
Pascal Progratntner's Guide

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UN1X132V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation. -

DEC®, PDP®, VT®, and V AX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any fonn, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written pennission from Sun Microsystems.

Contents

Preface .. xi

Chapter 1 Basic UNIX Pascal ... 3

1.1. A First Program .. 5

1.2. Using pc ... 8

1.3. Formatting the Program Listing .. 9

1.4. Execution Profiling ... 9

An Example ... 9

Chapter 2 Error Diagnostics ... 15

2.1. Translator Syntax Errors .. 15

Illegal Characters .. 15

String Errors ... 15

Digits in Numbers .. 15

Replacements, Insertions, and Deletions ... 16

Undefined or Improper Identifiers ... 17

Expected Symbols, Malformed Constructs .. 17

Expected and Unexpected End-of-file, "QUIT" 18

2.2. Translator Semantic Errors .. 18

Format of the Error Diagnostics ... 18

Incompatible Types ... 19

Scalar ... 19

Function and Procedure Type Errors ... 19

Procedures and Functions as Parameters 20

Can't Read and Write Scalars, etc. ... 20

- iii-

Contents Continued

Expression Diagnostics ... 20

Type Equivalence ... 21

Unreachable Statements .. 22

gotos in Structured Statements .. 23

Unused Variables, Never-Set Variables ... 23

2.3. Translator Panics, I/O Errors .. 23

Panics ... 23

Out of Memory ... 24

I/O Errors ... 24

2.4. Runtime Errors in pix ... 24

Start-up Errors .. 24

Program Execution Errors ... 24

Interrupts .. 25

1/0 Interaction Errors .. 25

Runtime Errors in pc ... 25

2.5. Comparing the Compiler and the Interpreter ... 26

Language Features of pc Not Supported by pi 26

Separate Compilation .. 26

Access to UNIX .. 26

Performance ... 26

Debugging ... 27

Chapter 3 Input and Output ... 31

3.1. Introduction ... 31

3.2. eof and eoln .. 33

3.3. More About eoln .. 34

3.4. Output Buffering .. 35

3.5. Files, reset, and rewrite ... 36

3.6. argc and argv ... 37

Chapter 4 System Component Details .. 43

4.1. Using Options .. 43

4.2. Options Common to pi, pc, and pix .. 44

-iv-

Contents Continued

L - Map Identifiers and Keywords to Lower Case 44

b - Buffering of the File 0 u t pu t ... 44

i-Include File Listing .. 44

l. - Make a Listing .. 45

s - Standard Pascal Only .. 45

t and C - Runtime Tests .. 45

w - Suppress Warning Diagnostics .. 45

z - Generate Counters for a pxp Execution Profile 45

4.3. Options Available in pi .. 46

P -Post-Mortem Dump ... 46

o - Redirect the Output File .. 46

4.4. Options Available in px .. 46

4.5. Options Available in pc .. 47

S - Generate Assembly Language ... 47

q - Symbolic Debugger Information .. 47

0- Redirect the Output File .. 47

P and pq - Generate an Execution Profile .. 47

o - Run the Object Code Optimizer .. 47

P - Partial Evaluation of Boolean Expressions 47

Idir - Specify Directories for Include Files ... 47

Dname=def - Define Name to Preprocessor .. 47

Uname - Undefine Name to the Preprocessor .. 47

f68881 ... 47

ffpa .. 47

fsky .. 48

q .. 48

fsoft ... 48

fswitch .. 48

4.6. Options Available in pxp ... 48

a - Include the Bodies of All Routines in the Profile 48

d - Suppress Declaration Parts from a Profile .. 48

e - Eliminate #include Directives .. 48

f - Fully Parenthesize Expressions ... 48

-v-

Contents Continued

j - Left-Justify all Procedures and Functions .. .

t - Summarize Procedure and Function Calls

z - Enable and Control the Profile .. .

4.7. Formatting programs using pxp .. .

s - Strip Comments

49

49

49

49

51

.. - Underline Keywords .. 51

[23456789] - Specify Indenting Unit .. 51

4.8. pxref ... 51

4.9. Multi-file programs ... 51

4.10. Separate Compilation with pc .. 52

Chapter 5 Pascal Routines From Other Languages .. 57

5.1. Argument List Layout ... 57

5.2. Value Parameters ... 58

Type shortreal ... 58

Fixed Array Types .. 59

Value Conformant Array Parameters .. 59

5.3. Conformant Array Parameters ... 60

5.4. Procedures and Functions as Parameters ... 61

Chapter 6 The Pascal- C Interface ... 65

6.1. Order of Declaration of Arguments .. 65

6.2. Value Parameters VS. Reference Parameters .. 65

6.3. Conformant Array Parameters ... 66

6.4. Procedures and Functions as Parameters ... 67

6.5. Compatible Types in Pascal and C .. 68

6.6. Incompatible Types in Pascal and C .. 68

C Bit Fields .. 69

Enumerated Types .. 69

Character String Types .. 69

Pascal Set Types .. 70

Pascal Variant Records .. 71

-vi-

Contents Continued

Chapter 7 The Pascal- FORTRAN Interface .. 75

7.1. Order of Declaration of Arguments ... 75

7.2. Value Parameters vs. Reference Parameters .. 75

7.3. Conformant Array Parameters ... 75

7.4. Procedures and Functions as Parameters .. 76

7.5. Compatible Types in Pascal and FORTRAN .. 77

7.6. Incompatible Types in Pascal and FORTRAN ... 77

Pascal Boolean vs. FORTRAN logical ... 77

Multidimensional Arrays .. 78

Chapter 8 Sun Extensions to Berkeley Pascal ... 83

8.1. Language Extensions Supported by both pc and pi ... 83

Underscores Allowed In Identifiers ... 83

Conformant Array Parameters .. 83

Syntax .. 84

otherwise clause in case statement .. .

sizeof operator

Correct handling of multidimensional array declarations .. .

8.2. Language extensions supported only by pc .. .

shortreal and longreal types (pc only) .. .

External FORTRAN and C Declarations (pc only) .. .

Bit Operations on Integral Types

Preprocessor facilities (pc only) .. .

Version identification

8.3. Differences from the ISO Pascal Standard

Appendix A Pascal Language Reference Summary

A.1. Programs .. .

A.2. Declarations

Label Declarations

Constant Declarations .. .

Type Declarations .. .

Variable Declarations .. .

-vii-

84

85

87

87

87

88

89

89

89

89

93
93

93

93

94

94

94

Contents Continued

Procedure And Function Declarations .. . 94

Formal Parameter Declarations .. 94

A.3. Constants ... 95

A.4. Types ... 95

A.5. Record Types ... 96

A.6. Statements

A.7. Expressions .. .

A.S. Variables .. .

A.9. Actual Parameters .. .

A.IO. Operators

A.l1. Miscellaneous .. .

A.12. Lexicon .. .

96

97

98

98

9S

99

99

Appendix B Berkeley vs Standard Pascal ... 103

B.1. Extensions to Pascal .. 103

String Padding ... 103

Octal Constants, Octal and Hexadecimal Write .. 103

Assert Statement ... 104

Enumerated Type Input/Output .. 104

Structure-Returning Functions .. 104

Separate Compilation .. 104

B.2. Implementation-Dependent Features .. 105

File Name File Variable Associations .. 105

The program Statement ... 105

The Files input and output .. 105

Details For Files ... 106

Buffering ... 106

The Character Set .. 106

The Standard Types ... 107

Comments ... 107

Option Control ... lOS

Notes on the Listings ... lOS

The Standard Procedure write .. 109

- viii-

Contents Continued

B.3. Restrictions and Limitations ... 109

Files .. 109

Arrays, Sets, and Strings ... 109

Line and Symbol Length ... 109

Procedure and Function Nesting and Program Size ... 109

Overflow .. 110

B.4. Added Types, Operators, Procedures and Functions ... 110

Additional Predefined Types .. 110

Additional Predefined Operators ... 110

Nonstandard Procedures ... 110

Nonstandard Functions .. 111

Appendix C Bibliography ... 115

Appendix D Pascal Manual Pages ... 119

-ix-

Preface

Pascal is available on Sun Workstations as an extended version of the Berkeley
Pascal system distributed with UNIX 4.2BSD. The Pascal compiler (pc) is part
of the Sun languages software you received with your workstation. It is sup­
ported by the same profilers, debuggers, and libraries available in C and FOR­

TRAN 77. In addition, the Sun Pascal system includes a statement-level execu­
tion profiler (pxp), and a cross-reference generator (pxre f). The original
Berkeley Pascal Interpreter (pi, px, pix) remains available and is upwardly
compatible with pc. Most Pascal programs that run on 4.2BSD should port
easily to Sun Workstations.

The Sun Pascal system supports Levell ISO Standard Pascal, which includes
confonnant array parameters and type-safe procedures and functions as parame­
ters. In addition, pc supports separate compilation and several extensions for
improved access to facilities of UNIX. t

This Programmer's Guide describes how to use pc, pi, px, pix, and pxp.
Details of interactive programs and programs combining Pascal with other
languages are also given. A number of examples are provided, including many
dealing with input and output.

This manual consists of eight chapters and four appendices:

Chapter 1 is an overview of the system and provides some introductory exam­
ples.

Chapter 2 discusses the error diagnostics produced by the translators pc, pi,
the Pascal library , and the interpreter px.

Chapter 3 describes input and output and gives special attention to interactive
programs and features unique to UNIX.

Chapter 4 gives details on the components of the system and explanation of all
relevant options.

Chapter 5 describes the calling sequence used by Pascal when calling Pascal rou­
tines from other languages.

Chapter 6 describes how to call routines written in C from Pascal programs.

t UNIX is a trademark of AT&T Bell Laboratories.

- xi-

Preface Continued

Credits and
Acknowledgements

History of the Implementation

Chapter 7 describes how to call FORTRAN routines from Pascal programs.

Chapter 8 describes Berkeley Pascal's extensions relative to the ISO Pascal Stan­
dard, and Sun's extensions relative to 4.2BSD.

Appendix A is a Pascal language reference summary.

Appendix B is an appendix to the Jensen and Wirth Pascal Report defining the
Berkeley implementation of the Pascal language, primarily providing historical
notes.

Appendix C is a bibliography.

Appendix D contains the manual pages relevant to Pascal.

The first version of this Pascal Programmer's Guidefor the Sun Workstation
was originally produced by William N. Joy, Susan L. Graham, Charles B. Haley,
Marshall Kirk McKusick, and Peter B. Kessler of the Computer Science Divi­
sion, Department of Electrical Engineering and Computer Science, at the Univer­
sity of California at Berkeley.

The financial support of the first and second authors' work by the National Sci­
ence Foundation under grants MCS74-07644-A04, MCS78-07291, and MCS80-
05144, and the first author's work by an IBM Graduate Fellowship are gratefully
acknow ledged.

The first Berkeley system was written by Ken Thompson in early 1976. The
main features of the present system were implemented by Charles Haley and
William Joy during the latter half of 1976. Versions of this system have been in
use since January, 1977.

The system was moved to the VAX-II by Peter Kessler and Kirk McKusick, with
the porting of the interpreter in the spring of 1979, and the implementation of the
compiler in the summer of 1980.

The whole system was moved to the Sun Workstation in 1983 by Peter Kessler
and Kirk McKusick.

-xii-

1
Basic UNIX Pascal

Basic UNIX Pascal .. 3

1.1. A First Program .. 5

1.2. Using pc ... 8

1.3. Formatting the Program Listing .. 9

1.4. Execution Profiling ... 9

An Example ... 9

1
Basic UNIX Pascal

The Sun Workstation provides the following Pascal facilities:

• pc, a compiler

• pi, an interpreter code translator

px, an interpreter

• pix, a translator and interpreter (combines the functions of pi and px)

pmerge, a Pascal file merger

• pxp, a execution profiler

• pxref, a cross-reference generator

Pascal's calling conventions are the same as C's, with var parameters passed
by address and other parameters passed by value.

Both pc and pi support ISO dp7185 Levell Standard Pascal, including confor­
mant array parameters. In addition, pc contains several extensions. Deviations
from the standard are noted in the BUGS section of the pc manual page.

In addition to pc, there are other tools you might find helpful for creating Pascal
programs.

Text Editing

Debug Aids

• \sun ,~ microsystems

The major text editor for source programs is vi (vee-eye),
the visual display editor. It has considerable power because it
offers the capabilities of both a line and a screen editor. vi
also provides several commands for editing programs, which
are options you can set in the editor. Two examples are the
autoindent option, which supplies white space at the
beginning of a line, and the showmatch option, which
shows matching parentheses. For more information, see the
Editing and Text Processing manual section on vi.

There are three main debugging tools available on the Sun
system:

dbx a symbolic debugger that understands Pascal, C,
and FORTRAN-77 programs .

3

4 Pascal Programmer's Guide

dbxtool
a window- and mouse-based version of dbx.

adb an interactive, general-purpose, assembly-language
level debugger. It is generally not as easy to use as
d.bx or dbx.

man pages The on-line documentation consists of pages from the Com­
mands Reference Manual called manual or 'man' pages. The
applicable manual pages for Pascal are

•

•

•

•

•

•

pc

pi

pix

pmerge

px

pxp

pxref

To get more information about the syntax for a command, you
can display any of the manual pages on your screen by typing
"man" followed by the name of the command. For example,
to find out about pc, you can type

(hostname% man pc

Other manuals
Other Sun manuals containing information on editing or using Pascal are

1. Editing and Text Processing on the Sun Workstation

2. Programming Toolsfor the Sun Workstation

3. Commands Reference Manual for the Sun Workstation

4. System Interface Manualfor the Sun Workstation

5. Debugging Toolsfor the Sun Workstation

You should be familiar with both basic editing on the Sun Workstation and with
writing standard Pascal programs before going further in this chapter.

The examples of developing a Pascal program that follow use ex as the source
editor running under csh. You can use the editor that you are most comfortable
with; many programmers prefer to use vi.

If you are new to UNIX or unfamiliar with v i, read one of the introductory
chapters on text editors, either in the Sun Beginner's Guide to the Sun

~\sun ~~ microsystems

J

1.1. A First Program

Chapter 1 - Basic UNIX Pascal 5

Workstation, or Editing and Text Processing manuals before continuing with this
section.

To prepare a program for Sun Pascal you first need to have an account on UNIX
and to 'login' to the system on this account as described in the Beginner's Guide.

Once logged in, you need to choose a name for your program; let's call itfirst
since this is the first example. Name the file in which to store the program text as
first.p, following the convention used by pc to specify Pascal source files.

A sample editing session to create this file with ex would begin:

tutorial% ex first.p
"first.p" [New file]

If a file by that name exists, the 'New file' message would be replaced by the
number of lines in the file and the size of the file. The ':' prompt indicates that
ex is ready for command input. You can add the text for the program with the
'append' command as follows.

: append
program first (output)
begin

writeln('Hello, world!')
end.

The line with the single' . ' character tells ex where the end of the appended
text is, and the ':' prompt indicates that ex is ready for another command. Now
save the contents of the file first. p with the 'write' command so that you can
use the Pascal translator and interpreter pix to run your program:

: write
"first.p" [New file] 4 lines, 59 characters
: quit
tutorial%

ex indicates the number of lines and characters written.

Quit the editor to get the shell prompt.

~~sun ~ microsystems

6 Pascal Programmer's Guide

Now translate and execute the program with pix.

tutorial% pix first.p
Wed Dec 11 16:48 1985

2 begin
e ------i--- Inserted
Hello, world!
Execution begins ...
Execution terminated.

first.p:

, . ' ,

1 statements executed in 0.02 seconds cpu time.
tutorial%

pix first printed a syntax error diagnostic. The number 2 here indicates that the
rest of the line is an image of the second line of our program. The translator is
saying that it expected to find a ';' before the keyword begin on this line. If
you look at the Pascal syntax charts in the Jensen and Wirth User Manual, or at
some of the sample programs in it, you can see that we have omitted the ter­
minating ';' of the program statement on the first line of the program.

The letter 'e'at the beginning of the diagnostic line stands for 'error' , indicating
that our input was not legal Pascal. The fact that it is an 'e' rather than an 'E'
indicates that the translator managed to recover from this error well enough that
code generation and execution could take place. Execution is possible whenever
no fatal 'E' errors occur during translation.

The other classes of diagnostics are 'w' warnings, which do not necessarily indi­
cate errors in the program, but point out inconsistencies which are likely to be
due to program bugs, and's' for violations of the ISO Pascal standard.

The standard Pascal warnings occur only when the associated s translator option
is enabled. The s option is discussed in the Options section, below. Warning
diagnostics are discussed near the end of the Error Diagnostics section; the asso­
ciated w option is described in the Options common to pi, pc, and px section.

After completing the translation of the program to interpretive code, the Pascal
system indicates that execution of the translated program began. The output
from the execution of the program then appeared. At program termination, the
Pascal runtime system indicated the number of statements executed, and the
amount of cpu time used, with the resolution being within 1/60'th of a second.

Now you can fix the error in the program and generate a permanent object code
file with pi. pi translates Pascal programs but stores the object code instead
of executing it.

This example indicates some useful approaches to debugging Pascal programs:

You can shorten commands in both ed and ex to an initial prefix of the command name with the subs tit ute
comma be used to execute other shell commands without leaving the editor .

• \sun ,~ microsystems

tutorial% ex first.p
"first.p" 4 lines, 59 characters
:1 print
program first (output)
:s/$/;
program first(output);
: write
"first.p" 4 lines, 60 characters
: quit
tutorial% pi first.p
tutorial%

Chapter 1 - Basic UNIX Pascal 7

Now use the UNIX 1 s command to see what files now exist:

tutorial% Is
first.p
obj
tutorial%

The file 'obj' here contains the Pascal interpreter code. We can execute the code
by typing:

tutorial% px obj
Hello, world!

1 statements executed in 0.00 seconds cpu time.
tutorial%

Alternatively, the command:

(~t_u_t __ o_r_i_a_l_% __ O_b_J_. __ ~J
has the same effect. Some examples of different ways to execute the program fol­
low.

tutorial% px
Hello, world!

1 statements executed in 0.00 seconds cpu time.
tutorial% pi -p first.p
tutorial% px obj
Hello, world!
tutorial% pix -p first.p
Hello, world!
tutorial%

Note that, unless told otherwise, px assumes that 'obj' is the file you wish to
execute. The last two translations use the -p (no-pest-mortem) option to

8 Pascal Programmer's Guide

1.2. Using pc

eliminate execution statistics and summary messages. See the Options common
to pi, pc, and px section for more details.

If you now look at the files in your directory you' 11 see:

tutorial% ls
first.p
obj
tutorial%

You can give your object program a name other than 'obj' with the move com­
mand mv. So to name your program 'hello':

tutorial% mv obj hello
tutorial% hello
Hello, world!
tutorial% ls
first.p
hello
tutorial%

Finally, delete the Pascal object code file with rm:

tutorial% r.m hello
tutorial% ls
first.p
tutorial%

For developing small programs, pix can be more convenient to use than pi or
px.

Except for absence of the object file after running pix, running pix is
equivalent to running pi followed by px.

For larger programs where you want to make a number of runs testing different
parts of the program, pi is useful since you can execute the object file any
number of times.

pc is the Sun Pascal compiler. If given an argument file filename .p, pc
compiles the file and leaves the result in an executable file called (by default)
a.out.

For example, consider the example file greetings. p :

program greetings(output);
begin

writeln('Hello, world')
end.

Compile the program with pc then run it as follows:

~\sun ,~ microsystems

1.3. Formatting the Program
Listing

1.4. Execution Profiling

An Example

hostname% pc greetings.p
hostname% a.out
Hello, world
hostname%

Chapter 1 - Basic UNIX Pascal 9

A program can be separated into more than one . p file. pc can compile a
number of . p files into object files having the extension . 0 in place of . p .
Object files can then be loaded to produce an executable a. out file. Exactly
one object file must supply a program statement to successfully create an exe­
cutable a. out file. The rest of the files must consist only of declarations that
logically nest within the program.

