
6sun®
• microsystems

SunCG I TId Reference Manual

-------------------~----

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UN1X132V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any fonn, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

Contents

Preface .. xv

Chapter 1 Introduction .. 3

1.1. Using SunCGI ... 3

1.2. The SunCGI Lint Library ... 5

1.3. Overview of SunCGI ... 5

Initialization and Termination 5

Output Primitives .. 6

Attributes ... 6

Input .. 6

Errors ... 6

Programming Ti ps 7

Appendices ... 7

1.4. References .. 7

Chapter 2 Initializing and Terminating SunCGI .. 11

2.1. View Surface Initialization and Selection ... 11

Open CGI (SunCGI Extension) .. 12

Open View Surface (SunCGI Extension) ... 13

Activate View Surface (SunCGI Extension) ... 16

Deactivate View Surface (SunCGI Extension) .. 16

Close View Surface (SunCGI Extension) ... 16

Close CGI (SunCGI Extension) ... 16

2.2. View Surface Control .. 17

VDC Extent .. 17

-iii-

Contents Continued

Device Viewport ... 19

Clip Indicator .. 19

Clip Rectangle .. 20

Hard Reset ... 20

Reset to Defaults ... 20

Clear View Surface .. 21

Clear Control ... 21

Set Error Warning Mask ... 22

2.3. Running SunCGI with SunView ... 22

Set Up SIGWINCH (SunCGI Extension) ... 23

2.4. Interface N egotiation ... 24

Inquire Device Identification .. 25

Inquire Device Class ... 25

Inquire Physical Coordinate System .. 25

Inquire Output Function Set ... 26

Inquire VDC Type .. 26

Inquire Output Capabilities ... 27

2.5. Input Capability Inquiries ... 27

Inquire Input Capabilities .. 27

Inquire LID Capabilities ... 28

Inquire Trigger Capabilities .. 29

Chapter 3 Output ... 33

3.1. Geometrical Output Primitives .. 3~

Polyline ... 3~

Disjoint Polyline .. 3~

Polymarker ... 35

Polygon ... 35

Partial Polygon ... 3~

Rectangle ... 3~

Circle .. 3~

Circular Arc Center ... 3~

Circular Arc Center Close .. 35

-iv-

Contents Continued

Circular Arc 3pt ... 40

Circular Arc 3pt Close ... 41

Ellipse .. 41

Elliptical Arc ... 41

Elliptical Arc Close ... 42

3.2. Raster Primitives ;.. 42

Text ... 42

VDMText ... 43

Append Text .. 43

Inquire Text Extent .. 43

Cell Array 44

Pixel Array 44

BitBlt Source Array ... 45

B i tB I t Pattern Array 46

BitBlt Patterned Source Array ... 46

Inquire Cell Array ... 47

Inquire Pixel Array .. 47

Inquire Device Bitmap ... 48

Inquire BitBlt Alignments ... 48

3.3. Drawing Modes .. 48

Set Drawing Mode ... 49

Set Global Drawing Mode (SunCGI Extension) ... 50

Inquire Drawing Mode ... 50

Chapter 4 Attributes .. 53

4.1. Bundled Attribute Functions ... 54

Set Aspect Source Flags .. 56

Define Bundle Index (SunCGI Extension) ... 56

4.2. Line Attributes .. 57

Polyline Bundle Index .. 57

Line Type .. 58

Line Endstyle (SunCGI Extension) .. 58

Line Width Specification Mode ... 59

-v-

Contents Continued

Line Width .. 59

Line Color ... 59

4.3. Poly marker Attributes ... 60

Polymarker Bundle Index .. 60

Marker Type .. 60

Marker Size Specification Mode .. 60

Marker Size .. 61

Marker Color ... 61

4.4. Solid Object Attributes ... 61

Fill Area Bundle Index .. 62

Interior Style .. 62

4.5. Solid Interior Fill Attribute .. 62

Fill Color ... 63

4.6. Hatch and Pattern Attributes ... 63

Hatch Index .. 64

Pattern Index .. 65

Pattern Table .. 65

Pattern Reference Point ... 65

Pattern Size ... 66

Pattern with Fill Color (SunCGI Extension) ... 66

4.7. Perimeter Attributes ... 66

Perimeter Type ... 66

Perimeter Width ... 67

Perimeter Width Specification Mode .. 67

Perimeter Color .. 68

4.8. Text Attributes .. 68

Text Bundle Index .. 68

Text Precision ... 68

Character Set Index ... 69

Text Font Index .. 69

Character Expansion Factor .. 70

Character Spacing ... 70

Character Height ... 70

- vi-

Contents Continued

Fixed Font (SunCGI Extension) ... 71

Text Color ... 71

Character Orientation ... 71

Character Path ... 72

Text Alignment .. 72

4.9. Color Attributes .. 74

Color Table ... 74

4.10. Inquiry Functions .. 75

Inquire Line Attributes .. 75

Inquire Marker Attributes .. 75

Inquire Fill Area Attributes ... 76

Inquire Pattern Attributes ... 76

Inquire Text Attributes .. 77

Inquire Aspect Source Flags ... 78

Chapter 5 Input ... 81

5.1. Input Device Initialization .. 84

Initialize LID ... 84

Release Input Device 85

Associate .. 85

Set Default Trigger Associations ... 86

Dissociate .. 86

Set Initial Value ... 87

Set VALUATOR Range ... 87

Track On .. 88

Track Off ... 89

5.2. Synchronous Input .. 90

Request Input .. 91

5.3. Asynchronous Input ... 92

Initiate Request .. 92

5.4. Event Queue Input .. 93

Enable Events ... 95

Await Event ... 95

- vii-

Contents Continued

Flush Event Queue ... 96

Selective Flush of Event Queue ... 96

5.5. Miscellaneous Input Functions .. 97

Sample Input .. 97

Get Last Requested Input ... 97

Disable Events .. 98

5.6. Status Inquiries ... 98

Inquire LID State List .. 98

Inquire LID State .. 99

Inquire Trigger State ... 99

Inquire Event Queue State ... 99

Appendix A Differences between SunCore and SunCGI 103

A.1. Output Primitives ... 103

Output Aspects of SunCore not Supported by SunCGI 104

Output Features of SunCGI not Available in SunCore 104

A.2. Segmentation .. 104

A.3. Differences in Input Functions between SunCore and SunCGI 104

Appendix B Unsupported Aspects of CGI ... 107

Appendix C Type and Structure Definitions .. 111

Appendix D Error Messages ... 123

D.1. Successful Return (0) ... 123

D.2. State Errors (1-5) .. 123

D.3. Control Errors (10-16) ... 124

DA. Coordinate Definition (20-24) ... 124

D.5. Output Attributes (30-51) .. 125

D.6. Output Primitives (60-70) ... 128

D.7. Input (80-97) ... 129

D.8. Implementation Dependent (110-112) ... 131

D.9. Possible Causes of Visual Errors ... 131

- viii-

Contents Continued

Appendix E Sample Programs .. 137

E.1. Martini Glass ... 137

E.2. Tracking Box ... 138

Appendix FUsing SunCGI and Pixwins ... 143

F.1. cgipw Functions .. 143

Open Pixwin CGI ... 143

Open a CGI Pixwin .. 143

Close a CGI Pixwin ... 144

Close Pixwin CGI ... 144

F.2. Using cgipw ... 144

F.3. cgipw Functions .. 145

F.4. Example Program .. 147

Appendix G Using SunCGI with Fortran Programs 151

G.1. Programming Tips ... 151

G.2. Example Program ... 152

G.3. FORTRAN Interfaces to SunCGI ... 154

Appendix H Short C Binding ... 173

- ix-

Tables

Table 2-1 SunCGI Default States .. 13

Table 2-2 Available View Surfaces ... 15

Table 2-3 View Surface Default States .. 15

Table 2-4 Error Warning Masks ... 22

Table 2-5 Class Dependent Information .. 29

Table 4-1 Default Attributes .. 54

Table 4-2 Attribute Source Flag Numbers ... 56

Table 4-3 Available Fonts ... 70

Table 4-4 Normal Alignment Values .. 74

Table 4-5 Default Color Lookup Table .. 74

Table 5-1 Input Devices Offered by SunCGI .. 82

Table 5-2 Default Trigger Associations ... 86

Table 5-3 Available Track Types .. 89

Table A-I Difference in Output Primitives ... 103

Table B-1 Unsupported Control Functions .. 107

Table B-2 Unsupported Input Functions ... 107

Table B-3 Non Standard Control Functions .. 108

Table B-4 Non Standard Attribute Functions ... 108

Table D-1 Possible Causes of Visual Errors ... 132

Table D-2 Primitive-Specific Errors .. 133

-xi-

Tables Continued

Table D-3 Attribute Errors .. 134

Table D-4 Input-specific Errors .. 134

Table F-l List of cgipw Functions ... 145

Table F-2 SunCGI Functions not Compatible with cgipw Mode 147

Table G-l SunCGI Fortran Binding - Part I ... 154

Table G-2 SunCGI Fortran Binding - Part II ... 157

Table G-3 SunCGI Fortran Binding - Part III ... 160

Table G-4 SunCGI Fortran Binding - Part IV ... 166

Table G-5 SunCGI Fortran Binding - Part V ... 168

Table B-1 Correspondence Between Long and Short C Names 173

-xii-

Figures

Figure 1-1 Simple Example Program .. 4

Figure 2-1 Example Program with Multiple Workstations 12

Figure 2-2 Example Program with Multiple Normalization
Transformations ... 18

Figure 2-3 Example Program with set_up_sigwinch Function 24

Figure 3-1 Example Program with Polygons .. 37

Figure 3-2 Example Program with Four Circle Quadrants in Different
Colors ... 40

Figure 4-1 Example Program with Bundled Attributes ... 55

Figure 4-2 Example Program with Bundled Attributes ... 64

Figure 5-1 CGI Input State Model ... 84

Figure 5-2 Example Program with LOCATOR Input Device 91

Figure 5-3 Example Program with STRING Input Device 94

Figure E-l Martini Glass Example Program ... 138

Figure E-2 Tracking Box Example Program ... 139

Figure F-l Example cgipw Program ... 148

Figure G-l Example FORTRAN Program ... 153

- xiii-

Controlling Document

Audience

Documentation Conventions

Preface

This document describes SunCGI, an implementation of the ANSI Computer
Graphics Interface (CGI) by Sun Microsystems, Inc. Previously, CGI was known
as the Virtual Device Interface (VDI) standard. Appendix B summarizes the
differences between SunCGI and ANSI CGI.

The CGI standard is currently under development. Future releases of SunCGI
will reflect changes in ANSI CGI.

The following document was used in interpreting the CGI standard:

[1] ANSI X3H3 84/85. Information Processing Computer Graphics Virtual
Device Interface (VDI) Functional Description. March 1984.

The intended reader of this document is an applications programmer who is fami­
liar with interactive computer graphics and the C programming language. This
manual contains several example programs that can be used as templates for
larger SunCGI applications.

Italic font is used to indicate file names, function arguments, variables and inter­
nal states of SunCGI. Italics are also used in the conventional manner (to
emphasize important words and phrases). ALL CAPS is used to indicate values in
enumerated types. Bold font is used for the names of Sun software packages.
Function names are printed with constant width font.

xv

1
Introduction

Introduction 3

1.1. Using SunCGI ... 3

1.2. The SunCGI Lint Library ... 5

1.3. Overview of SunCGI ... 5

Initialization and Termination ... 5

Output Primitives .. 6

Attributes ... 6

Input .. 6

Errors ... 6

Programming Tips .. 7

A ppendices ... 7

1.4. References .. 7

1.1. Using SunCGI

1
Introduction

SunCGI provides access to low-level graphics device functions without the res­
trictions, benefits, or overhead of higher-level graphics packages like SunCore.
SunCGI is useful for 2D graphics programs which do not require segmentation
or transformations. The absence of segmentation from SunCGI makes drawing
diagrams faster and simpler, but does not provide automatic picture regeneration.
SunCGI programs are usually smaller and more efficient than SunCore pro­
grams with similar functionality. In addition, SunCGI programs will run on Sun
devices without explicitly specifying the device at compile time. SunCGI pro­
vides output primitives (for example, circles), attributes (for example, sophisti­
cated pattern filling), and input primitives which are not offered by SunCore.
The CGI standard is currently under development, and therefore, CGI has not been
accepted by the X3H3 committee, ANSI, or the computer graphics community.
Only certain models within CGI are supported by SunCGI. Specifically SunCGI
implements input option sets 1,2, 3, 4, and 6 and output option sets 1 through 6
of the CGI standard. CGI does not support 3D output primitives.

SunCGI does provides output primitives, attribute selection, and input device
management, at a level which is close to the actual device driver; thus affording
speed and flexibility not offered by higher-level graphics packages like SunCore.
SunCGI provides output primitives which are not provided by any of the other
Sun graphics packages: for example disjoint polygons, circles, ellipses, and cell
arrays (which can be thought of as scaled and transformed pixel arrays). CGI also
provides a larger vocabulary of attributes than SunCore. SunCGI also provides
facilities for explicitly binding virtual input devices to physical input devices as
well as explicit management of an event queue.

Here is a SunCGI example application program written in C:

~~sun ,~ microsystems
3 Version B of 17 February 1986

4 SunCGI Reference Manual

Figure 1-1

#inc1ude <cgidefs.h>

Ccoor box[S] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

main ()
{

Ccoor1ist boxlist;
Cint name;
Cvwsurf device;

box1ist.n = 5;
box1ist.pt1ist = box;
NORMAL_VWSURF(device, PIXWINDD);

open_cgi () ;
open_vws(&narne, &device);

po1y1ine(&box1ist);
sleep(10);

c1ose_vws(narne);
c1ose_cgi();

Simple Example Program

SunCGI uses a variety of structures and enumerated types shown in Appendix C.
The file <cgidef s . h> should be included in each SunCGI application pro­
gram to provide necessary definitions and constants.

Here is an example of a command line for compiling box. c to run in the Sun­
View environment:

% cc box.c -0 box -lcgi -lsunwindow -lpixrect -1m

The order in which the libraries are linked to the program is important.

All SunCGI functions can be called by one of two names: the expanded name
(default) or the C language binding name. See Appendix H for information on
the list of names for the shorter C language binding.

As a final note, do not name any user-defined function or variable starting with
the letters _ cgi because doing so may disrupt the internal workings of SunCGI.

FORTRAN programmers can access SunCGI functions by using the include file in
cg idef s 77 . h and using the / usr / lib/ libcgi 7 7 . a library to link with.
Details of the FORTRAN interface to SunCGI are provided in Appendix G.

Version B of 17 February 198(

1.2. The SunCGI Lint
Library

1.3. Overview ofSunCGI

Chapter 1 - Introduction 5

SunCGI provides a lint library which provides type checking beyond the capa­
bilities of the C compiler. For example, you could use the SunCGI lint library
to check a program called g la s s . c with command like this:

(% lint glass.c -lcgi

Note that the error messages that lint generates are mostly warnings, and may
not necessarily have any effect on the operation of the program. For a detailed
explanation of lint, see the lint chapter in the Programming Tools manual.

This section provides an overview of the substance of this manual. The four
major sections of the manual (which correspond to chapters) are:

1) view surface initialization and termination (control),

2) output primitives,

3) attributes, and

4) input.

J

The overview of these chapters contains a brief introduction to the basic concepts
of CGI. The appendices at the end of this manual provide quick reference tables
and descriptions of the interfaces between SunCGI and

1) SunViewand

2) FORTRAN.

Initialization and Termination Chapter 2 describes functions for

1) initializing and terminating the entire SunCGI package and individual view
surfaces,

2) defining the coordinate systems,

3) interface negotiation, and

4) signal trapping.

The first section Chapter 2 describes functions for opening and closing view sur­
faces (which are either windows or screens). SunCGI provides facilities for
writing primitives to multiple view surfaces. Output primitives can be written to
a selected subset of the open view surfaces by using the activate _ vws and
deacti vate _ vws functions (which tum a view surface on or off without clos­
ing the view surface or affecting the display). The functions discussed in
Chapter 2 also define the range of virtual device coordinates (VDC space) and
device coordinates (screen space). The coordinates of most SunCGI functions
are expressed in terms of VDC space. The limits of both VDC space and screen
space can be defined by the application program.

If you are attempting to run an application program developed on another
vendor's version of CGI, negotiation functions are provided which describe the
capabilities of SunCGI. The application program can use the information
obtained by using the negotiation functions to call appropriate functions in

.\sun ,~ microsystems
Version B of 17 February 1986

6 SunCGI Reference Manual

Output Primitives

Attributes

Input

Errors

SunCGI to make the application program run correctly. Finally, Chapter 2
describes SunCGl's option for trapping SIGWINCH signals (generated by mani­
pulating the window environment which the application program is using).

SunCGI provides functions for drawing geometrical output primitives (for
example, polygons, circles, and ellipses) as well as functions for perfonning ras­
ter operations. The coordinates of output primitives are specified in VDC space
(with the exception of some raster functions). Geometrical output primitives
include rectangles, polymarkers, circular and elliptical arcs. Geometrical output
primitives are affected by attributes described in Chapter 4 (like fill style and line
width). All output primitives are affected by the drawing mode which deter­
mines how an output primitives is affected by pixels which have been previously
drawn on the screen.

Attribute functions control the appearance of output primitives. Attributes can be
set individually, or in groups which are called bundles. The use of most attri­
butes is fairly straightforward; fill textures require a word of explanation.
Geometrical output primitives can be filled with textures called hatches or pat­
terns. Hatches are simply arrays of color values with each element of the array
corresponding to a pixel. Patterns are arrays of color values which can be scaled
and translated.

SunCGI offers a standard interface for receiving input from the mouse and the
keyboard. The CGI input model is based on the logical input device model in
GKS. In this system, a logical input device (for example, a LOCATOR device),
is bound to a physical device (for example, the x-y position of the mouse) called
a trigger. Triggers may be associated with logical input devices by the applica­
tion program. Each logical input device has an associated measure (for example,
the measure of a LOCATOR device is the mouse position on the screen). Each
logical input device also has a state which detennines how a device handles
input. Each logical input device can be in one of five states:

1) RELEASED (uninitialized),

2) NO_EVENTS (initialized but unable to receive input),

3) REQUEST_EVENT (waiting for one event),

4) RESPOND_EVENT (report one event asynchronously), and

5) QUEUE_EVENT (put each event at the end of the event queue).

Errors are reported in SunCGI by setting the return value of the function to a
nonzero result and echoing an error message and number on the terminal. How­
ever, error trapping can be controlled by the set_error_warning_mask
function. An explanation of each error message (and suggestions for how to
eliminate them) is presented in Appendix D.

Version B of 17 February 198(

Programming Tips

Appendices

1.4. References

Chapter 1 - Introduction 7

For novice C language users, the syntax of SunCGI may pose some initial
difficulties. When a pointer is specified as an argument to a SunCGI function,
SunCGI usually expects space to be allocated by the application program and
the function argument to be preceded by an ampersand (&). SunCGI uses many
enumerated types. These types are printed by the printf function as integers.
If you want to print out these values in English, you should use the enumerated
types as indices into a character array which contains appropriate English
equivalents of the enumerated types. Finally, if you are a novice programmer,
copy the example programs in Appendix E and use them as templates to build
your own program with. Further help can be obtained by referring to the tables
at the end of Appendix D. These tables list commonly encountered problems and
how to solve them.

The first five appendices are intended to make SunCGI easier to understand.
This information will probably be particularly useful to novice users. The last
two appendices describe the interfaces:

1. between SunCGI and SunView, and

2. between SunCGI and the FORTRAN programming language.

Appendix A explains the difference between SunCGI and SunCore. Appendix
B lists the ANSI CGI standard functions which are not implemented by SunCGI
and the SunCGI functions which are not part of the ANSI CGI standard. Appen­
dix C provides the type definitions used by the SunCGI functions. Appendix D
lists the error messages and possible strategies for eliminating them. Appendix
D also lists possible causes of simple run-time errors. Appendix E describes
sample programs.

The final two appendices describe the interfaces between SunCGI and other Sun
software packages: SunView and FORTRAN. The first of the two interface appen­
dices explains how to call SunCGI from application programs written on top of
Sun View. This interface allows SunCGI to write output primitives in different
windows using different attributes. This interface is useful for application pro­
grams which wish to control different areas of the view surface independently.
Appendix G describes the interface to the FORTRAN programming language. The
behavior of each SunCGI function is the same in both C and FORTRAN.

[1] ANSI X3H3. Computer Graphics Virtual Device Interface. March 1984.

[2] ID. Foley and A. van Dam. Fundamentals of Interactive Computer
Graphics. Addison-Wesley, 1982.

[3] B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[4] W.M. Newman and R.F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1979.

[5] V.R. Pratt. Standards and Performance Issues in the Workstation Market.
IEEE Computer Graphics and Applications, April 1984.

~\sun ,~ microsystems
Version B of 17 February 1986

8 SunCGI Reference Manual

[6] SunView Programmer's Guide. Sun Microsystems.

[7] Sun View System Programmer's Guide. Sun Microsystems.

[8] Pixrect Reference Manual. Sun Microsystems.

[9] SunCore Reference Manual. Sun Microsystems.

~~sun ~~ microsystems
Version B of 17 February 1986

2
Initializing and Terminating SunCGI

Initializing and Terminating SunCGI ... 11

2.1. View Surface Initialization and Selection ... 11

Open CGI (SunCGI Extension) .. 12

Open View Surface (SunCGI Extension) ... 13

Activate View Surface (SunCGI Extension) ... 16

Deactivate View Surface (SunCGI Extension) .. 16

Close View Surface (SunCGI Extension) ... 16

Close CGI (SunCGI Extension) ... 16

2.2. View Surface Control .. 17

VDC Extent .. 17

Device Viewport ... 19

Clip Indicator .. 19

Clip Rectangle .. 20

Hard Reset ... 20

Reset to Defaults ... 20

Clear View Surface .. 21

Clear Control ... 21

Set Error Warning Mask ... 22

2.3. Running SunCGI with Sun View ... 22

Set Up SIGWINCH (SunCGI Extension) ... 23

2.4. Interface Negotiation ... 24

Inquire Device Identification .. 25

Inquire Device Class ... 25

Inquire Physical Coordinate System .. 25

Inquire Output Function Set ... 26

Inquire VDC Type .. 26

Inquire Output Capabilities ... 27

2.5. Input Capability Inquiries ... 27

Inquire Input Capabilities .. 27

Inquire LID Capabilities ... 28

Inquire Trigger Capabilities .. 29

2.1. View Surface
Initialization and
Selection

2
Initializing and Terminating SunCGI

The current CGI standard does not provide functions for initializing and terminat­
ing devices. ANSI CGI is intended to provide an interface for a single view sur­
face (one per CGI instance). SunCGI extends CGI into the window environment
by allowing a single CGI process to control multiple view surfaces. Six nonstan­
dard functions open_cgi, close_cgi, open_vws, close_vws,
acti vate _ vws, and deactivate _ vws are included in SunCGI.
open_cgi and close_cgi initialize and terminate the operation of the
SunCGI package. A view surface is initialized and terminated with
open_vws and close_vws. A view surface is automatically activated when
it is opened. SunCGI is capable of handling more than one view surface at once.
Output primatives can be restricted from a view surface with
deactivate vws.

A view surface is automatically activated when it is opened. However, a view
surface can be deactivated (with the deactivate_ vws function) when the
output stream is not intended to appear on all view surfaces. Subsequent calls to
SunCGI output functions will not apply to deactivated view surfaces! until
acti vate _ vws is called again (see the following example).

1 However, inputs can be received on deactivated view surfaces.

~~sun
~ microsysterns

11 Version B of 17 February 1986

12 SunCGI Reference Manual

#include <cgidefs.h>

main ()
{

Ccoor bot, top, center:
Cint name1, name2, radius:
Cvwsurf device1, device2;

bot.x = 5000:
bot.y = 5000:
center.x = 10000:
center.y = 10000:
radius = 5000:
top.x 15000:
top.y = 15000:

open_cgi () :
NORMAL_VWSURF(device1, PIXWINDD):
open_vws(&name1, &device1):
NORMAL_VWSURF(device2, PIXWINDD):
open_vws(&name2, &device2):

rectangle (&bot, &top);
deactivate_vws(name2):
circle (¢er, radius):
activate_vws(name2):
circle (¢er, 2*radius):

sleep(20):

close_vws(name1):
close_vws(name2):
close_cgi () :

Figure 2-1 Example Program with Multiple Workstations

Open CGI (SunCGI
Extension)

Errors

Cerror open_cgi()

open_cgi initializes the state ofSunCGI to CGOP (CGi OPen). open_cgi
does not initialize input devices but does initialize the event queue. No other CGI

functions can be used without generating an error if open _ cgi has not been
called. SunCGI traps various signals as described in Section 2.3.

ENOTCGCL [1] CGI not in proper state: CGI shall be in state CGCL.

.\sun ~~ microsystems
Version B of 17 February 1986

Table 2-1

Open View Surface (SunCGI
Extension)

Chapter 2 - Initializing and Terminating SunCGI 13

SunCGI Default States

State I
Range ofVDC space

Clip Indicator
Clip Rectangle
Error Warning Mask
Input Devices
Input Queue
Trigger Associations

Echo Modes

Value
0-32767 in both x and y
directions
CLIP
Range ofVDC space
INTERRUPf
Uninitialized
EMPfY
Defaults specific values
listed in Table 5-4
Device specific values
listed in Table 5-5

You may be unfamiliar with some of the entries discussed in Table 2-1. How­
ever, these concepts are explained in the course of this chapter. Further, each of
these concepts are referenced in the index.

Cerror open_vws(name, devdd)
Cint *namei /* name assigned to cgi view surface */
Cvwsurf *devdd; /* view surface descriptor */

open _ vws initializes a view surface. The list of available view surfaces is
described below in Table 2-2. open _ vws initializes the attributes to their
default values (listed in Table 2-3). The returned argument name is the identifier
which is used to refer this view surface in other SunCGI functions. To reinitial­
ize the state of the view surface without reopening it, use the hard_reset
function.

More than one view surface can be open at one time. Output primitives are
displayed on all active view surfaces (view surfaces must be opened before they
are activated). However, input is only echoed on the view surface which is
pointed to by the mouse. Most of the Cvws ur f fields should be zeroed, as by
the NORMAL _ VWSURF macro. Set the view surface type by assigning the dd
(device driver) element of the devdd argument to the name of the appropriate
device driver as in this example:2

Cvwsurf device;
NORMAL_VWSURF(device, BW2DD);
open_vws(&name, &device);

Note: The NORMAL VWSURF macro initializes the dd element of the Cvwsurf
structure and guarantees that the view surface will be opened in the normal
fashion. However, to open a window with some nonstandard parameters, or open
a second window from a graphics tool read the following paragraphs. To use an
existing pixwin, then skip the following paragraphs and read Appendix F instead.

2 Notice that when SunCGI specifies a pointer it usually requires that the argument is prefaced by an &

character when the argument is actually used.

Version B of 17 February 1986

14 SunCGI Reference Manual

If the view surface of the specified type has been previously initialized and the
type of view surface is a window (PIXWINDD or CGPIXWINDD) , a CGI tool (a win­
dow with the name CGI Tool) is opened. Other characteristics of the view surface
can be defined by setting the other elements of the of the devdd argument (which
is of type Cvwsurf).

typedef struct {
char screenname[DEVNAMESIZE]i /* physical screen */
char windowname[DEVNAMESIZE]i /* window */
int windowfdi /* window file descriptor */
int retainedi /* retained flag */
int ddi /* device */
int cmapsizei /* color map size */
char cmapname[DEVNAMESIZE]; /* color map name */
int flags; 1* new flag */
char **ptr; /* CGI tool descriptor */

Cvwsurfi

The elements screenname and windowname specify alternate screens (for exam­
ple, IdevlcgoneO) or alternate window (for example, Idev/winlO). If these ele­
ments are left blank, the current screen and the current window are used, unless
the dd field implicitly specifies a device (for example CG 1 DD). The element
windowfd is the window file descriptor for the current device. The current imple­
mentation of SunCGI ignores this element.

If the element retained is nonzero, then the view surface created by ope n_ vw s
has a retained window associated with it (that is, if the window is covered up by
another window and then revealed, the picture present before the window was
covered-up will be redisplayed. By default the window created by open _ vws
is non-retained. That is, if the window is covered-up and then revealed the
covered-portion will be redisplayed as white. However, drawing in non-retained
windows is twice as fast as drawing in retained windows, so the choice of which
type of view surface to open should be carefully considered.

The dd element specifies the view surface type. The cmapsize and the cmapname
elements determine the size and the name of the colormap. No colormap is
enabled for monochrome devices. The colormap determines the mapping
between color indices and red, green, and blue values. If the colormap specified
by the cmapname element of the devdd argument is the same as a colormap seg­
ment which already exists, then the colormap segment is shared. cmapsize
should be a power of two, less than or equal to 256. Refer to the Sun View
Programmer's Guide for more information about colormaps.

When the flags element is nonzero, no attempt is made to take over the current
graphics subwindow (if one exists). If this flag is set or the graphics subwindow
has already been taken over by SunCGI, then a CGI Tool (a window with the
name View Surface Tool) is created. The ptr element specifies the size and
placement of the CGI Tool. ptr is a pointer to an array of characters which should
consist of nine decimal numbers separated by commas. The array takes the fol­
lowing form:

"nl,nt,nw,nh,il,it,iw,ih,I"

Version B of 17 February 1986

Errors

Chapter 2 - Initializing and Terminating SunCGI 15

Each element of the array should be filled with an integer. The first two elements
specify the x and y coordinates of the upper left-hand comer of the CGI Tool.
The third and fourth elements specify the width and height of the CGI Tool. The
fifth through eighth elements specify the position and size of the iconic form of
the CGI Tool. If the ninth element is nonzero, the tool is displayed in its iconic
form.

ENOTOPOP [5]

ENOWSTYP [11]

EMAXVSOP [12]

EMEMSPAC [110]

ENOTCCPW [112]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Specified view surface type does not exist

Maximum number of view surfaces already open.

Space allocation has failed.

Function or argument not compatible with standard CGl.

Table 2-2 Available View Surfaces

Table 2-3

Name I
PIXWINDD
CGPIXWINDD

BWIDD

BW2DD

CGIDD
CG2DD

GPIDD

Description
SUD View on a monochrome display
SUD View on a color display

Full screen on a Sun-I mono­
chrome display
Full screen on a Sun-2 or Sun-3
monochrome display
Full screen on a Sun-I color display
Full screen on a Sun-2 or Sun-3
color display
Full screen on a Sun-2/160 or Sun-
3/160 with optional Graphics Pro­
cessor

View Surface Default States

State I Value
View Surface Cleared
Device Viewport View Surface

Note: most failures during the opening of a view surface result in error ENOWS­
TYP [11]. The most common reason is missetting (or failing to set) the dd ele­
ment of the Cvw sur f structure. For example, opening a device surface type
PIXWINDD instead ofCGPIXWINDD on a color pixwin, or using CG2DD when
the Idevlcgtwo* surface is being used by suntools. The NORMAL VWSURF
macro should be used to initialize this structure.

~\sun ,~ mk:rosystems
Version B of 17 February 1986

16 SunCGI Reference Manual

Activate View Surface
(SunCGI Extension)

Errors

Deactivate View Surface
(SunCGI Extension)

Errors

Close View Surface (SunCGI
Extension)

Errors

Close CGI (SunCGI
Extension)

Cerror activate_vws(name)
Cint name; 1* view surface name */

acti va te _ vws activates the view surface specified by name. Subsequent
SunCGI calls affect this view surface. Nothing is displayed on a view surface
unless that view surface is active. Since a view surface is active as soon as it is
opened, act iva t e _ vw s is only need to reactivate a deactivated view surface.
Note that activating a view surface may reset the state of SunCGI.

ENOTOPOP [5]

EVSIDINV [10]

EVSNOTOP [13]

EVSISACT [14]

CGI not in proper state CGI shall be either in state COOP,
VSOP, or VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is active.

Cerror deactivate_vws(name)
Cint name; 1* view surface name *1

deacti vate _ vws prevents calls to SunCGI functions from having an effect
on this view surface. The view surface may be reactivated by act iva t e _ vw s
at a later time without having to be reopened. Note that deactivating a view sur­
face may reset the state of SunCGI.

ENOTVSAC [4]

EVSIDINV [10]

EVSNOTOP [13]

EVSNTACT [15]

CGI not in proper state: CGI shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

Cerror close_vws(name)
Cint name; 1* view surface name *1

close_ vws tenninates a view surface. Future SunCGI calls have no effect on
this view surface. The view surface cannot be reactivated without being reo­
pened.

ENOTOPOP [5]

EVSIDINV [10]

EVSNOTOP [13]

ENOTCCPW [112]

COl not in proper state COl shall be either in state COOP,
VSOP, or VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Function or argument not compatible with standard CGI.

Cerror close_cgi()

close _ cgi tenninates all open view surfaces, and restores the state of the Sun­
View to the state that it was in before SunCGI was opened. Future SunCGI
calls will have no effect and will generate errors.

Version B of 17 February 1986

Errors

2.2. View Surface Control

VDC Extent

Chapter 2 - Initializing and Terminating SunCGI 17

A call to close _ cgi should be included in the exit routines of an application
program to guarantee leaving the Sun View and SunCGI in a stable state.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

ENOTCCPW [112] Function or argument not compatible with standard CGI.

The functions described in this section

1. define the range of world and device coordinates,

2. control eli pping, and

3. reset selected aspects of the view surface and the internal state of SunCGI.

Most functions in SunCGI express coordinates in VDC space (Virtual Device
Coordinate space). In conventional computer graphics terms, VDC space
corresponds to world coordinate space. The mapping between VDC space and
screen space is determined by the physical size of the screen in pixels. Screen
space is set by default to the entire size of the screen or the graphics window
depending on the device type. The mapping from VDC space to screen space is
always isotropic (the shape of the rectangle defining screen space is the same
shape as VDC space). Therefore, VDC space defines the shape of the active view
surface. The portion of screen space which does not correspond to VDe space is
ignored. The aspect ratio (the ratio between the height and width) is therefore,
defined by VDC space and not screen space.

