
sun®
microsystems

Sun View™ System Prograllllller's Guide

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain. View, CA 94043 • 415-960-1300

Credits and trademarks

Sun Workstation and the Sun logo

are trademarks of Sun Microsystems, Incorporated.

UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1982, 1983, 1984, 1985, 1986 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per­
mission from Sun Microsystems.

-ii-

Contents

Chapter 1 Introduction .. 3

What is Sun View? .. 3

Changes From Release 2.0 .. 3

Organization of Documentation ... 3

Compatibility ... 3

Chapter 2 Overview .. 7

2.1. SunView Architecture ... 7

2.2. Document Outline ... 7

Chapter 3 Sun View System Model ... 11

3.1. A Hierarchy of Abstractions .. 11

Data Managers .. 13

Data Representations .. 13

3.2. Model Dynamics .. 13

Tiles and fue Agent .. 14

Windows 14

Desktop 15

Lochlng .. ~d<~~'.~,,«< •••• ~;;.;>;;,,~;~",'.<:.:.>

Colormap Sharing ... , , .. ~.~:;;:;;;;;.,! +"+;:;:;.+~:~,;;:, .. ;;;.; +,:~,.:::\.:.:.:;.
::.:.:.:::.:.:.';-::.:.:.:.:.:.:::.;: .. :: ..

Worksrntions .. , , :~~~~~;'~;~A~~~~~~;;;;p::;~,~,~"~~~:~;:~;;;~~><:

Chapter 4 The Agent & Tiles ... ;;:,,; ;, .. ,,'.;~:;: .. :;:;.«;~,.;.

4.1. Registering a Tile Wifu the Agent ... :;;;;;,,~;.; 21

- iii-

Contents - Continued

Laying Out Tiles ... 22

Dynamically Changing Tile Flags .. 23

Extracting Tile Data .. 23

4.2. Notifications From the Agent ... 23

4.3. Posting Notifications Through the Agent .. 24

4.4. Removing a Tile From the Agent ... 26

Chapter 5 Windows ... 29

5.1. Window Creation, Destruction, and Reference .. 29

A New Window ... 29

An Existing Window .. 30

References to Windows ... 30

5.2. Window Geometry .. 31

Querying Dimensions ... 31

The Saved Rect ... 32

5.3. The Window Hierarchy .. 32

Setting Window Links ... 32

Activating the Window ... 33

Defaults ... 33

Modifying Window Relationships .. 34

Window Enumeration .. 35

Enumerating Window Offspring .. 35

Fast Enumeration of the Window Tree ... 36

5.4. Pixwin Creation and Destruction .. 36

Creation ... 36

Region .. 37

Retained Image .. :.. 37

Bell .. 37

Destruction .. 37

5.5. Choosing Input .. 37

Input mask ... 37

Manipulating the Mask Contents ... 38

Setting a Mask ... 38

-iv-

Contents - Continued

Querying a Mask .. 39

The Designee ... 39

5.6. Reading Input ... 39

Non-blocking Input .. 39

Asynchronous Input ... 40

Events Pending ... 40

5.7. User Data .. 40

5.8. Mouse Position ... 40

5.9. Providing for Naive Programs ... 41

Which Window to Use ... 41

The Blanket Window .. 41

5.10. Window Ownership ... 42

5.11. Environment Parameters ... 42

5.12. Error Handling .. 43

Chapter 6 Desktops ... 47

Look at suntools ... 47

6.1. Multiple Screens .. 47

The singlecolor Structure .. 47

The screen Structure .. 48

Screen Creation .. 48

Initializing the screen Structure .. 49

Screen Query .. 49

Screen Destruction .. 49

Screen Position ... 49

Accessing me Root FD .. 50

Chapter 7 Workstations .. 53

7.1. Virtual User Input Device ... 53

What Kind of Devices? .. 53

Vuid Features ... 54

Vuid Station Codes .. 54

Address Space Layout .. 54

-v-

Contents - Continued

Adding a New Segment ... 55

Input State Access .. 55

Unencoded Input ... 55

7.2. User Input Device Control ... 56

Distinguished Devices ... 56

Arbitrary Devices .. 56

Non-Vuid Devices .. 57

Device Removal ... 57

Device Query ... 57

Device Enumeration .. 58

7.3. Focus Control ... 58

Keyboard Focus Control ... 58

Event Specification .. 58

Setting the Caret Event .. 59

Getting the Caret Event ... 59

Restoring the Caret ... 59

7.4. Synchronization Control .. 60

Releasing the Current Event Lock ... 60

Current Event Lock Breaking .. 60

Getting/Setting the Event Lock Timeout ... 61

7.5. Kernel Tuning Options ... 61

Changing the User Actions that Affect Input .. 63

Chapter 8 Advanced Notifier Usage ... 67

8.1. Overview .. 67

Contents .. 67

View}X)int .. 67

Further Information .. 67

8.2. Notification .. 68

Client Events ,.. 68

Delivery Times ... 68

Handler Registration .. 68

The Event Handler .. 69

-vi-

Contents - Continued

SunView Usage .. 69

Output Completed Events .. 69

Exception Occurred Events ... 70

Getting an Event Handler ... 70

8.3. Interposition .. 72

Registering an Interposer .. 72

Invoking tlle Next Function .. 73

Removing an Interposed Function .. 74

8.4. Posting ... 76

Client Events ... 76

Delivery Time Hint .. 76

Actual Delivery Time ... 76

Posting witll an Argument .. 77

Storage Management ... 77

SunView Usage .. 78

Posting Destroy Events ... 79

Delivery Time ... 79

Immediate Delivery ... 79

Safe Delivery ... 79

8.5. Prioritization ... 80

The Default Prioritizer 80

Providing a Prioritizer .. 80

Dispatching Events ... 81

Getting tlle Prioritizer ... 82

8.6. Notifier Control ... 84

S tarting .. 84

Stopping .. 84

Mass Destruction ... 84

Scheduling ... 85

Dispatching Clients .. 85

Getting tlle Scheduler .. 86

Client Removal .. 86

8.7. Error Codes ... 87

-vii-

Contents - Continued

8.8. Restrictions on Asynchronous Calls into the Notifier 89

8.9. Issues ... 90

Chapter 9 The Selection Service & Library ... 93

9.1. Introduction ... 93

9.2. Basic concepts ... 94

9.3. Fast Overview .. 94

9.4. Topics in Selection Processing .. 95

Reporting Function-Key Transitions ... 95

Sending Requests to Selection Holders ... 96

Long Request Replies ... 97

Acquiring and Releasing Selections .. 98

Callback Procedures: Function-Key Notifications 98

Callback Procedures: Replying to Requests .. 100

9.5. Debugging and Administrative Facilities .. 102

9.6. REFERENCE SECTION .. 103

Required Header Files .. 103

Enumerated Types .. 103

Other Data Definitions ... 103

Procedure Declarations .. 105

9.7. Common Request Attributes ... 114

9.8. Two program examples .. 118

get_selection Code ... 118

seln_demo .. 121

Large Selections ... 121

Chapter 10 The User Defaults Database ... 139

Why a Centralized Database? .. 139

10.1. Overview .. 140

Master Database Files ... 140

Private Database Files ... ,.................. 140

10.2. File Format ... 142

Option Names ... 142

- viii-

Contents - Continued

Option Values ... 143

Distinguished Names .. 143

$Help .. 143

$Enumeration .. 143

$Message .. 143

10.3. Creating a . d File: Example .. 144

10.4. Retrieving Option Values ... 145

Retrieving String Values ... 145

Retrieving Integer Values ... 145

Retrieving Character Values ... 146

Retrieving Boolean Values .. 146

Retrieving Enumerated Values .. 147

10.5. Conversion Programs ... 148

10.6. Error Handling .. 149

Error _Action .. 149

Maximum_Errors .. 149

Test_Mode ... 149

10.7. Interface Summary ... 150

Chapter 11 Advanced Imaging ... 155

11.1. Handling Fixup .. 155

11.2. Icons ... 156

Loading Icons Dynamically .. 156

Icon File Format .. 156

11.3. Damage ... 158

Handling a SIGWINCH Signal.. 158

11.4. Pixwin Offset Control .. 160

Chapter 12 Menus & Prompts ... 163

12.1. Full Screen Access ... 163

Initializing Fullscreen Mode .. :...................... 164

Releasing Fullscreen Mode ... 164

Seizing All Inputs ... 164

-ix-

Contents - Continued

Grabbing I/O .. 164

Releasing I/O ... 164

12.2. Surface Preparation .. 164

Multiple Plane Groups ... 165

Pixel Caching .. 165

Saving Screen Pixels ... 165

Restoring Screen Pixels ... 166

Fullscreen Drawing Operations .. 166

Chapter 13 Window Management ... 171

Tool Invocation .. 172

Utilities ... 173

13.1. Minimal Repaint Support ... 174

Chapter 14 Rects and Rectlists ... 179

14.1. Rects ... 179

Macros on Rects .. 179

Procedures and External Data for Rects .. 180

14.2. Rectlists .. 181

Macros and Constants Defined on Rectlists .. 182

Procedures and External Data for Rectlists ... 182

Chapter 15 Scrollbars .. 187

15.1. Basic Scrollbar Management ... 187

Registering as a Scrollbar Client ... 187

Keeping the Scrollbar Informed ... 188

Handling the SCROLL_REQUEST Event .. 189

Performing the Scroll ... 190

Normalizing the Scroll ... 190

Painting Scrollbars ... 191

15.2. Advanced Use of Scrollbars ... 191

Types of Scrolling Motion in Simple Mode .. 192

Types of Scrolling Motion in Advanced Mode ... 193

-x-

Contents - Continued

Appendix A Writing a Virtual User Input Device Driver 197

A.1. Finn Events .. 197

Pairs ... 198

Choosing VUID Events ... 199

A.2. Device Controls ... 199

Output Mode .. 199

Device Instancing ... 199

Input Controls ... 200

A.3. Example ... 200

Appendix B Programming Notes .. 211

B.1. What Is Supported? ... 211

B.2. Library Loading Order ... 211

B.3. Shared Text .. 211

B.4. Error Message Decoding .. 212

B.S. Debugging Hints ... 212

Disabling Locking .. 212

B.6. Sufficient User Memory .. 213

B.7. Coexisting with UNIX ... 214

Tool Initialization and Process Groups .. 214

Signals from the Control Tenninal ... 214

Job Control and the C-Shell .. 214

-xi-

Tables

Table 14-1 Rectlist Predicates ... 183

Table 14-2 Rectlist procedures ... 184

Table 15-1 Scroll-Related Scrollbar Attributes ... 192

Table 15-2 Scrollbar Motions .. 194

Table B-1 Variables for Disabling Locking ... 213

- xiii-

Figures

Figure 3-1 Sun View system hierarchy .. 12

-xv-

1
Introduction

Introduction ... 3

What is Sun View? .. 3

Changes From Release 2.0 .. 3

Organization of Documentation ... 3

Compatibility ... 3

What is Sun View?

Changes From Release 2.0

Organization of
Documentation

The 2.0 SunWindows Reference
Manual has not been reprinted for
SunView.

Compatibility

1
Introduction

Sun View is a system to support interactive, graphics-based applications running
within windows. It consists of two major levels of functionality: the application
level and the system level. The system level is described in this document and
covers two major areas: the building blocks on which the application level is
built and advanced application-related features.

SunView is an extension and refinement of SunWindows 2.0, containing many
enhancements, bug fixes and new facilities not present in Sun Windows. How­
ever, the changes preserve source level compatibility between Sun Windows 2.0
and SunView.

These changes are reflected in a new organization for the Sun View documenta­
tion. The material on Pixrects from the old SunWindows Reference Manual is in
a new document titled Pixrect Reference Manual. Much of the functionality of
the Sun Windows window and tool layers has been incorporated into the new
SunView interface. The basic SunView interface, intended to meet the needs of
simple and moderately complex applications, is documented in the application­
level manual, the Sun View Programmer's Guide.

This document is the SunView System Programmer's Guide. It contains a combi­
nation of new and old material. Several of its chapters document new facilities
such as the Notifier, the Agent, the Selection Service and the defaults package.
Also included is low-level material from the old SunWindows Reference Manual
- e.g. the window manager routines - of interest to implementors of window
managers and other advanced applications.

This document is an extension of the application-level manual. You should only
delve into this manual if the information in the Sun View Programmer's Guide
manual doesn't answer your needs. Thus, you should read the application-level
manual first.

Another consideration is compatibility with future releases. Most of the objects
in the Sun View Programmer's Guide are manipulated through an opaque attri­
bute value interface. Code that uses them will be more portable to future ver­
sions of Sun View than if it uses the routines documented in this manual which
assume particular data structures and explicit parameters. If you do use these

~\sun ,~ microsystems
3 Revision A of 15 October 1986

4 The SunView System Programmer's Guide

Keep your old documentation

routines then the code should be encapsulated so that low-level details are iso­
lated from the rest of your application.

On the way to Sun View, we have discarded documentation about the internals of
some data structures that were discussed in SunWindows 2.0. In addition, we
have discarded documentation about routines whose functionality is now pro­
vided by the interface discussed in the SunView Programmer's Guide. Thus, if
your application is based on the Sun Windows programming interface, you should
keep your 2.0 documentation. In particular, the following structures are no
longer documented (there may by others): tool, pixwin, toolsw,
toolio.

Revision A of 15 October 1986

2
Overview

Overview ... 7

2.1. Sun View Architecture ... 7

2.2. Document Outline ... 7

2.1. Sun View Architecture

2.2. Document Outline

2
Overview

From a system point of view, Sun View is a two-tiered system, consisting of the
application and system layers:

o The application layer provides a set of high-level objects, including windows
of different types, menus, scrollbars, buttons, sliders, etc., which the client
can assemble into an application, or tool. This layer is sometimes referred to
as the tool layer. The functionality provided at this level should suffice for
most applications. This layer is discussed in the the SunView Programmer's
Guide.

o At the system layer a window is presented not as an opaque object but in
terms which are familiar to UNIX programmers - as a device which the
client manipulates through afile descriptor returned by an open (2) call.
This layer is sometimes referred to as the window device layer. The manipu­
lation and multiplexing of multiple window devices is the subject of much
of this document. The term "window device" is often shortened to just
window in this document.

This document covers the follow system level topics:

o A system model which presents the levels, components and inter­
relationships of the window system.

o A Sun View mechanism, called the Agent, which includes:

• notification of window damage and size changes.

• reading and distribution of input events among windows within a pro­
cess.

• posting events with the Agent for delivery to other clients.

o Windows as devices, which includes:

• reading control options such as asynchronous input and non-blocking
input.

o The screen abstraction, called a desktop, which includes:

• Routines to initialize new screens so that Sun View may be run on them.

• Multiple screens accessible by a single user.

7 Revision A of 15 October 1986

8 The SunView System Programmer's Guide

D The global input abstraction, called a workstation, which includes:

• environment wide input device instantiation.

• controlling a variety of system performance and user interface options.

• extending the Virtual User Input Device interface with events of your
own design.

D Advanced use of the general notification-based flow of control management
mechanism called the Notifier, which includes:

• detection of input pending, output completed and exception occurred on
a file descriptor.

• maintenance of interval timers.

• dispatching of signal notifications.

• child process status and control facilities.

• a client event notification mechanism, which can be thought of as a
client-defined signal mechanism.

D The Selection Service, for exchanging objects and information between
cooperative client, both within and between processes.

D The defaults mechanism, for maintaining and querying a database of user­
settable options.

D Advanced imaging topics, which include:

• the repair of damaged portions of your window, when not retained.

receiving window damage and size change notifications via SIGWINCH.

D The mechanisms used to violate window boundaries. You would use them if
you created a menu or prompt package.

D Routines to perform window management activities such as open, close,
move, stretch, top, bottom, refresh. In addition, there are facilities for invok­
ing new tools and positioning them on the screen.

D Routines to manipulate individual rectangles and lists of rectangular areas.
They forms what is essentially an algebra of rectangles, useful in computing
window overlap, points in windows, etc.

D Advanced icon topics, including displaying them, accessing them from a
file, their internal structure, etc ..

D Advanced scrollbar topics, including calculating and performing your own
scroll motions (in a canvas, for example).

Finally, there is an appendix on how to write a line discipline for a new input
device that you want to access through Sun View. Another appendix covers some
programming notes.

Revision A of 15 October 1986

3
Sun View System Model

Sun View System Model .. 11

3.1. A Hierarchy of Abstractions .. 11

Data Managers .. 13

Data Representations .. 13

3.2. Model Dynamics .. 13

Tiles and me Agent .. 14

Windows .. 14

Desktop ... 15

Locking ... 16

Colonn.ap Sharing ... 16

Workstations .. 17

3.1. A Hierarchy of
Abstractions

3
Sun View System Model

This chapter presents the system model of SunView. It discusses the hierarchy of
abstractions that make up the window system, the data representations of those
abstractions and the packages that manage the components.

There is a hierarchy of abstractions that make up the window system:

• Tiles are used to tile the surface of a window. Tiles don't overlap and may
not be nested. For example, a text subwindow with a scrollbar is imple­
mented with separate tiles for both the scrollbar and the text portion of the
subwindow.

• Windows are allowed to overlap one another1 and may be arbitrarily nested.
Frames, panels, text subwindows, canvases and the root window are all
implemented as windows.

• Screens, sometimes called desktops, support multiple windows and represent
physical display devices. A screen is covered by the root window.

• Workstations support multiple screens that share common user input devices
on the behalf a single user. For example, one can slide the cursor between
screens.

The figure below shows the hierarchy:

1 The procedure which lays out subwindows of tools does it so they do not overlap, but this is not an
inherent restriction.

~\sun ,~ microsystems
11 Revision A of 15 October 1986

12 The Sun View System Programmer's Guide

Figure 3-1 SunView system hierarchy

Workstation ••• Workstation

• • •
Desktop

• • •
Window ••• Window

• • •

Revision A of 15 October 1986

Data Managers

Data Representations

3.2. Model Dynamics

Chapter 3 - Sun View System Model 13

The various parts of the system support the management of this hierarchy. They
provide the glue between the various components:

• The window driver, (currently) residing in the UNIX kernel as a pseudo dev­
ice driver that is accessed through library routines, supports windows,
screens and workstations.

• The pixwin library package allows implementors of specific windows and
tiles to access the screen for drawing.

• The Notifier library package is used to support the general flow of control to
multiple disjoint clients.

• The Agent library package can be viewed as the Sun View-specific extension
of the Notifier. The Agent supports tiles and windows.

• The Selection Service is a separate user process that supports the inter­
process communication and control of user selection related data. In this
role it essentially supports specific tile implementations.

This conceptual model is useful to understand the structure and workings of the
system. However, the model doesn't always translate into corresponding objects:

• Tiles are implemented as opaque handles with pixwin regions used to com­
municate the size and position of the tile to the Agent.

At the system level, windows are implemented as UNIX devices which are
represented by file descriptors. Window devices are not to be confused with
the application level notion of windows which are opaque handles. A file
descriptor is returned by open (2) of an entry in the /dev directory. It is
manipulated by other system calls, such as select (2), read (2), ioctl (2), and
close (2).

• There is a screen structure that describes a limited number of properties of a
desktop. However, it is a window file descriptor that is used as the "ticket"
into the window driver to get and set screen related data. This is possible
because a window is directly associated with a particular screen.

• There is no system object that translates into a workstation. However, like
desktop data, workstation related data is accessed using a window file
descriptor. Again, this is because a window is directly associated with a par­
ticular screen which is directly associated with a particular workstation. As
a side effect of this association, one can use the file descriptor of a panel and
asked about workstation related data for the workstation on which the panel
resides.

Now that you have been introduced to the players in the window system, let's see
how they interact.

Revision A of 15 October 1986

14 The Sun View System Programmer's Guide

Tiles and the Agent

Windows

Tiles are quite simple and "lightweight" abstractions. The main reason for hav­
ing tiles instead of yet another nesting of windows is that file descriptors are rela­
tively heavyweight. There can only be 30 file descriptors open per UNIX process
in Sun's release 3.0. As a result, a tile provides only a subset of the functionality
of a full-blown window. After telling the Agent that a tile covers a certain por­
tion of the window, the Agent provides the following services:

• The Agent tells you when your tile has been resized.

• The Agent tells you when your tile should be repainted. Optionally, you can
tell the Agent to maintain a retained image for your tile from which the
Agent can handle the repainting itself.

The Agent reads input for the tile's window and distributes it to the
appropriate tile.

• The Agent notices when tile regions have been entered and exited by the
cursor and notifies the tile.

In addition, the Agent is the conduit by which client generated events are passed
between tiles. For example, when the scrollbar wants to tell a canvas that it
should now scroll, the communications is arranged via the Agent. The Agent, in
tum, uses the Notifier to implement the data transfer.

It is your responsibility to layout your window's tiles so that they don't overlap,
even when the window size changes.

Even a window with only a single tile that covers its entire surface may use the
Agent and its features.

Windows are the focus of most of the functionality of the window system. Here
is a list of the information about a window maintained by the window system:

A rectangle refers to the size and position of a window. Some windows
(frames) also utilize an alternative rectangle that describes the iconic posi­
tion of a window.

Each window has a series of links that describe the window's position in a
hierarchical database, which determines its overlapping relationships to
other windows. Windows may be arbitrarily nested, providing distinct
subwindows within an application's screen space.

• Arbitration between windows is provided in the allocation of display space.
Where one window limits the space available to another, clipping, guaran­
tees that one does not interfere with the other's image. One such conflict
arises when windows share the same coordinates on the display: one over­
laps the other. Thus, clipping information is associated with each window.

• When one window impacts another window's image without any action on
the second window's part, the window system informs the affected window
of the damage ithas suffered, and the areas that ought to be repaired. To do
this the window system maintains a description of the portion of the window
of the display that is corrupted as well as the process id of the window's
owner.

~\sun ~ microsystems
Revision A of 15 October 198(

Desktop

Chapter 3 - Sun View System Model 15

On color displays, colonnap entries are a scarce resource. When shared
among multiple applications, they become even more scarce: there may be
simultaneous demand for more colors than the display can support. Arbitra­
tion between windows is provided in the allocation of colonnap entries.
Provisions are made to share portions of the colonnap (colormap segments).
There is colonnap infonnation that describes that portion of the colonnap
assigned to a window.

• Real-time response is important when tracking the cursor, so this is done by
the window system. Thus, the image (cursor and optional cross hairs) used
to track the mouse when it is in the window is part of the window's data.2

• Windows may be selective about which input events they will process, and
rejected events will be offered to other windows for processing; you can
explicitly designate the window rejected events are first offered to.3 A mask
indicates what keyboard input actions the window should be notified of and
there is a similar mask for pick/locator-related actions.

• A window device is read in order to receive the user input events directed at
it. So like other input devices a window supports a variety of the input
modes, such as blocking or non-blocking, synchronous or asynchronous, etc.
In addition, there is a queue of input events that are pending for a window.

• There are 32 bits of data private to the window client stored with the win­
dow.

Desktop data relates to the physical display:

• The physical display is associated with a UNIX device. The desktop main­
tains the name of this device.

• The desktop maintains the notion of a default foreground and background
color.

• The desktop records the size of the screen.

• The desktop maintains the name of the distinguished root window on itself.

• When multiple screens are part of a workstation, each desktop knows the
relative physical placement of its neighboring displays so that the mouse
cursor may slide between them.

2 There is only one cursor per window, but the image may be different in different tiles within the window
(e.g. scrollbars have different cursors). If so, the different cursor images are dynamically loaded by the user
process and thus real time response is not assured.

3 Not all events are passed on to a designee, for example window-specific events such as LOC _ WINENTER
and KBD_REQUESTarenol

Revision A of 15 October 1986

16 The Sun View System Programmer's Guide

Locking

Display Locking

Window Database Locking

Colormap Sharing

The desktop also arbitrates screen surface access and window database manipula­
tion.

Display locking prevents window processes from interfering with each other in
several ways:

• Raster hardware may require several operations to complete a change to the
display; one process' use of the hardware is protected from interference by
others during this critical interval.

• Changes to the arrangement of windows must be prevented while a process
is painting, lest an area be removed from a window as it is being painted.

• A software cursor that the window process does not control (the-kernel is
usually responsible for the cursor) may have to be removed so that it does
not interfere with the window's image.

Window database locking is used when doing multiple changes to the window's
size, position, or links in the window hierarchy. This prevents any other process
from performing a conflicting modification and allows the window system to
treat changes as atomic.

On color displays, colormap entries are a limited resource. When shared among
multiple applications, colormap usage requires arbitration. Consider the follow­
ing applications running on the same display at the same time in different win­
dows:

• Application program X needs 64 colors for rendering VLSI images.

• Application program Y needs 32 shades of gray for rendering black and white
photographs.

• Application program Z needs 256 colors (assume this is the entire colormap)
for rendering full color photographs.

Colormap usage control is handled as follows:

• To determine how X and Y figure out what portion of the colormap they
should use (so they don't access each others' entries), the window system pro­
vides a resource manager that allocates a colormap segment to each window
from the shared colormap. To reduce duplicate colormap segments, they are
named and can be shared among cooperating processes.

• To hide concerns about the correct offset to the start of a colormap segment
from routines that access the image, the window system initializes the image
of a window with the colormap segment offset. This effectively hides the
offset from the application.

• To accommodate Z if its large colormap segment request cannot be granted,
Z's colormap is loaded into the hardware, replacing the shared colormap,
whenever the cursor is over Z's window. Z's request is not denied even
though it is not allocated its own segment in the shared colormap.

Revision A of 15 October 1986

Workstations

Chapter 3 - Sun View System Model 17

The domain of a workstation is to manage the global state of input processing.
User inputs are unified into a single stream within the window system, so that
actions with the user input devices, usually a mouse and a keyboard, can be coor­
dinated. This unified stream is then distributed to different windows, according
to user or programmatic indications. To this end a workstation manages the fol­
lowing:

• A workstation needs some number of user input devices to run. A dis­
tinguished keyboard device and a distinguished mouse-like device are recog­
nized since these are required for a useful workstation. Non-Sun supported
user input devices may be used as these distinguished devices.

• Additional, non-distinguished user input devices, may be managed by a works­
tation as well.

• The input devices associated with the workstation are polled by the window
system. Locator motion causes the cursor to move on the screen. Certain
interrupt event sequences are noted. Events are times tamped enqueued on the
workstation's input queue based on the time they were generated.

• This input queue is massaged in a variety of ways. If the input queue becomes
full, locator motion events on the queue are compressed in order to reduce its
size. In addition, locator motion at the head of the queue is (conditionally)
collapsed so as to deliver the most up-to-date locator position to applications.

• Based on the state of input focuses and window input masks a window is
selected to receive the next event from the head of the input queue. The event
is placed on the window device's separate input pending queue and the
window's process is awoken.

• The workstation uses a synchronized input mechanism. The main benefit of a
synchronized input mechanism is that it removes the input race conditions
inherent in a multiple process environment. While a window processes the
input event the workstation waits for it to finish before handing out the next
event.

• The workstation deals with situations in which a process takes too long to
finish processing an input event by pressing on ahead in a partially synchron­
ized mode until the errant process catches up to the user. This prevents a mis­
behaving process from disabling user interaction with other processes.

~\sun ,~ mfcrosystems
Revision A of 15 October 1986

4
The Agent & Tiles

The Agent & Tiles ... 21

4.1. Registering a Tile With the Agent ... 21

Laying Out Tiles ... 22

Dynamically Changing Tile Flags .. 23

Extracting Tile Data .. 23

4.2. Notifications From the Agent ... 23

4.3. Posting Notifications Through the Agent .. 24

4.4. Removing a Tile From the Agent ... 26

4.1. Registering a Tile With
the Agent

4
The Agent & Tiles

This chapter describes how to utilize the Agent to manage tiles for you. It con­
tains the implementation details associated with tiles and the Agent, as intro­
duced in the Sun View System Model chapter. This chapter uses a text sub window
with a scrollbar as an example of Agent utilization.4

The Agent is a little funny in that you don't ask it to create a tile for you that it
will then manage. In fact tiles are only abstractions. Instead, you create a pixwin
region and a unique client object and pass these to the Agent to manage on your
behalf. The following routine is how this registration is done.

int
win_register (client, pw, event_func, destroy_func, flags)

Notify_client client;
Pixwin *pw;
Notify_func event_func;
Notify_func destroy_func;
u_int flags;

=If:define PW RETAIN Oxl
=If: de fine PW FIXED IMAGE Ox2 - -
=If: de fine PW INPUT DEFAULT Ox4
=If: de fine PW NO LOC ADJUST Ox8 - - -
=If:define PW REPAINT ALL OxlO

client is the handle that the Agent will hand back to you when you are
notified of interesting events (see below) by a call to the event _ func func­
tion. client is usually the same client handle by which a tile is known to the
Notifier. Client handles needs to be unique among all the clients registered with
the Notifier.

pw is a pixwin opened by client and is the pixwin by which the tile writes to
the screen. This pixwin could have been created by a call to pw_open () if the
window has only a single tile that covers its entire surface. More often the tile
covers a region of the windows created by a call to pw_region () ,docu­
mented in the Clipping with Regions section of the Imaging Facilities: Pixwins

4 The header file /usr/include/sunwiruiow/window _ hs.h contains the definitions for the routines in this
chapter.

~\sun ,~ microsystems
21 Revision A of 15 October 1986

22 The SunView System Programmer's Guide

Laying Out Tiles

chapter of the SunView Programmer's Guide. Regions are themselves pixwins
that refer to an area within an existing pixwin.

flags control the options utilized by the Agent when managing your tile:

D PW _RETAIN - Your tile will be managed as retained. This means that the
window system maintains a backup image of your tile in memory from
which the screen can be refreshed in case the tile is exposed after being hid­
den.

D PW _FIXED_IMAGE - The underlaying abstraction of the image that your tile
is displaying is fixed in size. This means that the client need not be asked to
repaint the entire tile on a window size change. Only the newly exposed
parts need be repainted.

D PW _INPUT_DEFAULT - Usually, the cursor position over a tile indicates
which tile input will by sent to. However, if your window has the keyboard
focus, the cursor need not be over any tile in your window in order for the
window to be sent input. The tile with this flag on will receive input if the
cursor is not over any tile in the window. In our example, the text display
tile would be created with this flag on because it is the main tile in the win­
dow.

D PW _NO _ LOC _ADJUST - Usually, when the Agent notifies your tile of an
event the locator x and y positions contained in your event are adjusted to be
relative to the tile's upper left hand comer. Turning this flag on suppresses
this action which means that you'll get events in the window's coordinate
space.

D PW _REPAINT_ALL - Setting this flag causes your tile to be completely
repainted when ever the Agent detects that any part of your window needs to
be repainted.

event func is the client event notification function for the tile and
destroy_func is the client destroy function for the tile. The Agent actually
sets these functions up with the notifier (see the Notifier chapter in the SunView
Programmer's Guide for a discussion of these two types of notification functions
and their calling conventions). In addition, the Agent gets input pending and
SIGWINCH received (used for repaint and resize detection) notifications from the
notifier and posts corresponding events to the appropriate tile. Tiles in the same
window need to share the same input pending notification procedure because
input is distributed from the kernel at a window granularity. Tiles also share the
same input masks, as well as other window data.

Tiles are used to tile the surface of a window. Tiles may not overlap and may not
be nested. As an example, a text subwindow with a scrollbar is implemented
with a separate tile for both the scrollbar and the text portion of the subwindow.
It is a window owner's responsibility to layout tiles so that they don't overlap.
The Agent does nothing for you in this regard, so layout is arranged via conven­
tions among tiles. In our example, there are two tiles, the scrollbar and a text
display area. Here is how layout works when scrollbars are involved:

~\sun ,~ microsystems
Revision A of 15 October 1986

Dynamically Changing Tile
Flags

Extracting Tile Data

4.2. Notifications From the
Agent

Chapter 4 - The Agent & Tiles 23

o The text subwindow code creates a vertical scroll bar. The scrollbar code
looks at the user's scroll bar defaults and finds out what side to put the
scrollbar on and how wide it should be. Given this infonnation it figures out
where to place its tile. The scrollbar code registers its new tile with the
Agent.

o After creating the scrollbar, the text subwindow code asks the scrollbar what
side it is on and how thick it is. Given this infonnation the text subwindow
figures out where to place its text display tile. The text subwindow code
registers its new tile with the Agent.

o When a window resize notification (sent by the Agent) is received by the
scrollbar it knows to hug the side that it is on as it adjusts the size of its
region. A similar arrangement is followed by the text display tile.

The following routine lets you dynamically set the tile's flags:

int
win_set_flags(client, flags)

Notify_client client;
u_int flags;

A -1 is returned if client is not registered, otherwise 0 is returned.

When you set a single flag, it is best to retrieve the state of all the flags first and
then operate on the bit that you are changing, then write all the flags back; other­
wise, any other flags that are set will be reset. The following routine retrieves the
current flags of the tile associated with client:

u int
win_get_flags(client)

Notify_client client;

Extraction of interesting values from clients of the Agent is done via the follow­
ing calls:

int
win_get_fd(client)

Notify_client client;

win_get _ fd () gets the window file descriptor associated with client's tile.

Pixwin *
win_get-pixwin(client)

Notify_client client;

win_get yixwin () gets the pixwin associated with cliept's tile.

Once you register your tile with the Agent, the Agent causes the event _ func
you passed to win_register () to be called ("notified") to handle events.
You must write your tile's event notification procedure yourself; the events it
might receive are listed in the Handling Input chapter in the Sun View
Programmer's Guide.

Revision A of 15 October 1986

24 The Sun View System Programmer's Guide

4.3. Posting Notifications
Through the Agent

The calling sequence for any client event notification function is:

Notify_value
event_func(client, event, arg, when)

Notify_client client;
Event *event;
Notify_arg arg;
Notify_event_type when;

client is the client handle passed into win_register (). event is the
event your tile is notified of. arg is usually NULL, but depends on
event_id (event). In the case of the scrollbar tile notifying the text display
tile of a scroll action arg is actually defined. when is described in the
chapter Advanced Notifier Usage and is usually NOTIFY_SAFE.

What your tile does with events is largely up to you; however, there are a few
things to note about certain classes of events.

o For LOC _ RGNENTER and LOC _RGNEXIT to be generated for tiles, LOC _MOVE,
LOC WINENTER and LOC WINEXIT need to be turned on. Remember that - -
tiles share their window's input mask so they need to cooperate in their use
of it.

o Locator coordinate translation is done so that the event is relative to a tile's
coordinate system unless disabled by PW _NO _ LOC _ADJUST.

o On a WIN_RESIZE event, you can use pw_set_region_rect () to
change the size and position of your tile's pixwin region.

o On a WIN_REPAINT, you simply repaint your entire tile. The Agent will have
set the clipping of your pix win so that only the minimum portion of the
screen will actually appear to repaint. Alternatively, if you have initially
told the Agent to maintain a retained image for your tile from which the
Agent can handle the repainting itself, you will only get a WIN_REPAINT call
after a window size change. You won't even get this call if your tile's flags
have PW _FIXED _IMAGE and PW _RETAIN bits turned on.

The Agent is the conduit by which client-generated events are passed between
tiles. For example, when the scrollbar wants to tell a canvas that it should now
scroll, the communications is arranged via the Agent. The Agent, in tum, uses
the Notifier to implement the data transfer.

The Agent follows the lead of the Notifier when it comes to posting events. See
the documentation on notify_post_event () and
notifyyost_event_and_arg () in the Advanced Notifier Usage chapter
if you are going to be posting events between tiles.

There are four routines available for posting an event to another tile.

Notify_error
win-post_id(client, id, when_hint)

Notify_client client;
short id;
Notify_event_type when_hint;

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 4 - The Agent & Tiles 25

is provided if you want to send an event to a tile and you don't really care about
any event data except the event_id (event). The Agent will generate the
remainder of the event for you with up-to-date data. when_hint is usually
NOTIFY SAFE.

A second routine is available if you want to manufacture an event yourself. This
is easy if you already have an event in hand.

Notify_error
win-post_event(client, event, when_hint)

Notify_client client;
Event *event;
Notify_event_type when_hint;

The other two routines parallel the first two but include the capability to pass an
arbitrary additional argument to the destination tile. The calling sequence is
more complicated because one must make provisions to copy and later free the
additional argument in case the delivery of the event is delayed.

Notify_error
win-post_id_and_arg(client, id, when_hint, arg,

copy_func, release_func)
Notify_client client;
short id;
Notify_event_type when_hint;
Notify_arg arg;
Notify_copy copy_func;
Notify_release release_func;

Notify_error
win-post_event_arg(client, event, when_hint, arg,

copy_func, release_func)
Notify_client client;
Event *event;
Notify_event_type when_hint;
Notify_arg arg;
Notify_copy copy_func;
Notify_release release_func;

The copy and release functions are covered in the Advanced Notifier Usage
chapter. After reading about them you will know why you need the following
utilities to copy the event as well as the arg:

Notify_arg
win_copy_event(client, arg, event-ptr)

Notify_client client;
Notify_arg arg;
Event **event-ptr;

void
win_free_event(client, arg, event)

Notify_client client;
Notify_arg arg;
Event *event;

Revision A of 15 October 1986

26 The Sun View System Programmer's Guide

4.4. Removing a Tile From
the Agent

The following call tells the Agent to stop managing the tile associated with
client.

int
win_unregister(client)

Notify_client client;

You should call this from the tile's destroy_func that you gave to the Agent
in the win_re,gister () call. win_unregister () also completely
removes client from having any conditions registered with the Notifier. A-I
is returned if client is not registered, otherwise 0 is returned.

~\sun ~~ microsystems
Revision A of 15 October 1986

5
Windows

Windows ... 29

5.1. Window Creation, Destruction, and Reference .. 29

A New Window ... 29

An Existing Window .. 30

References to Windows ... 30

5.2. Window Geometry .. 31

Querying Dimensions ... 31

The Saved Rect ... 32

5.3. The Window Hierarchy .. 32

Setting Window Links ... 32

Activating the Window ... 33

Defaults ... 33

Modifying Window Relationships .. 34

Window Enumeration .. 35

Enumerating Window Offspring .. 35

Fast Enumeration of the Window Tree ... 36

5.4. Pixwin Creation and Destruction .. 36

Creation ... 36

Region .. 37

Retained Image ... 37

Bell .. 37

Destruction .. 37

5.5. Choosing Input .. 37

Input mask ... 37

Manipulating the Mask Contents ... 38

Setting a Mask ... 38

Querying a Mask .. 39

The Designee ... 39

5.6. Reading Input ... 39

Non-blocking Input .. 39

Asynchronous Input ... 40

Events Pending ... 40

5.7. User Data .. 40

5.8. Mouse Position ... 40

5.9. Providing for Naive Programs ... 41

Which Window to Use ... 41

The Blanket Window .. 41

5.10. Window Ownership ... 42

5.11. Environment Parameters ... 42

5.12. Error Handling .. 43

5
Windows

This chapter describes the facilities for creating, positioning, and controlling win­
dows. It contains the implementation details associated with window devices, as
introduced in the SunView System Model chapter.

NOTE The recommended window programming approach is described in the Sun View
Programmer's Guide. You should only resort to the following window device
routines if the equivalent isn't available at the higher level. It is possible to use
thefollowing routines with a high level SunView Window object by passing the
file descriptor returned by
(int) window_get (Window_object, WIN_FD);

The structure that underlies the operations described in this chapter is maintained
within the window system, and is accessible to the client only through system
calls and their procedural envelopes; it will not be described here. The window
is presented to the client as a device; it is represented, like other devices, by afile
descriptor returned by open (2). It is manipulated by other UNIX system calls,
such as select (2), read (2), ioctl (2), and close (2).5

5.1. Window Creation,
Destruction, and
Reference

As mentioned above, windows are devices. As such, they are special files in the
/ dev directory with names of the form "/ dev / win n' , , where n is a decimal
number. A window is created by opening one of these devices, and the window
name is simply the filename of the opened device.

A New Window The first process to open a window becomes its owner. A process can obtain a
window it is guaranteed to own by calling:

int
win_getnewwindow()

This finds the first unopened window, opens it, and returns a file descriptor which
refers to it. If none can be found, it returns -1. A file descriptor, often called the
windowfd, is the usual handle for a window within the process that opened it.

