
microsystems

Pixrect Reference Manual

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNIXI32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Contents

Preface .. xi

Chapter 1 Introduction .. 3

1.1. Overview .. 3

1.2. Imp<>rtant Concepts .. 4

1.3. Example .. 5

1.4. The Pixrect Lint Library .. 5

1.5. References .. 5

Chapter 2 Pixrect Operations ... 9

2.1. The pixrectops Structure ... 10

2.2. Conventions for Naming Arguments to Pixrect Operations 10

2.3. Pixrect Errors ... 10

2.4. Creation and Destruction of Pixrects ... 10

Create a Primary Display Pixrect .. 11

Create Secondary Pixrect ... 11

Release Pixrect Resources ... 11

2.5. Single-Pixel Operations ... 12

Get Pixel Value .. 12

Set Pixel Value ... 12

2.6. Constructing an Op Argument ... 13

Specifying a RasterOp Function .. 13

Ops with a Constant Source Value ... 14

Controlling Clipping in a RasterOp ... 14

Examples of Complete Op Argument Specification 15

-iii-

Contents Continued

2.7. Multi-Pixel Operations ... 15

RasterOp Source to Destination ... 15

RasterOps through a Mask .. 16

Replicating the Source Pixrect .. 16

Multiple Source to the Same Destination ... 17

Draw Vector .. 18

Draw Textured Polygon .. 19

2.8. Colormap Access ... 22

Get Colormap Entries ... 22

Set Colormap Entries .. 22

Inverted Video Pixrects ... 23

2.9. Attributes for Bitplane Control .. 23

Get Attributes .. 24

Put Attributes .. 24

2.10. Efficiency Considerations .. 24

Chapter 3 Text Facilities for Pixrects .. 29

3.1. Pixfonts and Pixchars .. 29

Operations on Pixfonts .. 30

Load Pri vate Copy of Font .. 30

Default Fonts ... 30

Close Font ... 31

Pixrect Text Display .. 31

Transparent Text ... 31

Auxiliary Pixfont Procedures ... 31

Text Bounding Box ... 32

3.2. Example .. 32

Chapter 4 Memory Pixrects .. 3S

4.1. The mpr_data Structure .. 35

4.2. Creating Memory Pixrects ... 36

Create Memory Pixrect ... 36

Create Memory Pixrect from an Image .. 36

- iv-

Contents Continued

Example .. 36

4.3. Static Memory Pixrects .. 37

4.4. Pixel Layout in Memory Pixrects 37

4.5. Using Memory Pixrects ... 38

Chapter 5 File I/O Facilities for Pixrects .. 41

5.1. Writing and Reading Raster Files .. 41

Write Raster File ... 41

Read Raster File .. 43

5.2. Details of the Raster File Format ... 44

5.3. Writing Parts of a Raster File ... 45

Write Header to Raster File .. 45

Initialize Raster File Header ... 45

Write Image Data to Raster File ... 46

5.4. Reading Parts of a Raster File .. 46

Read Header from Raster File ... 46

Read Colonnap from Raster File ... 46

Read Image from Raster File ... 46

Read Standard Raster File ... 47

Appendix A Writing a Pixrect Driver .. 51

A.l. What You'll Need .. 51

A.2. Implementation Strategy .. 52

A.3. Files Generated .. 52

Memory Mapped Devices .. 53

A.4. Pixrect Private Data .. 53

A.5. Creation and Destruction ... 54

Creating a Primary Pixrect .. 54

Creating a Secondary Pixrect 57

Destroying a Pixrect .. 58

The pr _make fun Operations Vector .. 58

A.6. Pixrect Kernel Device Driver .. 59

Configurable Device Support ... 59

-v-

Contents Continued

OI>en ... 65

Mmap ... 65

ioctl ... 65

Close ... 67

Plugging Your Driver into UNIX .. 67

A.7. Access Utilities .. 68

A.8. Rop .. 69

A.9. Batchrop ... 69

A.IO. Vector ... 69

Importance of Proper Cli pping ... 69

A.II. Colormap .. 69

Monochrome .. 69

A.I2. Attributes .. 69

Monochrome .. 69

A.I3. Pixel... 70

A.I4. Stencil ... 70

A.I5. Curve ... 70

A.I6. Polygon .. 70

Appendix B Pixrect Functions and Macros ... 73

Appendix C Pixrect Data Structures ... 81

Appendix D Curved Shapes .. 85

-vi-

Tables

Table 2-1 Argument Name Conventions .. 10

Table 2-2 Useful Combinations of RasterOps ... 14

Table B-1 Pixrect Library Functions and Macros - Part I 73

Table B-2 Pixrect Library Functions and Macros - Part II 75

Table C-l Pixrect Data Structures .. 81

- vii-

Figures

Figure 1-1 RasterOp Function ... 4

Figure 1-2 Simple Example Program .. 5

Figure 2-1 Structure of an op Argument ... 13

Figure 2-2 Example Program with pr_polygon_2 ... 20

Figure 2-3 Four Polygons Drawn with pryolygon_2 21

Figure 3-1 Character and pcyr Origins ... 30

Figure 3-2 Example Program with Text ... 32

Figure 4-1 Example Program with Memory Pixrects ... 37

Figure 5-1 Example Program with pr _ dump .. 43

Figure 5-2 Example Program with pr _load .. 44

Figure D-l Typical Trapezon 85

Figure D-2 Some Figures Drawn by pr_traprop .. 86

Figure D-3 Trapezon with Clipped Falls ... 88

Figure D-4 Example Program with pr_traprop .. 89

-ix-

Audience

Documentation Conventions

Preface

This document describes the Pixrect graphics library, a low-level RasterOp
library for writing device-ind~pendent applications for Sun products.

The intended reader of this (1ocument is an applications programmer who is fami­
liar with interactive computer graphics and the C programming language. This
manual contains several example programs that can be used as templates for
larger Pixrect applications

Italic font is used to indicate file names, function arguments, variables and inter­
nal states of Pixrect. Italics are also used in the conventional manner (to
emphasize important words and phrases). ALL CAPS is used to indicate values in
enumerated types. Bold font is used for the names of Sun software packages.
Function names are printed with constant width font.

1
Introduction

Introduction ... 3

1.1. Overview .. 3

1.2. Important Concepts .. 4

1.3. Example .. 5

1.4. The Pixrect Lint Library .. 5

1.5. References .. 5

1.1. Overview

1
Introduction

This document describes the Pixreet graphics library, a set of RasterOp routines
common among all Sun workstations. With these routines, application programs
can be written that access the display on all Sun products.

In the Sun graphics software world, the Pixreet library is a low-level package,
sitting on top of the device drivers. For most applications, the higher-level
abstractions available in Sun View and the Sun graphics libraries are more
appropriate.

The Pixreet library is intended only for accessing and manipulating rectangular
regions of a display device in a device-independent fashion. There are a few
features that are available in higher-level graphics packages like SunView.

Windows
The Pixreet library does not support overlapping window. These can be
implemented with memory pixrects by the application, but it is recom­
mended that the functions in Sun View be used for this purpose.

Input Devices
The Pixreet library does have any input functions. The application can use
input functions in Sun View or make calls on the raw input devices (see
mouse(4) and keyboard(4).

This document is not a tutorial on writing application programs with the Pixrect
library though some simple examples are given. The reader should be familiar
with the C programming language and have access to some of the references
listed below on bitmap graphics.

This manual is divided into chapters that describe the major features of the Pix­
reet library. Chapter 2 covers the operations for opening and manipulating pix­
rects. Chapter 3 describes the text facilities in the pixreet library. Chapter 4
discusses memory pixrects rectangular regions of virtual memory that have simi­
lar properties to pixrects. Chapter 5 explains the file 1/0 functions in the Pixreet
library. These functions can be used to store and retrieve pixrects from disc files.
Appendix A is a implementation guide for pixrect device drivers. Appendix B is
a list of the functions and macros in the Pixrect library. Appendix C is a list of
types and structures in the Pixreet library. Appendix D describes the curve facil­
ities in Pixreet.

3 Version A of 17 February 1986

4 Pixrect Reference Manual

1.2. Important Concepts

Figure 1-1

This section describes some of the important concepts behind the Pixrect library.
It is not intended to be complete but rather to explain some features of the Pix­
rect library that make it unique from other graphics packages.

Screen Coordinates
The screen coordinate system is two dimensional with the origin in the
upper left comer, and x and y increasing to the right and down. The coordi­
nates of a pixel in a pixrect are integers from 0 to the pixrect's width or
height minus 1.

Pixels
A pixel is an individual picture element with an address in screen coordi­
nates or relative to some rectangular sub-region of the screen.

Bitmaps
A bitmap is a rectangular region of screen space. Examples of bitmaps
include the screen, windows, the cursor or icons.

RasterOps
A RasterOp is an operation involving two or three bitmaps: a source, a des­
tination and a texture. It computes the value of each pixel in the destination
bitmap through a boolean operation of the previous value of that destination
pixel, of a corresponding source pixel, and possibly a corresponding pixel in
a mask. See Chapter 2 for an explanation of the RasterOp functions avail­
able in the Pixrect graphics library.

RasterOp Function

Pixrects

Source
Before

Texture

Destination
After

Destination
Before

A pixrect combines the data of a bitmap with operations that can be per­
fonned on it. A pixrect can exist on a variety of devices including memory
and printers. Since these operations are the same for each device, the pro­
grammer does not have to consider the peculiarities of each device when
writing an application program.

Version A of 17 February 1986

1.3. Example

Figure 1-2

1.4. The Pixreet Lint Library

1.5. References

The following example draws a line on the display.

iinclude <pixrect/pixrect_hs.h>

main ()
{

struct pixrect *screen;

screen = pr_open(n/dev/fbn);

Chapter 1 - Introduction 5

pr_vector(screen, 10, 20, 70, 80, PIX_SET, 1);
pr_close(screen);

Simple Example Program

The header file <pixrect/pixrect_ hs . h> will include all of the header
files necessary for working with the functions, macros and data structures in Pix­
reet.

This program can be compiled as follows:

[~'_o_C_C __ l_l_·n_e __ .c __ -_O ___ l_i_n_e __ -_l_p_i_x_r_e_c_t ____________________________ ~]
This command line compiles the program in line. c. The -lpixrect option
causes the C compiler to link the Pixreet library to the application program and
create an executable file named line.

The sample program can be executed by the UNIX shell:

% line

A line will appear in the upper left hand comer of the screen.

Pixrect provides a lint library which provides type checking beyond the capabil­
ities of the C compiler. For example, you could use the Pixrect lint library to
check a program called glass. c with command like this:

(% lint glass.c -lpixrect]
Note that most of the error messages generated by lint are warnings, and may not
necessarily have any effect on the operation of the program. For a detailed
explanation of lint, see the lint chapter in the Programming Tools manual.

[1] J.D. Foley and A. van Dam. Fundamentals of Interactive Computer
Graphics . Addison-Wesley, 1982.

[2] Smalltalk Graphics Kernel. D. Ingalls. Byte, August 1981.

[3] B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

Version A of 17 February 1986

6 Pixrect Reference Manual

[4] W.M. Newman and R.F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill,1979.

[5] R. Pike, Leo Guibas, Dan Ingalls. Bitmap Graphics. ACMlSIGGRAPH 1984
Conference Course Notes.

[6] V.R. Pratt. Standards and Performance Issues in the Workstation Market.
IEEE Computer Graphics and Applications, April 1984.

[7] SunCore Reference Manual.

[8] SunCGI Reference Manual.

[9] Sun View Programmer's Guide.

[10] Sun View System Programmer's Guide.

Version A of 17 February 1986

2
Pixrect Operations

Pixrect Operations ... 9

2.1. The pixrectops Structure ... 10

2.2. Conventions for Naming Arguments to Pixrect Operations 10

2.3. Pixrect Errors ... 10

2.4. Creation and Destruction of Pixrects ... 10

Create a Primary Display Pixrect 11

Create Secondary Pixrect ... 11

Release Pixrect Resources 11

2.5. Single-Pixel Operations ... 12

Get Pixel Value 12

Set Pixel Value ... 12

2.6. Constructing an Op Argument ... 13

Specifying a RasterOp Function .. 13

Ops with a Constant Source Value ... 14

Controlling Clipping in a RasterOp ... 14

Examples of Complete Op Argument Speci fication 15

2.7. Multi-Pixel Operations ... 15

RasterOp Source to Destination ... 15

RasterOps through a Mask .. 16

Replicating the Source Pixrect 16

Multiple Source to the Same Destination ... 17

Draw Vector 18

Draw Textured Polygon .. 19

2.8. Colormap Access ... 22

Get Colormap Entries ... 22

Set Colormap Entries .. 22

Inverted Video Pixrects ... 23

2.9. Attributes for Bitplane Control .. 23

Get Attributes .. 24

Put Attributes .. 24

2.10. Efficiency Considerations .. 24

2
Pixrect Operations

Pixrect provides procedures to perform the following operations:

• create and destroy a pixrect (open, region and destroy)

• read and write the values of single pixels get(and put)

• use RasterOp functions to affect multiple pixels in a single operation:

pr _ r op write from a source pixrect to a destination pixrect,

pr stencil write from a source pixrect to a destination pixrect under
control of a mask,

pr _ replrop replicate a constant source pixrect pattern throughout a desti­
nation pixrect,

pr_batchrop

pr_vector

write a batch of source pixrects to different locations, in a
single destination pixrect

draw a straight line in a pixrect.

• read and write a colormap (getcolormap, putcolormap)

• select particular bit-planes for manipulation on a color pixrect (get at tr i-
butes,putattributes)

Some of these operations are the same for all pixrects, and are implemented by a
single procedure. These device-independent procedures are called directly by
Pixreet clients. Other operations must be implemented differently for each Pix­
reet device. Each pixrect includes a pointer (in its pr_ops) to a pixrectops
structure, that holds the addresses of the particular device-dependent procedures
appropriate to that pixrect. This allows clients to access those procedures in a
device-independent fashion, by calling the procedure through a pointer, rather
than naming the procedure directly. To simplify this indirection, the Pixrect
library provides a set of macros which look like simple procedure calls to generic
operations, and expand to invocations of the corresponding procedure in the
pixrectops structure.

The description of each operation will specify whether it is a true procedure or a
macro, since some of the arguments to macros are expanded multiple times, and
could cause errors if the arguments contain expressions with side effects. (In
fact, two sets of parallel macros are provided, which differ only in how their

9 Version A of 17 February 1986

10 Pixrect Reference Manual

2.1. The pixrectops
Structure

2.2. Conventions for Naming
Arguments to Pixrect
Operations

Table 2-1

2.3. Pixrect Errors

2.4. Creation and Destruction
ofPixrects

arguments use the geometry data structures.}

struct pixrectops {
int (*pro_rop) ();

} ;

int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) () ;
int (*pro_destroy) () ;
int (*pro _get) () ;
int (*pro-put) ();
int (*pro_vector) ();
struct pixrect * (*pro_region) ();
int (*pro-putcolormap) ();
int (*pro_getcolormap) ();
int (*pro-putattributes) ();
int (*pro_getattributes) ();

The pixrectops structure is a collection of pointers to the device-dependent
procedures for a particular device. All other operations are implemented by
device-independent procedures.

In general, the conventions listed in Table 2-1 are used in naming the arguments
to pixrect operations.

Argument Name Conventions

Argument I
d
s
x and y
wand h

Meaning
destination
source
left and top origins
width and height

The x and y values for functions that operate on pixrects are constrained to be
within the boundaries of a pixrect.

Pixrect procedures which return a pointer to a structure will return NULL when
they fail. Otherwise, a return value of PIX_ERR (-1) indicates failure and 0 indi­
cates success. The section describing each library procedure makes note of any
exceptions to this convention.

Pixrects are created by the procedures pr _ open and mem _ crea te, by the pro­
cedures accessed by the macro pr _ region, and at compile-time by the macro
mpr_static. Pixrects are destroyed by the procedures accessed by the macro
pr_destroy. mem_create and mpr_static are discussed in Chapter 4;
the rest of these are described here.

Version A of 17 February 198f

Create a Primary Display
Pixrect

Create Secondary Pixrect

Release Pixrect Resources

Chapter 2 - Pixrect Operations 11

struct pixrect *pr_open(devicename)
char *devicenamei

The properties of a non-memory pixrect depend on an underlying UNIX device.
Thus, when creating the first pixrect for a device you need to open it by a call to
pr _open. The default device name for your display is / dev / fb (fb stands
for frame buffer). Any other device name may be used provided that it is a
display device, the kernel is configured for it, and it has pixrect support, for
example, IdevlbwoneO , IdevlbwtwoO ,ldevlcgoneO or Idev/cgtwoO .

pr _open does not work for creating a pixrect whose pixels are stored in
memory; that function is served by the procedure mem _create, discussed in
Chapter 4.

pr _open returns a pointer to a primary pixrect structure which covers the
entire surface of the named device. If it cannot, it returns NULL, and prints a
message on the standard error output.