Cerror vde_extent(el, e2)
Ceoor *el, *e2; /* bottom left-hand and */

/* top right-hand corner of VDC space */

vdc _extent defines the limits of VDC space. The range of the coordinates
must be between -32767 and 32767 (or an error is generated). VDC space can be
set by the application program, but it ranges from 0 to 32767 in both the x and
the y directions by default. Resetting VDC space impacts the display of output
primitives on all view surfaces.

Resetting the limits of VDC space automatically redefines the clipping rectangle
to the new limits of VDC space, regardless of the value of the clip indicator.

Changing the mapping from screen space to VDC space allows for translation
(move) or scaling (zoom in/zoom out) of output primitives. However, no rota­
tion functions are provided by SunCGI, and therefore, must be supplied in the
application program. The code fragment below translates and zooms in on a rec­
tangle:

~\sun ,~ microsystems
Version B of 17 February 1986

18 SunCGI Reference Manual

#include <cgidefs.h>

main ()
{

Cvwsurf device:
Cint name;
Ccoor dv1, dv2, lower, upper;

NORMAL_VWSURF(device, PIXWINDD);
dv1.x 0;
dv1.y 0;
dv2.x 200;
dv2.y 200;
lower.x 30; /* rectangle coordinates */
lower.y 30;
upper.x 70;
upper.y 70;

open_cgi () ;
open_vws(&name, &device);
vdc_extent(&dvl, &dv2);

i

rectangle (&upper, &lower); /* draw initial rectangle */
sleep(4);
dv1.x 0;
dv1.y 0;
dv2.x 100;
dv2.y 100;
vdc_extent(&dv1, &dv2); /* center rectangle */
rectangle (&upper, &lower);
sleep(4);
dv1.x 20;
dv1.y 20;
dv2.x 80;
dv2.y 80;
vdc_extent(&dv1, &dv2); /* enlarge rectangle */
rectangle (&upper, &lower);
sleep(20);

close_vws(name);
close_cgi();

Figure 2-2 Example Program with Multiple Normalization Transformations

Errors ENOTOPOP [5]

EBADRCTD [20]

.\sun ,~ microsystems

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Rectangle definition is invalid.

Version B of 17 February 198(

Device Viewport

Errors

Clip Indicator

EVDCSDIL [24]

ENOTCCPW [112]

Chapter 2 - Initializing and Terminating SunCGI 19

VDC space definition is illegal.

Function or argument not compatible with standard CGI.

Cerror device_viewport(name, cl, c2)
Cint name; /* name assigned to cgi view surface */
Ccoor *cl, *c2; /* bottom left-hand and top right-hand */

/* corner of view surface to map device onto */
/* (expressed in pixels) */

devi ce _v iewport redefines the limits of screen space. If the new limits are
not less than or equal to the size of the current screen or window size, an error is
returned. Although device_viewport does not redefine the aspect ratio, it
may redefine which areas of the screen are unused.

ENOTOPOP [5]

EVSIDINV [10]

EVSNOTOP [13]

EBADRCTD [20]

EBDVIEWP [21]

ENOTCCPW [112]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Rectangle definition is invalid.

Viewport is not within Device Coordinates.

Function or argument not compatible with standard CGI.

Cerror clip_indicator(cflag)
Cclip cflag; /* CLIP, NOCLIP or CLIP_RECTANGLE */

For some application programs, it is desirable to clip explicitly within the
viewport, while other applications may seek to increase efficiency by not check­
ing if the coordinates are within the bounds of the clipping area.

All SunCGI application programs will run faster if clipping is turned off. How­
ever, clipping is turned on by default to prevent SunCGI from drawing outside
of the bounds of the window.

The extent ofVDC may be set with the vdc_extent function.

The value of the argument cflag determines whether output primitives are clipped
before they are displayed. The default state is CLIP. The advantage of turning
clipping off is that it improves the speed of drawing primitives. However, if clip­
ping is set to NOCLIP, SunCGI may draw output primitives outside of the win­
dow or within the bounds of an overlapping window. If clipping is not NOCLIP,
output primitives are clipped to either the clip rectangle (if cflag equals
CLIP_REef ANGLE), or the full extent of VDC space (if cflag equals CLIP).

typedef enum
CLIP,
NOCLIP,
CLIP RECTANGLE

Cclip;

~\sun ,~ microsystems
Version B of 17 February 1986

20 SunCGI Reference Manual

Errors

Clip Rectangle

Errors

Hard Reset

Errors

Reset to Defaults

Errors

ENOTOPOP [5]

ENOTCCPW [112]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Function or argument not compatible with standard CGI.

Cerror clip_rectangle(xmin, xmax, ymin, ymax)
Cint xmin, xmax, ymin, ymaxi /* bottom left-hand */

/* and top right-hand corner of clipping rectangle */

clip_rectangle defines the clipping rectangle in VDC Coordinates. By
default, the clipping rectangle is set to the borders of VDC space. The
clip_rectangle function defines the clipping rectangle in VDC space, to be
used when clipping is set to CLIP _ RECf ANGLE. The clipping rectangle is
automatically reset by vdc_extent.

ENOTOPOP [5]

EBADRCTD [20]

ECLIPTOL [22]

ECLIPTOS [23]

ENOTCCPW [112]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Rectangle definition is invalid.

Cli pping rectangle is too large.

Clipping rectangle is too small.

Function or argument not compatible with standard CGI.

Cerror hard_reset()

Device control functions restore the view surface and the internal state of
SunCGI to a known state. The individual aspects of the device which can be
reset are the output attributes, the view surface (screen), and the error reporting.

hard_reset returns the output attributes to their default values; tenninates all
input devices, and empties the event queue and clears all view surfaces. VDC

space is reset to its default values and the clip indicator is set to CLIP. This
function should be used sparingly because most control, attribute, and input func
tions called before this function will not have any effect on functions called after
hard reset is called.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror reset_to_defaults()

reset_to_defaults returns output attributes to defaults (see Table 4-1).
reset_to_defaults does notc1ear the screen, reset the input devices, or
reset the character set index.

ENOTOPOP [5]

EVSIDINV [10]

~\sun ,~ microsystems

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Specified view surface name is invalid.

Version B of 17 February 198

Clear View Surface

Errors

Clear Control

Errors

Set Error Warning Mask

Chapter 2 - Initializing and Terminating SunCGI 21

Cerror clear view_surface(name, defflag, index)
Cint name; /* name assigned to cgi view surface */
Cflag defflag; /* default color flag */
Cint index; /* color of cleared screen */

clear_view_surface changes all pixels in the relevant area of the view sur­
face specified by name to the color specified by the index argument, unless the
defftag argument is set to OFF. If defftag is equal to OFF, the view surface is
cleared to color zero. The area of the view surface which is actually cleared is
determined by the clear_control function. clear_view_surface
also resets the internal state of SunCGI according to previous calls to the
clear control function. clear view surface resets the current
background color to the color of the cleared view surface.

ENOTVSAC [4]

EVS IDINV [10]

EVSNOTOP [13]

EVSNTACT [15]

EC INDXLZ [35]

EBADCOLX [36]

CGI not in proper state: CGI shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

Color index is less than zero.

Color index is invalid.

Cerror clear_control(soft, hard, intern, extent)
Cacttype soft, hard: /* soft and hard copy actions */
Cacttype intern; /* internal action */
Cexttype extent: /* clear extent */

clear control detennines the action taken when
clear_ view_surface is called. The argument soft can be set to either
NO _ OP or CLEAR. The argument hard which regulates clearing rules for plotters
is ignored (because SunCGI does not currently support hard-copy devices) and
is included only for ANSI CGI compatibility. The argument intern is set to either
RETAIN or CLEAR. This parameter was included to support segmentation storage
which is not currently a part of ANSI CGI. Therefore, the intern argument is
ignored. The argument extent detennines what area of the screen is cleared. It is
set to one of the values in the Cext type enumerated type:

typedef enum {
CLIP_RECT,
VIEWPORT,
VIEWSURFACE

Cexttype:

ENOTOPOP [5]

ENOTCCPW [112]

4}\sun
~~ microsystelTlS

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Function not compatible with CGIPW mode.

Version B of 17 February 1986

22 SunCGI Reference Manual

Errors

Cerror set_error_warning_mask(action)
Cerrtype action; 1* Action on receipt of an error *1

set_error_warning_mask3 determines the action taken by SunCGI when
an error occurs. Three types of action are possible: NO_ACTION, POLL, INTER­
RUPT. If the action argument is set to NO_ACTION, errors are detected internally,
but not reported. The error number is returned to the caller of a CGI routine. The
user is advised not to set the action argument to NO_ACTION.

POLL and INTERRUPT actions print an error message on the terminal, but also
return the error number (see Appendix D) so the program can perfonn exception
handling. The default error _ warning_mask is INTERRUPT.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Table 2-4 Error Warning Masks

2.3. Running SunCGI with
SunView

Error I Message I Program

I
Error

Warning Mask Printed Aborted Number Returned
NO ACTION No No Yes
POLL Yes No Yes
INTERRUPT Yes FATAL errorst Non-FATAL errors

t SunCGI defines no errors as FATAL. All errors are non-fatal so the appli­
cation has complete control to abort or perform other processing as desired.
Therefore, POLL and INTERRUPT are the same in SunCGI.

SunCGI always traps five signals: SIGINT, SIGCHLD, SIGIO, SIGHUP and
SIGWINCH. The first four of these cause SunCGI cleanup and program termina­
tion. When using a Graphics Processor option, SunCGI also traps SIGXCPU.
Previous signal handlers, if any, are saved. When one of these signals occurs,
SunCGl's signal handler will call the previous signal handler as well as perfonn­
ing its own processing. The actions of the previous (user installed) signal handler
may interfere with SunCGl's signal responses, and are hence unsupported.

Unless a SunCGI application program has opened a retained view surface, over­
lapping another window onto a graphics subwindow will destroy the picture
below. SunCGI programs can regenerate a display surface by trapping the
SIGWINCH (SIGnal WINdow CHange) signal.

It is possible (though unsupported) to install a signal handler for signals after cal­
ling open_pw_cgi (see Appendix F). Since these signal handlers replace
SunCGl's handler, the application should save SunCGl's signal handler
(returned by signal), and call the saved handler when the signal occurs (amid the
user's own processing). Because the response of the program to the signal then
depends on the place in the user's own signal handling that SunCGl's handler is

3 The syntax of set_error_warning_rnask in SunCGI is slightly different from the proposed ANSI

standard in that the ANSI definition allows different actions for different classes of errors.

~\sun ,~ microsystems
Version B of 17 February 198f

Set Up SIGWINCH (SunCGI
Extension)

Chapter 2 - Initializing and Terminating SunCGI 23

called, results are unpredictable, and may change with a new version of SunCGI.

Note that it is not necessary for an application to catch a SIGWINCH signal, since
SunCGl's set_up _ sigwinch routine offers an easier interface. A user's
sig_ function has a different calling semantics from a SIGWINCH in that
pw _damaged and pw _ donedamaged have already been invoked.

When a window's contents needs regeneration during execution time, the process
associated with a window receives a SIGWINCH signal. The application can use
this signal to determine when a view surface needs to be regenerated. Note:
Under no circumstances will the user be able to access the SIGWINCH signals gen­
erated when a view surface is initialized.

When a window obstructs a SunCGI view surface, output to that view surface is
nonnally clipped to the exposed portion only (unless the clip indicator is
NOCLIP). When the obstruction is removed, unless the window is RETAINED, the
picture must be regenerated by re-running the output generation of the applica­
tions, for that view surface at least. An application's SIGWINCH handling func­
tion is called for this purpose.

When a SunCGI window's size changes during execution, the picture must be
regenerated. But first, SunCGI updates the transformation used to map VDC

space into screen space. Then, if the affected view surface is RETAINED, the
retained copy is rewritten onto the view surface. (Because of the size change,
this may not repair the damage satisfactorily.) Lastly, the application's
SIGWINCH function is called.

Cerror set_up_sigwinch(name, sig_function)
Cint name;
Cint (*sig_function) (); 1* signal handling function *1

set_up_sigwinch allows the application program to trap SIGWINCH signals
for view surface name. sig_function is a pointer to a function returning an
integer. If sig_ function is nonzero, all SIGWINCH signals which are not
trapped by the internals of SunCGI (from view surface initialization) are passed
to the function specified by sig_ function.

The sig_ function is called when the SIGWINCH signal is received. It is the
programmer's responsibility to use a flag to determine if it is safe to process the
signal at this time, or to set a flag indicating that signal processing has been put
off until later. See the SunView Programmer's Guide for infonnation on
SIGWINCH handling.

The sig_ function argument is called with a single argument: the name of
the view surface with which it is associated by the call to set_up _ sigwinch.
This allows more than one view surface to share the same sig_ function, and
differentiate which view surface needs redisplay.

Here is an example of a program that uses set_up_sigwinch.

Version B of 17 February 1986

24 SunCGI Reference Manual

Figure 2-3

Errors

2.4. Interface Negotiation

#include <cgidefs.h>

Ccoor box[5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

Cint name;
extern Cint redraw();
Cvwsurf device;

main ()
{

Ccoorlist boxlist;

boxlist.n = 5;
boxlist.ptlist = box;
NORMAL_VWSURF(device, PIXWINDD);

open_cgi () ;
open_vws(&name, &device);
set_up_sigwinch(name, redraw);

polyline(&boxlist);
sleep(10);

close_vws(name);
close_cgi();

Cint redraw ()
{

clear view_surface(name, ON, 0);

Example Program with set_up_sigwinch Function

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

COl is intended to support a 'negotiated device interface' which permits programs
written on a specific type of hardware to run on other machines. SunCGIonly
allows inquiry of most of the settable modes.4 For example the user may want to
find out which types of input devices are supported. However, functions for set­
ting color precision, coordinate type, specification mode, and color specification
are not provided because SunCGI only supports one type of color precision (8-

4 The functions which are not supported by SunCGI are classified as non-required by the March 1984 ANSI

COl standard. See Appendix B.

Version B of 17 February 1986

Inquire Device Identification

Errors

Inquire Device Class

Errors

Inquire Physical Coordinate
System

Chapter 2 - Initializing and Terminating SunCGI 25

bit), coordinate type (integers), and color specification (indexed). The width and
size specification modes are settable, but the functions which set them are
described in Chapter 4. However, the inquiry negotiation functions are supported
so that an application program written for a CGI on another manufacturers'
workstation can find out whether the SunCGI is capable of running that applica­
tion.

Cerror inquire_device_identification(name, devid)
Cint name; /* device name */
Cchar devid[DEVNAMESIZE]; /* workstation type */

inquire_device_identifica tion reports which type of Sun Worksta­
tion view surface name is associated with. The argument devid may be set to one
of the Sun Workstation types described in Table 2-2. The inclusion of the name
argument deviates from the ANSI standard, but is necessary so that the charac­
teristics of individual view surfaces may be inquired.

ENOTOPOP [5]

EVSIDINV [10]

EVSNOTOP [13]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Cerror inquire_device_class(output, input)
Cint *output, *input; /* output and input abilities */

inquire device class describes the capabilities of Sun Workstations in
terms of the CGI functions they support.5 Each of the two returned values reports
the number of functions of each of the two classes which are supported in
SunCGI. These numbers (the values of input and output) are used to make more
detailed inquiries by using functions inquire_input_capabilities and
inquire_output_capabilities.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire-physical_coordinate_system(name, xbase,
ybase, xext, yext, xunits, yunits)

Cint name; /* name assigned to cgi view surface */
Cint *xbase, *ybase; /* base coordinates */
Cint *xext, *yext; /* pixels in x and y directions */
Cfloat *xunits, *yunits; /* number of pixels per mm. */

inquire_physical_coordinate_system reports the physical dimen­
sions of the coordinate system of view surface name in pixels and millimeters.
inquireyhysical_coordinate_system is provided to permit the
drawing of objects of a known physical size.
inquire_physical_coordinate_system is also provided to assist in

5 The output argument does not include the non-standard CGI functions.

~\sun ,~ microsystems
Version B of 17 February 1986

26 SunCGI Reference Manual

Errors

Inquire Output Function Set

Errors

Inquire VDC Type

Errors

the computation of parameters for the device_viewport function. xext and
yext describe the maximum extent of the window in which the application pro­
gram is run. (The window mayor may not cover the entire screen.) The number
of pixels per millimeter is always set to 0 because the actual screen size of device
varies between individual monitors. The actual size of the screen may be
obtained from the number of pixels in the x and y directions from the monitor
specifications and perform the division in an application program.

ENOTOPOP [5]

EVSIDINV [10]

EVSNOTOP [13]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Cerror inquire_output_function_set(level, support)
Cint level; /* level of output */
Csuptype *support; /* amount of support */

inquire_output_function_set reports the extent to which each level of
the output portion of the ANSI CGI standard is supported.

typedef enum {
NONE,
REQUIRED_FUNCT IONS_ONLY ,
SOME_NON_REQUIRED_FUNCTIONS,
ALL_NON_REQUIRED_FUNCTIONS

Csuptype;

The standard requires that the level argument be an enumerated type; however,
for reasons of simplicity only the level number is used by SunCGI. Levels 1-6
are supported completely (that is, both required and non-required functions are
implemented. Level 7 is not supported at all. Refer to the ANSI standard for the
precise definition of each level.

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire_vdc_type(type)
Cvdctype *type; /* type of VDC space */

inquire _ vdc _type reports the type of coordinates used by SunCGI in the
returned argument type.

typedef enum
INTEGER,
REAL,
BOTH

Cvdctype;

type is always set to INTEGER (32-bit). SunCore is a higher-level graphics sys­
tem with coordinate space expressed in real numbers.

~'\sun ~ microsystems
Version B of 17 February 1986

Inquire Output Capabilities

Errors

2.5. Input Capability
Inquiries

Inquire Input Capabilities

ENOTOPOP [5]

Chapter 2 - Initializing and Terminating SunCGI 27

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire_output_capabilities(first, num, list)
Cint first; /* first element */
Cint num; /* number of elements in list to be returned */
Cchar *list[]; /* returned list */

inquire_output_capabilities lists the output functions in the returned
argument list. The range of the first and num arguments is determined by the
returned argument output from the inquire_device_class function.

ENOTOPOP [5]

EINQLTL [16]

CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Inquiry arguments are longer than list.

Input devices have a separate class of negotiation functions. Input capability
inquiries report qualitative abilities as well as quantitative abilities of input dev­
ices. The inquire _input _ capabili tie s function reports which devices
and overall features are supported by SunCGI. The remaining functions report
the capabilities of individual devices or features. Input devices are virtual dev­
ices which must be associated with physical triggers (such as mouse buttons).
Initializing an input device defines the measure used by a device, for example
initializing a LOCATOR device defines the measure as x-y coordinates. In addi­
tion to being associated with a trigger, each device has selectable screen echoing
capabilities. Association and echoing capabilities for each input device are
reported by the functions described in this section.

Cerror inquire_input_capabilities(valid, table)
Clogical *valid; 1* device state */
Ccgidesctab *table; 1* CGI input description table *1

inquire_input _ capabili tie s reports the total number of input devices
of each class that are supported. The argument valid returns the value L _TRUE if
SunCGI is initialized, and L_FALSE otherwise. If valid is set to L_TRUE, the ele­
ments of table are set to the quantity and quality of inputs supported. All Sun
Workstations support input at the same level.

~\Slln ~~ microsyslems
Version B of 17 February 1986

28 SunCGI Reference Manual

Errors

Inquire LID Capabilities

typedef struct {
Cint nwnloc;
Cint nwnval;
Cint nwnstrk;
Cint nwnchoice;
Cint nwnstr;
Cint nwntrig;
Csuptype event_queue;
Csuptype asynch;
Csuptype coord_map;
Csuptype echo;
Csuptype tracking;
Csuptype prompt;
Csuptype acknowledgement;
Csuptype trigger_manipulation;

Ccgidesctab;

Elements of type Cin t report how many of each type device is supported, as
well as how many types of triggers are supported. Elements of type C su pt ype
report how many of the functions of each class are supported. All functions
except the tracking functions are fully supported.

ENOTOPOP [5] COl not in proper state COl shall be either in state COOP,
VSOP, or VSAC.

Cerror inquire_Iid_capabilities(devclass, devnwn,
valid, table)

Cdevoff devclass;
Cint devnum; /* device number */
Clogical *valid; /* device supported at all */
Cliddescript *table; /* table of descriptors */

inquire_input_device_capabilities describes the capabilities of a
specific input device (hereafter, specified device). The input arguments devclass
and devnum refer to a specific device type and number. The argument valid
reports whether CGI is initialized.

typedef struct {
Clogical sample;
Cchangetype change;
Cint numassoc;
Cint *trigassoc;
Cliddescript prompt;
Cliddescript acknowledgement;
Cechoav *echo;
Cchar *classdep;
Cstatelist state;

Cliddescript;

The elements of table which are of type Clogical indicate whether an ability
is present in the specified logical input device. The change element reports
whether associations are changeable at all (all input devices except string are
changeable). The numassoc and trigassoc elements of table report how many

~\sun ~~ microsystems
Version B of 17 February 1986

Table 2-5

Errors

Inquire Trigger Capabilities

Chapter 2 - Initializing and Terminating SunCGI 29

and which triggers may be associated with the specified logical input device.
The echo argument describes which echo types are supported (see Chapter 5 for a
list of echo types).6 The classdep argument provides class dependent infonnation
in character fonn (the type of infonnation is given in Table 2-3). If more than
one piece of class dependent infonnation is returned, then the pieces of infonna­
tion are separated by commas. The state argument reports the initial state of the
specified device. See the inquire_state_list function.

Class Dependent Information

Device Class I Information I Possible Values
IC LOCATOR Coordinate Mapping Yes, No, Partial

Native Range xmin, xmax,
ymin, ymax

IC VALUATOR Set Valuator Range yes/no
IC STROKE Time Increment Settable yes/no

Minimum Distance yes/no
IC CHOICE Range minimax
IC STRING None None

ENOTOPOP [5] CGI not in proper state CGI shall be either in state CGOP,
VSOP, or VSAC.

Cerror inquire_trigger_capabilities(trigger, valid, tdis)
Cint trigger; /* trigger number */
Clogical *valid; /* trigger supported at all */
Ctrigdis *tdis; /* trigger description table */

inquire_trigger_capabilit ies describes how a particular trigger can
be associated. The argument valid reports whether the device supports input at
all.

typedef struct {
Cchangetype change;
Cassoclid *numassoc;
Cint maxassoc;
Cpromstate prompt;
Cackstate acknowledgement;
Cchar *name;
Cchar *description;

Ctrigdis;

The change element of tdis reports whether the specified trigger can be associ­
ated with a logical input device. The numassoc element of tdis gives supported
LID associations for this trigger. This consists of n , the number of LID classes
which can be associated with the trigger, a pointer to an array of n entries telling
which n device classes can be associated with the trigger, and how many of each

6 Note that inquire_lid_capabilities returns an enumerated type whereas track_on accepts
integers. Therefore these values may be different.

Version B of 17 February 1986

30 SunCGI Reference Manual

Errors

device class is defined. The maxassoc field gives the number of LID's which
can be concurrently associated with this trigger. SunCGI does not support either
prompt or acknowledgement for any input device. The name element is simply a
character form of the trigger name (for example, LEFT MOUSE BUITON). The
description element is never filled and is included for standards compatibility.

ENOTOPOP [5]

E INTRNEX [86]

.\sun ~~ microsystems

CGI not in proper state COl shall be either in state COOP,
VSOP, or VSAC.

Trigger does not exist.

Version B of 17 February 1986

3
Output

Output .. 33

3.1. Geometrical Output Primitives .. 33

Polyline ... 34

Disjoint Polyline .. 34

Polymarker ... 35

Polygon ... 35

Partial Polygon ... 36

Rectangle ... 38

Circle .. 38

Circular Arc Center ... 38

Circular Arc Center Close .. 39

Circular Arc 3pt ... 40

Circular Arc 3pt Close ... 41

Ellipse .. 41

Elliptical Arc ... 41

Elliptical Arc Close ... 42

3.2. Raster Primitives .. 42

Text ... 42

VDMText ... 43

Append Text .. 43

Inquire Text Extent .. 43

Cell Array .. 44

Pixel Array .. 44

BitBlt Source Array ... 45

BitBlt Pattern Array .. 46

BitBlt Patterned Source Array ... 46

Inquire Cell Array ... 47

Inquire Pixel Array .. 47

Inquire Device Bitmap ... 48

Inquire BitBlt Alignments ... 48

3.3. Drawing Modes .. 48

Set Drawing Mode ... 49

Set Global Drawing Mode (SunCGI Extension) ... 50

Inquire Drawing Mode ... 50

3.1. Geometrical Output
Primitives

3
Output

SunCGI supports two classes of output primitives: geometrical output primitives
and raster primitives.

Geometrical Output Primitives
include arcs, circles, polylines, and polygons. The position of geometrical
output primitives are always specified in absolute VDC coordinates.7

Raster Primitives
draw text and scaled and unsealed 2D arrays. The coordinate system for ras­
ter primitives depends on the type of primitive. The drawing mode deter­
mines how output primitives are drawn on top of other output primitives or
the background.

Geometrical output primitives are divided into two classes: polygonal primitives
and conical primitives. Geometrical output primitives are a1l2D in keeping with
the CGI standard. However, polygons with holes (via the partialyolygon
function) are provided in order to support 3D graphics packages.

Geometrical primitives (except polymarker) are considered either closed or
not closed. Polymarker uses its own attributes (see Section 4.3). Non-closed
figures (polylines, circular arcs, or elliptical arcs) are drawn with a style, width
and color determined from line attributes (see Section 4.2). Closed figures
(polygons, rectangles, circles, ellipses, and circular and elliptical closed arcs) use
the solid object attributes (see Section 4.4). The geometrical information
specifies the boundary of a closed figure. The interior of this boundary is filled
using fill area attributes. The boundary may be surrounded with a line, drawn
with perimeter attributes, not the line attributes. For example, a circle of radius
1000 and a perimeter width of 100 VDC units has its perimeter between the circle
of radius 1000 and a concentric circle of radius 1100 (not from 950 through
1050).

Most polygonal primitives (polyline, polymarker, polygon, and
partialyolygon) take one argument of type Ccoorlist:

7 SunCGI (unlike SunCore) maintains no concept of current position.

~\sun
~ microsystems

33 Version B of 17 February 1986

34 SunCGI Reference Manual

Polyline

Errors

Disjoint Polyline

typedef struct
Cint x;
Cint y;

Ccoor;

typedef struct
Ccoor *ptlist;
Cint n;

Ccoorlist;

The element ptlist is really a pointer to an array of type Cc 00 r which contains
the n coordinates of the points defining the primitive. The style, color, and other
features of lines, markers, and fill patterns used by geometrical output primitives
are set by the attribute functions described in Chapter 4.

The polygons generated by SunCGI mayor may not be closed. SunCGI
automatically assumes the polygon is closed for the purpose of filling. However,
a polygon must be explicitly closed in order to get all of its edges drawn, so take
care to generate explicitly closed polygons. The rectangle function implicitly
generates closed objects. 8

SunCGI has two classes of conical primitives: circular and elliptical. Each class
has functions for drawing solid objects, arcs, and closed arcs. Drawing of conical
primitives is regulated by the same attributes that regulate the drawing of
polygons and polylines.

Cerror polyline(polycoors)
Ccoorlist *polycoors; /* list of points */

polyline draws lines between the points specified by the ptUst element of
polycoors. polyline does not draw a line between the first and last element of the
point list. To generate a closed polyline, the last point on the list must have the
same coordinates as the first point on the list. The style, color, and width of the
lines are set by the polyline_bundle_index, line_type,
line_color,line_widthandline_width_specification_ffiode
functions. If a line segment of a polyline has a length of zero, the line is not
drawn. To draw a point, use the circle function. If you specify a polyline
that has less than two points, an error is generated. Similarly, if the number of
points specified is greater than the maximum number of points (MAXPTS) an error
is generated.

ENOTVSAC [4]

ENMPTSTL [60]

EPLMTWPT [61]

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

poly lines must have at least two points.

8 A closed portion of a closed figure boundary will not be drawn if it exceeds a clipping boundary.

Version B of 17 February 1986

Errors

Polymarker

Errors

Polygon

Errors

Chapter 3 - Output 35

Cerror disjoint-polyline(polycoors)
Ccoorlist *polycoorsi /* list of points */

dis joint yolyline draws lines between pairs of elements in ptiist. The
line attributes described in Section 4.2 determine the appearance of the
disjointyolyline function. Ifpolycoors contains an odd number of
points, the last point is ignored. As with po 1 y 1 i ne, if the number of points is
less than two or greater than MAXPTS, an error is generated.
dis joint yolyline is typically used to implement scan-line polygon filling
algorithms.

ENOTVSAC [4]

ENMPTSTL [60]

EPLMTWPT [61]

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

polylines must have at least two points.

Cerror polymarker(polycoors)
Ccoorlist *polycoorsi /* list of points */

polymarker draws a marker at each point. The type, color, and size of marker
are set by the polymarker_bundle_index,marker_type,
marker_color,marker_size,and
marker_size_specification_mode functions. If the number of points
specified is greater than the maximum number of points, an error is generated.
polymarker is useful for making graphs such as scatter plots.

ENOTVSAC [4]

ENMPTSTL [60]

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

Cerror polygon(polycoors)
Ccoorlist *polycoorsi /* list of points */

polygon displays the polygon described by the points in polycoors. In addition,
any points added to the global polygon list by the partialyolygon func­
tion are also displayed. The polygon is filled between edges. Polygons are
allowed to be self-intersecting. The visibility of individual edges can only be set
by the partial yolygon function. The style and color used to fill the
polygon are set by the solid object attribute functions described in Chapter 4.
The characteristics of the edges are controlled by the perimeter attribute func­
tions. The number of points in the polygon used to determine the error condition
of too few or too many points is the total number of points on the global polygon
list, not the number of points specified in polycoors. After the polygon is drawn,
the global polygon list is emptied.

ENOTVSAC [4]

ENMPTSTL [60]

EPGMTHPT [62]

~\sun ,~ microsystems

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

Polygons must have at least three points.

Version B of 17 February 1986

36 SunCGI Reference Manual

Partial Polygon

EGPLISFL [63] Global polygon list is full.

Cerror partial-polygon(polycoors, cflag)
Ccoorlist *polycoors; /* list of points */
Ccflag cflag; /* CLOSE previous polygon? */

partialyolygon adds elements to the global polygon list without display­
ing the polygon. The partialyolygon function provides the capability of
drawing multiple-boundary polygons, including polygons with holes. The draw­
ing is actually performed when polygon is called. polygon will close the last
boundary on the global polygon list and add the coordinate list it is passed as the
final polygon boundary before drawing.

cflag controls whether the last polygon in the global polygon list is open or
closed. If cflag is set to CLOSE, the last polygon on the global polygon list will
be closed by drawing a visible perimeter edge between the last and the first
points of the last polygon on the global polygon list. If the cflag is set to OPEN,
the points in polycoors are appended to the last polygon on the global polygon
list, but an invisible perimeter edge will be drawn between the last point
currently on the global polygon list and the first point in the Ccoorlist. The
visibility of polygon edges can be individually controlled by calling
partialyolygon with cflag set to OPEN for each invisible edge and with
cflag set to CLOSE for each new boundary. The interpretation of cflag is slightly
different than the pseudocode given in the CGI standard. Future versions of CGI

may use a different syntax to offer the capabilities of multiple-boundary
polygons and invisible edges.

The CGI standard specifies that circle, rectangle, ellipse and
close_arc are primitives that may use the global polygon list for filling.
SunCGI does not use the global polygon list in these functions, and therefore
leaves it untouched. These SunCGI routines do not empty the global polygon
list.

Version B of 17 February 198~

Errors

Figure 3-1

tinclude <cgidefs.h>

main ()
{

Ceoor list[4];
Ccoorlist points;
Cint name;
Cvwsurf device;

NORMAL_VWSURF(device, PIXWINDD);

open_cgi () ;
open_vws(&name, &deviee);

interior_style (SOLIDI, ON);
list[O].x 10000;
list[O].y 10000;
list[1].x 10000;
list[1].y 20000;
list[2].x 20000;
list[2].y 20000;
list[3].x 20000;
list[3].y 10000;
points.ptlist=list;
points.n=4;
partial-polygon(&points, CLOSE);
list[O].x 12500;
list[O].y 12500;
list[1].x 12500;
list[1].y 17500;
list[2].x 17500;
list[2].y 17500;
list[3].x 17500;
list[3].y 12500;
points.ptlist=list;
points.n=4;

Chapter 3 - Output 37

polygon(&points); /* cut a hole in it */

sleep(lO);

close_vws(name);
close_cgi () ;

Example Program with Polygons

An error is detected if the number of points on the global polygon list exceeds
MAXPTS. In this case, the polygon on the global polygon list is drawn, and the
new information is not added. The same error handling applies to polygon.

~\sun ,~ mic:rosystems
Version B of 17 February 1986

38 SunCGI Reference Manual

Rectangle

Errors

Circle

Errors

Circular Arc Center

ENOTVSAC [4]

ENMPTSTL [60]

EPGMTHPT [62]

EGPLISFL [63]

CGI not in proper state: CGI shall be in state VSAC.

Number of points is too large.

Polygons must have at least three points.

Global polygon list is full.

Cerror rectangle(rbc, ltc)
Ccoor *rbc, *ltc; /* corners defining rectangle */

rectangle displays a box with its lower right-hand comer at point rbc and its
upper left-hand comer at point ltc. Calls to rectangle do not affect the global
polygon list. The interior of the rectangle (the filled portion) is defined by rbc
and ltc. The perimeter is drawn outside of this region. The appearance of the
rectangle is determined by the fill area and perimeter attributes. A rectangle with
one side coincident with a clipping boundary specifies an interior extending to
the boundary. Hence, a portion of the perimeter is outside the clipping boundary
and is not drawn.