When a process is finished with a window, it may close it with the standard
close (2) system call with the window's file descriptor as its argument. As with
other file descriptors, a window left open when its owning process terminates

S The header file lusrlincludelsunwindowlwindow hs.h includes the header files needed to work at this level
of the window system. The library lusrllibllibsunwindow.a implements window device routines.

~\sun ,~ microsysterTlS
29 Revision A of 15 October 1986

30 The Sun View System Programmer's Guide

An Existing Window

References to Windows

will be closed automatically by the operating system.

Another procedure is most appropriately described at this point, although in fact
clients will have little use for it To find the next available window,
win_getnewwindow () uses:

int
win_next free (fd)

int fd;

where fd is any valid window file descriptor. The return value is a window
number, as described in References to Windows below; a return value of
WIN _ NULLLINK indicates there is no available unopened window.

It is possible for more than one process to have a window open at the same time;
the section Providing for Naive Programs below presents one plausible scenario
for using this capability. The window will remain open until all processes which
opened it have closed it. The coordination required when several processes have
the same window open is described in Providing for Naive Programs.

Within the process which created a window, the usual handle on that window is
the file descriptor returned by open (2) or win_getnewwindow (). Outside
that process, the file descriptor is not valid; one of two other forms must be used.
One form is the window name (e.g., /dev/win12); the other form is the window
number, which corresponds to the numeric component of the window name. Both
of these references are valid across process boundaries. The window number will
appear in several contexts below.

Procedures are supplied for converting among various window identifiers.
win _ numbertoname () stores the filename for the window whose number is
winnumber into the buffer addressed by name:

win_numbertoname(winnumber, name)
int winnumber;
char *name;

name should be WIN _NAMESIZE long as should all the name buffers in this sec­
tion.

win_nametonumber () returns the window number of the window whose
name is passed in name:

int
win_nametonumber(name)

char *name;

Given a window file descriptor, win _ fdtoname () stores the corresponding
device name into the buffer addressed by name:

win_fdtoname(windowfd, name)
int windowfd;
char *name;

~\sun
~ microsystems

Revision A of 15 October 1986

5.2. Window Geometry

Querying Dimensions

Chapter 5 - Windows 31

win fdtonumber () returns the window number for the window whose file
descriptor is windowfd:

int
win_fdtonumber(windowfd)

int windowfdi

Once a window has been opened, its size and position may be set. The same rou­
tines used for this purpose are also helpful for adjusting the screen positions of a
window at other times, when the window is to be moved or stretched, for
instance. win _ setrect () copies the rect argument into the rectangle of
the indicated window:

win_setrect(windowfd, rect)
int windowfdi
Rect *recti

This changes its size and/or position on the screen. The coordinates in the
rect structure are in the coordinate system of the window's parent. The Rects
and Rectlists chapter explains what is meant by a recto Setting Window Links
below explains what is meant by a window's' 'parent." Changing the size of a
window that is visible on the screen or changing the window's position so that
more of the window is now exposed causes a chain of events which redraws the
window. See the section entitled Damage in the Advanced Imaging chapter.

The window size querying procedures are:

win_getrect(windowfd, rect)
int windowfdi
Rect *recti

win_getsize(windowfd, rect)
int windowfdi
Rect *recti

short win_getheight(windowfd)
int windowfdi

short win_getwidth(windowfd)
int windowfdi

win _getrect () stores the rectangle of the window whose file descriptor is
windowfd into the rect; the origin is relative to that window's parent.

win _getsize () is similar, but the rectangle is self-relative - that is, the ori­
gin is (0,0).

win_getheight () and win_get width () return the single requested
dimension for the indicated window - these are part of the re ct structure that
the other calls return.

~\sun ,~ microsystems
Revision A of 15 October 1986

32 The SunView System Programmer's Guide

The Saved Rect

5.3. The Window
Hierarchy

Setting Window Links

A window may have an alternate size and location; this facility is useful for stor­
ing a window's iconic position that is associated with frames. The alternate rec­
tangle may be read with win_get savedrect () , and written with
win_setsavedrect().

win_getsavedrect(windowfd, rect)
int windowfdi
Rect *recti

win_setsavedrect(windowfd, rect)
int windowfdi
Rect *recti

As with win _getrect () and win _ setrect () , the coordinates are rela­
tive to the window's parent.

Position in the window database determines the nesting relationships of win­
dows, and therefore their overlapping and obscuring relationships. Once a win­
dow has been opened and its size set, the next step in creating a window is to
define its relationship to the other windows in the system. This is done by setting
links to its neighbors, and inserting it into the window database.

The window database is a strict hierarchy. Every window (except the root) has a
parent; it also has 0 or more siblings and children. In the terminology of a family
tree, age corresponds to depth in the layering of windows on the screen: parents
underlie their offspring, and older windows underlie younger siblings which
intersect them on the display. Parents also enclose their children, which means
that any portion of a child's image that is not within its parent's rectangle is
clipped. Depth determines overlapping behavior: the uppermost image for any
point on the screen is the one that gets displayed. Every window has links to its
parent, its older and younger siblings, and to its oldest and youngest children.

Windows may exist outside the structure which is being displayed on a screen;
they are in this state as they are being set up, for instance.

The links from a window to its neighbors are identified by link selectors; the
value of a link is a window number. An appropriate analogy is to consider the
link selector as an array index, and the associated window number as the value
of the indexed element. To accommodate different viewpoints on the structure
there are two sets of equivalent selectors defined for the links:

WL PARENT
WL OLDERSIB
WL YOUNGERSIB
WL OLDESTCHILD
WL YOUNGESTCHILD

WL ENCLOSING
WL COVERED
WL COVERING
WL BOTTOMCHILD
WL TOPCHILD

A link which has no corresponding window, for example, a child link of a "leaf'
window, has the value WIN _ NULLLINK.

When a window is first created, all its links are null. Before it can be used for
anything, at least the parent link must be set so that other routines know with
which desktop and workstation this window is to be associated. If the window is

~\sun ,~ microsystems
Revision A of 15 October 1986

Activating the Window

Defaults

Chapter 5 - Windows 33

to be attached to any siblings, those links should be set in the window as well.
The individual links of a window may be inspected and changed by the following
procedures.

win_getlink () returns a window number.

int
win_get link (windowfd, link_selector)

int windowfd, link_selector;

This number is the value of the selected link for the window associated with
windowfd.

win_setlink(windowfd, link_selector, value)
int windowfd, link_selector, value;

win_setlink () sets the selected link in the indicated window to be value,
which should be another window number or WIN NULLLINK. The actual window
number to be supplied may come from one of several sources. If the window is
one of a related group, all created in the same process, file descriptors will be
available for the other windows. Their window numbers may be derived from
the file descriptors via win _ f dt on umber (). The window number for the
parent of a new window or group of windows is not immediately obvious, how­
ever. The solution is a convention that the WINDOW PARENT environment
parameter will be set to the filename of the parent. See we _setparentwindow for
a description of this parameter.

Once a window's links have all been defined, the window is inserted into the tree
of windows and attached to its neighbors by a call to

win_insert (windowfd)
int windowfd;

This call causes the window to be inserted into the tree, and all its neighbors to
be modified to point to it. This is the point at which the window becomes avail­
able for display on the screen.

Every window should be inserted after its rectangle(s) and link structure have
been set, but the insertion need not be immediate: if a subtree of windows is
being defined, it is appropriate to create the window at the root of this subtree,
create and insert all of its descendants, and then, when the subtree is fully
defined, insert its root window. This activates the whole subtree in a single
action, which may result in cleaner display of the whole tree.

One need not specify all the sibling links of a window that is being inserted into
the display tree. Sibling links may be defaulted as follows (these conventions are
applied in order):

o If the WL _COVERING sibling link is WIN _NULLLINK then the window is put
on the top of the heap of windows.

Revision A of 15 October 1986

34 The Sun View System Programmer's Guide

Modifying Window
Relationships

o If the WL _COVERED sibling link is WIN _ NULLLINK then the window is put on
the bottom of the heap of windows.

o If the WL _COVERED or WL _COVERING sibling links are invalid then the win-
dow is put on the bottom of the heap of windows.

Once a window has been inserted in the window database, it is available for input
and output. At this point, it is appropriate to access the screen with pixwin calls
(to draw something in the window!).

Windows may be rearranged in the tree. This will change their overlapping rela­
tionships. For instance, to bring a window to the top of the heap, it should be
moved to the "youngest" position among its siblings. And to guarantee that it is
at the top of the display heap, each of its ancestors must likewise be the youngest
child of its parent.

To accomplish such a modification, the window should first be removed:

win_remove (windowfd)
int windowfd;

After the window has been removed from the tree, it is safe to modify its links,
and then reinsert it.

A process doing multiple window tree modifications should lock the window tree
before it begins. This prevents any other process from performing a conflicting
modification. This is done with a call to:

win_lockdata(windowfd)
int windowfd;

After all the modifications have been made and the windows reinserted, the lock
is released with a call to:

win_unlockdata(windowfd)
int windowfd;

Nested pairs of calls to lock and unlock the window tree are permitted. The final
unlock call actually releases the lock.

If a client program uses any of the window manager routines, use of
win _lockdata () and win_ unlockdata () is not necessary. See the
chapter on Window Management for more details.

Most routines described in this chapter, including the four above, will block tem­
porarily if another process either has the database locked, or is writing to the
screen, and the window adjustment has the possibility of conflicting with the
window that is being written.

As a method of deadlock resolution, SIGXCPU is sent to a process that spends
more that 2 seconds of process virtual time inside a window data lock, and the
lock is broken.6

6 The section Kernel Tuning Options in the Workstation chapter describes how to modify this default
number of seconds (see ws_lock_limit).

Revision A of 15 October 1986

Window Enumeration

Chapter 5 - Windows 35

There are routines that pass a client-defined procedure to a subset of the tree of
windows, and another that returns infonnation about an entire layer of the win­
dow tree. They are useful in perfonning window management operations on
groups of windows. The routines and the structures they use and return are listed
in <sunwindow/win_enum.h>.

Enumerating Window Offspring The routines win_enumerate_children () and
win_enumerate_subtree () repeatedly call the client's procedure passing
it the windowfds of the offspring of the client window, one after another:

enum win enumerator result - -
win_enumerate_children(windowfd, proc, args);

Window_handle windowfd;
Enumerator proc;
caddr_t args;

enum win enumerator result - -
win_enumerate_subtree(windowfd, proc, args);

Window_handle windowfd;
Enumerator proc;
caddr_t args;

enum win_enumerator_result \
{ Enum_No rma 1 , Enum_Succeed, Enum Fail };

typedef enum win_enumerator_result
(*Enumerator) () ;

windowfd is the window whose children are enumerated (Window_handle is
typedef'd to int). Both routines repeatedly call proc () , stopping when
told to by proc ()or when everything has been enumerated.

proc () is passed a windowfd and args·

(*proc) (fd, args);

It does whatever it wants with the windowfd, then returns
win_enumerator_result. If proc () returns Enum_Normal then the
enumeration continues; if it returns Enum_Succeed or Enum_Fail then the
enumeration halts, and win_enumerate _children or
win_enumerate_subtree () returns the same result.

The difference between the two enumeration procedures is that
win_enumerate _ children () invokes proc () with an fd for each
immediate descendant of windowfd in oldest-to-youngest order, while
win_enumerate_subtree () invokes proc () with a windowfd for the
original window windowfd and for all of its descendants in depth-first,
oldest-to-youngest order. The fonner enumerates windowfd's children, the
latter enumerates windowfd and its extended family.

It is possible that win_ enumer ate_subtree () can run out of file descrip­
tors during its search of the tree if the descendants of windowfd are deeply
nested.

~\sun ~~ microsystems
Revision A of 15 October 1986

36 The Sun View System Programmer's Guide

Fast Enumeration of the
Window Tree

5.4. Pixwin Creation and
Destruction

Creation

The disadvantage with the above two routines is that they are quite slow. They
traverse the window tree, calling win_getlink () to find the offspring, then
open each window, then call the procedure.

In 3.2 there is a fast window routine, win get tree layer (), that returns
information about all the children of a window ina singk ioct17:

win_get_tree_layer(windowfd, size, buffer)i
Window_handle windowfdi

int sizei
Win_tree_layer bufferi

typedef struct win_enum_node
unsigned char mei
unsigned char parenti
unsigned char upper_sibi
unsigned char lowest_kidi
unsigned int flagsi

#define WIN NODE INSERTED Oxl
#define WIN NODE OPEN OX2
#define WIN NODE IS ROOT Ox4 - --

Rect open_recti
Rect icon_recti

Win_enum_nodei

win_get_tree_layer () fills buffer with Win enum node informa­
tion (rects, user_flags, and minimal links) for the children of window in oldest­
to-youngest order. It returns the number of bytes of buffer filled with infor­
mation, or negative if there is an error.

Unlike win_enumerate_children (), win_get_tree_layer ()
returns information for all the children of windowfd including those that are
have not been installed in the window tree with win_insert () ; such children
will not have the WIN_NODE _ INSERTED flag set

A pixwin is the object that you use to access the screen. Its usage has been
covered in the Imaging Facilities: Pixwins chapter of the Sun View Programmer's
Guide and in the previous chapter on tiles. How to create a pixwin region has
also been covered in the same places. Here we cover how a pixwin is generated
for a window.

To create a pixwin, the window to which it will refer must already exist. This
task is accomplished with procedures described earlier in this chapter. The
pixwin is then created for that window by a call to pw _open () :

Pixwin *
pw_open(windowfd)

int windowfdi

pw _open () takes a file descriptor for the window on which the pixwin is to

7 win _get _tree_layer 0 will use the slower method if the kernel does not support the ioctl; thus
programs that use this can be run on 3.0 systems.

~\sun ,~ microsystems
Revision A of 15 October 1986

Region

Retained Image

Bell

Destruction

5.5. Choosing Input

Input mask

Chapter 5 - Windows 37

write. A pointer to a pixwin struct is returned. At this point the pixwin describes
the exposed area of the window.

To create the pixwin for a tile, call pw _region () passing it the pixwin
returned from pw_open ().

If the client wants a retained pixwin, the pw yrretained field of the pixwin
should be set to point to a memory pixrect of your own creation. If you set this
field you need to call pw_exposed (pw) afterwards.8 This updates the
pixwin's exposed area list to deal with the memory pixrect; see the Advanced
Imaging chapter for more information on pw _expose () .

The following routine can be used to beep the keyboard bell and flash a pixwin:

win_bell (windowfd, wait_tv, pw)
int windowfd;
struct timeval wait_tv;
Pixwin *pw;

If pw is 0 then there is no flash. wait tv controls the duration of the bel1.9

When a client is finished with a pixwin, it should be released by a call to:

pw_close(pw)
Pixwin *pw;

pw_close () frees any resource associated with the pixwin, including its
pwyrretained pixrect if any. If the pixwin has a lock on the screen, it is
released.

The chapter entitled Handling Input in the Sun View Programmer's Guide
describes the window input mechanism. This section describes the file descriptor
level interface to setting a window's input masks. This section is very terse,
assuming that the concept from Handling Input are well understood.

Clients specify which input events they are prepared to process by setting the
input masks for each window being read. The calls in this section manipulate
input masks.

8 The best way to manage a retained window is to let the Agent do it (see win_register ().

9 The bell's behavior is controlled by the SunView defaultsedit entries SunViewlAudible_Bell and
SunviewlVisible _Bell, so the sound and flash can be disabled by the user, regardless of what the call to
win_bell () specifies.

Revision A of 15 October 1986

38 The SunView System Programmer's Guide

Manipulating the Mask
Contents

Setting a Mask

typedef struct inputmask {

short im_flags;
#define 1M NEGEVENT (OxO 1) /* send input negative event:
#define 1M ASCII (Ox10) /* enable ASCII codes 0-127
#define 1M META (Ox20) /* enable META codes 128-255
#define 1M NEGASCII (Ox40) /* enable negative ASCII co&
#define 1M NEGMETA (Ox80) /* enable negat~ve META code:
#define 1M INTRANSIT (Ox400) /* don't surpress locator eV4

in-transit over window */

Inputmask;

The bit flags defined for the input mask are stored directly in the im_flags
field. To set a particular event in the input mask use the following macro:

win_setinputcodebit(im, code)
Inputmask *im;
u_short code;

win_setinputcodebit () sets a bit indexed by code in the input mask
addressed by im to 1.

win_unsetinputcodebit(im, code)
Inputmask *im;
u_short code;

win _ unsetinputcodebi t () resets the bit to zero.

The following macro is used to query the state of an event code in an input mask:

int
win_getinputcodebit(im, code)

Inputmask *im;
u_short code;

win_getinputcodebit () returns non-zero if the bit indexed by code in
the input mask addressed by im is set.

input _ imnull () initializes an input mask to all zeros:

input_imnull(im)
Inputmask *im;

It is critical to initialize the input mask explicitly when the mask is defined as a
local procedure variable.

The following routines set the keyboard and pick input masks for a window. The
different types of masks are discussed in the Input chapter.

Revision A of 15 October 1986

Querying a Mask

The Designee

5.6. Reading Input

Non-blocking Input

win_set_kbd_mask(windowfd, im)
int windowfdi
Inputmask *im;

win_set-pick_mask(windowfd, im)
int windowfdi
Inputmask *imi

Chapter 5 - Windows 39

The following routines get the keyboard and pick input masks for a window.

win_get_kbd_mask(windowfd, im)
int windowfdi
Inputmask *imi

win_get-pick_mask(windowfd, im)
int windowfdi
Inputmask *imi

The designee is that window that input is directed to if the input mask for a win­
dow doesn't match a particular event:

win_get_designee(windowfd, nextwindownumber)
int windowfd, *nextwindownumberi

win_set_designee(windowfd, nextwindownumber)
int windowfd, nextwindownumberi

The recommended way of getting input is to let the Agent notify you of input
events (see chapter on tiles). However, there are times when you may want to
read input directly, say, when tracking the mouse until one of its buttons goes up.
A library routine exists for reading the next input event for a window:

int
input_readevent(windowfd, event)

int windowfdi
Event *eventi

This fills in the event struct, and returns 0 if all went well. In case of error, it
sets the global variable errno,and returns -1; the client should check for this
case.

A window can be set to do either blocking or non-blocking reads via a standard
JcntZ (2) system call, as described inJcntZ (2) (using F _SETFL) andJcntZ (5) (using
FNDELA Y). A window defaults to blocking reads. The blocking status of a win­
dow can be determined by the JcntZ (2) system call.

When all events have been read and the window is doing non-blocking 110,
input_readevent () returns -1 and the global variable errno is set to
EWOULDBLOCK.

~~sun ~~ microsystems
Revision A of 15 October 1986

40 The Sun View System Programmer's Guide

Asynchronous Input

Events Pending

5.7. User Data

5.8. Mouse Position

A window process can ask to be sent a SIGIO if any input is pending in a window.
This option is also enabled via a standardJentZ (2) system call, as described in
JentZ (2) (using F _ SETFL) and JentZ (5) (using FASYNC). The programmer can set
up a signal handler for SIGIO by using the
notify_set_signal_func () call.10

The number of character in the input queue of a window can be determined via a
FBIONREAD ioetZ (2) call. FBIONREAD is described in tty (4). Note that the
value returned is the number of bytes in the input queue. If you want the number
of Events then divide by sizeof (Event).

Each window has 32 bits of data associated with it. These bits are used to imple­
ment a minimal inter-process window-related status-sharing facility. Bits OxOl
through Ox08 are reserved for the basic window system; OxO 1 is currently used to
indicate if a window is a blanket window. Bits OxlO through Ox80 are reserved
for the user level window manager; Ox lOis currently used to indicate if a win­
dow is iconic. Bits OxlOO through Ox80000000 are available for the
programmer's use. They is manipulated with the following procedures:

int
win_getuserflags(windowfd)

int windowfd;

int
win_setuserflags(windowfd, flags)

int windowfd;
int flags;

int
win_setuserflag(windowfd, flag, value)

int windowfd;
int flag;
int value;

win_getuserflags () returns the user data. win_setuserflags ()
stores its flags argument into the window struct. win_setuserflag ()
uses f lag as a mask to select one or more flags in the data word, and sets the
selected flags on or off as value is TRUE or FALSE.

Determining the mouse's current position is treated in the SunView
Programmer's Guide. The convention for a process tracking the mouse is to
arrange to receive an input event every time the mouse moves; the mouse posi­
tion is passed with every user input event a window receives.

The mouse position can be reset under program control; that is, the cursor can be
moved on the screen, and the position that is given for the mouse in input events
can be reset without the mouse being physically moved on the table top.

10 The Notifier handles asynchronous input without you having to set up your own signal handler if you are
using the Notifier to detennine when there is input for a window. i

Revision A of 15 October 1986

5.9. Providing for Naive
Programs

Which Window to Use

The Blanket Window

win_setmouseposition(windowfd, x, y)
int windowfd, x, y;

Chapter 5 - Windows 41

win setmouseposition () puts the mouse position at (x, y) in the coordi­
nate system of the window indicated by windowfd. The result is ajump from
the previous position to the new one without touching any points between. Input
events occasioned by the move, such as window entry and exit and cursor
changes, will be generated. This facility should be used with restraint, as many
users are unhappy with a cursor that moves independent of their control.

Occasionally it is necessary to discover which window underlies the cursor, usu­
ally because a window is handling input for all its children. The procedure used
for this purpose is:

int
win_findintersect(windowfd, x, y)

int windowfd, x, y;

where windowfd is the calling window's file descriptor, and (x, y) defines a
screen position in that window's coordinate space. The returned value is a win­
dow number of a child of the calling window. If a child of the calling window
doesn't fall under the given position WIN _ NULLLINK is returned.

There is a class of applications that are relatively unsophisticated about the win­
dow system, but want to run in windows anyway. For example, a graphics pro­
gram may want a window in which to run, but doesn't want to know about all the
details of creating and positioning it. This section describes a way of allowing
for these applications.

The window system defines an important environment parameter, WINDOW _ GFX.

By convention, WINDOW _ GFX is set to a string that is the device name of a win­
dow in which graphics programs should be run. This window should already be
opened and installed in the window tree. Routines exist to read and write this
parameter:

int
we_getgfxwindow(name)

char *name

we_setgfxwindow(name)
char *name

we _getgfxwindow () returns a non-zero value if it cannot find a value.

A good way to take over an existing window is to create a new window that
becomes attached to and covers the existing window. Such a covering window is
called a blanket window. The covered window will be called the parent window
in this subsection because of its window tree relationship with a blanket win­
dow. 11

11 It's a bad idea to take over an existing window using win _ set owner ().

~\sun ~~ microsystems
Revision A of 15 October 1986

42 The Sun View System Programmer's Guide

5.10. Window Ownership

5.11. Environment
Parameters

The appropriate way to make use of the blanket window facility is as follows:
Using the parent window name from the environment parameter WINDOW _ GFX
(described above), open (2) the parent window. Get a new window to be used as
the blanket window using win _getnewwindow (). Now call:

int
win_insertblanket(blanketfd, parentfd)

int blanketfd, parentfd;

A zero return value indicates success. As the parent window changes size and
position the blanket window will automatically cover the parent.

To remove the blanket window from on top of the parent window call:

win_removeblanket(blanketfd)
int blanketfd;

If the process that owns the window over which the blanket window resides dies
before win _ removeblanket () is called, the blanket window will automati­
cally be removed and destroyed.

A non-zero return value from win_isblanket () indicates that blank­
etfd is indeed a blanket window.

int
win_isblanket(blanketfd)

int blanketfd;

SIGWINCH signals are directed to the process that owns the window, the owner
normally being the process that created the window. The following procedures
read from and write to the window: 12 These routines are included for backwards
compatibility .

int
win_getowner(windowfd)

int windowfd;

win_setowner(windowfd, pid)
int windowfd, pid;

win_getowner () returns the process id of the indicated window owner. If
the owner doesn't exist, zero is returned. win_setowner () makes the pro­
cess identified by pid the owner of the window indicated by windowfd.
win setowner causes a SIGWINCH to be sent to the new owner.

Environment parameters are used to pass well-established values to an applica­
tion. They have the valuable property that they can communicate information
across several layers of processes, not all of which have to be involved.

Every frame must be given the name of its parent window. A frame's parent
window is the window in the display tree under which the frame window should

12 Do not use the two routines in this section for temporarily taking over another window.

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 5 - Windows 43

be displayed. The environment parameter WINDOW _PARENT is set to a string that
is the device name of the parent window. For a frame, this will usually be the
name of the root window of the window system.

we_setparentwindow(windevname)
char *windevnamei

sets WINDOW PARENT to windevname.

int
we_getparentwindow(windevname)

char *windevnamei

gets the value of WINDOW_PARENT into windevname. The length of this
string should be at least WIN _NAMESIZE characters long, a constant found in
<sunwindow/win_struct. h>. A non-zero return value means that the
WINDOW_PARENT parameter couldn't be found.

The environment parameter DEFAULT_FONT should contain the font file name
used as the program's default (see pf_default ()).

NOTE This is retainedfor backwards compatibility. All programs set this variable, but
only old-style SunWindows programs, gfx subwindow programs and raw pixwin
programs use it to determine which font to use. Sun View programs that don't set
their ownfont use the SunViewlFont defaults entry; you can use the "-Wt
fontname" command line frame argument to change the font of Sun View pro-
grams that allow it.

5.12. Error Handling Except as explicitly noted, the procedures described in this section do not return
error codes. The standard error reporting mechanism inside the sunwindow
library is to call an error handling routine that displays a message, typically iden­
tifying the ioctl (2) call that detected the error. This error message is somewhat
cryptic; appendix B, Programming Notes, has a section on Error Message
Decoding. After the message display, the calling process resumes execution.

This default error handling routine may be replaced by calling:

int (*win_errorhandler(win_error» ()
int (*win_error) ()i

The win _ errorhandler () procedure takes the address of one procedure,
the new error handler, as an argument and returns the address of another pro­
cedure, the old error handler, as a result. Any error handler procedure should be a
function that returns an integer.

win_error(errnum, winopnum)
int errnum, winopnumi

errnum will be -1 indicating that the actual error number is found in the global
errno. winopnum is the ioctl (2) number that defines the window opera­
tion that generated the error. See Error Message Decoding in Programming
Notes in the appendix.

~\sun ,~ microsystems
Revision A of 15 October 1986

6
Desktops

Desktops .. 47

Look at suntools ... 47

6.1. Multiple Screens .. 47

The singlecolor Structure .. 47

The screen Structure .. 48

Screen Creation .. 48

Initializing the screen Structure .. 49

Screen Query .. 49

Screen Destruction .. 49

Screen Position ... 49

Accessing the Root FD .. 50

Look at suntools

6.1. Multiple Screens

The singlecolor Structure

6
Desktops

This chapter discusses the calls that affect the screen, or desktop. Some calls
affect workstation related data, i.e., global input related data. This overlap of the
conceptual model is purely historical.

Many of the routines inhere are used by Sun's window manager, suntools.
You will find it very helpful to look at the source for suntools (it is optional
software that must be loaded in setup) to see how it uses these routines.

Workstations may use multiple displays, and clients may want windows on all of
them. 13 Therefore, the window database is a forest, with one tree of windows for
each display. There is no overlapping of window trees that belong to different
screens. For displays that share the same mouse device, the physical arrange­
ment of the displays can be passed to the window system, and the mouse cursor
will pass from one screen to the next as though they were continuous.

The screen structure describes attributes of the display screen. First, here is
the definition of singlecolor, which it uses for the foreground and back­
ground colors:

struct singlecolor
u char red, green, blue;

} ;

13 There can be as many screens as there are frame buffers on your machine and dtop pseudo devices
configured into your kernel. The kernel calls screen instances dtops.

47 Revision A of 15 October 1986

48 The Sun View System Programmer's Guide

The screen Structure

Screen Creation

Now the screen structure:

struct screen
char

} ;

char
char
char
struct
struct
int
struct

scr_rootname[SCR_NAMESIZE];
scr_kbdname[SCR_NAMESIZE];
scr_msname[SCR_NAMESIZE];
scr_fbname[SCR_NAMESIZE];
singlecolor scr_foreground;
singlcolor scr_background;
scr_flags;
rect scr_rect;

#define SCR NAMESIZE 20
#define SCR SWITCHBKGRDFRGRD Oxl

scr rootname is the device name of the window which is at the base of the
windOw display tree for the screen; it is often /dev/winO.14 scr kbdname is
the device name of the keyboard associated with the screen; the default is
/dev/kbd. scr msname is the device name of the mouse associated with the
screen; the default is / dev/mouse. s cr fbname is the device name of the
frame buffer on which the screen is displayed; the default is / devlfb for the first
desktop. scr_kbdname, scr_msname and scr_fbname can have the
string "NONE" if no device of the corresponding type is to be associated with
the screen. Workstations (hence also desktops) can have additional input devices
associated with them; see the section on User Input Device Control in the Works­
tations chapter.

scr _foreground is three RGB color values that define the foreground color
used on the frame buffer; the default is {colormap size-} f colormap site-} f
colormap size-} }. scr _background is three RGB color values that define
the background color used on the frame buffer; the default is {a f a fa}. The
default values of the background and foreground yield a black on white image.
scr_flags contains boolean flags; the default is O. SCR_SWITCHBKGRDFRGRD

is a flag that directs any client of the background and foreground data to switch
their positions, thus providing a video reversed image (usually yielding a white
on black image). scr_rect is the size and position of the screen on the
frame buffer; the default is the entire frame buffer surface.

To create a new screen call:

int
win_screennew(screen)

struct screen *screen;

win_screennew () opens and returns a window file descriptor for a root
"desktop" window. This new root window resides on the new screen which was

14 Multiple screen configurations, in particular, will not have /dev/winO as the root window on the second
screen.

~\sun ~~ microsystenis
Revision A of 15 October 1986

Initializing the screen
Structure

Screen Query

Screen Destruction

Screen Position

Chapter 6 - Desktops 49

defined by the specifications of screen. Any zeroed field in screen tells
win _ screennew () to use the default value for that field (see above for
defaults). Also, see the description of win _ ini t screenfromargv ()
below. If -1 is returned, an error message is displayed to indicate that there was
some problem creating the screen.

The following routine can be called before calling win screennew () :

int
win_initscreenfromargv(screen, argv)

struct screen *screen;
char **argv;

win_initscreenfromargv () zeroes the *screen structure, then it
parses the relevant command line arguments in argv into *screen. You
then call win _ screennew () to creates a root window with the desired attri­
butes. The command line arguments allow the user to set all the variables in
*screen including the display device, the keyboard device, the mouse device,
the foreground and background colors, whether the screen colors should be
inverted, and other features. See suntools (1) for semantics and details.

To find out about the screen on which your window is running call:

win_screenget(windowfd, screen)
int windowfd;
struct screen *screen;

win_screenget () fills in the addressed struct *screen with information
for the screen with which the window indicated by windowfd is associated.
You can call this from any window.

To destroy the screen on which your window is running call:

win_screendestroy(windowfd)
int windowfd;

win _ screendestroy () causes each window owner process (except the
invoking process) on the screen associated with windowfd to be sent a
SIGTERM signal. This call will block until all the processes have died. If a win­
dow owner process hasn't gone away after 15 seconds, it is sent a SIGKILL, which
will destroy it.

To tell the window system how multiple screens are arranged call:

win_setscreenpositions(windowfd, neighbors)
int windowfd, neighbors[SCR_POSITIONS];

#define SCR NORTH 0
#define SCR EAST 1
#define SCR SOUTH 2
#define SCR WEST 3

#define SCR POSITIONS 4

~\sun ~~ microsystems
Revision A of 15 October 1986

50 The Sun View System Programmer's Guide

CAUTION

Accessing the Root FD

win_setscreenpositions () informs the window system of the logical
layout of multiple screens. This enables the cursor to cross to the appropriate
screen. windowfd's window is the root for its screen; the four slots in
neighbors should be filled in with the window numbers of the root windows
for the screens in the corresponding positions. No diagonal neighbors are
defined, since they are not strictly neighbors.

win_getscreenpositions () fills in neighbors with windowfd's
screen's neighbors:

win_getscreenpositions(windowfd, neighbors)
int windowfd, neighbors[SCR_POSITIONS];

In these routines, windowfd must be an fd for the root window. Most
operations on the screen can be done using any windowfd.

The following code fragment gets the screen struct for your window, then
opens the window device of the root window:

int mywinfd,
struct screen

rootfd;
rootscreen;

win_screenget(mywinfd, &rootscreen);
rootfd = open(rootscreen.scr_rootname);

Revision A of 15 October 1986

7
Workstations

Workstations .. 53

7.1. Virtual User Input Device ... 53

What Kind of Devices? .. 53

Vuid Features ... 54

Vuid Station Codes .. 54

Address Space Layout .. 54

Adding a New Segment ... 55

Input State Access .. 55

U nencoded Input ... 55

7.2. User Input Device Control ... 56

Distinguished Devices ... 56

Arbitrary Devices .. 56

Non-Vuid Devices .. 57

Device Removal ... 57

Device Query ... 57

Device Enumeration .. 58

7.3. Focus Control... 58

Keyboard Focus Control ... 58

Event Specification .. 58

Setting the Caret Event .. 59

Getting the Caret Event ... 59

Restoring the Caret ... 59

7.4. Synchronization Control .. 60

Releasing the Current Event Lock ... 60

Current Event Lock Breaking .. 60

Getting/Setting the Event Lock Timeout ... 61

7.5. Kernel Tuning Options ... 61

Changing the User Actions that Affect Input .. 63

7.1. Virtual User Input
Device

7
Workstations

This chapter discusses the manipulation of workstation data, which comprises
mostly global data related to input and input devices. Some calls in the Desktops
chapter also affect workstations. This overlap is purely historical. This chapter
also explains parts of the Virtual User Input Device interface that were not
covered in the Handling Input chapter of the SunView Programmer's Guide.
That chapter gave the possible event codes in Sun View; this chapter explains the
mechanism which sets up input devices to generate them.

The Virtual User Input Device (vuid) is an interface between input devices and
their clients. The interface defines an idealized user input device that may not
correspond to any existing physical collection of input devices. A client of Sun­
View doesn't access vuid devices directly. Instead, the window system reads
vuid devices, serializing input from all the vuid devices and then makes the input
available to windows as Sun View vuid events.

NOTE You don't have to write a vuid interface to use your own device in Sun View: you
can use any input device that generates ASCII. But if your device is hooked up
using vuid, then your SunView programs can interface with it using the SunView
input event mechanism.

What Kind of Devices?

Since SunView's input system is built on top ofvuid, it is explained in some
detail.

Vuid is targeted to input devices that gather command data from humans, e.g.,
mice, keyboards, tablets, joysticks, light pens, knobs, sliders, buttons, ascii teITIli­
nals, etc. 15 The vuid interface is not designed to support input devices that pro­
duce voluminous amounts of data, such as input scanners, disk drives, voice
packets.

Here are some of the properties that are expected of a typical client of vuid, e.g.,
SunView:

o The client has a richer user interface than can be supported by a simple
ASCII terminal.

IS The appendix titled Writing a Virtual User Input Device Driver discusses how to write a device driver
that speaks the vuid protocol for a new input device.

~\sun ~~ microsystems
53 Revision A of 15 October 1986

54 The Sun View System Programmer's Guide

Vuid Features

Vuid Station Codes

Address Space Layout

This device is a bit of a hodge­
podge for historical reasons; the
middle of the address space has
SunView-related events in it (see
<sunwindow/win input.h».
and the virtual keybOard and virtual
locator are thrown together.

D The client serializes multiple input devices being used by the user into a sin­
gle stream of events.

D The client preserves the entire state of its input so that it may query this
state.

Vuid provides, among others, the following services to clients:

D A client may extend the capabilities of the predefined vuid by adding input
devices. A client wants to be able to do this in a way that fits smoothly with
its existing input paradigm.

D A client's code may be input device independent. A client can replace the
physical device(s) underlying the virtual user input device and not have to
change any input or event handlers, only the input device driver. In fact, the
vuid interface doesn't care about physical devices. One physical device can
masquerade as many logical devices and many physical devices can look
like a single logical device.

This section defines the layout of the address space of vuid station codes. It
explains how to extend the vuid address space for your own purposes. The
meaning of vuid station codes meanings is covered in the Handling Input chapter
of the Sun View Programmer's Guide. The programmatic details of the vuid
interface are covered in Writing a Virtual User Input Device Driver appendix to
this document,

The address space for vuid events is 16 bits long, from 0 to 65535 inclusive. It is
broken into 256 segments that are 256 entries long (VUID_SEG_SIZE). The
top 8 bits contain a vuid segment identifier value. The bottom 8 bits contain a
segment specific value from 0 to 255. Some segments have been predefine and
some are available for expansion. Here is how the address space is currently bro­
ken down:

D ASCII_DEVID (OxOO) -ASCII codes, which include META codes.

D TOP _DEVID (OxOl) - Top codes, which are ASCII with the 9th bit on.

D Reserved (Ox02 to Ox7C) - for Sun vuid implementations.

D PANEL_DEVID (Ox7D) -Panel subwindow package event codes used
internally in the panel package (see <suntool/panel. h».

D SCROLL _ DEVID (Ox7E) - Scrollbar package event codes passed to
scrollbar clients on interesting scrollbar activity (see
<suntool/ scrollbar. h».

D WORKSTATION _DEVID (Ox7F) - Virtual keyboard and locator (mouse)
related event codes that describe a basic "workstation" device collection (see
< sundev / vuid _event. h>).

D Reserved for Sun customers (Ox80 to OxFF) - if you are writing a new vuid,
you can use a segment in here; see the next section.

~\sun ~ microsystems
Revision A of 15 October 1986

Adding a New Segment

Chapter 7 - Workstations 55

<sundev/vuid_event. h> is the central registry of virtual user input dev­
ices. To allocate a new vuid you must modify this file:

o Choose an unused portion of the address space. Vuids from OxOO to Ox7F
are reserved for use by Sun. Vuids from Ox80 to OxFF are reserved for Sun
customers.

o Add the new device with a * _DEVID #def ine in this file. Briefly
describe the purpose/usage of the device. Mention the place where more
infonnation can be found.

o Add the new device to the vuid device enumeration with a
VUID _ devname entry .

o List the specific event codes in another header file that is specific to the new
device. ASCII_DEVID, TOP_DEVID & WORKSTATION_DEVID
events are listed in <sundev /vuid _event. h> for historical reasons.

NOTE A new vuid device can just as easily be a pure software construction as it can be
a set of unique codes emitted by a new physical device driver.

Input State Access The complete state of the virtual input device is available. For example, one can
ask questions about the up/down state of arbitrary keys.

Unencoded Input

int
win_get_vuid_value(windowfd, id)

int windowfdi
short idi

id is one of the event codes from <sundev/vuid_event. h> or
<sunwindow/win_input. h>. windowfd can be any window file
descriptor.

The result returned for keys is 0 for key is up and 1 for key is down; some vuid
events return a range of numbers, such as mouse position. There is no error code
for "no such key" because, by definition, the vuid event address space is the
entire range of shorts and therefore you can't ask an incorrect question. 0 is
the default event state.

Unencoded keyboard input is supported in 3.2, for those customers who cannot
use the nonnal keyboard input mechanism.

There is an a new keyboard translation in 3.2. The type of translation is set by
the KIOCTRANS ioctl (see kb(4S) and kbd(5)). Old values were:

TR NONE for unencoded keyboard input outside the window system

TR ASCII for ASCII events (characters and escape sequences) outside
the window system

TR EVENT for window input events inside the window system

A new value is now supported:

Revision A of 15 October 1986

56 The SunView System Programmer's Guide

TR UNTRANS EVENT - -
gives unencoded keyboard values for input events inside the window
system.

The client must have WIN_ASCII_EVENTS set in the window's input mask; if
up-transitions are desired, WIN_UP_ASCII_EVENTS must also be set. (See
Chapter 6, Handling Input, in the Sun View Programmer's Guide for how to set
input masks.)

The number of the key pressed or released will be passed in the event's id
ie_code, and the direction of the transition will be reported correctly by
event_is_up () and event_is_down () (Le., the NEGEVENT flag in
ie_flags will be correct). The state of the shiftmask is undefined.