References to objects shared between separately compiled files are allowed if the
objects are declared in included header files having the extension . h. Header
files may only be included at the outermost level, and thus declare only globally
available objects.

To allow external functions and procedures to be declared, an external direc­
tive has been added, which is used like the forward directive but can only
appear in . h files. A binding phase of the compiler checks that declarations are
used consistently, to enforce the type-checking rules of Pascal.

Other language processors that create object files can be loaded together with
object files created by pc. The functions and procedures they define must be
declared in . h files included by all the . p files that call those routines.

It is possible to use special lines within the source text of a program to format the
program listing. An empty line prints without a line number. A line containing
only a control-L (formfeed) character causes a page eject in the listing with the
corresponding line number suppressed. With pi, the -n command line option
begins each listed include file on a new page with a banner line.

An execution profile consists of a structured listing of (all or part of) a program
with information about the number of times each statement in the program was
executed for a particular run of the program. These profiles can be used for
several purposes. In a program that was abnormally terminated due to excessive
looping, recursion, or a program fault, the counts can help you to locate the error.
Zero counts mark portions of the program that were not executed; during the
early debugging stages they should prompt new test data or a reexamination of
the program logic. The profile is perhaps most valuable, however, in drawing
attention to the (typically small) portions of the program that dominate execution
time. This information can be used for source-level optimization.

A prime number is a positive integer with exactly two divisors, itself and one.
The program pr ime s determines the first few prime numbers. In translating
the program, the -z option is specified on the command line to pc. This
option causes the compiler to generate counters and additional code that record
the number of times each statement in the program was executed, which enables
pxp statement profiling. 1 Thus, the program is translated as follows:

~\ s l.iflounts are completely accurate only in the absence of runtime errors and non local got 0 statements.

~ microsyslems

10 Pascal Programmer's Guide

2 3 5
31 37 41
73 79 83

127 131 137
179 181 191

hostname%

7
43
89

139
193

[hostname% pc -z primes.p]
Run primes as follows:

(hostname% a. out J
11 13 17 19 23 29
47 53 59 61 67 71
97 101 103 107 109 113

149 151 157 163 167 173
197 199 211 223 227 229

When execution of the program completes (either normally or abnonnally) the
statement counts are written to the file pmon. out 2 in the current directory. By
running pxp with the source file containing the program and (implicitly) the file
pmon . out as arguments you can prepare an execution profile. This results in
the following output:

This is not generally a problem, however, as in structured programs nonlocal goto statements occur
infrequently, and counts are incorrect after abnormal termination only when the upward look (described below)
to get a count passes a suspended call point.

2 pman.aut is similar to man.aut and gman.aut, which are used by praf(l) and gprof(1),
respectively. Note that both of these profilers are available under pc.

~~sun ~~ microsystems

Chapter 1 - Basic UNIX Pascal 11

hostname% pxp pr~s.p
Berkeley Pascal PXP -- Version 2.14 (11/2/84)

Sat Jan 12 10:01 1985 primes.p

Profiled Sat Jan 12 10:02 1985

1
2
2
2
3
3
4

5
6
7
7
8
8
8

8
9
9

11
11
12
13
14
14
14
16
16
17
18
19
19
20
20
20
23
23
24
24
25
26
26
26
26
29
29

1.---lprogram primes(output);
Iconst
I n = 50;
I nl = 7; (*nl = sqrt(n)*)
Ivar
I i, k, x, inc, lim, square, 1: integer;
I prim: boolean;
I p, v: array [1 .. nl] of integer;
I begin
I write (2: 6, 3: 6);
I 1:= 2;
I x:= 1;
I inc:= 4;
I lim:= 1;
I square:= 9;
I for i := 3 to n do begin (*find next prime*)

48.---1 repeat
76.---1 x:= x + inc;

I inc:= 6 - inc;
I if square <= x then begin

5.---1 lim:= lim + 1;
I v[lim]·= square;
I square sqr{p[lim + 1])

I end;
I k:= 2;
I prim:= true;
I while prim and (k < lim) do begin

157.---1 k:= k + 1;
I if v[k] < x then

42.---1 v[k]:= v[k] + 2 * p[k];
I prim x <> v[k]
end

luntil prim;
I if i <= nl then

5. --- I p [i] : = x;

I write(x: 6);
I 1:= 1 + 1;
I if 1 = 10 then begin

5.---1 writeln;
I 1:= 0
end

end;
write in

lend.

~\sun ,~ microsystems

12 Pascal Programmer's Guide

The header lines in the outputs of pc, pi, and pix indicate the version of the
translator and execution profiler in use at the time this program was prepared.
The time given with the filename (also on the header line) indicates the time of
last modification of the program source file. This time serves to version stamp
the input program. pxp also indicates the time when the profile data was gath­
ered.

To determine the number of times a statement was executed, look to the left of
the statement and find the corresponding vertical bar 'I'. If this vertical bar is
labeled with a count, then that count gives the number of times the statement was
executed. If the bar is not labeled, look upwards in the listing to find the first 'I'
above the original one that has a count to find the answer. Thus, in our example,
k was incremented 157 times on line 18, while the write procedure call on
line 24 was executed 48 times (as given by the count on the repeat on line 9).

More information on pxp can be found in its manual section pxp (1) and in the
"Options available in px," "Options available in pc," and "Separate Compilation
with pc" sections in Chapter 4 .

• \sun ,~ microsystems

2
Error Diagnostics

Error Diagnos tics .. 15

2.1. Translator Syntax Errors .. 15

Illegal Characters .. 15

String Errors ... 15

Digits in Numbers .. 15

Replacements, Insertions, and Deletions ... 16

Undefined or Improper Identifiers ... 17

Expected Symbols, Malformed Constructs .. 17

Expected and Unexpected End-of-file, "QUIT" 18

2.2. Translator Semantic Errors .. 18

Format of the Error Diagnostics ... 18

Incompatible Types ... 19

Scalar ... 19

Function and Procedure Type Errors ... 19

Procedures and Functions as Parameters ... 20

Can't Read and Write Scalars, etc. ... 20

Expression Diagnostics ... 20

Type Equivalence ... 21

Unreachable Statements .. 22

gatos in Structured Statements .. 23

Unused Variables, Never-Set Variables ... 23

2.3. Translator Panics, I/O Errors .. 23

Panics ... 23

Out of Memory ... 24

I/O Errors ... 24

2.4. Runtime Errors in pix ... 24

Start-up Errors .. 24

Program Execution Errors ... 24

Interrupts .. 25

liD Interaction Errors .. 25

Runtime Errors in pc ... 25

2.5. Comparing the Compiler and the Interpreter ... 26

Language Features of pc Not Supported by pi 26

Separate Compilation ... 26

Access to UNIX .. 26

Performance ... 26

Debugging ... 27

2
Error Diagnostics

This section discusses the error diagnostics of the programs pi, pc, px and
pix. See the manual section pix (1) and the "Options common to pi, pc,
and px" section in Chapter 4 for more details. All the diagnostics given by pi
are also given by pc.

2.1. Translator Syntax Errors This section describes some common syntax errors in Pascal programs and how
the compiler handles them.

Illegal Characters

String Errors

Digits in Numbers

Characters such as '$', '!', and '@' are not part of Pascal. If they are found in
the source program and are not part of a string constant, a character constant, or a
comment, they are considered to be illegal characters. This can happen if you
leave off an opening string quotation mark ('). Most nonprinting characters in
your input are also illegal, except in character constants and character strings.
Except for the tab and formfeed characters, which are used to format the pro­
gram, nonprinting characters in the input file print as the character '?' in your
listing.

There is no character string of length zero in Pascal. Consequently the input ""
is not acceptable. Similarly, encountering an end-of-line after an opening string
quotation mark (') without first encountering the matching closing quote yields
the diagnostic' 'Unmatched' for string."

Programs containing '#' characters (other than in column 1) can produce this
diagnostic. This is because early implementations of Pascal used '#' as a string
delimiter. In the Sun implementation, '#' is used for #include and preprocessor
directi ves and must be in column 1.

This part of the language is a minor nuisance. Pascal requires digits in real
numbers both before and after the decimal point. Thus the following statements,
which look quite reasonable to FORTRAN users, generate diagnostics in Pascal:

~\sun ,~ microsystems
15

16 Pascal Programmer's Guide

Replacements, Insertions, and
Deletions

Wed Dec 11 16:47 1985 digits.p:
4 r:= 0.;

e -------------"'--- Digits required after decimal point
5 r:= .0;

e ___________ A ___ Digits required before decimal point

6 r:= 1.el0;
e -------------"'--- Digits required after decimal point

7 r:=. 05e-l0;
e -----------"'--- Digits required before decimal point

These contructs are also illegal as data input to variables in read statements
whose arguments are variables of type real.

When a syntax error is encountered in the input text, the parser invokes an error
recovery procedure. This procedure examines the input text immediately after
the point of error and uses a set of simple corrections to see whether to allow the
analysis to continue. These corrections involve replacing an input token with a
different token or inserting a token. Most of these changes do not cause fatal
syntax errors. The exception is the insertion of or replacement with a symbol
such as an identifier or a number; in these cases, the recovery makes no attempt
to determine which identifier or what number should be inserted. Thus, these are
considered fatal syntax errors.

Consider the following example:

hostname% pix -1 synerr.p
Berkeley Pascal PI -- Version 3.5 (8/26/85)

Wed Dec 11 16:49 1985 synerr.p

1 program syn(output);
2 var if j are integer;

e --------------- --- Replaced identifier with a
3 begin
4 for j :* 1 to 20 begin

, .,

e ---------------------"'--- Replaced ,*, with a '='
e ------------------------------- --- Inserted keyword do

5 write(j) ;
6 i = 2 ** j;

e ------------------------"'--- Inserted'·' E ____________________________ A ___ Inserted identifier

7 writeln(i»
E --------------------------------"'--- Deleted '}'

8 end
9 end.

hostname%

The only surprise here may be that Pascal does not have an exponentiation opera­
tor, hence the complaint about '**'. This error illustrates that if you assume that
the language has a feature that it doesn't have, the translator diagnostic may not

~\sun ~~ microsystems

Undefined or Improper
Identifiers

Expected Symbols,
Malformed Constructs

Chapter 2 - Error Diagnostics 17

indicate this specifically, since it is unlikely to recognize the construct you sup­
ply.

If an identifier is encountered in the input but is undeclared, the error recovery
mechanism replaces it with an identifier of the appropriate class. Further refer­
ences to this identifier are summarized at the end of the containing procedure
or function or at the end of the program if the reference occurred in the
main program. Similarly, if an identifier is used in an inappropriate way, (for
example, if a type identifier is used in an assignment statement, or if a simple
variable is used where a record variable is required) a diagnostic is produced
and an identifier of the appropriate class inserted. Further incorrect references to
this identifier are flagged only if they involve incorrect use in a different way,
with all incorrect uses being summarized in the same way as undeclared variable
uses are.

If none of the corrections mentioned above appears reasonable, the error recovery
examines the input to the left of the point of error to see if there is only one sym­
bol that can follow this input. If this is the case, the recovery prints a diagnostic
which indicates that the given symbol was 'expected.'

In cases where none of these corrections resolve the problems in the input, the
recovery may issue a diagnostic that indicates' 'malformed" input. If necessary,
the translator can then skip forward in the input to a place where analysis can
continue. This process may cause some errors in the missed text to be skipped.

Consider the following example:

tutorial% pix -1 synerr2.p
Berkeley Pascal PC -- Version 3.5 (8/26/85)

Wed Dec 11 16:49 1985 synerr2.p:
1 program synerr2(input,outpu);
2 integer a (10)

E ------~--- Malformed declaration
3 begin
4 read (b) ;

E ------------------- --- Undefined variable
5 for c := 1 to 10 do

E ------------------~--- Undefined variable
6 a(c) :=b*c;

E ----------------------~--- Undefined procedure
E ---------------------------~--- Malformed statement

7 end.
E 1 - File outpu listed in program statement but not declared
In program synerr2:

E - a undefined on line 6
E - b undefined on lines 4
E - c undefined on line 5 6

tutorial%

Here output is misspelled and given a FORTRAN- style variable declaration

~~sun ~ microsystems

18 Pascal Programmer's Guide

Expected and Unexpected
End-of-file, "QIDT"

tutorial% pix -1 mism.p

that the translator diagnosed as a 'Malformed declaration.' On line 6,
parentheses are used for subscripting (as in FORTRAN) rather than the square
brackets that are used in Pascal, so the translator noted that a was not defined as
a procedure (delimited by parentheses in Pascal). As it's not permissible to
assign values to procedure calls, the translator diagnosed a malformed statement
at the point of assignment.

If the translator finds a complete program, but there is more (noncomment) text
in the input file, then it indicates that an end-of-file is expected. This situation
may occur after a bracketing error, or if too many ends are present in the input.
The message may appear after the recovery says that it "Expected '.''', since
a period (.) is the symbol that terminates a program.

If severe errors in the input prohibit further processing, the translator may pro­
duce a diagnostic message followed by "QUIT". Examples include unter­
minated comments and lines longer than 1024 characters. Consider the follow­
ing example:

Berkeley Pascal PI -- Version 3.5 (8/26/85)

Wed Dec 11 16:48 1985 mism.p

1 program mismatch (output)
2 begin

e ------ Inserted ';'
3 writeln('***');
4 { The next line is the last line in the file }
5 writeln

E _____________________ A ___ Malformed declaration

--------------------- Unexpected end-of-file - QUIT
tutorial%

2.2. Translator Semantic
Errors

Format of the Error
Diagnostics

In this case, the end of file was reached before an end delimiter.

The following sections explain the typical formats and terminology used in Pas­
cal error messages. For more detailed descriptions of diagnostic messages, refer
to Cooper's Standard Pascal User Reference Manual [1].

In the example program above, the error diagnostics from the Pascal translator
include the line number in the text of the program, as well as the text of the error
message. While this number is most often the line where the error occurred, it
can refer to the line number containing a bracketing keyword like end or
until. If so, the diagnostic may refer to the previous statement. This occurs
because of the method the translator uses for sampling line numbers. The
absence of a trailing ';' in the previous statement causes the line number
corresponding to the end or until to become associated with the statement.
As Pascal is a free-format language, the line number associations can only be
approximate and may seem arbitrary in some cases.

Incompatible Types

array
pointer

Chapter 2 - Error Diagnostics 19

Since Pascal is a strongly-typed language, many type errors can occur, which are
called type clashes by the translator. The types allowed for various operators in
the language are summarized on page 43 of Cooper [1]. It is important to know
that the Pascal translator, in its diagnostics, distinguishes among the following
type classes:

Boolean
real

char
record

file
scalar

integer
string

These words are used in many error messages. Thus, if you tried to assign an
integer value to a char variable you would receive a diagnostic like

Wed Dec 11 16:47 1985 clash.p:
E 7 - Type clash: integer is incompatible with char

... Type of expression clashed with type of variable in assignment

Scalar

Function and Procedure Type
Errors

In this case, one error produced a two-line error message. If the same error
occurs more than once, the same explanatory diagnostic is given each time.

The only class whose meaning is not self-explanatory is scalar. Scalar has a
precise meaning in the Pascal standard where, in fact, it refers to char,
integer, real, and Boolean types as well as the enumerated types. For
the purposes of the Pascal translator, scalar in an error message refers to a
user-defined enumerated type, such as ops in the example above or color in

[type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it's
correct in the context of the User Guide to refer to an integer variable as a
scalar variable, the interpreter and compiler prefer more specific
identification.

J

For built-in procedures and functions, two kinds of errors may occur. If a routine
is called with the wrong number of arguments a message like

Wed Dec 11 16:48 1985 sinl.p:
E 12 - sin takes exactly one argument

is displayed. If the type of an argument is wrong, you receive a message like

Wed Dec 11 16:48 1985 sin2.p:
E 12 - sin's argument must be integer or real, not char

20 Pascal Programmer's Guide

Procedures and Functions as
Parameters

Can't Read and Write
Scalars, etc.

Expression Diagnostics

In standard Pascal, procedures and functions used as formal parameters can be
declared with (nested) parameter lists of their own. In Jensen and Wirth's Pascal
there are no nested parameter lists; therefore, no argument checking is possible in
calls made to parametric procedures and functions. Berkeley Pascal requires you
to use parametric procedures to conform to the standard, so programs ported
from early implementations of Pascal may require modification.

Error messages stating that scalar (user-defined) types cannot be written to and
read from files are often mysterious. In fact, if you define

(type color = (red, green, blue)

standard Pascal does not associate these constants with the strings 'red', 'green',
and 'blue' in any way. An extension has been added to Berkeley Pascal that
allows enumerated types to be read and written; however, if the program is to be
portable, you must write your own routines to perform these functions. Standard
Pascal only allows the reading of characters, integers and real numbers from text
files (not strings or Booleans). It's possible to make a

]

(file of color]
but the representation is binary rather than a string.

The diagnostics for semantically ill-formed expressions are very explicit as this
sample translation shows:

~\sun ,~ microsystems

Chapter 2 - Error Diagnostics 21

hostname% pi -1 expr.p
Berkeley Pascal PI -- Version ~.5 (8/26/85)

Wed Dec 11 16:48 1985 expr.p

1 program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 c: (red, green, blue);
6 p: A integer;
7 A: alfa;
8 B: packed array [1 .. 5] of char;
9 begin

10 b .= true;
11 c .= red;
12 new (p) ;
13 a .= [] ;

14 A .= , Hello, . yellow' ;
15 b .= a and b;
16 a .= a * 3;
17 if input < 2 then writeln('boo');
18 if p <= 2 then writeln('sure nuff');
19 if A B then writeln('same');
20 if c true then writeln('hue"s and color"s')
21 end.

E 14 - Constant string too long
E 15 - Left operand of and must be Boolean, not set
E 16 - Cannot mix sets with integers and reals as operands of *
E 17 files may not participate in comparisons
E 18 - pointers and integers cannot be compared - operator was <=
E 19 - Strings not same length in = comparison
E 20 - scalars and Booleans cannot be compared - operator was
e 21 - Input is used but not defined in the program statement
In program x:

w - constant green is never used
w - constant blue is never used
w - variable B is used but never set

hostname%

Type Equivalence

This example is admittedly far-fetched, but illustrates that the error messages are
clear enough to allow you to easily detennine the problem in the expressions.

The Pascal translator produces several diagnostics that complain about 'non­
equivalent types.' In general, Pascal considers variables to have the same type
only if they are declared with the same constructed type or type identifier. Thus,
the variables x and y declared as

22 Pascal Programmer's Guide

[

var 1 x: A integer;
y: A integer;

"----------
do not have the same type. The assignment

(x := y
J

produces th~ diagnostic messages·

Wed Dec 11 16:49 1985 typequ.p:
E 7 - Type clash: non-identical pointer types

... Type of expression clashed with type of variable in assignment

Unreachable Statements

It is always necessary to declare a type such as

(type intptr = A integer;
J

and use it to declare

(var x: intptr; y: intptr;
J

Note that if we had initially declared

[~v_a_r __ x_, __ y __ : __ A_1_·n_t_e_g __ e_r_; _______________________________________ J

then the assignment statement would have worked. The statement

(~XA :_= yA ________ J

is allowed in either case. Since the parameter to a procedure or function
must be declared with a type identifier rather than a constructed type, it is always
necessary to declare any type that is used in this way.

Sun Pascal flags unreachable statements. Such statements usually correspond to

errors in the program logic. Note that a statement is considered to be reachable if
there is a potential path of control, even if it can never be taken. Thus, no diag­
nostic is produced for the statement:

if false then
writeln('impossible!')

gatos in Structured
Statements

Unused Variables, Never-Set
Variables

2.3. Translator Panics, I/O
Errors

Panics

Chapter 2 - Error Diagnostics 23

The translator detects and complains about goto statements that transfer con­
trol into structured statements (e.g., for and while). It does not allow such
jumps, nor does it allow branching from the then part of an if statement into
the else part. Such checks are made only within the body of a single pro­
cedure or function.