If the arguments to rectangle would result in a point or a line, the point or line is
drawn. However, if the arguments to rectangle determine a point, the point is
drawn with width zero, regardless of the current value of perimeter width. If the
values of rbc and ltc are reversed, the points are automatically reversed and the
rectangle is drawn normally.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror circle(cl, rad)
Ccoor *cl; /* center */
Cint rad; /* radius */

circle draws a circle of radius rad centered at cl. The argument rad is expressed
in terms of VDC space. The color, form, and visibility of the interior and perime­
ter are controlled by the same solid object attributes which control the drawing of
polygons and rectangles.

The argument rad determines the size of the interior of the circle. Therefore, a
circle with a thick perimeter may be larger than expected. If the radius is zero, a
point is drawn, and no textured perimeter is drawn, even if the perimeter width is
large. If the radius is negative, the absolute value of the radius is used.

Textured circles may possibly contain an incorrect element at one point because
the digital circumference may not be exactly divisible by the length of the texture
element.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror circular_arc_center(cl, c2x, c2y, c3x, c3y, rad)
Ccoor *cl; /* center */
Cint c2x, c2y, c3x, c3y; /* endpoints */
Cint rad; /* radius */

~\sun
~~ microsyst8ms

Version B of 17 February 1986

Errors

Circular Arc Center Close

Chapter 3 - Output 39

circular_arc_center draws a circular arc between points c2x, c2yand
c3x, c3y with circle of radius rad at center cl. Point c2x, c2y is the starting point
and point c3x, c3y is the ending point. Circular arcs are drawn in a counterclock­
wise manner. This convention is used to determine the difference between the
arc formed by the smaller angle determined by c2x, c2y ,el and c3x, c3y and
the larger angle specified by these same points. Therefore switching the values
of c2x, c2y and c3x, c3y will produce arcs which total 360 degrees. If rad is
negative, the points 180 degrees opposite from c2x, e2y and e3x, c3y are used as
the endpoints of the arc.

If the rad is zero, a point is drawn at cl. If either c2x, c2y or c3x, e3y are not on
the circumference of the circle determined by eland rad, an error is generated
and the arc is not drawn. The attributes which determine the style, width, and
color of the arc are the same functions which regulate the drawing of poly lines.

ENOTVSAC [4]

EARCPNCI [64]

CGI not in proper state: CGI shall be in state VSAC.

Arc points do not lie on circle.

Cerror circular_arc center close(cl, c2x,
c2y, c3x, c3y, rad, close)

Ccoor *cl; /* center */
Cint c2x, c2y, c3x, C3Yi /* endpoints */
Cint rad; /* radius */
Cclosetype closei /* PIE or CHORD */

circular _arc_center _close draws a closed arc centered at cl with
radius rad and endpoints c2x, e2y and c3x, c3y. Arcs are closed with either the
PIE or CHORD algorithm. The PIE algorithm draws a line from each of the end­
points of the arc to the center point of the circle. SunCGI then fills this region as
it would any other solid object. The CHORD algorithm draws a line connecting
the endpoints of the arc and then fills this region using solid object attributes.
circular _arc_center _close is useful for drawing pie charts (see fol­
lowing example):

~~sun ~ mk::rosystems
Version B of 17 February 1986

40 SunCGI Reference Manual

*include <cgidefs.h>

maine) /* draws four quadrants in different colors */
{

Ccoor c1;
Cint name, radius;
Cvwsurf device;

c1.x = 16000; /* center */
c1.y = 16000;
NORMAL_VWSURF(device, CGPIXWINDD);
radius = 8000; /* radius */

open_cgi () ;
open_vws(&name, &device);

interior_style (SOLIDI, OFF);
fill_color(l); /* color of quadrant 1 */
circular_arc_center_close(&c1, 24000, 16000,

16000, 24000, radius, PIE);
fill_color(2); /* color of quadrant 2 */
circular_arc_center_close(&c1, 16000, 24000,

8000, 16000, radius, PIE);
fill_color(3); /* color of quadrant 3 */
circular_arc_center_close(&c1, 8000, 16000,

16000, 8000, radius, PIE);
fill_color(4); /* color of quadrant 4 */
circular_arc_center_close(&c1, 16000, 8000,

24000, 16000, radius, PIE);

sleep(10);
close_vws(name);
close_cgi () ;

Figure 3-2 Example Program with Four Circle Quadrants in Different Colors

Errors

Circular Arc 3pt

ENOTVSAC [4]

EARCPNCI [64]

CGI not in proper state: CGI shall be in state VSAC.

Arc points do not lie on circle.

Cerror circular_arc_3pt(c1, c2, c3)
Ccoor *c1, *c2, *c3; /* starting,

intermediate and ending points */

circular_arc _ 3pt draws a circular arc starting at point cl and ending at
point c3 which is guaranteed to pass through point c2. The line attributes func­
tions described in Section 4.2 determine the appearance of the
circular_arc _ 3pt function. If the circular arc is textured (for example,
dotted) then the intermediate point may not be displayed. However, if the arc is
solid, the intermediate point is always drawn. If the three points are colinear, a

~\sun ~~ microsystems
Version B of 17 February 1986

Errors

Circular Arc 3pt Close

Errors

Ellipse

Errors

Elliptical Arc

Chapter 3 - Output 41

line is drawn. If two of the three points are coincident, a line is drawn between
the two distinct points. Finally, if all three points are coincident, a point is
drawn. circular_arc _ 3pt is considerably slower than
circular_arc_center, therefore, you are advised to
circular_arc_center if both functions can meet your needs.

ENOTVSAC [4] COl not in proper state: COl shall be in state VSAC.

Cerror circular_arc_3pt_close(cl, c2, c3, close)
Ccoor *cl, *c2, *c3; /* starting, intermediate

and ending points */
Cclosetype close; /* PIE or CHORD */

circular_arc_3pt_close draws a circular arc starting at point cl and
ending at point c3 which is guaranteed to pass through point c2. The solid object
attributes described in Section 4.4 determine the appearance of the
circular_arc_3pt_close function. As with circular_arc_3pt,
circular_arc_3pt_close is considerably slower than
circular _arc_center _close; therefore, you are advised to use
circular_arc _center_close if both functions meet your needs.

If the three points are colinear, a line is drawn. If two of the three points are
coincident, a line is drawn between the two distinct points. Finally, if all three
points are coincident, a point is drawn. In none of these cases will any region be
filled.

ENOTVSAC [4] COl not in proper state: COl shall be in state VSAC.

Cerror ellipse(cl, majx, miny)
Ccoor *cl; /* center */
Cint majx, miny; /* length of x and y axes */

ellipse draws an ellipse centered at point cl with major (x) and minor (y) axes of
length majx and miny.9 If either majx or miny are zero, a line is drawn. Ifboth
majx and miny are zero, a point is drawn. The attributes which control the draw­
ing of ellipses are the solid object attributes described in Section 4.4.

ENOTVSAC [4] COl not in proper state: COl shall be in state VSAC.

Cerror elliptical_arc(cl, sx, sy, ex, ey, majx, miny)
Ccoor *cl;/* center */
Cint sx, sy; /* starting point of arc */
Cint ex, ey; /* ending point of arc */
Cint majx, miny; /* endpoints of major and minor axes */

elliptical_arc draws an elliptical arc centered at cl with major (x) and
minor (y) axes of length majx and miny. sx, sy and ex, ey are the starting and

9 Although the axes are called the major and minor axes by the standard they are really the x and y axes. In
fact, the x axis can either be the major or minor axis, depending on the relative length of the y axis.

4}\sun
,~ microsystems

Version B of 17 February 1986

42 SunCGI Reference Manual

Errors

Elliptical Arc Close

Errors

3.2. Raster Primitives

Text

ending points of the arc. An error is generated (and the ellipse is not drawn) if
the points (sx, sy, and ex, ey) are not on the perimeter of the ellipse. Elliptical
arcs are drawn in a counterclockwise manner. This convention is used to deter­
mine the difference between the arc formed by the obtuse angle determined by
cl.x, cl.y, sx, sy, and ex, ey and the acute angle specified by these same points.
Therefore switching the values of sx, sy and ex, ey will produce complementary
arcs.

If either majx or miny are zero, a line is drawn. If both majx and miny are zero, a
point is drawn. Polyline attributes are used to determine the appearance of ellipt­
ical arcs.

ENOTVSAC [4]

EARCPNEL [65]

CGI not in proper state: CGI shall be in state VSAC.

Arc points do not lie on ellipse.

Cerror elliptical_arc_close(cl, sx, sy, ex,
ey, majx, miny, close)

Ccoor *cl;/* center */
Cint sx, sy; /* starting point of arc */
Cint ex, ey; /* ending point of arc */
Cint majx, miny; /* endpoints of major and minor axes */
Cclosetype close; /* PIE or CHORD */

elliptical_arc_close draws an elliptical arc specified by sx, sy, ex, ey
and majx, miny The arc is closed with either the PIE or CHORD algorithm. The
same restrictions on sx, sy, ex, and ey are applied to
elliptical_arc_close as to elliptical_arc. However,
elliptical_arc_close uses the fill area and perimeter attributes, whereas
elliptical_arc uses the line attributes.

If either majx or miny are zero, a line is drawn. If both majx and miny are zero, a
point is drawn. In neither of these cases will any region be filled.

ENOTVSAC [4]

EARCPNEL [65]

CGI not in proper state: CGI shall be in state VSAC.

Arc points do not lie on ellipse.

Raster primitives include text, cell arrays, pixel arrays, and bitblts (bit block
transfer). Bitblts are pixel arrays (bitmaps) which can be drawn using the various
drawing modes. The current drawing mode determines how bitblt primitives are
affected by information which is already on the screen. Raster primitives differ
from geometrical primitives because their dimensions are not necessarily
expressed in VDC space. Therefore, you must be careful to consider whether
position arguments are expressed in VDC space or screen coordinates.

Cerror text (cl, tstring)
Ccoor *cl; /* starting point of text (in VDC space) */
Cchar *tstring; /* text */

text displays the text contained in tstring at point cl (expressed in VDC space).
The appearance of text is controlled by the text attributes described in Section

~\sun ~~ microsystems
Version B of 17 February 198~

Errors

VDMText

Errors

Append Text

Errors

Inquire Text Extent

Chapter 3 - Output 43

4.8. Control characters are displayed as blanks, except in the SYMBOL font where
they may be drawn as pictures of bugs.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror vdm_text(cl, flag, tstring)
Ccoor *cl; /* starting point of text (in VDC space) */
Ctextfinal flag; /* final text for alignment */
Cchar *tstring; /* text */

vdm _text displays the text contained in tstring at point cl (expressed in VDC
space). The intended difference between text and vdm_text is that
vdm _text allows control characters; however, SunCGI does not handle control
characters so text drawn with vdm _text will appear identical to text drawn
with the text function. If the flag argument is equal to FINAL, the previous text
and the appended text are aligned separately. However, if the flag argument is
equal to NOT_FINAL, the appended and previous text are aligned together.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror append_text (flag, tstring)
Ctextfinal flag; /* final text for alignment */
Cchar *tstring; /* text */

append_text displays the text contained in tstring after the end of the most
recently written text. The type of text written depends on the same attributes
which control the display of text. The flag argument determines whether the
appended text is aligned with the previous text if the alignment is CONTINUOUS.

If the flag argument is equal to FINAL, then the previous text and the appended
text are aligned separately. However, if the flag argument is equal to NOT_FINAL,

the appended and previous text are aligned together.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror inquire_text_extent(tstring, nextchar, concat,
lleft, uleft, uright)

Cchar *tstring; /* text */
Cchar nextchar; /* next character (for kerning) */
Ccoor *concat; /* concatenation point */
Ccoor *lleft, *uleft, *uright;

/* coordinates of text bounding box */

inquire_text _extent determines how large text tstring would be and
where it would be placed if it were drawn using the current text attributes. The
nextchar parameter is used to determine the point where text would start if more
text (starting with nextchar) were appended to the text specified by tstring. IO If
nextchar equals 'single space' , the last point of the current character is used.
The argument concat returns the coordinates of the point where appended text

10 This is a method for accounting for proportional spacing.

~\sun ,~ microsyslems
Version B of 17 February 1986

44 SunCGI Reference Manual

Errors

Cell Array

Errors

Pixel Array

would start. The arguments lIeft, uleft, and uright return three of the four comers
of the bounding box of text contained in tstring.

The bounding box is a parallelogram (a rectangle if the character up vector and
the character base vector are orthogonal). The names of the parallelogram
comers are correct if no rotation is applied to the text. For some character orien­
tations, the implied relationships do not hold. For example, lleft may not be the
lowest. The fourth comer may be easily calculated from the three returned:

uright->x + lleft->x - uleft->x
uright->y + lleft->y - uleft->y

The concatenation point and text alignment parallelogram are returned in VDC

space, but assume a text position of (0, 0). If the text is to be drawn at a position
(x,y) then (x,y) must be added to each point to yield the true locations.

The values of lIeft, uleft, and uright are defined by the bounding box of the char­
acter and therefore may not be at the exact pixel where the character ends or
begins.

ENOTVSAC [4] CGI not in proper state: CGI shall be in state VSAC.

Cerror cell_array(p, q, r, dx, dy, colorind)
Ccoor *p, *q, *r;

/* corners of parallelogram (in VDC space) */
Cint dx, dy; /* dimensions of color array */
Cint *colorind; /* array of color values */

cell_array draws a scaled and skewed pixel array on the view surface(s).
Points p, q, and r (expressed in VDC space) define a parallelogram. Line p-q is a
diagonal and p is the lower left-hand comer. r is one of the remaining two
comers. dx and dy define the width and the height of the array colorind which is
mapped onto the parallelogram defined by p, q, and r.

cell_array is one of the few primitives which depends on the actual size of
the view surface. Cell arrays are not drawn if the elements of the array would be
smaller than one pixel. However, because different view surfaces may have dif­
ferent dimensions, a cell array might be drawn on one view surface, but not on
another smaller view surface. Finally, all cells composing the cell array are the
same size; therefore, the upper left hand comer of the cell array might be down
and to the right of point q because of the accumulated error of making all of the
cells slightly smaller than their floating point size. For example if each cell of a
3 x 3 cell array is supposed to be 3.333 pixels wide, the actual cell array will be
nine pixels wide instead of ten.

ENOTVSAC [4]

ECELLATS [66]

ECELLPOS [67]

~\sun ~ microsystems

CGI not in proper state: CGI shall be in state VSAC.

Cell array dimensions dx, dy are too small.

Cell array dimensions must be positive.

Version B of 17 February 1986

Errors

BitBlt Source Array

Errors

Chapter 3 - Output 45

Cerror pixel_array(pcell, m, n, colorind)
Ccoor *pcell; /* base of array in VDe space */
Cint m, n; /* dimensions of color array in screen space */
Cint *colorind; /* array of color values */

pixel_array draws array eolorind starting at pointpeell (expressed in VDe
space). m and n (expressed in screen space) define the x and y dimensions of the
array. Therefore, pixel arrays always have a constant physical size, independent
of the dimensions of VDe space. The pixel array is drawn down and to the right
from point peell. If either m or n are not positive, the absolute value of m and n
are used. pixel_array is not affected by the current drawing mode.

ENOTVSAC [4]

EVALOVWS [69]

CGI not in proper state: CGI shall be in state VSAC.

Value outside of view surface.

Cerror bitblt_source_array(pixsource, xo, yo, xe, ye,
pixtarget, xt, yt, name)

Cpixrect *pixsource, *pixtarget;
/* source and target pixel arrays */

Cint xo, yo;
/* coordinates of source array (in VDC space) */

Cint xe, ye;
/* dimensions of source array (in screen space) */

Cint xt, yt;
/* coordinates of target pixel array (in VDC space) */

Cint name; /* view surface name */

bi tbl t _source_array moves a pixel array from point (xo, yo) to point (xt,
yt) using the current drawing mode. Both of these points are expressed in VDe
space. The size of the pixel array is determined by the xe and ye arguments
which are expressed in screen space. pixsouree and pixtarget are pointers to pix­
reets which must already be created by mem _ create. ll These pixrects must be
the same depth as the view surface: I-bit deep on a monochrome device, 8-bit on
a color device. The source area of the view surface associated with name is
saved into pixsource (at 0,0). The target area, after pixsource is applied
to it, is read into pixtarget pixrect (at 0,0).

An error is detected if either xe or ye are not positive. If the replicated pattern
array overlaps with the source array on the screen, the visual result depends on
the current drawing mode. pixsource and pixtarget may have different contents
depending on the screen drawing mode (see the set_drawing_mode func­
tion).

Multiple view surfaces and bitblt's are incompatible, so a name argument must
be specified.

ENOTVSAC [4] COl not in proper state: CGI shall be in state VSAC.

11 Refer to the P weet Reference Manual for more information about pixrects.

~\sun ~~ microsystems
Version B of 17 February 1986

46 SunCGI Reference Manual

BitBIt Pattern Array

Errors

EVALOVWS [69] Value outside of view surface.

Cerror bitblt-pattern_array(pixpat, px, py, pixtarget,
rx, ry, ox, oy, dx, dy, name)

Cpixrect *pixpat: /* pattern source array */
Cint px, py; /* pattern extent */
Cpixrect *pixtarget; /* destination pattern array */
Cint rx, ry; /* pattern reference point */
Cint ox, oy: /* destination origin */
Cint dx, dy: /* destination extent */
Cint name: /* view surface name */

bitbltyattern_array replicates the pattern (using the current drawing
mode) stored in pixpat to fill the area of the view surface which is determined by
ox, oy and dx, dye The pattern reference point detennines the offset of the pattern
array from the point zero. The resultant pattern array is displayed at ox, oy. The
visual result depends on the current drawing mode.

pixpat is a pointer to a pixrect which must be created and initialized with the
pattern by the application program. pixtarget is a pointer to a pixrect (with
same depth as the device) which must already be created by the user, using
mem _create. The target area, after pixpat is applied to it, is read into the
pixtarget pixrect (at 0,0).

Multiple view surfaces and bitblt's are incompatible, so a name argument must
be specified.

ENOTVSAC [4]

EVALOVWS [69]

EPXNOTCR [70]

CGI not in proper state: CGI shall be in state VSAC.

Value outside of view surface.

Pixrect not created.

BitBIt Patterned Source Array Cerror bitblt-patterned_source_array(pixpat, px, py,
pixtarget, rx, ry, pixsource, sx, sy, ox, oy,
dx, dy, name)

Cpixrect *pixpat: /* pattern source array */
Cint px, py: /* pattern extent */
Cpixrect *pixsource; /* source array */
Cint sx, sy: /* source origin */
Cpixrect *pixtarget; /* destination pattern array */
Cint rx, ry; /* pattern reference point */
Cint ox, oy; /* destination origin */
Cint dx, dy; /* destination extent */
Cint name: /* view surface name */

bitbltyatterned_source_array replicates (using the current drawing
mode) the pattern stored in pixpat to fill the area of the view surface deter­
mined by ox, 0 y and dx, d y. The source area of the view surface is read into
the pixrect pointed to by pixsource (which must already be created by the
user with same depth as the device) at 0,0. The source area is stenciled through
the replicated pattern onto the view surface at ox, oy, using the current drawing
mode. The target area, after the copy, is read into the pixtarget pixrect. If

~\sun ,~ microsystems
Version B of 17 February 1986

Errors

Inquire Cell Array

Errors

Inquire Pixel Array

Chapter 3 - Output 47

the replicated pattern array overlaps with the source array on the screen, the
visual result depends on the current drawing mode.

Multiple view surfaces and bitblt's are incompatible, so a name argument must
be specified.

ENOTVSAC [4]

EVALOVWS [69]

EPXNOTCR [70]

CGI not in proper state: CGI shall be in state VSAC.

Value outside of view surface.

Pixrect not created.

Cerror inquire_cell_array(name, p, q, r, dx, dy, colorind)
Cint name; /* view surface name */
Ccoor *p, *q, *r;

/* corners of parallelogram (in VDC space) */
Cint dx, dy; /* dimensions of color array */
Cint *colorind; /* array of color values */

Points p, q and r (in VDC space) define a parallelogram with line p-q as the diago­
nal where p is the lower left-hand comer. r is one of the remaining two comers.
dx and dy define the width and the height of the array colorind which contains the
colors of the pixels on the screen which lie within the parallelogram defined by p,
q, and r. Notice that a view surface identifier, name, must be specified because
the result of this function is highly dependent on the dimensions and contents of
the view surface.

The area of the screen corresponding to the parallelogram is assumed to contain a
regular grid of points. However, if each element of the grid is larger than one
pixel, the color of the pixel at lower left-hand comer of each element of the grid
is defined to be the color of the grid element. Therefore, the values contained in
colo rind are highly dependent on the size of the view surface. An error is pro­
duced if the elements of the grid are smaller than one pixel.

ENOTVSAC [4]

EVSIDINV [10]

EVSNOTOP [13]

EVSNTACT [15]

ECELLATS [66]

ECELLPOS [67]

CGI not in proper state: CGI shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

Cell array dimensions dx, dy are too small.

Cell array dimensions must be positive.

Cerror inquire-pixel_array(p, m, n, colorind, name)
Ccoor *p; /* base of array in VDC space */
Cint m, n; /* dimensions of color array in screen space */
Cint *colorind; /* array of color values */
Cint name; /* view surface name */

inquire_pixel_array fills array colorind with the values of pixels in the
area of the screen defined by point p (expressed in VDC space) and m and n
(expressed in screen space). The array is filled down and to the right from point

~~sun ~~ microsystems
Version B of 17 February 1986

48 SunCGI Reference Manual

Errors

Inquire Device Bitmap

Errors

Inquire BitBlt Alignments

Errors

3.3. Drawing Modes

p. If either m or n are not positive, the absolute value of these arguments is used.

Multiple view surfaces and bitblt's are incompatible, so a name argument must
be specified.

ENOTVSAC [4]

EVALOVWS [69]

EPXNOTCR [70]

CGI not in proper state: CGI shall be in state VSAC.

Value outside of view surface.

Pixrect not created.

Cpixrect *inquire_device_bitmap(name)
Cint name; /* name assigned to cgi view surface */

inquire_device _ bi tmap returns the pixrect which corresponds to the view
surface. The pixrect describes the entire device, even if the view surface is a
smaller pixwin. If you want to use subareas of this pixrect or manipulate it any
other way, refer to the Pixreet Reference Manual.

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
VSOP, or VSAC.

Cerror inquire_bithlt_alignments(base, width, px, py,
maxpx, maxpy, name)

Cint *base; /* bitmap base alignment */
Cint *width; /* width alignment */
Cint *px, *py; /* pattern extent alignment */
Cint *maxpx, *maxpy; /* maximum pattern size */
Cint name; /* name assigned to cgi view surface */

inquire_bitblt_alignments reports the alignment criteria which are
necessary for some implementations. These factors are not critical for Sun CGI.
However, you should keep in mind the appropriate depth for the pixrect when
talking to a specific device. Therefore the arguments base, width, px, and py are
always set to zero. The arguments maxpx and maxpy are device dependent and
determine the maximum size of a pattern for bitblt_pattern_arrayand
bitblt-patterned_source_array.

Multiple view surfaces and bitblt's are incompatible, so a name argument must
be specified.

ENOTVSAC [4]

EVSIDINV [10]

EVSNOTOP [13]

EVSNTACT [15]

CGI not in proper state: CGI shall be in state VSAC.

Specified view surface name is invalid.

Specified view surface not open.

Specified view surface is not active.

Drawing modes determine the result of drawing any output primitive on the clear
screen (background) or on top of a previously drawn object. Drawing modes
only affect the drawing of bitblt primitives. However, a non-standard
set_global_drawing_mode function is provided, which affects all output

~\Slln ,~ mic:rosystems
Version B of 17 February 198(

Set Drawing Mode

Errors

Set Global Drawing Mode
(SunCGI Extension)

Chapter 3 - Output 49

primitives except bitblt's. Resetting the drawing mode in the middle of an appli­
cation program only affects those output primitives drawn after the mode is reset.
The novice user is advised not to reset the drawing mode until the user has writ­
ten at least one application program using SunCGI.

Cerror set_drawing_mode(visibility, source,
destination, combination)

Cbmode visibility; /* transparent or opaque */
Cbitmaptype source; /* NOT source bits */
Cbitmaptype destination; /* NOT destination bits */
Ccombtype combination; /* combination rules */

set_drawing_ffiode determines the current drawing mode which in tum
determines how bitblt primitives are displayed. The visibility argument deter­
mines how pixels with index zero are treated.

typedef enum {
TRANSP ARENT,
OPAQUE

Cbmodei

typedef enum
BITNOT,
BITTRUE

Cbitmaptypei

typedef enum
REPLACE,
AND,

OR,
NOT,
XOR

Ccombtypei

If visibility is set to TRANSPARENT, all source pixels with index zero leave the
destination pixel unchanged, regardless of the operation, whereas if visibility is
set to OPAQUE, all pixels are treated normally. The arguments source and desti­
nation determine whether the contents of the source and destination pixrects are
NOTted before the bitblt operation is performed.

The combination argument determines how the source and destination pixrects
are combined. If combination is equal to REPLACE, the source pixrect (after
optionally being NOT -ted) replaces the destination pixrect. If combination is
equal to AND, OR, or XOR the source pixrect and the destination pixrect are com­
bined in the indicated Boolean fashion. If combination is equal to NOT, then the
destination is set to a bitwise NOT operation of the source pixrect

ENOTOPOP [5]

~\sun ,~ microsystems

CGI not in proper state CGI shall be in in state VDOP,
VSOP, or VSAC.

Version B of 17 February 1986

50 SunCGI Reference Manual

Errors

Inquire Drawing Mode

Errors

Cerror set_global_drawing_mode(combination)
Ccombtype combination; /* combination rules */

set _global_ drawing_mode detennines the current global drawing mode
which in turn detennines how all output primitives except bitblt's are displayed.
The combination argument detennines how the source and destination pixrects
are combined. If combination is equal to REPLACE (the default value) the output
primitive replaces the destination background. If combination is equal to AND,

OR, or XOR the output primitive and the infonnation on the screen are combined
in the indicated Boolean fashion. If combination is equal to NOT, then the desti­
nation is set to a bitwise NOT operation of the source pixrect.

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
VSOP, or YSAC.

Cerror inquire_drawing_mode(visibility, source,
destination, combination)

Cbmode *visibility; /* transparent or opaque */
Cbitmaptype *source; /* NOT source bits */
Cbitmaptype *destination; /* NOT destination bits */
Ccombtype *combination; /* combination rules */

The inquire_drawing_mode returns the values of the four components of
the current drawing mode.

ENOTOPOP [5] CGI not in proper state CGI shall be in in state VDOP,
VSOP, or YSAC.

Version B of 17 February 198(

4
Attributes

Attributes .. 53

4.1. Bundled Attribute Functions ... 54

Set Aspect Source Flags .. 56

Define Bundle Index (SunCGI Extension) ... 56

4.2. Line Attributes .. 57

Polyline Bundle Index .. 57

Line Type .. 58

Line Endstyle (SunCGI Extension) .. 58

Line Width Specification Mode ... 59

Line Width .. 59

Line Color ... 59

4.3. Polymarker Attributes ... 60

Polymarker Bundle Index .. 60

Marker Type .. 60

Marker Size Specification Mode .. 60

Marker Size .. 61

Marker Color 61

4.4. Solid Object Attributes ... 61

Fill Area Bundle Index .. 62

Interior Style .. 62

4.5. Solid Interior Fill Attribute .. 62

Fill Color ... 63

4.6. Hatch and Pattern Attributes ... 63

Hatch Index .. 64

Pattern Index .. 65

Pattern Table .. 65

Pattern Reference Point ... 65

Pattern Size ... 66

Pattern with Fill Color (SunCGI Extension) ... 66

4.7. Perimeter Attributes ... 66

Perimeter Type ... 66

Perimeter Width ... 67

Perimeter Width Specification Mode .. 67

Perimeter Color .. 68

4.8. Text Attributes .. 68

Text Bundle Index .. 68

Text Precision ... 68

Character Set Index ... 69

Text Font Index .. 69

Character Expansion Factor .. 70

Character Spacing ... 70

Character Height ... 70

Fixed Font (SunCGI Extension) ... 71

Text Color ... 71

Character Orientation ... 71

Character Path ... 72

Text Alignment .. 72

4.9. Color Attributes .. 74

Color Table ... 74

4.10. Inquiry Functions .. 75

Inquire Line Attributes .. 75

Inquire Marker Attributes .. 75

Inquire Fill Area Attributes ... 76

Inquire Pattern Attributes ... 76

Inquire Text Attributes .. 77

Inquire Aspect Source Flags ... 78

4
Attributes

The current attributes detennine how output primitives are displayed. Attributes
are not specific to any view surface, but affect all view surfaces. The default
attributes are defined in Table 4-1. The current attributes may be set either indi­
vidually or in groups (by changing the index into the bundle table). Example
programs illustrating these methods of changing attributes are given in Figures
4-1 and 4-2.

Each entry in the bundle table specifies a set of attributes for a particular type of
primitive (for example, solid objects). The method for setting the current attri­
butes depends on the state of the ASF (aspect source flag) for each attribute. For
individual attribute functions to have an effect, the ASF must be set to INDIVI­

DUAL. If the ASF is set to BUNDLED, the current attribute is defined by the entry
in the bundle table pointed to by the bundle index. The actual appearance of
objects also depend on the global drawing mode described in Chapter 3.

The majority of this chapter is devoted to individual attribute functions. Indivi­
dual attribute functions are grouped according to the output primitives they
effect: polylines, poly markers , filled objects, and text. The color_table
function (which redefines color table entries) is also included in this chapter.
Finally, functions for obtaining the values of the current attributes are discussed.

~\sun
~ mlcrosystems

53 Version B of 17 February 1986

54 SunCGI Reference Manual

Attribute
All ASF's

Line Color
Line Endstyle
Line Type

Marker Color
Marker Size

Table 4-1

Specification Mode

Fill Color
Fill Hatch Index
Fill Pattern Index
Interior Style

Perimeter Color
Perimeter Type
Perimeter Width

Fontset
Fixed Font

Character Base.x
Character Base.y
Character Expansion Factor
Character Height
Character Path

Horizontal Text
Alignment

Text Continuous
Alignment.x

4.1. Bundled Attribute
Functions

Default Attributes

I Value I Attribute I Value
INDIVIDUAL All Bundle Indices 1

1 Line Width 0.0
BEST FIT Line Width SCALED

SOLID Specification Mode

1 Marker Size 4.0
SCALED Marker Type DOT

1 Number ofPattem 2
0 Table Entries
1 Pattern Size 300,300
HOLLOW Pattern Reference Point 0,0

Pattern with Fill Color OFF

1 Perimeter Width SCALED
SOUD Specification Mode
0.0 Perimeter Visibility ON

1 Text Font STICK

0

1.0 Character Spacing 0.1
0.0 Character Up.x 0.0
1.0 Character Up.y 1.0
1000 Text Color 1
RIGHT Text Precision STRING

NRMAL Text Continuous 1.0
Alignment.y

1.0 Vertical Text NORMAL
Alignment

The attribute environment selector functions determine if the current attributes
are defined individually or by using a set of attributes (bundles). Bundles are
defined by entries in the bundle table. The CGI standard specifies the bundle
table as read-only but SunCGI allows user-definition of entries in the bundle
table. Each type of primitive has its own index into the bundle table, described
with its specific attribute functions.

The following example program illustrates how to change the appearance with
bundled attributes. The program draws a polyline with a different line style and
line width.

Version B of 17 February 198t

#include <cgidefs.h>

Ccoor box[5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

Cbunatt bundle = { DASHED_DOTTED, 1., 4,
X, 6., 4,
PATTERN, 1, 1, 2,
DOTTED, 1.5, 1,
STICK, CHARACTER,
1.3, 0.05, 1 };

main ()
{

Ccoorlist boxlist;
Cint i, line_bundle
Cflaglist flags;
Cvwsurf device;

boxlist.ptlist = box;

2, name;

boxlist.n = 5;
NORMAL_VWSURF(device, PIXWINDD);

open_cgi();
open_vws(&name, &device);

Chapter 4 - Attributes 55

flags.value = (Casptype *) malloc(18*sizeof(Casptype»;
flags.num = (Cint *) malloc(18*sizeof(Cint»;

Figure 4-1

for (i = 0; i < 18; i++) {
flags.value[i] = BUNDLED;
flags.num[i] = i;

flags.n = 18;

define_bundle_index(2, &bundle);
set_aspect_source_flags(&flags);
polyline_bundle_index(line_bundle) ;
polyline(&boxlist);

sleep(10);
close_vws(name);
close _ cgi () ;

Example Program with Bundled Attributes

~\sun ,~ mk:rosystems
Version B of 17 February 1986

56 SunCGI Reference Manual

Set Aspect Source Flags

Errors

Table 4-2

Define Bundle Index (SunCGI
Extension)

Cerror set_aspect_source_flags(flags)
Cflaglist *flags; /* list of ASFs */

set_aspect_source_flags determines whether individual attributes are
set individually or from bundle table entries.

typedef struct {
Cint n;
Cint num[];
Casptype valuer];

Cflaglist;

The n element of the flags argument detennines how many flags are to be set.
The num array of the flags argument determines which flags are to be set.
Flag numbers are provided in Table 4-2. Finally, the value array of the flags
argument determines the values of the flags specified in num. If a value is
assigned to INDIVIDUAL, the individual attribute functions affect the current attri­
bute. If the value of index is BUNDLED, calls to individual attribute functions
have no effect. 12 The default bundle index is set to 1 (which initially contains the
default value for the attributes specified in Table 4-1). The default value of all
aspect source flags is INDIVIDUAL.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Attribute Source Flag Numbers

Flag I Attribute I Flag I Attribute
0 line type 9 fill color
1 line width 10 perimeter type
2 line color 11 perimeter width
3 marker type 12 perimeter color
4 marker width 13 text font index
5 marker color 14 text precision
6 interior style 15 character expansion factor
7 hatch index 16 character spacing
8 pattern index 17 text color

Cerror define_bundle_index(index, entry)
Cint index; /* entry in attribute environment table */
Cbunatt *entry; /* new attribute values */

define_bundle_index defines an entry in the bundle table. The type
Cbunat t is a structure which contains elements corresponding to all the attri­
butes. If the contents of a bundle table entry are changed, all subsequently drawn
primitives use the information in the new entry, depending on the relevant aspect
source flags. You should keep this fact in mind if you are designing display list
traversal algorithms using SunCGI.