Events for other input (e.g. from the mouse) will be merged in the same stream
with keyboard input, in standard window input fashion.

NOTE Setting the keyboard translation has a global effect- it is not possible to get
encoded input in one window and unencoded input in another on the same
workstation.

7.2. User Input Device
Control

Distinguished Devices

Arbitrary Devices

The number and kind of physical user input devices that can be used to drive
Sun View is open ended. Here are the controls for manipulating those devices.

A keyboard and a mouse-like device are distinguished and settable directly. The
Desktops chapter describes how they are specified in the screen structure.
Here are two calls for changing them explicitly.

int
win_setkbd(windowfd, screen)

int windowfd;
struct screen *screen;

changes the keyboard associated with windowfd's desktop. Only the data per­
tinent to the keyboard is used (Le., screen->scr_kbdname).

int
win_setms(windowfd, screen)

int windowfd;
struct screen *screen;

changes the mouse associated with windowfd's desktop. Only the data per­
tinent to the mouse is used (Le., screen->scr_msname).

Arbitrary user input devices may be used to drive a workstation. However, some
care must be exercised in selecting the combinations of devices. To install an
input device with SunView, call win_set_input_device () .

4}\sun
~~ microsystems

Revision A of 15 October 1986

Non-Vuid Devices

Device Removal

Device Query

Chapter 7 - Workstations 57

int
win_set_input_device(windowfd, inputfd, name)

int windowfd;
int inputfd;
char *name;

windowfd identifies (by association) the workstation on which the input device
is to be installed. name is used to identify the device on subsequent calls to
SunView, e.g., /dev/kbd. name may only be SCR_NAMESIZE characters
long. Before calling this routine, open the input device and make any ioctll(2)
calls to it to set it up to your requirements, e.g. possibly setting the speed of the
serial port through which the device in coming in on. Pass the open file descrip­
tor in as inputfd.

win_set_input_device () sends additional ioctll(2) calls to make the dev­
ice operate as a Virtual User Input Device (if that is not its native mode) and
operate in non-blocking read mode. The device's unread input is flushed. Sun­
View starts reading from the device: Once win_set_input_device ()
returns, close inputfd. This action won't actually close the device; SunView
is has its own open file descriptor on the device.

User input devices that only emit ASCII, and not vuid events, may be used by
Sun View. If the device does not respond to probing with the vuid ioctls Sun­
View assumes it is an ASCII device and reads it one character at a time.
Thus, Sun View can handle input from a simple ASCII terminal without
modification to any drivers. The routines in the section can be used with vuid or
ASCII devices.

To remove an input device from SunView, call
win_remove_input_device().

int
win_remove_input_device(windowfd, name)

int windowfd;
char *name;

windowfd identifies the workstation from which to remove the input device.
name identifies the device. Sun View resets the device to its original state.

To ask if an input device is being utilized by a workstation, call
win_is_input_device().

int
win_is_input_device(windowfd, name)

int windowfd;
char *name;

windowfd identifies the workstation being probed. name identifies the dev­
ice. 0 is returned if the device is not being utilized, 1 is returned if it is, and -1 is
returned if there is an error.

\~\sun
,~ microsystems

Revision A of 15 October 1986

58 The Sun View System Programmer's Guide

Device Enumeration

7.3. Focus Control

Keyboard Focus Control

Event Specification

To ask what all the input devices of the workstation are, call
win_enum_input_device () which enumerates them all.

int
win_enum_input_device(windowfd, func, data)

int windowfd;
int (*func) () ;
caddr_t data;

windowfd identifies the workstation being probed. You pass the function
func which is called once for every input device. The first argument passed to
func () is a string which is ~e name of the device. The second argument
passed to func () is data, which can be anything you want. If func
returns something other than 0 the enumeration is terminated early.
win_enum_input_device () returns -1 if there was an error during the
enumeration, 0 if it went smoothly and 1 if func terminated the enumeration
early.

The concept of a split keyboard and pick input focus has been described in the
Sun View Programmer's Guide. The user interface documentation describes it as
"click to type" mode. It allows keyboard input events to be directed to a dif­
ferent window than the window that pick (cursor) inputs are sent to. Usually you
want the keyboard input focus to stay in one window while the pick input focus
is the window under the cursor.

The following routine is called when a window gets a KBD _REQUEST event
and the window doesn't need the keyboard focus.

win_refuse_kbd_focus(windowfd)
int windowfd;

The following routine is used to change the keyboard focus. It is only a hint; the
target window can refuse the keyboard focus or the user may not be running in
click-to-type mode.

int
win_set_kbd_focus(windowfd, number)

int windowfd, number;

number is the window that you want to have the keyboard focus.

The following routine gets the window number of the window that is currently
the keyboard focus.

int
win_get_kbd_focus(int windowfd)

int windowfd;

This section describes how to programmatically specify which user actions are
used as the focus control actions. The suntools(1) program has a set of flags
to control the keyboard focus.

~\sun ,~ microsysterns
Revision A of 15 October 1986

Setting the Caret Event

Getting the Caret Event

Restoring the Caret

Chapter 7 - Workstations 59

One of the ways to change the keyboard focus is to set the caret. Setting the
focus passes the focus change event through to the application.

void
win_set_focus_event(windowfd, fe, shifts)

int windowfdi
Firm_event *fei
int shiftsi

windowfd identifies the workstation. fe is afirm event pointer; the entire
Firm_event structure is defined in the appendix titled Writing a Virtual User
Input Device Driver. Only the id and the value fields are utilized in this call.
The id field of * fe is set to the identifier of the event that is used to set the
keyboard focus, e.g., MS_LEFT. The value field is set to the value of the
event that is used to set the keyboard focus, e.g., 0 (up) or 1 (down). shifts
is a mask of shift bits that indicate the required state of the shift keys needed in
order to have the event described by f e treated as the keyboard focus change
event. -1 means that you don't care. If you do care, use the same shift bits
passed in the Event structure as discussed in the Handling Input chapter in the
SunView Programmer's Guide, e.g., LEFTSHIFT.

win_get_focus_event () returns the values set by
win_set_focus_event().

void
win_get_focus_event(windowfd, fe, shifts)

int windowfdi
Fir~event *fei
int *shiftsi

*fe and * shifts are filled in with the current values.

Another ways to change the keyboard focus is to restore the caret. Restoring the
focus swallows the focus change event so that it never makes it to the applica­
tion. These two routines parallel the focus setting routines described above.

void
win_set_swallow_event(windowfd, fe, shifts)

int windowfdi
Firm_event *fei
int shiftsi

void
win_get_swallow_event(windowfd, fe, shifts)

int windowfdi
Firm_event *fei
int *shiftsi

.\sun ~~ microsyslems
Revision A of 15 October 1986

60 The Sun View System Programmer's Guide

7.4. Synchronization
Control

Releasing the Current Event
Lock

Current Event Lock Breaking

This section discusses the concept of input synchronization is some detail. It's
an important but subtle system mechanism. You should understand it fully
before changing the system's default synchronization setting.

When running with input synchronization enabled, only one input event is being
consumed, or processed, at a time. This event is called the current event. Own­
ership of the current event is bestowed by Sun View to a single process; that pro­
cess is said to have the current event lock. The lock belongs to a process, not a
window device and is used to prevent any process from receiving an input event
(via a read\(2) system call) until the the lock has been released. This prevents
race conditions between processes. This lets, for example, a user pop a window
to the top and start typing to it before its image is drawn and have typing directed
to the correct window. Input synchronization allows the process that currently
has the lock to change its input mask and have the change recognized immedi­
ately so that applications won't miss events when they fall behind the user.

Input synchronization is not to be confused with the management of the input
focus. The input focus is that window which is supposed to get the next input
event and the input synchronization mechanism is used to determine when the
current input event processing is completed.

The current event lock is acquired upqn completing a read of a window device in
which an input event was successfully read. For the duration of the lock, the
current event lock owner decides what to do based on the current event and does
it (or forks a process to do it). There is no notification to the input focus of input
pending until the current event lock is released. Thus, there is typically only one
process actively reading input at a time (except for rogue polling processes).

When a process finishes with the current event, the current event lock is released
via:

D A read\(2) of the next event. If the next event is for the window that is doing
the read then the lock is released and re-acquired immediately.

D A selectl(2) for input. This is the common case.

D Anexplicit win_release_event_lockO call (see below).

An explicit lock release call is appropriate for an application that knows that it no
longer needs to query the state of the virtual input device or change its input
mask and is about to do something moderately time consuming. Such an appli­
cation can explicitly release the lock as soon as it recognizes that the event it has
just read is not going to change event distribution.

win_release_event_lock(windowfd)
int windowfdi

The current event lock is broken by Sun View when the process with it visits the
debugger or dies.

In addition, Sun View explicitly breaks the current event lock if an application
takes too long to process the event. The time is measured in process virtual time,
not real time. This is a quiet lock breaking in that no message is displayed and

Revision A of 15 October 1986

Getting/Setting the Event Lock
Timeout

7.5. Kernel Tuning Options

Chapter 7 - Workstations 61

no signal is sent to the offending process. The duration of the time limit can be
set, for the entire workstation, to a range of values:

D 0 - Windows have rampant race conditions. There is poor perfonnance on
high speed mouse tracking because the system can't compress mouse motion
passed to applications.

D non-zero (approximately 1-10 seconds) - Most synchronization problems
go away except when programs exceed the time limit. When Sun View
detects a process that exceeds the time limit the process temporarily goes
into an unsynchronized mode until it catches up with the user.

D large-infinite (greater than 10 seconds) - Synchronization problems don't
arise. Unfortunately, the user is locked into just one program at a time
echoing/noticing input. The key combination I Setuo=! I (the ~ key is
the ~ key on Sun-2 and Sun-3 machines) explicitly breaks the lock.

The default time limit is 2 cpu seconds. You can get the current event lock
timeout with a call to win_get_event_timeout () :

void
win_get_event_timeout(windowfd, tv)

int windowfd;
struct timeval *tv;

*tv is filed in with the current value.

You can set the current event lock timeout via a call to
win_set_event_timeout():

void
win_set_event_timeout(windowfd, tv)

int windowfd;
struct timeval *tv;

*t v is used as the current value.

Some kernel tuning variable are settable using a debugger. However, you are
advised not to change these unless you absolutely have to. You can look at the
kernel with a debugger to see the default settings of these values, but your are
playing with fire.

Dint ws _ v~ node_bytes is the number bytes to use for the input queue.
You might increase this number if you find your are getting "Window input
queue overflow!" and "Window input queue flushed!" messages. This
needs to be modified before starting Sun View in order to have any affect.

Dint ws_fast_timeout is the number of hertz between polls of input
devices when in fast mode. Sun View polls its input devices at two speeds.
The fast mode is the nonnal polling speed and the slow mode occurs when
no action has been detected in the input devices for
wS_fastyoll_duration hertz. This is all meant to save cpu cycles of
useless polling when the user is not doing anything. The system is con­
stantly bouncing between slow and fast polling mode.

~\sun ,~ microsystems
Revision A of 15 October 1986

62 The SunView System Programmer's Guide

w s _fa st _timeout should never be O. Decreasing this number improves
interactive cursor tracking at the expense of increased system polling load.

Dint ws_slow_timeout is the number of hertz between polls of input
devices when in slow mode. ws slow timeout should never be O.
Decreasing this number improves interactive cursor tracking at the expense
of increased system polling load.

Dint ws_fast_poll_duration is discussed above. Increasing this
,number improves interactive performance at the expense of increased system
polling load.

Dint ws _loc _ still is the number of hertz after which, if the locator has
been still, a LOC _ ST ILL event is generated.

o struct timeval ws_lock_limit is the process virtual time limit
for a data or display lock. Increasing w s _10 ck _1 imi t reduces the
number of

... lock broken after time limit exceeded ...

console messages at the expense of slower response to dealing with lock
hogs.

Dint ws check lock and struct timeval ws check time - - - -
The check for ws lock limit doesn't start for ws check lock - - - -
amount of real time after the lock is set. This is done to avoid system over-
head for normal short lock intervals. Increasing ws_check_lock
reduces system overhead on long lock holding situations at the expense of
slower response to dealing with lock hogs.

Dint win_disable_shared_locking is a flag that controls whether
or not the window driver will try to reduce the overhead of display locking
by using a shared memory mechanism. Even though there are no known
problems with the shared memory locking mechanism, this variable is avail­
able as an escape hatch. !fthe window.system leaves mouse cursor drop­
pings, set this variable to 1. The default is O. Setting this variable to 1 will
result in reduced graphics performance.

Dint winclistcharsmax is the maximum number of characters from
the operating system's "character buffer" pool that Sun View is willing to
utilize. Upping this number can reduce' 'tossed" input situations. Turning
on wintossmsg (an int) will print a message if input has to be tossed.
winclistcharsmax should only be increased by half again as much as
its default.

Dint ws_set_favor is a flag that controls whether or not the window
driver will try to boost the priority of the window process (and its children)
that has the current event lock. The default is 1. In very tight memory situa­
tions this dramatically improves "interactive" performance.

~\sun ~~ microsystems
Revision A of 15 October 1986

Changing the User Actions that
Affect Input

Chapter 7 - Workstations 63

The following is provided so that you can change the user actions for the various
real time interrupt actions.

typedef struct ws_usr_async {
short dont_touch1;
short first id; /* id of the 1st event */ -
int first_value; /* value of the 1st event */
short second_id; /* id of the 2nd event */
int second_value; /* value of the 2nd event */
int dont_touch2;

Ws usr async ws_hreak_default = /* Event lock breaking */
{O, SHIFT_TOP, 1, TOP_FIRST + 'i', 1, O};

Ws_usr_async ws_stop_default = /* Stop event */
{O, SHIFT_TOP, 1, SHIFT_TOP, 0, O};

Ws_usr_async ws_flush_default = /* Input queue flushing */
{O, SHIFT_TOP, 1, TOP FIRST + 'f', 1, O};

~\sun ,~ microsystems
Revision A of 15 October 1986

8
Advanced N otifier Usage

Advanced N otifier Usage ... 67

8.1. Overview .. 67

Contents .. 67

ViewIX>int .. 67

Furth.er Infonnation .. 67

8.2. Notification .. 68

Client Events ... 68

Delivery Times ... 68

Handler Registration .. 68

The Event Handler .. 69

Sun View Usage .. 69

Output Completed Events .. 69

Exception Occurred Events ... 70

Getting an Event Handler ... 70

8.3. Interposition .. 72

Registering an Interposer .. 72

Invoking tlle Next Function .. 73

Removing an Interposed Function .. 74

8.4. Posting ... 76

Client Events ... 76

Delivery Time Hint .. 76

Actual Delivery Time ... 76

Posting witll an Argument .. 77

Storage Management ... 77

SunView Usage .. 78

Posting Destroy Events ... 79

Delivery Time ... 79

Immediate Delivery ... 79

Safe Delivery ... 79

8.5. Prioritization ... 80

The Default Prioritizer ... 80

Providing a Prioritizer .. 80

Dispatching Events ... 81

Getting fue Prioritizer ... 82

8.6. Notifier Control ... 84

Starting .. 84

Stopping .. 84

Mass Destruction ... 84

Scheduling .. 85

Dispatching Clients .. 85

Getting fue Scheduler .. 86

Client Removal .. 86

8.7. Error Codes ... 87

8.8. Restrictions on Asynchronous Calls into fue Notifier 89

8.9. Issues ... 90

8.1. Overview

Contents

Viewpoint

Further Infonnation

8
Advanced N otifier Usage

This chapter continues the description of the Notifier in The Notifier chapter of
the Sun View Programmer's Guide.

This chapter presents areas which are not of general interest to the majority of
Sun View application programmers. These include:

o The registration of client, output and exception event handlers.

o Querying for the current address of one of a client's event handlers.

o Interposition of any event handler.

o Controlling the order in which a client receives events.

o Control over the dispatching of events.

o Controlling the order in which clients are notified.

o A list of error codes.

o Restrictions on calls into the Notifier.

o A list of open issues surrounding the Notifier.

Although the Notifier falls under the umbrella of Sun View, the Notifier can be
looked at as a library package that is usable separately from the rest of SunView.
The viewpoint of this chapter is one in which the Notifier stands alone from Sun­
View. However, there are notes about SunView's usage of the Notifier
throughout the chapter.

You must read the chapter titled The Notifierin the SunView Programmer's
Guide before you tackle this chapter; it has information and examples about the
Notifier and SunView's usage of it. In addition, The Agent & Tiles chapter in
this manual has further infonnation.

This split description of the Notifier may be a little awkward for advanced users
of the Notifier but is much less confusing for the majority of users. You should
refer to the index in the Sun View Programmer's Guide first and then the index in
this book when using this material in a reference fashion.

~\sun ~~ microsystems
67 Revision A of 15 October 1986

68 The Sun View System Programmer's Guide

8.2. Notification

Links to the SunView Programmer's
Guide

Client Events

Delivery Times

Client Defined Signals

Handler Registration

This section presents the programming interface to the Notifier that clients use to

register event handlers and receive notifications.

Only those areas not covered in the Notifier chapter of the SunView
Programmer's Guide are presented. In particular, input pending refers to the sec­
tion in the other manual.

The two Notifier chapters are different in that the SunView Programmer's Guide
considers the Notifier in relation to Sun View; thus, for example, in it notifier
events are SunView Input Events, so their type is Event *. In this chapter,
event is the more general type Notify_event.

This section describes how client events are handled by the Notifier. From the
Notifier's point of view, client events are defined and generated by the client.
Client events are not interpreted by the Notifier in any way. The Notifier doesn't
detect client events, it just detects UNIX-related events. The Notifier is responsi­
ble for dispatching client events to the client's event handler after the event has
been posted with the Notifier by application code (see the section entitled Post­
ing below).

The Notifier normally sends client event notifications when it is safe to do so.
This may involve some delay between when an event is posted and when it is
delivered. However, a client may ask to always be immediately notified of the
posting of a client event (see Posting, below).

The immediate client event notification mechanism should be viewed as an
extension of the UNIX signaling mechanism in which events are client defined
signals. However, clients are strongly encouraged to only use safe client event
handlers.

To register a client event handler call:

Notify_func
notify_set_event_func(client, event_func, when)

Notify_client client;
Notify_func event_func;
Notify_event_type when;

enum notify_event_type {
NOTIFY_SAFE=O,
NOTIFY_IMMEDIATE=l,

} ;

typedef enum notify_event_type Notify_event_type;

when indicates whether the event handler will accept notifications only when it
is safe (NOTIFY_SAFE) or at less restrictive times (NOTIFY_IMMEDIATE}.16

16 For a rundown of the basics of registering event handlers see the section on Event Handling in the Notifier
chapter of the SunView Programmer's Guide.

~\sun ,~ microsystems
Revision A of 15 October 1986

The Event Handler

SunView Usage

Output Completed Events

Chapter 8 - Advanced Notifier Usage 69

The calling sequence of a client event handler is:

Notify_value
event_func(client, event, arg, when)

Notify_client client;
Notify_event event;
Notify_arg arg;
Notify_event_type when;

typedef caddr_t Notify_arg;

in which client is the client that called notify_set_event_func () .
event is passed through from notify yost_event () (see Posting,
below). arg is an additional argument whose type is dependent on the value
of event and is completely defined by the client, like event. when is the
actual situation in which event is being delivered (NOTIFY_SAFE or
NOTIFY_IMMEDIATE) and may be different from when_hint of
notifyyost_event (). The return value is one of NOTIFY_DONE or
NOTIFY IGNORED.

You will almost certainly not need to directly register your own client event
handler when using SunView. Window objects do this for themselves when they
are created. However, note the following:

D A window has a client event handler that you may want to interpose in front
of. See the section entitled Monitoring and Modifying Window Behavior in
the Notifier chapter in the SunView Programmer's Guide.

D SunView client event handlers are normally registered with when equal to
NOTIFY SAFE.

D The Agent reads input events from a window's file descriptor and posts them
to the client via the winyost_event () call. See the section titled
Notifications From the Agent in The Agent & Tiles chapter.

Notifications for output completed notifications are similar to input pending
notifications, covered in the chapter on the Notifier in the Sun View
Programmer's Guide.

Notify_func
notify_set_output_func(client, output_func, fd)

Notify_client client;
Notify_func output_func;
int fd;

Notify_value
output_func(client, fd)

Notify_client client;
int fd;

Revision A of 15 October 1986

70 The SunView System Programmer's Guide

Exception Occurred Events

Getting an Event Handler

Exception occurred notifications are similar to input pending notifications. The
only known devices that generate exceptions at this time are stream-based socket
connections when an out-of-band byte is available. Thus, a SIGURG signal
catcher is set up by the Notifier, much like SIGIO for asynchronous input.

Notify_func
not ify_set_except ion_func (client, exception_func, fd)

Notify_client client;
Notify_func exception_func;
int fd;

Notify_value
exception_func(client, fd)

Notify_client client;
int fd;

Here is the list of routines that allow you to retrieve the value of a client's event
handler. The arguments to each notify_get_ * _func () function parallel
the associated notify _set_ * _func () function described elsewhere except
for the absence of the event handler function pointer. Thus, we don't describe
the arguments in detail here. Refer back to the associated
notify set * func () descriptions for details. 17 - --
A return value of NOTIFY_FUNC_NULL indicates an error. If client is unk­
nown then notify_errno is set to NOTIFY_UNKNOWN_CLIENT. If no event
handler is registered for the specified event then notify _ errno is set to
NOTIFY_NO_CONDITION. Other values of notify_errno are possible,
depending on the event, e.g., NOTIFY_BAD _FD if an invalid file descriptor is
specified (see the associated notify_set_ * _func (»).

Here is a list of event handler retrieval routines:

Notify_func
notify_get_input_func(client, fd)

Notify_client client;
int fd;

Notify_func
notify_get_event_func(client, when)

Notify_client client;
Notify_event_type when;

Notify_func
notify_get_output_func(client, fd)

Notify_client client;
int fd;

17 It is -recommended that you use the Notifier's interposition mechanism instead of trying to do
interposition yourself using these notify_get _* _ func () routines.

~\sun ~~ microsystems
Revision A of 15 October 1986

Chapter 8 - Advanced Notifier Usage 71

not ify_get_except ion_func (client, fd)
Notify_client client;
int fd;

Notify_func
not ify_get_it imer_func (client, which)

Notify_client client;
int which;

Notify_func
not ify_get_s ignal_func (client, signal, mode)

Notify_client client;
int signal;
Notify_signal_mode mode;

Notify_func
notify_get_wait3_func(client, pid)

Notify_client client;
int pid;

Notify_func
notify_get_destroy_func(client)

Notify_client client;

~\sun ,~ microsystems
Revision A of 15 October 1986

72 The SunView System Programmer's Guide

8.3. Interposition

Registering an Interposer

There are many reasons why an application might want to interpose a function in
the call path to a client's event handler:

o An application may want to use the fact that a client has received a particular
notification as a trigger for some application-specific processing.

o An application may want to filter the notifications to a client, thus modifying
the client's behavior.

o An application may want to extend the functionality of a client by handling
notifications that the client is not programmed to handle.

The Notifier supports interposition by keeping track of how interposition func­
tions are ordered for each type of event for each client. Here is a typical example
of interposition:

o An application creates a client. The client has set up its own client event
handler using notify_set_event_func () .

o The application tells the Notifier that it wants to interpose its function in
front of the client's event handler by calling
notify_interpose_event_func () (described below).

o When the application's interposed function is called, it tells the Notifier to
call the next function, i.e., the client's function, via a call to
notify_next_event_func () (described below).

The following routines let you interpose your own function in front of a client's
event handler. The arguments to each notify_interpose_ *_func () ,
function parallel the associated notify_set_ * _func () function described
above. Thus, we don't describe the arguments in detail here. Refer back to the
associated notify_set_ *_func () descriptions for details.

NOTE The one exception to this rule is that the arguments to
notify_interpose_itimer_func () are a subset of the arguments to
notify_set_itimer_func().

Notify_error
notify_interpose_input_func(client, input_func, fd)

Notify_client client;
Notify_func input_func;
int fd;

Notify_error
notify_interpose_event_func(client, event_func, when)

Notify_client client;
Notify_func event_func;
Notify_event_type when;

Notify_error
notify_interpose_output_func(client, output_func, fd)

Notify_client client;
Notify_func output_func;
int fd;

~~ sun Revision A of 15 October 1986
~ microsystems

Invoking the Next Function

Chapter 8 - Advanced Notifier Usage 73

Notify_error
notify_interpose_exception_func(client, exception_func, fd)

Notify_client client;
Notify_func exception_func;
int fd;

Notify_error
notify_interpose_itimer_func(client, itimer_func, which)

Notify_client client;
Notify_func itimer_func;
int which;

Notify_error
notify_interpose_signal_func(client, signal_func, signal, mod

Notify_client client;
Notify_func signal_func;
int signal;
Notify_signal_mode mode;

Notify_error
notify_interpose_wait3_func(client, wait3_func, pid)

Notify_client client;
Notify_func wait3_func;
int pid;

Notify_error
notify_interpose_destroy_func(client, destroy_func)

Notify_client client;
Notify_func destroy_func;

The return values from these functions may be one of:

o NOTIFY_OK - The interposition was successful.

o NOTIFY UNKNOWN CLIENT - client is not known to the Notifier. - -
o NOTIFY_NO _CONDITION - There is no event handler of the type specified.

o NOTIFY _ FUNC _LIMIT - The current implementation allows five levels of
interposition for every type of event handler, the original event handler
registered by the client plus five interposers. NOTIFY_FUNC_LIMIT indicates
that this limit has been exceeded.

If the return value is something other than NOTIFY_OK then notify_errno
contains the error code.

Here is the list of routines that you call from your interposed function in order to
invoke the next function in the interposition sequence. The arguments and return
value of each notify_next _ * _ func () function are the same as the argu­
ments passed to the your interposer function. Thus, we don't describe the argu­
ments in detail here. Refer back to the associated event handler descriptions for
details.

~\sun ,~ microsystems
Revision A of 15 October 1986

74 The SunView System Programmer's Guide

Removing an Interposed
Function

NOTE

notify_next_input_func(client, fd)
Notify_client client;
int fd;

Notify_value
notify_next_event_func(client, event, arg, when)

Notify_client client;
Notify_event *event;
Notify_arg arg;
Notify_event_type when;

Notify_value
notify_next_output_func(client, fd)

Notify_client client;
int fd;

Notify_value
not ify_next_except ion_func (client, fd)

Notify_client client;
int fd;

Notify_value
not ify_next_it imer_func (client, which)

Notify_client client;
int which;

Notify_value
notify_next_signal_func(client, signal, mode)

Notify_client client;
int signal;
Notify_signal_mode mode;

Notify_value
notify_next_wait3_func(client, pid, status, rusage)

Notify_client client;
union wait status;
struct rusage rusage;
int pid;

Notify_value
notify_next_destroy_func(client, status)

Notify_client client;
Destroy_status status;

Here is the list of routines that allow you to remove the interposer function that
you installed using a notify_interpose_ * _func () call. The arguments
to each notify_remove _ * _ func () function is exactly the same as the
associated notify_set_ * _func () function described above. Thus, we
don't describe the arguments in detail here.

The one exception to this rule is that the arguments to
notify_remove_itimer_func () are a subset o/the arguments to

Revision A of 15 October 1986

Chapter 8 - Advanced Notifier Usage 75

notify_set_itimer_func().

Notify_error
notify_remove_input_func(client, input_func, fd)

Notify_client client;
Notify_func input_func;
int fd;

Notify_error
notify_remove_event_func(client, event_func, when)

Notify_client client;
Notify_func event_func;
Notify_event_type when;

Notify_error
notify_remove_output_func(client, output_func, fd)

Notify_client client;
Notify_func output_func;
int fd;

Notify_error
not ify_remove_except ion_func (client, exception_func, fd)

Notify_client client;
Notify_func exception_func;
int fd;

Notify_error
not ify_remove_it imer_func (client, itimer_func, which)

Notify_client client;
Notify_func itimer_func;
int which;

Notify_error
notify_remove_signal_func(client, signal_func, signal, mode)

Notify_client client;
Notify_func signal_func;
int signal;
Notify_signal_mode mode;

Notify_error
not ify_remove_wait 3_func (client, wait3_func, pid)

Notify_client client;
Notify_func wait3_func;
int pid;

Notify_error
not ify_remove_dest roy_func (client, destroy_func)

Notify_client client;
Notify_func destroy_func;

If the return value is something other than NOTIFY_OK then notify_ errno
contains the error code. The error codes are the same as those associated with
notify_interpose_ * _func () calls.

~\sun ,~ microsystems
Revision A of 15 October 1986

76 The Sun View System Programmer's Guide

8.4. Posting

Client Events

Delivery Time Hint

Actual Delivery Time

This section describes how to post client events and destroy events with the
Notifier.

A client event may be posted with the Notifier at any time. The poster of a client
event may suggest to the Notifier when to deliver the event, but this is only a
hint. The Notifier will see to it that it is delivered at an appropriate time (more
on this below). The call to post a client event is:

typedef char * Notify_event;

Notify_error
notify-post_event(client, event, when_hint)

Notify_client client;
Notify_event event;
Notify_event_type when_hint;

The client handle from notify_set_event_func () is passed to
notify yost_event (). event is defined and interpreted solely by the
cl ient. A return code of NOTIFY_OK indicates that the notification has been
posted. Other values indicate an error condition. NOTIFY_UNKNOWN _ CUENT
indicates that client is unknown to the Notifier. NOTIFY_NO_CONDITION indi­
cates that client has no client event handler registered with the Notifier.

Usually it is during the call to notifyyost_event () that the client event
handler is called. Sometimes, however, the notification is queued up for later
delivery. The Notifier chooses between these two possibilities by noting which
kinds of client event handlers client has registered, whether it is safe and
what the value of when_hint is. Here are the cases broken down by which
kinds of client event handlers client has registered:

D Immediate only - Whether when_hint is NOTIFY_SAFE or
NOTIFY_IMMEDIATE the event is delivered immediately.

D Safe only - Whether when_hint is NOTIFY_SAFE or NOTIFY_IMMEDIATE
the event is delivered when it is safe.

D Both safe and immediate - A client may have both an immediate client
event handler as well as a safe client event handler. If when hint is
NOTIFY_SAFE then the notification is delivered to the safe client event
handler when it is safe. If when hint is NOTIFY_IMMEDIATE then the
notification is delivered to the immediate client event handler right away. If
the immediate client event handler returns NOTIFY_IGNORED then the same
notification will be delivered to the safe client event handler when it is safe.

For client events, other than knowing which event handler to call, the main func­
tion of the Notifier is to know when to make the call. The Notifier defines when
it is safe to make a client notification. If it is not safe, then the event is queued
up for later delivery. Here are the conventions:

D A client that has registered an immediate client event handler is sent a
notification as soon as it is received. The client has complete responsibility
for handling the event safely. It is rarely safe to do much of anything when

.~!l12 Revision A of 15 October 1986

Posting with an Argument

Storage Management

Chapter 8 - Advanced Notifier Usage 77

an event is received asynchronously. Usually, just setting a flag that indi­
cates that the event has been received is about the safest thing that can be
done.

D A client that has registered a safe client event handler will have a
notification queued up for later delivery when the notification was posted
during an asynchronous signal notification. Immediate delivery is not safe
because your process, just before receiving the signal, may have been exe­
cuting code at any arbitrary place.

D A client that has registered a safe client event handler will have a
notification queued up for later delivery if the client's safe client event
handler hasn't returned from processing a previous event. This convention
is mainly to prevent the cycle: Notifier notifies A, who notifies B, who
notifies A. A could have had its data structures tom up when it notified B
and was not in a state to be reentered.

Implied in these conventions is that a safe client event handler is called immedi­
ately from other UNIX event handlers. For example:

D A client's input pending event handler is called by the Notifier.

D Two characters are read by the client's input pending event handler.

D The first character is given to the Notifier to deliver to the client's safe event
handler.

D The Notifier immediately delivers the character to the client event handler.

D Returning back to the input pending event handler, the second character is
sent. This character is also delivered immediately.

Sun View posts a fixed field structure with each event. Sometimes additional data
must be passed with an event. for instance when the scrollbar posts an event to
its owner to do a scroll. The scrollbars' handle is passed as an argument along
with the event. notify_post_event_and_arg () provides this argu­
ment passing mechanism (see below).

When posting a client event there is the possibility of delivery being delayed. In
the case of Sun View, the event being posted is a pointer to a structure. The
Notifier avoids an invalid (dangling) pointer reference by copying the event if
delivery is delayed. It calls routines the client supplies to copy the event infor­
mation and later to free up the storage the copy uses.
notifyyost_event_and_arg () provides this storage management
mechanism.

Revision A of 15 October 1986

78 The Sun View System Programmer's Guide

SunView Usage

Notify_error
notify-post_event_and_arg(client, event, when_hint, arg,

copy_func, release_func)
Notify_client client;
Notify_event event;
Notify_event_type when_hint;
Notify_arg arg;
Notify_copy copy_func;
Notify_release release_func;

typedef caddr_t Notify_arg;

typedef Notify_arg (*Notify_copy) ();
#define NOTIFY COPY~ULL «Notify_copy)O)

typedef void (*Notify_release) ();
#define NOTIFY_RELEASE_NULL «Notify_release)O)

copy_func () is called to copy arg (and optionally event) when event
and arg needed to be queued for later delivery. release _ func () is called
to release the storage allocated during the copy call when event and arg
were no longer needed by the Notifier.

Anyof arg, copy_func () or release_func () may be null. If
copy_func is not NOTIFY_COPY_NULL and arg is NULL then
copy _ func () is called anyway. This allows event the opportunity to be
copied because copy_func () takes a pointer to event. The pointed to
event may be replaced as a side affect of the copy call. The same applies to a
non-NOTIFY_RELEASE_NULL release function with a NULL arg argument.

The copy () and release () routines are client-dependent so you must
write them yourself. Their calling sequences follow:

Notify_arg
copy_func(client, arg, event-ptr)

Notify_client client;
Notify_arg arg;
Notify_event *event-ptr;

void
release_func(client, arg, event)

Notify_client client;
Notify_arg arg;
Notify_event event;

There are Agent calls to post an event to a tile that provide a layer over the post­
ing calls described here (see win yost_event() in the chapter entitled The Agent
& Tiles).

~\sun ,~ microsystems
Revision A of 15 October 1986

Posting Destroy Events

Delivery Time

Immediate Delivery

Safe Delivery

Chapter 8 - Advanced Notifier Usage 79

When a destroy notification is set, the Notifier also sets up a synchronous signal
condition for SIGTERM that will generate a DESTROY_PROCESS _DEATH destroy
notification. Otherwise, a destroy function will not be called automatically by
the Notifier. One or two (depending on whether the client can'veto your
notification) explicit calls to notifyyost_destroy () need be made.

Notify_error
notify-post_destroy(client, status, when)

Notify_client client;
Destroy_status status;
Notify_event_type when;

NOTIFY_INVAL is returned if status or when is not defined. After notifying
a client to destroy itself, all references to client are purged from the Notifier.

Unlike a client event notification, the Notifier doesn't try to detect when it is safe
to post a destroy notification. Thus, a destroy notification can come at any time.
It is up to the good judgement of a caller of notify_post_destroy () or
notify_die () (described in the section titled Notifier Control) to make the
call at a time that a client is not likely to be in the middle of accessing its data
structures.

If status is DESTROY_CHECKING and when is NOTIFY IMMEDIATE then
notifyyost_destroy () may return NOTIFY_DESTROY_VETOED if the
client doesn't want to go away.

Often you want to tell a client to go away at a safe time. This implies that
delivery of the destroy event will be delayed, in which case the return value of
notifyyost_destroy () can't be NOTIFY_DESTROY_VETOED because the
client hasn't been asked yet. To get around this problem the Notifier will flush
the destroy event of a checking/destroy pair of events if the checking phase is
vetoed. Thus, a common idiom is:

(void) notify-post_destroy(client, DESTROY_CHECKING,
NOTIFY_SAFE);

(void) notify-post_destroy(client, DESTROY_CLEANUP,
NOTIFY_SAFE) ;

~\sun ,~ microsystems
Revision A of 15 October 1986

80 The Sun View System Programmer's Guide

8.5. Prioritization

The Default Prioritizer

Providing a Prioritizer

The order in which a particular client's conditions are notified may be controlled
by providing a prioritizer operation. 18

The default prioritizer makes its notifications in this order (any asynchronous or
immediate notifications have already been sent):

o Interval timer notifications (ITIMER _REAL and then ITIMER _ VIRTUAL).

o Child process control notifications.

o Synchronous signal notifications by ascending signal numbers.

o Exception file descriptor activity notifications by ascending fd numbers.

o Handle client events by order in which received.

o Output file descriptor activity notifications by ascending fd numbers.

o Input file descriptor activity notifications by ascending fd numbers.

This section describes how a client can provide its own prioritizer.

Notify_func
notify_set-prioritizer_func(client, prioritizer_func)

Notify_client client;
Notify_func prioritizer_func;

notify_setyrioritizer_func () takes an opaque client handle and the
function to call before any notifications are sent to client. The previous func­
tion that would have been called is returned. If this function was never defined
then the default prioritization function is returned. If the
prioritizer_func () argument is NOTIFY_FUNC_NULL then no client prior­
itization is done for client and the default prioritizer is used.

The calling sequence of a prioritizer function is:

Notify_value
prioritizer_func(client, nfd, ibits-ptr, obits-ptr,

ebits-ptr, nsig, sigbits-ptr, auto_sigbits-ptr,
event_count-ptr, events, args)

Notify_client client;
int nfd, *ibits-ptr, *obits-ptr, *ebits-ptr,

nsig, *sigbits-ptr, *auto_sigbits-ptr,
*event_count-ptr;

Notify_event *events;
Notify_arg *args;

#define SIG_BIT(sig)
#define FD_BIT(fd)

(1 « «sig) -1))
(1 « (fd»

in which client from notify_setyrioritizer_func () are passed
to prioritizer_func (). In addition, all the notifications that the Notifier
is planning on sending to client are described in the other parameters. This data
reflects only data that client has expressed interest in by asking for notification of

18 It is anticipated that this facility will be rarely used by clients and that a client will rely on the ordering
provided by the default prioritizer.

~~sun ~~ microsystelTlS
Revision A of 15 October 1986

Dispatching Events

Chapter 8 - Advanced Notifier Usage 81

these conditions.

nf d describes the maximum number of valid bits in the arrays pointed to by
ibitsytr, obitsytr, ebitsytr. ibits_ptr is a bit mask of file
descriptors with input pending for client; the FD_BIT macro can be used to
access the correct bit (similarly for obits ytr, output completed, and
eb its yt r, an exception occurred). n s i g describes the maximum number
of valid bits in the arrays pointed to by sigbits ptr and
auto_sigbitsytr I9. sigbits_ptr is a bit mask of signals received
for which client has a condition registered; the SIG_BIT macro can be used to
access the correct bit. auto _sigbi tsytr is a bit mask of signals received
that the Notifier is managing on behalf of client. event_count is the
number of events in the array eve n t s. eve n t s is an array of pending client
events and args is the parallel array of event arguments.

The return value is one of NOTIFY_DONE or NOTIFY_IGNORED. These have their
normal meanings:

o NOTIFY_DONE - All of the conditions had notifications sent for them. This
implies that no further notifications should be sent to client this time
around the notification loop. Unsent notifications are preserved for con­
sideration the next time around the notification loop.

o NOTIFY_IGNORED - A notification was not sent for one or more of the con­
ditions, i.e., some notifications may have been sent, but not all. This implies
that another prioritizer should try to send any remaining notifications to
client.

From within a prioritization routine, the following functions are called to cause
the specified notifications to be sent:

Notify_error
notify_event(client, event, arg)

Notify_client client;
Notify_event event;
Notify_arg arg;

Notify_error
notify_input (client, fd)

Notify_client client;
int fd;

Notify_error
notify_output(client, fd)

Notify_client client;
int fd;

Notify_error
notify_exception (client, fd)

Notify_client client;

19 Variable array lengths allow for expanding the number of file descriptors and signals past 32, someday.

~\sun ~~ microsystems
Revision A of 15 October 1986

82 The SunView System Programmer's Guide

Getting the Prioritizer

int fd;

Notify_error
notify_itimer(client, which)

Notify_client client;
int which;

Notify_error
notify_signal (client, signal)

Notify_client client;
int signal;

Notify_error
notify_wait3(client)

Notify_client client;

The Notifier won't send any notifications that it wasn't planning on sending any­
way, so one can't use these calls to drive clients programmatically. A return
value of NOTIFY_OK indicates that client was sent the notification. A return
value of NOTIFY_UNKNOWN_CLIENT indicates that client is not recognized by
the Notifier and no notification was sent. A return value of
NOTIFY_NO_CONDITION indicates that client does not have the requested
notification pending and no notification was sent.