Although pi always clears variables to zero at procedure and function
entry, pc does not unless explicitly requested to zero variables with the-Z
option. It is not good programming practice to rely on this initialization. To
discourage this practice, and to help detect errors in program logic, pi flags as a
'w' warning error the following:

• Use of a variable that is never assigned a value.

• A variable that is declared but never used, distinguishing between those
variables whose values are computed but that are never used, and those
that are completely unused.

In fact, these diagnostics are applied to all declared items. Thus a canst or a
procedure that is declared but never used is flagged. The -w option of pi
may be used to suppress these warnings; (see "Options" and "Options Common
to pi, pc, and pix" in Chapter 4).

Note: Since variable uses and assignments are not tracked across separate compi­
lation units, pc ignores uninitialized and unused variables in the global scope.
This also applies to fields or records whose types are global.

One class of error that rarely occurs, but that causes tennination of all processing
when it does, is a panic. A panic indicates a translator-detected internal incon­
sistency. A typical panic message is

snark (rvalue) line=110 yyline=109
Snark in pi

If you receive such a message, the translation is quickly and (perhaps) ungrace­
fully terminated. Save a copy of your program to inspect later, then contact
Technical Support at Sun Microsystems. If you were making changes to an
existing program when the problem occurred, you may be able to work around
the problem by determining which change caused the snark and making a dif­
ferent change or error correction to your program.

Panics are also possible in px, particularly if range checking is disabled with the
-t option.

24 Pascal Programmer's Guide

Out of Memory

I/O Errors

2.4. Runtime Errors in pix

Start-up Errors

Program Execution Errors

The only other error which will abort translation when no source errors are
detected is running out of memory. All tables in the translator, with the excep­
tion of the parse stack, are dynamically allocated, and can grow to take up a good
deal of process space. In general, you can get around this problem with very
large programs by using pc and the separate compilation facility.

If you receive an "out of space" message from the translator during translation of
a large procedure or function or one containing a large number of string
constants, you can either break the offending procedure or function into smaller
pieces or increase the maximum data segment size using the 1 imi t command
of csh (1).

In practice, the compiler rarely runs out of memory on Sun workstations.

Other errors that you may encounter when running pi relate to inputJoutput. If
pi cannot open the file you specify, or if the file is empty, an error occurs.

The second example illustrates one run-time error. Here are general descriptions
of run-time errors. The more unusual interpreter error messages are explained
briefly in the manual pages section for px (1).

These errors occur when the object file to be executed is not available or
appropriate. Typical errors here are caused by the specified object file not exist­
ing, not being a Pascal object, or not being accessible to the user.

These errors occur when the program interacts with the Pascal runtime environ­
ment in an inappropriate way. Typical errors are values or subscripts out of
range, bad arguments to built-in functions, exceeding the statement limit because
of an infinite (or very long) loop, or running out of memory3. The interpreter
produces a traceback after the error occurs, showing all the active routine calls,
unless the -p option was disabled when the program was translated. Unfor­
tunately, no variable values are given and no way of extracting them is available.

As an example of such an error, assume that you have accidentally declared the
constant nl to be 6, instead of7 on line 2 of the program 'primes' (as given in
the Execution profiling section in Chapter 1). If you run this program, you get
the following response:

3 The checks for running out of memory are not foolproof and there is a chance that the interpreter will fault,
producing a core image. when it runs out of memory. This situation occurs very rarely.

Chapter 2 - Error Diagnostics 25

hostname% pix primes.p
Execution begins ...

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167
Subscript value of 7 is out of range

Error in "error"+8 near line 14.
Execution terminated abnormally.

996 statements executed in 0.32 seconds cpu time.

Interrupts

110 Interaction Errors

Runtime Errors in pc

The interpreter indicates that the program terminated abnormally due to a sub­
script out of range near line 14, which is eight lines into the body of the program
primes.

If a program running under px is interrupted while executing, and the -p
option was not specified to pi, then a traceback is printed. 4 The file
pmon . out of profile infonnation is written if the program was translated with
the -z option enabled (pc, pi, or pix).

The final class of interpreter errors results from inappropriate interactions with
files, including your Sun workstation. Included here are bad formats for integers
and real numbers (such as no digits after the decimal point) when reading.

Programs compiled with pc use the same library routines as the interpreter px.
They detect essentially the same error conditions as px, but support error diag­
nosis and debugging differently from px.

When an error is detected in a program compiled by pc, a message describing
the error is printed and the program is aborted, producing a core image. For
example, consider the previous example, which was run using pix. Compiling
this program using the -C and -q options and running it you get

4 Occasionally, the Pascal system is in an inconsistent state when this occurs (for example, when an interrupt
terminates a procedure or function entry or exit). In this case, the traceback only contains the current routine.
A reverse call-order list of procedures is not given.

26 Pascal Programmer's Guide

hostname% pc primes.p -C -q
hostname% a.out

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167
Subrange or array subscript is out of range
Trace/BPT trap (core dumped)

hostname%

2.5. Comparing the Compiler
and the Interpreter

Language Features of pc Not
Supported by pi

Separate Compilation

Access to UNIX

Performance

Since the program was compiled with the -g option you can use dbx or
dbxtool to help debug the program.

This section lists differences between the compiler pc and the interpreter pro­
grams pi/px/pix. pi may be used for small, easy-to-debug programs hav­
ing negligible execution time. For most applications, pc is a better choice.

Both pi and pc support ISO standard Pascal with numerous extensions. How­
ever, some extensions supported by pc are not supported by pi. In most cases,
these are related to separate compilation or to compatibility with other languages:

• The predefined type shortreal (IEEE single-precision floating point)

• External procedure declarations

• Bitwise logical operations on integral types

• Preprocessor facilities other than file inclusion

For details on these and other extensions, see Appendix A.

pi compiles a single source file, which can contain #include commands. As
in standard Pascal, programs compiled by pi must be organized as a single unit,
including the outer begin ... end block and the program heading. pc
allows programs to be developed as separately compiled source modules.

Programs processed by pi cannot call library or UNIX system routines, except
for routines predefined by pi and built into px. Program modules compiled
by pc can call library routines directly; details are given in Appendix D.

pi compiles more quickly than pc, but at the expense of execution efficiency.
It has been estimated that pi compiles a source program at five times the speed
of pc, but programs compiled by pi and interpreted by px can run 30 times
slower than the same programs compiled by pc.

These numbers vary according to the application and release version of Berkeley
Pascal running on Sun Workstations. They are given here, however, to illustrate
the performance tradeoffs between compiled and interpreted programs.

Debugging

Chapter 2 - Error Diagnostics 27

Programs compiled by pc can be debugged using either the assembly-level
debugger (adb) or the source-level debuggers (dbx and dbxtoo 1). There is
no debugger running on Sun Workstations for interpreted Pascal programs, so
programs compiled by pi must be debugged with writeln and assert
statements.

3
Input and Output

Input and Output ... 31

3.1. Introduction ... 31

3.2. eof and eoln .. 33

3.3. More About eoln .. 34

3.4. Output Buffering .. 35

3.5. Files, reset, and rewrite ... 36

3.6. argc and argv ... 37

3.1. Introduction

3
Input and Output

This chapter describes features of the Pascal input/output environment, with spe­
cial consideration of the features specific to interactive programs.

In Sun Pascal, the predefined file variables input and output are equivalent
to the UNIX standard input and output files (known as stdin and stdout).
Consequently, Pascal programs can be easily used in the UNIX environment to
read or write files by using the shell to redirect stdin and stdout. For
example, consider the following program, which copies input to output:

program copy (input, output) ;
var c: char;
begin

while not eof to begin
while not eoln do begin

read(ch);
write (ch) ;

end;
readln;
writeln;

end;
end.

Assume that the program above is saved in a file called copy. p. First, you
would compile it and produce a program called copy as follows:

(~h_o_s_t_n_a_m_e_~_o_p_c __ C_O_p_y __ .P __ -__ o_C __ Op __ y ________________________________ J

Next, run the program. Since the standard files input and output default to
the terminal, the program simply echoes each line typed, tenninating when a line
beginning with an end-of-file (control-D) character is typed.

31

32 Pascal Programmer's Guide

hostname% copy
he110, are you 1istening?
hello, are you listening?
goodbye, I must go now.
goodbye, I must go now.
(CTRL-D)
hostname%

By using the shell's n>n operator to redirect output, you can create a short text
file called data.

hostname% copy > data
he110, are you 1istening?
goodbye, I must go now.
(CTRL-D)
hostname%

Using the same program, but with the "<n operator to redirect input, the file
prints on the tenninal:

hostname% copy < data
hello, are you listening?
goodbye, I must go now.
hostname%

There are other ways to associate Pascal file variables with UNIX files. One sim­
ple way, which is restrictive but usually portable to other Pascal systems, is to
list the name of the file as a file variable in the program statement. The Pascal
library associates the file variable with a file of the same name. For example, the
following program copies a UNIX file named data to output:

program copydata(data,output);
var c: char;

data: text'
begin

reset (data) ;
while not eof(data) do begin

while not eoln(data) do begin
read(data,ch);

end;
end.

~\sun
~ microsystems

write (ch) ;
end;
readln(data);
writeln;

3.2. eof and eoln

Chapter 3 - Input and Output 33

Assuming that the file data is still in the current directory and the copydata
program is saved in copydata. p, you can compile and run the program as
follows:

hostname% pc copydata.p -0 copydata
hostname% copydata
hello, are you listening?
goodbye, I must go now.
hostname%

There are other more flexible ways to associate Pascal file variables with UNIX
files; for example, actual filenames can be taken from string constants or vari­
ables, or from command-line arguments using the built-in procedures argc and
argv. Details are given in later sections of this manual.

An extremely common problem encountered by new users of Pascal, especially
in the interactive environment offered by UNIX, relates to the definitions of eof
and eoln. These functions are supposed to be defined at the beginning of exe­
cution of a Pascal program, indicating whether the input device is at the end of a
line or the end of a file (or neither).

Setting eof or eoln actually corresponds to an implicit read in which the
input is inspected, but not' 'used up." In fact, there is no way the system can
know whether the input is at end of file or the end of a line unless it attempts to
read a line from it.

If the input is from a previously created file, then this reading can take place
without run time action by the user. However, if the input is from a terminal,
then the input is what you type. If the system does an initial read automatically at
the beginning of program execution, and if the input is a terminal5, the user
would have to type some input before execution could begin. This would make
it impossible for the program to begin by prompting for input.

Sun Pascal has been designed so that an initial read is not necessary. At any
given time, the Pascal system mayor may not know whether the end of file and
end of line conditions are true. Thus, internally, these functions can have three
values: true, false, and "I don't know yet; if you ask me I'll have to find
out." All files remain in this last, indeterminate state until the Pascal program
requires a value for eof or eo In either explicitly or implicitly, for example, in
a call to read. The important point to note here is that if you force the Pascal
system to determine whether the input is at the end of file or the end of line, it is
necessary for it to attempt to read from the input.

Consider the following example code:

5 It is not possible to determine whether the input is a tenninal, as the input may appear to be a file but actu­
ally be a pipe, the output of a program which is reading from the tenninal.

~~sun
~ microsystems

34 Pascal Programmer's Guide

3.3. More About eoln

while not eof do begin

end

write ('number, please? ');
read(i);
writeln('that was a' i: 2)

At first glance, this may appear to be a correct program for requesting, reading
and echoing numbers. Notice, however, that the while loop asks whether
eo f is true before the request is printed. This forces the Pascal system to decide
whether the input is at the end of file. The Pascal system gives no messages; it
simply waits for the user to type a line. By producing the desired prompting
before testing eof, the following code avoids this problem:

write('number, please ?');
while not eof do begin

read(i);

end

writeln{'that was a " i:2);
write('number, please ?')

You must still type a line before the while test is completed, but the prompt
asks for it. This example, however, is still not correct. To understand why, it is
first necessary to know that there is a blank character at the end of each line in a
Pascal text file. When reading integers or real numbers, the read procedure is
defined so that when only blanks are left in the file, a zero value is returned and
the end of file condition is set. If, however, there is a number remaining in the
file the end of file condition is not set even if it is the last number, since read
never reads the blanks after the number (and there is always at least one blank).
Thus, the modified code still puts out a spurious

(~t_h_a_t __ w_a_s __ a ___ o __ ~)
at the end of a session when end of file is reached. The simplest way to correct
the problem in this example is to use the procedure readln instead of read.
In general, unless you test the end of file condition both before and after calls to
read or readln, there will be inputs that cause your program to attempt to
read past the end-of-file.

To have a good understanding of when eoln is true it is necessary to know that
in any file there is a special character indicating end-of-line, and that in effect,
the Pascal system always reads one character ahead of the Pascal read com­
mands.

For instance, in response to read (ch), the system sets ch to the current input
character and gets the next input character. If the current input character is the
last character of the line, then the next input character from the file is the newline
character, the normal UNIX line separator. When the read routine gets the
newline character, it replaces that character by a blank (causing every line to end

~\sun ,~ microsystems

3.4. Output Buffering

Chapter 3 - Input and Output 35

with a blank) and sets eoln to TRUE. eoln is TRUE as soon as you read the
last character of the line and before you read the blank character corresponding to
the end of line. Thus, it is almost always a mistake to write a program that deals
with input in the following way:

read (ch) ;
if eoln then

Done with line
else

Normal processing

as this almost always has the effect of ignoring the last character in the line. The
read (ch)6 belongs as part of the normal processing.

Given this framework, it is not hard to explain the function of a readln call,
which is defined as:

while not eoln do
get(input);

get(input);

This advances the file until the blank corresponding to the end of line is the
current input symbol and then discards this blank. The next character available
from read is the first character of the next line, if one exists.

A final point about Pascal inputJoutput concerns the buffering of the file out­
pu t. It is extremely inefficient for the Pascal system to send each character to
the user's terminal as the program generates it for output - even less efficient if
the output is the input of another program such as the line printer daemon
Ipr (1). To gain efficiency, the Pascal system "buffers" the output characters
(i.e., it saves them in memory until the buffer is full and then emits the entire
buffer in one system interaction). However, to allow interactive prompting to
work as in the example given above, this prompt must be printed before the Pas­
cal system waits for a response. For this reason, Pascal normally prints all the
output that has been generated for the file out pu t whenever one of the follow­
ing occurs:

a writeln occurs

the program reads from the terminal

the procedure message or flush is called

Thus, in the code sequence

5 In Pascal tI'ImS, read (ch) corresponds to 'ch := input"; get(input)'.

~\sun ~~ microsystems

36 Pascal Programmer's Guide

3.5. Files, re set, and
rewrite

for i := 1 to 5 do begin
write(i: 2);

Compute a lot with no output
end;
,writeln

the output integer does not print until the wri teln occurs. The delay can be
somewhat disconcerting, and you should be aware that it does occur. By setting
the -b option to 0 before the program statement by inserting a comment of
the form

[(*$bO*) J
you can cause output to be completely unbuffered, with a corresponding large
degradation in program efficiency. Option control in comments is discussed in
the "Using Options" section in Chapter 4.

It is possible to use extended forms of the built-in functions reset and
rewr it e to get more general associations of UNIX file names with Pascal file
variables. When a file other than input or output is to be read or written,
then the reading or writing must be preceded by a reset or rewrite call. In
general, if the Pascal file variable has never been used before, there will be no
UNIX filename associated with it. By mentioning the file in a program state­
ment, however, we can cause a UNIX file with the same name as the Pascal vari­
able to be associated with it. If we do not mention a file in the program state­
ment and use it for the first time with the statement

(reset (f) J
or

(~r_e_w_r_l_'t_e __ (f_) __ ~J
then the Pascal system generates a temporary name of the form tmp. x for some
character x, and associates this UNIX filename with the Pascal file. The first
such generated name is 'tmp.1' and the names continue by incrementing the
filename extension through the ASCII character set. The advantage of using such
temporary files is that they are automatically removed by the Pascal system as
soon as they become inaccessible. They are not removed, however, if a runtime
error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable
you can give that name in the re set or rewr it e call. For example, you
could have associated the Pascal file data with the file primes (see "Transla­
tor Syntax Errors" section in Chapter 2) by doing:

.~sun ~~ microsystems

3.6. argc and argv

Chapter 3 - Input and Output 37

(reset (data, 'primes') J

instead of a simple

(reset (data)
J

In this case it is not essential to mention data in the program statement, but it
is still a good idea because it serves as an aid to program documentation. The
second parameter to reset and rewrite can be any string value, including a
variable. Thus the names of UNIX files to be associated with Pascal file variables
can be read in at runtime. Full details on filename/file variable associations are
given in the "Restriction and Limitations" section of Appendix A.

Each UNIX process receives a variable-length sequence of arguments, each of
which is a variable-length character string. The built-in function argc and the
built-in procedure argv can be used to access and process these arguments.
The value of the function argc is the number of arguments to the process. By
convention, the arguments are treated as an array and indexed from 0 to
argc-l , with the zeroth argument being the name of the program being exe­
cuted. The rest of the arguments are those passed to the command on the com­
mand line. Thus, the command

tutorial% obj /etc/motd /usr/dict/words hello

invokes the program in the file ob j with argc having a value of 4. The zeroth
element accessed by argv is obj, the first / etc/rnotd, and so on.

Pascal does not provide variable-size arrays, nor does it allow character strings of
varying length. For this reason, argv is a procedure and has the syntax

(~a_r_g_V_(_i_, __ a_) __ ~J
where i is an integer and a is a string variable. This procedure call assigns the
(possibly truncated or blank-padded) i' th argument of the current process to
the string variable a. The file manipulation routines reset and rewrite
strip trailing blanks from their optional second arguments so that this blank pad­
ding is not a problem in the usual case where the arguments are filenames.

The Pascal program kat illustrates the use of arc and argv, which can be
used with the same syntax (except for the options to cat) as the UNIX system
program cat (1).

First compile the program:

(hostnarne% pc kat.p -0 kat

~\sun ~~ microsystems

J

38 Pascal Programmer's Guide

Then run the program:

hostname% kat kat.p
program kat (input, output);
var

ch: char;
i: integer;
name: packed array [1 .. 100] of char;

begin
i := 1;
repeat

if i < argc then begin

end;

argv(i, name);
reset (input, name);
i := i + 1

while not eof do begin
while not eoln do begin

read(ch);

end

write (ch)
end;
readln;
write in

until i >= argc
end { kat }.
tutorial%

{nonstandard}

Note that the reset call to the file input may not be allowed on other sys­
tems. As this p,ogram deals mostly with argc and argv and UNIX system­
dependent considerations, portability is of little concern.

If this program is in the file kat. p, then do the following:

~\sun ,~ microsystems

Chapter 3 - Input and Output 39

hostname% kat
This is a line of text.
This is a line of text.

tutorial% pi kat.p
tutorial% mv obj kat
tutorial% kat kat.p
program kat (input, output);
var

ch: char;
i: integer;
name: packed array [1 .. 100] of char;

begin
i := 1;
repeat
if i < argc then begin

argv(i, name);
reset(input, name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);
write (ch)
end;
readlni
write In

end
until i >= argc

end { kat }.

1152 statements executed in 0.36 seconds cpu time.

The next line contains only an end-of-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-d!)

288 statements executed in 0.10 seconds cpu time.
hostname%

Thus, ifit is given arguments, kat (like cat) copies each one in turn. Ifno
arguments are given, it copies from the standard input. Thus it works as it did
before, with

(tutorial% kat < kat.p

now equivalent to

(tutorial% kat kat.p

~\sun ~~ microsystems

]

]

40 Pascal Programmer's Guide

tutorial% kat xxxxqqq

although the mechanisms are quite different in the two cases.

