
Asun®
• microsystems

Sun View TId Programmer's Guide

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Contents

Chapter 1 Introduction .. :: 3

What is Sun View? .. 3

History ... 4

Release 3. 0 ~.. 4

Release 3.2 .. 4

Code No Longer Supported .. 5

Chapter 2 The Sun View Model ... 9

2.1. Objects ... 9

Window Objects ... 11

Other Visual Objects ... 11

2.2. Examples of the use of Objects by Applications ... 12

2.3. Windows ... 16

Frames ... 16

Manipulating Frames Via Menus ... 18

Subwindows ... 19

2.4. Input: The Notifier:4@:,:,~~~...... 20

Callback Style of Programming .. ,~~#~:~ ... %~.: .. :.g<~k·. 20

Why a Notification-Based System? d~:U.: :;j.j.; ... l.,~ :.:; :.;:::;;;::::.22

Relationship Between the Notifier, Objects~.:~h4.::W~:::::·:::::}:::::::n::::::?:.:·;:::f·::::::.: ::: ::-:.: .. :.:::::-
Application .. :::: .. L. :·i·:·.!·!.· ::!·; ".r:':':'U",: :./:f:22?/:-
Calling the Notifier Directly ~~~:;:;:;:.:t ... 4~ j~~~·;.::jE~~,.~«?24

··<::-m::::))::::::::::1!:;::::ii:::;::;:::··:::::::·::::}> .. ,

Chapter 3 Interface Outline .. :JU,,@f:....... 27

-iii-

Contents - Continued

Row/Column Space ... 49

4.8. Attribute Ordering ... 51

4.9. File Descriptor Usage .. 54

Chapter 5 Canvases ... 57

5.1. Creating and Drawing into a Canvas .. 58

5.2. Scrolling Canvases .. 59

5.3. Canvas Model .. 60

5.4. Repainting .. 61

Retained Canvases ... 61

Non-Retained Canvases .. 62

The Repaint Procedure .. 62

Retained vs. Non-Retained .. 62

5.5. Tracking Changes in the Canvas Size ... 63

Initializing a Canvas ... 63

5.6. Automatic Sizing of the Canvas ... 65

5.7. Handling Input in Canvases ... 66

Default Input Mask .. 66

Writing Your Own Event Procedure ... 66

Translating Events from Canvas to Window Space 66

Border Highlighting .. 67

5.8. Color in Canvases .. 69

Setting the Colormap Segment ... 69

Color in Retained Canvases .. 69

Color in Scroll able Canvases ... 69

Chapter 6 Handling Input ... 73

6.1. Input Environment .. 74

6.2. Events ... 75

ASCII Events .. 77

Locator Button Events ... 77

Locator Motion Events .. 77

Window Events .. 78

-v-

Contents - Continued

7.5. Color ... 103

Introduction to Color .. 103

The Colonnap .. 103

Changing the Colormap ... 104

Colonnap Segments ... 104

Background and Foreground .. 104

Default Colonnap Segment ... 104

Sharing Colormap Segments .. 105

Example: showeolor ... 105

Manipulating the Colortllap .. 107

Changing a Window's Colonnap Segment .. 107

Cycling t:l1e Colonnap ... 108

Miscellaneous Utilities ... 108

Using Color .. 109

Cursors and Menus ... 109

Is The Application Running on a Color Display? 109

Simulating Grayscale on a Color Display... 109

Double Buffering ... 110

7.6. Plane Groups and the Sun-3/110 .. 112

Sun View and Plane Groups .. 112

suntools and Plane Groups .. 113

Chapter 8 Text Subwindows .. 117

8.1. Creating a Text Subwindow .. 118

8.2. Writing to a Text Subwindow .. 118

8.3. Editing the Contents of a Text Subwindow .. 119

Removing Characters ... 119

Replacing Characters .. 120

The Editing Log ... 120

8.4. Positioning the Text Displayed in a Text Subwindow 121

8.5. Finding a Pattern .. 123

8.6. Marking Positions ... 123

8.7. Setting t:l1e Primary Selection ... 125

-vii-

Contents - Continued

9.4. Messages ... 147

9.5. Buttons ... 148

Button Selection .. 148

Button Notification .. 148

Button Image Creation Utility ... 148

9.6. Choices .. 150

Displaying Choice Items .. 150

Choice Selection .. 152

Choice Notification .. 152

Choice Value ... 152

Choice Menus ... 152

9.7. Toggles .. 156

Displaying Toggles .. 156

Toggle Selection .. 156

Toggle Notification .. 156

Toggle Value ... 156

Toggle Menus ... 158

9.8. Text .. 159

Displaying Text Items .. 159

Text Selection ... 160

Text Notification ... 160

Writing Your Own Notify Procedure ,.. 161

Text Value ... 162

Text Menus ... 163

9.9. Sliders ... 164

Displaying Sliders .. 164

Slider Selection .. 164

Slider Notification .. 164

Slider Value ... 165

9.10. Painting Panels and Individual Items .. 166

9.11. Iterating Over a Panel's Items ... 168

9.12. Panel Item Client Data ... 168

9.13. Event Handling .. 169

-ix-

Contents - Continued

Menu Item Generate Procedure ... 204

Menu Generate Procedure .. 205

Pullright Generate Procedure ... 207

Notifyl Action Procedures .. 208

Flow of Control in menu_show() .. 209

11.8. Interaction with Previously Defined SunView Menus 211

Using an Existing Menu as a Pullright ... 211

11.9. Initial and Default Selections ... 212

11.10. User Customizable Attributes ... 213

Chapter 12 Cursors .. 217

12.1. Creating and Modifying Cursors ... 218

12.2. Copying and Destroying Cursors ... 218

12.3. Crosshairs .. 219

12.4. The Cursor Attributes ... 220

Chapter 13 Icons .. 225

13.1. Using Images Generated With iconedit :..................................... 226

13.2. Modifying the Icon's Image ... 227

13.3. Loading Icon Images At Run Time .. 227

Chapter 14 Scrollbars .. 231

14.1. Scrolling Model ... 232

14.2. Use of Scrollbars by Application Users ... 234

14.3. Creating, Destroying and Modifying Scrollbars ... 235

14.4. Programmatic Scrolling .. 237

Chapter 15 The Selection Service .. 241

15.1. Getting the Primary Selection ... 242

15.2. Setting the Primary Selection .. 242

Chapter 16 The Notifier ... 245

16.1. When to Use the Notifier .. 246

16.2. Restrictions ... 247

-xi-

Contents - Continued

Getting Out ... 266

16.7. Error Handling .. 267

Error Codes .. 267

Handling Errors .. 267

Debugging ... 267

Chapter 17 Attribute Utilities .. 271

17.1. Character Unit Macros ... 271

17.2. Creating Reusable Attribute Lists ... 272

Default Attributes ... 273

Chapter 18 Sun View Interface Summary .. 277

Canvas Tables ... 278

Attributes .. 278

Functions and Macros ... 279

Cursor Tables .. 280

Attributes .. 280

Functions .. 282

Data Types .. 283

Icon Tables ... 286

Attributes .. 286

Functions and Macros ... 287

Input Event Tables ... 288

Event Codes .. 288

Event Descriptors .. 289

Input-Related Window Attributes .. 290

Menu Tables .. 291

Attributes .. 291

Item Attributes .. 294

Functions .. 296

Notifier Functions Table ... 298

Panel Tables ... 301

Attributes .. 301

- xiii-

Contents - Continued

A.7. dctool ... 375

A.8. typein ... 381

A.9. Programs that Manipulate Color .. 385

coloredit ... 385

animatecolor .. 390

A.lO. Two gfx subwindow-based programs converted to use
SunView .. 397

bounce ... 397

spheres .. 402

Appendix B Sun User Interface Conventions .. 409

B.1. Program Names ... 409

B.2. Frame Headers ~.. 409

B.3. Menus .. 409

Capitalization .. 409

Menus Showing Button Modifiers .. 410

Interaction with Standard Menus ... 410

EnablelDisable Menu Items .. 410

Multi-Column Menus ... 410

B.4. Panels ... 410

Buttons .. 411

List of Non-Exc1usive Choices ... 411

List of Exclusive Choices .. 411

Binary Choices ... 412

Text Items ... 412

Allocation of Function Between Buttons and Menus 412

B.5. Mouse Button Usage ... 413

Allocation of Function Between Mouse Buttons 413

U sing Mouse Buttons for Accelerators .. 413
"

B.6. Cursors .. 1 413

B.7. Icons ... 413

Appendix C Converting SunWindows Programs to SunView 417

-xv-

Tables

Table 3-1 Reserved Prefixes ... 29

Table 4-1 Window Usage Examples ... 33

Table 4-2 Sun View File Descriptor Usage .. 54

Table 6-1 Event Codes .. 76

Table 6-2 Macros to Get the Event State .. 81

Table 6-3 Macros to Set the Event State ... 82

Table 6-4 Event Descriptors ... 84

Table 7-1 Sample Colormap to Isolate Planes ... 111

Table 8-1 Textsw_status Values ... 126

Table 8-2 Textsw _action Attributes ... _... 130

Table 9-1 Text Item Notification ... 160

Table 9-2 Return Values for Text Item Notify Procedures 161

Table 9-3 Panel Event Handling Attributes 169

Table 9-4 Panel Action Functions ... ~ .. ++;;:.:+,:,:;,+;,:;:;:;:+~,+::::::-

Table 10-1 TTY Subwindow Escape Sequences ;:.;:;;;~;~.#~.~::.#~~::;:::;.::;.::: ..• ~:~~~~~~i:{}l~t:: /

Table 11-1 Attributes To Add Pre-Existing Menu Items ,:o:o: .. ""'~,:;.;:;.;:;:;:,,;;""':': •. ;o:.,,';::~.'

Table 11-2 Menu Item Creation Attributes ... ·.i •• :,:;:;:;:.;+;:;.:;:;~,.;.;.;,; ..

Table 11-3 User Customizable Menu Attributes .. 213

- xvii-

Tables - Continued

Table 18-29 TTY Subwindow Attributes ... 329

Table 18-30 TTY Subwindow Functions ... 329

Table 18-31 TTY Subwindow Special Escape Sequences 330

Table 18-32 Window Attributes ... 331

Table 18-33 Frame Attributes ... 334

Table 18-34 Window Functions and Macros .. 336

Table 18-35 Command Line Frame Arguments ... 338

Table C-l Sun Windows => Sun View Equivalences .. 424

-xix-

Figures

Figure 2-1 Sun View Objects ... 10

Figure 2-2 Flow of Control in a Conventional Program ... 20

Figure 2-3 Flow of Control in a Notifier-based Program 21

Figure 2-4 Flow of Input Events in icon edit, a Sun View Application 23

Figure 11-1 Display Stage of Menu Processing .. 209

Figure 11-2 Notification Stage of Menu Processing ... 210

Figure 14-1 Scrolling Model .. 233

Figure 14-2 Attributes Controlling Scrollbar Appearance 236

Figure 16-1 Overview of Notification ... 249

Figure 16-2 Flow of Control in Interposition .. 258

-xxi-

Audience for this Manual

Structure

Tutorial

User's Guide

Reference

Further Reading

Preface

This manual is addressed to anyone who is interested in writing SunView pro­
grams. It assumes that the reader understands the C programming language.
Also, before beginning to write your own programs it is a good idea to spend
some time in the Sun View environment, using the tools and demonstration pro­
grams provided with SunView.1

By convention, manuals fall into three categories, Tutorial, User's Guide, and
Reference. This manual is a combination of all three.

The Using Windows chapter serves as a tutorial introduction to SunView.
Through reading it and typing in and modifying its examples, you will be writing
simple Sun View programs in the proverbial "10 minutes to Sun View"
timeframe. You can then read the later chapters when you need to incorporate
the features they describe into your programs.

This entire manual is the user's guide. Start at the beginning, keep reading, and
you will understand the Sun View model, how Sun View programs work, and how
to create and use all the different Sun View objects in your own window pro­
grams.

Chapter 18, SunView Interface Summary, lists all the attributes of the different
Sun View objects and packages, and the functions and macros to operate on them.
Because of the nature of Sun View and its use of an attribute value ipffiiface, there
are a few simple calls but many, many attributes for them. Hencs}ij.:i'.iisl!.ce this
is all the reference section you will need on a day-to-day basis~{::::::f}:::::':::::::::"'::::::::-::-

::(?:::.;:::.·::U··\~~·.:::·U··:t·:::··:::::::::::;;:·::·:::(@>:, ..
This manual does not teach you how the Sun View wind9w:::§y~i~ffi:··ifii~~dr~s:::':: .. :::::::::.
only how to make working Sun View applications. Th¢:::!'9ffl1§r::J.~f:£gve~:~;::#.1§!tgr:.::m·i:'
with many low-level, esoteric, and complex details, in ilie::·$Yn¥i:~~bS=J.~t.~Wf::?::::::}::::{:::::·
Programmer's Guide.

1 All of this is optional software that you may not have installed on your system. Consult Installing UNIX
on the Sun. Workstation for more details.

1
Introduction

Introduction ... 3

What is Sun View? .. 3

History ... 4

Release 3.0 .. 4

Release 3.2 .. 4

Code No Longer Supported .. 5

What is Sun View?

1
Introduction

SunView (Sun Visual/Integrated Environment for Workstations) is a system to
support interactive, graphics-based applications running within windows. It con­
sists of two major areas of functionality: building blocks for output, and a run­
time system for managing input. The building blocks include four types of win­
dows:

o canvases on which programs can draw,

o text subwindows with built in editing capabilities,

o panels containing items such as buttons, choice items, and analog sliders,
and

o tty subwindows in which programs can be run.

Canvases, text subwindows and panels can be scrolled.

The run time system is based on a central notifier which distributes input to the
appropriate window, and a window manager to manage overlapping windows.

The exchange of data between applications running in separate windows (in the
same or separate processes) is facilitated by a selection service.

The Sun implementations of graphics standards - CGI and CORE - include
extensions to run within windows. See the SunCGI Reference Manual and the
SunCore Reference Manual, respectively, for more information.

3 Revision A of 15 October 1986

Code No Longer Supported

Chapter 1 - Introduction 5

The old SunWindows stacking menu package has been supplanted by the Sun­
View walking menu package, described in Chapter 11 of this document. Pro­
grammers should convert their applications to use the new package, as the old
package may not be included in future releases.

~~sun ~iW microsystems
Revision A of 15 October 1986

2
The SunView Model

The Sun View Model .. 9

2.1. Objects ... 9

Window Objects ... 11

Oilier Visual Objects ... 11

2.2. Examples of ilie use of Objects by Applications ... 12

2.3. Windows ... 16

Frames ... 16

Manipulating Frames Via Menus ... 18

Subwindows ... 19

2.4. Input: The Notifier .. 20

Callback Style of Programming .. 20

Why a Notification-Based System? .. 22

Relationship Between the Notifier, Objects, and ilie
Application .. 22

Calling ilie Notifier Directly... 24

2.1. Objects

2
The SunView Model

This chapter introduces the conceptual model presented by SunView, covering
such basic concepts as objects, windows and the notifier.

It is important that you understand the material in this chapter before you begin
to write SunView applications.

Sun View is an object-oriented system. Think of Sun View objects as visual
building blocks which you use to assemble the user interface to your application.
Different types of objects are provided, each with its particular properties; you
employ whatever type of object you need for the task at hand.

The most important class of Sun View objects are windows. Not all objects are
windows, however. Other visual objects include cursors, icons, menus and
scrollbars.

Technically, an object is a software entity presenting a functional interface. The
implementation of the object is not exposed; you manipulate an object by passing
its unique identifier, or handle, to its associated functions. The style of program­
matic interface resulting from this object-oriented approach is outlined in
Chapter 2.

The figure on the following page shows the different types and classes of Sun­
View objects.

9 Revision A of 15 October 1986

Window Objects

Other Visual Objects

Chapter 2 - The Sun View Model 11

Window objects include frames and subwindows. Frames contain non­
overlapping subwindows1 within their borders. Currently, there are four types of
subwindows provided by Sun View:

o Panel Subwindow - A subwindow containing panel items.

o Text Subwindow - A subwindow containing text.

o Canvas Subwindow - A subwindow into which programs can draw.

o TTY Subwindow - a terminal emulator, in which commands can be given
and programs executed.

The distinctions between frames and subwindows are explained in more detail in
the section entitled Windows later in this chapter.

(

The other types of objects, like windows, are displayed on the screen, but they
differ from windows in that they are less general and more tailored to their
specific function. They include:

o Panel Item - A component of a panel that facilitates a particular type of
interaction between the user and the application. Panel items can be moved,
displayed or undisplayed under program control. There are several
predefined types of items, including buttons, message items, choice items,
text items and sliders.

o Scrollbar - An object attached to and displayed within a subwindow
through which a user can control which portion of the subwindow's contents
are displayed. Both vertical and horizontal scrollbars can be attached to
panels and canvases. Text subwindows contain vertical scrollbars by default
(they mayIrot-eootain horizontal scrollbars).

o Menu - An object through which a program or a user makes choices and
issues commands. By convention in Sun View, menus pop up when the user
presses the right mouse button. Like windows, menus appear on the screen
when needed, and disappear when they have served their purpose. Menus,
however, differ from windows in several ways. First, they are more ephem­
eral - a menu only remains on the screen as long as the menu button
remains depressed, in contrast to a window, which remains on the screen
until the user indicates he is done or the controlling program explicitly
undisplays it. Second, menus are less flexible than windows; they are
designed specifically to allow the user to choose from among a list of
actions.

o Cursor - The object indicating the mouse location on the screen.

o Icon - a small (usually 64 x 64 pixel) image representing the application.

The next section gives some examples showing how typical applications make
use of Sun View objects in their user interface.

1 It is Sun View's window layout policy that enforces non-overlapping subwindows, not some limitation of
the system. If you access the window system at a very low level, subwindows can overlap successfully.

~\sun ,~ microsystems
Revision A of 15 October 1986

Chapter 2 - The Sun View Model 13

The next example shows iconedit, a simple bitmap editor for generating images
to be used by SunView applications:

Poi

..
• .. • .. 1 __ -.
..•. _.-.... ! .- ... -. .. •. ._. ·rl

(" :.... _-.---:-:-:1 "lII
......... ::

IMaga loadad.

Dir: lusrlineludeli.ages

F1la: painting,.hand.pr •

[Load] [store] [llrowse] ~

Size C Ieolt 6rid C Off

I Clear I C!IITJ !Invert I

~.

o F1ll C Border

o Fill C Border

abc Flll:

Load Fill Proof
C Sre C Sre C Sre

iconedit consists of a frame and five subwindows. From upper left to lower right
they are:

o a panel containing instructions on how to use the mouse;

o a small panel for short messages;

o a canvas for drawing the image;

o a panel containing various items for issuing commands and setting options
such as the size of the image being drawn, the drawing mode, etc;

o A small canvas for viewing the icon or cursor actual size.

Revision A of 15 October 1986

Chapter 2 - The Sun View Model 15

In the next picture, the user has pressed the menu mouse button over the "File:"
item in the control panel:

II Paint
Points: Pick

III Clear II Undo
nt8 to 1'81 nt or Clear.

....... __ _._ _ •. _
....... Irll. ••

•••• ••• III • • ••• • • •• •• I I I •• •• -._I._ .. I·_·I .. _·!·_.1.·_·I..-_I._
1 •• •• I •• •• I - I.· I·. I·.

11.···r·····r····i····~·····~·· .. 1
•• • I .:. .. -. ••

I·· ii.ii .. :... II ·li •. ,; ···i
I. ii ii ~:~ ii II Ii.J= .1 . .
Ir--.~ ••••• ~.-.! •••• ~ •• -.~ I
•• I .. I.· I.·

, •• •• I .- •• , · .. ·"'I-= .. ··i·· .. =·_·.I..··,·· •••• •••• ·1. i .1· •••••• -­
••••••• III ••••••• -.., • .II=-:=--_ ... __ _ .•... -............. .

Dir:

..... - .rowse di rectory

....Q - Quit

~.

o Fill C lorder

o Fill C lorder

abc Flll:

Load Flll Proof
C Src C Src C Src

iconedit has displayed a popup menu showing accelerators which the user can
type into the item. The purpose of this menu is to both allow the novice user to
select the command from the menu and to provide a bridge to more expert use of
the application by teaching the use of the accelerators.

Revision A of 15 October 1986

Chapter 2 - The Sun View Model 17

iconedit with its popup displayed:

III paint II clear III undo
Points: Pick points to paint or clear . Matching files .••

•• I I . I

The figure below diagrams the structure of icon edit as a tree of windows. Frames
are shown as rectangles; subwindows as circles:

base frame

Revision A of 15 October 1986

Subwindows

Chapter 2 - The Sun View Model 19

Both menus contain the Move, Resize, Expose, Hide and Redisplay commands.
Move allows the user to change the frame's location. Resize allows him to
change the window's width and height. Expose causes the frame to move in
front of the other windows, becoming fully visible on the "surface" of the
screen, while Hide does the opposite, moving the frame behind any other win­
dows occupying the same portion of the screen. Redisplay simply causes the
window to be displayed again.

When the user is finished working with a base frame he may want to destroy it
for good, in which case he would select Quit. Or he may want to Close the
frame, with the anticipation of opening it later and continuing work where he left
off. A base frame in its closed state is represented on the screen as a small (usu­
ally 64 by 64 pixel) icon. The icon is typically a picture indicating the function of
the underlying application.

Subframes may not be closed into icons; when the user finishes with a subframe,
he simply selects Done from the menu. While not destroying the subframe, this
causes it to disappear from the screen.

Subwindows differ from frames in several basic ways. Subwindows never exist
independently. They are always owned by a frame, and may not themselves own
subwindows or subframes. While frames can be moved freely around the screen,
subwindows are constrained to fit within the borders of the frame to which they
belong. Also in contrast to frames, subwindows are tiled - they may not over­
lap each other within their frame. Within these constraints (which are enforced
by a run-time boundary manager) sub windows may be moved and resized by
either a program or a user.

So far this chapter has discussed the static aspects of the Sun View model. The
section below outlines the system's model from a dynamic point of view.

~\sun ~~ microsystems
Revision A of 15 October 1986

Figure 2-3 Flow of Control in a Notifier-based Program

Application

start

register
callback procs
with notifier

call
notifier

end

process
event

Notifier

read
input

call
appropriate

callback
procedure

Yes

return
to application

Chapter 2 - The Sun View Model 21

No

Revision A of 15 October 1986

s
u
n
V
1
e
W

A
P

Y
1
C
a
t
1

o
n

Chapter 2 - The Sun View Model 23

Figure 2-4 Flow of Input Events in icon edit, a SunView Application

notify proc
for item 1

Control
Panel

user types, moves mouse, presses mouse buttons ...

\ /
UNIX events: input on file descriptors

Notifier
formats UNIX input into SunView events,
passes each event to the event procedure

of the appropriate window

notify proc
for item n

Sun View events

Drawing
Canvas

event proc
for

Drawing
Canvas

iconedit's notify procedures
for panel items

Proof
Canvas

event proc
for

Proof
Canvas

event
procedures

for

subwindow

iconedit's
event

procedures

Revision A of 15 October 1986

3
Interface Outline

Interface Outline ... 27

Sun View Libraries ... 27

Compiling Sun View Programs ... 27

Header Files ... 27

Object Handles ... 27

Attribute-based Functions .. 28

Standard Functions .. 28

Reserved Namespaces .. 29

Sun View Libraries

3
Interface Outline

This chapter outlines the Sun View interface, the Sun View libraries, header files,
object handles, attributes and the standard functions applicable to objects of each
type.

The Sun View functions that an application calls are mostly in the library file
/usr / lib/ libsuntool. a. This library includes the code to create and
manipulate high-level objects such as frames, panels, scrollbars and icons. These
packages in tum call routines in / usr / lib/ libsunwindow . a to create and
manipulate windows and interact with the Notifier. These in tum calls routines
in / us r / 1 ib / 1 ibpixr e ct. a that do the drawing on the screen.

Compiling Sun View Programs To compile a Sun View program you must link in these three libraries, and,
because they are built one on top of another, their order is important. For exam­
ple, to compile a typical SunView application whose source is testprog. c,
you would type in the command:

Header Files

Object Handles

polar% cc -0 teatprog teatprog.c -launtool -launwindow -lpixrect

The basic definitions needed by a Sun View application - covering windows,
frames, menus, icons and cursors - are obtained by including the header file
<suntool/ sunview. h>. Definitions for the other types of object are found
in their own include files - <suntool/ canvas. h>,
<suntool/text.h>, <suntool/panel.h>,~~

When you create a Sun View object, the creation function returns a handle for the
object. Later, when you wish to manipulate the object or inquire about its state,
you pass its handle to the appropriate function. This reliance on object handles is
a way of information-hiding. The handles are opaque in the sense that you can't
"see through" them to the actual data structure which represents the object.

Each object type has a corresponding type of handle. The window types of
Frame, Canvas, Textsw, Tty and Panel are grouped under the type
Window. So, for example, you can declare a panel as either a Panel or a
Window, whichever is most appropriate. The other object types are
Panel_item, Menu, Scrollbar, Cursor, and Icon.

Since C doesn't have an opaque type, all the opaque data types mentioned
above are t ypedef' d to the UNIX type caddr _ t (for' 'character address

~~sun ~~ microsystems
27 Revision A of 15 October 1986

Example

Chapter 3 - Interface Outline 29

Non-window functions are prefixed with the name of the object. So, to take
menus as an example, the standard functions are

o menu_create(),

o menu_get (),

o menu_set (), and

o menu_destroy().

The flavor of the interface is illustrated with the following code fragment, which
creates a scrollbar with a width of 10 pixels and a black bubble. Later, the
scrollbar's width is changed to 20 pixels. Finally, the scrollbar is destroyed:

Scrollbar bar;
bar = scrollbar_create(SCROLL_WIDTH, 10,

SCROLL_BAR_COLOR, SCROLL_BLACK,
0) ;

scrollbar_set(bar, SCROLL WIDTH, 20, 0);
scrollbar_destroy(bar);

CAUTION Note the zero which terminates the attribute lists in the * _create () and
* _set () calls. The most common mistake in using attribute lists is to for­
get the final zero. This will not be flagged by the compiler as an error; however,
it will cause Sun View to generate a run-time error message.

Reserved Namespaces Sun View reserves names beginning with the object types, as well as certain other
prefixes, for its own use.

Table 3-1

The prefixes listed below should not be used by applications in lower, upper, or
mixed case.

Reserved Prefixes

attr pixwin_ window
canvas pr_ win
cursor pw_ wmgr_
defaults rect
ei rl
es scrollbar
ev scroll
event seln
frame textsw -
icon text
menu toolsw
notify_ tool
panel_ ttysw_
pixrect tty

Revision A of 15 October 1986

4

Using Windows

Using Windows .. 33

4.1. Basic Routines ... 34

Creating Windows .. 34

Initiating Event Processing ... 34

Modifying and Retrieving Window Attributes .. 34

Destroying Windows .. 34

4.2. Example: hello _ world ... 35

4.3. Example: simple yanel .. 36

Some Frame Attributes .. 37

Panels ... 38

Fonts ... 38

Panel Items ... 38

4.4. Example: lister .. 39

4.5. Example: filer .. 41

Popups ... 42

Popup Property Sheet ... 42

Popup Text Subwindow .. 43

Popup Confinn.er ... 44

4.6. Example: image_browser _1 .. 46

Specifying Subwindow Size ... 46

Default Subwindow Layout .. 47

Explicit Subwindow Layout ... 47

Specifying Subwindow Sizes and Positions .. 48

Summary Tables

Table 4-1

4
Using Windows

This chapter describes how to build Sun View applications out of frames and
subwindows.

The first section presents the basic window routines. Succeeding sections give
examples, ranging from the simplest possible application to a moderately useful
file manager. For quick reference, the examples are given in the table below:

Window Usage Examples

Example Description Illustrates Page
hello world Minimal Sun View program. Compilation, frames. 35

simple Janel Panel w/message and button. Basic attributes, panels. 36

lister Front end to Is Panels, tty subwindows. 39

filer File manager Popups, Selection Service. 41

image_browser _1 Displays images Subwindow layout. 46

image_browser _ 2 Displays images Row/column space. 49

Many window and frame attributes are discussed as they occur in the examples.
However, this chapter does not attempt complete coverage of all the attributes.
For a comprehensive summary of all attributes see the following tables in
Chapter 18, SunView Interface Summary:

o the Window Attributes table begins on page 331;

o the Frame Attributes table begins on page 334;

o the Window Functions and Macros table begins on page 336;

o the Command Line Frame Arguments table begins on page 338.

~\sun ,~ microsystems
33 Revision A of 15 October 1986

4.2. Example: hello _ world

Chapter 4 - Using Windows 35

In learning a new programming language or environment, it is useful to begin
with a minimal program that simply prints some output. The point of such an
exercise is not that the program itself does anything interesting, but that to run it
you must master the mechanical details of creating, compiling, loading and run­
ning the program. Here's a minimal SunView program:

tinclude <suntool/sunview.h>

main ()
{

Frame frame;
frame = window_create(O, FRAME, FRAME_LABEL, "hello world", 0);
window_main_loop(frame);

The window comes up as shown below - a single frame with the words "hello
world" in the frame header:

Itlllu wu,'ltl

Note that this window is "alive" within the Sun View user interface; it can be
closed, moved, resized, hidden, etc. When closed, a default icon is displayed,
which contains the text from the frame header:

hello
world

After creating the above program in a file called hello _ wor ld. c, you would
compile it with the command:

CC -0 hello_world hello_world.c -lsuntool -lsunwindow -lpixrect

Revision A of 15 October 1986

Some Frame Attributes

FRAME LABEL

FRAME ICON

Chapter 4 - Using Windows 37

The code on the previous page creates a frame containing a single panel with a
message and a button:

Hit button to quit. [Quit]

Below we discuss the attributes in order of appearance.

The string given as the value for FRAME _LABEL will appear in a black frame
header strip at the top of the frame. To suppress both the label and the frame
header, set the attribute FRAME_SHOW_LABEL to FALSE.

The program has used FRAME _ICON to specify an icon to be shown when the
frame is closed. First, the macro DEFINE_ICON_FROM_IMAGE () is used to
generate a static icon taking its image from the file
/usr/include/images/hello_world.icon:

FRAME CMDLINE HELP PROC The next attribute, FRAME_CMDLINE_HELP_PROC, takes as its value a func­
tion that will be called when the user requests help with the -WH command-line
argument. This is an example of a callback procedure, in which the application
registers a function with Sun View, and sometime later Sun View calls back to the
registered function.6 The help function is called with the name by which the pro­
gram was invoked. In the example, the program's help function
help yroc () has first printed a message, then called the default frame help
function, frame_cmdline_help (). (Note that
FRAME _ CMDLINE _HELP _PROC must be specified before FRAME _ ARGS, or it
will be ignored).

FRAME ARGS FRAME _ ARGS is the mechanism by which the application passes command-line
arguments given by the user to the frame. There is a set of command line argu­
ments recognized by all frames, allowing the user to control such basic attributes
as the dimensions and label of the frame, whether the frame's initial state is open
or closed, etc. These arguments begin with -W; for a complete list of them see
the Command Line Frame Arguments table in Chapter 18.7 .

6 The callback model is described in Section 2.4.1npw: The Notijier.

7 As an alternative to FRAME ARGS. you can use FRAME ARGC P TR ARGV. which takes a pointer to
argc. rather than argc itself. This attribute causes window _ cr;ate () to strip all arguments beginning with
-Wout of argv. and decrement argc accordingly.

4J\sun ,~ microsystems
Revision A of 15 October 1986

4.4. Example: lister

Chapter 4 - Using Windows 39

Now let's begin to develop a program that actually does something useful. A
good candidate is a tool to help manage files. The first version simply lets the
user list files in the current directory:

11ster

File: *.~

coral'" ls *.c
br1ggs_tools.c
canvas_demo.c
confirm.c
dg_cycle.c
dirtool.c
filer .c
filer3_save.c
coral'l. 0

f11er_S8ve.c
gSh_panel.c
hello_world. c
hello_world2. c
helper_saye.c
helper_vers1onl.c
icon_test.c

11eaf.c
1 tems_demo . c
11 ster.c
lockscreen.c
lIarg1n_test.c
lIisc_merge.c
order_testl.c

order_test2.c
order_test3.c
order_test4.c
panel.c
panel_text.c
sunview_lIanual.c

The tool presents two subwindows. At the top is a control panel with a text item
for the specification of the files to be listed, a (List) button, and a CQ!ill) button.

Below the control panel is a tty subwindow. When the user hits the (Mill but­
ton, the program constructs a command string consisting of the string "Is ", fol­
lowed by the value of the File: item, followed by a newline, and inputs the com­
mand string to the tty subwindow by calling ttysw_input ().

The program is listed in its entirety on the following page.

Note that the frame, the panel and the tty subwindow are all declared as type
Window. They could just as well have been declared as type Frame, Panel
and Tty.

Revision A of 15 October 1986

4.5. Example: filer

Chapter 4 - Using Windows 41

Our next example builds on the simple front end to Is given in the previous
example to create a more interesting file manipulation tool. This application
illustrates the use of the text subwindow, the Selection Service, and popups -
windows that appear on the screen and disappear dynamically during execution
of a program.

In appearance,filer is similar to lister, with a control panel and tty subwindow.
The user specifies the directory and file, and hits the (LIst] button, causing the Is
command to be sent to the tty subwindow:

fller

Directory: /pe/usr/doc/app/code [List] [Set 15 flaps] [Edit] [Delete] ~
File: *.c.

coral'" ls *.c
br1ggs_tools.c
canyas_de.o.c
confir •• c
dLcycle.c
di rtool. c
fi ler.c
f11er2.c
coral'" 0

f11er3_save.c
filer_saye.c
gsh_panel.c
hello_world.c
hello_"orld2. c
helper_save.c
helper_vers1onl.c

1 con_test. c
ileaf.c
items_demo. c
lockscreen.c
lIargin_test.c
lIisc_lIerge.c
order_testl.c

order_test2.c
order_test3.c
order_test4.c
panel.c
panel_text.c
sunview_lIanual.c

There are three new buttons, each of which illustrates a typical use of popups:

I Set Is flags] a popup property sheet for setting options to Is;

CfuI[) a popup text subwindow for browsing and editing files;

(Delete] a popup con firmer which forces the user to confirm or cancel.

The three buttons are discussed in the pages that follow. The discussion makes
reference to specific routines from the program, which is listed in its entirety as
filer in Appendix A, Example Programs.

Revision A of 15 October 1986

Popup Text Subwindow

Chapter 4 - Using Windows 43

The rnmD button gives another illustration of a non-blocking popup. When the
user selects a filename and presses the button, a popup text subwindow contain­
ing the file appears:

fller
Directory: Ipe/uBr/doc/app/code
File: *.c

(list) [Set ls flags] [Edi~ [Delete] CY!I!)

