
~"sun®
• microsystems

GaInes, Demos and Other Pursuits:
Beginner's Guide

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNlXJ32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and V AX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reseIVed. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any fonn, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written pennission from Sun Microsystems.

Contents

Preface .. vii

Chapter 1 Introduction .. 3
1.1. Games ... 3

1.2. Demos .. 4

Chapter 2 Question and Answer Games ... 7

2.1. Adventure ... 7

2.2. Aritltmetic .. 7

2.3. Banner .. 8

2.4. Bcd ... 8

2.5. Boggle .. 8

2.6. Chess .. _... 9

'} ,7. Ching .. 10

2.8. Fish .. 11

2.9. Fortune ... 11

2.10. Monop ... 11

2.11. Number ... 14

2.12. Quiz .. 14

2.13. Trek ... 15

2.14. Wump .. 18

Chapter 3 Display Games ... 21

3.1. Backgammon ... 21

3.2. Canfield ... 23

- iii-

Contents Continued

3.3. Cribbage .. 24

3.4. Hangman ... 25

3.5. Mille .. 25

3.6. Snake .. 29

3.7. WOIlll .. 30

3.8. WOIlllS .. 30

Chapter 4 Graphics Games .. 35

4.1. Boggletool ... 35

4.2. Chesstool .. 37

4.3. Gammontool ... 38

4.4. Life ... 40

Chapter 5 Graphics Standards Demos .. 45

5.1. Draw .. 45

5.2. Suncube ... 46

Chapter 6 PixRect Graphics Demos ... 49

6.1. Bouncedemo ... 49

6.2. Jumpdemo .. 49

6.3. Molecule ... 49

6.4. Spheresdemo .. 49

Appendix A de and be - Desk Calculators .. 53

A.1. DC - Interactive Desk Calculator .. 53

A.2. BC - Arbitrary-Precision Desk Calculator ... 55

-iv-

Figures

Figure 4-1 boggletool .. 35

Figure 4-2 chesstool ... 37

Figure 4-3 garrunontool .. 38

Figure 4-4 life .. 40

-v-

Companion documents

Preface

This document describes concisely the standard set of games and demos that run
on Sun workstations.

Commands Reference Manual
SunCore Reference Manual
Pixrect Reference Manual
Setting Up Your UNIX Environment: Beginner's Guide
Self Help With Problems: Beginner's Guide
Windows and Window-Based Tools: Beginner's Guide
Doing More with UNIX: Beginner's Guide

-vii-

1
Introduction

Introduction ... 3

1.1. Games ... 3

Running Games .. 3

1.2. Demos .. 4

1.1. Games

Running Games

1
Introduction

Computer games and demos have been a tradition for as long as there have been
computers. At Sun, we continue the tradition, offering the traditional UNIXt
games and demos, and some new ones that we have developed.

Games are for amusement, or to learn about subjects not necessarily related to
computers. Demos are attractive graphics programs that demonstrate the capaci­
ties of the system or help programmers learn, by example, to design and imple­
ment graphics displays of their own.

Do not assume that an executable version of any particular game or demo is
available on your system. Sometimes, Sun distributes games and demos on a
separate tape, or distributes only the source and data files for games and demos.
If, after reading this manual, you have trouble finding or running a game or
demo, contact your system administrator.

Sun games come in three flavors: dialogue games, terminal games, and graphics
games.

To run a game, type the name of the game (and any arguments or options that are
appropriate).

If that does not work, make sure your search path includes the / usr / games
directory, or that you specify the pathname of the game explicitly. For example,
type:

(tutorial% adventure

to run the game adventure when you have /usr / games in the
set path= entry of your - / . login or - / . cshrc file. Or, type:

(tutorial% lusr/games/adventure

if you don't wish to put /usr / games in your search path.

t UNIX is a trademark of AT&T Bell Laboratories.

)

)

3 A of 17 February 1986

4 Games and Demos Beginner's Guide

Note: If you do quit a game by typ­
ing (CTRL-c I, remember to reset
the terminal afterwards, else your
terminal may be confused.

1.2. Demos

You can exit from most games by typing I CTRL-C J; individual writeups for
games list the exceptions.

Sun demos are either Graphics Standards or Pixrect Graphics demos. Demos
run on workstations that have adequate graphics capabilities; see the descriptions
of individual demos for details. Most demos run on all graphics devices, includ­
ing Sun-I, Sun-2, and Sun-3 monochrome or color frame buffers (the entire
screen), and black-and-white or color subwindows (partial screen).

To run a demo, type the name of the demo (and any arguments or options that are
appropriate).

If that does not work, make sure your search path includes the / us r / demo
directory, or that you specify the pathname of the game or demo explicitly. For
example, type:

suncube

to run the demo suncube when you have /usr / demo in the
set path= entry of your . login or . cshrc file. Or, type:

/usr/demo/suncube

if you don't wish to put / u s r / demo in your search path.

You can exit from most demos by typing (CTRL-C J; individual writeups for
demos list the exceptions.

Most demos allow you to direct the demo to a device other than that of your
current environment. To change the display device, type the demo name fol­
lowed by the option -d / dey / devicename. For example, to run the sun­
cube demo on a color monitor, starting from a black-and-white monitor, type:

suncube -d /dev/cgO

When you start a demo from a black-and-white subwindow, to run on a color
subwindow, the demo can't use the mouse. So, demos requiring the mouse, like
draw, don't work when you start them in a black-and-white subwindow and
display them in a color subwindow.

A of 17 February 1986

2
Question and Answer Games

Question and Answer Games .. 7

2.1. Adventure ... 7

2.2. Aritl1metic .. 7

2.3. Banner .. 8

2.4. Bcd ... 8

2.5. Boggle .. 8

2.6. Chess ... 9

2.7. Ching .. 10

2.8. Fish .. 11

2.9. Fortune ... 11

2.10. Monop ... 11

Summary of Commands ... 12

2.11. Number ... 14

2.12. Quiz .. 14

2.13. Trek ... 15

2.14. Wump .. 18

2.1. Adventure

Caveats

2.2. Arithmetic

2
Question and Answer Games

Question-and-answer games, or dialogue games, are the only games that run on
teletypes. They also run on video terminals and graphics devices.

/usr/games/adventure

The object of adventure is to locate and explore Colossal Cave, find the treas­
ures hidden there, and bring them back to the building with you. The program
describes itself to a point, but part of the game is to discover its rules.

type quit to terminate a game; type suspend. to save a game for later
resumption. When you suspend a game, adventure creates an executable file
with a filename that it prompts you for. adventure creates the saved game file
in your current directory unless you specify otherwise. You must wait at least 45
minutes before playing the saved version; to execute it, just type the filename
you specified.

Saving a game creates a large executable file instead of just the infonnation
needed to resume the game.

/usr/games/arithmetic [+-x/] [range]

arithmetic types out simple arithmetic problems, and waits for you to type
an answer. If you answer correctly, arithmetic types back Right! and
then a new problem. If the answer is wrong, it replies What? and waits for
another answer. Every twenty problems, it publishes statistics on correctness and
the time required to answer.

The first optional argument determines the kind of problem arithmetic
poses:

+ for addition

for subtraction

x (lowercase letter x) for multiplication

/ for di vision

You can combine these options. If you select more than one, arithmetic will
mix the different types of problems in random order. The default is +-; in other

7 A of 17 February 1986

8 Games and Demos Beginner's Guide

2.3. Banner

Bugs

2.4. Bcd

2.5. Boggle

words, addition and subtraction problems.

range is a decimal number; all addends, subtrahends, differences, multiplicands,
divisors, and quotients are less than or equal to the value of range, the default of
which is 10.

At the start, all numbers less than or equal to range are equally likely to appear.
If you make a mistake, arithmetic will emphasize the numbers in the prob­
lem that you missed when it creates new problems for you.

As a matter of educational philosophy, the program will not give correct answers,
since you should be able to calculate them. Thus the program provides drill for
someone just past the first learning stage, and does not teach number facts as
such. For almost all users, the relevant statistic should be time per problem, not
the percentage of correct responses.

/usr/games/banner [-w n] text

banner prints a large, high quality banner on the standard output. If you omit
the text, banner prompts for and reads one line of standard input. If you type
the -w option, the output width decreases from 132 to the n you indicate, useful
for printing on a narrow terminal. If you don't specify a value of n, n is 80.

Hard copy output is up to 132 columns wide, with no breaks between the pages,
and may be quite long.

Several ASCII characters are not defined, notably <, >, [,] , -, _, {, }, I, and -.

Some characters produce odd output:

o & produces a cent sign (monetary value)

o and .. produce single open quotes

o ' produces a single close quote

The -w option skips some rows and columns to reduce output width, so smaller
n 's produce grainier output. Sometimes banner overlaps letters.

/usr/games/bcd~xt

bcd converts the literal text into a form familiar to old-timers, a visual represen­
tation of a computer input card. If you omit the text, bcd prompts for and reads
one line of standard input.

/usr/games/boggle[+][++]

This program sharpens your skills at Boggle (TM Parker Bros.).

If you invoke boggle without arguments, it generates a 4 by 4 Boggle grid of
letters. The object of boggle is to find, within 3 minutes, as many words as
possible in that 4 by 4 grid of letters. You can find words formed from any
sequence of 3 or more adjacent letters in the grid. The letters may join horizon­
tally, vertically, or diagonally. However, you can't use a position in the grid

A of 17 February 1986

Bugs

2.6. Chess

Diagnostics

Files

Bugs

Chapter 2 - Question and Answer Games 9

more than once within anyone word. In competitive play among humans, each
player gets credit for the words that no other player has found; when you play
with the computer, you just compare the words you find with the ones it finds in
its dictionary /usr / games/bogdict, which it generates from
/usr /dict/words.

Enter your words separated by spaces, tabs, or newlines. A bell will ring with 2
minutes, 1 minute, 10 seconds, 2 seconds, and 1 second left in the game, and
when time is up. When entering words, you may only erase within the current
word and your line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 +'s as the first
argument:

+ allows you to use grid positions more than once in each word

++ causes boggle to consider a position as adjacent to itself as well as its (up
to) 8 neighbors.

If you invoke the program with 4 arguments of 4 letters each, (in general, bog­
gle appl epie moth erhd) it forms the obvious Boggle grid and lists all
the words it can find both in the grid and in its dictionary.

For a graphics device version of the game, see boggletool in Section 4.1.

You can't complete words that you started just before the expiration of time. You
can't surrender before time is up, except by exiting the program entirely.

/usr/games/chess

chess is a computer program that plays class D chess. You can indicate moves
with either standard (descriptive) notation or in algebraic notation. The symbol
+ specifies check; 0-0 and 0-0-0 specify castling. To play black, type first;
to print the board, type a carriage return.

ches s echoes each move in the appropriate notation followed by the program's
reply.