A client may chose to replace the default prioritizer. Alternatively, a client's
prioritizer may call the default prioritizer after sending only a few notifications.
Any notifications not explicitly sent by a client prioritizer will be sent by the
default prioritizer (when called), in their normal tum. Once notified, a client will
not receive a duplicate notification for the same event.

Signals indicated by bits in sigbitsytr should call notify_signal ().
Signals in auto_sigbits_ptr need special treatment:

o SIGALARM means that notify_itimer () should be called with a
which ofITIMER_REAL.

o SIGVTALRM means that notify_itimer () should be called with a
which ofITIMER VIRTUAL.

o SIGCHLD
"means that notify_wait3 () should be called.

Asynchronous signal notifications, destroy notifications and client event
notifications that were delivered right when they were posted do not pass through
the prioritizer.

notify_getyrioritizer_func () returns the current prioritizer ofa
client.

Notify_func
notify_get-prioritizer_func(client)

Notify_client client;

notify_getyrioritizer_func () takes an opaque client handle. The

Revision A of 15 October 1986

Chapter 8 - Advanced Notifier Usage 83

function that will be called before any notifications are sent to client is
returned. If this function was never defined for client then a default function
is returned. A return value of NOTIFY _ FUNC _NULL indicates an error. If
client is unknown then notify _ errno is set to
NOTIFY UNKNOWN CLIENT. - -

~\sun ~~ microsystems
Revision A of 15 October 1986

84 The SunView System Programmer's Guide

8.6. Notifier Control

Starting

Stopping

Mass Destruction

The following are the Notifier wide (vs single condition) operations.

Here is the routine for starting the notification loop of the Notifier:

Notify_error
notify_start ()

This is the main control loop. It is usually called from the main routine of your
program after all the clients in your program have registered their event handlers
with the Notifier.20 The return values are:

o NOTIFY_OK- Terminated normally by notify_stop () (see below).

o NOTIFY_NO _CONDITION - There are no conditions registered with the
Notifier.

o NOTIFY INVAL-Tried to call notify_start () before returned from
original call, i.e., this call is not reentrant.

o NOTIFY _ BADF - One of the file descriptors in one of the conditions is not
valid.

An application may want to break the Notifier out its main loop after the Notifier
finishes sending any pending notifications.

Notify_error
notify_stop ()

This causes notify_start () to return. The return values are NOTIFY_OK
(will terminate notify_start (») and NOTIFY_NOT_STARTED
(notify_start () not entered).

The following routine causes the all client destruction functions to be called
immediately with status:

Notify_error
notify_die (status)

Destroy_status status;

This causes the all client destruction functions to be called immediately with
status as the reason. The return values are NOTIFY_OK or
NOTIFY_DESTROY _ VETOED; the latter indicates that someone called
notify_ veto_destroy () and status was DESTROY_CHECKING. It is
then the responsibility of the caller of not i fy _die () to exit the process, if so
desired. See the discussion on notify_post_destroy () for more infor­
mation.

20 SunView programs usually call window_main _loop 0 instead of not ify _ start ().

~\sun ~ microsystems
Revision A of 15 October 1986

Scheduling

Dispatching Clients

Chapter 8 - Advanced Notifier Usage 85

There is the mechanism for controlling the order in which clients are notified.
(Controlling the order in which a particular client's notifications are sent to it is
done by that client's prioritizer operation; see the Prioritization section earlier.)

Notify_func
notify_set_scheduler_func(scheduler_func)

Notify_func scheduler_func;

notify_set_scheduler_func () allows you to arrange the order in which
clients are called. (Individual clients can control the order in which their event
handlers are called by setting up prioritizers.)
notify_set_scheduler_func () takes a function to call to do the
scheduling of clients. The previous function that would have been called is
returned. This returned function will (almost always) be important to store and
call later because it is most likely the default scheduler.

Replacement of the default scheduler will be done most often by a client that
needs to make sure that other clients don't take too much time servicing all of
their notifications. For example, if doing "real-time" cursor tracking in a user
process, the tracking client wants to schedule itself ahead of other clients when­
ever there is input pending on the mouse.

The calling sequence of a scheduler function is:

Notify_value
scheduler_func(n, clients)

int n;
Notify_client *clients;

in which a list of n clients, all of which are slated to receive some notification
this time around, are passed into scheduler_func () . The scheduler scans
clients and makes calls to notify_client () (see below). Clients so
notified should have their slots in clients set to NOTIFY CLIENT NULL. The - -
return value from scheduler_func () is one of:

o NOTIFY_DONE - All of the clients had a chance to send notifications. This
implies that no further clients should be scheduled this time around the
notification loop. Unsent notifications are preserved for consideration the
next time around the notification loop.

o NOTIFY_IGNORED - One or more clients were scheduled, i.e., some
clients may have been scheduled, but not all. This implies that another
scheduler should try to schedule any clients in clients that are not
NOTIFY CLIENT NULL. - -

The following routine is called from scheduler routines to cause all the pending
notifications for client to be sent:

Notify_error
notify_client (client)

Notify_client client;

The return value is one of NOTIFY_OK (client notified) or NOTIFY_NO _CONDITION

(no conditions for client, perhaps notify_client () was already called with
this client handle) or NOTIFY_UNKNOWN_CLIENT (unknown client).

+~!ll! Revision A of 15 October 1986

86 The Sun View System Programmer's Guide

Getting the Scheduler

Client Removal

The following routine returns the function that will be called to do client schedul­
ing:

Notify_func
notify_get_scheduler_func()

This function is always defined to at least be the default scheduler.

A client can remove itself from the control of the Notifier with
notify_remove () :

Notify_error
notify_remove (client)

Notify_client client;

notify_remove () is a utility to allow easy removal of a client from the
Notifier's control. All references to client are purged from the Notifier. This
routine is almost always called by the client itself. The return values are
NOTIFY_OK (success) and NOTIFY_UNKNOWN _CLIENT (unknown client).

~\sun ,~ microsystems
Revision A of 15 October 1986

8.7. Error Codes

Chapter 8 - Advanced Notifier Usage 87

This section describes the basic error handling scheme used by the Notifier and
lists the meaning of each of the possible error codes. Every call to the Notifier
returns a value that indicates success or failure. On an error condition,
notify _ errno describes the failure. notify _ errno is set by the Notifier
much like errno is set by UNIX system calls, i.e., notify _ errno is set only
when an error is detected during a call to the N otifier and is not reset to
NOTIFY OK on a successful call to the Notifier.

enum notify_error {
/* Listed below */

} ;

typedef enum notify_error Notify_error;

extern Notify_error notify_errno;

Here is a complete list of error codes:

D NOTIFY_OK - The call was completed successfully.

D NOTIFY_UNKNOWN _CLIENT - The client argument is not known by the
Notifier. A notify_set_ * _func type call need be done in order for the
Notifier to recognize a client.

D NOTIFY_NO _ CONDmON - A call was made to access the state of a condition
but the condition is not set with the Notifier for the given client. This can
arise when a notify_get_ * _func () type call was done before the
equivalent notify_set_* _func () call was done. Also, the Notifier
automatically clears some conditions after they have occurred, e.g., when an
interval timer expires.

D NOTIFY_BAD_ITIMER - The which argument to an interval timer routine
was not valid.

D NOTIFY_BAD_SIGNAL- The signal argument to an signal routine was
out of range.

D NOTIFY_NOT_STARTED -Acall to notify_stop () was made but the
Notifier was never started.

D NOTIFY_DESTROY _ VETOED - A client refused to be destroyed during a call
to notify_die () or notify_post_destroy () when status
was DESTROY_CHECKING.

D NOTIFY INTERNAL ERROR - This error code indicates some internal incon-- -
sistency in the Notifier itself has been detected.

D NOTIFY SRCH - The pid argument to a·child process control routine was
not valta..

D NOTIFY BADF - The f d argument to an input or output routine was not
valid.

D NOTIFY _NOMEM - The Notifier dynamically allocates memory from the
heap. This error code is generated if the allocator could not get any more
memory.

Revision A of 15 October 1986

88 The Sun View System Programmer's Guide

o NOTIFY_INVAL - Some argument to a call to the Notifier contained an
invalid argument.

o NOTIFY_FUNC_LIMIT - An attempt to set an interposer function has
encountered the limit of the number of interposers allowed for a single con­
dition.

The routine notify yerror () acts just as the library call perror(3).

notify-perror(str)
char *str;

notify yerror () prints the string str, followed by a colon and followed
by a string that describes notify _ errno to stderr.

~\sun ~~ microsystems
Revision A of 15 October 1986

8.8. Restrictions on
Asynchronous Calls
into the Notifier

Chapter 8 - Advanced Notifier Usage 89

The Notifier takes precautions to protect its data against corruption during calls
into it while it is calling out to an asynchronous/immediate event handler. The
Notifier may issue an asynchronous notification for an asynchronous signal con­
dition, an immediate client event condition or a destroy condition. Most calls
from event handlers back into the Notifier are permitted, but there are some res­
trictions:

o Some calls are not permitted. In particular, they are:

notify_start ()
notify_client ()

o Only a certain number of calls into the Notifier are permitted. This restric­
tion is due to how the Notifier handles memory management in a safe way
during asynchronous processing. As a guideline, do not do more than five
calls of the notify_set_ * _func () ,
notify_interpose_ * _func () or notifyyost_ * () variety dur­
ing an asynchronous notification.

o The Notifier is not prepared to handle calls into it from signal catching rou­
tines that a client has set up with signaZ(3) or sigvec(2).

Revision A of 15 October 1986

90 The Sun View System Programmer's Guide

8.9. Issues Here are some issues surrounding the N otifier:

o The layer over the UNIX signal mechanism is not complete. Signal blocking
(sigblock (2» can still safely be done in the flow of control of a client to pro­
tect critical portions of code as long as the previous signal mask is restored
before returning to the Notifier. Signal pausing (sigpause (2» is essentially
done by the Notifier. Signal masking (sigmask(2» can be accomplished via
multiple notify_set_signal_func () calls. Setting up a process
signal stack (sigstack (2» can still be done. Setting the signal catcher mask
and on-signal-stack flag (sigvec (2» could be done by reaching around the
Notifier but is not supported.

o Not all process resources are multiplexed (e.g., rlimit(2), setjmp (2),
umask(2), setquota (2), and setpriority (2», only ones that have to do with

flow of control multiplexing. Thus, some level of cooperation and under­
standing need exist between packages in the single process.

o One can make a case for intercepting close (2) and dup (2) calls so that the
Notifier is not waiting on invalid or incorrect file descriptors if a client for­
gets to remove its conditions from the Notifier before making these calls.

o One can make a case for intercepting signal (3) and sigvec (2) calls so that
the Notifier doesn't get confused by programs that fail to use the Notifier to
manage its signals.

o One can make a case for intercepting setitimer (2) calls so that the Notifier
doesn't get confused by programs that fail to use the Notifier to manage
interval timers.

o One can make a case for intercepting ioctl (2) calls so that the Notifier
doesn't get fouled up by programs that use FIONBIO and FIOASYNC instead of
the equivalentfcntl (2) calls.

o One can make a case for intercepting read v (2) and write (2) just like read (2)
and select (2) so that a program doesn't tie up the process.

o The Notifier is not a lightweight process mechanism that maintains a stack
per thread of control. However, if such a mechanism becomes available then
the Notifier will still be valuable for its support of notification based clients.

o Client events are disjoint from UNIX events. This is done to give complete
freedom to clients as to how events are defined. One could imagine certain
clients wanting to unify client and UNIX events. This could be done with a
layer of software on top of the N otifier. A client could define events as
pointers to structures that contain event codes and event specific arguments.
The event codes would include the equivalents of UNIX event notifications.
The event specific arguments would contain, for example, the file descriptor
of an input pending notification. When an input pending notification from
the the Notifier was sent to a client, the client would tum around and post the
equivalent client event notification.

o One could imagine extending the Notifier to provide a record and replay
mechanism that would drive an application. However, this is not supported
by the current interface.

Revision A of 15 October 1986

9

The Selection Service & Library

The Selection Service & Library .. 93

9.1. Introduction ... 93

9.2. Basic concepts ... 94

9.3. Fast Overview .. 94

9.4. Topics in Selection Processing .. 95

Reporting Function-Key Transitions ... 95

Sending Requests to Selection Holders ... 96

Long Request Replies ... 97

Acquiring and Releasing Selections .. 98

Callback Procedures: Function-Key Notifications 98

Callback Procedures: Replying to Requests .. 100

9.5. Debugging and Administrative Facilities .. 102

9.6. REFERENCE SECTION .. 103

Required Header Files .. 103

Enumerated Types .. 103

Oilier Data Definitions ... 103

Procedure Declarations .. 105

9.7. Common Request Attributes ... 114

9.8. Two program examples .. 118

get _selection Code ... 118

seln_demo .. 121

Large Selections ... 121

9.1. Introduction

9
The Selection Service & Library

The Selection Service package provides for flexible communication among win­
dow applications. It is concerned with aspects of the selection[s] the user has
made, and with the status of the user interface which may affect those selections.
It has 3 distinct aspects:

1) A server process maintains a clearinghouse of information about the selec­
tion, and the function keys which may affect how a selection is made. This
process responds to RPC requests for information from clients. Normally,
the RPC accesses will be done only by library routines described below;
therefore details of that access do not appear in this manual.

2) A library of client routines is provided to communicate with the clearing­
house process and with each other. These routines allow a client to acquire a
selection, or yield it to another application, to determine the current holder
of a selection, and send or receive requests concerning a selection's contents
and attributes. .

3) A minimal set of requests is defined for communicating between applica­
tions which have some interest in the selection. This set is deliberately
separated from the transport mechanism mentioned under (2) above, and the
form of a request is carefully separated from its content. This allows appli­
cations to treat the definition of what can be said about the selection as
open-ended; anything consenting applications agree to can be passed
through the Selection Service.

This chapter is primarily concerned with the transport library, and how to use
that protocol to accomplish representative application tasks. The [current] set of
generic requests is also pr~sented, and used in illustrations.

The next section is a fast overview of how the Selection Service works. This is
followed by several discursive sections devoted to particular aspects of using the
Selection Service (reporting function-key transitions, sending requests, acquiring
and releasing selections, replying to requests, and debugging selection applica­
tions). Throughout these sections, some procedures and data types are mentioned
or described. Full documentation for all of these may be found in the reference
section which follows.

The remainder of the chapter comprises reference material: MAN-style descrip­
tions of the public data and procedures of the selection library, a list of the
defined common attributes, and the complete source of a program to retrieve the

93 Revision A of 15 October 1986

94 SunView System Programmer's Guide

9.2. Basic concepts

contents of a selection and print it on stdout.

When a user makes a selection, it is some application program which interprets
the mouse and function-key events and resolves them into a particular selection.
The Selection Service is involved only as the processing of function-keys and
selections spans application windows. Application programs interact with the
package in proportion to the sophistication of their requirements. This section is
intended to present the information necessary for any use of the Selection Ser­
vice, and to indicate what further information in the document pertains to various
uses of the package.

The selection library deals with four objects under the rubric "selection." Most
familiar is the Primary selection, which is normally indicated by inverting its
contents. Selections made while a function key is held down (usually indicated
with an underscore) are Secondary selections. The selection library treats the
Shelf (the global buffer which is loaded by Delete and Put operations, and which
may be retrieved by a Get operation) as a third kind of selection. Finally, the
insertion point, or Caret, is also treated as a selection, even though it has no con­
tents. These are the four ranks the selection library deals with: Caret, Primary,
Secondary, and Shelf.

Every selection has a holder; this is a piece of code within a process which is
responsible for operating on the selection and responding to other applications'
requests about it. A selection holder is a client of the selection library. Typi­
cally, a selection client is something like a subwindow; there may be several
selection clients within a single process.

Because the selection library uses RPC as well as the Sun View input system, it
relies on the Sun View Notifier to dispatch events; thus any application using the
selection library must be built on the notifier system.

CAUTION Changes are contemplated to several interfaces in this package. In particu­
lar, the mechanics of communicating a request and its response may change
in the near future to a more explicit stream approach; and the basic client
interaction with the library is likely to move to an Attribute-Value interface,
like the rest of Sun View.

9.3. Fast Overview The simplest use of the Selection Service is to inquire about a selection held by
some other application. Programs which never makes a selection will not use the
facilities described in the rest of this section. Much of the material remaining
before the beginning of reference section is likewise irrelevant to these programs:
the sections on Acquiring and Releasing Selections and Callback Procedures
pertain only to clients which make selections.

A program which will make selections should be a full-fledged client of the
selection library. Such an application calls seln_create during the client's
initialization routines; if successful, this returns an opaque client handle which is
then passed back in subsequent calls to selection library procedures. Two argu­
ments to this create-procedure specify client callback procedures which may be
called to perform processing required by external events. These are the
functionyroc and the reply_proc described below.

Revision A of 15 October 1986

9.4. Topics in Selection
Processing

Reporting Function-Key
Transitions

Chapter 9 - The Selection Service & Library 95

After a client is successfully created, it may call library routines to:

o inquire of the service how to get in touch with the holder of a selection,

o send a request to such a holder (e.g. to find out the contents of a selection),

o inform the service of a change in the state of the function keys

o acquire a selection, and later,

o release a selection it has acquired.

Finally, when the client is finished, s e l n _ de s t roy is called to clean up its
selection library resources.

When an application makes a selection, its rank depends on the state of the func­
tion keys. (A secondary selection is one made while a function key is held
down.) The application which is affected by a function-key transition may not be
the one whose window received that transition. Consequently, this system
requires that the service be informed of transitions on those function keys that
affect the rank of a selection; the service then provides that state information to
any application which inquires.

The keys which affect the rank of a selection are Get, Put, Delete, and Find. If
an application program does not include these events in its input mask, then they
will fall through to the root window, and be reported by it. But if the application
is reading these events for any reason, then it should also report the event to the
service. Seln _ report _event is the most convenient procedure for this pur­
pose; seln _inform does the work at a lower level.

When the service is told a function key has gone up, it will cause calls to the
function yroc callback procedures of the holders of each selection. For the client
that reports the key-up, this will happen during the call to
seln _report_event; for other holders, it can happen any time control
returns to the client's notifier. The required processing is detailed under Call­
back Procedures below. Programs which never called seln _create can call
seln _report_event without incurring any extra processing - they have no
function yroc to call.)

Two procedures are provided so that clients may interrogate state of the functions
keys as stored by the service: Seln_get_function_state takes a
Seln function and returns TRUE or FALSE as the service believes that
function key is down or not. Seln _functions_state takes a pointer to a
Seln_functions_state buffer (a bit array which will be all 0 if the service
believes all function keys are currently up).

Revision A of 15 October 1986

96 SunView System Programmer's Guide

Sending Requests to Selection
Holders

Inside the selection library, a request is a buffer (a Seln _request struct); the
following declarations are relevant to the processing that is done with such a
buffer:

typedef struct
Seln result
char

Seln_requester;

typedef struct {
Seln_replier_data
Seln_requester
char

(*consume) () ;
*context;

*replier;
requester;

*addressee;
rank;
status;

Seln rank
Seln result
unsigned
char

buf_size;
data[SELN_BUFSIZE];

Seln_request;

/* VARARGS */
Seln_request *
seln_ask(holder, <attributes>, ... 0)

Seln holder *holder;
Attr union attribute;

/* VARARGS */
void
seln_init_request(buffer, holder, <attributes>, ... 0)

Seln_request *buffer;
Seln_holder *holder;
char

/* VARARGS */
Seln result

*attributes;

se In_que ry (holder, reader, context, <attributes>, ... 0)
Seln holder *holder;
Seln result (*reader) ();
char
Attr union

Seln result
reader (buffer)

Seln_request

*context;
attribute;

*buffer;

A request buffer is passed transparently to the holder of a selection by the library
routines, and a reply is returned in one or more similar buffers. The library is
responsible for maintaining the dialogue, but does not have any particular under­
standing of the requests or their responses.

Seln _query () (or seln _ask () , for clients unwilling to handle replies of
more than one buffer) is used to construct a request and send it to the holder of a

Revision A of 15 October 198f

Long Request Replies

Chapter 9 - The Selection Service & Library 97

selection. (There is a lower-level procedure, seln_request which is used to
send a pre-constructed buffer containing a request, and an initializer,
seln_init_request which can be used to initialize such a buffer.)

The data portion of the request buffer is an Attribute-Value (A V) list, copied
from the <attributes> ... arguments in a call to seln_queryor
seln_ask. A similar list is returned in the reply, typically with real values
replacing placeholders provided by the requester. (It may take several buffers to
hold the whole reply list; this case is discussed below.)

The request mechanism is quite general: an attribute-value pair in the request
may indicate some action the holder of the selection is requested to perform -
even a program to be executed may be passed, as long as the requester and the
holder agree on the interpretation.

The header file <suntool/ selection_attributes. h> defines a base
set of request attributes; a copy is printed near the end of this chapter. The most
commonly useful request attribute is SELN_REQ_CONTENTS_ASCII, which
requests the holder of the selection to return its contents as an ascii string.

If the reply to a request is very long (more than about 2000 bytes), more than one
buffer will be used to return the response. In this case, seln_ask simply
returns a pointer to the first buffer and discards the rest. (Note that that the AV­
list in that first buffer may not be properly terminated.)

Seln_query should be used if long replies are to be handled gracefully.
Rather than returning a buffer, it repeatedly calls a client procedure to handle
each buffer in tum. The client passes a pointer to the procedure to be called in
the reader argument of the call to seln_query (that address appears in the
consume element of the Seln_requester struct.) Such procedures typically need
some context information to be saved across their invocations; this is provided
for in the context element of the Seln_requester struct. This is a 32-bit datum
provided for the convenience of the reader procedure; it may be filled in with
literal data or a pointer to some persistent storage; the value will be available in
each call to reader, and may be modified at will.

Selection holders are responsible for processing and responding to the attributes
of a request in the order they appear in the request buffer. Selection holders may
not recognize all the attributes in a request; there is a standard response for this
case: In place of the unrecognized attribute (and its value, if any), the replier
inserts the attribute SELN_REQ_UNRECOGNIZED, followed by the original
(unrecognized) attribute. This allows heterogeneous applications to negotiate the
level at which they will communicate.

A straightforward example of request processing (including code to handle a long
reply) is the get _selection program, which appears at the end this chapter.

~\sun ,~ microsystems
Revision A of 15 October 1986

98 SunView System Programmer's Guide

Acquiring and Releasing
Selections

Callback Procedures:
Function-Key Notifications

Applications in which a selection can be made must be able to tell the service
they now hold the selection, and they must be able to release a selection, either
on their own initiative, or because another application has asked to acquire it.
Seln_acquire is used both to request a current holder of the selection to
yield, and then to inform the service that the caller now holds that selection.
Seln _yield is used to yield the selection on the caller's initiative. A request
to yield because another application is becoming the holder is handled like other
requests; this is discussed under Callback Procedures below.

The selection library will make a call to the client'sfunctionyroc when it is
informed of a function-key transition which leaves all function keys up. This
may happen inside the client's call to seln_report_event, if the reporting
client holds a selection; otherwise the call will arrive through the RPC mechan­
ism.

The relevant declarations are:

typedef enum
SELN_IGNORE, SELN_REQUEST, SELN_FIND,

Seln_response;

typedef struct
Seln function
Seln rank
Seln holder
Seln holder
Seln holder
Seln holder

function;
addressee_rank;
caret;
primary;
secondary;
shelf;

Seln function_buffer;

Seln_response
seln_figure_response(buffer, holder)

Seln_function_buffer *buffer;
Seln holder **holder;

void
function-proc(client_data, function)

char *client_data;
Seln_function_buffer *function;

Function yroc will be called with a copy of the 32 bits of client data origi­
nally given as the third argument to seln_create, and a pointer to a
Seln_function_buffer. The buffer indicates what function is being
invoked, which selection the called program is expected to be handling, and what
the Selection Service knows about the holders of all four selection ranks (one of
whom is the called program). A client will only be called once, even if it holds
more than one selection. (In that case, the buffer's addressee_rank will
contain the first rank the client holds.)

The holders of the selections are responsible for coordinating any data transfer
and selection-relinquishing among themselves. The procedure

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 99

seln_figure_response is provided to assist in this task. It takes a pointer
to a function buffer such as the second argument to a functionyroc call­
back, and a pointer to a pointer to a Seln _holder. It returns an indication of
the action which this client should take according to the standard interface. It
also changes the addressee_rank element of that buffer to be the rank which is
affected (the destination of a transfer, the item to be deleted, etc.), and if interac­
tion with another holder is required, it stores a pointer to the appropriate
Seln _holder element in the buffer into the location addressed by the second
argument. Here are the details for each return value:

SELN IGNORE
No action is required of this client. Another client may make a request con­
cerning the selection(s) this client holds.

SELN_REQUEST
This client is expected to request the contents of another selection and insert
them in the location indicated by buffer->addressee_rank. The
holder of the selection that should be retrieved is identified by *holder.
If *holder points to buffer->secondary, the request should
include SELN_REQ_YIELD; if it points to buffer->primaryor
buffer->secondary, the request should include
SELN_REQ_COMMIT_PENDING_DELETE.

Example: the called program holds the Caret and Primary selection; the Get
key went up, and there is no Secondary selection. The return value will be
SELN_REQUEST, buffer->addressee_rank will be SELN_CARET
and *holder will be the address of buffer->shelf. The client
should request the contents of the shelf from that holder.

SELN FIND
This client should do a Find (if it can). Buffer->addressee_rank
will be SELN_CARET; if *holder is not NULL, the target of the search
is the indicated selection. If *holder points to buffer->secondary,
the request should include SELN _ REQ_ YIELD.

SELN SHELVE
This client should acquire the shelf from *holder (if that is not NULL),
and make the current contents of the primary selection (which it holds) be
the contents of the shelf.

SELN DELETE
This client should delete the contents of the secondary selection if it exists,
or else the primary selection, storing those contents on the shelf.
Buffer->addressee_rank indicates the selection to be deleted;
*holder indicates the current holder of the shelf, who should be asked to
yield.

Seln_secondary_exists and seln_secondary_made are predicates
which may be of use to an application which is not using
seln_figure_response. Each takes a Seln_function_buffer and
returns TRUE or FALSE. When the user has made a secondary selection and
then cancelled it, seln _ secondary_made will yield TRUE while

~\sun ~~ microsystems
Revision A of 15 October 1986

100 Sun View System Programmer's Guide

Callback Procedures:
Replying to Requests

seln_secondary_exists will yield FALSE. This indicates the function­
key action should be ignored.

The client's reply yroc callback procedure is called when another application
makes a request concerning a selection held by this client. It is invoked once for
each attribute in the request, plus once for a terminating attribute supplied by the
selection library. The relevant declarations are:

typedef struct
char *client_data;
Seln rank rank;
char *context;
char **request-pointer;
char **response-pointer;

Seln replier_data;

Seln result
reply-proc(item, context, length)

caddr t item;
Seln_replier_data *context;
int length;

Repl y _proc will be called with each of the attributes of the request in tum.
Item is the attribute to be responded to; context points to data which may be
needed to compute the response, and length is the number of bytes remaining
in the buffer for the response. Reply_proc should write any appropriate
response / value for the given attribute into the buffer indicated in
context->response yointer, and return.

The fields of *context contain, in order:

o the 32 bits of private client data passed as the last argument to
seln_create, returned for the client's convenience;

D' the rank of the selection this request is concerned with;

o a holder for 32 more bits of context for the replier's convenience (this will
typically hold a pointer to data which allows a client to maintain state while
generating.a multi-buffer response);

o a pointer to a pointer into the request buffer, just after the current item (so
that the replier may read the value of this item if relevant). This pointer
should not be modified by reply yroc.

o a pointer to a pointer into the response buffer, where the value / response (if
any) for this item should be stored. This pointer should be updated to point
past the end of the response stored. (Note that items and responses should
always be multiples of full-words; thus, this pointer should be left at an
address which is 0 mod 4.)

After storing the response to one item, reply yroc should return
SELN _SUCCESS and await the next call. When all attributes in a request have
been responded to, replyyroc will be called one more time with item ==
SELN _ REQ_ END_REQUEST, to give it a chance to clean up any internal state

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 101

associated with the request.

Two attributes which are quite likely to be encountered in the processing of a
request due to a function-key event,
SELN_REQ_COMMIT_PENDING_DELETE and SELN_REQ_YIELD, are con­
cerned more with the proper handling of secondary selections (rather than the
needs of the requesting application), so they are discussed here.

SELN_REQ_COMMIT_PENDING_DELETE indicates that a secondary selection
which was made in pending-delete mode should now be deleted. If the recipient
does not hold the secondary selection, or the secondary selection is not in
pending-delete mode, the replier should ignore the request, i.e., simply return
SELN_SUCCESS and await the next call. SELN_REQ_YIELD, with an argu­
ment of SELN_SECONDARY, means the secondary selection should be
deselected, if it still exists.

Complications on this basic model will now be addressed in order of increasing
complexity .

If the request concerns a selection the application does not currently hold,
reply_proc should return SELN_DIDNT_HAVE immediately; it will not be
called further for that request.

If the request contains an item the client isn't prepared to deal with,
replyyroc should return SELN_UNRECOGNIZED immediately; the selec­
tion library will take care of manipulating the response buffer to have the stan­
dard unrecognized-fonnat, and call back to reply yroc with the next item in
the list.

Finally, a response to a request may be larger than the space remaining in the
buffer - or larger than several buffers, for that matter. This situation will never
arise on items whose response is a single word - the selection library ensures
there is room for at least one 4-byte response in the buffer before calling
reply_proc.

If a response is too big for the current buffer, the replier should store as much as
fits in length bytes, save sufficient infonnation to pick up where it left off in
some persistent location, store the address of that infonnation in
context->context, and return SELN _CONTINUED. Note that the replier's
context infonnation should not be local to reply _proc, since that procedure
will exit and be called again before the information is needed.

The selection library will ship the filled buffer to the requester, and prepare a new
one for the continuation of the response. It will then call reply _proc again,
with the same item and context, and length indicating the space available in
the new buffer. Reply _proc should be able to detennine from
context->context that it has already started this response, and where to
continue from. It continues by storing as much of the remainder of the response
as fits into the buffer, updating context->responseyointer (and its
own context infonnation), and again returning SELN _CONTINUED if the
response is not completed. When the end of the response has been stored, includ­
ing any tenninator if one is required, the private context information may be'
freed, and replyyroc should return SELN SUCCESS.

Revision A of 15 October 1986

102 Sun View System Programmer's Guide

9.5. Debugging and
Administrative
Facilities

The next call to reply yroc will be to respond to the next item in the request
if there is one, or else to SELN _ REQ_ END_REQUEST.

A number of aids to debugging have been included in the system for applications
which use the Selection Service. In addition to providing information on how to
access holders of selections and maintaining the state of the user-interface keys,
the service will respond to requests to display traces of these requests, and to
dump its internal state on an output stream. Seln _debug is used to tum ser­
vice tracing on or off; seln _dump instructs the service to dump all or part of
its state on stderr.

A number of library procedures provide formatted dumps of Selection Service
structs and enumerated types. These can be found below as seln _dump _ *.
In debugging an application which uses the Selection Service, it may be con­
venient to use a separate version of the service whose state is affected only by the
application under test. This is done by starting the service with the -d flag; that
is, by entering" /usr/bin/ selection_svc -d &" to a shell. The result­
ing service will use a different RPC program number from the standard version,
but be otherwise identical. The two versions of the service may be running at the
same time, each responding to its own clients. A client may elect (via
seln_use_test_service) to talk to the test service. Thus, it is easy to
arrange to have an application under development talking to its own service,
while running under a debugger which is talking to a standard service - this
keeps the debugger, editors, etc. from interfering with the state maintained by the
test service.

The Selection Service depends heavily on remote procedure calls, using Sun's
RPC library. It is always possible that the called program has terminated or is
not responding for some other reason; this is often dete<;ted by a timeout. The
standard timeout at this writing is 10 seconds; this is a compromise between
allowing for legitimate delays on loaded systems, and minimizing lockups when
the called program really won't respond. The delay may be adjusted by a call to
seln use timeout.

~\sun ~~ microsystems
Revision A of 15 October 1986

9.6. REFERENCE
SECTION

Required Header Files

Enumerated Types

Other Data Definitions

Chapter 9 - The Selection Service & Library 103

The reference material which follows presents first the header files and the public
data definitions they contain; then it lists each public procedure in the selection
library (in alphabetical order) with its formal parameter declarations, return
value, and a brief description of its effect.

#include <sunwindow/attr.h>
#include <suntool/selection_svc.h>
#include <suntool/selection_attributes.h>!

typedef enum
S ELN_FAI LED , SELN_SUCCESS,
SELN_NON_EXIST, SELN_DIDNT_HAVE,
SELN_WRONG_RANK, SELN_CONTINUED,

/* basic uses */
/* special cases */

SELN_CANCEL, SELN UNRECOGNIZED
Seln_result;

typedef enum
SELN_UNKNOWN, SELN_CARET, SELN PRIMARY,
SELN_SECONDARY, SELN_SHELF, SELN UNSPECIFIED

Seln_rank;

typedef enum
SELN_FN_ERROR,

SELN_FN_STOP, SELN_FN_AGAIN,
SELN_FN_PROPS, SELN_FN_UNDO,
SELN_FN_FRONT, SELN_FN_PUT,
S E LN_FN_OP EN , SELN_FN_GET,
SELN_FN_FIND, SELN FN DELETE

Seln_function;

typedef enum
SELN_NONE, SELN_EXISTS, SELN FILE

Seln_state;

typedef enum
SELN_IGNORE, SELN_REQUEST, SELN_FIND,
SELN_SHELVE, SELN_DELETE

Seln_response;

typedef char *Seln_client;

typedef struct
Seln rank
Seln state

rank;
state;

Seln access access;
Seln_holder;

~\sun ,~ microsystems
Revision A of 15 October 1986

104 SunView System Programmer's Guide

typedef struct
Seln holder
Seln holder
Seln holder
Seln holder

caret;
primary;
secondary;
shelf;

Seln holders_all;

typedef struct
Seln function
Seln rank
Seln holder
Seln holder
Seln holder
Seln holder

typedef struct
char
Seln rank
char
char
char

typedef struct
Seln result
char

Seln_requester;

*define SELN BUFSIZE

function;
addressee_rank;
caret;
primary;
secondary;
shelf;

*client_data;
rank;

*context;
**request-pointer;
**response-pointer;

(*consume) () ;
*context;

(1500 - sizeof(Seln_replier data *)
- sizeof(Seln_requester)
- sizeof(char *)
- sizeof(Seln_rank)
- sizeof(Seln_result)
- sizeof(unsigned»

typedef struct {
Seln_replier_data
Seln_requester
char

*replier;
requester;

*addressee;
rank;
status;

Seln rank
Seln result
unsigned
char

buf_size;
data[SELN_BUFSIZE];

Seln_request;

~\sun ~ microsystems
Revision A of 15 October 1986

Procedure Declarations

Chapter 9 - The Selection Service & Library 105

Seln rank
seln_acquire(client, asked)

Seln client client;
Seln rank asked;

Client is the opaque handle returned from seln_create; the client uses this
call to become the new holder of the selection of rank asked. Asked should
be one of SELN_PRlMARY, SELN_SECONDARY, SELN_SHELF, or
SELN_UNSPECIFIED. If successful, the rank actually acquired is returned.

If asked == SELN_UNSPECIFIED, the client indicates it wants whichever
of the primary or secondary selections is appropriate given the current state of the
function keys; the one acquired can be determined from the return value.

/* VARARGS */
Seln_request *
seln_ask(holder, <attributes>, ... 0)

Seln holder *holder;
Attr union attribute;

Seln_ask looks and acts very much like seln_query; the only difference is
that it does not use a callback proc, and so cannot handle replies that require
more than a single buffer. If it receives such a long reply, it returns the first
buffer, and discards all that follow. The return value is a pointer to a static
buffer; in case of error, this will be a valid pointer to a null buffer
(buffer->status = SELN_FAILED). Seln_ask is provided as a slightly
simpler interface for applications that refuse to process long replies.

void
seln_clear_functions()

The Selection Service is told to forget about any function keys it thinks are
down, resetting its state to all-up. If it knows of a current secondary selection,
the service will tell its holder to yield.

Seln client
seln_create(function-proc, reply-proc, client_data)

void (*function-proc) ();
void (*reply-proc) ();
caddr t client_data);

The selection library is initialized for this client. If this is the first client in its
process, an RPC socket is established and the notifier set to recognize incoming
calls. Client_data is a 32-bit opaque client value which the Selection Service
will pass back in callback procs, as described above. The first two arguments are
addresses of client procedures which will be called from the selection library
when client processing is required. These occasions are:

o when the service sees a function-key transition which may interest this
client, and

~\sun ,~ microsystems
Revision A of 15 October 1986

106 SunView System Programmer's Guide

o when another process wishes to make a request concerning the selection this
client holds,

Details of these procedures are described under Callback Procs, above.

/* VARARGS */
Seln result
seln_debug«attributes> ... 0)

Seln_attribute attribute;

A debugging routine which requests the service to tum tracing on or off for
specified calls. Each attribute identifies a particular call; its value should be 1 if
that call is to be traced, 0 if tracing is to be stopped. The attributes are listed with
other request-attributes in the first appendix. Tracing is initially off for all calls.
When tracing is on, the Selection Service process prints a message on its
stderr (typically the console) when it enters and leaves the indicated routine.

void
seln_destroy(client)

Seln_client client;

A client created by seln _create is destroyed: any selection it may hold is
released and various pieces of data associated with the selection mechanism are
freed. If this is the last client in this process using the Selection Service the RPC
socket is closed and its notification removed.

Seln result
seln_done(client, rank)

Seln client client;
Seln rank rank;

Client indicates it is no longer the holder of the selection of the indicated rank.
The only cause of failure is absence of the Selection Service. It is not necessary
for a client to call this procedure when it has been asked by another client to
yield a selection; the service will be completely updated by the acquiring client.

void
seln_dump_function_buffer(stream, ptr)

FILE *stream;
Seln_function_buffer *ptr;

A debugging routine which prints a formatted display of a
Seln function buffer struct on the indicated stream.

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 107

void
seln_dump_function_key(stream, ptr)

FILE *stream;
Seln function *ptr;

A debugging routine which prints a fonnatted display of a
Seln_function_key transition on the indicated stream.

void
seln_dump_holder(stream, ptr)

FILE *stream;
Seln holder *ptr;

A debugging routine which prints a fonnatted display of a Seln holder
struct on the indicated stream.

void
seln_dump_rank(stream, ptr)

FILE *stream;
Seln rank *ptr;

A debugging routine which prints a fonnatted display of a Seln rank value
on the indicated stream.

void
seln_dump_response(stream, ptr)

FILE *stream;
Seln_response *ptr;

A debugging routine which prints a fonnatted display ofa Seln_response
value on the indicated stream.

void
seln_dump_result(stream, ptr)

FILE *stream;
Seln result *ptr;

A debugging routine which prints a fonnatted display of a S e 1 n re suI t
value on the indicated stream.

void
seln_dump_service(rank)

Seln rank rank;

A debugging routine which requests the service to print a fonnatted display of its
internal state on its standard error stream. Rank detennines which selection
holder is to be dumped; if it is SELN _UNSPECIFIED, all four are printed. In
any case, the dump concludes with the state of the function keys and the set of

~\sun ,~. microsystems
Revision A of 15 October 1986

108 SunView System Programmer's Guide

open file descriptors in the service.

void
seln_dump_state(stream, ptr)

FILE *stream;
Seln state *ptr;

A debugging routine which prints a formatted display of a Seln state value
on the indicated stream.