coral ls *.c
br1ggs_tools.c
c8nv8s_demo.c
co icon_test.c

f11er3_save.c
filer_s8ve.c

"y.ii-mM
i1eaf.c

order_test2.c
order_test3.c

dg ~ 1***1
d1 } 7* helper. c *1
fi ~~ 1***1

~! ~ :::~~~:: ~:::!::~~:~::~~:>.>
% #include (suntool/textsw.h>

I:::~~~:: ~:::!::~~~~~:~~~ar.h>
:.~:~. static short icon_image[] = {
~:~~ #include (helper.icon>
~~~ }; 
1? DEFINE_ICON_FROM_IMAGE(helper_icon, icon_image); 

~j Frame base_frame; 
~{ Panel panel; 

ft 1***************************************************************************1 
J 1* main *1 
}~ 1***************************************************************************1 

i~~!n!:;~~, argYl ' 
:} char **argv; 
:h { 
:~~ he lper _1 con. i c_wi dth = lUI; 
ff helper_icon.ic_textrect.r_top = 18; 
.? helper _1 con. i c_ textrect. r _ left = 28; 
tt helper_icon.ic_textrect.r_width = 48; 
~~ helper_1con.ic_textrect.r_height = 2B; 
t helper_icon.ic_text = -hello"; 
; helper_1con.ic_flags = ICON_BKGRDSET; 
:.~:~. 

Both the subframe and text subwindow for the popup are created at initialization 
time with the calls: 

edit frame window_create(base_frame, FRAME, 
FRAME_SHOW_LABEL, TRUE, 
0) ; 

editsw = window_create(edit_frame, TEXTSW, 0); 

When the user hits the Cfuill) button the notify procedure edit _proc () is 
invoked. This function first calls the Selection Service to get the name of the file 
the user has selected. 12 Then it loads the file into the text subwindow, sets the 
frame header to the filename, and displays the frame with these two calls: 

window_set (editsw, TEXTSW_FILE, filename, 0); 
window_set(edit_frame, FRAME_LABEL, filename, WIN_SHOW, TRUE, 0); 

12 The routine to get the selection is given in Chapter 15. The Selection Service is described in detail in 
Chapter 9 of the SunView System Programmer's Guide. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



caddr t 
window_loop (subframe) 

Frame subframe; 

void 
window_return(return value) 

caddr_t return_value; 

Chapter 4 - Using Windows 45 

window_loop () causes the popup to be displayed and receive all input 
directed to the screen. The call will not return until window_return () is 
called from one of the popup's notify procedures. The value passed to 
window_return () as return_value will be returned by 
window_loop ( ). Its interpretation is up to the application - it may be used 
to indicate whether the command was confirmed, whether a valid file name was 
entered, etc. 

Revision A of 15 October 1986 



Default Subwindow Layout 

Explicit Subwindow Layout 

Chapter 4 - Using Windows 47 

The default subwindow layout algorithm is extremely simple. The first subwin­
dow is placed at the upper left comer of the frame (leaving space for the frame's 
header and a border). If the width of the previously-created subwindow is fixed 
(Le. not extend-to-edge), the next subwindow is placed to the right of it. If the 
width of the previously-created subwindow is extend-to-edge, the next subwin­
dow is placed below it, at the left of the frame. 

This default layout algorithm handles only very simple topologies. Sun View 
provides attributes to allow you to specify more complex layouts by explicitly 
positioning subwindows. You can position one subwindow relative to another by 
using WIN_BELOW and WIN_RIGHT _OF. These attributes take as their value 
the handle of the subwindow you want the new subwindow to be below or to the 
right of. 

image_browser _1, pictured on the preceding page, illustrates the use of 
window _ fit () along with explicit subwindow positioning to obtain a particu­
lar layout. The relevant calls are shown below: 

tty = window_create (frame, TTY, WIN_ROWS, 20, WIN_COLUMNS, 30, 0); 

control-pane1 = window_create (frame, PANEL, 0); 

(create panel items ... ) 

window_fit (control-pane1); 

display-pane1 = window_create (frame, PANEL, 
WIN_BELOW, control-pane1, 
WIN_RIGHT_OF, tty, 
0); 

window_fit (frame); 

First the tty subwindow is created with a fixed height and width. Then the con­
trol panel is created, with no specification of origin or dimensions. Since the 
width of the previous subwindow was fixed, the control panel is placed by 
default just to the right. After its items are created, the control panel is shrunk 
around its items in both dimensions with window _ fit ( ). Then the display 
panel is created and explicitly positioned below the control panel and to the right 
of the tty subwindow. Both dimensions of the display panel default to 
WIN EXTEND TO EDGE. Finally, window fit () is called to shrink the 
frame to the width Of the control panel. and the height of the display panel.14 

NOTE One thing to watch out for is that WIN_BELOW only affects the subwindow's Y 
dimension, and WIN_RIGHT _OF only affects the x dimension. 

14 window_fit () causes the window to shrink until it encounters the first fixed border. Subwindows 
which are extend-to-edge don't stop the shrinking. 

Revision A of 15 October 1986 



4.7. Example: 
image_browser _ 2 

Row/Column Space 

Chapter 4 - Using Windows 49 

In the next example, when the user specifies a filename and presses I Browse I the 
images in the files are displayed in a scrollable panel: 

Dir: lusr/view/doc/app/cods 
Fi 1 e: * . i CO\ 

~
~:'. 

",' .. ': 

" ' 

8 
cursor 

I 
-"'-I 

demo 

Sun 
View 
Manual 

[Browse] 
[ Qu1 t ] 

The point of this example is to illustrate how you can use row/column space to 
specify the size of a subwindow. The goal was to make the panel just the right 
size to display a single page of icons, with four rows, four columns, and 10 pixels 
of white space around each icon. 

Row/column space refers to a logical grid defining the rows and columns of a 
window. You can define the row/column space for a window by using the attri­
butes in the following table: 

Attribute Description Default Def. in Panels 

WIN BOTTOM MARGIN Bottom margin. 0 (same) - -
WIN COLUMN GAP Space after columns. - - 0 (same) 

WIN COLUMN WIDTH Width of a column. - - Width of WIN FONT. (same) 

WIN LEFT MARGIN Left margin, 5 4 - -
WIN RIGHT MARGIN Right margin. 5 0 - -
WIN ROW GAP Space after rows, 0 5 

WIN ROW HEIGHT Height of a row. Height of WIN_FONT (same) 

WIN TOP MARGIN Top margin. 517 4 

17 In frames with headers. the default for WIN_TOP _ MARG IN depends on the system font With the default 
system font. it defaults to 17. 

Revision A of 15 October 1986 



4.8. Attribute Ordering 

Command-line Arguments 

Chapter 4 - Using Windows 51 

The general rule is that attributes in SunView are evaluated in the order they are 
given. The following two examples of text subwindow calls illustrate how giv­
ing the same attributes in different orders can produce different effects: 

window_set (textsw, TEXTSW_FILE, "file_l" , 0); 
window_set (textsw, TEXTSW_FIRST, 20, TEXTSW_FILE, "file_2", 0); 

window_set (textsw, TEXTSW_FILE, "file_l" , 0); 
window_set (textsw, TEXTSW_FILE, "file_2", TEXTSW_FIRST, 20, 0); 

In the first pair of calls, the index is first set to the 20th character of f i 1 e _1, 
then f i 1 e _ 2 is loaded, starting at the zeroth character. The second pair of calls 
first loads file_2, then sets the index in file_2 to 20. 

The attribute FRAME _ ARGS bears special mention. As described in the second 
example in this chapter, simple yanel, this attribute causes the frame to process 
the command-line arguments given by the user at run time. Some of these argu­
ments correspond to attributes that can be set programmatically - for example, 
-Wh corresponds to WIN ROWS.19 

The basic rule - that attributes are evaluated in the order given - applies 
equally to attributes that are explicitly specified in the program and to those that 
are specified at run time via their command-line equivalents. If a given attribute 
is specified more than once, the last setting is the one that takes effect, so you can 
control whether your application or the user will have the last word by specifying 
attributes after or before FRAME ARGS. 

Let's take a couple of examples: 

window_create (0, FRAME, 
FRAME_ARGS, 
FRAME_LABEL, 
WIN_ROWS, 
0) ; 

window_create (0, FRAME, 
FRAME_LABEL, 
WIN_ROWS, 
FRAME _ ARGS , 
0) ; 

argv, argc, 
"LABEL FROM PROGRAM", 
10, 

"LABEL FROM PROGRAM", 
10, 
argv, argc, 

Assume that the program was invoked with a command line containing the fol­
lowing arguments: 

-WI "LABEL FROM COMMAND-LINE" -Wh 4 

19 For a complete list of these arguments see the Command Line Frame Argutnents table in Chapter 18. 

Revision A of 15 October 1986 



The Panel Package 

Chapter 4 - Using Windows 53 

The panel package deviates from the norm in that its attributes are generally not 
order-dependent. For example, you can specify the label of an item before the 
font, and the font will be used even though it appears after the label. 

The only thing to watch out for is that you can't change the font in a single call, 
as in: 

panel_set (text_item, 
PANEL_FONT, font_l, 
PANEL LABEL_STRING, "Label:", 
PANEL_FONT, font_2, 
PANEL_VALUE, "initial value", 
0) ; 

The above call will'cause both the label and the value for text item to be 
rendered in font 2. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



5 
Canvases 

Canvases .............................................................................................................................................. 57 

5.1. Creating and Drawing into a Canvas .................................................................... 58 

5.2. Scrolling Canvases .......................................................................................................... 59 

5.3. Canvas Model .................................................................................................................... 60 

5.4. Repainting ............................................................................................................................ 61 

Retained Canvases ....................................................................................................... 61 

Non-Retained Canvases ............................................................................................ 62 

The Repaint Procedure .............................................................................................. 62 

Retained vs. Non-Retained ...................................................................................... 62 

5.5. Tracking Changes in the Canvas Size ................................................................. 63 

Initializing a Canvas ................................................................................................... 63 

5.6. Automatic Sizing of the Canvas ............................................................................. 65 

5.7. Handling Input in Canvases ....................................................................................... 66 

Default Input Mask ...................................................................................................... 66 

Writing Your Own Event Procedure ................................................................. 66 

Translating Events from Canvas to Window Space .................................. 66 

Border Highlighting .................................................................................................... 67 

5.8. Color in Canvases ............................................................................................................ 69 

Setting me Colormap Segment ............................................................................. 69 

Color in Retained Canvases .................................................................................... 69 

Color in Scrollable Canvases ................................................................................. 69 



Summary Tables 

5 
Canvases 

The most basic type of subwindow provided by Sun View is the Canvas. A can­
vas is essentially a window into which you can draw. 

For a demonstration of the various canvas attributes, run the program 
/usr/demo/canvas_demo. For examples of canvases that illustrate event handling, 
run the image editor icon edit. iconedit uses two canvases, the large drawing can­
vas on the left, and the small proof area on the lower right. 

In order to use canvases you must include the header file 
<suntool/canvas.h>. 

Tables that summarize canvas attributes, functions and macros are in Chapter 18, 
Sun View I nterJace Summary: 

o the Canvas Attributes table begins on page 278; 

o the Canvas Functions and Macros table begins on page 279. 

~\sun ~~ microsystems 
57 Revision A of 15 October 1986 



Chapter 5 - Canvases 59 

5.2. Scrolling Canvases Many applications need to view and manipulate a large object through a smaller 
viewing window. To facilitate this SunView provides scrollbars, which can be 
attached to subwindows of type canvas, text or panel. 

Example 2: The code belo·w creates a canvas that is scroll able in both directions: 

frame 
canvas 

window_create(NULL, FRAME, 0); 
window_create (frame, CANVAS, 

CANVAS_AUTO_SHRINK, 
CANVAS_WIDTH, 
CANVAS_HEIGHT, 
WIN_VERT ICAL_S CROLLBAR , 
WIN_HORIZONTAL_SCROLLBAR, 
0) ; 

FALSE, 
1000, 
1000, 
scrollbar_create(O) , 
scrollbar_create(O) , 

The distinction between the dimensions of the canvas and of the window is 
important In the above example, we set the canvas width and height to 1000 
pixels. Since the dimensions of the canvas subwindow (Le. WIN_WIDTH and 
WIN_HEIGHT) were not explicitly set, the subwindow extends to fill the frame. 
The frame's dimensions, in turn, were not explicitly set, so it defaults to 25 lines 
by 80 characters in the default font The result is a logical canvas roughly the 
area of the screen, which is viewed through a window about one fourth that size. 

NOTE It is necessary to explicitly disable the "auto-shrink" feature in the above exam­
ple. If this were not done, the canvas size would be truncated to the size of the 
window. See Section 5.6, Automatic Sizing of the Canvas. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



The Canvas 

The Canvas Pixwin 

5.4. Repainting 

Retained Canvases 

Chapter 5 - Canvases 61 

Think of the canvas itself as a logical surface on which you can draw. The width 
and height of the canvas are set via the attributes CANVAS _WIDTH and 
CANVAS _HEIGHT. So the coordinate system is as shown in the diagram on the 
previous page, with the origin at the upper left comer and the point 
(CANVAS_WIDTH-l, CANVAS_HEIGHT-l) at the lower right comer. Note 
that the logical canvas origin is always at (0, 0). 

As mentioned above, you draw on the canvas by writing into the canvas pixwin, 
which is retrieved via the CANVAS P IXWIN attribute or the 
canvasyixwin () macro. 

The canvas pixwin is set up to take scrolling into account by performing the 
transformation from your canvas coordinate system to its pixwin coordinate sys­
tem. So when you draw into the canvas pixwin using the pw _ * functions you 
don't have to do any mapping yourself - the arguments you give should be in 
the canvas coordinate system. 

Between the frame border and the canvas pixwin is a margin, set via the attribute 
CANVAS_MARGIN. This margin defaults to zero pixels, so in the simple case, 
the canvas pixwin occupies the entire inner area of the window pixwin. If one or 
more scrollbars are present, the canvas margin begins at the inside border of the 
scrollbar. 

Note the distinction between the pixwin of the canvas (attribute 
CANVAS_PIXWIN) and the pixwin of the window (attribute WIN_PIXWIN). 
The canvas pixwin is one of several regions of the window's pixwin, which also 
includes the regions occupied by the scrollbars and the margin. 

The canvas package manages the canvas pixwin for you. In particular, the clip­
ping list is restricted to the area of the canvas pixwin actually backed by the can­
vas. This means that you can never draw off the edge of the canvas. For exam­
ple, if you have set the canvas height to be less than the height of the canvas 
pixwin, any pw _ * operations that attempt to draw below the canvas height will 
be clipped away. 

By default, canvases are retained - i.e. the canvas package maintains a copy of 
the bits on the screen in a backing pixrect, from which it automatically repaints 
the screen image when necessary. If you wish to handle repainting yourself, you 
can defeat this feature. 

The Canvas Package allocates a backing pixrect the size of the logical canvas. 
When the canvas width or height changes, a new backing pixrect of the proper 
dimensions is allocated, the contents of the old pixrect are copied into the new 
pixrect, and the old pixrect is freed. 

Revision A of 15 October 1986 



5.5. Tracking Changes in 
the Canvas Size 

Chapter 5 - Canvases 63 

The client's resize procedure is called whenever the canvas width or height 
changes. Its fonn is: 

sample_resize-proc(canvas, width, height) 
Canvas canvas; 
int width; 
int height; 

NOTE You should never repaint the image in the resize procedure, since if there is any 
new area to be painted, the repaint procedure will be called later. 

Initializing a Canvas 

There are some subtle points to be aware of related to whether or not the image is 
fixed size (CANVAS _FIXED_IMAGE is TRUE). In the default case the image is 
fixed size, and the repaint procedure will not be called when the canvas gets 
smaller, since there will be no new canvas area to be repainted. If the image is 
not fixed size, then whenever the canvas size changes, the canvas package 
assumes that the entire canvas needs to be repainted, and the repaint area will 
contain the entire canvas. 

Neither the repaint procedure nor the resize procedure will be called until the 
canvas subwindow has been displayed at least once. This allows you to create 
and initialize a canvas without having to deal with the resize/repaint procedures. 
The very first time the canvas is displayed, the resize procedure will be called 
with the current canvas size. This initial call to the resize procedure allows you 
to synchronize with the canvas size. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



5.6. Automatic Sizing of 
the Canvas 

Chapter 5 - Canvases 65 

There are several points to note from the example on the previous page. First, 
since the width and height of the canvas are not specified, they default to the 
width and height of the window. Second, since the image being drawn is depen­
dent on the size of the canvas, we set CANVAS_FIXED_IMAGE to FALSE. 
Third, when the repaint proc is called, we don't bother to draw the specified 
repaint area, instead we rely on the clipping list to be restricted correctly and 
simply redraw the entire image. 

Two attributes requiring some explanation are CANVAS AUTO EXPAND and 
CANVAS_AUTO _ SHRINK. Setting both these attributes to TRUE allows you to 
have a drawing area which automatically tracks the size of the window. 

If CANVAS_AUTO_EXPAND is TRUE, the canvas width and height are never 
allowed to be less than the edges of the canvas pixwin. For example, if you try to 
set CANVAS WIDTH to a value which is smaller than the width of the canvas 
pixwin, the value will be automatically expanded (rounded up) to the width of 
the canvas pixwin. 

The main use of CANVAS _AUTO _ EXP AND is to allow the canvas to grow 
bigger as the user stretches the window. For example, if the canvas starts out 
exactly the same size as the canvas pix win, and the user stretches the window, 
the canvas pixwin will get bigger, which will cause the canvas itself to expand. 

Another point to keep in mind is that whenever you set 
CANVAS_AUTO_EXPAND to TRUE, the canvas will be expanded to the edges 
of the canvas pixwin (if it is smaller to begin with). 

CANVAS_AUTO_SHRINK is symmetrical to CANVAS_AUTO_EXPAND. If 
CANVAS_AUTO_SHRINK is TRUE, the canvas width and height are never 
allowed to be greater than the edges of the canvas pixwin. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Border Highlighting 

Chapter 5 - Canvases 67 

The Sun View convention is that a subwindow indicates that it is accepting key­
board events by highlighted its border. By default, canvas subwindows do not 
enable any keyboard events, so the border is not highlighted. However, if you 
explicitly enable keyboard events, by consuming WIN_ASCI I_EVENTS, the 
canvas package will highlight the canvas border when it is given the input focus. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Chapter 5 - Canvases 69 

s.s. Color in Canvases You can use color in canvases by specifying a colonnap segment for the canvas 
with the colonnap manipulation routines described in Chapter 7. 

Setting the Colormap Segment The first thing to note is that since the canvas pixwin is a region of the 
WIN_PIXWIN, you must also set the colonnap segment for the canvas pixwin. 

Color in Retained Canvases If the canvas is retained, then the colonnap segment must be set before 
CANVAS_RETAINED is set to TRUE. This is because the canvas package will 
determine the depth of the backing pixrect based on depth of the colonnap seg­
ment defined for the WIN _ P IXWIN. (If the colormap segment depth is greater 
than two, then the full depth of the display will be used. Otherwise, the backing 
pixrect depth will be set to one.) 

Color in Scrollable Canvases 

Since the depth of the backing pixrect is determined when the canvas is created, 
you must create the canvas with CANVAS_RETAINED FALSE, then set the 
colonnap segment, then set CANVAS_RETAINED to TRUE. 

If the canvas has scrollbars, you need to attach the scrollbars to the canvas after 
the colonnap segment has been changed. If the canvas has already been created 
with scrollbars attached, you should change the colonnap, then re-attach the 
scrollbars. This will insure that the scrollbar pixwin regions use the new color­
map segment. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



6 
Handling Input 

Handling Input ................................................................................................................................ 73 

6.1. Input Environment .......................................................................................................... 74 

6.2. Events ..................................................................................................................................... 75 

ASCII Events ........................................................................................................ :......... 77 

Locator Button Events ............................................................................................... 77 

Locator Motion Events .............................................................................................. 77 

Window Events .............................................................................................................. 78 

Function Key Events ................................................................................................... 79 

Shift Key Events ............................................................................................................ 80 

Oilier Events .................................................................................................................... 80 

6.3. Querying and Setting ilie Event State .................................................................. 81 

6.4. Input Distribution ............................................................................................................ 82 

Input Focus ....................................................................................................................... 82 

Input Masks ...................................................................................................................... 83 

Selection of ilie Input Recipient ........................................................................... 83 

6.5. Enabling and Disabling Events ............................................................................... 84 

Which Mask to Use ..................................................................................................... 85 

Setting ilie Input Mask as a Whole ..................................................................... 86 

Querying Input Mask State ..................................................................................... 86 

6.6. Releasing ilie Event Lock ........................................................................................... 87 

6.7. Reading Events Explicitly .......................................................................................... 87 



Material Covered 

Header Files 

Related Documentation 

Summary Tables 

6 
Handling Input 

This chapter discusses the Sun View input paradigm, including: 

o the basic event construct; 

o the various classes of events -ASCII, function keys, locator buttons, locator 
motion, window generated events, and so on; 

o how to query the state of an event; 

o the input focus model distinguishing between pick and keyboard focuses; 

o control of input distribution via input masks; 

o how to explicitly read events. 

While the material in this chapter applies to the window system as a whole, it is 
of most immediate interest to clients of canvases, who typically will want to han­
dle events themselves. 

The definitions necessary to use Sun View's input facilities are in the header file 
<sunwindow/win_input .h>, which is included by 
<sunwindow/window_hs. h>, which in tum is included by default when 
you include <suntool/ sunview. h>. 

The chapter titled Workstations in theSunView System Programmer's Guide 
explains the input system at a lower level, covering such topics as how to add 
user input devices to SunView. 

Tables that summarize input functions and related attributes are in Chapter 18, 
SunView Interface Summary: 

o the Event Codes table begins on page 288; 

o the Event Descriptors table begins on page 289; 

o the Input-Related Window Attributes table begins on page 290. 

73 Revision A of 15 October 1986 



6.2. Events 

Chapter 6 - Handling Input 75 

Each user action generates an input event, which is passed to your event pro­
cedure as an Event pointer (type Event *). Infonnation encoded as part of 
the event includes: 

a an identifying code, accessed via the macro event _ id () ; 

a the location of the event in the window's coordinate system, accessed via 
event_x () and event_y (). 

a a timestamp, accessed via event_time () . 

Each event code corresponds to some item from a Virtual User Input Device 
(VUID) interface, thus isolating the application from dependence on any particu­
lar hardware input device.26 The VUID appears as an extended keyboard, dif­
ferent from existing keyboards but incorporating the common features of most of 
them. It also incorporates a locator which indicates a screen position. So that 
you can get window-related input, a window is also thought of as an input device 
(the fact that a window was entered by the locator, for example, is treated as an 
event). 

Event codes can take on any value in the range 0 through 65535. The values are 
useful when debugging. The table on the next page lists the predefined event 
codes and their values. 

26 It is possible to bypass the VUID and receive unencoded events. Refer to the section on Unencoded Input 
in Chapter 7 of the SunView System Programmer's Guide. 

Revision A of 15 October 1986 



ASCII Events 

Locator Button Events 

Locator Motion Events 

Chapter 6 - Handling Input 77 

The next several subsections discuss the different classes of events. When read­
ing about a particular event or class of events, keep in mind that a window will 
only receive an event if its input mask has been set to let the event through. 
The section on Enabling and Disabling Events later in the chapter describes how 
to control a window's input mask. 

The event codes in the range 0 to 255 inclusive are assigned to the ASCII event 
class, which includes the standard 7 -bit ASCII codes and their 8-bit META coun­
terparts. 

Striking a key which has an obvious ASCII meaning - i.e. a key in the main 
typing array labeled with a single letter - causes the VUID to enqueue for the 
appropriate window an event whose code is the corresponding 7 -bit ASCII char­
acter. 

The MET A event codes (128 through 255) are generated when the user strikes a 
key that would generate a 7 -bit ASCII code while the MET A key is also 
depressed. In this case, the event code is 128 (ME TA _F IRS T in the table on the 
previous page) plus the 7 -bit ASCII code. 

The standard Sun locator is a three button mouse, whose buttons generate the 
event codes MS_LEFT, MS_MIDDLE and MS_RIGHT. 

In general, a physical locator can have up to 10 buttons connected to it. In some 
cases, while the locator itself may not have any buttons on it, it may have buttons 
from another device assigned to it. A light pen is an example of such a locator. 
In any case, each of the buttons associated with the VUID's locator are assigned 
an event code; the i-th button is assigned the code BUT (i) . 

Thus the event codes MS_LEFT, MS_MIDDLE and MS_RIGHT correspond to 
BUT ( 1), BUT (2) and BUT (3) . 

The physical locator constantly provides an (x, y) coordinate position in pixels; 
this position is transformed by Sun View to the coordinate system of the window 
receiving an event. Locator motion event codes include LOC _MOVE, 
LO C_DRAG , LOC_TRAJECTORYand LOC_STILL. 

Since the locator tracking mechanism reports the current position at a set sam­
pling rate - 40 times per second - fast motions will yield non-adjacent loca­
tions in consecutive events. 

A LOC _MOVE event is reported when the locator moves, regardless of the state 
of the locator buttons. If you only want to know about locator motion when a 
button is down, enable LOC_DRAG instead of LOC_MOVE. This will greatly 
reduce the number of motion events that your application has to process. 

When you enable LOC _MOVE or LOC _DRAG the window system gives you the 
most current locator position it can, by collapsing consecutive locator motion 
events into one. This is appropriate for applications such as dragging an image 
from one point to another, in which the important thing is to keep up with the 
mouse cursor. On the other hand, for applications in which each point on the 
cursor trajectory is of interest, such as a program which lets the user draw, it is 

Revision A of 15 October 1986 



Function Key Events 

Chapter 6 - Handling Input 79 

section of code that might, from the user's perspective, take a long time. If your 
SIGURG handler is called, set the stop flag and return. In the code that is taking 
a long time, query the stop flag whenever convenient. When you notice that the 
stop flag has been set, read an event (see Section 6.6, Reading Events Explicitly) 
- if it is a WIN _STOP, then gracefully terminate your long operation. 

The function keys in the VUID define an idealized standard layout that groups 
keys by location: 15 left, 15 right, 15 top and 2 bottom.28 

The event codes associated with the function keys are KEY_LEFT (i), 

KEY_RIGHT (i) and KEY_TOP (i), where i ranges from 1 to 15. If you 
specifically ask for a function key event code then that event code will be passed 
to your event procedure. 

The standard SunView function keys map to event codes as follows: 

Sun View Function Key Event Code 

Stop KEY_LEFT (1) 
Again KEY_LEFT (2) 
Props KEY_LEFT (3) 
Undo KEY_LEFT (4) 
Expose KEY_LEFT (5) 
Put KEY_LEFT (6) 
Open KEY_LEFT (7) 
Get KEY_LEFT (8) 
Find KEY_LEFT (9) 
Delete KEY_LEFT (10) 

If you don't specifically ask for a given function key event code, then when the 
user presses that function key you will get an escape sequence instead of the 
function key event code (assuming ASCII events have been enabled). For physi­
cal key stations that are mapped to cursor control keys, events with codes that 
correspond to the ANSI X3.64 7-bit ASCII encoding for the cursor control func­
tion are transmitted. For physical keystations mapped to other function keys, 
events with codes that correspond to an ANSI X3.64 user-definable escape 
sequence are transmitted. 

28 The actual position of the function keys on a given physical keyboard may differ - see kbd (5) for 
details on various keyboards. 

Revision A of 15 October 1986 



6.3. Querying and Setting 
the Event State 

Table 6-2 

Chapter 6 - Handling Input 81 

You can query the state associated with an event via the following macros, all of 
which take as their only argument a pointer to an Event. 

Macros to Get the Event State 

Macro 

eventJ() 

event_shiftmask() 

event_shift_is_down() 

event_ctrl_is_down() 

event_meta_is_down() 

event_is_button() 

event_is_ascii() 

event_is_meta () 

event_is_key_left() 

event_is_key_right() 

event_is key top() 

Returns 

The identifying code of the event The codes are 

discussed in the previous section. 

TRUE if the event is a button or key 

event and the state is up. 

TRUE if the event is a button or key 

event and the state is down. 

The x coordinate of the locator in the window's 

coordinate system at the time the event occurred. 

The y coordinate of the locator in the window's 

coordinate system at the time the event occurred. 

The value of predefined shift-keys 

(described in kbd(5». Possible values: 

:ftdefine CAPSMASK OxOOOl 

:ftdefine SHIFTMASK OxOOOE 

:ftdefine CTRLMASK OxOO30 

:ftdefine META SHIFT MASK OxOO40 

The event's timestamp, formatted as a timeval 

struct, as defined in <sys/time . h>. 

TRUE if one of the shift keys are down. 

TRUE if the control key is down. 

TRUE if the meta key is down. 

TRUE if the event is a mouse button. 

TRUE if the event is in the ASCII range (0 thru 127). 

TRUE if the event is in the MET A range (128 thru 255). 

TRUE if the event is any KEY_LEFT (,i). 

TRUE if the event is any KEY_RIGHT (i). 

TRUE if the event is any KEY TOP (i) . 

In addition to the above macros, which tell about the state of a particular event, 
you can query the state of any button or key via the WIN_EVENT_STATE attri­
bute. For example, to find out whether or not the first right function key is down 
you would call: 

kl_down = (int) 
window_get(canvas, WIN_EVENT_STATE, KEY_RIGHT(l»i 

The call will return non-zero if the key is down, and zero if the key is up. 

Revision A of 15 October 1986 



Input Masks 

Selection of the Input 
Recipient 

Chapter 6 - Handling Input 83 

For example, the call 

window_set(win, WIN_MOUSE XY, 200, 300, 0); 

sets the cursor to position (200, 300) and sets the pick focus to win. 

An input mask specifies which events a window will receive (or consume) and 
which it will ignore. In other words, an input mask serves as a read enable mask. 
Each window has both a pick input mask, to specify which pick related events it 
wants, and a keyboard input mask, to specify which keyboard related events it 
wants. 

When a window is the pick focus, its pick mask is used to screen events. When a 
window is the keyboard focus, its keyboard mask is used to screen events. 

The section on Enabling and Disabling Events describes how to specify which 
events a window will consume and which it will ignore. 

The Notifier determines which window will receive a given event according to 
the following algorithm: 

[] First, the keyboard input mask for the window which is the keyboard focus 
is checked to see if it wants the event If so, it becomes the recipient; other­
wise the next test is applied. 

, 
[] Second, the pick input mask for the window which is under the cursor is 

checked to see if it wants the event If several windows are layered under 
the cursor, the event is tested against the pick input mask of the topmost 
window. If it wants the event then it becomes the recipient; otherwise the 
next test is applied. 

[] If the event does not match the pick input mask of the window under the cur­
sor, the event will be offered to that window's designee. By default the 
designee is the window's owner. You can set the designee explicitly by cal­
ling window_set () using the WIN_INPUT_DESIGNEE attribute.30 

If an event is offered unsuccessfully to the root window, it is discarded. 
Windows which are not in the chain of designated recipients never have a 
chance to accept the event. 

[] Occasionally you may want to specify that a given window is to receive all 
events, regardless of their location on the screen. You can do this by setting 
the WIN GRAB ALL INPUT attribute for the window to TRUE. - -

If a recipient is found, the locator coordinates are adjusted to the coordinate sys­
tem of the recipient, and the event is appended to the recipient's input stream. 
Thus, every window sees a single ordered stream of time-stamped input events, 
containing only the events that window has declared to be of interest 

30 Note that you must give the WIN_DEVICE _NUMBER of the window you wish to be the designee t not its 
handle. This is to allow specifying windows in another user process as the input designee. So the following call 
would set win2 to be the designee for winl: window_set (winl, WIN_INPUT_DESIGNEE, 

window_get(win2, WIN_DEVICE_NUMBER))i 

Revision A of 15 October 1986 



Which Mask to Use 

Examples 

Chapter 6 - Handling Input 85 

To enable or disable ASCII events, use the keyboard mask. To enable or disable 
locator motion and button events t use the pick mask. 

Function keys are typicaIIy associated with the keyboard mask, but sometimes it 
makes sense to include some function keys in the pick mask - in effect extend­
ing the number of buttons associated with the pick device. For example, in the 
Sun View interface the [ Agam ) [Undo) [Put ) ~ [Delete) and CE.lliD func­
tion keys are associated with the keyboard mask, while the ~ [Expose) and 
~ keys are associated with the pick mask. 

The event attributes cause precisely the events you specify to be enabled or dis­
abled - the input mask is not automatically cleared to an initial state. So if you 
want to be sure that an input mask willlet exactly the events you specify through, 
you should first clear the mask with the special WIN_NO _EVENT S descriptor. 
Take, for example, the foIIowing two caIIs: 

window_set(win, WIN_CONSUME_PICK_EVENTS, 
WIN_MOUSE_BUTTONS, LOC_DRAG, 0, 
0) ; 

window_set(win, WIN CONSUME PICK EVENTS, 
WIN_NO_EVENTS, WIN_MOUSE_BUTTONS, LOC_DRAG, 0, 
0) ; 

The first wiII add the mouse buttons and LaC _DRAG to the existing pick input 
mask, while the second will set the mask to let only the mouse buttons and 
LOC DRAG through. 

Canvases by default enable LOC WINENTER, LOC WINEXIT, LOC MOVE 
and the three mouse buttons, MS=LEFT, MS_MIDDLE and MS_RIGHT.31 You 
could allow the user to type in text to a canvas by caIIing: 

window_set(canvas, WIN_CONSUME_KBD_EVENT, WIN_ASCI I_EVENTS, 0); 

Sometime later you could disable type-in by caIIing: 

An application needing to track mouse motion with the button down would 
enable LaC_DRAG by caIIing: 

window_set(canvas, WIN_CONSUME_PICK_EVENT, LOC_DRAG, 0); 

You can enable or disable the left, right or top function keys as a group via the 
event descriptors WIN_LEFT_KEYS WIN_RIGHT_KEYS, or 
WIN_TOP _KEYS. Note that if you want to see the up event you must also ask 
for WIN_UP_EVENTS, as in: 

window_set(win, WIN_CONSUME_KBD_EVENTS, WIN_LEFT_KEYS, 
WIN_UP_EVENTS, 0); 

31 Note that the canvas package expects to receive these events. and will not function properly if you disable 
them . 

• \sun ,~ mlcrosystems 
Revision A of 15 October 1986 



6.6. Releasing the Event 
Lock 

6.7. Reading Events 
Explicitly 

Chapter 6 - Handling Input 87 

If an operation generated by an input event is going to take a long time - over, 
say, 5 seconds - call this routine to allow other processes to get input: 32 

void 
window_release_event_lock(window) 

Window window; 

There are times when it is appropriate to go get the next event yourself, rather 
than waiting for it to come through the normal event stream. In particular, when 
tracking the mouse with an image which requires significant computation, it may 
be desirable to read events until a particular action - such as a mouse button up 
- is detected. To read the next input event for a window, use the function: 

int 
window_read_event(window, event) 

Window window; 
Event *event; 

window_read_event () fills in the event structure, and returns 0 if all went 
well. In case of error, it sets the global variable errno and returns-I. 

window_read _event () can be used in either a blocking or non-blocking 
mode, depending on how the window has been set up.33 

Note that if you read events in a canvassubwindow yourself, you must translate 
the event's location to canvas space by calling canvas_event () : 

32 For more details see the section on synchronization in the Workstations chapter of the SunView System 
Programmer's Guide. 

33 See the Input Control section in the Windows chapter of the SunView System Programmer's Guide . 

• \sun ~ microsystems 
Revision A of 15 October 1986 



Imaging Facilities: Pixwins 

I . F '1" p' . maglng aCI lties: IXWlns ................................................................................................. . 

7.1. What is aPixwin? ........................................................................................................... . 

7.2. Accessing a Pixwin's Pixels ..................................................................................... . 

Obtaining the Window's Pixwin ......................................................................... . 

Write Routines ............................................................................................................... . 

Basic RasteIOp Operations ............................................................................... . 

Oilier Raster Operations .................................................................................... .. 

Text Routines ............................................................................................................ . 

Batching and Stenciling Routines ................................................................ .. 

Drawing Polygons .................................................................................................. . 

Drawing Curved Shapes ..................................................................................... . 

Drawing Lines .......................................................................................................... . 

Read and Copy Routines ........................................................................................ .. 

7.3. Rendering Speed ............................................................................................................. . 

7 

91 

92 

92 

92 

93 

93 

93 

94 

95 

96 

96 

96 

97 

98 

Locking ............................................................................................................................... 98 

Batching ............................................................................................................................. 100 

Locking and Batching Interaction ....................................................................... 101 

7.4. Clipping Wiili Regions ................................................................................................. 102 

7.5. Color ....................................................................................................................................... 103 

Introduction to Color .................................................................................................. 103 

The Colonn.ap ............................................................................................................ 103 

Changing t:l1e Colonn.ap ....................................................................................... 104 

Colorm.ap Segments ............................................................................................... 104 



Material Covered 

Related Documentation 

Header Files 

Summary Tables 

7 
Imaging Facilities: Pixwins 

This chapter describes the pixwint that is the construct you use to draw t or 
rendert images in SunView. The most basic use of pixwins is to draw in a can­
vas subwindow. 

In addition to basic pixwin usaget this chapter covers: 

[J How to boost your rendering speed by locking and batching 

[J How to use regions for clipping 

[J How to manipulate the colormap 

[J How to use the plane groups on the Sun-3/110 

This chapter is addressed primarily to writers of simple applications using canvas 
subwindows. For lower level detailst see the chapter on Advanced Imaging in the 
Sun View System Programmers Guide. 

The pixwin drawing operations do not directly support high-level graphics opera­
tions such as shadingt segments t 3-D, linestyles, etc. If your application requires 
these you should consider some graphics package such as SunCore or SunCGI. 
Both of these will run in windows - see the SunCore and SunCGI Reference 
Manuals. 

The definitions necessary to use pixwins are in the header file 
<sunwindow /pixwin. h>, which is included by 
<sunwindow /window_hs . h>, which in tum is included by default when 
you include <suntool/ sunview. h>. 

Tables that summarize pixwin functions and macros are in Chapter 18, Sun View 
Interface Summary: 

o the Pixwin Drawing Functions and Macros table begins on page 311; 

[J the Pixwin Color Manipulation Functions table begins on page 315. 

91 Revision A of 15 October 1986 



Write Routines 

Basic RasterOp Operations 

Other Raster Operations 

Chapter 7 - Imaging Facilities: Pixwins 93 

The following routines allow you to draw areas, backgrounds, vectors, text, 
polygons, lines, and poly lines in a pixwin. 
The following are the basic low-level raster operations that draw on the screen. 
They are common to many imaging systems. 

pw_write(pw, dx, dy, dw, dh, op, pr, sx, sy) 
-or-
pw_rop(pw, dx, dy, dw, dh, op, pr, sx, sy) 

Pixwin *PWi 
int dx, dy, dw, dh, op, sx, sy; 
Pixrect *pr; 

pw _ wr i te () and pw _ r~p () are different names for the same procedure. 
They perform the indicated rasterop from the source pixrect to the destination in 
the pixwin. Pixels are written to the rectangle defined by dx, dy, dw, and dh 
in the pixwin pw using rasterop function op. dx and dy are the position of 
the top left-hand corner of the rectangle, and dw and dh are the width and 
height of the rectangle. They are copied from the rectangle with its origin at sx, 
sy in the source pixrect pointed to by pr. 

pw _ wr i te () is essential for many window system operations such as scrolling 
a window, drawing frames and borders, drawing an icon on the screen, etc. 

The routines in this section are variations on the basic rasterop routine. 

pw_writebackground(pw, dx, dy, dw, dh, op) 
Pixwin *PWi 
int dx, dy, dw, dh, 0Pi 

pw _ wr i tebackground () uses a conceptually infinite set of pixels, all of 
which are set to zero, as the source. It is often used to clear a canvas pixwin 
before drawing a new image. 35 

The following routine draws a pixel of value at (x, y) in the addressed 
pixwin: 

pw-put(pw, x, y, value) 
Pixwin *PWi 
int x, y, value; 

Using this routine to draw is very slow and should be avoided. If you use it, be 
sure to read the later sections on batching and locking. 