#define struct pixrect *pr_region(pr, x, y, w, h)
struct pixrect *pri
int x, y, w, hi

#define struct pixrect *prs_region(subreg)
struct pr_subregion subregi

Given an existing pixrect, it is possible to create another pixrect which refers to
some or all of the pixels in the parent pixrect. This secondary pixrect is created
by a call to the procedures invoked by the macros pr_region and
prs_region.

The existing pixrect is addressed by pr; it may be a pixrect created by
pr_open, rnern_create ormpr_static (a primary pixrect); or it may be
another secondary pixrect created by a previous call to a region operation. The
rectangle to be included in the new pixrect is described by x, y, wand h in the
existing pixrect; (x, y) in the existing pixrect will map to (O, 0) in the new one.
prs_region does the same thing, but has all its argument values collected into
the single structure subreg. Each region procedure returns a pointer to the new
pixrect. If it fails, it returns NULL, and prints a message on the standard error out­
put.

If an existing secondary pixrect is provided in the call to the region operation, the
result is another secondary pixrect referring to the underlying primary pixrect;
there is no further connection between the two secondary pixrects. Generally, the
distinction between primary and secondary pixrects is not important; however,
no secondary pixrect should ever be used after its primary pixrect is destroyed.

Version A of 17 February 1986

12 Pixrect Reference Manual

2.5. Single-Pixel Operations

Get Pixel Value

Set Pixel Value ,

#define pr_close(pr)
struct pixrect *pr;

#define pr_destroy(pr)
struct pixrect *pr;

#define prs_destroy(pr)
struct pixrect *pr;

The macros pr_close, pr_destroy and prs_destroy invoke device­
dependent procedures to destroy a pixrect, freeing resources that belong to it.
The procedure returns 0 if successful, PIX_ERR if it fails. It may be applied to
either primary or secondary pixrects. If a primary pixrect is destroyed before
secondary pixrects which refer to its pixels, those secondary pixrects are invali­
dated; attempting any operation but pr _destroy on them is an error. The
three macros are identical; they are all defined for reasons of history and stylistic
consistency.

The next two operations manipulate the value of a single pixel.

#define pr_get(pr, x, y)
struct pixrect *pr;
int x, y;

#define prs_get(srcprpos)
struct pr-prpos srcprpOSi

The macros pr_get and prs_get invoke device-dependent procedures to
retrieve the value of a single pixel. pr indicates the pixrect in which the pixel is
to be found; x and y are the coordinates of the pixel. For prs_get, the same
arguments are provided in the single struct srcprpos. The value of the pixel is
returned as a 32-bit integer; if the procedure fails, it returns PIX_ERR.

#define pr-put(pr, x, y, value>
struct pixrect *pr;
int x, y, value;

#define prs-put(dstprpos, value)
struct pr-prpos dstprposi
int valuei

The macros pr yut and pr s yut invoke device-dependent procedures to
store a value in a single pixel. pr indicates the pixrect in which the pixel is to be
found; x and yare the coordinates of the pixel. For pr s yu t, the same argu­
ments are provided in the single struct dstprpos. value is truncated on the
left if necessary, and stored in the indicated pixel. If the procedure fails, it
returns PIX ERR.

Version A of 17 February 1986

2.6. Constructing an Op
Argument

Figure 2-1

31

Specifying a RasterOp
Function

color

Chapter 2 - Pixrect Operations 13

The multi-pixel operations described in the next section all use a uniform
mechanism for specifying the operation which is to produce destination pixel
values. This operation is given in the op argument and includes several com­
ponents.

We describe these three components of the op argument in order.

• A single constant source value may be specified as a color in bits 5 - 31 of
the op argument.

• A RasterOp function is specified in bits I - 4 of the op argument.

• The clipping which is normally performed by every pixrect operation may be
turned off by setting the PIX _ DONTCLIP flag (bit 0) in the Ope

Structure of an op Argument

5

RasterOp
function

clipping

1 o

Four bits of the op are used to specify one of the 16 distinct logical functions
which combine monochrome source and destination pixels to give a mono­
chrome result. This encoding is generalized to pixels of arbitrary depth by speci­
fying that the function is applied to corresponding bits of the pixels in parallel.
Some functions are much more common than others; the most useful are
identified in Table 2-2.

A convenient and intelligible form of encoding the function into four bits is sup­
ported by the following definitions:

idefine PIX SRC Ox18
idefine PIX DST Ox14
idefine PIX_NOT(op) (OxlE & (-(op»)

PIX _ SRC and PIX _ DST are defined constants, and PIX_NOT is a macro. Together,
they allow a desired function to be specified by performing the corresponding
logical operations on the appropriate constants. Note that PIX_NOT must be used
in all RasterOp operations, and not the ones complement (-) operator.

A particular application of these logical operations allows definition of PIX_SET
and PIX _ CLR operations. The definition of the PIX_SET operation that follows is
always true, and hence sets the result:

idefine PIX_SET (PIX_SRC I PIX_NOT(PIX_SRC»

The definition of the PIX _ CLR operation is always false, and hence clears the
result:

idefine PIX_CLR (PIX_SRC & PIX_NOT(PIX_SRC»

Other common RasterOp functions are defined in the following table:

Version A of 17 February 1986

14 Pixrect Reference Manual

Table 2-2

Ops with a Constant Source
Value

Controlling Clipping in a
RasterOp

Useful Combinations of RasterOps

PIX SRC
PIX DST

PIX SRC

Op with Value

PIX DST

PIX SRC & PIX DST

PIX SRC - PIX DST

1 Result
write (same as source argument)
no-op (same as destination argu­
ment)
paint (OR of source and destina­
tion)
mask (AND of source and desti­
nation)
erase (AND destination with
negation of source)
invert area (negate the existing
values)
inverting paint (XOR of source
and destination)

In certain cases, it is desirable to specify an infinite supply of pixels, all with the
same value. This is done by using NULL for the source pixrect, and encoding a
color in bits 5-31 of the op argument. The following macro supports this encod­
ing:

idefine PIX_COLOR (color) ((color)«5)

This macro extracts the color from an op:

idefine PIX_OPCOLOR(op) ((op»>5)

If no color is specified in an op, 0 appears by default. The color specified in the
op is used in the case of a null source pixrect or to specify the color of the 'ink'
in a monochrome pixrect.

Note that the color is not part of the function component of the op argument; it
should never be part of an argument to PIX_NOT.

The color component of op is also used when a monochrome pixrect is written
to a color pixrect. In this case:

• if the value of the source pixels = 0, they are painted 0, or background.

• if the value of the source pixels = 1, they are painted color.

If the color component of op is 0 (e.g., because no color was specified), the
color will default to (-1) (foreground).

Pixrect operations normally clip to the bounds of the operand pixrects. Some­
times this can be done more efficiently by the client at a higher level. If the
client can guarantee that only pixels which ought to be visible will be written, it
may instruct the pixrect operation to bypass clipping checks, thus speeding its
operation. This is done by setting the following flag in the op argument:

idefine PIX DONTCLIP Oxl

The result of a pixrect operation is undefined and may cause a memory fault if

Version A of 17 February 1986

Examples of Complete Op
Argument Specification

2.7. Multi-Pixel Operations

RasterOp Source to
Destination

Chapter 2 - Pixrect Operations 15

PIX _ OONTCLIP is set and the operation goes out of bounds.

Note that the PIX_OONTCLIP flag is not part of the function component of an
op argument; it should never be part of an argument to PIX_NOT.

A very simple op argument will specify that source pixels be written to a desti­
nation, clipping as they go:

op = PIX_SRCi

A more complicated example will be used to affect a rectangle (known to be
valid) with a constant red color defined elsewhere. (The function is syntactically
correct; it's not clear how useful it is to XOR a constant source with the negation
of the OR of the source and destination):

op = (PIX_SRC A PIX_NOT(PIX_SRC I PIX_DST» \
I PIX_COLOR (red) I PIX DONTCLIP

The following operations all apply to multiple pixels at one time: pr _ rop,
pr_stencil,pr_replrop, pr_batchrop, pr_polygon_2, and
pr_vector. With the exceptions ofpr_vector and pryolygon_2, they
refer to rectangular areas of pixels. They all use a common mechanism, the op
argument described in the previous section, to specify how pixels are to be set in
the destination. Appendix D describes the pr_traprop curve rendering func­
tion.

4define pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy, dw, dh, op, SX, SYi

4define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregioni
int 0Pi

struct pr-prpos srcprpOSi

The pr_rop and prs_rop macros invoke device-dependent procedures that
perform the indicated raster operation from a source to a destination pixrect.
dpr addresses the destination pixrect, whose pixels will be affected; (dx, dy) is
the origin (the upper-left pixel) of the affected rectangle; dw and dh are the
width and height of that rectangle. spr specifies the source pixrect, and
(sx, sy) an origin within it. spr may be NULL, to indicate a constant source
specified in the op argument, as described previously; in this case sx and sy are
ignored. op specifies the operation which is performed; its construction is
described in preceding sections.

For prs_rop, the dpr, dx, dy, dw and dh arguments are all collected in a
pr _subregion structure.

Raster operations are clipped to the source dimensions, if those are smaller than
the destination size given. pr_rop procedures return PIX_ERR if they fail, 0 if
they succeed.

Version A of 17 February 1986

16 Pixrect Reference Manual

RasterOps through a Mask

Replicating the Source Pixrect

Source and destination pixrects generally must be the same depth. The only
exception allows monochrome pixrects to be sources to a destination of any
depth. In this case, source pixels = 0 are interpreted as 0 and source pixels = 1
are written as the color value from the op argument. If the color value in the op
argument is 0, source pixels = 1 are written as the maximum value which can be
stored in a destination pixel.

See the example program in Figure 4-1 for an illustration of pr _ r~p.

#define pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
struct pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos stenprpos, srcprpos;

The pr_stencil and prs_stencil macros invoke device-dependent pro­
cedures that perform the indicated raster operation from a source to a destination
pixrect only in areas specified by a third (stencil) pixrect. pr _stencil is
identical to pr _ rop except that the source pixrect is written through a stencil
pixrect which functions as a spatial write-enable mask. The stencil pixrect must
be a monochrome memory pixrect. The indicated raster operation is applied only
to destination pixels where the stencil pixrect is non-zero. Other destination pix­
els remain unchanged. The rectangle from (sx, sy) in the source pixrect spr is
aligned with the rectangle from (stx, sty) in the stencil pixrect stpr, and
written to the rectangle at (dx, dy) with width dw and height dh in !he destina­
tion pixrect dpr. The source pixrect spr may be NULL, in which case the color
specified in op is painted through the stencil. Clipping restricts painting to the
intersection of the destination, stencil and source rectangles. pr_stencil pro­
cedures return PIX_ERR if they fail, 0 if they succeed.

pr_replrop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spri
int dx, dy, dw, dh, op, sx, sy;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubregi
struct pr-prpos sprpos;

Often the source for a raster operation consists of a pattern that is used repeat­
edly, or replicated to cover an area. If a single value is to be written to all pixels
in the destination, the best way is to specify that value in the color component
of apr _ rop operation. But when the pattern is larger than a single pixel, a
mechanism is needed for specifying the basic pattern, and how it is to be laid
down repeatedly on the destination.

The pr _ replrop procedure replicates a source pattern repeatedly to cover a
destination area. dpr indicates the destination pixrect. The area affected is
described by the rectangle defined by dx, dy, dw, dh. spr indicates the source

Version A of 17 February 1986

Multiple Source to the Same
Destination

Chapter 2 - Pixrect Operations 17

pixrect, and the origin within it is given by sx, sy. The corresponding
prs_replrop macro generates a call to pr_replrop, expanding its dsu­
breg into the five destination arguments, and sprpos into the three source
arguments. op specifies the operation to be performed, as described above in
Section 2.6.

The effect of pr _ replrop is the same as though an infinite pixrect were con­
structed using copies of the source pixrect laid immediately adjacent to each
other in both dimensions, and then a pr _ rop was performed from that source to
the destination. For instance, a standard gray pattern may be painted across a
portion of the screen by constructing a pixrect that contains exactly one tile of the
pattern, and by using it as the source pixrect.

The alignment of the pattern on the destination is controlled by the source origin
given by sx, sy. If these values are 0, then the pattern will have its origin
aligned with the position in the destination given by dx, dy. Another common
method of alignment preserves a global alignment with the destination, for
instance, in order to repair a portion of a gray. In this case, the source pixel
which should be aligned with the destination position is the one which has the
same coordinates as that destination pixel, modulo the size of the source pix­
rect. pr _ replrop will perform this modulus operation for its clients, so it
suffices in this case to simply copy the destination position (dx, dy) into the
source position (sx, sy).

pr_replrop procedures return PIX_ERR if they fail, 0 if they succeed. Inter­
nally pr_replrop may use pr_rop procedures. In this case, pr_rop errors
are detected and returned by pr _ replrop.

#define pr_batchrop(dpr, dx, dy, op, items, n)
struct pixrect *dpr;
int dx, dy, op, n;
struct pr-prpos items[];

#define prs_batchrop(dstpos, op, items, n)
struct pr-prpos dstpos;
int op, n;
struct pr-prpos items[];

Applications such as displaying text perform the same operation from a number
of source pixrects to a single destination pixrect in a fashion that is amenable to
global optimization.

The pr_batchrop and prs_batchrop macros invoke device-dependent
procedures that perform raster operations on a sequence of sources to successive
locations in a common destination pixrect. i terns is an array of pr yrpos
structures used by a pr_batchrop procedure as a sequence of source pixrects.
Each item in the array specifies a source pixrect and an advance in x and y.
The whole of each source pixrect is used, unless it needs to be clipped to fit the
destination pixrect. advance is used to update the destination position, not as
an origin in the source pixrect.

pr_batchrop procedures take a destination, specified by dpr, dx and dy, or
by dstpos in the case ofprs_batchrop; an operation specified in op, as

Version A of 17 February 1986

18 Pixrect Reference Manual

Draw Vector

described in Section 2.6, and an array ofpr_prpos addressed by the argument
items, and whose length is given in the argument n.

The destination position is initialized to the position given by dx and dy. Then,
for each item, the offsets given in pos are added to the previous destination
position, and the operation specified by op is performed on the source pixrect
and the corresponding rectangle whose origin is at the current destination posi­
tion. Note that the destination position is updated for each item in the batch, and
these adjustments are cumulative.

The most common application of pr _ batchrop procedures is in painting text;
additional facilities to support this application are described in Chapter 3. Note
that the definition of pr _ batchrop procedures supports variable-pitch and
rotated fonts, and non-roman writing systems, as well as simpler text.

pr_batchrop procedures return PIX_ERR if they fail, 0 if they succeed. Inter­
nally pr_batchrop may use pr_rop procedures. In this case, pr_rop
errors are detected and returned by pr_batchrop.

idefine pr_vector(pr, xO, yO, xl, yl, op, value)
struct pixrect *pr;
int xO, yO, xl, yl, op, value;

idefine prs_vector(pr, pasO, posl, op, value)
struct pixrect *pr;
struct pr-pos pasO, posl;
int op, value;

The pr _vector and pr s _vector macros invoke device-dependent pro­
cedures that draw a vector one unit wide between two points in the indicated pix­
recto pr _ ve ct or procedures draw a vector in the pixrect indicated by pr, with
endpoints at (xO, yO) and (xl, yl), or at posO and posl in the case of
pr s _vector. Portions of the vector lying outside the pixrect are clipped as
long as PIX _ OONTCLIP is 0 in the op argument. The op argument is constructed
as described in Section 2.6, and val ue specifies the resulting value of pixels in
the vector. If the color in op is non-zero, it takes precedence over the value
argument.

Any vector that is not vertical, horizontal or 45 degree will contain jaggies . This
phenomenon, known as aliasing, is due to the digital nature of the bitmap screen.
It can be visualized by imagining a vertical vector. Displace one endpoint hor­
izontally by a single pixel. The resulting line will have to jog over a pixel at
some point in the traversal to the other endpoint. Balancing the vector guaran­
tees that the jog will occur in the middle of the vector. pr _vector draws bal­
anced vectors. (The technique used is to balance the Bresenham error term).
The vectors are balanced according to their endpoints as given and not as
clipped, so that the same pixels will be drawn regardless of how the vector is
clipped.

