 83 LA 2 24
gnd *10* *11* test
TEER LR R 2
* *

AT AT R XA RAANXRAKATRARRA RN AR &

Q@ sun 345

MICros ystems

{Rev 1 of 10 May 1987} CONFIDENTIAL!

346 2060 CPU Board Engineering Manual CONFIDENTIAL!

.-.2. U3104 Input Signals Inputs to the CAS decoder PAL are:

(")
p2_uas- - "delayed" address strobe (actually cs2-)

p2_cas- - output of MMU is stable - generate CAS

pP2_ram- - validated type 0 cycle

P2_IWw = read/write-

p2_bot32M- = output of upper address comparator

(selects bottom 32 Mbytes)

p2_al24:21) = select 2 or 4 Mbytes in a 32 Mbyte
address range
test = only used when applying test vectors;
used to break loops
. J

35.3. U3104 Output Signals Outputs from the CAS decoder PAL are:
(I

X_we- - modified version of R/W signal, generates
write enables for all memory

X_cas- - CAS for all memory

m _parrd- = gate parity read data to
p2_par<24,16,08,00>

m_rw = read/write control for the memory
data buffers

p2_ack- - acknowledge
m_ben- - memory data buffer enable
\. J
@ sun {Rev 1 of 10 May 1987) CONFIDENTIAL!
mCros ystems .

Chapter 35 — CAS Decode PAL — U3104 347

Before providing the individual PAL equations for each output signal, there
are several macros that must be defined. First, read and write are defined as
levels of the p2_rw signal: read is a high and write is a low.

#define READ pP2_rw
#define WRITE /p2_xw

Next, two and four megabyte systems must be defined.

tifdef TWOMEG

#define MEG2 /p2_a24*/p2_a23*/p2_a22*/p2_a2l

2 Mbyte system

#else

#define MEG4 /p2_a24*/p2_a23*/p2_a22
4 Mbyte system

#endif .

Finally, memory on the CPU board is defined as occupying a portion of the
bottom 32 Mbytes of address space. M_SEL, or ‘‘memory select,”’ defines
this space.

N

#define M SEL p2_uas*p2_ram*p2_ bot32M*ADDR

Write enables are generated by a slightly modified version of the R/W sig-
nal, and must not change until CAS has been deasserted. Otherwise reads
may look like late writes, with R/W changes and CAS still asserted.

X_we = WRITE * p2_uas
no writes until previous read is complete

> Sun {Rev 1 of 10 May 1987} CONFIDENTIAL!

348

2060 CPU Board Engineering Manual CONFIDENTIAL!

CAS to the memories is asserted when p2_cas is asserted (cs4) and is
deasserted at the end of the cycle (p2_uas invalid).

x_cas = M SEL*p2_cas + set CAS

x_cas*p2_uas*/test hold until end of cycle

This signal gates parity read data to p2_par{24:16:08:00] when selected and
doing a read.

m_parrd = x_cas * READ * p2_ uas

The p2_rw signal is passed straight through.

/m_rw = /p2_rw

(.

Generate p2_ack as soon as the board is selected. By ANDing with p2_uas,
we drive m_ack high before shutting off, since p2_uas- is deasserted before
p2_cas or m_sel. '

if (x_cas) p2_ack = p2_uas

Turn on the P2 data buffers when selected (doing either a read or a write).

m ben = x_cas * p2_uas * READ + selected

p2_uas * WRITE

sSun {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

Control Buffers — U3105 and U3115

Control Buffers — U3105 and U3115 ... 351

Control Buffers — U3105 and U3115

The two control buffers drive cross-coupled write enable and CAS signals to on-
board memory. U3105 drives four of the eight write enable and four of the eight
CAS signals to on-board RAM; U3115 drives the other four write enables and

CAS signals to on-board RAM.
These buffer/drivers are permanently gated ON by the connection of pulldowns
to both output enables.

@ sun 351 {Rev 1 of 10 May 1987} CONFIDENTIAL!
microsystems

Row and Column Address Multiplexers
— U3110:07

Row and Column Address Multiplexers — U3110:07 ... 358

Row and Column Address Multiplexers
— U3110:07

U3107 through U3110 multiplex the 18 bits of row and column address needed
to decode a bit from each of the 256K -by-1 bit memory RAM. However these
same address bits are used for an entire 18 chip/bit bank (a 16-bit word with 2
bits of parity) so that taken as a whole, these address bits access a word (plus 2
bits of parity) from the entire 2/4 Mbyte memory space — which is why the LSB
of the RAS/CAS decode is p2_a(02).

Figure 37-1 RAS/CAS Decode Bit Assignments for 2 and 4 Mbyte Systems

2 Mbyte Decode
(bit) 31 21 20 12 1110 02 01 00
1
decode CAS bank RAS dfcyofie
(number of bits) 11 9 1 9 2
4 Mbyte Decode
(bit) 31 22 21 13 12 11 10 02 01 00
decode CAS bank RAS e
(number of bits) 10 9 2 9 2

During the assertion of p2_mux- (aliased cs3), the row address bits p2a(09:02)
are gated onto the m_a(7:0) memory address bus. The ninth bit, p2_a(10) is sup-
plied through U3110. RAS is valid during cs3, and is asserted to the memory -~

@ sun 355 {Rev 1 of 10 May 1987) CONFIDENTIAL!

microsystems

JS6G 2060 CPU Board Engineering Manual CONFIDENTIAL!

RAM.

With the deassertion of p2_mux- (indicating you are no longer in ¢s3), column
address bits p2_a(20:13) are gated onto the m_a(7:0) memory address bus. The
ninth address bit is supplied through U3109 mux and U3110 buffer. CAS is now
valid, and is asserted to the memory RAM.

Both row and column address bits are latched into row and column decoder
registers inside each RAM chip with the assertion of their respective RAS and
CAS signals.

J3101 selects p2_al2 (for a 2 Mbyte system) or p2_a21 (for a 4 Mbyte system).

Q@ S un . {Rev 1 of 10 May 1987} CONFIDENTIAL!

Figures and Timing Diagrams

Figures and Timing Diagrams 363

- o Arg Lttt YT A N P T T YT TP —— m—
B A R R e

Figures and Timing Diagrams

363 {Rev 1 of 10 May 1987) CONFIDENTIAL!

Index

2

2060 Block Diagram, 15

2060 data paths, 16

2060 mechanical specifications, 19
board form factor, 19
connectors, 19
switches, 19

2060 VME Implementation
environmental characteristics, 264
master capabilities, 263
power characteristics, 265
slave capabilities, 264
system controller capabilities, 264
VME Arbiter and Requester, 269

6
68020, 23
68881
coprocessor selection, 25
68881 Floating Point Coprocessor, 23

A
aliases, 148

B
bootcy- signal, 27
Bus Transfer Size, 60
Byte Selection in the Page Map RAM, 210

C
cache disable jumper, J100, 23
clkinh signal, 29
clock generation, 101
U400-U405, 101
control space, 24
control space device addresses, 4
control space devices
addresses”, 4
CPU Access of Idle VMEbus
state diagram, 323
CPU space, 24
CPU Space PALs, U106 and U107, 24
ctlspe- signal, 28

-365-

D

data alignment, 61
device space, 24
devspc- signal, 28
DVMA, 315

Optimizations to the DVMA Cycle, 316

Refresh as a Special Case, 316

Sample Cycles, 323

U2407, 315

U2408, 315

U2409, 315

U2409 DVMA Controller, 315

U2410, 315

U2410 DVMA Stobe PAL, 317
DVMA—Direct Virtual Memory Access, 315
dynamic bus sizing, 62

E
ECL Circuitry, 256
ECL Clock, 256
ECL Clock
J2301, 256
U2303:01, 257
V2305, 256
V2306, 257
U2308 ECL oscillator, 256
U2312, 256
EEPROM and EPROM, 188
Ethernet Control Register
U1405 Ethemnet Control Write Buffer, 223
U1407 Ethernet Control Read Buffer, 224

F
fpa_bei- signal, 29
fpp_berr signal, 32
fpp_cs signal, 33
Frame Buffer RAM, 255
data paths, 255
function codes, 24
control space, 24
CPU space, 24
device space, 24

H
Horizontal State Machine
U2202, 257

index — Continued

I

1/O devices

addresses, 5
interrupt acknowledge cycle, 74
interrupt circuitry

priority, 67
Interrupt circuitry

U301:U300, J300, 67
interrupt request cycle, 73
interrupts

spurious, 93

J
J100, 23
J1001, 187
J1100, 187
12301, 256
1300, 69

interrupt disable and enable, 69

1309 Interrupt circuitry, 67

L
iberr signal, 54

M
Memory Management Unit
Page Map RAM, 127
virtual addressing, 111
Memory Management Unit MMU), 111
Memory RAM, 359
Memory Read, 359
Memory Write, 359
MMU, 111
protection bits, 141
MOS bus devices
Boot PROM (EPROM), 165
EEPROM and EPROM, 188
J1001, 187
J1100, 187
Keyboard, 165
MOS Decoders, 166
MOS Read and Write Cycles, 185
Mouse, 165
Real Time Clock (RTC), 165
Serial Ports (Port A and Port B), 165
Serial Ports A and B, 187
Time of Day (TOD) Clock, 190
TYPE1 Space, 155
U1000 Mouse and Keyboard SCC, 186
U1100 Serial Ports A and B, 187
U405 and U2207 Baud Rate Clock, 187
U900 MOS Enables PAL, 166
U901 MOS SACK State Machine, 169
U902 MOS Write Buffer, 184
U903 MOS Read Buffer, 184
U904 MOS Read/Write Strobe Decoder, 179
User-accessible EAROM (EEPROM), 165
MOS Read and Write Cycles, 185

-366~-

0
Offset Bits, 60
Optimizations to the DVMA Cycle, 316
Back-to-Back DVMA, 316
Ethemnet Hold, 316
overview of Sun-3 architecture, 3
68881, 3
control space devices, 4
CPU,3
DVMA controller, 4
EEPROM, 5
Encryption processor, 5
EPROM, 5
FPA,3
1/0 devices, §
interrupts, 6
main memory, 5
Memory Management Unit, 4
memory space, 5
MMU, 4
Parity Error registers, 5
refresh, 4
system DVMA, 3
TYPEO space, 5
TYPE2 Space, 6
TYPE3 Space, 6
video memory, 5
wait states, 3

P
p_berr signal, 53
p_bufen signal, 32
p_halt signal, 53
p_inta- signal, 32
P2 Bus Control and Address Buffers
U700 comparator, 147
U703:01 P2 address buffers, 147
U704 Control signal buffer, 147, 148
P2 size bits, 60
p2_fpasignal, 28
Page Map RAM, 127
byte selection, 128
Page Map Entries (format), 127
Type-Bit Decode, 127
Page Map RAM control signals
mmu_gt16, 128
mmu_we24, 128
PAL equation
bootcy- signal, 27
¢60 clock, 103
¢60- clock, 103
c60k clock, 103
clkinh signal, 29
ctlspc- signal, 28
ctxt(2:0) signals, 117
devspc- signal, 28
diagcy signal, 169
fpa_bei- signal, 29
fpp_berr signal, 32
fpp_cs signal, 33
hp_ack0, 85
hp_ackl, 85

Index — Continued

PAL equation, continued

hp_eo, 87

ipc[2:0]. 82, 87

ipl(2:0), 91

Ip_eckO01, 80

lp_ackl, 80

lp_eo, 82

Ityp0 signal, 140

m_ben signal, 348
m_parrd signal, 348
m_rw signal, 348
mmu_gt00 signal, 215
mmu_gt08 signal, 215
mmu_gtl6 signal, 214
mmu_gt24 signal, 213
mmu_gtseg signal, 217
mmu_jo signal, 143
mmu_perr signal, 142
mmu_ram, 144
mmu_val signal, 141, 142
mmu_verr signal, 142
mmu_vme signal, 143
mmu_we00 signal, 217
mmu_we08 signal, 216
mmu_wel6 signal, 216
mmu_we24 signal, 216
mmu_weseg signal, 217
mos_a0, 183

mosrden signal, 168
moswren signal, 167
output enable OE, 134
p_berr signal, 53
p_bufen signal, 32
p_halt signal, 53

p_inta- signal, 32
p2_ack signal, 348
p2_fpa signal, 28
p2rden0 signal, 238
p2rdenl signal, 238
pad24 signal, 209
par_as signal, 161
par_err(00) signal, 154
par_err(08) signal, 154
par_err(16) signal, 153
par_err(24) signal, 153
par_irq signal, 161
rasE_00 signal, 338, 340
rasE_08 signal, 338, 340
rasE_16 signal, 338, 340
rasE_24 signal, 337, 340
rasO_00 signal, 339, 341
rasO_08 signal, 339, 341
rasO_16 signal, 339, 341
rasO_24 signal, 338, 340
rd_berr signal, 221, 223
rd_ctxt signal, 221
rd_eeprom signal, 181, 189
rd_eprom signal, 181, 188
rd_ether signal, 207
rd_id signal, 221

rd_int signal, 208
rd_keybdm signal, 182
rd_pad00 signal, 210
rd_pad08 signal, 209