3S Canvases will automatically clear damaged areas if they are set not to be retained, or if the attribute 
CANVAS _AUTO_CLEAR is set. See Chapter 5, Canvases, for more information. 

Revision A of 15 October 1986 



Batching and Stenciling 
Routines 

Chapter 7 - Imaging Facilities: Pixwins 95 

NULL in which case the system font is used. 

The system font is reference counted and shared between software packages. 
The following routines are provided to open and close the system font:37 

Pixfont * 
pwyfsysopen () 

pwyfsysclose () 

The following routine: 

pw_ttext(pw, x, y, op, font, s) 
Pixwin *pw; 
int x, y, op; 
Pixfont *font; 
char *s; 

is just like pw _text () except that it writes transparent text. Transparent text 
writes the shape of the letters without disturbing the background behind it. This 
is most useful with color pixwins. Monochrome pixwins can use pw _text ( ) 
and a PIX_SRC I PIX_DST op, which is faster. 

Applications such as displaying text perform the same operation on a number of 
pixrects in a fashion that is amenable to global optimization. The batchrop pro­
cedure is provided for these situations: 

pw_batchrop(pw, dx, dy, op, items, n) 
Pixwin *pw; 
int dx, dy, op, n; 
struct pryrpos items[]; 

Stencil operations are like raster ops except that the source pixrect is written 
through a stencil pixrect which functions as a pixel-by-pixel write enable mask. 
The indicated raster operation is applied only to destination pixels where the 
stencil pixrect stpr is non-zero; other destination pixels remain unchanged. 

pw_stencil(dpw, dx, dy, dW, db, op, stpr, stx, sty, spr, sx, sy) 
Pixwin *dpw; 
Pixrect *stpr, *spr; 
int dx, dy, dw, dh, op, stx, sty, sx, sy; 

37 The system font can also be obtained by calling p f _de fa u 1 t ( ) . 

Revision A of 15 October 1986 



Read and Copy Routines 

Chapter 7 - Imaging Facilities: Pixwins 97 

The following routines use the pixwin as a source of pixels. To get the value of 
the pixel at (x, y) in pixwin pw call: 

int 
pw_get(pw, x, y) 

Pixwin *pw; 
int x, y; 

To read pixels from a pixwin into a pixrect call: 

pw_read(pr, dx, dy, dw, dh, op, pw, sx, sy) 
Pixwin 
int 

*pw; 
dx, dy, dw, dh, op, sx, sy; 

Pixrect *pr; 

This routine reads pixels from pw starting at offset (sx, sy), using rasterop 
op. The pixels are stored in the rectangle with its origin at dx, dy of width 
dw and height dh in the pixrect pointed to by pr. 

When the destination, as well as the source, is a pixwin, use: 

pw_copy(dpw, dx, dy, dw, dh, op, spw, sx, sy) 
Pixwin *dpw, *spw; 
int dx, dy, dw, dh, op, sx, sy; 

dpw and spw must be the same pixwin. Also, only horizontal or vertical copies 
are supported. 

CAUTION These read and copy routines may find themselves thwarted by trying to 
read from a portion of a non-retained pixwin which is hidden, and therefore 
has no pixels. Therefore it is considered advanced usage to call them on a 
non-retained pixwin; refer to the section entitled Handling Fixup in the Sun­
View System Programmer's Guide. 

4;\ sun 
,~ microsystems 

Revision A of 15 October 1986 



Chapter 7 - Imaging Facilities: Pixwins 99 

affected rectangles must lie within the rectangles affected by the original lock. 

To decrement the lock count, call: 

pw_unlock(pw) 
Pixwin *pw; 

When the lock count reaches 0, the lock is actually released. 

Since locks may be nested, it is possible for a client procedure to find itself, espe­
cially in error handling, with a lock which may require an indefinite number of 
unlocks. To handle this situation cleanly, another routine is provided. The fol­
lowing macro sets pw' s lock count to 0 and releases its lock: 

pw_reset(pw) 
Pixwin *pw; 

Acquisition of a lock has the following effects: 

[J If the cursor is in conflict with the affected rectangle, it is removed from the 
screen. While the screen is locked, the cursor will not be moved in such a 
way as to disrupt any screen accessing. 

[J Access to the display is restricted to the process acquiring the lock. 

[J Modification of the database that describes the positions of all the windows 
on the screen is prevented. 

[J The clipping information for the pixwin is validated and, if necessary, 
updated. 

[J In the case of a non-retained pixwin with only a single rectangle visible, the 
internals of the pixwin mechanism can be set up to bypass the pixwin 
software by going directly to the pixrect level on subsequent display opera­
tions. 

While it has the screen locked, a process should not: 

[J do any significant computation unrelated to displaying its image. 

[J invoke any system calls, including other 110, which might cause it to block. 

[J invoke any pixwin calls except pw _unlock () and those described in the 
previous section, Accessing a Pixwin's Pixels. In any case, the lock should 
not be held longer than about a quarter of a second, even following all these 
guidelines. 

When a display lock is held for more than two seconds of process virtual time, 
the lock is broken. However, the offending process is not notified by signal, 
because a process shouldn't be aborted for this infraction. Instead, a message is 
displayed on the console. 

~~sun 
~ microsystems 

Revision A of 15 October 1986 



Locking and Batching 
Interaction 

Chapter 7 - Imaging Facilities: Pixwins 101 

#define PW_OP_COUNT(n) «Pw_batch_type) (n» 

So, to have batching and ensure the image on-screen is refreshed after every n 
operations, call: 

pw_batch(pw, PW_OP_COUNT(n»; 

Clients with a group of screen updates to do can gain noticeably by doing the 
group as a batch. Also, the locking overhead, discussed above, will only be 
incurred when the screen is refreshed. An example of such a group is displaying a 
screen full of text, ora series of vectors with pre-computed endpoints. 

In considering how to do batching, it's a good idea to be sensitive to how long 
the user is staring at a blank screen or an old image, and adjust the rate of screen 
refresh accordingly. 

There are situations in which batching around locking calls makes sense. Con­
sider that 

o while batching, locking calls are a no-op; 

o if a pixwin is not retained, batching calls are a no-op. 

Thus, if your application has a switch to run retained or not, it makes good sense 
to batch around locking calls. If you batch around locking calls then your appli­
cation gets the benefit of batching if running retained and the benefit of locking if 
running non-retained. 

Locking around batches, on the other hand, is not very efficient. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



7.5. Color 

Introduction to Color 

The Colormap 

A Colormap Example 

Chapter 7 - Imaging Facilities: Pixwins 103 

The dicussion which follows is divided into three sections: 

[J Introduction to Color, which introduces the concepts of the colormap and 
colormap segments, 

[J Changing the Colormap, which describes how to change a colormap seg­
ment, and 

[J Using Color, which describes how to make color applications compatible 
with monochrome and grayscale screens, and how to perform smooth anima­
tion by using double buffering. 

Just as there must be arbitration between different windows to decide what is 
displayed on the screen when several windows overlap, there must likewise be 
some process of allocation when several windows want to display different sets 
of many colors all at once. To understand how this works you need to know how 
color is handled. 

The pixels on a color display are not simply on or off; they take many different 
values for different colors. On all current Sun color displays38 each pixel has 8 
bits. Such an "8 bit deep" pixel can have any value from 0 to 255. The value in 
each pixel helps to determine what color appears in that dot on the screen, but it 
is not in a one-to-one correspondence with the color displayed; otherwise Sun 
color displays would only be able to display 256 different colors. 

Instead, the value of the pixel serves as an index into the colormap of the display. 
The colormap is an array of 256 colormap entries. The colormap entry for each 
index drives the color that is actually displayed for the corresponding pixel value. 
A colormap entry consists of 8 bits of red intensity, 8 bits of green intensity and 
8 bits of blue, packaged into the following structure: 

struct singlecolor { 
u char red, green, blue; 

} ; 

Hence a Sun color display is capable of displaying over 16 million colors /(em 
since each colormap entry has 24 bits - but can only display 256 colors simul­
taneously - because there are only 256 colormap entries. 

Suppose that in a group of pixels on the screen, some have the value 0 while oth­
ers have the value 193. All pixels with the same value will be displayed in the 
same color. The colormap determines what that colormap will be. If entry 0 in 
the colormap of the screen is 

red = 250; green = 0; blue = 3; 

then the pixels with a value of 0 will come out bright red. If entry 0 in the color­
map is changed to 

38 See cgone (4S), cgtwo (4S) and cgfour (4S) in the UNIX Interface Overview manual. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Sharing Colormap Segments 

Example: showcolor 

Chapter 7 - Imaging Facilities: Pixwins 105 

the default colormap segment on a per-application basis by invoking the applica­
tion with certain flags. The -Wjflag sets the foreground color, -Wb sets the back­
ground color, and -W g specifies that the colormap of the frame will be inherited 
by the frame's subwindows. 

The equivalent frame attributes for these flags are 
FRAME_FORE GROUND_COLOR, F RAME_BACKGROUND_CO LOR and 
FRAME INHERIT COLORS. 

It is possible for different processes to share a single colormap segment. For 
some applications, you want to guarantee that your colormap segment is not 
shared by another process. For example, a colormap segment to be used for ani­
mation, as described later in the section on Double Buffering, should not be 
shared. The way to ensure that a colormap segment will not be shared by another 
window is to give it a unique name. A common way to generate a unique name 
is to append the process' id to a more meaningful string that describes the usage 
of the colormap segment. 

If a colormap segment's usage is static in nature, then it pays to use a shared 
colormap segment definition, since colormap entries are scarce. Windows, in the 
same or different processes, can share the same colormap by referring to it by the 
same name. 

There are three basic types of shared colormap segments: 

D A colormap segment used by a single program. Sharing occurs when multi­
ple instances of the same program are running. An example of such a pro­
gram is a color terminal emulator in which the terminal has a fixed selection 
of colors. 

D A colormap segment used by a group of highly interrelated programs. Shar­
ing occurs whenever two or more programs of this group are running at the 
same time. An example of such a group is a series of CAD/CAM programs 
in which it is common to have multiple programs running at the same time. 

D A colormap segment used by a group of unrelated programs. Sharing occurs 
whenever two or more programs of this group are running. An example of 
such a colormap segment is the default colormap, CMS _MONOCHROME, 
defined in <sunwindow/cms_mono. h>. Other common useful color­
map segment definitions that you can use and share with other windows 
include cms_rgb. h, cms_grays. h, ems_mono. h, and 
ems_rainbow.h,foundin <sunwindow/ems_*.h>. 

The program on the following page shows the actual colors in the display's 
colormap. It should help you see how the window system manages the color­
map. Run this program soon after bringing up suntools, then run several color 
graphics programs such as the demos mentioned earlier. Try bringing up dif­
ferent windows with different foreground and background ~olors, as in: 

she11tool -Wf 23 182 48 -Wb 255 200 230 -Wg 

Revision A of 15 October 1986 



Manipulating the Colormap 

Changing a Window's 
Colonnap Segment 

If you set the foreground and back­
ground colors (which are entries 
count - 1 and 0 in the colormap 
segment, respectively) to the same 
color, the system will change them 
to the foreground and background 
colors of suntools. In other words, 
you are prevented from making the 
foreground and background colors 
of a pixwin indistinguishable. 

Chapter 7 - Imaging Facilities: Pixwins 107 

The following sections document the routines that implement the techniques 
described above. 

To change a a window's colormap segment, you must: 

1) Name the colormap segment with pw_setcmsname (). 

2) Set the size of the segment by loading the colors with 
pw-putcolormap(). 

It is important that these two steps happen in order and together. 

You set and retrieve the name of a colormap segment with these two functions: 

pw_setcmsname(pw, name) 
Pixwin *pw; 
char name[CMS_NAMESIZE]; 

pw_getcmsname(pw, name) 
Pixwin *pw; 
char name[CMS_NAMESIZE]; 

Setting the name resets the colormap segment to a NULL entry. After calling 
pw_setcmsname (), you must immediately call pw-putcolormap () to 
set the size of the colonnap segment and load it with the actual colors desired. 
pw-putcolormap () and the corresponding routine to retrieve the colormap's 
state, pw _getcolormap ( ) , are defined as follows: 

pw-putcolormap(pw, index, count, red, green, blue) 
Pixwin *pw; 
int index, count; 
unsigned char red[], green[], bluer]; 

pw_getcolormap(pw, index, count, red, green, blue) 
Pixwin *pw; 
int index, count; 
unsigned char red[], green [ ], blue [ ]; 

pw -putcolormap loads the count elements of the pixwin's colormap seg­
ment starting at index (zero origin) with the first count values in the three 
arrays. 

The first time pwyutcolormap () is called, after calling 
pw_setcmsname () ,the count parameter defines the size of the colormap 
segment. The size of a colormap segment must be a power of 2, and can't be 
changed unless pw _ setcmsname () is called with another name. You can call 
pwyutcolormap () subsequently to modify a sub range of the colormap­
use a larger value for index and a smaller value for count. 

In Appendix A, Example Programs, there is a program called coloredit which 
uses pw _putcolormap () to change the colors of its subwindows as the user 
adjusts sliders for red, green and blue. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



Using Color 

Cursors and Menus 

Is The Application Running on 
a Color Display? 

Simulating Grayscale on a 
Color Display 

Chapter 7 - Imaging Facilities: Pixwins 109 

This section gives some notes on the use of color by cursors and menus, how to 
make color applications compatible with monochrome and grayscale screens, and 
how to use double buffering for smooth animation. 

Cursors appear in the foreground color, the last color in the pixwin's colormap. 

Menus and prompts usefullscreen access, covered in Chapter 12, Menus and 
Prompts of the Sun View System Programmer's Guide. Fullscreen access saves 
the colors in the first and last entries of the screen's colormap, puts in the fore­
ground and background colors, and displays the menu or prompt. This means 
that depending on where your application's colormap segment resides in the 
screen's colormap, some colors in your tool may change whenever menus or 
prompts are put up. You can allow for this by making the background and fore­
ground colors in your colormap segment the same as the screen's background 
and foreground. 

There are other menu/cursor "glitches" that occur when running applications in 
different plane groups on the Sun-3/110. These are covered in the later section 
on Multiple Plane Groups, and in the Release 3.2 Manual. 

None of the colormap manipulations described in this chapter causes an error if 
run on a monochrome display. All colors other than zero map to the foreground 
color, so if your application displays colored objects on a background of zero, 
they will appear as black objects on a white foreground on a monochrome 
display40. The window system detects and prevents the foreground and back­
ground being the same color on color displays. 

However, you may may want to determine at run time whether your application 
has a color or monochrome display available to it. For example, when displaying 
a chart, you may want to use patterns if colors are not available. You can deter­
mine whether the display is color or monochrome by finding out how deep the 
pixels are. Each pixwin includes a pointer to a pixrect which represents its pixels 
on the screen. Pixrects, in tum, have a depth field which holds the number of bits 
per screen pixel. Thus 

Pixwin *pw; 
int depth = pw->pw-pixrect->pr_depth; 

will have a value of 1 for windows displayed on monochrome devices, and a 
value greater than 1 for color screens. Currently, all Sun color displays have 8 
bits per pixel. 

There is no way to tell if your application is running on a grayscale monitor, 
since it runs off the same color board. The grayscale monitor is usually driven 
from the red output of the color board, so if two colors have different green and 
blue values but the same red value, they will show up the same on a color 
display. 

40 Unless you are running with black and white inverted, using the -i option to suntools. 

Revision A of 15 October 1986 



Table 7-1 

Using Double Buffering For 
Smooth Animation 

Chapter 7 - Imaging Facilities: Pixwins 111 

Sample Colormap to Isolate Planes 

Pixel Value Colonnap A Colormap B 
(Only upper planes (Only lower planes 
are "visible") are "visible" 

00 00 blue blue 
0001 blue red 
00 10 blue green 
00 11 blue pink 

01 00 red blue 
01 0 1 red red 
01 10 red green 
o 1 1 1 red pink 

1000 green blue 
10 01 green red 
10 10 green green 
10 1 1 green pink 

11 00 pink blue 
11 0 1 pink red 
11 10 pink green 
1 1 1 1 pink pink 

From the above table, you can see that if colormap A is set (using 
pwyutcolormap () ), then no matter what the value in the two lower planes, 
the color displayed is the same; the value in the upper two planes alone controls 
the color. So, if you use this colonnap while only enabling the two lower planes 
(by passing pw yutat tr ibutes () the value 3), then the values you write 
into the lower planes won't change what is shown. 

When you switch to colormap B, the situation is reversed. Only the values in the 
lower planes affect what is visible. You would then pass 
pwyutattributes () the value 12 to write to the upper two planes. The 
two sets of colors need not be the same, so you can switch between two 
different-colored images. 

You would use the same technique to switch between more images and/or to 
display more colors. You can display two different images, each with 16 dif­
ferent colors, or 8 different monochrome images, or values in between. 

One application of the above technique is to provide smooth animation. To 
move an image across the screen, you must draw it in one location, erase it, and 
redraw it in another. Even on a fast system, the erasing and redrawing is visible. 
You'd like the object to immediately appear in its new position, without disap­
pearing momentarily . You can do this by alternating two colormaps so that the 
object disappears in its old location and reappears in a new one. This is called 
double buffering, because you are using the display planes as alternating buffers; 
as you write to one set of planes, the other set of planes is displayed. 

Revision A of 15 October 1986 



"Glitches" Visible when Using 
Plane Groups 

Chapter 7 - Imaging Facilities: Pixwins 113 

For perfonnance reasons, the cursor image is only written in the plane group of 
the window under it. So, if the cursor's hot spot is in a black and white window 
in the overlay plane and there is an adjacent color window, that part of its image 
that would lie over the color window is invisible, since it is drawn in the overlay 
plane but the enable plane is still showing the value in the color buffer. The 
same disappearance applies in the reverse situation. 

When menus and prompts are drawn, the enable plane is set so that they are visi­
ble. 

NOTE There are other glitches that occur when running applications that have not been 
compiled under 3.2. Consult the Release 3.2 manual for more information. 

suntools and Plane Groups It is possible to direct suntools (1) to only use the color buffer or the overlay 
plane; it is also possible to start up a second copy of suntools (1) in the other 
plane group, and switch between them using switcher (1) or adjacentscreens (1). 
Consult these programs' manual pages for more information. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



8 
Text Subwindows 

Text Subwindows ......................................................................................................................... 117 

8.1.) Creating a Text Subwindow ...................................................................................... 118 

8.2. Writing to a Text Subwindow .................................................................................. 118 

8.3. Editing the Contents of a Text Subwindow ...................................................... 119 

Removing Characters ................................................................................................. 119 

Replacing Characters .................................................................................................. 120 

The Editing Log ............................................................................................................. 120 

8.4. Positioning the Text Displayed in a Text Subwindow ............................... 121 

8.5. Finding a Pattern .............................................................................................................. 123 

8.6. Marking Positions ........................................................................................................... 123 

8.7. Setting the Primary Selection ................................................................................... 125 

8.8. Manipulating the Backing Store ............................................................................. 125 

Loading a File ................................................................................................................. 125 

Saving Edits ..................................................................................................................... 126 

Storing Edits .................................................................................................................... 126 

Discarding Edits ............................................................................................................ 127 

Which File is Being Edited? ................................................................................... 127 

Interactions with the File System ........................................................................ 127 

8.9. Reading from a Text Subwindow ........................................................................... 128 

8.10. Notifications from a Text Subwindow .............................................................. 128 

8.11. Dealing with Multiple Views ................................................................................. 131 



Summary Tables 

8 
Text Subwindows 

This chapter describes the text subwindow package, which you can use by 
including the file <suntool/textsw. h>. 

The basic function of a text subwindow is to interact with the user to display and 
edit a sequence of ASCII characters. These characters may be stored either in a 
file or in primary memory. From the programmer's point of view, a text subwin­
dow is an opaque object upon which a set of operations can be performed. 

Tables that summarize text subwindow attributes, status values and functions are 
in Chapter 18, SunView Interface Summary: 

o the Text Subwindow Attributes table begins on page 321; 

o the Textsw_action Attributes table begins on page 324; 

o the Textsw_status Values table begins on page 325; 

o the Text Subwindow Functions table begins on page 326. 

117 Revision A of 15 October 1986 



8.3. Editing the Contents of 
a Text Subwindow 

Removing Characters 

Chapter 8 - Text Sub windows 119 

character of the text: 

window_set (textsw, TEXTSW_INSERTION_POINT, 2, 0); 

To cause the insertion point to be placed at the end of the text, set 
TEXTSW_INSERTION_POINT to the special index TEXTSW INFINITY. 

You can remove a contiguous span of characters from a text subwindow by cal­
ling: 

Textsw index 
textsw_delete(textsw, first, last-plus_one) 

Textsw textsw; 
Textsw index first, last-plus_one; 

fir s t specifies the first character of the span that will be deleted, while 
la sty 1 us _ one specifies the first character after the span that will not be 
deleted. first should be less than, or equal to, lastylus_one. To 
delete to the end of the text, pass the special value TEXTSW _INFINITY for 
lastylus_one. 

The return value is the number of characters deleted, and is "last yl us _one 
- fir st, unless all or part of the specified span is read-only. In this case, only 
those characters that are not read-only will be deleted, and the return value will 
indicate how many such characters there were. If the insertion point is in the 
span being deleted, it will be left at first. 

A side-effect of calling text sw _ de I et e () is that the deleted characters 
become the contents of the global Shelf. To remove the characters from the 
textsw subwindow without affecting the Shelf, call: 

Textsw index 
textsw_erase(textsw, first, last-plus_one) 

Textsw textsw; 
Textsw index first, last-plus_one; 

Again, the return value is the number of characters removed, and 
lastylus_one can be TEXTSW_INFINITY. 

You can emulate the behavior of an editing character, such as CfRL-H, with 
textsw_edit () : 

Textsw index 
textsw_edit(textsw, unit, count, direction) 

Textsw textsw; 
unsigned unit, count, direction; 

Depending on the value of unit, this routine will erase either a character, a 
word, or a line. Set unit to: 

o SELN_LEVEL_FIRST to erase individual characters, 

~\sun ~ mlcrosystems 
Revision A of 15 October 1986 



8.4. Positioning the Text 
Displayed in a Text 
Subwindow 

Screen Lines and File Lines 

Chapter 8 - Text Subwindows 121 

Unfortunately, once the edit log has reached its maximum size, no more charac­
ters can be inserted into or removed from the text subwindow. In particular, 
since deletions, as well as insertions, are logged, space cannot be recovered by 
deleting characters. It is important to understand how the edit log works because 
because you may want to use a text subwindow with no associated file to imple­
ment a temporary scratch area or error message log. If such a text subwindow is 
used for a long time, the default limit of 20,000 bytes may well be reached, and it 
will be impossible for either the user or your code to insert any more characters 
even though there may be only a few characters visible in the text subwindow. 
Therefore, in such situations it is recommended to set 
TEXTSW_MEMORY_MAXIMUM much higher, say to 200,000. 

Usually there is more text managed by the text subwindow than can be displayed 
all at once. As a result, it is often necessary to determine the indices of the char­
acters that are being displayed, and to control exactly which portion of the text is 
being displayed. 

When there are long lines in the text it is necessary to draw a distinction between 
two different definitions of "line of text" . 

A screen line reflects what is actually displayed on the screen. A line begins 
with the leftmost character in the sub window and continues across until either a 
newline character or the right edge of the subwindow is encountered. Afile line, 
on the other hand, can only be terminated by the newline character. It is defined 
as the span of characters starting after a newline character (or the beginning of 
the file) running through the next newline character (or the end of the file). 

Whenever the right edge of the subwindow is encountered before the newline, if 
TEXT SW_L INE_BREAK_ACT ION is TEXTSW_WRAP_AT_CHAR,thenext 
character and its successors will be displayed on the next lower screen line. In 
this case there would be two screen lines, but only one file line. From the per­
spective of the display there are two lines; from the perspective of the file only 
one. 

Unless otherwise specified, all text sub window attributes and procedures use the 
file line definition. 

NOTE Line indices have a zero-origin, like the character indices; i.e., the first line has 
index 0, not 1. 

Absolute Positioning Two attributes are provided to allow you to specify which portion of the text is 
displayed in the text subwindow. 

Setting the attribute TEXTSW _FIRST to a given index causes the first character 
of the line containing the index to become the first character displayed in the text 
subwindow. Thus the following call causes the text to be positioned so that the 
first displayed character is the first character of the line which contains index 
1000: 

window_set(textsw, TEXTSW_FIRST, 1000, 0); 

Conversely, the following call retrieves the index of the first displayed character: 

Revision A of 15 October 1986 



Chapter 8 - Text Sub windows 123 

top of the subwindow. 

If a particular character should always be at the top of the subwindow, then cal­
ling the following routine is more appropriate: 

void 
textsw_normalize_view(textsw, position) 

Textsw textswi 
Textsw_index position; 

NOTE Both of these routines ignore any setting of the attribute 
TEXT SW _UPPER_CONTEXT, whether explicit by client code or implicit via use 
of the User Defaults Database. 

8.5. Finding a Pattern A common operation performed on text is finding a span of characters that match 
some specification. Currently, the text subwindow provides only a rudimentary 
pattern matching facility. You can implement a more powerful pattern matcher 
by reading the contents of the text sub window and doing your own matching. 

8.6. Marking Positions 

To find the nearest span of characters that match a pattern, call: 

int 
textsw_find_bytes(textsw, first, last-plus_one, buf, 

buf_Ien, flags) 
Textsw textsw; 
Textsw index *first, *last-plus_one; 
char *buf; 
unsigned buf_Ien; 
unsigned flags; 

The pattern to match is specified by buf and buf len. The matcher looks 
for an exact and literal match - it is sensitive to case, and does not recognize 
any kind of meta-character in the pattern. t ir st specifies the position at 
which to start the search. If flags is 0, the search proceeds forwards through 
the text, if 1 the search proceeds backwards. The return value is -1 if the pattern 
cannot be found, else it is some non-negative value, in which case the indices 
addressed by first and last_pIus_one will have been updated to indi­
cate the span of characters that match the pattern. 

Often a client wants to keep track of a particular character, or group of characters 
that are in the text subwindow. Given that arbitrary editing can occur in a text 
subwindow, and that it is very tedious to intercept and track all of the editing 
operations applied to a text sub window , it is often easier to simply place one or 
more marks at various positions in the text subwindow. These marks are 
automatically updated by the text subwindow to account for user and client edits. 
There is no limit to the number of marks you can add. 

A new mark is created by calling: 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



8.7. Setting the Primary 
Selection 

8.S. Manipulating the 
Backing Store 

Loading a File 

CAUTION 

NOTE 

Chapter 8 - Text Sub windows 125 

An existing mark is removed by calling: 

void 
textsw_remove_mark<textsw, mark) 

Textsw textsw; 
Textsw mark mark; 

Note that marks are dynamically allocated, and it is the client's responsibility to 
keep track of them and to remove them when they are no longer needed. 

The primary selection may be set by calling: 

void 
textsw_set_selection<textsw, first, last-plus_one, type) 

Textsw textsw; 
Textsw index first, last-plus_one; 
unsigned type; 

A value of 1 for type means primary selection, while a value of 2 means secon­
dary selection. There is currently no way to make the specified selection be 
pending delete. Note that there is no requirement that all or part of the selection 
be visible; use textswyossibly_normalize () (described previously in 
Section 8.4) to guarantee visibility. 

The file or memory being edited by a text subwindow is referred to as the back­
ing store. Several attributes and functions are provided to allow you to manipu­
late the backing store of a text sub window . 43 

You can load a file into a textsw by using TEXT SW _FILE, as in: 

window_set (textsw, TEXTSW_FILE, file_name, 0); 

If the existing text has been edited, these edits will be lost. To avoid such loss, 
first check whether there are any outstanding edits by calling 
window_get (textsw, TEXTSW_MODIFIED). 

The above call to window_set () will load the new file with the text posi­
tioned so that the first character displayed has the same index as the first charac­
ter that was displayed in the previous file - which is probably not what you 
want. To load the file with the first displayed character having its index specified 
by position, use the following: 

window_set (textsw, TEXTSW_FILE, file_name, 
TEXTSW_FIRST, position, 0); 

The order of these attributes is important. Because attributes are evaluated in the 
order given, reversing the order would first reposition the existing file, then load 
the new file. This would cause an unnecessary repaint, and mis-position the old 
file, if it was shorter than pos it ion. For a full discussion of attribute order­
ing, see Section 4.8. 

43 Note that the edit log maintained by the text subwindow package is reset on each operation affecting the 
backing store. For a description of the edit log. see the discussion at the end of Section 8.3. 

Revision A of 15 October 1986 



Chapter 8 - Text Subwindows 127 

unsigned 
textsw_store_file(textsw, filename, locx, locy) 

Textsw textsw; 
char *filename; 
int locx, locy; 

Again, locx and locy are used to position the upper left comer of the mes­
sage box. The return value is 0 if and only if the store succeeded. 

NOTE By default, this call changes the file that the text subwindow is editing, so 
that subsequent saves will save the edits to the new file. To override this policy, 
set the attribute TEXTSW STORE CHANGES FILE to FALSE. 

Discarding Edits To discard the edits performed on the contents of a text subwindow, call: 

void 

Which File is Being Edited? 

Interactions with the File 
System 

textsw_reset(textsw, locx, locy) 
Textsw textsw; 
int locx, locy; 

locx and locy are as above. Note that if the text subwindow contains a file 
which has not been edited, the effect of textsw_reset is to unload the file 
and replace it by primary memory provided by the text subwindow package; thus 
the user will see an absolutely empty text subwindow. Alternatively, if the text 
subwindow already was editing such primary memory then another, virgin, piece 
of primary memory will be provided and the edited piece will be deallocated. 

To find out which file the text subwindow is editing, call: 

int 
textsw_append_file_name(textsw, name) 

Textsw textsw; 
char *name; 

If the text subwindow is not editing a file, this routine will return a non-zero 
value. Otherwise, it will return 0, and also append the name of the file to the end 
of name. 

If a text subwindow is editing a file called "foo" and the user selects Save from 
the subwindow's menu (or client code invokes textsw _ save () ), the follow­
ing sequence of file operations occurs: 

o foo is copied to foo% 

o The contents of foo% is combined with information from the edit log file 
(/tmplEtHostH ost-idProcessProcess-idCounterU nsigned-int) and written 
overfoo (thereby preserving all the permissions, etc) 

o the edit log file is removed from Itmp 

If "foo" is a symbolic link to " .. .Isome_dirlbaz", then the backup file is created 
as " .. .Isome dirlbaz%". 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Chapter 8 - Text Subwindows 129 

Your notification procedure must be careful to either process all of the possible 
attributes that it can be called with or to pass through the attributes that it does 
not process to the standard notification procedure. This is important because 
among the attributes that can be in the avlist are those that cause the standard 
notification procedure to implement the Expose, Hide, Open, Close, and Quit 
accelerators of the user interface. 

Here is an example of a client notify procedure, and a code fragment demonstrat­
ing how it would be used: 

int (*cached_textsw_notify) (); 

void 
client_notify-proc(textsw, attributes) 

Textsw textsw; 
Attr_avlist attributes; 

int pass_on = 0; 
Attr avlist attrs; 

for (attrs attributes; *attrs; 
attrs attr_next(attrs}) { 

switch «Textsw_action) (*attrs) ) 
case TEXTSW ACTION CAPS LOCK: - - -

/* Swallow this attribute */ 
ATTR_CONSUME(*attrs}; 
break; 

case TEXTSW ACTION CHANGED DIRECTORY: - - -
/* Monitor the attribute, don't swallow it */ 
strcpy(current_directory, (char *)attrs[l]); 
pass_on = ! 0; 
break; 

default: 
pass_on !O; 
break; 

if (pass_on) 
cached_textsw_notify(textsw, attributes}; 

cached_textsw_notify = 

(void (*) (}}window_get(textsw, TEXTSW_NOTIFY_PROC); 
window_set (textsw, TEXTSW_NOTIFY_PROC, client_notify-proc}; 

.\sun ~~ microsystems 
Revision A of 15 October 1986 



CAUTION 

8.11. Dealing with Multiple 
Views 

Chapter 8 - Text Subwindows 131 

The attribute TEXTSW _ACTION_EDITED _FILE is a slight misnomer, as it is 
given to the notify procedure after the first edit to any text, whether or not it 
came from a file. This notification only happens once per session of edits, where 
notification of TEXTSW ACTION LOADED FILE is considered to tenninate 
the old session and start a new one. 

The attribute TEXTSW_ACTION_LOADED_FILE must be treated very care­
fully. This is because the notify procedure gets called with this attribute in 
several situations: after a file is initially loaded, after any successful Save menu 
operation, after a Reset menu operation, and during successful calls to 
textsw_reset (), textsw_save () and textsw_store (). The 
appropriate response by the procedure is to interpret these notifications as being 
equivalent to "the text subwindow is displaying the file named by the provided 
string value; no edits have been performed on the file yet. In addition, any previ­
ously displayed or edited file has been either reset, saved, or stored under another 
name. ' , In later versions of the system, the notifications will be extended to pro­
vide finer grain infonnation about exactly what happened to the fonnerly 
displayed file. Also, note that an unnecessary save (Le., there are no edits yet) 
still results.in file operations and in the associated notification. 

By using the Split view menu operation, the user can create multiple views of the 
text being managed by the text subwindow. Although these additional views are 
usually transparent to the client code controlling the text subwindow, it may 
occasionally be necessary for a client to deal directly with all of the views. This 
is accomplished by using the following routines, and the information that split 
views are simply extra text sub windows that happen to share the text of the origi­
nal text subwindow. 

Textsw 
textsw_first<textsw) 

Textsw textsw; 

Given an arbitrary view out of a set of multiple views, text sw _fir st () 
returns the first view (currently, this is the original text subwindow that the client 
created). To move through the other views of the set, call: 

Textsw 
textsw_next<textsw) 

Textsw textsw; 

Given any view of the set, text sw _next () returns some other member of the 
set, or NULL if there are none left to enumerate. The following loop is 
guaranteed to process all of the views in the set: 

for <textsw=textsw_first(any_split); 
*textswi 
textsw=textsw_next<textsw» 

processing involving textsw; 

Revision A of 15 October 1986 



9 
Panels 

Panels ..................................................................................................................................................... 135 

9.1. Introduction to Panels and Panel Items ............................................................... 138 

Message Items ................................................................................................................ 138 

Button Items .................................................................................................................... 138 

Choice Items .................................................................................................................... 138 

Toggle Items .................................................................................................................... 139 

Text Items ......................................................................................................................... 139 

Slider Items ...................................................................................................................... 139 

9.2. Basic Panel Routines ..................................................................................................... 140 

Creating and Sizing Panels ...................................................................................... 140 

Creating and Positioning Panel Items ............................................................... 140 

Explicit Item Positioning .................................................................................... 140 

Default Item Positioning ..................................................................................... 141 

Laying Out Components Within an Item .................................................. 141 

Modifying Attributes .................................................................................................. 142 

Panel-Wide Item Attributes ............................................................................... 143 

Retrieving Attributes .................................................................................................. 144 

Destroying Panel Items ............................................................................................. 144 

9.3. Using Scrollbars With Panels ................................................................................... 145 

Creating Scrollbars ...................................................................................................... 145 

Scrolling Panels Which Change Size ................................................................ 145 

Detaching Scrollbars from Panels ....................................................................... 146 

9.4. Messages ............................................................................................................................... 147 



Summary Tables 

9 

Panels 

This chapter describes the panel sub window package, which you can use by 
including the file <suntool/panel. h>. 

Section 1 provides a non-technical introduction to panels. Section 2 introduces 
the basic concepts and routines needed to use panels. Scrollable panels are 
covered in Section 3. Sections 4 through 9 describe the different types of panel 
items in detail, including examples. The examples are also shown on the next 
two pages. 

For examples of complete panels, see the programs filer, image_browser _1 and 
image_browser _ 2, which are listed in Appendix A and discussed in Chapter 4. 

Tables that summarize panel attributes, functions and macros are in Chapter 18, 
SunView Interface Summary: 

o the Panel Attributes table begins on page 301; 

o the Generic Panel Item Attributes table begins on page 302; 

o the Choice and Toggle Item Attributes table begins on page 304; 

o the Slider Attributes table begins on page 306; 

o the Text Item Attributes table begins on page 307; 

o the Panel Functions and Macros table begins on page 308. 

~\sun ,~ microsystems 
135 Revision A of 15 October 1986 



Page Description 

157 Toggle (vertical) 

159 Text 

159 Text (masked) 

163 Text with menu 

165 Slider 

149 Button with menu 

174 Buttons with menus 
on scrollable panel 

Example 

Format Options: 

lit Long 

o Reverse 

lit Show all f11es 

Name: Edward G. Robinson 

Password: ******** 

File: dervish.image ESC - Filename completion 

Brightness: [75] 

~L - load lmage from flle 
AS - Store image to f11e 
AI - Irowse director, 
AQ _ Quit 

8 

Introduction Pixw1ns 
SunY1ew Model Text Subwlndows 
Wi ndows ...... OiIiJdCl4I1FI ••••• 
Canvases TTY Subw1ndows 
Input Menus 

~~:: 0" ~ D'::::"'~ . :.:.~~ XI)(II I ~ • ~ ~ x . . . IX.. 
• , •• II 

• • • ~~::-. • •• :::E VII .... v 

~-rir~ •.. :"=­
L--_--J 

!::::.... :':.::~ XI XI I • 

.' .' X I 

•• IX. .1 

Chapter 1 - Panels 137 

Cursors 
Icons 
Scrollbars 
Select10n Sery1ce 
Not1fier 

188 

defaultsedit.icon 

~. ~ ... ,., .. ,., .... ,.,.,., .•. ,.~~ 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Toggle Items 

Text Items 

Slider Items 

Chapter 9 - Panels 139 

o a place holder for a pop-up menu, with only the label visible until the menu 
button is pressed. 

Behind this flexibility of presentation lies a uniform structure consisting of a 
label, a list of choices, and, optionally, a corresponding lists of on-marks and 
off-marks used to indicate which choice is currently selected. 

In appearance and structure, toggle items are identical to choice items. The 
difference lies in the behavior of the two types of items when selected. In a 
choice item exactly one element of the list is selected, or current, at a time. A 
toggle item, on the other hand, is best understood as a list of elements which 
behave as toggles: each choice may be either on or off, independently of the 
other choices. Selecting a choice causes it to change state. There. is no concept 
of a single current choice; at any given time all, some, or none of the choices 
may be selected. 

Text items are basically type-in fields with optional labels and menus. You can 
specify that your notify procedure be called on each character typed in, only on 
specified characters, or not at all. This allows an application such as a forms­
entry program to process input on a per character, per field, or per screen basis. 

Slider items allow the graphical representation and selection of a value within a 
range. They are appropriate for situations where it is desired to make fine adjust­
ments over a continuous range of values. A familiar model would be a horizontal 
volume control lever on a stereo panel. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



NOTE 

Default Item Positioning 

Laying Out Components Within 
an Item 

Chapter 9 - Panels 141 

interpret their arguments as rows or columns, respectively, and convert the value 
to the corresponding number of pixels, based on the panel's font, as specified by 
WIN_FONT. Compare the two calls below: 

panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Hi!", 
PANEL_ITEM_X, 10, 
PANEL_ITEM_Y, 20, 
0) ; 

panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, "Hi!", 
PANEL_ITEM_X, 
PANEL_I TEM_Y , 