For a graphics device version of chess, try ches stool in Section 4.2.

The most cryptic diagnostic is eh? which means that the input is syntactically
incorrect.

/usr/games/lib/chess.book book of opening moves

You can only promote pawns to queens.

A of 17 February 1986

10 Games and Demos Beginner's Guide

2.7. Ching

Files

/usr/games/ching [hexagram]

The I Ching or Book of Changes is an ancient oracle that the Chinese have used
for centuries as a source of wisdom and advice.

The text of the oracle consists of sixty-four hexagrams, each symbolized by a
particular arrangement of six straight (-) and broken (- -) lines. Tradition­
ally, one detennines the lines, or changes, by fixing a question finnly in mind,
then throwing three coins (or yarrow stalks) six times. Coins have an even side,
worth two, and an odd side, worth three; the line for a given roll comes from the
total value of that roll: -

6 gives -0 -, a moving line

7 gives

8 gives

9 gives -X-, a moving line

So, if you roll 687968, you've constructed the hexagram:

-0-

-X-

-0-

When you look up a hexagram in the Book of Changes, you find two major sec­
tions: the Judgement relates specifically to the matter at hand (for example, "It
furthers one to have somewhere to go"), while the Image describes the general
attributes of the hexagram and how they apply to one's own life ("Thus the supe­
rior man makes himself strong and untiring").

When any of the lines has the value six or nine, it is a moving line; moving lines
include a significant appended Judgement. Furthermore, the moving lines are
inherently unstable and change into their opposites; a second hexagram (and thus
an additional Judgement) appears.

Using an algorithm suggested by S. C. Johnson, the UNIX oracle reads a question
from the standard input (up to an BOp) and hashes the individual characters in
combination with the time of day, process id, and any other magic numbers
which happen to be lying around the system. The resulting value seeds a random
number generator that drives a simulated coin-toss divination. ching pipes the
answer through nroff to format it before it appears as standard output.

If you wish to remain steadfast in the old traditions, you can enter the numerical
value of a hexagram you toss (687968 for example) as an argument to ching.

/usr/games/lib/ching.d/*

A of 17 February 1986

2.8. Fish

2.9. Fortune

Files

2.10. Monop

Chapter 2 - Question and Answer Games 11

/usr/games/fish

fish plays Go Fish, a children's card game. The object is to accumulate books
of 4 cards with the same face value. Players alternate turns, each selecting a card
from their own hands to ask for all cards of that face value in the other player's
hand. If one player asks the other player for one or more cards of that face value,
and the other player has them, the first player claims the cards and makes another
request Eventually, the first player asks for a card which is not in the second
player's hand, so the second player replies, "GO FISH!" The first player then
draws a card from the 'pool' of undealt cards, and draws again if this is the card
last requested from the other player.

When a player makes a book, all four cards of one face, either through drawing
or requesting, the player lays down the cards in that book and no further action
takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 9,
10, j, q, or k when asked. Typing I RETURN) gives you information about the
size of the computer's hand and the pool, and tells you about its books. If you
type p as a first guess, fish puts you into 'pro' level; the amateur level is fairly
easy.

/usr/games/fortune [-] [-ws1a] [file]

fort une with no arguments prints out a random adage. Options include:

-w To wait after printing the message, for an amount of time calculated from its
length. This is especially useful if one executes/ortune as part of the logout
procedure, so one can read the fortune before the screen clears.

-s Only short fortunes.

-1 Only long fortunes.

-a Choose from either list of adages.

/usr/games/1ib/fortunes.dat

/usr / games/monop [file]

mo nop is reminiscent of the Parker Brother's game Monopoly, and monitors a
game between 1 to 9 players. The game follows the standard rules, with the
exception that, if a property would go up for auction and there are only two sol­
vent players, no auction is held and the property remains unowned.

The game bank will lend players money, so it is possible to buy something that
you cannot afford. However, players who are in debt must "fix the problem,"
making themselves solvent, before play can continue. If a player cannot remain
solvent, that player's property reverts to the player's debtee, either another player
or the bank. A player can resign at any time to any person or the bank, which
puts their property back on the board, unowned.

A of 17 February 1986

12 Games and Demos Beginner's Guide

Summary of Commands

quit

print

where

own holdings

holdings

shell

mortgage

unmortgage

Any time that the response to a question is a string, in general, a name, place or
person, you can type? to get a list of valid answers. It is not possible to input a
negative number, nor is it ever necessary.

Quit the game. It asks you if you're sure.

Prints out the current board. These columns appear on the board chart (column
headings are the same for the where, own holdings, and holdings com­
mands):

Name

The first ten characters of the name of the square

Own

The number of the owner of the property.

Price

The cost of the property (if any)

Mg

This field has a * in it if the property is mortgaged

41:

For Utilities and Railroads, this is the number owned. If the property is land,
this is the number of houses on it.

Rent

Current rent on the property. If no one owns it, there is no rent.

Tells you where all the players are. A * indicates the current player.

List your own holdings, including money, get-out-of-jail-free cards, and pro­
perty.

Look at anyone's holdings. It will ask you whose holdings you wish to look at.
When you are finished, type done.

Escape to a shell. When you terminate the shell, monop continues where you
left off.

Sets up a list of mortgageable property, and asks which you wish to mortgage.

Unmortgage mortgaged property.

A of 17 February 1986

buy

sell

card

pay

trade

resign

save

restore

roll

Chapter 2 - Question and Answer Games 13

Sets up a list of monopolies on which you can buy houses. If you have more
than one monopoly, monop asks you which you want to buy houses for, and how
many houses you want to buy for each piece of property, giving the current
amount in parentheses after the property name. If you don't build as evenly as
possible on all of the properties in a monopoly, monop asks you to try again.

Sets up a list of monopolies from which you can sell houses.

Use a get-out-of-jail-free card to get out of jail. If you're not in jail, or you don't
have one, it tells you so.

Pay $50 to get out of jail, from whence you are put on Just Visiting. Difficult to
do if you're not there.

Trade with another player. monop asks you with whom you wish to trade, and
then asks each of you what you wish to trade. You can get a summary list and, in
all cases, trading players must agree to confirm the trade before it takes place.

Resign to another player or the bank. If you resign to the bank, all the property
you owned reverts to the game bank, and get-out-of-jail free cards revert to the
deck.

Save the current game in a file for later play. You can continue play after saving,
either by adding the file in which you saved the game after the monop command,
or by using the restore command (see below). It will ask you which file you
wish to save it in, and, if the file exists, confirm that you wish to overwrite it.

Read in a previously saved game from a file. It leaves the file intact.

Roll the dice and move forward to your new location. You can simply type
(RETURN) instead of typing roll.

A of 17 February 1986

14 Games and Demos Beginners Guide

Files

Bugs

2.11. Number

2.12. Quiz

Files

Bugs

/usr/games/lib/cards.pck Chance and Community Chest cards

You can't specify command arguments to monop during runtime; instead, you
must answer its inquiries.

/usr/games/number

number copies the Arabic numeral standard input to the standard output, chang­
ing each decimal number to the fully spelled-out English version.

/usr/games/quiz [-ifile] [-t] [category] category2]

quiz tests your knowledge on various subjects. In an associative quiz, it asks
items chosen from category] and expects answers from category2. If you don't
specify the categories, qui z gives instructions and lists the available categories.

If you can't figure out a question, type a carriage return and quiz will provide
the correct answer. At the end of input, when quitting, or when questions run
out, qu i z reports a score and terminates.

Options:

-t specifies 'tutorial' mode, where quiz repeats missed questions later, while
continually introducing new material.

-i substitutes file for the default index file.

Substitute index files have this syntax:
line = category newline I category ':' line
category = alternate I category 'I' alternate
alternate = empty I alternate primary
primary = character I '[' category ']' I option
option =' {' category '}'

The first category on each line of an index file names an information file. The
remaining categories specify the order and contents of the data in each line of the
information file. Information files have the same syntax. [Huh???] Use the
backslash character, as with the sheIl, to quote syntacticaIIy significant characters
or to insert transparent newlines into a line. quiz won't ask questions from
index file lines that have empty question or answer entries.

/usr/games/quiz.k/*

The construct a I ab doesn't work in an information file; use a {b} instead.

A of 17 February 1986

2.13. Trek

Summary of Commands

abandon

capture

c10ak up or c10ak down

computer request;
request; ...

Chapter 2 - Question and Answer Games 15

/usr / garnes/trek [[-a] file]

trek is a game of space glory and war. In trek, you become the captain of the
U.S.S. Enterprise, a starship that travels the galaxy attempting to destroy the
Klingon starship fleet and save the Federation.

The galaxy consists of 64 quadrants on an eight by eight grid, with quadrant 0,0
in the upper left-hand comer. Each quadrant contains 100 sectors, in a ten by ten
grid. Sectors may contain objects, like the Enterprise, Klingon starships, stars, or
starbases, at which you can dock to refuel and to repair damages.

If you specify afile on the command line, trek writes a log of the game to that
file. If you give the -a flag before the filename, trek appends the log to that
file, rather than replacing it.

The game will ask you what length game you would like. You can respond:
short, medium, or long. You may also type restart to continue playing a
game you saved previously.

When trek asks you how skilled you are, you can respond: novice, fair,
good, expert, cormnodore, or impossible. Start with novice and work
up from there.

Throughout the game, if you need help type ?

trek requires direction (in degrees) and distance in quadrants (or quadrant frac­
tions for sectors) to navigate through the galaxy. For example, to move up one
quadrant, type:

move 0 1

or you can type move, after which trek will prompt you for the course, then for
the distance.

You can use the bold-face portion of the command as its abbreviation.

Abandon ship.

Request surrender of Klingon starship; if accepted, you can take captives to a
Federation starbase for extra points.

When you cloak up, the Klingons cannot see you or fire on you. However,
cloaking requires a lot of energy, so you can't fire weapons while cloaked. You
must use a command that consumes time for the cloaking process to complete.

Computer requests are:

score
Show your current score.

course quad/sect
Computes course and distance from your current position to the

A of 17 February 1986

16 Games and Demos Beginner's Guide

damages

destruct

dock

help

impulse course distance

1rscan

quadrant quad and sector

you indicate.

move quad/sect
Same as course, except trek completes the movement.

trajectory
Prints the course and distance to all Klingons in the quadrant.

warpcost dist warp Jactor
Computes the cost in time and energy to move dist quadrants at warp
warp Jactor.

impcost dist
Computes the cost in time and energy to move dist quadrants with
impulse engines.

pheff range
Tells how effective phasers are at range range.

distresslist
Gives list of distressed starbases and quadrants, in other words, those
occupied by Klingons.

You can make more than one request per command by seperating requests with
semi-colons.

Tells you which devices need repair; if you dock at a starbase, trek repairs
them faster.

Self-destruct the starship, destroying any objects left in the quadrant.