You can also translate a file differently, for example:

tutorial% pi -pb kat.p
tutorial% mv obj kat

This disables the post-mortem statistics printing, so as not to get the statistics or
the full traceback on error. The -b option will cause the system to block buffer
the input/output so that the program will run more efficiently on large files. You
could have also specified the -t option to tum off runtime tests and so speed up
the program.

Here is one last rerun of the previous examples:

Could not open xxxxqqq: No such file or directory

Error in "kat"
tutorial% kat primes

2 3 5
31 37 41
73 79 83

127 131 137
179 181 191

tutorial%

7 11 13 17 19 23 29
43 47 53 59 61 67 71
89 97 101 103 107 109 113

139 149 151 157 163 167 173
193 197 199 211 223 227 229

You could try writing a program which accepts command line arguments like
pi does, using argc and argv to process them.

~~sun
~~ microsystems

4
System Component Details

System Component Details ... 43

4.1. Using Options .. 43

4.2. Options Common to pi, pc, and pix .. 44

L - Map Identifiers and Keywords to Lower Case 44

b - Buffering of the File 0 u t pu t ... 44

i-Include File Listing .. 44

1. - Make a Listing .. 45

s - Standard Pascal Only .. 45

t and C - Runtime Tests .. 45

w - Suppress Warning Diagnostics .. 45

z - Generate Counters for a pxp Execution Profile 45

4.3. Options Available in pi .. 46

P - Post-Mortem Dump ... 46

o - Redirect the Output File .. 46

4.4. Options Available in px .. 46

4.5. Options Available in pc .. 47

S - Generate Assembly Language ... 47

9 - Symbolic Debugger Information .. 47

0- Redirect the Output File .. 47

p and pg - Generate an Execution Profile .. 47

0- Run the Object Code Optimizer .. 47

P - Partial Evaluation of Boolean Expressions 47

Idir - Specify Directories for Include Files ... 47

Dname=def - Define Name to Preprocessor .. 47

Uname - Undefine Name to the Preprocessor .. 47

f68881 ... 47

ffpa .. 47

fsky .. 48

9 .. 48

fsoft ... 48

fswitch .. 48

4.6. Options Available in pxp ... 48

a - Include the Bodies of All Routines in the Profile 48

d - Suppress Declaration Parts from a Profile .. 48

e - Eliminate #include Directives .. 48

f - Fully Parenthesize Expressions ... 48

j - Left-Justify all Procedures and Functions ... 49

t - Summarize Procedure and Function Calls .. 49

z - Enable and Control the Profile ... 49

4.7. Formatting programs using pxp ... 49

s - Strip Comments .. 51

, - Underline Keywords .. 51

[23456789] - Specify Indenting Unit .. 51

4.8. pxref ... 51

4.9. Multi-file programs ... 51

4.10. Separate Compilation with pc .. 52

4.1. Using Options

4

System Component Details

The programs pi, pc, and pxp take several options.? There is a standard
UNIX convention for passing options to programs on the command line, which is
followed by the Sun Pascal system programs. As you saw in previous examples,
option-related arguments consist of the character '-' followed by an option
name.

Except for the -b and -£ options, each option may be set on (enabled) or off
(disabled). When an on/off-valued option appears on the command line of pi
or px, it inverts the default setting of that option. Thus

(~h_o_s_t_n_a_m_e_~_o_p_1_'_-_1 ___ f_O_O ___ .P ___ ~J
enables the listing option -l., since it is off by default, while

(hostname% pi -t foo.p

disables the run-time tests option -t, since it is on by default.

In addition to inverting the default settings of pi options on the command line,
it is also possible to control them within the body of the program by using com­
ments of the special form:

J

({$l-) J

The opening comment delimiter, which could also be a '(*', is immediately fol­
lowed by the character '$'. After the '$', which signals the start of the option
list, you can place a sequence of letters and option controls, separated by com­
mas. The most basic actions for options are to set them, thus

({$l+ Enable listing) J

or to clear them

7 As pix uses pi to translate Pascal programs, it takes the options of pi also. We refer to them here,
however, as pi options.

43

44 Pascal Programmer's Guide

4.2. Options Common to pi,
pc, and pix

-L - Map Identifiers and
Keywords to Lower Case

-b - Buffering of the File
output

-i - Include File Listing

{$t-,p- No run-time tests, no post mortem analysis}

Notice that '+' always enables an option and '-' always disables it, no matter
what the default is. Thus '-' has a different meaning in an option comment than
it has on the command line. As shown in the examples, normal comment text
may follow the option list.

The following options are common to both the compiler and the interpreter.
Refer to the appropriate manual page in Appendix G for a summary of the
options to each command. With each option the default setting (the setting it
would have if it appeared on the command line), and a sample command using
the option are given.

Programs transported from other systems are often written with mixed-case
identifiers and keywords. This option cleans up such a program for use with
Berkeley Pascal.

The -b option controls the buffering of the file output. The default is line
buffering, with flushing at each reference to the file input and under certain
other circumstances detailed in "Options Available in pc" section found later in
this chapter. Mentioning -b on the command line, that is:

[hostname% pi -b assemb1er.p J

makes standard output block-buffered, where a block is some system-defined
number of characters. The -b option can also be controlled in comments. It
takes a single-digit value rather than an on or off setting. A value of 0, that is

[{$bO} J
makes output unbuffered, a value of 1 makes if buffered. Any value of two or
more causes block buffering and is equivalent to the flag on the command line.
The option control comment setting -b must precede the program statement.

The -i option takes the name of an include file, procedure or func­
tion name and causes it to be listed while translating8. Typical uses would be

[~h_o_s_t_n_a_m_e __ %_p __ i_X __ -_i __ s_c_a_n_n_e_r_._i __ C_O_mp __ i_l_e_r_._p ____________________ ~J
to make a listing of the routines in the file scanner. i, and

[~h_o_s_t_n_a_m_e_~_o_p_1_.X __ -__ i __ sc __ an __ n_e_r __ c_o_mp __ i_l_e_r_._p ______________________ ~J
8 Include files are discussed in the "Multi-file programs" section later in this chapter.

~\sun ~ microsystems

-~ - Make a Listing

-8 - Standard Pascal Only

-t and -C - Runtime Tests

-w - Suppress Warning
Diagnostics

-z - Generate Counters for a
pxp Execution Profile

Chapter 4 - System Component Details 45

to make a listing of only the routine scanner. This option is especially useful
for conservation-minded programmers who are making partial program listings.

The -~ option enables a listing of the program. -~ is off by default. When
specified on the command line, it creates a header line identifying the version of
the translator in use and a line giving the modification time of the file being
translated to appear before the actual program listing. The -J. option is pushed
and popped by the -i option at appropriate points in the program.

The -8 option causes many of the features of the Berkeley Pascal implementa­
tion that are not found in standard Pascal to be diagnosed as's' warning errors.
This option is off by default and is enabled when mentioned on the command
line. Some of the features that are diagnosed are nonstandard procedures and
functions, extensions to the procedure write, and padding of constant strings
with blanks. In addition, all letters are mapped to lower case except in strings
and characters, so that the case of keywords and identifiers is effectively ignored.
The -8 option is most useful when a program is to be transported.

These options control the generation of tests that sub range variable values are
within bounds at runtime. pi defaults to generating tests and uses the option
-t to disable them. pc defaults to not generating tests, and uses the option -C
to enable them. Disabling runtime tests also causes as sert statements to be
treated as comments.9

The -w option, which is on by default, allows the translator to print a number of
warnings about inconsistencies it finds in the input program. Turning this option
off with a comment of the form

[{$W-l

or on the command line

[hostname% pi -w tryme.p

suppresses these diagnostics.

The -z option, off by default, enables the production of execution profiles.
Specifying -z on the command line:

J

J

[~h_o_s_t_n_a_m_e_~_o_p_1_'_-_Z __ f_O_O __ 'P ______________________________________ ~J
or enabling it in a comment before the program statement, causes pi and pc
to insert code in the program to count the number of times each statement was
executed. An example of using pxp is given in the "Execution profiling" sec­
tion in Chapter 1; its options are described in the "Options Available in pxp"

9 See the section on the as sert statement in Appendix B for details.

~\sun ,~ microsystems

46 Pascal Programmer's Guide

4.3. Options Available in pi
-p - Post-Mortem Dump

-0 - Redirect the Output
File

4.4. Options Available in px

section later in this chapter. Note that the -z option cannot be used on
separately compiled programs.

The -p option is on by default, and causes the run time system to initiate a
post-mortem traceback when an error occurs. The -p option also makes px
count statements in the executing program, enforcing a statement limit to prevent
infinite loops. Specifying -p on the command line disables these checks and the
ability to produce this post-mortem analysis. It does make smaller and faster
programs, however. It is -also possible to -control the -p option in comments.
To prevent the post-mortem traceback on error, -p must be off at the end of the
program statement.

-0 is used to specify the output file used in place of a. out. Its typical use is
to name the compiled program using the root of the filename of the Pascal pro­
gram. Thus,

[hostname% pc -0 myprog myprog.p

causes the compiled program myprog. p to be called myprog.

The first argument to px is the name of the file containing the program to be
interpreted. If no argument is given, then the file ob j is executed. If more
arguments are given, they are available to the Pascal program by using the built­
ins argc and argv as described in the "argc and argvl! section in Chapter 3.

]

px can also be invoked automatically. In this case, whenever a Pascal object file
name is given as a command, the command will be executed with px prepended
to it; that is

(hostname% obj primes]
is processed as if it were

(hostname% px obj primes]

tt\sun ~ microsystems

4.5. Options Available in pc

-s - Generate Assembly
Language

-g - Symbolic Debugger
Information

-0 - Redirect the Output
File
-p and -pq - Generate an
Execution Profile

-0 - Run the Object Code
Optimizer

-p - Partial Evaluation of
Boolean Expressions

-1dir - Specify Directories
for Include Files

-Dname=def - Define Name
to Preprocessor

-Uname - Un define Name to
the Preprocessor

-f68881

-ffpa

Chapter 4 - System Component Details 47

The program is compiled and the assembly language output is left in the file
sourcefile. s . Thus,

(~ostname% pc -S foo.p J
,---, ------
places the assembly language translation of faa. p in the file faa. s. No
executable file is created.

The -g option causes the compiler to generate information needed by dbx or
dbxtool, the source-level debuggers.

-0 is the same as in "Options Available in pi."

The compiler produces code that counts the number of times each routine is
called. The profiling is based on a periodic sample taken by the system, rather
than by in line counters (as with pxp). -p causes a man. out file to be pro­
duced for prof (1). -pq causes a groan. out file to be produced for
gprof (1) , a more sophisticated profiling tool.

The output of the compiler is run through the object code optimizer. This causes
an increase in compile time in exchange for a decrease in compiled code size and
execution time.

Partial evaluation semantics are used on the boolean operators and and or.
Left-to-right evaluation is guaranteed and the second operand is evaluated only if
necessary to determine the result

#include files whose names don't begin with "/" are searched for first in the
directory of the file argument, then in directories named in -I options, then
in user / include/pascal.

Define name to the preprocessor, as if by #define. If no definition is given,
the name is defined as "1."

This option removes any initial definition of name.

Generate code that assumes the presence of the MC68881 floating-point proces­
sor (not supported on Sun 2).

Generate code that assumes the presence of the MC68881 floating-point proces­
sor board (not supported on Sun 2).

48 Pascal Programmer's Guide

-fsky

-g

-fsoft

-fswitch

4.6. Options Available in
pxp

-a -- Include the Bodies of
All Routines in the Profile

-d -- Suppress Declaration
Parts from a Profile

-e -- Eliminate #include
Directives

-f -- Fully Parenthesize
Expressions

Generate code that assumes the presence of a SKylO floating-point processor
board. Programs compiled with this option can only be run in systems that have
a SKY board installed. Programs compiled with the -swi tch option use the
SKY board, but won't run as fast. If any part of a program is compiled using the
-fsky option, you must also use this option when loading with the p7 com­
mand, since a different set of startup routines is required.

Produce additional symbol table information for dbx or dbxtool. Also, pass the
-19 file to ld (1).

Generate code that uses software floating point calls (this is the default state).

Run-time-switched floating point calls. The compiled object code is linked at
run-time to routines that support the MC68881, SKY floating-point board, or
software floating point calls, depending on the system that is running the pro­
gram.

On its command line, pxp takes a list of options followed by the program
filename, which must end in ' .p' (as it must for pi, pc, and pix). pxp
produces an execution profile if any of the -z, -t, or -c options are specified
on the command line. If none is specified, then pxp functions as a program
refonnatter.

It is important to note that only the -z and -w options of pxp, which are
common to pi, pc, and pxp can be controlled in comments. All other
options must be specified on the command line to have any effect.

The options listed below are relevant to profiling with pxp.

To make the profile more compact, pxp does not normally print the bodies of
routines that were not executed. This option forces all routine bodies to be
printed.

Normally a profile includes declaration parts. Specifying -d on the command
line suppresses declaration parts.

Nonnally, pxp preserves #include directives in the output when reformat­
ting a program, as though they were comments. Specifying -e causes the con­
tents of the specified files to be refonnatted into the output stream instead. This
is an easy way to eliminate #include directives, for example, before tran­
sporting a program.

Nonnally pxp prints expressions with the minimum number of parentheses
necessary to preserve the structure of the input. This option causes pxp to fully
parenthesize expressions. Thus, the statement that normally prints as

[~d ___ := __ a __ + __ b __ m __ Od ___ c __ / __ e _______________________________________)

10 Sky is a trademark of SKY Computers, Inc .

• \Slln ,~ microsystems

-j - Left-Justify all
Procedures and Functions

-t - Summarize Procedure
and Function Calls

-z - Enable and Control the
Profile

4.7. Formatting programs
using pxp

Chapter 4 - System Component Details 49

prints as

(d : = a + « b mod c) / e)

when the -£ option is specified on the command line.

Nonnally, each procedure and function body is indented to reflect its static nest­
ing depth. This option prevents this nesting and can be used if the indented out­
put would be too wide.

The -t option causes pxp to print a table summarizing the number of calls to
each procedure and function in the program. It may be specified in
combination with the -z option, or separately.

J

The -z profile option is very similar to the -i listing control option of pi. If
-z is specified on the command line, then all arguments up to the source file
argument (which ends in . p) are taken to be the names of procedures and func­
tions or include files that are to be profiled. If this list is null, then the whole
file is profiled. A typical command for extracting a profile of part of a large pro­
gram would be

(~ostname% pxp -z parser.i test compi1er.p]

--. ----------"
This specifies that profiles of the routines in the file par ser . i and the routine
test are to be made.

The program pxp can be used to reformat programs by using a command of the
fonn

(hostname% pxp dirty.p > c1ean.p J
Note that since the shell creates the output file clean. p before pxp executes,
clean. p and dirty. p must not be the same file.

pxp automatically paragraphs the program. It perfonns housekeeping chores
such as comment alignment, and treating blank lines (lines containing exactly
one blank or lines containing only a formfeed character) as though they were
comments, preserving their vertical spacing effect in the output. pxp processes
four kinds of comments:

Left-marginal comments beginning in the first column of the input line are
placed in the first column of an output line.

Aligned comments preceded by no input tokens on the input line are aligned
in the output with the running program text.

Trailing comments preceded in the input line by a token are placed with no
more than two spaces separating the token from the comment.

~\sun ,~ microsystems

50 Pascal Programmer's Guide

Right-marginal comments, preceded in the input line by a token from which
they are separated by at least three spaces or a tab, are aligned down the right
margin of the output. They are aligned to the first tab stop after the 40th
column from the current "left margin".

Consider the following program:

hostname% cat comments.p
{ This is a left marginal comment. }
program hello (output) ;
var i : integer; {This is a trailing comment}
j integer; {This is a right marginal comment}
k array [1 .. 10] of array [1 .. 10] of integer; {Marginal, but past the margin}
{

An aligned, multi-line comment
which explains what this program is
all about

begin
i := 1; {Trailing i comment}
{A left marginal comment}

{An aligned comment}
j := 1; {Right marginal comment}
k[l] := 1;
writeln(i, j, k[l])
end.

When formatted by pxp the following output is produced:

hostname% pxp comments.p
{ This is a left marginal comment. }

program hello (output) ;
var

i: integer; {This is a trailing comment}
j: integer; {This is a right marginal comment}
k: array [1 .. 10] of array [1 .. 10] of integer; {Marginal, but past the margin}

An aligned, multi-line comment
which explains what this program is
all about

begin
i := 1; {Trailing i comment}

{A left marginal comment}
{An aligned comment}
j := 1;
k[l] := 1;

writeln(i, j, k[l])
end.
hostname%

{Right marginal comment}

-s - Strip Comments

- _ - Underline Keywords

-[23456789] - Specify
Indenting Unit

4.8. pxref

4.9. Multi-file programs

Chapter 4 - System Component Details 51

The following formatting-related options are currently available in pxp. The
options -£ and -j described in the previous section may also be of interest.

The -s option causes pxp to remove all comments from the input text.

A command line argument of the form - _ , as in

(hostname% pxp -_ dirty.p

causes pxp to underline all keywords in the output for enhanced readability.

The normal unit that pxp uses to indent a structure statement level is four
spaces. By giving an argument of the form -d, with d a digit (2 ~ d ~ 9), you
can specify that d spaces are to be used per level instead.

The cross-reference program pxre f can be used to make cross-referenced list­
ings of Pascal programs. To produce a cross reference of the program in the file
,!oo.p' you can execute the command:

(hostname% pxref foo.p

The cross reference is unfortunately not block-structured. Full details on
pxref are given in the pxref (1) manual page.

A text inclusion facility is available in Berkeley Pascal. This facility allows the
interpolation of source text from other files into the source stream of the transla­
tor. It can be used to divide large programs into more manageable pieces to
facilitate editing, listing, and maintaining them. The inclusion facility is also
used in pc for sharing common declarations among separately-compiled
modules. See the following section for information about compiling modules
separately with pc.

The include facility is similar to that of the UNIX C compiler. To use it,
place the character '#' in the first position of a line immediately followed by the
word include, and then a filename enclosed in single ", or double '"' quota­
tion marks. The filename may be followed by a semicolon. The filenames of
included files must end in '.'. An example of the use of included files in a main
program is

~\sun ,~ microsystems

]

]

52 Pascal Programmer's Guide

4.10. Separate Compilation
with pc

program compiler(input, output, obj);

finclude "globals."
finclude "scanner."
finclude "parser."
finclude "semantics."

begin
{ main program }

end.

When the include pseudo-statement is encountered in the input, the lines
from the included file are inserted into the input stream. For the purposes of
translation and run-time diagnostics and statement numbers in the listings and
post-mortem tracebacks, the lines in the included file are numbered starting from
1. Nested includes may be up to 10 levels deep.

See the description of the -i option of pi in the "Options Common to pi,
pc, and pix" section found in this chapter; this can be used to control listing
when include files are present.

When a nontrivial line is encountered in the source text after an include
finishes, the 'popped' filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename is
printed before each diagnostic if the current filename has changed since the last
one was printed.

A separate compilation facility is provided in pc. This facility allows programs
to be divided into a number of files that are compiled individually and linked
together later. This is especially useful for large programs, where small changes
would otherwise require time-consuming recompilation of the entire program.

Normally, pc expects to be given entire Pascal programs. However, if you give
the -c option on the command line, pc accept a sequence of definitions and
declarations, and compiles them into a . 0 file that can be linked with a Pascal
program at a later time. In order to have procedures and functions available
across separately compiled files, they must be declared with the
external directive. This directive is similar to the directive forward in that
it must precede the resolution of the function or procedure, and formal parame­
ters and function result types must be specified in the external declaration
but may not be specified in the resolution.