0) ; 

ATTR_COL(lO) , 
ATTR_ROW(20) , 

The first will place the item at pixel location (10,20), while the second will place 
the item at row 20, column 10. 

The value computed for ATTR_ROW () includes the top margin, given by 
WIN_TOP_MARGIN, and the value computed for ATTR_COL () includes the 
left margin, given by WIN_LEFT _ MARG IN. The alternate macros 
ATTR_ROWS () and ATTR_COLS () are also provided, which compute values 
that do not include the margins. 

If you create an item without specifying its position, it is placed just to the right 
of the item on the "lowest row" of the panel, where lowest row is defined as the 
maximum y-coordinate (PANEL_ITEM_Y) of all the items. So in the absence of 
specific instructions, items will be placed within the panel in reading order as 
they are created: beginning four pixels in from the left and four pixels down 
from the top, items are located from left to right, top to bottom. If an item will 
not fit on a row, and more of the item would be visible on the next row, it will be 
placed on the next row. The number of pixels left blank between items on a row 
may be specified by PANEL_ITEM_X_GAP, which has a default value of 10. 
The number of pixels left blank between rows of items may be specified by 
PANEL_ITEM _ Y _GAP, which has a default value of 5. 

You may also specify the layout of the various components within an item, by 
means of the attributes PANEL_LABEL_X, PANEL_LABEL_Y, 
PANEL_ VALUE_X, PANEL_ VALUE_Y, etc. If the components are not explicitly 
positioned, then the value is placed either eight pixels to the right of the label, if 
PANEL_LAYOUT is PANEL_HORIZONTAL (the default), or four pixels below 
the label, if PANEL_LAYOUT is PANEL VERTICAL. 

Revision A of 15 October 1986 



Panel-Wide Item Attributes 

CAUTION 

Chapter 9 - Panels 143 

Some attributes which apply to items may be set for all items in the panel by set­
ting them when the panel is created. Such attributes include whether items have 
menus, whether item labels appear in bold, whether items are laid out vertically 
or horizontally, and whether items are automatically repainted when their attri­
butes are modified.47 For example, the call: 

panel = window_create(frame, PANEL 
PANE L_S HOW_MENU , FALSE, 
PANEL_LABEL_BOLD, TRUE, 
PANEL_LAYOUT, PANEL_VERTICAL, 

overrides the defaults for all the attributes mentioned: any items subsequently 
created in that panel will not have menus, will have their labels printed in bold 
and their components laid out vertically, and will not be repainted automatically 
when their attributes are modified. 

The panel-wide item attributes mentioned above are only used to supply 
default values for items which are subsequently created. This means, for 
example, that you cannot change all the item labels to bold by first creating the 
items and then setting PANEL LABEL BOLD to TRUE for the panel. 

47 For a complete list of panel-wide item attributes, see the Panel Attributes table in Chapter 18. 

Revision A of 15 October 1986 



9.3. Using Scroll bars With 
Panels 

Creating Scrollbars 

Scrolling Panels Which 
Change Size 

Chapter 9 - Panels 145 

A scrollable panel is a large panel which can be viewed through a smaller 
subwindow by means of scrollbars. 

Scrollbars come in two orientations: vertical and horizontal. The call below 
creates a panel with both vertical and horizontal scrollbars (as would be desirable 
in a long, many-columned table, for example): 

panel = window_create(frame, PANEL, 
WIN_VERT ICAL_SCROLLBAR, scrollbar_create(O) , 
WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(O) , 
0) ; 

The values of the attributes WIN VERTICAL SCROLLBAR and 
WIN HORI ZONTAL SCROLLBAR are the scrollbars which are returned by the 
scr;llbar_create () calls.48 

Commonly the scrollbar will remain attached to the panel for the duration of the 
panel's existence, and there will be no need to modify the scrollbar's attributes. 
In this simple case, there is no need to save the handle returned by 
scrollbar_ create (). If you desire to destroy the scrollbar, modify its 
attributes, or detach it from one panel and attach it to another, you must either 
save the handle or retrieve it from the panel. 49 For example, to destroy a panel's 
vertical scrollbar: 

scrollbar_destroy(panel_get(panel, WIN_VERTICAL_SCROLLBAR»; 
panel_set(panel, WIN_VERT ICAL_SCROLLBAR, 0, 0); 

Often panels are used to display information for browsing. iconedit, for example, 
uses a popup panel to allow the user to browse through the images in a directory. 
The easiest way to do this is to create the panel items anew each time different 
infonnation is displayed. For example, the iconedit function which fills the 
browsing panel first destroys any existing panel items, then creates an item for 
each image found. 

If you are going to change the size of the panel in this way, you must infonn the 
scrollbar of the new size by calling the function: 

panel_update_scrolling_size(panel) 
Panel panel; 

The correct time to call panel_update_scrolling_size () is after you 
have created all the items and given them labels. If you don't update the 
scrollbar's idea of the panel's size, the size of the scrollbar's bubble will be 
wrong. 

48 The call scrollbar_create (0) produces a default scrollbar. It is usually best to create a default 
scrollbar and let the user specify how it looks via defaultsedit. You can, of course, override the user's default 
settings by explicitly setting the scrollbar's attributes. For a complete list of scrollbar attributes see Chapter 18, 
SunView Interface Summary. 

49 In order to save the scrollbar's handle or reference any scrollbar attributes you must include the file 
<suntool/scrollbar.h>. 

Revision A of 15 October 1986 



9.4. Messages 

Example 

Chapter 9 - Panels 147 

Messages are the simplest of the item types. Their only visible component is 
their label. They have no value or menu. 

Message items, like buttons, are selectable and can have notify procedures. The 
selection behavior of messages differs from that of buttons in that no feedback is 
given to the user when a message is selected. 

In the following example, two message items are used together to give a warning 
message: 

I~ This action will cause unsaved edits to be lost. 

static short stop_array[] 
*include "stopsign.image" 
} ; 

mpr_static(stopsign, 64, 64, 1, stop_array); 

panel_create_item{panel, PANEL MESSAGE, 
PANEL_LABEL_lMAGE, &stopsign, 
0) ; 

panel_create_item(panel, PANEL_MESSAGE, 
PANEL_LABEL_STRING, 
"This action will cause unsaved edits to be lost.", 
0) ; 

You may change the label for a message item (as for any type of item) via 
PANEL LABEL STRING or PANEL LABEL IMAGE. - -

Revision A of 15 October 1986 



Chapter 9 - Panels 149 

It is often useful to associate a menu with a button. The example below shows a 
button representing an online manual. The menu over the button allows the user 
to bring UP the text for the different chapters: 

Introduction Pixwins Cursors 
SunView Model Text Subwindows Icons 
Windows .... 111111 Scrollbars 
Canvases TTY Subwindows Selection Service 

~ Input Menus Notifier 
View 
Manual 

To do this, you must write your own event procedure, as described in Section 
9.13, Event Handling. On receiving a right mouse button down event, display 
the menu and take the appropriate action depending on which menu item the user 
selects. For all other events, call the panel's default event procedure. 

Here is the code to create the menu and the button, and the event procedure to 
display the menu: 

static short book_array[] 
#include "book. image" 
}; 
mpr_static(book, 64, 64, 1, book_array); 

Menu menu = menu_create( MENU_NCOLS, 3, MENU_STRINGS, 
"Introduction" , 
"SunView Model", 
"Windows" , 
"Canvases", 
"Input", 
0); 

"Pixwins" , 
"Text Subwindows", 
"Panels", 
"TTY Subwindows", 
"Menus", 

"Cursors" , 
"Icons", 
"Scrollbars", 
"Selection Service", 
"Notifier", 0, 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, &book, 
PANEL_EVENT_PROC, handle-panel_event, 
0); 

handle-panel_event(item, event) 
Panel_item .item: 
Event *event: 

if (event_id(event) == MS_RIGHT && event_is_down(event» 
int chapter = menu_show(book_menu, panel, event, 0): 
switch (chapter) { 

else 

case 1: /* Introduction */ break: 
case 2: /* Pixwins */ break: 

case 15: /* Notifier */ break: 

panel_default_handle_event(item, event): 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Chapter 9 - Panels 151 

The item below, taken from iconedit, shows how parallel lists can be abbrevi­
ated: 

panel_create_item(iced-panel, PANEL_CHOICE, 
PANEL_MARK_IMAGE S, & down_t riangle , 0, 
PANEL_NOMARK_IMAGE S, 0, 
PANEL_CHOI CE_IMAGES , & square_white , & square_25 , 

PANEL_VALUE, 
PANEL_CHOICE_XS, 
PANEL_MARK_XS, 
PANEL_CHOICE_YS, 
PANEL_MARK_YS, 
PANEL_NOT I FY_PROC , 
0) ; 

& square_root, & square_50 , 
& square_75 , & square_black , 0, 
2, 
30, 60, 90, 120, 150, 180, 0, 
34, 64, 94, 124, 154, 184, 0, 
345, 0, 
363, 0, 
proof_background-proc, 

The item has six choices, representing the six available background patterns for 
the proof area. Note, however, that three of the lists, -
PANEL_MARK_lMAGES, PANEL_CHOICE_YS and PANEL_MARK_YS all 
have only one element. When any of the parallel lists are abbreviated in this 
way, the last element given will be used for the remainder of the choices. So, the 
"345,0" in the example above serves as shorthand for "345, 345, 345, 345, 345, 
345,0". All the choice images will appear at y coordinate 345, all the mark 
images will appear at y coordinate 363, and all the choices will have 
down_triangle as their mark image. 

NOTE You can't specify that a choice or mark-image appear at x = 0 or y = 0 by using 
the attributes PANEL_CHOICE_XS, PANEL_CHOICE_YS, 
PANEL MARK XS or PANEL MARK YS. Since these attributes take null-- -
tenninated lists as values, the zero would be interpreted as the tenninator for the 
list. You may achieve the desired effect by setting the positions individually, 
with the attributes PANEL_CHOICE_X, PANEL_CHOICE_Y, 
PANEL_MARK_X, or PANEL_MARK_Y, which take as values the number of 
the choice or mark, followed by the desired position. 

Revision A of 15 October 1986 



Examples 

Chapter 9 - Panels 153 

As a basis for our examples we'll take the item in iconedit which allows the user 
to select the drawing mode. The item could have been presented in several dif­
ferent forms. 

The simplest call would specify the label and choices as strings, and take the 
defaults for all other attributes. All the choices will be displayed, and the feed­
back will be marked, with push-buttons for the mark images: 

Drawi ng Mode: III Poi nts iii Line III Rectang le III Ci rcle (g Text 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LABEL_STRING, "Drawing Mode:", 
PANEL_CHOICE_STRINGS, "Points", "Line", "Rectangle", 

"Circle", "Text", 0, 
0) ; 

You can specify a custom mark, such as this small pointer, to indicate the current 
choice: 

Drawing Mode: Points .. Li ne 

static short pointer_array[] 
iinclude "pointer.pr" 
} ; 

Rectangle 

mpr_static(pointer, 16, 16, 1, pointer_array); 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LABEL_STRING, "Drawing Mode:", 
PANEL_MARK_IMAGES, &pointer, 0, 
PANEL_NOMARK_lMAGES, 0, 

Circle 

PANEL_CHOICE_STRINGS, "Points", "Line", "Rectangle", 
"Circle", "Text", 0, 

0) ; 

Setting PANEL_FEEDBACK to PANEL_INVERTED produces: 

Drawing Mode: Points ~ Rectangle Circle Text 

Text 

~~sun ~if' microsystems 
Revision A of 15 October 1986 



Chapter 9 - Panels 155 

With some effort, you can use a choice item to m~del a dial: 

Rect 
L1ne ~ C1rcle 

Points ~ Text 

Drawing Mode 

The way to make a such a dial is to make an image for each dial setting, and use 
these images as the on-marks. Place the on-marks and the choices explicitly -
the on-marks in the center, forming the dial, and the choices around the dial's 
perimeter: 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_CHOICE_STRINGS, "Points", "Line", "Rect", 

"Circle", "Text", 0, 
PANEL_MARK_IMAGES, &dial_1, &dial_2, &dial_3, 

PANEL_NOMARK_IMAGES, 
PANEL_ CHOICE_XS, 
PANE L_CH 0 I CE_YS , 
PANEL_MARK _ XS, 
PANEL_MARK _ YS, 
PANEL_LABEL_STRING, 
PANEL_LABEL_X, 
PANEL_LABEL _ Y , 
PANE L_LABEL_FONT, 

&dial_4, &dial_5, 0, 
0, 
7, 34, 82, 133, 145, 0, 
53, 33, 20, 33, 53, 0, 
66, 0, 
40, 0, 
"Drawing Mode", 
30, 
65, 

pf_open("/usr/lib/fonts/fixedwidthfonts/gallant.r.19") , 
0) ; 

The form which is actually used in icon edit employs vertical layout, images for 
the choices, and strings for the menu: 

~-. 
o 
o 
abc 

Points 
V Line 

Rectangle 
Circle 
Text 

panel_create_item(panel, PANEL_CHOICE, 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_CHOICE_IMAGES, &points, &line, &rectangle, 

&circle, &text, 0, 
PANEL_MENU_CHOICE_STRINGS, "Points", "Line", "Rectangle", 

"Circle", "Text", 0, 
PANEL_MARK_IMAGES, &drawing_hand, 0, 
PANEL_NOMARK_IMAGE S, 
0) ; 

~\sun ~~ microsystems 

0, 

Revision A of 15 October 1986 



Example 

Chapter 9 - Panels 157 

Here's an item which lets you set the -I, -r, or -a flags for the Is command: 

Format Options: 

rit'Long 

o Reverse 

rit'Show all fi les 

format_item = panel_create_item(panel, PANEL_TOGGLE, 
PANEL_LABEL_STRING, "Format Options:", 
PANEL_LAYOUT, PANEL_VERTICAL, 
PANEL_CHOICE_STRINGS, "Long", 

PANEL_TOGGLE_VALUE, 
PANEL_TOGGLE_VALUE, 
PANEL_NOT I FY_P ROC , 
0) ; 

"Reverse", 
"Show all files", 
0, 
0, TRUE, 
2, TRUE, 
format_notify-proc , 

You can get or set the value of a particular choice - including choices beyond 
the first 32 - with PANEL_TOGGLE _VALUE. When used to set the value, this 
attribute takes two values: the index of the choice to set, and the desired value. 
In the above example, PANEL_TOGGLE_ VALUE is used to initialize the first 
and third choices to TRUE. To find out the value of the third choice, you would 
call: 

value = (int) panel_get(format_item, PANEL_TOGGLE_VALUE, 2); 

Revision A of 15 October 1986 



9.8. Text 

Displaying Text Items 

Chapter 9 - Panels 159 

The value component of a text item is the string which the user enters and edits. 
It is drawn on the screen just after the label, as in: 

Name: Edward G. Robinson 

panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_STRING, 
PANEL_VALUE, 
0) ; 

"Name:", 
"Edward G. Robinson", 

If PANEL LAYOUT is set to PANEL_VERTICAL, overriding the default of 
PANEL_HORIZONTAL, the value will be placed below the label. 

The number of characters of the text item's value which are displayable on the 
screen is set via PANEL_VALUE_DISPLAY_LENGTH, which defaults to 80 
characters. When characters are entered beyond this length, the value string is 
scrolled one character to the left, so that the most recently entered character is 
always visible. As the string scrolls to the left, the leftmost characters move out 
of the visible display area. The presence of these temporarily hidden characters 
is indicated by a small left-pointing triangle. So setting the display length to 12 
in the above call would produce: 

Name: ~G. Robinson 

As excess characters are deleted, the string is scrolled back to the right, until the 
actual length becomes equal to the displayed length, and the entire string is visi­
ble. 

It is sometimes desirable to have a protected field where the user can enter 
confidential information. The attribute PANEL_MASK _CHAR is provided for 
this purpose. When the user enters a character, the character you have specified 
as the value of PANEL ~SK _CHAR will be displayed in place of the character 
the user has typed. So setting PANEL_MASK _ CHAR to '" * , " would produce: 

Password: ******** 
If you want to disable character echo entirely, so that the caret does not advance 
and it is impossible to tell how many characters have been entered, use the space 
character as the mask. You can remove the mask and display the actual value 
string at any time by setting the mask to the null character. 

The maximum number of characters which can be typed into a text item 
(independently of how many are displayable) is set via the attribute 
PANEL_VALUE_STORED_LENGTH. Attempting to enter a character beyond 
this limit causes the field to overflow, and the character is lost. The value string 
is blinked to indicate to the user that the text item is not accepting any more char­
acters. 

The stored length, like the displayed length, defaults to 80 characters. 

Revision A of 15 October 1986 



Chapter 9 - Panels 161 

What happens when the user types a character? The panel package treats some 
characters specially. [CTRL I g and [ CTRL I d are mapped to the Sun View func­
tions mill and I Delete I respectively. When the user types these characters, the 
panel package notices them and performs the appropriate operation, without 
passing them on to your notify procedure. 

The user's editing characters - erase, erase-word and kill- are also treated 
specially. If you have asked for the character by including it in 
PANEL_NOTIFY_STRING, the panel package will call your notify procedure. 
After the notify procedure returns, the appropriate editing operation will be 
applied to the value string. (Note: the editing characters are never appended to 
the value string, regardless of the return value of the notify procedure.) 

Characters other than the special characters described above are treated as fol­
lows. If your notify procedure is not called, then the character, if it is printable, 
is appended to the value string. If it is not printable, it is ignored. If your notify 
procedure is called, what happens to the value string, and whether the caret 
moves to another text item, is determined by the notify procedure's return value. 
The following table shows the possible return values: 

Table 9-2 Return Values for Text Item Notify Procedures 

Writing Your Own Notify 
Procedure 

Value Returned Action Caused 

PANEL INSERT Character is appended to item's value 

PANEL NEXT Caret moves to next text item 

PANEL PREVIOUS Caret moves to previous text item 

PANEL NONE Ignore the input character 

If a non-printable character is inserted, it is appended to the value string, but 
nothing is shown on the screen. 

If you don't specify your own notify procedure, the default procedure 
panel_text_notify () will be called at the appropriate time, as determined 
by the setting of PANEL_NOTIFY_LEVEL. This procedure causes the caret to 
move to the next text item on [ RETURN] or crAID ,the caret to move to the 
previous text item on [ SHIFT) [RETURN I or [ SHIFT I [TAB I ,printable char­
acters to be inserted, and all other characters to be discarded. 

By writing your own notify procedure, you can tailor the notification behavior of 
a given text item to support a variety of interface styles. On one extreme, you 
may want to process each character as the user types it in. For a different appli­
cation you may not care about the characters as they are typed in, and only want 
to look at the value string in response to some other button. A typical example is 
getting the value of a filename field when the user presses the ( Load] button. 

Revision A of 15 October 1986 



Text Menus 

Example 

Chapter 9 - Panels 163 

A menu may be associated with a text item by setting PANEL SHOW MENU to 
TRUE. 

One use of text item menus is to make any item-specific "accelerators", or char­
acters which cause special behavior, visible to the user. This usage of accelera­
tors may be seen in the following example taken from iconedit. The item 
labelled "File:" holds the name of the file being edited. In addition to typing 
printable characters, which are appended to the value of the item, the user can 
type ~ for filename completion, I CTRL I I to load an image from the file, 
I CTRL I s to store an image to the file, or ( CTRL I b to browse the images in a 
directory. 

File: dervish.image 

idefine ESC 27 
idefine CTRL_L 12 
idefine CTRL_S 19 
idefine CTRL_Q 17 
idefine CTRL_B 2 

ESC - Filename completion 
~L - Load image from file 
~S - Store image to file 
~B - Browse directory 
~Q - Quit 

filename_item = panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_STRING, "File:", 
PANEL_NOTIFY_LEVEL, PANEL_ALL, 
PANEL_NOTIFY_PROC, filename-proc, 
PANEL_VALUE_DISPLAY_LENGTH, 18, 
PANEL_SHOW_MENU, TRUE, 
PANEL_MENU_CHOICE_STRINGS, "ESC - Filename completion", 

PANEL_MENU_CHOICE_VALUES, 
0); 

"CTRL L - Load image from file", 
"CTRL S - Store image to file", 
"CTRL B - Browse Directory", 
"CTRL Q - Quit", 
0, 
ESC,CTRL_L,CTRL_S,CTRL_B,CTRL_Q, 0, 

The last two attributes specify the menu. PANEL MENU CHOICE STRINGS 
is a null-terminated array of strings to appear as the selectable lines of the menu. 
The value that the menu returns for each of its lines is specified via 
PANEL_MENU_CHOICE_ VALUES. SO if the menu line "AL - Load image 
from file" is selected, the menu will return the value CTRL _ L. The value 
returned by the menu is passed directly to the text item, just as if it had been 
typed at the keyboard. 

Revision A of 15 October 1986 



Slider Value 

Example 

Chapter 9 - Panels 165 

The value of a slider is an integer in the range PANEL_MIN _ VALUE to 
PANEL MAX VALUE. You can retrieve or set a slider's value with the attribute - -
PANEL VALUE. 

Here's a typical slider, which might be used to control the brightness of a screen: 

Brightness: [75] 8 

panel_create_item(panel, PANEL_SLIDER, 
PANEL_LABEL_STRING, "Brightness: ", 
PANEL_VALUE, 75, 
PANEL_MIN_VALUE, 0, 
PANEL_MAX_VALUE, 100, 
PANEL_SLIDER_WIDTH, 300, 
PANEL_NOTIFY_PROC, brightness-proc, 
0) ; 

188 

~\sun ,~ microsystelTlS 
Revision A of 15 October 1986 



Example 2: 

Chapter 9 - Panels 167 

item2 - panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_STRING, "Enter Name:", 
PANEL_VALUE_DISPLAY_LENGTH, 10, 
0) ; 

(begin processing events, etc ... ) 

panel_set (item2, 
PANEL_ITEM_X, 10, 
PANEL_ITEM_Y, 50, 
PANEL_PAINT, PANEL_NONE, 
0); 

panel_set (item2, 
PANEL_LABEL_IMAGE, &pixrect1, 
PANEL_PAINT, PANEL_NONE, 
0); 

panel_set (item2, 
PANEL_VALUE_DISPLAY LENGTH, 30, 
0); 

The above two examples each produce the same effect. In the first example, the 
item's repaint behavior is set to PANEL_NONE at creation time, so it is not 
repainted automatically after the panel_set () calls, and no repainting occurs 
until the call to panel_paint ( ). In the second example, the item's repaint 
behavior is the default, PANEL _CLEAR. This is overridden in the first two 
panel_set () calls, so no repainting occurs. However, it is not overridden in 
the third call to panel_set () , so repainting occurs before that call returns. 

As mentioned above, the repaint behavior for all items in a panel can be set when 
the panel is created, e.g.: 

window_create (frame, PANEL, PANEL_PAINT, PANEL_NONE, 0); 

All items created in the above panel will have a repaint behavior of 
PANEL NONE. 

Revision A of 15 October 1986 



9.13. Event Handling 

Default Event Handling 

Writing Your Own Event 
Handler 

Table 9-3 

Chapter 9 - Panels 169 

This section describes how the panel package handles events.55 If you require a 
behavior not provided by default, you can write your own event handling pro­
cedure for either an individual item or the panel as a whole. 

Using the default event handling mechanism, events are handled for all the panel 
items in a uniform way. A single routine reads the events, updates an internal 
state machine, and maps the event to an action to be taken by the item. Actions 
fall into two categories: previewing and accepting. The previewing action gives 
the user visual feedback indicating what will happen when he releases the mouse 
button. The accepting action causes the item's value to be changed and/or its 
notify procedure to be called, with the event passed as the last argument. 

The default event-to-action mapping is given in the following table: 

Event 
Left button down or drag in wlleft button down 

Drag with left button down 

Drag out of item rectangle with left button down 

Left button up 

Right button down 

Keystroke 

Action 
Begin previewing 

Update previewing 

Cancel preview 

Accept 

Display menu & accept user's selection 

Accept keystroke if text item 

What actually happens when an item is told to perform one of the above actions 
depends on the type of the item. For example, when asked to begin previewing, 
a button item inverts its label, a message item does nothing, a slider item redraws 
the shaded area of its slider bar, etc.56 

You may want to handle events in a way which is not supported by this default 
scheme. For example, there is no way to take any action on middle mouse button 
events. To do so you must extend the event handling functionality by replacing 
the default event-to-action mapping function for a panel or panel item. Three 
attributes have been defined for this purpose: 

Panel Event Handling Attributes 

Attribute Argument Type Default Value 

PANEL_EVENT_PROC int(*)() panel_default_handle_event () 

PANEL_BACKGROUND _PROC int (*)() panel_ defaul t _handle_event () 

PANEL ACCEPT KEYSTROKE boolean FALSE 

5S The general Sun View input paradigm, including details on the various events, is covered in Chapter 6, 
Handl ing Input. 

56 For particulars, see the Selection subsection under each item type. 

Revision A of 15 October 1986 



Table 9-4 

Example 

Chapter 9 - Panels 171 

Panel Action Functions 

Definition Description 

panel_accept_key(object, event) Tells a text item to accept a keyboard 

<Panel or Panetitem> object; event. Currently ignored by non-text 

Event *event; panel items. 

panel_accept_menu(object, event) Tells an item to display its menu 

<Panel or Panetitem> object; and process the user's selection. 

Event *event: 

panel_accept-preview(object, event) Tells an item to do what it is supposed 

<Panel or Panetitem> object: to do when selected, including completing 

Event *event; any previewing feedback. 

panel_begin-preview(object, event) Tells an item to begin any feedback 

<Panel or Panetitem> object; which indicates tentative selection. 

Event *event: 

panel_cancel-preview(object, event) Tells an item to cancel any previewing 

<Panel or Panel_item> object; feedback. 

Event *event; 

panel_update-preview(object, event) Tells an item to update its previewing 

<Panel or Panetitem> object; feedback (e.g. redraw the 

Event *event: slider bar for a slider item). 

In most of the action routines, only the event's location and shift state are of 
interest. When previewing, choices, toggles and sliders use the event's location 
to determine the current value. Choices use the shift state to determine whether 
to advance or backup the current choice. panel_accept_key () is the only 
action function to make use of the actual event code. 

Suppose you are implementing dbxtool and want to have the buttons in the com­
mand panel execute different commands depending on whether they were 
selected with the left or middle mouse button. For example, the button labeled 
I next) might behave as the (jim) button if activated with the middle button. 
When the middle button is depressed, you want to preview an alternate label, and 
when it is released, you want to execute the dbx command corresponding to the 
previewed label. 

You can get get this functionality by replacing the event procedure for each of 
the button items in the c~mmand panel. This could be done either by specifying 
a default event procedure for all the items when the panel is created: 

panel = window_create (frame,PANEL,PANEL_EVENT_PROC,dbx_event-pro c,O); 

or by specifying a the event procedure as each panel item is created: 

Whenever one of the buttons gets an event, dbx_eventyroc () will be 
called and can then map the events to actions as it sees fit. The code for the new 
event procedure is given on the next page. Note the use of 
PANEL_CLIENT_DATA to store the images for the two labels for each item. 

Revision A of 15 October 1986 



/* cancel for some reason */ 
case PANEL EVENT CANCEL: - -

if (panel_get (item, PANEL_LABEL_lMAGE) 
dbx_data->middle-pr) { 

Chapter 9 - Panels 173 

/* we were previewing -- cancel it. 
*/ 
panel_cancel-preview(item, event); 
panel_set (item, PANEL_LABEL_lMAGE, dbx_data->left-pr, 0) 

else 
/* we weren't previewing, so 
* let the default event proc handle it. 
*/ 
panel_default_handle_event(item, event); 

break; 

/* some other event */ 
default: 

/* we don't care about this event -- let the default 
* event proc handle it. 
*/ 
panel_default_handle_event(item, event); 

The final step is to modify the notify procedure for each button to perform dif­
ferent actions depending on which mouse button was released. The notify pro­
cedure for the step/next button, for example, would look like: 

next_step_notify-proc(item, event) 
Panel_item item; 
Event *event; 

if (event_id(event) == MS_MIDDLE) 
/* do middle button command, "step" */ 

else 
/* do left button command, "next" */ 

Revision A of 15 October 1986 



Chapter 9 - Panels 175 

The browser is implemented as a panel containing buttons having the images as 
their labels. The buttons are created each time the user wants to browse a dif­
ferent set of images. When each button is created, the name of the file containing 
the image is stored as the value of the button's PANE L_CL lENT_DATA. 

Listed below is the event procedure shared by each button. There is a global 
menu containing a single menu item, image_menu_item. If the event is a 
right mouse button, the display string for this menu item is set to the file name 
which was previously stored as the button's PANEL_CLlENT_DATA. Then the 
event is adjusted from panel space to window space, and the menu is displayed at 
the proper coordinates. If the user selects from the menu, the .button's notify pro­
cedure, browser_items_notifyyroc (), is called, so the effect is the 
same whether the item is selected through the menu or directly. 

browser_items_event_proc(item, event) 
Panel_item item; 
Event *event; 

if (event_id(event) == MS_RIGHT) 

Event *adjusted_event; 

menu_set (image_menu_item, 
MENU_STRING, panel_get(item, PANEL_CLIENT_DATA), 0); 

adjusted_event = panel_wi~dow_event(browser, event); 

if (menu_show(image_menu, browser, adjusted_event, 0» 
browser_items_notify-proc(item); 
return; 

panel_default_handle_event(item, event); 

Note that for all events other than the right mouse button, the panel's default 
event procedure is called. 

Revision A of 15 October 1986 



10 
TTY Subwindows 

TIY Subwindows ........................................................................................................................ 179 

10.1. Creating a TrY Subwindow ................................................................................... 180 

10.2. Driving a TrY Subwindow ..................................................................................... 180 

10.3. TrY Subwindow Escape Sequences ................................................................. 181 

Standard ANSI Escape Sequences ...................................................................... 181 

Special Escape Sequences ....................................................................................... 181 



Summary Tables 

10 
TTY Subwindows 

The tty (or terminal emulator) subwindow emulates a standard Sun terminal, the 
principal difference being that the row and column dimensions of a tty subwin­
dow can vary. You can run arbitrary programs in a tty subwindow; perhaps the 
main use is to run a shell within a window. 

To see tty subwindows in use, run the standard tools shelltool (1) and gfxtool (l). 

Programs using tty subwindows must include the file <suntool/tty. h>. 

Tables that summarize tty subwindow attributes, functions and macros are in 
Chapter 18, SunView Interface Summary: 

o the TrY Subwindow Attributes table begins on page 329; 

o the TrY Subwindow Functions table begins on page 329; 

o the TrY Subwindow Special Escape Sequences table begins on page 330. 

~\sun ~~ mlcrosystems 
179 Revision A of 15 October 1986 



Example: typein 

10.3. TTY Subwindow 
Escape Sequences 

Standard ANSI Escape 
Sequences 

Special Escape Sequences 

int ttysw_output(tty, buf, len) 
Tty tty; 
char *buf; 
int len; 

Chapter 10 - lTY Sub windows 181 

ttysw_output () runs the character sequence in buf that is len characters 
long through the terminal emulator of tty. It returns the number of characters 
accepted. The effect is similar to executing 

echo character_sequence > /dev/ttyN 

where ttyN is the pseudo-tty associated with the tty subwindow. One use of 
ttysw_output () is to send the escape sequences listed in the next section to 
the tty subwindow. 

Appendix A, Example Programs gives the listing for typein, a program which 
uses a tty subwindow to get user input and draws on a canvas based on that input. 

The tty subwindow accepts the same ANSI escape sequences as the Sun termi­
nal,59 with the following two exceptions: 

o The effect of CTRL-G (OxO 7}in a tty subwindow depends on how the user 
has set the two SunView options Audible_Bell and Visible_Bell in 
defaultsedit. If Audible_Bell is Enabled, the bell will ring. If 
Visible _Bell is Enabled, the window will flash. 

o The sequence ESC [Or, which enables vertical wrap mode in the Sun termi­
nal, has no effect in the tty subwindow. 

Escape sequences have been defined by which the user can get and set attributes 
of both the tty subwindow and the frame which contains it. For example, the 
user can type an escape sequence to open, close, move or resize the frame, 
change the label of the frame or the frame's icon, etc. These escape sequences 
are described in the table on the following page. 

For an example of setting the frame's label via a tty sub window escape sequence, 
see the program tty _io, listed in Appendix A, Example Programs. 

S9 see cons (4s) in the SystemlnterJace Manual. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



11 
Menus 

Menus .................................................................................................................................................... 185 

11.1. Basic Menu Usage ........................................................................................................ 186 

11.2. Components of Menus & Menu Items .............................................................. 190 

Menus .................................................................................................................................. 190 

Visual Components ................................................................................................ 190 

Generate Procedures .............................................................................................. 190 

Notify Procedures .................................................................................................... 190 

Client Data .................................................................................................................. 190 

Menu Items ................................................................................................................. 190 

Menu Items ....................................................................................................................... 191 

Representation on the Screen ........................................................................... 191 

Item Values ................................................................................................................. 191 

Item Generate Procedures ................................................................................... 191 

Item Action Procedures ....................................................................................... 191 

Client Data .................................................................................................................. 191 

Item Margins .............................................................................................................. 192 

11.3. Examples ........................................................................................................................... 193 

11.4. Item Creation Attributes ........................................................................................... 200 

11.5. Destroying Menus ........................................................................................................ 201 

11.6. Searching for a Menu Item ...................................................................................... 202 

11.7. Callback Procedures .................................................................................................... 203 
// 

Generate Procedures .................................................................................................... 203 

Menu Item Generate Procedure ....................................................................... 204 



Summary Tables 

11 

Menus 

The Sun View menu package allows you to chain individual menus together into 
a collection known as a walking menu. A menu contains menu items, some of 
which may have a small arrow pointing to the right. This indicates to the user 
that if he slides the mouse to the right of that item, a pullright menu will appear. 
Menus can be strung together in this fashion, so that the user "walks" to the 
right down the chain of menus in order to make a selection. 

The definitions necessary to use walking menus are found in the file 
<suntool/walkmenu. h>, which is included by default when you include 
the file <suntool/ sunview. h>. 

The most useful sections to read first are the first three. Section 1 introduces the 
basic routines and gives some simple examples. Section 2 outlines the com­
ponents of menus and menu items and introduces common terms. Section 3 
gives more examples of using menus. Section 7 is for advanced users who need 
to understand the subtleties of the callback mechanism. 

The listing for font_menu, a program which builds on some of the examples 
given throughout the chapter, is given in Appendix A, Example Programs. 

Tables that summarize menu attributes and functions are in Chapter 18, SunView 
Interface Summary: 

o the Menu Attributes table begins on page 291; 

o the Menu Item Attributes table begins on page 294; 

o the Menu Functions table begins on page 296. 

~\sun ~~ microsystems 
185 Revision A of 15 October 1986 



Example 1: 

CAUTION 

Chapter 11 - Menus 187 

Let's take a very simple example - a menu with two selectable items 
represented by the strings "On" and "Off": 

~ 
~ 

on_off_menu = menu_create (MENU_STRINGS, "On", "Off", 0, 0); 

The attribute MENU_STRINGS takes a list of strings and creates an item for 
each string. Note that the first zero in the above call terminates the list of strings, 
and the second zero terminates the entire attribute list. 

The menu package, in contrast to the panel package, does not save strings 
which you pass in. So you should either pass in the address of a constant, as in 
the example above, or static storage, or storage which you have dynamically allo­
cated. 

Typically you call menu_show () from an event procedure,63 upon receiving 
the event which is to cause display of the menu. In the code fragment below, we 
display the menu on right button down: 

case MS RIGHT: 
menu_show (on_off_menu, window, event, 0); 
break; 

menu_show (), by default, returns the value of the item which was selected. If 
the item was created with MENU STRINGS its value defaults to its ordinal posi­
tion in the menu, starting with 1.64 So in the above example, selecting "On" 
would cause 1 to be returned, while selecting "Off" would cause 2 to be 
returned. 

You can specify that menu_show () return the item itself, rather than return 
the value of the selected item. Do this by setting MENU NOT IFY PROe to the 
predefined notify procedure65 menu_ret urn _ i tern () , as in: -

menu_set(on_off_menu, MENU_NOT I FY_P ROC , menu_return_item, 0); 

63 See Chapter 6, Handling Input for a discussion of event procedures. 

64 The value of menu items not created with MENU_STRINGS defaults to zero. You can explicitly specify 
the values for menu items via the attributes MENU_lMAGE_ITEM, MENU_STRING_ITEM, or 
MENU VALUE. 

65 Notify procedures are covered in detail in Section 7, Callback Procedures. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Example 3: 

Chapter 11 - Menus 189 

The menu package can accommodate images as well as strings. The example 
below creates a menu with a single item labelled "tools." When the user pulls 
right, he brings up a menu showing the icons of three Sun View tools -
defaultsedit, ieonedit, andfontedit. 

In order to pass an image into the menu package you need a pointer to a memory 
pixreet containing the image. One common way to ~reate such an image is by 
first using ieonedit to create the image and save it to a file. You then include the 
file in your program, and use the mpr_static () macro to create a memory 
pixrect: 

static short d_defaults[] = { 
iinclude <images/defaultsedit.icon> 
} ; 

mpr_static(defaults_pr, 64, 64, 1, d_defaults); 

static short d_icon[] = 

iinclude <images/iconedit.icon> 
} ; 

mpr_static(icon-pr, 64, 64, 1, d_icon); 

static short d_font[] = 

iinclude <images/fontedit.icon> 
} ; 

tool menu = menu_create(MENU_IMAGES, 
&defaults_pr, &icon-pr, &font_pr, 0, 
0) ; 

menu = menu_create(MENU_ITEM, 
MENU_STRING, "tools", 
MENU_PULLRIGHT, tool_menu, 
0, 

0); 

The attribute MENU_IMAGES is analogous to MENU STRINGS. It takes a list 
of images (pointers to pixrects) and creates a menu item for each image. 

Revision A of 15 October 1986 



Menu Items 

Representation on the Screen 

Item Values 

Item Generate Procedures 

Item Action Procedures 

Client Data 

Chapter 11 - Menus 191 

A menu item is either displayed as a string or an image (a pointer to a pixrect). 
In the first case the item is referred to as a string menu item, in the second as a 
image menu item. 

Each menu item has a value. By default an item's value is the initial ordinal 
position of the item if it was created with MENU _STRINGS; otherwise the 
default value is zero. You can set an item's value explicitly when you create the 
item with MENU STRING ITEM or MENU IMAGE ITEM. You can also 
explicitly set an item's value with MENU_VALUE. 

As mentioned in Section 1, menu_show (), by default, returns the value of the 
item the user has selected. Since menu items are counted starting from one, a 
return value of zero from menu_show () would represent the null selection.70 

However, you may explicitly set the value of a menu item to zero. If you do, 
then a return value of zero could represent either a legal value for the selected 
item or an error. To tell whether or not the result was valid, call menu_get ( ) 
with the boolean MENU VALID RESULT. A return value of TRUE means that 
the result was valid; FALSE means that the value is invalid. 

As with the menu as a whole, you may specify a generate procedure for each 
menu item, to be called just before the item is displayed. 

The action procedure of a menu item is analogous to the notify procedure of a 
menu. This is your chance to do something immediately based on the user's 
selection. 

Menu notify procedures and item action procedures differ in when they are 
called. If the user makes a selection from a pullright, any notify procedures for 
menus higher up in the chain leading to the pullright will be called, while only 
those action procedures for menu items at, and to the right of, the selected item 
will be called.71 

Each menu item has a client data field, accessible through 
MENU_CLIENT _DATA, which is reserved for the application's use. You can use 
this attribute to associate a unique identifier, or a pointer to a private structure, 
with each menu item. 

70 This is why menu items are counted starting with one, rather than zero: so that a zero return value would 
represent the null selection whether the menu_show () was returning the value of the selected item or the item 
itself. 

71 Action procedures are discussed in detail in Section 7, Callback Procedures. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



11.3. Examples 
Example 4: 

Chapter 11 - Menus 193 

Our next example will show several variations on a simple menu that could be 
used for selecting font point sizes. The default form is: 

8 
19 
12 
14 
16 
18 

You could create the items with MENU_STRINGS, as in the previous example. 
Alternately, you could create the menu with no items, then use menu set () 
to append the items to the menu: 73 -

m = menu_create(O); 
for (i = 8; i <= 18; i += 2) 

menu_set(m, MENU_STRING_ITEM, int_to_str(i) , i, 0); 

MENU_STRING_ITEM takes as values the item's string and its value. 

Now let's see some of the ways in which the appearance of this basic menu can 
be altered. 

By setting MENU _ INACT IVE to TRUE for an item, you can "grayout" the 
item to indicate to the user that it is not currently selectable: 

8 
19 
12 
14 
1E; 
1H 

The above menu could be produced by: 

for (i = 4; i <= 6; i++) { 
item = menu_get(m, MENU_NTH_ITEM, i); 
menu_set(item, MENU_INACTIVE, TRUE, 0); 

Inactive items do not invert when the cursor passes over them. 

73 Note that using MENU_STRING_ITEM with menu_set () has the effect of an implicit append. 
Several attributes are provided to explicitly add items to a menu - see the Attributes To Add Pre-Existing Menu 
Items table later in this section. 

4J\sun ~~ microsystems 
Revision A of 15 October 1986 



Chapter 11 - Menus 195 

The previous example specified that the menu have 3 columns. Specifying that it 
have 2 rows via MENU NROWS would have the same effect. Items are laid out 
from upper left to lower right, in "reading order," regardless of how the layout is 
specified. 

The only time you need to specify both the number of rows and the number of 
columns is when you want to fix the size of the menu, regardless of how many 
items it contains. Setting MENU NeOLS to 3 and MENU NROWS to 3 would 
produce: 

8 
14 

18 
16 

12 
18 

If both dimensions of the menu are fixed and more items are given than will fit, 
the excess items will not appear. 

You can remove the menu's shadow by setting MENU SHADOW to null: 

8 
18 
12 
14 
16 
18 

The menu package provides three predefined pixrects for the menu shadow. The 
call menu_set (m, MENU_SHADOW, &menu_gray25y r) produces the 
25 percent gray pattern shown on first menu below. Note that these are pixrects, 
not pixrect pointers. The other two patterns are produced by using 
menu_gray50_prand menu_gray75y r: 

8 8 8 
18 18 18 
12 12 12 
14 14 14 
16 16 16 
18 18 18 

.\sun ,~ microsystems 
Revision A of 15 October 1986 



Example 6: 

NOTE 

Chapter 11 - Menus 197 

You can insert new items into an existing menu with MENU_INSERT. For 
example, suppose you want to insert blank lines into the font family menu, to 
indicate grouping: 

Courier => 
Serif => 

APL ~*DV I (10 => 
eMit => 

Screen 

You can do this by inserting non-selectable items into the menu: 

menu_set (family_menu, 
MENU_INSERT, 

2, 
menu create_item (MENU_STRING, 

0); 

menu_set (family_menu, 
MENU_INSERT, 

5, 

"" , MENU_FEEDBACK, FALSE, 0) 

menu_get (family_menu, MENU_NTH_ITEM, 3), 
0); 

MENU_INSERT takes two values: the number of the item to insert after, and the 