You can dock at a starbase when you are in one of the eight sectors adjacent to it.
Starbases resupply you with energy, photon torpedoes, and life support reserves.
They undertake any necessary repairs and protect you with their deflector shields.
Unload prisoners at starbases to receive points for capturing them.

Don't use this command unless absolutely necessary; it counts heavily against
you. The starbase you contact with help will try to rematerialize you at the
starbase, but it doesn't always work.

Move under impulse power, course in degrees, and distance in quadrants (for
example, distance of 0 . 1 is one sector). impul se requires 20 energy units per
move, as well as 10 energy units per sector moved. No penalty for shields.
Klingons may attack you if you enter a quadrant they occupy. If the computer
isn't working, you can't detect navigation errors, so you should return quickly to
a starbase to get it fixed.

Long range scan gives you a picture of your quadrants and the eight quadrants
that surround it. Three-digit numbers tell you the number of stars (units digit),
the number of starbases (tens digit), the number of Klingons (hundreds digit) in

A of 17 February 1986

move course distance

phasers automatic
amount

phasers manual amt}

course} spread} ...

ram course distance

rest time

shell

shields [up/down]

srscan [yes/no]

status

Chapter 2 - Question and Answer Games 17

each quadrant. * indicates the impassible energy barrier at the end of the
universe and / / / marks a supernova quadrant you cannot enter.

Move under warp power, course in degrees, and distance in quadrants (for
example, distance of 0 . 1 is one sector). move consumes time (proportional to
the inverse of the warp factor squared and directly proportional to the distance)
and energy (proportional to the warp factor cubed and directly proportional to the
distance). If you move with shields up, move consumes twice the amount of
energy. Klingons may attack you if you enter a quadrant they occupy. If the
computer isn't working, you can't detect navigation errors, so you should return
quickly to a starbase to get it fixed.

Shoot phasers on automatic with strength amount. 250 units of hits destroys a
Klingon starship. Phaser effect decreases with distance; they have no effect out­
side the quadrant you occupy. You can't shoot phasers with your shields up, and
they have no effect on starbases or stars.

Shoot phasers manually with strength amt} ,direction course} , and spread
spread} (between 0 and 1.0). You may specify up to six manual phaser shots
with one command. See phaser automatic for the rest of the details.

Identical to move, except that the computer won't stop you from navigation
error. You suffer heavy consequences if you hit anything.

Allows you to rest to repair damages; inadvisable while under attack. Consumes
time.

Temporary escape to a shell. When you terminate the shell, you return to the
game.

To raise or lower shields. Raising shields requires energy. Every time your
shields, Klingons may attack you even though shields are only at partial effec­
tiveness. Shields never provide complete protection from attack.

Short range scan gives you a picture of the quadrant you are in. It includes the
following symbols:

E the starship Enterprise

K a Klingon starshi p

a starbase

* a star

empty space

a black hole

current status of the game

A of 17 February 1986

18 Games and Demos Beginner's Guide

terminate [yes/no]

torpedo course [yes/no]
angle

undock

visual course

warp warp Jactor

2.14. Wump

Cancels the current game. If you specify yes, trek will start a new game. If
not, trek quits.

Fire photon torpedoes. If you hit a Klingon starship or a starbase, you destroy it.
If you hit a star, it will go nova or supernova. Photon torpedoes are hard to aim,
and although you can fire them with your shields up, the shields make them less
accurate. Specify the direction with course, no if you don't want the three tor­
pedoes in a burst fired at angles from one another, yes and angle, or just angle,
if you want the torpedoes to burst at with an angle of degree angle (from 1 to 15).

Leave starbase.

For use when your short range scanners are broken, visual gives you a scan of
the three sectors in direction course you specify. visual consumes 0.005
stardates.

Set warp factor. Minimum warp Jactor is 1.0; maximum is 10.0. Probability of
warp engine damage increases with warp factor increase over threshold of 6.0.
Above warp 9.0, you may enter a time warp.

/usr/garnes/wump

wump plays the game of Hunt the Wumpus. A Wumpus is a creature that lives in
a cave with several rooms connected by tunnels. You wander among the rooms,
trying to shoot the Wumpus with an arrow, meanwhile avoiding being eaten by
the Wumpus and falling into Bottomless Pits. There are also Super Bats which
are likely to pick you up and drop you in some random room.

wump asks various questions which you answer one per line.

wump evolved from a program described in People's Computer Company, 2(2).
November 1973.

A of 17 February 1986

3
Display Games

Display Games .. 21

3.1. Backgammon ... 21

3.2. Canfield ... 23

3.3. Cribbage .. 24

3.4. Hangman ... 25

3.5. Mille .. 25

3.6. Snake .. 29

3.7. Wonn .. 30

3.8. Wonns .. 30

3.1. Backgammon

Backgammon Command Line
Options

3
Display Games

Display games run on video terminals and graphics devices.

backganullon [-] [n r w b pr pw pb tterm sfile]

backganunon lets you play backgammon with the computer or with a friend.

Answer yes when backganunon asks if you want the rules, and you will get
text explaining the rules of the game, some hints on strategy, instruction on how
to use the backganunon program and a tutorial game with the computer. If you
want to skip the rules and strategy section, to see the instructions only, answer
no to the first inquiry, then yes when backganunon asks if you want instruc­
tions. backganunon will give you help when you type ?

n don't ask for rules or instructions

r player is red (implies n)

w player is white (implies n)

b two players, red and white (implies n)

pr print the board before red's turn

pw print the board before white's tum

pb print the board before both players' turns

tterm
terminal is type term, which uses / etc/termcap, otherwise uses the
TERM environment variable.

sfile
recovers previously saved game from file . You could also execute the saved
file directly, that is, type the filename as a shell command line.

You can precede arguments by -. You can concatenate arguments, but not after
s or t, because of the arbitrary strings that follow them. backgammon ignores
any unrecognized arguments. A lone - displays a list of options.

21 A of 17 February 1986

22 Games and Demos Beginner's Guide

Commands

See Also

Files

Bugs

If term has capabilities for direct cursor movement, backgammon 'fixes' the
board after each move, so you need not reprint the board, unless the screen
suffers some horrendous malady. Also, in this case, backgammon will ignore
any p * options.

All commands are one letter, so don't type a carriage return, except at the end of
amove.

When backgammon prompts with your game color, type a space or carriage
return to roll, or:

d to double

p to print the board

q to quit

s to save the game for later

When backgammon prompts with Move: , type:

p to print the board

q to quit

s to save the game

or a move, which is a sequence of

s-f move from s to f

sir
move one piece on s the roll r

separated by commas or spaces and ending with a newline. Possible abbrevia­
tions are:

s-fl-f2
means s-fl ,fl-f2

slrlr2
means slrl, slr2

Use b for bar and h for home, or 0 or 25 as appropriate.

for a graphics-oriented version of backgammon, see section 4.3.

lusr/games/teachgammon
letc/termcap

backgammon's strategy needs work.

rules and tutorial
terminal capabilities

If you type (DELETE), the program will quit, not delete the character you just
typed.

A of 17 February 1986

3.2. Canfield

Files

Chapter 3 - Display Games 23

/usr/games/canfield
/usr/games/cfscores [-a] [username]

In canfield, there are several card locations: the stock, the foundations , the
talon, and the tableau.

o You can build tableau cards on each other in descending face value and
alternate colors. You can move an entire pile of tableau cards as a unit in
building.

o You can place the top cards of the tableau piles on one of the four founda­
tions , one for each suit in ascending face value, but never into empty spaces
in the tableau.

o You may only fill tableau spaces from the top card of the stock.

o You can also use the top card of the stock to build foundations or tableau
piles. If you exhaust the stock, you may fill tableau spaces from the talon,
or the tableau spaces open until you wish to use them.

Type ht to get canfield to deal cards onto the talon. It deals cards from your
(invisible) hand to the talon by threes; you can repeat this until your hand is
empty, you quit, or you lose. canfield automatically moves foundation base
cards to the foundation when they become available.

When you type c, canfield maintains card counting statistics on the bottom
of the screen, greatly increasing your chances of winning, if you know how to
use the information appropriately.

The betting rules are less strict than those used in the official version of the game.
The initial deal costs $13. You may quit at this point or inspect the game.
Inspection costs $13 and allows you to make as many moves as possible without
moving any cards from your hand to the talon. (The initial deal places three
cards on the talon; if you use all of these cards, canfield makes three more
available to you.) Finally, if the game seems interesting, you must pay the final
installment of $26. At this point, canfield credits you at the rate of $5 for each
card on the foundation; and as the game progresses, you get $5 credit for each
card moved to the foundation. Each additional run through the hand after the
first run costs $5. The card-counting feature costs $1 for each unknown card you
identify. If you choose to view the scoring information, canfield charges you
only for cards that become visible since you last turned on the score-viewing
option. Thus the maximum cost of information is $34. canfield charges for
playing time at the rate of $1 per minute.

With no arguments, the program cfscores prints out the current status of your
canfield account. If you specify a username, cfscores prints out the status of
that canfield account. If you specify the -a option, cfscores prints out
the canfield accounts for all users that have played the game since its data­
base initialization.

/usr/garnes/lib/cfscores the database of scores

A of 17 February 1986

24 Games and Demos Beginner's Guide

Bugs It is impossible to cheat.

3.3. Cribbage

Options:

Playing Cribbage

Specifying Cards

/usr/games/cribbage[-req]name

cr ibbage plays one hand of the card game cribbage, and you play the other.
cr ibbage asks you if you need the rules of the game - if so, cr ibbage
displays the appropriate section from According to Hoyle.

-e Provides an explanation of the correct score when you make mistakes scor­
ing your hand or crib. This is especially useful for beginners.

-q Prints a shorter form of all messages - this is only recommended for users
who know the game fairly well.

-r Instead of asking you to cut the deck, cribbage cuts the deck for you.

After asking you if you want instructions, cribbage asks you if you want to
playa short game ("once around" to 61) or a long game ("twice around" to
121). Type s for a short game, or any other response for a long game.

At the start of the first game, cribbage asks you to cut the deck to detennine
who gets the first crib. Respond with a number between 0 and 51, indicating how
many cards down the deck you want the cut. The player who cuts the lower
ranked card gets the first crib. If you play more than one game, the loser of the
previous game gets the first crib in the current game.

For each hand, cribbage prints the hand of the player with the crib. If you
have the crib, cr ibbage will prompt you to discard two cards into the crib, one
per line, as explained below.

After discarding, cribbage cuts the deck (when it is your crib) or asks you to
cut the deck (when it is the program's crib). In the latter case, respond with a
number from 0 to 39 indicating how far down in the deck you want the remaining
40 cards to be cut.

After cutting the deck, the person who doesn't have the crib leads the first card.
Play continues until all of the cards are played. cr ibbage keeps track of the
scoring of all points and the total of the cards on the table.