PAL equation, continued
rd_pad16 signal, 209
rd_pad24 signal, 157
rd_par signal, 208
rd_serial, 182
rd_sysen signal, 222
rd_tod signal, 183
rd_usren signal, 222
rden0 signal, 238
rdenl signal, 239
rerun signal, 33
s_error signal, 155
sample- signal, 160
ti_d{3:0] signals, 117
tsack, 197
ttibfen signal, 196
vcopydet signal, 239
vidrd signal, 240
vidwr signal, 240
wr_ctxt signal, 222
wr_diag signal, 223
wr_eeprom signal, 181, 189
wr_ether signal, 207
wr_int signal, 208
wr_keybdm signal, 182
wr_par signal, 208
wr_serial signal, 183
wr_sysen signal, 222
wr_tod signal, 183
wr_usren signal, 223
wren00 signal, 251
wren08 signal, 251
wrenl6 signal, 251
wren24 signal, 251
wren32 signal, 251
wrend0 signal, 252
wrend8 signal, 252
wrenS6 signal, 252
write strobe stwe, 134
x_cas signal, 348
x_we signal, 347
PAL equations
copyl6sel signal, 236
Iberr signal, 54
mbl6sel signal, 235
vmeberr signal, 55
Parity Circuitry, 151
U3112 Parity Data Buffer, 162
U801 Memory Error Register, 161
U802 and U812 Parity Control PALs, 152
U802 Parity Control PAL, 156
U803 Muldplexer, 152
U807:04 Parity Generator/Checkers, 151
U811:08 Parity Address Latch, 151
U813 Byte Select Buffer, 162
power-on circuit, 37
dual comparator LM393 (U200), 37
por- signal, 37
Processor Data Buffers, U105:2, 23

Index — Continued

R
Refresh as a Special Case, 316
rerun signal, 33
response synchronizer U206, 41

S

Sample Cycles, 323
CPU Access of a Busy VMEbus, 324
CPU Access of VMEbus, Currently Bus Master, 325
CPU Rerun During VME Access, 325
Ethemet Cycles, 329
Relinquishing the VMEbus, 326
VME Master Cycles, 323
VME Slave Cycles, 327

Sample Interrupt Cycle, 92

Segment Map RAM control signals
mmu_gtseg signal, 123
mmu_weseg signal, 123

Serial Ports A and B, 187

signal aliases, 148

spurious interrupts, 93

Sun-3 Function Code Address Space, 24

T

Time of Day (TOD) Clock, 190
7170 TOD clock chip, 191
11209, 190

TTL Bus, 195
Ethemnet Control Register, 223
read cycle, 195
U1400 TTL Bus Sack State Machine, 195
U1401 TTL Bus Device Decoder, 204
U1402 MMU Decoder, 210
U1403 CPU Signal TTL Bus Decoder, 218
U1404 P2-10-TTL Data Buffer, 225
U1406 System Enable Register, 224
U408 System Enable Register, 224
U1409 ID PROM, 225
U1410 Diagnostics Register, 225
U203 Bus Error Register, 226
U2905 User DVMA Enable Register, 226
U2906 User DVMA Enable Register, 226
‘U509 Context Register, 226
write cycle, 195

U
U1000 Mouse and Keyboard SCC, 186
U105:2,23
data flow, 23
U106, 24
input signals, 26
output signals, 27
pinout, 26
U107, 24, 30
input signals, 31
output signals, 31
pinout, 30
U1100, 187
1J1100 Serial Ponts
Receive Data Path, 188
Transmit Data Path, 188

U1400 TTL Bus Sack State Machine, 195
cycle timing, 203
outputs, 196
pinout, 195
read cycle, 203
state diagram, 198
write cycle, 203
U1401 TTL Bus Device Decoder, 204
inputs, 205
outputs, 206
pinout, 205
U1402 MMU Decoder, 210
inputs, 212
outputs, 213
pinout, 212
U1403 CPU Signal TTL Bus Decoder, 218
inputs, 219
outputs, 220
pinout, 219
U1404 P2-10-TTL Data Buffer, 225
Data Flow, 225
U140S5 Ethemet Control Write Buffer, 223
U1406 and U1408 System Enable Register, 224
U1406 System Enable Write Register, 224
U1408 System Enable Read Register, 225
U1409 ID PROM, 225
U1500 Buffer, 253
U1501 Byte Decode PAL, 250
outputs, 251
pinout, 250
U1502 Video Control Decoder, 236
inputs, 237
outputs, 237
pinout, 237
U1503 P2 Interface State Machine, 241
inputs, 241
outputs, 242
pinout, 241
U1504 Video Select Decoder
copy-mode, 234
inputs, 235
outputs, 235
pinout, 235
U1505 DIP, 253
U1605/07, 241
U1608-U1603 Video Controller, 253
U1700-01 Video RAS/CAS Latches, 254
U201 Reset PAL, 45
cslow signal, 46
input signals, 46
output signals, 47
p_reset signal, 47
pinout, 46

U202, 51
input signals, 51
output signals, 53
pinout, 52
U203, 51
U203 Bus Error Register, 56, 226
U204 DSACK PAL, 59

- 368 -

Index — Continued

U204 DSACK PAL, continued
Bus Transfer Size, 60
input signals, 60
Offset Bits, 60
output signals, 62
pinout, 59
U205 User Reset Switch, 45
what it does, 45
U2206, 258
U2207, 258
U2207 Baud Rate Clock, 187
U2303:01, 257
U2305, 256
U2306, 257
U2308 ECL oscillator, 256
U2312, 256
U2409 DVMA Controller, 315
Sample DVMA Cycle, 315
U2410 DVMA Strobe PAL, 317
inputs, 319
outputs, 319
pinout, 318
U2701 VME Select and Freeze PAL, 285
inputs, 287
outputs, 287
pinout, 286
state diagram, 288
VME Long Timeouts, 290
VME Short Timeouts, 290
U2704 VME Arbiter and Requester
input signals, 269
J2700, 269
J2701, 269
output signals, 269
pinout, 271
signals, 269
state machine, 272
U2901-2 Slave Address Latches, 299
U2904 Slave Request PAL, 302
inputs, 305
outputs, 305
pinout, 304
state machine, 306
U2905 User DVMA Enable Register, 226
U2905-6 User DVMA Enable, 302
U2906 User DVMA Enable Register, 226
U2907 VME Slave Address Decoder, 299
inputs, 301
outputs, 301
pinout, 300
U2910:09 Slave Address Multiplexers, 302
U2911-13 Slave Address Latches, 299
U300 Interrupt circuitry, 67
U3006:00 VME Data Buffers, 311
16-Bit Operation, 311
32-Bit Operation, 312
CPU Cycles, 312
DVMA Cycles, 312
U301 Interrupt circuitry, 67
U301:0 Interrupt Enable Registers, 68
U302 Lower-Priority Encoder, 78

=369 -

U302 Lower-Priority Encoder, continued
input signals, 79
output signals, 80
pinout, 79
U302-U304 Interrupt circuitry, 73
U303 Higher-Priority Encoder, 84
input signals, 84
output signals, 85
pinout, 84

U304 Second-Level Interrupt Priority Encoder, 89

input signals, 90
output signals, 90
pinout, 89
U305, 94
U305 Interrupt circuitry, 73
U3100, 335
U3100 and U3102 RAS Decode PALs, 335
inputs, 336
outputs, 336
pinout, 335
U3100 Output Signals, 337
U3102 Output Signals, 339
U3100 Output Signals, 337
U3100 RAS Decode PAL, 335
U3102, 335
U3102 Output Signals, 339
U3102 RAS Decode PAL, 335
U3104 CAS Decode PAL, 345
inputs, 346
outputs, 346
pinout, 345
U3105 Control Buffer, 351

U3110:07 Row and Column Address Multiplexers, 355

U3115 Control Buffer, 351
U400 Clock PAL
input signals, 102
output signals, 103
pinout, 101
U401 Flip-Flops, 104
U401 PAL, 107
U402 Flip-Flops, 104
U405 and U2207 Baud Rate Clock, 187
U407 ATE pulldowns, 97
U408 PAL
pinout, 107
U508:00 Segment Map, 121
RAM control signals, 123
Read Cycle, 122
U507:00 Segment Map RAM, 121
U508 buffer, 123
Write Cycle, 123
U509 context register, 115, 226
input signals, 116
U509 Context Register
inputs, 227
U509 context register
output signals, 117
U509 Context Register
outputs, 227
U509 context register
pinout, 116, 227

Index — Continued

U509 Context Registers, 302
U611 Statistics Control PAL, 133
input signals, 133
output signals, 134
U612 MMU Validation and Decode PAL, 139
input signals, 139
output signals, 140
U700 comparator, 147
U704 Control Signal Buffer, signals buffered are
b_c62, 148
mmu_a(24), 148
p_as, 148
p_fc(2), 148
p_rw, 148
p_siz(1:0), 148
refr, 148
U801 Memory Error Register, 161
U802 Parity Control PAL, 156
input signals, 156
output signals, 157
pinout, 159
1’303 Multiplexer, 152
U807:04 Parity Generator/Checkers, 151
U811:08 Parity Address Latch, 151
control signals, 151
U812 Parity Check PAL, 153
input signals, 153
output signals, 153
U813 Byte Select Buffer, 162
J900 MOS Enables PAL, 166
outputs, 166
pinout, 167
U901 MOS SACK State Machine, 169
pinout, 170

U902 MOS Write and U903 MOS Read Buffers, 184

U902 MOS Write Buffer, 184

U903 MOS Read Buffer, 184

U904 MOS Read/Write Strobe Decoder, 179
input signals, 180
output signals, 180
pinout, 179

user space, 25

v

Venical State Machine
U2206, 258
U2207, 258

U1608-U1603 Video Controller
Circuitry", 253

Video Circuitry, 233
ECL Circuitry, 256
ECL Clock, 256
Frame Buffer RAM, 255
Horizontal State Machine, 257
U1500 Buffer, 253
U1501 Byte Decode PAL, 250
U1502 Video Control Decoder, 236
U1503 P2 Interface State Machine, 241
1'1504 Video Select Decoder, 234
U1505 DIP, 253
U1605/07, 241

Video Circuitry, continued
U1607, 233
U1700-01 Video RAS/CAS Latches, 254
VARB and Video Side State Machines, 242
Vertical State Machine, 257
Video Cycle Timing, 233
Video Read, 243
Video Write, 247
Video Write Timing Diagrams, 249
video memory
address, 5
virtual address, 25
virtual address space, 25
VME Arbiter and Requester, 269
U2704 Arbiter state machine, 269
VME Compliance
options, 11
Performance Parameters, 11
VME Master Controller PAL U2806, 291
inputs, 293
outputs, 293
pinout, 292
state machine, 293
VME Master Cycles
CPU Access of Idle VMEbus, 323
VME Master Interface
U2701 VME Select and Freeze PAL, 285
VME Slave Cycles, 327
Lock Mode Cycles, 328
VME Device Accesses P2 Bus, 327
VME Slave Interface, 299
U2901-2 Slave Address Latches, 299
U2904 Slave Request PAL, 302
U2905-6 User DVMA Enable, 302
U2907 VME Siave Address Decoder, 299
U2910:09 Slave Address Multiplexers, 302
U2911-13 Slave Address Latches, 299
U509 Context Registers, 302
vmeberr signal, 55
VMEbus
2060 VME Implementation, 263
performance, 263
U3006:00 VME Data Buffers, 311
VME Master Controller PAL U2806, 291
VME Master Interface, 285
VME Slave Interface, 299

w

wait states, 3

Feb 6 12:39 1985 spec.cpu4 Page 1

2060 CPU SPECIFICATION
1.0 Introduction

This document provides implementation information for the 2060
CPU and Expansion boards. It provides specific information concerning
SUN-3 architecture and VME compliancy, general implementation information,
and mechanical specifications. Detailed hardware descriptions (will) be
found in other documents.

2.0 SUN-3 architecture compliancy

This section is divided into five parts. The first part describes
the CPU and DVMA devices. The next two parts describe the Control Space
(88020 extensions and MMU) and all devices which must be accessed through
the MMU. The last two sections describe interrupts, resets, and timeouts.
References to the SUN-3 architecture manual are in brackets -[].

2.1 CPU/DVMA devices: Everything in front of the MMU

2.1.1 CFU

The processor will be a 68020 running at 16.67 MHz. All bus cycles
will incur a minimum of 1.5 walt states. 5S4 will be stretched by 30 nsec
to cause the half wait state.

There will be an opticnal 68881 Floating Polnt Processcr. The FPP can
be run on an iadependent clock.

All CPU space cycles will be implemented as in [3.1]. Disabled
(System Enable register D6=0) FPP coprocessor cycles will be terminated with
an immediate bus error. All other coprocessor addresses and accesses to an
enabled but uninstalled FPP will result in a Timeout bus error. Interrupt
Acknowledge cycles and installed and enabled FPP cycles will terminate
normally with DSACK or be aborted with 3 synchronous bus error.

2.1.2 System DVMA

The two system DVMA devices are the Ethernet Interface (Intel 82586)
(6.11] and the VME Slave System DVMA [5.13.1]. Both use supervisor data
function codes and are implemented as in the SUN-3 architecture manual.

The Ethernet Interface has one feature other DVMA devices do mot
implement. Fifo operation of the B2E8B6 requires that the Ethernet Interface
be able to retain bus mastership. Therefore it can issue a HOLD signal along
with bus request.