Seln_response
seln_figure_response(buffer, holder)

Seln_function_buffer *buffer;
Seln holder **holder;

A procedure to determine the correct response according to the standard user
interface when seln_inform returns *buffer, or the client's
functionyroc is called with it. The field addressee_rank will be modified
to indicate the selection which should be affected by this client; holder will
be set to point to the element of *buffer which should be contacted in the
ensuing action, and the return value indicates what that action should be.

Seln result
seln_functions_state(buffer)

Seln_functions_state *buffer;

The service is requested to dump the state it is maintaining for the function keys
into the bit array addressed by buffer. At present, the only commitment made
to representation in the buffer is that some bit will be on (== 1) for each function
key which is currently down. Thus this call can be used to determine whether
any function keys are down, but not which. SELN _SUCCESS is returned unless
the service could not be contacted.

int
seln_get_function_state(which)

Seln_function which;

A predicate which returns TRUE when the service's state shows the function key
indicated by which is down and FALSE otherwise.

Seln result
seln_hold_file(rank, path)

Seln rank
char

. rank;
*path;

The Selection Service is requested to act as the holder of the specified rank,
whose ASCII contents have been written to the file indicated by path. This
allows a selection to persist longer than the application which made it can

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 109

maintaIn It. Most commonly, this will be done by a process which holds the
shelf when it is about to terminate.

int
seln_holder_same_client(holder, client_data)

Seln holder *holder;
char *client_data;

A predicate which returns TRUE if the holder referred to by holder is the
same selection client as the one which provided client_data as its last argu­
ment to seln create.

int
seln_holder_same-process(holder)

Seln_holder *holder;

A predicate which returns TRUE if the holder is a selection client in the same
process as the caller. (This procedure is used to short-circuit RPC calls with
direct calls in the same address space.)

Seln function buffer - -
seln_inform(client, which, down)

Seln client client;
Seln function which;
int down;

This is the low-level, policy-independent procedure for informing the Selection
Service that a function key has changed state. Most clients will prefer to use the
higher-level procedure seln_report_event, which handles much of the
standard interpretation required.

Client is the client handle returned from seln_create; it may be 0 if the
client guarantees it will never need to respond to the function transition. Which
is an element of the Seln_function enum defined in selection_svc.h; down
is a boolean which is TRUE if the key went down.

On an up-event which leaves all keys up, the service informs the holders of all
selections of the transition, and what other parties are affected. If the caller of
seln_inforrn is one of these holders, its notification is returned as the value of
the function; other notifications go out as a call on the client'sfunctionyroc call­
back procedure (described above under Callback Procedures). Only one
notification is sent to any single client. If the caller does not hold any selection,
or if the transition was not an up which left all function keys up, the return value
will be a null Seln_function_buffer; buffer. rank will be
SELN UNKNOWN .

• \sun ,~ microsystems
Revision A of 15 October 1986

110 Sun View System Programmer's Guide

/* VARARGS */
void
seln_init_request(buffer, holder, <attributes>, 000 0)

Seln_request *buffer;
Seln_holder *holder;
char *attributes;

This procedure is used to initialize a buffer before calling seln _request. (It
is also called internally by seln_ask and seln_query.) It takes a pointer
to a request buffer, a pointer to a struct referring to the selection holder to which
the request is to be addressed, and a list of attributes which constitute the request
to be sent. The attributes are copied into buffer->data, and the correspond­
ing size is stored into buffer->buf_size. Both elements of
requester_data are zeroed; if the caller wants to handle long requests, a
consumer-proc and context pointers must be entered in these elements after
seln_init_request returns.

Seln holder
seln_inquire(rank)

Seln rank rank;

A Seln_holder struct is returned, containing information which enables the
holder of the indicated selection to be contacted. If the rank argument is
SELN _UNSPECIFIED, the Selection Service will return access information for
either the primary or secondary selection holder, as warranted by the state of the
function keys it knows about; the rank element in the returned struct will indi­
cate which is being returned.

This procedure may be called without having called seln_create first. Ifno
contact between this process and the service has been established yet, it will be
set up, and then the call will proceed as usual. In this case, return of a null
ho lder struct may indicate inaccessibility of the server.

Seln holders all - -

A Seln_holders_all struct is returned from the Selection Service; it con­
sists of a Seln holder struct for each of the four ranks.

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 111

Seln result
reader (buffer)

Seln_request

/* VARARGS */
Seln result

*buffer;

seln_query(holder, reader, context, <attributes>, 000 0)
Seln holder *holder;
Seln result (*reader) () ;
char
Attr union

*context;
attribute;

A request is transmitted to the selection holder indicated by the holder argu­
ment. Consume and context are used to interpret the response, and are
described in the next paragraph. The remainder of the arguments to
seln _query constitute an A V list which is the request. (The last argument
should be a 0 to terminate the list.)

The procedure pointed to by consume will be called repeatedly with a pointer
to each buffer of the reply. The value of the context argument will be avail­
able in buffer->requester_data 0 context for each buffer. This item
is not used by the selection library; it is provided for the convenience of the
client. When the reply has been completely processed (or when the consume
proc returns something other than SELN_SUCCESS), seln_query returns.

void
seln_report_event(client, event)

Seln client node *client;
struct inputevent *event;

#define SELN_REPORT(event) seln_report_event(O, event)

This is a high-level procedure for informing the selection service of a function
key transition which may affect the selection. It incorporates some of the policy
of the standard user interface, and provides a more convenient interface to
seln inform.

Client is the client handle returned from seln _create; it may be 0 if the
client guarantees it will not need to respond to the function transition. Event
is a pointer to the struct inputevent which reports the transition.
Seln_report_event generates a corresponding call to seln_inform,
and, if the returned struct is not null, passes it to the client's function yroc call­
back procedure (described above under Callback Procedures).

SELN _REPORT is a macro which takes just an input-event pointer, and calls
seln_report_event with 0 as a first argument.

~\sun ,~ microsystems
Revision A of 15 October 1986

112 Sun View System Programmer's Guide

Seln result
seln_request(holder, buffer)

Seln holder *holder;
Seln_request *buffer;

Seln _request is the low-level (policy-independent) mechanism for retrieving
information about a selection from the process which holds it. Most clients will
access it only indirectly, through seln_ask or seln_query.

Seln_request takes a pointer to a holder (as returned by seln_inquire),
and a request constructed in *buffer. The request is transmitted to the indi­
cated selection holder, and the buffer rewritten with its response. Failures in the
RPC mechanism will cause a SELN_FAILED return; if the process of the
addressed holder is no longer active, the return value will be
SELN NON EXIST.

Clients which call seln_request directly will find it most convenient to ini­
tialize the buffer by a call to seln_init_request.

Request attributes which are not recognized by the selection holder will be
returned as the value of the attribute SELN UNRECOGNIZED. Responses
should be provided in the order requests were encountered.

int
seln same_holder(holderl, holder2)

Seln holder *holderl, *holder2;

This predicate returns TRUE if holderl and holder2 refer to the same
selection client.

int
seln_secondary_exists(buffer)

Seln function buffer *buffer;

This predicate returns TRUE if the function buffer indicates that a secondary
selection existed at the time the function key went up.

int
seln_secondary_made(buffer)

Seln function buffer - - *buffer;

This predicate returns TRUE if the function buffer indicates that a secondary
selection was made some time since the function key went down (although it
may have been cancelled before the key went up).

void
seln_use_test_service()

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 113

The application is set to communicate with a test version of the Selection Ser­
vice, rather than the standard production version. This call should be made
before any selection client is created; this normally means before subwindows in
the application process are created.

void
seln_use timeout(seconds)

int seconds;

The default timeout on subsequent RPC calls from this process is changed to be
seconds long.

void
seln-yield_all()

This procedure inquires the holders of all selection, and for each which is held by
a client in the calling process, sends a yield request to that client and a Done to
the service. It should be called by applications which are about to exit, or to
undertake lengthy computations during which they will be unable to respond to
requests concerning selections they hold.

Revision A of 15 October 1986

114 SunView System Programmer's Guide

9.7. Common Request
Attributes

The following is an annotated listing of
<suntool/selection_attributes.h>.

/* @(f)selection_attributes.h 1.10 85/09/05

fifndef suntool selection attributes DEFINED - - -
fdefine suntool selection attributes DEFINED - - -

/*
* Copyright (c) 1985 by Sun Microsystems, Inc.
*/

finclude <sunwindow/attr.h>
/*

*/

* Common requests a client may send to a selection-holder
*/

fdefine ATTR PKG SELECTION ATTR PKG SELN BASE - - - - -

fdefine SELN_ATTR(type, n)

fdefine SELN_ATTR_LIST(list_type, type, n) \
ATTR(ATTR_PKG_SELECTION, ATTR_LIST_INLINE(list_type, type), n)

.\sun ~~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 115

/*
* Attributes of selections
*/

typedef enum

/* Simple attributes
*/

SELN_REQ_BYTESIZE = SELN_ATTR(ATT~INT, 1),
/* value is an int giving the number of bytes in the

* selection's ascii contents */
SELN_REQ_CONTENTS_ASCII = SELN_ATTR_LIST(ATTR_NULL, ATTR_CHAR, 2),

/* value is a null-terminated list of 4-byte words containing
* the selection's ascii contents. The last word containing
* a character of the selection should be followed by a
* terminator word whose value is O. If the last word of
* contents is not full, it should be padded out with NULs */

SELN_REQ CONTENTS PIECES
/* value is a null-terminated list of 4-byte words containing
* the selection's contents described in the textsw's
* piece-table format.

SELN REQ_FIRST = SELN_ATTR(ATTR_INT,
/* value is an int giving the number of bytes which precede
* the first byte of the selection.

SELN_REQ_FIRST_UNIT = SELN_ATTR(ATTR_INT,

3) ,

*/
4) ,

*/
5) ,

/* value is an int giving the number of units of the selection's
* current level (line, paragraph, etc.) which precede the
* first unit of the selection. */

SELN REQ_LAST = SELN_ATTR(ATTR_INT, 6) ,

/* value is an intgiving the byte index of the last byte
* of the selection. */

SELN_REQ_LAST_UNIT = SELN_ATTR(ATTR INT, 7) ,

/* value is an int giving the unit index_of the last unit
* of the selection at its current level. */

SELN_REQ_LEVEL = SELN_ATTR(ATTR_INT, 8) ,

/* value is an int giving the current level of the selection
* (See below for idefines of the most useful levels.) */

SELN_REQ_FILE_NAME = SELN_ATTR_LIST(ATTR_NULL, AT TR_CHAR , 9) ,

/* value is a null-terminated list of 4-byte words containing
* the name of the file which holds the selection (when the
* Selection Service has been asked to hold a selection) .
* The string is represented exactly like ascii contents. */

Revision A of 15 October 1986

116 SunView System Programmer's Guide

/* Simple commands (no parameters)
*/

SELN_REQ_COMMIT_PENDING_DELETE
= SELN_ATTR(ATTR_NO_VALUE,

/* There is no value. The replier is instructed to delete any
* secondary selection made in pending delete mode.

SELN_REQ_DELETE = SELN_ATTR(ATTR_NO_VALUE,
/* There is no value. The replier is instructed to delete the
* selection referred to in this request.

SELN_REQ_RESTORE = SELN_ATTR(ATTR_NO_VALUE,

65) ,

*/
66) ,

*/
67) ,

/* There is no value. The replier is instructed to restore the
* selection referred to in this request, if it has maintained
* sufficient information to do so. */

/* Other commands
*/

SELN_REQ_YIELD = SELN_ATTR(ATTR_ENUM, 97) ,
/* The value in the request is not meaningful; in the response,
* the value is a Seln result which is the replier's
* return code. The replier is requested to yield the
* selection referred to in this request. SELN_SUCCESS,
* SELN_DIDNT_HAVE, and SELN_WRONG_RANK are legitimate
* responses (the latter comes from a holder asked to
* yield the primary selection when it knows a function-key
* is down) . */

SELN_REQ_FAKE LEVEL SELN_ATTR(ATTR_INT, 98),
/* value is an int giving a level to which the selection
* should be expanded before processing the remainder of
* this request. The original level should be maintained
* on the display, however, and restored as the true level
* on completion of the request

SELN REQ_SET LEVEL = SELN_ATTR(ATTR_INT,
/* value is an int giving a level to which the selection

*/
99) ,

* should be set. This request should affect the true level */

/* Service debugging commands
*/

SELN_TRACE_ACQUIRE SELN_ATTR(ATTR_BOOLEAN,
SELN_TRACE_DONE SELN_ATTR(ATTR_BOOLEAN,
SELN TRACE HOLD FILE SELN_ATTR(ATTR_BOOLEAN,
SELN TRACE INFORM SELN_ATTR(ATTR_BOOLEAN,
SELN_TRACE_INQUIRE SELN_ATTR(ATTR_BOOLEAN,
SELN_TRACE_YIELD SELN_AT~R(ATTR_BOOLEAN,

SELN_TRACE_STOP SELN_ATTR(ATTR_BOOLEAN,

193),
194) ,
195) ,
196) ,
197) ,
198) ,
199) ,

/* value is a boolean (TRUE / FALSE) indicating whether calls
* to that procedure in the service should be traced.
* TRACE_INQUIRE also controls tracing on seln_inquire_all(). */

SE.LN TRACE DUMP SELN _ ATTR (ATTR _ ENUM, 200) ,
/* value is a Seln_rank, indicating which selection holder
* should be dumped; SELN UNSPECIFIED indicates all holders. */

~\sun ~~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 117

/* Close bracket so replier can terminate commands
* like FAKE LEVEL which have scope
*/

SELN_REQ_END REQUEST

/* Error returnd for failed or unrecognized requests
*/

SELN_REQ_UNKNOWN
SELN_REQ_FAILED

Seln_attribute;

SELN_ATTR(ATTR_INT,
SELN_ATTR(ATTR_INT,

/* Meta-levels available for use with SELN_REQ_FAKE/SET_LEVEL.
* SELN LEVEL LINE is "text line bounded by newline characters,
* including only the terminating newline"
*/

typedef enum {
SELN LEVEL FIRST - -
SELN LEVEL LINE - -
SELN LEVEL ALL - -
SELN LEVEL NEXT - -
SELN LEVEL PREVIOUS

Seln_level;
#endif

Ox40000001,
Ox40000101,
Ox40008001,
Ox4000F001,
Ox4000F002

253),

254) ,
255)

Revision A of 15 October 1986

118 Sun View System Programmer's Guide

9.8. Two program examples

There are several programs in the SunView Programmer's Guide that do a seln _ask () for the primary selection.
Here are two sample programs that manipulate the selection in more complex ways.

get _selection Code

The following code is the program get _selection, which is part of the release. This program copies the contents of the
desired Sun View selection to stdout. For more information, consult the get _ s e Ie ct io n (1) man page.

#ifndef lint
static char
#endif

/*

sccsid [] "@(#)get_selection.c 10.5 86/05/14";

* Copyright (c) 1986 by Sun Microsystems, Inc.
*/

#include <stdio.h>
#include <sys/types.h>
#include <suntool/selection_svc.h>
#include <suntool/selection_attributes.h>

static Seln result

static int

static void

#ifdef STANDALONE
main (argc, argv)
#else

readyroc();

data read = 0;

quit () ;

get_select ion_main (argc, argv)
#endif STANDALONE

int
char

Seln client
Seln holder
Seln rank
char
int

while (--argc) {

argc;
**argv;

client;
holder;
rank = SELN_PRIMARY;
context = 0;
debugging = FALSE;

/* command-line args control rank of desired selection,
/* use of a debugging service, and rpc timeout
argv++;
switch (**argv)

case '1':
rank = SELN_PRlMARY;
break;

case '2':

*/
*/

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 119

rank = SELN_SECONDARY;
break;

case '3':
rank = SELN_SHELF;
break;

case '0':
seln use_test_service();
break;

case 't':
case 'T':

seln_use_timeout(atoi(++argv»;
--argc;
break;

default:
quit (If Usage: get_selection [D] [t seconds] [1 12 13]\n lf

);

/* find holder of desired selection */
holder = seln_inquire(rank);
if (holder. state == SELN_NONE) {

quit (If Selection non-existent, or selection-service failure\n lf
);

/* ask for contents, and let callback proc print them */

(void) seln_query(&holder, read-proc, &context,
SELN_REQ_CONTENTS_ASCrr, 0, 0);

if (data_read)
exit(O);

else
exit(1);

static void
quit (str)

char

fprintf(stderr, str);
exit(1);

*str;

/*
*
*

Procedure called with each buffer of data returned in response
to request transmitted by seln_query.

*/
static Seln result
read-proc(buffer)

Seln_request

char

*buffer;

*reply;

/* on first buffer, we have to skip the request attribute,
* and then make sure we don't repeat on subsequent buffers

Revision A of 15 October 1986

120 SunView System Programmer's Guide

*/
if (*buffer->requester.context == 0) {

if (buffer == (Seln_request *) NULL I I
*((Seln_attribute *) buffer->data) != SELN_REQ_CONTENTS_ASCII)
quit ("Selection holder error -- unrecognized request\n");

reply = buffer->data + sizeof (Seln_attribute);
*buffer->requester.context = 1;

else {
reply = buffer->data;

fputs(reply, stdout);
fflush(stdout);
data_read = 1;
return SELN_SUCCESS;

~\sun ,~ microsystems
Revision A of 15 October 1986

seln demo

Large Selections

Chapter 9 - The Selection Service & Library 121

The following program, seln _demo gets the selection, but it also sets the selec­
tion and responds to appropriate queries about it.

It displays a panel with several choices and buttons and a text item. You choose
the rank of the selection you wish to set or retrieve first. If you are setting the
selection, you may also choose whether you want to literally set the selection or
provide the name of a file which contains the selection. Then either type in the
selection and press the [Sill button, or just press the ~ button to retrieve the
current selection of the type you chose.

The code has three logical sections: the procedures to create and service the
panel, the code to set a selection, and the code to get a selection. The routines to
set and get the selection are complicated because they are written to allow arbi­
trary length selections. Try selecting a 3000 byte piece of text; although you can
only see 10 characters of it in the text panel item, the entire selection can be
retrieved and/or set.

In order to handle large selections, the selection service breaks them into smaller
chunks of about 2000 bytes called buffers. The routines you write must be able
to handle a buffer and save enough information so that when they are called
again with the next buffer, they can pick up where they left off. seln _demo uses
the context fields provided in the Selection Service data structures to accomplish
this.

~\sun ,~ microsystems
Revision A of 15 October 1986

122 SunView System Programmer's Guide

/*
* seln demo.c

*
* demonstrate how to use the selection service library
*/

#include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/seln.h>

static Frame frame;
static Panel panel;

int err = 0;

char *malloc();

/*
* definitions for the panel
*/

static Panel_item text_item, type_item, source_item, mesg_item;
. static Panel_item set_item[3], get_item[3];
static void set_button-proc (), get_button-proc(), change_label-proc();

#define PRIMARY CHOICE 0 /* get/set the primary selection */
#define SECONDARY CHOICE 1
#define SHELF CHOICE 2

#define ITEM CHOICE 0

#define FROMFILE CHOICE 1

int selection_type = PRIMARY_CHOICE;
int selection source = ITEM_CHOICE;

char *text_labels[3] [2] = {
{

/*
/*

/*

/*

"New primary selection:",

get/set the secondary selection */
get/set the shelf */

use the text item literally as the
selection */
use the text item as the name of a
file which contains the selection */

"File containing new primary selection:"

} ;

} ,
{

} ,
{

"New secondary selection:",
"File containing new secondary selection:"

"New shelf:",
"File containing new shelf:"

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 123

char *mesg_labels[3] [2] = {
{

"Type in a selection and hit the Set Selection button",
"Type in a filename and hit the Set Selection button"

} , .
{

"Type in a selection and hit the Set Secondary button",
"Type in a filename and hit the Set Secondary button"

} ;

} ,
{

"Type in a selection and hit the Set Shelf button",
"Type in a filename and hit the Set Shelf button"

SELN_PRIMARY, SELN_SECONDARY, SELN SHELF };

/*
* definitions for selection service handlers
*/

static Seln_client s_client; /* selection client handle */

#define FIRST BUFFER 0
#define NOT FIRST BUFFER 1 - -

char *selection_bufs[3]; /* contents of each of the three selections;

int func_key-proc();
Seln result reply-proc();
Seln result read-proc();

.\sun ~~ microsystems

they are set only when the user hits a set
or a get button */

Revision A of 15 October 1986

124 Sun View System Programmer's Guide

/**/
/* main routine */
/**/

main (argc, argv)
int argc;
char **argv;
{

/* create frame first */

frame = window_create(NULL, FRAME,
FRAME_ARGS, argc, argv,
WIN_ERROR~SG, "Cannot create frame",
FRAME_LABEL, "seln_demo",
0) ;

/* create selection service client before creating subwindows
(since the panel package also uses selections) */

s_client = seln_create(func_key-proc, reply-proc, (char *)0);
if (s_client == NULL) {

fprintf(stderr, "seln demo: seln create failed!O);
exit(l);

/* now create the panel */

panel = window_create(frame, PANEL,
WIN_ERROR_MSG, "Cannot create panel",
0) ;

init-panel(panel);

window_fit_height(panel);

window_fit(frame);

/* yield any selections we have and terminate connection with the
selection service */

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 125

/***/
/* routines involving setting a selection */
/***/

/*
* acquire the selection type specified by the current panel choices;
* this will enable requests from other clients which want to get
* the selection's value, which is specified by the source item and text item
*/

static void
set_button-proc(/* args ignored */)
{

/*

Seln_rank ret;
char *value = (char *)panel_get_value(text_item);

if (selection_source == FROMFILE CHOICE) {
/* set the selection from a file; the selection service will

actually acquire the selection and handle all requests */

if (seln_hold_file(type_to_rank[selection_type], value)
!= SELN_SUCCESS)

panel_set(mesg_item, PANEL_LABEL_STRING,
"Could not set selection from named file!", 0);

err++;
} else if (err)

return;

panel_set(mesg_item, PANEL_LABEL_STRING,
mesg_Iabels[selection_type] [selection_source],O);

err = 0;

/* check that the selection rank we received is the one we asked for */

if (ret != type_to_rank[selection_type]) {
panel_set(mesg_item, PANEL_LABEL_STRING,

err++;
return;

"Could not acquire selection!", 0);

set_selection_value(selection_type, selection_source, value);

* copy the new value of the appropriate selection into its
* buffer so that if the user changes the text item and/or the current
* selection type, the selection won't mysteriously change
*/

set_selection_value(type, source, value)

~~sun ~ microsystems
Revision A of 15 October 1986

126 Sun View System Programmer's Guide

int type, source;
char *value;

if (selection_bufs[type] != NULL)
free(selection_bufs[type]);

selection_bufs[type] = malloc(strlen(value) + 1);
if (selection_bufs[type] == NULL) {

} else

panel_set(mesg_item, PANEL_LABEL_STRING, "Out of memory!", 0);
err++;

strcpy(selection_bufs[type], value);
if (err) {

panel_set (mesg_item, PANEL LABEL_STRING,
mesg_Iabels[type] [source], 0);

err = 0;

/*
* func_keyyroc

*
* called by the selection service library whenever a change in the state of
* the function keys requires an action (for instance, put the primary
* selection on the shelf if the user hit PUT)
*1

func_keyyroc(client_data, args)
char *client_data;
Seln_function_buffer *args;
{

Seln holder *holder;

/* use seln_figure_response to decide what action to take *1

switch (seln_figure_response(args, &holder» {
case SELN IGNORE:

/* don't do anything */
break;

case SELN_REQUEST:
/ * handle pending delete requests, * /
break;

case SELN SHELVE:
/* put the primary selection (which we should have) on the

shelf *1
if (seln_acquire(s_client, SELN SHELF) != SELN_SHELF) {

panel_set(mesg_item, PANEL_LABEL_STRING,
"Could not acquire shelf!", 0);

err++;
else

shelveyrimary_selection();

break;

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 127

case SELN FIND:
/* do a search
break;

case SELN DELETE:
/* do a delete
break;

shelve-primary_selection()
{

*/

*/

char *value = selection_bufs[PRIMARY_CHOICE];

if (selection_bufs[SHELF CHOICE] != NULL)
free(selection_bufs[SHELF_CHOICE]);

selection_bufs[SHELF_CHOICE] = malloc(strlen(value)+l);
if (selection_bufs[SHELF_CHOICE] == NULL) {

panel_set(mesg_item, PANEL_LABEL_STRING, "Out of memory!", 0);
err++;

else
strcpy(selection_bufs[SHELF CHOICE], value);

/*
* reply-proc

*
* called by the selection service library whenever a request comes from
* another client for one of the selections we currently hold
*/

Seln result
reply-proc(item, context, length)
Seln_attribute item;
Seln_replier_data *context;
int length;

int size, needed;
char *seln, *destp;

/* determine the rank of the request and choose the
appropriate selection */

switch (context->rank) {
case SELN PRIMARY:

seln = selection_bufs[PRIMARY CHOICE];
break;

case SELN SECONDARY:
seln = selection_bufs[SECONDARY CHOICE];
break;

case SELN SHELF:
seln = selection_bufs[SHELF CHOICE];
break;

~\sun ,~ microsystems
Revision A of 15 October 1986

128 Sun View System Programmer's Guide

default:
seln NULL;

/* process the request */

switch (item)
case SELN_REQ_CONTENTS ASCII:

/* send the selection */

/* if context->context == NULL then we must start sending
this selection; if it is not NULL, then the selection
was too large to fit in one buffer and this call must
send the next buffer; a pointer to the location to start
sending from was stored in context->context on the
previous call */

if (context->context == NULL)
if (seln == NULL)

return(SELN DIDNT_HAVE);
context->context = seln;

size strlen(context->context);
destp = (char *)context->response-pointer;

/* compute how much space we need: the length of the selection
(size), plus 4 bytes for the terminating null word, plus 0
to 3 bytes to pad the end of the selection to a word
boundary */

needed = size + 4;
if (size % 4 != 0)

needed += 4 - size % 4;
if (needed <= length)

/* the entire selection fits */
strcpy(destp, context->context);
destp += size;
while «int)destp % 4 != 0)

/* pad to a word boundary */
*destp++ = '\0';

/* update selection service's pointer so it can

} else {

determine how much data we are sending */
context->response-pointer = (char **)destp;
/* terminate with a NULL word */
*context->response-pointer++ = 0;
return(SELN_SUCCESS);

/* selection doesn't fit in a single buffer; rest
will be put in different buffers on subsequent
calls */

strncpy(destp, context->context, length);
destp += length;

~\sun ~~ microsystems
Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 129

context->response-pointer = (char **)destp;
context->context += length;
return(SELN_CONTINUED);

case SELN_REQ_YIELD:
/* deselect the selection we have (turn off highlight, etc.) */

*context->response-pointer++ = (char *)SELN_SUCCESS;
return(SELN_SUCCESS);

case SELN_REQ_BYTESIZE:
/* send the length of the selection */

if (seln == NULL)
return(SELN_DIDNT HAVE);

*context->response-pointer++ = (char *)strlen(seln);
return(SELN_SUCCESS);

case SELN_REQ_END_REQUEST:
/* all attributes have been taken care of; release any

internal storage used */

default:

return(SELN_SUCCESS);
break;

/* unrecognized request */
return(SELN_UNRECOGNIZED);

/* NOTREACHED */

Revision A of 15 October 1986

130 SunView System Programmer's Guide

/***/
/* routines involving getting a selection */
/***/

/*
* get the value of the selection type specified by the current panel choices
* from whichever client is currently holding it
*/

static void
get_button-proc(/* args ignored */)
{

/*

Seln_holder holder;
int len;
char context = FIRST_BUFFER; /* context value used when a very long

message is received; see procedure
comment for read-proc */

if (err)
panel_set (mesg_item, PANEL_LABEL_STRING,

mesg_Iabels[selection_type] [selection_source], 0);
err = 0;

/* determine who has the selection of the rank we want */

holder = seln_inquire(type_to_rank[selection_type]);
if (holder.state == SELN_NONE) {

panel_set (mesg_item, PANEL_LABEL_STRING,

err++;
return;

"You must make a selection first!", O}i

/* ask for the length of the selection and then the actual
selection; read-proc actually reads it in */

(void) seln_query(&holder, read-proc, &context,
SELN_REQ_BYTESIZE, 0,
SELN_REQ_CONTENTS_ASCII, 0,
0) ;

/* display the selection in the panel */

len = strlen(selection_bufs[selection_type]);
if (len> (int)panel_get(text_item, PANEL_VALUE_STORED_LENGTH»

panel_set(text_item, PANEL_VALUE_STORED_LENGTH, len, 0);
panel_set_value(text_item, selection_bufs[selection_type]);

* called by seln_query for every buffer of information received; short

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 131

* messages (under about 2000 bytes) will fit into one buffer; for larger
* messages, read-proc will be called with each buffer in turn; the context
* pointer passed to seln_query is modified by read-proc so that we will know
* if this is the first buffer or not
*/

Seln result
read-proc(buffer)
Seln_request *buffer;
{

char *reply; /* pointer to the data in the buffer received */
unsigned len; /* amount of data left in the buffer */
int bytes_to_copy;
static int selection_have_bytes; /* number of bytes of the selection

which have been read; cumulative over all calls for
the same selection (it is reset when the first
buffer of a selection is read) */

static int selection_len; /* total number of bytes in the current
selection */

if (*buffer->requester.context == FIRST_BUFFER)

/* this is the first buffer */

if (buffer == (Seln_request *)NULL)
panel_set(mesg~item, PANEL_LABEL_STRING,

"Error reading selection - NULL buffer", 0);
err++;
return(SELN_UNRECOGNIZED);

reply buffer->data;
len = buffer->buf_size;

/* read in the length of the selection */

if (*«Seln_attribute *)reply) != SELN_REQ_BYTESIZE)
panel_set(mesg_item, PANEL_LABEL_STRING,

"Error reading selection - unrecognized request",
0) ;

err++;
return(SELN_UNRECOGNIZED);

reply += sizeof(Seln_attribute);
len = buffer->buf_size - sizeof(Seln_attribute);
selection_len = *(int *)reply;
reply += sizeof(int);/* this only works since an int is 4

bytes; all values must be padded to
4-byte word boundaries */

len -= sizeof(int);

/* create a buffer to store the selection */

if (selection_bufs[selection_type] != NULL)

4l~ sun Revision A of 15 October 1986
~ microsystems

132 SunView System Programmer's Guide

} else {

free(selection_bufs[selection_type]);
selection_bufs[selection_type] = malloc(selection_len + 1);
if (selection_bufs[selection_type] == NULL) {

panel_set (mesg_item, PANEL_LABEL_STRING,

err++;
return(SELN_FAILED);

"Out of memory!", 0);

/* start reading the selection */

if (*(Seln_attribute *)reply != SELN_REQ_CONTENTS_ASCII) {
panel_set (mesg_item, PANEL_LABEL_STRING,

"Error reading selection - unrecognized request",
0) ;

err++;
return(SELN_UNRECOGNIZED);

reply += sizeof(Seln_attribute);
len -= sizeof(Seln_attribute);
*buffer->requester.context = NOT_FIRST_BUFFER;

/* this is not the first buffer, so the contents of the buffer
is just more of the selection */

reply buffer->data;
len = buffer->buf_size;

/* copy data from the received buffer to the selection buffer
allocated above */

bytes_to_copy = selection_len - selection_have_bytes;
if (len < bytes_to_copy)

bytes_to_copy = len;
strncpy(&selection_bufs[selection_type] [selection_have_bytes],

reply, bytes_to_copy);
selection_have_bytes += bytes_to_copy;
if (selection_have_bytes == selection_len)

selection_bufs[selection_type] [selection_len]
return(SELN_SUCCESS);

'\0';

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 133

/***/
/* panel routines */
/***/

/* panel initialization routine */

init-panel(panel)
Panel panel;
{

source item

text item

panel_create_item(panel, PANEL_MESSAGE,
PANEL_LABEL_STRING,

mesg_labels[PRIMARY_CHOICE] [ITEM_CHOICE],
0) ;

panel_create_item(panel, PANEL_CYCLE,
PANEL_LABEL_STRING, "Set/Get: ",
PANEL_CHOICE_STRINGS, "Primary Selection",

"Secondary Selection",
"Shelf",

PANEL_NOTIFY_PROC,
PANE L_LABEL_X,
PANE L_LABEL_Y,
0) ;

0,
change_label_proc,
ATTR_COL(O) ,
ATTR_ROW (1) ,

panel_create_item(panel, PANEL_CYCLE,
PANEL_LABEL_STRING, "Text item contains:",
PANEL_CHOICE_STRINGS, "Selection",

"Filename Containing Selection",
0,

PANEL NOTIFY_PROC, change_label-proc,
0) ;

panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING,

text_labels [PRIMARY_CHOICE] [ITEM_CHOICE],
PANEL_VALUE_DISPLAY_LENGTH, 20,
0) ;

panel_create_item(panel,
PANE L_LABEL_IMAGE,

PANEL_NOT I FY_P ROC ,
PANEL_LABEL_X,
PANEL_LABEL_Y,
0) ;

PANEL_BUTTON,
panel_button_image(panel,

"Set Selection", 15,0),
set_button-proc ,
ATT~COL(O),

ATTR_ROW(5) ,

panel_create_item(panel, PANEL_BUTTON,
PANE L_LABEL_IMAGE, pane l_butt on_image (panel,

PANEL_NOT I FY_P ROC ,
PANEL_LABEL_X,
PANEL_LABEL_Y,
PANEL_SHOW_ITEM,
0) ;

"Set Secondary", 15,0),
set_button-proc ,
ATTR_COL(O) ,
ATTR_ROW(5) ,
FALSE,

panel_create_item(panel, PANEL_BUTTON,
PANE L_LABEL_IMAGE, pane l_butt on_image (panel,

"Set Shelf", 15,0),

Revision A of 15 October 1986

134 SunView System Programmer's Guide

PANEL_NOTIFY_PROC,
PANEL_LABEL_X,
PANEL_LABEL_Y,
PANEL_SHOW_ITEM,
0) ;

panel_create_item(panel,
PANEL_LABEL_IMAGE,

PANEL_NOTIFY_PROC,
PANEL_LABEL_X,
PANEL_LABEL_Y,
0) ;

panel_create_item(panel,
PANEL_LABEL_IMAGE,

PANEL_NOTIFY_PROC,
PANEL_SHOW_ITEM,
PANEL_LABEL_X,
PANEL_LABEL_Y,
0) ;

set_buttonyroc,
ATTR_COL(O),
ATTR_ROW(5),
FALSE,

PANEL_BUTTON,
pane I_butt on_image (panel,

"Get Selection", 15,0),
get_buttonyroc,
ATTR_COL(20),
ATTR_ROW(5),

PANEL_BUTTON,
pane I_butt on_image (panel,

"Get Secondary", 15,0),
get_buttonyroc,
FALSE,
ATTR_COL(20),
ATTR_ROW(5),

panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE, pane I_butt on_image (panel,

P~~EL_NOTIFY_PROC!

PANEL_SHOW_ITEM,
PANEL_LABEL_X,
PANEL_LABEL_Y,
0) ;

"Get Shelf", 15,0),
get buttonyroc!,
FALSE,
ATTR_COL(20),
ATTR_ROW(5) ,

/*
* change the label of the text item to reflect the currently chosen selection
* type
*/

static void
change_labelyroc(item, value, event)
Panel_item item;
int value;
Event *event;
{

selection_type = (int)panel_get_value(type_item);
selection_source = (int)panel_get_value(source_item);
panel_set (text_item, PANEL_LABEL_STRING,

text_labels [selection_type] [selection_source], 0);
panel_set(mesg_item, PANEL_LABEL_STRING,

mesg_labels[selection_type] [selection_source], 0);
if (old_selection_type != selection_type) {

panel_set (set_item[old_selection_type],
PANEL_SHOW_ITEM, FALSE, 0);

panel_set(set_item[selection_type],

Revision A of 15 October 1986

Chapter 9 - The Selection Service & Library 135

PANEL_SHOW_ITEM, TRUE, 0);
panel_set (get_item [old_selection_type],

PANEL_SHOW_ITEM, FALSE, 0);
panel_set (get_item [selection_type] ,

PANEL_SHOW_ITEM, TRUE, 0);

Revision A of 15 October 1986

10
The User Defaults Database

The User Defaults Database ... 139

Why a Centralized Database? .. 139

10.1. Overview .. 140

Master Database Files ... 140

Private Database Files .. 140

10.2. File Fonn.at ... 142

Option Names ... 142

Option Values ... 143

Distinguished Names .. 143

$Help .. 143

$Enumeration .. 143

$Message .. 143

10.3. Creating a . d File: Example .. 144

lOA. Retrieving Option Values ... 145

Retrieving String Values ... 145

Retrieving Integer Values .. 145

Retrieving Character Values ... 146

Retrieving Boolean Values .. 146

Retrieving Enumerated Values .. 147

10.5. Conversion Programs ... 148

10.6. Error Handling .. 149

Error_Action .. 149

Maximum_Errors .. 149

Test_Mode ... 149

10.7. Interface Summary ... 150

Why a Centralized Database?

10
The User Defaults Database

Many UNIX programs are customizable in that the user can modify their behavior
by setting certain parameters checked by the program at startup time. This
approach has been extended in Sun View to include facilities used by many appli­
cations, such as menus, text and scrollbars, as well as applications.

The Sun View user defaults database is a centralized database for maintaining
customization information about different 'programs and facilities.

This chapter is addressed to programmers who want their programs to make use
of the defaults database. For a discussion of the user interface to the defaults
database, see the chapter on defaultsedit in Windows and Window-Based Tools:
Beginner's Guide.

In this chapter, customizable parameters are referred to as options; the values
they can be set to are referred to as values.

All definitions necessary to use the defaults database may be obtained by includ­
ing the file <sunwindow/ defaul ts . h>.

Traditionally,. each customizable program has a corresponding customizationfile
in the user's home directory. The program reads its customization file at startup
time to get the values the user has specified.

Examples of customizable programs are mail, csh and suntools. The correspond­
ing customization files are .mailrc, .cshrc, and .suntools.

While this method of handling customization works well enough, it can become
I

confusing to the user because:

D Since the information is scattered among programs, it's difficult for the user
to determine what options he can set.

D Since the format of each customization file is different, the user must find
and read documentation for each program he wants to customize.

D Even after he has located the customization .file and become familiar with its
format, it's often difficult for the user to determine what the legal values are
for a particular option.

Sun View addresses these problems by providing' a centralized database which
can be used by any customizable' program. The user can view and modify the
options in the defaults database with the interactive program defaultsedit.

139 Revision A of 15 October 1986

140 Sun View System Programmer's Guide

10.1. Overview

Master Database Files

Private Database Files

The defaults database actually consists of a single master database and a private
database for each user.

The master database contains all the options for each program which uses the
defaults database. For each option, the default value is given.

The user's private database contains the values he has specified via defaultsedit.
An option's value in the private database takes precedence over the option's
default value in the master database.

Application programs retrieve values from the database using the routines
described later in this chapter. These routines first search the user's private data­
base for the value. If the value is not found in the private database, then the
default value from the master database is returned. Each of these routines
specify a fall-back default value which is used if neither database contains the
value. It should match the value in the master database.

The master database is stored in the directory / us r / 1 ib / def a ul t s as a
number of individual files, each containing the options for one program or pack­
age. These files are created with a text editor by the author of the program or
package (see Creating a .d File: Example, later in this chapter). By convention,
the file name is the capitalized name of the program or package, with the suffix
. d - Mail. d, SunView. d, Menu. d, etc.

The defaults database itself has two options you can set via defaults edit to con­
trol where the master database resides:

o Directory is provided so that a group may have its own master database
directory in which to do development independently of the standard
/usr/lib/defaults directory.

o Private _Directory is provided so that an individual developer may have his
own private master database for development. Note that this directory must
have copies (or symbolic links) to all of the . d files in
/ u s r / 1 ib / de fa ul t s, or accesses to the absent files will result in run­
time errors.

When the master database is accessed, the defaults routines look for the appropri­
ate . d file first in the Private_directory (if specified). If the :file is not found or
the directory not specified, then if a Directory is specified it is searched, other­
wise the default directory, / u s r / 1 ib / de f au 1 t s, is searched.