See the example program in Figure 1-2 for an illustration ofpr_ vector.

Version A of 17 February 1986

Draw Textured Polygon

Chapter 2 - Pixrect Operations 19

pr-po1ygon_2(dpr, dx, dy, nbnds, npts, vlist, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr-pos *vlist;
int op, sx, sy;

pr yolygon _ 2 draws a polygon in a pixrect. The polygon can have holes. In
addition, you can fill it with an image or a texture. This routine is like pr _ rop
except that nbnds, npts and vlist specify the destination region instead of
(dw, dh).

nbnds is the number of individual closed boundaries (vertex lists) in the
polygon. For example, the polygon may have one boundary for its exterior shape
and several boundaries delimiting interior holes. The boundaries may self inter­
sect or intersect each other. Those pixels having an odd wrapping number are
painted. That is, if any line connecting a pixel to infinity crosses an odd number
of boundary edges, the pixel will be painted.

Polygons can be wrapped by vectors. To do this, draw the vectors using the
same vertices of the polygon as endpoints. The edge of the polygon will match
the vector pixel for pixel. Note that vectors are balanced (see pr _vector).
Polygons are semi-open in the sense that on some of the edges, pixels are not
drawn where the vector would go. The reason is to allow identical polygons
(same size and orientation) to exactly tile the plane with no gaps and no overlaps.
This greatly reduces the duplication of pixels drawn when the image contains
many small adjacent polygons. In Figure 2-3, the edges AB and DA will be
drawn, whereas edges Be and CD will not.

Version A of 17 February 1986

20 Pixrect Reference Manual

Figure 2-2 Example Program with pryolygon_2

*include <pixrect/pixrect_hs.h>
*include <stdio.h>
*define CENTERX (1152/2)
*define NULLPR (struct pixrect *) NULL

struct pr-pos vlistO[4]
struct pr-pos vlist1[4]
struct pr-pos vlist2[4]
struct pr-pos vlist3[4]

main ()
{

{O,O}
{O,O}
{O,O}
{O,O}

int i, nbnds = 1, npts[l]i
struct pixrect *screeni

npts[O] = 4i

screen = pr_open(lI/dev/fbn
);

{ 71, -71} , { 141, O} , { 71, 71 } } i / * 4 5 degrees * /
{87,-50} , {137,37} , {50,87} }i /* 30 degrees */
{100,0} {100,100} , {0,100} }i /* ° degrees */
{87,50} , {37,137} , {-50,87} }i /* -30 degrees */

pr-po1ygon_2(screen, CENTERX, 100, nbnds, npts, vlistO, PIX_SET, NULLPR, 0, 0):
for (i=O; i<4; i++)

pr_vector(screen, (vlistO[i].x + CENTERX), (vlistO[i].y + 100),
(vlistO[(i+l)%4].x + CENTERX), (vlistO[(i+1)%4].y + 100), PIX_SET, 1);

pr-po1ygon_2(screen, CENTERX, 300, nbnds, npts, vlistl, PIX_SET, NULLPR, 0, 0);
for (i=O; i<4; i++)

pr_vector(screen, (vlist1[i].x + CENTERX), (vlistl[i].y + 300),
(vlistl [(i+l) %4]".x + CENTERX), (vlist1 [(i+1) %4] .y + 300), PIX_SET, 1);

pr-po1ygon_2(screen, CENTERX, 500, nbnds, npts, vlist2, PIX_SET, NULLPR, 0, 0);
for (i=O; i<4; i++)

pr_vector(screen, (vlist2[i].x + CENTERX), (vlist2[i].y + 500),
(vlist2[(i+l)%4].x + CENTERX), (vlist2[(i+1)%4].y + 500), PIX_SET, 1);

pr-po1ygon_2(screen, CENTERX, 700, nbnds, npts, vlist3, PIX_SET, NULLPR, 0, 0);
for (i=O; i<4; i++)

pr~vector (screen, (vlist3 [i] .x + CENTERX), (vlist3 [i] .y + 700),
(vlist3 [(i+l) %4] .x + CENTERX), (vlist3 [(i+1) %4] .y + 700), PIX_SET, 1);

pr_close(screen) ;

Version A of 17 February 1986

Chapter 2 - Pixrect Operations 21

Figure 2-3 Four Polygons Drawn with pr yolygon _2

B

4~· ___ .A~c;. __

V
D

30· -7\-' -- 00.·------
o

----~D~----

-----0---
0- edge drawn • - edge not drawn

For each of the nbnds boundaries npt s specifies the number of points in the
boundary. Hence the npts array is nbnds in length. The vlist contains all
of the boundary points for all of the boundaries. The number of points in order
are npts [0] + ... +npts [nbnds-l]. pryolygon_2 joins the last point
and first point to close each boundary. A boundary with less than 3 points is an
error.

The spr source pixrect fills the interior of the polygon as in pr _r~p. The posi­
tion sx, sy in spr coordinates coincides with position dx, dy in dpr coordi­
nates. If sx = (-5) and sy = (-10), for example, the source pixrect is positioned
at (dx+5, dy+l0) in dpr coordinates. pryolygon_2 clips to both spr and
dpr except in the case of NULL spr, where the polygon is filled with the color
value in op. The source offset sx, sy is used to superimpose the source image
over the polygon. The spr must have depth less than or equal to the depth of
dpr. A point (pt s [n] . x, pt s [n] . y) in the boundary of a polygon is
mapped to (dx + pts [n] . x, dy + pts [n] . y).

Version A of 17 February 1986

22 Pixrect Reference Manual

2.8. Colormap Access

Get Colormap Entries

Set Coionnap Entries

A colormap is a table which translates a pixel value into 8-bit intensities in red,
green, and blue. For a pixrect of depth n, the corresponding colonnap will have
2n entries. The two most common cases are monochrome (two entries) and color
(256 entries). Memory pixrects do not have colonnaps.

fdefine pr_getcolor.map(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

tdefine prs_getcolormap(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

The macros pr_getcolormap and prs_getcolormap invoke device­
dependent procedures to read all or part of a colormap into arrays in memory.

These two macros have identical definitions; both are defined to allow consistent
use of one set of names for all operations.

pr identifies the pixrect whose colonnap is to be read; the count entries start­
ing at index (zero origin) are read into the three arrays.

For monochrome pixrects the same value is read into corresponding elements of
the red, green and bl ue arrays. These array elements will have their bits
either all cleared, indicating black, or all set, indicating whi teo By default,
the Oth (background) element is white, and the 1st (foreground) element is
black. Colonnap procedures return (-1) if the index or count are out of bounds,
and 0 if they succeed.

fdefine pr-putcolor.map(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

fdefine prs-putcolor.map(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

The macros pryutcolormap and prsyutcolormap invoke device­
dependent procedures to store from memory into all or part of a colonnap. These
two macros have identical definitions; both are defined to allow consistent use of
one set of names for all operations. The count elements starting at index
(zero origin) in the colormap for the pixrec,t identified by pr are loaded from
corresponding elements of the three arrays. For monochrome pixrects, the only
value considered is red [0]. If this value is 0, then the pixrect will be set to a
dark background and light foreground. If the value is non-zero, the foreground
will be dark, e.g. black-on-white. Monochrome pixrects are dark-on-light by
default.

Version A of 17 February 1986

Inverted Video Pixrects

2.9. Attributes for Bitplane
Control

Chapter 2 - Pixrect Operations 23

Note: Full functionality of the colonnap is not supported for monochrome pix­
rects. Colormap changes to monochrome pixrects apply only to subsequent
operations whereas a colormap change to a color device instantly changes all
affected pixels on the display surface.

pr_blackonwhite(pr, min, max)
struct pixrect *pr;
int min, max;

pr_whiteonblack(pr, min, max)
struct pixrect *pr;
int min, maXi

pr_reversevideo(pr, min, max)
struct pixrect *pr;
int min, maXi

Video inversion is accomplished by manipulation of the colormap of a pixrect.
The colormap of a monochrome pixrect has two elements. The procedures
pr_blackonwhite, pr_whiteonblack and pr_reversevideo pro­
vide video inversion control. These procedures are ignored for memory pixrects.

In each procedure, pr identifies the pixrect to be affected; min is the lowest
index in the colormap, specifying the background color, and max is the highest
index, specifying the foreground color. These will most often be 0 and 1 for
monochrome pixrects; the more general definitions allow colormap-sharing
schemes.

"Black-on-white" means that zero (background) pixels will be painted at full
intensity, which is usually white. pr _ blackonwhi te sets all bits in the entry
for colorrnap location min and clears all bits in colorrnap location max.

"White-on-black" means that zero (background) pixels will be painted at
minimum intensity, which is usually black. pr _ whi teonblack clears all bits
in colormap location min and sets all bits in the entry for colorrnap location
max.

pr_reversevideo exchanges the min and max color intensities.

Note: These procedures are intended for global foreground/background control,
not for local highlighting. For monochrome frame buffers, subsequent opera­
tions will have inverted intensities. For color frame buffer~, the colormap is
modified immediately, which affects everything in the display.

In a color pixrect, it is often useful to define bitplanes which may be manipulated
independently; operations on one plane leave the other planes of an image unaf­
fected. This is normally done by assigning a plane to a constant bit position in
each pixel. Thus, the value of the i th bit in all the pixels defines the i th bitplane
in the image. It is sometimes beneficial to restrict pixrect operations to affect a
subset of a pixrect's bitplanes. This is done with a bitplane mask. A bitplane
mask value is stored in the pixrect's private data and may be accessed by the
attribute operations.

Version A of 17 February 1986

24 Pixrect Reference Manual

Get Attributes

Put Attributes

2.10. Efficiency
Considerations

#define pr_getattributes(pr, planes)
struct pixrect *pr;
int *planes;

#define prs_getattributes(pr, planes)
struct pixrect *pr;
int *planes;

The macros pr_getattributes and prs_getattributes invoke
device-dependent procedures that retrieve the mask which controls which planes
in a pixrect are affected by other pixrect operations. pr identifies the pixrect; its
current bitplanes mask is stored into the word addressed by planes. If
planes is NULL, no operation is performed.

The two macros are identically defined; both are provided to allow consistent use
of the same style of names.

#define pr-putattributes(pr, planes)
struct pixrect *pr;
int *planesi

#define prs-putattributes(pr, planes)
struct pixrect *pr;
int *planes;

The macros pryutattributes and prsyutattributes invoke
device-dependent procedures that manipulate a mask which controls which
planes in a pixrect are affected by other pixrect operations. The two macros are
identically defined; both are provided to allow consistent use of the same style of
names.

pr identifies the pixrect to be affected. The planes argument is a pointer to a
bitplane write-enable mask. Only those planes corresponding to mask bits hav­
ing a value of I will be affected by subsequent pixrect operations. If plane s is
NULL, no operation is performed.

Note: If any planes are masked off by a call to pr_putattributes, no
further write access to those planes is possible until a subsequent call to
pryutattributes unmasks them. However, these planes can still be read.

For maximum execution speed, remember the following points when you write
pixrect programs:

• pr _get and pr yut are relatively slow. For fast random access of pixels it
is usually faster to read an area into a memory pixrect and address the pixels
directly.

• pr _ rop is fast for large rectangles.

• pr_ vector is fast.

• functions run faster when clipping is turned off. Do this only if you can
guarantee that all accesses are within the pixrect bounds.

Version A of 17 February 1986

Chapter 2 - Pixrect Operations 25

• pr _rap is three to five times faster than pr _stencil.

• pr_batch_rap cuts down the overhead of painting many small pixrects.

• For small standard shapes pr_ rop should be used instead of
pryolygon_2.

Version A of 17 February 1986

3
Text Facilities for Pixrects

Text Facilities for Pixrects .. 29

3.1. Pixfonts and Pixchars .. 29

Operations on Pixfonts .. 30

Load Private Copy of Font .. 30

Default Fonts ... 30

Close Font ... 31

Pixrect Text Display .. 31

Transparent Text ... 31

Auxiliary Pixfont Procedures ... 31

Text Bounding Box ... 32

3.2. Example .. 32

3.1. Pixfonts and Pixchars

3
Text Facilities for Pixrects

Displaying text is an important task in many applications, so pixrect-Ievel facili­
ties are provided to address it directly. These facilities fall into two main
categories: a standard format for describing fonts and character images, with rou­
tines for processing them; and a set of routines which take a string of text and a
font, and handle various parts of painting that string in a pixrect.

struct pixchar {

} ;

struct pixrect *pc-pr;
struct pr-pos pc home;
struct pr-pos pc_adv;

The pixchar structure defines the format of a single character in a font. The
actual image of the character is a pixrect (a separate pixrect for each character)
addressed by pc yr. The entire pixrect gets painted. Characters that do not
have a displayable image will have NULL in their entry in pc yr . pc_home is
the origin of pixrect pc yr (its upper left comer) relative to the character origin.
A character's origin is the leftmost end of its baseline, which is the lowest point
on characters without descenders. Figure 3-1 illustrates the pc _pr origin and
the character origin.

The leftmost point on a character is normally its origin, but kerning or manda­
tory letter spacing may move the origin right or left of that point. pc _ adv is the
amount the destination position is changed by this character; that is, the amounts
in pc _ adv added to the current character origin will give the origin for the next
character. While normal text only advances horizontally, rotated fonts may have
a vertical advance. Both are provided for in the font.

struct pixfont {

} i

struct pr_size pf_defaultsizei
struct pixchar pf_char[256];

The pixfont structure contains an array of pixchars, indexed by the charac­
ter code; it also contains the size (in pixels) of its characters when they are all the
same. (If the size of a font's characters varies in one dimension, that value in
pf_defaultsize will not have anything useful in it; however, the other may
still be useful. Thus, for non-rotated variable-pitch fonts,
p f _de f au 1 t s i z e . y will still indicate the unleaded interline spacing for that
font.)

29 Version A of 17 February 1986

30 Pixrect Reference Manual

Figure 3-1

Operations on Pixfonts

Load Private Copy of Font

Default Fonts

Note: The definition of a pixfont is expected to change.

Character and pc yr Origins

pixrect

baseline
character origin

struct pixfont *pf_open(name)
char *name;

A
pixrect baseline

pf_open returns a pointer to a shared copy of a font in virtual memory. A
NULL is returned if the font cannot be opened. The path name of the font file
should be specified, for example:

myfont = pf_open("/usr /lib/fonts/fixedwidthfonts/screen.r.7")

name should be in the format described in vfont (5): the file is converted to pix­
font format, allocating memory for its associated structures and reading in the
data for it from disk. The utility fontedit(l) is a font editor for designing
pixel fonts in vfont(5) format.

struct pixfont *pf_open-private(name)
char *name;

pf _open returns a pointer to a private copy of a font in virtual memory. A
NULL is returned if the font cannot be opened.

struct pixfont *pf_default()

The procedure p f _ de fa ul t performs the same function for the system default
font, nonnally a fixed-pitch, 16-point sans serif font with upper-case letters 12
pixels high. If the environment parameter DEFAULT_FONT is set, its value will be
taken as the name of the font file to be opened by pf_default.

Version A of 17 February 1986

Close Font

Pixrect Text Display

Transparent Text

Auxiliary ~ixfont Procedures

Chapter 3 - Text Facilities for Pixrects 31

pf_close (pf)
struct pixfont *pfi

When a client is finished with a font, it should call pf_close to free the
memory associated with it pf should be a font handle returned by a previous
call to pf_open or pf_default.

pf_text(where, op, font, text)
struct pr-prpos wherei
int 0Pi
struct pixfont *fonti
char *texti

Characters are written into a pixrect with the pf _text procedure. The where
argument is the destination for the start of the text (nominal left edge, baseline;
see Section 3.1; op is the raster operation to be used in writing the text, as
described in Section 2.6; font is a pointer to the font in which the text is to be
displayed; and text is the actual null-tetminated string to be displayed. No
error indicators are returned. Note: The color specified in the op specifies the
color of the ink. The background of the text is painted 0 (background color).

pf_ttext(where, op, font, text)
struct pr-prpos where;
int 0Pi
struct pixfont *fonti
char *texti

pf _ ttext paints "transparenC' text: it doesn't disturb destination pixels in
blank areas of the character's image. The arguments to this procedure are the
same as for pf _text. The characters' bitmaps are used as a stencil, and the
color specified in op is painted through the stencil. No error indicators are
returned.