2.1.3 VME Slave User DVMA
This will be implemented as in the SUN-3 architecture manual [5.13.2].
User DVMA is performed in user data function codes. There will be no

rasponse to an access to a disabled context.

2.1.4 Refresh

The refresh timer will request the bus via the DVMA controller like

Feb 6 12:39 1985 spec.cpu4 Page 2

other DVMA devices. Once the bus has been obtained for a refresh operation,
the controller will not execute a DVMA cycle but instead execute a refresh
cycle. A REFResh strobe will be issued instead of AS- so that the refresh
cycle will not conflict with any other address space cycle.

2.1.5 DVMA Controller

DVMA/CPU device priority is as follovs:

1) Refresh- nothing can stop a refresh cycle

2) Ethernmet- can issue bus hold to lock out 3 and 4

3) VME System/User DMA- dynamic bus hold feature to lock out 4
4) 68020/68881 T

2.2 Control space: Everything in FC3
2.2.1 Control Space Devices

The following Control Space devices will be implemented [4.1]:
All devices are byte read and write except for the bus error register
which is byte read only. The ID PROM, Page Map, and the Segment Map
are implemented as an array of bytes. This will allow word and lengword
accesses via the 68020 dynamic bus sizing capability.

ADDRESS DEVICE
[0x00000000] + Virtual ID PROM

(0x10000000] + Virtual Page Map
(0x20000000] + Virtual Segment Map

{0x30000000] Context Register

{x40000000] System Enable Register
[0x50000€00] User Enable Register
{0x60000000] Bus Error Register

(0x70000000] Diagnostic Register

{0x80000000] to Non-responding addresses which
{0xE0000000] will cause a timeout bus error
{0xF0000000] MMU bypass access to Serial Port

for diagnostics
2.2.2 Memory Management Unit
The MMU will be implemented as in the SUN-3 Architecture Manual [4.3]
with the following exception: the cache bits will read back as zero since
they are not implemented.
2.3 Device spate: Everything after the MMU
2.3.1 ECC Memory: not implemented

2.3.2 Memory Space: TYPEO space

2.3.2.1 Parity Main Memory

Feb 6 12:39 1686 spec.cpu4 Page 3

Main memory will be implemented as in section [6.1]. A positive
acknowledge scheme will be used so that non-existing memory locations
will result in a timeout bus error.

256K X 1, 120 nsec DRAMs will be used to implement the parity memory.
Accesses to the memory will incur 1.5 walt states on reads and writes.
There will be a minimum of two megabytes of memory on the CPU board and
additional memory on the Expansion boards.

2.3.2.2 Video Memory

Video memory is a 128K byte block of memory starting at location
OxFF000000. Copy Mode, if enabled, will cause any write operation to a 128K
byte block of memory starting at location 0x00100000 to also be written
into the video memory.

The Video display format will be two types. The first is a 1152 X S00
format and the second 1s a 1024 X 1024 format. The Vertical rate will bde
67 Hz and the pixel rate will be 10 nsec per pixel.

The outputs to the video monitor will be as follows:

1) Serial Video- differential ECL
2) Horizontal Sync- positive TTL pulse, sync on rising edge
3) Vertical Sync- positive TTL pulse, sync on rising edge

2.3.3 1I/0 Devices: TYPE! space

The following devices will be implemented in(;§P21. 21 bit address
space as per the Sun 3 Architecture Manual [5.2, 5.4 to 5.11]:

The Parity Error registers, EPROM, and the EEPROM appear as an array

n processor
of bytes.

ADDRESS DEVICE

[0x00000000] Keybcard/Mouse interface

[0x00020000] Serial I/0 ports

[0x00040000] EEPROM

[0x00060000] Time of Day Clock

{0x00080000] Parity Error registers

{0x000A0000] Interrupt register ,

{0x000C0000] Ethernet Control register

[0x000E0000] Non-responding address which
vill cause a timeout bus error

{0x00100000] EPROM

[ox00120000] TO Non-responding addresses which

{0x001A0000] vill cause a timeout bus error

{0x001C0000] Encryption processor

{0x001E0000] Non-responding addresses which

in accessing these devices.

will cause a timeout bus error

This will allow usage of the 68020 dynamic dus sizing capability

Feb 6 12:39 18385 spec.cpu4 Page 4

The Encryption processor is an cption. To comply with U.S. Customs law,
both the 9518 DCP and support PAL will reside in sockets. The absence of the
PAL will cause a time out error.

The Time of Day clock will provide the level 7 non-maskable interrupt.
The same interrupt can also provide a level 5 interrupt [6.4: Int. reg].

The EEPROM has a 10 msec per byue write overhead. It will be a software
responsibility not write to the EEPROM faster than 10 msec/byte.

2.3.4 VME Master: TYPE2:3 space

CPU accesses to the VME bus will be through TYPE2 space for 18 bit data
transfers and TYPE3 space for 32 bit data transfers. The 32 bit address will
be decoded to supply the VME Address Modifier bits and define the VME address
size.

TYPE2
32-bit Address VME bus with 16-bit data AM5:3 (H) Address Modifiers
[0x00000000] VME 32-bit address space (LLH
[0xFF000000] VME 24-bit address space (HHH
[0xFFFF0000] VME 16-bit address space (H L H I/0 access only
TYPE3 ,
32-bit Address VME bus with 32-bit data AME:3 (H) Address Modifiers
[0x00000000] VME 32-bit address space (LLH
[0xFF000000] VME 24-bit address space (HHH
[OxFFFF0000] VME 16-bit address space (H L H) I/0 access only

2.4 Interrupts
2.4.1 On-Board Interrupts

On-toard interrupts will be autovectored on all levels except for
level 6 where the 8530°'s will provide a vector.

LEVEL DEVICES

NMI- Real Time Clock and Parity Error
All Serial Controllers (B530A's)

Reai Time Clock

Video vertical interrupt

Ethernet, System enable register 3
System enable register 2

System enable register 1

- DWW oo

2.4.2 VME Vectored Interrupts

VME interrupts will be vectored and lower priority than on-board
interrupts.

Feb 6 12:39 1985 spec.cpu4 Page b

2.5 CPU Resets and Timeout
1) Power On Reset: see [8.0]).

2) Watchdog Reset: see [6.0]. A user accessible panic button will also
cause a watchdog reset.

3) CPU Reset: see [6.0]. 1In addition, access to the VME bus will be
inhibited for the 200 msec min. SYSRESET- period.

4) CPU Board Timeout: Minimum of one refresh period, maximum of two.
All non-responding addresses and devices will result in a timeout
bus error.

3.0 VME Compliancy

This section concerns VME compliancy and performance.

3.1 Options

1) Multiple Arbiters: A jumper will be provided so that 1f imnstalled
will give arbitration control to another VME device.

2) Arbiter Option: CNE, Only BR3- will be monitored.
3) Requester Option: ROR, Release on request

4) Timeouts: Two VME Master timeouts are provided. The first is a
*retry" period of 3.06 usec (60 msec clock/ 3clks + 240 nsec *12)
at which time the VME interface "freezes® and other DVMA devices
(Refresh, Etheraet) can obtain the local bus. After 128 retries,
a timeout error will occur. This will provide a timeout when the
CPU board is master. No timeout will be provided for VME Slave or
User mode since it is the responsidbility of each master to provide
it's own timeout.

5) Backoff Mechanism: If the CPU starts an access to the VME at the same

time a VME devices accesses the P2, the CPU cycle will be re-run.

6) Non-implemented features: Since multiprocessing will not be allowed
on our systems, READ-MODIFY-WRITE will not be implemented.

The ACFAIL- timing during power down will not meet spec nor will

it even be close. Powver up is similar. We need to use an ACFAIL

signal from the power supply, use massive powver supply caps, or have

battery backup if we want to implement power down timing. Power up

timing has a chance since we need to implement the 200 msec VME reset

lockout of the CPU anyway.

3.2 Performance Parameters

The following performance parameters assume a 60 msec clock and 1.5 wait

states on read and wrive cycles.

1) CPU to VME latency (assume ideal VME device)

Feb 6 12:39 1985 spec.cpu4 Page 6
not currently bus master 800-660 nsec
currently VME bus master 420-480 nsec
2) CPU to VME bandwidth (assume ideal VME device)

burst rate 8.3-9.5 MBytes/sec
480-420 nsec/longword

3) VME to P2 latency (not currently P2 bus master, assume idle P2 bus)
AS to DTACK §70-630 nsec
4) VME to P2 bandwidth (assume P2 bus locked)

bandwidth : 6.3-8.9 MBytes/sec
: 636-450 nsec/longword

5) VME to VME transfer

time to acquire VME bus 70-155 nsec
bandwidth limited ty VME spec and
VME devices

4.0 Block diagram discussions
4.1 High level of everything

Figure 1 shows a simplified block diagram of the SUN 2060 system.
Devices from section 2.1 are on the left side. They supply a virtual
address to the MMU and arbitrate for control via the DVMA controller.
Devices from section 2.2 are located in the center. These are the CPFU
extensions and are accessed in FC3 space. The MMU translates the virtual
address into a physical address that is used by the devices described in
section 2.3. This Device Space is divided into four types, typeO
for main and video memory, typel for I/0 and Conirol devices, and type2:3
for the VME Master interface.

4.2 Data paths

Figure 2 provides details about data dus connections. There ars two
bus sizes, a 32 bit and an 8 bit. The 32 bit bus provides a high-dandwidth
path between the CPU and DVMA devices and malin memory. An 8 bit dus size is
used to reduce significantly board routing problems. This works well since most
of the Control and Device Space devices aro 8 bits. The Parity Latch and
Page Map interface bandwidth will be less than pcssible due to the 8 bit bus
restriction but accesses to these devices will be infrequent and the loss
of bandwidth not noticeable. The dynamic dbus sizing capabllity of the 68020
is used so that longword moves can be done to these two devices.

There are two 8 bit busses to segregate the MOS and TTL devices. This
is due to the different data dbus interfacing capabilities of the two
technologies. MOS devices have weak bus drivers and are seasitive to
undershoot while TTL devices have the opposite characteristics. The soparation
of the twvo technologies will improve system reliability.

Feb 6 12:39 1985 spec.cpu4 Page 7

5.0 Mechanical Specificationms
6.1 Board Form Factor

The CPU and Expansion boards will conform to the triple height Eurocard
specification. This will allow either board to plug into a 60 or 160 chassis.

Height 366.67 mm
Vidth 400.00 mm

5.2 Connectors

There are eight connectors on the CPU board. Three are the P1:3, 98 pin,
VME bus connectors. The other five connectors are the 9 pin video output,
16 pin Ethernet, two 26 pin serial ports, and 2 16 pin long distance keyboard
and mouse connector.

The basic Expansion board has the three P1:3 VME bus connectors.
Additional connectors will depend on what other functions besides memory will
be on the board.

6.3 Switches
There are two user accessible switches. One is the diagnostic switch
which is used to enter and exit diagnostic mode. The other is the user reset
switch which will cause a watchdog reset.

5.4 Backplanes

2050, 2060, Sirius compatibility will be examined.

p.ol01:131)

p.s(B1:311}

Bl.ean i ol
p.contro! e
neslor d qQ
pe.e81131)] controtler T
b.sse! | b.bboul
I\ . ea
UrE e (1] 131)
erbllers L b.cocoy] buffer Ij/
requester conlirol ter /1/
x, dmoon
g.xreQ . pR. (011312 | a pl.el01:31)
l.conirgl | UE g.conirgl buna a
slave controller
JN CITMS interfuce 0, 8011311

p.conlirol

pe. A 09:33)

p2.o{ @1131)

Simplifired_UME_Interface_Block _Diagram

e

Pe BUS

ore

(95111

1L 10
BUS

/[
4
| -
{ €60°0 (V13 [ENER vinro J 41 EXPAN
[R HET - Vo s Hn SION Bl _ /s
HEN
e —
68961
R ﬂOS 10
BUS
PARLTY PARLTY FIHER INIR KEYHO SYRIN RIC EPRON EAROM
ERROR LAICH NET | MOUSF PORIS
REG ‘ COHTROI [R: IR0} [RURGE] (170
x
I [Davice Space
USER
CNTXT SEG PNGE BUS SYSIEN DING oura 1DPROIM
REG hnps HAPS ERROR ENNBLE REG REG
REG REG
x4

Conlrol Speace

2068 DATA BUSSING

JOE MURPHY

13185

REVU 1.4

e ————— - —— ———-
-— X LT N
M
Abtmrd
ey
Arated Aetemh
al.ttem - aliwiin
Albare -te alasa
M IfAL omivetler Al imere
pryy al.adMil L
Saiale alasihil [2.8 IC)
ot.alstieil al.isd ‘_T:r’
XY Aosasme
—_yen. Lttt
ot MmNl [re ey
[ad .] o
Untraeme adtes [. e
L 57 =
aotatet | amas
M Pey
Sraing PR st PP
it) P o o | v | e
ey - Py e it 1 .
sl etiey AL sy 2 ey | Laitnd N
olalis ropnter emiretion [w0t l
at.ome Rratla P PO I i |
Alsta st ey »lx
Pagy hufream S frause) Rumedn. o Jam.
a.bumd 1] Bl o o8 She 81 \l
yw | Araiia 2 -t
- 1
Py
A
Sy
alae alaim P I
alutut alsam st _—__q:—
e 2urwm,
rasures. | acom! on. b _sragren_] . Suact [T
slum. - Iy omtretior 1ot - Iy oiets
al.gail ol son Py
Slahmed Intertens Wi %l skt Sl) P i1}
at. - ara
alarite Surm, SN [I
Aeree. Aarras. P - st
LABIL | stm [P am
Rt Sesi ALY S b
Pow—Y VT ¢
Sbery Fwrsl
»omiret PRy -}
». attamsin.
sarny an ~ : ooy
».an
- amn,
LA I

Detailed_UME_Interface_Block_Diagram

N

2060 P2 BUS SIGNAL DEFINITION
Joe Murphy

The following are the signals that I am calling collectively the "P2 Bus" for the
2060. These signals will go off board to the P2/P3 connector of the VME connec-
tors, as well as interfacing to the memory on the 2060 cpu board. The principle
purpose of the P2 bus is to provide a high bandwidth path to main memory, and
as result it is very heavily optimized for dynamic memory timing. 1 have
buffered most of the signals from the processor, and from the page map rams,
to prevent problems associated with mos output stages driving long low
impedence lines. For all processor values assume no derating until we know
more accurately what the loading will be (only exception to this is p_as which
must be derated by 3 ns).