12 In fact, SunCGI currently produces error 30 when these individual attribute function is called while the
corresponding ASF is BUNDLED.

Version B of 17 February 1986

Errors

4.2. Line Attributes

Polyline Bundle Index

Errors

typedef struct {
Clintype line_type;
Cfloat line_width;
Cint line_color;
Cmartype marker_type;
Cfloat marker_size;
Cint marker_color;
Cintertype interior_style;
Cint hatch_index;
Cint pattern_index;
Cint fill_color;
Clintype perimeter_type;
Cfloat perimeter_width;
Cint perimeter_color;
Cint text_font;
Cprectype text-precision;
Cfloat character_expansion;
Cfloat character_spacing;
Cint text_color;

Cbunatt;

Chapter 4 - Attributes 57

In addition to the errors listed below, other errors can be detected if any of the
attribute values are invalid, as specified in later sections. Results are undefined if
an error occurs.

ENOTOPOP [5]

EBBDTBDI [31]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Bundle table index out of range.

SunCGI provides for specifying the style, width and color of lines which consti­
tute poly lines, circular arcs, and elliptical arcs. The functions do not affect the
drawing of the perimeter of solid objects which are set by the perimeter func­
tions.

Cerror polyline_bundle_index(index)
Cint index; 1* polyline bundle index *1

polyline_bundle_index sets the current polyline bundle index to the
value of index. The contents of the polyline bundle index are line type, line width
and line color. The line width specification mode and the line endstyle attributes
are not included in the polyline bundle. If index is not defined, an error is gen­
erated, and the polyline_bundle_index does not change. If the ASP's for
any of these attributes is set to BUNDLED, the current values of these attributes
are set to the contents of the bundle.

ENOTOPOP [5]

EBADLINX [33]

~\sun ~~ microsystems

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Polyline index is invalid.

Version B of 17 Pebruary 1986

58 SunCGI Reference Manual

Line Type

Errors

Line Endstyle (SunCGI
Extension)

Errors

Line Width Specification
Mode

Cerror line_type(ttyp)
Clintype ttYPi /* style of line */

line type defines the line type for polylines. The enumerated type Clin­
t ype contains values that correspond to valid line types.

typedef enum
SOLID,
DOTTED,
DASHED,
DASHED_DOTTED,
DASH_DOT_DOTTED,
LONG DASHED

Clintypei

The default line style is SOLID. The actual representation of a line on the screen
is affected by the line endstyle. DASH_DOT _ DOITED actually has three dots
between dashes.

ENOTOPOP [5]

EBTBUNDL [30]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASP is BUNDLED.

Cerror line_endstyle(ttyp)
Cendstyle ttYPi /* style of line */

line_endstyle detennines how a textured (non-SOLID) line tenninates.
The enumerated type Cendstyle contains values that correspond to valid line
end styles.

typedef enum
NATURAL,
POINT,
BEST FIT

Cendstylei

If the endstyle selected is NATURAL, the last component of the line texture (for
example, a dash or a dot) which can be completely drawn is drawn. Blank space
at the end of the line may cause the line to not appear as long as specified by the
starting and ending coordinates. If the endstyle selected is POINT, the last point
of the line is drawn whether it is appropriate or not. In this case, the endpoints of
the line always appear on the screen. If the endstyle selected is BEST_FIT, the last
point is always drawn but is extended as far back as the last space if appropriate.
However, the BEST_FIT endstyle may shorten the space between the last element
of the line and the element preceding the last element by one in order to guaran­
tee that the line ends on a drawn point The default endstyle is BEST_FIT.

ENOTOPOP [5]

~'\sun ~~ microsystems

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Version B of 17 February 1986

Errors

Line Width

Errors

Line Color

Errors

Chapter 4 - Attributes 59

Cerror line_width_specification_mode(mode)
Cspecmode mode: /* pixels or percent */

line_width_specification_mode allows the line_width to be
specified in pixels or as a percentage of VDC space according to the value of
mode The enumerated type Cspecmode contains values that correspond to line
width specification modes.

typedef enum {
ABSOLUTE,
SCALED

Cspecmode:

If the line width specification mode is changed from ABSOLUTE to SCALED, the
change in the line width will probably be dramatic. The default line width
specification mode is SCALED.

If multiple view surfaces are active, the line width is scaled separately for each
view surface.

ENOTOPOP [5] COl not in proper state CG I shall be in state VDOP,
VSOP, or VSAC.

Cerror line_width(index)
Cfloat index: /* line width */

line _width determines the width of the lines composing polylines, circular
arcs, etc. If the line width specification mode is SCALED, index is expressed in
percent of VDC space and if the x and y dimensions are different, the width is
calculated on the basis of the range of the x coordinate of VDC space. If the
parameter setting would result in a line less than one pixel wide, the line width is
displayed as one pixel wide. The default line width is 0.0 (SCALED).

ENOTOPOP [5]

. EBTBUNDL [30]

EBDWIDTH [34]

COl not in proper state CGI shall be in state VDOP,
VSOP, or VSAC .

ASF is BUNDLED.

Width must be nonnegative.

Cerror line_color (index)
Cint index; /* line color */

line _color determines the color of the lines. index selects an entry in the
color lookup table. The default value of index is I. An error is detected if index
is not between 0 and 255.

ENOTOPOP [5]

EBTBUNDL [30]

ECINDXLZ [35]

4}\sun
,~ microsystems

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Color index is less than zero.

Version B of 17 February 1986

60 SunCGI Reference Manual

4.3. Polymarker Attributes

Polymarker Bundle Index

Errors

Marker Type

Errors

Marker Size Specification
Mode

EBADCOLX [36] Color index is invalid.

The type, size and color of markers (the components of polymarkers) are con­
trolled by the following functions.

Cerror polymarker_bundle_index(index)
Cint index; /* polymarker bundle index */

polymarker_bundle_index sets the currentpolymarkerbundle index to
the value of index. The contents of a polymarker bundle are marker type, marker
size and marker color. The marker size specification mode function is not
included in the polymarker bundle. If index is not defined, an error is generated,
and the polymarker bundle index does not change. If the ASP's for any of these
attributes is set to BUNDLED, the current values of these attributes are set to the
values of the corresponding attribute in the bundle.

ENOTOPOP [5]

EBADMRKX [37]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Polymarker index is invalid.

Cerror marker_type (ttyp)
Cmartype ttyp; /* style of marker */

marker_type sets the marker type. The enumerated type Cmartype con­
tains values that correspond to valid marker types.

typedef enum
DOT,
PLUS,
ASTERISK,
CIRCLE,
X

Cmartype;

Note that all marker types appear as a point when the marker size is very small.
The default marker type is DOT.

ENOTOPOP [5]

EBTBUNDL [30]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASP is BUNDLED.

Cerror marker_size_specification_mode(mode)
Cspecmode mode; /* pixels or percent */

marker_size_specification_IDode allows the marker size to be
specified in pixels or as a percentage of VDC space according to the value of
mode. The enumerated type Cspecmode contains values that correspond to
valid marker size specifications.

Version B of 17 February 1986

Errors

Marker Size

Errors

Marker Color

Errors

4.4. Solid Object Attributes

typedef enum {
ABSOLUTE,
SCALED

Cspecmode;

Chapter 4 - Attributes 61

The default marker size specification mode is SCALED.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror marker_size (index)
Cfloat index; /* marker size */

marker_size sets the size of the marker height and marker width. index is
expressed in percent of VDC space. The default marker size is 4.0 percent of VDC

space. If the marker size becomes very small, markers of all types are displayed
as points. An error is detected if index is negative.

ENOTOPOP [5]

EBADSIZE [38]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Size must be nonnegative.

Cerror marker_color(index)
Cint index; /* marker color */

marker_color determines the color of the markers. index selects an entry in
the color lookup table. An error is detected if index is not between 0 and 255.
The default marker color is 1.

ENOTOPOP [5]

EBTBUNDL [30]

ECINDXLZ [35]

EBADCOLX [36]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Color index is less than zero.

Color index is invalid.

The solid object attribute functions describe how all solid object primitives are
filled (colored-in). There are three sets of solid object attribute functions:

fill area attributes
The fill area attribute functions determine the general method for filling solid
geometrical objects.

hatch and pattern attributes
determines a pixel array for filling a polygon if the fill style is set to PAT­

TERN.

perimeter attributes
determine how the boundary of a geometrical object is displayed if the per­
imeter visibility is ON.

Version B of 17 February 1986

62 SunCGI Reference Manual

Fill Area Bundle Index

Errors

Interior Style

Errors

4.5. Solid Interior Fill
Attribute

Cerror fill_area_bundle_index(index)
Cint index; /* fill area bundle index */

fill_area_bundle_index sets the currentfill area bundle index to the
value of index. The contents of the fill area bundle are interior style ,fill color
hatch index pattern index perimeter type perimeter width and perimeter color.
The perimeter width specification mode and the pattern attributes are not
included in the definition of the fill area bundle. If index is not defined, an error
is generated, and the fill area bundle index does not change. If the ASF's for any
of these attributes is set to BUNDLED, the current value of the attribute is set to
the value of the corresponding attribute in the bundle.

ENOTOPOP [5]

EBADFABX [39]

CGI not in proper state CG I shall be in state VDOP,
VSOP, or VSAC.

Fill area index is invalid.

Cerror interior_style(istyle, perimvis)
Cintertype istylei /* fill style */
Cflag perimvisi /* perimeter visibility */

interior_style sets thefill style for solid objects. The enumerated type
Clintertype contains values that correspond to valid line types.

typedef enum
HOLLOW,
SOLIDI,
PATTERN,
HATCH

Cintertype;

If the fill style is set to SOLIDI, the solid object is filled with the current fill color.
If istyle is set to PATI'ERN or HATCH, the solid object is filled with the current
PATTERN or HATCH style. The PATTERN and HATCH styles are explained in the
pattern attributes section. The defaultfill style is HOLLOW.

interior_style also determines whether the perimeter of the solid object is
visible according to the value of perimvis (which must be ON or OFF). If perimvis
is OFF, the perimeter attributes have no effect. The default value of perimeter
visibility is ON.

Be careful when using the interior style function to explicitly specify the per­
imvis argument If you do not specify it, or set it to OFF, the geometrical output
primitive may not be displayed because the interior style is HOLLOW.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

The following section contains the description of a function that determines the
color of an interior region if the fill style is not HOLLOW.

6sun
~ mlcrosystems

Version B of 17 February 1986

Fill Color

Errors

4.6. Hatch and Pattern
Attributes

Chapter 4 - Attributes 63

Cerror fill_color (color)
Cint color; /* color for solid object fill */

fill_color determines the color for filling solid objects, if the fill style is not
set to HOLLOW.

The default fill style is HOLLOW, so changing the fill color will not have an effect
without changing the interior style first. The default fill color is 1. An error is
detected if fill color is not between 0 and 255.

ENOTOPOP [5]

ECINDXLZ [35]

EBADCOLX [36]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Color index is less than zero.

Color index is invalid.

Geometrical primitives can be filled with 2D arrays of color values called pat­
terns. SunCGI supports pre-defined as well as user-defined patterns. The
definition of patterns is stored in the pattern table. Each entry in the pattern table
consists of a 2D array of color values and the x and y dimensions of the array.
The starting position (upper left-hand corner) of the pattern is determined by the
pattern reference point.

Two types of patterns are available: PATIERNs and HATCHes. PATIERNs can be
scaled and translated. HATCHes can't and simply fill the geometrical output
primitives with pixel arrays.

The following example program illustrates how to change the appearance with
the individual attribute functions. The program draws a polygon and fills it with
a pattern.

~\sun
~ microsystems

Version B of 17 February 1986

64 SunCGI Reference Manual

*include <cgidefs.h>

Ccoor box[5] = { 10000,10000 ,
10000,20000 ,
20000,20000 ,
20000,10000 ,
10000,10000 };

Cint pattern[16] = { 50, 75, 100, 125,
150, 0, 0, 175,
200, 0, 0, 225,
250, 275, 300, 325 };

main ()
{

Ccoorlist boxlist;
Cint dx 250, dy 250, index
Cvwsurf device;

boxlist.n = 5;
boxlist.ptlist = box;
NORMAL_VWSURF(device, PIXWINDD);

open_cgi();
open_vws(&name, &device);

2, name;

interior_style(PATTERN, ON);
pattern_table (index, 4, 4, pattern);
pattern_index(index);
pattern_size(dx, dy);
polygon(&boxlist);

sleep(10);

close_vws(name);
close_cgi();

Figure 4-2 Example Program with Bundled Attributes

Hatch Index

Errors

Cerror hatch_index(index)
Cint index; /* HATCH index in the pattern table */

hatch_index determines which entry in the pattern table is used to fill solid
objects when the fill style is set to HATCH. The default hatch index is O. An error
is generated if index points to an undefined entry in the pattern table.

ENOTOPOP [5]

~\sun ~ microsystems

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Version B of 17 February 1986

Pattern Index

Errors

Pattern Table

Errors

Pattern Reference Point

EBTBUNDL [30]

ESTYLLEZ [42]

ENOPATNX [43]

Chapter 4 - Attributes 65

ASF is BUNDLED.

Style (pattern or hatch) index is less than zero.

Pattern table index not defined.

Cerror pattern_index(index)
Cint index; /* PATTERN index in the pattern table */

pattern_index detennines which index in the pattern table is used to fill
solid objects when thefill style is set to PATTERN. The default pattern index is 1.
An error is generated if index points to an undefined entry in the pattern table.

ENOTOPOP [5]

EBTBUNDL [30]

ESTYLLEZ [42]

ENOPATNX [43]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Style (pattern or hatch) index is less than zero.

Pattern table index not defined.

Cerror pattern_table(index, ro, n, colorind)
Cint index; /* entry in table */
Cint m, n; /* number of rows and columns */
Cint *colorind; /* array containing pattern */

pattern_table defines an entry in the pattern table. index defines the entry
in the table (which must be less than 50). An error is generated if index is out­
side the bounds of the pattern table. m and n define the height and width of the
pattern (in pixels). The array pointed to by the argument co 10 rind contains the
actual pattern row-wise from the upper left. For monochrome view surfaces, all
nonzero entries in colorind are treated as 1 when used. The maximum
number of elements in a pattern (m X n) is MAXPATSIZE.

Pattern 0 is initially defined to be a 3 x 3 matrix which is set to zero at the
comers and one elsewhere. Pattern 0 produces simple cross-hatching. Pattern 1
(which produces a polka-dot pattern) is initially defined to be a 3 x 3 matrix
which is set to 1 at the center and 0 elsewhere.

ENOTOPOP [5]

EPATARTL [40]

EPATSZTS [41]

ESTYLLEZ [42]

EPATITOL [44]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Pattern array too large.

Pattern size too small.

Style (pattern or hatch) index is less than zero.

Pattern table index too large.

Cerror pattern_reference-point(begin)
Ccoor *begin;

pattern_referenceyoint defines the point in VDC space where the

~\sun ~~ mlcrosystems
Version B of 17 February 1986

66 SunCGI Reference Manual

Errors

Pattern Size

Errors

Pattern with Fill Color
(SunCGI Extension)

4.7. Perimeter Attributes

Perimeter Type

pattern box begins. The pattern is then replicated over all VDe space. The upper
left-hand comer of the pattern box is detennined by begin. The default pattern
reference point is (0,0). pat tern_reference yoint has no effect if the
interior style is not set to PATIERN.

ENOTOPOP [5] COl not in proper state COl shall be in state VDOP,
VSOP, or VSAC.

Cerror pattern_size(dx, dy)
Cint dx, dy; /* size of pattern in VDC space */

pattern_size defines the size of the pattern array in VDC coordinates. dx
and dy determine the size of an element of the pattern in VDC space.
pa t t er n _ s i z e therefore allows you to 'stretch' the pattern to a certain size.
If dx or dy would result in pattern elements less than one pixel wide, 1 is used. If
the pattern size is larger than the bounds of screen space, the effective pattern
size is the size of VDC space. The default pattern size is (300, 300).

ENOTOPOP [5] COl not in proper state COl shall be in state VDOP,
VSOP, or VSAC.

Cerror pattern_with_fill_color(flag)
Cflag flag; /* ON to use nonzero pattern

elements as fill color */

Binary patterns allow the same pattern to be applied in different colors, without
redefining the pattern array. pattern_with_fill_color sets a non­
standard CGI state pattern with fill color. The default pattern with fill color is
OFF and each color value in a pattern table entry is used verbatim, as in standard
COl. When a pattern is used while flag is ON, the pattern is considered to be a
2D array of flags: where the pattern element is nonzero, the current fill color is
used, instead of the actual value of the pattern element. (When pattern with fill
color is zero, a zero color index is used, just as when the flag is OFF.)

The following sections contain descriptions of functions that determine the per­
imeter attributes perimeter type, perimeter width, perimeter width specification
mode and perimeter color.

Cerror perimeter_type(ttyp)
Clintype ttyp; /* style of perimeter */

perimeter_type defines the perimeter type for solid objects. The
enumerated type Clintype contains values that correspond to valid perimeter
types.

~\sun ~~ microsystems
Version B of 17 February 1986

Errors

Perimeter Width

Errors

Perimeter Width Specification
Mode

typedef enum
SOLID,
DOTTED,
DASHED,
DASHED_DOTTED,
DASH_DOT_DOTTED,
LONG DASHED

Clintypei

Chapter 4 - Attributes 67

The default perimeter style is SOLID. Notice that there is no ending style for per­
imeter. The endstyle is controlled by the line_endstyle function.

As mentioned previously, control of the drawing of the borders of solid objects is
under the control of the perimeter attribute functions, not the line attribute func­
tions. However, the two sets of functions take the same values. The perimeter
attributes are essentially the same as the line attributes except that they affect the
borders of solid attributes. The appearance of a perimeter can be similar to a line
especially if interior style is set to HOLLOW. Perimeter attribute functions have
no effect if the perimeter visibility is set to OFF.

ENOTOPOP [5]

EBTBUNDL [30]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Cerror perimeter_width(width)
Cfloat widthi /* perimeter width */

per imeter _width determines the width of the perimeters of solid objects.
index can be expressed in percent of VDC space or pixels. If the perimeter width
specification mode is set to SCALED and the x and y dimensions are different, the
perimeter width is calculated on the basis of the range of the x coordinate of VDe
space. If the parameter setting would result in a perimeter less than one pixel
wide, the perimeter width is displayed as one pixel wide. The default perimeter
width is 0.0 (SCALED).

ENOTOPOP [5]

EBTBUNDL [30]

EBDWIDTH [34]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Width must be nonnegative.

Cerror perimeter_width_specification_mode(mode)
Cspecmode modei /* pixels or percent */

perimeter_width_specification_mode allows the
perimeter_width to be specified in pixels or as a percentage ofVDC space
according to the value of mode (which can either be ABSOLUTE or SCALED). If
the perimeter width specification mode is changed from ABSOLUTE to SCALED,

the change in the line width will probably be dramatic. The default perimeter
width specification mode is SCALED.

~\sun
~ microsystam&

Version B of 17 February 1986

68 SunCGI Reference Manual

Errors

Perimeter Color

Errors

4.8. Text Attributes

Text Bundle Index

Errors

Text Precision

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror perimeter_color(index)
Cint index; /* perimeter color */

perimeter_color determines the color of the perimeters. index selects an
entry in the color lookup table. The default value of index is 1. An error is
detected if index is not between 0 and 255.

ENOTOPOP [5]

EBTBUNDL [30]

ECINDXLZ [35]

EBADCOLX [36]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Color index is less than zero.

Color index is invalid.

SunCGI provides a variety of functions for determining how text is written to
the screen. The most important text attribute is text precision. If text precision
is set to STRING, firmware characters are used. The fonts, size, spacing, and
alignment of finnware are more limited than characters drawn with text preci­
sion set to a value other than STRING. Therefore, calls to text attribute functions
regulating these aspects of text drawing have no effect when text precision is set
to STRING.

Cerror text_bundle_index(index)
Cint index; /* text bundle index */

text bundle index sets the current text bundle index to the value of index.
The contents of the text bundle index are text font text precision, character
expansion factor, character spacing, and text color. The character height char­
acter orientation character path text alignment andfixedfont are not included
in the definition of the text bundle. If index is not defined, an error is generated,
and the text bundle index does not change. If the ASF's for any of these attributes
are set to BUNDLED, the current values of these attributes are set to the contents
of the bundle.

ENOTOPOP [5]

EBADTXTX [45]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Text index is invalid.

Cerror text-precision(ttyp)
Cprectype ttyp; /* text type */

textyrecision controls the precision with which text is displayed. The
enumerated type Cprect ype contains values that correspond to valid text pre­
cisions.

Version B of 17 February 198(

Errors

Character Set Index

Errors

Text Font Index

Errors

typedef enum {
STRING,
CHARACTER,
STROKE

Cprectype;

Chapter 4 - Attributes 69

If the text precision is set to STRING, the firmware character set is used. Note:
firmware characters cannot be scaled or rotated.

Characters are clipped, but not in parts (that is, if any portion of the character
exceeds the clipping boundary the whole character is clipped). If the text preci­
sion is set to CHARACfER, software generated characters are employed and char­
acters are clipped, but not in parts. All text attributes have a visible effect on
software generated characters. If the text precision is set to STROKE, the CHAR­

ACTER precision capabilities are enabled and characters are clipped in parts. The
default text precision is STRING.

ENOTOPOP [5]

EBTBUNDL [30]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Cerror character_set_index<index)
Cint index; /* font set */

character_set_index selects a set of fonts. Although SunCGI supports
this function, only set number 1 is defined. Calls to
character_set_index with index assigned to a value other than 1 are
ignored.

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

Cerror text_font_index(index)
Cint index; /* font */

text font index detennines the current font. A list of available fonts and - -
their availability when text precision is set to STRING is given in Table 4-3. A
warning about the SYMBOL font: undefined characters are displayed as bugs (the
six-legged kind). The default font is STICK.

ENOTOPOP [5]

EBTBUNDL [30]

ETXTFLIN [47]

~\sun ,~ microsystems

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Text font is invalid.

Version B of 17 February 1986

70 SunCGI Reference Manual

Table 4-3 Available Fonts

Character Expansion Factor

Errors

Character Spacing

Errors

Character Height

Font
ROMAN
GREEK
SCRIPf
OLDENGLISH
STICK
SYMBOLS

I String Precision
Yes
Yest
Yes
No
Yes
No

t displayed as STICK font.

Cerror character_expansion_factor(efac)
Cfloat efac; /* width factor */

character_expansion_factor determines the width-to-height ratio of
characters. If efac is greater than 1 the characters appear fatter than they are
wide. If efac is less than 1 the characters appear slimmer than they are wide.
The default character expansion factor is 1.0. An error is generated if efac is
less than 0.01 or greater than 10.

ENOTOPOP [5]

EBTBUNDL [30]

ECEXFOOR [48]

COl not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Expansion factor is out of range.

Cerror character_spacing(spcratio)
Cfloat spcratio; /* spacing ratio */

character_spacing sets the spacing between characters based on the height
of the characters. The amount of space between characters is obtained by multi­
plying the character height by spcratio. The default character spacing factor is
0.1. An error is generated if spcratio is less than -10 or greater than 10.

ENOTOPOP [5]

EBTBUNDL [30]

ECEXFOOR [48]

CGI not in proper state CGI shall be in state VDOP,
VSOP, or VSAC.

ASF is BUNDLED.

Expansion factor is out of range.

Cerror character_height(height)
Cint height; /* height in VDC *1

The character_height function determines the height of text in VDC units.
The height is defined as the distance from the top to the bottom of the character.