(For monochrome pixrects, the same effect can be achieved by using PIX_SRC
I PIX_DST as the function in the op; this procedure is for color pixrects.)

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr-pos where[]i
int *lengthpi
struct pixfont *font;
char *texti

struct pr_size pf_textwidth(len, font, text)
int leni
struct pixfont *font;
char *texti

pf_textbatch is used internally by pf_text; it constructs an array of
pr yos structures and records its length, as required by bat chrop (see Sec­
tion 2.7). where should be the address of the array to be filled in, and
lengthp should point to a maximum length for that array. text addresses the
null-tenninated string to be put in the batch, and font refers to the pixfont to be
used to display it When the function returns, lengthp will refer to a word

Version A of 17 February 1986

32 Pixrect Reference Manual

Text Bounding Box

3.2. Example

containing the number of pr yo s structures actually used for text. The
pr_size returned is the sum of the pc_adv fields in theirpixchar struc­
tures.

pf_textwidth returns a pr_size which is computed by taking the product
of len, is the number of characters, and pc_adv, the width of each character.

pf_textbound(bound, len, font, text)
struct pr_subregion *boundi
int len;
struct pixfont *font;
char *text;

pf _ textbound may be used to find the bounding box for a string of characters
in a given font. bound->pos is the top-left comer of the bounding box,
bound->size. x is the width, and bound->size. y is the height.
bound->pr is not modified. bound->pos is computed relative to the loca­
tion of the character origin (base point) of the first character in the text.

Here is an example program that writes text on the display surface with pixel
fonts.

iinclude <pixrect/pixrect_hs.h>

main ()
{

struct pixrect *screeni

struct pr-prpos where;
int op = PIX_SET;
struct pixfont *font;
char *text = "This is a string.";

screen = pr_open("/dev/fblf)i
font = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.l2")i

where.pr = screen;
where.pos.x 400;
where.pos.y = 400;

pf_ttext(where, op, font, text);

pf_close(font);
pr_close(screen);

Figure 3-2 Example Program with Text

Version A of 17 February 1986

4
Memory Pixrects

Memory Pixrects ... 35

4.1. The mpr _ da t a Structure .. 35

4.2. Creating Memory Pixrects ... 36

Create Memory Pixrect ... 36

Create Memory Pixrect from an Image .. 36

Example .. 36

4.3. Static Memory Pixrects .. 37

4.4. Pixel Layout in Memory Pixrects .. 37

4.5. Using Memory Pixrects ... 38

4.1. The mpr_data
Structure

4
Melllory Pixrects

Memory pixrects store their pixels in memory, instead of displaying them on
some display, are similar to other pixrects but have several special properties.
Like all other pixrects, their dimensions are visible in the pr _ s i z e and
pr _depth elements of their pixrect structure, and the device-dependent
operations appropriate to manipulating them are available through their
pr _ ops. Beyond this, however, the format of the data which describes the par­
ticular pixrect is also public: p r _ da ta will hold the address of an mpr _ da ta
struct described below. Thus, a client may construct and manipulate memory
pixrects using non-pixrect operations. There is also a public procedure,
mem _create, which dynamically allocates a new memory pixrect, and a
macro, mpr_static, which can be used to generate an initialized memory pix­
rect in the code of a client program.

struct mpr_data {

} ;

int md_linebytes;
short *md_image;
struct pr-pos md_offset;
short md-primary;
short md_flags;

tdefine MP DISPLAY
tdefine MP REVERSEVIDEO

The pr _ da t a element of a memory pixrect points to an mpr _ da ta struct,
which contains the information needed to deal with a memory pixrect.

linebytes is the number of bytes stored in a row of the primary pixrect. This
is the difference in the addresses between two pixels at the same x -coordinate,
one row apart. Because a secondary pixrect may not include the full width of its
primary pixrect, this quantity cannot be computed from the width of the pixrect
- see Section 2.4. The actual pixels of a memory pixrect are stored someplace
else in memory, usually an array, which md _ image points to; the format of that
area is described in the next section. The creator of the memory pixrect must
ensure that md image contains an even address. md_offset is the x,y posi­
tion of the firstpixel of this pixrect in the array of pixels addressed by
md image. mdyrimary is 1 if the pixrect is primary and had its image allo­
ca~d dynamically (e.g. by mem_create). In this case, md_image will point
to an area not referenced by any other primary pixrect. This flag is interrogated
by the pr_destroy routine: ifit is 1 when that routine is called, the pixrect's

3S Version A of 17 February 1986

36 Pixrect Reference Manual

4.2. Creating Memory
Pixrects

Create Memory Pixrect

Create Memory Pixrect from
an Image

Example

image memory will be freed.

md_flags & (MP_DISPLAY) is non-zero if this memory pixrect is in fact a
display device. Otherwise, it is O. (md _ flag s & MP _ REVERSEVIDEO) is 1 if
reversevideo is currently in effect for the display device. md_flags is
present to support memory-mapped display devices like the Sun-2 monochrome
video device.

Several macros are defined in <pixrect /memvar . h> to aid in addressing
memory pixrects. The following macro obtains a pointer to the mpr _data of a
memory pixrect.

fdefine mpr_d(pr)
«struct mpr_data *) (pr)->pr_data)

The following macro computes the bytes per line of a primary memory pixrect
given its width in pixels and the bits per pixel. This includes the padding to word
bounds. It is useful for incrementing pixel addresses in the y direction.

fdefine mpr_linebytes(width, depth)
(«pr-product(width, depth) +15) »3) &-1)

The mem _ crea te and mem ~oint functions allow a client program to create
memory pixrects.

struct pixrect *mem_create(w, h, depth)
int w, h, depth;

A new primary pixrect is created by a call to the procedure mem _create. w, h
and depth specify the width and height in pixels, and depth in bits per pixel of
the new pixrect. Sufficient memory to hold those pixels is allocated and cleared
to 0, new mpr _ da ta and pixrect structures are allocated and initialized, and
a pointer to the pixrect is returned. If this can not be done, the return value is
NULL.

struct pixrect *mem-point(width, height, depth, data)
int width, height, depth;
short *data;

The mem_point routine builds a pixrect structure that points to a dynamically
created image in memory. Client programs may use this routine as an alternative
to mem_create if the image data is already in memory. width and height
are the width and height of the new pixrect, in pixels. depth is the depth of the
new pixrect, in number of bits per pixel. data points to the image to be associ­
ated with the pixrect.

Here is an example program program that uses memory pixrects to make an
inverted copy of the frame buffer. It opens the default frame buffer and two
memory pixrects, one the size of a scan line and the other the size of the frame
buffer. It then copies in reverse order the frame buffer line by line into the larger
memory pixrect. Finally it copies the memory pixrect back into the frame buffer .

• \sun ,~ microsystems
Version A of 17 February 1986

Figure 4-1

4.3. Static Memory Pixrects

4.4. Pixel Layout in Memory
Pixrects

tinclude <pixrect/pixrect_hs.h>

main()
{

int i;

Chapter 4 - Memory Pixrects 37

struct pixrect *line, *screen, *screen_temp;

screen = pr_open("/dev/fb");
screen_temp = mem_create(screen->pr_size.x,

screen->pr_size.y, 1);
line = mem_create(screen->pr_size.x, 1, 1);

for (i = 0; i < screen->pr_size.y; i++)
pr_rop(line, 0, 0, screen->pr_size.x,

1, PIX_SET, screen, 0, i);
pr_rop(screen_temp, 0, (screen->pr_size.y - i),

screen->pr_size.x, 1, PIX_SET, line, 0, 0);

pr_rop(screen, 0, 0, screen->pr_size.x,
screen->pr_size.y, PIX_SET, screen_temp, 0, 0);

Example Program with Memory Pixrects

tdefine mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

A memory pixrect may be created at compile time by using the mpr_static
macro. name is a token to identify the generated data objects; w, h, and depth
are the width and height in pixels, and depth in bits of the pixrect; and image is
the address of an even-byte aligned data object that contains the pixel values in
the fonnat described above.

The macro generates two structures:

struct mpr_data name_data;
struct pixrect name;

The mpr_data is initialized to point to all of the image data passed in; the pix­
reet then refers to mem_ops and to name_data. Note: Contrary to its name, this
macro generates structures of storage class extern.

In memory, the upper-left comer pixel is stored at the lowest address. This
address must be even. That first pixel is followed by the remaining pixels in the
top row, left-to-right. Pixels are stored in successive bits without padding or
alignment. For pixels more than 1 bit deep, it is possible for a pixel to cross a
byte boundary. However, rows are rounded up to 16-bit boundaries. After any
padding for the top row, pixels for the row below are stored, and so on through
the whole rectangle. Currently, memory pixrects are only supported for pixels of

~\sun ,~ microsystems
Version A of 17 February 1986

38 Pixrect Reference Manual

4.5. Using Memory Pixrects

1, 8, 16, or 24 bits. If source and destination are both memory pixrects they must
have an equal number of bits per pixel.

Memory pixrects can be used to get data from and send data to the display dev­
ice. Several routines exist for interfacing Pixwins with memory pixrects. These
include pw_ read, pw _ rop and pw _ wri teo Refer to the SunView
Programmer's Guide for more details. For applications using the raw device
without Sun View, pr _ rop can be used for operations on memory pixrects.

Another use of memory pixrects is for processing images that not intended for
display. User programs can write directly into a pixrect using parameters found
in the mpr _ data structure, or they can use mem '-point for a previously
created image. Memory pixrects can also be written to raster files using the facil­
ities described in Chapter 5.

Version A of 17 February 1986

5
File 110 Facilities for Pixrects

File I/O Facilities for Pixrects ... 41

5.1. Writing and Reading Raster Files .. 41

Write Raster File ... 41

Read Raster File .. 43

5.2. Details of the Raster File Format ... 44

5.3. Writing Parts of a Raster File ... 45

Write Header to Raster File .. 45

Initialize Raster File Header ... 45

Write Image Data to Raster File ... 46

5.4. Reading Parts of a Raster File .. 46

Read Header from Raster File ... 46

Read Colormap from Raster File ... 46

Read Image from Raster File ... 46

Read Standard Raster File ... 47

5.1. Writing and Reading
Raster Files

Write Raster File

5
File liD Facilities for Pixrects

Sun has specified a file format for files containing raster images. The format is
defined in the header file <raster file . h>. The pixrect library contains rou­
tines to perform I/O operations between pixrects and files in this raster file for­
mat. This I/O is done using the routines of the C Library Standard I/O package,
requiring the caller to include the header file <stdio. h>.

The raster file format allows for multiple types of raster images. This means that
both unencoded and encoded images are supported. In addition, the pixrect
library routines that read and write raster files support customer defined fonnats.
This support is implemented by passing raster files with non-standard types
through filters found in the directory /usr /lib/rasfilters. This directory
also includes sample source code for a filter that corresponds to one of the stan­
dard raster file types to facilitate writing new filters.

The sections that follow describe how to store and retrieve an image in a
rasterfile.

int pr_dump(input-pr, output, colormap, type, copy_flag)
struct pixrect *input-pri
FILE *outputi
colormap_t *colormapi
int type, copy_flagi

The pr _dump procedure stores the image described by a pixrect onto a file. It
normally returns 0, but if any error occurs it returns PIX_ERR. The inputyr
pixrect can be a secondary pixrect. This allows the caller to write a rectangular
sub-region of a pixrect by first creating an appropriate input yr via a call to
pr_region. The output file is specified via output. The desired output type
should either be one of the following standard types or correspond to a customer
provided filter.

idefine RT OLD 0
idefine RT STANDARD 1
idefine RT BYTE ENCODED 2 - -

The RT _ STANDARD type is the common raster file format in the same sense that
memory pixrects are the common pixrect format: every raster file filter is
required to read and write this format. The RT _OLD type is very close to the
RT _STANDARD type; it was the former standard generated by old versions of Sun

41 Version A of 17 February 1986

42 Pixrect Reference Manual

software. The RT_BYTE_ENCODED type implements a run-length encoding of
bytes of the pixrect image; usually this results in shorter files. Specifying any
other output type causes pr_dump to pipe a raster file ofRT_STANDARD type to
the filter named /usr/ lib/rasfilters/ convert. type, where type is
the ASCII corresponding to the specified type in decimal. The output of the
filter is then copied to output.

It is strongly recommended that customer-defined formats use a type of 100 or
more, to avoid conflicts with additions to the set of standard types. To aid in
development of filters for customer-defined formats, pr _dump recognizes the
RT_EXPERIMENTAL type as special, and uses the filter named. / con-
vert. 65535 rather than /usr/lib/rasfilters/convert. 65535.

idefine RT EXPERIMENTAL 65535

For pixrects displayed on devices with colormaps, the values of the pixels are not
sufficient to recreate the displayed image. Thus, the image's colormap can also
be specified in the call to pr _dump. If the colormap is specified as NULL but
input yr is not monochrome, pr _dump will attempt to write the colonnap
obtained from inputyr (via pr_getcolormap assuming a 256 element
RGB colormap). The following structure is used to specify the colormap associ­
ated with inputyr:

typedef struct {
int type;
int length;
unsigned char *map[3];

colormap_ti

The colonnap type should be one of the Sun supported types:

idefine RMT NONE 0
idefine RMT_EQUAL_RGB 1

If the colormap type is RMT _NONE, then the colormap length must be O. This
case usually arises when dealing with monochrome displays and monochrome
pixrects. If the colormap type is RMT_EQUAL_RGB, then the map array should
specify the red (map [0]), green (map [1]) and blue (map [2]) colonnap
values, with each vector in the map array being of the same specified colormap
length. For developers of customer-defined fonnats, the following colormap type
is provided but not interpreted by the pixrect software:

idefine RMT RAW 2

Finally copy_flag specifies whether or not input_pr should be copied to a
temporary pixrect before the image is output. There are two situations in which
the copy _flag value should be non-zero:

• if the output type is RT _BITE_ENCODED - This is because the encoding algo­
rithm does the encoding in place and will destroy the image data of
input_pr ifit fails while working on input_pr directly.

• if input yr is a pixrect in a frame buffer that is likely to be asynchronously
modified - Note that use of copy _ f lag will still not guarantee that the
correct image will be output unless the pr _ rop to copy from the frame buffer

Version A of 17 February 1986

Figure 5-1

Read Raster File

Chapter 5 - File 110 Facilities for Pixrects 43

is atomic or otherwise made uninterruptable.

*include <pixrect/pixrect_hs.h>
*include <stdio.h>

'define FALSE
*define TRUE

main ()
{

o
!FALSE

struct pixrect *screen, *icon;
FILE *output = stdout;
colormap_t *colormap = NULL;
int type = RT_STANDARD;
int copy_flag = TRUE;

screen = pr_open("/dev/fb");
icon = pr_region(screen, 1050, 10, 64, 64);
pr_dump(icon, output, colormap, type, copy_flag);
pr_close(screen);

Example Program with pr _dump

struct pixrect *pr_load(input, colormap)
FILE *input;
colormap_t *colormap;

The pr _load can be used to retrieve the image described by a file into a pix­
recto The raster file's header is read from input, a pixrect of the appropriate
size is dynamically allocated, the colormap is read and placed in the location
addressed by colormap, and finally the image is read into the pixrect and the
pixrect returned. If any problems occurs, pr _load returns NULL instead.

As with pr _dump, if the specified raster file is not of standard type, pr _load
first runs the file through the appropriate filter to convert it to RT _ STANDARD type
and then loads the output of the filter.

Additionally, if colormap is NULL, pr _load will simply discard any and all
colormap information contained in the specified input raster file.

Version A of 17 February 1986

44 Pixrect Reference Manual

Figure 5-2

5.2. Details of the Raster File
Format

#include <pixrect/pixrect_hs.h>
#include <stdio.h>

main ()
{

struct pixrect *screen, *icon, *pr_load();
FILE *input = stdin;
colormap_t *colormap = NULL;

screen = pr_open("/dev/fb");
icon = pr_load(input, colormap);
pr_rop(screen, 1050, 110, 64, 64, PIX_SET, icon, 0, 0);
pr_close(screen);

Example Program with pr_load

A handful of additional routines are available in the pixrect library for manipulat­
ing pieces of raster files. In order to understand what they do, it is necessary to
understand the exact layout of the raster file fonnat.

The raster file is in three parts: first, a small header containing 8 int's; second, a
(possibly empty) set of colormap values; third, the pixel image, stored a line at a
time, in increasing y order.

The image is essentially laid out in the file the exact way that it would appear in a
memory pixrect. In particular, each line of the image is rounded out to a multiple
of 16 bits, corresponding to the rounding convention used by the memory pix­
rects.