B SIGNAL DEFINITIONS 3

p2_a[31:00] This is a buffered version of physical address. p2_a[31:13] is the
output of the MMU, and p2_a[12:00] is the output of the bus mas-
ter (68020 or VME). For p2_a[31:13] timing is (mmu_a + f244)
where (mmu_a == 100) worst case (p_a + seg_ram + page_ram).
For p2_a[12:00] timing is (p_a + f244).

p2_d[31:00] Bidirectional data bus. For processor writes is (p_dw + als245).
Writes to memory are early writes.

p2_siz[1:0] Buffered version of the bus master's size bits. They are used in
tandem with p2_a[01:00], to determine which bytes need to be
selected for a given cycle. Timing is (p_siz + f244).

pa_rw Buffered version of the bus master's r/w signal. Timing is (p_rw +
f244).
m_ack- Memory acknowledge. An addressed device on the P2 bus must

respond with a positive acknowledge to complete the cycle. The
bus master will add wait states until this happens, or until the
cycle time-outs via the time-out bus error sequence. There is no
minimum spec for how soon m_ack- can be asserted after the
start of the cycle. Responding devices can assert m_ack- as soon
as p2_cas- is asserted. Maximum spec is determined by system
level timeouts. Data can become valid after m_ack- is asserted, as
long as setup time for all bus masters is met.

P2 Bus Definition February 1, 1985 1

p2_devsp-

pe_ras

p2_mux

pl_ram-

pl_cas-

p2_par[24,16,08,00]

p2_parwrt-

p2_endras-

P2 Bus Definition

Device space cycle. This signal is used to qualify the generation of
ras for memory cycles. It is the alternative to using the function
codes directly. We do not generate ras for cycles that are not in
device space. We do this to conserve power, and to decouple
minimum cycle time for devices that can respond faster than main
memory (such as the 68881). This signal is asserted when
p_fc[2:0] = (1,2,5,8) for non boot state cycles, and p_fc[2:0] =
(1.2,5) for boot state cycles. Since the physical address spaces
qualify with p2_ram-, and p2_ram- is only generated if we are
doing a devicespace access, this signal is only neccesary to qualify
ras - and then only if we have cycles that are shorter than the
normal cycle length. Timing is (p_fc + bpal).

Row Address Stobe. Timing strobe to determine when to assert ras
for main memory. Must be qualified with p2_devsp- for a device
space cycle, p2_a[12:11] for ras bank decoding (to save power),
size[1:0] and p2_a[01:00] for byte decode, and p2_endras- not
asserted (termination of ras). This signal is asserted on (s2 + £74),
and deasserted on (cycle+f74). Equivalent to CS2.

Timing strobe to determine when to switch the address presented
to the rams from row address to column address. When low we are
selecting the row address, and when high the column address. Is
equivalent to CS3-.

Signal to qualify p2 cycles. Indicates that the cycle is legitimate
memory cycle because: we doing a device space cycle, the page is
valid, the protection checks are ok, and the type bits == TYPEO.
Must be qualified by p2_cas- if one wants an edge to indicate when
this signal is stable.

Column Address Strobe. Timing strobe to determine when to

-assert cas for main memory. Must be qualified with p2_a[31:22]

for "board” select, and p2_ram- to designate as a memory cycle.
Equivalent to CS4-

Bidirectional parity data bus. Writes to memory for parity are late
writes.

Parity write strobe. Used to strobe in parity information on writes

to memory. This signal is needed to do late writes for parity data.

Parity write data will not be valid till after cas is asserted at the
rams. Equivalent to CS5-.

End ras. Timing strobe to determine when to deassert ras. Is
asserted at cs6, and deasserted at cycle+s(1). Equivalent to CS8-.

February 1, 1985 2

p2_refr-

C2 10~

P2 ct0~

P2 Bus Definition

Refresh all the ram chips. p_as should not be asserted.on refresh
cycles, to keep from triggering all the other timing chains. Refresh
to memory should not look like normal memory cycles. Obtain the
bus like a full blown bus master would do, but then just gate the
refresh address onto at least p2_a[11:02] (10 bits assumes that
the largest rams for product life time will be 1 Mbit), and one clock
later assert p2_refr- for 3 clocks (Tras == 120ns -> 2 clocks +
skew_slop).

T*{fe, 1 access
Gysdem ClOCK

February 1, 1985 3

[V]

\n

~J
Ve

I

48

I

DEz= 1P Tion QTY DescripTion
LM332 I Yl. T4F 0D
T4Lz 272 4 q2. 1YL 163
7915652 o ALs 12 42, TLaLz2uY
74 F24y , 27 49, 325z¢
74 ALs 24s i3 4s. THALS 37Y
A5C K DRAM 4y H6. THALsS 0 &
16 RY 3 . Y47, T4FS2
le Ry A 2 Hg. HF32
16RY4 8 3 H9. 122y
16R¢ ! . 5o, 19F373
[{Rea | 5. T4ALS 273
16R93 l ' 52. 74ALS 2514
L% 3 53. T4 F 131
l6LzA4 4 54. 14Fo%
lecz @ g ss 74F 109
SoL A 3 5e. THLS 22
2oLyo Y 57 T4 FS529
2o REF 2 £¢. 415
22v1o | 51. T4 iT4A
“TH4F IS8 | 40 74LS112 4
TYF2TH Iz 6l loHos
TYFas 4 62 loH {2y
THLS2YH 2 63, loH125
Jey-3l 7 6. JoH 131
1403 -28 4 45 loHI36
IYLSISE | bb. iCHI4]
25LS 2518 | 67. 261529
T4F T4 2 7 68 26L530
6¥o20 { 67 26L532
LTI / 10. gs520
TEILA l 1. TLsod
212855 A Stk) 12. 14 F 157
170 [13 322 lepa DIP
T49L324S = 74. 3333IMHE ooc
A7 I 78 [9.2607 /e oot
THLIITY 4 76. ! ME2 oiz
xF TuSI: ; 77 lf,laf‘
. 13 7-r,~ VAR
TH4LCI7S - 79. BATY L(THIur v

ooLcen

)
N — g~ N - -

—_—
o

X

Gy - - = N —

— ’6_\ o

> W AN A~ oo

ROL0 22M cam ‘D

DescipTion aTY
) 37267 B2 cRiiTA. | a
\ 16 Mtz ¢6sc |
2. SwitchH |
L QUAD LED 2
2 33,4 P
0.022p 1 |
i loo p? .
i JooMkz 0sc L
- A pin henser —
" 4 P;" heaser he
T pin hewael T
12 o 16 pin heeder |
Disde (plitvg
Ao LM32E 2y Zem i |
15Kk 2 1% |
L oo kL 17 i
T SLlkaZ 17 |
A3.7 K2 |7 |
> o k2 1% |
\kn 5% 2
o M2 £7 Z
. 2347 |
s, lok:z € g 5:° 3
" 2.2kan p
47 p‘ﬂ S
se. SOf“.[2
5 pon D cenan 2
of loon £7. ,
! alfv D cenw |
S Dizae (Nyyue “
LomMHe <(-./_e',,.' ,
- |202 57, :
43 300 S -
SIL spa 517 :
' TER ezt
(U e :
M. Lt s
Lmaie? .
< e § r i
) L~y ,).“A - 5

1

H SipeLE fowrc]
Pecer iption

I. . LMz293
2. 48272
2. 7Y L6532 ac AL
q. 74 F 244
. TV ALsaus
£. 14 F2y4t
7. THF 5%
g 74 Fz214 .
.74 F2azo
10, 74Ls 24y
M. T4LStzz
2. T1FT7A
13741524
[4..74Ls 2
{5. 14Lz570
16._T4F 2o
17..74F00
(2. 74qLsis
19, THALs 24
2 MAls

Ao T4 Aot

P
A3 TKALs L
24 T4F s

25. 74F32

Io. J4Ffos
. THF/o9

220f= Sfeand Ssures
MenufacTurer
quiov«q\

TI

TI

F— .] o

awfeny id

TL -

Fq'\r¢‘\\'\ \l'

Fclrc"\\' {d
Faireiniid
_Faicciy ld

TL
TI

- 7 [
CTawerayin

TL

TT
- TI
Feirdhild

R
varc;\\"-‘

Fdif"\t o
Faee- *
TI

-

S

o
Fm(:m i
- ’
Faiieh (d
Fairdaite
—7T
' e
~ v .
Tawr=s a
TI
£
Aran

TI

Apr

o

Listii=

MawvFactorer
TI

kg
<.

(V2%

Ggn 13
/
Metacoia
c.
J,? neljes
Metacs o
Sisvxcti <s
5,‘5 relics
_ 5;3 nelics
S;j f\Qtl'C:
Mﬁticmq{
{
r

fjp_'\; ‘s

",‘5'\'"3 NS
4
qui&v\,’l‘\

l\)qt' Shan ‘

S‘.Sne‘ifcs

~
~
-

13 acies

. S.Sp elics
Maotsraia

) Sisv\e’:\':
Sijne‘f V<3

c- “
',jheslc)

Stqpelic:
. o
Sianeticr

J

5,5ha‘t.cf
Nail Aua|

S] RURTE
/A‘]:'.,,,,—.. i =

-

1552

S
"q“hd

Mz

-~ - <
D‘:_‘r»{‘,.;m ,M;wu?oc;-'l(éf MawuTactucer

27 (6222 TI NQ’M'
~HC 2RYI(D) AMPD

20tio _ AMD MMz
4z. lecz AMD MMz
43o . 16R% - AMD . /AMT
44. . QoRZA . APMD MMI
Y5, 16RY B T= Nodae)
Héb_.____ 2O0LFA AMD MM
Y7... . _leLEA e | -AMD MMT
42. . . leRYyA .. AmD MMZI
Y RSesasty cm-va¥l o AmMD

do. Psxi MYl Teaapd® L Natieral -

Sl._Pley _512x4

siteyi MMT
S\ 5 weTjel

Toshiba » Fu)sy

c3-cané) AMQ
Hl’t“-("\z.
2165~32 a0 . . AMD

B P

- —aZ7 ..
AR 26 DRAM

-

wn

S4. _._ _14e2 A e IWMOS -
-] S_'_‘__ . __‘/L{_L_,-__“_ RAMm Da-- AT o TI . .

e HMeenn e e

_ Motacs s

. _R72Z4K EPSdr ook AMD__ . Toz=f
S . SXlBA oz ves o Szs= L
« b 717> _ N _ T rzec:! o
¢l _ Uiz : AMD Z{log

- |
I '~ -
6L o lovizH o o M3 ocila . AT
FIA - 1 N S I, Metorsin e AT

lotzd
e loH 125

N R A

R L ALSZA e A1 . Moo i
7o, 260321 R STt
Lo J2isgo A AECTELE
-_..: e ,‘{‘_ l‘j . - _/vi:-‘\ ~ain N N(?f ':’ gy
=7

Feb 6 11:46 1985 decodae.h Page 1

/*
*/
/*

*/

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

/%

x/

#define
#define
#define
#define

/*

*/

#define
#define
#define
#define
#define
#define
#define
#define

Header file for the various decode ﬁals of the 2060

Virtual Address Spaces
Can be either p2_fc or p_fc as appropriate.

Leave as ®"fc".

FC_0O
USR_DATA
USR_PRGM
CNTLSPACE
FC_4
SUPV_DATA
SUPV_PRGM
CPUSPACE

DEVSPACE_DATA
DEVSPACE_PRGM

/fc2%/tcix/2c0
/fc2%/fci* £c0
/fc2* fcix/fcO
/fc2% fcisx f¢c0
fc2%/fci*x/fc0
fc2+/fci* fcO
£c2% feilx/fc0
fc2* fcix fc0

/fcix £c0
fcix/fc0

Byte decode strobes
Leave as ®"a". Can be either p2 a or p_a as appropriate.