A user's private database is stored in the file . defaul ts in the user's home
directory. This is where changes the user makes using defaultsedit are
recorded.21

There is an option called Private _only which allows the user to disable the read­
ing of the master database entirely, thereby reducing program startup time. Note
that for this to work, you must make sure that the fallback values you specify in

21 There is rarely any need for the user to edit his .defaults file by hand - it is automatically created
and updated by defaultsedit. The one time the user needs to edit his • de fa u 1 t s file by hand is to disable the
defaults Testmode option once it has been enabled. See discussion under Error Handling later in the chapter.

Revision A of 15 October 1986

Chapter 10 - The User Defaults Database 141

your program exactly match the values in the master database.

Revision A of 15 October 1986

142 SunView System Programmer's Guide

10.2. File Format

Option Names

The fonnat for both master and private database files is identical.

The first line in the file contains a version number.22 The rest of the file consists
of a number of lines, each of which contains either an option name with its asso­
ciated value or a comment, preceded by a semi-colon (;). Blank lines are also
legal.

The option names are organized hierarchically, just like files in a file system.
Names must always start with a slash character, (I), and each level in the naming
hierarchy is separated from the previous level by a slash character. Each name
consists of one or more letters (A-Z, a-z), digits (0-9), dollar signs ($), and under­
scores L). By convention, the first letter of each name is capitalized.23

There are two shorthand notations for option names. First, whenever a line does
not start with a slash, the previous node is prepended to the name (this is similar
to the treatment of path names in UNIX). Thus

/SunView/Font
$Help

is equivalent to

/SunView/Font
/SunView/Font/$Help

The second shorthand convention is that any time two slashes in a row are
encountered, the option name previously defined at that level is assumed. Each
pair of slashes corresponds to one name. Thus

/SunView/Font
//Walking_Menus
//Icon_gravity

is equivalent to

and

/SunView/Font
/SunView/Walking_Menus
/SunView/Icon_gravity

/SunView/Font/Bold
///Italic
II/Size

is equivalent to

/SunView/Font/Bold
/SunView/Font/Italic
/SunView/Font/Size

22 The version number is included so that if any incompatible changes are made to the default database
format in the future, the library routines can tell when they encounter an older file format.

23 This convention is just for readability - internally all names are converted to lower case, so the defaults
database is insensitive to case.

4}\sun
,~ microsystems

Revision A of 15 October 1986

Option Values

Distinguished Names

$Help

$Enumeration

$Message

Chapter 10 - The User Defaults Database 143

All option values are stored as strings. They have the same syntax as quoted
strings in C. In particular, the backslash character (\) is used as an escape charac­
ter for inserting other characters into the quoted string. The following backslash
escapes are recognized:

\\ Backslash
\" Double quote
\' Single quote
\n Newline
\t Tab
\b Backspace
\r Carriage return
\f Form feed
\ddd 3 digit octal number specifying a single character

Option values can be up to 10,000 characters in length.

There are several distinguished names used by defaultsedit. See the next section
for an example illustrating their usage.

$Help allows you to add an explanatory string to be displayed by defaultsedit
for each option.

An enumerated option is one in which the values are explicitly given, such as
{True, False}, {Yes, No}, {North, South, East, West} etc.24 The user selects one
of the values using defaults edit.

The way that defaultsedit knows that it has encountered an enumerated option is
by the level name $Enumeration. The values for the enumerated option fol­
low at the same level. Note that you can specify a help string for the entire
enumerated option, as well as specifying the value.

$Message allows you to add a one-line message to be displayed by
defaultsedit. Use this to make more readable the display of a category with many
options by setting off related options with blank lines or headings.

24 There is no limit to the number of values an enumerated option can have.

~\sun ,~ microsystems
Revision A of 15 October 1986

144 SunView System Programmer's Guide

10.3. Creating a . d File:
Example

Adding options for a new program to the database corresponds to adding a new
first-level option name in the master database, and appears to the user as a new
category in defaultsedit. You do this by creating the appropriate . d file in
/ us r / 1 ib / de f au 1 t s . If the file is in the correct format, and ends in . d,
then defaultsedit will automatically display it as a new category.

Let's create such a file for a game called "Space Wars". The options are: the
number of friendly and enemy ships, whether or not stars attract ships, the name
of the user's ship, and the direction that ships enter the window from.

To conform to the naming convention for master database files, we add the suffix
. d to the first-level option name, yielding the filename SpaceWar. d:

SunDefaults Version 2
/SpaceWar

$Help
//Friends

$Help
//Enemies

$Help
//Gravity

//Name

$Help
$Enumeration
Yes
Yes/SHelp
No
No/$Help

$Help
//Direction

$Help
$Enumeration
North
North/$Help
South
South/SHelp
East
East/$Help
West
West/SHelp

"A space ship battle game"
"15"

"Number of friendly ships"
"15"

"Number of enemy ships"
"Yes"

"Affects whether star attract ships"
""
""

"Stars attract ships"

"Ships are immune to attraction"
"Lollipop"

"Name of your space ship"
"North"

"Starting window border"

""
"Ships start at north window border"

"Ships start at south window border"

""
"Ships start at east window border"

""
"Ships start at west window border"

Note that the highest-level option name, / SpaceWar, has no associated value,
since it wouldn't make sense to have one. If a database routine tries to access an
option which has no value, the special string DEFAULTS UNDEFINED will be
returned.

~\sun ,~ microsyslems
Revision A of 15 October 1986

10.4. Retrieving Option
Values

Retrieving String Values

Retrieving Integer Values

Chapter 10 - The User Defaults Database 145

A simple programmatic interface is provided to retrieve option values from the
defaults database. All values are stored as strings, and may be retrieved with
defaul ts_get_string () . For convenience, similar get routines are pro­
vided to retrieve values as integers, characters, or enumerated types. The get rou­
tines are described below.

To retrieve a string value, use:

char *
defaults_get_string(option_name, default_value, 0)

char *option_name;
char *default_value;

option_name is the name of the option whose value will be retrieved.
de fa ul t is a value to return if the option is not found in the database or if the
database itself cannot be accessed for any reason. Note that this value should
match the default value in the master database. The final argument to all
defaults get * () routines is zero.25 In our Space Wars example in the pre­
vious section, we would call

ship = defaults_get_string("/SpaceWar/Name", "Lollipop", 0);

On return, ship would point to the string Lollipop.

Suppose you misspelled the option name Name as Nane. Since
I SpaceWar INane is not in the defaults database, the fallback value of Lol­
li pop will be returned and an error message may be output. 26

To retrieve an integer value, use:

int
defaults_get_integer(option_name, default_value, 0)

char *option_name;
char *default_value;

This function gets the option value associated with option_name, treats it as
a decimal integer, and returns the integer value. For example, the string "1 7 "
parses into the number 1 7 and the string " -12 3" parses into the number
-123. If option_name can't be found, or its associated value can't be parsed,
the integer passed in for default_value is returned. For example, the call

defaults_get_integer("/SpaceWar/Enemys", 15, 0);

will return the integer 15, since "Enemies" was misspelled as "Enemys".

2S This third argument is not currently used. It is necessary for compatibility with future releases of the
defaults database package. which may use the third argument to return status information.

26 Whether or not the database retrieval routines generate error messages on error conditions depends on the
setting of the option Error_action. See Error Control later in the chapter.

~\sun ~~ microsystems
Revision A of 15 October 1986

146 Sun View System Programmer's Guide

Retrieving Character Values

Retrieving Boolean Values

The function defaults_get_integer_check () is the same as
defaults_get_integer () ,except that it checks that the returned value is
within a specified range:

int
defaults_get_integer_check(option_name, default_value, \

min, max, 0)
char *option_name;
char *default_value;
int min, max;

If the option value is not between min and max, the integer passed in for
default_value is returned and an error message may be output.

To retrieve a character value, use:

int
defaults_get_character(option_name, default_value, 0)

char *option_name;
char default_value;

defaults_get_character () returns the first character from the option
value. If the option value contains more than one character, the character passed
in for def aul t _val ue is returned and an error message is output.

To retrieve a boolean value,27 use:

Bool
default s_ge t_b 0 0 lean (optio.n_name, default_value, 0)

char *option_name;
Bool default_value;

defaults_get_boolean () returns True if the option value is "True",
"Yes", "On", "Enabled", "Set", "Activated", or"l" and False if the option
value is "False", "No", "Off', "Disabled", "Reset", "Cleared", "Deactivated", or
"0". If the option value is not one of the above, the value passed in for
default_value is returned and an error message is output.

27 The definition for Baal. found in <sunwindow/sun.h>, is: typedef enum {False 0,
True = I} Baal;

~\sun ,~ microsystems
Revision A of 15 October 1986

Retrieving Enunerated Values

Chapter 10 - The User Defaults Database 147

You can retrieve enumerated option values with
defaults_get_string () ,then use strcmp () to test which value was
returned. As an alternative, you may find it more convenient to define an
enumerated type corresponding to the option values, and use
defaults_get_enum(} to return the option value as the corresponding
enum. The definition is:

int
defaults_get_enum(option_name, pairs)

char *option_name;
Defaults-pairs pairs[];

pairs is a pointer to an array of Defaults_pairs which contains name­
value pairs. Defaultsyairs is defined as:

typedef struct
char *name;
int value;

Defaults-pairs;

The array passed in as pairs must be null-terminated.
de fault s-:.get_enum(} returns the name associated with the value
which is the current value of the option. If no match is found, the value asso-
ciated with the last (null) entry is returned. .

The following example, using the direction option for our Space Wars example,
illustrates the usage of defaults_get_enum () :

typedef enum {North, South, East, West} directions;
directions dir;
Defaults-pairs direction-pairs [] = {

"North", tint) North,
"South", (int) South,
"East", (int) East,
"West" , (int) West,
NULL, (int) North}; /* Error value */

dir defaults_get_enum("/SpaceWar/Direction", directionyair

~\sun ~~ microsystems
Revision A of 15 October 1986

148 SunView System Programmer's Guide

10.5. Conversion Programs The defaults package provides a mechanism to convert from an existing customi­
zation file, such as .mailrc, to the . d format used by defaultsedit.

You must write a separate program to do the conversion each way. Specify the
name of the program converting from the existing customization file to the
defaults format as the value of the $Specialformat_ to_default s option
in the corresponding . d file. The program to go the other way is specified as
$Defaults_to_specialformat.

As an example, at Sun we have written programs to convert from the traditional
. mailrc file to the defaults format. The file
/usr/lib/defaults/Mail. d contains the lines:

/Mail ""
//$Specialformat_to_defaults "mailrc to defaults"
//$Defaults_to_specialformat "defaults to mailrc"

If a program is specified as the value for $Specialformat _to _ defaul t s
defaults edit runs the program the first time it needs to display the options for that
category. When the user saves the changes he has made to the database, and any
changes were made to the category, the $Defaults_to_specialformat
program is run.

To write your own conversion programs, use the following guidelines. Read the
customization file into the program. Then, to go from the customization file to
. defaults, you simply figure out the appropriate option value to set, and set it
with the routine defaults_set_string () .28 To go the other way,
retrieve the value from the defaults database with the appropriate get routine,
then make the appropriate change to the customization file.

Note: Conversion programs should use the master database, regardless of the
setting of the defaultsedit option Private-only. To do this, call the function
defaults_special_ffiode () as the first statement of your program.

28 defaults_set _string () is documented in lusr/lib/defaults/defaults. h.

Revision A of 15 October 1986

10.6. Error Handling

Error Action

Maximum Errors

Test Mode

Chapter 10 - The User Defaults Database 149

The defaults routines report errors by printing messages on the standard error
stream stderr. The most common cause for getting error messages is that a
program that uses the defaults database is copied from somewhere without also
copying the associated master defaults database file. While these messages are
annoying, in general the program will continue to work, since every routine that
accesses the defaults database has a de f au 1 t _val u e argument that will be
returned if an option is not present in the database.29

Using defaultsedit, the user can set two options for the defaults database itself to
control error reporting:

Error _Action controls what happens when an error is encountered. Possible
values are:

o Continue: print an error message and continue execution.

o Suppress: no action is taken.

o Abort: print an error message and terminate execution on encountering the
first error.

Most users will want to set Error _Action to either Continue or Suppress. Use
Suppress if you are getting all sorts of extraneous SunDefaults error messages.
Abort is useful for forcing programmers to track down extraneous error messages
prior to releasing software to a larger community .

Maximum_Errors puts a limit on the number of error messages which will be
printed regardless of the setting of Error _Action.

The option Test_Mode is provided to facilitate the testing of software prior to
release to a larger community. Use it to check for incorrect values for the
default_value argument to the get routines. When Test_Mode is set to
Enable, the defaults database is made inaccessible. In this mode, every time an
option value is accessed, a diagnostic message is generated and the value passed
in as default value is returned.

Note that once enabled, Test_Mode can not be disabled using defaultsedit. This
is one time when you must edit your . de fa ul t s file by hand, to set the
Test_Mode option to Disabled (or remove the entry altogether).

29 These error messages are not printed when Private _only is True.

~\sun ,~ microsystems
Revision A of 15 October 1986

150 SunView System Programmer's Guide

.10.7. Interface Summary
bool
defaults_get_boolean(option_name, default, 0)

char *option_name;
Bool default;

char
defaults_get_character(option_name, default, 0)

char *option_name;
char default;

int
de fault s_get_enum (option_name, pairs, 0)

char *option_name;
Defaults-pairs *pairs;

int
defaults_get_integer(option_name, default, 0)

char *option_name;
int default;

int
defaults_get_integer_check(option_name, default_value, \

min, max, 0)
char *option_name;
int default_value;
int min, max;

char *
defaults_get_string(option_name, default, 0)

char *option_name;
char *default;

/*
* defaults_set_character(path_name, value, status) will set
* path_name to value. Value is a character.
*/

defaults_set_character(path_name, value, status)
char *path_name; /* Name to look up */
char value; /* Character to set *1
int *status; /* Status flag */

Revision A of 15 October 1986

Chapter 10 - The User Defaults Database 151

/*
* defaults_set_enumeration(path_name, value, status) will se
* path_name to value. Value is a pointer to a string.
*/

void
defaults_set_enumeration(path_name, value, status)

char *path_name; /* Full node name */
/* Enumeration value
/* Status flag */

char *value;
int *status;

/*
* defaults_set_integer(path_name, value, status) will set
* path_name to value. Value is an integer.
*/

void
defaults_set_integer(path_name,

char *path_name;
int value;
int *status;

/*

value, status)
/* Full node name */
/* Integer value */
/* Status flag */

* defaults_set_string(path_name, value, status) will set
* path_name to value. Value is a pointer to a string.
*/

void
defaults_set_string(path_name,

char *path_name;
char *value;
int *status;

void
defaults_special_mode()

value, status)
/* Full node name */
/* New string value */
/* Status flag */

Revision A of 15 October 1986

11
Advanced Imaging

Advanced Imaging .. 155

11.1. Handling Fixup .. 155

11.2. Icons ... 156

Loading Icons Dynamically .. 156

Icon File Fonnat .. 156

11.3. Damage ... 158

Handling a SIGWINCH Signal .. 158

11.4. Pixwin Offset Control .. 160

11.1. Handling Fixup

11
Advanced Imaging

The chapter covers some ropics on low level image maintenance. There is also a
section on icon manipulation.

The routines pw _read (), pw _copy () and pw _get () may find them­
selves thwarted by trying to read from a portion of the pixwin which is hidden,
and therefore has no pixels. This can happen with a canvas that you have made
non-retained. When this happens, pw_fixup (a struct rectlist) in the
pixwin structure will be filled in by the system with the description of the
source areas which could not be accessed. The client must then regenerate this
part of the image into the destination. Retained pixwins will always return
rl_null in pw_fixup because the image is refreshed from the retained
memory pixrect.

The usual strategy when calling pw _copy () is to call the following routine to
restrict the pixwin's clipping to just that part of the image that needs to be fixed
up.

pw_restrictclipping(pw, rl)
Pixwin *pw;
Rectlist *rl;

You pass in &pw->pw_fixup as rl. Now you draw your entire pixwin.
Only the parts that need to be repaired are drawn. Now you need to reset your
pixwin so that you may access its entire visible surface.

pw_exposed(pw)
Pixwin *pw;

pw_ exposed () is the call that does this.

Dealing with fixup for pw _read () or pw _get () is really quite ludicrous.
One should really run these retained if they are using the screen as a storage
medium for their bits .

• \sun ,~ microsystems
155 Revision A of 15 October 1986

156 The Sun View System Programmer's Manual

11.2. Icons

Loading Icons Dynamically

Icon File Format

The basic usage of icons is described in the I cons chapter of the Sun View
Programmer's Guide. The opaque type Icon, and the functions and attributes
by which icons are manipulated, are defined in the header file
<suntool/icon.h>.

Applications such as icon editors or browsers, which need to load icon images at
run time, will need to use the functions described in this section. The definitions
necessary to use these functions are contained in
<suntool/icon_load.h>.

You can load an icon's image from a file with the call:

int
icon_load (icon, file, error_msg)

Icon icon;
char *file, *error_msg;

Icon is an icon returned by icon_create (); file is the name of a file
created with iconedit. error _ msg is the address of a buffer (at least 256
characters long) into which icon_load () will write a message in the event of
an error. If icon_load () succeeds, it returns zero; otherwise it returns 1.

The function

int
icon_init_from-pr(icon, pr)

Icon icon;
Pixrect *pr;

initializes the width and height of the icon's graphics area (attribute
ICON_lMAGE_RECT) to match the width and height of pro It also initializes
the icon's label (attribute ICON_LABEL) to NULL. The return value is mean­
ingless.

To load an image from a file into a pixrect, use the routine:

Pixrect
icon_load~pr(file, error_msg)

char *file, *error_msg;

This function allocates a pixrect, and loads it with the image contained in file.
If no problem is encountered, icon_load _ mpr () returns a pointer to the new
pixrect containing the image. If it can't access or interpret the file,
icon_load _ mpr () writes a message into the buffer pointed to by
error_msg and returns NULL.

iconedit writes out an ASCII file consisting of two parts: a comment describing
the image, and a list of hexadecimal constants defining the actual pixel values of
the image. The contents of the file <images/template. icon> are repro­
duced below, as an example:

~~sun ~i(? microsystems
Revision A of 15 October 1986

Chapter 11 - Advanced Imaging 157

/* Format_version=l, Width=16, Height=16, Depth=l, Valid_bits-per_item=16
* This file is the template for all images in the cursor/icon library.
* The first line contains the information needed to properly interpret
* the actual bits, which are expected to be used directly by software
* that wants to do compile-time binding to an image via a #include.
* The actual bits must be specified in hex.
* The default interpretation of the bits below is specified by the
* behavior of mpr_static.
* Note that Valid_bits-per_item uses the least-significant bits.
* See also: icon load.h.
* Description: A cursor that spells "TEMPLATE" using two lines, with a
* solid bar at the bottom.
* Background: White
*/

OxED2F, Ox49E9, Ox4D2F, Ox4928, Ox4D28, OxOOOO, OxOOOO, Ox8676,
Ox8924, Ox8F26, Ox8924, OxE926, OxOOOO, OxOOOO, OxFFFF, OxFFFF

The first line of the comment is composed of header parameters, used by the icon
loading routines to properly interpret the actual bits of the image. The
format _version exists to permit further development of the file format in a
compatible manner, and should always be 1. Default values for the other header
parameters are Depth=l, Width=64, Height=64,
Valid_bits-per_item=16.

The remainder of the comment can be used for arbitrary descriptive material.

The following function is provided to allow you to preserve this material when
rewriting an image file:

FILE *
icon_open_header(file, error_msg, info)

char *file, *error_msg;
icon_header_handle info;

typedef struct icon_header_object
int depth,

height,
format_version,
valid_bits-per_item,
width;

long last-param-pos;
} icon_header_object;

icon_open_header fills in info from file's header parameters.
info->last-param-pos is filled in with the position immediately after the
last header parameter that was read. The FILE * returned by
icon_open _header () is left positioned at the end of the header comment.
Thus ftell (icon_open_header (» indicates where the actual bits of the
image should begin, and the characters in the range

[info->last~aram-pos ... ftell(icon_open_header()]

encompass all of the extra descriptive material contained in the file's header.

Revision A of 15 October 1986

158 The Sun View System Programmer's Manual

11.3. Damage

Handling a SIGWINCH Signal

This section is included for those who can't use the Agent to hide all this com­
plexity. Try to use the Agent, because it is very hard to get the following right.

When a portion of a client's window becomes visible after having been hidden, it
is damaged. This may arise from several causes. For instance, an overlaying
window may have been removed, or the client's window may have been
stretched to give it more area. The client is notified that such a region exists by
the signal SIGWINCH; this simply indicates that something about the window has
changed in a fashion that probably requires repainting. It is possible that the
window has shrunk, and no repainting of the image is required at all, but this is a
degenerate case. It is then the client's responsibility to repair the damage by
painting the appropriate pixels into that area. The following. section describes
how to do that.

Note: it is a common programming error to try to access the pixwin at the
time a SIGWINCH is received, rather than after returning from the SIGWINCH

handler. Please read this section and avoid this problem.

There are several stages to handling a SIGWINCH. First, in almost all cases, the
procedure that catches the signal should not immediately try to repair the damage
indicated by the signal. Since the signal is a software interrupt, it may easily
arrive at an inconvenient time, halfway through a window's repaint for some nor­
mal cause, for instance. Consequently, the appropriate action in the signal
handler is usually to set a flag which will be tested elsewhere. Conveniently, a
SIGWINCH is like any other signal; it will break a process out of a select (2) sys­
tem call, so it is possible to awaken a client that was blocked, and with a little
investigation, discover the cause of the SIGWINCH. See the select (2) system
call and refer to the window_main_loop () mechanism in Tool Processing
for an example of this approach.

Once a process has discovered that a SIGWINCH has occurred and arrived at a
state where it's safe to do something about it, it must determine exactly what has
changed, and respond appropriately. There are two general possibilities: the
window may have changed size, and/or a portion of it may have been uncovered.

win_getsize () (described in Windows) can be used to inquire the current
dimensions of a window. The previous size must have been remembered, for
instance from when the window was created or last adjusted. These two sizes are
compared to see if the size has changed. Upon noticing that its size has changed,
a window containing other windows may wish to rearrange the enclosed win­
dows, for example, by expanding one or more windows to fill a newly opened
space.

Whether a size change occurred or not, the actual images on the screen must be
fixed up. It is possible to simply repaint the whole window at this point - that
will certainly repair any damaged areas - but this is often a bad idea because it
typically does much more work than necessary.

Therefore, the window should retrieve the description of the damaged area, repair
that damage, and inform the system that it has done so: The pw _ damaged ()

procedure:

~\sun ,~ microsystems
Revision A of 15 October 1986

CAUTION

pw_damaged(pw)
Pixwin *pw;

Chapter 11- Advanced Imaging 159

is a procedure much like pw _exposed (). It fills in pwcd _clipping with
a rectlist describing the area of interest, stores the id of that rectlist in
the pixwin's pw_opshandle and in pwcd_damagedid as well. It also
stores its own address in pwco_getclipping, so that a subsequent lock will
check the correct rectlist. All the clippers are set up too. Colormap seg­
ment offset initialization is done, as described in Surface Preparation.

A call to pw _damaged should AL WAYS be made in a sigwinch handling
routine. Likewise, pw _ donedamaged should ALWAYS be called before
returning from the sigwinch handling routine. While a program that runs
on monochrome displays may appear to function correctly if this advice is
not followed, running such a program on a color display will produce pecu­
liarities in color appearance.

Now is the time for the client to repaint its window - or at least those portions
covered by the damaged rectlist; if the regeneration is relatively expensive,
that is if the window is large, or its contents complicated, it may be worth res­
tricting the amount of repainting before the clipping that the rectlist will
enforce. This means stepping through the rectangles of the rectlist, deter­
mining for each what data contributed to its portion of the image, and recon­
structing only that portion. See the chapter on rectIists for details about rectlists.

For retained pixwins, the following call can be used to copy the image from the
backup pixrect to the screen:

pw_repairretained(pw)
Pixwin *pw;

When the image is repaired, the client should inform the window system with a
call to:

pw_donedamaged(pw)
Pixwin *pw;

pw _ donedamaged () allows the system to discard the rectlist describing
this damage. It is possible that more damage will have accumulated by this time,
and even that some areas will be repainted more than once, but that will be rare.

After calling pw _ donedamaged () , the pixwin describes the entire visible
area of the window.

A process which owns more than one window can receive a SIGWINCH for any of
them, with no indication of which window generated it. The only solution is to
fix up all windows. Fortunately, that should not be overly expensive, as only the
appropriate damaged areas are returned by pw _damaged () .

Revision A of 15 October 1986

160 The Sun View System Programmer's Manual

11.4. Pixwin Offset Control The following routines control the offset of a pixwin's coordinate space. They
can be used for writing in a fixed coordinate space even though the pixwin moves
about relative to the window's origin.

void
pw_set_x_offset(pw, offset)

Pixwin *pw;
int offset;

void
pw_set_y_offset(pw, offset)

Pixwin *pw;
int offset;

void
pw_set_xy_offset(pw, int x_offset, y_offset)

Pixwin *pw;
int x_offset, y_offset;

int
pw_get_x_offset(pw)

Pixwin *pw;

int
pw_get_y_offset(pw)

Pixwin *pw;

Revision A of 15 October 1986

12
Menus & Prompts

Menus & Prompts .. 163

12.1. Full Screen Access ... 163

Initializing Fullscreen Mode ... 164

Releasing Fullscreen Mode ... 164

Seizing All Inputs ... 164

Grabbing I/O .. 164

Releasing I/O ... 164

12.2. Surface Preparation .. 164

Multiple Plane Groups ... 165

Pixel Caching .. 165

Saving Screen Pixels ... 165

Restoring Screen Pixels ... 166

Fullscreen Drawing Operations .. 166

12.1. Full Screen Access

12
Menus & Prompts

This chapter describes routines that you will probably need when writing a menu
or prompt package of your own. Note, however, that the menu facility docu­
mented in the Menus chapter of the SunView Programmer's Guide is pretty good,
and you can use window_loop () together with one of the SunView window
types to create sophisticated prompts.

To provide certain kinds of feedback to the user, it may be necessary to violate
window boundaries. Pop-up menus, prompts and window management are
examples of the kind of operations that do this. The fullscreen interface provides
a mechanism for gaining access to the entire screen in a safe way. The package
provides a convenient interface to underlying sunwindow primitives. The fol­
lowing structure is defined in <suntool/fullscreen .. h>:

struct fullscreen {

} ;

int
struct
struct
struct
struct
int
struct

fs_windowfd;
rect fs_screenrect;
pixwin *fs-pixwin;
cursor fs_cachedcursor;
inputmask fs_cachedim; /* Pick mask */
fs_cachedinputnext;
inputmask fs_cachedkbdim; /* Kbd mask */

fs_windowfd is the window that created the fullscreen object.
fs_~creenrect describes the entire screen's dimensions. fsyixwin is
used to access the screen via the pixwin interface. The coordinate space of
full screen access is the same as fs_windowfd's. Thus, pixwin accesses are
not necessarily done in the screen's coordinate space. Also, fs_screenrect
is in the window's coordinate space. If, for example, the screen is 1024 pixels
wide and 800 pixels high, fs_windowfd has its left edge at 300 and its top
edge at 200, that is, both relative to the screen's upper left-hand comer, then
fs_screenrect is {-300, -200, 1024, 800}.

The original cursor, fs_cachedcursor, input mask, fs_cachedim, and
the window number of the input redirection window,
fs_cachedinputnext, are cached and later restored when the full screen
access object is destroyed.

~\sun ,~ microsystems
163 Revision A of 15 October 1986

164 The Sun View System Programmer's Guide

Initializing Fullscreen Mode

Releasing Fullscreen Mode

Seizing All Inputs

Grabbing I/O

Releasing I/O

12.2. Surface Preparation

struct full screen *
fullscreen_init(windowfd)

intwindowfd;

gains full screen access for windowfd and caches the window state that is
likely to be changed during the lifetime of the fullscreen object. windowfd is
set to do blocking I/O. A pointer to this object is returned.

During the time that the full screen is being accessed, no other processes can
access the screen, and all user input is directed to fs->fs_windowfd.
Because of this, use full screen access infrequently and for only short periods of
time.

fullscreen_destroy(fs)
struct fullscreen *fs;

fullscreen_destroy () restores fs's cached data, releases the right to
access the full screen and destroys the fullscreen data object.
f s-> f s _ w indowf d's input blocking status is returned to its original state.

Fullscreen access is built out of the grab I/O mechanism described here. This
lower level is useful if you wanted to only grab input.

Normally, input events are directed to the window which underlies the cursor at
the time the event occurs (or the window with the keyboard focus, It you have
split pick/keyboard focus). Two procedures modify this state of affairs.

A window may temporarily seize all inputs by calling:

win_grabio(windowfd)
int windowfd;

The caller's input mask still applies, but it receives input events from the whole
screen; no window other than the one identified by windowfd will be offered
an input event or allowed to write on the screen after this call.

win_releaseio(windowfd)
int windowfd;

undoes the effect of a win _ gr abio () , restoring the previous state ..

In order for a client to ignore the offset of his colormap segment the image of the
pixwin must be initialized to the value of the offset. This surface preparation is
done automatically by pixwins under the following circumstances:

o The routine pw _damaged () does surface preparati~n on the area of the
pixwin that is damaged.

o The routine pwyutcolormap () does surface preparation over the
entire exposed portion of a pixwin if a new colormap segment is being
loaded for the first time.

For monochrome displays, nothing is done during surface preparation. For color
displays, when the surface is prepared, the low order bits (colormap segment size

f;\sun
,~ microsystems

Revision A of 15 October 1986

Multiple Plane Groups

Pixel Caching

Saving Screen Pixels

Chapter 12 - Menus & Prompts 165

minus 1) are not modified. This means that surface preparation does not clear the
image. Initialization of the image (often clearing) is still the responsibility of
client code.

There is a case in which surface preparation must be done explicitly by client
code. When window boundaries are knowingly violated, as in the case of pop-up
menus, the following procedure must be called to prepare each rectangle on the
screen that is to be written upon:

pw-preparesurface(pw, rect)
Pixwin *PWi
Rect *recti

rect is relative to pw's coordinate system. Most commonly, a saved copy of
the area to be written is made so that it can be restored later - see the next sec­
tion.

On machines with multiple plane groups (such as the Sun-3/110),
pwyreparesurface () will correctly set up the enable plane so that the
re ct you are drawing in is visible. If you do not use
pwyreparesurface (), it is possible that part of the area you are drawing
on is displaying values from another plane group, so that part of your image will
be occluded.

If your application violates window boundaries to put up fullscren menus and
prompts, it is often desirable to remember the state of the screen before you drew
on it and then repair it when you are finished. On machines with multiple plane
groups such as the Sun-3/110 you need to restore the state of the enable plane
and the bits in the other plane group(s). There are routines to help you do this.

This routine saves the screen image where you area about to draw:

Pw-pixel_cache *
pw_save-pixels(pw, rect)i

Pixwin *PWi
Rect *recti

typedef struct pw-pixel_cache
Rect recti
struct pixrect * plane_group(PIX_MAX_PLANE_GROUPS]i

Pw-pixel_cachei

pw_save_pixels () tries to allocate memory to store the contents of the pix­
els in recto If it is unable to, it prints out a message on stderr and returns
PW _PIXEL_CACHE _NULL. If it succeeds, it returns a pointer to a structure
which holds the rect rect and an array of pixrects with the values of the pixels
in rect in each plane group.

Revision A of 15 October 1986

166 The Sun View System Programmer's Guide

Restoring Screen Pixels

Fullscreen Drawing
Operations

Then, when you have finished full screen access, you restore the image which you
drew over with:

void
pw_restore-pixels(pw, pc);

Pixwin *pw;
Pw-pixel_cache *pc;

pw_restoreyixels () restores the state of the screen where you drew. All
the information it needs is in the Pw yixel_ cache pointer that
pw _save_pixels () returned.

If you use pw _preparesurface () , you will be given a homogeneous area
on which to draw during fullscreen access. However, for applications such as
adjusting the size of windows ("rubber-banding"), you do not want to obscure
what is underneath. On the other hand, on a machine with multiple plane groups
you want your fullscreen access to be visible no matter what plane groups are
being displayed.

The following routines perform the same vector drawing, raster operation and
pixwin copying as their counterparts in Imaging Facilities: Pixwins in the Sun­
View Programmer's Guide. The difference is that these routines guarantee that
the operation will happen in all plane groups so it will definitely be visible on­
screen.

CAUTION To save a lot of overhead, these routines make certain assumptions which
must be followed.

Anyone calling these fullscreen _pw _ * routines must

o have called fullscreen _ ini t ()

o have not done any surface preparation under the pixels affected

o havenotcalled pw_lock()

o use the full screen pixwin during this call

o use a PIX_NOT (PIX_DST) operation.

void
fullscreen-pw_vector(pw, xO, yO, xl, yl, op, value);

Pixwin ·*pw;
int xO, yO, xl, yl, op, value;

void
fullscreen-pw_write(pw, xw, yw, width, height, op,

tt\sun ~~ microsystems

pr, xr, yr);
Pixwin *pw;
int xw, yw, width, height, op, xr, yr;
Pixrect *Ipr;

Revision A of 15 October 1986

Chapter 12 - Menus & Prompts 167

void
fullscreen-pw_capy(pw, xw, yw, width, height, ap,

pw_src, xr, yr) i

Pixwin *pw, *pw_srci
int xw, yw, width, height, ap, xr, yri

~\sun ,~ microsystems
Revision A of 15 October 1986

13
Window Management

Window Management ... 171

Tool Invocation .. 172

Utilities :... 173

13.1. Minimal Repaint Support ... 174

13
Window Management

The window management routines provide the standard user interface presented
by tool windows:

wmgr_open(toolfd, rootfd)

wmgr_close(toolfd, rootfd)

wmgr_move(toolfd)

wmgr_stretch(toolfd)

wmgr_top(toolfd, rootfd)

wmgr_bottom(toolfd, rootfd)

wmgr_refreshwindow(windowfd)

wmgr_open () opens a tool window from its iconic state to normal size.
wmgr_close () closes a tool window from its normal size to its iconic size.
wmgr _move () prompts the user to move a tool window or cancel the operation.
If confirmed, the rest of the move interaction, including dragging the window and
moving the bits on the screen, is done. wmgr_stretch () is like
wmgr _move () , but it stretches the window instead of moving it.
wmgr _top () places a tool window on the top of the window stack.
wmgr _bot tom () places the tool window on the bottom of the window stack.
wmgr_refreshwindow () causes windowfd and all its descendant win­
dows to repaint.

The routine wmgr_changerect () :

wmgr_changerect(feedbackfd, windowfd, event, move, noprompt)
int feedbackfd, windowfd;
Event *event;
bool move, noprompt;

implements wmgr-Yl0ve () and wmgr_stretch (), including the user
interaction sequence. windowfd is moved (1) or stretched (0) depending on
the value of move. To accomplish the user interaction, the input event is read
from the feedbackfd window (usually the same as windowfd). The
prompt is turned off if noprompt is 1.

171 Revision A of 15 October 1986

172 The Sun View System Programmer's Guide

Tool Invocation

int
wmgr_confirm(windowfd, text)

int windowfd;
char *text;

wmgr _ conf i rm () implements a layer over the prompt package for a standard
confirmation user interface. text is put up in a prompt box. If the user
confirms with a left mouse button press, then -1 is returned. Otherwise, 0 is
returned.

Note: The up button event is not consumed.

The routines in this section provide tool invocation and default position control.

fdefine WMGR SETPOS -1

wmgr_figuretoolrect(rootfd, rect)
int rootfd;
Rect *rect;

wmgr_figureiconrect(rootfd, rect)
int rootfd;
Rect *rect;

These routines allow windows to be assigned initial positions that don't pile up
on top of one another. The rootfd window maintains a "next slot" position
for both normal tool windows and icon windows (see
wmgr _ setrectalloc () below). These procedures assign the next slot to the
rect if rect->r _left or rect->r _top is equal to WMGR_SETPOS. A new
slot is chosen and is then available for the next window with an undefined posi­
tion.

These procedures also assign a default width and height ifWMGR _SETPOS is
given, again for both normal (tool) and iconic rects.
wmgr _ figuretoolrect () currently assigns tool window slots that march
from near the top middle of the screen towards the bottom left of the screen. It
assigns a window size correct for an SO-column by 34-row terminal emulator
window. wmgr _ figureiconrect () currently assigns icon slots that
march from the left bottom towards the right of the screen. It assigns icon sizes
that are 64 by 64 pixels.

wmgr_forktool(programname, otherargs, rectnormal, recticon,
iconic)

char *programname, *otherargs;
Rect *rectnormal, *recticon;
int iconic;

is used to fork a new tool that has its normal rectangle set to rectnormal and
its icon rectangle set to recticon. If iconic is not zero, the tool is created
iconic. programname is the name of the file that is to be run and oth-
er args is the command line that you want to pass to the tool. A path search is
done to locate the file. Arguments that have embedded white space should be

~\sun ,~ microsystems
Revision A of 15 October 1986

Utilities

Chapter 13 - Window Management 173

enclosed by double quotes.

The utilities described here are some of the low level routines that are used to
implement the higher level routines. They may be used to put together a window
management user interface different from that provided by tools. If a series of
calls is to be made to procedures that manipulate the window tree, the whole
sequence should be bracketed by win_lockdata () and
win_unlockdata () ,as described in The Window Hierarchy.

wmgr_completechangerect(windowfd, rectnew, rectoriginal,
parentprleft, parentprtop)

int windowfd;
Rect *rectnew, *rectoriginal;
int parentprleft, parentprtop;

does the work involved with changing the position or size of a window's rect.
This involves saving as many bits as possible by copying them on the screen so
they don't have to be recomputed. wmgr _ completechangerect () would
be called after some programmatic or user action determined the new window
position and size in pixels. windowfd is the window being changed.
rectnew is the window's new rectangle. rectoriginal is the window's
original rectangle. parentprleft and parentprtop are the upper-left
screen coordinates of the parent of windowfd.

wmgr_winandchildrenexposed(pixwin, rl)
Pixwin *pixwin;
Rectlist *rl;

computes the visible portion of
pixwin->pw_clipdata .pwcd_windowfd and its descendants and stores
it in r 1. This is done by any window management routine that is going to try to
preserve bits across window changes. For example,
wmgr _ completechangerect () calls
wmgr _ winandchildrenexposed () before and after changing the window
size/position. The intersection of the two rectlists from the two calls are those
bits that could possibly be saved.

wmgr_changelevel(windowfd, parentfd, top)
int windowfd, parentfd;
bool top;

moves a window to the top or bottom of the heap of windows that are descen­
dants of its parent. windowfd identifies the window to be moved;
parentfd is the file descriptor of that window's parent, and top controls
whether the window goes to the top (TRUE) or bottom (FALSE). Unlike
wmgr _top () and wmgr _bot tom () , no optimization is performed to reduce
the amount of repainting. wmgr _ changelevel () is used in conjunction
with other window rearrangements, which make repainting unlikely. For exam­
ple, wmgr_close () puts the window at the bottom of the window stack after
changing its state.

Revision A of 15 October 1986

174 The Sun View System Programmer's Guide

13.1. Minimal Repaint
Support

*define WMGR ICONIC WUF WMGRl

wmgr_iswindowopen(windowfd)
int windowfd;

The user data of windowfd reflects the state of the window via the
WMGR _ICONIC flag. WUF _ WMGRl is defined in < sunwindowlwin _ioetl.h> and
WMGR _ICONIC is defined in <suntool!wmgr.h>. wmgr _ iswindowopen ()
tests the WMGR_ICONIC flag (see above) and returns TRUE or FALSE as the win­
dow is open or closed.

Note that client programs should never set or clear the WMGR _ICONIC flag.