The header is defined by the following structure:

struct rasterfile {
int ras_magic;

} ;

int ras_width;
int ras_height;
int ras_depth;
int ras_length;
int ras_type;
int ras_maptype;
int ras_maplength;

The ras_magic field always contains the following constant:

#define RAS MAGIC Ox59a66a95

The ras_width, ras_height and ras_depth fields contain the image's
width and height in pixels, and its depth in bits per pixel, respectively. The depth
is usually either 1 or 8, corresponding to the standard frame buffer depths.

The ras_length field contains the length in bytes of the image data. For an
unencoded image, this number is computable from the ras _width,

Version A of 17 February 1986

5.3. Writing Parts of a Raster
File

Write Header to Raster File

Initialize Raster File Header

Chapter 5 - File 110 Facilities for Pixrects 45

ras_height, and ras_depth fields, but for an encoded image it must be
explicitly stored in order to be available without decoding the image itself. Note
that the length of the header and of the possibly empty colormap values are not
included in the value in the ras_length field; it is only the image data length.
For historical reasons, files of type RT _OlD will usually have a 0 in the
ras _length field, and software expecting to encounter such files should be
prepared to compute the actual image data length if it is needed. The
ras_maptype and ras_maplength fields contain the type and length in
bytes of the colormap values, respectively.

If the ras_maptype is not RMT_NONE and the ras_maplength is not 0,
then the colormap values are the ras_maplength bytes immediately after the
header. These values are either uninterpreted bytes (usually with the
ras_maptype set to RMT_RAW) or the equal length red, green and blue vectors,
in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter case,
the ras_maplength must be three times the size in bytes of any one of the
vectors.

The following routines are available for writing the various parts of a raster file.
Many of these routines are used to implement pr _dump. First, the raster file
header and the colormap can be written by calling pr_dump_header.

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormapi

pr_dump_header returns PIX_ERR if there is a problem writing the header or
the colormap, otherwise it returns O. If the colormap is NULL, no colormap
values are written.

struct pixrect *pr_dump_init(input-pr, rh, colormap,
type, copy_flag)

struct pixrect *input-pr;
struct rasterfile *rhi
colormap_t *colormapi
int type, copy_flag;

For clients that do not want to explicitly initialize the rasterfile struct the follow­
ing routine can be used to set up the arguments for pr _dump_header. The
arguments to pr_dump_init correspond to the arguments to pr_dump.
However, pr _dump _ ini t returns the pixrect to write, rather than actually writ­
ing it, and initializes the structure pointed to by rh rather than writing it. If
colormap is NULL, the ras_maptype and ras_maplength fields ofrh will
be set to RMT_NONE and 0, respectively.

If any error is detected by pr _dump _ ini t, the returned pixrect is NULL. If
there is no error and the copy _flag is zero, the returned pixrect is simply
input yr. However, if copy_flag is non-zero, the returned pixrectis
dynamically allocated and the caller is responsible for deallocating the returned
pixrect after it is no longer needed.

Version A of 17 February 1986

46 Pixrect Reference Manual

Write Image Data to Raster
File

S.4. Reading Parts of a Raster
File

Read Header from Raster File

Read Colormap from Raster
File

Read Image from Raster File

int pr_dump_image(pr, output, rh)
struct pixrect *pri
FILE *output;
struct rasterfile *rhi

The actual image data can be output via a call to pr _dump_image. This rou­
tine returns 0 unless there is an error, in which case it returns PIX_ERR.

Since these routines sequentially advance the output file's write pointer,
pr _dump_image must be called after pr _dump_header.

The following routines are available for reading the various parts of a raster file.
Many of these routines are used to implement pr _load. Since these routines
sequentially advance the input file's read pointer, rather than doing random seeks
in the input file, they should be called in the order presented below.

int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rhi

The raster file header can be read by calling pr _load_header. This routine
reads the header from the specified input, checks it for validity and initializes the
specified rasterfile structure from the header. The return value is 0 unless
there is an error, in which case it returns PIX_ERR.

int pr_load_colormap(input, rh, colormap)
FILE *inputi
struct rasterfile *rhi
colormap_t *colormap;

If the header indicates that there is a non-empty set of colonnap values, they can
be read by calling: pr_load_colormap. If the specified colormap is NULL,
this routine will skip over the colormap values by reading and discarding them.
Note that the caller is responsible for looking at the raster file header and setting
up an appropriate colormap struct before calling this routine.

The return value is 0 unless there is an error, in which case it returns PIX_ERR.

struct pixrect *pr_load_image(input, rh, colormap)
FILE *inputi
struct rasterfile *rhi
colormap_t *colormapi

An image can be read by calling: pr_load_image. If the input is a standard
raster file type, this routine reads in the image directly. Otherwise, it writes the
header, colonnap, and image into the appropriate filter and then reads the output
of the filter. In this case, both the rasterfile and the colonnap structures will be
modified as a side-effect of calling this routine. In either case, a pixrect is
dynamically allocated to contain the image, the image is read into the pixrect,
and the pixrect is returned as the result of calling the routine. If there is an error,
the return value is NULL instead of a pixrect containing the image.

Version A of 17 February 1986

Read Standard Raster File

Chapter 5 - File 110 Facilities for Pixrects 47

struct pixrect *pr_load_std_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t colormapi

If it is known that the image is from a standard raster file type, then it can be read
in by calling: pr _load _ std _ image. This routine is identical to
pr _load_image, except that it will not invoke a filter on non-standard raster
file types.

Version A of 17 February 1986

A
Writing a Pixrect Driver

Writing a Pixrect Driver .. 51

A.l. What You'll Need .. 51

A.2. Implementation Strategy .. 52

A.3. Files Generated .. 52

Memory Mapped Devices .. 53

A.4. Pixrect Private Data .. 53

A.5. Creation and Destruction ... 54

Creating a Primary Pixrect 54

Creating a Secondary Pixrect ... 57

Destroying a Pixrect .. 58

The p r _ make fun Operations Vector .. 58

A.6. Pixrect Kernel Device Driver .. 59

Configurable Device Support ... 59

Open ... 65

Mmap ... 65

ioctl ... 65

Close ... 67

Plugging Your Driver into UNIX .. 67

A.7. Access Utilities .. 68

A.8. Rop .. 69

A.9. Batchrop ... 69

A.IO. Vector ... 69

Importance of Proper Clipping ... 69

A.II. Colormap .. 69

Monochrome .. 69

A.I2. Attributes .. 69

Monochrome .. 69

A.I3. Pixel ... 70

A.I4. Stencil ... 70

A.IS. Curve ... 70

A.I6. Polygon .. 70

A.t. What You'll Need

A
Writing a Pixrect Driver

Sun has defined a common programming interface to pixel addressable devices
that enables, in particular, device independent access to all Sun frame buffers.
This interface is called the pixrect interface. Existing Sun supported software
systems access a frame buffer through the pixrect interface. Sun encourages cus­
tomers with other types of frame buffers (or other types of pixel addressable dev­
ices) to provide a pixrect interface to these devices.

This chapter describes how to write a pixrect driver. It is assumed that you have
already read Chapter 2; it describes the programming interface to the basic opera­
tions that must be provided in order to generate a complete pixrect implementa­
tion. It is also assumed that you have a copy of Writing Device Drivers/or the
Sun Workstation. The section in that manual on writing the kernel device driver
portion of the pixrect implementation is important.

This chapter contains auxiliary material of interest only to pixrect driver imple­
mentors, not programmers accessing the pixrect interface. This document
explains how to plug a new pixrect driver into the software architecture so that it
may be used in a device independent manner. Also, utilities and conventions that
may be of use to the pixrect driver implementor are discussed.

This chapter walks through some of the C language source code for the pixrect
driver for the Sun-l color frame buffer. There is no significance to the fact that
we are using the Sun-l color frame buffer as an example. Another pixrect driver
would have been just as good.

The actual source code that is presented here is boiler-plate, i.e., almost every
pixrect driver will be the same. You should be able to make your own driver just
from the documentation alone. However, a complete source example for an
existing pixrect driver would probably expedite the development of your own
driver. The complete device specific source files for the Sun-l color frame buffer
pixrect driver is available as a source code purchase option (available without a
UNIX source license).

These are the tools and pieces that you'll need before assembling your pixrect
driver:

• You need the correct documentation:

[1] SunView System Programmer's Guide. Sun Microsystems, Inc.

51 Version A of 17 February 1986

52 Pixrect Reference Manual

A.2. Implementation Strategy

A.3. Files Generated

[2] Sun View Programmer's Guide. Sun Microsystems, Inc.

[3] Writing Device Drivers/or the Sun Workstation. Sun Microsystems,
Inc.

• You need to know how to drive the hardware of your pixel addressable device.
At a minimum, a pixel addressable device must have the ability to read and
write single pixel values. (One could imagine a device that doesn't even meet
the minimum requirements being used as a pixel addressable device. We will
not discuss any of the ways that such a device might fake the minimum
requirements).

• You must have a UNIX kernel building environment. No extra source is
required.

• You must have the current pixrect library file and its accompanying header
files. No extra source is required.

This is one possible step-by-step approach to implementing a pixrect driver:

• Write and debug pixrect creation and destruction. This involves the pixrect
kernel device driver that lets you open(2) and mmap(2) he physical device
from a user process. The private cgl_ make routine must be written. The
cgl_region and cgl_destroy pixrectoperation must be written.

• Write and debug the basic pixel rectangular region function. The
cglyutattributes and cglyutcolormap pixrect operations must
be written in addition to the cgl_ rop routine.

• Write and debug batchrop routines. The cgl_batchrop pixrect operation
must be written.

• Write and debug vector drawer. The cgl_ vector pixrect operation must be
written.

• Write and debug remaining pixrect operations: cgl_stencil, cgl_get,
cglyut,cgl_getattributesandcgl_getcolormap.

• If the device is to run with Sun View, build a kernel with minimal basic pixel
rectangle function for use by the cursor tracking mechanism in the Sun View
kernel device driver. Also include the colormap access routines for use by the
colormap segmentation mechanism in the Sun View kernel device driver.

• Load and test SunView programs with new pixrect driver. Experience has
shown that when you are able to run released Sun View programs that your
pixrect driver is in pretty good shape.

Here is the list of source files generated that implement the example pixrect
driver:

• cglreg. h - A header file describing the structure of the raster device. It con­
tains macros used to address the raw device.

• cgl var. h - A header file describing the private data of the pixrect. It con­
tains external references to pixrect operation of this driver.

Version A of 17 February 1986

Memory Mapped Devices

A.4. Pixrect Private Data

Appendix A - Writing a Pixrect Driver 53

• I sys I sundev I cgone . c - The pixrect kernel device driver code.

• cg 1 . c - The pixrect creation and destruction routines.

• cgl_ region. c - The region creation routine.

• pr _ makefun . c - Replaces an existing module and contains the vector of
pixrect make operations.

• cgl_batch. c - The batchrop routine.

• cgl_ colormap . c - The colormap access and attribute setting routines.

• cgl_getput. c - The single pixel access routines.

• cgl_ r~p . c - The basic pixel rectangle manipulation routine.

• cgl_stencil. c - The stencil routine.

• cgl_ vee. c - The vector drawer.

• cgl_ curve. c The curved shape routine.

• cgl_polyline. c The polyline routine.

Some devices are memory mapped, e.g., the Sun-2 monochrome video frame
buffer. With such devices, their pixels are manipulated directly as main memory;
there are no device specific registers through which the pixels are accessed.
Memory mapped devices are able to rely on the memory pixrect driver for many
of its operations. The only files that the Sun 2 monochrome video frame buffer
supplies are:

• bw2var. h - A header file describing the private data of the pixrect. It con-
tains external references to pixrect operation of this driver.

• I sysl sundev Ibwtwo. c - The pixrect kernel device driver code.

• bw2. c - The pixrect creation and destruction routines.

The operations vector for the Sun 2 monochrome pixrect driver is:

struct pixrectops bw2_ops = {

} ;

mem_rop, mem_stencil, mem_batchrop,
0, bw2_destroy, mem_get, mem-put, mem_vector,
mem_region, mem-putcolormap, mem_getcolormap,
mem-putattributes, mem_getattributes

Each pixrect device must have a private data object that contains instance
specific data about the state of the driver. It is not acceptible to have global data
shared among all the pixrects objects. The device specific portion of the pixrect
data must contain certain information:

• An offset from the upper left-hand comer of the pixel device. This offset, plus
the width and height of the pixrect from the public portion, is used to deter­
mine the clipping rectangle used during pixrect operations.

Version A of 17 February 1986

54 Pixrect Reference Manual

• A flag for distinguishing between primary and secondary pixrects. Primary
pixrects are the owners of dynamically allocated resources shared between pri­
mary and secondary pixrects.

• A file descriptor to the pixrect kernel device. Usually, the file descriptor is
used while mapping pages into the user process address space so that the dev­
ice may be addressed. One could imagine a pixrect driver that had some of its
pixrect operations implemented inside the kernel. The file descriptor would
then be the key to communicating with that portion of the package via
read(2), wri te(2) and ioct 1(2) system calls.

Here is other possible data maintained in the pixrect's private data:

• For many devices, a virtual address pointer is part of the private data so that
the device can be accessed from user code.

• For color devices, there is a mask to enable access to specific bit planes.

• For monochrome devices, there is a video invert flag. This replaces the color­
map of color devices.

A.S. Creation and Destruction This section covers the code for pixrect object creation and destruction. Code for
the Sun-l color frame buffer pixrect driver is presented as an example.

Creating a Primary Pixrect

There are three public pathways to creating a pixrect:

• pr_open creates a primary pixrect.

• pr _region creates a secondary pixrect which specifies a subregion in an
existing pixrect.

There are two public pathways to destroying a pixrect:

• pr _destroy destroys a primary or secondary pixrect. Clients of the pixrect
interface are responsible for destroying all extant secondary pixrects before
destroying the primary pixrect from which they were derived.

• pr_close simply calls pr_destroy.

In this section, the private cg1_ make pixrect operation is described. This is the
flow of control for pr _open:

• Higher levels of software call pr _open, which takes a device file name (e.g.,
/ dey / cgoneO).

• pr _open opens the device and finds out its type and size via an FBIOGTYPE
ioctl(2) call (see <sun/fbio. h».

• pr _open uses the type of pixel addressable device to index into the
pr_makefun array of procedures (more on this later) and calls the referenced
pixrect make function, cgl_ make.

• cgl_make returns the primary pixrect (it workings are discussed below).

• pr _open closes its handle on the device and the pixrect is returned.

Version A of 17 February 1986

Appendix A - Writing a Pixrect Driver 55

Here is a partial listing of cgl. c that contains code that is important to the
cgl_make procedure. As it is for other code presented in this document, it is
here so you can refer back to it as you read the subsequent explanation. Some
lines are numbered for reference and normal C comments have been removed in
favor of the accompanying text.

finclude <sys/types.h>
finclude <stdio.h>
finclude <pixrect/pixrect.h>
finclude <pixrect/pr_util.h>
finclude <pixrect/cglreg.h>
finclude <pixrect/cglvar.h>

static struct pr_devdata *cgldevdata; /* cgl.l*/

struct pixrectops cgl_ops = { /* cgl.2*/
cgl_rop, cgl_stencil, cgl_batchrop, 0, cgl_destroy, cgl_get,
cgl-put, cgl_vector, cgl_region, cgl-putcolormap, cgl_getcolormap,
cgl-putattributes, cgl_getattributes,

} ;

struct pixrect *
cgl_make(fd, size, depth) /* cgl.3*/

int fd; /* cgl.4*/
struct pr_size size;
int depth;

struct pixrect *pr;
register struct cglpr *cgpr; /* cgl.5*/
struct pr_devdata *dd; /* cgl.6*/

if (depth != CG1_DEPTH I I size.x != CGl WIDTH
I I size.y != CGl_HEIGHT) { /* cgl.7*/

fprintf(stderr, "cgl_make sizes wrong %D %D %D\n",
depth, size.x, size.y);

return (0);

if (! (pr = pr_makefrornfd(fd, size, depth, &cgldevdata, &dd,/* cgl.8*/
sizeof(struct cglfb), sizeof(struct cglpr), 0»)
return (0);

pr->pr_ops = &cgl_ops; /* cgl.9*/
cgpr = (struct cglpr *)pr->pr_data; /* cgl.lO*/
cgpr->cgpr_fd = dd->fd; /* cgl.ll*/
cgpr->cgpr_va = (struct cglfb *)dd->va;/* cgl.12*/
cgpr->cgpr-planes = 255; /* cgl.13*/
cgpr->cgpr_offset.x = cgpr->cgpr_offset.y = 0;/* cgi.14*/
cgl_setreg(cgpr->cgpr_va, CG_STATUS, CG_VIDEOENABLE);/* cgl.15*/
return (pr); /* cgl.16*/

Version A of 17 February 1986

56 Pixrect Reference Manual

Line cgl.7 does some consistency checking to make sure that the dimensions of
the pixel addressable device and the client's idea about the dimensions of the
device match.

struct *pixrect pr_makefromfd(fd, size, depth, devdata, curd
mmapbytes, privdatabytes, mmapoffsetbytes)
struct pr_size size;
struct pr_devdata * *devdata , **curdd;
int fd, depth, mmapbytes, privdatabytes, mmapoffsetb:
int mmapbytes, privdatabytes, mmapoffsetbytes);

Line cgl.8 calls the pixrect library routine pr_makefromfd to do most of the
work:

• Allocates a pixrect structure object using the calloc library call. The
pixrect is filled in with size and depth parameters.