Type checking is performed across separately compiled files during loading.
Since Pascal type definitions define unique types, any types that are shared
between separately compiled files must have the same definitions.

This problem is solved using a facility similar to the include facility dis­
cussed above. Definitions can be placed in files having the extension . h and the
files included by separately-compiled files. Each definition from a . h file
defines a unique type, and all uses of a definition from the same . h file define

.~sun ~ microsystems

Chapter 4 - System Component Details 53

the same type.

Similarly, the facility is extended to allow the definition of consts and the
declaration of labels, vars, and external functions and pro­
cedures. Thus procedures and functions that are used in the separately com­
piled files must be declared external, and must be so declared in a . h file
included by any file that calls or resolves the function or procedure. Conversely,
functions and procedures declared external can only be so declared in . h
files. These files can only be included at the outermost level and define or
declare global objects. Note that since only external function and
procedure declarations (and not resolutions) are allowed in . h files, stati­
cally nested functions and procedures can't be declared external.

An example of the use of included . h files in a program is:

program compiler (input, output, obj);

#include "globals.h lt

#include "scanner.h lt

#include "parser.h"
#include "semantics.h lt

begin
{ main program }

end.

The main program might include the definitions and declarations of all the global
labels, consts, types, and vars from the file globals. h, and the
external function and procedure declarations for each of the
separately compiled files for the scanner, parser, and semantics. The header file
scanner. h would contain declarations of the form:

type
token brecord
{ token fields }
end;

function scan(var inputfile: text): token;
external;

Then the scanner might be in a separately compiled file containing

#include "globals.h lt

#include "scanner.h"

function scan;
begin

{ scanner code
end;

~~sun ~ microsystems

54 Pascal Programmer's Guide

which includes the same global definitions and declarations and resolves the
scanner functions and procedures declared external in the file scanner. h.

~\sun ~~ microsystems

5
Pascal Routines From Other Languages

Pascal Routines From Other Languages ... 57

5.1. Argument List Layout ... 57

5.2. Value Parameters ... 58

Type short real ... 58

Fixed Array Types .. 59

Value Conformant Array Parameters .. 59

5.3. Conformant Array Parameters ... 60

5.4. Procedures and Functions as Parameters 61

5.1. Argument List Layout

5
Pascal Routines From Other Languages

This chapter describes the Pascal calling sequence used when other languages
call Pascal routines. The following topics are discussed:

Argument list layout

Value parameters

Confonnant array parameters

Procedures and functions as parameters

The argument list consists of up to four separate sections on the run-time stack,
in the following order:

1. Storage for declared arguments. These are either values or pointers to
values, and in any case, correspond directly to explicitly declared fonnal
parameters in the Pascal procedure or function declaration.

2. Storage for auxiliary arguments associated with confonnant array parame­
ters.

3. Storage for auxiliary arguments associated with procedures or functions
passed as parameters.

4. Storage for an auxiliary argument required if the called routine is declared
within another procedure. This can only arise in C or FORTRAN if a nested
Pascal procedure is passed as an argument.

The parameter list is organized like this primarily in order to make it easy to call
other languages from Pascal. In general, auxiliary items for Pascal-specific
requirements (such as range checking and static scoping) have been moved out­
side the "primary" argument list.

In C notation, the calling sequence observed by pc is described as follows:

declared procedures and scalar-valued functions:

p (... args ... [, capbounds] [, pfslinks] [, slink])

structure-valued functions:

(temp = p(... args ... [,cap bounds] [,pf
slinks] [, slink]) , &temp)

57

58 Pascal Programmer's Guide

5.2. Value Parameters

Type shortreal

fonnal procedures and scalar-valued functions:

(*p) (... args ... [,capbounds] [,pfslinks] ,slink)

fonnal structure-valued functions:

(temp =
(*p) (... args ... [,capbounds] [,pfslinks],slink),
&temp)

where:
capbounds are bounds pairs for conformant array parameters
pfslinks are static links for procedure/function parameters
slink is the static link of the called procedure/function
temp is storage allocated by the caller for the result of a structure­

valued function

In general, Pascal expects all value parameters except confonnant array parame­
ters to be passed directly on the stack, widening to a full word representation if
necessary. From C, there are two places where this causes trouble: scalars of
type shortreal, and arrays of any fixed type.

Parameters of type short real are assumed to have been passed in single pre­
cision; note that this differs from C, which always converts float arguments
to double before pushing them on the stack.

If a Pascal procedure with a shortreal value parameter must be called from
C, use the following device:

For the caller (C), use:

extern foo();

union {

u;

int intval;
float fval;

/* procedure foo(x:shortreal); */

u.fval = <expression of type 'float'>
foo(u.intval);

For the callee (Pascal), use:

procedure foo(x: shortreal);
begin

end;

Fixed Array Types

Value Conformant Array
Parameters

Chapter 5 - Pascal Routines From Other Languages 59

C does not pass arrays by value, but does pass structures by value. An array can
be passed by value to Pascal by enclosing the array declaration in a dummy
structure. For example, consider the following Pascal routine:

procedure foo(name: alfa);
begin

do something with name ...
end;

where alfa is defined by

(alfa = packed array[1 .. 10] of char;

The routine f 00 may be called by using the auxiliary declaration

typedef struct {
char cbuf[10];

} alfa;

alfa digits;
strncpy(digits, "0123456789", sizeof(digits»;
foo(digits);

J

Since this interface is neither efficient nor general, it should be avoided whenever
possible. A more general interface is described in the next section.

Value conformant array parameters are handled by creating a copy in the caller's
environment and passing a pointer to the copy. In addition, the bounds of the
array must be passed (this is described in "Argument List Layout" found earlier
in this appendix). For example:

The caller (C):

extern foo();

char a[] = "this is a string";

foo(a, 0, sizeof(a)-1);

The callee (Pascal):

procedure foo(s: packed array[lb .. ub: integer] of char);
begin

end;

60 Pascal Programmer's Guide

5.3. Conformant Array
Parameters

From FORTRAN:

FORTRAN passes all arguments by reference. Thus, from FORTRAN it is impossi­
ble to call a Pascal routine that expects value parameters.

A conformant array parameter must include bounds and possibly element widths
as arguments. These go immediately after the declared argument list. An ele­
ment width is included for all except the last dimension of a multidimensional
array.

Note that since the bounds are passed by value, Pascal routines with conformant
array parameters cannot be called from FORTRAN.

If the called routine knows the element width at compile time, the pair

((low bound, high bound: integer)

is passed. For C, the low bound is always O.

If the called routine does not know the element width at compile time, (i.e., for
all dimensions but the last dimension of a multidimensional conformant array) a
triple

(low bound, high bound, element width: integer)

must be passed. The element width is computed as

J

((ub - lb + 1) * w
J

where (lb, ub, w) are the bounds and element width of the next lower dimen­
sion of the array. Note that this definition is recursive.

Finally, note that bounds information may be shared by several conformant array
parameters; this is a consequence of their declaration structure. For example,
only one bounds pair is passed for the declaration

function innerproduct(
var x,y: array[lb .. ub: integer] of real): real;

external;

This could be used from C as follows:

=If:define N 100
double vector1[N], vector2[N];
extern double innerproduct(

1* double x[],y[]; int lb, ub; *1
) ;

double ip;
ip = innerproduct(vectorl, vector2, 0, N-l);

~\sun ,~ microsystems

S.4. Procedures and
Functions as Parameters

Chapter 5 - Pascal Routines From Other Languages 61

A procedure or function passed as an argument is associated with a static link to
its lexical parent's activation record. When an outer block procedure or function
is passed as an argument, Pascal passes a null pointer in the position normally
occupied by the passed routine's static link. So that procedures and functions
can be passed to other languages as arguments, the static links for all procedure
or function arguments are placed after the end of the conformant array bounds
pairs (if any).

Routines in other languages may be passed to Pascal; a dummy argument must
be passed in the position normally occupied by the passed routine's static link. If
the passed routine is not a Pascal routine, the argument is used only as a place
holder.

6
The Pascal - C Interface

The Pascal - C Interface .. 65

6.1. Order of Declaration of Arguments .. 65

6.2. Value Parameters vs. Reference Parameters .. 65

6.3. Conformant Array Parameters ... 66

6.4. Procedures and Functions as Parameters ... 67

6.5. Compatible Types in Pascal and C .. 68

6.6. Incompatible Types in Pascal and C .. 68

C Bit Fields .. 69

Enumerated Types .. 69

Character String Types .. 69

Pascal Set Types .. 70

Pascal Variant Records .. 71

6.1. Order of Declaration of
Arguments

6.2. Value Parameters vs.
Reference Parameters

6
The Pascal - C Interface

This chapter gives infonnation for constructing interfaces between Pascal and C
routines. It contains information that is necessary for calling existing C library
routines from Pascal, as well as for writing Pascal-callable routines in C. How­
ever, it is not intended to serve as a tutorial on either subject. Familiarity with
both C and Pascal is assumed.

The order that arguments are declared is the same in Pascal and C. Certain fonns
of arguments in Pascal (i.e., procedures, functions, and conformant arrays) cause
the compiler to pass additional infonnation after the declared argument list; how­
ever, in most cases, external C routines need not be aware of this additional
infonnation. See Chapter 5 for further details.

In C, all parameters except arrays are passed by value. Pascal var (reference)
parameters are handled in C by declaring the fonnal parameter to be a pointer
type. Thus the following Pascal declaration:

procedure incr(var n: integer);
external c;

corresponds to the C function

incr(n)
int *n;

*n += 1;

Pascal allows structured types (records, arrays, and sets) to be passed by value.
In C, this is true only of structures and unions. If an array of fixed type is to be
passed by value to C, the called routine should declare the formal parameter as a
structure. For example:

~~sun ~ microsystems
65

66 Pascal Programmer's Guide

6.3. Conformant Array
Parameters

The caller (Pascal):

type
intarray = array[O .. 9] of integer;

procedure foo(arr: intarray);
external c;

The callee (C):

typedef struct
int a[lO];

} intarray;

foo (arr)
intarray arr;

This type of interface should be avoided if possible, since it is neither general nor
efficient.

The conformant array parameter feature of ISO Standard Pascal provides a means
of passing arrays of different dimensions to a single routine. For a general
description of this feature, see Cooper[l]. Conformant array parameters can be
passed to C programs; the argument seen by a C program is a pointer to the array.

Pascal passes the bounds of the array at the end of the argument list; C routines
can choose to ignore the bounds if some other convention is followed (e.g. an
explicit length parameter or a terminating value). For example:

The caller (Pascal):

search returns index in [O .. len-1] if value is found
in a[]; otherwise it returns -1. Note that actual array
must have lower bound of O.

function search(
var a: array[lb .. ub:integer] of integer;
len: integer;
value: integer): integer;

external c;

.~Slln ,~ microsystems

6.4. Procedures and
Functions as Parameters

Chapter 6 - The Pascal- C Interface 67

The callee (C):

/*
* return index in [O .. len-1] if value is found
* in a, else return -1
*/

int
search(a,len,value)

int a[];
int len;
int value;
/* int lb,ub; NOTUSED */

Conformant array parameters can be passed by value; if this is done, a copy of
the array is made in the caller's environment and the address of the copy is
placed in the argument list. This property is useful for dealing with character
strings (see "Character String Types" later in this chapter for further details).

Pascal procedures and functions can be passed as parameters to external C rou­
tines. The argument seen by C is a pointer to the text of the passed routine. For
example:

The caller (Pascal):

type element = record ... end;

procedure qsort(
var elist: array[lb .. ub:integer] of element;
nelements: integer;
elementsize: integer;
function compare(var ell, e12: element): integer);

external c;

function compare(var x,y: element): integer;
begin

end;

~\sun ,~ microsystems

68 Pascal Progr~mmer's Guide

6.5. Compatible Types in
Pascal and C

6.6. Incompatible Types in
Pascal and C

The callee (C):

typedef struct

} element;

qsort(elist,nelements,elementsize,compare)
element elist[];
int nelements;
int elementsize;
int (*compare) ();

The Pascal compiler appends an extra argument to the argument list, which is
significant if the actual procedure is nested; consequently, nested Pascal routines
should not be passed as parameters to C or FORTRAN. The compiler issues a
warning if this is attempted.

Sizes and alignments of types common to both Pascal and C are listed in the
table below:

Pascal type C type Size Alignment*

shortreal float 4 bytes 2 bytes
real double 8 bytes 2 bytes
longreal double 8 bytes 2 bytes
integer int 4 bytes 2 bytes
-32768 .. 32767 short 2 bytes 2 bytes
-128 .. 127 char 1 byte 1 byte
boolean char 1 byte 1 byte
char char 1 byte 1 byte
record structiunion 2 bytes 2 bytes
array array 2 bytes 2 bytes

Alignments on a Sun-3 are on 4-byte boundaries for types with sizes of 4 bytes or
larger.

In most cases, C arrays and structures describe the same objects as their Pascal
equivalents, provided that the components have compatible types and are
declared in the same order. Exceptions are noted in the next section.

This section describes types that differ between Pascal and C. In some cases, the
differences are minor; in others, a type has no equivalent in the other language,
and can be reproduced only with difficulty .

• \sun
~~ microsystems

C Bit Fields

Enumerated Types

Character String Types

Chapter 6 - The Pascal- C Interface 69

The Pascal compiler ignores the word 'packed', so the minimum field width is 1
byte. Consequently, C bit fields have no equivalent in Pascal, and should be
avoided in structures shared by C and Pascal code.

In Pascal, enumerated types are represented internally by sequences of integral
values starting with O. Storage is allocated for a variable of an enumerated type
as if the type were a sub range of integer. For example, an enumerated type of
fewer than 128 elements is treated as 0 .. 127, which according to the rules above,
is equivalent to a char in C.

In C, enumerated types are allocated a full word and can take on arbitrary integer
values.

In Pascal, strings are values of character array type. String assignments and com­
parisons involving string constants imply blank-padding of the constant to the
length of the longer operand. C does not support string assignments, except
through library functions (see string). By convention, strings in C end with a
oon~~ ,
C routines with character string parameters expect a string to be passed by
address and be terminated by a null byte. To meet these requirements, the fonnal
parameter should be declared in Pascal as a value conformant array of
char. Note that null termination is only guaranteed when the actual parameter
is a string constant, and that this guarantee is not required by the ISO Pascal
Standard.

As an example, the following Pascal program lists the files in the current direc­
tory by using the C library routine system (3), which executes a string as a shell
command:

program usesystem;
procedure system (

cmd: packed array[lb .. ub: integer] of char);
external c;

begin
system('/bin/ls -1');

end.

Some common constructs in C rely on the fact that strings in C denote static vari­
able storage; the user is cautioned to avoid such idioms in Pascal, especially
when calling C library routines. For example, you could use mktemp (3) in Pas­
cal as follows:

tmp := mktemp('/tmp/foo.xxxxxxxx'); {WRONG}

This is incorrect, since mktemp () modifies its argument. A correct solution is
to use the C library routine strncpy () (see string) to copy the string constant
to a declared char array variable:

70 Pascal Programmer's Guide

Pascal Set Types

procedure strncpy(
var dest: packed array[ll .. ul:integer] of char;
srce: packed array[12 .. u2:integer] of char;
length: integer);

external c;

procedure mktemp(
var dest: packed array[lb .. ub:integer] of char);

external c;

var pathname: packed array[1 .. 40] of char;

strncpy(pathname, '/tmp/foo.xxxxxxxx', sizeof(pathname»;
mktemp(pathname);

In Pascal, a set is implemented as a bit vector, which may be thought of as a C
byte array. Direct access to individual elements of a set is highly machine­
dependent and should be avoided. Note that the implementation may change in a
future release.

In the Sun implementation, bits are numbered within a byte from least significant
to most significant. For example, the bits in a variable of type set 0 f 0.. 31
would be ordered:

set+O: 7, 6, 5, 4, 3, 2, 1, 0

set+l: 15,14,13,12,11,10,9,8

set+2: 23,22,21,20,19,18,17,16

set+3: 31,30,29,28,27,26,25,24

In C, a set could be described as a byte array beginning at an even address. The
nth element in a set I [lower ... upper] can be tested as follows:

#define BITMASK 07
#define BITNUMSIZE 03
register indx;
upper -= lower; /* normalize upper bound */
if «indx = n - lower) < 0 I I indx > upper)

/* n is outside the range [lower .. upper] */

if (setptr[indx » BITNUMSIZE] & (1 « (indx & BITMASK»)
/* n is in [lower .. upper] */

/* n is not in [lower .. upper] */

~\sun ~~ microsystems

Pascal Variant Records

Chapter 6 - The Pascal- C Interface 71

C equivalents of variant records can usually be constructed by the following
somewhat awkward correspondence:

Pascal:
record

<fixed part fields>
case <tag field> of
<tag value list(l»: <variant field list(l»);

<tag value listen»~: <variant field listen»~);

c:

end;

struct {

} ;

<fixed part fields>
<tag field>
union {
struct { <variant field list(l»

struct { <variant field list(2»
} <name>;

<name(l»;

<name(n»;

The correspondence fails if the variant part begins at an odd address, which
occurs if none of the variants requires word alignment. The problem is that in C,
each variant must be represented by a nested structure, which always begins at an
even address. In Pascal this restriction is not observed because a variant does not
begin a new record. For example:

var x : record

end;

case tag: char of
'a': (chI, ch2: char);
'b': (flag: boolean);

does not correspond to a C structure, since the substructure of the 'a' variant is
not word-aligned. However, one can force the variant part of this record to be
aligned by adding another variant, for example,

var x : record

end;

case tag: char of
, a': (chI, ch2: char);
'b': (flag: boolean);
'K': (ALIGN: integer);

72 Pascal Programmer's Guide

The corresponding C structure is then

struct {

X;

~~sun ,~ microsystems

char tag;
union {

struct
char chl, ch2;

}a_var;
struct {

char flag;
}b_var;
struct {

int ALIGN;
}c_var;

}varyart;

7
The Pascal- FORTRAN Interface

The Pascal - FORTR.AN Interface .. . 75

7.1. Order of Declaration of Arguments ... 75

7.2. Value Parameters vs. Reference Parameters .. 75

7.3. Conformant Array Parameters ... 75

7.4. Procedures and Functions as Parameters 76

7.5. Compatible Types in Pascal and FORTRAN .. 77

7.6. Incompatible Types in Pascal and FORTRAN ... 77

Pascal Boolean vs. FORTRAN logical ... 77

Multidimensional Arrays .. 78

7.1. Order of Declaration of
Arguments

7 .2. Value Parameters vs.
Reference Parameters

7.3. Conformant Array
Parameters

7
The Pascal - FORTRAN Interface

This chapter describes the interface for calling FORTRAN from Pascal. It
describes parameter passing conventions, and the mapping between types in FOR­

TRAN and their equivalents in Pascal.

The order of declaration of arguments is the same in Pascal and FORTRAN.

In FORTRAN, all parameters are passed by reference, including constants and
function results. In general, all constants and temporary values are handled by
creating a copy in the caller's environment and passing the copy by reference.
The Pascal compiler follows this convention for routines declared with the
external fortran directive. For example:

The caller (Pascal):

function hypot(x,y: real): real;
external fortran;

z := hypot(3, 4);
assert(z = 5.0);

The callee (FORTRAN):

double precision function hypot(x,y)
double precision x,y
hypot = sqrt(x**2 + y**2)
return
end

External FORTRAN routines can be declared to accept one-dimensional arrays of
different sizes by using conformant array parameters. The calling sequence
passes the array bounds at the end of the argument list. Unfortunately, the
bounds are not accessible from FORTRAN. In general, the caller must supply an
explicit length parameter. For example,

4Z\sun ,~ microsystems
75

76 Pascal Programmer's Guide

7.4. Procedures and
Functions as Parameters

The caller (Pascal):

function innerproduct(
var x,y: array[lb .. ub:integer] of real;
nelernents: integer): real;

external fortran;

The callee (FORTRAN):

double precision function innerproduct(x,y,n)
double precision x,y
integer n
dimension x(n), y(n)
end

Multidimensional arrays can cause problems if passed from Pascal to FORTRAN;

see the section on "Multidimensional Arrays" later in this chapter for details.