new item to insert. Disabling MENU FEEDBACK makes the item non­
selectable. 

The above example uses menu_create_item () to explicitly create the 
item to be inserted. Usually menu items are created implicitly, using the attri­
butes described in the Menu Item Creation Attributes table in the next section. 

menu_create_item() does not set the MENU_RELEASE attribute by 
default, so that the resulting item will not be automatically destroyed when its 
parent menu is destroyed. This is in contrast to implicitly created menu items­
see Section 5, Destroying Menus. 

~\sun ,~ microsystelT1S 
Revision A of 15 October 1986 



Example 7: 

Chapter 11 - Menus 199 

For the next example we will attach the on-off, family and size menus of the pre­
vious examples as pullrights to a higher-level menu for selecting fonts: 

font menu menu_create ( 
MENU_PULLRIGHT_ITEM, "Family", family_menu, 
MENU_PULLRIGHT_ITEM, 
MENU_PULLRIGHT_ITEM, 
MENU_PULLRIGHT_ITEM, 
MENU_PULLRIGHT_ITEM, 
0) ; 

"Size", 
"Bold", 
"Italic", 
"Misc", 

size_menu, 
on_off_menu, 
on_off_menu, 
frame_menu, 

MENU_PULLRIGHT_ITEM takes a string and a menu as values. It creates an 
item represented by the string and with the menu as a pullright. 

Note that on_off_menu is used as a pUllright for both the bold and the italic 
menu items, and that the size_menu appears both as a pullright from main 
level font_menu and from each item in family_menu. This demonstrates 
that a menu may have more than one parent. However, recursive menus are not 
allowed - if Ml is a parent ofM2, M2 (or any of its children) may not have Ml 
as a child. Displaying such a recursive menu will probably result in a segmenta­
tion fault. 

The Mise item takes as its pullright the menu which has been retrieved from the 
frame using WIN_MENU. 

The program font _menu, included in Appendix A, builds further on the above 
examples. 

Revision A of 15 October 1986 



11.S. Destroying Menus 

Chapter 11 - Menus 201 

Both menus and menu items are destroyed with the function: 

void 
menu_destroy (menu_object) 

<Menu or Menu_item> menu_object; 

CAUTION Watch out for dangling pointers when using a menu item in multiple menus. The 
attribute MENU _RELEASE (which takes no value) controls whether or not a 
menu item is automatically destroyed when its parent menu is destroyed. 
MENU_RELEASE is set by default for menu items created inline via the menu 
item creation attributes. This can lead to dangling pointers, if the same menu 
item appears multiple times, because calling menu_destroy () can lead to 
items being destroyed multiple times. This warning also applies to pull rights 
which are used multiple times. To prevent this error, remove multiple 
occurrences of an item or pullright before destroying a menu. 

The function menu_destroy_withyroc () lets you specify a procedure to 
be called every time a particular menu or menu item is about to be destroyed: 

void 
menu_destroy_with-proc(menu_object, destroy-proc ) 

<Menu or Menu _item> menu_object; 
void (*destroy-proc) (); 

The destroy procedure is defined as: 

void 
destroy-proc(menu_object, type) 

<Menu or Menu _item> menu _ ob ject ; 
Menu_attribute type; 

For menus, menu_object is the menu and the type parameter is 
MENU_MENU; for menu items, menu_object is the item and the type 
parameter is MENU ITEM. 

Revision A of 15 October 1986 



Chapter 11 - Menus 203 

11.7. Callback Procedures When you call menu_show (), the menu package displays the menu, gets a 
selection from the user, and undisplays the menu. The menu package allows you 
to specify callback procedures which will be called at various points during the 
invocation of the menu. There are three types of callback procedures: generate 
procedures (so named because they are called before the menu or item is 
displayed, allowing the application to generate or modify the menu on the fly), 
notify procedures (for menus) and action procedures (for menu items) which are 
called after the user has made a selection. 

Generate Procedures The first argument to a generate procedure is either a menu or menu item depend­
ingon whether it's a MENU_GEN_PROC ora MENU_I TEM_GEN_P ROC. Also 
passed in is an operation indicating at which point in the processing of the menu 
the generate procedure is being called. The operation parameter is of type 
Menu generate, and may be MENU DISPLAY, MENU DISPLAY DONE, 
MENU-NOTIFY or MENU NOTIFY DONE.15 - -

CAUTION The menu package uses the full screen access mechanism when displaying 
the menu. Writing to the screen while under fullscreen access will probably 
cause your program to deadlock, so your generate procedure should not 
access the screen when called with an operation of MENU_DISPLAY or 
MENU DISPLAY DONE. 

There are three types of generate procedures - menu item generate procedures, 
menu generate procedures, and pullright generate procedures. A description and 
example of each is given on the next several pages. 

75 For a detailed explanation of when the generate procedures are called in relation to the other callback 
procedures, see the diagrams in the next subsection, Flow o/Control in Menu Show. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Menu Generate Procedure 

Example 9: 

A generate procedure attached to a menu has the form: 

Menu 
menu_gen-proc(m, operation) 

Menu m; 
Menu_generate operation; 

Chapter 11 - Menus 205 

You can specify a menu generate procedure via the attribute 
MENU GEN PROC. 

We will take as an example a menu allowing the user to list different groups of 
files. When the user makes a selection, we generate a menu containing the 
correct set of files: 

List dot fi 1 es => 
List bin dir 

_-m. ____ ...., 

clock 
List all file shelltool 

iconedit 

The relevant functions are listed on the next page. The first, 
initialize_menu () ,creates the three menu items, giving each of them the 
generate procedure list _file s ( ) , and a unique identifier as 
MENU CLIENT DATA. 

Remember that lis t _ f il e s () will be called four different times by 
menu_show ().16 In the first call (operation is MENU_DISPLAY), it calls 
the function get _file_names () (not shown) to get the appropriate list of 
file names, and adds each name on the list to the menu. 

When list_files () is called with an operation of 
ME NU_D I SPLAY_DONE or MENU_NOTIFY, the menu is returned unaltered. 

The final call has an operation of MENU_NOTIFY_DONE. This time 
list_files () cleans up by destroying the old menu and returning the handle 
of a newly created menu with no items. 

76 See the diagrams in the next subsection, Flow o/Control in Menu Show. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



Pullright Generate Procedure 

Chapter 11 - Menus 207 

You can postpone the generation of a pullright menu until the user actually pulls 
right by specifying a a pullright generate procedure. A pullright generate pro­
cedure has the form: 

Menu 
pullright_gen-proc(mi, operation) 

Menu item mi; 
Menu_generate operation; 

Note that the pullright generate procedure is passed the item, and returns the 
menu to be displayed. 

You can specify a menu item's pullright generate procedure with a call such as 

menu_set(menu_item, MENU_GEN_PULLRIGHT_PROC, my-pullright_gen, 

Alternatively, you can use the attributes MENU_GEN_PULLRIGHT_lMAGE or 
MENU_GEN_PULLRIGHT_ITEM to give a menu both an item and the item's 
generate procedure. 

If you want to get the existing menu for an item which has a pullright generate 
procedure, retrieve the value of the item, as in: 

menu = menu_get (item, MENU_VALUE); 

Revision A of 15 October 1986 



Flow of Control in 
menu_show () 

Figure 11-1 

Chapter 11 - Menus 209 

The callback mechanism gives you a great deal of flexibility in creating, combin­
ing and modifying menus and menu items. This flexibility comes at the price of 
some complexity, however. To take advantage of it, it is necessary to understand 
when the callback procedures are called after you invoke menu_show ( ) . 

For purposes of explanation, the diagrams below divide the process of displaying 
a menu and getting the user's selection into two stages, the display stage and the 
notification stage. 

Display Stage of Menu Processing 

Start menu_show () 

l 
gen_proc() 

(menu, MENU_DISPLAY) 

~ 
gen_proc() 

for each item 

(item, MENU DISPLAY) 
I 
'l 

display 

Active 
pullright 

yes gen_pullright_proc() - (item, MENU_DISPLAY) 
? 

" no menu_show ( ) 

User makes for pullright (recursive) 

Selection + 
1- Selection gen_pullright_proc() No Selection 
't- (item, MENU_DISPLAY_DONE) 

gen_proc () 

for each item 

(item, MENU DISPLAY DONE) 

1 
gen_proc() 

(menu, MENU_D ISP LAY_DONE) 

I 
To Notification Stage 

.\sun ~~ microsystems 
Revision A of 15 October 1986 



11.8. Interaction with 
Previously Defined 
Sun View Menus 

Chapter 11 - Menus 211 

Walking Menus for frames, tty subwindows and text subwindows can be custom­
ized.77 All menu items in these menus are "position-independent" - in other 
words the menus do not count on a given item having a certain position or being 
located in a particular menu. This makes it possible for you to safely add new 
items (including pullright submenus) to an existing menu.78 

NOTE You should not use the client data field of items created by Sun View packages, 
because the packages have pre-empted it for their own use. 

Using an Existing Menu as a 
Pullright 

The program/ont _menu, listed in Appendix A, shows how you can replace an 
existing menu with your own menu which has the original menu as a pullright. 
Making use of several of the examples given earlier in the chapter, it creates a 
font menu which allows the user to select the font family, point size, and whether 
or not the font is bold or italic. The last item, labelled Mise, brings up the origi­
nal frame menu: 

Fami ly =+ 
Si ze =+ 
Bold =+ 
Itali c =+ 

Close 
Move =+ 
Resize =+ 
Expose 
Hide 
Redisplay 
Quit 

77 Remember that in order to have these packages use walking menus the user must have enabled the 
Sun View Walkin8_ Menus option in defaultsedit. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Chapter 11 - Menus 213 

11.10. User Customizable 
Attributes 

The user can specify the values of certain menu attributes using defaultsedit. 
When a menu is created, for attributes not explicitly specified by the application 
program, the menu package retrieves the values set by the user from the defaults 
database maintained by defaultsedit. This allows the user the ability to tailor, to 
some extent, the appearance and behavior of menus across different applications. 
For example, he may want to change the type of shadow, or expand the menu 
margin, and so on. 

The attributes under defaultsedit control are listed in the following table. 

Table 11-3 User Customizable Menu Attributes 

Attribute default 

MENU BOXED FALSE 

MENU DEFAULT SELECTION MENU DEFAULT - -

MENU FONT screen.b.12 

MENU INITIAL SELECTION MENU DEFAULT 

MENU INITIAL SELECTION SELECTED FALSE - - -

MENU INITIAL SELECTION EXPANDED TRUE - - -

MENU JUMP AFTER NO SELECTION FALSE - - --

MENU JUMP AFTER SELECTION FALSE - - -

MENU MARGIN 1 

MENU LEFT MARGIN 16 - -

MENU PULLRIGHT DELTA 9999 - -

MENU RIGHT MARGIN 6 - -

MENU SHADOW 50% grey 

Description 

If TRUE, a single-pixel box will be 

drawn around each menu item. 

MENU SELECTED or MENU DEFAULT. - -

Menu's font 

MENU SELECTED or MENU DEFAULT. - -

If TRUE, menu comes up with its initial 

selection highlighted. If FALSE, menu comes 

up with the cursor "standing off' to the left. 

If TRUE, when the menu pops up, it auto­

matically expands to select the initial selection. 

If TRUE, cursor jumps back to its 

original position after no selection made. 

If TRUE, cursor jumps back to its 

original position after selection made. 

The margin around each item. 

For each string item, margin in addition to 

MENU MARGIN on left 

between menu's border and text 

# of pixels the user must move the cursor to 

the right to cause a pullright menu to pop up. 

For each string item, margin in addition to 

MENU_MARGIN on right 

between menu's border and text 

Pattern for menu's shadow. 

Revision A of 15 October 1986 



12 
Cursors 

Cursors .................................................................................................................................................. 217 

12.1. Creating and Modifying Cursors ......................................................................... 218 

12.2. Copying and Destroying Cursors ......................................................................... 218 

12.3. Crosshairs .......................................................................................................................... 219 

12.4. The Cursor Attributes ................................................................................................. 220 



Summary Tables 

12 
"0 I. IO~.. • ••••• 

Cursors 

This chapter describes how to create and manipulate cursors. A cursor is an 
image that tracks the mouse on the display. Each window in Sun View has its 
own cursor, which you can change with the cursor package. 

The definitions necessary to use cursors are found in the include file 
<sunwindow/win_cursor .h>, which is included by default when you 
include the file <suntool/ sunview. h>. 

A demo showing the effects of the various cursor attributes can be seen by run­
ning /usr/demo/cursor _demo. The source for this is in 
/usr/ srcl sun! suntooll cursor demo.c. 

Tables that summarize cursor attributes and functions are in Chapter 18, SunView 
Interface Summary: 

o the Cursor Attributes table begins on page 280; 

o the Cursor Functions table begins on page 282. 

~\sun ~~ microsystems 
217 Revision A of 15 October 1986 



Example 2: Changing the 
Cursor on an Existing Window 

CAUTION 

12.3. Crosshairs 

Example 3: Turning on the 
Crosshairs 

short my-pixrect_data[] - { 
'include "file_from_iconedit" 
} ; 

Chapter 12 - Cursors 219 

mpr_static(my-pixrect, 16, 16, 1, my-pixrect_data); 

Canvas canvas; 

init_my_canvas() 
{ 

canvas = window_create (frame, CANVAS, 

0); 

In this example we create a cursor "on the fly" and pass it into the 
window_create () routine for use with our canvas. The attribute 
CURSOR_IMAGE is set to the new pixrect we want to use (which could be a dia­
mond or bullseye, for example). All of the other cursor attributes default to the 
value shown in the attribute table .. 

Suppose you have already created a window and you want to change its cursor. 
Let's say you want to change the drawing op to PIX SRC: 

Cursor cursor; 

cursor = window_get(my_window, WIN_CURSOR); 
cursor_set(cursor, CURSOR_OP, PI X_SRC, 0); 
window_set(my_window, WIN_CURSOR, cursor, 0); 

The cursor returned by window_get () is a pointer to a static cursor that 
is shared by all the windows in your application. So, for example, saving the 
cursor returned by window get () and then making other window system 
calls might result in the saved cursor being overwritten. 80 

It is safe to get the cursor, modify it with cursor_set () and then put the cur­
sor back. If there is any chance that the static cursor will be overwritten, you 
should use cur sor _copy () to make a copy of the cursor, then use 
cursor_destroy () when you are done. 

Crosshairs are horizontal and vertical lines whose intersection tracks the location 
of the mouse. You can control the appearance of both the horizontal and vertical 
crosshairs along with the cursor image. For example, you can create a cursor that 
only shows the cursor image, or only the horizontal crosshair,or both the hor­
izontal and vertical crosshairs and the cursor image. By default both the 
crosshairs are turned off and only the cursor image is displayed. 

Suppose you have a canvas window in which you want to tum on both the hor­
izontal and vertical crosshairs. This can be done by getting the cursor from the 
window and setting the CURSOR_SHOW_CROSSHAIRS attribute: 

80 Note that this would happen if one of the routines you call happens to call window_get () of 
WIN CURSOR. 

Revision A of 15 October 1986 



Chapter 12 - Cursors 221 

If you don't want the crosshairs to cover the entire window (or screen), you can 
set the length of both crosshairs with CURSOR_CROSSHAIR_LENGTH. The 
value of this attribute is actually half the total crosshair length. For example, if 
you want the crosshairs to be 400 pixels wide and high, set the 
CURSOR_CROSSHAIR_LENGTH to 200. You can restore the extend-to-edge 
length by giving a value of CURSOR _ TO_EDGE for 
CURSOR CROSSHAIR LENGTH. 

CURSOR _ CROSSHAIR _BORDER _ GRAVITY If the crosshair border gravity is enabled, the crosshairs will "stick" to the edge of 
the window (or screen). This is only interesting if the 
CURSOR CROSSHAIR LENGTH is not set to CURSOR TO EDGE. With 
border gravity turned on, each half of each crosshair ~ill be attached to the edge 
of the window. With the cursor image displayed, this feature might be useful to 
help the user line up the cursor to a grid drawn on the edges of the window. 

If you don't want the halves of each crosshair to touch, you can set the 
CURSOR_CROSSHAIR_GAP to the half-length of space to leave between each 
crosshairhalf. If you set CURSOR_CROSSHAIR_GAP to 
CURSOR_TO_EDGE, the crosshairs will back off to the edge of the 
CURSOR_IMAGE rectangle. 

Revision A of 15 October 1986 



13 
Icons 

Icons ....................................................................................................................................................... 225 

13.1. Using Images Generated With iconedit ........................................................... 226 

13.2. Modifying the Icon's Image ................................................................................... 227 

13.3. Loading Icon Images At Run Time .................................................................... 227 



Summary Tables 

13 
Icons 

An icon is a small (usually 64 by 64 pixel) picture representing a base frame in 
its closed state. The icon is typically a picture indicating the function of the 
underlying application. 

The definitions necessary to use icons are found in the file 
<suntool/ icon. h>, which is included by default when you include the file 
<suntool/sunview.h>. 

Tables that summarize icon attributes, functions and macros are in Chapter 18, 
Sun View Interface Summary: 

o the Icon Attributes table begins on page 286; 

o the leon Functions and Macros table begins on page 287. 

~\sun ,~ microsystems 
225 Revision A of 15 October 1986 



13.2. Modifying the Icon's 
Image 

13.3. Loading Icon Images 
At Run Time 

Chapter 13 - Icons 227 

It is often useful to change the icon's image dynamically, rather than simply 
using the icon as a static placeholder. When mailtool receives new mail, for 
example, it lets the user know by modifying its icon to show a letter arrived in 
the mailbox. clocktool uses its icon to represent a moving clock face. 

The steps to follow in modifying an icon's image are: 

o get the frame's icon (attribute WINDOW_ICON); 

o get the icon's pixrect (attribute ICON_IMAGE); 

o modify the pixrect as desired, or substitute a new pixrect; 

o give the pixrect with the new image back to the icon; 

o give the new icon back to the frame. 

For example: 

modify_icon(frame); 
Frame frame; 

Icon icon; 
Pixrect *pr; 

icon = (Icon) window_get(frame, WIN_ICON); 
pr = (Pixrect *) icon_get (icon, ICON_IMAGE); 

(modify prj 

icon_set (icon, ICON_IMAGE, pr, 0); 
window_set(frame, WIN_ICON, icon, 0); 

Often it is sufficient to define the image for a program's icon at compile time, 
with mpr_static (). However, you may want to allow the user to create his 
own icon images, and give the names of the files containing the images to your 
program as command-line arguments. Then you can load the images from the 
files the user has specified. Routines to load icon images from files at run time 
are described in Chapter 11 of the Sun View System Programmer's Guide. 

Revision A of 15 October 1986 



14 
Scrollbars 

Scrollbars ............................................................................................................................................ 231 

14.1. Scrolling Model ............................................................................................................. 232 

14.2. Use of Scrollbars by Application Users ........................................................... 234 

14.3. Creating, Destroying and Modifying Scrollbars ......................................... 235 

14.4. Programmatic Scrolling ............................................................................................ 237 



Summary Tables 

14 
Scrollbars 

The canvas, text and panel subwindows have been designed to work with 
scrollbars. The text subwindow automatically creates its own vertical scrollbar. 
For canvases and panels, it is your responsibility to create the scrollbar and pass 
it in via the attributes WIN VERTICAL SCROLLBAR or 
WIN HORIZONTAL SCROLLBAR. 

Section 1 describes how the user interacts with scrollbars. Basic scrollbar usage 
is covered in Section 2, and programmatic scrolling is covered in Section 3. 

You may want to use scrollbars in an application not based on canvases, text 
subwindows or panels, in which case you must manage the interaction with the 
scrollbar directly. For an explanation of how to do this, see the Scrollbars 
chapter in the Sun View System Programmer's Guide. 

The definitions necessary to use scrollbars are found in the header file 
<suntool/scrollbar.h> 

Tables that summarize scrollbar attributes and functions are in Chapter 18, Sun­
View Interface Summary: 

o the Scrollbar Attributes table begins on page 317; 

o the Scrollbar Functions table begins on page 320. 

~\sun ,~ microsystems 
231 Revision A of 15 October 1986 



Figure 14-1 Scrolling Model 

Fid ratz 

Eot 
~ 

Theodnfo ufcUcjhf E= 
jfi fjdi sosa; jfi i c CI) 

Bali diufd ieuf eov .' 
ra1 
H 

>1 
~ 

n~ 
CI) 

TbeodDf'o ufdtjhf 
jfi fjdi sosa; jfi i c 
Bali diufd ieuf eov 

Fid/ff z 

fifjd I~;~ 
Bali .:.:::::::: uf eov 

Chapter 14 - Scrollbars 233 

Bo dki Ity rz: 1 

nim odhf odhf odhjf P jfpdufj sdijf ofj pdfj jc 
difj odj oqoiw djid! Fal malZ dihf idyf oaiel 

ofufod fudo fudi fuodod idu: 

tEl 
Eot 
U 

. 4: Wor,latl ""'Ia" ~ 
ra1 
~ 

nim odhf odhf odhjf P jfpdufj sdijf ofj pdfj jc ~ 1 
difj odj oqoiw djid! Fal malZ dihf idyf oaiel U!;""l 

o(uf'od fUdo fudi fuodod idu: 
~ 
~ 

~1 
Bo dkl jty rz: 8 

Dim odhf odhf odhjf P jfpdufj sdijf of pdfj jc 
difj odj oqoiw djid! Fal malZ dihf id r oaiel 

ofufod fudo fudi fuodod idu: 

s: Wor'lad ""'laa 

nim odhf odhf odhjf P jfpdufj sdijf of pdfj jc 
foaiel 

" u 
CI) 

The above figure shows a two-page document being viewed within a window 
roughly half the size of the document. The three view-space attributes 
SCROLL_OBJECT_LENGTH, SCROLL_VIEW_LENGTH,and 
SCROLL_VIEW_START are shown superimposed on the document. Note the 
relative size and position of the bubble within the scrollbar - it is roughly half 
the size of the window and positioned near the bottom. 

Revision A of 15 October 1986 



14.3. Creating, Destroying 
and Modifying 
Scroll bars 

Chapter 14 - Scrollbars 235 

Scrollbars are created and destroyed with scrollbar _create () and 
scrollbar_destroy (). To take the simplest possible example, you get a 
default scrollbar (vertical, on the left edge of the subwindow, etc.) by calling: 

bar = scrollbar_create(O); 

You would destroy the scrollbar with the call: 

scrollbar_destroy(bar); 

The appearance and behavior of a given scrollbar is determined by the values of 
its attributes. Here's an example of a non-default scrollbar:. 

bar 1 = scrollbar_create( 
SCROLL_PLACEMENT, SCROLL_EAST, 
SCROLL_BUBBLE_COLOR, SCROLL_BLACK, 
SCROLL_BAR_DISPLAY_LEVEL, SCROLL~CTIVE, 

SCROLL_BUBBLE_DISPLAY_LEVEL, SCROLL_ACTIVE, 
SCROLL_THICKNESS, 20, 
SCROLL_BUBBLE_MARGIN, 4, 
0) , 

In the above call, setting SCROLL_PLACEMENT to SCROLL_EAST will cause 
the scrollbar to appear on the right edge of the subwindow. The scrollbar will be 
20 pixels wide with a black bubble 4 pixels from each edge of the bar. The bar 
and bubble will be shown only when the cursor is in the scrollbar. 

You can modify and retrieve the attributes of a scrollbar with the two routines: 

scrollbar_set(scrollbar, attributes) 
Scrollbar scrollbar; 
<attribute-list> at t r ibu te s ; 

caddr t 
scrollbar_get(scrollbar, attribute) 

Scrollbar scrollbar; 
Scrollbar_attribute attributes; 

If the scrollbar parameter is NULL, scrollbar_get () returns O. 

SCROLL_RECT, SCROLL_THICKNESS, SCROLL_HEIGHT,and 
SCROLL_WIDTH do not have valid values until the scrollbar is passed into the 
subwindow. As a work-around for this problem, the special symbol 
SCROLLBAR has been provided. You can determine the default thickness of a 
scrollbar before it has been attached to a subwindow with the call: 

thickness = (int) scrollbar_get(SCROLLBAR, SCROLL_THICKNESS); 

This convention is currently only implemented for SCROLL_THICKNESS. 

The figure on the following page shows some of the attributes controlling the 
visual appearance of a scrollbar.83 

83 For a complete list of the scrollbar attributes see the Scrollbar Attributes table in Chapter 18. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



14.4. Programmatic 
Scrolling 

Chapter 14 - Scrollbars 237 

To scroll to a given location from your program, call: 

scrollbar_scroll_to<scrollbar, new view_start) 
Scrollbar scrollbar; 
long new_view_start; 

This routine saves the current value of SCROLL VIEW START as - -
SCROLL_LAS T_VIEW_S TART , sets SCROLL_VIEW_START to the value 
passed in as new_ view_start, and posts a scroll event to the scrollbar's 
client (Le. the canvas, panel or textsubwindow) via the notifier. This has the 
same effect as if the user had requested a scroll to new view start. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



15 
The Selection Service 

The Selection Service ................................................................................................................ 241 

15.1. Getting the Primary Selection ............................................................................... 242 

15.2. Setting the Primary Selection ................................................................................ 242 



15 
The Selection Service 

The Selection Service provides for flexible communication among window appli­
cations. You can use the Selection Service to query and manipulate the selec­
tions the user has made. 

This chapter gives only the simplest example of using the Selection Service. To 
find out more about the Selection Service and the other functionality it provides, 
refer to Chapter 9 of the Sun View System Programmer's Guide. 

The definitions necessary to use the Selection Service are found in the include 
fik <suntool/seln.h>. 

~\sun ,~ microsystems 
241 Revision A of 15 October 1986 



16 
The N otifier 

The Notifier ....................................................................................................................................... 245 

16.1. When to Use th.e Notifier .......................................................................................... 246 

16.2. Restrictions ....................................................................................................................... 247 

16.3. Overview ............................................................................................................................ 249 

16.4. Event Handling .............................................................................................................. 250 

Child Process Control Events ................................................................................ 250 

"Reaping" Dead Processes .............................................................................. 250 

Results from a Process ......................................................................................... 251 

Input Pending Events (pipes) ................................................................................. 252 

Example: Reading a Pipe .................................................................................. 252 

Closing th.e Pipe ....................................................................................................... 252 

Signal Events ................................................................................................................... 253 

A signal () Replacement for Notifier Compatibility ................. 253 

Example: Writing to a Pipe .............................................................................. 254 

Asynchronous Event Handling ........................................................................ 255 

Timeout Events .............................................................................................................. 255 

Example: Periodic Feedback ........................................................................... 256 

Polling ............................................................................................................................ 257 

Checking me Interval Timer ............................................................................. 257 

Turning me Interval Timer Off ....................................................................... 257 

16.5. Interposition ..................................................................................................................... 258 

How Interposition Works ......................................................................................... 258 

Monitoring a Frame's State .................................................................................... 259 



Header Files 

Related Documentation 

Summary Table 

16 
The N otifier 

The Notifier is a general-purpose mechanism for distributing events to a collec­
tion of clients within a process. It detects events in which its clients have 
expressed an interest, and dispatches these events to the proper clients, queuing 
client processing so that clients respond to events in a predictable order. 

An overview of the notification-based model is given in Chapter 2, The SunView 
Model. 

To encourage the porting of existing applications, the Notifier has provisions to 
allow programs to run in the Notifier environment without inverting their control 
structure. See Section 5, Porting Programs to SunView. 

The definitions for the Notifier are contained in the file 
<sunwindow/notify. h>, which will be included indirectly when you 
include <suntool/ sunview. h>.84 

This chapter will suffice for the majority of Sun View applications. See the 
chapters titled Advanced Notifier Usage and The Agent and Tiles in the SunView 
System Programmer's Guide for more information on the Notifier and 
SunView's usage of it. When looking up Notifier-related information, look first 

,in the index to this book, then in the index to the SunView System Programmer's 
Guide. 

The Notifier Functions table begins on page 298 in Chapter 18, SunView Inter­
face Summary. 

84 For those programmers utilizing the Notifier outside of Sun View (a perfectly reasonable thing to do), the 
code that implements the Notifieris found in lusrllibllibsunwindow. 

245 Revision A of 15 October 1986 



16.2. Restrictions 

Don't Call ... 

Chapter 16 - The Notifier 247 

The Notifier imposes some restrictions on its clients which designers should be 
aware of when developing software to work in the Notifier environment. These 
restrictions exist so that the application and the Notifier don't interfere with each 
other. More precisely, since the Notifier is multiplexing access to user process 
resources, the application needs to respect this effort so as not to violate the shar­
ing mechanism. 

Assuming an environment with multiple clients with an unknown notifier usage 
pattern, you should not use any of the following system calls or C library rou­
tines:85 

signal (3) 
The Notifier is catching signals on the behalf of its clients. If you set up 
your own signal handler over the one that the Notifier has set up then the 
Notifier will never notice the signal. Use 
notify_set _ signal_ func () instead of signal (3). 

sigvec(2) 
The same applies for sigvec (2) as does for signal (3), above. 

setitimer (2) 
The Notifier is managing two of the process's interval timers on the behalf 
of its many clients. If you access an interval timer directly, the Notifier 
could miss a timeout. Use notify_set_itimer_func () instead of 
setitimer (2). 

alarm (3) 
Because alarm (3) sets the process's interval timer directly, the same applies 
for alarm (3) as does for setitimer (2), above. 

getitimer (2) 
When using a notifier managed interval timer, you should call 
notify_itim~r_ value () to get its current status. Otherwise, you can 
get inaccurate results. 

wait3(2) 
The Notifier notices child process state changes on behalf of its clients. If 
you do your own wait3 (2) then the notifier may never notice the change in a 
child process or you may get a change of state for a child process in which 
you have no interest. Use notify_set_wait3_func () instead of 
wait3 (2). 

wait (2) 
The same applies for wait (2) as does for wait3 (2), above. 

ioctl (2) ( ... , FIONBIO, ... ) 
This call sets the blocking status of a file descriptor. The Notifier needs to 
know the blocking status of a file descriptor in order to determine if there is 

8S A future release may provide modified versions of some of these forbidden routines that will allow their 
use without restriction. However, the restrictions described in Don't catch ... (below) will continue to be 
germane. The section of this chapter titled A 5 ignal () Replacement for Notifier Compatibility provides a 
code patch for programs that catch signals. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



16.3. Overview 

How the Notifier Works 

Figure 16-1 

Client Handles 

Types of Interaction 

Chapter 16 - The Notifier 249 

Before it can receive events, a client must advise the Notifier of the types of 
events in which it is interested. It does this by registering an event handler func­
tion (which it must supply) for each type of event in which it is interested. When 
an event occurs, the Notifier calls the event handler appropriate to the type of 
event 

The figure below shows an overview of how the notification mechanism works. 

Overview of Notification 

Notifier 

~ /j\ 
I I 
I I 
I I 
I r ~ I 

I 

Client 1 . . . . . Client N 

- - -.;> Client registers event proc at initialization time 
~ Notifier calls back to client when event received 

The Notifier uses a client handle as the unique identifier for a given client The 
Notifier, without interpreting the client handle in any way, uses it to associate 
each event with the event handler for a given client. 

The only requirement for a client handle is that it must be unique. Since a pro­
gram text address or the address of an allocated data block are guaranteed to be 
unique, they can be used. Since stack addresses are not in general guaranteed to 
be unique they should not be used. Sun View uses the object handles returned 
from window _ create() as notifier client handles. 

Client interaction with the Notifier falls into the following functional areas: 

o Event handling - A client may receive events and respond to them via 
event handlers. Event handlers do the bulk of the work in the Notifier 
environment. The various types of events are in the Section 4, Event Han­
dling. 

o Interposition - A client may request that the Notifier install a special type 
of event handler (supplied by the client) to be inserted (or interposed) ahead 
of the current event handler for a given type of event and client. This allows 
clients to screen incoming events and redirect them, and to monitor and 
change the status of other clients. Examples of interposition may be found 
in the Section 5, Monitoring and Modifying Window Behavior. 

o Notifier control- A client may exercise control over when dispatching of 
events occurs. See the section entitled Porting Programs to SunView. 

Revision A of 15 October 1986 



NOTE 

Results from a Process 

iinclude <sunwindow/notify.h> 

static 
static 

int my_client_object; 
int *me - &my_client_object; 

int pid; 

if «pid = my_fork(») 

Chapter 16 - The Notifier 251 

(void) notify_set_wait3_func(me, notify_default_wait3, pid); 
/* Start dispatching events */ 
(void) notify_start(); 

This is sufficient to have your child process reaped on its death. The Notifier 
automatically removes a dead process's wait3 event handler from its internal data 
structures. 

The use of me as a client handle is arbitrary, but illustrates one method of gen­
erating a unique client handle. 

A more interesting application might actually receive some results from the pro­
cess it forked. In this case, the application would supply its own wait3 event 
handlerS7. For example: 

iinclude <sunwindow/notify.h> 
iinclude <sys/wait.h> 
iinclude <sys/time.h> 
iinclude <sys/resource.h> 

static Notify_value my_wait3_handler(); 

/* Register a wait3 event handler */ 
(void) not i fy_set_wa it 3_func (me, my_wait3_handler, pid); 
/* Start dispatching events */ 
(void) notify_start(); 

static Notify_value 
my_wait3_handler(me, pid, status, rusage) 

int *me; 
int pid; ~ 

union wait *status; 
struct rusage *rusage; 

if (WIFEXITED(*status» 
/* Child process exited with return code */ 
my_return_code_handler(me, status->w_retcode); 
/* Tell the notifier that you handled this event */ 
return (NOTIFY_DONE); 

/* Tell the notifier that you ignored this event */ 
return (NOTIFY_IGNORED); 

f1f1 Seethe wait (2) manual page for details of the union wait and the struct rusage. 

Revision A of 15 October 1986 



Signal Events 

Chapter 16 - The Notifier 253 

Signals are UNIX software interrupts. The Notifier multiplexes access to the UNIX 
signal mechanism. A client may ask to be notified that a UNIX signal occurred 
either when it is received (asynchronously) and/or later during normal processing 
(synchronously). 

Clients may define and register a signal event handler to respond to any UNIX sig­
nal desired. However, many of the signals that you might catch in a traditional 
UNIX program may be being caught for you by the Notifier (see Don't catch 
above). 

CAUTION Clients of the Notifier must not directly catch any UNIX signals using sig­
nal (2) or sigvec (3). Regardless of whether clients choose synchronous or 
asynchronous signal notification, they must use the signal event mechanism 
described in this section. See the Section 2, Restrictions. 

You can register a signal event handler which the Notifier will call whenever a 
signal has been caught by calling: 

Notify_func 
notify_set_signal_func(client, signal_func, signal, when) 

Notify_client client; 
Notify_func signal_func; 
int signal; 
Notify_signal_mode when; 

when can be either NOTIFY_SYNC or NOTIFY_ASYNC. NOTIFY_SYNC causes 
notification during normal processing, that is, the delivering of the signal is 
delayed, so that your program doesn't receive it at an arbitrary time. 
NOTIFY _ ASYNC causes notification immediately as the signal is received, - this 
mode mimics the UNIX signal( 3) semantics. 

A signal () Replacement for 
Notifier Compatibility 

You should rewrite applications to use notify_set_signal_func () . 
However, in some cases the following code segment 

iinclude <sunwindow/notify.h> 

int 
(* signal (sig, fn» () 

int sig, (*fn) (); 

return «int (*) () ) notify_set_signal_func ( 
sig, fn, sig, NOTIFY_ASYNC»; 

may be used to replace the C library version of signal (2) with one that is 
somewhat compatible with the Notifier. This code converts signal () calls 
into notify_set_signal_func () calls. Explicitly loading this code will 
override the loading of the C library's version of signal (). This approach 
works only if all the signal handlers registered by signal () only look at the 
first argument passed to them when a signal is received. Also, no Notifier client 
handle may be a small integer. 

Revision A of 15 October 1986 



Asynchronous Event Handling 

Timeout Events 

Chapter 16 - The Notifier 255 

An asynchronous signal notification can come at any time (unless blocked using 
sigblock (2». This means that the client can be executing code at any arbitrary 
place. Great care must be exercised during asynchronous processing. 

It is rarely safe to do much of anything in response to an asynchronous signal. 
Unless your program has taken steps to protect its data from asynchronous 
access, the only safe thing to do is to set a flag indicating that the signal has been 
received. 

When in an asynchronous signal event handler, the signal context and signal code 
is available from the follow routines: 

int 
notify_get_signal_code() 

struct sigcontext * 
notify_get_signal_context() 

The return values of these routines are undefined if called from a synchronous 
signal event handler. 

A client may require notification of an expired timer based on real time (approxi­
mate elapsed wall clock time; mMER_REAL) or on process virtual time (CPU time 
used by this process; mMER_VIRTUAL). To receive this type of notification, the 
client must define and register a timeout event handler. 

Notify_func 
not ify_set_it imer_func (client, itimer_func, which, value, 

ovalue) 
Notify_client client; 
Notify_func itimer_func; 
int which; 
struct itimerval *value, *ovalue; 

The semantics of which, value and ovalue parallel the arguments to seti­
timer (2) (see the getitimer(2) manual page). which is eithermMER_REAL or 
mMER_VIRTUAL. 

Revision A of 15 October 1986 



Polling 

Checking the Interval Timer 

Turning the Interval Timer Off 

Chapter 16 - The Notifier 257 

Interval timers can be used to set up a polling situation. There is a special 
value argument to notify_set_itimer_func () that tells the Notifierto 
call you as often and as quickly as possible. This value is the address of the 
following constant: 

struct itimerval NOTIFY_POLLING_ITIMER; /*{{O,l},{O,l}}*/ 

This high speed polling can consume all of your machine's available CPU time, 
but may be appropriate for high speed animation. It is used in the program 
spheres, which shows one way to convert and old SunWindows gfx subwindow­
based program to SunView. spheres is explained in Appendix C, Converting 
SunWindows Programs to SunView, and listed in full in Appendix A, Example 
Programs. 

The following function checks on the state of an interval timer by returning its 
current state in the structure pointed to by value. 

Notify_error 
notify_itimer_value(client, which, value) 

Notify_client client; 
int which; 
struct itimerval *value; 

If you specify an interval timer with its it _ int erval structure set to 
{ 0 , O} , the Notifier flushes any knowledge of the interval timer after it delivers 
the timeout notification. Otherwise, supplying a NULL interval timer pointer to 
notify_set_itimer_func () will tum the timer off. 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



Monitoring a Frame's State 

Example: Interposing on 
Open/Close 

Chapter 16 - The Notifier 259 

You can notice when a frame opens or closes by interposing in front of the 
frame's client event handler. The client event handler is a SunView specific 
event handler which is built on top of the Notifier's general client event mechan­
ism.92 To install an interposer call the following routine: 

Notify_error 
notify_interpose_event_func(client, event_func, type) 

Notify_client client; 
Notify_func event_func; 
Notify_event_type type; 

client must be the handle of the Notifier client in front of which you are inter­
posing. In SunView, this is the handle returned from window_create () .93 
type is always NOTIFY_SAFE for Sun View clients. 

Let's say that the application is displaying some animation, and wants to do the 
necessary computation only when the frame is open. It can use interposition to 
notice when the frame opens or closes. 

The program spheres (which shows one way to convert an old Sun Windows gfx 
subwindow-based program to Sun View) uses this technique to stop shading an 
image when its frame is closed. It is explained in Appendix C, Converting 
SunWindows Programs to SunView, and listed in full in Appendix A, Example 
Programs. 

Another example appears on the following page. 

Note the the call to notify_next _event _ func () , which transfers control 
to the frame's client event handler through the Notifier. 
notify_next_event_func () takes the same arguments as the interposer. 

92 The stream of events sent to a client event handler is described in Chapter 6, Handling Input. 

93 It could also be the handle returned from the call to scrollbar _create O. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Discarding the Default Action 

Interposing on Resize Events 

Chapter 16 - The Notifier 261 

In the example on the preceding page, you wanted the base event handler to han­
dle the event (so that the frame gets closed/opened). If the interposed function 
replaces the base event handler, and you don't want the base event handler to be 
called at all, your interposed procedure not not call notify_next_event () . 
For example, your interposed function might handle scroll events itself, so you 
would not want the base event handler to perform an additional scroll. 

Another common use of interposition is to give your application more control 
over the layout of its subwindows. The code is very similar. You call 
notify_interpose_event_func () to interpose your event handler. In 
the event handler, the following fragment could be used: 

value = notify_next_event_func(frame, event, arg, type); 
if (event_id(event) == WIN_RESIZE) 

resize(frame); 
return (value) ; 

Let the default event handler handle the event, then check if the event is a resize 
event If so, call your own resize () procedure to layout the subwindows. 

NOTE A WIN_RESIZE event is not generated until the frame is resized. If you want 
your resize procedure to be called when the window first appears you must do so 
yourself. This is different/rom a canvas with the CANVAS_RESIZE attribute 
set, whose resize procedure is called the first time the canvas is displayed. 

If the user manually adjusts subwindow sizes using I CTRL I middle mouse but­
ton, no WIN_RESIZE event is generated. You can disallow subwindow resiz­
ing by setting the FRAME_SUBWINDOWS_ADJUSTABLE attribute to FALSE. 

Example: resize_demo The program resize_demo shows how to achieve more complex window layouts 
than possible using window layout attributes. It is listed in Appendix A, Exam­
ple Programs. 

Revision A of 15 October 1986 



A Typical Destroy Handler 

Example: Interposing a Client 
Destroy Handler 

Chapter 16 - The Notifier 263 

A typical destroy handler looks like the following: 

Notify_value 
common_de st roy_fun c (client, status) 

Notify_client client; 
Destroy_status status; 

if (status == DESTROY_CHECKING) 
if (/* Don't want to go away now */) 

notify_veto_destroy(client); 
else { 

/* Always release external commitments */ 
if (status == DESTROY_CLEANUP) 

/* Conditionally release internal resources */ 

return (NOTIFY_DONE); 