• Allocates an object of the size privdatabytes using the calloc library call
and placing a pointer to it in the pr _data field of the allocated pixrect.

• dup(2)s the passed in file descriptorfd so that when the caller closes the file
descriptor the device wouldn't close.

• valloc(2)s the amount of space mmapbytes .

• mmap(2)s the space returned from vallob to the device.

• If an error is detected during any of the above calls, an error is written to the
standard error output. A NULL pixrect handle is returned in this case.

• Returns the allocated pixrect.

This brings us to the issue of minimizing resources used by the pixrect driver.
andpr_open, cgl_make, can be (and are) called many times thus creating a
situation in which there are many primary pixrects open at a time. A pixrect
should maintain an open file descriptor and (usually) a non-trivial amount of vir­
tual address space mapped into the user process's address space. Both the
number of open file descriptors, the virtual address space (max 16 megabytes)
and the disk swap space needed to support the virtual memory (configurable) are
finite resources. However, multiple open pixrects can share all these resources.

The pixrect library supports a resource sharing mechanism, part of which is
implemented in pr_makefromfd. The devdata parameter passed to
pr_makefromfd is the head of a linked list of pr_devdata structures of
which there is one per pixrect driver. It is sufficient to say that through the data
maintained on this list, sharing of the scarce resources described above can be
accomplished.

The curdd parameter passed to pr_makefrornfd is set to be the
pr_devdata structure that applies to the device identified by fd.

Lines cgl.9 through cgl.14 are concerned with initializing the pixrect's private
data with dynamic infonnation described in dd (curdd in the previous para­
graph) and static information about the pixel addressable device.

Version A of 17 February 1986

Creating a Secondary Pixrect

Appendix A - Writing a Pixrect Driver 57

Line cg 1.1 5 is where the video signal for the device is enabled. By convention,
every raster device should make sure that it is enabled.

In this section, the cgl_ region pixrect operation is described. Here is all of
cgl_region. c.

struct pixrect *cgl_region(src)
struct pr_subregion src;

register struct pixrect *pr;
register struct cglpr *scgpr
int zero = 0;

cgl_d(src.pr), *cgpr;

pr_clip(&src, &zero); 1* cgl_region.l*/
if «pr = (struct pixrect *)calloc(l, sizeof (struct pixrect») == 0)/* cgl_region.2*

return (0);
if «cgpr = (struct cglpr *)calloc(l, sizeof (struct cglpr») == 0) {/* cgl_region.3*

free(pr);
return (0);

pr->pr_ops = &cgl_ops; /* cgl_region.4*/
pr->pr_size = src.size; /* cgl_region.5*/
pr->pr_depth = CGl_DEPTH; /* cgl_region.6*/
pr->pr_data = (caddr_t)cgpr; /* cgl_region.7*/
cgpr->cgpr_fd = -1; /* cgl_region.8*/
cgpr->cgpr_va = scgpr->cgpr_va; /* cgl_region.9*/
cgpr->cgpr-planes = scgpr->cgpr-planes;/*cgl_region.l0*/
cgpr->cgpr_offset.x scgpr->cgpr_offset.x + src.pos.x;/*cgl_region.l1*/
cgpr->cgpr_offset.y = scgpr->cgpr_offset.y + src.pos.y;/*cgl_region.12*/
return (pr);

cgl_ region is less complex then cgl_ make. The first thing done is to clip
the requested subregion to fall within the source pixrect (line cg1_region.1).

pr_clip(dstp, srcp)
struct pr_subregion *dstp;
struct pr-prpos *srcp;

pr_clip adjusts the position and size of dstp, the destination pixrect subre­
gion, to fall within dstp->pr. If *scrp, the source pixrect position, is not
zero then the position of the source is clipped to fall within dstp.

Next, objects are allocated for the pixrect and the pixel addressable device's
private data (line cg1_region.2 and cg1_region.3). Then, similarly to the later
part of cgl_make, the two new data objects are initialized (lines cg1_region.4
through cg1_region.12). One thing to note is that the cgl driver uses a -1 in the
file descriptor field of the pixrect's private data to indicate that this pixrect is
secondary (line cg 1_region.8).

Version A of 17 February 1986

58 Pixrect Reference Manual

Destroying a Pixrect

cgl_destroy(pr)
struct pixrect *pr;

In this section, the cgl_ destroy pixrect operation is described. It works on
secondary and primary pixrects. Here is more of cgl . c.

register struct cg1pr *cgpr;

if (pr == 0)
return (0);

if (cgpr = cg1_d(pr» { /*cgl.30*/
if (cgpr->cgpr_fd != -1) { /*cg1.31*/

pr_unmakefromfd(cgpr->cgpr_fd, &cg1devdata);/*cgl.32*/

free(cgpr); /*cgl.33*/

free(pr);
return (0);

/*cgl.34*/

The pr_makefun
Operations Vector

Note that dynamic memory is freed (lines cgl.33 and cgl.34). Also, note that
only a primary pixrect (as indicated by a file descriptor that is not -1) invokes a
call to pr_unmakefromfd (line cgl.32).

pr_unmakefrornfd(fd, devdata)
struct pr_devdata **devdata;
int fd;

This pixrect library routine is the counterpart ofpr_makefromfd. If the dev­
ice identified by the file descriptor fd has no more pixrects associated with it (as
determined from devdata) then the resources associated with it are released.

As mentioned above, pr_open calls cgl_make through the pr_makefun
procedure vector. This is what pr _ makefun looks like (it is the sole contents
ofpr_makefun. c):

tinclude <pixrect/pixrect_hs.h>
linclude <sun/fbio.h>
tinclude <sys/ioctl.h>

struct pixrect *(*(pr_rnakefun[FBTYPE_LASTPLUSONE]» ()
(struct pixrect *(*) (»bw1_rnake,
(struct pixrect *(*) (»cg1_rnake,
(struct pixrect *(*) (»bw2_rnake,
(struct pixrect *(*) (»cg2_rnake,
(struct pixrect *(*) (»gp1_rnake,

} ;

pr _ makefun is the routine that pulls in all the code from the different frame
buffers. If a site is not going to use programs on more than one kind of display,
the unused slots can be commented out to prevent the code for the unused display

Version A of 17 February 1986

A.6. Pixrect Kernel Device
Driver

Configurable Device Support

tinclude "cgone.h"
tinclude "win.h"
tif NCGONE > 0
tinclude
tinclude
tinclude
*include
tinclude
*include
tinclude
*include
*include
tinclude

· ./h/param.h"
.. /h/systm.h"
.. /h/dir.h"
· ./h/user.h"
.. /h/proc.h"
· ./h/buf.h"
· ./h/conf.h"
· ./h/file.h"
.. /h/uio.h"
· ./h/ioctl.h"

Appendix A - Writing a Pixrect Driver 59

from being loaded. This has the advantage of reducing disk space usage. How­
ever, working set size will presumably not be affected due to virtual memory not
touching unused code.

For both the case of adding and deleting drivers, loading a compiled version of
this edited file will have the effect of ignoring the commented out device drivers.

When adding some new pixrect driver, you need to assign" it some unused con­
stant from <sun/ fbio. h>, e.g., FBTYPE_NOTSUNI. This then becomes the
device identifier for your new pixrect driver. You need to generate a new version
of the source file pr_makefun. c with the above data structure except that the
array entry pr_makefun [FBTYPE_NOTSUN1] would contain the pixrect make
procedure for your FBTYPE_NOTSUNI pixrect driver (line pr_makefun .1).
The old pr _make fun. 0 in the pixrect library could be replaced with your new
pr_makefun.o using ar(l).

A pixrect kernel device driver supports the pixel addressable device as a com­
plete UNIX device. It also supports use of this device by the SUD View driver so
that the cursor can be tracked and the colormap loaded within the kernel. The
document Writing Device Driversfor the Sun Workstation contains the details of
device driver construction. It also contains an overview.

The code in this section comes from cgone. c. In the kernel, suffixes that end
with a number (like cg1) confuse the conventions surrounding device driver
names. A number suffix refers to the minor device number of a device. There­
fore, in our example, cg1 becomes cgone where the naming has something to
do with the pixrect kernel device driver.

Raster devices typically hang off a high speed bus (e.g., Multibus) or are plugged
into a high speed communications port. At kernel building time the UNIX auto­
configuration mechanism is told what devices to expect and where they should be
found. At boot time the auto-configuration mechanism checks to see if each of
the devices it expects are present.

This section deals with the auto-configuration aspects of the driver. This driver
is written in the conventional style that supports multiple units of the same dev­
ice type. It is recommended that you follow this style even if you aren't antici­
pating multiple pixel addressable devices of your type on a single UNIX system.

Version A of 17 February 1986

60 Pixrect Reference Manual

*include " .. /machine/mmu.h"
*include " .. /machine/pte.h"
*include " .. /sun/fbio.h"
*include ft •• /sundev/mbvar.h"
*include " .. /pixrect/pixrect.h"
*include " .. /pixrect/pr_util.h"
*include " .. /pixrect/cglreg.h"
*include " .. /pixrect/cglvar.h"

*if NWIN > °
*define CGl OPS &cgl_ops
struct pixrectops cgl_ops

cgl_rop,
cglyutcolormap,
cglyutattributes,

} ;

*else
*define CGl CPS (struct pixrectops *)0
*endif

*define CG1SIZE (sizeof (struct cglfb»
struct cglpr cgoneprdatadefault =

{ 0, 0, 255, 0, 0 };
struct pixrect cgonepixrectdefault

CG1_OPS, { CG1_WIDTH, CG1_HEIGHT }, CG1_DEPTH, /* filled in later */ 0 };

/*
* Driver information for auto-configuration stuff.
*/

int cgoneprobe(), cgoneintr();
struct pixrect cgonepixrect[NCGONE];
struct cglpr cgoneprdata[NCGONE];
struct mb_device *cgoneinfo[NCGONE];
struct mb_driver cgonedriver = {

} ;

/*

cgoneprobe, 0, 0, 0, 0, cgoneintr,
CG1SIZE, "cgone", cgoneinfo, 0, 0, 0,

* Only allow opens for writing or reading and writing
* because reading is nonsensical.
*/

cgoneopen(dev, flag)
dev_t dev;

return (fbopen (dev, flag, NCGONE, cgoneinfo»;

/*
* When close driver destroy pixrect.
*/

/*ARGSUSED*/

Version A of 17 February 1986

Appendix A - Writing a Pixrect Driver 61

cgoneclose(dev, flag)
dev_t dev;

register int unit = minor(dev);

if «caddr t)&cgoneprdata[unit] == cgonepixrect[unit] .pr_data) {
bzero«caddr_t)&cgoneprdata[unit], sizeof (struct cg1pr»;
bzero«caddr_t)&cgonepixrect[unit], sizeof (struct pixrect»;

/*ARGSUSED*/
cgoneioctl(dev, cmd, data, flag)

dev_t dev;
caddr_t data;

register int unit minor (dev) ;

switch (cmd)

case FBIOGTYPE:
register struct fbtype *fb = (struct fbtype *)data;

fb->fb_type = FBTYPE_SUNICOLOR;
fb->fb_height = 480;
fb->fb_width = 640;
fb->fb_depth = 8;
fb->fb_cmsize = 256;
fb->fb_size = 512*640;
break;
}

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cg1fb *cg1fb =

(struct cg1fb *)cgoneinfo[(unit)]->md_addr;

/*
* "Allocate" and initialize pixrect data with default.
*/

fbpr->fbpr-pixrect = &cgonepixrect[unit];
cgonepixrect[unit] = cgonepixrectdefault;
fbpr->fbpr-pixrect->pr_data = (caddr_t) &cgoneprdata[unit];
cgoneprdata[unit] = cgoneprdatadefault;
/*

* Fixup pixrect data.
*/

cgoneprdata[unit] .cgpr_va
/*

* Enable video
*/

cg1fb;

cg1_setreg(cg1fb, CG_FUNCREG, CG_VIDEOENABLE);
/*

* Clear interrupt

Version A of 17 February 1986

62 Pixrect Reference Manual

/*

*/
cgl_intclear(cglfb);
break;
}

default:
return (ENOTTY);

return (0);

* We need to handle vertical retrace interrupts here.
* The color map(s) can only be loaded during vertical
* retrace; we should put in ioctls for this to synchronize
* with the interrupts.
* FOR NOW, see comments in the code.
*/

cgoneintclear(cglfb)
struct cglfb *cglfb;

/*
* The Sun-l color frame buffer doesn't indicate that an
* interrupt is pending on itself so we don't know if the interrupt
* is for our device. So, just turn off interrupts on the cgone board.
* This routine can be called from any level.
*/

cgl_intclear(cglfb);
/*

* We return 0 so that if the interrupt is for some other device
* then that device will have a chance at it.
*/

return(O);

int
cgoneint r ()
{

return (fbintr (NCGONE, cgoneinfo, cgoneintclear»;

/*ARGSUSED*/
cgonemmap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

return (fbmmap(dev, off, prot, NCGONE, cgoneinfo, CGlSIZE»i

tinclude fI •• /sundev/cgreg.h"
/*

* Note: using old cgreg.h to peek and poke for now.

Version A of 17 February 1986

Appendix A - Writing a Pixrect Driver 63

*/
/*

* We determine that the thing we're addressing is a color
* board by setting it up to invert the bits we write and then writing
* and reading back DATAl, making sure to deal with FIFOs going and coming.
*/

'define DATAl Ox5C
'define DATA2 Ox33
/*ARGSUSED*/
cgoneprobe(reg, unit)

caddr_t reg;
int unit;

register caddr_t CGXBase;
register u char *xaddr, *yaddr;

CGXBase = reg;
if (pokec«caddr_t)GR_freg, GR_copy_invert»

return (0);
if (pokec«caddr_t)GR_mask, 0»

return (0);
xaddr = (u_char *) (CGXBase + GR_x_select + GR_update + GR_setO);
yaddr = (u_char *) (CGXBase + GR-y_select + GR_setO);
if (pokec«caddr_t)yaddr, 0»

return (0);
if (pokec«caddr_t)xaddr, DATAl»

return (0);
(void) peekc«caddr_t)xaddr);
(void) pokec«caddr_t)xaddr, DATA2);
if (peekc«caddr_t)xaddr) == (-DATAl & OxFF» {

/*
* The Sun-l color frame buffer doesn't indicate that an
* interrupt is pending on itself.
* Also, the interrupt level is user program changable.
* Thus, the kernel never knows what level to expect an
* interrupt on this device and doesn't know is an interrupt
* is pending.
* So, we add the cgoneintr routine to a list of interrupt
* handlers that are called if no one handles an interrupt.
* Add_default_intr screens out multiple calls with the same
* interrupt procedure.
*/

add_default_intr(cgoneintr);
return (CG1SIZE);

return (0);

*endif

This is how the driver is plugged into the auto-configuration mechanism.
/ etc / con fig reads a line in the configuration file for a Sun-l color frame

Version A of 17 February 1986

64 Pixrect Reference Manual

buffer:

device cgoneO at mbO csr OxecOOO priority 3

An external reference to cgonedriver (line cgoneA) is made in a table main­
tained by the auto-configuration mechanism. At boot time, if the auto­
configuration mechanism can resolve the reference to cgonedr i ver then the
contents of this structure are used to configure in the device:

• cgoneprobe - The name of the probe procedure (line cgone.5).

• cgoneintr - The name of the interrupt procedure (line cgone.6).

• CGISIZE - The size in bytes of the address space of the device.