Pascal procedures and functions can be passed as parameters to external FOR­

TRAN routines, subject to the following restrictions:

All formal parameters of the passed routine must be var parameters since
the source language of a compiled routine is not recorded in its run time
representation.

The actual routine passed must be declared at the outer block level.

All formal parameters of the passed routine must have types with compatible
equivalents in FORTRAN.

The argument that FORTRAN sees should be declared with an external state­
ment. For example:

The caller(Pascal):

function apply(
function f(var xx:real): real;
var x: real): real;

external fortran;

The callee (FORTRAN):

double precision function apply(f,x)
external f
double precision f,x
apply = f (x)
return
end

7.5. Compatible Types in
Pascal and FORTRAN

7.6. Incompatible Types in
Pascal and FORTRAN

Pascal Boolean VS. FORTRAN

logical

Chapter 7 - The Pascal - FORTRAN Interface 77

Size and alignments of types common to both Pascal and FORTRAN are listed in
the table below:

Pascal type FORTRAN Type Size Alignment

shortreal REAL 4 bytes 2 bytes
real DOUBLE PRECISION 8 bytes 2 bytes
longreal DOUBLE PRECISION 8 bytes 2 bytes
integer INTEGER*4 4 bytes 2 bytes
-32768 . .32767 INTEGER*2 2 bytes 2 bytes
-128 .. 127 CHARACTER 1 byte 1 byte
boolean CHARACTER 1 byte 1 byte
char CHARACTER 1 byte 1 byte
array array (*) 2 bytes

(*) Only one-dimensional arrays are compatible in Pascal and FORTRAN.

Types with sizes of 4 bytes or larger are aligned on 4-byte boundaries on a Sun-3.

In Sun Pascal, Booleans are allocated a single byte, and may reside at odd byte
addresses. In FORTRAN, logical is defined to be the same size as the default
size of integer, which may be 2 or 4 bytes, but is never a single byte and is
always word-aligned.

FORTRAN logical parameters should be declared at the calling site as
integers. Boolean values can be passed using the standard function ord. For
example:

The caller (Pascal):

(WRONG):

procedure foo(flag: boolean);
external fortran;

foo(n>O);

(RIGHT):

procedure foo(flag: integer);
external fortran;

foo(ord(n>O)) ;

The callee (FORTRAN):

{ERROR}

78 Pascal Programmer's Guide

Multidimensional Arrays

subroutine foo(flag)
logical flag

Multidimensional arrays are not compatible in Pascal and FORTRAN. Since Pas­
cal arrays use row-major indexing and FORTRAN arrays use column-major index­
ing, an array passed in either direction between Pascal and FORTRAN appears to
be transposed. For example:

The caller (Pascal):

~\sun ~~ microsystems

program example(output);

type

var

matrix array [1 .. 5, 1 .. 5] of integer;

a: matrix;
i, j: integer;

procedure fort(var a: matrix);
external fortran;

begin

end.

for i .= 1 to
for j .= 1 to

a[i,j] .=
write(a[i,

end;
writeln
end;
writeln;
fort (a)

5 do begin
5 do begin
i;
j]:3);

The callee (FORTRAN):

subroutine fort(a)
integer a
dimension a(5,5)
integer i,j
do 10 i = 1,5

Chapter 7 - The Pascal- FORTRAN Interface 79

P r in t *, (a (i, j) , j 1 , 5)
10 continue

return
end

output:

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

8
Sun Extensions to Berkeley Pascal

Sun Extensions to Berkeley Pascal ... 83

8.1. Language Extensions Supported by both pc and pi 83

Underscores Allowed In Identifiers .. 83

Conformant Array Parameters ... 83

Syntax .. 84

otherwise clause in case statement ... 84

sizeof operator .. 85

Correct handling of multidimensional array declarations 87

8.2. Language extensions supported only by pc .. 87

shortreal and longreal types (pc only) .. 87

External FORTRAN and C Declarations (pc only) 88

Bit Operations on Integral Types ... 89

Preprocessor facilities (pc only) ... 89

Version identification 89

8.3. Differences from the ISO Pascal Standard .. 89

8.1. Language Extensions
Supported by both pc and
pi

Underscores Allowed In
Identifiers

Conformant Array
Parameters

8
Sun Extensions to Berkeley Pascal

Sun Microsystems has made many extensions to Berkeley Pascal. These are
exclusively language extensions (as opposed to new tools such as dbx). In addi­
tion, this chapter discusses the differences between the ISO standard and Sun
Pascal.

The syntax of Pascal identifiers is extended to allow underscores ("_") in all char­
acter positions except the first. This improves readability of long identifiers, and
for pc, allows access to more routines of the Sun libraries than do earlier ver­
sions.

Level 1 ISO standard Pascal requires that conform ant array parameters be sup­
ported. This feature allows a procedure or function to accept arrays with a com­
mon element type, but with different bounds. Note that conformant arrays are
not truly dynamic - that is, their bounds cannot be altered. They merely pro­
vide a mechanism for including subscript bounds information when an array is
passed as a formal parameter. For example, the following function computes the
real inner product of two real vectors x and y. x and y must have the same dimen­
sion.

function innerproduct (var x,y: array [lb .. ub: integer] of real): real;
var sum: real;

n:integer;
begin

sum := 0.0;
for n := lb to ub do

sum := sum + x[n]*y[n];
innerproduct .= sum;

end;

83

84 Pascal Programmer's Guide

Syntax

<conformant-array-parameter-specification>
.. = <value-conformant-array-parameter-specification>
::= <variable-conformant-array-parameter-specification>

<value-conformant-array-parameter-specification>
::= <identifier-list> ":" <conformant-array-schema>

<variable-conformant-array-parameter-specification>
::= "var" <identifier-list> <conformant-array-schema>

<conformant-array-schema>
.. = <packed conformant-array-schema>
.. = <unpacked conformant-array-schema>

<packed conformant-array-schema>
::= "packed" "array" "[" <index-type-specification> "]"

"of" <type-identifier>

<unpacked conformant-array-schema>
.. = "array" .. [.. <index-type-specification> ..] ..

"of" <array-element-type>

<array element-type>
.. = <type-identifier>
::= <conformant-array-schema>

<index-type-specification>
.. = <bound-identifier>" "<bound-identifier>

, •• II <type-identifier>

otherwise clause in case
statement

A formal conformant array parameter includes read-only bound identifiers as part
of its definition. The bound identifiers provide the lower and upper limits of the
conformant array parameter's index type. The actual array associated with a con­
formant array parameter must have the same element type as the conformant
array, as well as a compatible index type. When an actual array is passed as a
conformant array parameter, its bounds become the bounds of the conformant
array parameter. If the formal parameter is a value confonnant array parameter,
a copy of the actual array is made in the caller's environment and the address of
the copy is passed.

A detailed description of conformant array parameters is given in Cooper[l].

Case statements may specify a default action or "otherwise clause", according to
the following syntax:

.~sun ~~ microsystems

si zeof operator

Chapter 8 - Sun Extensions to Berkeley Pascal 85

<case statement>
.. = "case" <case selector> "of"

<case-element> { "i" <case-element> } ["in]
[<otherwise-clause>]
"end"

<case selector>
::= <expression>

<case-element>
: : = <case label>

<case-label>
: : = <constant>

<otherwise-clause>

" " , <case label> }

.. = "otherwise" <statement> ["i"]

" . " <statement>

Note that the reserved word otherwise is not a case label, so it is not fol­
lowed by a":". If specified, it must be at the end of the case statement. For
example,

program silly (input,output);
var ch:char;
begin

read(ch) ;
case ch of
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9':

writeln ('digit');
otherwise

end
end.

write In ('not a digit')

The default action (i.e. the statement immediately following the reserved word
otherwise) is executed if the case selector does not match any of the specified
case label values. Without the otherwise clause, this situation would result
in a run-time error and termination of the program.

The sizeof operator returns the size of a specified type or variable. If you
wish to compute the size of a variant record type, an optional1ist of variant tag
values can be used to specify a particular variant of the given record type, similar
to the standard procedures new and dispose. For example,

86 Pascal Programmer's Guide

program showsize (output);
type thing = record

case boolean of
true: (n: integer);
false: (x: real)
end;

var t: thing;

begin
write In (sizeof (t»;
write In (sizeof (thing»;
write In (sizeof (thing, true»;
end.

The syntax of sizeof () is

"sizeof" "(" <size_expr_list> ")"

where

<size_expr_list> ::= <size_expr> { ","
<constant expression> }

<size_expr> ::= <type identifier> I <variable>

sizeof () returns the size, in bytes, of a declared type or a (possibly qualified)
variable. If an optional list of constant expressions is supplied, the <type
identifier> or <variable> must denote a variant record type or an instance of one;
the value returned is the size of the variant selected by the list of constant expres­
sions (e.g. the standard procedures new and dispose).

sizeof () is a compile-time function and does not cause code to be generation
other than for the constant value it returns. Since the size of a conformant array
parameter is not known until runtime, sizeof (conformant array parameter) is
treated as an error. For the one-dimensional conformant array parameter,

function size(
var arr: array[lb .. ub: integer] of element

): integer;

the size of arr may be computed as

(~ _________ s_i_z_e __ :_= __ (_U_b_-_l_b_+_l_) __ * ___ s_i_z_e_O_f_(_e_l_e_m_e_n_t_)_,_. ______________ ~]
Apply the above formula recursively to compute the size of multidimensional
arrays.

~\sun ,~ microsystems

Correct handling of
multidimensional array
declarations

8.2. Language extensions
supported only by pc

shortreal and longreal
types (pc only)

Chapter 8 - Sun Extensions to Berkeley Pascal 87

Note: sizeof is now a reserved word, unless the -s option (compile only stan­
dard Pascal) is in effect

As specified by the ISO standard, arrays of arrays and multidimensional arrays
are treated the same. For example,

(array[l .. lO] of array[1 .. 6] of real;

and

(array[1 .. lO,1 .. 6] of real;

are treated as equivalent, as are a [i] [j] and a [i, j]. In the 4.2BSD ver­
sions of pc and pi substitution of one for the other was considered an error.

Example:

Description:

var x: shortreal;
y: longreal;
z: real; {same as longreal }

J

J

pc now supports both single- and double-precision floating point types, which are
denoted by the names shortreal and longreal, respectively. The stan­
dard type real denotes double-precision floating-point, as in earlier versions of
Sun Pascal. Note that real can be redeclared as either longreal or
short real, if desired.

The rules for arithmetic conversions are changed to permit computations involv­
ing single-precision operands to be done in single precision. The new rules are

The operators +, -, *
Let op denote a binary arithmetic operator in the set {+,-,*}. Let xl and
x2 denote the operands of Ope Let t I and t2 denote the types of xl
and x2, respectively. The type of (xl op x2) is determined by applying
the following rules in the order listed:

1. If tl and t2 are both subranges of -128 .. 127, the type of the result is
-32768 . .32767.

2. If tl and t2 are both subranges of integer, then the type of the
result is integer.

3. If t I or t2 is longreal, then the type of the result is longreal.

~\sun ~~ microsystems

88 Pascal Programmer's Guide

External FORTRAN and C
Declarations (pc only)

4. If tl and t2 are either short real or sub ranges of -32768 . .32767
(i.e., representable exactly in 16 bits), then the type of the result is
shortreal.

5. Otherwise, the type of the result is longreal.

• The integral dividing operators di v, mod:

If the operator is one of { di v , mo d}, then the operands are restricted to
integral types, and the type of the result is integer.

• The operator /:

If the conversions described above for +, -, * return an integral type, then
both operands are converted to longreal, and that is the type of the
result.

Note: These rules differ from those of C, which automatically forces conversion
to double precision for all floating-point arithmetic operations, as well as for
floating-point function arguments.

The external directive for procedure and function declarations is extended to
allow the optional specification of the source language of a separately compiled
procedure or function.

<procedure declaration>
::= <procedure or function heading> <directive>

<directive>
.. = "forward"
.. = "external" [<identifier>] If.If ,

Where either fortran or c may be substituted for <identifier>.

The directives external fortran and external c, direct pc to gen­
erate calling sequences compatible with Sun's FORTRAN 77 and C, respec­
tively.

For routines declared external fortran, the changes in the calling
sequence are as follows:

• For value parameters, the compiler creates a copy of the actual argument's
value in the caller's environment, and a pointer to the temporary is passed on
the stack. Thus, you don't need to create (otherwise useless) temporary vari­
ables.

The compiler appends an underscore to the name of the external procedure
to conform to a naming convention of the [77 compiler. Note that names of
Pascal procedures called from FORTRAN must supply their own trailing
("_"). This may be done using a #define preprocessor declaration to
minimize impact on the rest of the program.

Note: Multidimensional Pascal arrays are not compatible with FORTRAN
arrays. Since FORTRAN uses column-major ordering, a multidimensional

~\sun ,~ microsystems

Bit Operations on Integral
Types

Preprocessor facilities (pc
only)

Version identification

8.3. Differences from the ISO
Pascal Standard

Chapter 8 - Sun Extensions to Berkeley Pascal 89

Pascal array passed to FORTRAN will appear to be transposed.

For routines declared external c, the only changes in the calling sequence is
that value parameters of type shortreal are treated as longreal.

x .= land(y,z) ; bitwise AND

x .= lor(y,z) ; inclusive OR
x .= xor(y,z) ; exclusive OR
x .= Inot(y); bitwise NOT
x .= lsI (y, z) ; logical shift left
x .= Isr(y,z); logical shift right }

x .= asl (y, z) ; arithmetic shift left
x .= asr (y, z) ; arithmetic shift right }

These predefined functions provide access to the same bit operations provided by
C. Each takes one or two arguments of integral type and returns a result whose
type is the larger of the two operand types. The result is computed in-line, pro­
ducing faster and smaller code than an equivalent external function call.

Preprocessor facilities (e.g., conditional compilation, macros) can be used as in C
(see cpp). Comments containing a '#' in column 1 are interpreted by the prepro­
cessor. Also, Sun's C language reserves the symbols sun, unix, and
mc 68 a a 0, which are not reserved in Pascal.

The version of pc used to compile a given object file can be identified by the fol­
lowing command line:

hostname% run -ap <file> I grep " PC " I head

The first line containing the string "PC" indicates the version of the compiler
used and the date of its generation, for example:

hostname% run -ap foo.o I grep " PC " I head
00000000 - 00 OOOd PC 3.4 (10/4/84)
00000001 - 00 0001 PC foo.p

The following section describes the differences between the ISO Pascal standard
and Sun Pascal.

Operands of binary set operators {*,+,-} are required to have identical types.
The standard permits different types as long as the base types are compati­
ble.

According to the standard, the expression [maxint ... -maxint]
should be equivalent to []. pc and pi both refuse to evaluate sets with
elements larger than indicated by the definition of type int set
(predefined as set of 0 ... 1271).

~\sun ~~ microsystems

90 Pascal Programmer's Guide

Sun Pascal treats files declared as 'file of char' the same as files
declared as 't e xt. ' In ISO Pascal the two types are distinct.

• The value of m mod n is not computed correctly for negative values of m.
According to the standard, the divisor must be positive and the result must
be negative. The correct result can be obtained by:

result := m mod n;
if result < 0 then result .= result + n;

~\Slln ~ microsystems

A
Pascal Language Reference Summary

Pascal Language Reference Summary ... 93

A.I. Programs .. 93

A.2. Declarations ... 93

Label Declarations ... 93

Constant Declarations .. 94

Type Declarations ... 94

Variable Declarations ... 94

Procedure And Function Declarations .. 94

Formal Parameter Declarations .. 94

A.3. Constants ... 95

A.4. Types ... 95

A.5. Record Types .. 96

A.6. Statements .. 96

A.7. Expressions .. 97

A.8. Variables .. 98

A.9. Actual Parameters .. 98

A.IO. Operators .. 98

A.II. Miscellaneous .. 99

A.12. Lexicon .. 99

A.t. Programs

A.2. Declarations

Label Declarations

A
Pascal Language Reference Summary

This appendix is a language reference summary for Berkeley Pascal with Sun
extensions. BNF notation is used throughout.

< program> ::= < program heading> < declaration list> < block> •
I < declaration list>

<program heading> ::= program < identifier> (< identifier list>)
I program < identifier> ;

< block> ::= begin < statement list> end

< declaration list> ::= < declaration list> < declaration>
< empty>

< declaration> ::= < label declaration>
< constant declaration>
< type declaration>
< variable declaration>
< procedure declaration>
<function declaration>

< label declaration> ::= label < label list > ;

< label list > ::= < label>
I < label list > , < label>

[~ ______ <_la_b_e_I_> __ ::_=_< __ u_n_sl_·g_n_e_d_i_n_U_g_e_r_> _______________________________]

93

94

Constant Declarations

Type Declarations

Variable Declarations

Procedure And Function
Declarations

Formal Parameter
Declarations

< constant declaration> ::= canst < identifier> = < constant> ;
I < constant declaration> < identifier> = < constant> ;

< type declaration> ::= type < identifier> = < type> ;
I < type declaration> < identifier> = < type> ;

< variable declaration> ::= var < identifier list> : < type> ;
I < variable declaration> < identifier list> : < type> ;

<procedure declaration> ::= <procedure heading> forward;
I <procedure heading> external < identifier> ;
I <procedure heading> external;
I < procedure heading> < declaration list> < block> ;

<function declaration> ::= <function heading> forward;
I <function heading> external < identifier> ;
I <function heading> external;
I <function heading> < declaration list> < block> ;

<procedure heading> ::= procedure <identifier> <parameters> ;

<function heading> ::= funct ion < identifier> < parameters>
< type identifier> ;

<parameters> ::= (<parameter list>)
I <empty >

<parameter list> ::= <parameter>
I < parameter list> ; < parameter>

< parameter> ::= < identifier list> : < parameter type>
I var < identifier list> : < parameter type>
I function <identifier> <parameters> : <type identifier>
I procedure < identifier> <parameters>

A.3. Constants

A.4. Types

Appendix A - Pascal Language Reference Summary 95

<parameter type> ::= < type identifier>
I < con/ormant array schema>
I < packed con/ormant array schema>

< con/ormant array schema> ::= array [< index type list>] of
< parameter type>

<packed con/ormant array schema> ::= packed array
[< index type>]
of < type identifier>

< index type list> ::= < index type>
I < index type list> ; < index type>

< index type> ::= < identifier> .. < identifier>: < type identifier>

< constant> ::= < character string>
I < constant identifier>
I < number>
I + <number>
I - <number>

< number> ::= < unsigned integer>
I < octal constant>
I < unsigned real constant>

< constant list> ::= < constant>
< constant list> , < constant>

< type> ::= < simple type>
I ~ < type identifier>
I < structured type>
I packed < structured type>

< simple type> ::= < type identifier>
I (< identifier list>)
I < constant> . . < constant>

96

A.S. Record Types

A.6. Statements

< structured type> ::= array [< simple type list>] of < type>
I file of < type>
I set of < simple type>
I record <field list> end

< simple type list> ::= < simple type>
I < simple type list> , < simple type>

<field list> ::= <fixed part> < variant part>

<fixed part> ::= <field>
I <fixedpart> ; <field>

<field> ::= < empty >
I < identifier list> : < type>

< variant part> ::= < empty >
I case < type identifier> of < variant list>
I case < identifier> : < type identifier> of < variant list>

< variant list> ::= < variant>
< variant list> ; < variant>

< variant> ::= < empty >
I < constant list>: (<field list>)