After play, cribbage computes the score for all of the hands. cribbage asks
you to score your own hand (and the crib, if it is yours) by printing out the
appropriate cards (and the cut card enclosed in brackets). Play continues until
one player reaches the game limit (61 or 121).

If you type a carriage return when cribbage expects a numeric input, crib­
bage interprets this as typing the lowest legal value; therefore, when cutting the
deck, a carriage return chooses the top card.

Specify cards as rank followed by suit. Specify the rank as one of: a, 2, 3,
4, 5, 6, 7, 8, 9, t, j, q, and k, or one of: ace, two, three, four,
five, six, seven, eight, nine, ten, jack, queen, and king.

A of 17 February 1986

3.4. Hangman

Files

3.5. Mille

Chapter 3 - Display Games 25

Specify the suit as one of: s, h, d, and c, or one of: spades, hearts,
diamonds, and clubs.

Specify a card as rank suit, or rank of suit. If you use single-letter rank and
suit designations, you can leave out the space separating the suit and rank .
Also, when you can play only one card of the desired rank, typing only the rank
of that card is sufficient. For example, if your hand is 2 h, 4 d, 5 c, 6h, j c,
and kd, and you want to discard the king of diamonds, you can type any of: k,
king, kd, k d, k of d, king d, king of d, k diamonds,
k of diamonds, king diamonds, or king of diamonds.

/usr/games/hangman

In hangman, the computer picks a word from an on-line word list and you try
to guess it. The computer keeps track of which letters you guess and how many
wrong guesses you make.

/usr / dict / words On-line word list

/usr /games/mille [file]

mille plays a two-handed game reminiscent of the Parker Brother's game of
Mille Bornes.

\Vnen you start a game, the bottom of L~e score window will contain a list of
commands. They are:

P Pick a card from the deck. This card is placed in the 'P' slot in your hand.

D Discard a card from your hand. To indicate which card, type the number of
the card in the hand (or P for the just-picked card) followed by a carriage­
return or space. (mille requires the carriage-return or space to allow
recovery from drastic typos, like mistaken safety discards.)

U Use a card. Indicate the card by its number, followed by a carriage-return or
space.

o Toggle ordering the hand. By default off, if turned on it will sort the cards
in your hand appropriately. This is not recommended for the impatient on
slow tenninals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting
(DELETE) (or (RUBOUT)) is equivalent.

S Save the game in a file. If you restarted the game from a file, you can save it
again on the same file. If you don't wish to, or you did not start from a file,
mille asks you for a filename in which to save the game. If you type a
carriage-return without a name, mille will resume play without saving the
game.

To resume a saved game, type:
millefile

A of 17 February 1986

26 Games and Demos Beginner's Guide

Cards

Rules

on the command line, and the game you saved in that file will restart.

R Redraw the screen from scratch. The command [CSI KL-L I will also work.

W Toggle window type. This switches the score window between the startup
window (with all the command names) and the end-of-game window. Using
the end-of-game window saves time by eliminating the switch at the end of
the game to show the final score. Recommended for hackers.

If you make a mistake, mi lIe prints an error message on the last line of the
score window, and beeps.

At the end of each hand or game, mi 11 e will inquire if you wish to play another.
If not, it will ask you if you want to save the game.

The number in brackets after the card name is the frequency of that card in the
deck:

Hazard

Out of Gas [2]
flat Tire [2]
Accident [2]
Stop [4]
Speed Limit [3]

Repair

Gasoline [6]
Spare Tire [6]
Repairs [6]
Go [14]
End of Limit [6]

Safety

Extra Tank [1]
Puncture Proof [1]
Driving Ace [1]
Right of Way [1]

25 - [10], 50 - [10], 75 - [10], 100 - [12], 200 - [4]

Object: The point of game is to get a total of 5000 points in several hands. Each
hand is a race to put down exactly 700 miles before your opponent does. Beyond
the points gained by putting down milestones, there are several other ways of
making points.

Overview: The game is played with a deck of 101 cards. Distance cards
represent a number of miles traveled. They come in denominations of 25, 50, 75,
100, and 200. When you play a distance card, you add the card value to your trip
mileage for that hand. Use Hazard cards to prevent your opponent from putting
down Distance cards. With the exception of the speed limit card, your can only
play the following cards if your opponent has a Go card on top of the Battle pile:
Out of Gas, Accident, Flat Tire, Speed Limit, and Stop. Remedy cards fix
problems caused by Hazard cards your opponent plays on you. These cards are:
Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards prevent
your opponent from putting specific Hazard cards on you in the first place. They
are: Extra Tank, Driving Ace, Puncture Proof, and Right of Way , and there is
only one of each in the deck.

Board Layout: The board splits into several areas. From top to bottom, they are:
SAFETY AREA (unlabeled): Where safeties go when played. HAND: The
cards in your hand. BATTLE: The Battle pile. You play Hazard and Remedy
Cards here, except the Speed Limit and End of Limit cards. Only the top card is

A of 17 February 1986

Hazard and Remedy Cards

Safety Cards

Chapter 3 - Display Games 27

displayed, as it is the only effective one. SPEED: The Speed pile. You play
Speed Limit and End of Limit cards here to control the speed at which the other
player may put down miles. MILEAGE: Place Mile cards here. mille
displays the total mileage here.

Play: First pick alternates between the two players. Usually, you start each tum
with a pick from the deck. You then playa card, or if you can't or don't want to,
you discard one. Normally, a play or discard of a single card constitutes a turn.
If you playa safety card, however, you take another tum immediately.

This repeats until one of the players reaches 700 points or the deck runs out. If a
you reach 700 points, you have the option trying an Extension, which means that
the play continues until someone reaches 1000 miles.

Play Hazard cards on your opponent's Battle and Speed piles. Use Remedy
cards to undo the effects of your opponent's nastiness.

Go (Green Light) You must have the Go card on top of your Battle pile to play
any mileage, unless you have played the Right of Way card (see below).

Stop
Play this on your opponent's Go card to prevent your opponent from playing
mileage cards until after playing a Go card.

Speed Limit
Play this on your opponent's Speed pile. Then, until your opponent plays an
End of Limit, your opponent can only play 25 or 50 mile cards, presuming
the Go card allows them to do even that.

End of Limit
Play this on your Speed pile to nullify a Speed Limit played by your
opponent.

Out of Gas
Play this on your opponent's Go card. Your opponent must then playa
Gasoline card, and then a Go card before they can play any more mileage.

Flat Tire
Play this on your opponent's Go card. Your opponent must then playa
Spare Tire card, and then a Go card before playing any more mileage.

Accident
Play this on your opponent's Go card. Your opponent must then playa
Repairs card, and then a Go card before playing any more mileage.

Safety cards prevent your opponent from playing the corresponding Hazard
cards on you for the rest of the hand. You can cancel an attack in progress, and it
always entitles the player to an extra turn.

Right of Way
prevents your opponent from playing both Stop and Speed Limit cards on
you. It also acts as a permanent Go card for the rest of the hand, so you can
play mileage as long as there is not a Hazard card on top of your Battle pile.

A of 17 February 1986

28 Games and Demos Beginner's Guide

Distance Cards

Coup Foure

Scoring

In this case only, your opponent can play Hazard cards directly on a
Remedy card besides a Go card.

Extra Tank
When you play this card, your opponent cannot play an Out of Gas on your
Battle Pile.

Puncture Proof
When you play this card, your opponent cannot playa Flat Tire on your
Battle Pile.

Driving Ace
When you play this card, your opponent cannot play an Accident on your
Battle Pile.

Play distance cards when you have a Go card on your Battle pile, or a Right of
Way in your Safety area and your opponent hasn't stopped you with a Hazard
card. You can play distance cards in any combination that totals exactly 700
miles, except that you cannot play more than two 200 mile cards in one hand. A
hand ends whenever one player gets exactly 700 miles or the deck runs out. If
the deck runs out, you continue play until someone reaches 700, or neither player
can play any cards. If you complete the trip after the deck runs out, this is called
Delayed Action.

This is a French fencing tenn for a counter-thrust move as part of a parry to an
opponents attack. In Mille Bornes, it is used as follows: If an opponent plays a
Hazard card, and you have the corresponding Safety in your hand, you play it
immediately, even before you draw. This immediately removes the Hazard card
from your Battle pile, and protects you from that card for the rest of the game.
This gives you more points (see Scoring below).

mille totals scores at the end of each hand, whether or not anyone completed
the trip. The Score window uses the following terms:

Milestones Played
Each player scores as many miles as they played before the trip ended.

Each Safety
100 points for each safety in the Safety area.

All 4 Safeties
300 points if all four safeties are played.

Each Coup Foure
300 points for each Coup Foure accomplished.

The following bonus scores can apply only to the winning player.

Trip Completed
400 points bonus for completing the trip to 700 or 1000.

Safe Trip
300 points bonus for completing the trip without using any 200 mile cards.

A of 17 February 1986

3.6. Snake

Chapter 3 - Display Games 29

Delayed Action
300 points bonus for finishing after the deck was exhausted.

Extension
200 points bonus for completing a 1000 mile trip.

Shut-Out
500 points bonus for completing the trip before your opponent played any
mileage cards.

mille also keeps running totals of the current score for each player for the hand
(Hand Total), the game (Overall Total), and number of games won (Games).

/usr/games/snake [-w n] [-1 n]
/usr/games/snscore

snake is a chase game in which you try to make as much money as possible
without getting eaten by the snake. The -1 and -w options allow you to specify
the length and width of the field. Unless you specify otherwise, snake uses the
entire screen (except for the last column).

You show up on the screen as an 1. The snake is 6 squares long and appears
synaesthetically as a series of S's. The money is $, and the exit is:t. snake
posts your score in the upper left-hand comer.

You can move around using the same conventions as vi - the h, j, k, and 1
keys work, as do the arrow keys. Other possibilities include:

sefc
These keys are like hjkl, but form a directed pad around the d key.

HJKL
These keys move you all the way in the indicated direction to the same row
or column as the money. This does not let you jump away from the snake,
but rather saves you from having to type a key repeatedly. The snake still
slithers all of its turns.

SEFC
Likewise for the upper case versions on the left side of the keyboard.

ATPB
These keys move you to the four edges of the screen. Their position on the
keyboard is the mnemonic - for example, P is at the far right of the key­
board.

x To quit the game.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

Shell escape.

(CTRL-Z] Suspend the snake game, on systems which support it. Otherwise
start an interactive shell.

A of 17 February 1986

30 Games and Demos Beginner's Guide

Files

Bugs

3.7. Worm

Bugs

3.8. Worms

To earn money, move to the same square the money is on. A new $ will appear
when you earn the current one. As you get richer, the snake gets hungrier. To
leave the game, move to the exit (t).

snscore keeps a record of the best score of each player. It counts your score
only if you leave at the exit; if the snake eats you, you don't score.