• cgone - The prefix of the device. Used in status and error messages.

• cgoneinfo - The array of devices pointers of the driver's type (line
cgone.2).

• The other field's defaults suffice for most pixel addressable devices.

cgoneprobe is called to let the driver decide if the virtual address at reg is
indeed a device that this driver recognizes as one of its own. The uni t argu­
ment is the minor device number of this device. Writing a good probe routine
can be difficult. The trick is to use some idiosyncrasy of the device that differen­
tiates it from others. The real driver for the Sun-l color frame buffer determines
that it is addressing a Sun-l color frame buffer by setting it up to invert the data
written to it and reading back the result. The details of this code are not impor­
tant to this discussion and is not included. Zero is returned if the probe fails and
CGISIZE is returned if the probe succeeds.

cgoneintr is called when an interrupt is generated at the beginning of the
vertical retrace. There are a variety of things that one might want to syncronize
with such an interrupt, e.g., load the colormap or move the cursor. Currently, the
utility fbintr simply disables the interrupt from happening again (line
cgone.6).

int fbintr(numdevs, mb_devs, intclear)
int numdeVSi
struct mb_device **mb_devs;
int (*intclear) ()i

n umdev s is the maximum number of devices of these type configured.
mb_devs is the array of devices descriptions. intclear is called back to
actually tum off the interrupt for a particular device. intclear must have the
same calling sequence as cgoneintclear (line cgone.7), i.e., it take the vir­
tualaddress of the device to disable interrupts. cgl_ intclear (line cgone.8)
is a macro that actually disables the interrupts of cgl fb.

Version A of 17 February 1986

Open

Mmap

ioctl

Appendix A - Writing a Pixrect Driver 65

When an open system call is made at the user level cgoneopen is called.

cgoneopen(dev, flag)
dev_t devi

return (fbopen(dev, flag, NCGONE, cgoneinfo»i

cgoneopen uses the utility fbopen.

int fbopen(dev, flag, numdevs, mb_devs)
dev t devi
int flag, numdevsi
struct mb_device **mb_devsi

fbopen checks to see if dev is available for opening. If not the error ENXIO is
returned. If flag doesn't ask for write position (FWRITE) then the error EINVAL
is returned. Nonnally, zero is returned on a successful open.

The memory map routine in a device driver is responsible for returning a single
physical page number of a portion of a device.

/*ARGSUSED*/
cgonemmap(dev, off, prot)

dev_t devi
off_t offi
int proti

return (fbmmap(dev, off, prot, NCGONE, cgoneinfo, CG1SIZE));

cgonemmap used the utility fbmmap.

int fbmmap(dev, off, prot, numdevs, mb_devs, size)
dev t devi
off t offi
int prot, numdevs, sizei
struct rob device **mb_devsi

The parameters to fbmmap are similar to fbopen. However, off is the offset
in bytes from the beginning of the device. prot is passed through but currently
not used.

A pixrect kernel device driver must respond to two input/output control requests:

• FBIOGTYPE - Describe the characteristics of the pixel addressable device.

• FBIOGPIXRECf - Hand out a pixrect that may be used in the kernel. This
ioctl call is made from within the kernel. This is only required of frame
buffers.

iif NWIN > 0 /* cgone.9*/
idefine CGl OPS &cgl_ops
struct pixrectops cgl_ops = {

cgl_rop, /*cgone.10*/
cglyutcolormap,

~\sun ~~ microsystems
Version A of 17 February 1986

66 Pixrect Reference Manual

} ;

felse
fdefine CGl CPS (struct pixrectops *)0
fendif

struct cglpr cgoneprdatadefault =
{ 0, 0, 255, 0, 0 };

struct pixrect cgonepixrectdefault
{ CG1_OPS, { CG1_WIDTH, CG1_HEIGHT }, CG1_DEPTH, /* filled in later */ 0 };

struct pixrect cgonepixrect[NCGONE];
struct cglpr cgoneprdata[NCGONE];

cgoneioctl(dev, cmd, data, flag)
dev_t dev;
caddr_t data;

register int unit

switch (cmd)
case FBIOGTYPE:

minor (dev) ;

/*cgone.ll*/

register struct fbtype *fb = (struct fbtype *)data;
fb->fb_type = FBTYPE_SUNICOLOR;
fb->fb_height = CGl_HEIGHT;
fb->fb_width = CG1_WIDTH;
fb->fb_depth = 8;
fb->fb_cmsize = 256;
fb->fb size CGl HEIGHT*CG1_WIDTH;
break;

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cglfb *cglfb =

(struct cglfb *)cgoneinfo[(unit)]->md_addr;
fbpr->fbpr-pixrect = &cgonepixrect[unit];/*cgone.12*/
cgonepixrect[unit] = cgonepixrectdefault;/*cgone.13*/
fbpr->fbpr-pixrect->pr_data = (caddr_t) &cgoneprdata[unit];/*cgone.14*/
cgoneprdata[unit] = cgoneprdatadefault;/*cgone.15*/
cgoneprdata[unit] .cgpr_va = cglfb;/*cgone.16*/

cgl_setreg(cglfb, CG_FUNCREG, CG_VIDEOENABLE);/*cgone.17*/
cgl_intclear(cglfb); /*cgone.18*/
break;
}

default:
return (ENOTTY);

return (0);

Version A of 17 February 1986

Close

cgoneclose(dev, flag)
dev_t dev;

Appendix A - Writing a Pixrect Driver 67

The SunView driver isn't configured into the system when NWIN = 0 (line
cgone.9). When there is no Sun View driver, don't reference the pixrect opera­
tions cgl_ rop and cgl yutcolormap. The kernel version of cgl_ r~p
(line cgone.l0) only needs to be able to read and write memory pixrects for cur­
sor management. Thus, you can

#ifndef KERNEL
/* code not associated with reading and writing memory pixrects
#endif KERNEL

to reduce the size of the code.

Memory for pixrect public (pixrect structure) and private (cglpr structure)
objects is provided by arrays of each (line cgone.ll) NCGONE long. A device n
in these correspond to device n in cgoneinfo.

Lines cgone.12 through cgone.16 initialize a pixrect for a particular device.
This ioctl call should enable video for a frame buffer (line cgone.17) and dis­
able interrupts as well (line cgone.18).

When the device is no longer being referenced, cgoneclose is called. All that
is done is that the pixrect data structures of the device are zeroed.

register int unit = minor (dev) ;

if «caddr t)&cgoneprdata[unit] == cgonepixrect[unit] .pr_data) {
bzero«caddr_t)&cgoneprdata[unit], sizeof (struct cglpr»;
bzero«caddr_t)&cgonepixrect[unit], sizeof (struct pixrect»;

#endif

Plugging Your Driver into
UNIX

You need to add the device driver procedures to cdevsw in
! sys! sun! conf . c after assigning a new major device number to your driver:

Version A of 17 February 1986

68 Pixrect Reference Manual

A.7. Access Utilities

*include "cgone.h"
*if NCGONE > °
int cgoneopen(), cgonemmap(), cgoneioctl();
int cgoneclose();
*else
*define cgoneopen nodev
*define cgonemmap nodev
*define cgoneioctl nodev
*define cgoneclose nodev
*endif

cgoneopen, cgoneclose, nodev, nodev, /*14*/
cgoneioctl, nodev, nodev, 0,
seltrue, cgonemroap,
} ,

Also, you need to add the new files associated with your driver to
/sys/conf/files.sun:

pixrect/cg1_color.map.c optional cgone win device-driver
pixrect/cg1_rop.c optional cgone win device-driver
sundev/cgone.c optional cgone device-driver

This section describes utilities used by pixrect drivers. The pixrect header files
memvar . h, pixrect. hand pr _ util . h contain useful macros that you
should familiarize yourself with; they are not documented here.

pr_clip modifies src->pos, dst->pos and dst->size so that all refer­
ences are to valid bits.

pr_clip(dstp, srcp)
struct pr_subregion *dst;
struct pr-prpos *src;

src->pr may be NULL.

Two operations on operations, reversesrc and reversedst, are provided
for adjusting the operation code to take into account video reversing of mono­
chrome pixrects of either the source or the destination.

char
char

pr_reversedst[16];
pr_reversesrc[16];

These are implemented by table lookup in which the index into the tables is
(op> > 1) & 0 xF where op is the operation passed into pixrect public procedures.

This process can be iterated, e.g.,
pr_reversedst[pr_reversesrc[op]].

Version A of 17 February 1986

A.S. Rop

A.9. Batchrop

A.tO. Vector

Importance of Proper
Clipping

A.tt. Colormap

Monochrome

A.t2. Attributes

Monochrome

Appendix A - Writing a Pixrect Driver 69

These are the major cases to be considered with the pwo _ rop operation:

• Case 1 -- we are the source for the pixel rectangle operation, but not the desti­
nation. This is a pixel rectangle operation from the frame buffer to another
kind of pixrect. If the destination is not memory, then we will go indirect by
allocating a memory temporary, and then asking the destination to operate
from there into itself.

• Case 2 -- writing to your frame buffer. This consists of 4 different cases
depending on where the data is coming from: from nothing, from memory,
from some other pixrect, and from the frame buffer itself. When the source is
some other pixrect, other than memory, ask the other pixrect to read itself into
temporary memory to make the problem easier.

A simple batchrop implementation could iterate on the batch items and call rop
for each. Even in a more sophisticated implementation, while iterating on the
batch items, you might also choose to bailout by calling rop when the source is
skewed, or if clipping causes you to chop off in left-x direction.

There are some notable special cases that you should consider when drawing vec­
tors:

• Handle length 1 or 2 vectors by just drawing endpoints.

• If vector is horizontal, use fast algorithm.

• If vector is vertical, use fast algorithm.

The hard part in vector drawing is clipping, which is done against the rectangle
of the destination quickly and with proper interpolation so that the jaggies in the
vectors are independent of cli pping.

Each color raster device has its own way of setting and getting the colonnap.

For monochrome raster devices, when pr yutcolormap is called, the con­
vention is that if red [0] is zero then the display is light on dark, otherwise dark
on light. For monochrome raster devices, when pr _getcolormap is called,
the convention is that if the display is light on dark then zero is stored in
red [0] , green [0] and blue [0] and -1 is stored in other positions in the
color map. Otherwise, if the display is dark on light, then zero and -1 are
reversed.

pr_getattributes and pryutattributes operations get/set a bitplane
mask in color pixrects.

Monochrome devices ignore pr yutat tr ibute calls that are setting the bit­
plane mask. Monochrome devices always return 1 when pr _getat tr ibute
asking for the bitplane mask.

Version A of 17 February 1986

70 Pixrect Reference Manual

A.13. Pixel

A.14. Stencil

A.IS. Curve

A.16. Polygon

pwo get and pwo yut operations get/set a single pixel.

In its most efficient implementation, stencil code parallels rop code, all the while
considering the 2 dimensional stencil. One way to implement stencil is to use
rops. We pay a small efficiency penalty for this. You may not consider writing
the special purpose code worthwhile for the bitmap stencils since they probably
won't get used nearly as much as rop. Here's the basic idea (Temp is a tem­
porary memory pixrect):

Temp = Dest
Temp = Dest op Source
Temp Temp & Stencil
Dest Dest & -Stencil
Dest Dest I Temp

i.e., Dest = (Dest & -Stencil) I «Dest op Source) & Stencil)

pr _ curve allows for generalized shape drawing.

pryolyline is a natural extension to pr_ vector. It is especially useful for
devices that can optimize this operation.

Version A of 17 February 1986

B
Pixrect Functions and Macros

Pixrect Functions and Macros .. 73

B
Pixrect Functions and Macros

Table B-1 Pixrect Library Functions and Macros - Part I

Name
Compute Bounding Box
of Text String

Compute Location of
Characters in Text
String

Compute Width and
Height of Text String

Create Memory Pixrect
from an Image

Create Memory Pixrect

Create Purect

Create Secondary
Pixrect

Create Static Memory
Purect

I Function
pf_textbound(bound, len, font, text)
struct pr_subregion *bound;
int len;
struct pixfont *font;
char *text;

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr-pos where[];
int *lengthp;
struct pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int len;
struct pixfont *font;
char *text;

struct pixrect *mem-point(width, height, depth, data)
int width, height, depth;
short *data;

struct pixrect *mem create{w, h, depth)
int w, h, depth;

struct pixrect *pr_open(devicename)
char *devicename;

tdefine struct pixrect *pr_region(pr, x, y, w, h)
struct pixrect *pr;
int x, y, w, h;

#define mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

73 Version A of 17 February 1986

74 Pixrect Reference Manual

Table B-1 Pixrect Library Functions and Macros - Part 1-Continued

Name I Function
Draw Textured Polygon prJolygon_2 (dpr, dx, dy, nbnds, npts, vlist, op,

Draw Vector

Exchange Foreground
and Background Colors

Get Colormap Entries

Get Memory Pixrect
Data Bytes per Line

Get Pixel Value

Get Plane Mask

Get Pointer to Memory
Pixrect Data

Initialize Raster File
Header

Load Font

Load Private Copy of
Font

Load System Default
Font

spr, sx, sy)
struct pixrect *dpr, *Spri
int dx, dy
int nbnds, npts[];
struct prJos *vlisti
int op, sx, SYi

#define pr_vector(pr, xO, yO, xl, yl, op, value)
struct pixrect *pri
int xO, yO, xl, yl, op, value;

pr_reversevideo(pr, min, max)
struct pixrect *pri
int min, maXi

#define pr_getcolormap(pr, index, count, red, green,
blue)

struct pixrect *pri
int index, counti
unsigned char red[], green[], blue[]i

#define mpr_linebytes(width, depth)
(«prJroduct(width, depth) +15»>3) &-1)

#define pr_get(pr, x, y)
struct pixrect *pri
int x, Yi

#define pr_getattributes(pr, planes)
struct pixrect *pri
int *planes;

#define mpr_d(pr)
«struct mpr_data *) (pr)->pr_data)

struct pixrect *pr_dump_init(input_pr, rh, colormap,
type, copy_flag)

struct pixrect *inputJr;
struct raster file *rh;
colormap_t *colormap;
int type, copy_flag;

struct pixfont *pf_open(name)
char *name;

struct pixfont *pf_openJrivate(name)
char *namei

struct pixfont *pf_default()

Version A of 17 February 1986

Appendix B - Pixrect FUDctions and Macros 75

Table B-1 Purect Library Functions and Macros - Part 1-Continued

Name
Masked RasterOp

Multiple RasterOp

RasterOp

Read Colormap from
Raster File

Read Header from
Raster File

Read Image from Raster
File

Read Raster File

I Function
#define pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
struct pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

#define pr_batchrop(dpr, dx, dy, op, items, n)
struct pixrect *dpr;
int dx, dy, op, n;
struct pr-prpos items[];

#define pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;

int pr_load_colormap(input, rh, colormap)
FILE *input;
struct raster file *rh;
colormap_t *colormap;

int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rh;

struct pixrect *pr_load_image(input, rh, colormap)
FILE *input;
struct raster file *rh;
colormap_t *colormap;

struct pixrect *pr_load(input, colormap)
FILE *input;
colormap_t *colormap;

Table B-2 Pixrect Library Functions and Macros - Part II

Name
Read Standard Raster
File

Release Pix/ont
Resources

Release Pixrect
Resources

Release Pixrect
Resources

I Function

struct pixrect *pr_load_std_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t colormap;

pf_close(pf)
struct pixfont *pf;

#define pr_close(pr)
struct pixrect *pr;

#define pr_destroy(pr)
struct pixrect *pr;

Version A of 17 February 1986

76 Pixrect Reference Manual

Table B-2 Purect Library Functions and Macros - Part 1/-Continued

Name
Replicated Source
RasterOp

Set Background and
Foreground Colors

Set Colormap Entries

Set Foreground and
Background Colors

Set Pixel Value

Set Plane Mask

Subregion Create
Secondary Purect

Subregion Draw Vector

Subregion Get
Colormap Entries

Subregion Get Pixel
Value

Subregion Get Plane
Mask

Subregion Masked
RasterOp

I Function
pr_replrop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;

pr_blackonwhite(pr, min, max)
struct pixrect *pr;
int min, max;

#define pr-putcolormap(pr, index, count, red, green,
blue)

struct pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

pr_whiteonblack(pr, min, max)
struct pixrect *pr;
int min, max;

#define pr-put(pr, x, y, value)
struct pixrect *pr;
int x, y, value;

#define pr-putattributes(pr, planes)
struct pixrect *pr;
int *planes;