BYTE24
BYTE18
BYTEO8
BYTEOO

Map for Control

IDPROM
PAGEMAP
SEGMAP
CONTEXT
SYSENABLE
USERENABLE
BUSERROR
DIAG

/al*/a0
/ai* a0
alx/a0
aix a0

Space elements

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

FCoO
FC1
FC2
FC3
FC4
FCB
FC8
FC7

DATA 1/2 of Device Space =/
PRGM 1/2 of Device Space */

/p_a31+#/p_a30%/p_a29%/p_a28
/p_a31%/p_a30%/p_a29* p a28
/p_a31*/p_a30* p_a29%/p_a28
/p_a31%/p_a30% p _a29% p_a28
/p_231* p_a30%/p_a29+/p_a28

/p_a31* p_a30%/p_a29% p_a28

/p_a31* p_a30* p_a29+/p_a28
/p_a31* p_a30% p_a29% p_a28

(11legal) =/
*/
*/
*/
(11legal) =/
*/
*/
*/

/* 0 x/
/* 1 %/
/* 2 %/
/* 3 *x/
/* 4 %/
/* 5 %/
/% & %/
/¥ T =/

Feb 5 21:08 1986

#define

/*

#define
#define
#define
#define

/*

#define
#define
#define
#define

/%

#define
#define
#define

/*
#define
#define

/=
#define

/*

#define
#define
#define
#define

/*
#define

dvma_stb_pal_off

ethernet miscellaneous

ethernet_palr
ethernet_pal
ethernet_pal_ts_1
ethernet_pal_th_1

vme freeze controller
vme _
vme _
vme _

freeze_palr
freeze_pal
freeze_pal_ts_i

vme_freeze_pal_th_i

voe

arbiter

vme_arb_palr
vme_arb_pal_ts_i
vme_arb_pal_th 1

vme

master

vme_master_pal
vme_master_pal skew’

./2080pals.h Page 2

bpal_of?

apalr
apal
apal_ts_1
apal_th_1

apalr
apal
apal_ts_1
apal_th_i

apalr
apal_ts 1
apal_th_1

apal
apal_skew

vme slave space address decoder

vme_slvspc_pal apal

yme slave request generator
vme_slvreq_palr

vme _
vme
vme_

vme buffer controller
vme_

slvreq_pal
slvreq_pal_ts_i
slvreq_pal_th i

buffer_pal apal

apalr
apal
apal_ts i
apal_th i

*/
/* 18R4 =/
*/
/* 16R4 =/
x/
/* 16R4 x/
*/
/* 20L8 */
*/
/*16L8 =/
*/
/*16L8 =/
x/
/* 20L8 */

Feb 5 21:08 19886

./2080pals.h Page 1

#include ®1ib/pals.h’

/*

*/

/*

#define
#define
#define
#define
#define

/*
#define

/*
#define

/*
#defline

#define

#define
#define
#define

/*

#define
#define
#define
#define
#define

/*

#define
#define
#define
#define

/*
#define
#define

Assign speed versions for pals used in 2080 design.

I've tried to group the pals into the functional block that
is most appropriate for each pal. I’'ve also included just
the parameters that are relavent for each pal. Besides
keeping this file from becoming toooco cluttered, it collects
in one central location the kind of pal ve are using for each
section, and how it is being used.

clock */

clock_pal bpal /* 16r8b */

clock _palr bpalr

clock_palskew bpalskew

clock_pal_ts_1 bpal_ts_i

clock_pal_th_ i bpal_th_ i

uP */

mmuvalid_pal bpal /* 1618b */

omu */

cpuspace_pal bpal /% 1618b =/

mem */

ras_pal bpal /% 1618b %/
cas_pal bpal /* 1818b =/
mem_pal apal /* 1618a */
mem_pal_on apal_on

mem_pal_off apal_off

io decoder */

iobus_pal pal

mosbus_pal pal20l10 /* 20110 */
ttlbus_pal pal20o110 /% 20110 */
ctlspc_mmu_pal pal20110 /* 20110 »/
ctlspc_sys_pal pal20110 /% 20110 */

dvma controller */
dvma_ctlr_palr apalr /% 20R8 */
dvma_ctlr_pal apal

dvma_ctlr_pal ts_1 apal_ts 1
dvma_ctlr_pal_th_1 apal_th_1

dvma strobe generator */
dvma_stb_pal bpal /* 16L8 */
dvma_stb_pal_on bpal_on

e TLILMUTLLS | /ipigigh

r_c’

r_cb

r_cS

1
:

r_c4

r_clr-

r_dmareq- -

p_br- A \]
p_bg- X\-{ \ _l
p_as- N L1 1

p_back-

r_dmaen-
r_as- \+—“\
r_ssas- D A

SUN MICROSYSTEMS, INC.

Refresh_Cycle

8] NO. |reu

DATE 2/} SCALE | par- oF

—

o_clES-m_W

e_rd-,e_ur-

a_srd-,e_suwr-

S

e_al 16:231 [~
a_adl 0@:15]———\‘-6-09-'5 TT T T[T 1A vetiadete S>—eoo-15 H>—
e_hold- >»~(£; \
e_as- N \

< \
e_dmareq- \ l |
s_ereq- \ / I_
p_back-

Y \ ’
e_dmaen- - r* / l_
p_as-] * ~
c.60 FU‘IJ‘U‘U“U‘LJ'U‘LFU‘/J‘U‘U’LJ‘I
© s_ack r‘_:l (

e_ready \4
e_rdtt- | I———————L______
e_rdu-,e_rdl-- kj [** I

Ethernet _Cycle_(Fastesl_Case)

c_60

pl_bbsy-

LITTTITTTT

s_ack

—

miv.

p_as-

x_dmaen - |

pl_dtack-

pl_as-

—t J

—

l CPU_Cycle

A A4

K

pl_sas

b_4sxdma |

7,

s_xreq-

b_lock-

p_back-

p_br-

p_bg-

b_locha—

s_dma-

SUN MICROSYSTEMS, INC.

UME _Device_Ends_P2_Bus_l.ock

o]

NO.

OATE 2 /1

SCALE | e oF

iaininigigigfiggigipigy| ' f

pl_bbsy-

s_ack | | I I——-—___————L____________
p.as- I I CPU_Cycle l CPY Cycle r L__

x_dmaen-— I

|
pl_dtack- P . A
pl_as-] BERS

pl_sas

b_4sxdma \ rﬁ I l
s_xreq- ~ Kﬁf ~

b_lock-

p_back- l (4“\ Kﬂ
p-br- = \4 =

p_bg- ' \\“LJ___& > "f)__—\’{

b_lockrqg-

1k

SUN MICROSYSTEMS, INC.

UME _Device_Nol_Fasi_Enough_ilo
Initiagte_P2_Bus_Lock

- 8| ND. Irev

DATE 2 /1 SCALE | pace OF

c_60

pl_bbsy-

[

s_ack | I
p2_as- ' I

x_dmaen - |

—

pl_dtack- cj

pl_as- 1\

pl_sas

b_4sxdma

g I

K

s_xreq- -

b_lock-

< N

p_back- |

™

p_br-

p-bg-

i

b_lockrq-

pl_uds-,pl lds-l |

e

pl_suds-,pl_slds-] l

b_endo-- l

\{_"“
6___
(i___

SUN MICROSYSTEMS, INC.

UME _Device_Initiates_P2_Bus_ Lock

8]

[rev

DATE 2./

SCALE | pace

or

e ————

eI inisigigiginigi i gt pNpupEpEY

pl_br3-

b_sbr

b_ssel- \

b_sbbin- 4ﬂ

b_bgout-

pl_bbsy-

pl_ditack-

pl_as-

(
S
pl_sas $
Y

b_uspc-

b_udma-

pl_suds-,pl_slds-

s_xreq-
p_as- \
\
p_br- \¥“\\
p_bg- ~—

O
ﬂﬁ_

SUN MICROSYSTEMS, INC.

UME _Device_Acquires_UMEbus
and_Accesses_P2_Bus

8] NO. |reu

oate 1/ SCALE | pact OF

ceo LIS UL YU U

xierpal master

pe_as-—

/

p2_1iypel 1]

b_ssel -

pl_bbsy-
b_Sbb i_n_-____

b_aen-

/

[

i

/IIIIIIIJ
R

b_oecpu-

b_ssoe-

b_as-

b_uds, lds-

pl_dtack~-
b_dtack-

b_acken-

e

pl_br3- h

b_sbr

b_bgout -

A

k

SUN MICROSYSTEMS, I

NC.

{Currenily_Bus_Naster)

CPU_Rel inquishes_UNEbus

o]

NO.

[rey

DAIE 2/\

SCALE | pace

OF

c_60 Hpipin/Nply)

p_as-

b_ssel-

b_rerun-~

p_ber;—

p_half-

pl_bbsy-

b_ento K{

b_oecpu-

b_as-

b_uds-,b_lds- <;7

pl_dtack-

/
b_dtack- //
: (

\{

b_acken-

c_s4- |

b_totat : |

b_torrn

SUN MICROSYSTEMS, INC.

b_freeze-

(Currenily_Bus_Naesler)

CPU_Rerun_Dur ing_UME_Access

5}__

NO.

{rev

nDAtE 2/

SCALE | pace

OF

c_60

p2_as-—

mmu_vme- l\

b_ssel-

pl_bbsy-

L

b_sbbin-

b_oecpu-

b_ssoe-

b_as-

b_uds-.b_lds-

‘\{\
\
]

/

|

pl_dtack-

i

b_dtack-

b_acken-

’—(\7-

1

SUN MICROSYSTEMS, INC.

CPU_Access_of _UMEbus

(Current ly_Bus_Hasfer)

NO.

[rev

DATE

eY;

SCALE | pace

OF

c_60 / /
e ?
b_ssel- ’ [
1
/
/
/
L

pl_bbsy-

&

b_sbbin-

b_aen-

b_oecpu-

b_ssoe-

I
_‘———""

b_as-

N
N
pl_uds-,pl_lds- [] [Aer

pt_dtack- L1 1 [T T{I1 ﬁf
b_dtack- \‘f-_)___,Bé
b_acken- .)

b_brout- I

N7

pl_as- : I

4F°““_“
b_sas- I ____I_—__—

SUNVHICRDSYSTENS.INC.

CPU_Access_of _Busy_UNtbus

8]

NO. [reu

DATE 2. /\

SCALE | pace oF

c_60

p2_as-

N [
p2_typel _ |
mmu_ume— | [
b_ssel- N [

pl_bbsy-

b_sbbin~ __4/<4

b_aen-

b_oecpu- \~44—~\

b_ssoe-

~h
b_as- <£L7 K{——_
b_uds—,b_lds- N ~N
pl_dtack- 5_?'
b_dlack-]
b_acken- Lfi;:::

SUN MICROSYSTEMS, INC.

CPU_Access_of_ldle_UMEbus

{Not _Currentiy_Bus_Hasier)

o] ND. |rey

DATE 2/1 SCALE | Pace of

Feb 6 07:39 1986 u3114.pin Page 1

U3114 2080°'s memory acknowledge/buffer control pal

/p2_rv

/p2_ras

/p2_cas

/v_sel

/p2_parvt

nus

nu7

nu8

nud

gad

EEEERRRRXXEEERE BEEEXERXXREERA
* * % *
22 1] xR
* 1* pal *20%*
L2 2 1] L2
* 18618 *
£ 22 1] e%x
* 2% *19%
L 22 2] £ 2 2 1]
= *
E 22 2 L2 1
s 3% *18%
LR 2 122 1]
* *
PR 2 xxS
* 4% *17%
x¥xx k%
* *
L2 T 20 L2 2
* 5% *16%*
% L 211
* *
XEER E2 22
* 8% *15*
L2 22 1]
x *
e222 3 L2 2 20
* T *14=
*ERX e 2 1]
* *
$ 227 sER%
* 8% *13*
122 32 *EEX
* *
ERX L 22 2
* g% *12x%
EEE% sxen
* *
xx% EREX
*1Cx *11x*
X% REx
= *

(21222222 22222222 2222222ttt d

vee
/m_ben
nui8
nul?7
/m_pérrd
/x_pve0
/x_pvel
/m_ack
/x_ve

nuil

—~— ~

VM’;‘ RED
B_ee0
B _eR0”

vy - o
-»(g-,,g._acesaum) N e meseT e f*grsgm_

+ PRV rmksiioz """‘—""r“ UL Re et e

ar_ear:u_xe,ssez, R s

i i
L TwboweR —
L Hp R T % SESET B 5 Vel O At
B TR e Ay e feh et

S

Ra;ugsmg_

e mapER./

b
t:

st
]

oMLY MOPE -

4
| S

<O

ues

’-
v

1

Y,

Je o
.
N -
A b
S K 4

B I
T

PRI

ey

o em-

D80 M L_bH3

1
s

tre
.7

i

.4

PR PN

HEEe!

e

SOR

-
3

S

T/~ DR+ I

]

‘IL-,'

e Ntk B toba]

P

' :
[T O

=

S

-

.-'1.-‘ B

/WATRER

BRLTW .-

Ve ./%

I o e B deien S 3

+

R PE S SRR ¥

L/

HE sy

g oseL

i

S

4

RS eLINW

I Nw)

Y 1{‘"

12
\,')r IR A

<1 .