Notice that changing the character height implicitly changes the character spac­
ing.

~~~un 
~ ITlICrosystems 

Version B of 17 February 1986 



Errors 

Fixed Font (SunCGI 
Extension) 

Errors 

Text Color 

Errors 

Character Orientation 

Chapter 4 - Attributes 71 

The default character height is 1000. This may result in huge characters if VDC 

space is reset from its default range (0-32767). If the x and y dimensions of VDC 

space are different, the height is calculated on the basis of the range of the x 
coordinate of VDC space. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECHHTLEZ [49] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Character height is less than or equal to zero. 

Cerror fixed_font(flag) 
Cint flag; /* fixed or variable width characters */ 

fixed_font allows characters to be of fixed or variable size. Ifflag is 
nonzero, the characters are of uniform size, otherwise the characters are packed 
proportional to their actual sizes. If the character precision is STRING, this func­
tion has no effect. By default SunCGI supports variable width characters. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror text_color(index) 
Cint index; /* color */ 

text _color determines the color of the text. index selects an entry in the 
color lookup table. The default value of index is 1. An error is detected if index 
is not between 0 and 255. 

ENOTOPOP [5] 

EBTBUNDL [30] 

ECINDXLZ [35] 

EBADCOLX [36] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ASF is BUNDLED. 

Color index is less than zero. 

Color index is invalid. 

Cerror character_orientation(xbase, ybase, xup, yup) 
Cfloat xbase, ybase, xup, yup; 

/* character base and up vectors */ 

character_orientation specifies the skew and direction of text. The left 
side of the character box lies on an invisible line called the character up vector 
whose slope is determined by xup andyup. The bottom of the character box lies 
on an invisible line called the character base vector whose slope is determined 
by xbase and ybase. 

If the character up vector and the character base vector are not orthogonal, the 
text is distorted. Calls to character orientation have no effect if text 
precision is set to STRING. The default values for the character up vector and the 
character base vector are xbase = 1.0, ybase = 0.0, xup = 0.0, and yup = 1.0. 

~\sun ,~ microsystelTlS 
Version B of 17 February 1986 



72 SunCGI Reference Manual 

Errors 

Character Path 

Errors 

Text Alignment 

The character up vector and the character base vector influence the character 
path and the character alignment. For example, if xbase = -1.0 and the character 
path is RIGlIT, the text is written to the left. 

ENOTOPOP [5] 

ECHRUPVZ [50] 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Length of character up vector or character base vector is 
zero. 

Cerror character-path(path) 
Cpathtype path; /* text direction */ 

characterJath specifies the direction in which text is written. The 
enumerated type Cpathtype contains values that correspond to valid character 
paths. 

typedef enum 
RIGHT, 
LEFT, 
UP, 
DOWN 

Cpathtypei 

The actual effect of character Jath depends on the character up vector 
and the character base vector. RIGHT specifies that the text is written in the 
direction of the character base vector. For example, if the direction of the char­
acter base vector points left instead of right (xup = -1.0 instead of 1.0), the text 
will be written right-to-Ieft instead of left-to-right which is the usual interpreta­
tion of RIGlIT. LEFf specifies that the text is written in the opposite direction of 
the character base vector. The character up vector and character base vector 
essentially change functions when the character direction is set to UP or DOWN. 
UP specifies that the text is written in the direction of the character up vector. 
DOWN specifies that the text is written in the opposite direction of the character 
up vector. The default character path is RIGlIT. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cerror text_alignment (halign, valign, hcalind, vcalind) 
Chaligntype haligni /* horizontal alignment type */ 
Cvaligntype valign; /* vertical alignment type */ 
Cfloat hcalind, vcalindi 

/* continuous alignment indicators */ 

text_alignment determines where the text is positioned relative to the start­
ing point specified by the cl argument of the text or vdm_text function. 
halign determines where the character is placed in relation to the x component of 
the starting coordinate of the text position (specified by the cl argument of text). 
The enumerated type Chaligntype contains values that correspond to valid 
horizontal alignments. 

4l\sun ,~ microsystems 
Version B of 17 February 1986 



typedef enum 
LFT, 
CNTER, 
RGHT, 
NRMAL, 

CNT 
Chaligntype; 

Chapter 4 - Attributes 73 

If the value of halign is LFf, the horizontal position of the text will begin at the 
left edge of the box enclosing the text. Similarly, if the value of halign is RGHT, 

the horizontal position of the text will begin at the right edge of the box enclos­
ing the text. If the value of halign is CNTER the horizontal position of the text 
will begin equidistant from the right and the left edges of the text box. NRMAL 

assigns the alignment based on the value of the character path (see Table 4-4). 
If the value of halign is CNT (continuous) the horizontal position of the text is 
determined by the argument hcalind. In this case, the text will begin hcalind 
fraction of the width of the text box from the left edge of the character box. The 
default value of halign is NRMAL. 

valign specifies where the character is placed in relation to the y component of 
the text position. The enumerated type Cvaligntype contains values that 
correspond to valid vertical alignments. 

typedef enum 
TOP, 
CAP, 
HALF, 
BASE, 
BOTTOM, 
NORMAL, 

CONT 
Cvaligntype; 

If the value of valign is TOP, the vertical position of the text will begin at the top 
edge of the character box. If the value of valign is CAP, the vertical position of 
the text will begin at the cap line of the character.13 Similarly, if the value of 
valign is BOTIOM, the vertical position of the text will begin at the bottom edge 
of the character box. If the value of valign is BASE, the vertical position of the 
text will begin at the baseline of the character.14 If the value of valign is HALF 

the vertical position of the text will begin equidistant from the top and the bottom 
edges of the character box. NORMAL assigns the alignment based on the value of 
the character path (see Table 4-4). If the value of valign is assigned to CONT 

(continuous), the vertical position of the text is determined by the argument 
vcalind and will begin vcalind fraction of the height of the character box from the 
bottom edge of the character box. The default value of valign is NORMAL. 

13 The cap line is defined as the invisible line corresponding to the top of the average character within a font. 

14 The baseline is defined as the invisible line corresponding to the bottom of the average character within a 
font. The baseline does not necessarily correspond to the bottom of a character. For example, a the tail of a 
lower-case g extends below the baseline. 

~~sun 
~ microsystelTlS 

Version B of 17 February 1986 



74 SunCGI Reference Manual 

Table 4-4 Normal Alignment Values 

Errors 

4.9. Color Attributes 

Color Table 

Table 4-5 

Character I Horizontal I Vertical 
Path Nonnal Normal 

RIGHT LEFf BASELINE 
LEFf RIGHT BASELINE 
UP CENTER BASELINE 
DOWN CENTER TOP 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

SunCGI supports only one color specification mode - INDEXED. This color 
specification mode means that the red, green, and blue values (hereafter referred 
to as RGB values) are obtained from a table known as the color lookup table. The 
initial values of the color lookup table are provided in Table 4-5. If the device is 
monochrome, nonzero color values are displayed as black; zero is displayed as 
white. 

Default Color Lookup Table 

Index I Color 
0 black 
1 red 
2 yellow 
3 green 
4 cyan 
5 blue 
6 magenta 
7 white 

Cerror color_table(istart, clist) 
Cint istart; /* starting address */ 
Ccentry *clisti /* color triples and number of entries */ 

color_table defines RGB entries into the color lookup table. The color 
lookup table is initialized based on the depth of the display frame buffer and the 
cmapsize field provided in the Cvwsurf structure provided to open_ vws. A 
monochrome device has an unwritable color map; non-zero color indices are 
displayed as black, zero is displayed as white. A color device gets a color map 
segment with 8 entries if the cmapsize field is zero upon opening the view sur­
face. The 8 default color values are given in Table 4-5. Larger color maps are 
also initialized to evenly spaced RGB values. 

The structure Ccentry contains elements that describe a color map entry. 

~\sun ,~ microsystems 
Version B of 17 February 198( 



Errors 

4.10. Inquiry Functions 

Inquire Line Attributes 

Errors 

Inquire Marker Attributes 

typedef struct { 
unsigned char *ra; 
unsigned char *ga; 
unsigned char *ba; 
Cint n; 

Ccentry; 

Chapter 4 - Attributes 75 

The minimum and maximum color table entries are treated specially by Pixwins 
and hence by SunCGI. If they are set to be the same value, the user's values for 
these two entries are both ignored. They revert to the inverse of the normal 
values; entry 0 becomes white, the maximum entry becomes black. 

The argument istart determines the first entry in the color lookup table to be 
modified. the argument dist contains the color information for entry istart in 
terms of triples of values of numbers ranging between 0 and 255. The last field 
of dist reports how many entries are to be modified. An error is generated if 
either the indices to the color lookup table are out of range. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

ECINDXLZ [35] 

EBADCOLX [36] 

Color index is less than zero. 

Color index is invalid. 

The attribute inquiry functions pennit examination of the current attributes. 
Attributes are reported in groups corresponding to the class of output primitive 
which they modify. The argument to each inquiry function has its own structure 
type which has an element for each of the individual attributes (see Appendix D). 

Clinatt *inquire_line_attributes() 
/* returns a pointer to line attribute structure */ 

inquire_line_attributes reports the current line style, line width, line 
color, and polyline bundle index in the appropriate elements of the returned 
value of the function. 

typedef struct { 
Clintype style; 
Cfloat width; 
Cint color; 
Cint index; 

Clinatt; 

inquire_line_attributes returns a NULL (not an error number) in case 
of errors. Errors are printed if the error warning mode is not set to NO _ ACfION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cmarkatt *inquire_marker_attributes() 
/* returns a pointer to marker attribute structure */ 

Version B of 17 February 1986 



76 SunCGI Reference Manual 

Errors 

Inquire Fill Area Attributes 

Errors 

Inquire Pattern Attributes 

inquire_marker_attributes reports the current marker style, marker 
width, marker color, and polymarker bundle index in the appropriate elements of 
the returned value of the function. 

typedef struct { 
Cma rt ype type; 
Cfloat size; 
Cint color; 
Cint index; 

Cmarkatt; 

inquire~arker_attributes returns a NULL (not an error number) in 
case of errors. Errors are printed if the error warning mode is not set to 
NO ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cfillatt *inquire_fill_area_attributes() 

The current interior style, perimeter visibility, fill color, hatch index, pattern 
index, fill area bundle index, perimeter style, perimeter width, and perimeter 
color can be obtained by using the inquire_fill_attributes function. 

typedef struct { 
Cintertype style; 
Cflagtype visible; 
Cint color; 
Cint hatch_index; 
Cint pattern_index; 
Cint index; 
Clintype pstyle; 
Cfloat pwidthi 
Cint pcolor; 

fillatti 

inquire_fill_area_attributes returns a NULL (not an error number) 
in case of errors. Errors are printed if the error warning mode is not set to 
NO ACfION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Cpatternatt *inquire-pattern_attributes() 
/* returns a pointer to pattern attribute structure */ 

inquire_pattern_attributes reports the current pattern index, row 
count, column count, color list, pattern reference point, and pattern size. 

~\sun 
~ microsystems 

Version B of 17 February 1986 



Errors 

Inquire Text Attributes 

Errors 

typedef struct { 
Cint cur_index; 
Cint row; 
Cint column; 
Cint *colorlist; 
Ccoor *point; 
Cint dx; 
Cint dy; 

patternatt; 

Chapter 4 - Attributes 77 

inquire_pattern_attributes returns a NULL (not an error number) in 
case of errors. Errors are printed if the error warning mode is not set to 
NO ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Ctextatt *inquire_text_attributes() 
1* returns a pointer to text attribute structure */ 

inquire_text_attributes reports the currentjontset, text bundle index, 
jont, text precision, character expansionjactor, character spacing, text color, 
character height, character base vector, character up vector, character path, and 
text alignment. 

typedef struct { 
Cint fontset; 
Cint index; 
Cint current_font; 
Cprectype precision; 
Cfloat exp_factor; 
Cfloat space; 
Cint color; 
Cint height; 
Cfloat basex; 
Cfloat basey; 
Cfloat upx; 
Cfloat upy; 
Cpathtype path; 
Chaligntype halign; 
Cvaligntype valign; 
Cfloat hcalind; 
Cfloat vcalind; 

textatt; 

inqu ire _ text _a t t r ibu te s returns a NULL (not an error number) in case 
of errors. Errors are printed if the error warning mode is not set to NO_ACTION. 

ENOTOPOP [5] CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Version B of 17 February 1986 



78 SunCGI Reference Manual 

Inquire Aspect Source Flags 

Errors 

Cflaglist *inquire_aspect_source_flags() 
/* returns a pointer to text attribute structure */ 

inquire_aspect_source_flags reports whether attributes are set indivi­
dually by returning all of the values of the ASFs. The element n of the fiaglist 
struct is set to 18. The definitions of each flag are in Table 4-2. 

typedef struct 
cint n; 
Cint *num; 
Casptype *value; 

Cflaglist; 

inquire_aspect_source_flags returns a NULL (not an error number) in 
case of errors. Errors are printed if the error warning mode is not set to 
NO ACTION. 

ENOTOPOP [5] 

~~sun 
~ microsystems 

CGI not in proper state CGI shall be in state VDOP, 
VSOP, or VSAC. 

Version B of 17 February 198~ 



5 
Input 

Input ........................................................................................................................................................ 81 

5.1. Input Device Initialization .......................................................................................... 84 

Initialize LID ............................................... .................................................................... 84 

Release Input Device .................................................................................................. 85 

Associate ............................................................................................................................ 85 

Set Default Trigger Associations ......................................................................... 86 

Dissociate .......................................................................................................................... 86 

Set Initial Value ............................................................................................................. 87 

SetVALUATO¥-ange ........................................................................................... 87 

Track On ............................................................................................................................ 88 

Track Off ........................................................................................................................... 89 

5.2. Synchronous Input .......................................................................................................... 90 

Request Input .................................................................................................................. 91 

5.3. Asynchronous Input ....................................................................................................... 92 

Initiate Request .............................................................................................................. 92 

5.4. Event Queue Input .......................................................................................................... 93 

Enable Events ................................................................................................................. 95 

Await Event ..................................................................................................................... 95 

Flush Event Queue ....................................................................................................... 96 

Selective Flush of Event Queue ........................................................................... 96 

5.5. Miscellaneous Input Functions ................................................................................ 97 

Sample Input .................................................................................................................... 97 

Get Last Requested Input ......................................................................................... 97 



Disable Events ................................................................................................................ 98 

5.6. Status Inquiries ................................................................................................................. 98 

Inquire LID State List ................................................................................................ 98 

Inquire LID State ................................... ............... ........................................................ 99 

Inquire Trigger State ................................................................................................... 99 

Inquire Event Queue State ....................................................................................... 99 



5 
Input 

CGI has a collection of functions for managing input devices. The design of these 
functions has two purposes: provide an interface close to the actual input device 
and maintain portability of applications. CGI accomplishes the first goal with dif­
ferent input device classes and methods of extracting input values. The second 
goal is achieved through CGI's model of logical input devices (LID), an abstrac­
tion whereby logical input devices required by the CGI standard are mapped onto 
the physical devices available to a CGI implementation. This section will intro­
duce some of the terms used in describing the functionality of the CGI input prim­
itives. 

A CGI input device consists of a measure associated with a trigger. A measure 
is the current value of a logical input device. For example, the IC_LOCATOR dev­
ice reports an x-y position. This device is useful for determining a position on 
the screen. A trigger is a physical device used by an operator to accept a current 
value. A trigger fire corresponds to an event on a physical input device. At the 
request of the application program, SunCGI associates a measure with a trigger. 
Table 5-1 has a list of the five logical input devices available to SunCGI applica­
tion programs and the available triggers. For example, a mouse button on a Sun 
workstation is a trigger that can be associated with a IC _LOCATOR device. When 
the mouse button is pressed, the x-y position of the mouse is returned as the 
measure of the IC _LOCATOR input device. 

An input event is the information saved when a trigger fires. This includes the 
measure of a logical input device associated with a trigger. 

~\sun ,~ microsystems 
81 Version B of 17 February 1986 



82 SunCGI Reference Manual 

Table 5-1 Input Devices Offered by SunCGI 

Device 
Class 

IC LOCATOR 

Measure 

x-y position in VDC 

space. 

IC STROKE Array of x-y points in 
VDC space. 

IC VALUATOR Normalized x position. 

IC CHOICE A non-negative integer 
which represents a 
selection from a number 
of choices. Zero 
represents "no choice". 

IC STRING Character string. 

2 
3 
4 

2 
3 
4 
5 
6 

2 
3 
4 

1 

Trigger 

Left mouse button 
Middle mouse butto 
Right mouse button 
Mouse movementt 
Mouse still:t: 

Left mouse button 
Middle mouse butto 
Right mouse button 

Left mouse button 
Middle mouse butto 
Right mouse button 
Mouse movement 
Mouse still 

Left mouse button 
Middle mouse butte 
Right mouse button 

Keyboard input ter­
minated a carriage 
return. 

t The Mouse Movement trigger fires when the mouse moves. 

:t: The Mouse Still trigger fires when the mouse does not move for one fifth 
of a second or more. 

The graphical method with which the measure of an input device is displayed is 
called tracking. SunCGI provides several methods of tracking for each input 
device. Table 5-3 has a list of track types available for each input device class. 
Tracking must be explicitly enabled for each device. 

Each input device can be in one of the five states described pictorially in Figure 
5-1. The state of an input device determines the manner in which the application 
program retrieves the measure of the input device. The input functions that allow 
a change of state are listed next to the arrows indicating the state change. 

RELEASED 

Before an input device is initialized it is in the RELEASED state. Any input 
function (except initialization) will generate an error in this state. 

NO EVENTS 

After an input device has been initialized it is in the NO_EVENTS state. An 
application program can extract an input value of an input device in 
NO EVENTS state. This will result in either the value that the device was 

.sun 
~ microsystems 

Version B of 17 February 198t 



Chapter 5 - Input 83 

initialized with or the value the device had when it was in a state where it 
could process events. This is not necessarily the current measure of the 
device and does not change while the device is in this state. 

RESPOND EVENT 
The RESPOND_EVENT state corresponds with synchronous communication 
between the process that controls the input device and the application pro­
gram. When an application program requests the measure of an input device 
in RESPOND_EVENT state, SunCGI blocks program execution until it can 
fulfill the request The request_input function will return when the 
trigger fires and the input request is satisfied or after a timeout period. The 
input device then reverts to NO_EVENTS state. 

The function that requests input and puts the input device in 
RESPOND_EVENT state is request_input. When the trigger associated 
with an input device in RESPOND_EVENT state fires, the measure of that input 
device is then stored in the request register as well as returned by the 
request_input function. 

REQUEST_EVENT 
The REQUEST_EVENT state corresponds with asynchronous communication 
between the process that controls the input device and the application pro­
gram. When an application samples an input device, input handling and pro­
gram execution continue in parallel. Either the requested trigger fires or an 
explicit request is made to disable event processing and return the device to 
NO EVENTS state. 

When the trigger associated with an input device in REQUESf _EVENT state 
fires, the measure of that input device is then stored in the request register, a 
buffer with one element per device. The request register can be then be read 
with get_last_requested_event. 

QUEUE_EVENT 
When a device is in QUEUE_EVENT mode, events associated with the indi­
cated device are appended to the event queue, a first-in, first-out (FIFO) 
buffer shared by all input devices. After calling enable_events, the 
SunCGI application retains program control. While an input device is in 
QUEUE_EVENT mode, events are simultaneously added to the event queue 
when the program executes. 

await_event returns the event at the head of the event queue. If the 
queue is empty, await_event will wait for the designated trigger to fire 
or a timeout. The application program must process this queue in a timely 
fashion or it will overflow. The event queue can be flushed completely or 
for a specific device. The application program must make an explicit request 
to disable event queue processing and return an input device to NO_EVENTS 
state. 

~\sun ~~ microsystems 
Version B of 17 February 1986 



84 SunCGI Reference Manual 

st Reque 
Inp ut 

timeout 
or 

trigger fire 

II 

RESPOND 
EVENT 

5.1. Input Device 
Initialization 

Initialize LID 

Figure 5-1 

RELEASED 

j 

Initialize LID Release LID 

~ II 

NO 
EVENTS -

J 

Disable 
Initiate Events 

Request or 

trigger fire 

REQUEST 
EVENT 

CGI Input State Model 

Enable 
Events 

II 

QUEUE 
EVENT 

Di sable 
vents E 

Before input can be processed, an input devices must be initialized and associ­
ated with a trigger. Input device initialization requires at least one active view 
surface. Typically, the procedure for initializing an input device includes calls to 
the initialize_lid and associate functions which turn on an input 
device and associate it with a specific trigger. 

Cerror initialize_lid(devclass, devnum, ivaI) 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 
Cinrep *ival; /* initial value of device measure */ 

initialize_lid initializes an input device and changes its state from 
RELEASED to NO_EVENTS. This function must be called for an input device 
before it can be referenced by any other input function. The argument devclass 
specifies the desired type of input value. devnum indicates the number of the 
device within that class. The argument ivai sets the initial measure of the device. 

The Cinrep structure contains different elements for each type of measure. 
The appropriate element of Cinrep must be set or an error will be generated. 

~)sun ~ microsystems 
Version B of 17 February 198t 



Errors 

Release Input Device 

Errors 

Associate 

typedef struct { 
Ccoor *xypt; /* LOCATOR */ 
Ccoorlist *points; /* STROKE devices */ 
Cfloat val; /* VALUATOR device */ 
Cint choice; /* CHOICE devices */ 
Cchar *string; /* STRING device */ 

Chapter 5 - Input 85 

Cpick *pick; /* PICK devices (unsupported) */ 
Cinrep; 

For example, in a LOCATOR device initialization, the xyptfield of Cinrep must 
be set to the address of a Ccoor allocated by the application program before the 
x andy elements can be set See the example program in Figure 5-2. 

Notice that whenever a device is initialized, no associations with triggers are 
made. This must be done by having the application program call the appropriate 
functions. An error is generated by initialize_lid if the device does not 
exist, if it is already initialized, or if the initial value is out of range. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDALIN [82] 

EBADDATA [95] 

ESTRSIZE [96] 

CGI not in proper state: CG I shall be in state VSAC. 

Input device does not exist 

Input device already initialized. 15 

Contents of input data record are invalid. 

Length of initial string is greater than the implementation 
defined maximum. 

Cerror release_input_device(devclass, devnum) 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 

release_input_device releases all associations between a device and its 
triggers, and removes all pending events for the device from the event queue. 
release_input_device changes the state of the specified input device 
from NO_EVENTS to RELEASED. An error is produced if devclass and devnum 
does not refer to an existing and initialized device. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Cerror associate(trigger, devclass, devnum) 
Cint trigger; /* trigger number */ 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 

IS The ANSI standard allows initialized input devices to be re-initialized. SunCGI does not because it is felt 
that re-initialization is usually a mistake. 

Version B of 17 February 1986 



86 SunCGI Reference Manual 

Errors 

Set Default Trigger 
Associations 

as sociate links a trigger with a specific device. The trigger numbers avail­
able for each device are listed in Table 5-1. Multiple associations are allowed; 
however, some associations are not allowed (for example, IC _LOCATOR may not 
be associated with the keyboard). 

The interaction between an IC _STROKE device and the trigger requires some addi­
tional explanation. IC _STROKE can only be associated with the mouse buttons. 
The first coordinate in the Ie _STROKE array is entered when the mouse button is 
initially pressed, the last coordinate is entered when the mouse button is released. 
For IC_LOCATOR and IC_ VALUATOR devices, the measure is reported when the 
mouse button is pressed. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINASAEX [83] 

EINAIIMP [84] 

EINTRNEX [86] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Association already exists. 

Association is impossible. 

Trigger does not exist. 

Cerror set_default_trigger_associations(devclass, devnum) 
Cdevoff devclasSi 1* device type */ 
Cint devnumi /* device number */ 

set_default_trigger_associations associates a device with a 
default trigger. The default associations are listed in Table 5-2. The rules for 
trigger association are the same as those for the associate function. 

Table 5-2 Default Trigger Associations 

Errors 

Dissociate 

Device 
Class 

IC LOCATOR 

IC STROKE 

IC VALUATOR 

IC CHOICE 

IC STRING 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINASAEX [83] 

EINTRNEX [86] 

~~ sun ~~ microsystems 

I Trigger I 
Number 

5 
4 
3 
2 
1 

Trigger 

Mouse position 
Right mouse button 
Middle mouse button 
Left mouse button 
Keyboard 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Association already exists. 

Trigger does not exist. 

Version B of 17 February 198~ 



Errors 

Set Initial Value 

Errors 

Set V ALVA TOR Range 

Cerror dissociate(trigger, devclass, devnum) 
Cint trigger; /* trigger number */ 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 

Chapter 5 - Input 87 

dissociate removes the association between a trigger and a specified device. 
If dissociate is called while there are events pending in the event queue for 
the dissociated device, the pending events are discarded. 

ENOTVSAC [4] 

E INDNOEX [80] 

EINDINIT [81] 

EINNTASD [85] 

EINTRNEX [86] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

association does not exist 

Trigger does not exist. 

Cerror set_initial_value(devclass, devnum, value) 
Cdevoff devclassi /* device type */ 
Cint devnumi /* device number */ 
Cinrep *valuei /* device value */ 

set_initial_ value sets the current measure ofa specified device. This 
function resets the position of the track, if the track is appropriate and activated. 
set_initial_ value also resets the request register. 

A pointer element of the Cinrep structure must be set to the address of an 
application program allocated area before the values can be set. For example, in 
Figure 5-2 the following statements were necessary before an initial value could 
be assigned to the LOCATOR device. 

Cinrep ivalue; 
point.x = 16384; 
point.y = 16384; 
ivalue.xypt = &point; 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EBADDATA [95] 

ESTRSIZE [96] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

Contents of input data record are invalid. 

Length of initial string is greater than the implementation 
defined maximum. 

Cerror set_valuator_range(devnum, vrnin, vrnax) 
Cint devnum; /* device number */ 
Cfloat vmin, vmax; /* limits of VALUATOR */ 

set_valuator_range specifies the limits of the Ie_VALuATOR. Device 
coordinates are mapped into the IC _ VALUATOR range. Ie _VALUATOR events 

~\sun ,~ mlcrosystems 
Version B of 17 February 1986 



88 SunCGI Reference Manual 

Errors 

Track On 

Errors 

which are already on the event queue are not rescaled. These events must be 
dequeued with either the seleeti ve _flush_of _event_queue function 
orflush_event_queue. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

CGI not in proper state: CGI shall be in state YSAC. 

Input device does not exist. 

Input device not initialized. 

Cerror track_on(devclass, devnum, tracktype, 
trackregion, value) 

Cdevoff devclass: /* device type */ 
Cint devnum: /* device number */ 
Cint tracktype; /* track number */ 
Ccoorpair *trackregion: /* window for tracking */ 
Cinrep *value: /* device value */ 

Tracking functions determine how the measure of an input device is displayed on 
the view surface. Each class of devices has its own set of possible tracks (given 
in Table 5-3). Although SunCGI allows certain classes of devices to track 
simultaneously, all types of input devices are not allowed to track at once. 
Tracking is not provided in the NO_EVENTS state unless the track type is 
PRINTERS FIST. 

traek _on initiates track (or echo) for a specific device. The tracktype argu­
ment specifies the type of track to be used. The trackregion argument is not 
used; the device tracks in all areas of the view surface. The argument value is 
used to initialize tracking. The track is initially displayed on the first view sur­
face opened. 

The xypt element of the Cinrep structure must be set to the address of an appli­
cation allocated Ceoor and the Ceoor's x andy fields are set to position the 
cursor. The reference point for IC _STROKE echos 2 through 5 is the first point in 
the STROKE array. The reference point for STRING_TRACK echo is the 
append_text concatenation point, and can be changed by calling text or 
append_text. 

ENOTVSAC [4] 

EINECHON [88] 

EINETNSU [91] 

EBADDATA [95] 

ES TRS I ZE [96] 

~\Slln ,~ microsystems 

CGI not in proper state: CGI shall be in state YSAC. 

Track already on. 

Track type not supported. 

Contents of input data record are invalid. 

Length of initial string is greater than the implementation 
defined maximum. 

Version B of 17 February 1986 



Table 5-3 

Device 

I Number I Class 
IC LOCATOR ~O 

1 

IC STROKE ~O 

1 

2 

3 

4 

5 

IC VALUATOR ~o 

1 

2 

IC CHOICE ~O 

1 

IC STRING ~O 

1 

2 

Chapter 5 - Input 89 

Available Track Types 

Track Typet 

NO ECHO 

PRINTERS FIST 

NO ECHO 

I Description 

Default cursor. 
Designate the current position of the IC _LOCATOR device 
with a printer's fist cursor. 

Default cursor. 
PRINTERS FIST Designate the current position of the IC _STROKE device 

with a printer's fist cursor. 
SOUD LINE Draw a line from the origin to the current position in the 

STROKE array. 
X LINE Draw a line from the x -axis to the current position in the 

STROKE array. 
Y LINE Draw a line from the y -axis to the current position in the 

STROKE array. 
RUB B ER_B AN D_BOX Designate the current position of the Ie_STROKE device 

with a rubber band line connecting the initial position 
and the current position in the STROKE array. 

NO ECHO 

PRINTERS FIST 

Sf RING TRACK 

NO ECHO 

PRINTERS FIST 

NO ECHO 

PRINTERS FIST 

Sf RING TRACK 

Default cursor. 
Indicate the state of the IC VALUATOR device with a 
printer's fist cursor. 
Display a digital representation of the current 
IC VALUATOR value. 

Default cursor. 
Indicate the state of the IC CHOICE device with a 
printer's fist cursor. 

Default cursor. 
Indicate the state of the IC STRING device with a 
printer's fist cursor. 
Display the current STRING value. 

t The values listed in the Track Type column in Table 5-3 are contained in the enumerated type Cechotype 
returned in the Cstatelist structure by inquire_lid_state_list. They are not used by track_on 
to define a track type. 

Track Off 

Errors 

Cerror track_off(devclass, devnum, tracktype, action) 
Cdevoff devclassi /* device type */ 
Cint devnumi /* device number */ 
Cint tracktypei 
Cfreeze actioni 

track_off terminates tracking for a specified input device. The tracktype and 
the action arguments are always ignored. 

ENOTVSAC [4] 

EINDNOEX [80] 

~\Slln ~ microsystems 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Version B of 17 February 1986 



90 SunCGI Reference Manual 

S.2. Synchronous Input 

EINDINIT [81] Input device not initialized. 