Now we can present the example of interposing in front of the frame's client des­
troy event handler. In addition to doing our own confirmation, we prevent dou­
ble confirmation by suppressing the frame's default confirmation. 

Note that after having the destroy OKed by the user, we call 
notify_next_destroy_func () before returning. This allows other 
subwindows to request confirmation. 

The code appears on the following page. 

Revision A of 15 October 1986 



16.6. Porting Programs to 
SunView 

Explicit Dispatching 

Implicit Dispatching 

Chapter 16 - The Notifier 265 

Most programs that are ported to Sun View are not notification-based. They are 
traditional programs that maintain strict control over the inner control loop. 
Much of the state of such programs is preserved on the stack in the form of local 
variables. The Notifier supports this form of programming so that you can use 
Sun View packages without inverting the control structure of your program to be 
notification-based. 

The simplest way to convert a program to coexist with the Notifier is called 
explicit dispatching. This approach replaces the call to 
window_main _loop () , which usually doesn't return until the application ter­
minates, with the following bit of code: 

linclude <suntool/sunview.h> 

static int my_done; 

extern Notify_error notify_dispatch(); 

/* Make the frame visible on the screen */ 
window_set(frame, WIN_SHOW, TRUE, 0); 
while (!my_done) { 

1* Dispatch events managed by the notifier */ 
(void) notify_dispatch(); 

notify_dispatch () goes once around the Notifier's internal loop, 
dispatches any pending events, and returns. You should try to have 
notify_dispatch () called at least once every 114 second so that good 
interactive response with Sun View windows can be maintained. 

The program bounce (which shows one way to convert an old Sun Windows gfx 
subwindow-based program to SunView) uses explicit dispatching. It is 
explained in Appendix C, Converting SunWindows Programs to SunView, and 
given in full in Appendix A, Example Programs. 

Explicit dispatching is good when you are performing some computationally 
intensive processing and you want to occasionally give the user a chance to 
interact with your program. There is another method of interacting with the 
Notifier that is useful when you simply want the Notifier to take care of its clients 
and block until there is something of interest to you. This is called implicit 
dispatching. 

This time, we replace the call to window_main_loop () with th,e following 
bit of code: 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



16.7. Error Handling 

Error Codes 

Handling Errors 

Debugging 

Chapter 16 - The Notifier 267 

Every call to a notifier routine returns a value that indicates success or failure. 
Routines that return an enumerated type called Notify_error deliver 
NOTIFY_OK (zero) to indicate a successful operation, while any other value indi­
cates failure. Routines that return function pointers deliver a non-null value to 
indicate success, while a value of NOTIFY _ FUNC _NULL indicates an error condi­
tion. 

When an error occurs, the global variable notifY,-errno describes the 
failure. The Notifier sets notify _ errno much like UNIX system calls set the 
global errno; that is, the Notifieronly sets notify_errno when it detects 
an error and does not reset it to NOTIFY_OK on a successful operation. A table in 
the SunView System Programmer's Guide lists each possible value of 
notify _ errno and its meaning. 

Most of the errors returned from the Notifier indicate a programmer error, e.g., 
the arguments are not valid. Often the best approach for the client is to print a 
message if the return value is non-zero and exit. The procedure 
notify yerror () takes a string which is printed to stderr, followed by a 
colon, followed by a terse description of notify _ errno. This is done in a 
manner analogous to the UNIX perror( 3) call. 

Here are some debugging hints that may prove useful when programming: 

NOTIFY ERROR ABORT= YES - -
Setting the environment variable NOTIFY_ERROR _ABORT to YES will cause 
the Notifier to abort with a core dump' when the Notifier detects an error. 
This is useful if there is some race condition that produces notifier error mes­
sages that you are having a hard time tracking down. 

Stop in notify_perror () orfprintf(3S) 
If you are getting notifier error messages, but don't know from where, try 
putting a break point on the entry to either notify yerror () or 
fprintf(3S). Trace the stack to see what provoked the message. 

The following call can be made from the debugger or your program to dump a 
printout of the state of the Notifier: 

void 
notify_dump (client, type, file) 

Notify_client client; 
int type; . 
FILE *file; 

The state of client is dumped to file based on the value of type. If 
client is 0 then all clients are dumped. If type is 1 then all the registered 
event handlers are dumped. If type is 2 then all the events pending for 
delivery are dumped. If type is 0 then both the registered event handlers and 
the events pending for delivery are dumped. If file is 1 then stdout is 
assumed. If file is 2 then stderr is assumed. To be able to call 
notify_dump () you need to reference it from some place in your program so 
that it gets loaded into your binary. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



17 
Attribute Utilities 

Attribute Utilities .......................................................................................................................... 271 

17.1. Character Unit Macros ............................................................................................... 271 

17.2. Creating Reusable Attribute Lists ....................................................................... 272 

Default Attributes ......................................................................................................... 273 



17.1. Character Unit 
Macros 

Table 17-1 

NOTE 

17 
Attribute Utilities 

This chapter describes macros and functions that are provided as utilities to be 
used with attributes. 

By default in Sun View, coordinate specification attributes interpret their values 
in pixel units. For applications that don't make heavy use of images, it is usually 
more convenient to specify positions in character units - columns and rows 
rather than xs and ys. To this end two macros ATTR _ROW () and 
ATTR _COL () are provided, which interpret their arguments as rows or columns, 
respectively, and convert the value to the corresponding number of pixels, based 
on the subwindow's font, as specified by WIN_FONT. ATTR_ROW () and 
ATTR _COL () take as arguments any expression yielding an integer. The use of 
these macros as an operand in an expression is restricted to adding a pixel offset 
(e.g., ATTR_ROW(5) + 2). Examples of legal and illegal usage are given in the 
table below. 

Example uses of the ATTR_ROW() and ATTR_COL () macros 

Attribute/Value Interpretation 

PANEL_ITEM_X, 5 5 pixels from left 

PANEL_ITEM_Y, 10 10 pixels from top 

PANEL_ITEM_X, ATTR_COL(5) column 5 

PANEL_ITEM_X, ATTR_COL(-5) column -5 

PANEL_ITEM_X, ATTR_COL (5+2) column 7 

PANEL_ITEM_X, ATTR_COL(5)+2 2 pixels to right of col 5 

PANEL_ITEM_X, ATTR_COL(5)-1 1 pixel to left of col 5 

PANEL_ITEM_Y, ATTR_ROW(10) row 10 

PANEL_ITEM_Y, ATTR_ROW(-10) row-10 

PANEL_ITEM_Y, ATTR_ROW(10+2) row 12 

PANEL_ITEM_Y, ATTR_ROW(lO) +2 2 pixels down from row 10 

PANEL_ITEM_Y, ATTR_ROW(10)-1 1 pixel up from row 10 

PANEL_ITEM_X, ATTR_COL (10) +ATTR_COL (2) illegal 

PANEL_ITEM_X, 2*ATTR_COL(10) illegal 

ATTR _ROW () and ATTR _ CO L () treat their arguments as character positions 
rather than lengths. In other words, when you use ATTR _ROW(5), the pixel 
value that is computed includes the top margin. Similarly, the pixel value com­
puted using ATTR_COL(5) includes the left margin. 

271 Revision A of 15 October 1986 



Default Attributes 

Chapter 17 - Attribute Utilities 273 

The code below shows how to use attr_create_list () in conjunction 
with the attribute ATTR_LIST to support default attributes in a panel. 

int text-proc(), name-proc(); 
Panel_item name_item, address_item; 
Pixfont *big_font, * small_font; 
Attr_avlist defaults; 

defaults = attr create_list ( 
PANEL_SHOW_ITEM, 
PANEL_LABEL_FONT, 
PANEL_VALUE_FONT, 
PANEL_NOTIFY_PROC, 
0) ; 

FALSE, 
big_font, 
small_font, 
text-proc, 

name item = panel_create_item(PANEL_TEXT, 
ATTR_LIST, defaults, 
PANEL_NOTIFY_PROC, name-proc, 
0); 

address item = panel_create_item(PANEL_TEXT, 
ATTR_LIST, defaults, 
PANEL_SHOW_ITEM, TRUE, 
PANEL_VALUE_FONT, 
0); 

big_font, 

The special attribute ATTR LIST takes as its value an attribute list. In the 
above example, first an attribute list called de fa ul t S is created. Then, by 
mentioning de fa ul t S first in the attribute lists for subsequent item creation 
calls, each item takes on those default attributes. Subsequent references to an 
attribute override the setting in de fa ul t S since the last value mentioned for 
an attribute is the one which takes effect. 

4}\sun 
,~ microsystems 

Revision A of 15 October 1986 



18 
Sun View Interface Summary 

Sun View Interface Summary .............................................................................................. 277 

Canvas Tables ................................................................................................................. 278 

Attributes ...................................................................................................................... 278 

Functions and Macros ........................................................................................... 279 

Cursor Tables .................................................................................................................. 280 

Attributes ...................................................................................................................... 280 

Functions ...................................................................................................................... 282 

Data Types ........................................................................................................................ 283 

Icon Tables ....................................................................................................................... 286 

Attributes ...................................................................................................................... 286 

Functions and Macros ........................................................................................... 287 

Input Event Tables ....................................................................................................... 288 

Event Codes ................................................................................................................ 288 

Event Descriptors .................................................................................................... 289 

Input-Related Window Attributes .................................................................. 290 

Menu Tables .................................................................................................................... 291 

Attributes ...................................................................................................................... 291 

Item Attributes .......................................................................................................... 294 

Functions ...................................................................................................................... 296 

Notifier Functions Table ........................................................................................... 298 

Panel Tables ..................................................................................................................... 301 

Attributes ...................................................................................................................... 301 

Generic Panel Item Attributes .......................................................................... 302 



18 
Sun View Interface Summary 

This chapter contains tables summarizing the data types, functions and attributes 
which comprise the Sun View programmatic interface. 1 

The tables correspond to the chapters in this book, but are in alphabetical order: 
Canvases, Cursors, Data Types, Icons, Input (including events and input-related 
window atttributes), Menus, the Notifier, Panels, Pixwins, Scrollbars, Text 
Subwindows, TTY Subwindows and Windows (including frames and frame com­
mand line arguments). 

Note that the order of the chapters is different than the order of the tables. The 
chapter on Windows comes first, followed by Canvases, Input, Pixwins, Text 
Subwindows, Panels, Tty Subwindows, Menus, Cursors, Icons, Scrollbars, the 
Selection Service, the Notifier. 

Within each topic, the attribute tables come first, then the functions and macros, 
then miscellaneous tables. 

To help distinguish where one table ends .and another begins, the start of each 
table is marked with a horizontal grey bar. 

1 This chapter does not include a table for the Selection Service functions; see the SunView System 
Programmer's Guide for a complete discussion of the Selection Service interface. 

277 Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 279 

Table 18-2 Canvas Functions and Macros 

Event * 

canvas_event(canvas, event) 

Canvas canvaSi 

Event *eventi 

Pixwin * 

canvas-pixwin(canvas) 

Canvas canvaSi 

Event * 

canvas_window_event(canvas, event) 

Canvas canvaSi 

Event *eventi 

~\sun ,~ microsystems 

Translates the coordinates of event from the space of the 
canvas subwindow to the space of the logical 
canvas (which may be larger and scrollable). 

Returns the pixwin to use when drawing into 
the canvas with the pw _ * () routines. 

Translates the coordinates of event to the space of the 
canvas subwindow from the space of the logical 
canvas. 

Revision A of 15 October 1986 



Chapter 18 - Sun View Interface Summary 281 

Table 18-3 Cursor Attributes- Continued 

Attribute Value Type Deseri ption 

CURSOR VERT HAIR COLOR int See CURSOR CROSSHAIR COLOR - -

CURSOR VERT HAIR GAP int See CURSOR CROSSHAIR GAP. - - - - -

CURSOR VERT HAIR LENGTH int See CURSOR CROSSHAIR LENGT& - - - - -

CURSOR VERT HAIR OP int - - - Raster op for drawing vertical crosshair. Default: PIX _ SRC. 

CURSOR VERT HAIR THICKNESS int See CURSOR CROSSHAIR THICKNESS. - - - - -

CURSOR XHOT int Hot spot x coordinate. Default o. 

CURSOR YHOT int Hot spot y coordinate. Default o. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 283 

Table 18-5 Data Types 

Data Type 

Canvas 

Cursor 

Destroy_status 

Event 

Frame 

Icon 

Inputmask 

Menu 

Menu attribute 

Menu_generate 

Menu item 

Notify_destroy 

Notify_event 

Notify_error 

Descri ption 

Pointer to an opaque structure which describes a canvas. 

Pointer to an opaque structure which describes a cursor. 

Enumeration: DESTROY_PROCESS _DEATH, 

DESTROY_CHECKING, or DESTROY_CLEANUP. 

The structure which describes an input event: 

typedef struct inputevent { 

short ie_code; 

short ie_flags; 

short ie_shiftmask; 

short ie_locx; 

short ie_locy; 

struct timeval ie_time: 

Event; 

Pointer to an opaque structure which describes a frame. 

Pointer to an opaque structure which describes a icon. 

Mask specifying which input events a window will receive. 

Pointer to an opaque structure which describes a menu. 

One of the menu attributes (MENU _ *). 

Enumerated type of the operation parameter passed to generate procs: 

MENU_CREATE, MENU_DESTROY, MENU_NOTIFY_CREATEorMENU_NOTIFY_D ESTRO~ 

Pointer to an opaque structure which describes a menu item. 

Opaque client optional argument. 

Enumeration: NOTIFY_SAFE, NOTIFY_IMMEDIATE. 

(See also Notify_event_type). 

Opaque client event. 

Enumeration of errors for notifier functions: 

NOTIFY_OK,NOTIFY_UNKNOWN_CLIENT,NOTIFY_NO_CONDITIO~ 

NOTIFY_BAD_ITIMER, NOTIFY_BAD_SIGNAL, NOTIFY_NOT_STARTED, 

NOTIFY DESTROY VETOED, NOTIFY INTERNAL ERROR, NOTIFY SRCH, 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Table 18-5 

Data Type 

Scroll motion 

Scrollbar 

Scrollbar attribute 

Scrollbar_setting 

Textsw 

Textsw index 

Textsw enum 

Textsw status 

Tty 

Window 

Window attribute 

Chapter 18 - SunView Interface Summary 285 

Data Types- Continued 

typedef struct rectnode 

Rectnode *rn_next; 

Rect rn_rect; 

} Rectnode; 

Description 

Enumerated type representing possible scrolling motions: 

SCROLL_ABSOLUTE,SCROLL_FORWARD,SCROLL_MAX_TO_POINT, 

SCROLL_PAGE_FORWARD,SCROLL_LINE_FORWARD, 

SCROLL_BACKWARD,SCROLL_POINT_TO_~ 

SCROLL_PAGE_BACKwARD,orSCROLL_LINE_BACKWARD. 

The opaque handle for a scrollbar. 

One of the scrollbar attributes (SCROLL _ *). 

The value of an enumerated type scrollbar attribute. 

Pointer to an opaque structure which describes a text subwindow. 

An index for a character within a text subwindow. 

Enumerated type for various text subwindow attribute values: 

TEXTSW_ALWAYS, TEXTSW_NEVER, TEXTSW_ONLY, 

TEXTSW _IF_AUTO _SCROLL, TEXTSW _CLIP, 

TEXTSW _WRAP_AT _CHAR, TEXTSW _ WRAP _AT_WORD. 

Enumeration describing the status of text subwindow operations: 

TEXTSW_STATUS_OKA~TEXTSW_STATUS_BAD_ATTR, 

TEXTSW STATUS BAD ATTR VALU~TEXTSW STATUS CANNOT_ALLOCAT~ 

TEXTSW_STATUS_CANNOT_OPEN_INPU~orTEXTSW_STATUS_OTHER_ERROR, 

Pointer to an opaque structure which describes a tty sub window. 

Pointer to an opaque structure which describes a window. 

One of the window attributes (WIN _ *). 

Type of window, retrieved via the WIN_TYPE attribute. One of: 

FRAME TYPE,PANEL TYPE,CANVAS TYPE,TEXTSW TYPE,orTTY TYPE. 

Revision A of 15 October 1986 



Table 18-7 Icon Functions and Macros 

Definition 

Icon 

icon_create (attributes) 

<attribute-list> attributes; 

int 

icon_destroy (icon) 

Icon icon; 

caddr t 

icon_get(icon, attribute) 

Icon icon; 

Icon_attribute attribute; 

int 

icon_set (icon, attributes) 

Icon icon; 

<attribute-list> attributes; 

extern static struct mpr_data 

DEFINE_ICON_FROM_lMAGE(name, image) 

static short 

Chapter 18 - SunView Interface Summary 287 

Description 

Creates and returns the opaque handle to an icon. 

Destroys icon. 

Retrieves the value for an attribute of icon. 

Sets the value for one or more attributes of icon. 

attributes is a null-terminated attribute list 

Macro that creates a static memory pixrect 
icon from image; the latter typically is gen­
erated by including a file created by iconedi t. 
Note: you must pass the address of i con to the 
icon routines, since the I con object is a pointer. 

Revision A of 15 October 1986 



Table 18-9 Event Descriptors 

Event Descriptor 
WIN NO EVENTS 

WIN ASCII EVENTS - -

WIN IN TRANSIT EVENTS 

WIN LEFT KEYS - -

WIN MOUSE BUTTONS - -

WIN RIGHT KEYS - -

WIN TOP KEYS 

WIN UP ASCII EVENTS 

WIN UP EVENTS 

~\sun ,~ microsysterns 

Chapter 18 - SunView Interface Summary 289 

Explanation 

Clears input mask - no events will be accepted. Note: the 

effect is the same whether used with a consume or an 

ignore attribute. A new window has a cleared input mask. 

All ASCII events. ASCII events that occur while the META 

key is depressed are reported with codes in the META range. 

In addition, cursor control keys and function keys are 

reported as ANSI escape sequences: a sequence of events 

whose codes are ASCII characters, beginning with <ESC>. 

Enables immediate LOC _MOVE, LOC _ WI NENTER, and 

LOC_WINEXIT events. Pick mask only. Off by default. 

The left function keys, KEY _ LEFf(1) - KEY _ LEFf(15). 

Shorthand forMS_RIGHT, MS_MIDDLE and MS_LEFT. 

Also sets or resets WIN UP EVENTS. 

The right function keys, KEY _ RIGHT(l) - KEY _ RIGHT(15). 

The top function keys, KEY _ TOP(l) - KEY _ TOP(15). 

Causes the matching up transitions to normal 

ASCII events to be reported - if you see an 'a' 

go down, you'll eventually see the matching' a' up. 

Causes up transitions to be reported for button 

and function key events being consumed. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 291 

Table 18-11 Menu Attributes 

:~~1~11~::~::~::~:@':~~~:::::.':~1im'i{:l1l~~_I~::::;:~~-::~;:::~W~r~;m'i_j~~1M1mW:mt~~mllrjml~~~~111~~_fi~~.::::~~.::f.li.wizil1~t~IU~Wi'l~~:~M*m%~.~1t'.'f~ml!.~f$:ili~i~~~f:~~~~Q~.~ __ 
Attribute Value Type Description 

Pixrect *, action proc MENU ACTION IMAGE - -

char *, action proc MENU ACTION ITEM - -

MENU APPEND ITEM Menu item - -

MENU BOXED boolean 

MENU CLIENT DATA caddr t - -

(no value) MENU DESCEND FIRST - -

MENU DEFAULT int 

MENU DEFAULT ITEM - -

MENU DEFAULT SELECTION enum - -

MENU FIRST EVENT Event * - -

MENU FONT Pixfont * 

MENU GEN PROC (procedure) 

Pixrect *, gen proc MENU GEN PULLRIGHT IMAGE - - -

char *, gen proc MENU GEN PULLRIGHT ITEM - - -

MENU IMAGE ITEM - - Pixrect *, value 

MENU IMAGES list of Pixrect * 

MENU INITIAL SELECTION enum 

MENU INITIAL SELECTION EXPANDED boolean - - -

~\sun ,~ microsystems 

Create image menu item with action proc. Set only. 

Create string menu item with action proc. Set only. 

Append item to end of menu. Set only. 

If TRUE, a single-pixel box will be drawn around 

every menu item. 

For client's use. 

For menu _find ( ). If given, search will 

be depth first, else search will be "deferred". 

Default menu item as a position. 

Default menu item as opaque handle. 

Either MENU_SELECTED or MENU_DEFAULT. 

The event which was initially passed into 

menu_show (). Get only. 

(Note that the event's contents can be modified.) 

Menu's font. 

Client's function called to generate the menu. 

Menu gen-proc(m, op) 

Menu mi 

Menu_generate 0Pi 

Create image menu item with 

generate proc for pullright. Set only. 

Create string menu item with 

generate proc for pullright Set only. 

Create image menu item with value. Set only. 

Create multiple image menu items. Set only. 

Either MENU_SELECTED or MENU_DEFAULT. 

If TRUE, when the menu pops up, it 

automatically expands to select the initial selection. 

Revision A of 15 October 1986 



Table 18-11 Menu Attributes:- Continued 

Attribute Value Type 

MENU PULLRIGHT IMAGE - - Pixrect *, Menu 

MENU PULLRIGHT ITEM char *, Menu - -

MENU REMOVE int 

MENU REMOVE ITEM Menu item - -

MENU REPLACE 

MENU REPLACE ITEM 

MENU RIGHT MARGIN int - -

MENU SELECTED int 

MENU SELECTED ITEM Menu item 

MENU SHADOW Pixrect * 

MENU STRINGS list of char * 

MENU STRING ITEM char *, value - -

MENU TITLE IMAGE Pixrect * - -

MENU TITLE ITEM char * - -

MENU TYPE enum 

MENU VALID RESULT boolean - -

~\sun ,~ microsystems 

Chapter 18 - SunView Interface Summary 293 

Description 

Default: 9999. 

Create image menu item with pullright. Set only. 

Create string menu item with pullright. Set only. 

Remove the nth item. Set only. 

Remove the specified item. Set only. 

Replace nth item with specified item. Set only. 

The item given as first value is replaced 

with the one given as the second value 

in the menu (the old item is not replaced 

in any other menus it may appear in). Set only. 

For each string item, margin in addition to 

MENU _ MARG IN on right 

between menu's border and text. 

Last selected item, as a position in menu. 

Last selected item, as the item's handle. 

Pattern for the shadow to be painted behind 

the menu. If 0, no shadow is painted. 

Predefined shadow pixrects you can use: 

menu _gray2 5 yr, menu _gray5 0 _pr, 

and menu_gray? 5 _pro 

Create multiple string menu items. Set only. 

Create string menu item with value. Set only. 

Create image title item. Set only. 

Create string title item. Set only. 

Get only; returns MENU_MENU. 

Tells whether a zero return value represents a legitimate 
value. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 295 

Table 18-12 Menu Item Attributes- Continued 

Attribute Value Type 

int 

Menu 

Menu 

MENU PULLRIGHT_IMAGEt Pixrect *, Menu 

char *, Menu 

MENU RELEASE (no value) 

MENU RELEASE IMAGE - - (no value) 

int 

MENU_SELECTEot boolean 

MENU _ STRINGt char * 

char *, value 

enum 

MENU VALUE caddr t 

.\sun ~ microsystems 

Descri ption 
menu's border and text 

Margin in pixels around the item. 

The menu containing the item. 

Item's pullright menu. 

Modifies appropriate fields in item. Set only. 

Modifies appropriate fields in item. Set only. 

The item will be automatically destroyed when its parent 

menu is destroyed (default for items created inline). 

The string or pixrect associated with the item will be 

freed when the item is destroyed. 

Margin in addition of MENU_MARGIN on right between 

menu's border and text 

If TRUE, the item is currently selected. 

Item's string. 

Modifies appropriate fields in item. Set only. 

Get only, returns MENU_ITEM. 

Item's value. 

Revision A of 15 October 1986 



Table 18-13 Menu Functions- Continued 

Definition 
caddr t menu_show_using_fd(menu, fd, event) 

Menu menu; 
int fd; 
Event *event; 

caddr t 
menu_return_item(menu, menu_item) 

Menu menu; 
Menu_item menu_item; 

caddr t 
menu_return_value(menu, menu_item) 

Menu menu; 
Menu_item menu_item; 

.\sun ,~ microsystems 

Chapter 18 - SunView Interface Summary 297 

Description 

Provided for compatibility with Sun Windows 2.0. Allows 

you to display a menu within a window using the windowfd. 

Predefined notify proc which, if given as the value for 

MENU_NOTIFY_PROC, causes menu_show 0 to return 

the handle of the selected item, rather than its value. 

Default notify proc for menus. Causes menu_show () 
to return the value of the selected item. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 299 

Table 18-14 N otifter Function~ Continued 

Definition 
Notify_value 

notify_next_event_func(client, event, arg, type) 

Notify_client client; 

Event *event; 

Notify_arg arg; 

Notify_event_type type; 

Notify_error 

notify_no_dispatch() 

notify-perror(s) 

char *s; 

Notify_func 

notify_set_destroy_func(client, destroy_func) 

Notify_client client; 

Notify_func destroy_func; 

Descri ption 

Calls the next event handler for client. 

Prevents the notifier from dispatching events from within 
the call to read(2) or select(2). 

Analogous to the UNIX perror( 3) call. s is printed to 
stderr, followed by a terse description of 
notify_errno (). 

Registers destroy_func () with the notifier. 
destroy_func 0 will be called when a 

destroy event is posted to client or when the process 
receives a S I GTERM signal. 

Notify_func Registers the exception handler exception_func () 

notify_set_exception_func (client, exception_func, fd) with the notifier. The only known devices that generate 
Notify_client client; 

Notify_func exception_func; 

int fd; 

Notify_func 

notify_set_input_func(client, input_func, fd) 

Notify_client client; 

Notify_func input_func; 

int fd; 

Notify_func 

notify_set_itimer_func(client, it imer_func , which, 

value, ovalue) 

Notify_client client; 

Notify_func itimer_func; 

int which; 

struct itimerval *value, *ovalue; 

exceptions at this time are stream-based socket 
connections when an out-of-band byte is available. 

Registers input _ func () with the notifier. 
input_func () will be called whenever 
there is input pending on f d. 

Registers the timeout event handler i timer _func () 

with the notifier. The semantics of which, value 

and ovalue parallel the arguments to setitimer 

(see getitimer manual page). 
which is either ITIMER REAL or ITIMER VIRTUAL. - -

Revision A of 15 October 1986 



Table 18-15 Panel Attributes 

Attribute Value Type 

PANEL ACCEPT KEYSTROKE boolean - -

PANEL BACKGROUND PROC - - (procedure) 

PANEL BLINK CARET boolean - -

PANEL CARET ITEM Panel item - -

PANEL EVENT PROC - - (procedure) 

PANEL FIRST ITEM Panel item - -

PANEL ITEM X GAP int - --

PANEL ITEM Y GAP int - --

PANEL LABEL BOLD boolean - -

PANEL LAYOUT 

PANEL SHOW MENU boolean - -

Chapter 18 - Sun View Interface Summary 301 

Description 

If TRUE, keystroke events are passed 

to the panel's PANEL_BACKGROUND_PROC. Default: FALSE. 

Event handling procedure called when an 

event falls on the background of the panel. Form: 

background_proc(panel, event) 

Panel panel 

Event *event 

If TRUE, the caret blinks. Default: TRUE. 

Text item which currently has the caret. 

Default: first text item. 

Event handling procedure for panel items. 

Sets the default for subsequent items created in panel. Form: 

event-proc(item, event) 

Panel item item 

Event *event 

First item in the panel. Get only. 

Number of x-pixels between items. Default: 10. 

Number of y-pixels between items. Default: 10. 

If TRUE, item's label is rendered in bold. 

Sets the default for subsequent items created in panel. Default: FALSE. 

Layout of item's value relative to the label. 

PANEL_HORIZONTAL (default) or PANEL_VERTICAL. 

If TRUE, the menu for the item is enabled. 

Sets the default for subsequent items created in panel. 

Revision A of 15 October 1986 



Table 18-16 

Attribute 
PANEL MENU TITLE FONT - - -

PANEL NEXT ITEM - -

PANEL NOTIFY PROC - -

PANEL PAINT 

PANEL PARENT PANEL - -

PANEL SHOW ITEM - -

PANEL SHOW MENU - -

PANEL VALUE X - -

PANEL VALUE Y - -

Chapter 18 - SunView Interface Summary 303 

Generic Panel Item Attributes- Continued 

Value Type 

Pixfont • 

Pixrect • 

char· 

Panel item 

(procedure) 

Panel 

boolean 

boolean 

int 

int 

Description 
Fontfor PANEL MENU TITLE STRING. - -

Image for the menu title. 

String for the menu title. 

Next item in the panel. Get only. 

Function to call when item is selected. Form for button and text items: 

notify-proc(item, event) 

Panel_item item 

Event *event 

Choice and slider items have an additional parameter for the current value: 

notify-proc(item, value, event) 

Panel item item 

int value 

Event *event 

For toggle items, the value parameter is of type unsigned into 

Item's painting behavior for panel_set () calls. One of: 

PANEL_NONE,PANEL_CLE~orpANEL_NO_CLEAR 

The panel which contains the item. 

Whether or not to show the item. Default: TRUE. 

If TRUE, the menu for the item is enabled. 

Left edge of value. If unspecified and label position is fixed, 

then set to right of PANEL_LABEL _X for horizontal layout, or 

at PANEL_LABEL _ X for vertical layout Default: after the label. 

Top edge of value. If unspecified and label position is fixed, then set 

to PANEL_LABEL _ Y for horizontal layout, or below 

PANEL LABEL Y for verticallayout Default: PANEL LABEL Y. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 305 

Table 18-17 Choice and Toggle Item Attribute~ Continued 

Attribute Value Type 

PANEL MARK Y - - int, int 

PANEL MARK YS list of int - -

PANEL MENU MARK IMAGE Pixrect * - -

PANEL MENU NOMARK IMAGE Pixrect * - - -

PANEL NOMARK IMAGES list of Pixrect * - -

PANEL SHOW MENU MARK boolean - - -

PANEL TOGGLE VALUE - - int, int 

PANEL VALUE int or unsigned 

~\sun ,~ microsystems 

Description 

Second argument is top edge of choice mark specified by 
first argument 

Top edge of each choice mark. Create, set 

Image to mark each menu choice with when selected. 

Image to mark each menu choice with when not selected. 

Image to mark each choice with when not selected. 
Create, set Default is push-button image: 
<images/panel_choice_on.pr>. 

Show or don't show the menu mark for each selected 
choice. Default: TRUE. 

Value of a particular toggle choice. Second argument is 
value of choice specified by first argument 

If item is a choice, value is ordinal position (from 0) of 
current choice. If item is a toggle, value is a bitmask 
indicating currently selected choices (e.g., bit 5 is 1 if 
5th choice selected). 

Revision A of 15 October 1986 



Table 18-19 Text Item Attributes 

Attribute Value Type 

PANEL MASK CHAR char - -

PANEL NOTIFY LEVEL - -

PANEL NOTIFY STRING char * - -

PANEL VALUE STORED LENGTH int - - -

PANEL VALUE DISPLAY LENGTH int - - -

PANEL VALUE char * 

PANEL VALUE FONT Pixfont * 

.\sun ,~ microsystems 

Chapter 18 - SunView Interface Summary 307 

Description 
Character used to mask type-in char­
acters. Use the space character for no 
character echo (caret does not 
advance). Use the null character to 
disable masking. 

When to call the notify function. One 
of PANEL_NONE, 
PANEL_NON_PRINTABL~ 

PANEL SPECIFIEDof 
PANEL ALL. Default: 
PANEL_SPECIFIED (see Text 
Notification). 

String of characters which trigger 
notification when typed. Applies only 
when PANEL NOTIFY LEVELis - -
PANEL SPECIF lED. 

Max number of characters to store in 
the value string. Default: 80. 

Max number of characters to display 
in the panel. Default: 80. 

Initial or new string value for the item. 

Font to use for the value string. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 309 

Table 18-20 Panel Functions and Macros- Continued 

Definition Description 
panel_default_handle_event(object, event) 

<Panel or Panel item> object; 

Event *event; 

panel_de st roy_item (item) 

Panel item item; 

panel_each_item(panel, item) 

Panel panel; 

Panel item item; 

Event * 

panel_event (panel, event) 

Panel panel; 

Event *event; 

caddr t 

panel_get (item, attribute[, optional_arg]) 

Panel_item item; 

Panel attribute attribute; 

Panel attribute optional_arg; 

caddr t 

pane l_get_va lue (item) 

Panel item item; 

panel-paint(panel_object, paint_behavior) 

<Panel_item or Panel> panel_object; 

Panel_setting paint_behavior; 

panel_set(item, attributes) 

Panel_item item; 

<attribute-list> at tributes; 

panel_set_value(item, value) 

Panel_item item; 

caddr t value; 

Panel_setting 

panel_text_notify(item, event) 

Panel item item 

Event *event 

The default event proc for panel items (PANEL_EVENT _ PROC) 

and for the panel's background (PANEL_BACKGROUND _ PROC). 

Implements the standard event-to-action mapping for the item types. 

Destroys it ern. 

Macro to iterate over each item in a panel. The corresponding macro 

panel_end _each closes the loop opened by 

panel_each_item (). 

Translates the coordinates of event from the space of the panel 

subwindow to the space of the logical panel 

(which may be larger and scrollable). 

Retrieve the value of an attribute for i tern. optional_ arg is 

used for a few attributes which require additional information, 

suchasPANEL_CHOICE_lMAGE,PANEL_CHOICE_STRIN~ 

PANEL_CHOICE_X,PANEL_CHOICE_Y, 

PANEL_MARK_X, PANEL_MARK_Y, PANEL_TOGGLE_VALUE. 

A macro, defined as: 

panel_get(item, PANEL_VALUE) 

Paints an item or an entire panel. paint _ beha vi or can be either 

PANEL_CLEAR or PANEL_NO _ CLEAR. PANEL_CLEAR causes 

the area occupied by the panel or item to be cleared prior to painting. 

Sets the value of one or more panel attributes. 

attributes is a null-terminated attribute list. 

A macro, defined as: 

panel_set(item, PANEL_VALUE, value, 0) 

Default notify procedure for panel text items. Causes caret 

to advance on CR or tab, caret to backup on shift-CR or shift-tab, 

printable characters to be inserted into item's value, 

and all other characters to be discarded. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 311 

Table 18-21 Pixwin Drawing Functions and Macros 

Definition Description 

pw_batch(pw, n) 

Pixwin *PWi 

Tells the batching mechanism to refresh the screen every 

n display operations. 

pw_batch_off (pw) A macro to tum batching off in pw. 

Pixwin *PWi 

pw_batch_on(pw) 

Pixwin *PWi 

pw_batchrop(pw, dx, dy, op, items, n) 

Pixwin *PWi 
int dx, dy, op, ni 

struct pr-prpos items[]i 

pw_char(pw, x, y, 

Pixwin *PWi 
int x, y, 

Pixfont *fonti 

char Ci 

pw_close(pw) 

Pixwin *PWi 

op, font, 

°Pi 

pw_copy (dpw, dx, dy, dw, dh, 

op, spw, sx, sy) 

Pixwin *dpw, *SPWi 

c) 

int op, dx, dy, dw, dh, sx, SYi 

int 

pw_get(pw, x, y) 

Pixwin *PWi 

int x, Yi 

Pixwin * 

pw_get_region_rect(pw, r) 

Pixwin *PWi 

Rect *ri 

A macro to tum batching on in pw. 

See the Pixrect Reference Manual for a full explanation 

of this function. 

Writes character c into pw using the rasterop op. 

The left edge and baseline of c will be written at 

location (x, y). 

Frees any dynamic storage associated with pw, 

including its retained memory pixrect, if any. 

Copies pixels from spw to dpw. Currently spwand 
dpw must be the same. This routine will cause problems if 
spw is obscured. 

Returns the value of the pixel at (x, y) in pw. 

Retrieves the rectangle occupied by the region pw 

into the reet pointed to by r. 

Revision A of 15 October 1986 



Chapter 18 - Sun View Interface Summary 313 

Table 18-21 Pixwin Drawing Functions and Macros- Continued 

Definition Description 

pw_read(pr, dx, dy, dw, dh, op, pw, sx, sy) 

Pixwin *PWi 
Reads pixels from the pixwin pw starting at offset (sx, 
sy), using rasterop op. The pixels are stored in the ree-

int op, dx, dy, dW, dh, sx, SYi tangle (dx, dy, dw, dh) in the pixreet pointed to by pro 
Pixrect *pri 

Pixwin * 

pw_region(pw, x, y, width, height) Creates a new pixwin refering to an area within the existing 
pixwin pw. The origin of the new region is given by (x, 

Pixwin *PWi y), the dimensions by width and height. 
int x, y, w, hi 

pw_replrop(pw, dx, dy, dw, dh, 
op, pr, sx, sy) Replicates a pattern from a pixreet into a pixwin. 

Pixwin *PWi 
int dx, dy, dw, dh, op, sx, SYi 

Pixrect *pri 

pw_reset(pw) Macro which sets pw's lock count to 0 and releases its lock. 

Pixwin *PWi 

" 
pw_rop(pw, dx, dy, dW, dh, 

op, sp, sx, sy) Performs the rasterop op from the source pixrect 
Pixwin *PWi sp to the destination pixwin pw. 

Pixrect *SPi 
int dx, dy, dw, dh, op, sx, SYi 

Pixwin * 

pw_set_region_rect(pw, r, use_sameyr) The position and size of the region pw are set to the reet 

Pixwin *PWi 
*r. 
If use_same _pr is 0 a new retained pixrect is allocated 

Rect *ri for the region. 
unsigned int use_sameyri 

pw_show(pw) Macro to refresh the screen while batching, without affeet-
Pixwin *PWi ing the batching mode. 

pw_stencil(dpw, dx, dy, dw, dh, op, Like pw_write (), except that the source pixrect spr is 
stpr, stx, sty, spr, sx, sy) written through the stencil pixrect stpr, which functions 

Pixwin *dpWi as a spatial write enable mask. The raster operation op is 

int dx, dy, dw, dh, op, stx, sty, sx, SYi only applied to destination pixels where the stpr is non-

Pixrect *stpr, *spri . zero; other destination pixels remain unchanged. 

pw_text(pw, x, y, op, font, s) 

Pixwin *PWi Writes the string s into pw using the rasterop op. 

int x, y, °Pi The left edge and baseline of the first character in s will 

Pixfont * font i appear at coordinates (x, y). 

char *Si 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 315 

Table 18-22 Pixwin Color Manipulation Functions 

Definition 
pw_blackonwhite(pw, min, max) 

Pixwin *pw; 

int min, max; 

pw_cyclecolormap(pw, cycles, index, count) 

Pixwin *pw; 

int cycles, index, count; 

pw_getattributes(pw, planes) 

Pixwin *pw; 

int *planes; 

pw_getcmsname(pw, cmsname) 

Pixwin *pw; 

char cmsname[CMS_NAMESIZE]; 

pw_getcolormap(pw, index, count, 

red, green, blue) 

Pixwin 

int 

*pw; 

index, count; 

unsigned char red[], green[], bluer]; 

pw_getdefaultcms(cms, map) 

struct colormapseg *cms; 

struct cms_map *map; 

pw-putattributes(pw, planes) 

Pixwin *pw; 

int *planes; 

pw_putcolormap(pw, index, count, 

red, green, blue) 

Pixwin 

int 

*pw; 

index, count; 

unsigned char red[], green[], bluer]; 

pw_reversevideo(pw, min, max) 

Pixwin *pw; 

int min, max; 

Descri ption 

Sets the foreground to black, the background to white, for pixwin 
pw. min and max should be the first and last entries, respectively, 
in pw's colormap segment 

Rotates the portion of pw's colormap segment starting at index 
for count entries, rotating those entries among themselves 
cycles times. 

Retrieves the value of pw's access enable mask 
into the integer addressed by planes. 

Copies the colormap segment name of pw into cmsname. 

Retrieves the state of pw's colormap. The count elements 

of the pixwin's colormap segment starting at index 

(0 origin) are loaded into the first count values in the 

three arrays. 

Copies the data in the default colormap segment into 

the data pointed to by cms and map. Before the call, the byte pointers 

in map should be initialized to arrays of size 256. 

Sets the access enable mask of pw. Only those bits of the pixel 
corresponding to a 1 in the same bit position of *planes will be 
affected by pixwin operations. 

Sets the state of pw's colormap. The count elements of the 
pixwin's colormap segment starting at index (0 origin) are loaded 
from the first count values in the three arrays. 

Reverses the foreground and background colors of pw 

min and max should be the first and last entries, 

respectively, in the colormap segment 

Revision A of 15 October 1986 



Chapter 18 - Sun View Interface Summary 317 

Table 18-23 Scrollbar Attributes 

Attribute Value Type Description 
SCROLL ABSOLUTE CURSOR Cursor - -

SCROLL ACTIVE CURSOR Cursor 

SCROLL ADVANCED MODE boolean - -

SCROLL BACKWARD CURSOR Cursor - -

SCROLL BAR COLOR 

SCROLL BAR DISPLAY LEVEL - - -

SCROLL BORDER boolean 

SCROLL BUBBLE COLOR Scro11bar _setting 

SCROLL BUBBLE MARGIN int 

SCROLL DIRECTION 

SCROLL END POINT AREA int - - -

SCROLL FORWARD CURSOR Cursor - -

SCROLL GAP int 

SCROLL HEIGHT int 

Cursor to display on middle button down. 

Default: Right triangle if vert, down triangle if horiz. 

Cursor to display when cursor is in bar reet. 

Default: Right arrow if vertical, down arrow if horiz. 

Whether notify proc reports all nine motions. Default: FALSE. 

Cursor to display on right button down. 

Default: up arrow if vertical, left arrow if horiz. 

Color of bar, SCROLL_GREY (default) or SCROLL_WHITE. 

When bar is displayed. 

SCROLL_ALWAYS: always displayed 

SCROLL_ACTIVE: only displayed when cursor is in bar rect 

SCROLL_NEVER: never displayed 

Default: SCROLL ALWAYS. 

Whether the scrollbar has a border. 

Color of bubble, SCROLL_GREY (default) or SCROLL_BLACK. 

When bubble is displayed. 

SCROLL_ALWAYS: always displayed 

SCROLL_ACTIVE: only displayed when cursor is in bar rect 

SCROLL_NEVER: never displayed 

Default: SCROLL ALWAYS. 

t, ~argin on each side of bubble in bar. Default: O. 

Orientation of bar, 

SCROLL_VERTICAL (default) or SCROLL_HORIZONTAL. 

The distance, in pixels, from the end of the scrollbar 

that forces a scroll to the beginning (or end) of the file. 

Default: 6. 

Cursor to display on left button down. 

Default: down arrow if vertical, right arrow if horiz. 

Gap between lines. Default: current value of SCROLL_MARGIN. 

r height for scro11bar's rect 

Revision A of 15 October 1986 



Table 18-23 

Attribute 

SCROLL_THICKNESS 

SCROLL VIEW LENGTH 

SCROLL WIDTH 

Chapter 18 - Sun View Interface Summary 319 

Scrollbar Attributes- Continued 

Value Type 

Scroll motion 

int 

int 

boolean 

int 

int 

int 

int 

Description 

Scrolling motion requested by user. 

Pixel offset of scrolling request into scrollbar. Default: o. 

Thickness of bar. Default: 14. 

Whether the client wants scrolling aligned to multiples 

of SCROLL_LINE_HEIGHT. Default: FALSE. 

r _top for scrollbar's reet. 

Length of viewing window, in client units. Default: O. 

Current offset into scrollable object (client units). 

(Value must be> 0). Default: O. 

r width for scrollbar's reet. 

Revision A of 15 October 1986 



Chapter 18 - Sun View Interface Summary 321 

Table 18-25 Text Subwindow Attributes 

Attribute 

TEXTSW AGAIN RECORDING - -

TEXTSW AUTO INDENT - -

TEXTSW AUTO SCROLL BY - - -

TEXTSW BLINK CARET - -

TEXTSW BROWSING 

TEXT SW_CHECKPO INT_FREQUENCY 

TEXTSW CLIENT DATA - -

TEXTSW CONFIRM OVERWRITE - -

TEXTSW CONTENTS 

TEXTSW CONTROL CHARS USE FONT 

TEXTSW DISABLE CD - -

Value Type 

boolean 

boolean 

boolean 

int 

boolean 

boolean 

int 

char * 

boolean 

char * 

boolean 

boolean 

Description 

When TRUE, adjusting a selection causes the selection to be 

pending-delete. Default: FALSE. 

When FALSE, changes made to the textsw are not repeated when 
user invokes AGAIN. By disabling when not needed (e.g. for 
program- driven error logs) you can reduce memory overhead. 
Default: TRUE. 

When TRUE, a new line is automatically indented to match 

the previous line. Default: FALSE. 

Number of lines to scroll when type-in moves insert point 

below the view. Default: 1. Create, get. 

Determines whether the caretbllnks. Default: FALSE. 

When TRUE, prevents editing of the displayed text. If another 

file is loaded in, browsing stays on. Default: FALSE. 

Number of edits between checkpoints. Set to 0 to 

disable checkpointing. Default: O. 

Pointer to arbitrary client data. Default: NULL. 

A request to write to an existing file will require user 

confirmation. Default: TRUE. 

Contents of text subwindow. Default: NULL. Create, get. 

For create, specifies the initial contents for non-file textsw. 

Get needs additional parameters: 

window _get(textsw, TEXTSW _CONTENTS, pos, buf, buf _len) 

Return value is next position to read at. 

buf[O .. buf _len-I] is filled with the characters from textsw 

beginning at index pos, and is null-terminated only if there 

were too few characters to fill the buffer. 

If FALSE, control characters always display as an 

up arrow followed by a character, instead of whatever 

glyph is in the current font. Default: FALSE. 

Stops textsw from changing current working directory 

(and grays out the associated items in the menu). 

Default: FALSE. 

Revision A of 15 October 1986 



Table 18-25 

Attribute 

TEXTSW MODIFIED 

TEXTSW MULTI CLICK SPACE 

TEXTSW NOTIFY PROC - -

TEXTSW READ ONLY - -

TEXTSW SCROLLBAR 

TEXTSW STATUS 

TEXTSW STORE CHANGES FILE - - -

TEXTSW STORE SELF IS SAVE - - --

TEXTSW UPDATE SCROLLBAR - -

Chapter 18 - Sun View Interface Summary 323 

Text Subwindow Attributes- Continued 

Value Type 

boolean 

int 

int 

(procedure) 

boolean 

Scrollbar 

Textsw status * 

boolean 

boolean 

(no value) 

int 

Description 

Whether or not the textsw has been modified. Get only. 

Max # of pixels that can be between successive mouse clicks 

and still have the clicks be considered a multi-click. Default: 3. 

Max # of milliseconds that can be between successive 

mouse clicks and still have the clicks be considered 

a multi-click. Default 390. 

Notify procedure. Form is: 

void 

notify-proc(textsw, avlist) 

Textsw textsw 

Attr avlist avlist 

Default NULL, meaning standard procedure. 

When TRUE, prevents editing of the displayed text If another file 

is loaded in, READ_ONLY is turned off again. Default: FALSE. 

Scrollbar to use for text subwindow scrolling. 

NULL means no scrollbar. 

Default A scrollbar with default attributes. 

Note: text subwindow has a scrollbar by default, so you would 

only use this to get no scrollbar, or to get the scrollbar handle. 

If set, specifies the address of a variable of type 

Textsw_status into which a value is written thatrefiects 

what happened during the call to window _ createO. 

(For possible values, see the Textsw _status Values table). 

If TRUE, Store changes the file being edited to that named 

as the target of the Store. If FALSE, Store does not affect 

which file is being edited. Default TRUE. 

Causes textsw to interpret a Store to the name of the current file 

as a Save. Default FALSE. Create, get 