#define struct pixrect *prs_region(subreg)
struct pr_subregion subreg;

#define prs_vector(pr, posO, posl, op, value)
struct pixrect *pr;
struct pr-pos posO, posl;
int op, value;

#define prs_getcolormap(pr, index, count, red, green,
blue)

struct pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

#define prs_get(srcprpos)
struct pr-prpos srcprpos;

#define prs_getattributes(pr, planes)
struct pixrect *pr;
int *planes;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos stenprpos, srcprpos;

Version A of 17 February 1986

Appendix B - Pixrect Functions and Macros 77

Table B-2 Pureet Library Functions and Macros - Part 1/-Continued

Name
Subregion Multiple
RasterOp

Subregion RasterOp

Subregion Release
Pixreet Resources

Subregion Replicated
Source RasterOp

Subregion Set
Colormap Entries

Subregion Set Pixel
Value

Subregion Set Plane
Mask

Trapezon RasterOp

Write Header to Raster
File

Write Image Data to
Raster File

Write Raster File

I Function
#define prs_batchrop(dstpos, op, items, n)
struct pr~rpos dstpos;
int op, n;
struct pr~rpos items[];

#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr~rpos srcprpos;

#define prs_destroy(pr)
struct pixrect *pr;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr~rpos sprpos;

#define prs~utcolormap(pr, index, count, red, green,
blue)

struct pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

#define prs-put(dstprpos, value)
struct pr~rpos dstprpos;
int value;

#define prs~utattributes(pr, planes)
struct pixrect *pr;
int *planes;

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy)
struct pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormap;

int pr_dump_image(pr, output, rh)
struct pixrect *pr;
FILE *output;
struct rasterfile *rh;

int pr_dump(input~r, output, colormap, type, copy_flag)
struct pixrect *input~r;
FILE *output;
colormap_t *colormap;
int type, copy_flag;

Version A of 17 February 1986

78 Pruect Reference Manual

Name
Write Text and
Background

Write Text

Table B-2 Purect Library Functions and Macros - Part /J.- Continued

I Function
pf_text(where, op, font, text)
struct pr-prpos where;
int op;
struct pixfont *font;
char *text;

pf_ttext(where, op, font, text)
struct pr-prpos where;
int op;
struct pixfont *font;
char *text;

Version A of 17 February 1986

c
Pixrect Data Structures

Pixrect Data Structures ... 81

c
Pixrect Data Structures

Table C-l Pixrect Data Structures

Name I
Character Descriptor

Font Descriptor

Pixrect

Pixrect Operations

Function
struct pixchar {

} ;

struct pixrect *pc-pr;
struct pr-pos pc_home;
struct pr-pos pc_adv;

struct pixfont {

} ;

struct pr_size pf_defaultsize;
struct pixchar pf_char[256];

struct pixrect {

} ;

struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;
caddr_t pr_data;

struct pixrectops {
int (*pro_rop) ();

} ;

int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) ();
int (*pro_destroy) ();
int (*pro_get) () ;
int (*pro-put) ();
int (*pro_vector) ();
struct pixrect * (*pro_region) ();
int (*pro-putcolormap) ();
int (*pro_getcolormap) ();
int (*pro-putattributes) ();
int (*pro_getattributes) ();

81 Version A of 17 February 1986

82 Pixrect Reference Manual

Table C-l Pixreet Data Struetures- Continued

Name
Position

Position Within a
Pixreet

Size

Subregion

Trapezon

Trapezon Chain

Trapezon Fall

I Function
struct pryos {

int x, y;
} ;

struct pryrpos {
struct pixrect *pr;
struct pr_pos pos;

} ;

struct pr_size
int x, y;

} ;

struct pr_subregion
struct pixrect *pr;
struct pr_pos pos;
struct pr_size size;

} ;

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_chain

} ;

struct pr_chain *next;
struct pr_size size;
int *bits;

struct pr_fall {

} ;

struct pryos pos;
struct pr_chain *chain;

Version A of 17 February 1986

D
Curved Shapes

Curved Shapes .. 85

Figure D-1

D
Curved Shapes

This appendix1 describes pr _ traprop, a function for rendering curved shapes
with Pixrect. pr_traprop is an advanced pixrect operation analogous to
pr_rop.

The curve to be rendered must first be stored in a data structure called pr _ t rap
which is based on a region called a trapezon, rather than on a rectangle. A tra­
pezon is a region with an irregular boundary. Like a rectangle, a trapezon has
four sides: top, bottom, left, and right. The top and bottom sides of a trapezon
are straight and horizontal. A trapezon differs from a rectangle in that its left and
right sides are irregular curves, called falls, rather than straight lines.

A fall is a line of irregular shape. Vertically, a fall may only move downward.
Horizontally, a fall may move to the left or to the right, and this horizontal
motion may reverse itself. A fall may also sustain pure horizontal motion, that
is, horizontal motion with no vertical motion.

The figures below show a typical trapezon with source and destination pixrects,
and some examples of filled regions that were drawn by pr_traprop.

Typical Trapezon

dest pr source pr

sX,sy

1 The functionality of curve support in Plxrect may change in the future.

85 Version A of 17 February 1986

86 Pixrect Reference Manual

Figure 0-2 Some Figures Drawn by pr_traprop

1
pr_traprop(dpr, dx, dy, t, op, apr, sx, sy)
struct pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

dpr and spr are pointers to the destination and source pixrects, respectively. t
is the trapezon to be used. dx and dy specify an offset into the destination pix­
rect. s x and s y specify an offset into the source pixrect. op is an op-code as
specified previously (see Section 2.6).

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_fall {

} ;

struct pr-pos pos;
struct pr_chain *chain;

struct pr_chain {

} ;

struct pr_chain *next;
struct pr_size size;
int *bits;

pr_traprop perfonns a rasterop from the source to the destination, clipped to
the trapezon's boundaries. A program must call pr_traprop once per tra­
pezon; therefore this procedure must be called at least twice to draw the letter' A'
in Figure D-2.

The source pixrect is aligned with the destination pixrect; the pixel at (s x, s y) in
the source pixrect goes to the pixel at (dx, dy) in the destination pixrect (see
Figure D-2).

Positions within the trapezon are relative to position (dx, dy) in the destination
pixrect. Thus, a position defined as (0,0) in the trapezon would actually be at
(dx, dy) in the destination pixrect.

Version A of 17 February 1986

Appendix D - Curved Shapes 87

The structure pr_trap defines the boundaries ofa trapezon. A trapezon con­
sists of pointers to two falls (left and right) and two y coordinates specify­
ing the top and bottom of the trapezon (yO and yl). Note that the trapezon's top
and bottom may be of zero width; yO and yl may simply serve as points of
reference.

Each fall consists of a starting position (po s) and a pointer to the head of the list
of chains describing the path the fall is to take (chain). A fall may start any­
where above the trapezon and end anywhere below it. pr _ traprop ignores the
portions of a fall that lie above and below the trapezon. If a fall is shorter than
the trapezon, pr _ traprop will clip the trapezon horizontally to the endpoint of
the fall in question. Figure D-3 illustrates the way this works.

A chain is a member of a linked list of structures that describes the movement
of the fall. Each chain describes a single segment of the fall. Each chain consists
of a pointer to the next member of the chain (next), the size of the bounding
box for the chain (size), and a pointer to a bit vector containing motion com­
mands (bits). See Section 1.3 for a description of the pr_size structure.

Each chain may specify motion to the right and/or down, or motion to the left
and/or down; however, a single chain may not specify both rightward and left­
ward motion. Remember that motion may not proceed upward, and that straight
horizontal motion is permitted.

The x value of the chain's s i z e determines the direction of the motion: a posi­
tive x value indicates rightward motion, while a negative x value indicates left­
ward motion. The y value of the chain's size must always be positive, since a
fall may not move upward (in the direction of negative y).

A chain's bit vector is a command string that tells pr _ traprop how to draw
each segment of the fall. Each set (1) bit in the vector is a command to move one
pixel horizontally and each clear (0) bit is a command to move one pixel verti­
cally. The bits within the bit vector are stored in byte order, from most
significant bit to least significant bit. This ordering corresponds to the left-to­
right ordering of pixels within a memory pixrect.

The fall begins at the starting position specified in pr_fall. The motion
proceeds downward as specified in the first bit vector in the chain, from the
high-order bit to the low-order bit. When the fall reaches the bottom of the
bounding box, it continues at the top of the next chain's bounding box. Note that
the fall will always begin and end at diagonally opposite comers of a given
bounding box.

If a bit vector specifies a segment of the fall that would run outside of the bound­
ing box, pr_traprop clips that segment of the fall to the bounding box. This
would occur when the sum of the 1 's in a chain's bit vector exceeds the chain's x
size, or when the sum of the O's in the chain's bit vector exceeds the chain's y
size. When this happens, the segment in question runs along the edge of the
bounding box until it reaches the corner of the bounding box diagonally opposite
to the corner in which it started.

If the fall has a straight vertical segment, the x size of its chain must be O. If the
fall has a straight horizontal segment, the y size of its chain must be O.

Version A of 17 February 1986

88 Pixrect Reference Manual

Figure D-3

yO

left

yl

Trapezon with Clipped Falls

right->pos

-r------
I l chain bounding box

I
I
I
I
I chain bounding box
I
I
I
I
I
I ______ ...1

I ~ chain bounding box
_...1 _____________ _

The following program draws the octagon in the middle of the display surface.

Version A of 17 February 1986

Figure D-4

Appendix 0 - Curved Shapes 89

Example Program with pr_traprop

*include <pixrect/pixrect_hs.h>

int shallowsteep[]

int steepshallow[]

{Oxbbbbbbbb, Oxbbbbbbbb,
Ox44444444, Ox44444444};

{Ox44444444, Ox44444444,
Oxbbbbbbbb, Oxbbbbbbbb};

struct pr_chain leftl = to, {64, 64}, steepshallow},
leftO = {&leftl, {-64, 64}, shallowsteep},
rightl to, {-64, 64}, steepshallow},
rightO = {&rightl, {64, 64}, shallowsteep};

struct pr_fall left_oct = {to, a}, &leftO},
right_oct = {to, O}, &rightO};

struct pr_trap octagon = {&left_oct, & right_oct , 0, l28};

main ()
{

struct pixrect *screen;

screen = pr_open("/dev/fb");
pr_traprop(screen, 576, 450, octagon, PIX_SET, 0, 0, 0);
pr_close(screen);

pr _chain specifies the left lower, the left upper, the right lower, and the right
upper sides of the octagon, in that order. pr _ fall specifies first the left side,
then the right side of the octagon.

Each of the eight sides of the octagon is half a chain. The two upper left sides
·correspond to chain Ie ft o. The bits start out with mostly l' s (Oxb is binary
1011) for the shallow uppermost left edge. They tum to mostly O's (Ox4 is
binary 0100) for the next edge down, which is steeper.

~\sun ,~ microsystelT1S
Version A of 17 February 1986

Index

Special Characters
<pixrect/memvar.h>,36
<pixrect/pixrect.h>,5
<rasterfile.h>,41
<stdio .h>, 41

B
background,22
bitp1ane, 23
bitp1ane mask, 23

C
compiling Pixrect, 5
Compute Bounding Box of Text String, 32, 73
Compute Location of Characters in Text String, 31, 73
Compute Width and Height of Text String, 32, 73
Create Memory Pixrect, 36, 73
Create Memory Pixrect from an Image, 36, 73
Create Pixrect, II, 73
Create Secondary Pixrect, II, 73
Create Static Memory Pixrect, 37, 73
curved shapes, 85

D
documentation conventions, xi
Draw Textured Polygon, 19, 73
Draw Vector, 18, 73

E
Exchange Foreground and Background Colors, 23, 73

F
fbintr,64
fbnunap,65
fbopen,65
font, 18,29, 31
fontedi t, 30
foreground, 22

G
Get Colormap Entries, 22, 73
Get Memory Pixrect Data Bytes per Line, 36, 73
Get Pixel Value, 12, 73
Get Plane Mask, 24, 73

- 91-

Get Pointer to Memory Pixrect Data, 36, 73

I
Initialize Raster File Header, 45, 73

L
lint library, 5
Load Font, 30, 73
Load Private Copy of Font, 30, 73
Load System Default Font, 30, 73

M
MaskedRasterOp, 16,73
mem _create, 36, 73
memyoint, 36, 73
memory pixrects, 35, 36
mpr _ d, 36, 73
mpr_data, 35
mpr_linebytes, 36, 73
mpr_static, 37, 73
Multiple RasterOp, 17, 73

p
pf_close, 31, 75
pf_default, 30, 73
pf_open. 30. 73
pf_openyrivate, 30, 73
pf text. 31. 75
pf-textbatch, 31. 73
pf = textbound, 32. 73
pf_textwidth. 32. 73
pf ttext. 31. 75
PIX_CLR, 13
PIX_COLOR, 14
PIX OONTCLIP, 14

PIX=OST.13
PIX_NOT,13
PIX_OPCOLOR, 14
PIX_SET. 13
PIX_SRC.13
pixchar. 29. 81
pixfont. 29, 81
pixrect.81
Plxrect

Index Continued

Pixrect, continued
audience, xi
compiling, 5
header file, 5
lint library, 5
writing a device driver, 51

pixrectops, 9, 10,81
pr batchrop, 17, 73
pr-blackonwhite, 23, 75
pr=:chain, 81, 86
pr clip, 68
pr - close, 12, 75
pr-destrcy, 12,75
pr-dump, 41, 75
pr=:dump_header, 45, 75
pr_dump_image, 46,75
pr_dump_init,45,73
pr fall, 81, 86
pr get, 12, 73
pr - getattributes, 24, 73
pr - getcolormap, 22, 73
pr load, 43, 73
pr=:load_colormap,46,73
pr_load_header,46,73
pr_load_image, 46, 73
pr_load_std_image, 47, 75
pr_makefromfd, 56
pr open, 11, 73
pryolygon_2, 19,73
pr pos, 81
pryrpos,81
pr yut, 12, 75
pryutattributes, 24,75
pryutcolormap, 22, 75
pr region, 11,73
pr=:replrop, 16, 75
pr reversedst,68
pr=:reversesrc,68
pr_reversevideo, 23, 73
pr _ rop, 15, 73
pr size, 81
pr stencil, 16, 73
pr=:subregion,81
pr trap, 81, 86
pr=:traprop, 75, 85
pr unmakefromfd

- pr_unmakefromfd, 58
pr_vector, 18, 73
pr_whiteonblack, 23,75
primary pixrect, 11
prs batchrop, 17,75
prs=destroy, 12,75
prs_get, 12,75
prs_getattributes, 24, 75
prs_getcolormap, 22, 75
prs _put, 12, 75
prsyutattributes, 24,75
prs_putcolormap, 22, 75
prs _region, 11, 75

-92-

prs_replrop, 16, 75
prs_rop, 15,75
prs_stencil, 16, 75
prs_vector, 18,75

R
rasterfile,44
RasterOp, 15, 73
Read Colormap from Raster File, 46, 73
Read Header from Raster File, 46, 73
Read Image from Raster File, 46, 73
Read Raster File, 43, 73
Read Standard Raster File, 47, 75
Release Pix/ont Resources, 31, 75
Release Pixrect Resources, 12, 75
Replicated Source RasterOp, 16, 75

S
secondary pixrect, 11
Set Background and Foreground Colors, 23, 75
Set Colormap Entries, 22, 75
Set Foreground and Background Colors, 23, 75
Set Pixel Value, 12, 75
Set Plane Mask, 24, 75
Subregion Create Secondary Pixrect, 11, 75
Subregion Draw Vector, 18,75
Subregion Get Colormap Entries, 22, 75
Subregion Get Pixel Value, 12, 75
Subregion Get Plane Mask, 24, 75
Subregion Masked RasterOp, 16, 75
Subregion Multiple RasterOp, 17, 75
Subregion RasterOp, 15, 75
Subregion Release Pixrect Resources, 12, 75
Subregion Replicated Source RasterOp, 16, 75
Subregion Set Colormap Entries, 22, 75
Subregion Set Pixel Value, 12, 75
Subregion Set Plane Mask, 24, 75

T
trapezon,85
Trapezon RasterOp, 75, 85

W
Write Header to Raster File, 45, 75
Write Image Data to Raster File, 46, 75
Write Raster File, 41, 75
Write Text, 31,75
Write Text and Background, 31, 75

Revision History

Revision 1 Date I Comments
A 2/17/86 3.0 Production Release.

Notes

Notes

Notes

Notes

Notes

Notes

Notes