The synchronous input function request_input allows the application pro­
gram to obtain the current measure an of input device. This function requires 
explicit identification of an input device (through the associate function). 

Figure 5-2 contains an example program that illustrates how to use the synchro­
nous input functions to get information from an input device. First, a 
IC_LOCATOR device is initialized and associated with a trigger (the left mouse 
button). The tracking method for the Ie_LOCATOR is defined to be a printer's fist. 
Then measure of the IC _LOCATOR is requested with a timeout period of ten 
seconds. If the trigger is activated during this period, request_input returns 
a valid measure in ivalue. Finally, the IC _LOCATOR is dissociated from the 
mouse button and released. The program exits . 

• \sun ~~ microsystems 
Version B of 17 February 1986 



Figure 5-2 

Request Input 

tinclude <egidefs.h> 
tdefine TEN SECONDS (10 * 1000 * 1000) 

main () 
{ 

Cawresult stat; 
Ceoor point; 
Cinrep ivalue; 
Cint name; 
Cint trigger; 
Cvwsurf device; 

NORMAL_VWSURF(device, PIXWINDD); 
point.x = 16384; 
point.y = 16384; 
ivalue.xypt = &point; 

open_cgi () ; 
open_vws(&name, &device); 

Chapter 5 - Input 91 

initialize_lid (IC_LOCATOR, 1, &ivalue); 
associate (2, IC_LOCATOR, 1); 
track_on (IC_LOCATOR, 1, 1, (Ccoorpair *)0, &ivalue); 
request_input (IC_LOCATOR, 1, TEN_SECONDS, 

&stat, &ivalue, &trigger); 
if (stat == VALID_DATA) 

printf("trigger activated at %d %d \n", 
ivalue.xypt->x, ivalue.xypt->y); 

else 
printf ("trigger not activated \n··); 

dissociate (2, I C_LOCAT OR , 1); 
release_input_device(IC_LOCATOR, 1); 

close_vws(name); 
close _ egi () ;, 

Example Program with WCATOR Input Device 

Cerror request_input(devclass, devnum, timeout, 
valid, sample, trigger) 

Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 
Cint timeout; /* amount of time to wait for input */ 
Cawresult *valid; /* device status */ 
Cinrep *sample; /* device value */ 
Cint *trigger; /* trigger number */ 

request_input waits timeout microseconds for activation of a trigger associ­
ated with a specific device. If timeout is negative, the request will wait forever. 

Version B of 17 February 1986 



92 SunCGI Reference Manual 

Errors 

5.3. Asynchronous Input 

Initiate Request 

request_input puts the input device in the RESPOND_EVENT state. Ifa 
trigger is activated within this period, the activating trigger and the device meas­
ure are returned in the trigger and sample arguments respectively. If the trigger 
is not activated within this period, the current device measure is returned in the 
sample argument and trigger is set to zero. Before returning, the input device is 
reset to NO EVENTS state. 

request_input returns a device status in the argument valid. This argument 
uses the enumerated type Cawresul t (AWait Result) which contains values 
describing the state of an input device. 

typedef enum { 
VALID_DATA, 
TIMED_OUT, 
DISABLED, 
WRONG_STATE, 
NOT SUPPORTED 

Cawresulti 

VALID_DATA indicates a trigger is activated within the specified timeout period. 
TIMED_OUT indicates that a trigger was not activated with a specified period. 
WRONG_STATE indicates SunCGI is not in state VSAC. NOT_SUPPORTED indi­
cates the requested device is not a legal device. 

If the appropriate field of the sample argument is a pointer, it must be set to an 
application program allocated area. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EINEVNEN [94] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

Events not enabled. 

This section explains the asynchronous method of input device management 
where the application process and the input device process operate simultane­
ously. The designated input device is sampled with initiate_request and 
the measure of the input device is read with get_last_requested_input. 
Alternatively, the current measure of a device may be read with 
sample_input. 

The example program in Figure E-2 demonstrates how to use the asynchronous 
input functions. 

Cerror initiate_request(devclass, devnum) 
Cdevoff devclasSi /* device type */ 
Cint devnumi /* device number */ 

initiate_request sets up a device so that the measure resulting from the 
next trigger activation will be placed in the request register. 
initiate_request puts the device in the REQUEST_EVENT state. It then 
returns to the calling function without waiting for a trigger activation. The value 
caused by the trigger activation can be obtained by the 

~~sun 
~ microsystems 

Version B of 17 February 1986 



Errors 

5.4. Event Queue Input 

Chapter 5 - Input 93 

get _last_requested _input function. 

ENOTVSAC [4] 

E INDNOEX [80] 

EINDINIT [81] 

EINNTASD [85] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

No triggers associated with device. 

The event queue is a single FIFO buffer that holds events from input devices. 
Since the event queue has a fixed length, it must be processed in a timely fashion 
or it will overflow. Events can be removed from the event queue in three ways: 
the event at the head of the event queue can be processed with a w ai t _ eve n t ; 
the entire event queue can be emptied with f lush_event _queue; and the 
events from a particular device can be removed from the event queue with 
selective_flush_of_event_queue. 

Figure 5-3 contains an example program that illustrates how to use the event 
queue input functions to get information from an input device. First, a IC _STRING 

device is initialized and associated with a trigger (the keyboard). The tracking 
method for the IC _STRING is defined to be a string that echos the keyboard input 
on the bottom of the viewport. The IC_STRING is put into the QUEUE_EVENT state 
with enable_event s. After the trigger fires, the measure of the IC_STRING 

device is detennined with await_event. Finally, the LOCATOR is dissociated 
from the mouse button and released. The program then exits. 

~\Slln ~~ microsyslems 
Version B of 17 February 1986 



94 SunCGI Reference Manual 

iinclude <cgidefs.h> 

main () 
{ 

Cawresult valid; 
Ccoor point; 
Cdevoff devclass 
Ceqflow overflow; 
Cinrep ivalue; 
Cint devnum = 1; 
Cint name; 
Cint replost; 
Cint time_stamp; 

IC_STRING; 

Cint timeout = (10 * 1000 * 1000); /* ten seconds */ 
Cint tracktype = 2; 
Cint trigger = 1; 
Cmesstype message_link; 
Cqtype qstat; 
Cvwsurf device; 

NORMAL_VWSURF(device, PIXWINDD); 
point.x = 16384; 
point.y = 16384; 
ivalue.xypt = &point; 
ivalue.string = "This is a string"; 

open_cgi () ; 
open_vws(&name, &device); 

initialize_lid(devclass, devnum, &ivalue); 
associate(trigger, devclass, devnum); 
track_on(devclass, devnum, tracktype, 

(Ccoorpair *)0, &ivalue); 
enable_events(devclass, devnum); 
await_event (timeout, &valid, &devclass, &devnum, 

&ivalue, &message_link, &replost, &time_stamp, 
&qstat, &overflow); 

printf("%s\n", ivalue.string); 
disable_events(IC_STRING, devnum); 
dissociate (trigger, IC_STRING, devnum); 
release_input_device(IC_STRING, devnum); 

close_vws(name); 
close_cgi () ; 

Figure 5-3 Example Program with STRING Input Device 

~\sun ~~ microsystems 
Version B of 17 February 1986 



Enable Events 

Errors 

Await Event 

Cerror enable_events (devclass, devnum) 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 

Chapter 5 - Input 95 

enable events allows a device in NO EVENTS state to put events on the 
eventqu~e. enable_events puts the input device in the QUEuE_EVENT 

state. An error is generated if the device specified by devclass or devnum does 
not exist or is not initialized. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

EIAEVNEN [93] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist 

Input device not initialized. 

Events already enabled. 

Cerror await_event(timeout, valid, devclass, devnum, 
measure, message_link, replost, time_stamp, 
qstat, overflow) 

Cint timeout; /* input timeout period */ 
Cawresult *valid; /* status */ 
Cdevoff *devclass; /* device type */ 
Cint *devnum; /* device number */ 
Cinrep *measure; /* device value */ 
Cmesstype *message_linki /* type of message */ 
Cint *replost; /* reports lost */ 
Cint *time_stamp; /* time_stamp */ 
Cqtype *qstat; /* queue status */ 
Ceqflow *overflow; /* event queue status */ 

await_event processes the event at the head of the event queue. valid is set 
to WRONG_STATE if SunCGI is not in state VSAC. If the event queue is EMPTY, 

then await_event waits timeout microseconds for a trigger to be activated. 
If timeout is less than 0, SunCGI waits until a trigger is activated. valid is set to 
VALID_DATA if a trigger is activated within the specified timeout period and 
TIMED_OUT otherwise. 

If either the event queue is not empty or a trigger is activated, the class, number 
and value of the device generating the event are reported in the returned argu­
ments devclass, devnum and measure. If the appropriate field of the measure 
argument is a pointer, it must be set to an application program allocated area. 

If two events on the event queue have the same trigger but different values, the 
argument message_link is assigned to SIMULTANEOUS_EVENT_FOLLOWS; other­
wise the argument message_link is set to SINGLE_EVENT. The enumerated type 
Cmesstype contains the following values: 

typedef enum { 
SIMULTANEOUS_EVENT_FOLLOWS, 
SINGLE_EVENT 

Cmesstype; 

The replost and time _stamp arguments should be ignored and are always zero. 
The returned argument qstat reports the queue status after an event is removed 

~\sun ,~ microsystems 
Version B of 17 February 1986 



96 SunCGI Reference Manual 

Errors 

Flush Event Queue 

Errors 

Selective Flush of Event 
Queue 

Errors 

from the head of the event queue. 

typedef enum { 
NOT_VALID, 
EMPTY, 
NON_EMPTY, 
ALMOST_FULL, 
FULL 

Cqtype; 

qstat is set to EMPTY if the event queue has no pending events. qstat is set to 
NON_EMPTY if the event queue has events pending, but is not FULL or 
ALMOST_FULL. qstat is set to ALMOS[ _FULL if there is room for only one more 
event on the event queue. qstat is set to FULL if there is no room for more events 
on the event queue. 

The argument overflow indicates whether the event queue has overflowed or not. 
The enumerated type Ceqf low contains the following values: 

typedef enum 
NO_OFLO, 
OFLO 

Ceqflow; 

ENOTVSAC [4] 

E INQOVFL [97] 

CGI not in proper state: CGI shall be in state VSAC. 

Input queue has overflowed. 

Cerror flush_event_queue() 

flush_event_ queue discards all events in the event queue. The purpose of 
flush_event_queue is to return the event queue to a stable state (NO_OFLO). 
flush_event_queue does not affect the state of input devices. This function 
should be used carefully to avoid throwing away mouse-ahead or type-ahead 
inputs. 

ENOTOPOP [5] CGI not in proper state CGI shall be in either in state 
VDOP, VSOP, orVSAC. 

Cerror selective_flush_of_event_queue(devclass, devnum) 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 

selective_flush_of_event_queue discards all events in the event 
queue which were generated by a specified device. 
selective_flush_of_event_queue does not affect the state of the 
specified input device. devclass and devnum must refer to an existing and ini­
tialized device or an error is produced. However, no error is returned if no events 
from the specified device are pending. 

ENOTOPOP [5] 

~\sun ,~ microsystems 

CGI not in proper state CGI shall be in either in state 
VDOP, VSOP, or VSAC. 

Version B of 17 February 1986 



5.5. Miscellaneous Input 
Functions 

Sample Input 

Errors 

Get Last Requested Input 

Errors 

EINDNOEX [80] 

EINDINIT [81] 

Input device does not exist. 

Input device not initialized. 

Chapter 5 - Input 97 

The functions described in this section can be used with several of the input dev­
ice management techniques described in the previous sections. For example, 
sample_input can be used when a device is in either RESPOND_EVENT or 
QUEUE_EVENT state. Likewise, disable_events can be used in either of 
these states. 

Cerror sample_input(devclass, devnum, valid, sample) 
Cdevoff devclass; 1* device type *1 
Cint devnum; 1* device number *1 
Clogical *valid; 1* device status *1 
Cinrep *sample; 1* device value *1 

sample_input reports the current measure of the specified input device in the 
returned argument sample. The returned argument valid reports whether the dev­
ice is initialized and prepared to receive an input. The current measure of the 
device may be set by a queued event, a requested event, or a device initialization 
depending on the state of the input device and the most recent trigger 
activation(s}. See the introduction of this chapter for an explanation of the rela­
tionship between the measure of an input device and the state of an input device. 
If the appropriate field of the sample argument is a pointer, it must be set to an 
application program allocated area. 

ENOTVSAC [4] 

EINDNOEX [80] 

EINDINIT [81] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

Cerror get_last_requested_input(devclass, devnum, 
valid, sample) 

Cdevoff devclass; 1* device type *1 
Cint devnum; 1* device number *1 
Clogical *valid; 1* device status *1 
Cinrep *sample; 1* device value *1 

get_last_requested_input returns the contents of the request register. 
get_last_requested_input is usually used with 
initiate_request, but request_input also changes the contents of the 
request register. The returned argument valid indicates whether the device exists 
and is initialized. The returned argument sample reports the event in the request 
register. If no event is in the request register, the initial device value is reported. 
If the appropriate field of the sample argument is a pointer, it must be set to an 
application program allocated area. 

ENOTVSAC [4] 

EINDNOEX [80] 

~\sun ,~ microsystems 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Version B of 17 February 1986 



98 SunCGI Reference Manual 

Disable Events 

Errors 

5.6. Status Inquiries 

Inquire LID State List 

Errors 

EINDINIT [81] Input device not initialized. 

Cerror disable_events (devclass, devnum) 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 

disable_events puts the input device in the NO_EVENTS state. If the device 
is in RESPOND_EVENT state, the specified device is returned to NO_EVENTS state; 
the measure of the device is not changed by disable_events. If the device 
is in QUEUE_EVENT state, disable_events stops the specified device from 
putting events on the event queue. However, existing entries on the event queue 
are not removed and existing associations remain. devclass and devnum must 
refer to an existing and initialized device or an error is produced. 

ENOTVSAC [4] 

E INDNOEX [80] 

EINDINIT [81] 

EINEVNEN [94] 

CGI not in proper state: CGI shall be in state VSAC. 

Input device does not exist. 

Input device not initialized. 

Events not enabled. 

The current state of the input devices, triggers, and the event queue can be 
obtained by using the functions discussed in this section. 

Cerror inquire_Iid_state_Iist<devclass, devnum, 
valid, list) 

Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 
Clogical *valid; /* device supported at all */ 
Cstatelist *list; /* table of descriptors */ 

inquire_lid_state_list reports the status ofa specific input device 
specified by devclass and devnum. The argument valid reports whether the dev­
ice is supported at all. The list argument reports the track, associations, state and 
measure of the device in the appropriate elements of list. When checking the ele­
ments of list, first check the state element - if state is RELEASED, the other ele­
ments of list are undefined. 

typedef struct { 
Clidstate state; 
Cpromstate prompt; 
Cackstate acknowledgement; 
Cinrep *current; 
Cint n; 
Cint *triggers; 
Cechotype echotyp; 
Cechostate echosta; 
Cint echodat; 

Cstatelist; 

Version B of 17 February 1986 



Inquire LID State 

Errors 

Inquire Trigger State 

Errors 

Inquire Event Queue State 

Chapter 5 - Input 99 

ENOTVSAC [4] 

EINDNOEX [80] 

COl not in proper state: COl shall be in state VSAC. 

Input device does not exist. 

Cerror inquire_lid_state<devclass, devnum, valid, state) 
Cdevoff devclass; /* device type */ 
Cint devnum; /* device number */ 
Clogical *validi /* device supported at all */ 
Clidstate *state; /* table of descriptors */ 

inquire_lid _ state reports the status of a specific input device specified by 
devclass and devnum. The argument valid reports whether the device is sup­
ported at all. The state argument (of type Clidstate) reports the current state 
of the specified input device. 

typedef enum { 
RELEASE, 
NO_EVENTS, 
REQUEST_EVENT, 
RESPOND_EVENT, 
QUEUE_EVENT 

Clidstate; 

ENOTVSAC [4] 

EINDNOEX [80] 

COl not in proper state: COl shall be in state VSAC. 

Input device does not exist 

Cerror inquire_trigger_state(trigger, valid, list) 
Cint trigger; /* trigger number */ 
Clogical *valid; /* trigger state */ 
Ctrigstate *list; /* trigger description table */ 

inquire _ tr igger _ state describes the binding between a trigger and an 
input device. If the state element of the returned argument list is INACTIVE, no 
associations have been made with the trigger. An error is generated if the trigger 
does not exist. 

typedef struct { 
Cactstate state; /* state */ 
Cassoclid *assoc; /* list of associations */ 

Ctrigstatei 

ENOTVSAC [4] 

EINTRNEX [86] 

CGI not in proper state: CGI shall be in state VSAC. 

Trigger does not exist. 

Cerror inquire_event queue state(qstat, qflow) 
Cqtype * qstat; /* queue state */ 
Ceqflow * qflow; /* overflow indicator */ 

inquire_event_ queue_state reports the status of the event queue. qstat 
indicates whether any events are pending. The argument qflow reports if the 
event queue is overflowing. 

~\sun ,~ microsystems 
Version B of 17 February 1986 



100 SunCGI Reference Manual 

Errors 

typedef enum { 
NOT_VALID, 
EMPTY, 
NON_EMPTY, 
ALMOST_FULL, 
FULL 

Cqtype; 

t ypedef enum 
NO_OFLO, 
OFLO 

Ceqflow; 

ENOTVSAC [4] 

~\Slln ,~ microsystems 

CGI not in proper state: CGI shall be in state VSAC. 

Version B of 17 February 1986 



Differences between SunCore and 
SunCGI 

A 

Differences between SunCore and SunCGI ............................................................. 103 

A.l. Output Primitives ........................................................................................................... 103 

Output Aspects of SunCore not Supported by SunCGI .......................... 104 

Output Features of SunCGI not Available in SunCore ........................... 104 

A.2. Segmentation .................................................................................................................... 104 

A.3. Differences in Input Functions between SunCore and SunCGI .......... 104 





A.I. Output Primitives 

A 
Differences between SunCore and 

SunCGI 

This appendix provides an introduction to SunCGI for programmers who have 
programming experience with SunCore or graphics packages based on the ACM 

Core Graphics Specification. The three major differences between Sun Core and 
SunCGI are in the areas of output primitives, segmentation, and input. While 
SunCore is generally a 'higher-level' package, SunCGI has capabilities which 
are not available in SunCore. 

The major differences in drawing objects to the screen between Sun Core and 
SunCGI are that 

1. SunCGI does not support 3D primitives, and 

2. SunCGI does not have floating-point world coordinates or image 
transfonns, and, 

3. SunCGI does not support the concept of current position, and 

4. SunCGI does not support textured color lookup table for monochrome dev­
ices. 

However, SunCGI provides a wider variety of geometrical and raster primitives, 
and more control over the drawing of text. These differences are summarized in 
Table A-I. 

Table A-I Difference in Output Primitives 

Feature I Sun Core I SunCGI 
3D Output Primitives Yes No 
Current Position Yes No 
Textured Color Lookup Tables Yes No 
Polygons with Invisible Edges No Yes 
Circles and Ellipses No Yes 
Cell Arrays No Yes 
Character Clipping No Yes 

~\sun ,~ microsystems 
103 Version B of 17 February 1986 



104 SunCGI Reference Manual 

Output Aspects of SunCore 
not Supported by SunCGI 

Output Features ofSunCGI 
not Available in SunCore 

A.2. Segmentation 

A.3. Differences in Input 
Functions between 
SunCore and SunCGI 

SunCGI does not support 3D output primitives, current position, or textured 
color lookup tables for monochrome devices. Since 3D output primitives are not 
supported, no shading or lighting functions are provided either. Furthermore, no 
rotation or translation functions are provided. Therefore, if you want to rotate a 
geometrical output primitive, these operations must be done by your application 
program. 

Since SunCGI does not maintain the current position of the output 'cursor', rela­
tive drawing functions such ~s polygon_rel_3 are not supported. However, 
the application programmer can implement this function by specifying all coordi­
nates as a base register plus a constant. The base register can be used by the 
application program to maintain the value of the current position. 

For monochrome devices, SunCore interprets the entries in the color lookup 
table with indices greater than one as patterns. SunCGI interprets all color 
lookup table entries greater than zero as black. Patterns in SunCGI are explicitly 
specified in the pattern table and invoked by using the PATIERN or HATCH inte­
rior styles. In addition, while patterns in SunCore are all 4 x 4 matrices, patterns 
in SunCGI have variable dimensions. 

SunCGI offers geometrical and raster primitives not available in Sun Core, as 
well as increased control over the drawing of text. SunCGI provides circles and 
ellipses. SunCGI also supports the cell array which is a raster array whose ele­
ment size is a function of the screen size. SunCGI clips characters in parts if the 
text precision is set to SfROKE. 

SunCGI does not support segmentation. This effect influences the effect of attri­
bute calls. In Sun Core, some attributes (for example, highlighting) apply to 
entire segments. Since no concept of segmentation exists in SunCGI, these attri­
butes are not offered. Furthermore, SunCGI does not allow the saving or restor­
ing of segments to the screen, so screen repainting functions must be completely 
defined by the application program, unless the view surface is initialized as a 
retained view surface and is not resized. 

Sun Core provides device-specific functions for setting input device parameters 
and reading input from them. SunCGI provides no device dependent calls. 
SunCGI has three methods for obtaining the measure of input devices 

1. by first activation (REQUEST EVENT), 

2. by most recent activation (RESPOND EVENT), or 

3. by mediating input requests through the event queue (QUEUE EVENT). 

Furthermore, SunCGI allows the explicit binding of triggers (physical input dev­
ices) to logical input devices. 

~\sun ~~ microsystems 
Version B of 17 February 1986 



B 
Unsupported Aspects of CGI 

Unsupported Aspects of CGI ............................................................................................... 107 





Table B-1 

Table B-2 

B 
Unsupported Aspects of CGI 

SunCGI does not support certain optional aspects of the proposed draft ANSI 
CGI standard. Most notably SunCGI does not support the full constellation of 
negotiation functions or tracking. SunCGI does not allow the resetting of coor­
dinate type, coordinate precision or color specification mode because to do so 
would greatly reduce the speed of application programs written in SunCGI. 
Furthennore, SunCGI does not support echoing functions for input, but provides 
the tracking functions instead. 

Unsupported Control Functions 

Function 
vdc_type 
vdcyrecision_for_integer_points 
vdcyrecision_for_realyoints 
integer~recision 

realyrecision 
indexyrecision 
color selection mode 
coloryrecision 
color_index~recision 

viewport_specification_mode 
makeyicture current 

Unsupported Input Functions 

Function 
setyrompt_state 
set_acknowledgement_state 
echo on 
echo off 
echo update 

The following SunCGI functions are nonstandard (that is, are not in the stan­
dards document) and are included to make CGI easier to use. In addition, 
SunCGI has non-standard view surface arguments for certain control functions. 

~\sun 
~ microsystems 

107 Version B of 17 February 1986 



108 SunCGI Reference Manual 

Table B-3 

Table B-4 

Non Standard Control Functions 

Function 
open_cgi 
open_vws 
activate vws 
deactivate vws 
close vws 
close cgi 

Non Standard Attribute Functions 

Function 
define bundle index 
line_endstyle 
set_global_drawing_ffiode 
pattern_with_fill_color 
fixed font 

The Cinrep structure contains a presently unsupported pick field, for compati­
bility with future segment manipulation capabilities. 

Osun 
~ microsystems 

Version B of 17 February 1986 



c 
Type and Structure Definitions 

Type and Structure Definitions .......................................................................................... 111 





c 
Type and Structure Definitions 

This appendix provides a list of the structures and enumerated types used by 
SunCGI functions. In addition, a list of useful constants defined in 
<cgiconstants. h> is given. 

/*devices*/ 
4f:define BW1DD 1 
4f:define BW2DD 2 
4f:define CG1DD 3 
4f:define PIXWINDD 4 
4f:define CGPIXWINDD 5 
4f:define GP1DD 6 
4f:define CG2DD 7 

4f:define VWSURF NEWFLG 1 

/* limits */ 
4f:define MAXVWS 5 
4f:define MAXTRIG 6 
4f:define MAXASSOC 5 
4f:define MAXEVENTS 1024 
4f:define MAXAESSIZE 10 /* maximum number of AES table entries */ 
4f:define MAXNUMPATS 50 /* maximum number of pattern table entries */ 
4f:define MAXPATSIZE 256 /* maximum pattern size */ 
4f:define MAXPTS 1024 /* maximum number of pts per polygon */ 
4f:define MAXCHAR 256 /* maximum number of chars in a string */ 
4f:define OUTFUNS 67 /* number of output functions */ 
fdefine INFUNS 22 /* number of input functions */ 
4f:define SMALL_CHAR 6 /* minimum character size */ 
4f:define DEVNAMESIZE 20 

The type and structure definitions that follow can be found in the header file 
<cgidefs. h>. 

typedef enum 
ACK_ON, 
ACK OFF 

Cackstatei 

typedef enum 
ACTIVE, 
INACTIVE 

111 Version B of 17 February 1986 



112 SunCGI Reference Manual 

} Cactstate: 

typedef enum 
CLEAR, 
NO_OP, 
RETAIN 

Cacttype: 

typedef enum 
INDIVIDUAL, 
BUNDLED 

Casptype; 

typedef struct 
Cint n; 
Cdevoff *class: 
Cint *assoc: 

Cassoclid: 

typedef enum 
VALID_DATA, 
TIMED_OUT, 
DISABLED, 
WRONG_STATE, 
NOT SUPPORTED 

Cawresult: 

typedef enum 
BITNOT, 
BITTRUE 

Cbitmaptype: 

typedef enum { 
TRANSPARENT, 
OPAQUE 

Cbmode: 

typedef struct 
Clintype line_type: 
Cfloat line_width; 
Cint line_color: 
Cmartype marker_type: 
Cfloat marker_size: 
Cint marker_color; 
Cintertype interior_style: 
Cint hatch_index: 
Cint pattern_index: 
Cint fill_color: 
Clintype perimeter_type: 
Cfloat perimeter_width: 
Cint perimeter_color: 
Cint text_font: 
Cprectype text-precision: 

~\sun ,~ microsystems 
Version B of 17 February 198c 



Appendix C - Type and Structure Definitions 113 

Cfloat character_expansion; 
Cfloat character_spacing; 
Cint text_color; 

Cbunatt; 

typedef struct 
unsigned char *ra; 
unsigned char *ga; 
unsigned char *ba; 
Cint n; 

Ccentry; 

typedef enum 
OPEN, 
CLOSE 

Ccflag; 

typedef struct 
Cint numloc; 
Cint numval; 
Cint numstrk; 
Cint numchoice; 
Cint numstr; 
Cint numtrig; 
Csuptype event_queue; 
Csuptype asynch; 
Csuptype coord_map; 
Csuptype echo; 
csuptype tracking; 
Csuptype prompt; 
Csuptype acknowledgement; 
Csuptype trigger manipUlation; 

Ccgidesctab; 

typedef enum 
YES, 
NO 

Cchangetype; 

typedef enum 
CLIP, 
NOCLIP, 
CLIP RECTANGLE 

Cclip; 

typedef enum 
CHORD, 
PIE 

Cclosetype; 

typedef enum 
REPLACE, 
AND, 

~\sun ,~ microsystems 
Version B of 17 February 1986 



114 SunCGI Reference Manual 

OR, 
NOT, 
XOR 

Ccombtypei 

typedef struct 
Cint Xi 

Cint Yi 
Ccoori 

typedef struct 
Ccoor *ptlist; 
Cint ni 

Ccoorlisti 

typedef struct 
Ccoor *upperi 
Ccoor *loweri 

Ccoorpairi 

typedef enum 
I C_LOCATOR , 
Ie_STROKE, 
I C_VALUAT OR , 
IC_CHOICE, 
IC_STRING, 
IC PICK 

Cdevoffi 

typedef enum 
E_TRACK, 
E_ECHO, 
E TRACK_OR_ECHO, 
E TRACK AND ECHO 

Cechoavi 

typedef struct 
Cinrep *echosi 
Cint ni 

Cechodatalsti 

typedef enum { 
ECHO_OFF, 
ECHO_ON, 
TRACK ON 

Cechostatei 

typedef struct 
Cechostate *echosi 
Cint ni 

Cechostatelsti 

typedef enum { 

~\sun ~ mlcrosystems 
Version B of 17 February 198f 



NO_ECHO, 
PRINTERS_FIST, 
HIGHLIGHT, 
RUBBER_BAND_BOX, 
DOTTED_LINE, 
SOLID_LINE, 
STRING_ECHO, 
XLINE, 
YLINE 

Cechotype; 

typedef struct 
Cint ni 

Cechoav *elements; 
Cechotype *echosi 

Cechotypelsti 

typedef enurn 
NATURAL, 
POINT, 
BEST FIT 

Cendstylei 

typedef enum 
NO_OFLO, 
OFLO 

Ceqflowi 

typedef enum 
NO_OFLO, 
OFLO 

Ceqflowi 

typedef Cint Cerror; 

typedef enurn 
INTERRUPT, 
NO_ACTION, 
POLL 

Cerrtype; 

typedef enurn 
CLIP_RECT, 
VIEWPORT, 
VIEWSURFACE 

Cexttype; 

typedef struct 
Cintertype style; 
Cflag visible; 
Cint color; 
Cint hatch_index; 
Cint pattern_index; 

~\sun ~~ microsystems 

Appendix C - Type and Structure Definitions 115 

Version B of 17 February 1986 



116 SunCGI Reference Manual 

Cint index; 
Clintype pstyle; 
Cfloat pwidth; 
Cint pcolor; 

Cfillatt; 

typedef enum 
OFF, 
ON 

Cflag; 

typedef struct 
Cint n; 
Cint *num; 
Casptype *value; 

Cflaglist; 

typedef char Cchar; 

typedef float Cfloat; 

typedef enum 
FREEZE, 
REMOCE 

Cfreeze; 

typedef enum 
LFT, 
CNTER, 
RGHT, 
NRMAL, 
CNT 

Chaligntype; 

typedef enum { 
NO_INPUT, 
ALWAYS_ON, 
SETTABLE, 
DEPENDS ON LID 

Cinputability; 

typedef struct { 
Ccoor *xypt; 
Ccoorlist *points; 
Cfloat val; 
Cint choice; 
Cchar *string; 
Cpick *pick; 

Cinrep; 

typedef float Cfloat; 

typedef int Cint; 

~\sun ,~ microsystems 
Version B of 17 February 1986 



Appendix C - Type and Structure Definitions 117 

typedef enum 
HOLLOW, 
SOLIDI, 
PATTERN, 
HATCH 

Cintertype; 

typedef struct 
Clogical sample; 
Cchangetype change; 
Cint numassoc; 
Cint *trigassoc; 
Cliddescript prompt; 
Cliddescript acknowledgement; 
Cechotypelst *echo; 
Cchar *classdep; 
Cstatelist state; 

Cliddescript; 

typedef enum { 
RELEASE, 
NO_EVENTS, 
REQUES T _EVENT, 
RESPOND_EVENT, 
QUEUE_EVENT 

Clidstate; 

typedef struct 
Clintype style; 
Cfloat width; 
Cint color; 
Cint index; 

Clinatt; 

typedef enum 
SOLID, 
DOTTED, 
DASHED, 
DASHED_DOTTED, 
DASH_DOT_DOTTED, 
LONG DASHED 

Clintype; 

typedef enum 
L_FALSE, 
L TRUE 

Clogical; 

typedef struct 
Cmartype type; 
Cfloat size; 
Cint color; 
Cint index; 

~\sun ~~ microsys1ems 
Version B of 17 February 1986 



118 SunCGI Reference Manual 

} Cmarkatt; 

typedef enum 
DOT, 
PLUS, 
ASTERISK, 
CIRCLE, 
X 

Cmartype; 

typedef enum 
SIMULTANEOUS_EVENT FOLLOWS, 
SINGLE EVENT 

Cmesstype; 

typedef enum 
RIGHT, 
LEFT, 
UP, 
DOWN 

Cpathtype; 

typedef struct 
Cint cur_index; 
Cint row; 
Cint column; 
Cint *colorlisti 
Ccoor *point; 
Cint dx; 
Cint dy; 

Cpatternatt; 

typedef struct 
int segid; 
int pickidi 

Cpick; 

typedef struct pixrect Cpixrect; 

typedef enum { 
STRING, 
CHARACTER, 
STROKE 

Cprectype; 

typedef enum 
PROMPT_OFF, 
PROMPT ON 

Cpromstate; 

typedef enum { 
NOT_VALID, 
EMPTY, 

Version B of 17 February 1986 



Appendix C - Type and Structure Definitions 119 

NON_EMPTY, 
ALMOST_FULL, 
FULL 

Cqtype; 

typedef enum 
ABSOLUTE, 
SCALED 

Cspecmode; 

typedef struct 
Clidstate state; 
Cpromstate prompt; 
Cackstate acknowledgement; 
Cinrep *current; 
Cint n; 
Cint *triggers; 
Cechotype echotyp; 
Cechostate echosta; 
Cint echodat; 

Cstatelist; 

typedef enum 
NONE, 
REQUIRED_FUNCTIONS_ONLY, 
SOME_NON_REQU I RED_FUNCT IONS , 
ALL_NON_REQUIRED_FUNCTIONS 

Csuptypei 

typedef struct 
Cint fontseti 
Cint indexi 
Cint current_fonti 
Cprectype precision; 
Cfloat exp_factori 
Cfloat space; 
Cint colori 
Cint height; 
Cfloat basexi 
Cfloat baseYi 
Cfloat UpXi 
Cfloat UPYi 
Cpathtype path; 
Chaligntype halign; 
Cvaligntype valign; 
Cfloat hcalindi 
Cfloat vcalindi 

Ctextatti 

typedef enum 
NOT_FINAL, 
FINAL 

Ctextfinali 

~\sun ~~ microsystems 
Version B of 17 February 1986 



120 SunCGI Reference Manual 

typedef struct { 
Cchangetype change; 
Cassoclid *numassoc; 
Cint maxassoc; 
Cpromstate prompt; 
Cackstate acknowledgement; 
Cchar *name; 
Cchar *description; 

Ctrigdis; 

typedef struct 
Cactstate state; 
Cassoclid *assoc; 

Ctrigstate; 

typedef enum 
TOP, 
CAP, 
HALF, 
BASE, 
BOTTOM, 
NORMAL, 

CONT 

Cvaligntype; 

typedef enum 
INTEGER, 
REAL, 
BOTH 

Cvdctype; 

typedef struct 
Cchar screenname[DEVNAMESIZE]; 
Cchar windowname[DEVNAMESIZE]; 
Cint windowfd; 
Cint retained; 
Cint dd; 
Cint cmapsize; 
Cchar cmapname[DEVNAMESIZE]; 
Cint flags; 
Cchar **ptr; 

Cvwsurf; 

~\sun ,~ microsystems 
Version B of 17 February 1986 



D 
Error Messages 

Error Messages ............................................................................................................................... 123 

D.1. Successful Return (0) ................................................................................................... 123 

D.2. State Errors (1-5) ............................................................................................................ 123 

D.3. Control Errors (10-16) ................................................................................................. 124 

D.4. Coordinate Definition (20-24) ................................................................................. 124 

D.5. Output Attributes (30-51) .......................................................................................... 125 

D.6. Output Primitives (60-70) ......................................................................................... 128 

D.7. Input (80-97) ..................................................................................................................... 129 

D.8. Implementation Dependent (110-112) ............................................................... 131 

D.9. Possible Causes of Visual Errors ........................................................................... 131 



124 SunCGI Reference Manual 

D.3. Control Errors (10-16) 

D.4. Coordinate Definition 
(20-24) 

ENOTOPOP [5] 

EVSIDINV [10] 

ENOWSTYP [11] 

EMAXVSOP [12] 

EVSNOTOP [13] 

EVS I SACT [14] 

EVSNTACT [15] 

EINQALTL [16] 

EBADRCTD [20] 

.sun 
~ mlcrosystems 

CGI not in proper state CGI should be 
in state CGOP, VSOP, or VSAC. The function 
which generated the error requires that SunCGI is at least 
initialized. If this error is received, make sure that your 
application program has called open _ cgi, or that it has 
not recently called close _ cgi. 

Specified view surface name is invalid. 
The view surface name specified by the name argument 
has never been opened or if it has been opened, it has since 
been closed. Corrective action involves opening the view 
surface or changing the value of the name argument. 

Specified view surface type does not 
exist. The application program has specified a type of 
view surface which is not supported by SunCGI. Correc­
tive action involves changing the type of view surface. 

Maximum number of view surfaces already 
open. An attempt was made to open a view surface 
when the maximum number of view surfaces is already 
open. Corrective action involves removing one call to 
open_vws. 

Specified view surface not open. An 
attempt was made to close a view surface which is already 
closed. Corrective action involves removing one call to 
close vws. 

Specified view surface is active. An 
attempt was made to activate a view surface which is 
already activated. Corrective action involves removing 
one call to activate vws. 

Specified view surface is not active. 
An attempt was made to deactivate a view surface which 
has already been deactivated. Corrective action involves 
removing one call to deactivate_ vws. 

Inquiry arguments are longer than list. 
A call to inquiry negotiation function with indices greater 
than the number of supported functions was made. The 
returned list is always empty. Corrective action may be 
facilitated by obtaining the size of the list by using the 
inquire_device_class function. 

Rectangle definition is invalid. The 
application program has made a call to vdc _extent or 
device_viewport with the coordinates of both comers 
equal in the x or y dimensions or both. Corrective action 