Causes text subwindow to update the bubble in the scrollbar. 

Set only - get returns NULL. 

Min # of lines to maintain between the start of the selection and 

top of view. -1 means to defeat the normal actions. Default 2. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 325 

Table 18-27 Textsw status Values 

Value 
TEXTSW STATUS OKAY - -

TEXTSW STATUS BAD ATTR - --

TEXTSW STATUS BAD ATTR VALUE - - - -

Description 

The operation encountered no problems. 

The attribute list contained an illegal or unrecognized attribute. 

The attribute list contained an illegal value for an attribute, 
usually an out of range value for an enumeration. 

A call to ca1loc(2) or malloc(2) failed. 

The specified input file does not exist or cannot be accessed. 

The operation encountered a problem not covered by any of 
the other error indications. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 327 

Table 18-28 Text Subwindow Functions- Continued 

Definition Description 
Textsw index 

textsw_find_mark(textsw, mark) 

Textsw textsw; 

Textsw mark mark; 

Textsw 

textsw_first(textsw) 

Textsw textsw; 

Textsw index 

textsw_index_for_file_line(textsw, line) 

Textsw textsw; 

int line; 

int 

textsw_insert(textsw, buf, buf len) 

Textsw textsw; 

char 

int 

*buf; 

buf len; 

Textsw 

textsw_next(textsw) 

Textsw textsw; 

void 

textsw_normalize_view(textsw, position) 

Textsw textsw; 

Textsw index position; 

void 

textsw-possibly_normalize(textsw, position) 

Textsw textsw; 

Textsw index position; 

void 

textsw_remove_mark(textsw, mark) 

Textsw textsw; 

Textsw mark mark; 

Returns the current position of mark. 

Returns the first view into textsw. 

Returns the character index for the first 
character in the line given by line. 

Inserts characters in buf into text sw 

at the current insertion point The number 
of characters actually inserted is returned -
this will equal buf:....len unless there was 
a memory allocation failure. 

Returns the next view in the set of views into text sw. 

Repositions the text so that the character at position is visible 
and at the top of the subwindow. 

If the character at position is already visible, this function 
does nothing. If it is not visible, it repositions the text 
so that it is visible and at the top of the subwindow. 

Removes an existing mark from textsw. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 329 

Table 18-29 TTY Subwindow Attributes 

Attribute Type Description 
TTY ARGV char ** 

TTY CONSOLE boolean 

boolean 

boolean 

Table 18-30 TTY Subwindow Functions 

Argument vector: name of the pro­
gram running in the tty subwindow, 
followed by arguments for that pro­
gram. 

If TRUE, tty subwindow is con­
sole. Set only. Default: FALSE. 

If TRUE, output will stop after 
each page. Default: FALSE. 

If TRUE, subwindow quits when 
its child terminates. Set only. 
Default: FALSE. 

Definition Description 

int 
ttysw_input(tty, buf, len) 

Tty tty; 

char *buf; 

int len; 

int 

ttysw_output(tty, buf, len) 
Tty tty; 

char *buf; 
int len; 

.\sun ,~ microsystems 

Appends len number of characters from buf 
onto tty's input queue. It returns the number 
of characters accepted. 

Appends len number of characters from buf 
onto tty's output queue, i.e. they are sent 
through the terminal emulator to the TIY. It 
returns the number of characters accepted. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 331 

Table 18-32 Window Attributes 

Attribute Value Type Description 

WIN BELOW Window 

int 

caddr t 

WIN COLUMNS int 

int 

int 

short 

list of short 

short 

list of short 

WIN CURSOR Cursor 

char * 

WIN DEVICE NUMBER int - -

char * 

(procedure) WIN EVENT PROC - -

short 

int 

~\sun ~~ microsystems 

Causes the window to be laid out below window given as the value. 

Margin at bottom of window. 

Client's private data - for your use. 

Window's width (including left and right margins) in columns. 

Gap between columns in the window. 

Width of a column in the window. 

Window will receive this event. 

Null terminated list of events window will receive. Create, set. 

Window will receive this pick event. 

Null terminated list of pick events window will receive. Create, set. 

The window's cursor. Note: the pointerretumed by 

window_get () points to per-process static storage. 

UNIX device name associated with window, consisting 

of a string and numeric part, e.g. win 1 o. Get only. 

Numeric component of device name. Get only. 

Error message to print before exit(l). Create only. 

Client's callback procedure which receives input events: 

Notify_value 
event-proc(win, event, arg) 

Window window; 

Event *event; 
caddr_t arg; 

Note: In current release does not work for frames. 

Gets the state of the specified event code. For buttons and keys, 

zero means "up", non-zero means "down". Getonly. 

The UNIX file descriptor for the window. Get only. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 333 

Table 18-32 Window Attributes- Continued 

Attribute 

WIN PERCENT HEIGHT - -

WIN PERCENT WIDTH - -

WIN PICK INPUT MASK - - -

WIN PIXWIN 

WIN RECT 

WIN RIGHT MARGIN - -

WIN RIGHT OF - -

WIN ROW GAP 

WIN ROW HEIGHT 

WIN ROWS 

WIN SCREEN RECT 

WIN SHOW 

WIN TOP MARGIN 

WIN TYPE 

WIN VERTICAL SCROLLBAR - -

WIN WIDTH 

WIN X 

WIN Y 

Value Type 

int 

int 

Inputmask * 

Pixwin * 

Rect* 

int 

Window 

int 

int 

int 

Rect* 

boolean 

int 

Scrollbar 

int 

int 

int 

~~sun ~~ mlcrosystems 

Descri ption 

Sets a subwindow's height as a percentage of the frame's height. 

Sets a subwindow's width as a percentage of the frame's width. 

Window's pick inputmask. Note: the pointer returned by 

window_get () points to per-process static storage. 

The window's pixwin. Get only. 

Reet of the window. For frames, same as FRAME_OPEN _ RECT. 
Note: the pointer returned by window_get () for this attribute 
points to per-process static storage. 

Margin at right of window. 

Causes the window to be laid out just to the 

right of the window given as the value. 

Gap between rows in the window. 

Height of a row in the window. 

Window's height (including top and bottom margins) in rows. 

Reet of the screen containing the window. Get only. 

Note: the pointer returned by window_get () for this attribute 

points to per-process static storage. 

Causes the window to be displayed or undisplayed. 

Margin at top of window. 

Type of window. One of FRAME_TYPE, PANEL_TYPE, 
CANVAS_TYPE, TEXTSW_TYPE or TTY_TYPE. Getonly. 

Vertical scrollbar. 

Window's width in pixels. Value of WIN_EXT END_ TO_EDGE 
causes sub window to extend to right edge of frame. 

Default: WIN_EXTEND _ TO_EDGE. 

x position of window, relative to owner. 

y position of window, relative to owner. 

Revision A of 15 October 1986 



Chapter 18 -SunView Interface Summary 335 

Table 18-33 Frame Attributes- Continued 

Attribute Value Type Description 

FRAME NTH SUBWINDOW int Returns frame's nth (from 0) subwindow. Get only. 

FRAME NTH WINDOW int Returns frame's nth (from 0) window, regardless 

of whether the window is a frame or a subwindow. Get only. 

FRAME OPEN RECT - - Rect* Frame's reet when open. 

FRAME SHOW LABEL boolean Whether the label is shown. Default: - -
TRUE for base frames, FALSE for subframes. 

FRAME SUBWINDOWS ADJUSTABLE boolean User can move subwindow boundaries. Default: TRUE. 

Revision A of 15 October 1986 



Chapter 18 - SunView Interface Summary 337 

Table 18-34 Window Functions and Macros- Continued 

Definition 
int 

window_read_event(window, event) 

Window window; 

Event *event; 

void 

window_refuse_kbd_focus(window) 

Window window; 

void 

window release event lock(window) 

Window window; 

void 

window_return (value) 

caddr t value; 

window_set (win, attributes) 

Window win; 

<attribute-list> attributes; 

~\sun ,~ microsystems 

Description 

Reads the next input event for window. 

In case of error, sets the global variable errno 

and returns -1. 

When your event handler receives a KBD _REQUEST 

event, call this function if you do not want your 

window to become the keyboard focus. 

Releases the event lock, allowing other processes to receive input. 

Usually called from one of the application's panel item 

notify procs. Causes window_loop () to return. 

Sets the value of one or more of win's attributes. 

attributes is a null-terminated attribute list. 

Revision A of 15 October 1986 



A 
Example Programs 

Example Programs ...................................................................................................................... 341 

A.1. filer .......................................................................................................................................... 341 

A.2. image_browser _1 ........................................................................................................... 350 

A.3. image_browser _2 ........................................................................................................... 354 

A.4. tty _io ...................................................................................................................................... 359 

A.5. font_menu ........................................................................................................................... 362 

A.6. resize_demo ....................................................................................................................... 370 

A.7. dctool ..................................................................................................................................... 375 

A.8. typein ..................................................................................................................................... 381 

A.9. Programs that Manipulate Color ............................................................................ 385 

coloredit ............................................................................................................................. 385 

animatecolor ................................................................................................................... . 390 

A.10. Two gfx subwindow-based programs converted to use 
SunView ............................................................................................................................ 397 

bounce ................................................................................................................................. 397 

spheres ................................................................................................................................ 402 



A.I. filer 

A 
Example Programs 

This program is discussed in Chapter 4, Using Windows. It displays a listing in a 
tty subwindow, which is manipulated by panel items. 

One of the panel buttons makes a popup window appear. Another uses the selec­
tion service to determine what file name the user has selected, and creates a 
popup text subwindow where that file is displayed. 

~\sun ,~ microsystems 
341 Revision A of 15 October 1986 



Appendix A - Example Programs (filer) 343 

create-panel_subwindow() 
{ 

void ls-proc(), ls_flags-proc(), quit-proc(), edit-proc(), del-proc(); 

panel = window_create(base_frame, PANEL, 0); 

dir_item = panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(O), 
PANEL_ VALUE_DISPLAY_LENGTH, 22, 
PANEL_VALUE, getwd(current_dir), 
PANEL_LABEL_STRING, "Directory: ", 
0); 

(void) panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel,"List",O,O), 
PANEL_NOTIFY_PROC, ls-proc, 
0); 

(void) panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, pane I_butt on_image (panel, "Set Is flags",O,O), 
PANEL_NOTIFY_PROC, ls_flags-proc, 
0); 

(void) panel_c reate_it em (panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel,"Edit",O,O), 
PANEL_NOTIFY_PROC, edit-proc, 
0); 

(void) panel_c reate_it em (panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel,"Delete",O,O), 
PANEL_NOTIFY_PROC, del-proc, 
0); 

(void) panel_c reate_it em (panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel,"Quit",O,O), 
PANEL_NOTIFY_PROC, quit-proc, 
0); 

fname_item = panel_create_item(panel, PANEL_TEXT, 
PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(l), 
PANEL_VALUE_D I SPLAY_LENGTH, 22, 
PANEL_LABEL_STRING, 
0); 

"File: " , 

panel_create_item(panel, PANEL_MESSAGE, 0); 

window_fit_height(panel); 

~\sun 
~ microsystems 

Revision A of 15 October 1986 



Appendix A - Example Programs (filer) 345 

panel_create_item(ls_flags-panel, PANEL_CYCLE, 
PANE L_ITEM_X, ATTR_ COL (0) , 
PANEL_ITEM_Y, ATT~ROW (6) , 
PANEL_DISPLAY_LEVEL, PANEL_CURRENT, 
PANEL_LABEL_STRING, "List '.' files? 
PANEL_CHOICE_STRINGS, "No", "Yes", 0, 
PANEL_CL lENT_DATA , 
0); 

" a ", 

panel_create_item(ls_flags-panel, PANEL_CYCLE, 
PANE L_ITEM_X, ATTR_ COL (0) , 
PANEL_ITEM_Y, ATTR_ROW(7) , 
PANEL_DlSPLAY_LEVEL, PANEL_CURRENT, 
PANEL_LABEL_STRlNG, 
PANEL_CHOlCE_STRINGS, 
PANEL_CL lENT_DATA , 
0); 

"Indicate type of file? 
"No", "Yes", 0, 
" F ", 

window_fit(ls_flags-panel); 
window_fit(ls_flags_frame); 

/* fit panel around its items */ 
/* fit frame around the panel */ 

char * 
compose_ls_options() 
{ 

static char flags[20); 
char *ptr; 
char flag; 
int first_flag = TRUE; 
Panel_item item; 
char *client_data; 
int index; 

ptr flags; 

panel_each_item(ls_flags-panel, item) 
client_data = panel_get (item, PANEL_CLIENT_DATA, 0); 
index = (int)panel_get_value(item); 
flag = client_data[index]; 
if (flag != , ') { 

if (first_flag) { 
*ptr++ '-'; 
first~£lag = FALSE; 

*ptr++ = flag; 

panel_end_each 
*ptr = '\0'; 
return flags; 

void 
lsyroc() 
{ 

static char previous_dir[MAX_PATH_LEN]; 
char *current_dir; 

" , 

" , 

char cmdstring[lOO]; /* dir item's value can be 80, plus flags */ 

Revision A of 15 October 1986 



/* return if file not found */ 
if (!stat_file(filename» 

return; 

msg(""); /* clear any old messages */ 

window set(editsw, TEXTSW_FILE, filename, 0); 

Appendix A - Example Programs (filer) 347 

window_set (edit_frame, FRAME_LABEL, filename, WIN_SHOW, TRUE, 0); 

void 
del_proc () 
{ 

char buf[300); 
char *filename; 

/* return if no selection */ 
if (! strlen (filename = get_selection(») 

msg(IIPlease select a file to delete."); 
return; 

/* return if file not found */ 
if (!stat_file(filename» 

return; 

msg(""); /* clear any old messages */ 

/* usr must confirm the delete */ 
sprintf(buf, "Ok to delete %S?", filename); 
if (confirm-yes(buf» { 

unlink(filename); 
sprintf(buf, "%s deleted.", filename); 
msg(buf); 

void 
qui t yroc ( ) 
{ 

window_destroy(base_frame); 

msg(msg) 
char *msg; 
{ 

Revision A of 15 October 1986 



Appendix A - Example Programs (filer) 349 

pr - panel_button_image(panel, "NO", 3, 0); 
width - 2 * pr->pr_width + 10; 

/* center the yes/no or ok buttons under the message */ 
r = (Rect *) panel_get(message_item, PANEL_ITEM_RECT); 
left - (r->r_width - width) / 2; 
if (left < 0) 

left = 0; 
top = rect_bottom(r) + 5; 

if (ok_only) { 
panel_create_item(panel, PANEL_BUTTON, 

PANEL_ITEM_X, left, PANEL_ITEM_Y, top, 
PANEL_LABEL_IMAGE, pr, 
PANEL_CLIENT_DATA, 1, 
PANEL_NOTIFY_PROC, yes_no ok, 

0); 
else { 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_ITEM_X, left, PANEL_ITEM_Y, top, 
PANEL_LABEL_IMAGE, pr, 
PANEL_CLIENT_DATA, 0, 
PANEL_NOTIFY_PROC, yes_no_ok, 
0); 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel, "YES", 3, 0), 
PANEL_CLIENT_DATA, 1, 
PANEL_NOT I FY_PROC, yes_no_ok, 
0); 

window_fit (panel); 
window_fit(confirmer); 

/* center the confirmer frame on the screen */ 
r (Rect *) window_get(confirmer, WIN_SCREEN_RECT); 
width (int) window_get(confirmer, WIN_WIDTH}; 
height (int) window_get (confirmer, WIN_HEIGHT); 
left (r->r_width - width) / 2; 
top (r->r_height - height) / 2; 
if (left < 0) 

left = 0; 
if (top < 0) 

top = 0; 
window_set(confirmer, WIN_X, left, WIN_Y, top, O}; 

return confirmer; 

static void 
yes_no_ok(item, event) 
Panel item item; 
Event *event; 

Revision A of 15 October 1986 



Appendix A - Example Programs (image_browser_l) 351 

/***************************************************************************/ 
/* image_browser_1.c */ 
/***************************************************************************/ 

'include <suntool/sunview.h> 
'include <suntool/panel.h> 
'include <suntool/tty.h> 
'include <stdio.h> 
'include <suntool/icon_load.h> 
'include <suntool/seln.h> 

Frame frame; 
Panel control-panel, display-papel; 
Tty tty; 

Panel item dir_item, fname_item, image_item; 

ls-proc(), show-proc(), quit-proc(); 

char *get_selection(); 

'define MAX_PATH_LEN 1024 
'define MAX_FILENAME_LEN 256 

main (argc, argv) 
int argc; 
char **argv; 
{ 

frame = window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
FRAME_LABEL, "image_browser", 
0); 

in it_tty 0 ; 
init_control-panel (); 
window_fit (frame); 
init_display-panel (); 
window_main_loop(frame); 
exit (0) ; 

tty = window_create(frame, TTY, WIN_COLUMNS, 30, WIN_ROWS, 20, O}i 

init_display-panel() 
{ 

display-panel = window_create(frame, PANEL, 
WIN_BELOW, control-panel, 
WIN_RIGHT_OF, tty, 
0); 

image_item panel_create_item(display_panel, PANEL_MESSAGE, O}; 

Revision A of 15 October 1986 



Appendix A - Example Programs (image_browser _1) 353 

lsyroc () 
{ 

static char previous_dir[MAX_PATH_LEN]; 
char *current_dir; 
char cmdstring[100]; 

if (strcmp(current_dir, previous_dir» { 
chdir(current_dir); 
sprintf(cmdstring, "cd %sO, current_dir); 
ttysw_input(tty, cmdstring, strlen(cmdstring»; 
strcpy(previous_dir, current_dir); 

sprintf(cmdstring, "Is -1 %s\n", panel_get_value(fname_item»; 
ttysw_input(tty, cmdstring, strlen(cmdstring»; 

quityroc () 
{ 

window_destroy(frame); 

showyroc() 
{ 

char *filename; 

if (!strlen(filename 
return; 

load_image(filename); 

load_image (filename) 
char *filename; 

Pixrect *image; 

get_selection(») 

char error_msg[IL_ERRORMSG_SIZE]; 

if (image = icon_load_mpr(filename, error_msg» 
panel_set (image_item, 

PANEL_ITEM_X, ATTR_COL(5), 
PANEL_ITEM_Y, ATTR_ROW(4), 
PANEL_LABEL_lMAGE, image, 
0); 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (image browser 2) 355 

/***************************************************************************/ 
/* image_browser_2.c */ 
/***************************************************************************/ 

#include <suntool/sunview.h> 
#include <suntool/panel.h> 
#include <suntool/tty.h> 
#include <stdio.h> 
#include <suntool/icon_load.h> 
#include <suntool/seln.h> 
#include <suntool/expand_name.h> 
#include <suntool/scrollbar.h> 

static char namebuf[100]; 
static int file_count, image_count; 
static struct namelist *name_list; 
#define get_name(i) name_list->names[(i)] 

Frame 
Panel 
Tty 

frame; 
control-panel, display-panel ; 
tty; 

Panel item dir_item, fname_item, image_item; 

show-proc(), browse-proc(), quit_proc(); 
Pixrect *get_image(); 
char *get_selection(); 

#define MAX_PATH_LEN 1024 
#define MAX_FILENAME_LEN 256 

main (argc, argv) 
int argc; 
char **argv; 
{ 

frame = window_create(NULL, FRAME, 
FRAME_ARGS, argc, argv, 
FRAME_LABEL, "image_browser_2", 
0); 

init_control-panel (); 
init_display-panel (); 
window_set (control-panel, 

WIN_WIDTH, window_get(display_panel, WIN_WIDTH, 0), 
0); 

window_fit(frame); 
window_main_loop(frame); 
exit(O); 

init_control-panel () 
{ 

char current_dir[MAX_PATH LEN]; 

control_panel = window_create(frame, PANEL, 0); 

dir_item ~ panel_create_item(control-panel, PANEL_TEXT, 
PANEL_LABEL_X, ATTR_COL(O) , 
PANEL_LABEL_Y, ATTR_ROW(O) , 
PANEL_VALUE_D I SPLAY_LENGTH , 23, 

Revision A of 15 October 1986 



set_directory () 
{ 

static char previous_dir[MAX_PATH_LEN]; 
char *current_dir; 

if (strcmp(current_dir, previous_dir» 
chdir(current_dir); 
strcpy(previous_dir, current_dir); 

Pixrect * 
get_image (i) 
int i; 

char error_msg[IL_ERRORMSG_SIZE]; 
return (icon_load_mpr(get_name(i), error_msg»; 

char *val; 

val = (char *)panel_get_value(fname_item); 
strcpy(namebuf, val); 
name list expand_narne(namebuf); 
file count name_Iist->count; 

load_image (filename) 
char *filename; 

Pixrect *image; 
char error_msg[IL_ERRORMSG_SIZE]; 

if (image = icon_load_mpr(filename, error_msg» 
panel_set (image_item, 

PANEL_ITEM_X, ATTR....;COL (5), 
ATTR _ROW ( 4) , 

PANEL_LABEL_lMAGE, image, 
0); 

.\sun ,~ microsystems 

Appendix A - Example Programs (image browser 2) 357 

Revision A of 15 October 1986 



Appendix A - Example Programs (tty io) 359 

The following program demonstrates the use of ttysw_input (), 
ttysw_output () and TIY escape sequences. These functions are explained 
in Chapter 10, TTY Subwindows. 

tty _io creates a panel and a tty subwindow. You can send arbitrary character 
sequences to the latter as input or output by manipulating panel items. There is 
also a button that sends the current time within the escape sequence to set the 
frame label. Try sending different sequences to the tty subwindow. Press 
CTRL-R to see the difference between what appears on the screen and what was 
input to the pseudo-tty. Also try starting the tool with a program such as vi as a 
command line argument. 

Revision A of 15 October 1986 



Appendix A - Example Programs (tty_io) 361 

/* Assume rest of arguments are for tty subwindow, except FRAME_ARGS leaves the 
* program_name as argv[O], and we don't want to pass this to the tty subwindow. 
*/ 

argv++; 
tty - window_create(frame, TTY, TTY_ARGV, argv, 0); 

window_fit(frame); 

ttysw_input(tty, "echo my pseudo-tty is 'tty'\n", 28); 

window_main_loop(frame); 
exit(O); 

static void 
input_text(item, event) 

Panel item item; 
Event *event; 

strcpy(tmp_buf, (char *) panel_get_value(text_item»; 
ttysw_input(tty, tmp_buf, strlen(tmp_buf»; 

static void 
output_text (item, event) 

Panel item item; 
Event *event; 

strcpy(tmp_buf, (char *) panel_get_value(text_item»; 
ttysw_output(tty, tmp_buf, strlen(tmp_buf»; 

static void 
output_time (item, event) 

Panel item 
Event 

item; 
*event; 

iinclude <sys/time.h> 
idefine ASCTlMELEN 26 

struct timeval tp; 

/* construct escape sequence to set frame label */ 
tmp_buf[O] '\033'; 
tmp_buf[l] = ']'; 

tmp_buf[2] = '1'; 
tmp_buf{2 + ASCTlMELEN + 1] '\033'; 
tmp_buf[2 + ASCTlMELEN + 2] '\\'; 
gettimeofday(&tp, NULL); 
strncpy(&tmp_buf[3], ctime(&tp.tv_sec), ASCTlMELEN}; 
ttysw_output(tty, tmp_buf, ASCTlMELEN + 5}; 

Revision A of 15 October 1986 



Appendix A - Example Programs (fonl-,nenu) 363 

/*****************************************************************************/ 
/* font_menu.c */ 
/*****************************************************************************/ 

iinclude <suntool/sunview.h> 
iinclude <suntool/panel.h> 
iinclude <suntool/walkmenu.h> 

void set_family(), set_size(), set_on_off(), toggle_on_off(), open_fonts(); 
Menu new_menu(), initialize_on_off(); 
char *int_to_str(); 
extern char * sprintf(); 
extern char * malloc(); 

Panel_item feedback_item; 
char *family, *size, *bold, *italic; 
Pixfont *cour, *serif, *apl, *cmr, *screen; 

/*****************************************************************************/ 
/* main */ 
/* First create the base frame, the feedback panel and feedback item. The */ 
/* feedback item is initialized to "gallant 8". */ 
/* Then get the frame's menu, call new_menu() to create a new menu with the */ 
/* original frame menu as a pullright, and give the new menu to the frame. */ 
/*****************************************************************************/ 

main (argc, argv) 
int argc; 
char *argv []; 

Frame frame; 
Panel panel; 
Menu menu; 
int defaults; 

frame - window_create(NULL, FRAME, FRAME_LABEL, "Menu Test -- Try frame menu.", 0); 
panel - window_create(frame, PANEL, WIN_ROWS; 1, 0); 
feedback_item - panel_create_item{panel, PANEL_MESSAGE,. PANEL_LABEL_STRING, 0); 

family - "Gallant", size = "8", bold - italic - ""; 
update_feedback(); 

/* remember if user gave -d flag */ 
if (argc >- 2) defaults - strcmp(argv[1], "-d") 0: 

menu - (Menu)window_get(frame, WIN_MENU); 
menu - new_menu(menu, defaults); 
window_set(frame, WIN_MENU, menu, 0): 

~\sun 
~ microsystems 

Revision A of 15 October 1986 



Appendix A - Example Programs (font Jnenu) 365 

MENU_ITEM, 
MENU_STRING, "Screen", 
MENU_FONT, screen, 
0, 

MENU_NOT I FY_PROC, set_family, 
0) , 

MENU_PULLRIGHT_ITEM, 
"Size", size_menu 

MENU_ITEM, 
MENU_STRING, 
MENU_PULLRIGHT, 
MENU_NOT I FY_P ROC , 
MENU_CLIENT_DATA, 
0, 

MENU_ITEM, 
MENU_STRING, 
MENU_PULLRIGHT, 
MENU_NOTIFY_PROC, 
MENU_CLIENT_DATA, 
0, 

0); 

menu_create (0), 

"Bold", 
on_off_menu, 
toggle_on_off, 
&bold, 

"Italic" , 
on_off_menu, 
toggle_on_off, 
&italic, 

/* give each item in the family menu the size menu as a pullright */ 
for (i = (int)menu_get(family_menu, MENU_NITEMS); i > 0; --i) 

menu_set(menu_get(family_menu, MENU_NTH_ITEM, i), 
MENU_PULLRIGHT, size_menu, 0); 

/* put non-selectable lines inbetween groups of items in family menu */ 
menu_set (family_menu, 

MENU_INSERT, 2, menu_create_item(MENU_STRING, 
MENU_INACTIVE, 
0) , 

0); 
menu_set (family_menu, 

,, _______ fI 

TRUE, 

MENU_INSERT, 5, menu_get (family_menu, MENU_NTH_ITEM, 3), 
0); 

, 

/* The size menu was created with no items. Now give it items representing */ 
/* the point sizes 8, 10, 12, 14, 16, and 18. */ 
for (i = 8; i <= 18; i += 2) 

menu_set (size_menu, MENU STRING ITEM, int to_str(i) , i, 0); 

/* give the size menu a notify proc to update the feedback */ 
menu_set(size_menu, MENU_NOTIFY_PROC, set_size, 0); 

Revision A of 15 October 1986 



Appendix A - Example Programs (fON _menu) 367 

/*****************************************************************************/ 
/* set_size -- notify proc for the size menu. */ 
/*****************************************************************************/ 

/*ARGSUSED*/ 
void 
set_size(m, mil 

Menu m; 
Menu item mi; 

size menu_get(mi, MENU_STRING); 
update_feedback(); 

/****************************************************************************/ 
/* initialize_on_off -- generate proc for the on_off menu. */ 
/* The on-off menu is a pullright of both the bold and the italic menus. */ 
/* We want it to toggle -- if its parent was on, it should come up with */ 
/* "Off" selected, and vice-versa. We can do that by first getting the */ 
/* parent menu item, then, indirectly through its client data attribute, */ 
/* seeing if the string representing the bold or italic state is null. */ 
/* If the string was null, we set the first item (nOnn) to be selected, */ 
/* else we set the second item (nOffn) to be selected. */ 
/*****************************************************************************/ 

Menu 
initialize_on_off(m, op) 

{ 

} 

Menu m; Menu_generate op; 

Menu_item parent_mi; 
char **name; 

if (op != MENU_CREATE) return (m); 

parent_mi = (Menu_item)menu_get(m, MENU_PARENT); 
name = (char **)menu_get(parent_mi, MENU_CLIENT_DATA); 

if (**name == NULL) 
menu_set(m, MENU_SELECTED, 1, 0); 

else 
menu_set(m, MENU_SELECTED, 2, 0); 

return (m); 

Revision A of 15 October 1986 



Appendix A - Example Programs (font menu) 369 

update_feedback() 
{ 

char buf[30]; 

sprintf(buf, "%S %s %s %S", bold, italic, family, size); 
panel_set(feedback_item, PANEL_LABEL_STRING, buf, 0); 

char * 
int to_str(n) 

char *r = malloc(4); 
sprintf(r, "%d", n); 
return (r); 

void 
open_fonts () 
{ 

cour = pf_open("/usr/lib/fonts/fixedwidthfonts/cour.r.l0"); 
serif = pf_open("/usr/lib/fonts/fixedwidthfonts/serif.r.l0"); 
apl = pf_open("/usr/lib/fonts/fixedwidthfonts/apl.r.l0"); 
cmr = pf_open("/usr/lib/fonts/fixedwidthfonts/cmr.b.8"); 
screen = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.ll"); 

Revision A of 15 October 1986 



Appendix A - Example Programs (resize demo) 371 

/***************************************************************************/ 
/* resize demo.c */ 
/***************************************************************************/ 

#include <suntool/sunview.h> 
#include <suntool/canvas.h> 
#include <suntool/scrollbar.h> 

Canvas Canvas 1, Canvas 2, Canvas_3, Canvas_4i 
Pixwin *Pixwin_1, *Pixwin_2, *Pixwin_3, *Pixwin_4i 
Rect framerecti 
PIXFONT *fonti 

extern char * sprintf()i 
/* 

* font macros: 
* font_offset (font) 

* 
* 
* 
* 
* font_height (font) 
*/ 

#define font_offset (font) 
#define font_height(font) 

/* 

gives the vertical distance between 
the font origin and the top left corner 
of the bounding box of the string displayed 
(see Text Facilities for Pixrects in the 
Pixrect'Reference Manual) 
gives the height of the font 

(-font->pf_char['n'] .pc_home.y) 
(font->pf_defaultsize.y) 

* SunView-dependent size definitions 
*/ 

#define LEFT MARGIN 5 /* margin on left side of frame */ 
#define RIGHT MARGIN 5 /* 
#define BOTTOM MARGIN 5 /* 
#define SUBWINDOW SPACING 5 /* 

/* 
* application-dependent size definitions 
*/ 

margin on right side of frame */ 
margin on bottom of frame */ 
space in between adjacent 
subwindows */ 

/* width in pixels of canvas 1 */ 
/* height in pixels of canvas 1 */ 

#define CANVAS 1 WIDTH 320 
#define CANVAS 1 HEIGHT 160 
#define CANVAS 3 COLUMNS 30 /* width in characters of canvas 3 */ 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (resize_demo) 373 

/* 
* catch resize 

* 
* interposed function which checks all input events passed to the frame 
* for resize events; if it finds one, resize() is called to refit 
* the subwindows; checking is done AFTER the frame processes the 
* event because if the frame changes its size due to this event (because 
* the window has been opened or closed for instance) we want to fit 
* the subwindows to the new size 
*/ 

static Notify_value 
catch_resize(frame, event, arg, type) 

Frame frame; 

/* 

Event *event; 
Notify_arg arg; 
Notify_event_type type; 

Notify_value value; 

value = not ify_next_event_fun c (frame, event, arg, type); 
if (event_id(event) == WIN_RESIZE) 

resize(frame); 
return(val~e); 

* resize -- fit the subwindows of the frame to its new size 
*/ 

resize (frame) 
Frame frame; 

Rect *r; 
int canvas_3_width; 
int stripeheight; 

/* the width in pixels of canvas 3 */ 
/* the height of the frame's name stripe */ 

/* if the window is iconic, don't do anything */ 

if «int)window_get(frame, FRAME_CLOSED» 
return; 

/* find out our new size parameters */ 

r = (Rect *) window_get(frame, WIN_RECT); 
framerect = *r; 
stripeheight = (int) window_get(frame, WIN_TOP_MARGIN); 

canvas_3_width = CANVAS_3_COLUMNS * font->pf_defaultsize.x 
+ (int) scrollbar_get(SCROLLBAR, SCROLL_THICKNESS); 

window_set (Canvas_2, 
WIN_X, 0, 
WIN_Y, 
WIN_WIDTH, 

0, 
framerect.r width - canvas 3 width 
- LEFT MARGIN - SUBWINDOW SPACING - -
- RIGHT_MARGIN, 
framerect.r_height - CANVAS_I_HEIGHT 
- stripeheight - SUBWINDOW SPACING -
BOTTOM_MARGIN, 

~\sun ~~ microsystems 
Revision A of 15 October 1986 



A.7. dctool 

Appendix A - Example Programs (dctool) 375 

dctool is a simple reverse-polish notation calculator which demonstrates how to 
use pipes to write a SunView-based front end for an existing non-SunView pro­
gram. dctool consists of a panel with buttons for each digit, the four arithmetic 
operations, and an enter key. The digits you hit are displayed in a message item 
and are sent via a pipe to dc( J), the UNIX desk calculator. When dc computes an 
answer, it is sent back to dctool via a second pipe and it is displayed. 

Note also the use of a single notify procedure for all of the digit buttons. The 
actual digit associated with each button is stored as the client data for each panel 
item, so the notify procedure can determine which button was pressed by looking 
at the client data. This value is then passed directly to dc. The operation buttons 
also all use a single notify procedure. 

When you run dctool, remember that it is a reverse-polish notation calculator. 
For instance, to compute 3 * 5 you must hit the buttons 3, Enter, 5, and * in that 
order. If you prefer infix notation, you could easily adapt dctool to use bc(J) 
instead of dc( J ). 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (dctool) 377 

window~ain_loop(frame); 

exit (0); 

static 
create-panel_items(panel) 

Panel panel; 

c; int 
char 
static void 
static struct 

name [2]; 
digit-proc(),op_proc(); 

int col, row; 
positions [10] 

0, 3 } , { 0, 0 
{ 0, 1 
{ 0, 2 

}; 

name [1] = , '; 
for (c = 0; c < 10; c++) { 

name [0] = c + '0'; 

} , 6, 0 }, 

} , 6, 1 } , 
}, 6, 2 } , 

12, 0 } , 
12, 1 } , 
12, 2 } 

digit_item[c]~= panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel, name, 3, 0), 
PANEL_NOT I FY_PROC, digit-proc, 
PANEL_CLIENT_DATA, (caddr_t) (c + '0'), 
PANEL_LABEL_X, ATTR_COL(positions[c] .col), 
PANEL_LABEL_Y, ATTR_ROW(positions[c] .row), 
0); 

add item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel, "+", 3, 0), 
PANEL_NOTIFY_PROC, op-proc, 
PANEL_CLIENT_DATA, (caddr_t) '+', 
PANEL_LABEL_X, ATTR_COL(18), 
PANEL_LABEL_Y, ATTR_ROW(O), 
0); 

sub_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel, 
PANEL_NOTIFY_PROC, op-proc, 
PANEL_CLIENT_DATA, (caddr_t) '-', 
PANEL_LABEL_X, ATTR_COL(18), 
PANEL_LABEL_Y, ATTR_ROW(1), 
0); 

"_II , 

mUl_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel, "*", 
PANEL_NOTIFY_PROC, op-proc, 
PANEL_CLIENT_DATA, (caddr_t) '*', 
PANEL_LABEL_X, ATTR_COL(18), 
PANEL_LABEL_Y, ATTR_ROW(2), 
0); 

div_item = panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel, "/", 
PANEL_NOTIFY_PROC, op-proc, 
PANEL_CLIENT_DATA, (caddr_t) '/', 
PANEL_LABEL_X, ATTR_COL(18), 
PANEL_LABEL_Y, ATTR_ROW(3), 
0); 

~\sun ~ microsystems 

3, 0), 

3, 0), 

3, O}, 

Revision A of 15 October 1986 



Appendix A - Example Programs (dctool) 379 

/* 

if (pipe (pipeto) < 0 I I pipe (pipefrom) < 0) { 
perror("calc"); 
exit(l); 

switch (childpid = fork(» { 

case -1: 
perror("calc") ; 
exit(l); 

case 0: 
/* use dup2 to set the 
dup2(pipeto[0), 0); 
dup2(pipefrom[1), 1); 

/* 

/* this is the child process */ 
child's stdin and stdout to the pipes */ 

* close all other fds (except stderr) since the child 
* process doesn't know about or need them 
*/ 

numfds = getdtablesize(); 
for (c = 3; c < numfds; c++) 

close(c); 

/* exec the child process */ 

execl("/usr/bin/dc", "dc", 0); 
perror("calc (child)"); /* shouldn't get here */ 
exit(l); 

default: /* this is the parent */ 
close(pipeto[O); 
close(pipefrom[l); 
tochild = pipeto[l]; 
fp_tochild = fdopen(tochild, "w"); 
fromchild = pipefrom[O]; 
fp_fromchild = fdopen(fromchild, "r"); 

/* 
* the pipe to dc must be unbuffered or dc will not get 
* any data until 1024 characters have been sent 
*/ 

setbuf(fp_tochild, NULL); 
break; 

* notify proc called whenever there is data to read on the pipe 
* from the child process; in this case it is an answer from dc, 
* so we display it 
*/ 

static Notify_value 
pipe_reader (frame, fd) 

Frame 
int 

frame; 
fd; 

Revision A of 15 October 1986 



A.8. typein 

Appendix A - Example Programs (typein) 381 

This program shows how to replace the functionality of the Graphics Tool and 
gfxsw package previously available under Sun Windows. typein provides a tty 
emulator for interaction with the user and a canvas to draw on. To demonstrate 
it, a simple application is included which allows the user to input coordinates in 
the tty emulator and then draws the vectors in the canvas. 

typein uses a tty subwindow and a canvas. Normally, the tty subwindow is used 
to allow a child process to run in a window; in this case, we would like the same 
process to write in that window. To accomplish this, we create two pipes and 
fork a child process called loopback. Loopback simply reads data from its stdin 
and one of the pipes, and sends it back out on the other pipe and stdout respec­
tively. The parent process (typein) uses dup2 to use the pipes as stdin and 
stdout, so that whatever it writes on stdout is sent to loopback which sends it to 
the tty emulator. When the user types something in the emulator, it is sent to 
loopback which sends it via a pipe to typein which reads it on stdin. 

NOTE When using this mechanism, be careful of the following problems. First, you 
must use the Notifier (unlike the old gfxsw). Second, if you use the standard I/O 
package, be sure to either use f flus h carefully or to remove all buffering with 
setbuf because the package will think you are sending data to a file and not to 
a tty. Finally, be sure you never block on a read because the program will hang 
(either use non-blocking I/O or only read one line at a time). 

In a future release of Sun View a better facility will be provided to accomplish the 
same functionality. 

Revision A of 15 October 1986 



Appendix A - Example Programs (typein) 383 

pw = canvas-pixwin(canvas); 

/* set up a notify proc so that whenever there is input to read on 
stdin (fd 0), we are called to read it */ 

printf("Enter first coordinate: "); 
fflush (stdout) ; 
window_main_loop(frame); 

/* this section implements a simple application which reads coordinates and 
draws vectors; it uses a state machine to keep track of what number to 
read next */ 

.define GET X 1 

.define GET Y 1 

.define GET X 2 

.define GET_Y_2 
int state = GET_X_1; 
int xl, y1, x2, y2; 

Notify_value 
read_input (client, fd) 
Notify_client client; 
int fd; 

char buf[512]; 

o 
1 
2 
3 

char ~ptr, *gets(); 

ptr = gets (buf); 

switch (state) { 
case GET X 1: 

/* only read one line per call so that we 
don't ever block */ 

if (sscanf (buf, "%d", &x1) ! = 1) 
printf("Illegal value!O? "); 
fflush(stdout); 

} else { 

break; 
case GET Y 1: 

printf("y? "); 
fflush (stdout) ; 
state++; 

if (sscanf(buf, "%d" , &y1) != 1) 
printf("Illegal value!O? "); 
fflush(stdout); 

} else { 

break; 
case GET X 2: 

printf("Enter second coordinate:O? "); 
fflush(stdout); 
state++; 

if (sscanf (buf, "%d", &x2) ! = 1) 
printf("Illegal value!O? "); 
fflush (stdout) ; 

Revision A of 15 October 1986 



A.9. Programs that 
Manipulate Color 

eoloredit 

Appendix A - Example Programs (typein) 385 

The following two programs work with color. You can run them on a mono­
chrome workstation to no ill-effect, but you won't see much of interest. 

The techniques employed by these two programs are explained in the Color sec­
tion of Chapter 7, Imaging Facilities: Pixwins. 

When using these programs, try invoking them with different colors using the 
frame's command line arguments. Also, run showeolor (listed in the pixwin 
chapter) to see how the screen's colormap changes as different color programs 
are run simultaneously. 

The first program, eoloredit, puts up sliders that let the user modify its colors. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (coloredil) 387 

/* create a reusable attribute list for my slider attributes */ 
sliderdefaults = attr_create_list( 

PANEL_SHOW_ITEM, 
PANEL_MIN_VALUE, 
PANEL_MAX_VALUE, 
PANEL_SLIDER_WIDTH, 
PANEL_SHOW_RANGE, 
PANEL_SHOW_VALUE, 
PANEL_NOTIFY_LEVEL, 
0) ; 

TRUE, 
0, 
255, 
512, 
TRUE, 
TRUE, 
PANEL_ALL, 

"Edit colormap:", 
MYCANVAS, 

panel_create_item(panel, PANEL_CYCLE, 
PANEL_LABEL_STRING, 
PANEL_VALUE, 
PANEL_CHOICE_STRINGS, 
PANEL_NOTIFY_PROC, 
0); 

"Frame" , 
editcms, 

"Panel" , "Canvas", 0, 

text item panel_create_item{panel, PANEL_TEXT, 
PANEL_VALUE_DISPLAY_LENGTH, 
PANEL_VALUE_STORED_LENGTH, 
0); 

color item panel_create_item(panel, PANEL_SLIDER, 
ATTR_LIST, 
PANEL_LABEL_STRING, 
PANEL_NOTIFY_PROC, 
0); 

red item panel_create_item{panel, PANEL SLIDER, 
ATTR_LIST, 
PANEL_LABEL_STRING, 
PANEL_NOTIFY_PROC, 
0); 

green_item panel_create_item(panel, PANEL_SLIDER, 
ATTR_LIST, 

CMS_NAMESIZE, 
CMS_NAMESIZE, 

sliderdefaults, 
"color:", 
set_color, 

sliderdefaults, 
red:" , 

change_value, 

sliderdefaults, 
PANEL_LABEL_STRING, "green:", 
PANEL_NOTIFY_PROC, change_value, 
0); 

blue item panel_create_item(panel, PANEL_SLIDER, 
ATTR_LIST, sliderdefaults, 
PANEL_LABEL_STRING, " blue:", 
PANEL_NOTIFY_PROC, change_value, 
0); 

panel_create_item(panel, PANEL_BUTTON, 
PANEL_LABEL_IMAGE, 
panel_button_image(panel, "Cycle colormap", 12, NULL), 
PANEL_NOTIFY_PROC, cycle, 
0); 

window_fit(panel); 
window_fit_width(base_frame); 

/* free the slider attribute list */ 
free(sliderdefaults); 

.\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (coloredit) 389 

pw_getcolormap(pw, 0, cms.cms_size, red, green, blue); 

panel_set (color_item, 
PANEL_VALUE, 0, 
PANEL_MAX_VALUE, cms.cms size - 1, 
0) ; 

/* call the proc to set the colors */ 
set_color (NULL, 0, NULL); 

int cur_color; 
/* ARGSUSED */ 
static void 
set_color (item, color, event) 

Panel item item; 
unsigned int color; 
struct inputevent *event; 

panel_set_value(red_item, red[color]); 
panel_set_value(green_item, green[color]); 
panel_set_value(blue_item, blue[color]); 
cur color = (unsigned char) color; 

/* ARGSUSED */ 
static void 
change_value(item, value, event) 

Panel item item; 
int value; 
struct inputevent *event; 

if (item == red_item) 
red [cur_color] = (unsigned char) value; 

else if (item == green_item) 
green [cur_color] = (unsigned char) value; 

else 
blue [cur_color] = (unsigned char) value; 

/* pw_putcolormap expects arrays of colors, but this only sets one color */ 
pw_putcolormap(pw, cur_color, 1, 

/* ARGSUSED */ 
static void 
cycle (item, event) 

Panel item 
Event 

&red[cur_color], &green[cur_color) , &blue[cur_color]); 

item; 
*event; 

pw_cyclecolormap(pw, 1, 0, mycms_sizes[cur_cms]); 

.\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (animaJecolor) 391 

/***************************************************************/ 
/* animatecolor.c */ 
/***************************************************************/ 

iinclude <suntool/sunview.h> 
iinclude <suntool/canvas.h> 

/***************************************************************/ 
/* You set MYCOLORS & MYNBITS according to how many colors */ 
/* you are using; rest is just boilerplate, more or less; */ 
/* after it you define your colors. */ 
/***************************************************************/ 
/* 
* define the colors I want in the canvas; max 16, must be a 
* power of 2 
*/ 

#define MYCOLORS 
/* 

4 

* define the number of bits my colors take up -- MYCOLORS log 2; 
* maximum for animation to be possible is half screen's bits per 
* pixel -- '4 bits on current Sun color displays. 
*/ 

#define MYNBITS 
/* 

2 

* to "hide" one set of planes while displaying another takes a 
* large cms -- the square of the number of colors 
*/ 

#define MYCMS SIZE (MYCOLORS * MYCOLORS) 

/* 
* when you write out a color pixel, you must write the color in 
* the appropriate planes. This macro writes it in both sets 
*/ 

#define usecolor(i) ( (i) «i) « colorstuff.colorbits) 

struct colorstuff { 

}; 

/* desired colors */ 
unsigned char redcolors[MYCOLORS]; 
unsigned char greencolors[MYCOLORS]; 
unsigned char bluecolors[MYCOLORS]; 
/* number of bits the desired colors take up */ 
int colorbits; 
/* colormap segment size */ 
int cms_size; 
/* 2 colormaps to support it */ 
unsigned char red[2] [MYCMS_SIZE]; 
unsigned char green[2] [MYCMS_SIZE); 
unsigned char blue[2} [MYCMS_SIZE}; 
/* 2 masks to support it */ 
int 
int enable_1_mask; 
/* current colormap -- 0 or 1 */ 
int cur_buff; 
/* plane mask to control which planes are written to */ 
int 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (animalecolor) 393 

/* draw the squares, then swap the colormap to animate them */ 
/* ARGSUSED */ 
static Notify_value 
my_draw (client, itimer_type) 

Notify_client client; 
int itimer_type; 

idefine SQUARESIZE 
idefine MAX VEL 

50 
(SQUARESIZE / 5) 

/* number of squares to animate */ 
idefine NUMBER (MYCOLORS - 1) 

static int 
static int 
static int 
int 

posx[NUMBER], posy[NUMBER]; 
vx [NUMBER], vy [NUMBER] ; 
prevposx[NUMBER], prevposy[NUMBER]; 
i; 

/* set the plane mask to be that which we are not viewing */ 
pw-putattributes(pw, (colorstuff.cur_buff == 1) ? 

& (colorstuff.enable_1_mask) : &(colorstuff.enable_O_mask»; 

/* write to invisible planes */ 
for (i = 0; i < NUMBER; i++) { 

if (!times_drawn) { 
/* first time drawing */ 

posx[i] = (i + 1) * 100; 
posy[i] = 50; 
vx[i] r (-MAX_VEL, MAX_VEL) ; 
vy[i] = r (-MAX_VEL, MAX_VEL) ; 

if (abs(vx[i]) > MAX_VEL) { 
printf("Weird value (%d) for vx[%d]O, vx[i], i); 
vx[i] = r(-MAX_VEL, MAX_VEL); 

posx[i] = posx[i] + vx[i]; 
if (posx[i] < 0) { 

/* Bounce off the left wall */ 
posx[i] = 0; 
vx[i] = -vx[i]; 

else if (posx[i] > Xmax - SQUARES IZE) 
/* Bounce off the right wall */ 
vx[i] = -vx[i]; 
posx[i] = posx[i] + vx[i]; 

posy[i] = posy[i] + vy[i]; 
if (posy[i] > Ymax - SQUARES IZE) 

/* Bounce off the top */ 
posy[i] = Ymax - SQUARESIZE; 
vy[i] = -vy[i]; 

else if (posy[i] < 0) { 
/* Bounce off the bottom */ 
posy[i] = 0; 
vy[i] = -vy[i]; 

/* draw the square you can't see */ 
pw_rop(pw, posx[i], posy[i], SQUARESIZE, SQUARESIZE, 

PIX_SRC I PIX_COLOR(usecolor(i + 1», NULL, 0, 0); 

~\sun ~ microsystems 
Revision A of 15 October 1986 



Appendix A - Example Programs (animatecolor) 395 

Ymax - height - 1; 

/* 
* Do double buffering by changing the write enable planes and 
* the color maps. The application draws into a buffer which is 
* not visible and when the buffers are swapped the invisible one 
* become visible and the other become invis. 

* 
* Start out drawing into buffer 1 which is the low-order. buffer; 
* ie. the low-order planes. Things would not work if this is not 
* done because the devices start out be drawing with color 1 
* which will only hit the low-order planes .. 

* 
* Init double buffering: Allocate color maps for both buffers. Fill 
* in color maps. 
*/ 

doublebuff_init(colorstuff) 
struct colorstuff *colorstuff; 

/* 
* user has defined desired colors. Set them up in the two 
* colormap segments 
*/ 

int 
int 
int 
char 

index_1; 
index_2; 
i; 
cmsname[CMS_NAMESIZE]; 

/* name colormap something unique */ 
sprintf (cmsname, "animatecolor%D", getpidO); 
pw_setcmsname(pw, cmsname); 

/* 
* for each index in each color table, figure out how.it maps 
* into the original color table. 
*/ 

for (i - 0; i /< colorstuff->cms_size; i++) { 
/* 

* first colormap will show color X whenever low order 
* bits of color index are X 
*/ 

index 1 
/* 

i & «1 « colorstuff->colorbits) - 1); 

* second colormap w.ill show color X whenever high order 
* bits of color index are X 
*/ 

index 2 - i » colorstuff->colorbits; 

colorstuff->red[O] [i] - colorstuff->redcolors[index_1]; 
colorstuff->green[O] [i] - colorstuff->greencolors[index_l]; 
colorstuff->blue[O] [i] - colorstuff->bluecolors[index_1]; 

colorstuff->red[1][i] - colorstuff->redcolors[index_2]; 
colorstuff->green[1] [i] - colorstuff->greencolors[index_2]; 
colorstuff->blue[1] [i] - colorstuff->bluecolors[index_2]; 

Revision A of 15 October 1986 



A.tO. Two gfx 
subwindow-based 
programs converted 
to use Sun View 

bounce 

Appendix A - Example Programs (bounce) 397 

The following two programs are the Sun demo programs bouncedemo and 
spheresdemo converted from using gfxsw_init () to canvases in SunView. 

The co~e for the SunWindows-based programs is in lusrlsrclsunlsuntools so you 
can contrast that code with the Sun View versions printed here. 

Techniques used to convert programs such as these to Sun View are described in 
appendix C, Converting SunWindows Programs to SunView. 

The first program is bouncedemo converted to draw in a canvas and to call 
notify_dispatch () periodically. Like the original bouncedemo, it restarts 
drawing after any damage (if not retained) or resizing. 

Revision A of 15 October 1986 



Restart: 