As in pinball, if you match the last digit of your score to the number which
appears after the game, you win a bonus.

To see who plays snake, and their scores, run /usr / gamest snscore.

lusr/gamesllib/snakerawscores database of player scores
lusr/games/lib/snake.log log of games played

When playing on a small screen, it's hard to tell when you hit the edge of the
screen.

The scoring function takes into account the size of the screen. snake has not
devised a perfect function to score equitably.

/usr/games/worm [size]

In worm, you are a little worm, your body is the o's on the screen and your
head is the @. You move with the hjkl keys (as in the game snake). If you
don't press any keys, you continue in the direction you last moved. The upper­
case HJKL keys move you as if you had pressed several of the corresponding
lower-case key (9 for HL and 5 for JK).

On the screen you will see a digit. If your worm eats the digit, the worm will
grow longer by the amount of the digit you ate. The object of the game is to see
how long you can make the worm grow.

The game ends when the worm runs into either the sides of the screen, or itself.
worm keeps the current score (how much the wonn has grown) in the upper left
comer of the screen.

The optional argument size, if present, is the initial length of the wonn.

If you set the initial length of the worm to less than one or more than 75, various
strange things happen.

/usr/games/worms [-field] [-length #:] [-number #:]

[- trail]

worms animates worms on terminal.

-field
makes afield for the worm(s) to eat;

A of 17 February 1986

Files

See Also

Bugs

Chapter 3 - Display Games 31

-trail
causes each worm to leave a trail behind it.

worms evolved from a TOPS-20 program on the DEC-2136 machine called worm.

/etc/termcap

Snails, by Karl Heuer

The lower right-hand character position will not update properly on a terminal
that wraps at the right margin.

worms will not initialize the terminal.

A of 17 February 1986

4
Graphics Games

Graphics Games ... 35

4.1. Boggletool ... 35

4.2. Chesstool .. 37

4.3. Gammontool ... 38

4.4. Life ... 40

4.1. Boggletool

Figure 4-1

bogg letool icon

Rules of the Game

4
Graphics Games

Graphics games will only run on devices that support graphics.

boggletool [number] [+ [+]] [16-character string]

bogg letool allows you to play the game of Boggle (TM Parker Bros.) with
the computer. The number argument specifies the time limit in minutes (the
default is 3 minutes). If you put the 16-character string on the command line,
boggle interprets it as a Boggle board: the first four letters form the top row,
the next four letters the second row, etc. If you don't specify any letters, bog­
gle generates a "random" Boggle board. Explanation of the + [+] argument
appears in the Advanced Play section.

boggletool

The object of Boggle is to find as many words as possible in a 4 by 4 grid of
letters within a certain time limit. You can form words from any sequence of 3
or more adjacent letters in the grid. The letters may join horizontally, vertically,
or diagonally. Normally, you cannot use any letter in the grid more than once in

35 A of 17 February 1986

36 Games and Demos Beginner's Guide

Playing the Game

Using the Menu

Advanced Play

a word (see Advanced Play for exceptions).

When invoked, boggletool displays a grid of letters and an hourglass. To
enter word guesses, simply spell the word you have found in lower-case letten.
Use any white space (space, tab, or newline) to finish a word. To correct any
mistakes, type the backspace key or (DEL I to delete the last character, or use
(CTRL-U) to delete an entire word.

boggletool verifies that words you enter are both in the grid and are valid
English words. If you try to type in a character that would fonn a word which is
not in the grid, the display will flash and the character you typed will not be
echoed. When you type any white space to end the current word, boggletool
will verify that the word is three or more letters long and that it appears in the
dictionary. If the word you typed is illegal for either reason, the display will
flash and you will have to either erase the word or change it. If you try to reenter
a valid word that you have already entered, the display will flash and the previous
occurrence of the word will be highlighted. Again, you will have to erase the
word before continuing.

As you enter words, the 'sand' in the hourglass will fall. At the end of the time
limit, the display will flash and boggletool won't allow you to enter any
more words. After a moment, the computer displays two lists of words: the
words you found, and other words which also appear in the grid. To play another
game, just type any capital letter (or use the pop-up menu).

Access the pop-up menu by pressing the right button. The four items available
work as follows:

Restart Game
causes boggletool to create a new board, reset the timer, and allow you
to start from scratch.

Restart Timer
allows you to cheat by reseting the hourglass timer to zero.

Give Up
causes boggletool to end the game and print the results immediately.

Quit
allows you to quit boggletool. A prompt appears asking you to confinn
the quit; when it does, click the left button to quit or the right button to abort
the quit.

There are two options for advanced players. If you type + as a command line
option, boggletool allows you to reuse letters in the grid. If you type ++ as a
command line option, boggletool considers letters to be adjacent to them­
selves as well as to their neighbors. Although it is far easier to find words with
these two options, boggletool will find many more words in the grid, so it is
more difficult to match the computer.

A of 17 February 1986

Files

4.2. Chesstool

Figure 4-2

chesstool icon

Chapter 4 - Graphics Games 37

boggletool evolved from the tenninal game boggle (Section 2.5).

/usr/games/boggledict dictionary file for computer's words

chesstool [chessyrogram]

chesstool is a graphics tenninal version of the chess program (See Section
2.6). If you invoke chesstool without options, it uses
/usr / games/ chess; you can designate an alternate program which uses the
same command syntax as chess with the chessyrogram argument.

chesstool

When you start chesstool, it displays a large window with three subwindows.
The first subwindow displays messages - Illegal move, for example. The
second subwindow is an options subwindow; options are described below. The
final subwindow is a chessboard display with white and black pieces and two
timekeeping clocks (advisory only).

Make your moves with the mouse: select a piece by positioning the arrow cursor
over the piece and pressing the left mouse button down, then drag the piece to the
destination square, and release the button. The cursor will then tum to an hour­
glass icon while the system plays.

Select options in the options subwindow with either the left or middle mouse but­
tons. These options are:

(Last Play)

(Undo)

Show the last play made.

Undo your last move and the machine's response.
Once the game is over, it is not possible to restart it, so
(Undo) will update the board, but you cannot continue

the game from that position.

A of 17 February 1986

38 Games and Demos Beginner's Guide

4.3. Gammontool

Figure 4-3

gamrnontool icon

[Flash]

(Machine White)

Flash when the machine has completed its move.
In flash mode, if the chesstool is open, the piece
moved by the system on its play will flash until you make
your move. If the chesstool is in icon form, the entire
icon will flash when the machine has made its move. Thus
you can Close the chesstool still know when it's
your turn to move. To tum flash mode off, select
[Flash] again.

Start a new game with the machine playing white.

(Human White) Start a new game with the machine playing black.

There are two special moves: castling and capturing a pawn en passante To cas­
tle, move the king only. The position of the rook updates automatically. Since
the king moves two squares when castling, the move is unambiguous. To capture
en passant, move the pawn to the square occupied by the opposing pawn to cap­
ture it

gammontool [path]

gammontool paints a board on a graphics tool device, then lets you play back­
gammon with the computer. The optional path argument specifies an alternate
move-generating program, which must be compatible with gammontool.

gammontool

~ (RCcept. bouble) (Refuse bouble) (Show Last. Hove) (Redo Hove)

(Redo Entire Hove) ~ ~ [New Gue) Color: (iifWhiu 0 Slack

gamrnontool has three subwindows: an option window on top, a message win­
dow in the middle, and a large board on the bottom. Buttons in the option win­
dow restart, double, etc. The message window has two lines: the first tells whose
tum it is, and the second displays any errors that occur.

A of 17 February 1986

The initial roll

Making your move

Doubling

Other buttons

Leaving the game

Log file

Chapter 4 - Graphics Games 39

To start the game, roll the dice to determine who goes first. Move the mouse
arrow onto the board and click the left button. One die appears on each side of
the board: the die on the left is yours, and the die on the right is the computer's.
If your roll is greater, then you move; if not, the computer makes a move.

When it is your turn, Your turn to move appears in the message window.
Place the mouse over any piece of your color, and click the left button. While
holding down the button, move the mouse to drag the piece; the piece follows the
mouse until you release the button. The tool checks each move and does not
allow illegal moves. When you have made as many moves as you can, the com­
puter takes its turn; after it finishes, you may either roll again, or double.

To double, click the Double button in the option window and wait for the
computer's response. If the computer doubles you, it displays a message and you
must answer with the Accept Double or Refuse Double buttons. You
can also use the For f e i t button to refuse a double. If the game is doubled, a
doubling cube with the proper value appears on the bar strip. If the number is
face-up, then you may double next. If the number is upside-down, it is the
computer's option to double.

If you want to change your move before you have finished it, use the
Redo Move or Redo Ent ire Move buttons in the option window.
Redo Entire Move replaces all of the pieces you have moved so that you
can redo them all. Redo Move only replaces the last piece you moved, so it is
useful when you roll doubles and want to redo only the last piece you moved.
Note that once you have made all of the moves your roll permits, play passes
immediately to the computer, so you cannot redo the very last move. The
Show Last Move button allows you to see the last move again.

If you want to quit playing backgammon, use the Qui t button. If you want to
forfeit the game, use the Forfeit button. The computer penalizes you by tak­
ing a certain number of points, but the program does not terminate.

To play another game after winning, losing, or forfeiting, click the New Game
button. To change the color of your pieces, click the mouse button while point­
ing at either the White or Black checkboxes. You may change colors at any
time, even in the middle of a game. Changing colors in the middle of a game
does not mean that you trade places with the computer; your pieces stay where
they are, but garrunontool repaints them with the new color. Your pieces
always move from the top right to the bottom right of the board, regardless of
your color. As an additional cue to your color, garrunontool always displays
your dice on the left half of the board.

If a there is a gammonlog file in your home directory, gammontool keeps a
log of the games you have played. It records each move and double, along with
the winners and accumulated scores.

A of 17 February 1986

40 Games and Demos Beginner's Guide

Files

Bugs

4.4. Life

Figure 4-4

-/gammonlog log of games played

The computer's strategy is poor.

If a single move uses more than one die (for instance if you roll 5, 6 and move
11 spaces without touching down in the middle), gammon tool may have
difficulty deciding where to make the piece land. This may be important if there
is a blot on one of the middle points. The program will always make the move if
possible, but if two midpoints would work and there is a blot on one of them, it is
much better to explicitly hit the blot, then move the piece the rest of the way.

life is a program that plays John Conway's game of life.

life

e erases

run • step mnp rem 1
• slo11 zoo. -:=ou;;"t .. ""IIIII. .---"'-""-'1. zoo. in

•• ••• •• • •• • •••• • •• • •• ••• ••

• • •••••••• •••••••• • •••••••• • •••••••• • •• • •••• • ••• ••

• • •• •• • • • •

_________________ .~_' - - .-1
life displays a window with a small control panel at the top, and a large draw­
ing area at the bottom. You create pieces in the drawing area with the left button,
and erase them with the middle button.