..

W 3

PR L

St fgma oAy s Wi

e

TSN
) |

i
N
|

zmid | weseRsen

BAEELx & 8GNy

e I

Chew -
2.5

&

A
AL
|
o : B

HA,

AR

[

GO0/~

[}

)

R
T \‘ —
T —-———

oo

- — e — - —
- '
o o e«

e

o

e — o
TR~ Y .
P
e e - |

Fiov
)
&
it
4 o
N n
= g b
e
1 Vo
! m.lx by . !
. ~
) -

.-

) (Y= and ’&.%\..h"‘

e

BIsgR T
[

X TGN

By

= B_SSEL K _B_SER. A

=N YESTN

cleb

B

(wi=o-1 2
» B BG3IN

e,
r
R

=3

..
o

MG

—le
”

nce

+ P

_ A SASEC ¥ Q. SSeC .

- e — e
. Iy

e i h et it e et e e — e e A

A —— = & - o t— . r— e — &

S

ER I R I

.
. .

z__:.'__‘
-

SN

4 i/’\

)

v
1

’ H
| S ST

-—

\9,.‘.‘ i

T s i

|
—
N
.;h_‘

A

e

HU.UME a<

2B

2.

1

7

R

v

VP TR
i .
Lt B

i regrat i

[y

el

1

7]
S

.b.:ﬁt)i’n}\\)

- -

(&

| g oo AT

g

. a

M ..—.A . v +). mﬂ \
S A
e g Lo

NN *,0 » . N qllL o~ _
,»cm I *4__ L
A ﬁwum% ! i

eV F 18

X:P |m ———

b raceze
ERIA

IO &>

8

. A
[SUPERNEY CHOER S

N
; -
. §
S M
1<
el |5

d

s

TP I

28

I
!
2

iodat

IR B

1
i
et PR

t
f‘ -

!
-

T
Ceh &
{

e e Y ey
PE G, i veed e

|
!
:
{

N,

!

J"_—' ;

-~

—

-

:
!

R PR

HEEO

R8T

"47.‘.5v. lasqe

R o
ey

—— e

- s

2
110
[

1 -

T
—]l e
T

et L

—t

N [}
- o ——

NG R
|
:

EEY " ¥ 9
) v S :
Ll QL L

b L .

) ~ . [T

- A o= -

————d e
FUN.

|

LT

Lo

AN
AR S L

i

4
——

e
I H)

M i
By
.

{Besoe |
B 1|

o]
b
N
- 4
<
.

: %-AZBﬁ)

Pel

..... i @ed i bt et cud - o poa —
! 4 i : ! bem e g

: |) i .
T

1

]

I

1'3-3&1;"-

3.

;-~+. ..;:__u_—. %m_ S SN

! 1
|- &wos

Sun-3 Physical Address Mapping

_—

FFFFFFFF

Type 3
VME

32-Bit
Data

00000000

FFFFFFFF
Type 2

VME
16-Bit
Data

FFFFFFFF

Type 1

vo

FFFFFFFF

Type 2

RAM,
Video

00000000

FF000000

FEFFFFFF

32 Bit Data

32-Bit
Addresses

00000000

Note: Accesses must be longw

[
»

FFFF0000

32 Bit Data

24-Bit
Addresses

FFFEFFFF

FF000000

32-Bit data transfers.

v

FFFFFFFF

32 Bit Data

16-Bit
Address

FFFF0000

ord aligned, longword size for

FF000000

FEFFFFFF

16-Bit Data

32-Bit
Addresses

00000000

a
»

FFFF0000

FFFEFFFF

16-Bit Data

24-Bit
Addresses

FF000000

A 4

FFFFFFFF

16-Bit Data

16-Bit
Addresses

FFFF0000

24-Bit
VME
Address
Space

32-Bit
VME
Address
Space

VMEDbus Slave Address Mapping

XXFFFFFF

XXOFFFFF
XX000000

FFFFFFFF

FFF00000

i

Supervisor
Function Codes

l

FFFFFFFF

80000000

7FFFFFFF

O000FFFFF
00000000

FFFFFFFF

Context 7

F0000000

Context 6

E0000000

Context 5

D0000000

Context 4

€0000000

Context 3

B0000000

Context 2

A0000000

Context 1

90000000

Context 0

80000000

[

User
Function Codes

~

)
i
T
!
'

+
>
h

i

[P SR P

AT

i

e g ce i i et

i

i
. e——

14

4

,

‘

———
l
'

o

«

r
!

- rr—— .

.. —

e e e - ———

.

. : ' :
TTIITITTAL s s e e e e - i
. N X * .

- . . D P o e P 1 . '
. \ i 3 ” N . - N s <.t ' w [T - &
b Aol L | T
Lo { . i 0 R N AEY B S S B SR IRENE T o
S N 1 AN Y m.,_ i ; P
I | SR A I R B i
- _ e m . R R ~ O SR S _ u_ 4)
m 3 Wt [o e ‘m . _ _ ! _ i : | \
Copor I B et e e L e e
‘ ! i 1 v H t _
- — ‘ r!.“r . F . — ! [— ~ l,m ~
AN S R ! e
“ . 3 m ——f . ——i — lAlbm.I 1 - —. ..M N ; e I.M :l.w — e f e — .~~ .
S SRR SO NN o - — N R Col .
mt A R RS A e e
. i:i.t.......m.,t e IR Sl B DO I Lo
— —_—) - \—‘! — e i OIS S - — ..|lv. «i . !
i a - ‘M R [S L [S .
NIRRT EER HEEENE
TR T E S T
N —_ m..m. OIS U § % g et [~ — et S,] . m _
i) R I I] o e e
e 8 Y 6,_ & \,.. X 3
.o?m» * .
Pl Ak !
P 2 ».m 1
IR R Al a _
b clx ¥
. M | |
- —de A.. b W

i
|

P
PR Y '
————

————t ey e 4.

- - P . —— b .
o
! ' I
w. e ulclt,.lf \P Iﬁ..L-
IR
g
t
e

———. i w

l

|
' Waca,

l

i
DY R e

“Seave. Reawn
- e
e

b i — e e
'

B e Gt T VUL AU,
¢ Il
! .

, ¢
1 .
———

]
A

1
t

——— - a—

H

i
|

v

-

. m—pem .

3.

1
“ro
—ft
+
———

\
- P
. T i
x.

N

_TATE

PR

t
t

!

et - ——b—— e
|
.

B R . S

,——
t
!
h

— - -

{

LS S
'
——
Tt

-t

.
R i Ry

—— 1} ~
—.——— — ————

.'.4_\(;7&;.&_“39

.._CPUk ~.wr e NED

SR l :’3
N . v by

Lol ! :
., R ENAN

t
“l_—iu _4-..._1,..‘:

l

et e b v e

. 3»..3:1 b;s..m.a:‘e_
AL ’ .‘ CPU\ _wf\’n;. _-

."'

T

. -.-.n,\ ‘\'viv .hﬁw‘“- Yor. lUu JVv"bb LYY \J TEWS v- -mr ku-u-

4—\ s o—-—?& -ro‘- vy P u vr L3

AR

. -'»{

' .
—t.
H :
| o
e g
P

."L,_’i."DL*_ Oz}u’. -

;D\mA \An%c,

0_-.-_

' N N
N ey

--lC,.Bw w\:xso_-..
SDUSR wrie

_ kb=

~ye -

Pl

r' 3

e
PSRN Y.
.-; 7 L—’ .

. !.g—,.. .

N.O\WU -

: ; by
; E - P
¢ eEn.ditl— - :
: S | R S i
! ' X } |
i ' ¢ ¢ . - I ' 4 |
i) R T T MR !
B T i o ——f : : - —— : ;
- T L R T e I N N R T R
h i : oo e . L ek s Y
- ;‘ T - -— - dc e ahogs pateagay S b - e I i T
- t - - R . . i RS
e __;__,1, 31 E\r_ma:; en. D\O A o
) -r e ~.;_..

e d e

' I SR
»{..,._A,,.,. SR
oL .

!

-\L.-

-__l(, b. 4’ w\oo\ea

_JUME cend

- N i
Tt T '%“— : A RO
: Pl
- '——+,—--~:——-+--»- —}- i—-&—-—.;‘——~.¥—
B Bl et et ! R SRS T
D S SO T S O O
' x Pt Co b ST
1S\ TN v —— —] T) T -
| SR R SRR i
AL T B B L SR B PO
e Ll et S = e e B .J-__!_.__]
L i ! i % L i T W
e T s
P : L !
- ._-,.7_-_4__1__1.. .37(-b 4" Aa £\, dow — _.1__r_+_
- [l : . L . {
SLE --_m--____..buy\k Peou\ - — I !

_——

-t --

.
o se——— e ey e
{ . |
! 1 i

e — e

. }T‘Q\ =0 e SN\ X e .._..;.._._.._—- — ..’- BN.00LW -
R R B S PSSR S N O S O T =S
e L , e e '. e e - -‘~_ '.__.._...__ ——— _,._.f__i._~§.._~“. .
. . : v - ; |
(o oH \Mo:)O/ Bw_sowd i | CkRREQ& \) HL, -...g \kCaNC)‘s_\f/ QQ\BHﬁ

-D\U“ Loeer A

Koy

P — -

EXNLO6LW

L ENLDIW
S -3 N PR\
B 2 S PRAYY.S
ENLDOLW =
weN).oOX

L]

-
-

-

__.nb)x\;h- AT .

-

-

AR Y C—O\‘J’}/,.
 EWVFME . OMF OuT w\)cwom
T AELE | OATA QT

—p—— e

7_..1.___1

B e e

e o —————-

SelE DATE W . UePER_
ERNELE ONTA v LOWER __‘._._.L.
EROMLE .DA'TA :

-._,._7v

CROSS . L.

1. STATE Lt
i ' i

i i
i

DV MA ___C_ON_T.&QJJ = N
|
|

A TN WIS N O N TS SO
VU T Tl S ERERXK S Bl AR

' SR | | e b ! g ’i'
; | B :- ; : ' —7—"1 +$‘X‘RE& ,f o ‘t T T 3 -
I & U i .‘;-;.:L._.".i\' Y [RNNAIS) B SO i ! !
A AN T
B + o ,_..+ 4'_._._ - i . b 4 !
- i H : 'f = /- ! T i |
' - ;___4_ _;_ . e
. ‘ : 4.2_--1.:."
Sl I LR i | Y
N l .
* 11]
o= T
8 S UG I
[Il :
T \
. — ——
pu i -
i & —1_- |
i 3 i
o e
o

Lo S __J,. A2

+ 4o ;_.{s..—.

'-T——"—'“r"*r ‘f“‘: ==
— L _J_ . _‘_.__;,
T]

..T-A._... — : { 5-9\9~€G\+

[.'.._.1__.. —_— e ...L.-l_

] ' ! «

. i !
. [P Pl GNP PPN S SRS GRS
H ' i

: . .

] 1

»:. i Ealy ,-—; *' “Lor' '—‘--—Lj

.',: it.. i

Q/

p2_as-

mmu_typl1]

S

mmu_uvme-

b_ssel-

pl_bbsy-

b_sbbin-

b_aen-

b_oecpu-

b_ssoe-

b_as-

b_uds-.b_Ilds-

pl_dlack-

b_dtack-

b_acken-

CPU_Access_of _ldle_UMEbus

(Not _Currentiy_ Bus_ M

[

c_60

p2_as-

mmu_ume-— | l []

b_ssel-

b_bboult -

pl_bbsy-

b_sbbin-

b_aen-

b_oecpu-

b_ssoe-~

b_3as-

pl_uds-,pl_Ids- |

pl_dtack- [[1]

b_dlack-

b_acken-

b_brout-

pl_3as-

b_sas-

CPU_Access_of _Busy_UMEbus

p2_as-

mmu_vme- | l | }\

b_ssel-

pl_bbsy-

b_sbbin-

b_aen-

b_oecpu-

b_ssoe-

b_as-

AT TN

b_uds-,b_lds-

t

pl_dtack-

b_dlack-

b_acken-

o

CPU_Access_of _UNMEbus

(Currenl lq_Bus_ﬂaslor)

s

~—

n

pEp/Eaininininigiginlin

b_ssel-

I?FU—U—LHJ‘T'JWU"//J
b_os- |) h OW

@

b_rerun-

p_berr-

p_hal f-

pl_bbsy-

®____Nw

b_ento

(0]

. b_oecpu-

®.® I3

b_as-

b_uds-.b_lds-

pl_dtack-

QUL IITNOITTTITITITTITTTT

b_dtack-

b_acken-

c_s4-

b_tolat

AU

b_lorrn

b_freeze-

CPU_Rerun_During_UME_Acrrss

[Currentiy_Rus_Haster!

c_60

p2_3s~

®

l, extornal_masler tabes _conltrol
=

/[

p2_typell]

b_ssel -~

B

b_sbbin-

b_aen-

b_oecpu-

pl_bbsy- Q

\\

/Hlllirl

5}

b_ssoe-

b_as-

4

b_uds, Ids-

pl_dtack-

b_dtack-

b_acken-

L5

pl_brjtff?