Appendix A - Example Programs (bounce) 399 

0); 
for (--argc, ++argv; *argv; argv++) { 

/* 
* handle the arguments that gfxsw_init(O, argv) used to do 
* for you 
*/ 

if (strcmp(*argv, "-r") 0) 
retained = 1; 

if (strcmp(*argv, "-n") 0) 
if (argc > 1) { 

(void) sscanf (* (++argv), "%hD", &gfx->gfx_reps); 
argc++; 

canvas window_create (frame, CANVAS, 
CANVAS_RETAINED, retained, 
CANVAS_RESIZE_PROC, resize-proc, 
WIN_ERROR_MSG, "Can't create canvas", 
0); 

/* only need to define a repaint proc if not retained */ 
if (! retained) { 

window_set (canvas, 
CANVAS_REPAINT_PROC, repaint-proc, 
0); 

pw canvas-pixwin(canvas); 

gfx->gfx-pixwin = canvas_pixwin(canvas); 

/* Interpose my proc so I know that the tool is going away. */ 
(void) notify_interpose_destroy_func(frame, my_notice_destroy); 

/* 
* Note: instead of window_main_loop, just show the frame. The 
* drawing loop is in control, not the notifier. 
*/ 

window_set(frame, WIN_SHOW, TRUE, 0); 

rect (Rect *) window_get(canvas, WIN_RECT); 
Xmax rect_right(rect); 
Ymax rect_bottom(rect); 
if (Xmax < Ymax) 

size Xmax / 29 + 1; 
else 

size Ymax / 29 + 1; 
/* 

* the following were always 
* is confused 
*/ 

x 0; 

y = 0; 

vx = 4; 
vy = 0; 
ylast = 0; 

on this point 
o in a gfx subwindow (bouncedemo 

Revision A of 15 October 1986 



Appendix A - Example Programs (bounce) 401 

Reset: 

if (vy == 0) 
goto Reset; 

for (z = 0; z <= 1000; z++); 
continue; 

if (--gfx->gfx_reps <= 0) 
break; 

x = 0; 
y = 0; 
vx = 4; 
vy = 0: 
ylast = 0: 
ylastcount 0: 

static void 
repaint_proc( /* Ignore args */ ) 
{ 

/* if repainting is required, just restart */ 
gfx->gfx_flags 1= GFX_RESTART; 

static void 
resize-proc( /* Ignore args */ ) 
{ 

gfx->gfx_flags 1= GFX_RESTART; 

/* this is straight from the Notifier chapter */ 
static Notify_value 
rny_not ice_dest roy (frame, status) 

Frame frame: 
Destroy_status status; 

if (status != DESTROY_CHECKING) 
/* set my flag so that I terminate my loop soon */ 
my_done = 1: 
/* Stop the notifier if blocked on read or select */ 
(void) notify_stop(); 

/* Let frame get destroy event */ 
return (notify_next_destroy_func(frame, status»: 

Revision A of 15 October 1986 



Appendix A - Example Programs (spheres) 403 

1***************************************************************1 
1* spheres.c *1 
1* Draw a bunch of shaded spheres. Algorithm by Tom Duff, *1 
1* Lucasfilm Ltd., 1982. Old SunWindows spheresdeom program *1 
1* revised to use SunView canvas instead of gfxsw. *1 
1***************************************************************1 

#include <suntool/sunview.h> 
#include <suntool/canvas.h> 
#include <sunwindow/cms_rainbow.h> 

static Notify_value my_frame_interposer(); 
static Notify_value my_animation(); 
static void sphere(); 
static void demoflushbuf(); 

#define ITlMER NULL «struct itimerval *)0) 

1* (NX, NY, NZ) is the light source vector -- length should be 100 *1 
#define NX 48 
#define NY -36 
#define NZ 80 

#define BUF BITWIDTH 16 

static struct pixrect *mpr; 
static int width; 
static int height; 
static int counter; 
static Frame frame; 
static Canvas canvas; 
static int cmssize; 
static Pixwin *pw; 

static short spheres_image [256] 
#include "spheres.icon" 
} ; 

mpr_static(spheres-pixrect, 64, 64, 1, spheres_image); 

main (argc, argv) 
int 
char 

char 
int 
Icon 

argc; 
**argv; 

**args; 
usefullgray 
icon; 

0; 

icon icon_create (ICON_IMAGE, &spheres-pixrect, 0); 
frame = window_create(NULL, FRAME, 

FRAME_LABEL, 
FRAME_ICON, 
FRAME ARGC PTR _ ARGV , 
0); 

canvas = window_create (frame, CANVAS, 
CANVAS_AUTO_EXPAND, 
CANVAS_AUTO_SHRINK, 
CANVAS_AUTO_CLEAR, 

0, 
0, 
0, 

"spheres", 
icon, 
&argc, argv, 

Revision A of 15 October 1986 



Appendix A - Example Programs (spheres) 405 

for (y - -maxy; y <- maxy; y++) { 
mark = r(O, radius * 100) <= NX * x + NY * Y 

+ NZ * sqroot(radius * radius - x * x - y * y); 
if (mark) 

pr-put(mpr, xbuf, y + yO, color); 

if (xbuf == (mpr->pr_width - 1» { 
demoflushbuf(mpr, PIX_SRC I PIX_DST, x + xO - mpr->pr_width, pw); 
xbuf = 0; 
x++; 
return (NOTIFY_DONE); 

x++; 

if (x >= radius) 
demoflushbuf(mpr, PIX SRC 

return (NOTIFY_DONE); 

static void 
demoflushbuf(mpr, op, x, pixwin) 

struct pixrect *mpr; 
int op; 
int 
struct pixwin 

x; 
*pixwin; 

register u_char *sptr, *end; 

PIX_DST, x + xO - (xbuf + 2), pw); 

sptr = mprd8_addr(mpr_d(mpr), 0, 0, mpr->pr depth); 
end = mprd8_addr(mpr_d(mpr), mpr->pr_width - 1, 

mpr->pr_height - 1, mpr->pr_depth); 
/* Flush the mpr to the pixwin. */ 
pw_write(pixwin, x, 0, mpr->pr_width, mpr->pr_height, op, 

mpr, 0, 0); 
1* Clear mpr with O's */ 
while (sptr <= end) 

*sptr++ = 0; 
/* Let user interact with tool */ 
notify_dispatch(); 

static int 
setuprainbowcolormap(pw) 

Pixwin *pw; 

register u char red[CMS_RAINBOWSIZE]; 
register u char green[CMS_RAINBOWSIZE]; 
register u char blue[CMS_RAINBOWSIZE]; 

/* Initialize to rainbow cms. */ 
pw_setcmsname(pw, CMS_RAINBOW); 
cms_rainbowsetup(red, green, blue); 
pw-putcolormap(pw, 0, CMS_RAINBOWSIZE, red, green, blue); 
return (CMS_RAINBOWSIZE); 

static int 
setupfullgraycolormap(pw) 

~\Slln ,~ microsystems 
Revision A of 15 October 1986 



B 
Sun User Interface Conventions 

Sun User Interface Conventions ....................................................................................... 409 

B.1. Program Names ............................................................................................................... 409 

B.2. Frame Headers .................................................................................................................. 409 

B.3. Menus .................................................................................................................................... 409 

Capitalization .................................................................................................................. 409 

Menus Showing Button Modifiers ...................................................................... 410 

Interaction with Standard Menus ......................................................................... 410 

Enable/Disable Menu Items .................................................................................... 410 

Multi-Column Menus ................................................................................................. 410 

B.4. Panels ..................................................................................................................................... 410 

Buttons ................................................................................................................................ 411 

List of Non-Exclusive Choices ............................................................................. 411 

List of Exclusive Choices ........................................................................................ 411 

Binary Choices ............................................................................................................... 412 

Text Items ......................................................................................................................... 412 

Allocation of Function Between Buttons and Menus .............................. 412 

B.5. Mouse Button Usage ..................................................................................................... 413 

Allocation of Function Between Mouse Buttons ....................................... 413 

U sing Mouse Buttons for Accelerators ............................................................ 413 

B.6. Cursors .................................................................................................................................. 413 

B.7. Icons ....................................................................................................................................... 413 



B.l. Program Names 

B.2. Frame Headers 

B.3. Menus 

Capitalization 

B 
Sun User Interface Conventions 

The window programs released by Sun follow some standard user interface con­
ventions. These conventions are described here so that, if you choose, you can 
design your interfaces with them in mind. 

Here are some guidelines for naming programs: 

D A window-based version of an existing tty-based program has tool appended 
to the end of the existing program. For example mailtool is a window-based 
version of the tty-based program mail. 

D A program without a tty version should not end with tool. Thus the icon edi­
tor is called icon edit and not icontool. 

D Since tools are normally invoked from command files or menus, descriptive 
names are better than short cryptic ones. Thus iconedit is better than ied. 

The frame header should contain the name of the program, optionally followed 
by a dash and additional information, as in: 

rDEI AdU ..... w,gfifiMt.! 

The words in menus should be capitalized as they would be in a chapter heading: 

Close 
Moye .. 
Resize =+ 
Expose 
Hide 
Redisplay 
Quit 

This convention can be bent when the names in the menu correspond to already 
existing, non-capitalized command names. 

I 

~\sun ,~ microsystems 
409 Revision A of 15 October 1986 



Buttons 

List of Non-Exclusive Choices 

List of Exclusive Choices 

Appendix B - Sun User Interface Conventions 411 

The proper use of buttons is to allow the user to initiate commands. Button items 
should not be used to represent categories, modes or options - for these kinds of 
choices that imply a change of state, you should use toggle, choice or cycle 
items, as described in the next three sections. 

When creating a button, use the routine pane I_butt on_image () to create 
a button-like image, as in: 

[ Dump Screen) 

As with menu entries, capitalize buttons unless the button name matches some­
thing else (for example, dbx commands in dbxtool). If the button's meaning can 
be modified by I CTRLJ or I SHIFT) these modifiers should be indicated in the 
button'~ menu. (For an example, see the picture of the RepJymenu from mail­
tool, at the top of the preceding page.) 

In most cases, a button will remain visible all the time. However, when a tool 
has different states, and a button can only be used in some of those states, it is 
usually best to make the button invisible when it can not be invoked. Thus in 
mailtool, the I Cancel] button only appears when a letter is being composed. 

A list of choices in which more than one choice can be selected at a time is best 
implemented with the item type PANEL_TOGGLE. The default for toggles is a 
list of check boxes: 

Optional Software: 

lit Database 

o Demos 

IitDocument Preparation Tools 

o Games 

lit Product1 vi ty Tools 

The example shows a vertical list; vertical or horizontal are both acceptable .. 

A list of choices in which only one choice can be selected at a time can be 
displayed with all choices visible or with only the current choice visible. To 
show all the choices, use the item type PANEL _ CHO ICE. The default for 
choice items is a list of square pushbuttons, with the current choice marked by a 
darkened pushbutton: 

Drawi ng Mode: rg Poi nt lill i ne rg Rectang 1 e u:::J Ci rc 1 e rg Text 

To show only the current choice, use PANEL_CYCLE. This item type provides 
a symbol consisting of two circular arrows, which indicate to the user that he can 
cycle through choices, and serves to distinguish cycle items from text items: 

Category C SunVi ew 

Revision A of 15 October 1986 



B.S. Mouse Button Usage 

Allocation of Function 
Between Mouse Buttons 

Using Mouse Buttons for 
Accelerators 

B.6. Cursors 

B.7. Icons 

Appendix B - Sun User Interface Conventions 413 

Use of mouse buttons should be consistent with the rest of SunView. The left 
button should only be used to make selections. The right button should only be 
used to bring up menus.l** 

There is some discretion involved in the use of the middle button, however. In 
most of Sun View, the middle button is used to adjust a selection. In text and 
shell windows, for example, the left button is used to mark the starting point of a 
selection, and the middle button is used to extend the selection. Similarly, in a 
pixel editor that allowed you to select regions, clicking the left button on a region 
could select just that region, and clicking the middle button on another region 
could add that region to the selection. On the other hand, in a tool that allowed 
you to move objects, the middle button could move an object, and ( CTRL] mid­
dle button could re-size it, which would be consistent with the way icons and 
frames are moved and re-sized. As a third alternative, in the iconedit drawing 
program the left button draws pixels (which is a kind of selecting) and the middle 
button erases. 

The best use of the middle button is still being discussed. Future versions of this 
guideline may specify more exactly how the middle button should be used. For 
now, the most common use is to extend the selection, and the next-most common 
is to move a graphic object. 

It is acceptable to use the mouse buttons as accelerators for common operations. 
The only caveat is that any accelerators should also be available from a menu or 
panel item. Thus in Sun View clicking on a tool with the middle button moves 
the tool, but you can also move a tool using the frame menu. 

Some operations, on the other hand, cannot be invoked from a menu or panel 
button. In such cases the mouse is the only means of invoking the operation. For 
example, in iconedit you use the mouse for drawing, and the drawing operations 
are not available from a menu or button. 

An application program should not do anything other than change the shape of 
the cursor when the cursor is moved into a new window. textedit presents a good 
example of using the cursor to alert the user that input is interpreted differently in 
different regions: The cursor is a thin diagonal arrow in the textsubwindow, a fat 
horizontal arrow in the scrollbar, and a diamond in the scrollbar buttons. 

Tools should pack as much information as possible into their icons. clock and 
perfmeter are examples of tools that make good use of icon real estate. textedit is 
an example of a tool that could make better use of its icon. For example, it could 
contain a representation of the text being editing in a 1 point font. Small as that 
is, you can tell at a glance if you are editing C code or a mail message. 

97 People who want to hold the mouse with their left hand can put the "menu button" on the left and the 
"select button" on the right by setting the Left_Handed option in the Input category of defaultsedit. 

Revision A of 15 October 1986 



c 
Converting Sun Windows Programs to 
SunView 

Converting SunWindows Programs to SunView ................................................. 417 

C.1. Converting Tools ............................................................................................................ 418 

General Comments ...................................................................................................... 418 

Programming Style Changes .................................................................................. 418 

Object typedefs ................................................................................................ 418 

Attribute Value Interface .................................................................................... 418 

New Objects ..................................................................................................................... 419 

Canvas subwindows ............................................................................................... 419 

Text subwindows ..................................................................................................... 419 

Scrollbars ..................................................................................................................... 419 

Objects in Common between Sun View and Sun Windows ................... 420 

Cursors ........................................................................................................................... 420 

Icons ................................................................................................................................ 420 

Menus ............................................................................................................................. 420 

Input Events ................................................................................................................ 421 

Setting up Input Event Handling .................................................................... 421 

Sigwinch handling .................................................................................................. 422 

Windows ....................................................................................................................... 422 

Panels ............................................................................................................................. 422 

Signals ........................................................................................................................... 423 

Prompts ......................................................................................................................... 423 

C.2. Converting gfxsubwindow-based code ............................................................. 425 

Basic Steps ........................................................................................................................ 425 



c 
Converting Sun Windows Programs to 

SunView 

This appendix gives some guidelines for converting programs written using 
Sun Windows to SunView. There are two classes of programs covered: those 
that create a tool and subwindows, and programs that call gfxsw_init () to 
take over an existing window or the console. 

Programs that fall outside these classes are probably UNIX style programs that do 
not use windows at all. The conversion of such programs is in effect the subject 
of this whole manual. If you want to convert such a program to Sun View, pay 
particular attention to the SunView Model chapter, and the specific discussion of 
Notifier interaction in Porting Programs to SunView in the Notifier chapter. You 
may also find some of the discussion in the Converting gfxsubwindow-based 
code section of this appendix helpful. 

417 Revision A of 15 October 1986 



New Objects 

Canvas subwindows 

Text subwindows 

Scrollbars 

Appendix C -Converting SunWindows Programs to SunView 419 

Most of the data types in the above list are objects new in Sun View. Many 
objects in SunWindows correspond to objects in SunView, for example: 

tool 
ttysw 

~ Frame 
~ Tty 

Some objects such as the graphics subwindow and empty subwindow are not 
supported in Sun View98. There are new objects that partially take their place. 

The canvas sub window is a general-purpose drawing subwindow, which can 
replace gfx sub windows and empty subwindows. The size of the canvas you 
draw on need not be the same as the size of the window it is displayed in; you 
can create scrollbars to let the user adjust the visible part of the canvas. For a 
demonstration of the various canvas attributes, run the program 
/usr/demo/canvas demo 

These allow for the display and editing of text in a scrollable window. The user 
can perform various actions on the text, including saving the text, searching in 
the text, and editing the text without the programmer having to deal with these 
interactions. 

Since there was no such 'window in Sun Windows, your application may have had 
to use a gfx subwindow, a set of panel message items, or some strange technique 
involving ttysw_input () or piping to a tty subwindow to display text; the 
text subwindow can replace all these uses. 

Scrollbars can be attached to windows. In particular, the use of scrollbars with 
retained canvases makes it very easy to draw a fixed-size image without regard 
for window size changes. 

98 You can still compile and run code that uses these, but Sun does not intend to develop them further. 

Revision A of 15 October 1986 



NOTE 

Input Events 

Appendix C -Converting SunWindows Programs to SunView 421 

Menus also have their own routines and are created via function calls instead of 
being user-loaded data structures. They use the pointer type Menu for their han­
dles instead of struct menuptr. One way to create them is to write a spe­
cial menu _ ini t () proc which loads them into their structures correctly. In 
your menu _ ini t ( ) , you have something like 

ml items 

0) ; 

menu_create < 
MENU_STRING_ITEM, "insert", 
MENU_STRING_ITEM, "copy", 
MENU_STRING_ITEM, "replace", 
MENU_STRING_ITEM, "move", 
MENU_STRING_ITEM, "delete", 
MENU_STRING_ITEM, "HELP", 

INSERT, 
COPY 
REPLACE, 
XLATE , 
DELETE, 
DRAW_HELP, 

Menu values from menu_get () or menu_show () are returned as 
caddr _ t 'So Be sure your types match. 

The old menu_display () and the new menu_show () routines have a dif­
ferent order for the arguments. 

The inputevent structure has not changed. However, you no longer have to 
generate events yourself in "selected" routines via calls to 
input _ readevent ( ). Instead, windows now have event handlers that are 
passed pointers to Event structures. 

There are a number of macros for making input events easier to deal with in Sun­
View, so instead of having something like ie->ie_code you have 
event _ id (ie) , resulting in more readable code. 

Event types are not pointers, so you have to distinguish between 

Event *ie; 

and 

Event ie; 

in your code. You can use either, because the event functions don't just manipu­
late a handle as, for example, the cursor functions do. See Object Handles in 
Chapter 3, Programmatic Interface, for an explanation of when handles are 
pointers and when not. 

Setting up Input Event Handling All the input events can be set up from the window_create () call or 
window_set () calls. Calls to win_ *inputmask () are all replaced by 
these window_set () and window_create () calls. 

CAUTION 

The distinction between "pick" and "keyboard" events is new in SunView, 
having been added to support the notion of a split input focus. 

Be careful that when you are setting mouse events, you are modifying the 
WIN _ * _PI CK _EVENT S and when you are setting keyboard events you 
modify WIN _ * _ KE YBOARD _EVENT S. You may get inconsistent results if 
you modify pick events on the keyboard mask. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Signals 

Prompts 

Appendix C - Converting Sun Windows Programs to Sun View 423 

If you are catching signals, then you should read the documentation on signals in 
the Restrictions section of Chapter 16, The Notifier. There are several that the 
Notifier now catches on your behalf. 

You should no longer be catching S I GWINCH signals. If you do, your program 
may never appear on the screen as it will start catching the signals and redrawing 
endlessly on the screen, which may not be visible. 

Instead of using the menuyrompt () facility of SunWindows, you can use 
popup subframes and window_loop (popup_frame) when prompting the 
user. One of the example programs in Chapter 4, Windows, uses these to imple­
ment a confirmer popup. 

menu yrompt () is documented here for completeness. The definitions used 
by menu_prompt() are: 

struct prompt { 
Rect prt_recti 
Pixfont *prt_fonti 
char *prt_texti 

menu-prompt(prompt, event, windowfd) 
struct prompt *prompti 
struct inputevent *eventi 
int windowfdi 

menuyrompt () displays the string addressed by prompt->prt_text 
using the font prompt->prt_font. prompt->prt_rect is relative to 
windowfd. Ifeitherthe r_width or the r_height fields of 
prompt->prt_rect has the value PROMPT_FLEXIBLE, that dimension is 
chosen to accommodate all the characters in prompt->prt_text. 

The fullscreen access method is used to display the prompt. After displaying the 
prompt, menu yrompt () waits for any input event other than mouse motion. 
It then removes the prompt, and returns the event which caused the return in 
event. windowfd is the file descriptor of the window from which input is 
taken while the prompt is up. 

Revision A of 15 October 1986 



C.2. Converting 
gfxsubwindow-based 
code 

Basic Steps 

Replacing Tool Interaction 

Styles of Damage Checking 

Either the Notifier Takes Over 

Appendix C - Converting SunWindows Programs to SunView 425 

Programs that run in gfxsubwindows are designed to take over an existing win­
dow. In SunView you must create a tool for such programs to run in. One limi­
tation of this approach is that the Sun View version of the application must run 
under suntools; the old gfxsw_init () call would create a SunWindows 
environment if run on the "bare" Sun console. One major advantage gained by 
moving to Sun View is that your code can use scrollbars. 

o Include <suntool/ sunview. h> and <suntool/ canvas. h. 

o Remove all window-related #include statements; these will probably be 
included by sunview. h. 

o Declare a Frame and a Canvas. 

o Replace gfxsw _ ini t () with calls to create the frame and canvas. 

Many gfx subwindow programs (and many of the Sun demos) call 
gfxsw_init () to take over a window, then run in a loop as they compute and 
draw an image in the gfx subwindow. At some point in the loop they check for 
damage to or alteration of the size of the gfx subwindow and handle it accord­
ingly. 

In Sun View, the coexistence of your program with the window system is less 
hidden from you. Read the chapter SunView Model to understand how this coex­
istence works. In converting programs, you must ensure the Notifier runs at reg­
ular intervals so that window events such as close, quit, etc. are handled 
appropriately. 

Consult the chapter on the Notifier for more information. 

You can either ( 1) set tip your program so that, after initialization, control passes 
to the Notifier, which you have set up to call your imaging/computation routine 
periodically, or (2) let control continue to pass to your code, and change the pro­
gram to call the Notifier at regular intervals. 

In the first case, you set up your imaging/computation routine as a function that 
is called when a timer expires. Do this by calling 
notify_set_itimer_func () . If you want your imaging/computation rou­
tine to blaze away non-stop (causing other programs to run more sluggishly), you 
request the timer function be called as soon as the Notifier has handled window 
events for you by giving the timer the special value 
&NOTIFY POLLING ITIMER. 

(void) notify_set_itimer_func(frame, my_animation, 
ITIMER_REAL, &NOTIFY_POLLING_ITIMER, ITIMER_NULL); 

If your code sleep () 's on a regular basis, then you should be able to modify it 
so that the Notifier calls your imaging/computation routine at the same interval. 

The program spheres in Appendix A, Example Programs, is an example of this 
style of interaction. 

~\sun ,~ microsystems 
Revision A of 15 October 1986 



Finishing Up 

Miscellaneous 

Appendix C -Converting SunWindows Programs to SunView 427 

canvas you draw in are available through the canvas attributes CANVAS _WIDTH 
and CANVAS HEIGHT. The fields of the gfx->gfxsw_rect correspond to 
these attributes as follows: 

coord 
short 

r_left, r_top; 
r_width, r_height; 

are both = 0 
are the CANVAS WIDTH and 

CANVAS HEIGHT attributes. 

As described above, you can use your own GFX _RESTART and 
GFX_REPAINT flags. 

If you care about the gfxsw command line arguments, insert code into your 
program's argv,argc parsing loop to handle the gfx options that used to be 
taken care of for you. The bounce program has reasonable code to do this. 

If your imaging routine is in control and periodically calls the Notifier, then when 
the window is quit your routine must know that this has occurred. Otherwise, the 
imaging routine will continue to draw in a window that has been destroyed, and 
you will see error messages like 

WIN ioctl number C0146720: Bad file number 

until you kill the program. 

What you must do is interpose in front of the frame's destroy event handler so 
that your program will know when the frame goes away. See the item on Getting 
out in Porting Programs to SunView in the Notifier chapter. 

If your program exits on its own, then it can call window_done () to destroy 
its windows. This will invoke your interposed notice-destroy routine (which may 
or may not matter depending on what it does). It will also call the standard 

Press the left mouse button to confirm Quit ... 

continner unless you set FRAME _NO _ CONF IRM. 

gfxsw_getretained () is equivalent to the CANVAS_RETAINED attri­
bute. Canvases are retained by default. 

gfxsw_init () doesn't consume the gfxsw command line options -r, -n 
Number _of_repetitions, etc; your code may do strange things with its arguments 
to deal with this. 

Revision A of 15 October 1986 



Index 

A 
action procedure for menu item, 191 
alarm, 247 
ASCII events, 77 
asynchronous signal notification, 255 
ATTR_COL,50, 140,271 
ATTR _ COLS, 272 
ATTR_LIST,273 
ATTR_ROW,50,140,271 
ATTRYOWS, 272 
attribute functions 

attr_create_list (), 272 
attribute lists 

creating reusable lists, 272 
default attributes, 273 
overview, 28 

attribute ordering, 51 

B 
base frame, 16 
boundary manager, 19 
BUT (), 77 
button image constructor, 148 
button panel item, 138, 148 thru 150 
buttons with menus, 149 

C 
callback style of programming, 20 
canvas 

automatic sizing, 65 
backing pixrect, 61 
canvas space vs. window space, 66 
color in canvases, 69 
coordinate system, 61 
default input mask, 66 
definition of, 57 
handling input, 66 
interface summary, 278 
model, 60 
monochrome on a Sun-3/110, 112 
non-retained, 62 
pixwin, 58, 61 
repaint procedure, 62 
repainting, 61 
resize procedure, 63 
retained, 61 

-429-

canvas, continued 
scrolling, 59 
table of attributes, 278 
table of functions and macros, 279 
tracking changes in size, 63 
writing your own event procedure, 66 

canvas attributes, 278 
CANVAS_AUTO _CLEAR, 62, 278 
CANVAS AUTO EXPAND, 65,278 
CANVAS=AUTO=SHRINK, 65, 278 
CANVAS_FAST_MONO, 112,278 
CANVAS FIXED IMAGE, 63, 278 
CANVAS-HEIGHT, 61, 278 
CANVAS-MARGIN, 278 
CANVAS - PIXWIN, 61, 92, 278 
CANVAS-REPAINT PROC, 62, 278 
CANVAS-RESIZE PROC,278 
CANVAS-RETAINED, 62,278 
CANVAS=WIDTH, 61, 65, 278 

canvas functions and macros, 279 
canvas_event (), 66, 279 
canvasyixwin (), 58, 61, 92, 279 
canvas_window_event(),66,279 

canvas subwindow package, 57 thru 70 
CAP SMASK, 81, 82 
character unit macros 

ATTR COL, 50, 140, 271 
ATTR - COLS, 272 
ATTR -ROW, 50, 140, 271 
ATTR = ROWS, 272 

child process control using the Notifier, 250 
choice panel item, 138, 150 thru 155 
classes of windows, 16 
client handles for the Notifier, 249 
clipping in a pixwin, 102 
code examples, see exc.rmole nrn"rnlm.:\,:: 

color, 103 
advanced colormap malllil)UI;lti~M~~*~,mi)lkpi(~~t:iirti:::3l~S:}.· 
annnation,III,390 
background color of pixwin, 104 
color during fullscreen access, 109 
colormap, 103 
colormap access, 107 
colormap segment, 104 
cursors and menus, 109 
default colormap segment, 104 
determining if display is color, 109 
double buffering, 110, 111 



event, continued 
repaint and resize event codes, 78 
shift key event codes, 80 
timeout, 255 
window entry and window exit event codes, 78 

event codes, 288 
BUT 0, 77 
KBD DONE,78 
KBD -REQUEST, 78 
KBD-USE,78 
KEY-LEFT, 79 
KEY-RIGHT, 79 
KEY-TOP, 79 
LOC-DRAG, 66, 77 
LOC -MOVE, 77 
LOC - RGNENTER, 78 
LOC -RGNEXIT, 78 
LOC-STILL,77 
LOC-TRAJECTORY,77 
LOC -WINENTER, 78 
LOC - WINEXIT, 78 
MS LEFT,77 
MS -MIDDLE, 77 
MS-RIGHT,77 
PANEL EVENT CANCEL, 170 
PANEL-EVENT -DRAG IN, 170 
PANEL-EVENT-MOVE-I~170 
SHIFT-CAP SLOCK, 80 
SHIFT - CTRL, 80 
SHIFT-LEFT, 80 
SHIFT-LOCK, 80 
SHIFT-META, 80 
SHIFT-RIGHT, 80 
WIN REPAINT, 66, 78 
WIN-RESIZE, 66, 78, 261 
WIN=STOP,78 

event descriptors, 289 
WIN ASCII EVENTS, 66, 84, 289 
WIN-IN TRANSIT EVENTS, 84,289 
WIN-MOUSE BUTTONS, 84, 289 
WIN-NO EvENTS, 84, 289 
WIN-UP -ASCI I EVENTS, 84, 289 
WIN = UP = EVENTS, 84,289 

event handling 
at the Notifier level, 250 
in canvases, 66 
in panels, 169 

event procedure 
writing your own for a canvas, 66 
writing your own for a panel item, 171 

event state retrieval macros 
event ctrl is down(),81 
event -id ()~81 -
event-is ascii(),81 
event-is-button(),81 
event-is-down(),81 
event-is-key left(),81 
event-is-key-right(),81 
event-is-key-top(),81 
event -is-meta 0,81 
event -is - up 0, 81 
event-meta is down (), 81 
event=shift_i;_down(),81 

-431-

event state retrieval macros, eontirwed 
event shiftrnask(),81 
event-time () , 81 
event -x 0,81 
event3 (), 81 

event state setting macros 
event set down(),82 
event -set - id (), 82 
event-set-shiftrnask(),82 
event - set -up () , 82 
event-set-x(),82 
event=set3 (), 82 

event stream, 74 
example programs, 341 

animatecolor, 112, 390 
bounce, 397 
color manipulation, 385 
coloredit, 107,385 
colormap manipulation, 385 
creating menus, 362 
dctool,375 

Index - Continued 

discussion of image_browser _1 program, 46 
discussion of image browser 2, 49 
discussion of simple file manager, 41 
filer, 41, 341 
font menu, 362 
gfx subwindow-based demos converted to SunView, 397 
gfxsw init to SunView, 397, 402 
image_browser _1, 350 
image_browser _2, 354 
list files in tty subwindow, 39 
minimal Sun View program, 35 
notify dispatch 0, 397 
notify-set itimer func(),402 
resize demo, 48, 261, 370 
row/column space in a window, 354 
showcolor, 105 
simple file manager, 341 
simple panel window, 36 
spheres, 402 
subwindow layout, 350 
tty subwindow escape sequences, 359 
tty subwindow 110, 359 
tty io,359 
typein,381 

F 
fentl, 248, 252 
file descriptor usage, 54 
filer, 41 
llow of control in notifier-based programs, 21 
font functions 

pf default () , 38, 95 
pf=open 0,38 

frame 
command line frame attributes, 338 
definition of, 16 
frame header, 18 
layout of subwindows withln a frame, 47, 48,261,370 
menus, 18 
modifying destruction using the Notifier, 262 
modifying open/close using the Notifier, 259 
table of attributes, 334 



it_interval struct, 257 

K 
KBD _DONE,78 
KBD _REQUEST, 78 
KBD_USE,78 
KEY_LEFT, 79 
KEY_RIGHT,79 
KEY_TOP, 79 
keyboard focus, 78 

L 
layout of items within a panel, 140 
layout of subwindows within a frame, 47 
libraries used in Sun View, 27 
LOC _DRAG, 77 
LOC_MOVE,77 
LOC _ RGNENTER, 78 
LOC_RGNEXIT,78 
LOC _STILL, 77 
LOC_TRAJECTORY,77 
LOC_WINENTER, 78 
LOC_WlNEXIT,78 
locator, 77 
locator motion event codes, 77 

M 
Menu, 285 
menu 

attributes to add pre-existing menu items, 198 
basic usage, 186 
callback procedures, 203 
client data, 190 
default selection, 212 
destruction, 201 
display stage of menu processing, 209 
example program, 362 
for panel items, 138 
generate procedure, 203 
inactive items, 193 
initial selection, 212 
interface summary, 291 
notification stage of menu processing, 210 
notify procedure, 190,208 
pullright, 185 
searching for a menu item, 202 
shadow, 190 
table of attributes, 291 
table of functions, 296 
table of menu item attributes, 294 
user customizable attributes, 213 

menu attributes, 291 
MENU ACTION IMAGE, 200, 291, 294 
MENU-ACT I ON-I TEM, 200, 291, 294 
MENU - ACTION - PROe, 294 
MENU-APPEND -ITEM, 198, 291, 294 
MENU-BOXED, 194,213,291,294 
MENU-CLIENT DATA, 190,291, 294 
MENU-DEFAULT, 291 
MENU-DEFAULT ITEM, 212, 291 
MENU=DEFAULT=SELECTION, 212, 213, 291 

menu attributes, continued 
MENU DESCEND FIRST, 202, 291 
MENU-FEEDBACK, 197, 294 
MENU-FIRST EVENT,291 
MENU-FONT, 190, 196,213, 291, 294 
MENU - GEN PROC, 204, 205, 291, 294 
MENU-GEN-PROC IMAGE,294 

Index - Continued 

MENU - GEN -PROC -ITEM, 294 
MENU-GEN-PULLRIGHT, 294 
MENU-GEN-PULLRIGHT IMAGE, 200,207,291,294 
MENU - GEN - PULLRIGHT - ITEM, 200, 207, 291, 294 
MENU-GEN-PULLRIGHT-PRO~207 
MENU-IMAGE,294 -
MENU-IMAGE ITEM, 187, 191,200,291,294 
MENU-IMAGES, 189,200,291 
MENU-INACTIVE, 193,294 
MENU-INITIAL SELECTION, 212, 213, 291 
MENU-INITIAL -SELECTION EXPANDED, 213, 292 
MENU-INITIAL -SELECTION-SELECTED, 213, 292 
MENU-INSERT, 197, 198, 292 -
MENU-INSERT ITEM, 198,292 
MENU - INVERT~294 
MENU-ITEM, 188, 196, 200, 292 
MENU-JUMP AFTER NO SELECTION, 213, 292 
MENU-JUMP-AFTER-SELECTION,213,292 
MENU-LAST-EVENT~292 
MENU-LEFT-MARGIN,192,213,292,295 
MENU-MARGIN, 192, 194,213,292,295 
MENU-NCOLS, 194,292 
MENU - NITEMS, 196,292 
MENU-NOTIFY PRO~292 
MENU - NROWS, 194, 292 
MENU-NTH ITEM, 196, 292 
MENU-PARENT, 292, 295 
MENU - PULLRIGHT, 188, 196,295 
MENU - PULLRIGHT DELTA, 213, 293 
MENU - PULLRI GHT - IMAGE, 200, 293, 295 
MENU - PULLRIGHT - ITEM, 199,200,293,295 
MENU-RELEASE, 197,201,295 
MENU-RELEASE IMAGE, 295 
MENU-REMOVE, 198, 293 
MENU-REMOVE ITEM, 198,293 
MENU-REPLACE, 198,293 
MENU-REPLACE ITEM, 198, 293 
MENU-RIGHT MARGIN, 192,213,293,295 
MENU-SELECTED, 293,295 
MENU-SELECTED ITEM, 212, 293 
MENU-SHADOW, 190, 195, 213, 293 
MENU-STRING, 188, 196, 295 
MENU-STRING ITEM, 187, 191,200, 293, 295 
MENU-STRINGS, 200, 293 
MENU-TITLE IMAGE, 190,293 
MENU - TI TLE -ITEM, 190, 293 
MENU-TYPE, 293, 295 
MENU-VALID RESULT, 293 
MENU=: VALUE;-187, 191,295 

menu callback procedures 
generate procedures, 203 
notify and action procedures, 208 

_ menu data types 
Menu, 285 

-433-

Menu generate, 203, 285 
Menu=:item, 285 

menu functions, 296 



panel, continued 
data types, 285 
default event-to-action mapping, 169 
definition of, 138 
event handling mechanism, 169 
mterracesummmy,301 
item label, 138 
item menu, 138 
iterating over all items m a panel, 168 
modifying attributes, 142 
painting, 166 
panel space vs. window space, 174 
panel-wide item attributes, 143 
positionmg items within a panel, 140 
retrievmg attributes, 144 
simple panel wmdow example, 36 
table of attributes, 301 
table of functions and macros, 308 
table of generic panel item attributes, 302 
using scrollbars with, 145 

panel attribute settings 
PANEL ALL, 150, 156, 160, 164 
PANEL-CLEAR, 166 
PANEL-CURRENT, 150 
PANEL-DONE, 164 
PANEL-HORIZONTAL, 141, 159 
PANEL-INVERTED, 152 
PANEL-MARKED, 152 
PANEL-NO CLEAR, 166 
PANEL-NON PRINTABLE, 160 
PANEL-NONE, 150, 152, 156, 160, 166 
PANEL-SPECIFIE~160 
PANEL=VERTICAL, 141,150,159 

panel attributes, 301 
PANEL ACCEPT KEYSTROKE, 169, 170,301,302 
PANEL-BACKGROUND PROe, 169, 170,301 
PANEL-BLINK CARET, 144,301 
PANEL-CARET -ITEM, 142, 160, 301 
PANEL-CHOICE FONT~304 
PANEL-CHOICE-IMAGE, 144,304 
PANEL-CHOICE -IMAGES, 150,304 
PANEL-CHOICE-STRIN~304 
PANEL-CHOICE -STRINGS, 150,304 
PANEL-CHOICE - X, 304 
PANEL-CHOICE - XS, 150,304 
PANEL-CHOICE - Y, 304 
PANEL-CHOI CE-YS,304 
PANEL-CHOICE-YS,,150 
PANEL-CHOICES BOL~304 
PANEL-CLIENT DATA, 168,302 
PANEL-DISPLAY LEVEL, 150, 156,304 
PANEL-EVENT PROe, 169, 171,301,302 
PANEL-FEEDBACK, 152,304 
PANEL-FIRST ITEM, 168,301 
PANEL-ITEM RECT, 302 
PANEL-ITEM-X, 140,302 
PANEL-ITEM-X GAP, 141,301 
PANEL-ITEM-Y;-140,302 
PANEL-ITEM-Y GAP, 141,301 
PANEL-LABEL BOLD, 143,301,302 
PANEL-LABEL-FON~302 
PANEL-LABEL -IMAGE, 147,302 
PANEL-LABEL -STRING, 147, 302 
PANEL =LABEL= x, 141; 302 

. -435-

panel attributes, continued 
PANEL LABEL Y, 141,302 

Index - Continued 

PANEL-LAYOUT, 141, 143, 150, 159, 301, 302, 304 
PANEL-MARK IMAGES, 150,304 
PANEL-MARK -x, 304 
PANEL-MARK-XS, 150,305 
PANEL-MARK-Y,305 
PANEL-MARK-YS, 150,305 
PANEL-MASK-CHAR,307 
PANEL-MAX VALUE, 164, 165,306 
PANEL-MENU CHOICE FONTS,302 
PANEL-MENU-CHOICE-IMAGE~302 
PANEL-MENU-CHOICE-STRINGS, 163,302 
PANEL-MENU -CHOICE-VALUES, 163,303 
PANEL-MENU-MARK IMAGE, 158,305 
PANEL-MENU-NOMARK IMAGE, 158,305 
PANEL-MENU-TITLE FONT,303 
PANEL-MENU-TITLE-IMAGE, 303 
PANEL-MENU-TITLE-STRIN~303 
PANEL-MIN VALUE, 164, 165,306 
PANEL-NEXT ITEM, 168,303 
PANEL-NOMARK IMAGES, 150 
PANEL-NOTIFY -LEVEL, 160, 164,306,307 
PANEL-NOTIFY-PROC, 148, 152, 160,303 
PANEL-NOTIFY -STRING, 160,307 
PANEL-PAINT, 143,166,303 
PANEL-PARENT PANEL, 303 
PANEL-SHOW ITEM, 144, 160, 303 
PANEL-SHOW -MENU, 143, 301, 303 
PANEL-SHOW -MENU MARK, 152, 305 
PANEL-SHOW -RANGE, 164,306 
PANEL-SHOW-VALUE,164,306 
PANEL-SLIDER WIDTH, 164,306 
PANEL-TOGGLE-VALUE,305 
PANEL-VALUE, 165,305,306,307 
PANEL-VALUE DISPLAY LENGTH, 159,307 
PANEL-VALUE -FONT, 306-:-307 
PANEL-VALUE -STORED LENGTH, 159, 307 
PANEL-VALUE-X, 141,303 
PANEL=VALUE=Y, 141,303 

panel data types 
Panel, 285 
Panel attribute,285 
Panel-i tern, 285 
Panel=setting, 285 

panel functions and macros, 308 
panel accept key ( ) , 171,308 
panel-accept -menu (), 171,308 
panel-accept -preview (), 171,308 
panel-advance caret (), 160,308 
panel-backup caret (), 160,308 
panel=beginyreview 0,171,308 
panel button image 0,148,308 
panel-cancel-prev iew (), 171, 308 
panel-create -item (), 38, 140,308 
panel-default: handle event (), 170,309 
panel-destroy -item () ;-144, 309 
panel-each item (), 309 
panel-event () , 174, 309 
panel-get () , 144, 309 
panel-get value(),l44 
panel~aint(),166,309 
panel set () , 142, 309 
panel=set_value (), 142 



popup windows, continued 
non-blocking, 42 

porting programs to SunView, 265 
SunWindows-based, 417, see converting programs to Sun-

View 
programmatic scrolling, 237 
pty (pseudo-tty), 54 
pw_batch, 100,311 

R 
reading events, 87 
Rect struct, 48 
refusing the keyboard input focus, 78 
regions of a pixwin, 102 
registering an event handler with the Notifier, 250 
releasing the event lock, 87 
rendering speed, 98 
reserved namespaces, 29 
restrictions on use of UNIX facilities by SunView applications, 247 
row/column space in a window, 49 

example program, 354 

S 
sample programs, see example programs 
Scroll_motion, 285 
Scrollbar,285 
scrollbar 

interface summary, 317 
table of attributes, 317 
table of functions, 320 
use with canvases, 59 
use with panels, 145 

scrollbar attributes, 317 
SCROLL ABSOLUTE CURSOR, 317 
SCROLL:= ACTIVE_CURSOR, 317 
SCROLL ADVANCED MODE, 317 
SCROLL-BACKWARD -CURSOR, 317 
SCROLL-BAR COLOR, 317 
SCROLL-BAR-DISPLAY LEVEL, 317 
SCROLL:=BORDER, 317 -
SCROLL_BUBBLE_COLOR, 317 
SCROLL BUBBLE DISPLAY LEVEL,317 
SCROLL:= BUBBLE:= MARGIN, 3i 7 
SCROLL_DIRECTION, 317 
SCROLL END POINT AREA, 317 
SCROLL-FORWARD CURSOR, 317 
SCROLL-GAP, 317 -
SCROLL:=HEIGHT, 318 
SCROLL LAST VIEW STAR~318 
SCROLL:=LEFT:-318 -
SCROLL LINE HEIGH~318 
SCROLL-MARGIN,318 
SCROLL-MARK, 318 
SCROLL:=NORMALIZE, 318 
SCROLL_NOTIFY_CLIEN~318 
SCROLL_OBJECT, 318 
SCROLL_OBJECT_LENGTH, 318 
SCROLL PAGE BUTTON LENGTH, 318 
SCROLL:=PAGE:=BUTTONS, 318 
SCROLL PAINT BUTTONS PROe, 318 
SCROLL-PIXWIN,318 -
SCROLL:=PLACEMENT, 235, 318 

-437-

scrollbar attributes, continued 
SCROLL RECT,318 
SCROLL-REPEAT TIME,319 
SCROLL-REQUEST MOTION,319 
SCROLL-REQUEST-OFFSET,319 
SCROLL-THICKNESS, 319 
SCROLL-TO GRID,319 
SCROLL-TOP, 319 
SCROLL-VIEW LENGTH, 319 
SCROLL-VI EW-START, 319 
SCROLL:=WIDTH, 319 

scrollbar data types 
Scroll motion,285 
Scrollbar,285 
Scrollbar attribut~285 
Scrollbar-attribute valu~ 285 
Scrollbar:=settin~285 

scrollbar functions, 320 
scrollbar clear bubble(),320 
scrollbar -create () , 145,235,320 
scrollbar-destroy(),235 
scrollbar-get(),235 
scrollbar~aint(),320 
scrollbar-paint_bubble(),320 
scrollbar-paint_clear(),320 
scrollbar scroll to(),237,320 
scrollbar:=set (), 235, 320 

scrollbar package, 231 thr" 237 
Scrollbar_attribute,285 
Scrollbar_attribute_value, 285 
Scrollbar_settin~285 

selection of panel items 
buttons, 148 
choices, 152 
sliders, 164 
text, 160 
toggles, 156 

Selection Service, 241 thru 242 
SELN_LEVEL_FIRST,119 
SELN_LEVEL_LINE,119 
setting position of mouse cursor, 83 
SHIFT_CAPSLOCK, 80 
SHIFT _ CTRL, 80 
SHIFT_LEFT, 80 
SHIFT_LOCK, 80 
SHIFT_META, 80 
SHIFT_RIGHT, 80 
SHIFTMASK, 81, 82 
showcolor, 105 
SIGALRM, 248 
sigblock, 255 
SIGCHLD, 248 
SIGCONl', 246 
SIOIO, 248 
signal, 247, 253 
signals - use with notifier, 253 
SIGPIPE, 254 
SIGTERM, 248 
SIGURG, 78, 248 
sigvec, 247 
SIGVT ALRM, 248 

Index - Continued 



text subwindow data types, continued 
Textsw,285 
Textsw index, 118,285 
Textsw -status, 126,285 

text subwindo; functions, 326 
textsw add mark (), 124,326 
textsw -append file name (), 127,326 
textsw -delete (), 119-:-326 
textsw-edit (), 119,326 
textsw - erase () , 119,326 
textsw -file lines visible (), 122,326 
textsw -find-bytes (), 123,326 
textsw - find-mark 0, 124,327 
textsw -first (), 131,327 
textsw -index for file line (), 122, 327 
textsw -insert (), fi8, 327 
textsw - next (), 131, 327 
textsw -normalize view (), 123, 327 
textswY0ssibly_normalize 0, 122,327 
textsw remove mark (), 125,327 
textsw - replace bytes (), 120,328 
textsw - reset () ~127, 131,328 
textsw -save (), 126, 131,328 
textsw -screen line count 0,122, 328 
textsw -scroll-line; (), 122,328 
textsw -set selection (), 125,328 
textsw -store (), 131 
textsw=:store_file 0,127,328 

text subwindow status values 
TEXTSW STATUS BAD ATTR, 126 
TEXTSW-STATUS-BAD-ATTR VALU~126 
TEXTsW-sTATus-cANNOT ALLOCAT~126 
TEXTSW-STATUS-CANNOT-OPEN INPU~126 
TEXTSW - STATUS -OKAY, 126 -
TEXTSW=:STATUS=:OTHER_ERROR,126 

Textsw,285 
Textsw action, 128 
Textsw -action attributes, 324 

TEXTSW ACTION CAPS LOCK, 324 
TEXTSW-ACTION-CHANGED DIRECTOR~324 
TEXTSW-ACTION-EDITED FI~324 
TEXTSW-ACTION-FILE IS READONL~324 
TEXTSW-ACTION-LOADED FI~324 
TEXTSW -ACTION-CAPS LOCK, 130 
TEXTSW-ACTION-CHANGED DIRECTOR~130 
TEXTSW-ACTION-EDITED FIL~ 130, 131 
TEXTSW-ACTION-FILE IS READONL~130 
TEXTSW-ACTION-LOADED FI~ 130, 131 
TEXTSW-ACTION-TOOL CLOS~130 
TEXTSW-ACTION-TOOL-DESTRO~130 
TEXTSW-ACTION-TOOL-MGR,130 
TEXTSW-ACTION-TOOL-QUI~130 
TEXTSW-ACTION-USING MEMOR~130 
TEXTSW-ACTION-TOOL CLOS~ 324 
TEXTSW-ACTION-TOOL-DESTRO~324 
TEXTSW-ACTION-TOOL-MGR,324 
TEXTSW-ACTION-TOOL-QUI~324 
TEXTSW=:ACTION=:USING_MEMOR~324 

Textsw_index, 118,285 
TEXTSW INFINITY, 119, 120 
Textsw:=status, 126,285 
Textsw status values, 325 

TEXTSW_STATUS_BAD~TTR,325 

-439-

Index - Continued 

Textsw status values, continued 
TEXTSW STATUS BAD ATTR VALU~325 
TEXTSW - STATUS-CANNOT ALLOCAT~ 325 
TEXTSW-STATUS-CANNOT-OPEN INPu~325 
TEXTSW-STATUS-OKAY,325 -
TEXTSW=:STATUS=:OTHER_ERROR,325 

timeout events, 255 
toggle panel item, 139, 156 thru 158 
translating events from canvas space to window space, 66 
translating events from panel space to window space, 174 
tty subwindow 

example program, 359 
example program to list files, 39 
inpuUoutput to tty subwindow, 180 
interface summary, 329 
overview, 179 
special escape sequences, 181 
standard escape sequences, 181 
table of functions, 329 
table of special escape sequences, 330 

tty subwindow attributes 
TTY ARGV,329 
TTY-CONSOLE, 329 
TTY-PAGE MODE,329 
TTY-QUIT-ON CHILD DEAT~329 

tty subw~dow fu~cti~ns, 329 -
example program, 359 
ttysw input (), 39, 180,329 
ttysw=:output 0,181,329 

U 
UNIX system calls 

alarm, 247 
[entl, 248, 252 
[ree«3),272 
getitimer,247 
ioetl,248 
perror,267 
sighloele, 255 
signal, 247, 253 
sigvee,247 
wait, 247 
wait3, 247, 250 

UNIX system calls not to be used under Sun View, 247 

V 
views in text subwindows, 131 
Virtual User Input Device, 75 
VUID,75 

w 
wait, 247 
wait3, 247, 250 
WIN ASCII EVENTS, 84, 289 
WIN-EXTEND TO EDGE, 46, 47 
WIN-IN TRANSIT EVENTS, 84,289 
WIN-LEFT KEYS, 84, 289 
WIN-MOUSE BUTTONS, 84,289 
WIN :=NO _EVENTS, 84, 289 
WIN_REPAINT, 78 
WIN_RESIZE,78 



Revision History 

Revision Date 

-02 17 February 1986 

-10 15 October 1986 

Comments 

First release of the Sun View Programmer's Guide as 
part of release 3.0. 

Rewritten and expanded for release 3.2 



Notes 



Notes 



Notes 

\ 