When you select run in the control panel, the pieces begin to evolve, and the
drawing region updates itself at a speed controlled by the slider labeled with
fast and slow.

1 i f e keeps track of all the pieces even if they are not visible. You can use the
scroll bars surrounding the drawing region to see pieces that have moved out of
view. You can draw some standard patterns by selecting from a menu that you
can "pop up" in the drawing subwindow.

The first row of the control panel (from left to right) includes a variety of items:

the picture which looks like a tic-tac-toe board
draws a grid in the drawing region

A of 17 February 1986

Chapter 4 - Graphics Games 41

mode
changes from run mode (where the pieces update continuously) to step
mode (where an update occur only when you click on the step label)

clear
clears the drawing region

quit
exit from the game.

To the right of the quit button is a counter that records the generation number.
The second row contains two sliders. The first controls the update speed when in
run mode, the second controls the size of the pieces.

A of 17 February 1986

5
Graphics Standards Demos

Graphics Standards Demos ... 45

5.1. Draw .. 45

5.2. Suncube ... 46

5.1. Draw

New Seg xlate

New Seg xform

Delete Seg

Lines

Polygon

Raster

5
Graphics Standards Demos

Graphics Standards demos comprise only the SunCore graphics standard at
present

/usr/demo/draw

The draw program is a menu-driven program that uses the mouse, keyboard, bit­
map display and optionally the color display to draw objects, drag them around,
save them on disk, and so on.

The main menu items are selected by moving the mouse cursor and pressing the
left mouse button. To redraw the display, point at the left edge of the main menu
box and press the left button. The main menu items are listed here.

Open a new translatable segment. A segment is a collection of attributes and
primitives (lines, text, polygons, etc.). A translatable segment may subsequently
be positioned.

Open a new transformable segment. A transformable segment may subsequently
be rotated, scaled, or positioned.

To delete a segment, point at any primitive in the segment and press the left but­
ton.

To add line primitives to the currently open segment, position cursor, press the
left button. Press right button to quit.

To add a polygon primitive to the currently open segment, position the cursor,
press the left button. Press the right button to tenninate the boundary definition.
Polygons are filled with the current fill attribute.

To add a raster primitive to the currently open segment, position the cursor, press
the left button to reposition the box, adjust the box by moving the mouse, press
the right button to create the raster primitive comprising the boxed bitmap. A
'rasterfile' is also created on disk for hardcopy purposes (see
/usr / include/ rasterf ile. h). This 'rasterfile' file may be spooled to a
Versatec printer/plotter for hardcopy after exiting from the draw program. The
command to do this is:

45 A of 17 February 1986

46 Games and Demos Beginner's Guide

Text

Marker

Position

Rotate

Scale

Attributes

Save Seg

Restore Seg

Exit

Bugs

5.2. Suncube

lpr -v rasterfile

To add a text primitive to the currently open segment, position cursor, press left
button, type the text string at the keyboard (back space works), hit return. Text is
drawn with the current text attributes.

To add marker primitives to the currently open segment, position cursor, press
the left button to place marker. Press the right button to quit.

To position a segment, point at any primitive in the segment, press left button,
position the segment, press right button to quit.

To rotate a transformable segment, point at any primitive in the segment, press
left button, move mouse to rotate, press right button to quit.

To scale a transformable segment, point at any primitive in the segment, press
the left button, move mouse to scale in x or y, press right button to quit.

This item brings up the attribute menu. To select an attribute such as text font,
region fill texture (color), linestyle, or line width, point at the item and press the
left button. Point at the left edge of the menu box to quit.

To save a segment on a disk file, point at the segment, pren the left button, type
the disk file name, hit return.

To restore a previously saved segment from disk, type file name, hit return.

Exit the draw program.

D Rasters and raster text do not scale or rotate.

D If segments completely overlap, only the last one drawn may be picked by
pointing with the mouse. This also applies to the menu segments! There­
fore, don't cover them up with polygons.

D If aborted with your interrupt character, you must type a re set command
to tum keyboard echo back on and to reset -cbreak. Therefore, use the
Exit item in the main menu to exit the program.

suncube works on the color displays. It draws a multicolored Sun logo in the
shape of a cube, then 'ripples' the color map through various shades.

A of 17 February 1986

6
PixRect Graphics Demos

PixRect Graphics Demos .. 49

6.1. Bouncedemo ... 49

6.2. Jumpdemo .. 49

6.3. Molecule ... 49

6.4. Spheresdemo .. 49

6.1. Bouncedemo

6.2. Jumpdemo

6.3. Molecule

6.4. Spberesdemo

6
PixRect Graphics Demos

Sun Pixrect Graphics Demos use the Pixrect layer of the graphics programming
environment available on the Sun workstation.

bouncedemo draws a canvas on the workstation screen and shows a bouncing
ball (actually a square) bouncing up and down.

jumpdemo illustrates the simulated jump to hyperspace from the 'Star Wars'
series.

molecule draws colored molecules on the screen.

spheresdemo draws a collection of overlapping, shaded spheres on the screen.

49 A of 17 February 1986

A
de and be - Desk Calculators

de and be - Desk Calculators .. 53

A.1. DC - Interactive Desk Calculator .. 53

Description of de Commands ... 53

A.2. BC - Arbitrary-Precision Desk Calculator ... 55

Simple Computations with Integers ... 56

Bases .. 57

Scaling ... 58

Functions ... 59

Subscri pted V ariables ... 60

Control Statements ... 60

Some Details .. 62

Three ImJ>Ortant Things ... 62

Syntactic Description of be .. 63

A.I. DC - Interactive Desk
Calculator

Huge Numbers

Stack Operation

Description of de Commands

Push Number onto Stack

A
de and be - Desk Calculators

de and be are a pair of complementary interactive languages to provide calcula­
tion functions (desk calculators) at the keyboard.

be is a language that accepts programs written in the familiar style of higher­
level programming languages and compiles output which is interpreted by de.
Some de commands described below are designed for use by be and are not
easy for a human user to manipulate.

de is an interactive desk calculator program implemented on the UNIX system to
do arbitrary-precision integer arithmetic. de works like a stacking calculator
using reverse Polish notation. It has provision for manipulating scaled fixed­
point numbers and for input and output in bases other than decimal.

The size of numbers that can be manipulated is limited only by available memory
storage. On typical implementations of UNIX, the size of numbers that can be
handled varies from several hundred digits on the smallest systems to several
thousand on the largest.

Numbers that are typed into de are put on a push-down stack. de commands
work by taking the top number or two off the stack, performing the desired
operation, and pushing the result on the stack. If an argument is given, input is
taken from that file until its end, then from the standard input.

Here we describe the de commands that are intended for use by people. The
additional commands that are intended to be invoked by compiled output are
described in the detailed description.

Any number of commands are permitted on a line. Blanks and newline charac­
ters are ignored except within numbers and in places where a register name is
expected.

The following constructions are recognized:

Typing a number is a command to mean that the value of number is pushed onto
the main stack. A number is an unbroken string of the digits 0-9 and the capital
letters A through F which are treated as digits with values 10 through 15, respec­
tively, and possible a decimal point. The number may be preceded by an under­
score to input a negative number.

53 A of 17 February 1986

54 Games and Demos Beginner's Guide

Binary Operators

Comparison Operators

Stack Operations

Binary operators operate on the top two values on the stack. The two entries are
popped off the stack and the result is pushed on the stack in their place.

+ Add the two values on the top of the stack.

Subtract the two values on the top of the stack.

* Multiply the two values on the top of the stack.

/ Divide the two values on the top of the stack. The result of a division is an
integer truncated toward zero.

% Remainder the two values on the top of the stack.

Exponentiate the two values on the top of the stack. An exponent must not
have any digits after the decimal point

See the detailed description below for the treatment of numbers with decimal
points.

The top two elements of the stack are popped and compared according to the
relational operators defined below. Register x is executed if they obey the stated
relation. Exclamation point is negation.

<x

>x

=x equal

!<x

!>x

!=x not equal

The operations noted below operate on the stack or between the stack and named
registers.

sx Pop the value from the top of the main stack and stores that value into a
register named x, where x may be any single character. If the s is capital­
ized, x is treated as a stack and the value is pushed onto it. Any character,
even blank or newline, is a valid register name.

Ix Push the value in register x onto the stack. The register x is not altered. If
the 1 is capitalized, register x is treated as a stack and its top value is
popped onto the main stack.

All registers start with empty value which is treated as a zero by the 1 command
and is treated as an error by the L command.

d The top value on the stack is duplicated.

p Display the value on the top of the stack. The top value remains unchanged.

f Display all values on the stack and in registers.

x Treat the top element of the stack as a character string, remove it from the
stack, and execute it as a string of de commands.

A of 17 February 1986

A.2. BC - Arbitrary­
Precision Desk
Calculator

Appendix A - de and be - Desk Calculators 55

[character string]
Put the bracketed character string onto the top of the stack.

q Exit the program. If executing a string, pop the recursion level by two. If q
is capitalized, pop the top value on the stack and pop the string execution
level by that value.

v Replace the top element on the stack by its square root. The square root of
an integer is truncated to an integer. For the treatment of numbers with
decimal points, see the detailed description below.

Interpret the rest of the line as a UNIX command. Control returns to de
when the UNIX command terminates.

e All values on the stack are popped; the stack becomes empty.

i The top value on the stack is popped and used as the number radix for
further input. If i is capitalized, the value of the input base is pushed onto
the stack. No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 or greater than 16.

o The top value on the stack is popped and used as the number radix for
further output If 0 is capitalized, the value of the output base is pushed
onto the stack.

k The top of the stack is popped, and that value is used as a scale factor that
influences the number of decimal places that are maintained during muitipli­
cation, division, and exponentiation. The scale factor must be greater than
or equal to zero and less than 100. If k is capitalized, the value of the scale
factor is pushed onto the stack.

z The value of the stack level is pushed onto the stack.

? A line of input is taken from the input source (usually the console) and exe­
cuted.

be is a language and a compiler for doing arbitrary-precision arithmetic on the
UNIX system. The output of the compiler is interpreted and executed by a col­
lection of routines which can input, output, and do arithmetic on indefinitely
large integers and on scaled fixed-point numbers. These routines are themselves
based on a dynamic storage allocator. Overflow does not occur until all available
memory is exhausted.

The be language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution. A small col­
lection of library functions is also available, including sin, cos, arctan, log,
exponential, and Bessel functions of integer order.

Some of the uses of the be compiler are:

o computation with large integers,

o computation accurate to many decimal places,

o conversion of numbers from one base to another base.

A of 17 February 1986

56 Games and Demos Beginner's Guide

Simple Computations with
Integers

The be compiler was written to make conveniently available a collection of rou­
tines (as described in the section on de) which are capable of doing arithmetic on
integers of arbitrary size. The compiler is by no means intended to provide a
complete programming language - it is a minimal language facility.