b_sbr

b kqout-

]

|

CPU_Rel 1nquishes _UMFbus

(Currently_Bus_HNaste

c_60

U U A O U UL

1_br3-
Ppl- O

b_sbr

b_ssel- \

b_sbbin-~

b_bgout - C)

p!_bbsy- GD

®

pl_dtack-

pl_as-

pl_sas

b_uspc-

b_udma-

p!_dsB-,pl_dsl-

6

s_xreq-

F.~35_

p_br-

p_bg-

p_back-

s_dma-

»x_dmaen~

L)

UME_Device_Acquires_UNClus
and_Accesses_P2_Bus

ﬂ)l

c_60 |||||||’|l||"' I'Illlllllill'l l.‘

pl_bbsy-

s_ack __J—___———_] F—_———T j—_———].___.-__
p2_as—____r—__—-| CPU_Cycle E——__——‘\ }\ j\

x_dmaen- | (4 / / Ej___1 —
pl_dtack- , § f / ~ [
pl_as;_______EEi{_—_k / F; k F_"-_W____
pl_sas \1_tf%> / // \\\L-J___
b_5Ssxdmg ' | E%:]

xreq-

(DH G —

NI
b_lock- 4
s_xreq- kf{* |] \
p_back- l /4:x

p_br- t_)___" {
p_bg- “L____—\H
pl_dse-.pl dsi-[h \6_—1___

~
\;

p! qS:::::::::;}}————fgj . L——_Jg)——~——J—~————~ UME _Device_Inttiates 7" Rus_Lock

b_ .do- ~0)

- \

il in i inigingigininisininlinliyi

pl_bbsy-

I I I O

s_ack
p_as-

CPU_Cycle

x_dmaen- l I

pl_dtack-

pl_as-

pl_sas

b_Ssxdma- I '

S

Ss_xreq-

b_lock-

p_back-

p_br-

p_bg-

s_dma- l l

—

UME _Device_Ends_P2_Bus_Lork

91

'

e e iuininindisninfaipininipipinen g Sp i Sy i gy SRy p Ry

pl_bbsy-

s_ack | I

N

p.3s- I l cPy Cucloﬁﬂ

I T
= 1{’—4—l cucete]

x_dmaen- I

pl_dtack-
pl_as- [

pl_sas ~ ' (j)
b_Ssxdma-—~ ' J

"
' » [

xreq-

b_lock-

p_back- I (4\\

p_br- ¥~,\\ \tf*" ! -
P-03" v R

UME _Device_Nol _Fast_Frough_to
Inttiate_P2_Bus k

| " | v | ~ | "™ | " | " 1
e_cl2s I A S R s N e D e
e_srd-.m:-—t](@ [1 _
D [>——

o_al16:23)
e_adl{ P0: 151 ana-15 S~e)C [TT T T [verigdare >—Com0-15 >—o . L

) e_hold-

e_as- ﬁ@ \ (DL\,_J_

e_dmareq- A \

s_ereq-) /
p_back- \

e_dmaen- (:)F) \

1\
d_as- ®L f(@
c_60 nEgEpt [Ty
s_ack [

e_ready]@ 0%*
e_rdti- | l—____—q______

e_rdu-,e_rdl- J |

Ethornet_Cycle_{Fastast_Casn)

e_cles | l_—lj//1 /D

e_rd-.e_ur- G§

e_srd-,e_sur-

8]

AL [S>——

o_al16:23)

e_3dl 00:15]

WIIIIIIIII?IIIIIIIIA' o

e_rdu-.e_rdl-

| e_hold- | ! ‘@
8-%5" —4{..®|»— \ b[‘_
e_dmareq- [—!51 —. ED \ I
s_ereqg- [| il \ I
p_br- | |
p_bg- | J\ [
p_back- | \ /
p_as- | I L
s_ack . 44r-
e_dmaen- C)L | (j
e_ready l 1

_ | —

e_rdil- . OB

Etharnet_Cycle_{ Slowes. _Case)

O

-y

A inininininininipinininfpipininly/inininl

[

| R

r_clr-

r_dmareq-

s_rreg-

@
|

p_br-

p_bg-

p_3s-—-

p_back-

r_dmaen-

refr-

r_sas-

r_ssas-

Refresh_Cycle

-

ol L

1 25 ima dagu
RIS
P TR T S g R

i3en

o 0 6o 90 2o iso IJO 20 240 230 300 130 %o 3o 410 4SO 480 §0 o 70 0o ¢lo o 40 220
: C60" So st n) sy Ss s€ s7 [Tse 13 [I5 LSM__[ta L_S$n [sm [" 0 [Tre st [ne ",‘_n; —[-}E-"u e
£c1:0 Asreo __No 7 -3 - ¥
Pz_q[u:oojvﬂ IR AE) 61 - ATM;;_‘—]
PZ P D BRI YRR ETO I RNX o7 - - LTS,
nnu—v,r,w,v";Tqu TS 3 A _Itri5 3 N Yeee — -
pr-as-’ It XA 1] |
pl.fw) CEENY) & '
cs2 0| bt 3[T) l :
cs3 B § L B ¥ (T ; :
csH- TJett Yeae ¢ avolt [:
1
-8
-‘:,/Jﬂ/rﬂiﬂ' B AT T 4 ~rTyIve L ‘J—‘.-:._ |
PSPPSRI, L s Jus ! Ky .‘;: |
Pmu 0" Ju . T e | [t o
e acke b T e actane ‘ ' : g| Juees] l
.) ' -
Mmesaren= v) (SR At \ o ——
mosrden— _______ |t : [1
dioscy= T \
q¥-ReSET fss]rer S - s
wrt o | ! | 2 | 3 | Y |
myack- N (T T
sHrohen- A | (T2 | A N
meswribabes: | EX3 Y270 '
fl"'(‘““] Lo X L A ¥ 1 (w{i»wmas
m._dlre]) aan (SR W EENEIAR Yo VALID - —
/4055113085” = :

jLE —~

mos WRITE

7 S Whe Stabe

L rac v O
v A

o
o

A ALY & B B IR N APAYY NRA TP Ao VIR Y 4l g 18 e, o AR W A S A o8 @l a el a ¢ e

L)
W
(| D :
(. sl (

o o co 90 /20, 1So 180 210 24o 270 300 310 340 3% 410 450 “4go s SYo 70 £oo €15 660 &0 '\'7:»0
cso —J se |t [Lo | sy ss [ose s [TW (e [Tae L so [om sn | e |_or [~ o i (44 ve ¥ | ne l s I “so Y /
Fc1i0 Asreo Mo X - 3¢/ X) P !
pl.alneeo] _A 7« ¥T7)i7 7
Fz,ﬂ [SIH)RR YR ERDDARY.S 1 -

mmi - XS, wv YweieJre "X 3 K 3135 X Yoo -
pr-as- | b v]ed | |
plorw) COPNREON) | T
cs2 6l “flie
cs3 e e 3 7 -
csH- T Yrae ¥/ 110!!] i
Sty fdee/c Hgpe- AT (LA A
P i T i 14 Kiwe
mmu _f0- M . o T]oe 1 T N D
1¢C_ack: N B T Ts0_acrave 1
meswrns B
mosrden -~ Jar cfrr - e ..].u@ e
dragey = I" - —-
qd - ReseT 5] —. - ! fang B
wvre . o | ! | 2 | 3 | h | 5 6 | o
A <. ' “ Ee T el T he
stroben- Ge i B | 5o T faeT T T T e
mosrAcrabe: | EXT] — Jare X [Faf % —_— p— S
ot
Ty)
modCre) ot)™ G _7= L [: ,_
’I,J[u:u] —(1U_&o oma — ——— - — G ‘_"!’._“,'4,,.?52* ; —
T - T'——'"
1PLE ; Al 1
A i IS 0N . :
MOSSTROBEN : _ MoSEAP el
N 1
, .

MoS BUS READ

¥ lean 2470
ana

™M

!

(4
/
7
SZ\.]
— - - .] .] R
[s (RS A B C,J 31 _ 'cJ 3 CJ L
|
60020 g ENILR vIuLo ann xenf oce
. — 14} nen [S10H - A i i
’ 9 P .
nen 195101
6800
: Hos 10 TIL 10
BUS BUS
[
PARITY PARITY [ATTR mR ¥ - XEYUO SERINL RIC €PRON £ARON
ERRUR Lmcn [I'q] REG l nouse PUORTS
REG : COHIROL : ! (65301 o381} (2120
»
I —_ - , - _
l Devico Spuce
USER
CHTXT S(G PNGE ous SYSIEN DIAG ouna 10PRON
REG naws wmes LRRUR "ENNOLE REG _€0
REG REG
x4t .
Coatrol Spuce
2060 DATA BUSSING el

o]

120

/
0 20 ¢ 90 IS0 200 240 270 20 €0 g0 | Is0
c60 5o st "= s | sy LSS | se s7 So s s 3 sy
fe1:0 Azioo __No ¥ 73X Yo ¥ 7. 3¢
p2-aliedd _N 7 - > T 3)37 N7 - ¥y 3Y37
'PZ_q D13l " Vovwenaaaming s s 350a5k7< AN ¥ [107 ViovroraY3amin 7 /v . 3503547 < AN X [o7
' mmu - XS, W,V “weriofro TX X A 3Is¢3S % x Yoo "weolao X X A 35k3s y ¥y Yoo
/oz-as—- I 22 39164 i 4 a2 3144
Pz,rw/pZ-srz 12, 37X f2 4 371
cs2 38l fTee 0| b 37
cs3 T s b ST 128 3
csYy- Jo&y 20 £/ 1705!102, \r20 t!
bwﬁ:y/dw/(ﬂs,oc-) ML l"fn ACTTVE o o Ts \HSM ACTTVE
—1 mmU- roam- NI AR s us NG R - Tas Jus
mmu _jo- _Tiy v ~Thaa fr36 | Ity T M 10
p2-uag- 38 63 [Je® 21 [T379 63]]¢8
15 P2_endras- [eo® L2rot! [z
N p2-bot32M- [ze UL [18
ras X_Y- aa] =], 215 | 235 | 69| 27|
xa X.Y LAST CAS w1uX28 X4o maw RAS Y13 RAS . X3%emv Y32 cAS " 38 X Yeomrwms Xramas YRup, Yi32¢AS
bdse|[r:03- 2% [17 [£ n7_|
casX- 2o | 15+ 2w B - 'E;_; ----- ~‘lf‘l
 we X- . s | 7 _Jeor) f]102
p2-ack- | - | 2T L) i e = -
mbd [31:00] %)} 214 DATAVALTD Vs 396)
mrw l¢ js% [Js2
mben— e | {2772 243 l_'lf n
p2.d000] —13 (17 (224 PATA vALTD _ }27§ 308)0—
mparrd- ze ™ /o [277]293 {ng s
pL-par [y:oo] —<30 {59 (221 PARETY VALID Y279 300)
/a«,w/'/»y chect l; M lu? S.fp’ﬁ‘,oluo Check
Margin
2060 MEMORY KEAD
; F-11-8S K.BIZ2TAK
W R el |

J &

-

L o

o "~ 30" 60 g0 I20 IS0 i80 2o 240 270 30 o 96" " l10 __ISO
c60 5o st | = L2 | sy s 56 7 50 st = 3 Py
€¢2.0 Azroo__No Y. 730 o y 7 30{__
p2.alinined AL T 307 T
‘Pz-ﬂ D13 ToovioraJ32 min [1v 7. 35035478 N ¥ [107 TR CEY Y I (AR 7 [1o7
mmu =X S,wy _Twweiefio T XA 3535 3 X Yoo virio a0 TX ¥ A 3c#3s 2 v Yoo
2.45- 4 T2 34164 Nl i HEP T (L]
pz,rw/pLsa-ﬁ 32X . = . 371%
cs2 3l ©fTee 7lel OfTee
cs3 - s " Tas 138 T4
cSH- Joti Y120 ¢t/ 27081 T | V120 ¢!
bootey [dev/ctlspe- M1 T “‘5“ AcTIVE W Vs \q;" ACTIVE
mmdd - ram- — MF_ AR L Tis qus NE . Vs |us
mmu _jo- I) i RN G L “Tiy " T 10¢
'oz_uag- _3H 63 | 6% 213 [T278 631168
9. FZ_Enﬁra{-' ~_Jeoni] 210t [EeET
G p2.-bot32M- lz= j8 [+ 8
ras X_Y- al 1], 218 | 235 | 7| 31|
xa X.Y TASTCAs sYo@ X4o maw AAS Y13 RAS Ycalmw Y32 a3 8 K Yromrukts Yoo a5 Y& wm Y132 nS
bdselLr:0l- . {28 17 [zs 07 |
casX- | ZX) | s [“, 13“ = Eg__:-\/ii/__
we X- - P] Jro e e [1162
p2-ack- - t e Lmo e —
p2-dCatioq) bemte-saee (@ TF__VHID 77)— (®
mrw l¢ Is2 ¢ sz =
mben- e _1s I v I
m bd [31:007 —(73 (1o . — 290y 317 }—
mparrd = e <l
p2-par [24:001 = XXX X7 mow vaizo Xua VALID Tarsam) —
Mpd L24:00] X0 PARTTY MIN X139 VALID PARITY Y378 e
2060 MEMORY WRITE
. ’ G-1-8S K. LL2INK
. Bl B |