< statement> ::= < empty >
< unsigned integer> : < statement>
< procedure identifier>
< procedure identifier> (< actual parameter list>)
< assignment>
begin <statement list> end
case < expression> of < case statement list> end
wit h < variable list> do < statement>
while < expression> do < statement>
repeat <statement list> until < expression>
for <assignment> to < expression> do <statement>
for <assignment> downto <expression> do <statement>
goto < label>
if < expression> then < statement>
if < expression> hen < statement> else < statement>

A.7. Expressions

~\sun ~~ microsystems

Appendix A - Pascal Language Reference Summary 97

< assignment> ::= < variable> : = < expression>

< statement list> ::= < statement>
< statement list> ; < statement>

< case statement list> ::= < case list element>
< case statement list> ; < case list element>

< case list element> ::= < constant list> < statement>
otherwise <statement>
< empty>

< expression> ::= <simple expression>
I < expression> < relational operator> < simple expression>

< simple expression> ::= < signed term>
I < simple expression> < adding operator> < signed term>

< signed term> ::= < term>
I + < signed term >
I - < signed term >

< term> ::= <factor>
I < term> < multiplying operator> <factor>

<factor> ::= nil
I < character string>
I < unsigned integer>
I < octal constant>
I < unsigned real constant>
I < variable>
I <function identifier> (< actual parameter list>)
I (< expression>)
I not <factor>
I [< set element list>
I []
liz e 0 f < sizeof argument list> }

< sizeof argument list> ::= < sizeof argument>
I < sizeof argument list> , < expression>

98

< sizeo! argument> ::= < type identifier>
I < variable>

< set element list> ::= < set element>
< set element list> , < set element>

< set element> ::= < expression>
I < expression> . . < expression>

A.8. Variables
< variable> ::= < identifier>

I < qualified variable>

< qualified variable> ::= < array identifier> [< expression list>]
I < qualified variable> [< expression list>]
I < record identifier> . <field identifier>
I < qualified variable> . <field identifier>
I < pointer identifier > ~
I < qualified variable > ~

A.9. Actual Parameters
< actual parameter> ::= < expression>

I < expression> : < expression>
I < expression> : < expression> : < expression>
I < expression> < write base>
I < expression> : < expression> < write base>

< expression list> ::= < expression>
I < expression list> , < expression>

< actual parameter list> ::= < actual parameter>
I < actual parameter list> , < actual parameter>

< write base> ::= oct I hex

A.tO. Operators
< relational operator> ::= = I < I > I <> I <= I >= I in

< adding operator> ::= + I-lor I I

<multiplyingoperator>::= * I / I div I mod I and I &

Appendix A - Pascal Language Reference Summary 99

A.lt. Miscellaneous
< variable list> ::= < variable>

< variable list> , < variable>

< identifier list> ::= < identifier>
I < identifier list> , < identifier>

< empty> ::=

A.12. Lexicon
< constant identifier> ::= < identifier>

< type identifier> ::= < identifier>

< var identifier> ::= < identifier>

< array identifier> ::= < identifier>

< pointer identifier> ::= < identifier>

< record identifier> ::= < identifier>

<field identifier> ::= < identifier>

< procedure identifier> ::= < identifier>

<function identifier> ::= < identifier>

< identifier> ::= < letter> { < letter> I < digit> I }

~\sun ~~ microsystems

100

< letter> ::=
a I b I c d e I f I g

1 I m I n I 0 p q I r I s
x I y I z I A B C I D I E
J I K I L I M N 0 I p I Q

v I w I x I y z

< digit> ::= 0 1 2 3 I 4 I 5 I

< unsigned integer> ::= < digit> { < digit> }

< signed integer> ::= < unsigned integer>
I + < unsigned integer>
I - < unsigned integer>

h i j k

t u v w
F G H I
R S T U

6 I 7 I 8 I 9

< unsigned real constant> ::= < unsigned integer> . <fractional part>
I < unsigned integer> . <fractional part> e < scale factor>
I < unsigned integer> . <fractional part> E < scale factor>
I < unsigned integer> e < scale factor>
I < unsigned integer> E < scale factor>

[~ _____ <_fi_r_a_c_n_o_n_a_IP __ ar_t_> __ ::_=_<_d_l_·g_it_> __ {_< __ d_ig_it_> __ } ______________________ J

[< scale factor> ::- < signed integer> J

[

< octal constant> ::= < octal digit> { < octal digit> } b
I < octal digit> { < octal digit> } B

< octal digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

< character string> ::= ' < string element> { < string element> } ,

< string element> ::= < apostrophe image> I
< any character except apostrophe or newln >

< apostrophe image> ::= ' ,

J

B
Berkeley vs Standard Pascal

Berkeley vs Standard Pascal .. 103

B.1. Extensions to Pascal.. 103

String Padding 103

Octal Constants, Octal and Hexadecimal Write .. 103

As sert Statement .. 104

Enumerated Type InputJOutput .. 104

Structure-Returning Functions .. 104

Separate Compilation ... 104

B.2. Implementation-Dependent Features .. 105

File Name File Variable Associations ... 105

The program Statement ... 105

The Files input and output .. 105

Details For Files .. 106

Buffering .. 106

The Character Set ... 106

The Standard Types ... 107

Comments ... 107

Option Control .. 108

Notes on the Listings .. 108

The Standard Procedure write .. 109

B.3. Restrictions and Limitations .. 109

Files .. 109

Arrays, Sets, and Strings ... 109

Line and Symbol Length .. 109

Procedure and Function Nesting and Program Size 109

Overflow .. 110

B.4. Added Types, Operators, Procedures and Functions : 110

Additional Predefined Types .. 110

Additional Predefined Operators .. 110

Nonstandard Procedures ... 110

Nonstandard Functions .. 111

B.l. Extensions to Pascal

String Padding

Octal Constants, Octal and
Hexadecimal Write

B
Berkeley vs Standard Pascal

The official Pascal standard is "Specification for the Computer Programming
Language Pascal" (ISO dp7185)[2].

This appendix summarizes extensions to the language, discusses the ways in
which the undefined specifications were resolved, gives limitations and restric­
tions of the current implementation, and lists the predefined functions and pro­
cedures available in the Berkeley implementation. Sun extensions to the
language are listed in Chapter 8.

This section defines nonstandard language constructs available in Berkeley Pas­
cal. The -8 standard Pascal option of the translators pi and pc can be used to
detect these extensions in programs that are to be transported.

Berkeley Pascal pads with blanks constant strings found in expressions and as
value parameters, making them as long as is required. The following is a legal
Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

end;

z := 'red';
writeln (z)

The blanks are added on the right. Thus, the assignment above is equivalent to

(z :~ 'red]
which is standard Pascal.

Octal constants may be given as a sequence of octal digits followed by the char­
acter b or B. The forms

~\sun ~~ microsystems
103

104 Pascal Programmer's Guide

As s ert Statement

Enumerated Type
Input/Output

Structure-Returning
Functions

Separate Compilation

(write(a:n oct)]
and

(write (a:n hex)]
cause the internal representation of expression a (which must be Boolean, char­
acter, integer, pointer, or a user-defined enumerated type) to be written in octal or
hexadecimal, respectively.

An assert statement causes a Boolean expression to be evaluated each time
the statement is executed. A run-time error results if the expression ever evalu­
ates to FALSE. The assert statement is treated as a comment if run-time
tests are disabled. The syntax for assert is

(assert <expr>

where expr is a Boolean expression.

]

Enumerated types can be read and written. On output, the string name associated
with the enumerated value is output. If the value is out of range, a run-time error
occurs. On input an identifier is read and looked up in a table of names associ­
ated with the type of the variable, and the appropriate internal value is assigned
to the variable being read. If the name is not found in the table, a run-time error
occurs.

An extension has been added that allows functions to return arbitrary-sized struc­
tures, rather than just scalars as in the standard.

The compiler pc has been extended to allow separate compilation of programs.
Procedures and functions declared at the global level can be compiled separately.
Type checking of calls to separately compiled routines is performed at load time
to insure that the program as a whole is consistent. See the section" Separate
compilation with pc," in Chapter 4 for details.

B.2. Implementation­
Dependent Features

File Name - File Variable
Associations

The program Statement

The Files input and
output

Appendix B - Berkeley vs Standard Pascal 105

This section describes implementation-dependent features of Pascal, which are
undefined by the standard.

Each Pascal file variable is associated with a named UNIX file. Except for input
and output, which are exceptions to some of the rules, a name can become asso­
ciated with a file in any of three ways:

• If a global Pascal file variable appears in the program statement then it is
associated with the UNIX file of the same name.

• If a Pascal file is reset or rewritten using the extended two-argument fonn of
reset or rewrite then the given name is associated.

• If a Pascal file that has never had a UNIX name associated with it is reset or
rewritten without specifying a name via the second argument, then a tem­
porary name of the form tmp. n is associated with the file. Temporary
names start with tmp. 1 and continue by incrementing n in ASCII order.
Temporary files are removed automatically when their scopes are exited.

The syntax of the program statement is (in extended BNF)l1

(~p_r_o_g_r_a_m __ < __ id __ > __ (__ <fi __ k_~ __ > __ { __ ' __ <fi __ k_i_d_> __ } __) ___ ; __________________ ~]
The file identifiers (other than input and output) must be declared as vari­
ables of type file in the global declaration part.

The formal parameters input and output are associated with the UNIX stan­
dard input and output and have a somewhat special status. The following rules
must be noted:

The program heading must contain the formal parameter output if it does
any output. If input is used (explicitly or implicitly) then it must also be
declared here.

• Unlike all other files, the Pascal files input and output must not be
defined in a declaration, since their declaration is automatically done, as in

(~v_a_r __ l_.n_p_u_t_, __ o_u_t_p_u_t __ :_t_e __ xt ____________________________________ ~J
• The procedure reset may be used on input. If no UNIX filename has

ever been associated with in pu t , and no filename is given, then an
attempt is made to 'rewind' input. If this fails, a run-time error occurs.
rewri te calls to output work as any other file, except that output
has no associated file initially. This means that a simple

(rewrite <output I

11 For an explanation of extended BNF notation see Cooper[1], page 2 .

• \SllD
~ microsystems

J

106 Pascal Programmer's Guide

Details For Files

Buffering

The Character Set

associates a temporary name with output.

If a file other than input is read, then reading must be initiated by a call to the
procedure reset, which causes the Pascal system to attempt to open the asso­
ciated UNIX file for reading. If this fails, then a run-time error occurs. Writing a
file other than output must be initiated by a rewr ite call, which causes the
Pascal system to create the associated UNIX file and then to open it for writing
only.

The buffering for output is determined by the value of the -b option at the
end of the program statement. If it has its default value 1, then output is
buffered in blocks of up to 1024 bytes, and is flushed when a writeln occurs
and at each reference to the file input. If it has the value 0, output is
unbuffered. Any value of 2 or more gives block buffering without line or input­
reference flushing. All other output files are always buffered in blocks of 1024
characters. All output buffers are flushed when the files are closed at scope exit
or whenever the procedure me s s age is called, and can be flushed using the
built-in procedure flush.

An important point for an interactive implementation is the definition of
input i. If input is a tenninal, and the Pascal system reads a character at the
beginning of execution to define input i, then no prompt can be printed by the
program before the user is required to type some input. For this reason,
input i is not defined by the system until its definition is needed, with reading
from a file occurring only when necessary.

Seven-bit ASCII is the character set used in UNIX. The standard Pascal symbols
and, or, not, <=, >=, <>, and the up arrow 'i' (for pointer qualification) are
recognized. 12 Less portable are the synonyms tilde ,-, (for not), '&' (for
and), and 'I' (for or).

Upper and lower case are considered to be distinct. 13 Keywords and built-in
procedure and function names are composed of all lower-case letters.
Thus the identifiers aOTO and aOto are distinct both from each other and from
the keyword goto. The standard type boolean is also available as
Boolean.

Character strings and constants may be delimited by the character ' , or by the
character 'I'; the latter is sometimes convenient when programs are to be tran­
sported. Note that the 'I' character has special meaning when it is the first char­
acter on a line - see "Multi-file programs" in Chapter 4.

12 On many tenninals and printers, the up arrow is represented as a circumflex 'A'. These are not distinct
characters, but rather different graphic representations of the same internal codes.

13 The ISO standard for Pascal considers them to be the same. The -s and -L options of pc, pi, pxp con­
sider upper- and lower-case letters to be equivalent in identifiers and keywords.

The Standard Types

Comments

Appendix B - Berkeley vs Standard Pascal 107

The standard type integer is conceptually defined as

(type integer = minint .. maxint;

Integer is implemented with 32-bit two's-complement arithmetic. The
predefined constants of type integer are

const maxint = 2147483647; minint -2147483648;

The standard type char is conceptually defined as

(type char = minchar .. maxchar;

The built-in character constants are min char and maxchar, bell and
tab; ord (min char) = 0, ord (maxchar) = 127.

]

]

The types real and longreal are implemented using 64-bit IEEE floating­
point format and the type short real using 32-bit IEEE floating-point format
The floating-point arithmetic for real and longreal is done in round to
nearest mode, and provides approximately 16 digits of precision with numbers
whose magnitudes range from 5.0E-324 to 1.7E308.

Pascal shortreal is the same as real *4 in FORTRAN and float in C.
The maximum and minimum representable values are 3.402823e+38 and 5.0e-
324.

Values of type shortreal can represent about 7 decimal digits. Numeric
type representations in Sun FORTRAN are documented in the Sun FORTRAN
FIProgrammers Guide manual in the chapter on data representation.

Comments can be delimited by either '{' and '}' or by '(*' and '*)' (as opposed
to the standard which does not distinguish between them). If the character' {'
appears in a comment delimited by '{' and '}', a warning diagnostic is printed.
A similar warning is printed if the sequence '(*' appears in a comment delimited
by '(*' and '*)'. The restriction implied by this warning is not part of standard
Pascal, but detects many otherwise subtle errors.

You can convert parts of your program to comments without generating an error
diagnostic with the following:

{ This is a comment enclosing a piece of program
a := functioncall; (* comment within comment *)
procedurecall;
lhs . = rhs; (* another comment *)

}

By using one kind of comment exclusively in your program you can use the other
delimiters when you need to comment out parts of your program. In this way,

108 Pascal Programmer's Guide

Option Control

Notes on the Listings

you also allow the translator to help by detecting statements accidently placed
within comments.

If a comment does not tenninate before the end of the input file, the translator
points to the beginning of the comment, indicating that the comment is not ter­
minated. In this case, processing terminates immediately. See the discussion of
"QUIT" in Chapter 2.

Translator options can be controlled in two distinct ways: on the command line,
and in comments. Several options may appear on the command line invoking the
translator. These options are given as one or more strings of letters preceded by
the character '-' and cause the nondefault setting of each given option to be used.
This method of options communication is expected to predominate for UNIX.
Thus the command

(hostname% pi -1 -8 foo.p

translates the file foo. p with the listing option enabled (it's nonnally oft) and
with only standard Pascal features available.

If you require more control over the portions of the program where options are
enabled then option control in comments can and should be used. Place a '$' as
the first character of the comment followed by a comma-separated list of direc­
tives. Thus, the following is equivalent to the command line example given
above:

]

(($l+,s+ listing on, standard Pascal)
J

as the first line of the program. The -1 option is more appropriately specified
on the command line, since in an interactive environment it is unlikely one
would want a listing of the program each time it is translated.

Most directives consist of a letter designating the option, followed either by a '+'
to tum the option on, or by a '-' to tum the option off. The only exception is the
-b option which takes a single digit instead ofa '+' or '-'.

The first page of a listing includes a banner line indicating the version number
and generation date of pi or pc. It also includes the UNIX pathname supplied for
the source file and the date of last modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond
to the line numbers used by the vi editor. Currently, two special kinds of lines
may be used to fonnat the listing: a line consisting of a fonnfeed character
(Control-L) causes a page eject in the listing, and a line with no characters causes
the line number to be suppressed in the listing (creating a blank line). These
lines correspond to 'eject' and 'space' macros found in many assemblers. Non­
printing characters are printed as the character' l' in the listing. 14

14 The character generated by a Control-I indents to the next tab stop. Tab stops are set every 8 columns in
UNIX. Thus, tabs provide a quick way of indenting in the program.

~~\sun ~~ microsystems

The Standard Procedure
write

B.3. Restrictions and
Limitations

Files

Arrays, Sets, and Strings

Line and Symbol Length

Procedure and Function
Nesting and Program Size

Appendix B - Berkeley vs Standard Pascal 109

If no minimum field length parameter is specified for a wr i te, the following
default values are assumed: 15

integer
real
Boolean
char
string
oct
hex

The end of each line in a text file should be indicated explicitly by
writeln (f); writeln (output) may be written simply as writeln.
The built-in function page (f) puts a single ASCII formfeed character on the
output file. For programs which are to be transported the filter pee can be used
to interpret carriage control, as UNIX does not normally do so.

Files cannot be members of files or dynamically-allocated structures.

For pi only, the calculations involving array subscripts and set elements are done
with 16-bit arithmetic. This restricts the types with which arrays and sets may be
defined. The lower bound of such a range must be greater than or equal to
-32768, and the upper bound less than or equal to 32767. Strings may have any
length from 1 to 65535 characters, and sets may contain no more than 65535 ele­
ments. The range of elements in a set expression is bound by the definition of
intset in the current scope. Refer to the section on "Additional Predefined Types"
later in this chapter for more information.

In pc , arrays may be any size that fits into the process address space.

There is no intrinsic limit on the length of identifiers. Identifiers are considered
to be distinct if they differ in any position over their entire length. The limit on
the maximum input line length is currently 1024 characters.

A maximum of 20 levels of procedure and function nesting is allowed. There is
no fundamental, translator-defined limit on the size of the program that can be
translated. The ultimate limit is defined by the available address space on the
Sun workstation in use. If you encounter the 'ran out of memory' diagnostic
message, the program can still be translated if smaller procedures are used, since
a lot of space is freed by the translator at the completion of each procedure or
function in the current implementation.

In pi , there is an implementation-defined limit of 65536 bytes of storage per vari­
able, but no limit on the number of variables.

15 The default values for the Sun-provided types shortreal and longreal are 14 and 22, respectively,

~\sun ~~ microsystems

110 Pascal Programmer's Guide

Overflow

B.4. Added Types, Operators,
Procedures and
Functions

Additional Predefined Types

Additional Predefined
Operators
Nonstandard Procedures

There is currently no checking for overflow on arithmetic operations at runtime.

The type al fa is predefined as

[type alfa = packed array 1 .. 10] of char]
The type intset is predefined as

[
type intset - set of 0 .. 127)

---. --------
In most cases, the context of an expression involving a constant set allows the
translator to determine the type of the set, even though the constant set itself may
not uniquely determine this type. In the cases where it is not possible to deter­
mine the type of the set from local context, the expression type defaults to a set
over the entire base type unless the base type is integerl16. In the latter case,
the type defaults to the current binding of intset, which must be type
set of (a subrange of) integer at that point

The relationals '<' and '>' of proper set inclusion are available.

argv(i,a)

date (a)

flush (f)

halt

assigns the (possibly truncated or blank-padded) i'th argument
of the invocation of the current UNIX process to the variable
a, where i is an integer and a is a string variable. The range of
i is 0 to argc-l .

assigns the current date to the alfa variable a in the format
tid mmm yy, where mmm is the first three characters of the
month, (e.g., 'Apr').

writes the output buffered for Pascal file f into the associated
UNIX file.

terminates the execution of the program with a control flow
traceback.

linelimit(f,x)
causes the program to be abnormally terminated if more than x
lines are written on file f, where f is a textfile and x an integer
expression. If x is less than 0 then no limit is imposed.

message (x, ...)
causes the parameters (which have the same format as for the

16 The translators make a special case of the construct if ... in [...] and enforces only the more
lax restriction on l~bit arithmetic given above in this case .