There is a scaling provision that pennits the use of decimal point notation. Pro­
vision is made for input and output in bases other than decimal. Numbers can be
converted from decimal to octal by simply setting the output base to 8.

The actual limit on the number of digits that can be handled depends on the
amount of storage available on the machine. Manipulation of numbers with
many hundreds of digits is possible.

The syntax of be has been deliberately selected to agree substantially with the C
language. Those who are familiar with C will find few surprises in this language.

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

be responds immediately with the line

428571

The operators -, *, /, %, and" can also be used; they indicate subtraction, multi­
plication, division, remaindering, and exponentiation, respectively. Division of
integers produces an integer result truncated toward zero. Division by zero pro­
duces an error comment.

Any tenn in an expression may be prefixed by a minus sign to indicate that it is
to be negated (the 'unary' minus sign). The expression

7+--3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are inter­
preted just as in FORTRAN, with " having the greatest binding power, then * and
% and /, and finally + and -. Contents of parentheses are evaluated before
material outside the parentheses. Exponentiations are perfonned from right to
left and the other operators from left to right. The two expressions

aAb"c and a"(b"c)

are equivalent, as are the two expressions

a*b*c and (a*b)*c

be shares with FORTRAN and C the undesirable convention that

a/b*c is equivalent to (a/b) *c

Internal storage registers to hold numbers have single lower-case letter names.
The value of an expression can be assigned to a register in the usual way. The
statement

A of 17 February 1986

Bases

Appendix A - de and be - Desk Calculators 57

x = x + 3

has the effect of increasing by three the value of the contents of the register
named x. When, as in this case, the outennost operator is an =, the assignment is
performed but the result is not printed. Only 26 of these named storage registers
are available.

There is a built-in square root function whose result is truncated to an integer
(but see scaling below). The lines

x = sqrt(191) x

produce the printed result

13

There are special internal quantities, called 'ibase' and 'obase'. The contents of
'ibase', initially set to 10, determines the base used for interpreting numbers read
in. For example, the lines:

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of
trying to change the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect.
For those who deal in hexadecimal notation, the characters A-F (upper-case
only) are permitted in numbers (no matter what base is in effect) and are inter­
preted as digits having values 10-15 respectively. The statement:

ibase = A

will change you back to decimal input base no matter what the current input base
is. Negative and large positive input bases are permitted but useless. No
mechanism has been provided for the input of arbitrary numbers in bases less
than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output
numbers. The lines

obase = 16 1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output
bases are permitted, and they are sometimes useful. For example, large numbers
can be output in groups of five digits by setting 'obase' to 100000. Strange (that
is, 1,0, or negative) output bases are handled appropriately.

A of 17 PebI'\lary 1986

58 Games and Demos Beginner's Guide

Scaling

Very large numbers are split across lines with 70 characters per line. Lines
which are continued end with \. Decimal output conversion is practically instan­
taneous, but output of very large numbers (that is, more than 100 digits) with
other bases is rather slow. Non-decimal output conversion of a one hundred-digit
number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the
course of internal computation or on the evaluation of expressions, but only
affect input and output conversion, respectively.

A third special internal quantity called 'scale' is used to determine the scale of
calculated quantities. Numbers may have up to 99 decimal digits after the
decimal point. This fractional part is retained in further computations. We refer
to the number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined by the following rules. For addition
and subtraction, the scale of the result is the larger of the scales of the two
operands. In this case, there is never any truncation of the result. For multiplica­
tions, the scale of the result is never less than the maximum of the two scales of
the operands, never more than the sum of the scales of the operands and, subject
to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity 'scale'. The scale of a quotient is the contents of the internal
quantity 'scale'. The scale of a remainder is the sum of the scales of the quotient
and the divisor. The result of an exponentiation is scaled as if the implied multi­
plications were performed. An exponent must be an integer. The scale of a
square root is set to the maximum of the scale of the argument and the contents
of 'scale'.

All of the internal operations are actually carried out in terms of integers, with
digits being discarded when necessary. In every case where digits are discarded,
truncation and not rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than O. It is ini­
tially set to O. In case you need more than 99 fraction digits, you may arrange
your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions
just like other variables. The line:

scale = scale + 1

increases the value of 'scale' by one, and the line

scale

displays the current value of 'scale'.

The value of 'scale' retains its meaning as a number of decimal digits to be
retained in internal computation even when 'ibase' or 'obase' is not equal to 10.
The internal computations (which are still conducted in decimal, regardless of the
bases) are performed to the specified number of decimal digits, never hexade­
cimal or octal or any other kind of digits.

A of 17 PebIUaty 1986

Functions

Appendix A - de and be - Desk Calculators 59

The name of a function is a single lower-case letter. Function names are pennit­
ted to collide with simple variable names. Twenty-six different defined functions
are pennitted in addition to the twenty-six variable names. The line:

define a(x) {

begins the definition of a function with one argument. This line must be fol­
lowed by one or more statements, which make up the body of the function, end­
ing with a right brace}. Return of control from a function occurs when a return
statement is executed or when the end of the function is reached. The return
statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, it is the value of
the expression in parentheses.

Variables used in the function can be declared as automatic by a statement of the
fonn

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first state­
ment in the definition These automatic variables are allocated space and initial­
ized to zero on entty to the function and thrown away on return. The values of
any variables with the same names outside the function are not disturbed. Func­
tions may be called recursively and the automatic variables at each level of call
are protected. The parameters named in a function definition are treated in the
same way as the automatic variables of that function with the single exception
that they are given a value on entry to the function. An example of a function
definition is

define a(x,y) {
auto z
z = x*y
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of argu­
ments enclosed in parentheses and separated by commas. The result is unpredict­
able if the wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with noth­
ing between them: b () .

If the function a above has been defined, then the line

a(7,3.14)

would display the result 21.98, and the line

x = a(a(3,4),S)

would assign the value 60 to the register x .

A of 17 February 1986

60 Games and Demos Beginner's Guide

Subscripted Variables

Control Statements

A single lower-case letter variable name followed by an expression in brackets is
called a subscripted variable (an array element). The variable name is called the
array name and the expression in brackets is called the subscript. Only one­
dimensional arrays are permitted. The names of arrays are permitted to collide
with the names of simple variables and function names. Any fractional part of a
subscript is discarded before use. Subscripts must be greater than or equal to
zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions," in function calls, and in
return statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

f(a[])

define f (a [])
auto a []

When an array name is so used, the whole contents of the array are copied for the
use of the function, and thrown away on exit from the function. Array names
which refer to whole arrays cannot be used in any other contexts.

The if, the while, and the for statements may be used to alter the flow within
programs or to iterate. The range of each of them is a statement or a compound
statement consisting of a collection of statements enclosed in braces. They are
written in the following way:

if (relation) statement
while (relation) statement
for (expression-l; relation; expression-2) statement

or

if (relation) {statements}
while (relation) {statements}
for (expression-l; relation; expression-2) { statements}

A relation in one of the control statements is an expression of the form:

x>y

where two expressions are related by one of the six relational operators <, >, <=,
>=, ==, or ! =. The relation == stands for 'equal to' and! = stands for 'not equal
to'. The meaning of the remaining relational operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a com­
parison.

The if statement executes its range if and only if the relation is true. Then con­
trol passes to the next statement in sequence.

The while statement executes its range repeatedly as long as the relation is true.
The relation is tested before each execution of its range and if the relation is
false, control passes to the next statement beyond the range of the while.

A of 17 February 198(

Appendix A - de and be - Desk Calculators 61

The for statement begins by executing expressionl. Then the relation is tested
and, if true, the statements in the range of the for are executed. Then expres­
sion2 is executed. The relation is tested, and so on. The typical use of the for
statement is for a controlled iteration, as in the statement:

for(i=l; i<=10; i=i+l) i

which prints the integers from 1 to 10. Here are some examples of the use of the
control statements.

define f(n) {
auto i, x
x=l
for(i=l; i<=n; i=i+1) x=x*i
return (x)
}

The line:

f (a)

prints a factorial if a is a positive integer. Here is the definition of a function
which will compute values of the binomial coefficient em and n are assumed to
be positive integers).

define b(n,m) {
auto x, j
x=l
for(j=l; j<=m; j=j+l) x=x*(n-j+l)/j
return (x)
}

The following function computes values of the exponential function by summing
the appropriate series without regard for possible truncation errors:

scale = 20
define e(x) {

auto a, b, c, d, n
a 1
b 1
c 1
d 0
n = 1
while (1==1) {

a = a*x
b b*n
c c + alb
n = n + 1
if (c==d) return (c)
d = c

A of 17 February 1986

62 Games and Demos Beginner's Guide

Some Details

Note: In some of these construc­
tions, spaces are significant. There
is a real difference between x=-y
and x= -y. The first replaces x
by x-y and the second by -yo

Three Important Things

There are some language features that every user should know about even if he
will not use them.

Normally statements are typed one to a line. It is also permissible to type several
statements on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used
anywhere that an expression can. For example, the line

(x=y+l7)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it
is not parenthesized.

x = a[i=i+l]

assigns a value to x and also increments i before it is used as a subscript.

The following constructs work in be in exactly the same manner as they do in
the C language. Consult any reference on the C language for their exact work­
ings.

x=y=z is the same as
x =+ y
x =-

x =*
x =/
x =%
x
x++
x­
++x
-x

y
y
y

Y
y

x= (y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x = x%y
x = x"y
(x=x+l)-l
(x=x-l)+l
x = x+l
x = x-l

Even if you don't intend to use these constructs, if you type one inadvertently,
something correct but unexpected may happen.

1. To exit a be program, type quit.

2. There is a comment convention identical to that of C and of PUI. Comments
begin with / * and end with * / .

3. There is a library of math functions which may be obtained by typing at
command level:

be -1

This command loads a set of library functions which, at the time of writing,
consists of sine (named's'), cosine ('c'), arctangent ('a'), natural logarithm

A of 17 February 198t

Syntactic Description of be

Tokens

Comments

Identifiers

Keywords

Constants

Expressions

Primitive expressions

Appendix A - de and be - Desk Calculators 63

(,1'), exponential ('e') and Bessel functions of integer order ('j(n,x)'). The
library sets the scale to 20. You can reset it to something else if you like.

If you type

be file

be will read and execute the named file or files before accepting commands from
the keyboard. In this way, you may load your favorite programs and function
definitions.

In the following pages syntactic categories are in italics; literals are in boldface;
material in brackets [] is optional.

Tokens consist of keywords, identifiers, constants, operators, and separators.
Token separators may be blanks, tabs or comments. Newline characters or semi­
colons separate statements.

Comments are introduced by the characters / * and terminated by * / .