J ¢

/)Z—d[:)“,ﬁj 32

TP .k \
]
> P2 DATA XCVR
LATCHES AL=539
A SOSD /9-2
v N
6y NgY .
. , vmdal[63:00] & 3 | vdatfr:03] ECL ouTPUT eclvid /-
T oQ a SHIFTER AND >
: 23 clock cew. 1 |
] . 3 § , A
’ < N 1 >19-ll
- .B AL]) \
RS g . VIDEO X
> > . MEMORY v 3
o 16K x 61 N
ﬁ'_ljw)“'. 2 A N Utjoa-6e”
/\DI)A(;E'SS gl) | g 2 o
ConvTIROL 5 recaddrCro3 1.8 1,‘:‘ H' V4 mhsyac -
~N : .
< s - /8/ id’ /8/ RN ST1ATE
t‘\’ ?\i : o) \\{)‘: '2\ § MAQUINE mvsync -
Q< ‘ R oo X
< J | 3 Y3 3 :
SN ! N >V > =
i e —
9 A D
N . o 1
: ;. v - x
. x 3 5 3
. S £ S
L[r2 ;[vrew
TWTERFACE § ?l vrpeo
. i
< Sack MACHIVE busy CoNTROL
(,02
IS) “ 16 '
— e e [DT VRS —_ - —_— K.31 7~J'4A' ?2-2-b2

s

A
o

- ———-

YIDWR-

\ SANEITY - ._fz.ss‘/vs/%r.,&’—
bOVARSB / : I
- VREQ = = !JTTAS= #/zivir-)e fusy !
_; : o ;

=
Cotery

| ,

VIZRD —/ vSALK- = |
VRER= = VIDRD= =+ RuUsy ;

VLDWR—/

VSALK-=> VICWR~

VARE®~= VEDwR—= JUSY E‘L{E/
' VSACK= =)

", -
WRSERV ELSE/ pex-= VIZWR~-

{RDSERVRA

VAES - = VEoAD=+BUSY|

VAEG-2 VIDWR= ¢ BUSY

saUsy / VsACk == |-
VIDWR- » sausy/ VREG- =/
Vsaek-=/ sL3E
VRZg- =/ VSACK=- = 3UsY
; (_rpszrv vrEg =/
! ‘1 <
—_ — 545:/ TETET / vencen svIaEs-
> ——4 " vepeg-=1 .,:;.A,)’/ VSALK 8 .
b,“';g (\WREND i H v eQ- =1 VREG- = | |
: . :
etse/ !
(—— \ TVSACA-T vwkp—{
/, / R e = .
‘ S2UsY /) vseck-=/ [RDEMNMD - REe-=/ :
! VREG- =/ ' :
; v::n:-/ VSACK==/ '
3 vrREQ- =/ :
[}
|
|
v VIDEQ sID£&
L ' w?..fa-/ Busy
|
i
] \\53-/3'.15\/
1
Svyre Z
cLkyo/ Busy
_ FWRES [usy |
! .
L 5Usy /
; wveea) Busy
' \‘ e Vace /TS
1 B I . /
- \ k$ -
ALK) ELSY TTel

R g RACE 0 P AN |
: T O :
0 '3 %}7 L A4 "3-,«3‘3 & 1:\"‘“
1
Fy
"‘1' %X I.R g
A R - R 98¢ 9,89
) a , §) ZllmPAG DO 1) OR . L) o
1

[]
- oy = Y N(§ D ~JW-Y", M A 2)

a g OR al® aa 3 0 PRO R A OR PAn
1l
‘ A
H
' N »
. ¢
"

ol 3 .'
R 3 g .
J A , R 1 5 3 M £
LyepAas 4\ CE; DOWN. 4 {FLIsKHO : retan " R AP.I ; F DO IDeHOR! Zy EXPLR% V8 & EX1

\11066 WRITE TIVUING
CFrom Anayze)

A\
‘ F ol

IA —— = \)\\'OCQG’)O\& v | < e O .;‘
of I 0 I ! 2 I 3 I 4 | 5 | é 7 | o
TATE | o | ¢ | * | » | ¢ | s | ¢ | 7 | 8 | 9 | 1o | 1 | 12| 13 | m | IS | o

wo L L re e re e
e 71— L L oL ot o’ 1 11 1 1 I "1 -

STATEL:3 X X o Vs Ve Ve X e —
RASO:1- Yoed .'_":'/ TioeN_ l/orf/

- 4 o+t T 9 T
~ASO0:1 e ! nf!\ 1"»/ 10059\
VPRA - . 'IOI uof
VPCA - B Tio) - Jof
VVRA- L "‘?l el
VVCA- o e} f
—_— 1
ADROY7 T e 128 PrA D G Tig 2 vRa T26 X_vea T
A 4 .
\GENO: 4 Pyt N A T\ o
63 TURLE RSTT %0 0 ;
IDAT 00163 yALD ROD———> ——C X, VALID READ S——> } ;04—/\# — Xvacio READ
P Ch T " e
IREN 00?56 orses \ . o Lwaser [
; VT TS S - = (XvaAiro gEAd_
\0AT00:63 " yaito RD Y > —TTe —(VALID WRITE DaTA . o154 30 T < VALLD REAS

VACK ol o L
HUK 0] Yol

1
.', .! B Cimee liiaiiee mek TN ey s s St o mmtm——s "4

]
- i)

SQA(L — r | e - - =

2060 FRAME BUFFER
COMVTROL | +ia3ak
111384
reva

Hiy !l
wwno 10K 14}

LoAD
P
ewo XN N NN N\ TN NS N NN NS
fonp- NN o Ko w7
fuk2 I\ s v s A m
ECLK40 Sy NN v/ / AN Y sy
ECLK 80 s X SN - X sy
veLkyo W DNEMPAN 7 KT AL 4
STATEO N TN N A4 ‘ ;Uﬁ\
STATE 1:3 .
| D¢ w0 X
VOoEX IR XX X T\ T T 777
VDAT 7:0 o 1, 18 X vaczo narn————z{.s__;i(-""‘#_ﬂ._v - t2
" HelK L e ; ' - 7
S5 cx»Q =|J 16 _: VALID ALSS)y @
01SPEN TR \
BtAnK- = \
NOTE S ECLK mIn DELAYS BASED own I10H136 2080 VIDED OUTPUT SHIFTER
MAX DELAYS BASED ON 10136 ’ CLOCK GENERATOR, AXMD ’
BLAVKING
‘ K.BI23AK

T L L A T K T, KT LTSRN S TP PR PRY R

A gt crimtiee gt .)

e i i
: - \

o 30 ¢o 90 120 1So 180 200 2y0 270 300 30 360 310 we) o si0 cvo c70 400 e e et o 2o

cs0 se st n L2 sy [s3 3& 57 39 |5 [51 n o fe ot [sz [‘|-‘m o] v T—_';T‘TM m [
€c1:0 asvee_NWay -39

1
pl.q[u:«oJ__"_)] EETAE) &1 1
pZ.nl’)l:uJ*'mn_'.T' AN Y (1 {
PRI R A IR r) (T3 ND WA NS TLETER < Yeee .
proas- R b1l \
plorw) CHPRERON)
cs2 0| OfTee |
Cs3 ET ALl My Ty :
csy- T ; Y2 ot [T) 3
‘ H
} i
"'I/J"/lﬂs,c» T——.W’. Prsie. 4 H
Do mad s faam- \ LI T T Ty]S '
Mmu . jO" ——Jn o T |1 |
1€C_ackr N ST T e asrive]

MO rem= Jav . |

masrden= Jat <[r? = e ralu b ! \
diagy = Jar .
. 13
qd - RESET i Tesdee |
e 4 ST Tz 15 1 &9 T s 1 ¢ 1 7 s T
msack- lx' 7 i _
Sfrvku. = - .
racsrAstale- — @ T —
o . . .
m.drred wontf) B
Pz_J(n:N] —{_=~v pmma - 5 AR —
g530A
| : 1208 adk AKX gyac .] 250 jeo surpat diby | j00iei cetup I INT. ACK. CYCLE - PARTS

K.Gisjt 1-K-85

TOLE —=®| SYNCWAT " - : : I Ry
.“ : '-'f 1o oot N

T wease e

PO PPV e

* el A L L T T IR T R
[}

pA] .
=
.\) ' S, e g
610 720 50 7e‘o " ™wo g7¢ %00 230 a¢0 Q90 030 1050 1080 Hio o nzo Y
o 3] m Siv o1 E] ny m | ™ | e u m | 13 [33v |_sas) Teve Ls2” [30 'E
Werw i .
' S - Tamrw ;
: ~ Jrew
|
a1
N YT
i
-—t
IR
lmlmar
o 1 1 1 a1 1 3 1 4 1 __s 6 |)
Jrozo_] tete T Jpve _
[]300 _Jro30; Jiceo T
| XX | [7ovs Trir0
{930 _vAuD 147 VECTOR T
oLD DATA Gosi— { arw a5
: I T
!
. BSOA A
2 < M TWTERRUPT ACK i
Mos s TROREN pWOSEND_ - zmeadh
Vo aeEe T DL ——
— e 3-4 (S
oy A . o o

- . s L B
0 30 6 90 /120 /5o /180 2lo 24o 270 300 330
C&0 __[_—,—o__[___Sl__l—'_n__[__fg_f— sy] st Tn L7 e <9 50
B . G S Jomm . _
p2-aln:ral D) WA T2 [13 tares
PZ-"(D’JUJ Tioni003 22 min @ o~ 0 2543507 A} [ro7 M XMJ[‘””
mmu-X,S,wyv _Twriofao TH s A 33T AR O ! Yromgh
pLr-as- 4 B2 39144 [J
2.rw = .. 321X .) EX I
cs2 BE t 3 [T N el i
cs3s e o T :
3 CsH- et Lize ¢! 27041 [
» ~A _
bo&c,/d(v/r tlspe- ul s |48 aersve A
mmU - raam- A —Tis |us we . 1
Pl 10 - Tie I (128 (203 5 [ETYH|
. scC_acks N (RN : IBO‘MA(—TIVE
I T ¥ or— S
Fioe RS N I l [lle—)‘ ‘-‘/]'“GZ AJ [30 __[?‘10
1_AC7:07 T) Gev Qiol - - e vau) _ hEE) 3
’-,'L AC37243 1, —W} @) P i 1.8 (prizu 7
1 - J21 Tigo |22 [307 |29
el - N e [T
1ried - y [3sJur i i RIS N
[
e, oo _____J}S ! lnv Imf |310 et
tel ey ;______]35 ’ {138 i _|reé [32= 367
PPN T - J3s L PET k| B [+ Toes
‘ t, ALS (X4
- fec <> o) A | (oe (e Y 1> 290)
IDCE g"‘!‘ruup\ T e v,) PTILERD '?L =
= : 1it- £US
FEADS

2 U

. rN
e |13 B e
l' :
0 30 6o 90 /20 i1So |80 v 2lo 240 27 300 320
cé0 so St s . $3. sy ss | s | sz s8 s9 : so
€c2:0 Azioo _No) - 3 Paww -
pl-a [razeo]_ Y 7 ~ 1T 9Y37 Timew -
PZ-Q (5TH k7 BRI CEY Y Y ST TR A X o7 ; Y22 mm
mmu-X,S,wy_"1eiofio TN Y % 35#35 5 - Yoo . YTTU'
pi-as-) | = . 333« _39]64 [J
p2-rw Y (O MOEET) 6 Yimin X
cs2 0| bt 3T Tl
cs3 S At 1T
CS- doey Yr2o t/ 17ofl|
bookey fev/etlspe- AT i5 TAE aersor N D
mmd - rawm- __ 7 MR L5 Jus L (2|
Mma _jo- — I o A Thn 126 N T |
scC_ack: Py T T 8o acrave
e e o
Hlbfen- & 1 I” T Jwe 3, I o o
1Ibfea- Cmau) o Jre " ae (15035 J16) (‘{5),3 A B [7%0
lu +-417:0d TP ,” N ﬁ,{,_’,;ﬁm VALTD] —
¢ p2.dond Y @Y VX YW nalao vaiis = -
tsack- \ J29 ! llqo]uo g Ber |p?
¥l wand= BN .8 [Fr e A
ttirdend - ST (13 L1 a1 e T
ar’!’cwrM—) T |l)‘0 j"' . lz‘o Jos
Hkpcwm’ . v [13e ?]l‘& N : [a¢e 305
mmu.we - - |7e | (i] [xee 308
mauv.galss Ty Jm , ' faeo 30¢
ia/mmu dafg)78 e N -} sl VAo i - 2163 185 3y nny(o
INLE | TreveAv Lt fag g e veLs
CTTL BUS
W ! WRITES
< / ;
flglt)lk
' 2-12-8Y

— a0

Revision History

Revision Date Comments
50 26 February 1986 First version of this Hardware
Engineering Manual

A-10 25 July 1986 Released version of this Hardware
Engineering Manual

1-11 1 of 20 October 1986 | Changed revision number to comply
with Doc Control’s new numbering
scheme.

1-12 20 January 1987 Corrected revision level to reflect new
numbering scheme. This is the only
change in the manual.

1-13 10 May 1987 Added changes from the latest ECO;

PALs 210, 202, 408; 25 MHz clock
removed; TOD circuit revised.