The rootfd window maintains a "next slot" position for both normal tool
windows and icon windows in its unused iconic rect data.
wmgr _ setrectalloc () stores the next slot data and
wmgr _getrectalloc () retrieves it:

wmgr_setrectalloc(rootfd, tool_left, tool_top,
icon_left, icon_top)

int rootfd;
short tool_left, tool_top, icon_left, icon_top;

wmgr_getrectalloc(rootfd, tool_left, tool_top,

int rootfd;
short *tool_left, *tool_top, *icon_left, *icon_top;

If you do a wmgr_setrectalloc () ,make sure that all the values you are
not changing were retrieved with wmgr_getrectalloc (). In other words,
both procedures affect all the values. .

This is an extremely advanced subsection used only for those who might want to
implement routines similar of the higher level window management routines
mentioned above. This section has strong connections to the Advanced Imaging
chapter and the chapter on Reets and Rectlists. Readers should refer to both from
here.

Moving windows about on the screen may involve repainting large portions of
their image in new places. Often, the existing image can be copied to the new
location, saving the cost of regenerating it. Two procedures are provided to sup­
port this function:

win_computeclipping(windowfd)
int windowfd;

causes the window system to recompute the exposed and damaged rectlists for
the window identified by windowfd while withholding the SIGWINCH that will
tell each owner to repair damage.

~\sun ,~ microsystems
Revision A of 15 October 1986

win-partialrepair(windowfd, r)
int windowfdi
Rect *ri

Chapter 13 - Window Management 175

tells the window system to remove the rectangle r from the damaged area for
the window identified by windowfd. This operation is a no-op if windowfd
has damage accumulated from a previous window database change, but has not
told the window system that it has repaired that damage.

Any window manager can use these facilities according to the following strategy:

o The old exposed areas for the affected windows are retrieved and cached.
(pw_exposed ()

o The window database is locked and manipulated to accomplish the rear­
rangement. (win_lockdata (), win_remove (), win_setlink (),
win _ setrect () , win_insert () ...)

o The new area is computed, retrieved, and intersected with the old.
(win_ computeclipping (), pw _exposed () ,
rl_intersection()

o Pixels in the intersection are copied, and those areas are removed from the
subject window's damaged area. (pw _lock (), pr _copy () ,
win-partialrepair()

o The window database is unlocked, and any windows still damaged get the
signals informing them of the reduced damage which must be repaired.

~\sun ,~ microsystems
Revision A of 15 October 1986

14
Reets and Reetlists

Reets an.d Rectlists ... 179

14.1. Rects ... 179

Macros on Rects .. 179

Procedures and External Data for Rects .. 180

14.2. Rectlists .. 181

Macros and Constants Defined on Rectlists .. 182

Procedures and External Data for Rectlists ... 182

14.1. Rects

Macros on Rects

14
Rects and Rectlists

This chapter describes the geometric structures and operations Sun View provides
for doing rectangle algebra.

Images are dealt with in rectangular chunks. The basic structure which defines a
rectangle is the recto Where complex shapes are required, they are built up out of
groups of rectangles. The structure provided for this purpose is the rectlist.

These structures are defined in the header files The header files
<sunwindowlrect.h> and <sunwindowlrectlist.h> The library that provides the
implementation of the functions of these data types is part of
lusrl libl libsunwindow .a.

The rect is the basic description of a rectangle, and there are macros and pro­
cedures to perform common manipulations on a rect.

#define coord short

typedef struct rect
coord
coord
short
short

Recti

r_lefti
r_toPi
r_widthi
r_heighti

The rectangle lies in a coordinate system whose origin is in the upper left-hand
comer and whose dimensions are given in pixels.

The same header file defines some interesting macros on rectangles. To deter­
mine an edge not given explicitly in the rect:

#define rect_right(rp)
#define rect_bottom(rp)
Rect *rpi

returns the coordinate of the last pixel within the rectangle on the right or bottom,
respectively.

Useful predicates returning TRUE or FALSE are:

~\sun ,~ microsystems
179 Revision A of 15 October 1986

180 Sun View System Programmer's Guide

Procedures and External Data
for Rects

#define bool
#define TRUE
#define FALSE

unsigned
1
o

rect_isnull(r)
rect_includespoint(r,x,y)
rect_equal(rl, r2)

/* r's width or height is
/* (x,y) lies in r

o */
*/

rect_includesrect(rl, r2)

rect_intersectsrect(rl, r2)

Rect *r, *rl, *r2;
coord x, y;

/* rl and r2 coincide
* exactly */

/* every point in ,2
* lies in rl */

/* at least one point lies
* in both ,1 and ,2 */

Macros which manipulate dimensions of rectangles are:

rect_construct(r, x, y, w, h)
Rect *r;
int x, y, w, h;

This fills in r with the indicated origin and dimensions.

Rect *r;
int m;

adds a margin of m pixels on each side of r; that is, r becomes 2*m larger in
each dimension.

rect-passtoparent(x, y, r)
rect-passtochild(x, y, r)

coord x, y;
Rect *r;

sets the origin of the indicated rect to transform it to the coordinate system of a
parent or child rectangle, so that its points are now located relative to the parent
or child's origin. x and yare the origin of the parent or child rectangle within
its parent; these values are added to, or respectively subtracted from, the origin
of the rectangle pointed to by r, thus transforming the rectangle to the new
coordinate system.

A null rectangle, that is one whose origin and dimensions are all 0, is defined for
convenience:

extern struct rect rect_null;

The following procedures are also defined in rect. h:

Rect
rect_bounding(rl, r2)

Rect *rl, *r2;

This returns the minimal rect that encloses the union of r 1 and r 2. The
returned value is a struct, not a pointer.

*/

~\sun ~ microsystems
Revision A of 15 October 1986

NOTE

14.2. Rectlists

Chapter 14 - Rects and Rectlists 181

rect_intersection(rl, r2, rd)
Rect *rl, *r2, *rdi

computes the intersection of rl and r2, and stores that rect into rd.

bool
rect_clipvector(r, xO, yO, xl, yl)

Rect *r;
coord *xO, *yO, *xl, *yl;

modifies the vector endpoints so they lie entirely within the rect, and returns
FALSE if that excludes the whole vector, otherwise it returns TRUE.

This procedure should not be used to clip a vector to multiple abutting rectan­
gles. It may not cross the boundaries smoothly.

bool rect_order(rl, r2, sortorder)
Rect *rl, *r2;
int sortorder;

returns TRUE if rl precedes or equals r2 in the. indicated ordering:

#define
#define
#define
#define

RECTS TOPTOBOTTOM
RECTS BOTTOMTOTOP
RECTS LEFTTORIGHT
RECTS RIGHTTOLEFT

Two related defined constants are:

#define RECTS UNSORTED

indicating a "don't-care" order, and

#define RECTS SORTS

° I
2
3

4

4

giving the number of sort orders available, for use in allocating arrays and so on.

A rectlist is a structure that defines a list of rects. A number of rectangles may be
collected into a list that defines an interesting portion of a larger rectangle. An
equivalent way of looking at it is that a large rectangle may be fragmented into a
number of smaller rectangles, which together comprise all the larger rectangle's
interesting portions. A typical application of such a list is to define the portions
of one rectangle remaining visible when it is partially obscured by others.

typedef struct rectlist {
coord
Rectnode
Rectnode
Rect

Rectlist;

rl_x, rl_y;
*rl_head;
*rl_tail,
rl_bound;

typedef struct rectnode
Rectnode *rn_next;
Rect rn_rect;

Rectnode;

Revision A of 15 October 1986

182 Sun View System Programmer's Guide

Macros and Constants
Defined on Rectlists

Procedures and External Data
for Rectlists

Each node in the rectlist contains a rectangle which covers one part of the visible
whole, along with a pointer to the next node. r I_bound is the minimal
bounding rectangle of the union of all the rectangles in the node list. All rectan­
gles in the rectlist are described in the same coordinate system, which may be
translated efficiently by modifying r I_x and r l_y.

The routines that manipulate rectlists do their own memory management on
rectnodes, creating and freeing them as necessary to adjust the area described by
the rectlist.

Macros to perform common coordinate transformations are provided:

rl_rectoffset(rl, rs, rd)
Rectlist *rl;
Rect *rs, *rd;

copies rs into rd, and then adjusts rd's origin by adding the offsets from
rl.

rl_coordoffset(rl, x, y)
Rectlist *rl;
coord x, y;

offsets x and y by the offsets in r 1. For instance, it converts a point in one of
the rects in the rectnode list of a rectlist to the coordinate system of the rectlist's
parent.

Parallel to the macros on rect's, we have:

rl-passtoparent(x, y, rl)
rl-passtochild(x, y, rl)

coord x, y;
Rectlist *rl;

which add or subtract the given coordinates from the rectlist's r 1 x and r l_y
to convert the r1 into its parent's or child's coordinate system.

An empty rectlist is defined, which should be used "to initialize any rectlist before
it is operated on:

extern struct rectlist rl_null;

Procedures are provided for useful predicates and manipulations. The following
declarations apply uniformly in the descriptions below:

Rectlist *rl, *rll, *r12, *rld;
Rect *r;
coord x, y;

Predicates return TRUE or FALSE. Refer to the following table for specifics.

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 14 - Reets and Rectlists 183

Table 14-1 Rectlist Predicates

Macro

rl_empty(rl)

rl_equal(rll, r12)

Returns TRUE if

Contains only null rects

The two rectlists describe the same space identically -
same fragments in the same order

rl_includespoint(rl,x,y)

rl_equalrect(r, rl)

rl_boundintersectsrect(r, rl)

(x,y) lies within some rect of rl

r 1 has exactly one rect, which is the same as r

Some point lies both in r and in r 1 's bounding rect

Manipulation procedures operate through side-effects, rather than returning a
value. Note that it is legitimate to use a rectlist as both a source and destination
in one of these procedures. The source node list will be freed and reallocated
appropriately for the result. Refer to the following table for specifics.

~\sun ,~ microsystems
Revision A of 15 October 1986

184 Sun View System Programmer's Guide

Table 14-2 Rectlist procedures

Procedure Effect

r1_intersection(r11, r12, r1d}

r1_union(r11, r12, r1d)

r1_difference(r11, r12, r1d}

r1_coa1esce(r1}

r1_sort(r1, r1d, sort}
int sort;

__ , ____ ..L ..! _..L ______ .L. ..! _ -. ~ __ __ , __ ,l \

L.L_Lt::\,.;L..L.1lL.t::L;::;t::\,.;L..LV.Ll\L, L...L., J.....L.u./

r1_rectunion(r, r1, r1d}

r1_rectdifference(r, r1, r1d}

r1_initwithrect(r, r1}

r1_copy(r1, r1d}

r1_free(r1}

r1_norma1ize(r1}

~\sun ,~ microsystems

Stores into r 1d a rectlist which covers the intersection of
r11 and r12.

Stores into r1d a rectlist which covers the union of r11
and r12.

Stores into r1d a rectlist which covers the area of r11 not
covered by r12

An attempt is made to shorten r 1 by coalescing some of its
fragments. An r 1 whose bounding rect is completely
covered by the union of its node rects will be collapsed to a
single node; other simple reductions will be found; but the
general solution to the problem is not attempted.

r 1 is copied into r 1d, with the node rects arranged in
sort order.

r 1 d is filled with a rcctlist that coven; the intersection of r
and rl.

r 1 d is filled with a rectlist that covers the union of rand
rl.

r 1 d is filled with a rectlist that covers the portion of r 1
which is not in r.

Fills in r 1 so that it covers the rect r

Fills in r 1d with a copy of r l.

Frees the storage allocated to r 1.

Resets r1's offsets (r1_x,r1_y) to be 0 after adjusting the
origins of all rects in r 1 accordingly.

Revision A of 15 October 1986

15
Scrollbars

Scrollbars .. 187

15.1. Basic Scrollbar Management ... 187

Registering as a Scrollbar Client ... 187

Keeping the Scrollbar Informed .. :........................ 188

Handling the SCROLL_REQUEST Event ... 189

Performing the Scroll ... 190

Norm.alizing the Scroll... 190

Painting Scrollbars ... 191

15.2. Advanced Use of Scrollbars ... 191

Types of Scrolling Motion in Simple Mode .. 192

Types of Scrolling Motion in Advanced Mode ... 193

IS.I. Basic Scroll bar
Management

Registering as a Scrollbar
Client

15
Scrollbars

Canvases, text subwindows and panels have been designed to work with
scrollbars. The text subwindow automatically creates its own vertical scrollbar.
For canvases and text subwindows, it is your responsibility to create the scrollbar
and pass it in via the attributes WIN_VERT I CAL _ S CROLLBAR or
WIN HORIZONTAL SCROLLBAR.

The chapter on scrollbars in the SunView Programmer's Guide covers what most
applications need to know about scrollbars.

The material in this chapter will be of interest only if you are writing an applica­
tion not based on canvases, text subwindows or panels, and you need to com­
municate with the scrollbar directly as events are received. This chapter is
directed to programmers writing software which receives scroll-request events
and implements scrolling.

The definitions necessary to use scrollbars are found in the header file
<suntool/scrollbar.h>

The scrollbar receives events directly from the Notifier. The user makes a scroll
request by releasing a mouse button over the scrollbar. The scrollbar's job is to
translate the button-up event into a scrolling request event, and send this event,
via the N otifier, to its client.

To receive scrolling request events, the client must register itself with the
scrollbar via the SCROLL_NOTIFY _CLIENT attribute. For example,
panel_1 would register as a client of bar_l with the call:

scrollbar_set<bar_l, SCROLL_NOTIFY_CLIENT, panel_I, 0);

NOTE Before registering with the scrollbar, the client must register with the Notifier by
calling win_register ().

In most applications, such as the panel example above, the client and the scrol­
ling object are identical. However, they may well be distinct. In such a case, if
the client wants the scroll bar to keep track of which object the scrollbar is being
used with, the client has to inform the scroll bar explicitly of the object which is
to be scrolled. This is done by setting the SCROLL OBJECT attribute.

~\sun ~~ microsystems
187 Revision A of 15 October 1986

188 SunView System Programmer's Guide

Keeping the Scrollbar
Informed

For example, in the text subwindow package, the text sub window is the client to
be notified. Within a given text subwindow there may be many views onto the
underlying file. Each of these views has its own scrollbar. So each scrollbar
created by the text subwindow will have the text subwindow as
SCROLL_NOTIFY_CLIENT and the particular view as SCROLL_OBJECT.
So to create scrollbars for two views, the text subwindow package would call:

scrollbar_set(bar_l,
SCROLL_NOTIFY_CLIENT, textsubwindow_l,
SCROLL_OBJECT, view_I,
0) ;

scrollbar set(bar_2,
SCROLL_NOTIFY CLIENT, textsubwindow_l,
SCROLL_OBJECT,
0) ;

The visible portion of the scrolling object is called the view into the object The
scrollbar displays a bubble representing both the location of the view within the
object and the size of the view relative to the size of the object. In order to com­
pute the size and location of the bubble, and to compute the new offset into the
object after a scroll, the scrollbar needs to know the current lengths of both the
object and the view.

The client must keep the scrollbar informed by setting the attributes
SCROLL OBJECT LENGTH and SCROLL VIEW LENGTH. There are two
obvious strategies for when to update this information. You can ensure that the
scrollbar is always up-to-date by informing it whenever the lengths in question
change. If this is too expensive (because the lengths change too frequently) you
can update the scrollbar only when the cursor enters the scrollbar.

This strategy of updating the scrollbar when it is entered can be implemented as
follows. When the scrollbar gets a LOC _ RGNENTER or LOC _ RGNEXIT event,
it causes the event-handling procedure of its notify client to be called with a
SCROLL ENTER or SCROLL EXIT event. The client then catches the
SCROLL_ENTER event and updates the scrollbar, as in the example below.
(Note that the scrollbar handle to use for the scrollbar _set () call is
passed in as arg).

~\sun ~ microsystems
Revision A of 15 October 1986

Handling the
SCROLL_REQUEST Event

Chapter 15 - Scrollbars 189

Notify_value
panel_event-proc(client, event, arg, type)

caddr_t client;
Event *event;
Notify_arg arg;
Notify_event_type type;

switch (event_id(event»

case SCROLL ENTER:
scrollbar_set«Scrollbar)arg,

SCROLL_OBJECT_LENGTH, current_obj_length,
SCROLL_VIEW_START, current_view_start,
SCROLL_VIEW_LENGTH, current_view_Iength,
0) ;

break;

The client can interpret the values of SCROLL_OBJECT _LENGTH,
SCROLL VIEW LENGTH and SCROLL VIEW START in whatever units it
wants to. For example, the panel package uses pixel units, while the text subwin­
dow package uses character units.

When the user requests a scroll, the scrollbar client's event-handling procedure
gets called with an event whose event code is SCROLL_REQUEST. The event
proc is passed an argument (arg in the example below) for event-specific data.
In the case of scrollbar-related events, arg is a scrollbar handle (type
Scrollbar). As in the example below, the client's event proc must switch on
the SCROLL_REQUEST event and call a procedure to actually perform the
scroll:

Notify_value
panel_event_proc(panel, event, arg, type)

Panel panel;
Event *event;
Notify_arg arg;
Notify_event_type type;

switch (event_id(event»

case SCROLL_REQUEST:
do_scroll (panel, (Scrollbar)arg);
break;

Revision A of 15 October 1986

190 Sun View System Programmer's Guide

Performing the Scroll

Normalizing the Scroll

The new offset into the scrolling object is computed by the Scrollbar Package,
and is available to the client via the attribute SCROLL VIEW START. The
client's job is to paint the object starting. at the new offset, and to paint the
scrollbar reporting the scroll, so that its bubble will be updated to reflect the new
offset. So in the simplest case the client's scrolling routine would look some­
thing like this:

do_scroll (sb)
Scrollbar sb;

/* paint scrollbar to show bubble in new position */
scrollbar-paint(sb};

/* get new offset into object from scrollbar */
new_view_start = (unsigned) scrollbar_get(sb, SCROLL_VIEW_START);

/* client's proc to paint object at new offset */
paint_object(sb->object, new_view_start};

If the client has both a horizontal and a vertical scrollbar, it will probably be
necessary to distinguish the direction of the scroll, as in:

.4 "' 111"''h\ ---------\--,
Scrollbar sb;

/* paint the scrollbar to show bubble in new position */
scrollbar-paint(sb);

/* get new offset into object from scrollbar */

/* pass the new offset and the direction of the scrollbar into *,
/* the paint function */
paint_object (sb->object,

scrollbar_get(sb, SCROLL_VIEW_START},
scrollbar_get(sb, SCROLL_DIRECTION)};

In order to repaint the screen efficiently, you need to know which bits appear on
the screen both before and after the scroll, and thus can be copied to their new
location with pw _copy () . To compute the copyable region you will need, in
addition to the current offset into the object (SCROLL_VIEW _START) , the
offset prior to the scroll (SCROLL_LAST _VIEW_START).

Note: you are responsible for repainting the scrollbar after a scroll, with one of
the routines described later in Painting Scrollbars.

The scrollbar package can be utilized in two modes: normalized and un­
normalized. Un-normalized means that when the user makes a scrolling request,
it is honored exactly to the pixel, as precisely as resolution permits. In normal­
ized scrolling, the client makes an attempt to put the display in some kind of
"normal form" after the scrolling has taken place.

~\sun ~~ microsystems
Revision A of 15 October 1986

Painting Scrollbars

15.2. Advanced Use of
S croll bars

Chapter 15 - Scrollbars 191

To take panels as an example, this simply means that after a vertical scroll, the
Panel Package modifies the value of SCROLL_ VIEW_START so that the
highest item which is either fully or partially visible in the panel is placed with
its top edge SCROLL_MARGIN pixels from the top of the panel.

Normalization is enabled by setting the SCROLL _ NORMAL I ZE attribute for the
scrollbar to TRUE, and the SCROLL_MARGIN attribute to the desired margin.
SCROLL_NORMALIZE defaults to TRUE, and SCROLL_MARGIN defaults to
4.

Note that the scrollbar package simply keeps track of whether the scrolls it com­
putes are intended to be normalized or not. The client who receives the scroll­
request event is responsible for asking the scrollbar whether normalization
should be done, and if so, doing it.

After the client computes the nonnalized offset, it must update the scrollbar by
setting-the attribute SCROLL_ VIEW_START to the normalized offset.

The basic routine to paint a scrollbar is:

scrollbar-paint(scrollbar);
Scrollbar scrollbar;

scrollbar_paint () repaints only those portions of the scrollbar (page but­
tons, bar proper, and bubble) which have been modified since they were last
painted. To clear and repaint all portions of the bar, use
scrollbar_paint_clear().

In addition, the routines scrollbar_paint_bubble () and
scrollbar _ clear_bubble () are provided to paint or clear the bubble
only.

As indicated previously under Performing the Scroll, the client need not be con­
cerned with the details of the scroll request at all - he may simply use the new
offset given by the value of the SCROLL_VIEW _START attribute. However,
the client may want to assume partial or full responsibility for the scroll. He may
compute the new offset from scratch himself, or start with the offset computed by
the Scrollbar Package and modify it so as not to have text or other information
clipped at the top of the window (see the preceding discussion under Normalizing
the Scroll).

In order to give you complete control over the scroll, attributes are provided to
allow you to retrieve all the information about the scroll-request event and the
object's state at the time of the event. The attributes of interest include:

Revision A of 15 October 1986

192 Sun View System Programmer's Guide

Table 15-1 Scroll-Related Scrollbar Attributes

Types of Scrolling Motion in
Simple Mode

Attribute Value Type Description

SCROLL_LAST _VIEW_START int Offset of view into object prior to scroll.
Get only.

SCROLL OBJECT caddr t pointer to the scroll able object.

SCROLL OBJECT LENGTH int Length of scrollable object, in client
units (value must be >= 0). Default: O.

SCROLL_REQUEST_MOTION Scroll motion Scrolling motion requested by user.

SCROLL_REQUEST _OFFSET int Pixel offset of scrolling request into
scrollbar. Default: o.

SCROLL_VIEW _LENGTH int Length of viewing window, in client units.

Default: o.

SCROLL VIEW START int Current offset into scroll able object,
measured in client units.
(Value must be >= 0). Default: o.

There are three basic types of scrolling motion:

o SCROLL_ABSOLUTE. This is the "thumbing" motion requested by the
user with the middle button. You can retrieve the number of pixels into the
scrollbar of the request (including the page button which may be present) via
SCROLL_REQUEST_OFFSET.

o SCROLL_FORWARD. This is to be interpreted as a request to bring the loca­
tion of the cursor to the top (left, if horizontal).

o SCROLL_BACKWARD. This is to be interpreted as a request to bring the top
(left, if horizontal) point to the cursor.

The function which implements scrolling may want to switch on the scrolling
motion, to implement different algorithms for each motion. In the following
example, do_absolute_scroll (), do_forward_scroll (),
do_backward_scroll () and paint_object () are procedures written
by the client:

~\sun ~ microsystems
Revision A of 15 October 1986

Types of Scrolling Motion in
Advanced Mode

do_scroll (sb)
Scrollbar sb;

unsigned new_offset;
Scroll_motion motion;

Chapter 15 - Scrollbars 193

motion = (Scroll_motion) scrollbar_get(sb, SCROLL_MOTION);

switch (motion) {

case SCROLL ABSOLUTE:
new offset do absolute_scroll(sb);

break;

case SCROLL FORWARD:
new offset do forward_scroll(sb);

break;

case SCROLL BACKWARD:
new offset do backward_scroll(sb);

break;

/* tell the scrollbar of the new offset */
scrollbar_set(sb, SCROLL_VI EW_START , new_offset, 0);

/* paint scrollbar to show bubble in new position */
scrollbar-paint(sb);

/* client's repainting proc */
paint_object(scrollbar_get(sb, SCROLL_OBJECT, 0);

Internally, the scrollbar package distinguishes nine different types of motion,
depending on which mouse button was pressed, the state of the shift key, and the
whether the cursor was in the bar, the forward page button or the backward page
button. Normally, these motions are mapped onto the three basic motions
described above. In order to perform this mapping, the scrollbar package needs
to know the distance between lines. You do this by setting the
SCROLL_LINE_HEIGHT attribute, as in:

scrollbar_set(sb, SCROLL_LINE_HEIGHT, 20, 0):

Note that this is the distance, in pixels, from the top of one line to the top of the
succeeding line.

The scrollbar package can also be used in advanced mode, in which case the
mapping described above is not performed -- the motion is passed as is to the
notify proc. This allows you to interpret each motion exactly as you want.

The following table gives the nine motions, the user action which generates
them, and the basic motions which they are mapped onto:

Revision A of 15 October 1986

194 Sun View System Programmer's Guide

Table 15-2 Scrollbar Motions

Motion Generated By
ABSOLUTE middle in bar

POINT TO MIN left in bar

MAX TO POINT shifted left in bar

PAGE FORWARD middle in page button

LINE FORWARD left in page button

MIN TO POINT right in bar

POINT TO MAX shifted right in bar

PAGE BACKWARD shifted middle in page button

LINE BACKWARD right in page button

To operate in advanced mode you must:

o set the attribute SCROLL ADVANCED MODE to TRUE.

Mapped to
ABSOLUTE

FORWARD

FORWARD

FORWARD

FORWARD

BACKWARD

BACKWARD

BACKWARD

BACKWARD

o Switch on the nine motions in the above table. Note: specifically,
SCROLL_FORWARD and SCROLL_BACKWARD must not appear in your
switch statement. In other words, for basic mode switch on the three basic
motions; for advanced mode switch on the nine advanced motions.

~\sun ~~ microsystems
Revision A of 15 October 1986

A
Writing a Virtual User Input Device
Driver

Writing a Virtual User Input Device Driver .. 197

A.l. Finn Events

Pairs .. .

Choosing VUID Events .. .

197

198

199

A.2. Device Controls .. ~.................... 199

Output Mode .. 199

Device Instancing ... 199

Input Controls ... 200

A.3. Example ... 200

A.I. Firm Events

A
Writing a Virtual User Input Device

Driver

This section describes what a device driver needs to do in order to confonn to the
Virtual User Input Device (vuid) interface understood by SunView. This is not a
tutorial on writing a device driver; only the vuid related aspects of device driver
writing are covered.

A stream offirm events is what your driver is expected to emit when called
through the read system call. This stream is simply a byte stream that encodes
Firm_event structures. A finn event is essentially an id that indicates what
kind of event it is, a value of the event and a time when this event occurred. A
finn event also carries some information that allows its eventual consumer to
maintain the complete state it input system.

typedef struct firm_event {
u short id;
u char pair_type;
u char
int
struct timeval

Firm_event;

*define FE_PAIR_NONE
*define FE PAIR SET - -
*define FE PAIR DELTA - -

pair;
value;
time;

*define FE PAIR ABSOLUTE - -

o
1
2
3

This is what each of the fields in the Firm _ eve n t mean (this structure is
defined in <sundev / vuid _event. h»:

o id - is the event's unique identifier. It is either the id of an existing vuid
event (if you're trying to emulate part of the vuid) or your one of your own
creation (see Choosing VUID Events).

o value - is the event's value. It is often 0 (up) or 1 (down). For valuators it
is a 32 bit integer.

o time - is the event's time stamp, i.e., when it occured. The time stamp is
not defined to be meaningful except to compare with other Firm_event
time stamps. In the kernel, a call to uniqtime, which takes a pointer to a
struct timeval, gets you a close-to-current unique time. In user pro­
cess land, a call to gettimeofday gets time from the same source (but it

~\sun ,~ microsystems
197 Revision A of 15 October 1986

198 The Sun View System Programmer's Guide

Pairs

is not made unique).

This brings us to pair_type and pair. These two fields enable a consumer
of events to maintain input state in an event independent way. The pair field is
critical for a input state maintenance package, one that is designed to not know
anything about the semantics of particular events, to maintain correct data for
corresponding absolute, delta and paired state variables. Some examples will
make this clear:

o Say you have a tablet emitting absolute locations. Depending on the client,
what the absolute location is may be important (say for digitizing) and then
again the difference between the current location and the previous location
may be of interest (say for computing acceleration while tracking a cursor).

o Say you are keyboard in which the user has typed "C. Your driver first emits
a SHIff _ CTRL event as the control key goes down. Next your driver emits
a "c event (one of the events from the ASCII vuid segment) as the c key
goes down. Now the application that you are driving happens to be using
the c key as a shift key in some specialized application. The application
wants to be able to say to SunView (the maintainer of the input state), "Is
the c key down?" and get a correct response.

The vuid supports a notion of updating a companion event at the same time that a
single event is generated. In the first situations above~ the tablet wants to be able
to update companion absolute and relative event values with a single event. In
the second situations above, the keyboard wants to be able to update companion
"c and c event values with a single event. The vuid supports this notion of
updating a companion event in such a way as to be independent from these two
particular cases. pair _type defines the type of the companion event:

o FE _PAIR_NONE - is the common case in which pair is not defined, i.e.,
there is no companion.

o FE PAIR SET - is used for ASCII controlled events in which pair is the
uncontrolled base event, e.g.,."C and 'c' or 'C', depending on the state of the
shift key. The use of this pair type is not restricted to ASCII situations. This
pair type simply says to set the pairth event in id's vuid segment to be
value.

o FE_PAIR_DELTA - identifies pair as the delta companion to id. This
means that the pairth event in id's vuid segment should be set to the
delta of id's current value and value. One should always create vuid
valuator events as delta/absolute pairs. For example, the events
LOC_X_DELTA and LOC_X_ABSOLUTE are pairs and the events
LOC _ Y _DELTA and LOC _ Y _ABSOLUTE are pairs. These events are part
of the standard WORKSTATION _ DEVID segment that define the distin­
guish primary locator motion events.

o FE_PAIR_ABSOLUTE - identifies pair as the absolute companion to
id. This means that the pairth event in id's vuid segment should be set
to the sum of id's current value and value. One should always create
vuid valuator events as delta/absolute pairs.

~\sun ~ microsystems
Revision A of 15 October 1986

Choosing VUID Events

A.2. Device Controls

Output Mode

Device Instancing

Appendix A - Writing a Virtual User Input Device Driver 199

As indicated by the previous discussion, pair must be in the same vuid seg­
ment as ide

One needs to decide which events the driver is going to emit. If you want to
emulate the Sun virtual workstation then you want to emit the same events as the
WORKSTATION _ DEVID vuid segment. A tablet, for example, can emit abso­
lute locator positions LOC _ X ~ABSOLUTE and LOC _ Y _ABSOLUTE, instead
of a mouses relative locator motions LOC X DELTA and LOC Y DELTA. - - - -
Sun View will uses these to drive the mouse.

If you have a completely new device then you want to create a new vuid seg­
ment. This is talked about in the workstations chapter of the SunView System
Programmer's Guide.

A vuid driver is expected to respond to a variety of device controls.

Many of you will be starting from an existing device driver that already speaks
its own native protocol. You may not want to flush this old protocol in favor of
the vuid protocol. In this case you may want to operate in both modes.
VUID*FORMAT ioctls are used to control which byte stream format that an
input device should emit.

#define VUIDSFORMAT _IOW(v, 1, int)
#define VUIDGFORMAT _IOR(v, 2, int)

#define VUID NATIVE 0
#define VUID FIRM EVENT 1

VUIDSFORMAT sets the input device byte stream format to one of:

o VUID _NATIVE - The device's native byte stream format (it may be vuid).

o VUID _ FIRM_EVENT - The byte stream format is F ir~ even t s.

An ermo of ENOTTY or EINV AL indicates that a device can't speak
Firm event s.

VUIDSFORMAT gets the input device byte stream format.

VUID* ADDR ioctls are used to control which address a particular virtual user
input device segment has. This is used to have an instancing capability, e.g., a
second mouse. One would:

o Take the current mouse driver, which emits events in the
WORKSTATION _ DEVID vuid segment.

o Define a new vuid segment, say LOC2 _ DEVID.

o AddLOC2_X_ABSOLUTE,LOC2_Y_ABSOLUTE,LOC2_X_DELTA
and LOC2 _ Y _DELTA to the LOC2 _ DEVID vuid segment at the same
offset from the beginning of the segment as LOC _X_ABSOLUTE,
LOC_Y_ABSOLUTE, LOC_X_DELTA and LOC_Y_DELTA in the
WORKSTATION DEVID.

~\sun ~~ microsystems
Revision A of 15 October 1986

200 The Sun View System Programmer's Guide

Input Controls

A.3. Example

o Command a mouse to emit events using LOC2 _DEVID' s segment address
and the mouse's original low byte segment offsets. Thus, it would be emit­
ting LOC2 _X_DELTA and LOC2 _ Y _ DELTA, which is what your applica­
tion would eventually receive.

Here is the VUID* ADDR commands common data structure and command
definitions:

typedef struct vuid_addr-probe
short base;
union

short
short

next;
current;

} data;
Vuid_addr-probe;

#define VUlDSADDR
#define VUlDGADDR

_lOW (v, 3, struct
_lOWR(v, 4, struct

vuid_addryrobe)
vuid_addryrobe)

VUIDSADDR is used to set an alternative vuid segment. base is the vuid
device addr that you are changing. A vuid device addr is the vuid segment id
shifted into it's high byte position. data. next is the new vuid device addr
that should be used instead of base. An ermo ofENOTTY indicates that a dev­
ice can't deal with these commands. An ermo of ENODEV indicates that the
requested virtuai device has no evenis generaied for ii by this physical device.

VUIDGADDR is used to get an current value of a vuid segment. base is the
default vuid device addrthat you are asking about. data. current is the
current vuid device addr that is being used instead of base.

The implementation of these ioctls is optional. If you don't do it then your
device wouldn't be able to support multiple instances.

Your device needs to support non-blocking reads in order to run with Sun View
3.0. This means that the read(2) system call returns EWOULDBLOCK when
no input is available.

In addition, your driver should support the select(2) system call and asyn­
chronous input notification (sending SIGIO when input pending). However, your
driver will still run without these two things in 3.0 SunView.

The following example is parts of code taken from the Sun 3.0 mouse driver. It
illustrates some of the points made above.

/* Copyright (c) 1985 by Sun Microsystems, Inc. */

<elided material>

#include " .. /sundev/vuid_event.h"

/*
* Mouse select management is done by utilizing the tty mechanism.
* We place a single character on the tty raw input queue whenever
* there is some amount of mouse data available to be read. Once,

~\sun
~ microsystems

Revision A of 15 October 1986

Appendix A - Writing a Virtual User Input Device Driver 201

* all the data has been read, the tty raw input queue is flushed.

*
* Note: It is done in order to get around the fact that line
* disiplines don't have select operations because they are always
* expected to be ttys that stuff characters when they get them onto
* a queue.