involves changing one of the arguments to the function 
which generated the error so that the values of the two 

Version B of 17 February 1981 



D.5. Output Attributes (30-
51) 

EBDVIEWP [21] 

ECLIPTOL [22] 

ECLIPTOS [23] 

EVDCSD IL [24] 

EBTBUNDL [30] 

EBBDTBDI [31] 

EBTUNDEF [32] 

~\sun ~~ mlcrosystems 

Appendix D - Error Messages 125 

arguments are different in both the x and y dimensions. 

Viewport is not within Device Coordi­
nates. A call to device_viewport has been made 
which specifies a viewport which is larger than the view 
surface. Corrective action involves making the arguments 
to device_viewport less than the view surface size. 
The size of the view surface can be obtained by calling the 
inquire yhysical_ coordina te _ system func­
tion. 

Clipping rectangle is too large. The clip­
ping rectangle would exceed the boundaries of VDC space. 
Corrective action involves resetting the clipping rectangle 
to be within limits of VDC space. 

Clipping rectangle is too small. The clip­
ping rectangle would define an area of screen space 
smaller than one pixel. The clipping rectangle remains 
unchanged. Since the occurrence of this error is partially a 
function of the size of the view surface, changing the size 
of the view surface may be a viable alternative to changing 
the size of the clipping rectangle. 

VDC space definition is illegal. Oneor 
more of the arguments to the vdc _extent function 
exceeds the acceptable limits (-32767 to 32767) or coordi­
nates of the lower-left hand comer are greater than the 
coordinates of the upper-right hand comer. Corrective 
action involves changing the arguments to 
vdc extent. 

ASF is BUNDLED. Error 16 is generated when 
attempting to call an individual attribute function when the 
attributes are specified by entries in the attribute environ­
ment table. Calls to these functions have no effect on the 
current attributes. Co rre cti ve action includes resetting the 
attribute environment selector to BUNDLED by using the 
set attribute environment selector func-- - -
tion. 

Bundle table index out of range. Theentry 
in the bundle table exceeds the size of the table. The only 
corrective action is to change the value of the index argu­
ment. 

Bundle table index is undefined. Theentry 
in the attribute environment table specified by the most 
recent call to 
set attribute environment table index - - --
has not been defined by SunCGI or the application pro-
gram. 

Version B of 17 February 1986 



126 SunCGI Reference Manual 

EBADLINX [33] 

EBDWIDTH [34] 

ECINDXLZ [35] 

EBADCOLX [36] 

EBADMRKX [37] 

EBADSIZE [38] 

EBADFABX [39] 

EPATARTL [40] 

EPATSZTS [41] 

~\sun ~~ microsystems 

Polyline index is invalid. The polyline bun­
dle is not defined. Corrective action involves changing the 
index argument to polyline_bundle_index, or by 
defining the polyline bundle index. 

Width must be nonnegative. Thewidthofa 
perimeter or line must be greater than or equal to zero. 
The current value of the perimeter width or line width 
remains unchanged. Changing the value of the width . 
argument to a non-negative value will correct this error. 

Color index is less than zero. The value of 
the index argument to one of the attribute functions or the 
color entry in one of the bundles is negative. Corrective 
action involves changing the value of the color. 

Color index is invalid. The color index argu­
ment to one of the attribute functions or the color entry in 
one of the bundles is not defined in the colormap. Indices 
in the color lookup table must be between 0 and 255 for 
the Sun 8-bit per pixel frame buffer. Any color 
specification outside of this range is ignored. Correcti ve 
action involves changing the value of the color. 

Polymarker index is invalid. The poly­
marker bundle is not defined. Corrective action involves 
changing the index argument to 
polymarker_bundle_index, or by defining the 
polymarker bundle index. 

Size must be nonnegative. The size of a 
marker or line must be greater or equal to zero. The 
current value of the marker size remains unchanged. 
Changing the value of the size argument to a non-negative 
value will correct this error. 

Fill area index is invalid. The fill area bun­
dle is not defined. Corrective action involves changing the 
index argument to fill_area _bundle_index, or by 
defining the polymarker bundle index. 

Pattern array too large. The pattern array 
must contain less than 257 elements. The pattern is not 
entered into the pattern table. Corrective action involves 
designing a new pattern. 

Pattern size too small. The pattern size must 
be at least two-by-two. The pattern is not entered into the 
pattern table. Corrective action could include designing a 
new pattern which includes several replications of the ori­
ginal pattern. 

Version B of 17 February 1986 



ESTYLLEZ [42] 

ENOPATNX [43] 

EPATITOL [44] 

EBADTXTX [45] 

EBDCHRIX [46] 

ETXTFLIN [47] 

ECEXFOOR [48] 

ECHHTLEZ [49] 

ECHRUPVZ [50] 

~\sun ,~ microsyslems 

Appendix 0 - Error Messages 127 

Style (pattern or hatch) index is less 
than zero. All indices in the pattern table must be 
positive. To fix this mistake, change the argument to the 
pattern_index or the hatch_index or the entries 
in the bundle table. 

Pattern table index not defined. The argu­
ment to the hatch_index or pattern_index func­
tion or the entry bundle table should be reset to correspond 
to a defined value. 

Pattern table index too large. Theindex 
argument to pattern_table exceeded the bounds of 
the pattern table. The pattern is not entered into the pat­
tern table. Redefining the pattern index to be between one 
and ten will eliminate the error. 

Text index is invalid. The text bundle is not 
defined. Corrective action involves changing the index 
argument to text_bundle _ index, or by defining the 
text bundle index. 

Character index is undefined. All other 
character indices besides 1 are undefined in SunCGI. The 
new character index is simply ignored. You are advised to 
ignore the character_index function entirely. 

Text font is invalid. The text fonts range from 
1 to 6. All other integers do not correspond to actual fonts. 
Corrective action involves changing the argument to the 
text_font_index function or resetting the font index 
in the text bundle 

Expansion factor is out of range. The 
character expansion factor or the character space expan­
sion factor would result in a character or a space which 
would exceed the bounds of the screen or would result in a 
character smaller than the limitations of the character 
drawing software. To eliminate this error, reset the 
offending value to within an acceptable range (0.1-2.0 are 
reasonable guidelines). 

Character height is less than or equal 
to zero. The character height must be positive. 
Corrective action involves changing the argument to the 
chaiGctei height function or u'1e element of the text bun­
dle. 

Length of character up vector or char­
acter base vector is zero. Both the character 
up vector and the character base vector must be nonzero. 
Corrective action involves changing the arguments to the 
character orientation function or the element of 

Version B of 17 February 1986 



128 SunCGI Reference Manual 

D.6. Output Primitives (60-
70) 

ECOLRNGE [51] 

ENMPTSTL [60] 

EPLMTWPT [61] 

EPGMTHPT [62] 

EGPLISFL [63] 

EARCPNCI [64] 

EARCPNEL [65] 

ECELLATS [66] 

~\sun ~~ microsystems 

the text bundles. 

RGB values must be between 0 and 255. 
The red, green, and blue values are only defined between 0 
and 255. The call to color_table which produced the 
error is ignored. Corrective action requires respecifying 
the values of the arguments to color_table. 

Number of points is too large. The number 
of points exceeds 255. Change the n element of the 
Ccoorlist structure to a value less than or equal to 255. 

polylines must have at least two 
points. Change the n element of the Ccoorlist 
structure to a value greater than or equal to 2 and add the 
corresponding points to the ptUst element. 

Polygons must have at least three 
points. Change the n element of the Ccoorlist 
structure to a value greater than or equal to 3 and add the 
corresponding points to the ptUst element. 

Global polygon list is full. Thenumberof 
points on the global polygon list exceeds 256. The points 
which exceed 256 are ignored. This error can be corrected 
by inserting a call to polygon (which clears the global 
polygon list by displaying its contents) before the call to 
partialyolygon which caused the overflow. 

Arc points do not lie on circle. The start­
ing and ending points of either an open or close circular 
arc do not lie on the perimeter of the circle described by 
the arguments el and rad. If this error occurs, the arc is 
not drawn. Corrective action may include determination 
of the endpoints with the application program (for example 
c2.x = rad*cos(start_angle);). 

Arc points do not lie on ellipse. The 
starting and ending points of either an open or close ellipti­
cal arc do not lie on the perimeter of the ellipse described 
by the arguments cl ,e2, and c3. If this error occurs, the 
arc is not drawn. Corrective action may include determi­
nation of the endpoints with the application program (see 
error 11). 

Cell array dimensions dx,dy are too 
small. The dimensions of the cell array are too small 
for a cell array element to be mapped onto one pixel of the 
view surface. The cell array is not drawn. This error 
depends on the physical size of the view surface as well as 
the limits of VDC space. Therefore, corrective action 
might require changing the size of the view surface, VDC 

Version B of 17 February 1981 



D.7. Input (80-97) 

ECELLPOS [67] 

ECELLTLS [68] 

EVALOVWS [69] 

EPXNOTCR [70] 

E INDNOEX [80] 

EINDINIT [81] 

EINDALIN [82] 

EINASAEX [83] 

EINAIIMP [84] 

~\sun ~~ microsystems 

Appendix D - Error Messages 129 

space, or both. 

Cell array dimensions must be positive. 
Negative cell array dimensions are not permitted. Correc­
tive action requires changing the parameters to the cell 
array function. 

Is not used. 

Value outside of view surface. A coordi­
nate of a pixel array is outside the physical range of the 
view surface. The pixel array is not drawn. Change the 
arguments to the pixel_array or 
bitblt_source_array 

Pixrect not created. One of the BitBlt functions 
required a user-defined pixreet, and that pixreet had not 
been created. Corrective action involves creating a pixreet 
in your application program before calling the offending 
BitBlt function. 

Input device does not exist. The input dev­
ice specification (specified by the devclass and devnum 
arguments of most input functions) does not exist. Correc­
tive action involves resetting the device specification to a 
valid device. 

Input device not initialized. Acall~an 
input device function specified a device which was not ini­
tialized. Calls which generate this error have no effect. A 
call to initialize_input_device should be 
inserted before the call generating the error. 

Input device already initialized. An 
attempt to initialize a device which has previously been 
initialized. The parameters to the offending call to 
initialize_input_device are ignored. Removing 
the offending call to initialize_input_device 
will correct this error. 

Association already exists. An attempt is 
being made to bind the input device to a trigger to which it 
has been previously bound. The status of the input device 
trigger are unchanged. This error is purely informational 
and no corrective action is required. 

Association is impossible. An attempt is 
being made to bind the input device to a trigger to which it 
cannot be bound. For example a IC _STRING device can­
not be bound to a mouse button. To eliminate this error, 
change the arguments to the offending call of the ass 0-

ciate function. 

Version B of 17 February 1986 



130 SunCGI Reference Manual 

EINNTASD [85] 

E INTRNEX [86] 

EINNECHO [87] 

EINECHON [88] 

EINEINCP [89] 

EINERVWS [90] 

EINETNSU [91] 

EINENOTO [92] 

EIAEVNEN [93] 

EINEVNEN [94] 

~\sun ~ microsystems 

Association does not exist. An attempt to 
set-up call an input function which specifies a device with 
no associated triggers was made. The offending call is 
ignored. Corrective action involves calling associate 
before the offending call is issued. 

Trigger does not exist. An attempt was made 
to associate or inquire about a trigger which has a number 
less than one or greater than five. The offending call is 
ignored. To eliminate the error, change the trigger 
number. 

Input device doe s not echo. CHOICE devices 
do not support echo. Corrective action requires removing 
the call to echo _on from the application program. 

Echo already on. A call to echo_on has been 
made to a device whose echoing ability has already been 
activated. To stop generation of the error either remove 
the offending call or change the arguments to specify a 
device whose echo is currently off. 

Echo incompatible with existing echos. 
Although SunCGI can support certain combinations of 
echos (such as IC _STRING and IC _LOCATOR), not all 
combinations are supported. The easiest remedy is to 
remove the most recent call to echo_on from the appli­
cation program. 

Echoregion larger than view surface. 
Error 91 is generated when the rectangle defined by the 
echoregion argument exceeds the limits of VDC space. To 
eliminate this error, change the values to the echoregion 
argument to be within the confines of VDC space. 

Echo type not supported. All devices except 
the IC _STROKE device only support one type of echo. 
Therefore, assigning a value to echotype other than zero or 
one will produce an error for any device except 
IC_STROKE. Corrective action involves changing the 
value of the echotype argument. 

Echo not on. The device echoing has not been turned 
on. Either remove the call to echo_off, tum the echo 
on, or change the device specification. 

Events already enabled. Events have already 
been enabled for the specified device. The solution is to 
remove the offending call to enable_events. 

Events not enabled. Events have not been 
enabled for the specified device. The solution is to include 
a call to enable event s before a call to the 

Version B of 17 February 198 



D.8. Implementation 
Dependent (110-112) 

D.9. Possible Causes of Visual 
Errors 

EBADDATA [95] 

ESTRSIZE [96] 

EINQOVFL [97] 

EMEMSPAC [110] 

ENOTCSTD [111] 

ENOTCCPW [112] 

~\sun ,~ microsystems 

Appendix D - Error Messages 131 

await_event, sample_event,or 
request_event function is made with the specified 
device as input parameter. 

Contents of input data record are 
invalid. The value argument of initialize_lid 
function is out of range or is the wrong type. The solution 
is to change the contents value argument. 

Length of initial string is greater 
than the implementation defined max­
imum. The initial string in the value argument is greater 
than 80 characters. Shorten the string. 

Input queue has overflowed. The event queue 
can no longer record input events. Solutions include flush­
ing the event queue or dequeueing events with the 
await_event, sample_event, or 
request_event function. 

Space allocation has failed. A function 
which was supposed to work has failed. The only action 
which you can take is to eliminate other processes which 
may be using memory. If you have eliminated all other 
processes, and this error is still generated, please contact 
SUN Microsystems. 

Function or argument not compatible 
wi th standard CGI. A function call is not sup­
ported by the CGI library. 

Function or argument not compatible 
wi th CGIPW mode. A function call is not supported 
by the cgipw library. 

Version B of 17 February 1986 



132 SunCGI Reference Manual 

Table D-l Possible Causes of Visual Errors 

Behavior 
Segmentation fault for 
open_vws 

No primitives displayed 

Primitives displayed on 
undesired view surfaces 

Segmentation fault for inquiry 
functions 

~\sun ,~ microsystems 

I Possible Cause 
devdd argument for 
open _ vws is declared as a 
pointer (the address of devdd 
should be passed). 

View surface not initialized. 
View surface not active. 
VDC to device coordinate map­
ping makes objects too small. 
Cli pping rectangle is too small 
and clipping is ON. 
Perimeter visibility is set to 
OFF and interior style is set to 
HOLLOW. 
line color or fill color is set to 
background color. 

Undesired view surfaces have 
not been deactivated. 

passing variable instead of 
address ( & ) of variable. 

Version B of 17 February 19l 



Table D-2 Primitive-Specific Errors 

Behavior 
Polylines or poly markers aren't 
displayed. 

Polygon borders aren't 
displayed. 

Circles aren't displayed. 

Ellipses aren't displayed. 

Text isn't displayed. 

Cell arrays aren't displayed. 

Cell arrays aren't displayed on 
all active view surfaces. 

Pixel arrays aren't displayed. 

BitBlts aren't displayed. 

• \sun 
~ microsystems 

I 

Appendix D - Error Messages 133 

Possible Cause 
Width or size is zero. 

Color is the same as back­
ground. 

Width is zero. 

Color is the same as back­
ground. 
Perimeter visibility is set to 
OFF. 

Width or size is zero. 
Color is the same as back­
ground. 

Width or size is zero. 
Color is the same as back­
ground. 

Width or size is zero. 
Color is the same as back­
ground. 
character height is too small. 
coordinates are outside the 
range ofVDC space or the clip­
ping rectangle. 

dx or dy arguments are too 
small. 
Color is the same as back­
ground. 

Mapping from cell size to view 
surface for smaller view sur­
faces is too small. 

Location is outside of view sur­
face or clipping rectangle. 
Color is the same as back­
ground. 

Width or size is zero. 
Color is the same as back­
ground . 

Version B of 17 February 1986 



134 SunCGI Reference Manual 

Table D-3 Attribute Errors 

Behavior 
Attribute setting has no effect 

Text attributes have no effect 

PATTERN fill is the same as 
HATCH 

PATTERN fill is different on 
different view surfaces. 

Table D-4 Input-specific Errors 

Behavior 
Input device does not report 

Input device does not echo 

Input device does not echo on 
whole view surface 

~\sun ~~ microsystems 

I 

I 

Possible Cause 
attribute ASF is set to BUN~ 
DLED. 

text precision is set to CHAR­
ACfER. 
attribute ASF is set to BUN­
DLED. 

pattern index and hatch index 
are identical 
pattern size is too small 

View surfaces are of different 
size. 

Possible Cause 
device not initialized 

echo not initialized 

echo region not set to whole 
view surface. 

Version B of 17 February 1981 



E 
Sample Programs 

Sample Programs .......................................................................................................................... 137 

E.l. Martini Glass ..................................................................................................................... 137 

E.2. Tracking Box ..................................................................................................................... 138 





E.l. Martini Glass 

E 
Sample Programs 

The following program draws a martini glass. The program exits after 10 
seconds. 

~\sun ,~ microsystems 
137 Version B of 17 February 1986 



138 SunCGI Reference Manual 

#include <cgidefs.h> 

Ccoorlist martinilist; 
Ccoor glass_coords[10] = { 0,0, 

-10,0, 
-1,1, 
-1,20, 
-15,35, 
15,35, 
1,20, 
1,1, 
10,0, 

0, ° }; 
Ccoor water_coords[2] = { -12,33, 

Ccoor vpll 
Ccoor vpur 

main () 
{ 

12,33 }; 
-50,-10 }; 
50,80 }; 

Cvwsurf device; 
Cint name; 

NORMAL_VWSURF(device, PIXWINDD); 

open_cgi () ; 
open_vws(&name, &device); 
vdc_extent(&vpll, &vpur); 

martinilist.ptlist = glass_coords; 
martinilist.n = 10; 
polyline(&martinilis~); 

martinilist.ptlist = water_coords; 
martinilist.n = 2; 
polyline(&martinilist); 

sleep(10); 
close_vws(name); 
close_cgi () ; 

Figure E-l Martini Glass Example Program 

E.2. Tracking Box The following program demonstrates the use of the CGI input functions. A 
square is displayed on the screen and moved with the mouse. The program exits 
if the mouse is still for five seconds. 

~\sun ~~ microsystems 
Version B of 17 February 1981 



Appendix E - Sample Programs 139 

*include <cgidefs.h> 
*define DEVNUM 1 /* device number */ 
*define MOUSE POSITION 5 /* trigger number */ 
*define TIMEOUT (5 * 1000 * 1000) /* timeout in microseconds */ 

Ccoor ulc 
Ccoor lrc 

{1000, 2000}; 
{2000, 1000}; 

main () 
{ 

cint name; 
Cvwsurf device; 
Cawresult stat; 
Cinrep sample; 
Ccoor samp; 
Cint trigger; 

/* device measure value */ 
/* LOCATOR's x,y position */ 
/* trigger number */ 

NORMAL_VWSURF(device, PIXWINDD); 
sample.xypt = &samp; 
samp.x 0; 
samp.y = 27000; 

open_cgi () ; 
open_vws(&name, &device); 
set_global_drawing_mode(XOR); 
initialize_lid(IC_LOCATOR, DEVNUM, &sample); 
associate (MOUSE_POSITION, IC_LOCATOR, DEVNUM); 
rectangle (&lrc, &ulc); /* draw first rectangle */ 

/* wait TIMEOUT micro-seconds for input and check the status */ 
while (request_input (IC_LOCATOR, DEVNUM, TIMEOUT, 

&stat, &sample, &trigger), (stat == VALID_DATA» 
if «sample.xypt->x != ulc.x) I I (sample.xypt->y != lrc.y) ) { 

rectangle (&lrc, &ulc); 
lrc.y sample.xypt->y; /* move to new location */ 
lrc.x (sample.xypt->x + 1000); 
ulc.x sample.xypt->x; 
ulc.y (sample.xypt->y + 1000); 
rectangle (&lrc, &ulc); 

dissociate(MOUSE_POSITION, IC LOCATOR, DEVNUM); 
release_input_device(IC_LOCATOR, DEVNUM); 
close_vws(name) ; 
close_cgi(); 

Figure E-2 Tracking Box Example Program 

~\sun ~~ microsystems 
Version B of 17 February 1986 





F 
Using SunCGI and Pixwins 

Using SunCGI and Pixwins .................................................................................................. 143 

F.1. cgipw Functions .......................................................................................................... 143 

Open Pixwin CGI ......................................................................................................... 143 

Open a CGI Pixwin ...................................................................................................... 143 

Close a CGI Pixwin ..................................................................................................... 144 

Close Pixwin CGI ......................................................................................................... 144 

F.2. Using cgipw ................................................................................................................... 144 

F.3. cgipw Functions .......................................................................................................... 145 

F.4. Example Program ............................................................................................................ 147 





F.1. cgipw Functions 

Open Pixwin CGI 

Open a CGI Pixwin 

F 
Using SunCGI and Pixwins 

The CGI standard does not provide facilities for dealing with multiple overlap­
ping windows. An application program can use SunCGI and Pixwins features 
through the cgipw functions. These functions combine the richness of CGI's 
primitives with the ability of Pixwins to manage multiple (potentially overlap­
ping) windows. 

This appendix assumes familiarity with both SunCGI and Pixwins. See Sun­
View Programmer's Guide for more information on Pixwins. An example pro­
gram is included at the end of this appendix in Figure F-l. 

If you decide to use CGI and Pixwins, you may not use the standard SunCGI 
calls. Instead you must use cgipw calls. For example, cgipw yolyline 
replaces polyline. The first argument of each cgipw function is a pixwin 
descriptor of type Ccgiwin. The file <cgipw. h> must be included in the 
cgipw application program instead of <cgidefs. h>. 

The four functions openyw_cgi, open_cgiyw, close_cgiyw and 
close yw _ cgi are necessary for managing the SunCGI - Pixwins interface. 

Cerror open-pw_cgi() 

open yw _ cgi initializes CGI by setting the attributes to the default values and 
setting the VDC to device coordinate mapping to 1: 1. Therefore, all input and 
output primitives will use device coordinates. The origin of the device coordi­
nates is in the upper left-hand comer instead of the lower left-hand corner. The 
entire window is used, not just a square region within it. No standard errors are 
specified for openyw_cgi. If openyw_cgi returns a nonzero result, then 
the initialization failed. openyw_cgi corresponds to open_cgi. 

Cerror open_cgi-pw(pw, desc, name) 
struct pixwin *pw; /* pixwin *1 
Ccgiwin *desc; /* CGI pixwin descriptor */ 
Cint *name; 

open_cgiyw infonns CGI of the pixwin pointed to by pw. Calls to CGI primi­
tives may then reference this pix win. However, CGI does not guarantee that a 
pixwin exists or is in any other way properly initialized. desc is a pointer to a 
CGI pixwin descriptor allocated by the application program and defined by 
open_cgiyw. It will be used as the first argument to cgipw functions. Calls 

143 Version B of 17 February 1986 



144 SunCGI Reference Manual 

Errors 

Close a CGI Pixwin 

Errors 

Close Pixwin CGI 

Errors 

F.2. Using cgipw 

may also be made to any pixwin function (see example program). Multiple calls 
to open_cgi_pw with pointers to different Ccgiwin structures will allow 
primitives to be displayed on multiple view surfaces by repeating calls to cgipw 
functions with different Ccgiwin descriptors. Attributes are local to the pixwin 
associated with the CGI descriptor passed to the cgipw attribute functions. 
open _ cgi yw corresponds to open _ vws. open yw _ cgi must be called 
prior to open _ cgi yw; otherwise, error 111 is returned. Other errors (as with 
open _ vws may also be detected. 

ENOTOPOP [5] 

ENOWSTYP [11] 

EMAXVSOP [12] 

EMEMSPAC [110] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface type does not exist 

Maximum number of view surfaces already open. 

Space allocation has failed. 

Cerror close_cgi-pw(desc) 
Ccgiwin *desc; /* CGI pixwin descriptor */ 

close_cgiyw takes the CGI pixwin descriptor desc as an argument and 
removes it from the list of pixwins that CGI writes to. The pixwin is not closed. 
c los e _ cg i yw corresponds to c 10 se _ vw s, and may return any of the errors 
close _ vws detects (except 112). 

ENOTOPOP [5] 

EVSIDINV [10] 

EVSNOTOP [13] 

CGI not in proper state CGI shall be either in state CGOP, 
VSOP, or VSAC. 

Specified view surface name is invalid. 

Specified view surface not open. 

Cerror close-pw_cgi() 

close yw _ cgi takes care of leaving CGI in an orderly state. This function 
should be called before exiting the application program. closeyw_cgi 
corresponds to close _ cgi. 

ENOTOPOP [5] CGI not in proper state CGI should be in state CGOP, 
VSOP, or VSAC. 

After calling the two initialization functions (open _pw _ cgi and 
open_cgiyw) the application program may call functions from both the 
Pixwins and cgipw libraries. Figure F-l contains an example program that uses 
cgipw functions. 

Since cgipw functions use a 1:1 mapping from VDC to device coordinates, attri­
butes in VDC units (such as pattern size and character height) will be huge 
unless they are reset And because the cgipw origin is the device coordinate 
origin, the upper left-hand comer, attributes with direction or position (e.g., pat­
tern reference point and character orientation) have their meaning reversed in 

~\sun ~~ microsystems 
Version B of 17 February 198t 



F.3. cgipw Functions 

Table F-l 

Appendix F - Using SunCGI and Pixwins 145 

the y dimension. 

Most cgipw functions do not print error messages even if the error warning 
mask is INTERRUPT or POLL. They all return error codes which may be tested. 
The application program should not use both SunCGI and window system input 
functions, since both SunCGI and the window system share a common event 
queue. For example, events handled by a SunCGI function will not be handled 
by a window system call after the SunCGI call. 

A list of the cgipw functions and their corresponding SunCGI functions is 
given in Table F-l below. If a function is not included in this table, then use the 
normal SunCGI function except as described below in Table F-2. Most of the 
functions listed below are output and attribute functions; however, the tracking 
functions are listed so that you can control which surfaces input devices echo on. 
The arguments of the cgipw functions are the same as those of the SunCGI 
functions except that the first argument is always a desc argument of type 
Ccgiwin. desc is a pointer to a pixwin descriptor filled in by the 
open_cgi_pw function. 

Table F-l contains a list of functions available in cgipw mode. SunCGI func­
tions incompatible with cgipw mode are given in Table F-2. 
partialyolygon may be used with cgipwyolygon, but the global 
polygon list is freed after use by cgipw_polygon, so calls to 
partialyolygon must be repeated prior to use of cgipwyolygon on 
another view surface. 

List of cgipw Functions 

SunCGI Function Name I cgipw Function Name 
append_text (flag, tstring) 

cell_array(p, q, r, dx, dy, colorind) 

character_expansion_factor(sfac) 

character_height (height) 

character_orientation (xup, yup, xbase, 
ybase) 

character_path (path) 

character_set_index(index) 

character_spacing (spcratio) 

circle (cl, rad) 

circular_arc_3pt(cl, c2, c3) 

circular_arc_3pt_close(cl, c2, c3, 
close) 

circular_arc_center(cl, c2x, c2y, c3x, 
c3y, rad) 

circular_arc_center_close(cl, c2x, 
c2y, c3x, c3y, rad, close) 

color_table (istart, clist) 

define_bundle_index(index) 

disjoint-polyline(polycoors) 

ellipse(cl, majx, miny) 

~\sun ,~ microsystems 

cgipw_append_text(desc, flag, tstring) 

cgipw_cell_array(desc, p, q, r, dx, dy, colorind) 

cgipw_character_expansion_factor(desc, sfac) 

cgipw_character_height(desc, height) 

cgipw_character_orientation(desc, xup, yup, xbase, 
ybase) 

cgipw_character_path(desc, path) 

cgipw_character_set_index(desc, index) 

cgipw_character_spacing(desc, spcratio) 

cgipw_circle(desc, cl, rad) 

cgipw_circular_arc_3pt(desc, cl, c2, c3) 

cgipw_ci rcular_a rc_3pt_c 10 se (desc, cl, c2, c3, 
close) 

cgipw_circular_arc_center(desc, cl, c2x, c2y, c3x, 
c3y, rad) 

cgipw_circular_arc_center_close(desc, cl, c2x, 
c2y, c3x, c3y, rad, close) 

cgipw_color_table(desc, istart, clist) 

cgipw_define_bundle_index(desc, index) 

cgipw_disjoint-polyline(desc, polycoors) 

cgipw_ellipse(desc, cl, majx, miny) 

Version B of 17 February 1986 



146 SunCGI Reference Manual 

Table F-l List of cgipw Functions-- Continued 

SunCGI Function Name 
elliptical_arc (cl, sx, sy, ex, ey, 
majx, miny) 

elliptical_arc_close(cl, sx, sy, ex, 
ey, majx, miny, close) 

fill_area_bundle_index(index) 

fill_color (color) 

fixed_font (index) 

hatch_index (index) 

inquire_aspect_source_flags() 

inquire_drawing_mode(visibility, 
source, destination, combination) 

inquire_fill_area_attributes() 

inquire_line_attributes() 

inquire_marker_attributes() 

inquire-pattern_attributes() 

inquire-pixel_array(p, m, n, colorind) 

inquire_text_attributes() 

inquire_text_extent(tstring, nextchar, 
concat, lleft, uleft, uright) 

interior_style(istyle, perimvis) 

line_color (index) 

line_endstyle(ttyp) 

line_type (ttyp) 

line_width (index) 

1 ine_width_speci fi cation_mode (mode) 

marker_color (index) 

marker_size (index) 

marker_size_specification_mode(mode) 

marker_type (ttyp) 

pattern_index (index) 

pattern_reference-point(open) 

pattern_size(dx, dy) 

perimeter_color (index) 

perimeter_type (ttyp) 

perimeter_width (width) 

perimeter_width_specification_mode(mode) 

pixel_array (pcell, m, n, colorind) 

polygon (polycoors) 

polyline (polycoors) 

polyline_bundle_index(index) 

polymarker(polycoors) 

polymarker_bundle_Index(index) 

rectangle (lrc, ulc) 

set_aspect_source_flags(flags) 

text(cl, tstring) 

I cgipw Function Name 
cgipw_elliptical_arc(desc, cl, sx, sy, ex, ey, 
majx, miny) 

cgipw_el 1 iptical_arc_close (desc, cl, sx, sy, ex, 
ey, majx, miny, close) 

cgipw_fill_area_bundle_index(desc, index) 

cgipw_fill_color(desc, color) 

cgipw_fixed_font(desc, index) 

cgipw_hatch_index(desc, index); 

cgipw_inquire_aspect_source_flags(desc); 

cgipw_inquire_drawing_mode(desc, visibility, 
source, destination, combination) 

cgipw_inquire_fill_area_attributes(desc); 

cgipw_inquire_line_attributes(desc); 

cgipw_inquire_marker_attributes(desc); 

cgipw_inquire_pattern_attributes(desc); 

cgipw_inquire-pixel_array(desc, p, m, n, colorind) 

cgipw_inquire_text_attributes(desc); 

cgipw_inquire_text_extent(desc, tstring, nextchar, 
concat, lleft, uleft, uright) 

cgipw_interior_style(desc, istyle, perimvis) 

cgipw_line_color(desc, index) 

cgipw_line_endstyle(desc, ttyp) 

cgipw_line_type(desc, ttyp) 

cgipw_line_width(desc, index) 

cgipw_line_width_specification_mode(desc, mode) 

cgipw_marker_color(desc, index) 

cgipw_marker_size(desc, index) 

cgipw_marker_s ize_specificat ion_mode (desc, mode) 

cgipw_marker_type(desc, ttyp) 

cgipw-pattern_index(desc, index); 

cgipw-pattern_reference-point(desc, open) 

cgipw-pattern_size(desc, dx, dy) 

cgipw_perimeter_color(desc, index) 

cgipw-perimeter_type(desc, ttyp) 

cgipw-perimeter_width(desc, width) 

cgipw-perimeter_width_specification_mode(desc, 
mode) 

cgipw_pixel_array(desc, pcell, m, n, colorind) 

cgipw_polygon(desc, polycoors) 

cgipw-polyline(desc, polycoors) 

cgipw-polyline_bundle_index(desc, index) 

cgipw_polymarker(desc, polycoors) 

cgipw-polymarker_bundle_Index(desc, index) 

cgipw_rectangle(desc, lrc, ulc) 

cgipw_set_aspect_source_flags(desc, flags) 

cgipw_text(desc, cl, tstring) 

Version B of 17 February 198 



Appendix F - Using SunCGI and Pixwins 147 

Table F-1 List of cgipw Functions- Continued 

SunCGI Function Name I cgipw Function Name 
text_alignment(halign, valign, 
hcalind, vcalind} 

text_bundle_index(index} 

text_color (index) 

text_font_index(index) 

text-precision(ttyp) 

vdm_text(cl, flag, tstring} 

cgipw_text_alignment(desc, halign, valign, 
hcalind, vcalind} 

cgipw_text_bundle_index(desc, index) 

cgipw_text_color(desc, index} 

cgipw_text_font_index(desc, index) 

cgipw_text-precision(desc, ttyp) 

cgi pw_vdm_t ext (desc, c1, flag, tstring) 

Table F-2 SunCGI Functions not Compatible with cgipw Mode 

F.4. Example Program 

Function 
clear control 
clip_indicator 
clip_rectangle 
close_cgi 
close vws 
device_viewport 
open_cgi 
open_vws 
partial_polygon 
vdc extent 

I Discussion 
All clear extents are identical 
when cflag is CLIP _ RECTANGLE 

Instead, use pw _region prior to open _ cgi _pw 
Use closeyw_cgi 
Use close_cgiyw 
use pw_region prior to open_cgiyw 
Use open_pw_cgi 
Use open_cgi_pw 
global polygon list is freed after cgipwyolygon 
cgipw's VDC space is identical to screen space 

Figure F-1 contains an example program that uses cgipw functions. This exam­
ple uses retained pixwins to ease redisplay after window obstruction (see Section 
2.3). This makes the program slower during image generation, because it writes 
both on the screen and onto a copy retained in memory. 

~\sun ,~ microsystems 
Version B of 17 February 1986 



148 SunCGI Reference Manual 

Figure F-l 

#include <cgipw.h> 
#include <suntool/gfxsw.h> 

struct pixwin *mypw; 
struct gfxsubwindow *mine; 

main () 
{ 

Ccgiwin vpw; 
Ccoor bottom; 
Ccoor top; 
int name; 
int op; 

mine = gfxsw_init(O, 0); 
gfxsw_getretained(mine); 
mypw = mine->gfx-pixwin; 
pw_writebackground(mypw, 0, 0, 

mypw->pw-prretained->pr_size.x, 
mypw->pw-prretained->pr_size.y, PIX_CLR); 

open-pw_cgi(); 
open_cgi-pw(mypw, &vpw, &name); 
op = PIX_COLOR (1) I PIX_SRC; 
pw_write(mypw, 0, 0, 100, 100, op, 0, 0, 0); 
bottom.x = 300; 
bottom.y = 100; 
top.x = 200; 
top.y = 0; 
cgipw_interior_style(&vpw, SOLIDI, ON); 
cgipw_rectangle(&vpw, &bottom, &top); 
sleep(10); 

close_cgi-pw(&vpw); 
close-pw_cgi () ; 

Example cgipw Program 

Version B of 17 February 198, 



G 
Using SunCGI with Fortran Programs 

Using SunCGI with Fortran Programs ......................................................................... 151 

G.1. Programming Tips ......................................................................................................... 151 

G.2. Example Program ........................................................................................................... 152 

G.3. FORTRAN Interfaces to SunCGI ......................................................................... 154 