There are three kinds of identifiers - ordinary identifiers, array identifiers and
function identifiers. All three types consist of single lower-case letters. Array
identifiers are followed by square brackets, possibly enclosing an expression
describing a subscript. Arrays are one-dimensional and may contain up to 2048
elements. Indexing begins at zero, so an array may be indexed from 0 to 2047.
Subscripts are truncated to integers. Function identifiers are followed by
parentheses, possibly enclosing arguments. The three types of identifiers do not
conflict; a program can have a variable named x, an array named x and a function
named x, all of which are separate and distinct.

The following are reserved keywords:

ibase
seale
length

if obase break
define sqrt auto
return while quit for

Constants consist of arbitrarily long numbers with an optional decimal point.
The hexadecimal digits A-F are also recognized as digits with values 10-15,
respectively.

The value of an expression is printed unless the main operator is an assignment.
Precedence is the same as the order of presentation here, with highest appearing
first. Left or right associativity, where applicable, is discussed with each opera­
tor.

Named expressions are places where values are stored. Simply stated, named
expressions are legal on the left side of an assignment. The value of a named
expression is the value stored in the place named.

Simple identifiers are named expressions. They have an initial value of zero.

A of 17 February 1986

64 Games and Demos Beginner's Guide

Function Calls

Constants

Parentheses

Unary operators

Array elements are named expressions. They have an initial value of zero.

The internal registers scale, ibase and obase are all named expressions. scale is
the number of digits after the decimal point to be retained in arithmetic opera­
tions. scale has an initial value of zero. ibase and obase are the input and output
number radix, respectively. Both ibase and obase have initial values of 10.

function-name ([expression [, expression . . .]])

A function call consists of a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. A whole
array passed as an argument.is specified by the array name followed by empty
square brackets. All function arguments are passed by value. As a result,
changes made to the fonnal parameters have no effect on the actual arguments.
If the function tenninates by executing a return statement, the value of the func­
tion is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or
the value of scale, whichever is larger.

length (expression)

The result is the total number of significant decimal digits in the expression. The
scale of the result is zero.

scale (expression)

The result is the scale of the expression. The scale of the result is zero.

Constants are primitive expressions.

An expression surrounded by parentheses is a primitive expression. The
parentheses are used to alter the normal precedence.

The unary operators bind right to left.

- expression

The result is the negative of the expression.

++ named-expression

The named expression is incremented by one. The result is the value of the
named expression after incrementing.

- named-expression

The named expression is decremented by one. The result is the value of the
named expression after decrementing.

named-expression ++

The named expression is incremented by one. The result is the value of the

A of 17 February 1986

Binary Operators

Appendix A - de and be - Desk Calculators 65

named expression before incrementing.

named-expression -

The named expression is decremented by one. The result is the value of the
named expression before decrementing.

The exponentiation operator binds right to left.

expression A expression

The result is the first expression raised to the power of the second expression.
The second expression must be an integer. If a is the scale of the left expression
and b is the absolute value of the right expression, then the scale of the result is:

min (axb, max (scale, a))

The operators *, I, % bind left to right.

expression * expression

The result is the product of the two expressions. If a and b are the scales of the
two expressions, the scale of the result is:

min (a+b, max (scale, a, b))

expression / expression

The result is the quotient of the two expressions. The scale of the result is the
value of scale.

expression % expression

The % operator produces the remainder of the division of the two expressions.
More precisely, a%b is a-alb*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

The additive operators bind left to right.

expression + expression

The result is the sum of the two expressions. The scale of the result is the max­
imun of the scales of the expressions.

expression - expression

The result is the difference of the two expressions. The scale of the result is the
maximum of the scales of the expressions.

The assignment operators bind right to left.

named-expression = expression

This expression results in assigning the value of the expression on the right to the
named expression on the left.

A of 17 February 1986

66 Games and Demos Beginner's Guide

Storage classes

Statements

Expression statements

Compound statements

Quoted string statements

if statements

named-expression =+ expression
named-expression expression
named-expression =* expression
named-expression =/ expression
named-expression =% expression
named-expression expression

The result of the above expressions is equivalent to "named expression = named
expression OP expression" , where OP is the operator after the = sign.

Unlike all other operators, the relational operators are only valid as the object of
an if, while, or inside a for statement.

expression < expression
expression > expression
expression <= expression
expression >= expression
expression expression
expression != expression

There are only two storage classes in bc, global and automatic (local). Only
identifiers that are to be local to a function need be declared with the auto com­
mand. The arguments to a function are local to the function. All other identifiers
are assumed to be global and available to all functions. All identifiers, global
and local, have initial values of zero. Identifiers declared as auto are allocated
on entry to the function and released on returning from the function. They there­
fore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in b c do not work in exactly the same way as in either C or
PUI. On entry to a function, the old values of the names that appear as parame­
ters and as automatic variables are pushed onto a stack. Until return is made
from the function, reference to these names refers only to the new values.

Statements must be separated by semicolon or newline. Except where altered by
control statements, execution is sequential.

When a statement is an expression, unless the main operator is an assignment,
the value of the expression is printed, followed by a newline character.

Statements may be grouped together and used when one statement is expected by
surrounding them with { }.

"any string"

This statement prints the string inside the quotes.

if (relation) statement

statement is executed if the relation is true.

A of 17 February 198

wh il e statements

for statements

break statements

Auto statements

define statements

return statements

quit

Appendix A - de and be - Desk Calculators 67

while (relation) statement

statement is executed while the relation is true. The test occurs before each exe­
cution of statement.

for (expression; relation.; expression) statement

The for statement is the same as

first-expression
while (relation) {

statement
last-expression

All three expressions must be present.

break terminates a for or while statement

auto identifier [, identifier]

auto pushes down the values of the identifiers. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are specified by following the
array name by empty square brackets. aut 0 must be the first statement in a func­
tion definition.

de fine ([parameter [, parameter . . •]]) {statements}

define defines a function. The parameters may be ordinary identifiers or array
names. Array names must be followed by empty square brackets.

return

return (expression)

ret urn terminates a function, pops its auto variables, and specifies the result of
the function. The first form is equivalent to ret urn (0). The result of the
function is the result of the expression in parentheses.

quit stops execution ofa be program and returns control to UNIX when it is
first encountered. Because quit is not treated as an executable statement, it
cannot be used in a function definition or in an if, for, or while statement.

A of 17 February 1986

Index

A
advent ure - exploration game, 7
arithmetic - drill in number facts, 7

B
backgammon - backgammon game, 21
play backgammon - gammontool, 38
banner -large banner, 8
bases in bc, 57 Ihru 58
bc control statements, 60 Ihru 61
bc desk calculator, 55 Ihru 67
bc functions, 59
bc number bases, 57 Ihru 58
bc scaling, 58
bc subscripted variables, 60
be syntax, 63 Ihru 67

auto, 67
binary operators, 65
break,67
comments, 63
compound statements, 66
constant expressions, 64
constants, 63
define, 67
expression statements, 66
expressions, 63
for, 67
function calls, 64
identifiers, 63
if,66
keywords, 63
primitive expressions, 63
quit, 67
quoted string statements, 66
return, 67
statements, 66
storage classes, 66
tokens, 63
unary operators, 64
while, 67

bcd - convert to antique media, 8
black and white demos

bouncedemo, 49
jumpdemo,49

boggle - boggle game, 8
bogg letool, 35
bouncedemo - black and white demo, 49

-69-

C
canfield-canfield solitaire card game, 23
chess - chess game, 9
chesstool- chess game, 37
ching - book of changes, 10
color demo

suncube, 46
control statements in bc, 60 Ihru 61
cribbage - cribbage card game, 24

D
de commands, 53 Ihru 55

binary operators, 54
comparison operators, 54
push number on stack, 53
stack operators, 54 Ihru 55

dc - desk calculator, 53 Ihru 55
dc stack operators

[<.<.<.<] -push string, 55
c -clear, 55
d - duplicate, 54
f - display all, 54
i-input radix, 55
k -scale, 55
1 - push stack, 54
o - output radix, 55
p - display, 54
q-quit, 55
s - pop stack, 54
v - square root, 55
x - execute, 54
z - push level, 55

desk calculator - dc, 53 Ihru 55
dialogue game, 3
dra w - interactive graphics drawing, 45

F
fish-Go Fish game, 11
fortune - get fortune, 11
functions in be,59

G
game, 3

dialogue, 3
graphics, 3
terminal,3

Index Continued

garnmontool- play backgammon, 38
graphics game, 3

H
hangman - hangman game, 25

I
interactive graphics drawing - draw, 45

J
jumpdemo - black and white demo, 49

L
life - play life game, 40

M
mi lle - Mille Bornes game, 25
molecule - draw molecules, 49
monop - Monopoly game, 11

N
number bases in be, 57 thnl 58
number - convert Arabic numerals to English, 14

Q
quiz - test knowledge, 14

R
radices in be, 57 thnl 58

S
scaling in be, 58
snake - display chase game, 29
sphere sdemo - draw shaded spheres, 49
stack operators in de

[< • < • < • <] - push string, 55
e-clear,55
d - duplicate, 54
f - display all, 54
i-input radix, 55
k-scale,55
1 - push stack, 54
o - output radix, 55
p - displayk, 54
q-quit, 55
s - pop stack, 54
v - square root, 55
x - execute, 54
z - push level, 55

subscripted variables in be, 60
suneube - color demo, 46
syntax of be, 63 Ihru 67

auto, 67
binary operators, 65
break, 67
comments, 63
compound statements, 66
constant expressions, 64
constants, 63
define, 67

-70-

syntax of be, continued
expression statements, 66
expressions, 63
for, 67
function calls, 64
identifiers, 63
if,66
keywords, 63
primitive expressions, 63
quit, 67
quoted string statements, 66
return, 67
statements, 66
storage classes, 66
tokens, 63
unary operators, 64
while, 67

T
terminal game, 3
trek - Star Trek game, 15

W
worm-growing worm game, 30
worms - animate worms on display, 30
wump - hunt the Wumpus game, 18

Revision History

Version Date Comments

A 17 February 1986 Reworking of Section 6 Man Pages with
additional descriptive text and organiza-
tion.

Notes

Corporate Headquarters
Sun Microsystems, Inc.
2250 Garcia Avenue
Mountain View, CA 94043
415 960-1300
TLX 287815

For U.S. Sales Office
locations, call:
800 821-4643
In CA: 800 821-4642

European Headquarters
Sun Microsystems Europe, Inc.
Sun House
31-41 Pembroke Broadway
Camberley
Surrey GUI5 3XD
England
027662111
TLX 859017

Australia: 61-2-436-4699
Canada: 416477-6745
France: (1) 46 30 23 24
Germany: (089) 95094-0
Japan: (03) 221-7021
The Netherlands: 02155 24888
UK: 0276 62111

Europe, Middle East, and Africa,
call European Headquarters:
027662111

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