*
* Note: We use splS for the mouse because it is functionally the
* same as sp16 and the tty mechanism is using splS. The original
* code that was doing its own select processing was using sp16.
*/

#define spl_ms splS

/* Software mouse registers */
struct ms_softc {

struct mousebuf {
short rob_size;
short

/* size (in mouseinfo units) of buf */
/* current offset in buffer */

struct mouseinfo
char mi_x, mi_y;
char mi_buttons;

#define MS HW BUTl Ox4 /* left button position */
#define MS HW BUT2 Ox2 /* middle button position */
#define MS HW BUT3 Oxl /* right button position */

struct timeval mi_time; /* timestamp */
} rob_info[l]; /* however many samples */

} *ms_buf;
short
short
short
short

ms_bufbytes;
ms_flags;
ms_oldoff;
ms_oldoffl;

short ms_readformat;
#define MS 3BYTE FORMAT VUID NATIVE - -
#define MS VUID FORMAT VUID FIRM EVENT - -

} ;

short
short
short
char

struct msdata

ms_vuidaddr;
ms_vuidcount;
ms_samplecount;
ms_readbuttons;

struct ms_softc msd_softc;
struct tty *msd_tp;

<elided material>

} ;

struct msdata msdata[NMS];
struct msdata *mstptomsd();

<elided material>

/* buffer size (in bytes) */
/* currently unused */
/* index into mousebuf */
/* at mi_x, mi_y or mi_buttons ... */
/* format of read stream */
/* 3 byte format (buts/x/y) */
/* vuid Firm_event format */
/* vuid addr for MS VUID FORMAT */
/* count of unread firm events */
/* count of unread mouseinfo samples */
/* button state as of last read */

/* Open a mouse. Calls sets mouse line characteristics */

.\sun ,~ microsystems
Revision A of 15 October 1986

202 The Sun View System Programmer's Guide

/* ARGSUSED */
msopen(dev, tp)

found:

dev_t dev;
struct tty *tp;

register int err, i;
struct sgttyb sg;
register struct mousebuf *b;
register struct ms_softc *ms;
register struct msdata *msd;
caddr_t zmemall();
register struct cdevsw *dp;

/* See if tp is being used to drive ms already. */
for (i = O;i < NMS; ++i)

if (msdata[i] .msd_tp == tp)
return(O);

/* Get next free msdata */
for (i = O;i < NMS; ++i)

if (msdata[i] .msd_tp 0)
goto found;

return(EBUSY);

/* Open tty */
if (err = ttyopen(dev, tp))

return(err);
/* Setup tty flags */
dp = &cdevsw[major(dev)];
if (err = (*dp->d_ioctl) (dev, TIOCGETP, (caddr_t)&sg, 0))

goto error;
sg.sg_flags = RAW+ANYP;
sg.sg_ispeed = sg.sg_ospeed = B1200;
if (err = (*dp->d_ioctl) (dev, TIOCSETP, (caddr_t)&sg, 0))

goto error;
/* Set up private data */
msd = &msdata[i];
msd->msd_xnext = 1;
msd->msd_tp = tp;
ms = &msd->m.sd softc;
/* Allocate buffer and initialize data */
if (ms->ms_buf == 0) {

ms->ms_bufbytes = MS_BUF_BYTES;
b = (struct mousebuf *)zmemall(memall, ms->ms_bufbytes);
if (b == 0) {

err = EINVAL;
goto error;

b->mb size 1 + (ms->ms_bufbytes-sizeof (struct mousebuf))
/ sizeof (struct mouseinfo);

ms->ms_buf b;
ms->ms vuidaddr
msflush(msd);

~\sun
~ microsystems

Revision A of 15 October 1986

Appendix A - Writing a Virtual User Input Device Driver 203

error:

/*

return (0);

bzero«caddr_t)msd, sizeof (*msd));
bzero«caddr_t)ms, sizeof (*ms));
return (err);

* Close the mouse
*/

msclose(tp)

/*

struct tty *tp;

register struct msdata *msd = mstptomsd(tp);
register struct ms softc *ms;

if (msd == 0)
return;

ms = &msd->msd_softc;
/* Free mouse buffer */
if (ms->ms_buf != NULL)

wmemfree«caddr_t)ms->ms_buf, ms->ms_bufbytes);
/* Close tty */
ttyclose(tp);
/* Zero structures */
bzero«caddr_t)msd, sizeof (*msd));
bzero«caddr_t)ms, sizeof (*ms));

* Read from the mouse buffer
*/

msread(tp, uio)
struct tty *tp;
struct uio *uio;

register struct msdata *msd = mstptomsd(tp);
register struct ms_softc *ms;
regisier struct mousebuf *b;
register struct mouseinfo *mi;
register int error = 0, pri, send_event, hwbit;
register char c;
Firm·event fe;

if (msd == 0)
return(EINVAL);

ms = &msd->msd_softc;
b = ms->ms_buf;
pri = spl_ms () ;
/*

* Wait on tty raw queue if this queue is empty since the tty is
* controlling the select/wakeup/sleep stuff.
*/

~\sun ~~ microsystems
Revision A of 15 October 1986

204 The Sun View System Programmer's Guide

while (tp->t_rawq.c_cc <= 0) {
if (tp->t_state&TS_NBIO)

(void) splx(pri);
return (EWOULDBLOCK);

sleep«caddr_t)&tp->t_rawq, TTIPRI);

while (!error && (ms~>ms_oldoff1 I I ms->ms oldoff != b->mh_off»
mi = &b->mb_info[ms->ms_oldoff];

< elided material>

switch (ms->ms_readformat) {

case MS 3BYTE FORMAT: - -

break;

case MS VUID FORMAT: - -
if (uio->uio_resid < sizeof (Firm_event»

goto done;
send_event = 0;
switch (ms->ms_oldoff1++)

case 0: /* Send x if changed */
if (mi->mi_x != 0) {

break;

fe.id = vuid_id_addr(ms->ms_vuidaddr)
vuid_id_offset(LOC_X_DELTA};

fe.pair_type = FE_PAIR_ABSOLUTE;
fe.pair = LOC_X_ABSOLUTE;
fe.value = mi->mi_x;
send event = 1;

case 1: /* Send y if changed */
if (mi->mi_y != 0) {

break;

fe.id = vuid_id_addr(ms->ms vuidaddr)
vuid_id_offset(LOC_Y_DELTA);

fe.pair_type = FE_PAIR_ABSOLUTE;
fe.pair = LOC_Y_ABSOLUTE;
fe.value = -mi->mi_y;
send event = 1;

default:/* Send buttons if changed */
hwbit = MS_HW_BUT1 » (ms->ms_oldoff1 - 3);
if «ms->ms_readbuttons & hwbit) !=

(mi->mi_buttons & hwbit» {
fe.id = vuid_id_addr(ms->ms_vuidaddr) I

vUid_id_offset(
BUT (1) + (ms->ms_oldoff1 - 3»;

fe.pair_type = FE_PAIR_NONE;
fe.pair = 0;
/* Update read buttons and set value */

Revision A of 15 October 1986

done:

Appendix A - Writing a Virtual User Input Device Driver 205

if (mi->mi_buttons & hwbit) {
fe.value = 0;
ms->ms readbuttons 1= hwbit;

} else
fe.value = 1;
ms->ms readbuttons &= -hwbit;

send event = 1;

/* Increment mouse buffer pointer */
if (ms->ms_oldoffl == 5) {

ms->ms_oldoff++;

break;

if (ms->ms_oldoff >= b->mb_size)
ms->ms oldoff = 0;

ms->ms oldoffl = 0;

if (send_event) {

break;

fe.time = mi->mi time;
ms->ms_vuidcount--;
/* lower pri to avoid mouse droppings */
(void) splx(pri);
error = uiomove(&fe, sizeof(fe), UIO_READ, uio);
/* spl_ms should return same priority as pri */
pri = spl_ms () ;

/* Flush tty if no more to read */
if «(ms->ms_oldoffl == 0) && (ms->ms_oldoff == b->mb off»

ttyflush(tp, FREAD);
/* Release protection AFTER ttyflush or will get out of sync with tty */
(void) splx(pri);
return (0);

/* Mouse ioctl */
msioctl(tp, cmd, data, flag)

struct tty *tp;
int cmd;
caddr_t data;
int flag;

register struct msdata *msd = mstptomsd(tp);
register struct ms_softc *msi
int err = 0, num;
register int buf_off, read_off;
Vuid_addr-probe *addr-probe;

~\sun ~~ microsystems
Revision A of 15 October 1986

206 The Sun View System Programmer's Guide

if (msd == 0)
return(EINVAL);

ms = &msd->msd_softc;
switch (cmd) {
case FIONREAD:

switch (ms->ms_readformat) {
case MS 3BYTE FORMAT: - -

*(int *)data
break;

case MS VUID FORMAT: - -

ms->ms_samplecount;

*(int *)data
break;

sizeof (Firm_event) * ms->ms_vuidcount;

break;

case VUIDSFORMAT:
if (*(int *)data == ms->ms_readformat)

break;
ms->ms readformat = *(int *)data;
/*

* Flush mouse buffer because otherwise ms *counts
* get out of sync and some of the offsets can too.
*/

msflush(msd);
break;

case VUIDGFORMAT:
*(int *)data
break;

ms->ms_readformat;

case VUIDSADDR:
addr-probe = (Vuid_addr-probe *)data;
if (addr-probe->base != VKEY_FIRST)

err = ENODEV;
break;

ms->ms vuidaddr
break;

addr-probe->data.next;

case VUIDGADDR:
addr-probe = (Vuid_addr-probe *)data;
if (addr-probe->base != VKEY_FIRST)

err = ENODEV;
break;

addr_probe->data.current
break;

case TIOCSETD:
/*

ms->ms_vuidaddr;

* Don't let the line discipline change once it has been set
* to a mouse. Changing the ldisc causes msclose to be called

Revision A of 15 October 1986

Appendix A - Writing a Virtual User Input Device Driver 207

* even if the ldisc of the tp is the same.
* We can't let this happen because the window system may have
* a handle on the mouse buffer.
* The basic problem is one of having anything depending on
* the continued existence of ldisc related data.
* The fix is to have:
* 1) a way of handing data to the dependent entity, and
* 2) notifying the dependent entity that the ldisc
* has been closed.
*/

break;

«elided material>

default:
err ttioctl(tp, cmd, data, flag);

return (err);

msflush(msd)
register struct msdata *msd;

register struct ms softc *ms
int s spl_ms();

<elided material>

ttyflush(msd->msd_tp, FREAD);
(void) splX(S)i

<elided material>

&msd->msd_softc;

/* Called with next byte of mouse data */
/*ARGSUSED*/
msinput(c, tp)

register char c;
struct tty *tp;

int s = splS () ;

<elided material>
/* Place data on circular buffer */

if (wake)
1* Place character on tty raw input queue to trigger select */
ttyinput('\O', msd->msd_tp);

(void) splx(s);

/* Match tp to msdata *1
struct msdata *

.\sun ,~ microsystems
Revision A of 15 October 1986

208 The Sun View System Programmer's Guide

mstptomsd(tp)
struct tty *tp;

register i;

/* Get next free msdata */
for (i = O;i < NMSi ++i)

if (msdata[i] .msd_tp == tp)
return(&msdata[i]);

printf("mstptomsd called with unknown tp %X\n", tp);
return(O);

~\sun ~~ microsystems
Revision A of 15 October 1986

B
Programming Notes

Programming Notes .. 211

B.1. What Is Supported? ... 211

B.2. Library Loading Order ... 211

B.3. Shared Text .. 211

B.4. Error Message Decoding .. 212

B.S. Debugging Hints ... 212

Disabling Locking .. 212

B.6. Sufficient User Memory .. 213

B.? Coexisting with UNIX ... 214

Tool Initialization and Process Groups .. 214

Signals from the Control Tenninal ... 214

Job Control and the C-Shell .. 214

B.I. What Is Supported?

B.2. Library Loading
Order

B.3. Shared Text

B
Programming Notes

Here are useful hints for programmers who use SunView.

In each release, there may be some difference between the documentation and the
actual product implementation. The documentation describes the supported
implementation. In general, the documentation indicates where features are only
partially implemented, and in which directions future extensions may be
expected. Any necessary modifications to Sun View are accompanied by a
description of the nature of the changes and appropriate responses to them.

When loading programs, remember to load higher level libraries first, that is,
-lsuntool -lsunwindow -lpixrect.

The tools released with suntoolsrely on text sharing to reduce the memory
working set. This is accomplished by placing the entire collection of tools in a
into two large object files, or merges. This has the effect of letting each separate
process share the same object code in memory. With many windows active at
once this can achieve significant memory savings.

There are trade-offs to using this approach. The main one is that the maximum
number of per-process and non-sharable initial data pages tends to be larger.
However, the paged virtual memory tends to reduce the effect of this by only
having the working set paged in.

The upshot of this is that you may want to either add the tools that you create to
the released shared object file or bundle a few tools together into their own object
file. To add tools to the released shared object file, please see the instructions in
the 3.2 Release Manual.

211 Revision A of 15 October 1986

212 The Sun View System Programmer's Guide

B.4. Error Message
Decoding

B.S. Debugging Hints

Disabling Locking

The default error reporting scheme described at the end of Windows displays a
long hex number which is the ioctl number associated with the error. You
can tum this number into a more meaningful operation name by:

o turning the two least significant digits into a decimal number;

o searching /usr/include/sunwindow/win_ioctl.hfor
occurrences of this number; and

o noting the ioctl operation associated with this number.

This can provides a quick hint as to what is being complained about without
resorting to a debugger.

When debugging non-terminal oriented programs in the window system, there
are some things that you should know to make things easier.

As discussed mentioned in passing a process receives a SIGWINCH whenever one
of its windows changes state. In particular, as soon as a frame is shown, the ker­
nel sends it a SIGWINCH. When running as the child of a debugger, the SIGWINCH
is sent to the parent debugger instead of to the tool. By default, dbx simply
propagates the SIGWINCH to the tool, while adb traps, leaving the tool
suspended until the user continues from adb. This behavior is not peculiar to
SIGWINCH: adb traps all signals by default, while dbx has an initial list of sig­
nals (including S!GW!NCH) that are passed on to the child process. You can
instruct adb to pass SIGWINCH on to the child process by typing 10::i. fol­
lowed by RETURN. 'Ic' is the hex number for 28, which is SIGWINCH's number.
Re-enable signal breaking by typing 10: t followed by RETURN. You can
instruct dbx to trap on a signal by using the catch command.

For further details, see the entries for the individual debuggers in the User's
Manualfor the Sun Workstation. In addition, ptrace (2) describes the fine
points of how kernel signal delivery is modified while a program is being
debugged.

The two debuggers differ also in their abilities to interrupt programs built using
tool windows. dbx knows how to interrupt these programs, but adb doesn't.
See Signals from the Control Terminal below for an explanation.

Another situation specific to the window system is that various forms of locking
are done that can get in the way of smooth debugging while working at low lev­
els of the system. There are variables in the sunwindow library that disable the
actual locking. These variables can be turned on from a debugger:

~\sun ~ microsystems
Revision A of 15 October 1986

Appendix A - Programming Notes 213

Table A-l Variables/or Disabling Locking

Variable Action

int pixwindebug When not zero this causes the immediate release of the display
lock after locking so that the debugger is not continually getting
hung by being blocked on writes to screen. Display garbage can
result because of this action.

int win_lockdatadebug When not zero, the data lock is never actually locked, preventing
the debugger from being continually hung due to block writes to
the screen. Unpredictable things may result because of this
action that can't properly be described in this context.

int win_grabiodebug When not zero will not actually acquire exclusive I/O access
rights so that the debugger wouldn't get hung by being blocked
on writes to the screen and not be able to receive input. The
debugged process will only be able to do normal display locking
and be able to get input only in the normal way.

int fullscreendebug Like win_grabiodebug but applies to the fullscreen access
package.

A.6. Sufficient User
Memory

Change these variables only during debugging. You can set them any time after
main has been called.

To use the Sun View environment comfortably requires adequate user memory
for SunView and Sun's UNIX operating system. To achieve the best performance,
you must reconfigure your own kernel, deleting unused device drivers and possi­
bly reducing some tuning parameters. The procedure is documented in the
manual Installing UNIX on the Sun Workstation. You will be able to reclaim a
significant amount of usable main memory.

Revision A of 15 October 1986

214 The Sun View System Programmer's Guide

B.7. Coexisting with UNIX

Tool Initialization and Process
Groups

Signals from the Control
Terminal

Job Control and the C-Shell

This section discusses how a Sun View tool interacts with traditional UNIX

features in the areas of process groups, signal handling, job control and tenninal
emulation. If you are not familiar with these concepts, read the appropriate por­
tions (Process Groups, Signals) of the System Interface Overview and the sig­
nal (3) and tty (4) entries in the UNIX Interface Reference Manual.

This discussion explicitly notes those places where the shells and debuggers
interact differently with a tool.

System calls made by the library code in a tool affect the signals that will be sent
to the tool. A tool acts like any program when first started: it inherits the process
group and control tenninal group from its parent process. However, when a
frame is created, the tool changes its process group to its own process number.
The following sections describe the effects of this change.

When the C-Shell (see csh (1)) starts a program, it changes the process group of
the child to the child's process number. In addition, if that program is started in
the foreground, the C-Shell also modifies the process group of the control tenni­
nal to match the child's new process group. Thus, if the tool was started from the
C-SheU, the process group modification done by tool_create has no effect.

The Bourne Shell (see sh (1)) and the standard debuggers do not modify their
child's process and control terminal groups. Furthennore, both the Bourne Shell
and adb (1) are ill-prepared for the child to perfonn such modification. Tney do
not propagate signals such as SIGINT to the child because they assume that the
child is in the same control tenninal group as they are. The bottom-line is that
when a tool is executed by such a parent, typing interrupt characters at the parent
process does not affect the child, and vice versa. For example, if the user types
an interrupt character at adb while it is debugging a tool, the tool is not inter­
rupted. Although dbx (1) does not modify its child's process group, it is
prepared for the child to do so.

The tenninal driver and C-Shell job control interact differently with tools. First,
let us examine what happens to programs using the graphics subwindow library
package30 When the user types an interrupt character on the control tenninal, a
signal is sent to the executing program. When the signal is a SIGTSTP, the
gfxsw library code sees this signal and releases any SunView locks that it might
have and removes the graphics from the screen before it actually suspends the
program. If the program is later continued, the graphics are restored to the screen.

However, when the user types the C-Shell's stop command to interrupt the
executing program, the C-Shell sends a SIGSTOP to the program and the gfxsw
library code has no chance to clean up. This causes problems when the code has
acquired any of the Sun View locks, as there is no opportunity to release them.
Depending on the lock timeouts, the kernel will eventually break the locks, but
until then, the entire screen is unavailable to other programs and the user. To
avoid this problem, the user should send the C-Shell kill command with the

30 The gfxsubwindow is an out-dated package used only as an example.

~\sun ,~ microsystems
Revision A of 15 October 1986

Appendix B - Programming Notes 215

-TSTP option instead of using stop.

The situation for tools parallels that of the gfxsw code. Thus a tool that wants
to interact nicely with job control must receive the signals related to job control
(SIGINT~ SIGQUIT~ and SIGTSTP) and release any locks it has acquired. If the tool is
later continued~ the tool must receive a SIGCONT so that it can reacquire the locks
before resuming the window operations it was executing. The tool will still be
susceptible to the same problems as the gfxsw code when it is sent a SIGSTOP.

A final note: the user often relies on job control without realizing it; the expecta­
tion is that typing interrupt characters will halt a program. Of course, even pro­
grams that do not use SunView facilities, such as a program that opens the termi­
nal in "raw" mode, have to provide a way to terminate the program. A program
using the gfxsw package that reads any input can provide limited job control
by calling gfxsw_inputinterrupts.

~\sun ~~ microsystems
Revision A of 15 October 1986

Index

A
adb,214
the Agent, 21, 13

notification of tiles, 23
posting notification to tiles, 24
removing a tile from, 26
SunView model, 14

application
environment usage, 42

architecture, 7
ASCI I _ DEVI D, 54

B
bell, 37
blanket window, 41
bool,179
Bourne Shell, 214

C
C-Shell,214
c-shell

job control, 214
caret, 59
client handles, 21
clipping, 14
clipvector,181
close (2), 90
color

screen foreground and background colors, 48
colormap

segment, 16
segments, 15
shared, 16

coord,179
csh, 214
cursor, 15

D
dbx, 212, 214
debugging, 212

disabling locking, 212
fullscreendebug, 212
pixwindebug, 212
win _grabiodebug, 212
win _lockdatadebug, 212

defaults, 139

-217 -

defaults, continued
creating • d files, 144
directory, 140
distinguished names, 143
enumerated option, 143
error handling, 149
example, 144
master and private defaults databases, 140
option names, 142
option values, 143
private options, 140
Private_Directory, 140

defaults database, 139
<sunwindow/defaults.h~139

defaults_get(),145
defaults_get_boolean(), 146, 150
defaults_get_character(),146,150
defaults_get_enum(), 147, 150
defaults_get_integer 0,146,150
defaults_get_integer_check 0,146,150
defaults_get_string (), 145, 150
defaults_special_mode(),151
DEFAULTS_UNDEFINED,144
DELETE key processing, 98
desktop, 47, 11,15, - also see screen

accessing the root fd, 50
foreground and background colors, 48
frame buffer, 48
keyboard, 48
locking, 16
mouse, 48
root window, 48
screen, 48

DESTROY_CHECKING, 79, 84
DESTROY_PROCESS_DEATH,79
display

locking, 16
documentation

outline of this document, 7
pixrect vs. application vs. system malnu,als~,3

dtop,47
dup(2),90

E
enumerated values

retrieving, 147
environment

Index - Continued

environment, continued
application usage, 42
window usage, 41

Error_action, 145, 149
event

client, 68, 80
client event func () , 69
delivery, 68, 76
dispatching, 67, 68,81,85
handlers, 67
interposition, 69
ordering, 67,80
posting, 68,69, 76
posting client events, 76
posting destroy, 79
retrieving event handler, 70

event codes
SCROLL ENTER, 188
SCROLL = EXIT, 188
SCROLL_REQUEST, 189

event_ func, 24
event_func (), 69
EWOULDBLOCK, 39
exception_func(),70

F
FALSE,179
FA5YNC,40

FBIONREAD, 40
!cntIO,39
FD_BIT;80
FE_PAIR_ABSOLUTE,197
FE_PAIR_DELTA, 197
FE_PAIR_NONE,197
FE_PAIR_SET, 197
file descriptor, 30
file descriptors, 13
FIND key processing, 98
FIOASYNC, 40, 90
FIONBIO, 39, 90
Firm_event, 59, 197
flash, 37
FNDELAY,39
focus, 58
frame buffer, 48
fullscreen, 163

coordinate space, 163
grab 110, 164
initializing, 164
pixel caching, 165
pixwin operations, 166
saving and restoring image, 165
struct full screen, 163
surface preparation, 164
window boundary violation, 165

fullscreen_destroy(), 164
fullscreen_init(),164
fullscreen-pw_copy(),167
fullscreen-pw_vector(),166
fullscreen-pw_write(),166

-218-

fullscreendebug,212
function key processing, 98

G
GET key processing, 98
get_selection, 118
gfxsw,215

H
header files

<sunwindow/defaults.h~139
<suntool/scrollbar.h>, 187
<sundev /vuid _event. h>, 54, 197
<sunwindow/win enum.h~35
<sunwindow/win=input.h»,54

I
icon, 156

dynamic loading, 156
file format, 156
template, 156

icon_init_from_pr(),156
icon_load (), 156
icon_load_mpr(),156
icon_open_header(),157
1M_ASCI I, 38
IM_INTRANSIT,38
1M_META, 38
I M_NEGASC I I, 38
IM_NEGEVENT,38
1M _ NEGMETA, 38
imaging

fixup,155
input, 37, see (mostly) workstation and vuid

SIGlo,40
ascii, 38
asynchronous, 40
blocking, 39
bytes pending, 40
caret, 59
changing interrupt user actions, 63
current event, 60
current event lock, 60
current event lock broken, 60
designee, 39
events pending, 40
flow of control, 39
keyboard mask, 39
masks, 37
meta, 38
negative events, 38
non-blocking, 39
pick mask, 39
reading, 39
redirection, 39
releasing the current event lock, 60
seizing all, 164
state, 55
synchronization, 60, 61
synchronous, 40
unencode,55

input device
control, 56
enumeration, 58
query, 57
removal, 57
setting and initialization, 56

input focus, 58, 59
getting the caret event, 59
keyboard, 58
restoring the caret, 59
setting the caret event, 59

input_imnull(),38
input_readevent,39
inputmask,37
ioctl(2), 90
ITIMER_REAL, 80
ITIMER_VIRTUAL,80

J
job control, 214

K
KBD_REQUEST,58
kernel tuning, 61

win_disable_shared_locking,62
winclistcharsmax, 62
ws check lock,62
ws-check-time,62
ws=fast~oI1_duration,62
ws_fast_timeout,61
ws loc still, 62
ws=lock_Iimit,62
ws_set_favor,62
ws_slow_timeout,62
ws_v~node_bytes,61

keyboard, 56
focus, 58
unencoded input, 55

KIOCfRANS, 55

L
LOC _ RGNENTER, 24
LOC_RGNEXIT,24

M
Maximum_Errors, 149
menu, see fullscreen
mouse, 56

sample vuid driver, 200

N
the Notifier, 67, 13

client, see dienJ
client event handlers, 68
client events, 68
copy func, 78
destroy event delivery time, 79
error codes, 87
event delivery time, 76
exception event handlers, 70
interaction with various system calls, 90

-219-

the Notifier, conJinued
interposition, 72
miscellaneous issues, 90
notification, 68
output event handlers, 69
output events, 69
posting destroy events, 79
posting events, 76
posting events with an argument, 77
prioritization, 80
registering an interposers, 72
release func, 78
restrictiOns, 67, 89
safe destruction, 79

Index ConJinued

storage management during event posting, 77
Notify_arg, 69, 78
NOT I FY_BAD_FD,70
NOTIFY_BAD_ITIMER, 87
NOT I FY_BAD_SI GNAL,87
NOTIFY_BADF,87
notify_client (),85
NOTIFY_CLIENT_NULL, 85
Notify_copy, 78
NOTIFY_COPY_NULL, 78
NOTIFY_DESTROY_VETOED, 79,84,87
notify_die (), 84
NOTIFY_DONE, 69, 81
notify_errno, 73, 87
Notify_error, 87
Notify_event, 76
notify_event(),81
Notify_event_type,68
notify_exception (),82
NOT IFY_FUNC_LIMI T, 73, 88
NOTIFY_FUNC_NULL, 70,83
notify_get_client_func(),70
not ify_get_dest roy_func (),71
notify_get_event_func(),70
notify_get_exception func(),70,71
notify_get_input_fun;(),70
notify_get_itimer_func(),71
notify_get_output_func(),70
notify_get_prioritizer func(),82
notify_get_scheduler f~nc(),86
notify get signal fu~c(),71 - - -
notify_get_wait3_func(),71
NOTIFY_IGNORED, 69, 76,81
NOTIFY_IMMEDIATE, 68, 76
notify_input (),81
NOTIFY_INTERNAL_ERROR,87
notify_interpose_destroy func 0,73
notify_interpose_event f~nc(),72
notify_interpose_exception func(),73
notify_interpose_input fun;(),72
notify_interpose_itime~ func(),73
notify_interpose_output func(),73
notify_interpose_signal=func(),73
notify_interpose_wait3_func(),73
NOTIFY_INVAL, 79, 88

Index - Continued

o notify_itimer, 82
notify_next_destroy_func(),74
notify_next_event_func 0,72,74
notify_next_exception_func(},74
notify_next_input_func(},74
notify_next_itimer_func(},74
notify_next_output_func(),74
notify_next_signal_func(},74
notify_next_wait3_func(},74
NOTIFY_NO_CONDITION, 70,73, 76, 82,87
NOTIFY _NOMEM, 87
NOTIFY_NOT _STARTED, 84, 87
NOTIFY_OK, 73,87
notify_output (},81
notify-perror(},88
notify -post_destroy (), 79, 84
notify-post_event(},69,76
notify-post_event_and_arg(},77
Notify-post_event_and_arg(},78
Notify_release, 78
NOTIFY_RELEASE_NUL478
notify_remove(},86
notify_remove_destroy_func(},75
notify_remove_event_func(},75
notify_remove_exception_func(},75
notify_remove_input_func(},75
notify_remove_itimer_func(),75
notify_remove_output_func(},75
notify_remove_signal_func 0,75
notify_remove_wait3_func(},75
NOTIFY_SAFE, 68,76
notify_set_event_func 0, 68, 72
notify_set_exception_func(),70
notify_set_output_func(},69
notify_set-prioritizer func(},80
0,85 -
notify_signal(},82
NOTIFY _ SRCH, 87
notify_start (), 84
notify_stop(},84
NOTIFY_UNKNOWN_CLIENT, 70, 73, 76,82,87
notify_veto_destroy(},84
notify_wait3(},82

o
option_name, 145
output_func(),69

P
PANEL _DEVID, 54
pixwin,13

closing, 37
colormap, 16
colormap segment, 15
creation, 36
damage, 158
damage report, 159
destruction, 37
flashing, 37

-220-

pixwin, continued
locking, 16
offset control, 160
opening, 36
pw_open 0,21
pw_region (), 21
pw_set_region_rect(},24
region, 21
repairing damage, 158
retained, 159
signals, 158
SIGWINCH,158
surface preparation, 165
warning, 158

pixwindebug, 212
prioritizer_func(},80
prompt, see fullscreen
PUT key processing, 98
pw_close (), 37
pw _damaged () , 158
pw_donedamaged(),159
pw_exposed(},155
PW_FIXED_IMAGE, 21, 22
pw_get_x_offset(),160
pw_get_y_offset(},160
PW_INPUT_DEFAULT,21,22
PW_NO_LOC_ADJUST,21,22
pw _open () : 36
Pw_pixel_cache(},165
PW_PIXEL_CACHE_NUL4165
pw_preparesurface(},165
PW_REPAINT_ALL, 21, 22
pw_repairretained(},159
pw_restore_pixels(},166
pw_restrictclipping(},155
PW _RETAIN, 21, 22
pw_save-pixels(},165
pw_set_x_offset(},160
pw_set_xy_offset(},160
pw_set_y_offset(},160

R
"raw" mode, 215
readv(2), 90
reet,179

rect,31
rect_bottom, 179
rect_bounding,180
rect_construct,180
rect_equal,179
rect_includespoint,180
rect_includesrect,180
rect_intersection,18l
rect_intersectsrect,180
rect _isnull, 180
rect_marginadjust,180
rect_null,180
rect_order,181
rect-passtochild, 180

rect-passtoparent,180
rect_right,179
rectlist, 181
rectnode, 182
RECTS_BOTTOMTOTOP,181
RECTS_LEFTTORIGHT,181
RECTS_RIGHTTOLEFT,181
RECTS_SORTS,181
RECTS_TOPTOBOTTOM, 181
RECTS_UNSORTED,181
region

use for tiles, 21
retained pixwin

repair, 159
rl_boundintersectsrect,183
rl_coalesce,184
rl_coordoffset,182
rl_copy,184
rl_difference,184
rl_empty,183
rl_equal,183
rl_equalrect,183
rl_free,184
rl_includespoint,183
rl_initwithrect,184
rl_intersection,184
rl_normalize,184
rl_null,182
rl-passtochild,182
rl-passtoparent,182
rl_rectdifference,184
rl_rectintersection,184
rl_rectoffset,182
rl_rectunion,184
rl_sort,184
rl_union,184
rlimit(2},90

S
scheduler_func(),85
SCR_EAST,49
SC~NAMESIZE,48,57

SCR _NORTH, 49
SCR_POSITIONS,49
SCR_ SOUTH, 49
SCR_SWITCHBKGRDFRGRD,48
SCR_WEST,49
screen, 11, 47, 48, 56

adjacent, 50
creating, 48
destruction, 49
fullscreen access, see fullscreen
mouse, 56
multiple, 50
positions, 50
querying, 49
std arg parsing, 49

SCROLL _ DEVID, 54
SCROLL_ENTER, 188

-221-

SCROLL_EXIT, 188
SCROLL_REQUEST, 189
scroll bar, 187

scrolling, 190
updating, 188

scrollbar attributes
SCROLL LAST VIEW STAR~192
SCROLL-MARGIN, 191-
SCROLL-NORMALIZE, 191
SCROLL-NOTIFY CLIENT, 187
SCROLL - OBJECT~187, 192
SCROLL-OBJECT LENGTH, 188, 192
SCROLL-REQUEST MOTION, 192
S CROLL-RE QUE ST-OFF SET, 192
SCROLL-VIEW LENGTH, 188, 192
SCROLL=VIEW=START, 191, 192

<suntool/scrollbar.h>,187
selection

sample program, 97
selection callback procedures, 98, 94, 95

functionyroc, 98, 105
reply yroc, 100, 106

selection client debugging
adjusting RPC timeouts, 102
dumping selection data, 102
running a test service, 102
service displays, 102
tracing request attributes, 116

selection library data types
Seln function, 103

Index - Continued

Seln -function buffer, 98 thru 100, 104
Seln -holder, 103
Seln-holders all, 104
Seln -rank, 103-
Seln - replier data, 100 thru 102, 104
Seln - request~96, 104
Seln - requester, 96, 104
Seln -response, 98,103
Seln -result, 103
Seln=state,103

selection library procedures
seln acquire (), 98, 105
seln - ask (), 96,105
seln -clear functions (), 105
seln -create (), 94,105
seln - debug (), 106
seln -destroy (), 95, 106
seln - done () , 106
seln-dump function buffer(),106
seln-dump-function-key(),107
seln -dump-holder () ~107
seln-dump-rank(),107
seln-dump-response(),107
seln-dump-result(),107
seln-dump-service(),107
seln-dump-state(),108
seln-figure response(),98,108
seln -functions state (), 95, 108
seln-get function state,95
seln-get-function-state(),108
seln -hold file (), 108
seln-holder same client(),109
seln=holder=same=process(),109

Index - Continued

selection library procedures, continued
seln inform (), 109
seln - init request (), 96, 97, 110
seln -inquire () , 110, 119
seln-inquire all(),110
seln - query () :-96, 111, 119
SELN-REPORT, 111
seln -report event () ",95
seln report evetltO"", 111
seln request (), 97, 112
seln - same holder (), 112
seln - secondary exists (), 99, 112
seln-secondary-made () , 99, 112
seln-use test ~ervice(),112
seln-use-timeout(),113
seln use timeout()"", 102
sel~ yield () ,98
seln=yield_all(),113

selection request, 96, 93
buffer, 96
buffer size, 104
for non-held selection, 101
initiated by function-key, 98
long replies, 97, 101
read procedure, 96
replier context, 100
replying, 100
request attribute definitions, 97
requester context, 97
sample program, 97
unrecognized requests, 97, 101

selection request attributes, 114 thru 117
SELN_RE<LBYTESIZE,115
SELN REQ COMMIT PENDING DELETE,99, 101, 116
SELN=RE<LCONTENTS_ASCII,97,115
SELN _ RE<L CONTENTS_PIECES, 115
SELN REQ DELETE,116
SELN=RE<LEND _REQUEST, 100, 117
SELN REQ FAILED, 117
SELN-REQ-FAKE LEVEL, 116
SELN-REQ-FILE NAME,115
SELN-REQ-FIRsT,115
SELN=RE<LFIRST _UNIT, 115
SELN _RE<L LAST, 115
SELN REQ LAST UNIT, 115
SELN=RE<LLEVEL, 115
SELN _ RE<L RESTORE, 116
SELN _ RE<L SET_LEVEL, 116
SELN REQ UNKNOWN,117
SELN-REQ -UNRECOGNIZED, 97
SELN=REQ=YIELD, 99, 101, 116

Selection Service, 93,13
acquiring selections, 98
adjusting RPC timeouts, 102
callback procedures, 94, 95, 98, 105
caret, 94
client, 94
common request attributes, 114
concepts, 94
consume-reply procedure, 96
data definitions, 103
debugging clients, see selection client debugging
enumerated types, 103
function key notifications and processing, 98

-222-

Selection Service, continued
function key transitions, 95,98
getting the selection's contents, 96
library, 93
overview, 94
Primary, 94
procedure declarations, 105
releasing selections, 98
replying to requests, 100
requests, see selection request
required header files, 103
running a test service, 102
sample program get selection, 118
sample program seiii demo, 121
sample programs, 118
Secondary, 94
selection holder, 94
selection rank, 94
sending requests to the selection holder, 96
server process, 93
Shelf, 94
status display & tracing, 102
the selection itself, 94
timeouts, 102
tracing request attributes, 116

SELN _CARET, 103
SELN _CONTINUED, 103
SELN_DELETE, 99,103
seln _demo example program, 121
SELN_DIDNT_HAVE, 103
SELN _EXISTS, 103
SELN _FAILED, 103
SELN _FILE, 103
SELN_FIND, 99, 103
SELN_FN_AGAIN,103
SELN _ FN _DELETE, 103
SELN _FN _ERROR, 103
SELN _FN _FIND, 103
SELN_FN_FRONT,103
SELN _FN _GET, 103
SELN_FN_OPEN, 103
SELN_FN_PROPS,103
SELN_FN_PUT,103
SELN_FN_STOP, 103
SELN_FN_UNDO, 103
SELN _IGNORE, 99, 103
SELN LEVEL ALL

SELN _LEVEL_ALL, 117
SELN LEVEL FIRST

SELN _LEVEL_FIRST, 117
SELN LEVEL LINE

SELN _LEVEL_LINE, 117
SELN LEVEL NEXT

SELN_LEVEL.:...NEXT,117
SELN LEVEL PREVIOUS

SELN _LEVEL_PREVIOUS, 117
SELN_NON_EXIST,103
SELN _NONE, 103
SELN_PRIMARY, 103
seln _ *, see selection library procedures
SELN _REQ_*, see selection request attributes

SELN_REQUEST, 99,103
SELN_SECONDARY, 103
SELN _SHELF, 103
SELN_SHELVE, 99,103
SELN _SUCCESS, 103
SELN _TRACE_ACQUIRE

SELN_TRACE_ACQUIRE, 116
SELN TRACE DONE

SELN_TRACE_DONE,116
SELN TRACE HOLD FILE

SELN_TRACE_HOLD_FILE,116
SELN TRACE INFORM

SELN_TRACE_INFORM,116
SELN _TRACE_INQUIRE

SELN_TRACE_INQUIRE,116
SELN TRACE STOP

SELN_TRACE_STOP,116
SELN TRACE YIELD

SELN_TRACE_YIELD, 116
Seln _ *, see selection library data types
SELN_UNKNOWN, 103
SELN _UNRECOGNIZED, 103
SELN _UNSPECIFIED, 103
SELN_WRONG_RANK,103
setitimer(2), 90
setjmp (2), 90
setpriority(2), 90
setquota(2), 90
SIG_BIT,80
SIGALARM,82
sigblock(2), 90
SIGCHLD,82
SIOIo,40
SIGKILL, 49
sigmask(2), 90
signal(3),214
signal handling, 214
signal(2), 89
signal (3), 90
sigpause(2), 90
sigstack(2), 90
SIGTERM, 49, 79
SIGTSTP, 214
SIGURG,70
sigvec(2), 89,90
SIGVTALARM, 82
SIGWlNCH, 42, 158, 212
SIGxcpu,34
singlecolor,47
SunView

abstractions/objects, 11
architecture, 7, 12
changes from 2.0, 3
compatibility with future releases 3
introduction,3 '
programming notes, 211
system model, 11
tool merges, 211
what is supported, 211

-223-

T
terminal emulation, 214
Test_Mode, 149
tile, 21, 11

tool

dynamically changing flags, 23
extracting data, 23
laying out, 22
notification from the Agent, 23
notifying tiles through the Agent, 24
overlap, 14
registering with the Agent, 21
removing from the Agent, 26
SunView model, 14

iconic flag, 40
parent, 43

tool_create, 214
TOP_DEVID,54
TR _ UNfRANS _EVENT, 56
tty (4), 214

U
umask(2), 90
UNIX,214

V
Virtual User Input Device, see vuid
vuid, 53

adding a new segment, 55
choosing events, 199
device controls, 199
example code, 200
firm events, 197

Index Continued

input device control- see input device, 56
no missing keys, 55
pair, 198
result values, 55
sample device driver, 200
segments, 54
state, 55
station codes, 54
writing a vuid driver, 197

Vuid _ addr "'probe, 200
<sundev/vuid event.h> 54 197 200
VUID FIRM EvENT, 199 ' , ,

VUID=NATIVE,199
VUID_SEG_SIZE,54
VUIDGADDR, 200
VUIDGFORMAT,199
VUIDSADDR, 200
VUIDSFORMAT,199

W
we_getgfxwindow(},41
we_getparentwindow(},43
we_setgfxwindow(},41
we_setparentwindow(},43
when_hint, 76
win_bell (), 37
win_computeclipping(},174

Index - Continued

win_copy_event(),25
<sunwindow/win_enum.h>,35
win_enum_input_device(),58
win_enumerate_children(),35
win_enumerate_subtree(),35
win_error () ,43
win_errorhandler(),43
win_fdtoname(),30
win_fdtonumber(),31
win_findintersect(),41
win_free_event(),25
win_get_designee(),39
win_get_event_timeout(),61
win _get_fd, 23
win _get_flags, 23
win_get_focus_event(),59
win_get_kbd_focus(),58
win_get_kbd_mask(),39
win_get_pick_mask(),39
win _getyixwin, 23
win_get_swallow_event(),59
win_get_tree_layer(),36
win_get_vuid_value(),55
win_getheight(),31
win_getinputcodebit(),38
win_getlink(),33
win_getnewwindow(),29
win_getowner(),42
win_getrect(),31
win_getsavedrect(),32
win_getscreenpositions(),50
win_getsize(),31
win_getuserflags(),40
win_getwidth(),31
win _grabio (), 164
win_grabiodebug,212
win_initscreenfromargv(),49
<sunwindow/win_input.h~54

win_insert (), 33
win_insertblanket(),42
win_is_input_device(),57
win_isblanket(),42
win_lockdata (), 34
win_lockdatadebug,212
WIN_NAMESIZE,30
win_nametonumber(),30
win_next free (),30
WIN_NULLLINK, 30, 32
win_numbertoname(),30
win_partialrepair(),175
win_post_event(),25
win_post_event_arg(),25
win_post_id (), 24
win_post_id_and_arg(),25
win_refuse_kbd_focus,58
win_register (),21
win_release_event_lock(),60
win_releaseio(),164

-224-

win_remove (), 34
win_remove_input_device(),57
win_removeblanket(),42
win_screendestroy(),49
win_screenget(),49
win_screennew(),48
win_set_designee(),39
win_set_event_timeout(),61
win_set_flags(),23
win_set_focus_event(),59
win_set_input_device(),56
win_set_kbd_focus(),58
win_set_kbd_mask(),39
win_set_pick_mask(),39
win_set_swallow_event(),59
win_setinputcodebit(),38
win _ setkbd (), 56
win_setlink(),33
win_setmouseposition(),41
win_setms (), 56
win_setowner (), 42
win_setrectO,31
win_setsavedrect(),32
win_setscreenpositions(),49
win_setuserflag(),40
win_setuserflags(),40
win_unlockdata(),34
win_unregister(),26
win_unsetinputcodebit(),38
window, 29, 11

activation, 33
as device, 29
as screen, 47
blanket, 41
blanket flag, 40
clipping, 14
creation, 29
cursor tracking, 15
data, 14
data lock, 34
database locking, 16
decoding error messages, 43
destruction, 29
device, 13
display tree, 14, 32
enumerating offspring, 35
enumerating the window tree, 36
enumeration, 35
environment usage, 41
errors, 43
geometry, 31
hierarchy, see window - display tree
iconic flag, 40
identifier conversion, 30
input, 37
input events, 15
locate window, 41
mouse position, 41
naive programs, 41
name, 30
new, 29

window, continued
next available, 30
null, 30
number, 30
owner, 29, 42
parent, 31
position, 14,31
querying size, 31
reference, 29
referencing, 30
saved rect, 32
screen information, 49
SIGWlNCH, 42
user data, 40
user flags, 40
window driver, 13

window device layer, 7
window display tree

SIGXCPU deadlock resolution, 34
batched updates, 34
insertion, 33
links, 32
removal, 34

window management, 171
minimal repaint, 174

WINDOW_GFX,41
Window_handle, 35
window_main_loop(),84
WINDOW_PARENT, 43
windowfd, 30
WL_BOTTOMCHILD,32
WL _COVERED, 32 .
WL _COVERING, 32
WL_ENCLOSING,32
WL _ OLDERSIB, 32
WL_OLDESTCHILD,32
WL _PARENT, 32
WL_TOPCHILD,32
WL_YOUNGERSIB,32
WL_YOU-TGESTCHILD,32
wmgr_bottom(),I71
wmgr_changelevel(),173
wmgr_changerect(),171
wmgr_close (), 171
wmgr_completechangerect(),173
wmgr_confirm(),172
wmgr_figureiconrect(),172
wmgr_figuretoolrect(),172
wmgr_forktool(),172
wmgr_getrectalloc (), 174
WMGR_ICONIC,174
wmgr_iswindowopen(),174
wmgr_move (), 171
wmgr_open (), 171
wmgr_refreshwindow(),171
WMGR _ SETPOS, 172
wmgr_setrectalloc(),174
wmgr_stretch(),171
wmgr_top (), 171
wmgr_winandchildrenexposed(),173

-225-

workstation, 53, 11
WORKSTATION_DEVID,54,198
write (2), 90
w s _ * variables, see kernel tuning
ws_usr_async,63
WUF_WMGR1,174

Index - COnlinued

Revision History

Revision Date Comments

- 02 17 February 1986 First edition for first release of Sun View with 3.0

- 10 15 October 1986 Revised and reprinted for release 3.2

Notes

Notes

Notes

Notes

Notes