G.1. Programming Tips 

G 
Using SunCGI with Fortran Programs 

All functions provided in SunCGI may be called from FORTRAN programs by 
linking them with the libcgi 77 . a library. This is done by using thef17 com­
piler with a command line like: 

% f77 -0 box box.f -lcgi77 -lcgi -lsunwindow -lpixrect -1m 

where box. f is the FORTRAN source program. Note that libcgi. a must be 
linked with the program (the -lcgi option), and libcgi 77 . a must precede it 
(the -lcgi 77 option). 

Defined constants may be referenced in source programs by including 
cgidef s 77 . h. In a FORTRAN program, this must be done via a source state­
ment like: 

include 'cgidefs77.h' 

This include statement must be in each FORTRAN program unit which uses the 
defined constants, not just once in each source program file. 

In the Sun release of FORTRAN, names are restricted to sixteen characters in 
length and may not contain the underline character. For this reason, FORTRAN 

programs must use abbreviated names to call the corresponding SunCGI func­
tions. The correspondence between the full SunCGI names and the FORTRAN 
names appears later in this appendix. In addition, FORTRAN declarations for all 
SunCGI functions appear at the end of this appendix. 

• The abbreviated names of the SunCGI functions are less readable than the full 
length names because the underline character cannot be used in the FORTRAN 
names. However, since FORTRAN doesn't distinguish between upper-case and 
lower-case letters in names, upper-case characters can be used to improve rea­
dability. There is an example of this later in this appendix. 

• Character strings passed from FORTRAN programs to SunCGI cannot be 
longer than 256 characters. 

• Pointers returned by C functions are handled in FORTRAN as integer*4 
values, and exist solely to be passed to other Sun graphics functions. 

• FORTRAN passes all arguments by reference. Although some SunCGI func­
tions receive arguments by value, the FORTRAN programmer need not worry 

~\sun ~~ microsyslems 
151 Version B of 17 February 1986 



152 SunCGI Reference Manual 

G .2. Example Program 

about this. The interface routines in /usr /lib/libcgi 77 • a handle this 
situation correctly. When in doubt, look at the FORTRAN declarations for 
SunCGI functions at the end of this appendix. 

• Some SunCGI functions have structures as arguments or return values. These 
are handled in FORTRAN by unbundling the structures into separate arguments. 
In general, these will be in the same order, and have the same names, as the 
members of the C structures. One exception is the Ccoorlist structure, 
which is replaced in FORTRAN with an array of x' s, and one of y 's, rather than 
an array of x-y pairs. You may need to consult both the C and FORTRAN docu­
mentation to determine which FORTRAN arguments are input values, and which 
are output. 

• Since FORTRAN does not distinguish between upper-case letters and lower-case 
letters in identifiers, any FORTRAN program unit which includes the 
cgidef s 77 • h header file cannot use the same spelling as any constant 
defined in that header file, regardless of case. 

• The function cfqoutcap returns the FORTRAN binding names of the output 
capabilities, rather than the C bindings. This is an exception to the rule that 
the FORTRAN library provides a transparent interface to the C functions. 

This example is the FORTRAN equivalent of the very simple program for drawing 
a martini glass. 

~\sun ~~ microsystems 
Version B of 17 February 1986 



Figure G-l 

Appendix G - Using SunCGI with Fortran Programs 153 

program test 

parameter (ibignum=256) 

integer name 
character screenname* (ibignum) 
integer screenlen 
character windowname* (ibignum) 
integer windowlen 
integer windowfd 
integer retained 
integer dd 
integer cmapsize 
character cmapname* (ibignum) 
integer cmaplen 
integer flags 
character ptr* (ibignum) 
integer noargs 

c coordinates of glass 
integer xc(10),yc(lO),n 

c coordinates of waterline. 
integer xc2(2),yc2(2) 
data xc /0,-10,-1,-1,-15,15,1,1,10,0 / 
data yc /0,0,1,20,35,35,20,1,0,0 / 
data xc2 /-12,12/ 
data yc2 /33,33/ 

c open cgi 
call cfopencgi() 

c open a pixwin 
dd = 4 
call cfopenvws(name,screenname,screenlen,windowname, 

+ windowlen,windowfd,retained,dd,cmapsize, 
+ cmapname,cmaplen,flags,ptr,noargs) 

c reset VDC space 
call cfvdcext(-50,-10,50,80) 

c draw martini glass and waterline 
n = 10 
call cfpolyline(xc,yc,n) 
n = 2 
call cfpolyline(xc2,yc2,n) 

c sleep for 10 seconds 
call sleep(10) 

c close and exit 
call cfclosecgi() 
call exit () 
end 

Example FORTRAN Program 

Version B of 17 February 1986 



154 SunCGI Reference Manual 

G.3. FORTRAN Interfaces to 
SunCGI 

Note: Although all SunCGI procedures are declared here as functions, each may 
also be called as a subroutine if the user does not want to check the returned 
value. 

TableG-l SunCGI Fortran Binding -Part I 

CGI SpecijicationName 
Activate View Surface 
(SunCGI Extension) 

Append Text 

Associate 

Await Event 

Fortran Binding 
integer function cfactvws(name) 
integer name 

integer function cfaptext(flag, string) 
integer flag 
character*(*) string 

integer function cfassoc(trigger, devclass, devnum) 
integer trigger 
integer devclass 
integer devnum 

integer function cfawaitev(timeout, valid, devclass, 
1 devnum, x, y, xlist, ylist, n, val, choice, string, 
2 segid, pickid, message_link, replost, time_stamp, 
3 qstat, overflow) 
integer timeout 
integer valid 
integer devclass 
integer devnum 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 
integer message_link 
integer replost 
integer time_stamp 
integer qstat 
integer overflow 

~\sun ,~ microsystelTlS 
Version B of 17 February 198t 



Appendix G - Using SunCGI with Fortran Programs 155 

Table G-l SunCGI Fortran Binding - Part 1- Continued 

CGI Specification Name I 
BitBlt Pattern Array 

BitBlt Patterned Source 
Array 

BitBlt Source Array 

Cell Array 

Character Expansion 
Factor 

Character Height 

Character Orientation 

Character Path 

Character Set Index 

Fortran Binding 
integer function cfbtblpatarr(pixpat, px, py, pixtarget, 
1 rx, ry, ox, oy, dx, dy, name) 
integer pixpat 
integer px, py 
integer pixtarget 
integer rx, ry 
integer ox, oy 
integer dx, dy 
integer name 

integer function cfbtblpatsouarr(pixpat, px, py, pixsource, 
1 sx, sy, pixtarget, rx, ry, ox, oy, dx, dy, name) 
integer pixpat 
integer px, py 
integer pixsource 
integer sx, sy 
integer pixtarget 
integer rx, ry 
integer ox, oy 
integer dx, dy 
integer name 

integer function cfbtblsouarr(bitsource, xo, yo, xe, ye, 
1 bittarget, xt, yt, name) 
integer*4 bitsource, bittarget 
integer xo, yo, xe, ye, xt, yt 
integer name 

integer function cfcellarr(px, qx, rx, py, qy, ry, 
1 dx, dy, colorind) 
integer px, py 
integer qx, qy 
integer rx, ry 
integer dx, dy 
integer colorind(*) 

integer function cfcharexpfac(efac) 
real efac 

integer function cfcharheight(height) 
integer height 

integer function cfcharorient(bx, by, dx, dy) 
real bx, by, dx, dy 

integer function cfcharpath(path) 
integer path 

integer function cfcharsetix(index) 
integer inJex 

~\sun ~~ microsystems 
Version B of 17 February 1986 



156 SunCGI Reference Manual 

Table G-1 SunCGI Fortran Binding - Part J- Continued 

CGl Specification Name I 
Character Spacing 

Circle 

Circular Arc 3pt Close 

Circular Arc 3pt 

Circular Arc Center 
Close 

Circular Arc Center 

Clear Control 

Clear View Surface 

Clip Indicator 

Clip Rectangle 

Close CGI 
(SunCGI Extension) 

Close View Surface 
(SunCGI Extension) 

Fortran Binding 
integer function cfcharspacing(efac) 
real efac 

integer function cfcircle(x, y, rad) 
integer x 
integer y 
integer rad 

integer function cfcircarcthreecl(clx, cly, c2x, c2y, 
1 c3x, c3y, close) 
integer clx, cly, c2x, c2y, c3x, c3y 
integer close 

integer function cfcircarcthree(clx, cly, c2x, c2y, 
1 c3x, c3y) 
integer clx, cly, c2x, c2y, c3x, c3y 

integer function cfcircarccentcl(clx, cly, c2x, c2y, 
1 c3x, c3y, rad, close) 
integer clx, ely, c2x, c2y, c3x, c3y 
integer rad 
integer close 

integer function cfcircarccent(clx, cly, c2x, c2y, c3x, 
1 c3y, rad) 
integer clx, cly, c2x, c2y, c3x, c3y 
integer rad 

integer function cfclrcont(soft, hard, intern, extent) 
integer soft, hard 
integer intern 
integer extent 

integer function cfclrvws(name, defflag, color} 
integer name 
integer defflag 
integer color 

integer function cfclipind(flag) 
integer flag 

integer function cfcliprect(xmin, xmax, ymin, ymax) 
integer xmin, xmax, ymin, ymax 

integer function cfclosecgi() 

integer function cfclosevws(name) 
integer name 

Version B of 17 February 1986 



Appendix G - Using SunCGI with Fortran Programs 157 

Table G-2 SunCGI Fortran Binding -Part II 

CGI Specification Name I 
Color Table 

Deactivate View Surface 
(SunCGI Extension) 

Define Bundle Index 
(SunCGI Extension) 

Device Viewport 

Disable Events 

Disjoint Polyline 

Fortran Binding 
integer function cfcotable(istart, ra, ga, ba, n) 
integer istart 
integer ra(*), ga(*), ba(*) 
integer n 

integer function cfdeactvws(name) 
integer name 

integer function cfdefbundix(index, linetype, linewidth, 
1 linecolor, marktype, marksize, markcolor, intstyle, 
2 batchindex, pattindex, fillcolor, perimtype, 
3 perimwidth, perimcolor, t3extfont, textprec, 
4 charexpand, charspace, textcolor) 
integer index 
integer linetype 
real linewidth 
integer linecolor 
integer marktype 
real marksize 
integer markcolor 
integer intstyle 
integer batchindex 
integer pattindex 
integer fillcolor 
integer perimtype 
real perimwidth 
integer perimcolor 
integer t3extfont 
integer textprec 
real char expand 
real charspace 
integer textcolor 

integer function cfdevvpt(name, xbot, ybot, xtop, ytop) 
integer name 
integer xbot, ybot, xtop, ytop 

integer function cfdaevents(devclass, devnurn) 
integer devclass 
integer devnurn 

integer function cfdpolyline(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

Version B of 17 February 1986 



158 SunCGI Reference Manual 

Table 0-2 SunCGI Fortran Binding - Part l/- Continued 

CGl Specification Name I 
Dissociate 

Ellipse 

Elliptical Arc Close 

Elliptical Arc 

Enable Events 

Fill Area Bundle Index 

Fill Color 

Fixed Font 
(SunCGI Extension) 

Flush Event Queue 

Fortran Binding 
integer function cfdissoc(trigger, devclass, devnum) 
integer trigger 
integer devclass 
integer devnum 

integer function cfellipse(x, y, majx, miny) 
integer x, y 
integer majx, miny 

integer function cfelliparccl(x, y, sx, sy, ex, ey, 
1 majx, miny, close) 
integer x, y 
integer sx, sy 
integer ex, ey 
integer majx, miny 
integer close 

integer function cfelliparc(x, y, sx, sy, ex, ey, majx, 
1 miny) 
integer x, y 
integer sx, sy 
integer ex, ey 
integer majx, miny 

integer function cfenevents(devclass, devnum) 
integer devclass 
integer devnum 

integer function cfflareabundix(index) 
integer index 

integer function cfflcolor(color) 
integer color 

integer function cffixedfont(index) 
integer index 

integer function cfflusheventqu () 

~\Slln ~~ mlcrosystems 
Version B of 17 February 1986 



Appendix G - Using SunCGI with Fortran Programs 159 

Table 0-2 SunCGI Fortran Binding - Part l/- Continued 

CGI Specification N arne I Fortran Binding 
Get Last Requested 
Input 

Hard Reset 

Hatch Index 

Initialize LID 

Initiate Request 

Inquire Aspect Source 
Flags 

integer function cfgetlastreqinp(devclass, devnum, valid, 
1 x, y, xlist, ylist, n, val, choice, string, segid, 
2 pickid) 
integer devclass 
integer devnum 
integer valid 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfhardrst() 

integer function cfhatchix(index) 
integer index 

integer function cfinitlid(devclass, devnum, x, y, xlist, 
1 ylist, n, val, choice, string, segid, pickid) 
integer devclass 
integer devnum 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfinitreq(devclass, devnum) 
integer devclass 
integer devnum 

integer function cfqasfs(n, num, vals) 
integer n 
integer num(*) 
integer vals(*) 

Version B of 17 February 1986 



160 SunCGI Reference Manual 

Table G-2 SunCGI Fortran Binding -Part Il-Continued 

CGI Specification Name I Fortran Binding 
Inquire BitBlt 
Alignments 

Inquire Cell Array 

Inquire Device Bitmap 

Inquire Device Class 

integer function cfqbtbltalign(base, width, px, py, 
1 maxpx, maxpy, name) 
integer base 
integer width 
integer px 
integer py 
integer maxpx 
integer maxpy 
integer name 

integer function cfqcellarr(name, px, qx, rx, py, qy, 
1 ry, dx, dy, colorind) 
integer name 
integer px, py 
integer qx, qy 
integer rx, ry 
integer dx, dy 
integer colorind(*) 

integer function cfqdevbtmp(name, map) 
integer name 
integer*4 map 

integer function cfqdevclass(output, input} 
integer output, input 

Table G-3 SunCGI Fortran Binding -Part III 

CGI ~peci.fication Name 
Inquire Device 
Identification 

Inquire Drawing Mode 

Inquire Event Queue 
State 

For/ran Binding 
integer function cfqdevid(name, devid} 
integer name 
character*(*} devid 

integer function cfqdrawmode(visibility, source, 
1 destination, combination} 
integer visibility 
integer source 
integer destination 
integer combination 

integer function cfqevque(qstate, qoflow) 
integer qstate 
integer qoflow 

~\sun ,~ microsystems 
Version B of 17 February 1981 



Appendix G - Using SunCGI with Fortran Programs 161 

Table G-3 SunCGI Fortran Binding -Part III-Continued 

CGl SpecijicationName I 
Inquire Fill Area 
Attributes 

Inquire Input 
Capabilities 

Fortran Binding 
integer function cfqflareaatts(style, vis, color, hindex, 
1 pindex, bindex, pstyle, pwidth, pcolor) 
integer style, vis, color 
integer hindex, pindex, bindex 
integer pstyle 
real pwidth 
integer pcolor 

integer function cfqinpcaps(valid, numloc, numval, numstrk, 
1 numchoice, numstr, numtrig, evqueue, asynch, coordmap, 
2 echo, tracking, prompt, acknowledgement, trigman) 
integer valid 
integer numloc 
integer numval 
integer numstrk 
integer numchoice 
integer numstr 
integer numtrig 
integer evqueue 
integer asynch 
integer coordmap 
integer echo 
integer tracking 
integer prompt 
integer acknowledgement 
integer trigman 

.\sun ~~ microsystems 
Version B of 17 February 1986 



162 SunCGI Reference Manual 

Table G-3 SunCGI Fortran Binding - Part III- Continued 

CGI SpecijicationName 
Inquire LID State List 

Inquire LID State 

For/ran Binding 
integer function cfqlidstatelis(devclass, devnum, valid, 
1 state, prompt, acknowledgement, x, y, xlist, ylist, n, 
2 val, choice, string, segid, pickid, n, triggers, 
3 echotype, echosta, echodat) 
integer devclass 
integer devnum 
integer valid 
integer state 
integer prompt 
integer acknowledgement 
integer x 
integer y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 
integer n 
integer triggers(*) 
integer echotype 
integer echosta 
integer echodat 

integer function cfqlidstate(devclass, devnum, valid, 
1 state) 
integer devclass 
integer devnum 
integer valid 
integer state 

Version B of 17 February 198 



Appendix G - Using SunCGI with Fortran Programs 163 

Table G-3 SunCGI Fortran Binding - Part III- Continued 

CGl Specification N arne I 
Inquire LID Capabilities 

Inquire Line Attributes 

I nquire Marker 
Attributes 

Inquire Output 
Capabilities 

Inquire Output Function 
Set 

Inquire Pattern 
Attributes 

F oman Binding 
integer function cfqlidcaps(devclass, devnum, valid, 
1 sample, change, numassoc, trigassoc, prompt, 
2 acknowledgement, echo, echotype, n, classdep, state} 
integer devclass 
integer devnum 
integer valid 
integer sample 
integer change 
integer numassoc 
integer trigassoc(*) 
integer prompt 
integer acknowledgement 
integer echo(*) 
integer echotype(*} 
integer n 
character*(*) classdep 
integer state(*) 

integer function cfqlnatts(style, width, color, index) 
integer style 
real width 
integer color, index 

integer function cfqmkatts(type, size, color, index) 
integer type 
real size 
integer color, index 

integer function cfqoutcap(first, last, list) 
integer first, last 
character*80 list(*) 

integer function cfqoutfunset(level, support) 
integer level 
integer support 

integer function cfqpatatts(cindex, row, column, colorlis, 
1 x, y, dx, dy) 
integer cindex 
integer row 
integer column 
integer colorlis(*) 
integer x 
integer y 
integer dx 
integer dy 

Version B of 17 February 1986 



164 SunCGI Reference Manual 

Table G-3 SunCGI Fortran Binding - Part III- Continued 

CGI Specification Name 
Inquire Physical 
Coordinate System 

Inquire Pixel Array 

Inquire Text Attributes 

Inquire Text Extent 

Fortran Binding 
integer function cfqphyscsys(name, xbase, ybase, xext, yext 
1 xunits, yunits) 
integer name 
integer xbase, ybase 
integer xext, yext 
real xunits, yunits 

integer function cfqpixarr(px, py, m, n, colorind, name) 
integer px, py 
integer m, n 
integer colorind(*) 
integer name 

integer function cfqtextatts(fontset, index, cfont, prec, 
1 efac, space, color, hgt, bx, by, ux, uy, path, halign, 
2 valign, hfac, cfac) 
integer font set, index, cfont, prec 
real efac, space 
integer color, hgt 
real bx, by, ux, uy 
integer path, halign, valign 
real hfac, cfac 

integer function cfqtextext(string, nextchar, 
1 conx, cony, llpx, llpy, ulpx, ulpy, urpx, urpy) 
character*(*) string 
character*(*) next char 
integer conx 
integer cony 
integer llpx 
integer llpy 
integer ulpx 
integer ulpy 
integer urpx 
integer urpy 

Version B of 17 February 198 



Appendix G - Using SunCGI with Fortran Programs 165 

Table G-3 SunCGI Fortran Binding - Part lll- Continued 

CGI Specification Name r 
Inquire Trigger 
Capabilities 

Inquire Trigger State 

Inquire VDC Type 

Interior Style 

Line Color 

Line Endstyle 
(SunCGI Extension) 

Line Type 

Line Width Specification 
Mode 

Fortran Binding 
integer function cfqtrigcaps(trigger, valid, change, n, 
1 class, assoc, maxassoc, prompt, acknowledgement, 
2 name, description) 
integer trigger 
integer valid 
integer change 
integer n 
integer class(*) 
integer assoc(*) 
integer maxassoc 
integer prompt 
integer acknowledgement 
character*(*) name 
character*(*) description 

integer function cfqtrigstate(trigger, valid, state, n, 
1 class, assoc) 
integer trigger 
integer valid 
integer state 
integer n 
integer class(*) 
integer assoc(*) 

integer function cfqvdctype(type) 
integer type 

integer function cfintstyle(istyle, perimvis) 
integer istyle 
integer perimvis 

integer function cflncolor(index) 
integer index 

integer function cflnendstyle(ttyp) 
integer ttyp 

integer function cflntype(ttyp) 
integer ttyp 

integer function cflnspecmode(mode) 
integer mode 

Version B of 17 February 1986 



166 SunCGI Reference Manual 

Table G-4 SunCGI Fortran Binding -Part W 

CGl Specification N arne I Fortran Binding 
Line Width 

Marker Color 

Marker Size 
Specification Mode 

Marker Size 

Marker Type 

OpenCGI 
(SunCGI Extension) 

Open View Surface 
(SunCGI Extension) 

Partial Polygon 

Pattern Index 

Pattern Reference Point 

Pattern Size 

Pattern Table 

integer function cflnwidth(index) 
real index 

integer function cfmkcolor(index) 
integer index 

integer function cfmkspecmode(mode) 
integer mode 

integer function cfmksize(index) 
real index 

integer function cfmktype(ttyp) 
integer ttyp 

integer function cfopencgi () 

integer function cfopenvws(name, screenname, windowname, 
1 windowfd, retained, dd, cmapsize, cmapname, flags, 
2 ptr) 
integer name 
character*(*) screenname 
character*(*) windowname 
integer windowfd 
integer retained 
integer dd 
integer cmapsize 
character*(*) cmapname 
integer flags 
character*(*) ptr 

integer function cfppolygon(xcoors, ycoors, n, flag) 
integer xcoors(*) 
integer ycoors(*) 
integer n 
integer flag 

integer function cfpatix(index) 
integer index 

integer function cfpatrefpt(x, y) 
integer x, y 

integer function cfpatsize(dx, dy) 
integer dx, dy 

integer function cfpattable(index, m, n, colorind) 
integer index 
integer m, n 
integer colorind(*) 

~~sun ~~ microsystems 
Version B of 17 February 198( 



Appendix G - Using SunCGI with Fortran Programs 167 

Table G-4 SunCGI Fortran Binding - Part JV- Continued 

CGI Specification Name I 
Pattern with Fill Color 
(SunCGI Extension) 

Perimeter Color 

Perimeter Type 

Perimeter Width 
Specification Mode 

Perimeter Width 

Pixel Array 

Polygon 

Polyline Bundle Index 

Polyline 

Polymarker Bundle 
Index 

Polymarker 

Rectangle 

Release Input Device 

Fortran Binding 
integer function cfpatfillcolor(flag) 
integer flag 

integer function cfperimcolor(index) 
integer index 

integer function cfperimtype(ttyp) 
integer ttyp 

integer function cfperimspecmode(mode) 
integer mode 

integer function cfperimwidth(index) 
real index 

integer function cfpixarr(px, py, ro, n, colorind) 
integer px, py 
integer ro, n 
integer colorind(*) 

integer function cfpolygon(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

integer function cfpolylnbundix(index) 
integer index 

integer function cfpolyline(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

integer function cfpolymkbundix(index) 
integer index 

integer function cfpolymarker(xcoors, ycoors, n) 
integer xcoors(*) 
integer ycoors(*) 
integer n 

integer function cfrectangle(xbot, ybot, xtop, ytop) 
integer xbot, ybot, xtop, ytop 

integer function cfrelidev(devclass, devnum) 
integer devclass 
integer devnum 

~\sun ~ microsystems 
Version B of 17 February 1986 



168 SunCGI Reference Manual 

Table 0-5 SunCGI Fortran Binding -Part V 

CGI Specification Name I 
Request Input 

Reset to Defaults 

Sample Input 

Selective Flush of Event 
Queue 

Set Aspect Source Flags 

Set Default Trigger 
Associations 

Fortran Binding 
integer function cfreqinp(devclass, devnum, timeout, 
1 valid, x, y, xlist, ylist, n, val, choice, string, 
2 segid, pickid, trigger) 
integer devclass 
integer devnum 
integer timeout 
integer valid 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 
integer trigger 

integer function cfrsttodefs() 

integer function cfsampinp(devclass, devnum, valid, x, y, 
1 xlist, ylist, n, val, choice, string, segid, pickid} 
integer devclass 
integer devnum 
integer valid 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfsflusheventqu(devclass, devnum) 
integer devclass 
integer devnum 

integer function cfsaspsouflags(fval, fnum, n) 
integer fval(*), fnum(*), n 

integer function cfsdefatrigassoc(devclass, devnum) 
integer devclass 
integer devnum 

Version B of 17 February 1986 



Appendix G - Using SunCGI with Fortran Programs 169 

Table G-5 SunCGI Fortran Binding - Part V- Continued 

CGl Specification Name I 
Set Drawing Mode 

Set Error Warning Mask 

Set Global Drawing 
Mode 
(SunCGI Extension) 

Set Initial Value 

Set Up SIGWINCH 
(SunCGI Extension) 

Set VALUATOR Range 

Text Alignment 

Text Bundle Index 

Text Color 

Text Font Index 

Fortran Binding 
integer function cfsdrawmode(visibility, source, 
1 destination, combination) 
integer visibility 
integer source 
integer destination 
integer combination 

integer function cfserrwarnmk(action) 
integer action 

integer function cfsgldrawmode(combination) 
integer combination 

integer function cfsinitval(devclass, devnum, x, y, 
1 xlist, ylist, n, val, choice, string, segid, pickid) 
integer devclass 
integer devnum 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfsupsig(narne, sig_function) 
integer name 
external sig_function 

integer function cfsvalrange(devnum, mn, mx) 
integer devnum 
real rnn, mx 

integer function cftextalign(halign, valign, hcalind, 
1 vcalind) 
integer halign 
integer valign 
real hcalind, vcalind 

integer function cftextbundix(index) 
integer index 

integer function cftextcolor(index) 
integer index 

integer function cftextfontix(index) 
integer index 

Version B of 17 February 1986 



170 SunCGI Reference Manual 

Table G-5 SunCGI Fortran Binding - Part V- Continued 

CGI Specification Name I 
Text Precision 

Text 

Track Off 

Track On 

VDC Extent 

VDMText 

Fortran Binding 
integer function cftextprec(ttyp) 
integer ttyp 

integer function cftext(x, y, string) 
integer x 
integer y 
character*(*) string 

integer function cftrackoff(devclass, devnum, tracktype, 
1 action) 
integer devclass 
integer devnum 
integer tracktype 
integer action 

integer function cftrackon(devclass, devnum, echotype, 
1 exlow, eylow, exup, eyup, x, y, xlist, ylist, n, val, 
2 choice, string, segid, pickid) 
integer devclass 
integer devnum 
integer echotype 
integer ex low 
integer eylow 
integer exup 
integer eyup 
integer x, y 
integer xlist(*) 
integer ylist(*) 
integer n 
real val 
integer choice 
character*(*) string 
integer segid 
integer pickid 

integer function cfvdcext(xbot, ybot, xtop, ytop) 
integer xbot, ybot, xtop, ytop 

integer function cfvdmtext(x, y, flag, string) 
integer x 
integer y 
integer flag 
character*(*) string 

~\sun 
~ microsystems 

Version B of 17 February 1986 



H 
Short C Binding 

Short C Binding ............................................................................................................................. 173 



174 SunCGI Reference Manual 

Table H-l Correspondence Between Long and Short C Names-- Continued 

Long Name 
define bundle index 
device_viewport 
disable events 
disjoint~olyline 

dissociate 
echo off 
echo on 
echo_update 
ellipse 
elliptical_arc 
elliptical_arc_close 
enable events 
fill area bundle index - -
fill color 
fixed font 
flush_event_queue 
get_Iast_requested_input 
hard reset 
hatch index 
initialize lid 
initiate_request 
inquire_aspect_source_flags 
inquire_bitblt_aligruments 
inquire_ceIl_array 
inquire_device_bitmap 
inquire_device_class 
inquire_device_identification 
inquire_drawing_mode 
-inquire_event_queue_state 
inquire_fill_area_attributes 
inquire_input_capabilities 
inquire_Iid_capabilities 
inquire_Iid_state 
inquire_Iid_state_Iist 
inquire_Iine_attributes 
inquire_marker_attributes 
inquire_output_capabilities 
inquire_output_function_set 
inquire~attern_attributes 

inquire~hysical_coordinate_system 

inquire~ixel_array 

inquire_text_attributes 
inquire_text_extent 
inquire_trigger_capabilities 
inquire_trigger_state 
inquire vdc type 

1 Short Name 
Cdefbundix 
Cdevvpt 
Cdaevents 
Cdpolyline 
Cdissoc 
Cechooff 
Cechoon 
Cechoupd 
Cellipse 
Celliparc 
Celliparccl 
Cenevents 
Cflareabundix 
Cflcolor 
Cfixedfont 
Cflusheventqu 
Cgetlastreqinp 
Chardrst 
Chatchix 
Cinitlid 
Cinitreq 
Cqasfs 
Cqbtblalign 
Cqcellarr 
Cqdevbtmp 
Cqdevclass 
Cqdevid 
Cqdrawmode 
Cqevquestate 
Cqflareaatts 
Cqinpcaps 
Cqlidcaps 
Cqlidstate 
Cqlidstatelis 
Cqlnatts 
Cqrnkatts 
Cqoutcap 
Cqoutfunset 
Cqpatatts 
Cqphyscsys 
Cqpixarr 
Cqtextatts 
Cqtextext 
Cqtrigcaps 
Cqtrigstate 
Cqvdctype 

Version B of 17 February 1986 



Appendix H - Short C Binding 175 

Table H-l Correspondence Between Long and Short C Names- Continued 

Long Name 
interior_style 
line color 
line_endstyle 
line_type 
line width 
line_width_specification_IDode 
marker color 
marker size 
marker_size_specification_mode 
marker_type 
open_cgi 
open_vws 
partialyolygon 
pattern_index 
pattern_referenceyoint 
pattern_size 
pattern_table 
pattern_with_fill_color 
perimeter_color 
perimeter_type 
perimeter_width 
perimeter_width_specification_IDode 
pixel_array 
polygon 
polyline 
polyline_bundle_index 
polymarker 
polymarker_bundle_Index 
rectangle 
release_input_device 
request_input 
reset to defaults 
sample_input 
selective_flush_of_event_queue 
set_aspect_source_flags 
set_default_trigger_associations 
set_drawing_mode 
set_error_warning_mask 
set_global_drawing_ffiode 
set initial value - -
set_up_sigwinch 
set_valuator_range 
text 
text_alignment 
text bundle index 
text color 

I Short Name 
Cintstyle 
Clncolor 
Clnendstyle 
Clntype 
Clnwidth 
Clnwidthspecmode 
Crnkcolor 
Crnksize 
Crnksizespecrnode 
Crnktype 
Copencgi 
Copenvws 
Cppolygon 
Cpatix 
Cpatrefpt 
Cpatsize 
Cpattable 
Cpatfillcolor 
Cperimcolor 
Cperimtype 
Cperimwidth 
Cperimwidthspecmode 
Cpixarr 
Cpolygon 
Cpolyline 
Cpolylnbundix 
Cpolymarker 
Cpolymkbundix 
Crectangle 
Crelidev 
Creqinp 
Crsttodefs 
Csampinp 
Cselectflusheventqu 
Csaspsouflags 
Csdefatrigassoc 
Csdrawmode 
Cserrwarnmk 
Csgldrawmode 
Csinitval 
Csupsig 
Csvalrange 
Ctext 
Ctextalign 
Ctextbundix 
Ctextcolor 

Version B of 17 February 1986 



Index Continued 

cfflareabundix, 157 
cfflcolor, 157 
cfflusheventqu, 157 
cfgetlastreqinp, 157 
cfhardrst, 157 
cfhatchix, 157 
cfinitlid, 157 
cfinitreq, 157 
cfintstyle, 160 
cflncolor, 160 
cflnendstyle, 160 
cflnspecmode, 160 
cflntype, 160 
cflnwidth,166 
cfmkcolor, 166 
cfmksize, 166 
cfmkspecmode, 166 
cfmktype,l66 
cfopencgi, 166 
cfopenvws, 166 
cfpatfillcolor, 166 
cfpatix, 166 
cfpatrefpt, 166 
cfpatsize, 166 
cfpattable, 166 
cfperimcolor, 166 
cfperimspecmode, 166 
cfperimtype, 166 
cfperimwidth, 166 
cfpixarr, 166 
cfpo1ygon, 166 
cfpo1yline, 166 
cfpo1ylnbundix, 166 
cfpo1ymarker, 166 
cfpo1ymkbundix, 166 
cfppolygon, 166 
cfqasfs, 157 
cfqbtbltalign, 157 
cfqcellarr, 157 
cfqdevbtmp, 157 
cfqdevclass, 157 
cfqdevid, 160 
cfqdrawmode, 160 
cfqevque, 160 
cfqf1areaatts, 160 
cfqinpcaps, 160 
cfqlidcaps, 160 
cfqlidstate, 160 
cfqlidstatelis, 160 
cfqlnatts, 160 
cfqmkatts, 160 
cfqoutcap, 160 
cfqoutfunset, 160 
cfqpatatts, 160 
cfqphyscsys, 160 
cfqpixarr, 160 
cfqtextatts, 160 
cfqtextext, 160 

-178 -

cfqtrigcaps, 160 
cfqtrigstate,160 
cfqvdctype, 160 
cfrectangle, 166 
cfrelidev, 166 
cfreqinp, 168 
cfrsttodefs, 168 
cfsampinp, 168 
cfsaspsouflags,168 
cfsdefatrigassoc, 168 
cfsdrawmode, 168 
cfserrwarnmk, 168 
cfsflusheventqu, 168 
cfsgldrawmode, 168 
cfsinitval, 168 
cfsupsig, 168 
cfsvalrange, 168 
cftext, 168 
cftextalign, 168 
cftextbundix, 168 
cftextcolor, 168 
cftextfontix, 168 
cftextprec, 168 
cftrackoff,168 
cftrackon, 168 
cfvdcext, 168 
cfvdmtext, 168 
CGI,3 

audience, xv 
controlling document, xv 

CGI Tool, 14 
CGI type definitions, 111 thru 120 
CGI with Pixwins, 143 thru 148 
CGI with pixwins 

example, 147 
functions, 145 thru 147 
using cgipw, 144 thru 145 

cgipw functions 
close_cgiyw,l44 
closeyw_cgi,l44 
open cgi pw, 143 
open yw _ ;gi, 143 

Character Expansion Factor, 70, 154 
Character Height, 70, 154 
Character Orientation, 71, 154 
Character Path, 72,154 
Character Set Index, 69, 154 
Character Spacing, 70, 154 
character_expansion_facto~70 

character_height,70 
character_orientation, 71 
character yath, 72 
character_set_index,69 
character_spacing,70 
Circle, 38, 154 
circle 

area of a, 38 
perimeter definition, 38 

circle, 38 



Circular Arc 3pt, 40, 154 
Circular Arc 3pt Close, 41, 154 
Circular Arc Center, 38, 154 
Circular Arc Center Close, 39, 154 
circular arcs 

center, 39 
close, 39 
direction of drawing, 39 
three-point, 40 

circular_arc_3pt,40 
circular_arc_3pt_close,41 
circular_arc_center,38 
circular_arc_center_close,39 
Clear Control, 21, 154 
Clear View Surface, 21, 154 
clear_control, 21 
clear_view_surface,21 
Clip Indicator, 19, 154 
Clip Rectangle, 20, 154 
clip_indicator, 19 
clip_rectangle, 20 
clipping, 17, 19 
Close a CGI Pixwin, 144 
Close CGI (SunCGI Extension), 16, 154 
Close Pixwin CGI, 144 
Close View Surface (SunCGI Extension), 16, 154 
close _ cgi, 16 
close_cgi_pw,144 
close_pw_cgi,144 
close_vws,16 
color attributes, 74 thru 75 

color_table, 74 
color table, 59, 74, 157 
color_table, 74 
conical output primitives, 33, 34 thru 42 
control errors, 124 
coordinate definition errors, 124 thru 125 
current position, 103 

D 
data type definitions, 111 thru 120 
Deactivate View Surface (SunCGI Extension), 16, 157 
deactivate_vws,16 
Define Bundle Index (SunCGI Extension), 56, 157 
define_bundle_index,56 
device coordinates (see screen space), 17 
Device Viewport, 19, 157 
device_viewport, 19 
Disable Events, 98, 157 
disable_events, 98 
DisjoinJ Polyline, 34, 157 
disjoint_polyline, 34 
Dissociate, 86, 157 
documentation conventions, xv 
drawing mode, 6, 42 
drawing modes, 48 thru 50 

-179 -

E 
Ellipse, 41, 157 
Elliptical Are, 41, 157 
Elliptical Arc Close, 42, 157 
elliptical arcs, 41 

drawing of, 42 
elliptical_arc, 41 
elliptical_arc_close,42 
Enable EvenJs, 95, 157 
enable_events, 95 
error, 21 

control, 21 
errors 

control, 124 
coordinate definition, 124 thru 125 
implementation dependent, 131 
input, 129 thru 131 
output attribute, 125 thru 128 
output primitive, 128 thru 129 
possible causes of visual, 131 thru 134 
state, 123 thru 124 

event queue, 87, 96 
status, 98 

event queue input functions, 93 thru 98 

F 
fill area attributes, 62 thru 63 
Fill Area Bundle Index, 62, 157 
Fill Color, 63, 157 
fill_area_bundle_index, 62 
fill_color, 63 
Fixed FonJ (SunCGI Extension), 71, 157 
fixed_font, 71 
Flush Event Queue, 96, 157 
flush_event_queue,96 
FORTRAN interface 

function definitions, 154 thru 170 
Programming Hints, 151 thru 152 
using FORTRAN, 151 

G 
geometrical output primitives, 33, 33 thru 42 
Get Last Requested Input, 97, 157 
get_last_requested_input,97 
global polygon list, 35, 36 

H 
Hard Reset, 20, 157 
hard_reset, 20 
hatch,63 
Hatch Index, 64, 157 
hatch_index, 64 

I 
Ie_STROKE,86 
implementation dependent errors, 131 
include files, 4 
Initialize LID, 84, 157 
initialize_lid, 84 

Index Continued 



Index Continued 

polygon 
with undrawn edge(s), 36 

polygonal primitives, 33,33 thru 38 
Polyline, 34, 166 
Polyline Bundle Index, 57, 166 
polyline_bundle_index, 57 
Polymarker,35,166 
polymarker attributes, 60 thru 61 

marker color, 61 
marker - si ze, 61 
marker-size specification mode, 60 
marker-type~60 -
polymarker_bundle_index, 60 

Polymarker Bundle Index, 60, 166 
polymarker _bundle_index, 60 

R 
raster primitives, 33, 42 thru 48 
Rectangle, 38, 166 
Release Input Device, 85, 166 
release_input_device,85 
Request Input, 91, 168 
request register, 92, 97 
request_input, 91 
Reset to De/aults, 20, 168 
reset_to_defaults,20 
retained windows, 14 

S 
Sample Input, 97, 168 
sample_input, 97 
screen space,S, 17 

definition, 19 
Selective Flush of Event Queue, 96, 168 
selective_flush_of_event_queue,96 
Set Aspect Source Flags, 56, 168 
Set Default Trigger Associations, 86, 168 
Set Drawing Mode, 49,168 
Set Error Warning Mask, 22, 168 
Set Global Drawing Mode (SunCGI Extension), 50, 168 
Set Initial Value, 87, 168 
Set Up SIGWINCH (SunCGI Extension), 23, 168 
Set VALUATOR Range, 87,168 
set_aspect_source_flags,56 
set_default_trigger_associations,86 
set_draw ing_ffio de, 49 
set error warning mask,22 
set=global_drawing_mode,50 
set_initial_value,87 
set_up_sigwinch,23 
set_valuator_range,87 
Short C Binding, 4, 173 
SIGWINCH, 6, 22 
solid object attributes, 61 thru 68 

fill area bundle index, 62 
fill-color,63 -
interior_style, 62 

specified device, 28 
state errors, 123 thru 124 

-182-

status inquiries, 98 thru 100 
Sun Workstation, 25 
SunCGI,3 

with SunCGI, 22 thru 24 
SunView 

set up sigwinch,23 
usingSunCGI with, 22,24 

synchronous input functions, 90 thru 92 

T 
Text, 42, 168 
Text Aligrunent, 72, 168 
text attributes, 68 thru 74 

character expansion_facto~70 
character-height, 70 
character-orientation, 71 
characteryath, 72 
character set index,69 
character-spa~in~70 
fixed font, 71 
text alignment, 72 
text-bundle index,68 
text-color, 71 
text-font index, 69 
text=precision,68 

Text Bundle Index, 68,168 
Text Color, 71, 168 
T ext Font Index, 69, 168 
Text Precision, 68, 168 
text precision 

detailed definition, 68 
text, 42 

appended, 43 
text_alignment, 72 
text, 42 
text_bundle_index,68 
text_color, 71 
text_font_index,69 
text_precision, 68 
textured line, 58 
timeout, 83 
track, 88 
Track Off, 89, 168 
Track On, 88, 168 
track_off, 89 
track_on, 88 
tracking, 88 thru 90 

trigger, 6, 27,86 
Trigger 

Capabilities, 29 
trigger 

interaction with STROKE device, 86 
status, 98 

type definitions, 111 thru 120 

U 
unsupported CGI functions, 107 thru 108 
using SunCGI, 3 



v 
r; Extent, 17, 168 
C space, 5, 17 
:: _ extent, 17 
I, xv 
W Text, 43, 168 
n_text,43 
fit surface, 11 

clear control, 21 
clearing, 20 
default states, 15 

~ surface control, 17 thru 22 
clear control, 21 
clear-view surface,2l 
clip _indic~tor, 19 
clip rectangle,20 
devi~e viewport, 19 
hard_r~set, 20 
reset to defaults,20 
set e~ro~ warning mask, 22 
vdc=extent,17 -

w surfaces, 15 
active, 5 
initializing, 13 
multiple, 5, 13 

ual errors 
possible causes, 131 thru 134 

w 
Idows 

nonretained, 14 
retained, 14 

rld coordinates (see VDC space), 17 

Index Continued 



Notes 



Revision I 
A 

B 

Date 
5/15/85 

2/17/86 

Revision History 

I Comments 
2.0 Production Release. 

3.0 Production Release. 



Notes 



Notes 



Notes 