• sun
~ microsystems

Nonstandard Functions

Appendix B - Berkeley vs Standard Pascal 111

null

built-in procedure write), to be written unbuffered on
stderr, which is usually the user's terminal.

a procedure of no arguments which does absolutely nothing.
It is useful as a place holder, and is generated by pxp in place
of the invisible empty statement.

rernove(a) causes the UNIX file whose name is given by the string a, with
trailing blanks eliminated, to be removed.

reset(f,a)

rewrite(f,a)

stlimit(i)

causes the file a (where a is a string with blanks trimmed) to
be associated with/, and performs a resetonf

is analogous to reset above.

sets the statement limit to be i statements, where i is an
integer. Specifying the -p option to pc disables statement
limit counting.

time (a) causes the current time in the form' hh:mm:ss ' to be assigned
to the a 1 f a variable a .

argc

card(x)

clock

expo (x)

(expo (x)

random(x)

returns the count of arguments provided when the Pascal pro­
gram was invoked. Argc is always at least 1.

returns the cardinality of the set x , that is, the number of ele­
ments in the set.

returns an integer representing the system time (in mil­
liseconds) used by this process.

yields the integer-valued exponent in the floating-point
representation of x :

entier(log2(abs(x») .]

invokes a linear congruential random number generator, where x is a real
parameter that is evaluated but otherwise ignored. Successive seeds are gen­
erated as (seed*a + c) mod m and the new random number is a nor­
malization of the seed to the range 0.0 to 1.0; a is 62605, cis 113218009,
and m is 536870912. The initial seed is 7774755.

seed(i)
sets the random number generator seed to i and returns the previous seed,
where i is an integer. Thus, seed (seed (i)) has no effect except to
yield value i .

sysclock
returns the number of milliseconds of system time used by this process.
sysclock is an integer function with no arguments.

112 Pascal Programmer's Guide

undefined (x)
a Boolean function. Its argument is a real number and it always returns
false.

wallclock
returns the time in seconds since 00:00:00 GMT January 1, 1970.
walle lock is an integer function with no arguments.

sizeof(x)
see Chapter 8 for extensions specific to the Sun implementation.

~~Slln ~ microsystems

c
Bibliography

Bibliography ... 115

c
Bibliography

[1] Cooper, Doug. Standard Pascal User Reference Manual, W.W. Norton
and Co., 1983

[2] Specificationfor Computer Programming Language Pascal, BS 6192,
British Standards Institute, 1982

[3] Jensen, K., and N. Wirth. PASCAL User Manual and Report, Springer­
Verlag, 1974.

~\sun
~~ microsystems

115

I

D
Pascal Manual Pages

Pascal Manual Pages .. 119

D
Pascal Manual Pages

~\sun ,~ microsystems
119

PC(1) USER COMMANDS PC(l)

NAME
pc - Pascal compiler

SYNOPSIS
pc [-c] [-g] [-0 output] [-0] [-b] [-c] [-Dname[=def]] [float_option] [-H]

[-i name ...] [-I dir] [-I] [-Ipfc] [-L] [-p] [-P] [-pg] [-s] [-s]
[-U name] [-w] [-z] [-Z] filename.p ...

DESCRIPTION

Pc is the Sun Pascal compiler. If given an argument file ending with .p, pc compiles the file and leaves the
result in an executable file called a.out by default.

A program may be separated into more than one .p file. Pc will compile a number of .p files into object
files (with the extension .0 in place of .p). Object files may then be loaded into an executable a.out file.
Exactly one object file must supply a program statement to successfully create an executable a.out file.
The rest of the files must consist only of declarations which logically nest within the program. References
to objects shared between separately compiled files are allowed if the objects are declared in included
header files, whose names must end with .h. Header files may only be included at the outermost level, and
thus declare only globally available objects. To allow external functions and procedures to be declared,
an external directive has been added, whose use is similar to the forward directive but restricted to appear
only in .h files. Function and procedure bodies may not appear in .h files. A binding phase of the com­
piler checks that declarations are used consistently, to enforce the type checking rules of Pascal.

Object files created by other language processors may be loaded together with object files created by pc.
The functions and procedures they define must have been declared in .h files included by all the .p files
which call those routines.

Pascal's calling conventions are compatible with those of C, with var parameters passed by address and
other parameters passed by value.

pc supports ISO Level 1 Standard Pascal, including conformant array parameters. Deviations from the ISO
Standard are noted under BUGS below.

See the Pascal User's Manual for details.

OPTIONS
See Id(I) for load-time options.

-c Suppress loading and produce .0 file(s) from source file(s).

-g Produce additional symbol table information for the symbolic debugger dbx(I).

-0 name
Name the final output file name instead of a.out.

-0 Optimize the object code.

-b Buffer the file output in units of disk blocks, rather than lines

-C Compile code to perform subscript and subrange checks and verify assert statements. Note that
pointers are not checked. This option differs significantly from the -C option of the cc compiler.

-Dname[=defJ
Define name to the preprocessor, as if by a #define directive. If no def is given, name is defined
as 1.

float_option

Sun Release 3.0

Floating-point code generation option. Can be one of:

-fsoft software floating-point calls (This is the default).

-fsky

-f68881

-fswitch

in-line code for Sky floating-point processor (supported only on Sun-2).

in-line code for Motorola 68881 floating-point processor supported only on Sun-3).

run-time-switched floating-point calls. The compiled object code is linked at run-

Last change: 21 December 1985 121

PC(1)

FILES

122

USER COMMANDS PC(1)

time to routines that support one of the above types of floating-point code. This was
the default in previous releases. Only for use with programs that are floating-point
intensive, and which must be portable to machines with various floating-point
options.

When invoked without float_option, the compiler interrogates the FLOAT_OPTION environment
variable to determine the type of floating-point code to generate. Legal values for
FLOAT_OPTION are: 'fsoft', 'fsky', 'f68881' and 'fswitch'.

-H Compile code to perform range checking on pointers into the heap.

-i name Produce a listing for the specified procedures, functions and include files.

-Idir Add dir to the list of directories in which to search for #include files with names not beginning
with slash The preprocessor first searches for #include in the directory containing filename.p,
then in directories named with -I options (if any), and finally, in lusrlinclude .

-I Make a program listing during translation.

-Jpfc Load common startup code for programs containing mixed Pascal and FORTRAN 77 object files.
Such programs should also be loaded with the FORTRAN 77 libraries (see files below).

-L Map upper case letters in keywords and identifiers to lower case.

-p Prepare object files for profiling with gprof(1).

-p Use partial'evaluation semantics for the boolean operators and and or. For these operators only,
left-to-right evaluation is guaranteed, and the second operand is evaluated only if necessary to
determine the result.

-pg Produce counting code in the manner of -p, but invoke a run-time recording mechanism that
keeps more extensive statistics and produces a gmon.out at normal termination. An execution
profile can then be generated using gprof(I).

-s Accept standard Pascal only; nonstandard constructs and extensions cause warning diagnostics.

-S Compile the named program, and leave the assembly language output on the corresponding file
suffixed' .s'. No' .0' is created.

-Uname
Remove any initial definition of name.

-w Suppress warning messages.

-z Allow execution profiling with pxp(l) by generating statement counters, and arranging for the
creation of the profile data file pmon.out when the resulting object is executed.

-z Initialize local variables to zero.

Other arguments are taken to be loader option arguments or libraries of pc-compatible routines. Certain
flags can also be controlled by comments within the program, as described in the Pascal User's Manual in
the Sun Pascal Manual.

file.p
llib/cpp
lusr!lib/pcO
llib/fl
lusr!lib/pc2
Ilib/c2
lusr/lib/pc3
lusr!lib/pc3.2strings
lusr/lib/how j>C

lusr!lib/libpc.a

Pascal source files
nnacropreprocessor
compiler front end
code generator
inline expander of library calls
peephole optimizer
separate compilation consistency checker
text of the error messages
basic usage explanation
intrinsic functions and 110 library

Last change: 21 December 1985 Sun Release 3.0

PC(1)

lusrllib/libpfc.a
lusrllib/libF77.a
/usrllib/libI77.a
lusrllib/libU77.a
lusrllib/libm.a
llibllibc.a

USER COMMANDS PC(1)

startup code for combined Pascal and FORTRAN programs
FORTRAN intrinsics library
FORTRAN I/O library
FORTRAN <=>Unix interface library
math library
standard library, see intro (3)

SEE ALSO
The Pascal User's Manual in the Sun Pascal Manual.
pi(I), pxp(I), pxref(l)

DIAGNOSTICS

BUGS

For a basic explanation do
tutorial% pc

In the diagnostic output of the translator, lines containing syntax errors are listed with a flag indicating the
point of error. Diagnostic messages indicate the action which the recovery mechanism took in order to be
able to continue parsing. Some diagnostics indicate only that the input is 'malformed.' This occurs if the
recovery can find no simple correction to make the input syntactically valid

Semantic error diagnostics indicate a line in the source text near the point of error. Some errors evoke
more than one diagnostic to help pinpoint the error; the follow-up messages begin with an ellipsis ' ... '.

The first character of each error message indicates its class:

E Fatal error; no code will be generated.
e Nonfatal error.
w Warning - a potential problem.
s Nonstandard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator will give a diagnostic and then
'QUIT'.

N ames whose definitions conflict with library definitions draw a warning. The library definition will be
replaced by the one supplied in the Pascal program. Note that this can have unpleasant side effects.

The keyword packed is recognized but has no effect. The ISO standard requires packed and unpacked
structures to be distinguished for portability reasons.

Binary set operators are required to have operands with identical types; the ISO standard allows different
types, as long as the underlying base types are compatible.

The -z flag doesn't work for separately compiled files.

Because the -s option is usurped by the compiler, it is not possible to pass the strip option to the loader.
Thus programs which are to be stripped, must be run through strip (1) after they are compiled.

Sun Release 3.0 Last change: 21 December 1985 123

PI(1) USER COMMANDS PI (1)

NAME
pi - Pascal interpreter code translator

SYNOPSIS
pi [-b] [-I] [-L] [-0] [-0 name] [-p] [-8] [-t] [-u] [-w] [-z]

[-i name. ••] name.p

DESCRIPTION
Pi translates the program in the file name.p leaving interpreter code in the file obj in the current directory.
The interpreter code can be executed using px. Pix performs the functions of pi and px for 'load and go'
Pascal.

Both pi and pc (1) support ISO Level 1 Standard Pascal, including conformant array parameters. Deviations
from the ISO Standard are noted under BUGS below.

OPTIONS

FILES

The following flags are interpreted by pi; the associated options can also be controlled in comments within
the program; see the Pascal User's Manual in the Sun Fortran and Pascal
Manual for details.

-b Buffer the file output in units of disk blocks, rather than lines.

-i name
Enable the listing for any specified procedures, functions, and include files.

-I Make a program listing during translation.

-L Map all identifiers and keywords to lower case.

-0 Begin each listed include file on a new page with a banner line.

-0 name
Name the final output file name instead of a.out.

-p Suppress the post-mortem control flow backtrace if an error occurs; suppress statement limit count-
ing.

-s Accept standard Pascal only; non-standard constructs cause warning diagnostics.

-t Suppress runtime tests of subrange variables and treat assert statements as comments.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-z Allow execution profiling with pxp by generating statement counters, and arranging for the creation
of the profile data file pmon.out when the resulting object is executed.

file.p
file.i
lusr/lib/pi3. * strings
lusr/lib/how yi *
obj

input file
include file(s)
text of the error messages

basic usage explanation
interpreter code output

SEE ALSO
Sun Fortran and Pascal Manual
pix(1), px(1), pxp(I), pxref(1)

DIAGNOSTICS

124

For a basic explanation do
tutorial% pi

In the diagnostic output of the translator, lines containing syntax errors are listed with a flag indicating the
point of error. Diagnostic messages indicate the action which the recovery mechanism took in order to be
able to continue parsing. Some diagnostics indicate only that the input is 'malformed.' This occurs if the

Last change: 7 November 1984 Sun Release 3.0

PI (1)

BUGS

USER COMMANDS PI (1)

recovery can find no simple correction to make the input syntactically valid

Semantic error diagnostics indicate a line in the source text near the point of error. Some errors evoke
more than one diagnostic to help pinpoint the error; the follow-up messages begin with an ellipsis ' ... '.

The first character of each error message indicates its class:

E Fatal error; no code will be generated.
e Non-fatal error.
w Warning - a potential problem.
s Non-standard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator will give a diagnostic and then
'QUIT'.

The keyword packed is recognized but has no effect. The ISO standard requires packed and unpacked
structures to be distinguished for portability reasons.

Binary set operators are required to have operands with identical types; the ISO standard allows different
types, as long as the underlying base types are compatible.

For clarity, semantic errors should be flagged at an appropriate place in the source text, and mUltiple
instances of the 'same' semantic error should be summarized at the end of a procedure or function rather
than evoking many diagnostics.

When include files are present, diagnostics relating to the last procedure in one file may appear after the
beginning of the listing of the next.

Sun Release 3.0 Last change: 7 November 1984 125

PIX (1)

NAME
pix - Pascal translator and interpreter

SYNOPSIS

USER COMMANDS

pix [options] [-i name ...] name.p [argument ...]

DESCRIPTION

PIX(l)

Pix is a 'load and go' version of Pascal which combines the functions of the translator pi and the interpreter
px. Pix uses pi to translate the program in the file name.p and, if there were no fatal errors during transla­
tion, calls px to execute the resulting interpretive code with the specified arguments. A temporary file is
used for the object code; the file obj is neither created nor destroyed.

FILES

Options are as described under pi(I).

lusr/ucb/pi
/usr/ucb/px
/tmp/pix*
/usr/lib/how yix

Pascal translator
Pascal interpreter
temporary
basic explanation

SEE ALSO
The Pascal User's Manual in the Pascal/or the Sun Workstation Manual.
pi(l), px(l)

DIAGNOSTICS

126

For a basic explanation do
tutorial% pix

Last change: 7 November 1984 Sun Release 3.0

PMERGE(l) USER COMMANDS PMERGE(1)

NAME
pmerge - pascal file merger

SYNOPSIS
pmerge name.p •••

DESCRIPTION

FILES

Pmerge assembles the named Pascal files into a single standard Pascal program. The resulting program is
listed on the standard output It is intended to be used to merge a collection of separately compiled
modules so that they can be run through pi, or exported to other sites.

lusr/tmp/MG* default temporary files

SEE ALSO

BUGS

pc(l), pi(1),
Auxiliary documentation Pascal User's Manual in the Sun Fortran and Pascal Manual.

Very minimal error checking is done, so incorrect programs will produce unpredictable results. Block
comments should be placed after the keyword to which they refer or they are likely to end up in bizarre
places.

Sun Release 3.0 Last change: 11 November 1983 127

PX(l) USER COMMANDS PX(l)

NAME
px - Pascal interpreter

SYNOPSIS
px [obj [argument ...]]

DESCRIPTION

FILES

Px interprets the abstract machine code generated by pi. The first argument is the file to be interpreted, and
defaults to obj; remaining arguments are available to the Pascal program using the built-ins argv and argc.
Px is also invoked by pix when running 'load and go' .

If the program terminates abnormally an error message and a control flow backtrace are printed. The
number of statements executed and total execution time are printed after normal termination. The p option
of pi suppresses all of this except the message indicating the cause of abnormal termination.

obj
pmon.out

default object file
profile data file

SEE ALSO
The Pascal User's Manual in the Sun Pascal Manual.
pi(l), pix(l)

DIAGNOSTICS

BUGS

128

Most run-time error messages are self-explanatory. Some of the more unusual ones are:

Reference to an inactive file
A file other than input or output was used before a call to reset or rewrite.

Statement count limit exceeded
The limit of 500,000 executed statements (which prevents excessive looping or recursion) has been
exceeded.

Bad data found on integer read
Bad data found on real read

Usually; non-numeric input was found for a number. For reals, Pascal requires digits before and
after the decimal point so that numbers like '.1' or '21.' evoke the second diagnostic.

panic: Some message
Indicates a internal inconsistency detected in px probably due to a Pascal system bug.

Post-mortem traceback is not limited; infinite recursion leads to almost infinite traceback.

Last change: 1 November 1984 Sun Release 3.0

PXP(1) USER COMMANDS PXP(1)

NAME
pxp - Pascal execution profiler

SYNOPSIS
pxp [-acdefjLnstuw _] [-23456789] [-z [name ...]] name.p

DESCRIPTION
Pxp can be used to obtain execution profiles of Pascal programs or as a pretty-printer. To produce an exe­
cution profile all that is necessary is to translate the program specifying the z option to pc, pi, or pix, exe­
cute the program, and then type the command

tutorial% pxp -z name.p

Pxp generates a reformatted listing if none of the c, t, or z options are specified; thus
tutorial% pxp old.p > new.p

places a pretty-printed version of the program in old.p in the file new.p.

OPTIONS

FILES

The use of the following options of pxp is discussed in the Pascal User's Manual in the Sun Pascal
Manual.

-a Print the bodies of all procedures and functions in the profile; even those which were never executed.

-c Extract profile data from the file core.

-d Include declaration parts in a profile.

-e Eliminate include directives when reformatting a file; the include is replaced by the reformatted con-
tents of the specified file.

-f Fully parenthesize expressions.

-j Left justify all procedures and functions.

-L Map all identifiers and keywords to lower case.

-n Eject a new page as each file is included; in profiles, print a blank line at the top of the page.

-s Strip comments from the input text.

-t Print a table summarizing procedure and function call counts.

-u Card image mode; only the first 72 characters of input lines are used.

-w Suppress warning diagnostics.

-z Generate an execution profile. If no names are given the profile is of the entire program. If a list of
name s is given, then only the specified procedures or functions and the contents of the specified
include files will appear in the profile.

Underline keywords.

-d Use d spaces (where d is a digit, 2 ~ d ~ 9) as the basic indenting unit. The default is 4.

name.p input file
name.i include file(s)
name.h include file(s)
pmon.out profile data
core profile data source for -c option
/usr/lib/how yxp information on basic usage

Sun Release 3.0 Last change: 7 November 1984 129

PXP(1) USER COMMANDS PXP(1)

SEE ALSO
The Pascal User's Manual in the Sun Pascal Manual.
pc(1), pi(1), px(l)

DIAGNOSTICS

BUGS

130

For a basic explanation do
tutorial% pxp

Error diagnostics include 'No profile data in file' with the c option if the z option was not enabled to pi;
'Not a Pascal system core file' if the core is not from a px execution; 'Program and count data do not
correspond' if the program was changed after compilation, before profiling; or if the wrong program is
specified.

Does not place multiple statements per line.

Procedures and functions as parameters are printed without nested parameter lists, as in the obsolete Jensen
and Wirth syntax.

Last change: 7 November 1984 Sun Release 3.0

PXREP(1) USER COMMANDS

NAME
pxref - Pascal cross-reference program

SYNOPSIS
pxref [-] name

DESCRIPTION

PXREF(1)

Pxref makes a line numbered listing and a cross-reference of identifier usage for the program in name. The
optional '-' argument suppresses the listing. The keywords goto and label are treated as identifiers for the
purpose of the cross-reference. Include directives are not processed, but cause the placement of an entry
indexed by '#inc1ude' in the cross-reference.

SEE ALSO
The Pascal User's Manual in the Sun Fortran and Pascal Manual.

BUGS
Identifiers are trimmed to 10 characters.

Sun Release 3.0 Last change: 11 November 1983 131

Revision History

Version Date Comments

A October 1980 This revision was the Berkeley Pascal
User's Manual Version 2.0.

B July 1983 This revision was the Berkeley Pascal
User's Manual Version 3.0. Sun
Microsystems updates to this manual
removed references to the CYBER 6000
implementation details.

C 7 January 1984 Minor corrections and updates.

D 19 November 1984 2.0 a release

D 5 February 1985 2.0 ~ release

D 15 May 1985 2.0 release

E 17 February 1986 3.0 release

Notes

Notes

Notes

Notes

Notes

Notes

Notes

